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Abstract

The Count of EV Charging:

Attacking, Mitigating and Reenvisioning the Infrastructure

Hossam ElHussini

For a genuinely connected smart world, the overlapping of the Internet of Things (IoT) ser-

vices from different sectors becomes inevitable. One of the rather interesting collaborations is that

between Intelligent Transportation Systems (ITS) and Smart Grids. Particularly, a perfect mani-

festation of such integration of services is the rise of Electric Vehicles (EVs) and their charging

infrastructure. Although the full integration of ITS and smart grid services would alleviate the de-

velopment of self-driving intelligent vehicles, there are major challenges that are yet to be resolved,

one of crucial importance is their security. To contextualize such security issues, it is essential to

have a clear understanding of the status-quo of EVs and charging ecosystem. In that regard, we sur-

vey the entities, protocols, deployment types and major manufacturers of Electric Vehicles Charging

Stations (EVCS) and identify the key weaknesses causing security issues. Moreover, we propose

a novel attack that exploit the vulnerabilities in the EVCS to create a botnet of them, tamper their

schedules and cause frequency disturbances to the power grid. In order to mitigate such an attack,

we explore the role of Artificial Intelligence (AI) and Blockchain individually and collaborate in

both securing the EV charging ecosystem and efficiently manage the energy trading among EVs,

EVCS and power grid. Consequently, we expand on the collaboration of AI and Blockchain and

propose an anomaly detection engine to detect the proposed attack demonstrating is effectiveness

in flagging anomalous charging behavior. Finally, we re-envision the EV charging ecosystem by

integrating both AI and Blockchain to secure both public and private EVCS from the proposed

attack.
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Chapter 1

Introduction

1.1 Internet of Things: The Arrival

In 1906, Lewis Baumer, a cartoonist at the British humor and satire magazine; the Punch [2],

drew what could only be described as a letter-perfect depiction of our lives today shown in Figure

1.1. Two people, thou “not communicating with one another”, are building a relationship through

“receiving an amatory message, and ... some racing results”.

Figure 1.1: Lewis Baumer Illustration in the Punch in 1906
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Whether this was a mere coincidence or an exquisite prophecy, the illustration portrayed two

main themes that would be the most predominant in our modern lives; remote communication and

human-machine interfacing. Fast forward to almost eighty years later, the Internet was born [3],

marking the beginning of a new era. The promise of the Internet was to enable seamless com-

munication through providing a decentralized, border-less and transparent medium. Steadily, the

thought of communicating with another person anywhere in the globe was no longer part of science

fiction but a tangible reality that shaped the last century. From the World Wide Web to Mosaic

and Netscape all the way to its commercialization, the Internet was slowly but surely becoming an

intrusive part of every household [4]. This revolution enabled the envisioning of novel services and

technologies and paved the road for another revolution known as the Internet of Things (IoT).

The term IoT was first coined by Kevin Ashton in 1999 in an attempt to sell the RFID technology

to senior management at Procter&Gamble. The gist of his presentation was that information on the

Internet was human-dependent and with the inadequacies of the human nature, we will fail to coup

up with collecting the tremendous amount of data being generated. With that, he proposed a turn of

tables in which humans rely on computers to collect, process and share information between each

other to make our lives easier [5]. What Kevin suggested at that time was a conceptual realization of

the IoT paradigm that was only popularized 10 years later on 2009. In essence, the IoT paradigm en-

compasses the technology of embedding sensors and actuators into everyday objects, transforming

them into smart objects capable of data collection, analysis, and sharing between different entities.

With that abstraction in mind, these IoT devices would enable a whole new set of applications and

services from intelligent transportation systems and smart cities to smart grids and Industry 4.0.

However, in order to realize such services, IoT devices, both generic and application-specific, are

needed in the market. Accordingly, there has been an exponential growth in the number of IoT de-

vices since its inception in 2009. To put it in perspective, major companies such as Ericson predicted

that the number of IoT devices would reach 30Bn devices by 2020 and would continue to grow to

50Bn by 2030 [6]. Nowadays, the IoT paradigm has become so intrusive that almost all households

have at least one kind of smart device [7]. For instance, it is not abnormal to see a household with

a smart lighting system, a voice-enabled temperature control system and a remote-controlled home

surveillance system.
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1.2 Electric Vehicles: The Marriage Feast

The rapid increase in the number of IoT devices coupled with advancements in communication

technologies will enable more applications and services become readily available for the end user.

Two examples of such services are:

1.2.1 Intelligent Transportation Systems

Intelligent Transportation Systems (ITS) are one of the interesting services that are enabled by

the IoT paradigm. Typically, ITS consist of four main subsystems; vehicular, stationary, monitoring

and security, each with its own functionalities and devices. For instance, the vehicular subsystem

consists of IoT devices such as Global Positioning System and On Board Unit (OBU) and its main

functionality is to communicate vehicle information with the other subsystems. In addition, the

security subsystem is responsible for detecting malicious behavior, authenticating the different en-

tities, etc. All these subsystems interact together with the main goal of efficiently monitoring and

managing the transportation network [8].

1.2.2 Smart Grids

Another interesting service enabled by IoT is smart grids. While ITS focus on the transporta-

tion network, smart grids leverage IoT devices to better manage the energy consumption, generation

and transmission. Through the use of different IoT devices (such as sensors, smart meters, smart

actuators), power suppliers, building managers, etc. can dynamically manage their energy produc-

tion/consumption based on the data obtained from these devices. Further, the data obtained from

such IoT devices can be monitored and analyzed to provide better services to the energy consumers,

avoid potential failures and detect anomalous behaviors [9].

While these two services deal with two completely different networks; transportation and en-

ergy, a new service has emerged which in its core is a perfect combination of both ITS and smart

grid. This service is the Electric Vehicle (EV) and its charging infrastructure. In essence, EVs are

part of the vehicular subsystem in the ITS service and their charging infrastructure are part of the

3



smart grids. To put it in perspective, an EV with low battery level would connect to the nearest

EV charging station whether at home or at public. Through the use of smart meters and controllers

within the charging stations, data about EV charging could be sent to the power utility to better

manage its energy production to accommodate for EV charging during the different times of the

year. Further, full integration of these two services within the context of EVs would mean that self-

driving EVs could automatically drive to the nearest charging stations to recharge their batteries.

Although the road for full integration is yet to be fully developed, the EV industry have witnessed

exponential growth over the past few years. Nowadays, almost all car manufacturers are producing

at least one type of EV. Coupled with government incentives and subsidies, the number of EV on

the road is expected to reach 30M by 2030.

1.3 EV Charging: The Story

Despite the growth of the EV industry, one would expect that the EV adoption among con-

sumers is skyrocketing. Unfortunately, this is not the case due to some obstacles. One of the major

obstacles facing EV adoption is the lack of an adequate charging infrastructure. According to Clean-

Technica, almost 50% of EV drivers believe that charging stations are neither located conveniently

nor adequate for long distance trips. As a result of such barriers, there have been major invest-

ments in the field of EV charging. Similar to the EV industry, major companies including Siemens,

Schneider Electric, etc. are now manufacturers of EV charging stations (EVCS). Further, lots of

car companies including Porsche and Tesla are providing EVCS specific to their EV. Moreover,

new companies have emerged and started to lead the field of EVCS manufacturing such as Charge-

Point and EvBox. Beside procuring EVCS in the market, the EVCS themselves have transitioned

into being part of the IoT paradigm. In particular, EVCS are now internet-connected transmitting

data between them and the EVs, as well as communicating with a management server to monitor

and control the charging process. This transition to the IoT paradigm has opened the door for new

challenges, one of critical importance is the security.

Security has always been a critical aspect of the IoT devices. Given their limited computing ca-

pacities and storage, IoT devices are not fitted for heavy security protocols, leaving them with very

4



weak authentication mechanisms for example. In addition, their availability in the markets, homes,

buildings, etc. make them a more lucrative victim for cyber-attacks. For instance, the Mirai botnet

infected more than half a Million IoT device in a matter of days exploiting their default credentials.

Circling back to the EVCS, it becomes clear that they are no exception either. Particularly, they are

becoming more readily-available to the consumers with low prices due to government incentives.

Further, their developed security protocols are not matured yet, require limited to no security mea-

sures and riddled with vulnerabilities [10]. What make the EVCS a much more crucial entity than

the other IoT devices are that they are the linking point to a more critical infrastructure and their

unique characteristics. Specifically, EVCS have higher power ratings that almost all consumer IoT

devices (more than Electric water heaters and Air conditioners). Further, current protocols of EVCS

allow for bidirectional power flow, meaning that the EVs can also discharge their batteries to the

power grid. Thus, if an EVCS is compromised, the communication link between the EVCS and the

EV can also be compromised. The implications of this is that the EV driver data could be stolen and

tampered with. To exacerbate the situation, false commands can be injected into the EV causing

damage to the batteries and more hazardous impacts. On the other side, a compromised EVCS can

cause some disturbances on the power grid.

1.4 Contributions

In this thesis, we study, in great detail, the security of the EV Charging infrastructure as part

of the IoT paradigm. In particular, we survey the current infrastructure in terms of the protocols,

communication links, participating entities and major players. Further, we propose a novel attack

targeted towards the EVCS that can cause major disturbances to the power grid. Given the severity

of such an attack and other proposed attacks in the literature, we explore the different mechanisms

leveraging Artificial Intelligence (AI) and Blockchain that could be leveraged to secure such a crit-

ical infrastructure. From there, we further expand on one of the proposed mechanisms, namely

anomaly detection, to propose a detection mechanism for the proposed attack and a reenvisioning

of the charging infrastructure. Our contributions can be summarized as follows:
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1.4.1 A Tale of Two Entities: Contextualizing Electric Vehicle Charging Stations

Cyber-Fingerprint on the Power Grid

With the growing market of V, the procurement of their charging infrastructure plays a crucial

role in their adoption. Within the revolution of IoT, the EV charging infrastructure is getting on

board with the introduction of smart EVCS, a myriad set of communication protocols and different

entities. With such, we provide in this chapter an overview of this infrastructure detailing the partic-

ipating entities and the communication protocols. Further, we contextualize the current deployment

of EVCSs through the use of available public data. In the light of such survey, we identify two

key concerns; the lack of standardization and multiple points of failures, which renders the current

deployment of EV charging infrastructure vulnerable to an array of different attack s. Moreover, we

propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their pro-

tocol (such as high power wattage and support for reverse power flow) to cause disturbances to the

power grid. We investigate three different attack variations; sudden surge in power demand, sudden

surge in power supply and a switching attack. To support our claims, we showcase using real-world

example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering

the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our

proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can

cause devastating effects on the power grid which might result in blackout and cascading failure by

comprising a small number of EVCSs.

1.4.2 Blockchain, AI and Smart Grids: The Three Musketeers to a Decentralized

EV Charging Infrastructure

The EV charging industry have been a lucrative opportunity for investors and research commu-

nity. Accordingly, many efforts have been made towards providing the end-user with an extraordi-

nary Quality of Service (QoS). However, given the current protocols and deployment of the Electric

Vehicle (EV) charging infrastructure, some key challenges still need to be addressed. Particularly,

we identify, in this chapter, two main EV challenges (1) vulnerable charging stations and EVs,

and (2) non-optimal charging schedules. With these issues in mind, we evaluate the integration of

6



Blockchain and AI with the EV charging infrastructure. Specifically, we discuss the current AI and

Blockchain charging solutions available in the market. In addition, we propose a couple of use cases

where both technologies complement each other for a secure, efficient and decentralized charging

ecosystem. This letter serves as starting point for stakeholders and policymakers to help identify

potential directions and implementations of better charging systems for EVs.

1.4.3 An Anomaly Detection Engine for Securing the EV Charging Ecosystem with

Blockchain and AI

Motivated by the attack in the first contribution, we focus, in this chapter, on early detection and

build an anomaly detection engine. Particularly, we leverage AI to be the backbone of the detection

engine that analyzes the EV schedules and raise alerts of anomalous ones. First, we detail a generic

detection engine and test it using the Irish public EVCS and power grid data. Under extensive sim-

ulation and testing different learning algorithms (statistical, auto-encoders and distance-based), we

evaluate the performance of the proposed engine. Our results show the effectiveness of the proposed

engine in the early-detection of the described attack, while providing enough flexibility to tweak its

performance for more complex attack variations. Further, to provide a more comprehensive solu-

tion, we discuss a Blockchain network integration with the proposed engine to secure the private

EVCS from such an attack.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapters 2, 3, 4 detail the first, second and third

contributions respectively. We then conclude and discuss future work in chapter 5.
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Chapter 2

A Tale of Two Entities: Contextualizing

Electric Vehicle Charging Stations

Cyber-Fingerprint on the Power Grid

2.1 Introduction

In the current era of IoT, everyday items or “Things” are enhanced with embedded sensors,

actuators and Internet connection, giving them the capability to collect, analyze data and perform

actions accordingly, turning them into smart things [11]. With such enhancements, the IoT will bring

a wide range of invasive technologies in various sectors (i.e. health care, industry, transportation,

etc.). Two of the promising use cases of IoT are ITS and Smart Grids. In an ITS environment,

people, roads and smart vehicles are connected together providing smart traffic management [7].

In a truly connected environment, different smart sectors would collaborate together giving rise to

new business and technological opportunities. One of the rather interesting opportunities is the

emergence of EV and their infrastructure.

The EV industry has witnessed a tremendous growth over the past few decades with forecasts

of reaching 30 Million EVs by 2030 [12]. EVs are considered a stepping stone towards a genuinely

connected smart environment by linking two major sectors; Transportation systems and electric
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grids [10]. With such a promising future, the adaptability of EVs has been increasing at a steady rate

of almost 42% since 2013 [13]. However, for the EV industry to reach its potential as an alternative

for fuel-powered vehicles, different components have to be made available to the end users. The

first component is the EVs themselves which was procured by many of the car companies including

Toyota, Tesla, Hyundai, etc. The other major component is the availability of the EV charging

platform. These two components constitute the infrastructure of the EV industry.

EVCS are considered the backbone of the EV industry. Their availability is crucial to the contin-

uation of EVs and to providing the end user with a seamless driving experience. Consequently, there

has been many efforts, both in the academic and industry sectors, that focused on the procurement

of EVCS. For instance, researchers focused on optimizing the scheduling, charging and placement

of EVCS [14, 15, 16]. On the industry side, many companies (e.g. Schneider Electric, Charge-

Point, Shell, etc.) have ventured towards manufacturing EVCS and successfully providing the end

users with a variety of options. In addition, many companies have embraced the IoT paradigm and

provided smart charging stations, allowing customers to schedule, manage, and pay for their EV

charging with little to no effort. Although the rise of smart EVCS has brought many benefits to the

end users, it added some challenges; one that is particularly interesting is their security.

With every new addition to the IoT paradigm, a novel threat landscape is introduced upon the

cyber security field. Within the context of EV charging, different entities and communication proto-

cols coexist to realize such an infrastructure. These entities range from the EV driver, to the charging

station all the way to the power utility. Inspite of contributing to the EV charging realm, each entity

brings about its intrinsic vulnerabilities and thus, it represents an entry point to the system from the

adversary perspective. Therefore, the adversary’s reward could be as simple as physically damaging

the charging station to a more devastating impact as remotely controlling the charging station and

redeeming it unavailable. In light of this discussion, we explore one particular threat that can render

major leverage to an adversary. Specifically, we demonstrate how an attacker can exploit EVCS to

derange the more critical entities, Power Grid.

Although the security of EVCS has not been discussed thoroughly in the literature due to its

novelty, some contributions have been made. For instance, the authors in [10] discussed the security

of EVCS on the protocol level. In addition, the authors in both [17] & [18] discussed the security
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of EVCS from the infrastructure level. However, given the growth of the EV charging industry and

wide deployment of EVCS, there is a need to survey and analyze the security of existing EVCS

solutions. Moreover, some work has been done in targeting the power grid through the EV charging

stations. For instance, the work in [19] and [20] analyzed how an adversary can utilize public

charging stations to cause frequency instability to the power grid. Although both works built up

on the same foundation, that is EVCS can cause major disturbances to the power grid, the authors

explored one dimension of such disturbance; a sudden increase on the load. Unlike the work in the

literature, we provide a more comprehensive view of the EVCS security and explore novel measures

an adversary can take to cause more disturbances to the grid.

To this end, we provide a wide view of the different EVCS solutions currently deployed, and

an overview of the distribution of the EVCS in terms of locations, levels and types. Further, we

survey the different protocols used within the infrastructure of the EVCS and analyze their security.

In addition, we demonstrate how the growth of the EVCS and EVs could represent a new attack

surface on the grid. Particularly, we propose an innovative coordinated multi-stage attack that allow

an adversary to disturb the power grid. We first demonstrate how an adversary can remotely access

and control EVCS by exploiting common IoT vulnerabilities and public data available from Internet

wide scans. Further, we exploit the intrinsic properties of EVCS that allow for bidirectional power

flow, high wattage consumption and coexistence of a variety of protocols. From there, we perform a

simulation-based study on how an adversary can cause frequency instability and cascading failures

to the grid by performing three different kind of attack variations; sudden load increase, sudden

surge in energy supply and switching attack.

The remainder of this paper is organized as follows. We discuss the EVCS protocols, infras-

tructure and the state-of-the-art deployments in Section 2.2. The security of EVCS is analyzed in

Section 2.3 in terms of the protocols used. We then demonstrate real-world test cases and evaluate

the different attack vectors in Section 2.4. Section 2.5 covers the literature review. We propose a set

of countermeasures in section 2.6 and we finally conclude in Section 2.7.
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Figure 2.1: Electric Vehicle Infrastructure and Protocols

2.2 Electric Vehicles Charging Stations: Protocol, Infrastructure &

Deployment State of the Art

EVCS is composed of different entities communicating and interacting together. Figure (2.1)

gives an overview of the main entities composing the infrastructure of the EVCS along with the dif-

ferent protocols used for communications. In what follow, we provide an overview of the different

entities and the protocols specifications.

2.2.1 Infrastructure

The EVCS infrastructure consists of four main entities:

EV

EV are the raison d’etre of the EVCSs; their growth over the past few decades stimulated the

need to procure their charging. According to the International Energy Agency (IEA), the number of

Electric Vehicles in 2018 was 5.1M across the globe which was double the number of EV from the
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previous year. Further, the IEA is estimating an exponential increase of EVs reaching up to 250M

by 2030 [21]. Generally, EVs can be categorized into three main types [22]:

• Hybrid Electric Vehicles (HEV): Those are Electric Vehicles powered with both a fuel en-

gine and a battery engine. The battery engine operates at lower speeds and when idle, while

the fuel engine operates at high speeds. The charging of HEVs is accomplished through re-

generative breaking and the fuel engine. Hence, they can not be plugged in to a charging

station.

• Plug-In Hybrid Electric Vehicles (PHEV): The PHEVs follow a similar concept of HEV.

However, they can be plugged-in to a charging station. Further, PHEVs are equipped with

more batteries and more powerful traction motors, allowing them to travel for longer distances

[22].

• Battery Electric Vehicles (BEV): BEVs are powered entirely by an electrical engine, hence

they rely fully on charging stations to power their engines. One major advantage of BEV is

that they produce zero emissions resulting from internal combustion engines. [23]

In this work, we only consider about PHEVs and BEVs since they utilize the charging stations.

Power Grid

The power grid is the main source of power that feeds EVs through the charging stations. Elec-

tric Supply and Demand along with the speed of the generators are used as an essential indicator

for grid stability and reliability. Particularly, the speed of the generators directly translates to the

frequency of the system. Further, when the electrical demand increases, the grid responds to this

increase by reducing the speed of the generators, releasing its kinetic energy into the system and

vice versa. To ensure the stability of the grid, it has to operate within a certain frequency range;

any deviation from that range would result in instability or degradation in the system performance.

Table (2.1) shows the different operating zones of frequencies in North America [24]. As can be

seen, when the frequency of the system drops below 59.5Hz or raises above 61.5Hz due to signif-

icant imbalance between supply and demand, the system is operating in a critical region and any
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further variations would cause shutting down the protection relays and the equipment. Hence, ex-

treme measures should be taken to bring the system frequency to its nominal range by controlling

the mechanical input of the primary and secondary controllers. [25]

Supply-Demand Frequency Range Operation Zone

supply >>Demand f >61.5 Critical

Supply >Demand

59.95 <f <60.05 StableSupply = Demand

Supply <Demand

Supply <<Demand f <59.5 Critical

Table 2.1: North America Frequency Ranges

Central Management System (CMS)

The CMS is simply a cloud server responsible for monitoring and managing the different charg-

ing stations. Its functionality includes scheduling and monitoring the charging, keeping the logs,

managing authorized and unauthorized transactions as well as performing remote diagnostics and

adjustments.

EVCS

The EVCS is the backbone that connects the different entities together. Topologically, an EVCS

is composed of one or more Electric Vehicle Supply Equipment (EVSE) responsible for delivering

power to EVs. Further, each EVSE can have one or more terminals allowing for multiple EVs to

be charged at once. In addition, an EVSE can be configured as a gateway or non-gateway. For the

gateway configuration, the EVSE acts as a relay of information between the central management

and the rest of the non gateway EVSEs within the EVCS.

EVSE can be further broken down into three main tiers based on their power output:

• Level 1: Level 1 EVSEs are the most basic charging stations. They draw power from the stan-

dard outlet; grounded 120V/15A single phase outlet for North America. This corresponds to

a power output of 1.5−2kW, and accordingly, it is considered to be the most time consuming;

12-24 hours to fully charge an EV[26].
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• Level 2: Level 2 EVSEs are the most common chargers for EVs. They typically utilize a

240V connection, allowing peak powers of up to 19kW . Typically, level 2 EVSEs outputs on

average 7.2kW of power allowing drivers to fully charge their EVs in a couple of hours [27].

• Level 3: Level 3 EVSEs are the most powerful with peak power of up to 240kW utilizing a

480V outlet. Typically, Level 3 EVSEs utlizies 44− 120kW . They are usually referred to as

DC fast Charging, and are capable of charging an EV in a matter of minutes[28].

Aside from the power variations of the EVSEs, EVSEs could be categorized as public or private.

Public EVSEs are usually found in public places such as parks, roadsides, public parking lots etc.

On the other hand, private EVSEs are found in homes, companies, etc., and their owner could make

them available for public use as well. In addition, EVSEs can support unidirectional or bi-directional

power flow allowing EVs to charge and discharge from and to the grid. As for the actual charging

process, EVs batteries require a DC power voltage while the power from the grid is AC. Thus, the

EVs chargers are equipped with an AC/DC rectifier or converter that rectifies the AC power to the

required DC power of the EVs. In case of DC chargers, the charger uses additional DC/DC converter

to stabilize the power and improve power conversion [29]. Moreover, the connection between the

EV and the EVSE happens through a connector. Each connector follows specific standards that

define the connection, safety and charging requirements. Such standards will be discussed in details

in Section 2.2.2.

2.2.2 Protocols and Standards

To complete the infrastructure of the EV charging, a set of communication protocols exists to

enable the exchange of data between the different entities. These communication protocols can be

categorized according to the participating entities. Particularly, we have:

EV - EVCS

The communication between the EV and EVCS is considered as a link between the EV and the

grid. It depends on the region where the EVSE is deployed, and is mainly provisioned through the

following standards:
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• Society of Automotive Engineers (SAE) The SAE issued multiple standards that all together

would regulate the charging process of EVs in terms of communication, safety and security.

For instance, the SAE J-2293 describes the communication requirements and network archi-

tecture for an energy transfer system for an EV [30]. Further, SAE J-1772 standard describes

the requirements for the charging connector which is used in most Level 2 chargers across

North America [29]. Contributing to a smart connected world, SAE defines the SAE J-2847

and J-2836 which detail the communication between the utility, EV and EVSE. One interest-

ing aspect of the latter standards is that they describe, in details, the requirements for reverse

power flow in which EVs can discharge their batteries back to the grid [30] [31].

• International Electromechanical Commission (IEC) The IEC is another organization that

has put many efforts in standardizing the communication, energy transfer and safety of EV

charging. Their efforts are mainly concentrated in the European Union. Similar to SAE, IEC

defines multiple standards that address different aspects of the EV charging. For instance,

the IEC 62196 specifies the socket/connector types that connects from the EVSE to the EV.

Further, the energy transfer and the communication messages are managed through the IEC

61851. Unlike the SAE, IEC has specified no standards nor requirements for reverse power

flow of EVs. [30]

• International Standardization Organization (ISO) Similar to SAE and IEC, ISO defined

some standards with regard to vehicle to grid communication. Particularly, the ISO-15118

details the communication infrastructure within the charging environment. The ISO-15118

defines the roles of the different entities in the EV charging infrastructure including the EVs,

EVSEs, utility and charging stations operators. Further, the ISO-15118 relies on the IEC-

61851 plug detection in and out of the EV. Moreover, ISO-15118 supports reverse power flow

from EVs [32] [33].

• ChAdeMO The chAdeMO standard was originally released as a national standard in Japan

in 2012. It typically deals with the DC fast charging (i.e Level 3 charging stations). The

chAdeMO standard was then added to IEC-61851 and IEC-62196 [29] [34].
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EVCS - CMS

The communication between EVCS and CMS is of critical importance as it would manage the

schedule of charging EVs, safe-keep all the logs of EV users and their charging, and maintain the

status of the EVCS itself. Hence, a protocol is much needed to supervise such crucial communica-

tion. As mentioned earlier, the CMS is essentially a central cloud and the EVCS could be considered

as an IoT device, thus, the communication between these two entities could be handled in multiple

ways; peer-to-peer communication, WiFi, 4G, etc. Due to the variety of EVCS operators and the

critical-nature of such communication, different operators devise their own protocol. However, by

surveying the vast majority of the operators, it was evident that although the exchanged messages

and interfaces differ, most of them follow simple HTTP/HTTPS communication between the EVCS

and the CMS. In effort towards a standardized communication protocol between the EVCS and

CMS, the Open Charge Point Protocol (OCPP) [35] was established by the Open Charge Alliance.

Over the past few years, OCPP has undergone huge improvements since its introduction in June

2012. Initially, OCPP 1.5 supported only SOAP protocols and 24 unique messages. With security

in mind, OCPP 1.6 offered support for both SOAP and JSON as well as new functionalities includ-

ing smart charging. Lastly, OCPP 2.0 was published in early 2018 with support for only JSON and

up to 65 unique message types. Although OCPP 2.0 added a wide array of new features, there were

three main improvements that are worth noting:

• Support for EV-grid standards: One of the rather interesting improvement of OCPP 2.0 is

supporting ISO-15118 standard. According to [36], the charging process supervised by the

ISO-15118 standard can now be remotely started/stopped from the CMS. Further, EVs can

now authenticate to the EVCS using the certificates already installed on them. Moreover, the

ISO-15118 control pilot signal; a signal sent from the charging station to the EV to notify

the EV of the maximum current limit, can now be changed by the CMS. This coordination

between both protocols/standards would allow seamless experience for the user and better

management of the charging station.

• Support for remote control: Another interesting feature of OCPP 2.0 is full remote control

of the charging station. This allows operators to monitor and modify the status of the charging
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station in real time, change its configuration and start/stop charging and transaction. Further,

the remote control functionality allows remote unlocking of the connector.

• Support for smart charging: OCPP 2.0 supports different smart charging scenarios:

1. Internal load balancing where the CMS sets known power limits to the charging stations

according to the grid requirements. In that case, the CMS sets the power limits, based on

physical grid connection limits, for each charging station, thus, no EVCS could exceed

these limits.

2. Central Smart Charging where the CMS directly sets the power limits to the charging

stations. The CMS receives the power limits from a grid connection or capacity forecast

from a grid operator.

3. Local Smart Charging In that case, the CMS does not set the power limits. On the

contrary, a local controller - usually installed by the grid operator - sets the power limits

to the charging stations.

4. External Smart Charging this scenario is similar to the Local Smart Charging. However,

along with the local controller, an External Management System (EMS) collaborate

together to determine the limits and priority of utilizing the power for EV charging.

To fully enable smart charging, charging profiles are added along with the smart charging

scenarios. Charging profiles describe the behavior, in terms of schedule, power, duration,

etc., of EV charging. A sample of OCPP 2.0 charging profile is shown in Figure 2.2. The

charging profile in Figure 2.2 sets the power limit to 6kW from 8:00 AM to 8:00 PM and

11kW for the rest of the day. Thus, the CMS sends charging profiles to the charging stations

to notify the EVCS of the power limits and its durations during the day.

Besides OCPP, the Open Charge Point Interface (OCPI) [37] is another protocol to manage the

data sharing between the different EVCS operators and e-mobility service providers.
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Figure 2.2: OCPP 2.0 sample charging profile*

* Adopted from [36]

2.2.3 Deployment

The rise of EVs over the past few decades led to a surge in the number of deployed charging sta-

tions all over the world. Most charging stations operators offer map functionalities for EV drivers to

locate their charging stations. For instance, ChargePoint, the largest EVCS manufacturers in North

America, offers a map interface for EV drivers to locate, not only ChargePoint charging stations, but

also EVCS from different manufacturers such as Flo, EVLink, etc. Beside the manufacturers’ map

interfaces, third party websites; PlugShare, ChargeMap, are contributing to offer EV drivers seam-

less charging experience. One of the rich data resources could be found on OpenChargeMap [38].

It not only provides open source data on EVCS from different manufactures but it also acquires its

data from multiple resources (users of EVs, local energy and mobility providers). Thus, in order to

contextualize the current deployment of EVCS and their types, we relied on OpenChargeMap data

to construct a wide view on current deployment of EVCS.

To date, the number of EVCS deployed worldwide is 153771 across 75355 locations. Figure 2.3

shows the distribution of deployed EVCS around the globe. The USA takes the lead in terms of the

number of EVCS with an outstanding 25000+ EVCS. Germany follows the US with almost 20000
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Multiple points of failures

The EV charging infrastructure relies on the coexistence of four main entities communicating

and interacting together. These entities utilize a set of protocols to transfer data and energy. Such

composition and variety result in a vulnerable system by nature as each protocol brings its unique

set of vulnerabilities. For instance, most of deployed EVCS lack the physical security with little to

no supervision [39]. Hence, an adversary could easily damage the EVCS, or even install malware

through USB ports available in the EVSE. Such malware can then be used to steal energy and users

data or cause Denial of Service (DoS) on EV charging [40]. Another concern of having multiple

entry points is that an adversary can abuse the weak links in the system to gain more leverage on the

more critical points. For instance, if an attacker gained access to vulnerable charging stations within

an area, he/she could abuse the EV charging by disabling all chargers. To exacerbate the situation,

access to vulnerable EVCS can cause disturbances on the grid [19]. This kind of coordinated multi-

stage attack would be explained in further details in the following sections.

Lack of Standardization

With the aforementioned discussion on the different protocols used within the EV charging

infrastructure, there is an evident lack of standardization among these protocols. To put this in

perspective, OCPP is used to communicate between an EVCS and a CMS, while a different set of

protocols (SAE, ISO, etc.), exist to communicate between the EV and the EVCS/Grid. Although

some of these protocols are uniquely used in their corresponding region (North America, Europe,

etc.), some others are used internationally (ISO for instance). To exacerbate the situation, some

of the EVCS operators use their own set of protocols. From an adversary point of view, each

protocol comes with its unique set of vulnerabilities whether its design or implementation flaws as

was discussed in [10], [32]. When combined together in one system, these vulnerabilities renders

the whole system vulnerable to different attack scenarios.

In the light of these reasons, multiple attack scenarios on the EV charging infrastructure is

possible. To formalize the analysis of the attack vector, the National Institute of Standards and

Technology (NIST) identifies four different areas where an adversary could attack the system [41].
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• Remote This threat vector is when an attacker exploits the system over the network, i.e.

remotely. Given that the EVCS communicates with the CMS through the Internet , the EVCS can

be compromised remotely.

• Limited Remote This attack vector relates to when an adversary carries out an attack re-

motely but within certain constraints due to range limitations. For instance, an attacker tries to sniff

messages exchanged between the EVCS and CMS sent through WiFi. In order to achieve this, the

adversary needs to be in a close proximity to the router in order to be able to capture the packets.

• Local This area defines an attack vector where the malicious party has logical local access

to the device; through SSH for instance. Although this attack area would require a more skilled

attacker, the security team in Kaspersky lab [42] were able to reverse engineer the firmware of

ChargePoint home charger and obtain root access. Further, based on our investigation, the firmware

updates for Schneider Electric is available online and can be downloaded by anyone 1. This opens

the door for an adversary to discover vulnerabilities and obtain root access to the EVSE as illustrated

in [43].

• Physical This last area requires the attacker to have physical access to the EVCS. As men-

tioned earlier, the EVCS are usually deployed in public places under no supervision. Hence, an

adversary could inject malicious code into the USB port of the EVSE or cause physical damage to

the device.

To support this discussion, we demonstrate a multi-stage attack scenario where an adversary

exploits the weak links in the EV charging infrastructure to cause grid disturbances.

2.3.2 Attack Scenario

Based on the aforementioned analysis, we substantiate it by proposing a new multi-stage attack

where an adversary exploits the weak links in the EV charging infrastructure to cause large scale

aftermath. Particularly, we demonstrate how an attacker could exploit the vulnerabilities in the

EVCS to cause power grid disturbances. The attack scenario is broken down into the following

stages:

1https://www.schneider-electric.com/en/download/document/QGH7213000/
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Take control over EVSE

The first stage of the attack is to exploit the vulnerabilities in the EVCS itself and take control

over the supply equipment. This is a two-step stage where an adversary would first locate EVCS

and then take control over them:

• Locate EVCS The first step of this stage is to locate EVCS. As mentioned earlier, location

and properties of deployed EVCS could be found online from maps offered by third parties and

EVCS operators. However, the data they offer is usually limited and will not help the adversary

to remotely access them. Further, an adversary could physically access the devices by installing

malicious code into their USB ports. However, given the large scale of this attack, this will not

be feasible. Thus, we leverage tools like Shodan and Censys that perform port scans of all IPV4

addresses, to obtain the IP:port of EVSEs. To automate the process, we wrote a python script that

do simple banner analysis to filter out EVSEs. We run this script on a weekly basis from a period

of five months. The banner analysis was a keyword-based search which looks for devices with

‘OCPP’, ‘Charging Station’, ‘EVCS’, ‘EVSE’ in their banner. We were able to obtain a dataset

of 360 EVCS. Moreover, we looked up for model numbers and types of EVSEs from the top 10

manufactures as shown in Figure 2.4. In addition, we looked for OCPP related ports, however, most

deployment run on a generic HTTP port set of 80, 81, 8080, 8081 and thus no further results were

obtained. Although this is a small dataset, the current forecasts of smart EVCSs deployment and

EV market growth would definitely contribute to obtaining much larger dataset.

• Take control The second step of this stage is to take control over the discovered EVCSs.

Since the promise of IoT is to enable invasive applications with a seamless experiences, most of the

IoT devices and protocols are designed to be lightweight with most of the processing happening on

the Cloud or at the Edge. Unfortunately, this comes at the expense of creating millions of vulnerable

devices [44]. For instance, the Mirai Botnet, largest reported attack on IoT, has affected millions

of IoT devices. It was reported that in September 2016, Krebs was receiving 600 Gbps of data

from the botnet. Further, many major websites such as Amazon, Netflix, Dyn, Reddit, Spotify were

taken down by such an attack [44, 45]. While the aftermath was devastating, the root cause of such

attacks was that attackers exploited the default user-name and password for most IoT connected
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devices to take control of them. The EVCS is no exception either; through our investigation of the

discovered EVCS on Shodan and Censys, we found out that most of the EVCS management lacks

proper security measures and that remote access to those EVCS, (30% of the discovered EVCS), is

available through default usernames and passwords from the manufacturers manuals. Exacerbating

the situation, one major manufacturer even displayed the password, status of the EVSEs within the

EVCS and the EVs connected and their power consumption on the web interface of the device.

Figure 2.7 demonstrates stage 1 of the attack applied to a vulnerable EVCS. As shown in Figure

2.7, once we had access to the device through the default username and password, we were able to

view system-level details (OS, partitions, connected EVSEs, etc.), reset the device, restrict access

to specific users, download system images, download the logs and most importantly, tamper the

charging schedules.

Create traffic bottleneck

After locating and taking control of the EVCS, an attacker can simply render it unavailable

for an extended period of time causing a DoS attack. Further, an attacker can steal user data by

downloading the device logs and thus compromise end user privacy. Although these attacks are

valid, the adversary can exploit these vulnerabilities to cause a large scale attack on the power grid.

To do so, the attacker would need - after locating and taking control of EVCSs - to orchestrate the

schedules of the EVCSs to redirect the EV traffic to cause unexpected surge in load. As shown in

Figure 2.7, it is feasible for an adversary to tamper the schedules of the drivers planned to charge

their EVs at specific times. Further, given the current and forecatsed penetration of EVs and their

charging infrastructure, millions of geographically distributed EVCSs would be available for an

adversary. Hence, the adversary can render some of them unavailable and force drivers to charge

their EVs at EVCSs in the targeted locations. With that, an adversary can target peak times - which

can easily be obtained from public power grid data - and either residential or suburban locations -

where the grid is not as powerful as a downtown area - to create the bottleneck. Hence, the adversary

can tamper both locations and times of charging.
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Disturb the power grid

Once stage 2 is complete and the adversary was able to reschedule the EV drivers to charge

their vehicles at the targeted times and locations, the more critical and final stage starts. In stage 3,

the adversary’s ultimate goal is to disturb the grid. To achieve this goal, the attacker creates an EV

charging bottleneck to initiate disturbances at the grid level. Accordingly we propose three different

attack variations:

• Sudden surge in demand We first study the simplest attack variation which is caused by

causing a surge in power demand. In this scenario, the adversary orchestrates the compromised

EVCS to start the charging of EVs at the same time instant through a manipulation of charging

schedules at the compromised EVCS. This variation is similar to the work studied in [46] and [19]

and can cause frequency instability and cascading failures. The attacker can cause more impact by

targeting peak times to overwhelm the power grid. For instance, an adversary could target a holiday

season during Winter or Summer where the families are usually at their homes and another set of

high wattage devices - besides EVCS - are turned on (air conditioners or heaters). By synchronously

turning on large-scale EV charging in the presence of high system load, the adversary can initiate

a sudden load increase to cause imbalance between the demand and supply of electricity, and thus

frequency instability at the grid level.

• Sudden surge in supply In this variation, we exploit the unique characteristics of EVCS

and their protocols. Particularly, the adversary exploits the EV-Grid protocols to perform reverse

power flow and discharge the EVs to the grid. This attack is possible because OCPP 2.0 allows the

integration of ISO 15118 which is responsible for charging and discharging the EV. Since OCPP

is the most used communication protocol between the EVCS and the CMS, controlling the EVCS

or the CMS would allow the adversary to tamper with the power flow through the web interface of

the EVCS. Specifically, the power flow is determined through the charging profile set by either the

CMS or a local controller and sent to the EVCS as per OCPP 2.0 specifications. Thus, an adversary

- having control over the EVCS, CMS or even the local controller set by the power utility - can

tamper with the charging profile to cause a reverse power flow from the EV to the grid. Hence, in

this variation, the adversary synchronizes all compromised EVCS to start the discharging of EVs
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at the same time instance, causing a sudden surge in power supply. This sudden surge in supply

violates the required balance between power demand and supply to keep the grid stable.

• A coordinated switching attack A more interesting variation that we also consider is the

possibility of a coordinated switching attack. A switching attack is when an adversary takes control

over a set of breakers and alternate their signal between on and off. This cause frequency distur-

bances as well as cascading failures as shown in [47] and [48]. Within the context of EV charging,

an attacker will use the EVCS as an attack surface and exploit the grid’s vulnerability to the switch-

ing attack. The attacker will coordinate a significant variation in charging and discharging activities

within short time intervals to induce variations to the grid stability margins.

To demonstrate the impact of these attacks on the grid, we perform - in the following section

- a simulation based analysis of the different attacks an adversary can perform against the power

grid. Due to the lack of grid data, we base our simulation on a sample grid model; the WSCC 9 bus

system, as it is widely used in the literature [46].

2.4 Experimental Evaluation

We detail in this section the simulation setup and the different attacks that can be performed by

the adversary to disturb the grid.

2.4.1 Simulation Setup

As mentioned earlier, our power grid model constitutes of the WSCC 9 bus system as presented

in Figure 2.8. We simulate this system in the PowerWorld simulator [49] and perform transient

stability analysis for different scenarios.

The WSCC 9 bus system consists of 9 buses and 9 lines; Bus 1 is configured as a slack bus

while buses 2 and 3 are configured as generators with a specific inertia. The loads in the system are

in buses 5, 6 and 8. All generators are modeled according to the IEEE-G2 model. The total demand

of the system is 315MW . We consider three different scenarios: 1) all Level 2, 2) all Level 3 and

3) both Level 2 and Level 3 EVCSs are uniformly distributed across Buses 5,6 and 8. We assume
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Figure 2.8: WSCC 9 bus system

that the attacker controls some of these EVCS and is creating a bottleneck by either redirecting the

traffic to bus 5 or simply starting the charging process at the compromised EVCSs at the same time

with no redirection of traffic.

2.4.2 Attack evaluation

We will perform three different types of attacks which are both based on frequency instability.

Frequency instability by increasing demand

In this attack, the adversary tries to cause a system overload by controlling a large number of

EVCS and forcing EV drivers to start charging during peak times at the same time instance. Figure

2.9 demonstrate the effect of increasing the load on bus 5 by 25.2MW at t = 10s.

As can be seen from Figure 2.9, the system was operating at its nominal frequency (60Hz).

However, at t = 10s, the synchronous charging of the EVs started causing a sudden surge in

the demand and hence an imbalance between the system’s demand and supply. This caused the

system’s frequency to drop below the critical operating region (< 59.5Hz). The minimum increase
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falls in two categories:

Infrastructure Security Analysis This includes approaches discussing the security of different

entities of the EVCS infrastructure. For instance, the authors in [18] discussed the security of EVs,

EVCSs, building automation and energy management systems, and electric power grids. The au-

thors identified different threats and devised a set of security principles that would prevent and detect

cyber-attacks against the EVCS infrastructure as a whole. In addition, the work of [53] analyzed

the security of the EV charging infrastructure according to a set of security goals. Particularly, the

authors defined the different threats and how they would violate the security triad; confidentiality,

integrity and availability. The authors, then, gave different measures to prevent these attacks from

the software, hardware and design perspective. In addition, the authors in [54] surveyed the different

attacks on the EV infrastructure. However, the authors focused on the security of the communication

links between the different entities; vehicles, sensors, grid, road and network.

Protocol Security Analysis While the infrastructure security analysis provides a broad view of

the different threats and how to mitigate them, the protocol analysis provides a deeper understand-

ing of the attack surface that would uniquely target the EVCS. Consequently, most of the literature

focused on the security of the protocols. For instance, the work in [10] addressed the security of

the Open Charge Point Protocol (OCPP) (to be discussed in Section 2.2.2) and its vulnerability to a

wide array of Man-In-The-Middle (MITM) attacks. The authors then provided different mitigation

strategies for these attacks in [55]. Moreover, the authors in [32] analyzed the security of the ISO

5118 charging protocol by considering different scenarios that would compromise the availability,

confidentiality, authenticity and integrity of the charging process. More recently, the authors in [56]

focused on the physical layer security of the EVCS and demonstrated how an adversary can eaves-

drop on the wireless EVCS traffic, decrypt it and obtain sensitive data such as users’ credentials.

On the other hand, the authors in [46] introduced a novel attack that exploits vulnerabilities in

high wattage IoT devices to cause disturbances to the grid. Starting from such an attack surface, the

authors in [19] extended the victims of such an attack to include the EVCS. They further included

public grid data to estimate the grid topology and hence perform a more accurate attack. The authors
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however did not exploit the unique characteristics of the EVCS such as bidirectional power flow.

Moreover, in both aforementioned works, the authors assumed an adversary has a botnet of high

wattage device without demonstrating how feasible this is.

Unlike the work in the literature, our work is the first to address real-world exploitation of EVCS

and contextualizing their deployments. We provide a wide-eye view of the EV charging infrastruc-

ture by surveying the participating entities and their communication protocols. In addition, we

leverage public data on EVCSs to provide statistics on their deployment in terms of their location,

operators, etc. Based on such survey, we evaluate the current threat landscape and identify some of

the root vulnerabilities in the system. We then propose a novel attack vector that stems from such

vulnerabilities and evaluate its effectiveness on disturbing the power grid through a real-world test

case and a simulation-based study. Our proposed attack consists of multiple stages:

• Take Control of EVCS Given that the EVCS are part of the IoT paradigm, they are connected

to the Internet. In this stage, we leverage Internet wide scanning tools such as Shodan, Censys, Zmap

to locate EVCS by their IP:port. After locating the EVCS on the Internet, an adversary attempts to

remotely access and take control over them. Given that EVCS protocols usually run on top of web

servers, we leverage publicly available data to gain full admin access to the EVCS.

• Create traffic bottleneck After taking control of a set of EVCS, we investigate the feasibility

of creating a traffic bottleneck by tampering the charging schedules of EVs.

• Disturb the power grid The last yet most devastating step of the attack is to cause dis-

turbances to the power grid. For that, we exploit one unique property of the EVCS which is

bi-directional power flow that allow EVs to discharge their batteries back to the grid. Thus, we

investigate three different variations and study their impact on the power grid. The first variation is

similar to the ones studied in [46] and [19] which is frequency instability by causing a sudden surge

in the load of high wattage devices. However, in the second variation, we investigate a novel attack

variation caused by a sudden increase in power supply due to synchronously discharging EVs. More

interestingly, we study another novel variation which is caused by synchronously charging and dis-

charging EVs in a switching attack. Although switching attacks on power grids have been discussed

in the literature through controlling a set of breakers [47], [48], our work is the first to evaluate this
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attack scenario within the context of EV charging.

2.6 Countermeasures

According to the evaluation of our proposed attacks, the aftermath could have devastating impact

on the power grid and thus, we propose a set of countermeasures. As illustrated previously, for the

proposed attack to be successful, different stages have to be performed successfully, the first one

being locating EVCSs remotely. Thus, the first countermeasure is that EVCS operators and owners

should better configure their EVCS so that they are not accessible from the outside world. Assuming

this step failed and EVCSs were located, it should be impossible for an adversary to gain remote

access. Thus, the second proposed mitigation is utilizing strong credentials and/or authentication

methods (such as Two Factor Authentication) to prevent an adversary from gaining remote access.

In addition, it was noted earlier that there is a lack of standardization within the current charging

infrastructure which cause miscommunication between the different entities in the system. Thus,

efforts should be made to standardize the protocol with the infrastructure. A promising technology

that could aid in such standardization is Blockchain where the different entities can communicate

together in a trustless, decentralized and districted environment.

2.7 Conclusion

In this paper, we provided a wide overview of the EV charging infrastructure in terms of its

entities and communication protocols. Further, we provided a security analysis of the different

protocols and analyzed the possibility of various attacks on the different entities. In addition, based

on our survey, we exploited the inherited vulnerability of the charging infrastructure and proposed a

novel attack vector in which an adversary can cause large scale disturbances to the power grid. We

demonstrated the feasibility of such an attack through real-world experimentation and simulation.

We concluded that the current deployment of the EVCSs would allow adversaries to have full access

to critical information which threatens user privacy as well as energy theft. Further, with the lack of

standardization of the communication protocols, their integration together increases the adversaries

chances in compromising the more critical entities in the infrastructure. As a future work, we plan to
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study the mitigation of such a coordinated attack by proposing a decentralized system of all entities

with the EV charging system. Moreover, we are planning to investigate how an attacker can estimate

the power grid to locate its weak links and thus create a more devastating bottleneck.
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Chapter 3

Blockchain, AI and Smart Grids: The

Three Musketeers to a Decentralized EV

Charging Infrastructure

3.1 Introduction

When the movie “Back To The Future” was released in 1985, it boggled the viewers’ minds with

futuristic technologies which at that time people could hardly believe they would exist. From 3D

movies, tablets, and Augmented Reality to flying cars and biometric scanners, these technologies

were thought of as science fiction 34 years ago. However, at a glance, it becomes evident that almost

all of these technologies are realized as an intrinsic part of our daily lives. Thanks to a paradigm

called IoT, sensors, actuators and Internet connectivity could be embedded within everyday “things”

transforming them into smart ones [7]. This gives rise to a set of novel use cases including smart

transportation, smart cities, smart health-care, etc. Considering its prominent influence, the IoT

market is expected to contribute up to 6.2 Trillion in annual income by 2025 [8]. One of the rather

interesting services within IoT are ITS and Smart Grids [8].

ITS encompasses a wide range of different services including self-driving cars, street surveil-

lance and traffic monitoring. When put together, such services would form an intelligent network of
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cars, Road-Side Units, traffic lights, etc. to offer the users with seamless driving experience [57]. In

addition, in a smart grid environment, energy usage is monitored and managed through smart meters

and controllers [58]. While each sector provides its unique services, new opportunities arise from

their overlapping, one of which are EVs and their charging infrastructure. Although flying cars are

yet to exist, there have been major advancements in vehicular technologies that rendered EVs as a

lucrative opportunity for both industry and academic sectors. To put it in perspective, according to

the International Energy Agency (IEA), EVs have exceeded 5.1 Million globally in 2018. Further,

by 2030, it is projected that the EV stock would reach up to 250 Million cutting the demand for oil

products by almost 130 tonnes [59]. In addition, Norway projects that by 2025 all new car sales

would come from EVs. Other countries like the United Kingdom and France are proclaiming the

same projections by 2040 [60]. With such a vision, a set of challenges needs to be addressed for a

more robust EV ecosystem.

The high stakes set by policymakers and the high penetration rate of EVs create an urgent

need for procuring a charging infrastructure to match the EV drivers’ demands. As a result, many

companies (such as Siemens, Shell, etc.) ventured towards manufacturing EVCS. Further, new

companies including ChargePoint and Enel, are leading the EVCS market. From custom payments

to membership cards, all the way to EVCS localization, what all these companies have in common

is providing the EV drivers with beyond-satisfactory driving experience. Nevertheless, the current

charging solutions lack some of the most essential properties. The two most prominent challenges

facing the EV charging infrastructure is the scheduling of EV charging along with privacy and

security.

The scheduling of EVs represents a dilemma as of to whether satisfy the EV driver by providing

fast and reliable chargers at every possible location or minimize the number of chargers to avoid

disturbances on the power grid. With that in mind, many research efforts have focused on leverag-

ing different technologies and techniques such as AI, and Optimization, etc. to provide improved

charging schemes while satisfying both the power grid and EV drivers. On the other side of the

spectrum, security and privacy are the long-lasting enemy of the IoT paradigm. Being part of the

IoT environment, it has been shown in different research contributions that EVCSs are vulnerable
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Figure 3.1: Electric Vehicle Infrastructure and Protocols

to an array of cyber-threats including DoS and RCE. Such vulnerabilities may not only lead to en-

ergy and users’ private data theft, but also to threatening the charging infrastructure as a whole,

all of which would impact the adoption of EVs [18]. Accordingly, there has been major research

efforts to mitigate such vulnerabilities by proposing lightweight security protocols and leveraging

technologies such as Blockchain and AI.

While different technologies could be leveraged to mitigate the aforementioned challenges, we

focus in this paper on Blockchain and AI. Blockchain is a secure distributed and decentralized

ledger of transactions, allowing different entities to perform transactions between different entities

in a trust-less, decentralized and secure environment through the use of Hashing, Consensus mecha-

nisms and Smart Contracts. On the other hand, AI has excelled in determining unrecognized patterns

and making decisions accordingly. With the aforementioned discussion, our main contributions are:
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• Providing a wide-eye view of the current deployment and protocols of EV charging and

identifying the key challenges being faced with the EV infrastructure, specifically regarding

scheduling and security.

• Evaluating the role of AI and Blockchain in solving such challenges. Specifically, we survey

the different solutions from both the industry and academic sectors that leverage these two

technologies separately opening the door to further identifying gaps and unsolved issues.

• Evaluating how the two technologies could be exploited in a complementary fashion to pro-

vide a more robust charging ecosystem.

The remainder of the paper is organized as follow: we discuss, in Section 3.2, the current

deployment and protocols of the EV charging infrastructure, as well as the challenges being faced.

We then discuss how AI and Blockchain could be used to solve these challenges in Section 3.3 and

3.4. Further, we evaluate in Section 3.5 how both technologies can be used jointly to deliver the

best charging service to the end-user. We finally discuss possible research directions in Section 3.6

and conclude in Section 3.7.

3.2 EV Charging: Deployments, Protocols and Challenges

The EV charging infrastructure is composed of multiple entities communicating via a set of

different protocols. Figure 3.1 shows an abstraction of the current deployment of the EV charging

infrastructure and its constituents are:

• Energy Supplier: The Energy Supplier could be any entity that is able to supply sufficient

energy to operate the charging stations.

• Electric Vehicle Charging Station: With the energy supplied from the power grid, the EVCS

is the medium at which EVs drivers can charge their vehicles. The EVCS itself is compro-

mised of the EVSE which are the actual physical devices that EVs connect to via connec-

tors/plugs. Typically, EVSEs come in three different types depending on their power rating;

Level 1, 2 & 3, with Level 3 being the most powerful [19]. In addition, EVSEs could be
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and accordingly the business of its charging ecosystem is booming. Figure 3.2 contextualizes the

sales of EVs and their ratio to EVCSs over the past 10 years in the US. As can be seen from Figure

3.2, the number of EVs has been increasing in almost a linear rate every year. However, the number

of deployed EVCS is not increasing at the same rate causing an increasing gap between EVs to

EVCSs.

With the aforementioned discussion on EV charging deployments and protocols, we identify

two main challenges facing the charging ecosystem:

3.2.1 Security and Privacy

Security and privacy are always a major concern when a new service comes into existence. The

EV charging infrastructure is no exception. By observing closely the current charging infrastruc-

ture, two major concerns become evident. The first concern is having multiple protocols. This

variety imposes vulnerabilities to the system as each one of these protocols brings about its own

unique set of vulnerabilities. For instance, OCPP was found vulnerable to Man-In-The-Middle

Attacks (MITM) [10]. Thus, having a set of protocols used with the current charging ecosystem

renders the overall system insecure. This, in return, leads to the second challenge which is having

multiple entry points to the system. Each of the entities and protocols within the charging infras-

tructure could be exploited and compromised. For instance, many EVCSs by major operators were

found to be vulnerable to RCE, and Buffer Overflow attacks [18]. Thus, an adversary could exploit

the most vulnerable entities to compromise the more critical ones (Power Grid). These scenarios

can render huge leverage to an adversary giving him/her the capability of stealing users’ critical

data, energy theft, and causing a DoS attack. To exacerbate the situation, given that these EVCSs

have high power ratings, compromising them and synchronously tampering the schedules can cause

disturbances to the grid due to a sudden increase in load [19].

3.2.2 Optimal Charging Schedules

The second most critical challenge facing the EV charging ecosystem is the lack of optimal

scheduling schemes. According to CleanTechnica, 40% of 3000 EV drivers believe that EVCSs are

somewhat conveniently located for their needs. Further, almost half of these drivers found that the
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current infrastructure is somewhat adequate for long-distance trips. By correlating these statistics

with Figure 3.2, this trend of mediocre satisfaction is likely to remain as the gap between the EV

and EVCSs is increasing over time. Although there have been major research efforts targeting the

problem of EVCS placement and EV charging, as well as developments in batteries technologies

allowing EVs to travel longer distances per charge, the major challenge resides in trading-off cus-

tomer satisfaction in terms of waiting time and reliability, and minimizing load fluctuation on the

power grid.

There have been major research efforts that tackle the aforementioned problems by introducing

lightweight secure charging protocols, proposing improvements on existing protocols or restruc-

turing the infrastructure for secure charging ecosystem. On the other hand, different optimization

techniques and game theoretic approaches were proposed to solve the scheduling and placement

problem. In what follows we evaluate the use of AI and Blockchain technologies to tackle such

challenges.

3.3 AI: Towards Intelligent EV Charging

Artificial Intelligence has been around for a couple of years and it has proven its applicability

and efficiency in solving complex problems in different fields. The edge of AI is its capability

to detect complex patterns and provide forecasts accordingly. Within the context of EV charging,

AI could be the solution towards devising optimal charging schemes. As a result, many research

contributions from patents, publications, books, etc. have explored the role of AI in the EV charging

ecosystem. We scrapped Google Scholar to collect data on publications and patents on the use of

AI within the EV charging environment and demonstrated the results in Figure 3.3.

As demonstrated in Figure 3.3, over the past decade, there has been an increase of almost 500

publications per year. More interestingly, the number of patents has also been increasing over the

past decades. By closely observing the publications, the role of AI in the EV charging ecosystem

becomes more evident. To contextualize this role, consider a scenario where a large number of

EV drivers need to charge their vehicles during peak times. If the charging of those EVs starts

at the same time during peak hours, there would be a surge in load on the power grid. Thus, a
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few companies, start-ups that leveraged AI to improve the EV charging infrastructure. For instance,

Oracle acquired Opower Inc. in 2016 gaining access to billions of data points on households’ energy

usage from 60 million customers across 100 utilities. Leveraging Oracle’s deep learning framework,

this rich dataset is used to forecast EV loads and inform power utilities so they would manage their

power generation accordingly to accommodate for the load. Another interesting use case of AI is

by a startup called GBatteries that demonstrated their patent in CES 2019. The company uses AI to

speed up the charging process by collecting health indicators from the EV battery. These indicators

are then analyzed and a decision is made determining whether the battery could be charged using the

maximum power. The trade-off here is that charging at the maximum power leads to faster charging

however, it comes on the expense of depleting the battery. Thus, by leveraging AI, a decision on the

power level to be delivered to the EV battery is made.

In short, the power of AI revolves around detecting complex patterns and providing deci-

sions/forecasts that could be mainly used by the power utility to better manage their power gen-

eration, or by EV drivers to speed up their charging.

3.4 Blockchain: For Secure Decentralized EV Charging

Blockchain is a disruptive technology that allows entities to perform transactions in a (1) Dis-

tributed: all transaction history is distributed among all nodes in the network, (2) Decentralized: no

central entity controlling the transactions, (3) Secure: through the use of Public Key Infrastructure

(PKI) environment. The basis of Blockchain is to allow different nodes/entities to communicate

together in a trustless environment without the need to rely on a central entity to overlook these

transactions. With such, the applicability of Blockchain could be extended from simply a dis-

tributed ledger, to include trading of digitized assets (Energy, money, etc.). The first application of

Blockchain dates back to 2008 when Satoshi Nakamoto introduced the Bitcoin network as a way to

transfer monetary value between different sources without the need for a bank. Later, Ethereum was

born allowing the Blockchain technology to reach its true potential by allowing the creation of De-

centralized App (dApps for short). With Ethereum, the concept of smart contracts was introduced

which are pieces of software residing on the Blockchain network and automatically invoked when
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specific clauses are met. With smart contracts, Blockchain provides an edge in creating decentral-

ized economies for trading virtually any asset. An abstraction of a Blockchain network consists of

three main layers:

• Network Layer: The network layer represents the communication protocol between the

nodes in the network. Usually, the Blockchain network operates using Peer-to-Peer (P2P)

protocols.

• Consensus Layer: The consensus layer is responsible for ensuring the validity of the data

being shared in the Blockchain network. That is, when a transaction is issued and broadcast

over the network, how to make sure that it is a valid transaction. For that, different consensus

algorithms have been proposed with Proof of Work (PoW) and Proof of Stake (PoS) being

the most famous mechanisms used. For scalability, specific nodes in the network known as

miner/validators are responsible for performing the consensus algorithms. Further, depend-

ing on the implementation of the network, these validators/miners could be awarded with

cryptocurrency for their contribution.

• Transaction Layer: The transaction layer is the last layer in the stack and its responsible for

handling data being transacted in the network. Simply, it defines smart contracts and makes

sure that they are properly invoked.

With such abstraction, Blockchain networks could be:

• Public/Permissionless: anyone can join the network and participate in the consensus/validation

process.

• Private/Permissioned: only a set of authorized nodes can not only perform the validation

process but also decide who joins the network, manage the network in terms of updates, etc.

Each implementation of the Blockchain network has its pros and cons. For instance, public

Blockchain networks are the closest form of a decentralized, trustless environment that relies on

its nodes to sustain itself. However, this comes at the expense of the speed due to a large number

of participating nodes. On the contrary, private Blockchain networks are more scalable and faster

networks, however, they give more control to the authorized nodes.
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energy trading by allowing homeowners to sell their energy (making their EVCS open to the pub-

lic) to other EV drivers in a decentralized environment. Within this P2P energy trading context,

different companies have taken initiatives to build Blockchain-enabled EV charging networks. For

instance, Oxygen Initiative has extended already existing EV charging protocols (ISO-15118) and

proposed a Blockchain network that enables either the utilities or any EVCS to offer pricing and

grid conditions for EVs. Thus, in a sense, their network acts an auction house for the EVs allowing

them to choose the best available options as well as giving them incentives if they choose to delay

their charging to later times. The company believes that its system could further be extended to

include the functionality of EV drivers selling energy back to the grid. Further, a company called

Charg offers an Uber-like service, through the Ethereum network, for energy trading by allowing

anyone to lease their EVCS to EV drivers in what they have called the Internet of Energy (IoE).

Thus, the key role of Blockchain resides in aiding EV drivers and home owners to trade energy

securely with no intermediaries. This functionality could be easily extended to include EV drivers

selling energy to the power grid as a way of peak shaving. Hence, Blockchain serves as an incentive

for EV adoption as it would benefit both homeowners (making their EVCS public) and EV drivers

(selling energy to the grid).

3.5 The Best of Both Worlds: Blockchain and AI

Based on the aforementioned discussion, AI plays a key role in managing the schedules of

EVs and orchestrating their deployments through load profiles’ forecast and charging behavior pre-

dictions. However, an AI-enabled charging system still relies on a central entity (power utility)

to manage the transfer of energy. This scenario becomes particularly problematic when the secu-

rity is taken into consideration. For instance, malicious entities can compromise EVCS and either

cause disturbances to the power grid or simply steal energy or users’ critical data. On the other

hand, Blockchain aims at providing a secure, trustless, decentralized and distributed energy trading

system. With such, this system could render intermediaries and central entities obsolete reducing

unnecessary operational costs. Further, the Blockchain charging network could serve as an auction

house where different energy suppliers (utility, private EVCS owners, etc.) could broadcast their
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availabilities and prices over the network based on the grid and EVs conditions. However, the de-

ployments of smart contracts in Blockchain lacks the flexibility to accommodate to the dynamic

charging behavior of EV drivers and grid conditions. Thus, for a fully-fledged EV charging system,

AI and Blockchain should complement each other.

One such scenario on the collaboration of AI and Blockchain is the work done in [64]. The

authors proposed a Blockchain-enabled EV charging system where (1) EV drivers could charge

their EVs from either the power grid, private EVCS owner, local communities, (2) drivers can

discharge their EVs back to the grid to help reduce the load on the power grid. The authors then

considered the optimization of the charging/discharging schedules through an adaptive algorithm to

account for the change in EV charging demands.

Another scenario for the collaboration of AI and Blockchain is in [65] where the authors focused

on the scalability of the Blockchain network itself rather than the schedules of EVs. Particularly, the

authors leveraged deep learning to, based on EV data, maximize the transactional throughput while

ensuring decentralization, latency and security of the system. This is particularly interesting as the

proposed system is capable of changing its working mechanisms (block size, block dynamics, etc.)

according to the dynamic changes in the environment.

On the industry side, a team in the Odyssey Hackathon, the Porsche Digital Lab, proposed a

Blockchain-enabled charging environment backed with AI. The motive was similar to the afore-

mentioned discussion, which involves reducing load on the grid, increasing user satisfaction and

ensuring security. As a result, the team proposed an energy trading economy that allows local com-

munities to lease their EVCSs, and EV drivers to sell back their energy. Further, the team introduced

an AI agent to manage the schedules of EVs by predicting prices, availabilities and driving patterns.

3.6 Research Directions

Aside from existing work, the collaboration between AI and Blockchain goes beyond merely

creating an open trading ecosystem for digitized assets. The true value for such collaboration pre-

vails when considering the challenges they mitigate. In terms of security, Blockchain, indeed, pro-

vides a secure and immutable record of transactions through PKI and consensus algorithms. In fact,
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by decentralizing and distributing the infrastructure, Blockchain mitigates one of the root causes

of having a vulnerable charging ecosystem; multiple entry points. Particularly, with a decentral-

ized system, the role CMS and power grid as managing entities would be rendered obsolete and

would merely act as facilitators, reducing the threat landscape. Moreover, AI has held its ground

in providing forecasts as well as detecting anomalies. Therefore, integrating AI with Blockchain

paves the way for creating self-sustaining, self-correcting ecosystems. To put it in perspective, AI

can be integrated within each layer of the Blockchain network providing different functionality at

each layer. At the network layer, AI can be used as an added security layer to predict anomalies

in the network and take action accordingly (isolating malicious nodes for instance). Further, at the

consensus layer, AI can be used as a scalability measure to predict the system dynamics (network

size, data frequency, etc.) and accordingly adjust the consensus mechanisms (block size, block

generation time, etc.). Finally, AI can be used in the transaction layer to both detect anomalies,

forecast the system dynamics, all of which would be used to adjust the smart contracts for better EV

scheduling mechanisms. In principle, the integration of AI and Blockchain serves as the niche for

self-correcting EV charging ecosystem.

While the research shows promising theoretical results, there is a need for further explorations.

Specifically, the scalability and reliability of Blockchain within the EV charging networks need to be

properly evaluated given the penetration rate of EVs. This can be further extended to develop new

consensus algorithms that reduce the overhead in the network while considering the trade-offs in

terms of security. Moreover, given the transparency in Blockchain transactions (all transactions are

available and accessible), research directions in Zero-Knowledge Proofs (ZKP) and Homomorphic

encryption are needed to solve this privacy issue. In addition, the use of federated learning within

the Blockchain network is a rather interesting research direction that would aid in providing a fully-

decentralized network with distributed AI nodes. Another way of decentralization is to abstract

the EV charging network as a Multi-Agent System (MAS) with some agents responsible for data

collection, AI calculations, block validation, etc. Thus, each agent can perform independently its

allocated task Further, much of the work that integrated AI and Blockchain was on the theoretical

side. However, there is much-needed real-world experimentations of such proposed systems to

properly evaluate their performance. In addition, some research has been made on how to leverage
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AI to detect new vulnerabilities, thus it would be interesting to explore the resilience of Blockchain

and AI charging networks against demand-side IoT attacks (where an adversary compromise high

wattage devices to cause disturbances to the grid), as well as new ones. A more interesting research

direction is how to extend existing protocols (such as OCPP) to exploit both technologies for better

security and energy management.

3.7 Conclusion

In this paper, we investigated the current deployments, protocols and infrastructure of the EV

charging ecosystem. We identified two key challenges which are trading-off user satisfaction and

grid operations and security and Privacy. For that, we evaluated, through collecting data on recent

trends from research and industry, the use of AI to manage the schedules of EVs and help provision

EVCSs. Similarly, we evaluated the role of Blockchain in securing the EV charging ecosystem and

providing a trustless trading system that allows EVs, private EVCSs owner and power utilities to

trade energies. It was shown that Blockchain can (1) help manage peak shaving by giving incentives

to EV drivers to sell energy to the grid, (2) increase the satisfaction of EV drivers by allowing the

selling of energy from private EVCSs owners and local communities, as well as lowering the costs

by excluding intermediaries. While both on their own target some key challenges, a more-robust

charging ecosystem requires the integration of AI and Blockchain. For that, we evaluated different

use cases on how AI and Blockchain could be leveraged together to improve the charging ecosystem.
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Chapter 4

An Anomaly Detection Engine for

Securing the EV Charging Ecosystem

with Blockchain and AI

4.1 Introduction

4.1.1 Motivation

Back in 1995, Clifford Stoll published an article in Newsweek titled “Why the Web won’t be

Nirvana” [66] dooming the fate of the Internet as an obsolete and speculative tool. One of the rather

interesting quotes from the article was “...no computer network will change the way government

works.”. Fast-forward to a decade later, the Internet became not only an integral part of our lives

but ironically a major influential tool on how governments work. Nowadays, the notion of the In-

ternet extends from having two computers connected together, to millions of “things” capable of

collecting, sharing and analyzing information, in what is known today as the IoT [7]. Thanks to ad-

vances in communication and computing technologies, the IoT paradigm enabled for services such

as smart hospitals, smart transportation, smart factories, etc. that would, otherwise, be conceived as

science fiction [6]. One particular service of interest is ITS and specifically EV and their charging

infrastructure.
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While the road to having fully driver-less smart vehicles is still ways behind from the finish

line, EVs are considered a step in the right direction. To put it in perspective, the first EVs were

introduced in the United States back in 2010 through the Chevy Volt and the Nissan Leaf. Due

to many barriers including range limitations and outdated designs, EVs did not gain the appeal

of the consumers. In the years that followed, major investments and incentives have been put in

place causing a paradigm shift to the EV industry in terms of consumer adoption, public perception

and technological developments. Nowadays, all car manufacturers have at least one EV model

available to the consumers covering all their needs from economical and family SUVs to luxury and

performance EVs [67]. With such penetration rate, the International Energy Agency (IEA) predicts

that the number of EVs would reach 120 Million by 2030 [68]. Looking at the EV revolution and

the sales forecasts, nothing would have been possible without the proper charging infrastructure.

The increasing demand on EVs over the past few years created a pressing need to procure the

proper charging infrastructure for the EV drivers. This, in return, created a novel and lucrative

business and research opportunity for both the industry and academia. To contextualize such an

opportunity, the EVCS sales have witnessed almost 800% increase from 2012 to 2016 [69]. Hence,

the business of the EVCS was booming in accord with the EV revolution to meet the drivers de-

mand. Although EVCS sales were increasing each year, there is a set of barriers that needs to be

addressed. One such barrier is the increasing gap between EVs and EVCS. According to the In-

ternational Council of Clean Transportation (ICCT), given the forecasts for EV sales, there is still

much infrastructure needed to meet such demands [69]. This in return raises some other issues, one

of particular interests is the security of the EV charging infrastructure [18, 19].

4.1.2 Literature Review

Over the past few years, IoT has established a solid foothold in almost every field and sector.

This paradigm shift from basic and human-dependent services to intelligent and human-machine

integrated services, has transformed people’s view on different aspects of technology in general and

specifically on privacy and security. According to surveys by Mozilla, privacy is a major concern

for IoT users [70]. From privacy and security labels [71], to lightweight security protocols [72],

the literature is rich with security and privacy-preserving solutions targeted towards a more secure
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IoT infrastructure. Going from generic IoT devices to application specific appliances, EVs and their

charging infrastructure are no exception either. According to [73], the EV charging infrastructure is

no stranger to security breaches and privacy concerns. With that, we broadly categorize the work in

the literature targeted towards the security of EV charging infrastructure into:

Security Analysis

The opportunities that the EV industry brought forward did not only serve the consumers, but

also opened the door for new and interesting research directions. With security being a major

concern, lots of research efforts focused on analyzing the security of EV and their charging infras-

tructure. For instance, the authors in [73] provided a detailed assessment of the security of the EV

charging ecosystem as a whole as well as the specific entities and protocols involved. On a different

note, other works provided more vertical evaluation of the EV charging ecosystem by focusing on

the protocols involved or the entities participating. On the protocol level, for example, the authors

in [10] evaluated the security of the OCPP; an open source protocol for managing the communica-

tions between the EVCS and the CMS. Their findings included vulnerabilities in the protocol such

as Man-in-The-Middle (MiTM) attacks. Another example for protocol analysis is [32] where the

authors analyzed the security of the ISO-15118 protocol used for the Vehicle-2-Grid (V2G) com-

munications. Similar to OCPP, it was concluded that ISO-15118 is vulnerable to DoS, MITM and

jamming attacks. In a more practical implementation, the authors in [56] evaluated the physical

layer security of the EV charging provisioned by ISO-15118. Among their conclusions, the authors

found that an eavesdropper can recover almost all messages exchanged between the vehicle and the

charger. On the infrastructure side, the authors from Kaspersky lab discovered, by analyzing the

EVCS and reverse engineering their firmware, that they are vulnerable to many attacks including

RCE [40]. While such vulnerabilities affect the operations of the EVCS and hence the adoption of

EVs, they can have a much more devastating impact given the entities involved within the charging

infrastructure. Specifically, an adversary can cause disturbances to the power grid by compromising

a number of EVCS as shown in [19, 66].
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Mitigation Strategies

By observing the security flaws in the EV charging ecosystem and the severeness of the vulnera-

bilities discovered, lots of research efforts has focused on the mitigation side. One of the more active

field of research is developing more secure and privacy-preserving protocols for the EV charging

ecosystem. Particularly, the authors in [74, 75, 76] proposed the use of Blockchain to secure the

communication between EVs, EVCS and the CMS. Although the proposed system proved efficient

in mitigating some of the threats such as DoS attacks, their scalability remains an issue towards

their adoption. Other approaches [77, 78] followed a horizontal approach by proposing novel archi-

tectures for the charging infrastructure. In addition, some authors focused on securing the existing

protocols (for example ISO-15118 and OCPP) against the discovered attacks [55, 79]. A different

yet relevant mitigation strategies is leveraging machine learning and AI to detect anomalies in the

smart meters values [80, 81, 82]. Such anomaly detection engines would facilitate detecting patterns

and constructing normal profiles which would, in return, aid the power utility to detect malicious be-

haviors. However, to the best of our knowledge, no work has been done in detecting such anomalies

in the context of the EV charging ecosystem and the attack scenario described.

4.1.3 Contribution

The majority of work in the literature focused on identifying the security threats and vulnerabil-

ities in the EV charging infrastructure, providing novel abstractions of the ecosystem or developing

new secure protocols or anomaly detection engines by leveraging tools such as Blockchain and AI.

While such efforts provide guidelines for further explorations, this current work focuses on a more

specific attack scenario and its mitigation. Particularly, we consider the demand-side IoT attack de-

scribed in [46] within the context of EV charging. The IoT demand-side cyber attacks are nothing

more but creating a botnet of compromised IoT devices to cause surge in power demands [46], with

the ultimate goal of disturbing the power grid. Given the bidirectional power flow properties of EVs

and the high power ratings of the EVCS, an adversary can launch a devastating cyber attack that

cause disturbances to the power grid simply by compromising a number of EVCS and tampering
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the schedules of EVs so they start charging/discharging simultaneously. Thus, unsecured and un-

managed EV charging can cause devastating impact on the more critical entities; power grid. To

this end, we propose in this paper an anomaly detection engine that would enable early detection of

such attack scenarios. Particularly, the main contributions are:

1. We propose an anomaly detection engine that collects EV charging schedules from the CMS

of public networked charging stations. By collectively analyzing these schedules, the engine

classifies whether these schedules are tampered with or not and thus, detecting a demand-side

attack.

2. We perform simulations based on real-world data of the Irish public charging stations and

power grid data. In addition, we evaluate our detection engine against different attack vari-

ations leveraging different types of learning algorithms (auto-encoders, distance-based and

statistical algorithms). In essence, the proposed engine could detect mass behavioral change

in the EV schedules, as well as subtle behavioral changes that could be leading to the attack.

Further, the sensitivity of the detection could be easily tweaked allowing for detecting more

complex attack variations.

3. In the case of private charging stations, we leverage Blockchain to provide an open energy

trading architecture for the private EV charging infrastructure and its entities including EVCS,

EVs and power utility. In principle, we define the participating nodes in the Blockchain

network and their corresponding roles. Further, we explain how to provision the underlying

transactions through smart contracts.

4. Thanks to the transparency of Blockchain networks, we exploit the public record of energy

and data transactions as a feed to our AI engine. Essentially, the integration of the Blockchain

public record of transactions and the AI engine provide a comprehensive solution for securing

both public and private EVCS. Thus, anomalous behavior on both public AND private EVCS

could be easily flagged by the interested entities (power grid in this case) to prevent the

demand-side attack of occurring.
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4.1.4 Outline

The remainder of the paper is organized as follows; we describe the EVCS demand-side attack

scenario in Section 4.2. The detection strategies for public charging settings are discussed in Section

4.3. The experiments setup and the results are detailed in Section 4.4. Section 4.5 discusses the

limitations of the proposed system and addresses its applicability for the private charging setting.

Finally, we conclude in Section 4.6.

4.2 Attack Scenario

In order to better understand how critical the charging infrastructure is, it is essential to describe

the targeted attack scenario. For that, we circle back to the idea of Distributed Denial of Service

(DDoS) attacks within the context of IoT. In such attacks, an adversary compromises a number of

IoT devices creating a botnet. By carefully instructing the bots within the botnet, the adversary can

target websites, services, etc. as was seen in the Mirai Botnet attacks [83]. A novel variation of this

attack scenario was proposed in [46] where the authors targeted the power grid by creating a Botnet

of high-wattage IoT devices (smart heaters, refrigerators, etc.). With the EVCS being high wattage

smart devices (7.2 kW for Level 2 chargers) in nature, this attack variation can be extended further

to include creating a Botnet of EVCS and target the power grid causing blackouts [19]. With the

inclusion of EVCS in such attack, its severity becomes more critical. This is due to the intrinsic

characteristics of the EVCS including high wattage, ability for EVs to charge AND discharge to the

power grid.

With the aforementioned discussion, we assume in this work an adversary with the ability to

control a number of the EVCS available in the system. The validity of this assumption comes from

the fact that the EVCS owners would control their EVCS in terms of availability, schedules and

bookings through a web interface accessed by their credentials. This implementation is predominant

in the OCPP which manages the communication between EVCS and the CMS. Thus, we assume

that an adversary can compromise these credentials and thus take control over the EVCS. Once

full control is achieved, we assume an adversary could apply different techniques with the goal

of changing the schedules of the EV. An example of such techniques would be broadcasting low

58



prices to EV drivers from the compromised CMS. The idea here is that the adversary is allowing a

large number of EVs to start the charging process at the same time. Consequently, if an adversary

successfully changed the schedules of EVs making them start charging synchronously, he/she can

cause frequency instability to the power grid, creating a similar effect to [46]. In addition, OCPP

2.0 supports the EV-Grid communication protocol (ISO-15118). With the recent advancement in

ISO-15118 that would allow reverse power flow from EVs to the power grid, the attack becomes

more severe. Particularly, if the adversary managed to get all EVs to be plugged-in, he/she can

reverse the power flow causing a surge in supply or alternate cycles of charging and discharging, all

of which would cause major disturbances to the power grid.

Given that the entry point of such attack is the EVCS and the end goal is disturbing the power

grid, there needs to be an early detection mechanism that would allow the grid operator to take the

required measures to mitigate it. However, given the different implementation of the EV charging

infrastructure, we detail, in what follows, the detection strategies for both public and private charg-

ing. Particularly, we detail a generic anomaly detection engine for such attack scenario in a public

charging setting. Further, we describe the challenges of leveraging such engine for private charging

and propose some modifications accordingly.

4.3 Public Charging Detection Strategy

4.3.1 Deployment Structure

Before laying out the detection strategy, it is essential to describe the infrastructure considered.

The EV charging infrastructure has different deployments depending on the locations, capabilities

and modus operandi. According to Open Charge Map which is an open source map of charging

stations, current EV charging systems could be grouped into the categories depicted in Figure 4.1.

With the variety of the deployments shown, addressing each deployment scenario would be

rather challenging. Therefore, we broadly group the EVCS into either public and private stations.

We refer to the public stations as networked charging stations that are deployed under the supervi-

sion of the power utility and are communicating with a CMSs. Based on this, there should exist

a protocol that manages this communication. While some companies have their own proprietary
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Figure 4.2: OCPP 2.0 Charging Profile

4.3.2 Data Collection and Parsing

The first phase of anomaly detection is collecting data to be used in constructing “normal behav-

ior profiles” that would serve as a benchmark to detect anomalies later. In order to properly define

what a behavior profile is, we should note that the described attack relies on creating instantaneous

surges in demand/supply. Thus, a normal profile that is based on load consumption (load profile)

would result in late detection as the attack would have actually happened. Another crucial obser-

vation of the attack scenario is that an adversary has to change the schedules of EV drivers to be

able to cause the surge. Thus, we define a behavior profile of EVCS as a profile of EV schedules. If

any malicious scheduling events occur, they could be easily detected. As mentioned earlier, public

EVCS are deployed under the supervision of the power utility. Thus, a utility can easily acquire

EV schedules from the EVCS operators. However, due to the lack of public data on EV schedules,

we utilize, in our work, load profile data of public EVCS and convert them to OCPP-compliant

schedule (shown in Figure 4.2). For that, we:

• Collect load profile data: The load profile data was obtained from [85]. The data depicts the

status of EVCS all over Ireland from the period of November 2016 to July 2019, collected

over five-minute intervals. The status of the EVCS is represented as Out of Contact (OOC),
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Out of Service (OOS), Partially Occupied (Part), Fully Occupied (Occ) or Unknown. The

raw dataset contains more than 3GB of EVCS status from June 2018 to July 2019. Besides

the status, the data contains the ID of the EVCS, the date and time of the status, the location

in terms of latitude and magnitude, as well as physical address and the type of the station;

Standard Type 2, CHAdeMO, CCS or FastAC.

• Convert to schedules: In order to change the collected data to OCPP schedules, some con-

siderations were required to be taken care of. The first consideration is that the obtained

data only shows the status of the EVCS, not the actual energy usage. As a result, it would

be rather impossible to get the accurate energy used for each charging event especially that

stations might have different charging ports. Thus, we replace the energy limit field in the

OCPP schedule by the status. Another consideration is that the data contains usage status of

the EVCS over five-minute intervals. As a result, we assume that the EVCS would send their

schedules every five minutes to the detection engine. What this implies is that, every five

minutes, there would be a schedule registered for each station.

To better visualize and process the collected data, we map the charging stations to the Ireland

power grid buses. For that, we collect the Ireland power grid bus data from PyPsa-EUR [86], and

map the EVCS to their closest bus. The result of this is a mapping of all EVCS mapped to 36 buses

shown in Figure 4.3. The landmarks in the figure represents the starting location of the bus, and the

heat-map represents the distribution of EVCS on each bus. Accordingly, to integrate the mapped

buses to the data, we add a feature for each schedule to indicate the bus the EVCS is mapped to.

Another issue that was faced in the data collection phase is the lack of anomalous EV charging

schedules. For that, we generate anomalous schedules according to two strategies:

• Mass Changing of schedules: The adversary changes the schedules of all compromised

stations at once. For that, we select the three most, least and midst loaded buses and select the

most and least occupied times of the day to be the target of the attack. In order to change the

schedules, we choose all charging events scheduled two hours before and after the targeted

times and reschedule them to the targeted time. An example of such anomaly is shown in

Figure 4.4.
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Figure 4.3: Distribution of EVCS and load buses in the Ireland power grid
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Figure 4.6: IEEE 33 Bus System Obtained from [1]

schedules would be hard to detect using threshold-based systems.

4.3.3 Impact of Added Anomalies on the Power Grid:

To give more realism to the added anomalies, we simulated their impact on a sample power grid.

In particular, we simulated the IEEE 33 Bus system shown in 4.6 with the Irish Power Grid Load

Data obtained from [87]. Due to the non availability of load profile data for the Irish power grid,

we built a simple load profile for the buses by calculating the average hourly load profile from the

period of March 2020 to April 2020. For simplicity, we distributed this load equally among the 33

buses.

With the load profile generated for each bus, we add the two kinds of aforementioned anomalies.

For that, we choose one of the 36 buses and map its load profile to branch 1-2 in the IEEE 33 Bus

system. Further, we select the targeted attack hour to be at 16 : 00 in the case of the mass changing

anomalies. We, then, run a time-series analysis on the grid system using GridCal in Python 3.7.

Further, we assume that the acceptable voltage drop values are within 10%, and hence any drop of

voltage below 0.9p.u would be considered critical. We demonstrate the impact of such anomalies

in Figures 4.7, 4.8. One thing to note that we plotted only the impact on Bus 17 as it was shown that
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4.3.4 Feature Engineering

Before feeding the dataset to the machine learning algorithm, some feature engineering is re-

quired. Particularly, we formulate the dataset as a uni-variate time series. Initially, the dataset con-

tains the following features: Date, Time, EVCS ID, EVCS location, EVCS Type, Status, Mapped

Bus. The feature engineering is done as follows:

• Remove Redundant Features: Ultimately, the adversary would target EVCS located on a

specific bus. Thus, we remove the EVCS location and ID as the mapped bus feature would

be indicative of both location and ID for our purposes. In addition, Date and Time features

are merged into timestamp of the format (dd−mm− yyyhh : mm : ss). In addition, for a

more meaningful representation of the status, we map the status values to 0 for out of service

or out of contact, 1 for partially occupied and 2 for fully occupied.

• Remove Unwanted Features: Due to the limited information regarding the EVCS, the only

informative feature is the EVCS type. However, due to the lack of the energy usage of the

EVCS, this feature did not provide much knowledge about the EVCS, and hence was dropped.

• Splitting: Up to this point, the dataset contained Date, Time, Mapped Bus and Status features.

As previously mentioned, for an effective attack, specific buses should be targeted. Thus, we

split the dataset into 36 chunks, each counting EVCS data mapped to the 36 buses in the

Ireland grid.

• Aggregation: The last step of the feature engineering is to aggregate the data. Thus, for each

of the 36 chunks of data, we group the data by the timestamp feature and aggregate over the

sum of the status.

The final dataset after this phase is 36 chunks (for each of the 36 buses), each containing the

timestamp (five minute intervals), the total number of charging events scheduled at this timestamp,

and 1000 anomalous schedules.
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4.3.5 Learning Algorithm

There exist many algorithms that could be used for anomaly detection, from supervised and

semi-supervised to self and unsupervised algorithms. Although supervised algorithms would typi-

cally yield higher accuracies, in a real world setting, labeled data is more often considered an asset.

Thus, to give more realism to the problem, we do not label our dataset and hence we opt to use

unsupervised learning algorithms. In particular, we choose four different learning algorithms:

• Seasonal ESD: The seasonal Extreme Studentized Deviate algorithm was developed in Twit-

ter [88]. It represents a statistical approach for automatically detecting contextual anomalies.

The algorithm relies on decomposing the time series into seasonal and trend components, and

applying Median Absolute Deviation (MAD) to detect anomalies.

• One Class SVM: The One Class Support Vector Machine (OCSVM) algorithm was devel-

oped in [89]. The idea behind OCSVM is to model the dataset by a function that is positive

for high density points and negative for lower density points. With that, the function can

differentiate between anomalous and non-anomalous data due to their different densities.

• Isolation Forests: The Isolation Forest algorithm [90] has been widely used for detecting

anomalies. In essence, it randomly selects a feature and split the dataset according to a split

value. By recursively splitting the dataset, the anomalies are isolated as they would have

different feature values from the rest of the dataset.

• LSTM: The LSTM is a type of auto-encoder that learns a decompressed representation of

input sequence [91]. In the context of anomaly detection, LSTM networks tries to reconstruct

the input data with a reconstruction error for each data point. Thus, if the reconstruction error

exceeds a specific threshold, the data point is flagged as anomaly.

These algorithms were specifically chosen as they cover a wide array of anomaly detection ap-

proaches. For instance, the SESD algorithm follows a statistical approach, while the LSTM is an

auto-encoder. Further, some algorithms are better suited for point-anomalies detection (OCSVM),

while others proved superior in detecting contextual anomalies (SESD).
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4.4 Experimental Evaluation

After performing the data collection and processing, we performed different experiments to

evaluate the anomaly detection engine and determine the best algorithm to use. All data collection,

processing and learning algorithms has been implemented in Python 3.7. The LSTM model was

implemented using Keras library, while the Isolation Forests and OCSVM were implemented using

Sklearn library. Finally, the SESD was implemented using the SESD Python library. Further, each

of the algorithms used required a set of parameters, these are shown in Table 4.1.

Algorithm Parameters Description Value

SESD

periodicity How periodic the data is yearly

hybrid Use the seasonal hybrid ESD (more robust) True

max anomalies An upper bound for the number of anomalies in the data 10000

threshold Threshold at which a point is considered an anomaly [0.1, 0.01, 0.001]

OCSVM
kernel The type of kernel to be used (linear, poly, rbf) rbf

contamination Percentage of anomalies in the data [0.1, 0.01, 0.001]

Isolation Forest contamination Percentage of anomalies in the data [0.1, 0.01, 0.001]

LSTM

depth The number of LSTM layers in the netwrok 5

neurons/layer The number of hidden neurons in each layer 50

threshold Threshold at which a point is considered an anomaly [0.1, 0.01, 0.001]

Table 4.1: Models parameters

As shown in the table, each model has a different set of parameters. However, the thresh-

old/contamination model was present in all three models. As a result, we use this parameter to

tweak the performance of each model. For that, we perform three different experiments, each with a

different threshold/contamination value [0.1, 0.01, 0.001]. In what follow we present the results for

each of the models. The full results for each threshold values are found in Tables 4.2, 4.3 and 4.4.

4.4.1 Threshold = 0.1

The results for the threshold value = 0.1 are depicted in Figure 4.9. As can be seen from the

Figure, this specific threshold value resulted in high detection accuracy across all algorithms. In

particular, the percentages of true alerts was above 93% for all algorithms. Further, the highest

accuracy was achieved using the LSTM algorithm detecting all anomalies introduced in the data.

The second highest accuracy is seen in the OCSVM with a value of 96.1%. The IF algorithm has

the lowest accuracy with a value of 93.5%. On the other hand, the relatively high threshold value
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resulted in high false alert values. The worst performance was of the OCSVM algorithm with more

than 1500 false alerts. Further, the LSTM algorithm resulted in the lowest rates of false alerts with

a value of 535, which is considered relatively high compared to the number of actual anomalies.

Figure 4.9: Average results for all buses for threshold = 0.1

4.4.2 Threshold = 0.01

The results have improved by dropping the threshold from 0.1 to 0.01 as depicted in Figure 4.10.

As illustrated, the number of false alerts has dropped significantly across all algorithms. The LSTM

false detection values has dropped by more than 70%. In addition, the SESD algorithm overall

performance improved in terms of false alerts, with a slight drop of almost 4% in the true alerts rate.

The IF algorithm also has a similar performance to the SESD algorithm with just 0.5% difference

between the two algorithms. By closely observing the results for this threshold value, it was clear

that all the mass changing anomalies were correctly flagged. Further, most of the subtle anomalies

were also flagged by almost all algorithms. However, the OCSVM flagged a number of data points

that, when taking out of context of the EVCS schedule, would be considered as anomalies. The

reason behind this is that the OCSVM does not necessarily detect contextual anomalies, unlike the

LSTM or SESD algorithms that address seasonality and context. This threshold yielded the best

72



Figure 4.10: Average results for all buses for threshold = 0.01

results overall in terms of high accuracy and low number of alerts.

4.4.3 Threshold = 0.001

The purpose of experimenting with such a low threshold is to test how effective the algorithms

are in detecting the mass changing anomalies. The results are depicted in Figure 4.11. As expected,

the number of false alerts have dramatically dropped to below 100 for all algorithms. Moreover,

the true alert rates has also dropped by almost 50% for all algorithms. The majority of the detected

anomalies were mass changing anomalies for all buses, with just a few of the subtle changing

anomalies.

Based on the experimental evaluations, the LSTM appeared to produce the best results among

all the algorithms, followed by the SESD. Further, the use of the threshold proved to be useful in

adding a degree of flexibility to the detection engine. Particularly, a low threshold could be used

to detect the more subtle behavioral changes. However, this would be traded-off with the high

rate of false alerts. Overall, the proposed engine proved effective in detecting both variations of

behavioral change. In what follows, we detail the modifications required for the proposed engine to

be applicable on both private and public EVCS.
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Figure 4.11: Average results for all buses for threshold = 0.001

4.5 Private Charging Detection Strategy

4.5.1 Scenario

Within the realm of EV charging, the recipe for an efficient and functional system relies on the

entities participating in the system and the environment at which these entities operate within. To

this end, we depict our considered system in Figure 4.12. In our abstraction of the EV charging

infrastructure, we consider a residential area consisting of multiple homes. For a more realistic rep-

resentation, we assume that EVs and EVCS are distributed among these homes. For instance, some

homes may contain one or more EVs while others may contain none. Similarly, some homeowners

may own one or more EVCS. Further, we assume that the energy provider have deployed some

public EVCS at different locations in the neighborhood. In addition, we consider that both EVs

and EVCS participate in an open energy trading network. In other words, homeowners, who own

EVCS, can rent out their privately-owned charging stations to be used by EV drivers in return for

profit [92]. Thus, EV drivers have the option to charge their vehicles at the public or private EVCS.

Such open energy trading system would require mutual trust between the different entities. For

example, EV drivers need to trust the owners of the private EVCS as to supply the amount of energy
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Initialization

Initially, no nodes are available in the network. Each entity would then need to register in the

network.The registration phase entails that the registering entity be assigned a private/public key

pair. The public IP address would be the unique identifier for the node. Upon registration, the

owner of the EVCS (public and private) broadcast their availabilities in terms of dates, location and

times and price of energy ($/kW ). Thanks to the immutability property of Blockchain, these prices

and availability records can not be tampered with by an adversary; only the owners of the stations

can modify these records.

Booking and Charging

Given that such system should enable the trading of digitized assets, we consider that the energy

and money transactions are encapsulated within smart contracts. Particularly, when an EV owner

needs to charge his/her vehicle, he/she can look up at the available stations along with their prices

and locations. The user can then choose to charge at either the public or private EVCS based on his

preference. Once a driver has chosen a station, a smart contract is issued between the EV owner and

the EVCS including the ID of both of them, price of the charging ($) (which is determined by the

chosen EVCS), the date and time of the charging (dd−mm− yyyy hh : mm : ss), the amount of

energy required to charge (kW ) and the duration of the charge (s). Along with the smart contract,

money is transfered from the EV driver’s wallet to the smart contract. When an EV is plugged

into the EVCS, the smart contract is invoked by checking the ID of the EV along with the data

and time of the charging. If those match the conditions on the smart contract, the charging process

starts for the duration specified in the contract. Once the charging process is completed, the smart

contract transfers to the EVCS the agreed upon fee. In the case of an incomplete charging process

(either entities decided to stop the charging process), the smart contract calculates the amount of

used energy and pays the EVCS the corresponding fee. The remaining balance in the contract is

then refunded back to the driver. The logic of the booking and charging processes is detailed in

Figure 4.13.

The outlined Blockchain network allows decentralized operations of registration and booking
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grid and introduced two types of artificial anomalies in the dataset. By mapping the EVCS to the

Irish load buses, the dataset was split into 36 chunks and fed to four different anomaly detection

algorithms (SESD, OCSVM, IF and LSTM). Through experimenting with different threshold val-

ues, LSTM and SESD performed the best in terms of detecting the actual anomalies and resulting

in a low number of false alerts. From there, we abstracted and detailed how this anomaly detection

engine could be also leveraged within the context of private EVCS through the use of Blockchain

networks.

True Alerts False Alerts

Bus ID SESD OCSVM IF LSTM Bus ID SESD OCSVM IF LSTM

1 1000 1000 1000 1000 1 100 3017 698 241

2 922 1000 0 1000 2 1000 2383 1422 643

3 997 1000 1000 1000 3 400 843 585 34

4 1000 1000 1000 1000 4 426 1162 722 243

5 1000 1000 1000 1000 5 400 462 1015 534

6 1000 1000 1000 1000 6 300 235 781 631

7 1000 1000 1000 1000 7 643 359 928 363

8 1000 1000 1000 1000 8 532 2730 231 756

9 0 1000 692 1000 9 643 4651 435 453

10 1000 1000 1000 1000 10 843 434 1099 342

11 1000 1000 1000 1000 11 934 432 922 645

12 1000 1000 1000 1000 12 532 3876 600 764

13 999 1000 1000 1000 13 1992 291 1014 452

14 1000 1000 1000 1000 14 1244 1719 1106 353

15 1000 1000 1000 1000 15 1721 3225 819 765

16 1000 1000 1000 1000 16 443 421 813 745

17 1000 628 1000 1000 17 532 452 452 242

18 1000 1000 1000 1000 18 875 1249 1721 453

19 986 1000 1000 1000 19 453 3125 1082 756

20 1000 1000 1000 1000 20 75 506 884 678

21 1000 1000 1000 1000 21 653 2482 569 342

22 1000 1000 1000 1000 22 782 1653 762 230

23 1000 1000 1000 1000 23 354 892 1093 534

24 969 1000 1000 1000 24 854 354 713 657

25 1000 1000 1000 1000 25 689 512 1872 901

26 1000 1000 1000 1000 26 843 243 862 423

27 1000 0 0 1000 27 357 1242 1921 653

28 0 1000 1000 1000 28 753 782 991 564

29 994 1000 1000 1000 29 325 7218 979 234

30 1000 1000 1000 1000 30 246 1562 630 867

31 1000 1000 1000 1000 31 201 781 862 436

32 1000 1000 1000 1000 32 805 310 733 1034

33 1000 1000 1000 1000 33 1289 6187 787 345

34 1000 1000 1000 1000 34 241 1031 337 645

35 1000 1000 1000 1000 35 463 402 403 876

36 1000 1000 1000 1000 36 1531 1608 587 453

Mean 940.75 961.8888889 935.8888889 1000 Mean 679.8333333 1634.194444 873.0555556 535.75

Table 4.2: Detailed Results for threshold = 0.1
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True Alerts False Alerts

Bus ID SESD OCSVM IF LSTM Bus ID SESD OCSVM IF LSTM

1 1000 900 943 1000 1 20 1003 210 85

2 900 932 0 994 2 302 950 649 102

3 950 1000 1000 1000 3 85 302 350 0

4 1000 513 1000 1000 4 100 305 381 82

5 1000 432 1000 974 5 105 158 492 143

6 1000 841 1000 1000 6 96 68 204 203

7 1000 1000 1000 979 7 201 90 495 98

8 1000 340 1000 1000 8 103 872 99 81

9 932 1000 894 942 9 90 904 183 97

10 854 843 1000 1000 10 301 105 385 78

11 810 1000 1000 923 11 298 235 471 142

12 1000 536 1000 1000 12 185 1032 132 142

13 912 389 603 990 13 502 40 389 192

14 1000 942 1000 1000 14 305 320 482 93

15 1000 1000 849 982 15 230 783 218 124

16 1000 1000 1000 1000 16 80 329 325 152

17 1000 634 1000 847 17 129 193 182 93

18 600 610 1000 1000 18 231 535 392 132

19 970 1000 879 894 19 70 974 472 144

20 1000 1000 1000 1000 20 0 281 163 212

21 400 473 1000 986 21 123 789 99 70

22 847 1000 1000 1000 22 144 284 345 79

23 1000 1000 1000 1000 23 50 202 427 132

24 968 1000 1000 1000 24 90 93 348 198

25 400 1000 792 978 25 103 184 461 293

26 859 1000 1000 1000 26 184 212 242 87

27 1000 0 0 1000 27 40 301 247 102

28 310 1000 1000 995 28 100 183 532 146

29 872 943 1000 1000 29 48 1632 500 75

30 1000 832 1000 1000 30 97 200 134 252

31 1000 823 1000 973 31 40 174 276 184

32 1000 1000 823 1000 32 201 40 388 213

33 992 863 807 910 33 183 984 462 60

34 1000 1000 1000 899 34 99 213 89 123

35 1000 1000 1000 1000 35 69 202 192 126

36 1000 1000 783 989 36 103 403 123 60

Mean 904.8889 829.0556 899.25 979.3056 Mean 141.8611 432.6389 320.5278 127.6389

Table 4.3: Detailed Results for threshold = 0.01
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True Alerts False Alerts

Bus ID SESD OCSVM IF LSTM Bus ID SESD OCSVM IF LSTM

1 592 341 452 623 1 0 45 92 0

2 452 318 0 429 2 94 100 75 12

3 423 423 632 599 3 12 68 12 0

4 873 192 579 798 4 0 89 23 0

5 619 100 598 432 5 73 31 41 24

6 832 90 689 499 6 81 34 68 32

7 642 582 412 371 7 74 52 41 21

8 875 68 482 752 8 85 121 0 19

9 642 502 294 681 9 23 131 76 15

10 513 204 589 488 10 99 47 98 2

11 579 398 587 471 11 86 98 99 5

12 782 283 399 572 12 63 293 41 23

13 763 97 192 531 13 42 0 81 34

14 681 384 423 464 14 45 93 24 6

15 752 475 253 467 15 86 211 52 34

16 681 572 467 699 16 10 94 92 152

17 753 192 584 323 17 31 99 62 3

18 284 107 485 785 18 57 121 99 31

19 513 592 182 479 19 14 123 112 39

20 499 498 523 542 20 0 98 87 28

21 90 103 578 451 21 83 62 0 0

22 201 399 509 682 22 74 94 87 0

23 631 475 402 654 23 0 45 97 43

24 402 512 389 651 24 21 0 63 59

25 192 394 129 655 25 24 31 100 79

26 351 384 298 652 26 47 58 52 41

27 412 0 0 763 27 0 90 69 28

28 70 593 293 601 28 21 84 123 35

29 127 204 379 611 29 0 392 91 0

30 469 200 489 652 30 72 74 12 73

31 591 184 462 589 31 0 42 24 73

32 496 593 124 712 32 23 0 46 56

33 472 124 203 653 33 21 213 52 0

34 591 592 578 431 34 26 82 0 51

35 483 489 639 699 35 38 87 9 23

36 599 682 128 653 36 23 98 5 0

Mean 525.75 342.9444 400.6111 586.5 Mean 40.22222 94.44444 58.47222 28.91667

Table 4.4: Detailed Results for threshold = 0.001
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

With their integration with almost every aspect of our lives, IoT services promise a seamless

experience that would facilitate the users’ lives. From smart homes and smart cars to smart factories

and smart cities, the IoT paradigm is bringing novel services that was thought of as science fiction

a couples of years back. However, for the IoT to reach is full potential, different sectors should

overlap to provide a new set of services for a truly connected world. One area where such an

overlap prevails is in the EVs and their charging infrastructure. Despite their penetration rate and

promising forecasts, Evs are still facing major obstacles towards their adoption, one of which is

the availability of their charging infrastructure. This growing need of procuring a well-developed

charging infrastructure necessitates major investments in terms of both monetary and intellectual

assets. With such, different companies - from startups (ex: ChargePoint) to Fortune 500 companies

(Schneider Electric) have started manufacturing and deploying EVCS all over the world, as well as

going a step further and embracing the IoT paradigm by provisioning smart EVCSs. While smart

EVCSs bring EV charging a step closer to its perceived potential, they present themselves a fertile

attack surface for adversaries that could render the whole infrastructure obsolete.

In this thesis, we provided a comprehensive analysis of the security of EVCS. In particular, in

Chapter 2, we surveyed the state-of-the-art deployments, protocols and participating entities and

observed two key concerns; the lack of standardization and multiple points of entry. In light of
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these two concerns, we demonstrated a multi-stage network attack that would allow an adversary

to disturb the power grid. Specifically, we leveraged Internet scanning tools (Shodan and Censys)

to locate the IP addresses and ports of EVCSs. Once a dataset was collected, a brute-force attack

was performed in order to gain root access to the devices. Surprisingly, some EVCSs from major

manufacturer displayed the password in plain text in web interface of the device. While accessing

the devices allowed us to download all devices’ logs, restrict user access, download the firmware,

one of the rather interesting features was the ability to remotely control the device and change the

users’ charging schedules. From there, a coordinated attack was simulated in which an adversary

controlling a number of EVCSs within a geographical area creates a traffic bottleneck by tampering

the schedules of the users forcing them to start charging at the same time instant. Once an adversary

creates a bottleneck of EV drivers charging simultaneously, he/she can cause major disturbances on

the power grid. By simulating three different variations of the attack; sudden demand surge, sudden

supply surge and alternating attack, it was concluded that these variations can cause frequency

instability which in return can cause severe impacts on the power grid such as equipment damage,

cascading failures and blackouts.

It, thus, becomes evident that the security of the EV charging infrastructure is critical as it

bridges different services between different sectors; transportation and energy sectors. In efforts

to improve the current charging infrastructure and particularly addressing the aforementioned con-

cerns, we provided a systematic evaluation of current solutions leveraging both Artificial Intelli-

gence (AI) and Blockchain technologies over the past 10 years in Chapter 3. It was concluded that

AI is a promising solution to the optimal charging schedules by collecting data of EV drivers and

providing forecasts that would help operators better improve their deployments of EVCS. Further,

AI could be used a cyber-security measure by detecting anomalies in the charging network. On

the other hand, Blockchain provides a benchmark for a fully decentralized, distributed and secure

charging infrastructure. Particularly, Blockchain can provide an open energy trading ecosystem

where different entities (for example power grid operators, smart communities, EVs) can trade en-

ergy without the need for a centralized entity. This in return would cut on operating costs and

increase EV adoption by giving incentives to EV drivers.

While both technologies target specific issues, the integration of both technologies opens the
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horizon for novel functionalities for the charging ecosystem. Accordingly, in Chapter 4, we ex-

panded on the roles of both AI and Blockchain in mitigating the attack described in Chapter 2. We

proposed an anomaly detection engine that leverage different learning mechanisms (auto-encoders

and statistical-based) to detect anomalous EV schedules. Through extensive simulations, it was

concluded that the proposed system is effective in early detecting the proposed attack by flagging

anomalous schedules while offering enough flexibility to tweak its sensitivity. In addition, we fur-

ther explored a re-envisioning of the whole EV charging infrastructure by leveraging Blockchain. It

was concluded that the integration of Blockchain with the proposed anomaly detection engine can

be effective in securing the EV charging infrastructure on both public and private fronts.

5.2 Future Work

This thesis opens the door for some interesting research directions. One such work is to fur-

ther expand on the idea of integrating AI and Blockchain and provide an extensive analysis on the

feasibility of such integration within the context EV charging ecosystem. The premise here is that

Blockchain adds lots of computation workload in the network. Thus, the evaluation would need

to assess whether this computation workload is acceptable or not, and further provide solutions

to reduce such overhead. In addition, one could study how AI could be used to create a dynamic

Blockchain network. While this work was introduced in the literature as shown in Chapter 3, a more

analytical approach is needed. Another interesting direction is to study the firmware of the EVCS to

discover more vulnerabilities. Although some work has already been done in this direction as shown

in Chapter 4, a more comprehensive study on the different firmware used by different manufacture

would offer great insights on the vulnerabilities of the EVCS. On a different note, one can focus on

the security of EVs and how they can be exploited to disturb the power grid. For instance, it was

shown in multiple research that EVs could be hijacked remotely over the Internet. Thus, one can

explore the different attacks that an adversary can do to disturb the power grid or the charging in-

frastructure. Finally, one rather interesting direction is to follow the same footsteps of this work and

apply it to a different kind of IoT devices. For instance, one can study the security of the medical

IoT devices (MRI machines, PET Scanners) and determine if they can disturb the power grid.
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