
A Neural Network Approach to Aircraft Performance Model Forecasting

Nicolas Vincent-Boulay

A Thesis in the Department of

Mechanical, Industrial and Aerospace Engineering (MIAE)

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Sciences in

Mechanical Engineering

Concordia University

Montreal, Quebec, Canada

May 2020

©Nicolas Vincent-Boulay, 2020

Signatures

This is to certify that the thesis prepared

By: Nicolas Vincent-Boulay

Entitled: A Neural Network Approach to Aircraft Performance Model Forecasting

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Sciences (Mechanical Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final Examining Committee:

___________________________ Chair

Dr. Brian Vermeire

___________________________ Examiner

Dr. Abdessamad Ben Hamza

___________________________ Examiner

Dr. Brian Vermeire

___________________________ Supervisor

Dr. Catharine Marsden

Approved by __ _____________

Dr. Waiz Ahmed Date

Chair of Department of Graduate Program Director

 __ _____________

 Dr. Mourad Debbabi Date

Dean of Faculty

iii

Abstract

Performance models used in the aircraft development process are dependent on the assumptions and

approximations associated with the engineering equations used to produce them. The design and

implementation of these highly complex engineering models are typically associated with a longer

development process. This study proposes a non-deterministic approach where machine learning techniques

using Artificial Neural Networks are used to predict specific aircraft parameters using available data. The

approach yields results that are independent of the equations used in conventional aircraft performance

modeling methods and rely on stochastic data and its distribution to extract useful patterns. To test the

viability of the approach, a case study is performed comparing a conventional performance model

describing the takeoff ground roll distance with the values generated from a neural network using readily-

available flight data. The neural network receives as input, and is trained using, aircraft performance

parameters including atmospheric conditions (air temperature, air pressure, air density), performance

characteristics (flap configuration, thrust setting, MTOW, etc.) and runway conditions (wet, dry, slope

angle, etc.). The proposed predictive modeling approach can be tailored for use with a wider range of flight

mission profiles such as climb, cruise, descent and landing.

iv

Acknowledgements

I would like to express my sincere appreciation to my supervisor, Dr. Catharine Marsden, for her heartfelt

dedication and support in the development of this work. Above all, I am grateful for her unyielding honesty

and genuineness in every engineering discussion we have had the chance to have through the years we have

known each other.

Thank you to Claude, Linda, Olivia and Claudia for the ever-present support and for lending me these

precious moments where we explored the fascinating boundary between our two, often diverging, world

views.

I would also like to thank the employees of the aerospace industrial partners from whom I’ve had the

incredible opportunity to learn so much from. As so elegantly put by Albert Einstein: “The only source

of knowledge is experience”. Many thanks to NSERC (Natural Sciences and Engineering Research

Council of Canada) and the NSERC Chair in Aerospace Design Engineering (NCADE) industrial partners

for their financial support, and to Concordia University.

v

Table of Contents

List of Figures ... vii

List of Tables ... ix

List of Acronyms and Symbols ... x

1. Introduction ... 1

1.1 Background on Deterministic and Non-Deterministic System Models .. 1

1.2 Artificial Intelligence in Aircraft Performance Modeling... 2

1.3 Research Objective and Approach .. 3

1.4 Scope ... 3

2. Literature Review .. 4

2.1 Overview of the Field of Artificial Intelligence .. 4

2.1.1 Background and Definitions ... 4

2.1.2 Inception of the Field of AI and its Major Historical Periods ... 8

2.2 Artificial Intelligence in Aerospace .. 10

2.2.1 Early Skepticism (1960 – 1980) .. 10

2.2.2 Appearance of Neural Network Research in Aerospace (1980 – 2000) 11

2.2.3 Proliferation of Neural Network Scientific Interest (2000 – 2010) 12

2.2.4 Appearance of Industry-Proven Implementations (2010 – Present) 13

2.3 Gaps in the Literature .. 14

3. The Selected Aircraft Performance Case Study .. 15

3.1 Defining Takeoff Distance .. 15

3.2 The Calculation of Takeoff Distance .. 19

3.3 Assessment of the TOD Deterministic Model .. 23

4. Research Methodology ... 25

4.1 The Neural Network Development Process .. 25

4.2 Network Objectives and Requirements Definition ... 26

vi

4.3 Dataset Selection Process.. 26

4.3.1 Deterministic Takeoff Distance Dataset ... 27

4.3.2 NASA DASHlink Non-Deterministic Dataset .. 30

4.4 Neural Network Architecture Development ... 34

4.5 Training and Testing a Neural Network.. 41

4.6 Using the Trained Network to Make Predictions .. 42

5. Results ... 45

5.1 Deterministic Takeoff Distance Dataset Results... 45

5.1.1 Dataset 1.1 Results .. 47

5.1.2 Dataset 1.2 Results .. 51

5.1.3 Dataset 1.3 Results .. 54

5.2 NASA DASHlink Non-Deterministic Dataset Results ... 57

5.2.1 Dataset 2.1 Results .. 58

5.2.2 Dataset 2.2 Results .. 62

6. Discussion ... 66

6.1 Review of the Deterministic Dataset Results .. 66

6.2 Review of the Non-Deterministic Dataset Results .. 66

6.3 Comparing Deterministic and Non-Deterministic Results ... 67

6.4 Summary of the Findings .. 68

7. Conclusion .. 72

8. References ... 74

9. Appendix A – Python Program ... 80

10. Appendix B – Developed Neural Network Tools ... 82

vii

List of Figures

Figure 1 – Summary of some of the subfields of AI by objective .. 5

Figure 2 – Summary of the subfields of machine learning ... 6

Figure 3 – How deep learning differs from classical machine learning [9] ... 7

Figure 4 – Similarities between biological and artificial neural networks [14] .. 8

Figure 5 – Timeline of the major historical periods in the field of artificial intelligence 10

Figure 6 – Illustration of the takeoff flight path [62] .. 16

Figure 7 – Representation of the TOD scenario for OEI and AEO [62] ... 17

Figure 8 – Representation of the TOD scenario for ASDAEO and ASDOEI [62] .. 17

Figure 9 – TOD calculation process ... 19

Figure 10 – Forces acting on an aircraft during takeoff [67] .. 20

Figure 11 – Forces acting on an aircraft during a takeoff deceleration [67] ... 22

Figure 12 – Neural network development process .. 25

Figure 13 – Selected input and output values for the neural network ... 28

Figure 14 – Sample of the deterministic dataset ... 28

Figure 15 – Compressed deterministic dataset ... 28

Figure 16 – Dataset distribution for individual input and output parameters ... 29

Figure 17 – Process of generating secondary data from the flight data .. 31

Figure 18 – Original dataset distribution for the fleet of 12 aircraft ... 33

Figure 19 – Selected dataset distribution for 1 aircraft ... 34

Figure 20 – Selected dataset distribution for the fleet of 12 aircraft ... 34

Figure 21 – Neural network architecture development process [69] .. 36

Figure 22 – Ranking of deep learning frameworks [70] ... 37

Figure 23 – Commonly used NN architecture parameters .. 38

Figure 24 – Training and testing MAPE vs epoch .. 42

Figure 25 – Comparison of underfitting and overfitting [77] ... 42

Figure 26 – Output of the tool making use of the trained NN .. 43

Figure 27 – Diagram of the code structure ... 44

Figure 28 – Training and testing results for 6 different NN architectures .. 50

Figure 29 – Training and testing results for the optimal NN architecture using dataset 1.2 53

Figure 30 – Distribution of test cases with MAPE higher than 0.20 % .. 54

Figure 31 – Training and testing results for the optimal NN architecture using dataset 1.3 56

Figure 32 – Training and testing results for the optimal NN architecture using dataset 2.1 61

viii

Figure 33 – Training and testing results for the optimal NN architecture using dataset 2.2 65

Figure 34 – Difference between a sparse and gaussian distribution ... 69

Figure 35 – Comparison of a general model and a specific model ... 70

Figure 36 – NN model that adds a safety margin to all predictions .. 71

Figure 37 – Scikit-learn’s cheat-sheet for selecting existing NN models [81] ... 73

Figure 38 –TOFL prediction tool .. 82

Figure 39 – NN architecture optimization tool ... 82

ix

List of Tables

Table 1 – Takeoff distance definitions .. 18

Table 2 – Takeoff speed definitions .. 18

Table 3 – Takeoff speed limitations .. 19

Table 4 – Summary of the NN requirements and objectives .. 26

Table 5 – Parameters affecting TOD that can be obtained from the TOD deterministic model 27

Table 6 – Limits imposed on original dataset for 1 aircraft .. 33

Table 7 – Limits imposed on original dataset for the fleet of 12 aircraft .. 33

Table 8 – Loss function definitions and applications.. 39

Table 9 – Optimization functions and their applications .. 40

Table 10 – Selected architecture parameters to test using the datasets ... 41

Table 11 – TOD model dataset properties .. 46

Table 12 – Summary of the top 10 dataset 1.1 results based on best MAPE .. 47

Table 13 – Summary of the top 10 dataset 1.1 results based on best p_errtrain .. 48

Table 14 – Summary of the top 10 dataset 1.1 results based on best p_errtest ... 48

Table 15 – Summary of the test ranges for models using dataset 1.2 values .. 51

Table 16 – Summary of the results for the optimal NN architecture using dataset 1.2 52

Table 17 – Summary of the dataset 1.3 results ... 55

Table 18 – DASHlink dataset properties .. 58

Table 19 – Summary of the test ranges for models using dataset 2.1 values .. 59

Table 20 – Summary of the top 10 dataset 2.1 results based on best MAPE .. 59

Table 21 – Summary of the top 10 dataset 2.1 results based on best p_errtrain .. 59

Table 22 – Summary of the top 10 dataset 2.1 results based on best p_errtest ... 60

Table 23 – Summary of the results for the optimal NN architecture using dataset 2.1 60

Table 24 – Summary of the top 10 dataset 2.2 results based on best MAPE .. 63

Table 25 – Summary of the top 10 dataset 2.2 results based on best p_errtrain .. 63

Table 26 – Summary of the top 10 dataset 2.2 results based on best p_errtest ... 63

Table 27 – Summary of the results for the optimal NN architecture using dataset 2.2 64

Table 28 – Comparison of deterministic and non-deterministic results.. 68

x

List of Acronyms and Symbols

Acronym/Symbol Description

AEO All Engines Operating

AFM Aircraft Flight Manual

AI Artificial Intelligence

ANN Artificial Neural Network

ASD Accelerated Stop Distance

CNN Convolutional Neural Network

D Drag

DARPA U.S. Defense Advanced Research Projects Agency

DL Deep Learning

DoD U.S. Department of Defense

ES Expert System

FAA Federal Aviation Administration

FAR Federal Aviation Regulation

ICAO International Civil Aviation Organization

ISA ICAO Standard Atmosphere

L Lift

LTSM Long Term Short Term Memory

LT Logic Theorist

ML Machine Learning

MAE Mean Average Error

MAPE Mean Average Percentage Error

MSE Mean Squared Error

MSLE Mean Squared Logarithmic Error

NN Neural Network

NASA National Aeronautics and Space Administration

OEI One Engine Inoperative

OEM Original Equipment Manufacturer

perr,train or perr,test Worst-case percentage error for training or testing

POH Pilot’s Operating Handbook

RNN Recurrent Neural Network

T Temperature or Thrust

xi

TOD Takeoff Distance

TODN or TODAEO TOD with all engines operating

TODN-1 or TODOEI TOD with one engine inoperative

TOFL Takeoff Field Length

TOR Takeoff run

V1 Takeoff decision point speed

V2 Takeoff safety speed

V3 Initial climbout speed, all engines operating

VEF Speed at engine failure

VG Ground speed

VLOF Speed at liftoff

VR Rotation speed

VS Stall speed

W Weight

δ Pressure ratio or relative pressure (δ = p/po)

ϴ Temperature ratio or relative temperature (ϴ = T/To)

ρ Density

ρ o Density at sea-level

σ Density ratio or relative density (σ = ρ / ρ o)

1

1. Introduction

1.1 Background on Deterministic and Non-Deterministic System Models

The modern aircraft design process has evolved to include systems of increasing complexity. To better

understand these systems, engineering models are developed, where most of these models are said to be

deterministic in nature. A deterministic model is a system in which all output parameters can be calculated

from their relationship with other parameter values affecting the system and their initial conditions. In other

words, it is a system for which all possible states are understood and, to some extent, are predictable. Many

engineering problems can be solved using deterministic models. Deterministic methods have proven

successful in applications where the mechanisms used to describe the full behavior of a system can be

completely understood or understood enough to be able to describe a phenomenon with a minimum amount

of acceptable error. Newton’s laws of motion are examples of important deterministic models. When they

are applied on a body, it is said that the future outcomes of the body can be predicted or determined by its

present situation; and if they are applied on two identical bodies under the same conditions the outcome for

both bodies will be same. In the field of aircraft design, many deterministic systems play fundamental

contributing roles in the design process, such as models describing the motion of the aircraft in time and

space; models tracking and predicting the state of onboard systems of the aircraft (i.e. fuel systems,

electrical systems, environmental control systems); models monitoring and affecting the state of flight

control systems; or models describing aerodynamic or structural loads on an aircraft’s components.

Although these models and their successful use are noteworthy, it must be understood that all deterministic

models carry inherent limitations, some of which are listed below:

• It is possible to have not enough or no empirical data to support the development of the

deterministic model.

• Predicted results can be outside the acceptable error margins when compared with empirical data.

• Highly complex deterministic models can be computationally expensive and require longer run

times.

• Expert knowledge of the system being developed is always required in order to conceive a new

deterministic model.

• If a system is too complex to be able to develop the deterministic equations defining its behavior,

it can be impossible or extremely hard to develop this deterministic model.

These limitations contributed to the fact that non-deterministic models began to be investigated as a means

of addressing some of the deterministic model limitations found in the aerospace industry [1, 2], where it

2

is typical to have a high complexity system with very large amounts of data for which expert knowledge is

almost always required. A non-deterministic model describes a system for which the behavior of the system

parameters is said to be stochastic and for which no deterministic relationships are possible. This type of

modeling approach is based on probability and statistics, which introduce randomness in the models in such

a way that the outcomes of the model can be viewed as probability distributions rather than unique values.

Thus, non-deterministic methods can produce different outcomes after multiple runs for the same problem

set and are consequently usually associated with parameter uncertainty intervals for point estimates and

forecasts [3]. Depending on the problem at hand and the tools available to solve it, it can be practical to

convert purely deterministic problems into non-deterministic problems by introducing stochastic variables

[4]. Studies have been done looking at how predictive results vary based on what approach is used between

a deterministic and a non-deterministic method for a same problem set [5, 6, 7, 8].

1.2 Artificial Intelligence in Aircraft Performance Modeling

Since the late 1990’s, Artificial Intelligence (AI) has re-emerged as a popular field in the research

community due to three factors [9]: 1) the widespread availability of data, 2) overcoming major hardware

limitations enabling faster processing power and 3) resolving obstacles in the mathematical principles used

in AI. Artificial intelligence applications have demonstrated the capability of dealing with complex problem

sets in fields such as computer vision, natural language processing, game theory, robotics, control theory

and machine learning, among others. Broadly speaking, these successes can be attributed to the capacity

for Artificial Neural Networks (ANN), a specific type of AI, to deal with highly complex deterministic

models with very large data sets.

The current work evaluates the potential of ANNs for modeling and prediction in the field of aircraft

performance. Aircraft performance is an engineering discipline concerned with the analysis of the

operational capabilities of aircraft with respect to specific performance maneuvers while satisfying

certification requirements across the full flight envelope. It is a highly multidisciplinary field which

integrates deterministic models from other fields (aerodynamics, structural, thermal, engine performance,

icing, etc.) into comprehensive estimation and modeling tools in order to predict aircraft behavior. The

development of these tools can be bounded by the deterministic model limitations listed in the previous

section (particularly considering the non-linear nature of some the aircraft performance models), the very

large amounts of data to contend with, the high dependency on expert knowledge in developing the models,

and the possible model approximations resulting from the integration of models from other fields. The body

of literature combining aircraft performance, and aerospace design in general, and artificial intelligence is

still relatively small and this thesis investigates the relevance of developing ANNs for aircraft performance

modeling.

3

1.3 Research Objective and Approach

The objective of this research project is to determine if ANNs can be used effectively as an alternative to

current aircraft performance models. To achieve this objective, the following research approach is used:

1. A takeoff flight phase is selected as the relevant case study.

2. The advantages and disadvantages of existing deterministic models used in aircraft performance

for this case study are investigated.

3. A methodology for developing ANNs for aircraft performance purposes is developed.

4. The methodology is applied to a dataset built using existing deterministic takeoff models.

5. The methodology is applied to a dataset built using non-deterministic flight data.

6. Both dataset results are compared and the practicality of using ANNs for predicting takeoff

performance is assessed.

1.4 Scope

This thesis begins with a review of the relevant scientific literature in Chapter 2, with a focus on previous

and current work in the field of machine learning applied to aerospace problems. The selected aircraft

performance case study is described in Chapter 3. The methodology that was selected as a result of the

literature survey is then described in Chapter 4. The results of the study are presented in Chapter 5, and

concentrate on highlighting model efficiency differences between an existing deterministic model and the

neural network model developed as a result of the research for aircraft performance forecasting. The

analysis of these results will allow the objective formulation of an answer to the research question in the

discussion of Chapter 6.

4

2. Literature Review

This chapter presents a review of the relevant scientific literature, with a focus on past and current work in

the field of AI applied to aerospace problems. The literature review starts with general background

knowledge on the field of AI in Section 2.1. Section 2.2 investigates research in AI specifically applied to

aerospace applications. Conclusions drawn from the literature survey are covered in Section 2.3.

2.1 Overview of the Field of Artificial Intelligence

This section introduces relevant definitions and background information for non-experts in the field of AI,

including a summary of the inception and historical progression of AI and machine learning.

2.1.1 Background and Definitions

Artificial Intelligence

Artificial intelligence can be broadly defined as a subfield of computer science focused on understanding

and developing machines that are able to use some degree of intelligence and reasoning to attain a

predefined goal. Machines that make use of AI are termed “intelligent agents”. Russell and Norvig [10]

divide common definitions of AI along two dimensions: definitions that measure an intelligent agent’s

success in terms of fidelity to human performance and definitions that measure success against an ideal

performance measure, called rationality. The authors further divide each of these dimensions with

definitions concerned with thought processes and reasoning and definitions concerned with behavior, as

in how to act or perform an action. The field of AI has evolved to become extremely interdisciplinary, with

roots originating in computer science, mathematics and information processing. Russell and Norvig explain

that different scientific disciplines making use of AI focus on solving one of the four dimensions mentioned,

which leads to different philosophies and approaches to developing AI solutions. For instance, the cognitive

modeling approach is an approach which attempts to mimic human thought processes and reasoning. Allen

Newell and Herbert Simon [11, 12], pioneers in the field of cognitive science, were concerned with

comparing the thought processes of intelligent agents to that of human subjects solving the same problems,

using computer science and experimental techniques from psychology to construct precise and testable

theories of the human mind. Another approach to AI, which is of greater interest for the research that is the

subject of this thesis, is the rational agent approach, which adopts the definitions of AI looking at

rationality and behavior: How can we define an environment where an intelligent agent can perform actions

in order to attain a mathematically defined ideal?

The rational agent is selected as the predominant approach for this research as it presents the following

advantages over the other approaches:

5

1. It is not always correct to assume that the best performance metric is to compare an intelligent agent

with human performance. The rationality approach may get inspiration from human performance

in order to define its rational objective, but it does not assume that human-level performance is the

ultimate ideal and is open to potentially better results than are humanly possible.

2. For some real-life scenarios in which intelligent agents may find themselves, there are cases where

there exists no perfect thought process leading to a provably favorable rationality goal, but an action

must still be taken. The rational agent approach is more practical than the “thought processes and

reasoning” approaches as it is also trying to find the best thought process that leads to the best

action, but only if this best thought process leads closer to the best rational goal.

3. Because the action leading to the rationality goal is mathematically defined, it is more amenable to

scientific progress and improvement than studying human behaviour or thought. Furthermore, it

can be tested to verify that the agents provably achieve their objectives.

Figure 1 shows an organizational chart of different AI disciplines based on end objective. The chart

illustrates the multidisciplinary nature of AI applications.

Figure 1 – Summary of some of the subfields of AI by objective

Artificial
Intelligence

Problem-Solving

Searching

Adversarial
Search

Constraint
Satisfaction
Problems

Knowledge
Reasoning &

Planning

1st Order Logic

Knowledge
Representation

Planning &
Acting

Uncertain
Knowledge &

Reasoning

Uncertainty
Quantification

Probabilistic
Reasoning

Decision Making

Machine
Learning

Learning by
Examples

Reinforcement
Learning

Communication,
Perception &

Acting

Natural
Language

Processing (NLP)

Perception

Computer Vision

Robotics

6

Machine Learning and Deep Learning

Machine learning (ML) is a subset of artificial intelligence which leverages fundamental concepts taken

from human physiology and applies them to machine operation. These biological concepts enable machines

to essentially “learn from experience”. As a general rule, the more data they are presented with, the more

they are able to extract complex patterns and, subsequently, develop elaborate knowledge bases [13].

Goodfellow et al. [9] describe ML as a concept where computers are able to learn from experience by

understanding the world in terms of a hierarchy of concepts, with each concept defined in terms of its

relation to simpler concepts. This allows the machine to learn very high complexity concepts based on the

hierarchical relationships they have with a set of simpler concepts. The main advantage of the ML

methodology when compared to knowledge-dependent approaches like expert systems, for example, is that

by gathering knowledge from computer experience, ML avoids the need for human operators to formally

specify the knowledge that the computer needs, thus reducing the expert knowledge required from the

designer.

Figure 2 provides a more detailed breakdown of Figure 1, with a focus on the machine learning

subdisciplines. ANNs are seen as a type of machine learning that learns from examples in a supervised,

unsupervised or semi-supervised manner, based on the desired application.

Figure 2 – Summary of the subfields of machine learning

Machine Learning

Learning by
Examples

Supervised
Learning

Regression Classification

Ensemble
Learning

Artificial Neural
Networks

Support Vector
Machines

Decision Trees

Unsupervised
Learning

Clustering

Semi-Supervised
Learning

Reinforcement
Learning

7

Figure 3 shows the evolution of ML programs. The first column shows the original rule-based systems

which must be hand designed. The second column represents a classical ML program, where the designer

specifies features for which the computer is able to do feature learning (shaded boxes show programs that

are able to learn from data). The designer workload is still significant, however, because they must specify

each feature individually in order for the learning to take place. The third column depicts a representation

learning program which is able to map links between features without having the designer explicitly specify

each feature. This approach is characterized by a reduced workload for the designer, but may not always

yield accurate results. The final column shows a Deep Learning (DL) program. DL programs use a more

elaborate hierarchy of concept maps (which are said to be “deep”), enabling them to extract more complex

patterns from simpler features. Most recent successes in AI can be directly attributed to advances made in

DL applications.

Figure 3 – How deep learning differs from classical machine learning [9]

8

Artificial Neural Networks

An artificial neural network (ANN) is a type of machine learning which is inspired by the human

nervous system. In a biological neuron, part of the nervous system, the dendrites receive an input from

other neurons, the cell body provides a decision based on the input, the axon translates the decision into

the appropriate output format, and the axon terminal transmits the output to the next neuron as depicted

in Figure 4A. Figure 4B shows the mathematical representation of the biological neuron, which can be

used for the ANN. Figure 4C illustrates the synapse between neurons, which allows the simultaneous

effect of multiple outputs to be received by other neurons as input. This phenomenon is replicated in

Figure 4D, with the nodes of an ANN being interconnected into a structured network. These notions

allow ANNs to be very capable in developing patterns for highly complex non-linear generalization

systems, where a very large number of parameters are under study [9, 13]. Tasks where ML

methodologies can be particularly useful include classification; classification with missing inputs;

regression; transcription; machine translation; structured output; anomaly detection; synthesis and

sampling; imputation of missing values; denoising; and density estimation or probability mass function

estimation.

Figure 4 – Similarities between biological and artificial neural networks [14]

2.1.2 Inception of the Field of AI and its Major Historical Periods

One of the first works that led to the creation of the field of AI was written by Warren McCulloch and

Walter Pitts in 1943 [15]. McCulloch and Pitts combined three concepts to form the basis for their theory:

knowledge of the basic physiology and function of neurons in the human brain, a formal analysis of

propositional logic from Russell and Whitehead [16], and Turing’s theory of computation [17]. They

9

showed, for example, that any computable function could be calculated by some network of connected

neurons, and that all the logical functions (AND, OR, NOT, IF, etc.) could be implemented by simple net

structures. McCulloch and Pitts also suggested that suitably defined networks could learn. Donald Hebb

(1949) [18] demonstrated a simple updating rule for modifying the connection strengths between neurons.

In 1956 John McCarthy convinced a group of U.S. researchers from different universities to attend a two-

month workshop at Dartmouth University, where they discussed artificial intelligence (this was the first use

of the term “artificial intelligence”). The proposed study resulting from the workshop was the following:

“The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of

intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt

will be made to find how to make machines use language, form abstractions and concepts, solve kinds of

problems now reserved for humans, and improve themselves. We think that a significant advance can be

made in one or more of these problems if a carefully selected group of scientists work on it together.”

(McCarthy et al., 1955)

Two researchers present at the meeting from Carnegie Tech, Allen Newell and Herbert Simon,

demonstrated a reasoning program, the Logic Theorist (LT), which was able to prove most of the theorems

found in Russell and Whitehead’s Principia Mathematica [16]. The Dartmouth workshop did not lead to

any new breakthroughs, but it did introduce all the major figures to each other and start the collaboration

between them. For the next 20 years, the field would be dominated by these researchers.

The field of AI has matured significantly since its inception. Figure 5 shows a timeline of the major

historical periods in the field of artificial intelligence. In the early 1960s there was much interest in

developing intelligent systems and many promises were made concerning future capabilities of such

systems (i.e. off the shelf generalization solutions). By the early 1970s, many of those promises had not

been met, mainly due to limitations in hardware and access to data and AI research suffered. This period is

referred as the “1st AI winter”. From 1980 to 1987, the field experienced a renewed scientific interest as a

result of the creation of Expert Systems (ES). ES are computer-based systems designed to emulate the

problem-solving behavior of a human that is an expert on a specific topic. They are designed by first

capturing the domain expert’s knowledge and translating it in a format that can be understood by a computer

program; and then by having the computer program use a reasoning logic to act upon this knowledge. For

procedures that are well defined and already known, ES have been demonstrated to be accurate, but are

time-consuming to develop and if situations arise were the systems operational envelope goes outside its

prescribed procedures, the ES can no longer be trusted to yield accurate results. The AI industry boomed

from a few million dollars in 1980 to billions of dollars by 1987 [10], and included hundreds of companies

building expert systems, machine vision systems, robotics applications, and other specialized software and

10

hardware. Soon after came a period called the “2nd AI Winter,” during which many companies failed to

deliver on their promises and where the limitations of the ES approach were slowing down scientific

progress. In the late 1980s, the back-propagation learning algorithm, which is a fundamental part of modern

day ANNs, was reinvented into a more practical version which allowed the algorithm to be applied to many

learning problems in computer science and psychology. Combined with Parallel Distributed Processing

[19], the 1993-2011 period was marked by a re-emergence of AI applications. As of 2011, it was shown

that with the availability of much bigger datasets it is possible to solve previously unsolvable problems

including filtering images from the internet [20] and word-sense disambiguation used in translation research

[21].

Figure 5 – Timeline of the major historical periods in the field of artificial intelligence

2.2 Artificial Intelligence in Aerospace

Given the main components and structure of AI systems, their evolution and inception, and their existing

application areas, it is observed that many potential avenues can be taken when undertaking the

development of an AI system. This section will review the avenues that have been chosen by practitioners

in the aerospace sector as a means of implementing AI in existing systems and how these research areas

have evolved with the advancements in the field of AI within the aerospace context.

2.2.1 Early Skepticism (1960 – 1980)

NASA began investigating uses for artificial intelligence in aerospace applications as early as 1965 [22].

The agency was mainly interested in looking at advances in the field of AI (pre-1965) and determining if

applications could be found for the new technology specifically for the NASA objectives of the time, which

were to design better control systems and gather and analyze data more efficiently and autonomously. An

example of this is the research done on the F-8 Crusader aircraft, which was modified as a digital fly-by-

wire testbed [23]. The aircraft used an adaptive control system that would iteratively adjust its model

parameters in order to produce results in line with model outputs coming from onboard sensors.

Due to the unpredictable nature of neural networks and the field of AI still being in its infancy, the adoption

of existing technologies for the aerospace sector was severely limited. Since innovation in the aerospace

industry is subject to regulatory and safety assessment restrictions, novel technology adoption is typically

done after proper certification processes and acceptable safety assessment plans are present, which was not

1952-1956:
Birth of AI

1956-1974:
Golden
years

1974-1980:
1st AI
winter

1980-1987:
Boom

1987-1993:
2nd AI
winter

1993-2011:
AI Industry

2011-present:
Deep Learning,
Big data & AGI

11

the case in the 1960’s and 1970’s. This led to most of the early aerospace-related adoption of NNs being

for use in military fighter aircraft, where mission objectives are typically prioritized and civilian

certification requirements are not applicable.

2.2.2 Appearance of Neural Network Research in Aerospace (1980 – 2000)

A notable overview of the field of neural networks and its possible applications for the aerospace sector is

the 1989 Neural Network Study Report [24], sponsored by the Tactical Technology Office of the U.S.

Defense Advanced Research Projects Agency (DARPA/TTO). The report was developed with the

involvement of government, industry, and academic participants. The goals of the study were; to identify

potential applications for neural networks in Department of Defense (DoD) systems, to determine the

current neural network technology base; to identify technology requirements; and to identify a DoD

program plan for the next five years. Some of the study’s conclusions are summarized below:

1. The real strength of neural networks as a new form of computational approach comes from their

ability to self-adapt and learn from data-driven models, in time showing potential for reduced

need for application specific software.

2. Thanks to the development of advanced mathematical theories, new computer tools, and to a better

understanding of neurobiology, neural network research has matured greatly since the

perceptron of the 1950s and recommends the scientific community divest more resources

towards the study of NNs in aerospace applications.

3. The variety of problems addressed by neural networks is large. Significant demonstrations of

neural network capabilities in vision, speech, signal processing, and robotics were listed.

4. Hardware capabilities are limiting the development of important neural network applications.

In 1994, the Federal Aviation Administration (FAA) published research [25] reviewing and discussing

issues related to the use of AI in aerospace technology. The research focused on three fields of AI: Expert

systems, fuzzy logic, and neural networks. It is explained that ES and NNs on their own still have drawbacks

(certification and functional) that are keeping them from being used more broadly in aerospace but, that

when used together as integrated ES-NN systems (or fuzzy-NN systems), would generate considerable

potential. The goal of integrating these two methods is to extract features in complex pattern recognition

using NNs and using them in ES for reasoning, in time speeding up the process of developing ES and

creating a system that can deal with more generalized problems than a single NN could solve. The FAA

recommends use of such integrated systems in particular for space exploration, nuclear power, and military

aerospace.

12

Around the mid-1990s, NN research in aerospace appeared in various domains including regression

optimization [26, 27], aerodynamics modeling [28], adaptive control systems [29, 30], fault diagnosis [31]

and anomaly detection [24]. This new wave of research was marked by demonstrated implementations of

NNs as replacements or enhancements to existing methodologies in these respective aerospace domains.

Faller and Schreck [31] present the case that NNs can act as a useful tool for solving real-life non-linear

aerospace problems (with some examples), but that they must be combined with existing techniques in

order to yield optimal results (for example, validating NN predictions using existing simulation tools).

2.2.3 Proliferation of Neural Network Scientific Interest (2000 – 2010)

In 2002, NASA developed a standard [32] for the verification and validation of neural networks for use in

certified of aerospace systems, which resulted in addendums to the DO-178, which deals with guidelines

for safety-critical software used in airborne systems. The focus at the time was on certifying adaptive flight

control systems that use NNs. This standard provides a good basis for evaluating the proper development

of any supervised neural net for use in an aerospace context. NASA has not yet provided a standard for

unsupervised training neural nets.

The National Research Council of the National Academy of Sciences releases decadal surveys on major

scientific research areas, which include current-state assessments and recommendations for government,

academic and industrial entities. The latest aerospace survey, the 2006 Decadal Survey of Civil

Aeronautics: Foundation for the Future [33], highlighted major areas of research that would most benefit

civil aeronautics. Intelligent systems, of which NNs are a part, were identified as a recurring theme across

all of the major areas of research.

Following the 2006 decadal survey, a proliferation of NN research began across a wide variety of aerospace

applications. This was due to many factors including the increased availability of large datasets, new

development tools enabling easier NN development, parallel computing, and better optimization

algorithms. Advances in adaptive control systems included those able to compensate for system

uncertainties [34], able to adapt to changes in flight conditions [35], possessing fault-tolerant abilities [36],

and providing faster online training capabilities [36]. Advances in non-linear airflow analysis tools included

systems capable of furthering the understanding of ice accretion models [37], unsteady aerodynamic models

coupling multiple non-linear aerodynamics models (i.e. for aircraft in dynamic ground effect) [38], buffet

pressure predictions [39], and the prediction of maneuver loads [40]. Advances in anomaly detection

research included pattern recognition algorithms to identify anomalies for health management of aircraft

gas turbine engines [41]. Advances in regression optimization of non-linear systems included rotorcraft

vibration modeling for real-time applications [42], predicting aircraft cruise performance solely based on

13

available flight data [43], and simplified methods to estimate aircraft fuel consumption coupled with fast-

time airspace simulation models like SIMMOD, TAAM (Total Airspace and Airport Model) or RAMS

(Reorganized Analytical Modeling Systems) [44].

2.2.4 Appearance of Industry-Proven Implementations (2010 – Present)

Between 2014 and 2016, the National Research Council [45], the FAA [46] and NASA [47] released reports

paving the way for developing methodologies for the verification of NNs in aerospace software. The goal

of this research was to conduct a preliminary examination of what is necessary to provide sufficient

assurance that an adaptive system is safely used in an aircraft product from a software perspective. These

efforts resulted in recommendations for modifying the ARP-4754A, ARP-4761 and DO-178C guidelines

and their supplements.

Since 2010, a new resurgence of NN research can be observed in the aerospace community, this time due

to the arrival of big data, new development tools enabling non-experts to develop NNs with greater ease,

even faster hardware allowing shorter computational times, and new and improved optimization algorithms.

Advances in non-linear airflow analysis includes machine learning tools applied to hasten the numerical

prediction of ice formation on local portions of aircraft flying in hazardous weather conditions for broad

flight envelopes [48], novel approaches for developing real-time in-flight ice detection systems using

computational aeroacoustics, Bayesian neural networks, and other Deep Neural Networks (i.e. Recurrent

Neural Networks (RNN), Convolutional Neural Networks (CNN)) [49, 50], and the detection of airframe

icing in a manner allowing system recommendations for reconfigurable control protecting aircraft from

hazardous icing conditions [51]. Much research was also done in these years on anomaly detection or fault

detection and diagnosis for aircraft: RNNs and Long Term Short Term Memory (LTSM) networks through

semi-supervised or unsupervised learning are able to solve problems encountered by previous technology

[52], used as tools for optimization of non-destructive testing [53], and engine fault detection using

modified vision NN algorithms (CNN) (i.e. fatigue crack damage identification) [54]. Other advances in

non-linear regression optimization research include the use of data fusion for airspace management and

operations prediction tools [55] and assessing recommendations for reroutes [56, 57]. Some progress has

also been made in the field of surrogate model generation using CNNs [58].

In 2019, Aero Montreal released a report [59] on the current-state of AI research and adoption in the

aerospace industry. It is explained that Montreal, being the third largest aerospace hub by number of jobs

in the world and at the same time being the largest AI hub, is the prime location for a more widespread

adoption in the aerospace field, which will come with much resulting scientific progress. It is also stated

14

that such innovation can only happen with a high level of collaboration between the practitioners across the

two sectors of aerospace and AI.

2.3 Gaps in the Literature

Major research areas emerging in NN-aerospace research including non-linear regression optimization,

advanced airflow analysis, anomaly detection and health monitoring, adaptive control systems, and

surrogate model generation. The survey of the literature that was undertaken as part of the study that is the

subject of this thesis produces the following observations:

1. Non-linear regression optimization stands out as being the most researched topic with the most

demonstrated benefits resulting from the use of NNs. Published research on the topic shows that, for

highly non-linear problem sets where deterministic relationships are difficult to develop, NNs are

generally able to solve the problems when presented with enough data.

2. Various NN types have been applied to a number of aerospace applications with varying levels of

success. Recent research shows that certain types of NNs are better suited for very specific problem

sets, and research in this area is ongoing. As a qualitative observation, traditional feedforward

backpropagation neural networks with two or more hidden layers have demonstrated the

greatest potential at solving the widest variety of types of problem sets, especially for non-linear

regression.

3. Dataset sizes have increased significantly through the years, resulting in demonstrated modeling

prediction improvements. This is a general observation and some cases remain where more data does

not necessarily mean better model predictive accuracy, notably in cases dealing with very noisy data or

with data populated with a large number of outliers.

4. Development tools have evolved greatly with respect to: 1) ease of use and practicality, 2) facility in

integrating with existing systems (hardware and software).

5. Of all the literature found on NN applications in aerospace, literature focused on aircraft

performance is sparse and is mostly concentrated on route [56], fuel [26, 44] or range [57, 60]

optimization.

15

3. The Selected Aircraft Performance Case Study

For the purposes of the current research, the modeling of takeoff distance (TOD) is selected as a case study

to determine if ANNs can be used to replace existing deterministic models. This chapter begins with the

definition of the TOD used in this work, followed by a review of how current deterministic TOD models

are being developed without the use of ANNs. The chapter concludes with an assessment of why this case

study is relevant to the research topic and was selected as a result of the gaps identified in the literature

review chapter.

3.1 Defining Takeoff Distance

Chapter 525 (Transport Category Aeroplanes) of Part V (Airworthiness Manual) of the Canadian Aviation

Regulations (CARs) [61] describes the legally recognized definition of the takeoff distance as:

16

From this definition, it is understood that the TOD can be different based on runway condition (dry or wet),

if a clearway is present, and the end outcome of the takeoff (OEI, AEO, ASD). The takeoff flight path

defined by the CARs standard 525.111, on which the TOD definition is based, is represented in Figure 6.

The current research is only concerned with the take-off scenario up to 35 feet above ground level. Four

possible scenarios exist: All Engine Operating Takeoff (AEO), One Engine Inoperative Takeoff (OEI),

Accelerated Stop with AEO (ASDAEO), and Acclerated Stop with OEI (ASDOEI). The OEI and AEO both

result in the aircraft taking off the runway, while the ASDAEO and ASDOEI both result in a rejected takeoff.

Figure 7A and Figure 7B show representations of TOD for OEI and AEO scenarios under wet and dry

conditions, denoted as TODN-1 ad TODN respectively. Figure 7C and Figure 7D show the same scenarios if

clearways are present. A clearway is an area beyond the paved runway, free of obstructions and under the

control of the airport authorities. The length of the clearway may be included in the length of the takeoff

distance available. ASDAEO and ASDOEI distances are represented in Figure 8A and Figure 8B for rejected

takeoffs, denoted as ASDN-1 ad ASDN respectively. Standards CAR 525.109 and 525.113 define the certified

takeoff distances as functions of the distances shown in Figure 7 and Figure 8. Table 1 summarizes their

definitions.

Figure 6 – Illustration of the takeoff flight path [62]

17

Figure 7 – Representation of the TOD scenario for OEI and AEO [62]

Figure 8 – Representation of the TOD scenario for ASDAEO and ASDOEI [62]

7A 7C

7B 7D

8A

8B

18

Table 1 – Takeoff distance definitions

Clearway TOD Definitions Regulation

No Clearway 𝑇𝑂𝐷𝑑𝑟𝑦 = max⁡(𝑇𝑂𝐷𝑁−1,𝑑𝑟𝑦, 1.15𝑇𝑂𝐷𝑁,𝑑𝑟𝑦) CAR 525.113 / FAR 25.113 /

CS 25.113 𝑇𝑂𝐷𝑤𝑒𝑡 = max⁡(𝑇𝑂𝐷𝑑𝑟𝑦, 𝑇𝑂𝐷𝑁−1,𝑤𝑒𝑡)

𝐴𝑆𝐷𝑑𝑟𝑦 = max⁡(𝐴𝑆𝐷𝑁−1,𝑑𝑟𝑦, 𝐴𝑆𝐷𝑁,𝑑𝑟𝑦) CAR 525.109 / FAR 25.109 /

CS 25.109 𝐴𝑆𝐷𝑤𝑒𝑡 = max⁡(𝐴𝑆𝐷𝑑𝑟𝑦, 𝐴𝑆𝐷𝑁−1,𝑤𝑒𝑡, 𝐴𝑆𝐷𝑁,𝑤𝑒𝑡)

With Clearway 𝑇𝑂𝑅𝑑𝑟𝑦 = max⁡(𝑇𝑂𝑅𝑁−1,𝑑𝑟𝑦, 1.15𝑇𝑂𝑅𝑁,𝑑𝑟𝑦) CAR 525.113 / FAR 25.113 /

CS 25.113 𝑇𝑂𝑅𝑤𝑒𝑡 = max⁡(𝑇𝑂𝑅𝑁−1,𝑤𝑒𝑡, 1.15𝑇𝑂𝑅𝑁−1,𝑤𝑒𝑡)

The different speeds encountered during takeoff (illustrated in Figure 7 and Figure 8) are defined in Table

2 and their limitations prescribed by regulations are summarized in Table 3.

Table 2 – Takeoff speed definitions

Takeoff Speed Definition Regulation

VEF VEF is the calibrated airspeed at which the critical engine is

assumed to fail. VEF must be selected by the applicant, but may not

be less than VMCG.

CAR 525.107

FAR 25.107

CS 25.107

V1 V1 is the maximum speed at which the crew can decide to reject the

takeoff, and is ensured to stop the aircraft within the limits of the

runway. The time between VEF and V1 is recognised as 1 second.

VR VR is the speed at which the pilot initiates the rotation, at the

appropriate rate of about 3° per second.

VLOF VLOF is the calibrated airspeed at which the aeroplane first becomes

airborne. Therefore, it is the speed at which the lift overcomes the

weight.

V2 V2 is the minimum climb speed that must be reached at a height of

35 feet above the runway surface, in case of an engine failure.

VMBE Tire maximum absorption capacity speed during an extreme

braking operation.

CAR 525.109

FAR 25.109

CS 25.109 VTIRE Maximum ground speed limited by tire centrifugal forces and heat

elevation.

19

Table 3 – Takeoff speed limitations

Limited Speed Limitation Regulation

VEF 𝑉𝐸𝐹 ≥⁡𝑉𝑀𝐶𝐺 CAR 525.107 / FAR 25.107 / CS 25.107

V1 𝑉𝑀𝐶𝐺 ≤ 𝑉𝐸𝐹 ≤⁡𝑉1 CAR 525.107 / FAR 25.107 / CS 25.107

𝑉1 ≤⁡𝑉𝑀𝐵𝐸 CAR 525.109 / FAR 25.109 / CS 25.109

VR 𝑉𝑅 ≥⁡1.05𝑉𝑀𝐶𝐴 CAR 525.107 / FAR 25.107 / CS 25.107

VLOF Geometric 𝑉𝐿𝑂𝐹 ≥ 𝟏. 𝟎𝟓⁡𝑉𝑀𝑈⁡(𝑁−1)

𝑉𝐿𝑂𝐹 ≥ 1.08⁡𝑉𝑀𝑈⁡(𝑁)

CAR 525.107/FAR 25.107/AC 25-7A

𝑉𝐿𝑂𝐹 ≥ 𝟏. 𝟎𝟒⁡𝑉𝑀𝑈⁡(𝑁−1)

𝑉𝐿𝑂𝐹 ≥ 1.08⁡𝑉𝑀𝑈⁡(𝑁)

CS 25.107

Aerodynamic 𝑉𝐿𝑂𝐹 ≥ 1.05⁡𝑉𝑀𝑈⁡(𝑁−1)

𝑉𝐿𝑂𝐹 ≥ 1.10⁡𝑉𝑀𝑈⁡(𝑁)

CAR 525.107/FAR 25.107/CS 25.107

Tire 𝑉𝐿𝑂𝐹 ≤⁡𝑉𝑇𝐼𝑅𝐸 CAR 525.109/FAR 25.109/CS 25.109

V2 𝑉2 ≥ 1.1⁡𝑉𝑀𝐶𝐴 CAR 525.107 / FAR 25.107 / CS 25.107

3.2 The Calculation of Takeoff Distance

This section describes a general process for developing the deterministic model used to calculate takeoff

distance. The detailed process for calculating takeoff distance was provided by an industry partner and

contains proprietary data, which is not included as part of this thesis. The theoretical equations for takeoff

distances can be found in most aircraft performance textbooks [63, 64, 65, 66]. The complex models used

by OEMs (Original Equipment Manufacturers), although based on these equations, are modified and fitted

with proprietary flight test and other data to account for phenomena not addressed in the more simplified

theory. The calculation of TOD, as described in the referenced textbooks, is broken down in different

segments that must be added together to give the final distance, as shown in Figure 9.

Figure 9 – TOD calculation process

Calculate All Engine
Acceleration Distance

Calculate Engine
Out Acceleration

Distance

Calculate Flare
Distance

Calculate
Deceleration

Distance

Sum all the
Distances

20

Calculating the All Engine Acceleration Distance

The all engine acceleration distance extends from brake release to the point where rotation velocity, VR, is

achieved. A free body diagram of the forces acting on an aircraft during takeoff is shown in Figure 10. As

the forces acting on the aircraft vary along the takeoff run, a step integration process can be used to calculate

the acceleration changes, which can then be used to calculate the total distance traveled.

Figure 10 – Forces acting on an aircraft during takeoff [67]

Equation 1 shows the sum of the forces acting along the x-axis in the free body diagram.

∑𝑓𝑜𝑟𝑐𝑒𝑠 = 𝑇 − 𝐷 − 𝜇(𝑊 − 𝐿) −𝑊𝑠𝑖𝑛𝜑 (1) [63, 64, 65, 66]

Where T is the thrust generated by the engines, D is the drag, μ is the runway rolling coefficient of friction,

W is the aircraft weight at the start of the takeoff run, L is the lift generated by the lifting surfaces, and φ is

the runway slope. Acceleration along the takeoff run is calculated using equation 2, where mass is expressed

as aircraft weight over the Earth’s gravity constant g.

𝑎 =
∑𝐹𝑜𝑟𝑐𝑒𝑠

𝑀𝑎𝑠𝑠
=

𝑔

𝑊
[𝑇 − 𝐷 − 𝜇(𝑊 − 𝐿) −𝑊𝑠𝑖𝑛𝜑] (2) [63, 64, 65, 66]

Equation 2 can be expressed in terms of its aerodynamic coefficients, as shown in equation 3.

𝑎 =
𝑔

𝑊
[𝑇 − 𝜇𝑊 − (𝐶𝐷 − 𝜇𝐶𝐿)𝑞𝑆 −𝑊 sin𝜑] (3) [63, 64, 65, 66]

Where CD is the drag coefficient, CL is the lift coefficient, q is the dynamic pressure and S is the reference

wing area. The dynamic pressure is obtained from equation 4.

𝑞 = 0.5𝜌𝑉2 (4) [64]

The acceleration at different moments along the takeoff run (from V0 to VR) can be calculated using

equations 3 and 4. The average velocity over a small change in velocity 𝑉 is defined as:

𝑉 =
∆𝑠

∆𝑡
 (5) [64]

21

Where Δs is the incremental distance over the speed increment and Δt is the incremental time over the

velocity increment. Change in velocity is related to acceleration by:

𝑎 =
∆𝑉

∆𝑡
 (6) [64]

Where a is the acceleration and ΔV is the speed increment. The incremental distance between two points

along the takeoff run can be obtained by combining equations 5 and 6.

∆𝑠 =
𝑉∆𝑉

𝑎
=

𝑉∆𝑉
𝑔

𝑊
[𝑇−𝜇𝑊−(𝐶𝐷−𝜇𝐶𝐿)(0.5𝜌𝑉

2)𝑆−𝑊sin𝜑]
 (7) [64, 65]

The all engine acceleration distance is calculated as the sum of all the incremental distances Δs (equation

7) between V0 and VR. The distance can be obtained more accurately using integration of equation 7 as a

function of speed.

Calculating the Engine Out Acceleration Distance

The engine out acceleration distance extends from engine failure (VEF) to the rotation speed VR. Right after

the engine failure occurs, the engine progressively loses thrust, which affects the calculated distance. This

is termed the engine spindown. The spindown factor is the ratio between the actual thrust produced by the

engines during spindown divided by the thrust setting of the engine selected by the pilot in the cockpit.

Performance charts showing the ratio of residual engine thrust over takeoff thrust and time from engine

failure are used to determine the remaining thrust at any time from the engine failure event. The spindown

factor is multiplied to the thrust values of equation 7 to get the actual thrust during engine failure. In order

to use the proper value of engine spindown factor, which is a function of time, a step integration of the

distance calculation from equation 7 must be undertaken with respect to time instead of speed. Using

equation 7 with a spindown factor of 1 and the velocity at t = 0 (V1), a first initial guess of acceleration can

be found, which corresponds to the instantaneous acceleration. The speed after 1 second is found using the

initial guess of acceleration. The instantaneous acceleration at 1 second is then calculated using equation 3.

Having obtained the first two instantaneous accelerations, the first average acceleration at 1 second can be

calculated. The new value of speed at 1 second can be recalculated using the average acceleration, and this

process can be repeated until the value of airspeed converges to the final value.

Calculating the Flare Distance

The flare distance extends from initiation of rotation (VR) to a height of 35 feet above ground level. For the

AEO scenario the height of 35 feet above ground level corresponds to V35, while for the OEI scenario the

height of 35 feet above ground level corresponds to V2 with an engine failed. During flight testing,

experimental V35 and V2 airspeed values are obtained for a variety of scenarios and conditions (i.e. for

22

different thrust to weight ratios). The flare distance for the AEO scenario can be calculated using equation

8 and the flare distance for the OEI scenario can be calculated using equation 9, where ΔtR-35 is the flare

time from rotation to 35 feet.

𝑆𝑓𝑙𝑎𝑟𝑒,𝐴𝐸𝑂 =
𝑉𝑅+𝑉35

2
∆𝑡𝑅−35 (8) [66]

𝑆𝑓𝑙𝑎𝑟𝑒,𝑂𝐸𝐼 =
𝑉𝑅+𝑉2

2
∆𝑡𝑅−35 (9) [66]

Calculating the Deceleration Distance

The deceleration distance extends from V1 and ends at the moment when the ground speed is zero.

Regulations mandate that a 2 second recognition time must be considered at the V1 speed. The throttle

setting and brake design produce additional forces to consider in this scenario, which affect the value of the

braking coefficient of friction μB. The deceleration scenario is depicted in the free body diagram of Figure

11.

Figure 11 – Forces acting on an aircraft during a takeoff deceleration [67]

Equation 10 shows the sum of the forces acting along the x-axis in the free body diagram.

∑𝑓𝑜𝑟𝑐𝑒𝑠 = 𝑇 − 𝐷 − 𝜇𝐵(𝑊 − 𝐿) −𝑊𝑠𝑖𝑛𝜑 (10) [63, 64, 65, 66]

Where T is the thrust generated by the engines, D is the drag, μB is the braking coefficient of friction, W is

the aircraft weight at the start of the takeoff run, L is the lift generated by the lifting surfaces, and φ is the

runway slope. Values of μB are experimentally obtained during flight tested or provided by the brake

manufacturer. Deceleration along the takeoff run is calculated using equation 11, where mass is expressed

as aircraft weight over the Earth’s gravity constant g.

𝑎 =
∑𝐹𝑜𝑟𝑐𝑒𝑠

𝑀𝑎𝑠𝑠
=

𝑔

𝑊
[𝑇 − 𝐷 − 𝜇𝐵(𝑊 − 𝐿) −𝑊𝑠𝑖𝑛𝜑] (11) [63, 64, 65, 66]

Equation 11 can be expressed in terms of its aerodynamic coefficients, as shown in equation 12.

23

𝑎 =
𝑔

𝑊
[𝑇 − 𝜇𝐵𝑊 − (𝐶𝐷 − 𝜇𝐵𝐶𝐿)𝑞𝑆 −𝑊 sin𝜑] (12) [63, 64, 65, 66]

Where CD is the drag coefficient, CL is the lift coefficient, q is the dynamic pressure and S is the reference

wing area. The dynamic pressure is obtained from equation 4.

The deceleration from V1 to Vfull stop can be calculated using equations 12 and 4. The incremental distance

between two points along the deceleration segment can be obtained using equation 13.

∆𝑠 =
𝑉∆𝑉

𝑎
=

𝑉∆𝑉
𝑔

𝑊
[𝑇−𝜇𝑊−(𝐶𝐷−𝜇𝐵𝐶𝐿)(0.5𝜌𝑉

2)𝑆−𝑊sin𝜑]
 (13) [64, 65]

The deceleration distance is calculated as the sum of all the incremental distances Δs (equation 13) between

V1 to Vfull stop.

Summation of all of the Takeoff Distances

The final distances for each of the takeoff outcomes are calculated as follows:

𝑇𝑂𝐷𝐴𝐸𝑂𝑜𝑟⁡𝑇𝑂𝐷𝑁 = All⁡Engine⁡Acceleration⁡Distance

𝑇𝑂𝐷𝑂𝐸𝐼𝑜𝑟⁡𝑇𝑂𝐷𝑁−1 = All⁡Engine⁡Acceleration⁡Distance + Engine⁡Out⁡Flare⁡Distance

𝐴𝑆𝐷𝐴𝐸𝑂𝑜𝑟⁡𝐴𝑆𝐷𝑁 = All⁡Engine⁡Acceleration⁡Distance + Deceleration⁡Distance

𝐴𝑆𝐷𝑂𝐸𝐼𝑜𝑟⁡𝐴𝑆𝐷𝑁−1 = Engine⁡Out⁡Acceleration⁡Distance + Deceleration⁡Distance

3.3 Assessment of the TOD Deterministic Model

The process used by OEMs to develop their proprietary deterministic models is complex because it

integrates multiple models from different aerospace disciplines, deals with large amounts of data, requires

expert knowledge to be developed, and is dependent on many external factors, which include:

• Airport atmospheric conditions and altitude (temperature, pressure, air density, wind speed and

direction)

• Airport runway conditions (runway sediment accumulation, runway slope)

• Aircraft operational capabilities (available thrust, structurally limited takeoff speeds, VR, CL, etc.)

• Aircraft takeoff limitations from regulations (VMBE, VTIRE)

• Aircraft configuration (ECS on/off, anti-ice on/off, flap setting, engine configuration)

• Weight and balance

• Pilot recognition time (time at V1)

24

Considering the gaps identified in the literature and the assessment of the existing TOD deterministic

model, the TOD is selected as the case study for this research because it is a high complexity non-linear

regression optimization problem which is a function of a diverse set of parameters; requires much expert

knowledge to develop; involves the processing of large amounts of data; and requires much development

time and effort when done using deterministic models. Based on the literature survey, a traditional

feedforward backpropagation neural network with two or more hidden layers will be tested using large

datasets considering that this type of model has shown the most promise when applied to this type of

problem. Two types of datasets were analyzed: 1) A deterministic dataset generated from an existing aircraft

performance takeoff distance model and 2) A non-deterministic dataset consisting of empirical flight data

from sensors onboard an aircraft. The selected research approach is explained in detail in Chapter 4.

25

4. Research Methodology

This chapter details the process followed in order to develop the different neural networks that were used

in this study. Section 4.1 presents an overview of the chosen neural network development process. Section

4.2 defines clear requirements and objectives used to properly evaluate the performance of the NNs being

developed. Section 4.3 covers the process of selecting and preprocessing the dataset that are used to develop

the NNs. Two different selection and preprocessing methods were used for the deterministic and non-

deterministic datasets. Section 4.4 details the development of the NN architecture, which includes defining

key parameters constituting the foundation of the NN’s mathematical structure. Once the architecture is

defined, the NN can be trained and tested to evaluate its performance (Section 4.5). Finally, it is shown in

Section 4.6 how a trained NN can be used in practical applications.

4.1 The Neural Network Development Process

Figure 12 illustrates the procedure that was used to develop the neural network application. The first step

is to define the desired objectives and requirements for the NN. These are used to determine when to stop

the optimization of the network. The next step is to analyze the dataset’s properties (i.e. dataset distribution,

size, file format, etc.) in order to appropriately select the optimal dataset properties. The dataset is then

preprocessed to retain only the desired data properties and to facilitate data integration with the Python code

environment. Based on the dataset’s characteristics, a preliminary architecture can be defined, which is

subsequently optimized using a topological study. The network is trained using the training dataset and

tested using the testing dataset. If the network objectives are not met, the network architecture must be

updated, and this process is iterated until the desired training and testing results are obtained. Once the

network requirements are met, the weights matrix of the trained network are saved to a local file, which can

then be used by a predictive tool application. Each step will be explained in more detail in the following

sections.

Figure 12 – Neural network development process

Define network
objectives &

requirements

Analyze & select
appropriate

dataset

Preprocess the
data & integrate

in Python

Define
preliminary
architecture

Perform
topological study

Update network
architecture

Train network
Test network &

evaluate
precision

Save trained
network

Use trained
network to make

predictions

iterate

26

4.2 Network Objectives and Requirements Definition

The neural network’s objectives and requirements depend on what it will be used for. For the calculation

of TOD, data found in aircraft flight manuals (AFM) are typically acceptable when errors are lower or equal

to 1 % of the flight test data. For the purposes of this research, the lowest possible error margins are desired.

20 hours have been arbitrarily selected as the maximum training and testing times. The time was chosen

based on a conveniently long enough time for the NN to extract complex patterns of acceptable precision

for the demonstrative purposes of this research. Since the tool making use of the trained NN could

potentially be used onboard aircraft or be part of the development of software versions of AFMs, this tool

must be able to compute TOD predictions very fast. It was set as a requirement for that time to be equal to

or lower than 1 second. This research is used as a proof of concept, but it would be advantageous to develop

it in a way that would also be adaptable to work with other aircraft performance scenarios than TOD (i.e.

landing distance predictions). It must also be able to be integrated easily with existing technology (i.e. with

a software AFM or with an Electronic Flight Bag). Table 4 summarizes the NN requirements.

Table 4 – Summary of the NN requirements and objectives

Neural Network Parameter Requirements & Objectives

Maximum training and testing time 20 hours

Maximum predictive tool run time 1 sec

Network re-usability Able to be re-used for alternate applications

Integration with existing technology Able to integrate easily with existing technology

Outlier data points Able to deal with outliers

4.3 Dataset Selection Process

The first of the two datasets used in the current research project was generated from a deterministic takeoff

distance model based on the principles described in Section 3.2 and in accordance with Part 25 of the

Federal Aviation Regulations (FARs) and Part V of the Canadian Aviation Regulations (CARs)

(Airworthiness Standards for Transport Category Airplanes). The second dataset was obtained from

NASA’s DASHlink [68] (Discovery in Aeronautics Systems Health) initiative, a web-based tool for

collaborative research in data mining and systems health. The primary goal of DASHlink is to disseminate

information on the latest data mining and systems health algorithms, data and research. This dataset comes

in the form of flight data collected from sensors onboard an unidentified aircraft (for legal purposes).

27

4.3.1 Deterministic Takeoff Distance Dataset

The first dataset’s parameters are shown in Table 5. Based on the deterministic relationships describing the

calculation of the TOD described in Section 3.3, it was decided that only the most influential factors

affecting the TOD performance would be varied for development of the NN. Consequently, all other

parameters involved in the TOD deterministic model were kept constant and are listed in the first column

of Table 5. The parameters of interest are listed in the second column of Table 5 and are the aircraft weight,

the pressure altitude, the temperature, the wind speed and the runway slope. Figure 13 shows the parameters

as input and output values of the neural network, where the takeoff distance corresponds to the Takeoff

Field Length (TOFL), which is the most constraining out of the TODOEI, TODAEO, and TODASD. Figure 14

shows a sample of the raw deterministic TOD model used to generate the dataset. It is a text format file

(.txt), which facilitates customization of the dataset as well as optimizes file size. This is an important

choice as the customization will allow only the desired parameters to be selected for the NN or to modify

the dataset to better suit the optimization of the NN architecture. The file size consideration is also important

as this dataset can be very large in size (between 70 MB and 61 GB depending on what parameters and the

number of test cases that are selected).

Table 5 – Parameters affecting TOD that can be obtained from the TOD deterministic model

Constant Input Parameters Varying Input Parameters Output Parameters

Aircraft & Engine Configuration Weight TODOEI

Flap Configuration Pressure Altitude TODAEO

Balanced V1 Temperature TODASD

V2 Wind Speed TOFL

Runway Condition (Dry) Runway Slope

Thrust Setting

Engine ECS (Off)

Anti-Ice (Off)

BTMS

MMEL/CDL effects

28

Figure 13 – Selected input and output values for the neural network

Figure 14 – Sample of the deterministic dataset1

Figure 15 shows how the deterministic dataset can be preprocessed and compressed to optimize run time

and local storage. All unnecessary string characters are removed (i.e. spaces, character returns, paragraph

returns) and only the five selected input parameters and the output TOFL value are kept.

Figure 15 – Compressed deterministic dataset

1 The font in the figure was intentionally sized to be unreadable due to proprietary reasons and is only used for

illustrative purposes.

29

Figure 16 shows the distribution of each of the parameters from the dataset. The distribution for all input

parameters is linear and the distribution for the output TOFL parameter is polynomial. The y-axis shows

the amount of test cases generated from the TOD deterministic model and the x-axis shows the values of

each test case generated. Values in the y-axis are scaled to allow for a better comparison. For some test

cases, the TOD deterministic model cannot produce any values since they are physically impossible. For

example, some test cases with DISA temperatures lower than -50 C are impossible for the aircraft to operate

in and a reduction in generated number of test cases results from this fact.

Figure 16 – Dataset distribution for individual input and output parameters

30

Three different preprocessing operations were tested: 1) the raw distribution without any modifications, 2)

a normalized distribution, and 3) a standardized distribution. The raw distribution shows that the values of

each parameter can vary greatly, which will affect the NN’s prediction accuracy. The normalized and

standardized distribution were generated to solve this problem. Normalization is selected as the best option

using trial and error.

4.3.2 NASA DASHlink Non-Deterministic Dataset

The NASA DASHlink dataset is composed of aggregate flight recorded data, consisting of actual data

recorded onboard a single type of regional jet operating in commercial service over a three-year period

(2001-2004). NASA states the following about the flight data [68]: “While the files contain detailed aircraft

dynamics, system performance, and other engineering parameters, they do not provide any information that

can be traced to a particular airline or manufacturer. […] The appropriate parties have allowed NASA to

provide the data to the general public for the purpose of evaluating and advancing data mining capabilities

that can be used to promote aviation safety”. The flight data provides an exhaustive list of parameters that

are not required for this study. The parameters used for the current work can be found in Figure 17 and

include the pressure altitude, fuel quantities, aircraft weight, total air temperature, wind speed, ground

speed, altitude and Greenwich mean time. The figure also shows how each sensor value can be used to

calculate aircraft total weight, distance traveled, the normalized wind speed, the elapsed time and takeoff

distance; which are all values required for the calculation of TOD. The selected input and output parameters

are the same as for the previous deterministic dataset shown in Figure 13 with the exception of runway

slope, which was not possible to calculate due to lack of sensor accuracy.

31

Figure 17 – Process of generating secondary data from the flight data

32

Upon further analysis of each input parameter of the original dataset’s distribution as seen in Figure 18,

distinct zones in the data distribution were identified for which not enough datapoints are available to build

a NN capable of adequately generalizing patterns. This observation was validated through empirical trial

and error. These problematic distribution zones are highlighted in red in Figure 18, and were removed from

the datasets to be tested in the research. This data preprocessing approach is based on the following

reasoning:

1. Some datapoints were physically unrealistic. These are attributed to sensor errors or inaccuracy.

Examples include TOFL values lower than zero or aircraft weights more than ten times higher than

other values, considering all values are meant to be attributable to the same type of regional jet.

2. Values that are not proportionately distributed. The flap drag and normalized wind speed

distributions both show values that are not proportionately distributed as almost all datapoints are

concentrated with a very small number of test cases. This significantly increase the difficulty in

training a NN that generalizes well across all datapoints.

3. Zones of higher probability. The zones having the highest distributions, highlighted in green in

Figure 18, were prioritized to facilitate generalization by reducing the amount of outlier datapoints.

The original dataset was separated into two distinct datasets: one consolidating data for a single aircraft and

another for the entire fleet of twelve aircraft. The preprocessing approach discussed above was used to

reduce the dataset using the limits shown in Table 6 and Table 7 respectively. Figure 19 and Figure 20 show

the distributions of the two finalized datasets used in this study.

33

Figure 18 – Original dataset distribution for the fleet of 12 aircraft

Table 6 – Limits imposed on original dataset for 1 aircraft

Parameter Limits

Weight > 0 & < 23000

Flap Drag [drag counts] > 2400 & < 2470

Pressure Altitude [feet] > -800 & < 2400

Total Air Temperature [deg C] > -10

Normalized Wind Speed [ft/s] = 0

TOFL > 0 & < 10000

Table 7 – Limits imposed on original dataset for the fleet of 12 aircraft

Parameter Limits

Weight > 0 & < 23000

Flap Drag [drag counts] > 1800 & < 2600

Pressure Altitude [feet] > -800 & < 2400

Total Air Temperature [deg C] None

Normalized Wind Speed [ft/s] = 0

TOFL > 4700 & < 6500

34

Figure 19 – Selected dataset distribution for 1 aircraft

Figure 20 – Selected dataset distribution for the fleet of 12 aircraft

4.4 Neural Network Architecture Development

The development of the network architecture involves the definition of the architecture components listed

below and depicted in Figure 21.

1. the optimization function;

2. the loss function;

3. the activation function;

4. the number of hidden layers;

5. the number of neurons per hidden layer; and

35

6. the maximum allowable number of epochs.

Layer 1 is the input layer and its number of neurons must be equal to the number of input values in the

dataset. The last layer, Layer 4, is the output layer and its number of neurons must be equal to the number

of output values in the dataset. Layers 2 and 3 are referred as ‘hidden layers’ and are used to propagate the

information in a parallel manner towards the output solution. The more hidden layers a network has the

‘deeper’ a network is said to be. The term Deep Learning is generally used to describe a NN which has two

or more hidden layers. Each neuron is constructed of an activation function, which decides when and if a

neuron is used in the calculation, an optimization function, which is used to decide how to propagate the

information on to the next neuron, and a loss function, which is the function the optimization function is

trying to optimize. The combined objective of these components is to work in a manner that finds the

weighted dot product of the value attributed to each neuron which gives the closest value to the desired

output value. This is done by updating the weights and biases of each network connection. This type of

‘feedforward backpropagation’ neural network uses the backpropagation algorithm to update the weights

and biases which will yield the best outcome solution. The number of times the weights and biases are

updated and backpropagated down the network are called ‘epochs’, which can be viewed as a back-and-

forth iteration. Selecting different types of functions and values for these architecture parameters

significantly affects the network performance. General rules from the literature can be used [9, 13] in order

to narrow down the search:

1. As a general observation, the deeper the network, the higher the generalization capability of the

network. This comes with an increased need in computing power, longer run times, and may not

necessarily always yield better results in cases where there is not enough data to extract patterns or

the data is too noisy.

2. Certain types of optimization, loss and activation functions are more efficient for specific

applications and datasets. These will be explained in more detail further in the current section.

3. The number of neurons per hidden layer and maximum allowable number of epochs are a function

of the dataset size.

36

Figure 21 – Neural network architecture development process [69]

A number of different tools are available for the development of a neural network. NNs can be programmed

directly in low-level of abstraction programming languages like C, but the associated workload and

programming knowledge required is high. A number of different programming frameworks have been

created in an effort to alleviate these issues. Programming frameworks have different purposes and

orientations including industrial development, academic research, fast prototyping, and ease of model

implementation. Machine learning frameworks include TensorFlow, Keras, PyTorch, Theano, Matlab, and

Caffee, among others. Figure 22 shows a ranking of the most commonly used ML frameworks based on a

study done by Jeff Hale [70, 71], which looked at ranking different deep learning frameworks with respect

to various categories. The Keras API was selected for the current research based on the following

advantages:

1. Efficiency in reducing cognitive load (i.e. consistent and simple APIs, minimizes number of user

actions required for common use cases, and it provides clear and actionable feedback upon user

error).

2. Useful for fast prototyping and experimentation.

3. Ease of implementation across a wide variety of products (iOS, android, browser, Google Cloud,

Raspberry Pi etc.).

4. Widespread adoption and ease of access on supporting documentation. It is fully recognized as a

front end to TensorFlow, which could be used in future research to further the optimization of the

designed network.

37

Figure 22 – Ranking of deep learning frameworks [70]

Figure 23 shows a classification of the parameters commonly used in ML that can be selected when defining

a network architecture. All the functions present in the figure are available in Keras, and there is also an

option to create customized functions.

Selecting the Relevant Loss Functions

The current work is interested in solving a regression optimization problem rather than a classification

problem, which narrows down the architecture selection process. From the loss functions shown in Figure

23, the logcsoh, MAPE, MAE, MSE, and MSLE functions are relevant for a regression problem. Table 8

shows definitions for each loss function as well as their most used applications. Grover [71] explains that

median is more robust to outliers than mean, which consequently makes MAE more robust to outliers than

MSE. Furthermore, De Myttenaere et al. [72] explain that finding the best model under the MAPE is

equivalent to doing weighted Mean Absolute Error (MAE) regression. For these reasons, MSLE and MAPE

are used for NN testing.

Due to safety considerations associated with aerospace applications, the predictions generated by the NN

must be conservative. Even though it is desirable to have the NN architecture that produces the lowest

MSLE or MAPE values (which are a measure of the overall error for all test cases), it must be noted that

the driving metric to determine the best model is the worst-case error for all possible test cases.

38

Figure 23 – Commonly used NN architecture parameters

NN
Architecture
Parameters

Loss Functions

Classification

Log

Binary
Crossentropy

KLD / Relative
Entropy

Exponential

Hinge

Cateorical
Hinge

Squared hinge

Regression

MSE /
Quadratic Loss

MSLE

MAE

MAPE

Huber Loss /
Smooth MAE

Quantile Loss

Optimization
Functions

Gradient
Descent

Algorithm

Gradient
Descent
Variants

Batch Gradient
Descent

Stochastic
Gradient
Descent

SGD w/
accelerated

direction

Momentum

Nesterov
Accelerated

Gradient
(NAG)

SGDs w/
adaptive

learning rates

AdaGrad

AdaDelta

RMS prop

AdaM
(Momentum +

AdaGrad)

AdaMax

NAdaM

Mini Batch
Gradient
Descent

Activation
Functions

Linear

Sigmoid

Hard Sigmoid

Exponential

tan

elu

Relu

Selu

Softmax

Softplus

Softsign

39

Table 8 – Loss function definitions and applications

Definition Typical Application

𝑀𝑆𝐸 =
1

𝑛
∑(𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖⁡)

2

𝑛

𝑖=1

Well suited for datasets that have gaussian

distributions.

𝑀𝑆𝐿𝐸 =
1

𝑛
∑[log⁡(𝑎𝑐𝑡𝑢𝑎𝑙𝑖) − log⁡(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)]

2

𝑛

𝑖=1

Well suited for datasets that have high variance.

It suffers from the problem of gradient and

hessian for very large off-target predictions being

constant.

𝑀𝐴𝐸 =
1

𝑛
∑(|𝑎𝑐𝑡𝑢𝑎𝑙𝑖| − |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖|)

𝑛

𝑖=1

Well suited for datasets that have mostly

gaussian distributions, but that contain outliers.

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
𝑎𝑐𝑡𝑢𝑎𝑙𝑖

|

𝑛

𝑖=1

Same as MAE, but as a function of relative

percentage error.

Selecting the Relevant Optimization Functions

For ML regression problems, the optimization functions shown in Figure 24 used are variants of gradient

descent algorithms called stochastic gradient descents (SGD) [9, 73]. A gradient descent is an optimization

algorithm used to minimize some loss function by iteratively moving in the direction of steepest descent as

defined by the negative of the gradient. In ML, gradient descent is used to update the weights of the NN.

The SGD algorithm can be faced with two known problems [74]:

1. Local Minimum: SGDs have issues dealing with regression curves that are very steep. These can

lead to local minimum problems, which traps the SGD algorithm in an incorrect local optimum

solution. Momentum [75] was developed to solve this issue by accelerating the SGD solution

towards a relevant direction.

2. Learning Rate Selection: Selecting the optimal learning rate is difficult as one that is too small can

lead to a very slow convergence, while a one that is too large can hinder convergence and cause

the loss function to fluctuate around the minimum or even to diverge. Some SGD variants make

use of adaptive learning rates, which update depending on other parameters.

Table 9 shows a summary of the relevant SGD optimization functions. The Nadam (Nesterov-accelerated

Adaptive Moment Estimation) optimization function was selected because it provides the most benefits in

dealing with local minimum and for finding optimal learning rates.

40

Table 9 – Optimization functions and their applications

Optimization Function Typical Applications

Nesterov Accelerated Gradient (NAG)
Helps accelerate SGD out of problematic local minimum

solutions.

Adagrad
Adapts the learning rate to the frequency of occurrence of

parameters. It is well-suited for dealing with sparse data.

Adadelta and RMSprop
An extension of Adagrad that seeks to reduce its

aggressive, monotonically decreasing learning rate.

Adam (Adaptive Moment Estimation) [76]

Adapts the learning rate by storing an exponentially

decaying average of past squared gradients (like Adadelta

and RMSprop), while also keeping an exponentially

decaying average of past gradients (like momentum).

AdaMax

A variant of Adam useful for dealing with unstable

learning norms of past gradient. Practical when dealing

with larger norm values for past gradients.

Nadam (Nesterov-Accelerated Adaptive

Moment Estimation)

Combines Adam and NAG capabilities.

Selecting the Relevant Activation Functions

The selection of the appropriate activation function depends on the application of the NN. Some are

developed to give binary inputs (0 or 1), others to give values between 0 and 1 and others to give exact

values. Goodfellow et al. [9] recommend using the ReLU (Rectified Linear Units) activation function for

the input and hidden layers and linear or sigmoid functions for the output layer. If the ReLU function does

not yield acceptable results, derivatives of the ReLU (eLU, SeLU) or Softmax, Softplus, and Softsign can

be empirically tested.

Epochs

For the current research, the maximum number of allowed epochs is not considered a critical parameter for

the architecture definition. Goodfellow et al. [9] explain that it is often more useful to define an “early

stopping criteria”, which, when triggered, will stop the training regardless of the number of epochs reached.

The criteria used is: “if the last ten epochs have produced no improvement of mean average percentage

error the training will stop”. This criterion has the added benefit of saving computation time as the NN will

not be training for further epochs which would in any case not produce better results.

41

Table 10 provides a matrix of the different combinations of NN architectures that were tested using the

different datasets, the results of which will be provided in Chapter 5.

Table 10 – Selected architecture parameters to test using the datasets

Optimization

Function

Loss

Function

Activation

Function
Nodes/Input Layer Hidden Layers Nodes/Hidden Layer

Adadelta MAPE ReLU 1000 1 10

Adamax MSLE 3000 2 100

Nadam 5000 3 1000

4.5 Training and Testing a Neural Network

Training a NN involves using a dataset to update the weights of the NN in order to find the closest values

to the output solution, while testing a NN uses the training weights to make predictions with a new dataset

to validate the results. Testing is also a good validation method to experiment for cases that were not

covered in the training dataset. Training and testing of a NN can be done using the same dataset and splitting

it in two. Most regression problems use a validation split of 70 % for training and 30 % for testing. This

ratio will be used for all the results presented in this thesis. The Keras application has the ability to generate

graphs that can be used to evaluate the performance during training and testing such as the one shown in

Figure 24. For each tested architecture in this study, these graphs were used to evaluate the NN performance.

The y-axis plots the performance metric of choice while the x-axis shows the number of epochs, and thus,

is a measure of the training time. In Figure 24 for example, the chosen metric is MAPE and is compared

for training and testing values. The graph is an indication of: 1) How fast a metric can converge to a steady-

state value and 2) the precision of the steady-state value.

A known problem that can occur when comparing training and testing results is overfitting or underfitting.

Underfitted values are not able to extract the underlying pattern found in the dataset while overfitted values

are able to extract this pattern too well as depicted in Figure 25. Underfitted values generally cannot

converge to an acceptable solution while overfitted values do not allow accommodation for gaps between

datapoints. This can result in poor model performance when testing values from a different dataset than in

training. These issues can be mitigated by using a validation ratio close to the 30/70 and by providing

enough data.

Appendix A provides an example of the code that can be used to train and test a NN using Keras in Python.

42

Figure 24 – Training and testing MAPE vs epoch

Figure 25 – Comparison of underfitting and overfitting [77]

4.6 Using the Trained Network to Make Predictions

Once the NN model is trained, a file is generated that contains only the trained weights of the network. A

simple prediction tool program can be developed to give an output similar to the one of Figure 26. The user

feeds the tool inputs for which they desire the tool to predict TOD for and the tool predicts TOD and

compares the NN value with the actual value from the dataset it was trained on. The run time of the

prediction tool is very fast as it only looks up the weights and calculates one output based on a set of given

Epoch

Loss

43

input parameters. The format of the trained weights of the NN also facilitates integration with existing tools

(FMS, EFB, software AFMs, etc.).

Figure 26 – Output of the tool making use of the trained NN

Figure 27 depicts the file structure of the Python programs used in this research and described in this section.

A dataset is analyzed using a “dataset_properties.py” file. This is done to facilitate the data preprocessing

phase when dealing with very large datasets. Most datasets will not be in the proper format or will need to

be preprocessed before they can be used for the development of NNs by removing datapoints or modifying

the dataset distribution. This is done using the “clean_out_file.py” file. Next the

“neural_network_architecture_selection.py” file is used to train and test the network and evaluate its

performance. This code facilitates experimentation in selecting the optimal NN architecture for each

dataset. For example, it provides graphs such as the one shown in Figure 28 and summary tables similar to

Table 12 for each tested architecture. Each trained network is saved in “saved_net.hdf5” file types, which

are very memory efficient, and can then be used by “neural_network_tool.py” to make predictions based

on user input.

Actual value

44

Figure 27 – Diagram of the code structure

Raw dataset

Cleaned dataset

source

45

5. Results

The following discussion of the results is organized according to which dataset was used to produce the

neural network predictions. Section 5.1 reviews results found using datasets generated from the takeoff

distance deterministic model described in Section 4.3.1. Section 5.2 reviews results found using the

DASHlink dataset provided by NASA and described in Section 4.3.2.

5.1 Deterministic Takeoff Distance Dataset Results

For the NN developed using the deterministic TOD model dataset, three separate datasets were tested.

1. A small dataset totaling 1,000 test cases (dataset 1.1);

2. a medium sized dataset with the full scope of possible test cases totaling 358,722 test cases (dataset

1.2), and

3. a larger sized dataset with the full scope of possible test cases totaling 1,294,777 test cases (dataset

1.3).

Dataset 1.1 was used to provide a first estimate as to which optimization, loss and activation functions work

best for the type of data used. A smaller dataset was selected in order to be able to run all available

optimization, loss and activation functions efficiently.

Dataset 1.2 was used to evaluate the full scope of possible test cases that can be calculated by the

deterministic model for the takeoff scenario. It is important to note that, since the dataset is based on the

deterministic model’s calculations, the interval between each test case value can be chosen, which affects

the dataset distribution as seen in Table 11. The calculated values are also limited by the deterministic

model’s operating limitations. For example, the calculation might return errors or warnings if the calculated

TOD is outside the physical limitations of the system or if the calculated value is for an aircraft operating

in a dangerous zone. For the sake of convenience, the error and warning calculations were neglected in this

study. This may also affect the dataset distribution since fewer test cases are present in zones where more

errors or warnings occur.

Finally, dataset 1.3 was used to improve dataset 1.2’s results and analyze the effect of increasing the size

of the dataset on the results. Table 11 summarizes the dataset properties for datasets 1.1, 1.2, and 1.3.

46

Table 11 – TOD model dataset properties

Dataset Input Parameters Minimum Input Step Size Maximum Input Unit

1.1 Weight 70000 500 73500 lb

Runway Slope -2 0.25 2 deg

Pressure Altitude 0 1000 10000 feet

ISA Temperature -30 10 40 deg C

Wind Speed -10 10 30 knots

Training Test Cases 700

Testing Test Cases 300

Total Test Cases 1000

1.2 Weight 70000 500 110000 lb

Runway Slope -2 0.25 2 deg

Pressure Altitude 0 1000 10000 feet

ISA Temperature -50 10 40 deg C

Wind Speed -10 10 30 knots

Training Test Cases 251105

Testing Test Cases 107623

Total Test Cases 358722

1.3 Weight 70000 500 110000 lb

Runway Slope -2 0.25 2 deg

Pressure Altitude 0 1000 10000 feet

ISA Temperature -50 5 40 deg C

Wind Speed -10 5 30 knots

Training Test Cases 906343

Testing Test Cases 388434

Total Test Cases 1294777

47

5.1.1 Dataset 1.1 Results

The Python code is able to run multiple network architectures at once and presents the results in a manner

that facilitates the review of each architecture. The 448 different architecture combinations of optimization,

loss, and activation functions selected in Section 4.4 were all tested using Dataset 1.1. Figure 28 shows

training and testing results for six NN architectures of interest. Model #1 and Model #2 are examples of

training that encounters local minimum convergence, which leads the NN to make the same prediction for

all test cases. Model #3 and Model #4 show results that are not trapped in a local minimum but that are

much too high in percentage errors (around 99 %). Results for these models could be improved using more

data but that approach was not undertaken because this thesis is focused on getting the best results for the

least required amount of data. Model #5 and Model #6 demonstrate results which meet the criteria

established as part of the research objectives. The resulting top ten model architectures obtained are

summarized in Table 12, where the focus is on generating the lowest worst percentage error (perr,train and

perr,test) while keeping the lowest mean average percentage error (MAPE) as a secondary priority. Upon

evaluation of these results, the optimal optimization functions are adadelta, adagrad, adamax, adam, and

nadam; the optimal loss functions are MSE, MAE and MAPE; and the optimal activation functions are all

relu. These results validate the observations made in Section 4.4 as to which combination of network

architecture is most efficient. As Nadam can deal with momentum best and MAPE gives the same results

as MAE, it was chosen to use Nadam, MAPE and ReLU as the optimization, loss, and activation functions

respectively for further testing with datasets 1.2 and 1.3.

Table 12 – Summary of the top 10 dataset 1.1 results based on best MAPE

model_id opt_f loss_f actvn_f MAPE2 p_errtrain
3 p_errtest

4 errtrain
5 errtest

6

194 adadelta MSE relu 1.89 9.76 9.12 474.71 467.76

193 adadelta MSE relu 1.99 9.19 7.83 420.44 401.91

146 adagrad MAE relu 2.17 12.60 11.68 449.55 450.67

338 adamax MAE relu 2.18 14.39 11.53 418.19 417.82

162 adagrad MAPE relu 2.19 11.83 12.17 472.37 472.85

354 adamax MAPE relu 2.19 12.68 11.60 458.08 459.06

290 adam MAPE relu 2.20 13.80 12.16 412.98 412.57

273 adam MAE relu 2.20 11.66 12.58 465.97 467.83

401 nadam MAE relu 2.20 15.36 11.86 380.36 380.26

417 nadam MAPE relu 2.20 13.46 11.91 423.09 422.36

2 Mean average percentage error
3 Worst percentage error for all test cases for the training results
4 Worst percentage error for all test cases for the testing results
5 Worst error for all test cases for the training results
6 Worst error for all test cases for the testing results

48

Table 13 – Summary of the top 10 dataset 1.1 results based on best p_errtrain

model_id opt_f loss_f actvn_f MAPE p_errtrain p_errtest errtrain errtest

201 adadelta MSE softplus 2.29 8.64 9.23 355.13 346.82

193 adadelta MSE relu 1.99 9.19 7.83 420.44 401.91

118 rmsprop MSLE elu 2.38 9.43 9.29 479.96 467.16

409 nadam MAE softplus 2.31 9.43 9.89 314.10 307.21

73 rmsprop MSE softplus 2.79 9.68 10.16 380.75 373.39

194 adadelta MSE relu 1.89 9.76 9.12 474.71 467.76

297 adam MAPE softplus 2.70 9.84 10.05 400.33 400.43

120 rmsprop MSLE selu 2.48 9.87 9.57 502.54 490.83

391 nadam MSE selu 2.42 9.90 10.40 508.02 493.85

105 rmsprop MAPE softplus 2.70 9.91 10.10 393.16 394.20

Table 14 – Summary of the top 10 dataset 1.1 results based on best p_errtest

model_id opt_f loss_f actvn_f MAPE p_errtrain p_errtest errtrain errtest

193 adadelta MSE relu 1.99 9.19 7.83 420.44 401.91

197 adadelta MSE elu 2.35 11.90 8.71 442.46 429.52

386 nadam MSE relu 2.32 14.05 8.95 433.57 418.17

66 rmsprop MSE relu 2.42 14.13 8.98 433.77 418.43

194 adadelta MSE relu 1.89 9.76 9.12 474.71 467.76

201 adadelta MSE softplus 2.29 8.64 9.23 355.13 346.82

118 rmsprop MSLE elu 2.38 9.43 9.29 479.96 467.16

70 rmsprop MSE elu 2.42 14.03 9.29 412.73 398.21

199 adadelta MSE selu 2.35 12.23 9.34 380.26 368.24

72 rmsprop MSE selu 2.54 11.76 9.54 502.59 489.45

49

Model #1

Model #2

Model #3

Test Case [#]

Test Case [#]

Test Case [#]

Test Case [#]

Test Case [#] Test Case [#]

Percent Error [%] Percent Error [%]

Percent Error [%] Percent Error [%]

Percent Error [%] Percent Error [%]

TOFL Testing Results

TOFL Testing Results

TOFL Testing Results

TOFL Training Results

TOFL Training Results

TOFL Training Results

50

Figure 28 – Training and testing results for 6 different NN architectures

Model #4

Model #5

Model #6

Test Case [#]

Test Case [#]

Test Case [#]

Test Case [#]

Test Case [#] Test Case [#]

Percent Error [%] Percent Error [%]

Percent Error [%] Percent Error [%]

Percent Error [%] Percent Error [%]

TOFL Testing Results

TOFL Testing Results

TOFL Testing Results

TOFL Training Results

TOFL Training Results

TOFL Training Results

51

5.1.2 Dataset 1.2 Results

Dataset 1.2 was used to develop a NN model that can satisfy the NN requirements and objectives set out in

Section 4.2, and which uses the optimization, loss, and activation functions found using dataset 1.1. To

accomplish this, the effect of varying the following parameters was studied:

1. the number of nodes per input layer,

2. the number of hidden layers, and

3. the number of nodes per hidden layer.

For each varying parameter, the ranges that were tested are listed in Table 15 below.

Table 15 – Summary of the test ranges for models using dataset 1.2 values

Number of Nodes per Input Layer 1000, 3000, 5000

Number of Hidden Layers 1, 2, 3

Number of Nodes per Hidden Layer 10, 100, 1000

Table 16 shows the results of the best combination of the different architectures tested, and Figure 29 shows

the error distribution for each test case for the training and testing dataset. The x-axis has 358,722 test cases

(which encompass the full scope of possible TOD scenarios) and the y-axis has percentage errors between

NN-predicted values and actual values calculated by the TOD deterministic model. For this model

architecture, the MAPE is 0.04 % and worst percentage error is 1.29 %. The training time was 9.9 hours

and when the trained NN is used to make predictions the run time is 0.03 seconds. When comparing the

training and testing values in Figure 29, a slight underfitting of the testing data is observed. This could

potentially be reduced using more data or a validation split higher on the testing side (i.e. 40 % for testing

and 60 % for training). The results show that, for a given dataset, a larger number of nodes per input layer,

number of hidden layers, and number of nodes per hidden layers give better model performance up to a

point where it no longer provides any improvement. The following dataset 1.3 will test if adding more test

cases will help push this bottleneck point and allow the use of a greater number of nodes per input layer,

number of hidden layers, and number of nodes per hidden layer to reduce the worst-case error even lower.

52

Table 16 – Summary of the results for the optimal NN architecture using dataset 1.2

MAPE [%] 0.04

Worst-Case Error [%] 1.29

Train Time [hour] 9.9

Run Time [s] 0.03

Total Number of Test Cases 358722

Optimization Function Nadam

Loss Function MAPE

Activation Function ReLU

Number of Nodes per Input Layer 3000

Number of Hidden Layers 2

Number of Nodes per Hidden Layer 100

53

Figure 29 – Training and testing results for the optimal NN architecture using dataset 1.2

54

5.1.3 Dataset 1.3 Results

Dataset 1.3 was used to improve dataset 1.2’s results and analyze the effect of increasing the size of the

dataset on the results. The results from dataset 1.2 were analyzed and it was found that the test cases with

the highest errors were values with high values of temperature and wind speed, as shown in Figure 30.

Consequently, dataset 1.3 was produced using increased numbers of test cases for the temperature and wind

parameters only. Table 11 lists the parameters used in dataset 1.3.

Figure 30 – Distribution of test cases with MAPE higher than 0.20 %

55

Tested models with dataset 1.3 did show improved predictions compared to the results from dataset 1.2.

Table 17 presents a summary of the NN architecture selected as the most appropriate for the dataset 1.3.

This architecture has a lower number of hidden layers and nodes per layers than the best dataset 1.2 result,

which leads to a slightly bigger MAPE of 0.05 %. Although this model has a higher MAPE, its value of

worst-case percentage error as shown in Figure 31 is 0.61 %, which satisfies the NN requirements. The

training time increased significantly from 9.9 hours to 19.4 hours but is still within the required 20 hours

of training time. The increased dataset size also helped to solve the underfitting problem observed in the

results obtained from dataset 1.2 as the predictions of Figure 31 generalize well to the testing results. Even

though the dataset size has increased significantly, the run time to execute the prediction tool has not

increased as both networks have similar structure (number of hidden layer and nodes).

Table 17 – Summary of the dataset 1.3 results

MAPE [%] 0.05

Worst-Case Error [%] 0.61

Train Time [hour] 19.4

Run Time [s] 0.02

Total Number of Test Cases 1294777

Optimization Function Nadam

Loss Function MAPE

Activation Function ReLU

Number of Nodes per Input Layer 1000

Number of Hidden Layers 2

Number of Nodes per Hidden Layer 1000

56

Figure 31 – Training and testing results for the optimal NN architecture using dataset 1.3

57

5.2 NASA DASHlink Non-Deterministic Dataset Results

For the NN developed using the non-deterministic DASHlink dataset, two separate datasets were tested:

1. Dataset 2.1 uses flight data from a single aircraft and the limits imposed in Section 4.3.2 and

detailed in Table 6; and

2. dataset 2.2 uses the full fleet of 12 aircraft and the limits shown in Table 7.

The reasoning behind separating the original dataset into two distinct datasets is to analyze if the NN can

generalize takeoff performance predictions well enough to encompass the differences in performance

between individual aircraft. The limits imposed on the original dataset, explained in Section 4.3.2, produce

the dataset properties shown in Table 18, below. The number of total test cases for each dataset is

considerably smaller than for the deterministic datasets 1.2 and 1.3, with 1,873 and 16,079 test cases

respectively. Based on the value ranges of each dataset, it is observed that the flap drag and normalized

wind speed parameters have very small ranges. This can negatively affect NN performance if the

distribution of datapoints is concentrated in a localized area. For this reason, flap drag and normalized wind

speed are removed as input parameters for the NN.

58

Table 18 – DASHlink dataset properties

Dataset Input Parameters Minimum Maximum Unit

2.1 Weight 7144 20904 lb

Flap Drag 2443 2461 drag counts

Pressure Altitude -514 2202 feet

TAT Temperature -9 36 deg C

Normalized Wind Speed 0 0 knots

TOFL 4704 6499 feet

Training Test Cases 1311

Testing Test Cases 562

Total Test Cases 1873

2.2. Weight 5904 21776 lb

Flap Drag 2393 2596 deg

Pressure Altitude -643 2363 feet

TAT Temperature -32 40 deg C

Normalized Wind Speed 0 0 knots

TOFL 4702 6500 feet

Training Test Cases 11255

Testing Test Cases 4824

Total Test Cases 16079

5.2.1 Dataset 2.1 Results

The purpose for using dataset 2.1 is to develop a NN model that can satisfy the NN requirements and

objectives from Section 4.2 while using readily available non-deterministic flight data for a single aircraft.

Table 19 lists the architecture parameters that were tested in order to select the best NN model based on the

established performance criteria. The test parameters were selected based on their ability for being applied

to different datasets and dealing with high variance and data distribution. Table 20, Table 21, and Table 22

show the top 10 model architectures obtained based on best MAPE, best perr,train, and best perr,test. Results

show that all tested optimization, loss, and activation functions produce results in the same ranges. One

hidden layer demonstrates the best values of MAPE while two or more hidden layers give better perr,train and

perr,test values. As the results are more constraining for the perr,train and perr,test values, the Table 21 and Table

22 results are prioritized as the most appropriate models. For the number of nodes, results vary, and no

59

general trend can be identified. Based on these results, the recommended NN architecture is model 153 (see

Table 23 and Figure 32).

Table 19 – Summary of the test ranges for models using dataset 2.1 values

Optimization Function adamax, adadelta, nadam

Loss Function MAPE, MSLE

Activation Function ReLU

Number of Nodes per Input Layer 1000, 3000, 5000

Number of Hidden Layers 1, 2, 3

Number of Nodes per Hidden Layer 10, 100, 1000

Table 20 – Summary of the top 10 dataset 2.1 results based on best MAPE

model opt_f loss_f actvn_f nb_hl nd_pl nd_il
MAPE

[%]

p_errtrain

[%]

p_errtest

[%]

3 adadelta MAPE relu 1 10 5000 3.81 22.36 21.10

1 adadelta MAPE relu 1 10 1000 3.81 21.64 20.22

2 adadelta MAPE relu 1 10 3000 3.81 22.53 21.02

87 adamax MSLE relu 1 100 5000 3.82 24.48 22.06

82 adamax MSLE relu 1 10 1000 3.82 22.65 20.16

145 nadam MSLE relu 2 10 1000 3.83 23.24 20.80

4 adadelta MAPE relu 1 100 1000 3.83 22.05 20.36

6 adadelta MAPE relu 1 100 5000 3.83 22.87 21.00

138 nadam MSLE relu 1 10 5000 3.83 23.07 20.67

58 adamax MAPE relu 1 100 1000 3.83 23.09 21.04

Table 21 – Summary of the top 10 dataset 2.1 results based on best p_errtrain

model opt_f loss_f actvn_f nb_hl nd_pl nd_il
MAPE

[%]

p_errtrain

[%]

p_errtest

[%]

153 nadam MSLE relu 2 1000 5000 3.95 18.59 16.40

122 nadam MAPE relu 2 100 3000 4.27 18.76 16.47

67 adamax MAPE relu 2 100 1000 3.88 19.22 16.75

99 adamax MSLE relu 2 1000 5000 3.86 20.04 18.33

64 adamax MAPE relu 2 10 1000 4.12 20.24 19.19

114 nadam MAPE relu 1 100 5000 3.87 20.39 18.34

71 adamax MAPE relu 2 1000 3000 3.96 20.51 19.08

128 nadam MAPE relu 3 10 3000 3.86 20.56 18.60

79 adamax MAPE relu 3 1000 1000 3.94 20.69 18.63

10 adadelta MAPE relu 2 10 1000 3.88 20.75 18.71

60

Table 22 – Summary of the top 10 dataset 2.1 results based on best p_errtest

model opt_f loss_f actvn_f nb_hl nd_pl nd_il
MAPE

[%]

p_errtrain

[%]

p_errtest

[%]

153 nadam MSLE relu 2 1000 5000 3.95 18.59 16.40

122 nadam MAPE relu 2 100 3000 4.27 18.76 16.47

67 adamax MAPE relu 2 100 1000 3.88 19.22 16.75

99 adamax MSLE relu 2 1000 5000 3.86 20.04 18.33

114 nadam MAPE relu 1 100 5000 3.87 20.39 18.34

128 nadam MAPE relu 3 10 3000 3.86 20.56 18.60

79 adamax MAPE relu 3 1000 1000 3.94 20.69 18.63

10 adadelta MAPE relu 2 10 1000 3.88 20.75 18.71

118 nadam MAPE relu 2 10 1000 3.96 20.99 18.88

119 nadam MAPE relu 2 10 3000 4.09 20.94 18.94

The MAPE for the best NN model is of 3.95 % while the worst percentage error is 18.59 % for training and

16.40 % for testing. These values present the highest error values obtained in this research and possible

explanations for these values are detailed in Chapter 6. Figure 32 illustrates the distribution of the NN model

error for all trained test cases, where it is shown that most test case errors are lower than 10 % but that a

small amount of test cases constrain the model’s worst-case performance in the error range of 10 – 19 %.

Table 23 – Summary of the results for the optimal NN architecture using dataset 2.1

MAPE [%] 3.95

Worst-Case Error [%] 18.59

Train Time [hour] 0.48

Run Time [s] 0.09

Total Number of Test Cases 1873

Optimization Function Nadam

Loss Function MSLE

Activation Function ReLU

Number of Nodes per Input Layer 5000

Number of Hidden Layers 2

Number of Nodes per Hidden Layer 1000

61

Figure 32 – Training and testing results for the optimal NN architecture using dataset 2.1

62

5.2.2 Dataset 2.2 Results

Dataset 2.2 was used to develop a NN model that can satisfy the NN requirements and objectives from

Section 4.2 using the non-deterministic flight data for a fleet of aircraft of the same model rather than an

individual aircraft as was the case for dataset 2.1. The model architectures tested are the same as for the

dataset 2.1 models presented in Table 19, and Table 24, Table 25, and Table 26 show the top 10 model

architectures obtained based on best MAPE, best perr,train, and best perr,test. Results show that the adadelta

optimization function and the MAPE loss function are best at finding the lowest MAPE values. Higher

numbers of hidden layers and nodes per layer generally demonstrate better perr,train and perr,test values. From

the model architectures studied, those with the lowest worst-case training and testing errors are prioritized

as the most appropriate models since this is the most conservative error as required for aerospace

applications. Based on these results, the optimal NN architecture is model 106, detailed in Table 27 and

Figure 33.

63

Table 24 – Summary of the top 10 dataset 2.2 results based on best MAPE

model opt_f loss_f actvn_f nb_hl nd_pl nd_il
MAPE

[%]

p_errtrain

[%]

p_errtest

[%]

20 adadelta MAPE relu 3 10 3000 3.82 22.98 22.17

4 adadelta MAPE relu 1 100 1000 3.83 21.43 21.28

1 adadelta MAPE relu 1 10 1000 3.84 21.28 21.27

24 adadelta MAPE relu 3 100 5000 3.84 20.31 19.67

10 adadelta MAPE relu 2 10 1000 3.84 22.31 21.79

82 adamax MSLE relu 1 10 1000 3.84 20.87 20.47

19 adadelta MAPE relu 3 10 1000 3.84 22.25 21.75

2 adadelta MAPE relu 1 10 3000 3.84 20.65 20.22

7 adadelta MAPE relu 1 1000 1000 3.84 22.53 21.83

3 adadelta MAPE relu 1 10 5000 3.85 21.82 21.74

Table 25 – Summary of the top 10 dataset 2.2 results based on best p_errtrain

model opt_f loss_f actvn_f nb_hl nd_pl nd_il
MAPE

[%]

p_errtrain

[%]

p_errtest

[%]

106 adamax MSLE relu 3 1000 1000 4.00 18.50 18.00

66 adamax MAPE relu 2 10 5000 3.95 18.96 18.25

23 adadelta MAPE relu 3 100 3000 3.86 19.08 19.66

97 adamax MSLE relu 2 1000 1000 3.98 19.35 18.99

108 adamax MSLE relu 3 1000 5000 3.97 19.75 18.72

118 nadam MAPE relu 2 10 1000 3.90 19.77 19.39

62 adamax MAPE relu 1 1000 3000 3.88 19.84 19.17

127 nadam MAPE relu 3 10 1000 3.88 20.07 19.60

120 nadam MAPE relu 2 10 5000 3.93 20.08 19.24

99 adamax MSLE relu 2 1000 5000 3.96 20.15 20.01

Table 26 – Summary of the top 10 dataset 2.2 results based on best p_errtest

model opt_f loss_f actvn_f nb_hl nd_pl nd_il
MAPE

[%]

p_errtrain

[%]

p_errtest

[%]

106 adamax MSLE relu 3 1000 1000 4.00 18.50 18.00

66 adamax MAPE relu 2 10 5000 3.95 18.96 18.25

108 adamax MSLE relu 3 1000 5000 3.97 19.75 18.72

97 adamax MSLE relu 2 1000 1000 3.98 19.35 18.99

62 adamax MAPE relu 1 1000 3000 3.88 19.84 19.17

120 nadam MAPE relu 2 10 5000 3.93 20.08 19.24

118 nadam MAPE relu 2 10 1000 3.90 19.77 19.39

117 nadam MAPE relu 1 1000 5000 3.95 20.23 19.55

144 nadam MSLE relu 1 1000 5000 3.90 20.26 19.57

127 nadam MAPE relu 3 10 1000 3.88 20.07 19.60

64

The MAPE for the best NN model is 4.00 % while the worst percentage error is 18.50 % for training and

18.00 % for testing. Possible explanations for these values are detailed in the Chapter 6. Figure 33 shows

the distribution of the NN model error for all trained test cases. Similar to the results of the previous dataset

for a single aircraft, it may be observed that most test case errors are lower than 10 % but that a small

amount of test cases constrain the model’s worst-case performance in the error range of 10 – 18 %.

Table 27 – Summary of the results for the optimal NN architecture using dataset 2.2

MAPE [%] 4.00

Worst-Case Error [%] 18.50

Train Time [hour] 0.28

Run Time [s] 0.11

Total Number of Test Cases 16079

Optimization Function adamax

Loss Function MSLE

Activation Function ReLU

Number of Nodes per Input Layer 1000

Number of Hidden Layers 3

Number of Nodes per Hidden Layer 1000

65

Figure 33 – Training and testing results for the optimal NN architecture using dataset 2.2

66

6. Discussion

6.1 Review of the Deterministic Dataset Results

The dataset 1.1 results were used to determine the most effective optimization, loss, and activation functions

for the selected case study, which could then be used for a larger number of test cases in datasets 1.2 and

1.3 in order to encompass all TOD scenarios. Table 12, Table 13, and Table 14 show the best NN

architectures to produce the lowest MAPE, worst-case percentage error for training (perr,train), and worst-

case percentage error for testing (perr,test) respectively. After reviewing these results, it was observed that the

ReLU activation function (and its derivatives elu and selu) consistently yielded the best results for all cases.

Looking at the loss function results, MSE, MAE, and MAPE have best results for obtaining best MAPE

and perr,train but MSE has the overall the best results as it ranks highest for MAPE, perr,train, and perr,test. For the

optimization functions, adadelta and nadam demonstrated the best results for obtaining lowest values of

MAPE, perr,train, and perr,test. These results validate the research listed in the Research Methodology Section

on each architecture parameter. For this reason, it was decided to use these parameters for the architectures

of datasets 1.2 and 1.3’s architectures.

The dataset 1.2 results showed the impact of modifying the number of hidden layers and nodes per layers

on the NN prediction accuracy for the complete envelope of possible test case ranges. Results showed that,

for a given dataset, larger values of number of nodes per input layer, number of hidden layers, and number

of nodes per hidden layers give better model performance up to a point where it no longer provides any

improvement.

Dataset 1.3 was used to investigate if the point where adding more hidden layers and nodes no longer helps

increase performance could be pushed further by adding more datapoints to the dataset. Results showed

that it is possible to increase performance even further by adding more datapoints combined with higher

values of hidden layers and nodes per layers. The observed drawback from this approach is the

computational time and power required is increased and limited performance past a certain NN architecture

and dataset size.

The optimal NN model developed using the dataset 1.3 values as seen in Figure 31 shows the final and best

model to predict deterministic TOD values. Performance values from this model are listed in Table 17 and

satisfy the requirements listed in Table 4.

6.2 Review of the Non-Deterministic Dataset Results

The NN models developed using the non-deterministic flight data from datasets 2.1 and 2.2 show that the

provided data is enough to develop a NN model with MAPE errors lower than 4 % both for the performance

67

of a single aircraft as well as for a fleet of aircraft. On the other hand, these NN models had high values of

worst-case percentage error (perr), which were 18.59 % off from actual values. Comparing the values from

the optimal NN model for the fleet of aircraft and the values for the single aircraft, with the bigger sized

dataset of 2.2, a reduction in performance is observed when compared with the single aircraft results in

dataset 2.1. This implies that the quality of the dataset is in question or that a better preprocessing operation

would be required in future research.

The higher errors can be attributed to two main factors:

1. A dataset size that is too small

2. The presence of unknowns in the dataset for critical parameters

41,000 test cases were available from the original NASA DASHlink dataset. Following the preprocessing

of the dataset, the resulting datasets were of 16079 test cases or smaller. It was experimentally found that,

due to the two potential sources of errors just listed, the results from the non-deterministic datasets 2.1 and

2.2 show higher worst-case percentage errors than for the results from the deterministic datasets 1.2 and

1.3. Furthermore, as the NASA DASHlink dataset is open source, there were parameters considered critical

to this study that were not specified such as the aircraft model, number of service hours, and the payload

weight. This is important information since the dataset could potentially be combining different aircraft

models with differing levels of operational capabilities, though with the provided data, it is not possible to

separate these different cases. The same could be said for the number of service hours and payload weight.

Another fact that could potentially explain these results is the degree of sensitivity of the flight data sensors.

These were also not specified and if they were available for study they could possibly help explain outlier

or erroneous datapoints which negatively influences the training results.

Nevertheless, the results obtained for the non-deterministic data show that a NN can be developed with

acceptable MAPE for aircraft performance flight data. In future research, it would be worthwhile to

investigate a similar study with a non-deterministic dataset that does not have the two limitations observed

in the DASHlink dataset.

6.3 Comparing Deterministic and Non-Deterministic Results

Table 28 shows a summary of all the results obtained for the developed NNs, including deterministic and

non-deterministic results. The results show that deterministic data can produce NN models that are much

more robust than non-deterministic data. On the other hand, the greatest benefit of using non-deterministic

data for this thesis is that it can allow the extraction of complex patterns for real-time empirical flight data,

which may not be fully covered in the equivalent deterministic data.

68

The run time values show the performance of the prediction tool that makes use of the trained weights of

the NN. An interesting discovery is that the run time is not a function of the dataset size but rather of the

number of weights in the NN. Consequently, run time is a function of number of hidden layers and nodes

per layer. This allows very large datasets to be used as effectively as smaller datasets using the prediction

tool.

Table 28 – Comparison of deterministic and non-deterministic results

Dataset
MAPE

[%]

Worst-Case Error

[%]

Training Time

[hour]

Run Time

[s]
Total # Test Cases

1.1 1.8982 9.76 0.25 0.01 1000

1.2 0.0439 1.29 9.90 0.03 358722

1.3 0.0595 0.61 19.40 0.02 1294777

2.1 3.9452 18.59 0.48 0.09 1873

2.2 4.0030 18.50 0.28 0.11 16079

6.4 Summary of the Findings

Seven findings were determined from the results. Some can be associated with all ML regression

optimization applications and some are more specific to the case study at hand in this research. These

findings are presented in the present section.

Dealing with Sparsity Errors

Data sparsity is usually not desired as it means that information is missing that might be important to

developing the pattern to the output solution. The chart on the left of Figure 34 is an example of data

sparsity, where there is little data available for aircraft weighing less than 10,000 lb. Sparsity errors are a

result of missing datapoints in the dataset and can lead to suboptimal NN performance. Allison et al. [78]

review the problem and explains that when adding more data in the gaps, model accuracy increases. The

results obtained from experimental models validate this statement. For the case of the deterministically

generated datasets of this research, smaller increment sizes can be selected between each datapoint which

allows to control the size and distribution of the dataset which best suits the needs of the designer. It is also

possible to select the distribution and values of input parameters for which more data is required. The results

of dataset 1.2 and 1.3 show that, when adding more datapoints for only the input parameters that had the

highest errors, the model error can be reduced. For the case of the non-deterministic dataset, and all non-

deterministic datasets in general, the provided dataset must be used or, if possible, more data can be acquired

to solve the problem. Allison et al. further analyze different ML techniques that can help increase model

performance when filling in the data sparsity when acquiring new data is not possible. Filtering techniques

69

exist to bridge gaps in the data (which are out of the scope of the current research) and different

regularization methods exist to preprocess the data to yield better model performance. One such

preprocessing operation that was used successfully in this research is the normalization of the dataset

values.

Figure 34 – Difference between a sparse and gaussian distribution

Generalization vs Specificity

One of the main hurdles when developing ML models is to be able to create NNs that are good at

generalization. Figure 35 shows two different sample models. The model on the left (general model) is able

to make predictions for a much wider scope of input parameters, but its worst-case percentage error is of

7.86 %. The model on the right (specific model) has a better worst-case percentage error of 0.92% but is

only able to make predictions for a narrower scope of input parameters. The best-case model would be a

model that is capable of making predictions for the range of input parameters of the general model with the

precision of the specific model. In this research, this issue was solved by having multiple specific models

with high accuracy that can be used depending on what range of input parameters and output parameters

are of interest. Other methods exist to solve the problem. One method [27] uses an expert system with a

gating logic which looks at multiple specific NNs in order to optimize the overall system’s efficiency and

accuracy. Another method [79] uses a type of NN called a Recurrent Neural Network (RNN) which can

significantly improve the generalization performance of trained recurrent networks.

70

Figure 35 – Comparison of a general model and a specific model

No Free Lunch Theorem

The “no free lunch theorem” [80] states that no machine learning algorithm is universally any better than

any other. This means that each implementation of ML methodologies to a real-world application problem

must be optimized for this very specific problem and its data distribution. Wolpert [80] shows that

generalization of one specific NN’s results to another more general NN (with a large dataset) does not scale

well. This explains why in general, when adding more data to increase model performance, it is

exponentially more expensive with respect to the amount of data required and computational power. This

observation can be a leading cause for reaching bottlenecks when developing ML models for novel

applications. For the selected case study, it is observed that dataset 1.3 has an increased performance when

compared with dataset 1.2 but its training time is over 19 hours instead of 9 hours.

Validating NN Results with Physical Phenomena

An important observation that was made in this research is that the physical interpretation of the NN values

must always be validated for different reasons. The values produced by the NN could be validated simply

to make sure that they are physically possible, to make sure they are desirable, or to discover new

deterministic patterns. For all the deterministic datasets observed in this research, only values that did not

give warning or error messages were used, which are an indication that the calculated TOD is close to

operational limits or outside the physically possible values. For the non-deterministic datasets, it was

explained in previous sections that much of the flight sensor data had to be omitted in the training data as

the values were judged physically impossible. As TOD predictions that are shorter than the actual TOD

values can result is dangerous situations, which are not desirable, all prediction values that are lower than

71

the actual solution must be processed in a way that can incorporate more safety into the model. Figure 36

shows one way to deal with this problem, by adding a safety margin to all values to shift them all upwards

by a value that makes all predictions positive when compared with the actual values. This is the most

conservative solution and can affect the network’s prediction accuracy. A more sophisticated approach

could also be used which could employ an expert system to decide what safety margin to apply based on

each range of values. When using non-deterministic data, the NN results can be used to find new

deterministic relations. This can be done by looking at the trained weight matrix of the NN and making

interpretations. For example, the parameters having the highest weights could be used to update existing

equations describing the physical system under study.

Figure 36 – NN model that adds a safety margin to all predictions

Selecting the Appropriate Performance Indicator

It was found that the selection of the appropriate performance metric used to evaluate the NN’s success is

case specific. Off the shelf performance metrics like MSE or MAE can be used, if relevant, but in most

cases prior knowledge of the deterministic system under study is required as described in Section 3.2, in

order to be able to choose an appropriate metric for the intended use. For example, in the case study, it is

more relevant to look at worst-case percentage errors than MAPE, in order to be as conservative as possible

across the whole scope of test cases.

Test Case [#]

Percent Error [ft]

72

How Much Expert Knowledge is Actually Required?

One of the main advantages of using machine learning is to reduce the need for expert-level knowledge in

developing a model. For the selected case study, it was found that a basic understanding of the parameters

affecting takeoff distance as well as the overall expected behavior of aircraft in takeoff scenarios were

required to develop the NNs successfully. This background information was covered in Section 3. This

shows that for the case study, ML does not remove the need for expert-level knowledge completely and

that, at best, a basic understanding of the main drivers of the system under study are still required.

Using Deterministic Models to Generate ML Datasets

All the NN models that were developed using the deterministic datasets (datasets 1.1, 1.2, and 1.3) produced

results which met the defined NN requirements and objectives. This can be generally attributed to the fact

that for these datasets it was possible to control the dataset size and distribution in order to give better

predictive accuracy. This shows that using existing deterministic models to generate ML datasets can be

very practical, as they allow for more control of the dataset properties.

7. Conclusion

The objective of this research was to investigate if Artificial Neural Networks could be used effectively as

an alternative to current aircraft performance models. Based on the results obtained from the deterministic

dataset generated using an existing TOD model, it can be stated that the NN’s results were in line with the

existing model. For the optimal NN model, these results matched the existing TOD model values within

0.61 % or lower and had an overall average model error of 0.05 %. Training Neural Networks using data

from an existing deterministic model proved to be very effective, mainly due to its ability to generate

different dataset distributions and dataset sizes. For the NN results based on the non-deterministic flight

data, it was also found that the NN could produce acceptable predictions. For the optimal NN model

generated using the flight data, the average error for all predicted test cases demonstrated performance of

3.94 %, but the network was most constrained by outlier test cases in error ranges of 18.59 %. Reasons to

explain the unacceptable results were reviewed and it is believed that with a similar dataset with an

increased size and more detailed information on each data value, acceptable performance could potentially

be obtained. Future research could investigate a more in-depth rationale to why these specific outlier test

cases produce higher error values.

In future research, it would be of value to analyze if it would be possible to get performance even more

accurate than the existing deterministic model by using a more comprehensive non-deterministic dataset.

The NN results found using the deterministic TOD dataset showed almost no error, but even if this network

73

would be perfectly modeled, it could never give results better than the ones of the deterministic TOD values.

This fact shows the value in being able to model non-deterministic data, since much of real-life empirical

data is non-deterministic (i.e. flight data from onboard sensors).

Another avenue of interest would be to review the performance of existing NN models and apply them to

the case study that is the subject of this thesis. This research focused on developing a proof of concept using

a straightforward multiple layer feedforward backpropagation neural network. More sophisticated NN

models exist that are tailored to solve specific problem sets. Scikit-Learn, a Python data processing library,

provides a flowchart (see Figure 37) for selecting the appropriate NN model based on the ML problem at

hand and the available dataset. Lasso, ElasticNet, SVR, Ridge Regression, or Ensemble Regressors could

potentially be promising NNs for TOD prediction.

Figure 37 – Scikit-learn’s cheat-sheet for selecting existing NN models [81]

74

8. References

[1] A. K. Noor, "Nondeterministic Approaches and Their Potential for Future Aerospace Systems,"

NASA Langley Research Center, Hampton, 2001.

[2] T. A. Cruse, "Non-Deterministic, Non-Traditional Methods (NDNTM)," NASA Glenn Research

Center, Cleveland, 2001.

[3] S. J. Rey, "Mathematical Models in Geography," International Encyclopedia of the Social &

Behavioral Sciences (Second Edition), vol. 14, no. 2, pp. 785-790, 2015.

[4] W. Schwarzacher, "Chapter 3 Deterministic models," Developments in Sedimentology, vol. 19,

pp. 37-59, 2008.

[5] M. Urquidi-Macdonald and D. D. Macdonald, "Performance Comparison Between a Statistical

Model, a Deterministic Model, and an Artificial Neural Network Model for Predicting

Damage for Pitting Corrosion," Journal of Research of the National Institute of Standards and

Technology, vol. 99, no. 4, pp. 495-504, 1994.

[6] D. N. Mavris and J. S. Schutte, "Application of Deterministic and Probabilistic System Design

Methods and Enhancements of Conceptual Design Tools for ERA Project Final Report,"

Langley Research Center, Hampton, 2016.

[7] D. Gonze, J. Hallow and A. Goldbeter, "Deterministic versus Stochastic Models for Circadian

Rhythms," Journal of Biological Physics, vol. 28k, pp. 637-653, 2002.

[8] R. M. Vogel, "Stochastic and Deterministic World Views," Journal of Water Resources Planning

and Management, vol. 125, no. 6, pp. 311-313, 1999.

[9] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Montreal: MIT Press, 2015.

[10] S. Russell and P. Norvig, Artificial intelligence - A modern approach, Upper Saddle River, New

Jersey: Pearson Education, Inc., 2010.

[11] S. Herbert and A. Newell, "Human problem solving: The state of the theory in 1970," American

Psychologist, vol. 26, no. 2, pp. 145-159, 1971.

[12] G. W. Ernst, "GPS and Decision Making: An Overview," Theoretical Approaches to Non-

Numerical Problem Solving, vol. 28, pp. 59-107, 1970.

[13] L. Fausett, Fundamentals of neural networks - Architectures, algorithms, and applications,

Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1994.

[14] I. Liljeqvist, "The Essence of Artificial Neural Networks," 20 March 2016. [Online]. Available:

https://medium.com/@ivanliljeqvist/the-essence-of-artificial-neural-networks-

5de300c995d6. [Accessed 18 September 2019].

[15] W. S. McCulloch and W. H. Pitts, "A Logical Calculus of the Ideas Immanent in Nervous

Activity," Bulletin of Mathematical Biophysics, vol. 5, no. 1, pp. 115-133, 1943.

[16] A. N. Whitehead and B. Russell, Principia Mathematica, Cambridge: Cambridge University Press,

1910.

[17] A. Turing, "Computing Machinery and Intelligence," Mind, vol. 59, no. 236, pp. 433-460, 1950.

[18] D. O. Hebb, The Organization of Behavior, Montreal: John Wiley & Sons, 1949.

[19] D. E. Rumelhart and J. L. M. G. E. hinton, "A General Framework for Parallel Distributed

Processing," 1986.

[20] M. Baroni and A. Kilgarriff, "WebBootCaT: a web tool for instant corpora," Computational

Lexicography and Lexicology, 2006.

75

[21] D. Yarowsky, "Unsupervised Word Sense Disambiguation Rivaling Supervised Methods," in 33rd

Annual Meeting of the Association for Computational Linguistics, Cambridge, 1995.

[22] M. J. Pedelty, "A Review of the Field of Artificial Intelligence and its Possible Applications to

NASA Objectives," School of Government and Public Administration, Washington, D.C.,

1965.

[23] H. J. Dunn and R. C. Montgomery, "A Moving Window Parameter Adaptive Control System for

the F8-DFBW Aircraft," IEEE Transactions on Automatic Control, Vols. AC-22, no. 5, pp.

788-795, 1977.

[24] Massachusetts Institute of Technology Lincoln Laboratory, "DARPA Neural Network Study Final

Report," Tactical Technology Office of the U.S. Defense Advanced Research Projects Agency

(DARPA/TTO), Lexington, MA, 1989.

[25] L. Harrison, P. Saunders and J. Janowitz, "Artificial Intelligence with Applications for Aircraft,"

Federal Aviation Administration (FAA), Springfield, Virginia, 1994.

[26] W. H. Cheung, Neural Network Aided Aviation Fuel Consumption Modeling, M.S. thesis,

Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 1997.

[27] D. L. Simon and T. W. Long, "Adaptive Optimization of Aircraft Engine Performance Using

Neural Networks," NASA - U.S. Army Research Laboratory, Cleveland, OH, 1995.

[28] D. J. Linse and R. F. Stengel, "Identification of Aerodynamic Coefficients Using Computational

Neural Networks," in Aerospace Sciences Meeting (AIAA), Reno, NV, 1992.

[29] B. S. Kim and A. J. Calise, "Nonlinear Flight Control Using Neural Networks," Journal of

Guidance, Control and Dynamics, vol. 20, no. 1, pp. 26-33, 1997.

[30] A. J. Calise and R. Rysdyk, "Nonlinear adaptive flight control using neural networks," Control

Systems, vol. 18, no. 6, pp. 14-25, 1999.

[31] W. E. Failer and S. J. Schreck, "Neural Networks: Applications and Opportunities in Aeronautics,"

Progress in Aerospace Science, vol. 32, pp. 433-456, 1996.

[32] D. Mackall, S. Nelson and J. Schumann, "Verification and Validation of Neural Networks for

Aerospace Systems," NASA Ames Research Center, Moffett Field, California, 2002.

[33] National Research Council, "Decadal Survey of Civil Aeronautics: Foundation for the Future,"

The National Academies Press, Washington, DC, 2006.

[34] A. Savran, R. Tasaltin and Y. Becerikli, "Intelligent adaptive nonlinear flight control for a high

performance aircraft with neural networks," ISA Transactions, vol. 45, no. 2, pp. 225-247,

2006.

[35] U. J. Pesonen, "Adaptive Neural Network Inverse Controller for General Aviation Safety,"

Journal of Guidance, Control, and Dynamics, vol. 27, no. 3, 2004.

[36] T. Lee and Y. Kim, "Nonlinear Adaptive Flight Control Using Backstepping and Neural Networks

Controller," Journal of Guidance, Control and Dynamics, vol. 24, no. 4, pp. 675-682, 2001.

[37] E. Ogretim, W. Huebsch and A. Shinn, "Aircraft Ice Accretion Prediction Based on Neural

Networks," Journal of Aircraft, vol. 43, no. 1, pp. 233-240, 2006.

[38] C.-T. Weng, C. E. Lan and M. Guan, "Aerodynamic Analysis of a Jet Transport in Windshear

Encounter During Landing," Journal of Aircraft, vol. 43, no. 2, pp. 419-427, 2006.

[39] O. Levinski, "Prediction of Buffet Loads Using Artificial Neural Networks," Defence Science &

Technology Organisation (DSTO) Aeronautical and Maritime Research Laboratory, Victoria,

Australia, 2001.

[40] D. Kim and K. Pechaud, "Improved Methodology for the Prediction of the Empennage Maneuver

In-Flight Loads of a General Aviation Aircraft Using Neural Networks," Department of

Transportation, Federal Aviation Administration, Springfield, VA, 2001.

76

[41] D. Tolani, M. Yasar, A. Ray and V. Yang, "Anomaly Detection in Aircraft Gas Turbine Engines,"

Journal of Aerospace Computing, Information, and Communication, vol. 3, no. 2, pp. 44-51,

2006.

[42] S. Kottapalli, "Neural-Network-Based Modeling of Rotorcraft Vibration for Real-Time

Applications," in AIAA Modeling and Simulation Technologies, Denver, CO, 2000.

[43] H. S. Bruner, "The Analysis of Performance Flight Test Data Using a Neural Network," in 40th

AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2002.

[44] A. A. Trani, F. C. Wing-Ho, G. Schilling, H. Baik and A. Seshadri, "A Neural Network Model to

Estimate Aircraft Fuel Consumption," in AIAA 4th Aviation Technology, Integration and

Operations (ATIO) Forum, Chicago, Illinois, 2004.

[45] National Research Council, "Autonomy Research for Civil Aviation: Toward a New Era of

Flight," The National Academies Press, Washington, DC, 2014.

[46] C. Wilkinsin, J. Lynch, R. Bharadwaj and K. Woodham, "Verification of Adaptive Systems,"

Federal Aviation Administration (FAA), Springfield, Virginia, 2016.

[47] S. Bhattacharyya, D. Cofer, D. Musliner, J. Mueller and E. Engstr, "Certification Considerations

for Adaptive Systems," NASA, Cedar Rapids, 2015.

[48] B. Arizmendi, T. Bellosta, A. del Val, G. Gori, J. Reis and M. Prazeres, "On Real-time

Management of On-board Ice Protection Systems by means of Machine Learning," in AIAA

Aviation 2019, Dallas, 2019.

[49] B. Zhou, "Towards a real-time in-flight ice detection system via computational aeroacoustics and

bayesian neural networks," in AIAA Aviation 2019, Dallas, 2019.

[50] Y. Dong, "An application of Deep Neural Networks to the in-flight parameter identification for

detection and characterization of aircraft icing," Aerospace Science and Technology Journal,

vol. 77, no. 1, pp. 34-49, 2018.

[51] F. Caliskan and C. Hajiyev, "A review of in-flight detection and identification of aircraft icing and

reconfigurable control," Progress in Aerospace Sciences, vol. 60, no. 1, pp. 12-34, 2013.

[52] A. Nanduri and L. Sherry, "Anomaly detection in aircraft data using recurrent neural networks

(RNN)," in 2016 Integrated Communications Navigation and Surveillance Conference,

Fairfax, 2016.

[53] C. Sbarufatti and M. Giglio, "Performance Qualification of an On-Board Model-Based Diagnostic

System for Fatigue Crack Monitoring," Journal of the American Helicopter Society, vol. 62,

no. 4, pp. 1-10, 2017.

[54] X. Fu, H. Luo, S. Zhong and L. Lin, "Aircraft engine fault detection based on grouped

convolutional denoising autoencoders," Chinese Journal of Aeronautics, vol. 32, no. 2, pp.

296-307, 2019.

[55] E. Mangortey, Predicting The Occurrence Of Ground Delay Programs And Their Impact On

Airport And Flight Operations, M.S. thesis, Atlanta, Georgia: Georgia Institute of

Technology, 2019.

[56] G. Dard, Application of data fusion and machine learning to the analysis of the relevancy of

recommended flight reroutes, M.S. thesis, Atlanta, Georgia: Georgia Institute of Technology,

2019.

[57] C. E. V. Gallego, V. F. G. Comendador, F. J. S. Nieto, G. O. Imaz and R. M. A. Valdés, "Analysis

of air traffic control operational impact on aircraft vertical profiles supported by machine

learning," Transportation Research Part C, vol. 95, no. 1, pp. 883-903, 2018.

[58] X. Bertrand, F. Tost and S. Champagneux, "Wing Airfoil Pressure Calibration with Deep

Learning," in AIAA Aviation 2019, Dallas, 2019.

77

[59] Boston Consulting Group, "Aerospace and AI - Bringing together Montreal's distinctive

strengths," Aero Montreal, Montreal, 2019.

[60] D. McNally, "Dynamic Weather Routes: Two Years of Operational Testing at American Airlines,"

AIAA Air Traffic Control Quarterly Journal, vol. 23, no. 1, 2015.

[61] T. Canada, "Part V - Airworthiness Manual Chapter 525," Government of Canada, 26 09 2019.

[Online]. Available: https://www.tc.gc.ca/en/transport-canada/corporate/acts-

regulations/regulations/sor-96-433/part5-standards-525-sub-ab-1739.htm#525.113.

[Accessed 1 1 1].

[62] Airbus, Getting to Grips with Aircraft Performance, Blagnac: Airbus Customer Services, 2002.

[63] M. Asselin, An Introduction to Aircraft Performance, Kingston, Ontario: American Institute of

Aeronautics and Astronautics Inc. (AIAA), 1997.

[64] T. R. Yechout, Introduction to aircraft flight mechanics: Performance, static stability, dynamic

stability, classical feedback control, and state-space foundations, Reston, Virginia: American

Institute of Aeronautics and Astronautics Inc., 2014.

[65] G. Ruijgrok, Elements of Airplane Performance, Delft, Netherlands: Delft University Press, 1990.

[66] J. Williams, Aircraft Performance - Prediction Methods and Optimization, Paris, France: Advisory

Group for Aerospace Research & Development, 1973.

[67] Performance Training Group, Jet Transport Performance Methods, Seattle: Boeing, 2009.

[68] NASA , "Sample Flight Data," 28 November 2018. [Online]. Available:

https://c3.nasa.gov/dashlink/projects/85/.

[69] Maclobio, "CleanPNG," [Online]. Available: https://www.cleanpng.com/png-artificial-neural-

network-neuron-biological-neural-1616821. [Accessed 10 December 2018].

[70] F. Chollet, "Keras Documentation," 19 September 2019. [Online]. Available: https://keras.io/why-

use-keras/.

[71] P. Grover, "5 Regression Loss Functions All Machine Learners Should Know," Heartbeat, 5 June

2018. [Online]. Available: https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-

learners-should-know-4fb140e9d4b0.

[72] A. D. Myttenaere, B. Golden, B. L. G. and F. Rossi, "Mean Absolute Percentage Error for

regression models," Neurocomputing, vol. 192, pp. 38-48, 2017.

[73] S. Ruder, "An overview of gradient descent optmization alogrithms," 19 January 2016. [Online].

Available: https://ruder.io/optimizing-gradient-descent/.

[74] R. S. Sutton, " Two problems with backpropagation and other steepest-descent learning procedures

for networks," in 8th Annual Conference on Cognitive Science Society, 1986.

[75] N. Qian, "On the momentum term in gradient descent learning algorithms," Neural Networks :

The Official Journal of the International Neural Network Society, vol. 12, no. 1, pp. 145-151,

1999.

[76] D. P. Kingma and J. L. Ba, "Adam: a Method for Stochastic Optimization," in International

Conference on Learning Representations, 2015.

[77] GreyAtom, [Online]. Available:

https://www.google.com/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj

WrfSTh5_mAhXvct8KHS-

2BREQjRx6BAgBEAQ&url=%2Furl%3Fsa%3Di%26source%3Dimages%26cd%3D%26ve

d%3D2ahUKEwid6e-

Qh5_mAhWrVN8KHS4_CVkQjRx6BAgBEAQ%26url%3Dhttps%253A%252F%252Fmed

ium.com%252.

78

[78] B. Allison, D. Guthrie and L. Guthrie, "Another Look at the Data Sparsity Problem," in

International Conference on Text, Speech and Dialogue, Berlin, 2006.

[79] C. Giles and C. Omlin, "Pruning recurrent neural networks for improved generalization

performance," IEEE Transactions on Neural Networks, vol. 5, no. 5, pp. 848-851, 1994.

[80] D. H. Wolpert and W. G. Macready, "No Free Lunch Theorems for Optimization," IEEE

Transactions of Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997.

[81] "Scikit-Learn Documentation," scikit-learn developers (BSD License), 2019. [Online]. Available:

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html. [Accessed 28

November 2019].

[82] J. Roskam, "Part VII: Determination of stability, control and performance characteristics: FAR

and military requirements," in Airplane Design, Ottawa, Kansas, Roskam Aviation and

Engineering Corporation, 1988, p. 372.

[83] D. P. Raymer, "Chapter 17. Performance and Flight Mechanics," in Aircraft Design: A Conceptual

Approach, Washington, DC, American Institute of Aeronautics and Astronautics, Inc.

(AIAA), 1992, p. 46.

[84] A. Nuic, D. Poles and V. Mouillet, "BADA: An advanced aircraft performance model for present

and future ATM systems," Internationl Journal of Adaptative Control and Signal Processing,

pp. 850-866, 28 June 2010.

[85] A. Nuic, C. Poinsot and M.-G. Iagaru, "Advanced aircraft performance modeling for ATM:

Enhancements to the BADA model," in 24th Digital Avionics System Conference,

Washington, D.C., 2005.

[86] R. D. Kimberlin, Flight Testing of Fixed-Wing Aircraft, American Institue of Aeronautics and

Astronautics (AIAA).

[87] General Aviation Manufacturers Association, Specification for Pilot's Operating Handbook,

Washington, D.C.: General Aviation Manufacturers Association, 1975.

[88] Federal Aviation Administration, Pilot's Handbook of Aeronautical Knowledge, Oaklahoma City:

U.S. Department of Transportation, 2008.

[89] Federal Aviation Administration, AC 25.1571-1 - Airplane Flight Manual, U.S. Department of

Transportation, 2012.

[90] J. Principe, N. Euliao and C. Lefeebvre, Neural and Adaptive Systems, Fundamental through

Simulation, John Wiley, 2000.

[91] P. Wasserman, Neural Computing: Theory and Practice, New York: Van Nostrand Reinhold Co.,

1989.

[92] J. Dayhoff, Neural Network Architectures: An Introduction, New York: Van Nostrand Reinhold

Co., 1990.

[93] S. A. Oke, "A literature review on artificial intelligence," International Journal of Information

and Management Sciences, vol. 19, no. 4, pp. 535-570, 2008.

[94] A. Megatroika, M. Galinium, A. Mahendra and N. Ruseno, "Aircraft Anomaly Detection Using

Algorithmic Model and Data Model Trained on FOQA Data," Swiss German University and

Aerotrack Pte Ltd, Jakarta Pusat, 2015.

[95] T. Brotherton and T. Johnson, "Anomaly Detection for Advanced Military Aircraft Using Neural

Networks," IEEE, San Diego, 2001.

[96] Impact Technologies LLC and Air Force Research Laboratory, "Embedded Reasoning Supporting

Aerospace IVHM," Impact Technologies LLC, Rochester, 2007.

79

[97] Z. Jiao, DongSun, Y. Shang, X. Liu and S. Wu, "A high efficiency aircraft anti-skid brake control

with runway identification," Aerospace Science and Technology, vol. 91, no. 1, pp. 82-95,

2018.

[98] D. J. Lary, "Artificial Intelligence in Aerospace," in Aerospace Technologies Advancements,

Vukovar, Intech, 2010, p. 492.

[99] National Academies of Sciences, Engineering, and Medicine, "Aeronautics 2050: Proceedings of

a Workshop in Brief," The National Academies Press, Washington, DC, 2018.

[100] T. D. Sanger, Optimal Unsupervised Learning in Feedforward Neural Networks, M.S. thesis,

Cambridge, MA: Massachusetts Institute of Technology, 1989.

[101] E. Torenbeek, Synthesis of subsonic airplane design, Rotterdam: Delft University Press, 1976.

[102] de Havilland Canada, "DHC-5 Pilot's Operating Handbook," 1974.

[103] F. S. Collins, M. Morgan and A. Patrinos, "The Human Genome Project: lessons from large-scale

biology," Science, vol. 300, no. 5617, pp. 286-290, 2003.

[104] W. E. Faller and S. J. Schreck, "Neural networks: Applications and opportunities in aeronautics,"

Progress in Aerospace Sciences, vol. 32, no. 5, pp. 433-456, 1996.

[105] J. Hale, "Deep Learning Framework Power Scores 2018," Medium, 19 September 2018. [Online].

Available: https://towardsdatascience.com/deep-learning-framework-power-scores-2018-

23607ddf297a. [Accessed 19 September 2019].

80

9. Appendix A – Python Program

81

82

10. Appendix B – Developed Neural Network Tools

Figure 38 –TOFL prediction tool

Figure 39 – NN architecture optimization tool

