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Abstract 

Performance models used in the aircraft development process are dependent on the assumptions and 

approximations associated with the engineering equations used to produce them. The design and 

implementation of these highly complex engineering models are typically associated with a longer 

development process. This study proposes a non-deterministic approach where machine learning techniques 

using Artificial Neural Networks are used to predict specific aircraft parameters using available data. The 

approach yields results that are independent of the equations used in conventional aircraft performance 

modeling methods and rely on stochastic data and its distribution to extract useful patterns. To test the 

viability of the approach, a case study is performed comparing a conventional performance model 

describing the takeoff ground roll distance with the values generated from a neural network using readily-

available flight data. The neural network receives as input, and is trained using, aircraft performance 

parameters including atmospheric conditions (air temperature, air pressure, air density), performance 

characteristics (flap configuration, thrust setting, MTOW, etc.) and runway conditions (wet, dry, slope 

angle, etc.). The proposed predictive modeling approach can be tailored for use with a wider range of flight 

mission profiles such as climb, cruise, descent and landing. 
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1. Introduction 

1.1 Background on Deterministic and Non-Deterministic System Models 

The modern aircraft design process has evolved to include systems of increasing complexity. To better 

understand these systems, engineering models are developed, where most of these models are said to be 

deterministic in nature. A deterministic model is a system in which all output parameters can be calculated 

from their relationship with other parameter values affecting the system and their initial conditions. In other 

words, it is a system for which all possible states are understood and, to some extent, are predictable. Many 

engineering problems can be solved using deterministic models. Deterministic methods have proven 

successful in applications where the mechanisms used to describe the full behavior of a system can be 

completely understood or understood enough to be able to describe a phenomenon with a minimum amount 

of acceptable error. Newton’s laws of motion are examples of important deterministic models. When they 

are applied on a body, it is said that the future outcomes of the body can be predicted or determined by its 

present situation; and if they are applied on two identical bodies under the same conditions the outcome for 

both bodies will be same. In the field of aircraft design, many deterministic systems play fundamental 

contributing roles in the design process, such as models describing the motion of the aircraft in time and 

space; models tracking and predicting the state of onboard systems of the aircraft (i.e. fuel systems, 

electrical systems, environmental control systems); models monitoring and affecting the state of flight 

control systems; or models describing aerodynamic or structural loads on an aircraft’s components. 

Although these models and their successful use are noteworthy, it must be understood that all deterministic 

models carry inherent limitations, some of which are listed below: 

• It is possible to have not enough or no empirical data to support the development of the 

deterministic model. 

• Predicted results can be outside the acceptable error margins when compared with empirical data. 

• Highly complex deterministic models can be computationally expensive and require longer run 

times. 

• Expert knowledge of the system being developed is always required in order to conceive a new 

deterministic model. 

• If a system is too complex to be able to develop the deterministic equations defining its behavior, 

it can be impossible or extremely hard to develop this deterministic model. 

These limitations contributed to the fact that non-deterministic models began to be investigated as a means 

of addressing some of the deterministic model limitations found in the aerospace industry [1, 2], where it 
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is typical to have a high complexity system with very large amounts of data for which expert knowledge is 

almost always required. A non-deterministic model describes a system for which the behavior of the system 

parameters is said to be stochastic and for which no deterministic relationships are possible. This type of 

modeling approach is based on probability and statistics, which introduce randomness in the models in such 

a way that the outcomes of the model can be viewed as probability distributions rather than unique values. 

Thus, non-deterministic methods can produce different outcomes after multiple runs for the same problem 

set and are consequently usually associated with parameter uncertainty intervals for point estimates and 

forecasts [3]. Depending on the problem at hand and the tools available to solve it, it can be practical to 

convert purely deterministic problems into non-deterministic problems by introducing stochastic variables 

[4]. Studies have been done looking at how predictive results vary based on what approach is used between 

a deterministic and a non-deterministic method for a same problem set [5, 6, 7, 8]. 

1.2 Artificial Intelligence in Aircraft Performance Modeling 

Since the late 1990’s, Artificial Intelligence (AI) has re-emerged as a popular field in the research 

community due to three factors [9]: 1) the widespread availability of data, 2) overcoming major hardware 

limitations enabling faster processing power and 3) resolving obstacles in the mathematical principles used 

in AI. Artificial intelligence applications have demonstrated the capability of dealing with complex problem 

sets in fields such as computer vision, natural language processing, game theory, robotics, control theory 

and machine learning, among others. Broadly speaking, these successes can be attributed to the capacity 

for Artificial Neural Networks (ANN), a specific type of AI, to deal with highly complex deterministic 

models with very large data sets. 

The current work evaluates the potential of ANNs for modeling and prediction in the field of aircraft 

performance. Aircraft performance is an engineering discipline concerned with the analysis of the 

operational capabilities of aircraft with respect to specific performance maneuvers while satisfying 

certification requirements across the full flight envelope. It is a highly multidisciplinary field which 

integrates deterministic models from other fields (aerodynamics, structural, thermal, engine performance, 

icing, etc.) into comprehensive estimation and modeling tools in order to predict aircraft behavior. The 

development of these tools can be bounded by the deterministic model limitations listed in the previous 

section (particularly considering the non-linear nature of some the aircraft performance models), the very 

large amounts of data to contend with, the high dependency on expert knowledge in developing the models, 

and the possible model approximations resulting from the integration of models from other fields. The body 

of literature combining aircraft performance, and aerospace design in general, and artificial intelligence is 

still relatively small and this thesis investigates the relevance of developing ANNs for aircraft performance 

modeling. 
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1.3 Research Objective and Approach 

The objective of this research project is to determine if ANNs can be used effectively as an alternative to 

current aircraft performance models. To achieve this objective, the following research approach is used: 

1. A takeoff flight phase is selected as the relevant case study.  

2. The advantages and disadvantages of existing deterministic models used in aircraft performance 

for this case study are investigated. 

3. A methodology for developing ANNs for aircraft performance purposes is developed. 

4. The methodology is applied to a dataset built using existing deterministic takeoff models. 

5. The methodology is applied to a dataset built using non-deterministic flight data. 

6. Both dataset results are compared and the practicality of using ANNs for predicting takeoff 

performance is assessed. 

1.4 Scope 

This thesis begins with a review of the relevant scientific literature in Chapter 2, with a focus on previous 

and current work in the field of machine learning applied to aerospace problems. The selected aircraft 

performance case study is described in Chapter 3. The methodology that was selected as a result of the 

literature survey is then described in Chapter 4. The results of the study are presented in Chapter 5, and 

concentrate on highlighting model efficiency differences between an existing deterministic model and the 

neural network model developed as a result of the research for aircraft performance forecasting. The 

analysis of these results will allow the objective formulation of an answer to the research question in the 

discussion of Chapter 6.  
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2. Literature Review 

This chapter presents a review of the relevant scientific literature, with a focus on past and current work in 

the field of AI applied to aerospace problems. The literature review starts with general background 

knowledge on the field of AI in Section 2.1. Section 2.2 investigates research in AI specifically applied to 

aerospace applications. Conclusions drawn from the literature survey are covered in Section 2.3.  

2.1 Overview of the Field of Artificial Intelligence 

This section introduces relevant definitions and background information for non-experts in the field of AI, 

including a summary of the inception and historical progression of AI and machine learning. 

2.1.1 Background and Definitions 

Artificial Intelligence 

Artificial intelligence can be broadly defined as a subfield of computer science focused on understanding 

and developing machines that are able to use some degree of intelligence and reasoning to attain a 

predefined goal. Machines that make use of AI are termed “intelligent agents”. Russell and Norvig [10] 

divide common definitions of AI along two dimensions: definitions that measure an intelligent agent’s 

success in terms of fidelity to human performance and definitions that measure success against an ideal 

performance measure, called rationality. The authors further divide each of these dimensions with 

definitions concerned with thought processes and reasoning and definitions concerned with behavior, as 

in how to act or perform an action. The field of AI has evolved to become extremely interdisciplinary, with 

roots originating in computer science, mathematics and information processing. Russell and Norvig explain 

that different scientific disciplines making use of AI focus on solving one of the four dimensions mentioned, 

which leads to different philosophies and approaches to developing AI solutions. For instance, the cognitive 

modeling approach is an approach which attempts to mimic human thought processes and reasoning. Allen 

Newell and Herbert Simon [11, 12], pioneers in the field of cognitive science, were concerned with 

comparing the thought processes of intelligent agents to that of human subjects solving the same problems, 

using computer science and experimental techniques from psychology to construct precise and testable 

theories of the human mind. Another approach to AI, which is of greater interest for the research that is the 

subject of this thesis, is the rational agent approach, which adopts the definitions of AI looking at 

rationality and behavior: How can we define an environment where an intelligent agent can perform actions 

in order to attain a mathematically defined ideal? 

The rational agent is selected as the predominant approach for this research as it presents the following 

advantages over the other approaches: 
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1. It is not always correct to assume that the best performance metric is to compare an intelligent agent 

with human performance. The rationality approach may get inspiration from human performance 

in order to define its rational objective, but it does not assume that human-level performance is the 

ultimate ideal and is open to potentially better results than are humanly possible.  

2. For some real-life scenarios in which intelligent agents may find themselves, there are cases where 

there exists no perfect thought process leading to a provably favorable rationality goal, but an action 

must still be taken. The rational agent approach is more practical than the “thought processes and 

reasoning” approaches as it is also trying to find the best thought process that leads to the best 

action, but only if this best thought process leads closer to the best rational goal.  

3. Because the action leading to the rationality goal is mathematically defined, it is more amenable to 

scientific progress and improvement than studying human behaviour or thought. Furthermore, it 

can be tested to verify that the agents provably achieve their objectives. 

Figure 1 shows an organizational chart of different AI disciplines based on end objective. The chart 

illustrates the multidisciplinary nature of AI applications.  

 

Figure 1 – Summary of some of the subfields of AI by objective 
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Machine Learning and Deep Learning 

Machine learning (ML) is a subset of artificial intelligence which leverages fundamental concepts taken 

from human physiology and applies them to machine operation. These biological concepts enable machines 

to essentially “learn from experience”. As a general rule, the more data they are presented with, the more 

they are able to extract complex patterns and, subsequently, develop elaborate knowledge bases [13]. 

Goodfellow et al. [9] describe ML as a concept where computers are able to learn from experience by 

understanding the world in terms of a hierarchy of concepts, with each concept defined in terms of its 

relation to simpler concepts. This allows the machine to learn very high complexity concepts based on the 

hierarchical relationships they have with a set of simpler concepts. The main advantage of the ML 

methodology when compared to knowledge-dependent approaches like expert systems, for example, is that 

by gathering knowledge from computer experience, ML avoids the need for human operators to formally 

specify the knowledge that the computer needs, thus reducing the expert knowledge required from the 

designer.  

Figure 2 provides a more detailed breakdown of Figure 1, with a focus on the machine learning 

subdisciplines. ANNs are seen as a type of machine learning that learns from examples in a supervised, 

unsupervised or semi-supervised manner, based on the desired application. 

 

Figure 2 – Summary of the subfields of machine learning 
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Figure 3 shows the evolution of ML programs. The first column shows the original rule-based systems 

which must be hand designed. The second column represents a classical ML program, where the designer 

specifies features for which the computer is able to do feature learning (shaded boxes show programs that 

are able to learn from data). The designer workload is still significant, however, because they must specify 

each feature individually in order for the learning to take place. The third column depicts a representation 

learning program which is able to map links between features without having the designer explicitly specify 

each feature. This approach is characterized by a reduced workload for the designer, but may not always 

yield accurate results. The final column shows a Deep Learning (DL) program. DL programs use a more 

elaborate hierarchy of concept maps (which are said to be “deep”), enabling them to extract more complex 

patterns from simpler features. Most recent successes in AI can be directly attributed to advances made in 

DL applications. 

 

Figure 3 – How deep learning differs from classical machine learning  [9]  
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Artificial Neural Networks 

An artificial neural network (ANN) is a type of machine learning which is inspired by the human 

nervous system. In a biological neuron, part of the nervous system, the dendrites receive an input from 

other neurons, the cell body provides a decision based on the input, the axon translates the decision into 

the appropriate output format, and the axon terminal transmits the output to the next neuron as depicted 

in Figure 4A. Figure 4B shows the mathematical representation of the biological neuron, which can be 

used for the ANN. Figure 4C illustrates the synapse between neurons, which allows the simultaneous 

effect of multiple outputs to be received by other neurons as input. This phenomenon is replicated in 

Figure 4D, with the nodes of an ANN being interconnected into a structured network. These notions 

allow ANNs to be very capable in developing patterns for highly complex non-linear generalization 

systems, where a very large number of parameters are under study [9, 13]. Tasks where ML 

methodologies can be particularly useful include classification; classification with missing inputs; 

regression; transcription; machine translation; structured output; anomaly detection; synthesis and 

sampling; imputation of missing values; denoising; and density estimation or probability mass function 

estimation. 

 

Figure 4 – Similarities between biological and artificial neural networks [14] 

2.1.2 Inception of the Field of AI and its Major Historical Periods  

One of the first works that led to the creation of the field of AI was written by Warren McCulloch and 

Walter Pitts in 1943 [15]. McCulloch and Pitts combined three concepts to form the basis for their theory: 

knowledge of the basic physiology and function of neurons in the human brain, a formal analysis of 

propositional logic from Russell and Whitehead [16], and Turing’s theory of computation [17]. They 
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showed, for example, that any computable function could be calculated by some network of connected 

neurons, and that all the logical functions (AND, OR, NOT, IF, etc.) could be implemented by simple net 

structures. McCulloch and Pitts also suggested that suitably defined networks could learn. Donald Hebb 

(1949) [18] demonstrated a simple updating rule for modifying the connection strengths between neurons. 

In 1956 John McCarthy convinced a group of U.S. researchers from different universities to attend a two-

month workshop at Dartmouth University, where they discussed artificial intelligence (this was the first use 

of the term “artificial intelligence”). The proposed study resulting from the workshop was the following: 

“The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of 

intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt 

will be made to find how to make machines use language, form abstractions and concepts, solve kinds of 

problems now reserved for humans, and improve themselves. We think that a significant advance can be 

made in one or more of these problems if a carefully selected group of scientists work on it together.” 

(McCarthy et al., 1955) 

Two researchers present at the meeting from Carnegie Tech, Allen Newell and Herbert Simon, 

demonstrated a reasoning program, the Logic Theorist (LT), which was able to prove most of the theorems 

found in Russell and Whitehead’s Principia Mathematica [16]. The Dartmouth workshop did not lead to 

any new breakthroughs, but it did introduce all the major figures to each other and start the collaboration 

between them. For the next 20 years, the field would be dominated by these researchers. 

The field of AI has matured significantly since its inception. Figure 5 shows a timeline of the major 

historical periods in the field of artificial intelligence. In the early 1960s there was much interest in 

developing intelligent systems and many promises were made concerning future capabilities of such 

systems (i.e. off the shelf generalization solutions). By the early 1970s, many of those promises had not 

been met, mainly due to limitations in hardware and access to data and AI research suffered. This period is 

referred as the “1st AI winter”. From 1980 to 1987, the field experienced a renewed scientific interest as a 

result of the creation of Expert Systems (ES). ES are computer-based systems designed to emulate the 

problem-solving behavior of a human that is an expert on a specific topic. They are designed by first 

capturing the domain expert’s knowledge and translating it in a format that can be understood by a computer 

program; and then by having the computer program use a reasoning logic to act upon this knowledge. For 

procedures that are well defined and already known, ES have been demonstrated to be accurate, but are 

time-consuming to develop and if situations arise were the systems operational envelope goes outside its 

prescribed procedures, the ES can no longer be trusted to yield accurate results. The AI industry boomed 

from a few million dollars in 1980 to billions of dollars by 1987 [10], and included hundreds of companies 

building expert systems, machine vision systems, robotics applications, and other specialized software and 
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hardware. Soon after came a period called the “2nd AI Winter,” during which many companies failed to 

deliver on their promises and where the limitations of the ES approach were slowing down scientific 

progress. In the late 1980s, the back-propagation learning algorithm, which is a fundamental part of modern 

day ANNs, was reinvented into a more practical version which allowed the algorithm to be applied to many 

learning problems in computer science and psychology. Combined with Parallel Distributed Processing 

[19], the 1993-2011 period was marked by a re-emergence of AI applications. As of 2011, it was shown 

that with the availability of much bigger datasets it is possible to solve previously unsolvable problems 

including filtering images from the internet [20] and word-sense disambiguation used in translation research 

[21]. 

 

Figure 5 – Timeline of the major historical periods in the field of artificial intelligence 

2.2 Artificial Intelligence in Aerospace 

Given the main components and structure of AI systems, their evolution and inception, and their existing 

application areas, it is observed that many potential avenues can be taken when undertaking the 

development of an AI system. This section will review the avenues that have been chosen by practitioners 

in the aerospace sector as a means of implementing AI in existing systems and how these research areas 

have evolved with the advancements in the field of AI within the aerospace context.  

2.2.1 Early Skepticism (1960 – 1980) 

NASA began investigating uses for artificial intelligence in aerospace applications as early as 1965 [22]. 

The agency was mainly interested in looking at advances in the field of AI (pre-1965) and determining if 

applications could be found for the new technology specifically for the NASA objectives of the time, which 

were to design better control systems and gather and analyze data more efficiently and autonomously. An 

example of this is the research done on the F-8 Crusader aircraft, which was modified as a digital fly-by-

wire testbed [23]. The aircraft used an adaptive control system that would iteratively adjust its model 

parameters in order to produce results in line with model outputs coming from onboard sensors. 

Due to the unpredictable nature of neural networks and the field of AI still being in its infancy, the adoption 

of existing technologies for the aerospace sector was severely limited. Since innovation in the aerospace 

industry is subject to regulatory and safety assessment restrictions, novel technology adoption is typically 

done after proper certification processes and acceptable safety assessment plans are present, which was not 
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the case in the 1960’s and 1970’s. This led to most of the early aerospace-related adoption of NNs being 

for use in military fighter aircraft, where mission objectives are typically prioritized and civilian 

certification requirements are not applicable.  

2.2.2 Appearance of Neural Network Research in Aerospace (1980 – 2000) 

A notable overview of the field of neural networks and its possible applications for the aerospace sector is 

the 1989 Neural Network Study Report [24], sponsored by the Tactical Technology Office of the U.S. 

Defense Advanced Research Projects Agency (DARPA/TTO). The report was developed with the 

involvement of government, industry, and academic participants. The goals of the study were; to identify 

potential applications for neural networks in Department of Defense (DoD) systems, to determine the 

current neural network technology base; to identify technology requirements; and to identify a DoD 

program plan for the next five years. Some of the study’s conclusions are summarized below: 

1. The real strength of neural networks as a new form of computational approach comes from their 

ability to self-adapt and learn from data-driven models, in time showing potential for reduced 

need for application specific software.  

2. Thanks to the development of advanced mathematical theories, new computer tools, and to a better 

understanding of neurobiology, neural network research has matured greatly since the 

perceptron of the 1950s and recommends the scientific community divest more resources 

towards the study of NNs in aerospace applications. 

3. The variety of problems addressed by neural networks is large. Significant demonstrations of 

neural network capabilities in vision, speech, signal processing, and robotics were listed. 

4. Hardware capabilities are limiting the development of important neural network applications.  

In 1994, the Federal Aviation Administration (FAA) published research [25] reviewing and discussing 

issues related to the use of AI in aerospace technology. The research focused on three fields of AI: Expert 

systems, fuzzy logic, and neural networks. It is explained that ES and NNs on their own still have drawbacks 

(certification and functional) that are keeping them from being used more broadly in aerospace but, that 

when used together as integrated ES-NN systems (or fuzzy-NN systems), would generate considerable 

potential. The goal of integrating these two methods is to extract features in complex pattern recognition 

using NNs and using them in ES for reasoning, in time speeding up the process of developing ES and 

creating a system that can deal with more generalized problems than a single NN could solve. The FAA 

recommends use of such integrated systems in particular for space exploration, nuclear power, and military 

aerospace.  
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Around the mid-1990s, NN research in aerospace appeared in various domains including regression 

optimization [26, 27], aerodynamics modeling [28], adaptive control systems [29, 30], fault diagnosis [31] 

and anomaly detection [24]. This new wave of research was marked by demonstrated implementations of 

NNs as replacements or enhancements to existing methodologies in these respective aerospace domains. 

Faller and Schreck [31] present the case that NNs can act as a useful tool for solving real-life non-linear 

aerospace problems (with some examples), but that they must be combined with existing techniques in 

order to yield optimal results (for example, validating NN predictions using existing simulation tools). 

2.2.3 Proliferation of Neural Network Scientific Interest (2000 – 2010) 

In 2002, NASA developed a standard [32] for the verification and validation of neural networks for use in 

certified of aerospace systems, which resulted in addendums to the DO-178, which deals with guidelines 

for safety-critical software used in airborne systems. The focus at the time was on certifying adaptive flight 

control systems that use NNs. This standard provides a good basis for evaluating the proper development 

of any supervised neural net for use in an aerospace context. NASA has not yet provided a standard for 

unsupervised training neural nets. 

The National Research Council of the National Academy of Sciences releases decadal surveys on major 

scientific research areas, which include current-state assessments and recommendations for government, 

academic and industrial entities. The latest aerospace survey, the 2006 Decadal Survey of Civil 

Aeronautics: Foundation for the Future [33], highlighted major areas of research that would most benefit 

civil aeronautics. Intelligent systems, of which NNs are a part, were identified as a recurring theme across 

all of the major areas of research.  

Following the 2006 decadal survey, a proliferation of NN research began across a wide variety of aerospace 

applications. This was due to many factors including the increased availability of large datasets, new 

development tools enabling easier NN development, parallel computing, and better optimization 

algorithms. Advances in adaptive control systems included those able to compensate for system 

uncertainties [34], able to adapt to changes in flight conditions [35], possessing fault-tolerant abilities [36], 

and providing faster online training capabilities [36]. Advances in non-linear airflow analysis tools included 

systems capable of furthering the understanding of ice accretion models [37], unsteady aerodynamic models 

coupling multiple non-linear aerodynamics models (i.e. for aircraft in dynamic ground effect) [38], buffet 

pressure predictions [39], and the prediction of maneuver loads [40]. Advances in anomaly detection 

research included pattern recognition algorithms to identify anomalies for health management of aircraft 

gas turbine engines [41]. Advances in regression optimization of non-linear systems included rotorcraft 

vibration modeling for real-time applications [42], predicting aircraft cruise performance solely based on 
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available flight data [43], and simplified methods to estimate aircraft fuel consumption coupled with fast-

time airspace simulation models like SIMMOD, TAAM (Total Airspace and Airport Model) or RAMS 

(Reorganized Analytical Modeling Systems) [44]. 

2.2.4  Appearance of Industry-Proven Implementations (2010 – Present) 

Between 2014 and 2016, the National Research Council [45], the FAA [46] and NASA [47] released reports 

paving the way for developing methodologies for the verification of NNs in aerospace software. The goal 

of this research was to conduct a preliminary examination of what is necessary to provide sufficient 

assurance that an adaptive system is safely used in an aircraft product from a software perspective. These 

efforts resulted in recommendations for modifying the ARP-4754A, ARP-4761 and DO-178C guidelines 

and their supplements. 

Since 2010, a new resurgence of NN research can be observed in the aerospace community, this time due 

to the arrival of big data, new development tools enabling non-experts to develop NNs with greater ease, 

even faster hardware allowing shorter computational times, and new and improved optimization algorithms. 

Advances in non-linear airflow analysis includes machine learning tools applied to hasten the numerical 

prediction of ice formation on local portions of aircraft flying in hazardous weather conditions for broad 

flight envelopes [48], novel approaches for developing real-time in-flight ice detection systems using 

computational aeroacoustics, Bayesian neural networks, and other Deep Neural Networks (i.e. Recurrent 

Neural Networks (RNN), Convolutional Neural Networks (CNN)) [49, 50], and the detection of airframe 

icing in a manner allowing system recommendations for reconfigurable control protecting aircraft from 

hazardous icing conditions [51]. Much research was also done in these years on anomaly detection or fault 

detection and diagnosis for aircraft: RNNs and Long Term Short Term Memory (LTSM) networks through 

semi-supervised or unsupervised learning are able to solve problems encountered by previous technology 

[52], used as tools for optimization of non-destructive testing [53], and engine fault detection using 

modified vision NN algorithms (CNN) (i.e. fatigue crack damage identification) [54]. Other advances in 

non-linear regression optimization research include the use of data fusion for airspace management and 

operations prediction tools [55] and assessing recommendations for reroutes [56, 57]. Some progress has 

also been made in the field of surrogate model generation using CNNs [58]. 

In 2019, Aero Montreal released a report [59] on the current-state of AI research and adoption in the 

aerospace industry. It is explained that Montreal, being the third largest aerospace hub by number of jobs 

in the world and at the same time being the largest AI hub, is the prime location for a more widespread 

adoption in the aerospace field, which will come with much resulting scientific progress. It is also stated 
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that such innovation can only happen with a high level of collaboration between the practitioners across the 

two sectors of aerospace and AI. 

2.3 Gaps in the Literature 

Major research areas emerging in NN-aerospace research including non-linear regression optimization, 

advanced airflow analysis, anomaly detection and health monitoring, adaptive control systems, and 

surrogate model generation. The survey of the literature that was undertaken as part of the study that is the 

subject of this thesis produces the following observations: 

1. Non-linear regression optimization stands out as being the most researched topic with the most 

demonstrated benefits resulting from the use of NNs. Published research on the topic shows that, for 

highly non-linear problem sets where deterministic relationships are difficult to develop, NNs are 

generally able to solve the problems when presented with enough data.  

2. Various NN types have been applied to a number of aerospace applications with varying levels of 

success. Recent research shows that certain types of NNs are better suited for very specific problem 

sets, and research in this area is ongoing. As a qualitative observation, traditional feedforward 

backpropagation neural networks with two or more hidden layers have demonstrated the 

greatest potential at solving the widest variety of types of problem sets, especially for non-linear 

regression.  

3. Dataset sizes have increased significantly through the years, resulting in demonstrated modeling 

prediction improvements. This is a general observation and some cases remain where more data does 

not necessarily mean better model predictive accuracy, notably in cases dealing with very noisy data or 

with data populated with a large number of outliers. 

4. Development tools have evolved greatly with respect to: 1) ease of use and practicality, 2) facility in 

integrating with existing systems (hardware and software). 

5. Of all the literature found on NN applications in aerospace, literature focused on aircraft 

performance is sparse and is mostly concentrated on route [56], fuel [26, 44] or range [57, 60] 

optimization.  

  



 

15 

3. The Selected Aircraft Performance Case Study 

For the purposes of the current research, the modeling of takeoff distance (TOD) is selected as a case study 

to determine if ANNs can be used to replace existing deterministic models. This chapter begins with the 

definition of the TOD used in this work, followed by a review of how current deterministic TOD models 

are being developed without the use of ANNs. The chapter concludes with an assessment of why this case 

study is relevant to the research topic and was selected as a result of the gaps identified in the literature 

review chapter. 

3.1 Defining Takeoff Distance 

Chapter 525 (Transport Category Aeroplanes) of Part V (Airworthiness Manual) of the Canadian Aviation 

Regulations (CARs) [61] describes the legally recognized definition of the takeoff distance as: 
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From this definition, it is understood that the TOD can be different based on runway condition (dry or wet), 

if a clearway is present, and the end outcome of the takeoff (OEI, AEO, ASD). The takeoff flight path 

defined by the CARs standard 525.111, on which the TOD definition is based, is represented in Figure 6. 

The current research is only concerned with the take-off scenario up to 35 feet above ground level. Four 

possible scenarios exist: All Engine Operating Takeoff (AEO), One Engine Inoperative Takeoff (OEI), 

Accelerated Stop with AEO (ASDAEO), and Acclerated Stop with OEI (ASDOEI). The OEI and AEO both 

result in the aircraft taking off the runway, while the ASDAEO and ASDOEI both result in a rejected takeoff. 

Figure 7A and Figure 7B show representations of TOD for OEI and AEO scenarios under wet and dry 

conditions, denoted as TODN-1 ad TODN respectively. Figure 7C and Figure 7D show the same scenarios if 

clearways are present. A clearway is an area beyond the paved runway, free of obstructions and under the 

control of the airport authorities. The length of the clearway may be included in the length of the takeoff 

distance available. ASDAEO and ASDOEI distances are represented in Figure 8A and Figure 8B for rejected 

takeoffs, denoted as ASDN-1 ad ASDN respectively. Standards CAR 525.109 and 525.113 define the certified 

takeoff distances as functions of the distances shown in  Figure 7 and Figure 8. Table 1 summarizes their 

definitions. 

 

Figure 6 – Illustration of the takeoff flight path [62] 



 

17 

 

 

Figure 7 – Representation of the TOD scenario for OEI and AEO [62] 

 

Figure 8 – Representation of the TOD scenario for ASDAEO and ASDOEI [62] 
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Table 1 – Takeoff distance definitions 

Clearway TOD Definitions Regulation 

No Clearway 𝑇𝑂𝐷𝑑𝑟𝑦 = max(𝑇𝑂𝐷𝑁−1,𝑑𝑟𝑦, 1.15𝑇𝑂𝐷𝑁,𝑑𝑟𝑦) CAR 525.113 / FAR 25.113 / 

CS 25.113 𝑇𝑂𝐷𝑤𝑒𝑡 = max(𝑇𝑂𝐷𝑑𝑟𝑦, 𝑇𝑂𝐷𝑁−1,𝑤𝑒𝑡) 

𝐴𝑆𝐷𝑑𝑟𝑦 = max(𝐴𝑆𝐷𝑁−1,𝑑𝑟𝑦, 𝐴𝑆𝐷𝑁,𝑑𝑟𝑦) CAR 525.109 / FAR 25.109 / 

CS 25.109 𝐴𝑆𝐷𝑤𝑒𝑡 = max(𝐴𝑆𝐷𝑑𝑟𝑦, 𝐴𝑆𝐷𝑁−1,𝑤𝑒𝑡, 𝐴𝑆𝐷𝑁,𝑤𝑒𝑡) 

With Clearway 𝑇𝑂𝑅𝑑𝑟𝑦 = max(𝑇𝑂𝑅𝑁−1,𝑑𝑟𝑦, 1.15𝑇𝑂𝑅𝑁,𝑑𝑟𝑦) CAR 525.113 / FAR 25.113 / 

CS 25.113 𝑇𝑂𝑅𝑤𝑒𝑡 = max(𝑇𝑂𝑅𝑁−1,𝑤𝑒𝑡, 1.15𝑇𝑂𝑅𝑁−1,𝑤𝑒𝑡) 

 

The different speeds encountered during takeoff (illustrated in Figure 7 and Figure 8) are defined in Table 

2 and their limitations prescribed by regulations are summarized in Table 3.  

Table 2 – Takeoff speed definitions 

Takeoff Speed Definition Regulation 

VEF VEF is the calibrated airspeed at which the critical engine is 

assumed to fail. VEF must be selected by the applicant, but may not 

be less than VMCG. 

CAR 525.107 

FAR 25.107 

CS 25.107 

V1 V1 is the maximum speed at which the crew can decide to reject the 

takeoff, and is ensured to stop the aircraft within the limits of the 

runway. The time between VEF and V1 is recognised as 1 second. 

VR VR is the speed at which the pilot initiates the rotation, at the 

appropriate rate of about 3° per second. 

VLOF VLOF is the calibrated airspeed at which the aeroplane first becomes 

airborne. Therefore, it is the speed at which the lift overcomes the 

weight. 

V2 V2 is the minimum climb speed that must be reached at a height of 

35 feet above the runway surface, in case of an engine failure. 

VMBE Tire maximum absorption capacity speed during an extreme 

braking operation. 

CAR 525.109 

FAR 25.109 

CS 25.109 VTIRE Maximum ground speed limited by tire centrifugal forces and heat 

elevation. 
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Table 3 – Takeoff speed limitations 

Limited Speed Limitation Regulation 

VEF 𝑉𝐸𝐹 ≥𝑉𝑀𝐶𝐺 CAR 525.107 / FAR 25.107 / CS 25.107 

V1 𝑉𝑀𝐶𝐺 ≤ 𝑉𝐸𝐹 ≤𝑉1 CAR 525.107 / FAR 25.107 / CS 25.107 

𝑉1 ≤𝑉𝑀𝐵𝐸 CAR 525.109 / FAR 25.109 / CS 25.109 

VR 𝑉𝑅 ≥1.05𝑉𝑀𝐶𝐴 CAR 525.107 / FAR 25.107 / CS 25.107 

VLOF Geometric 𝑉𝐿𝑂𝐹 ≥ 𝟏. 𝟎𝟓𝑉𝑀𝑈(𝑁−1) 

𝑉𝐿𝑂𝐹 ≥ 1.08𝑉𝑀𝑈(𝑁) 

CAR 525.107/FAR 25.107/AC 25-7A 

𝑉𝐿𝑂𝐹 ≥ 𝟏. 𝟎𝟒𝑉𝑀𝑈(𝑁−1) 

𝑉𝐿𝑂𝐹 ≥ 1.08𝑉𝑀𝑈(𝑁) 

CS 25.107 

Aerodynamic 𝑉𝐿𝑂𝐹 ≥ 1.05𝑉𝑀𝑈(𝑁−1) 

𝑉𝐿𝑂𝐹 ≥ 1.10𝑉𝑀𝑈(𝑁) 

CAR 525.107/FAR 25.107/CS 25.107 

Tire 𝑉𝐿𝑂𝐹 ≤𝑉𝑇𝐼𝑅𝐸 CAR 525.109/FAR 25.109/CS 25.109 

V2 𝑉2 ≥ 1.1𝑉𝑀𝐶𝐴 CAR 525.107 / FAR 25.107 / CS 25.107 

 

3.2 The Calculation of Takeoff Distance 

This section describes a general process for developing the deterministic model used to calculate takeoff 

distance. The detailed process for calculating takeoff distance was provided by an industry partner and 

contains proprietary data, which is not included as part of this thesis. The theoretical equations for takeoff 

distances can be found in most aircraft performance textbooks [63, 64, 65, 66]. The complex models used 

by OEMs (Original Equipment Manufacturers), although based on these equations, are modified and fitted 

with proprietary flight test and other data to account for phenomena not addressed in the more simplified 

theory. The calculation of TOD, as described in the referenced textbooks, is broken down in different 

segments that must be added together to give the final distance, as shown in Figure 9. 

 

Figure 9 – TOD calculation process 
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Calculating the All Engine Acceleration Distance 

The all engine acceleration distance extends from brake release to the point where rotation velocity, VR, is 

achieved. A free body diagram of the forces acting on an aircraft during takeoff is shown in Figure 10. As 

the forces acting on the aircraft vary along the takeoff run, a step integration process can be used to calculate 

the acceleration changes, which can then be used to calculate the total distance traveled. 

 

Figure 10 – Forces acting on an aircraft during takeoff [67] 

Equation 1 shows the sum of the forces acting along the x-axis in the free body diagram. 

∑𝑓𝑜𝑟𝑐𝑒𝑠 = 𝑇 − 𝐷 − 𝜇(𝑊 − 𝐿) −𝑊𝑠𝑖𝑛𝜑  (1) [63, 64, 65, 66] 

Where T is the thrust generated by the engines, D is the drag, μ is the runway rolling coefficient of friction, 

W is the aircraft weight at the start of the takeoff run, L is the lift generated by the lifting surfaces, and φ is 

the runway slope. Acceleration along the takeoff run is calculated using equation 2, where mass is expressed 

as aircraft weight over the Earth’s gravity constant g. 

𝑎 =
∑𝐹𝑜𝑟𝑐𝑒𝑠

𝑀𝑎𝑠𝑠
=

𝑔

𝑊
[𝑇 − 𝐷 − 𝜇(𝑊 − 𝐿) −𝑊𝑠𝑖𝑛𝜑] (2) [63, 64, 65, 66] 

Equation 2 can be expressed in terms of its aerodynamic coefficients, as shown in equation 3. 

𝑎 =
𝑔

𝑊
[𝑇 − 𝜇𝑊 − (𝐶𝐷 − 𝜇𝐶𝐿)𝑞𝑆 −𝑊 sin𝜑]   (3) [63, 64, 65, 66] 

Where CD is the drag coefficient, CL is the lift coefficient, q is the dynamic pressure and S is the reference 

wing area. The dynamic pressure is obtained from equation 4. 

𝑞 = 0.5𝜌𝑉2  (4) [64] 

The acceleration at different moments along the takeoff run (from V0 to VR) can be calculated using 

equations 3 and 4. The average velocity over a small change in velocity 𝑉 is defined as: 

𝑉 =
∆𝑠

∆𝑡
  (5) [64] 
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Where Δs is the incremental distance over the speed increment and Δt is the incremental time over the 

velocity increment. Change in velocity is related to acceleration by: 

𝑎 =
∆𝑉

∆𝑡
   (6) [64] 

Where a is the acceleration and ΔV is the speed increment. The incremental distance between two points 

along the takeoff run can be obtained by combining equations 5 and 6. 

∆𝑠 =
𝑉∆𝑉

𝑎
=

𝑉∆𝑉
𝑔

𝑊
[𝑇−𝜇𝑊−(𝐶𝐷−𝜇𝐶𝐿)(0.5𝜌𝑉

2)𝑆−𝑊sin𝜑]
  (7) [64, 65] 

The all engine acceleration distance is calculated as the sum of all the incremental distances Δs (equation 

7) between V0 and VR. The distance can be obtained more accurately using integration of equation 7 as a 

function of speed. 

Calculating the Engine Out Acceleration Distance 

The engine out acceleration distance extends from engine failure (VEF) to the rotation speed VR. Right after 

the engine failure occurs, the engine progressively loses thrust, which affects the calculated distance. This 

is termed the engine spindown. The spindown factor is the ratio between the actual thrust produced by the 

engines during spindown divided by the thrust setting of the engine selected by the pilot in the cockpit. 

Performance charts showing the ratio of residual engine thrust over takeoff thrust and time from engine 

failure are used to determine the remaining thrust at any time from the engine failure event. The spindown 

factor is multiplied to the thrust values of equation 7 to get the actual thrust during engine failure. In order 

to use the proper value of engine spindown factor, which is a function of time, a step integration of the 

distance calculation from equation 7 must be undertaken with respect to time instead of speed. Using 

equation 7 with a spindown factor of 1 and the velocity at t = 0 (V1), a first initial guess of acceleration can 

be found, which corresponds to the instantaneous acceleration. The speed after 1 second is found using the 

initial guess of acceleration. The instantaneous acceleration at 1 second is then calculated using equation 3. 

Having obtained the first two instantaneous accelerations, the first average acceleration at 1 second can be 

calculated. The new value of speed at 1 second can be recalculated using the average acceleration, and this 

process can be repeated until the value of airspeed converges to the final value.  

Calculating the Flare Distance 

The flare distance extends from initiation of rotation (VR) to a height of 35 feet above ground level. For the 

AEO scenario the height of 35 feet above ground level corresponds to V35, while for the OEI scenario the 

height of 35 feet above ground level corresponds to V2 with an engine failed. During flight testing, 

experimental V35 and V2 airspeed values are obtained for a variety of scenarios and conditions (i.e. for 
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different thrust to weight ratios). The flare distance for the AEO scenario can be calculated using equation 

8 and the flare distance for the OEI scenario can be calculated using equation 9, where ΔtR-35 is the flare 

time from rotation to 35 feet. 

𝑆𝑓𝑙𝑎𝑟𝑒,𝐴𝐸𝑂 =
𝑉𝑅+𝑉35

2
∆𝑡𝑅−35  (8) [66] 

𝑆𝑓𝑙𝑎𝑟𝑒,𝑂𝐸𝐼 =
𝑉𝑅+𝑉2

2
∆𝑡𝑅−35  (9) [66] 

Calculating the Deceleration Distance 

The deceleration distance extends from V1 and ends at the moment when the ground speed is zero. 

Regulations mandate that a 2 second recognition time must be considered at the V1 speed. The throttle 

setting and brake design produce additional forces to consider in this scenario, which affect the value of the 

braking coefficient of friction μB. The deceleration scenario is depicted in the free body diagram of Figure 

11. 

 

Figure 11 – Forces acting on an aircraft during a takeoff deceleration [67] 

Equation 10 shows the sum of the forces acting along the x-axis in the free body diagram. 

∑𝑓𝑜𝑟𝑐𝑒𝑠 = 𝑇 − 𝐷 − 𝜇𝐵(𝑊 − 𝐿) −𝑊𝑠𝑖𝑛𝜑  (10) [63, 64, 65, 66] 

Where T is the thrust generated by the engines, D is the drag, μB is the braking coefficient of friction, W is 

the aircraft weight at the start of the takeoff run, L is the lift generated by the lifting surfaces, and φ is the 

runway slope. Values of μB are experimentally obtained during flight tested or provided by the brake 

manufacturer. Deceleration along the takeoff run is calculated using equation 11, where mass is expressed 

as aircraft weight over the Earth’s gravity constant g. 

𝑎 =
∑𝐹𝑜𝑟𝑐𝑒𝑠

𝑀𝑎𝑠𝑠
=

𝑔

𝑊
[𝑇 − 𝐷 − 𝜇𝐵(𝑊 − 𝐿) −𝑊𝑠𝑖𝑛𝜑] (11) [63, 64, 65, 66] 

Equation 11 can be expressed in terms of its aerodynamic coefficients, as shown in equation 12. 
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𝑎 =
𝑔

𝑊
[𝑇 − 𝜇𝐵𝑊 − (𝐶𝐷 − 𝜇𝐵𝐶𝐿)𝑞𝑆 −𝑊 sin𝜑]   (12) [63, 64, 65, 66] 

Where CD is the drag coefficient, CL is the lift coefficient, q is the dynamic pressure and S is the reference 

wing area. The dynamic pressure is obtained from equation 4. 

The deceleration from V1 to Vfull stop can be calculated using equations 12 and 4. The incremental distance 

between two points along the deceleration segment can be obtained using equation 13. 

∆𝑠 =
𝑉∆𝑉

𝑎
=

𝑉∆𝑉
𝑔

𝑊
[𝑇−𝜇𝑊−(𝐶𝐷−𝜇𝐵𝐶𝐿)(0.5𝜌𝑉

2)𝑆−𝑊sin𝜑]
  (13) [64, 65] 

The deceleration distance is calculated as the sum of all the incremental distances Δs (equation 13) between 

V1 to Vfull stop.  

Summation of all of the Takeoff Distances 

The final distances for each of the takeoff outcomes are calculated as follows: 

𝑇𝑂𝐷𝐴𝐸𝑂𝑜𝑟𝑇𝑂𝐷𝑁 = AllEngineAccelerationDistance 

𝑇𝑂𝐷𝑂𝐸𝐼𝑜𝑟𝑇𝑂𝐷𝑁−1 = AllEngineAccelerationDistance + EngineOutFlareDistance 

𝐴𝑆𝐷𝐴𝐸𝑂𝑜𝑟𝐴𝑆𝐷𝑁 = AllEngineAccelerationDistance + DecelerationDistance 

𝐴𝑆𝐷𝑂𝐸𝐼𝑜𝑟𝐴𝑆𝐷𝑁−1 = EngineOutAccelerationDistance + DecelerationDistance 

3.3 Assessment of the TOD Deterministic Model 

The process used by OEMs to develop their proprietary deterministic models is complex because it 

integrates multiple models from different aerospace disciplines, deals with large amounts of data, requires 

expert knowledge to be developed, and is dependent on many external factors, which include: 

• Airport atmospheric conditions and altitude (temperature, pressure, air density, wind speed and 

direction) 

• Airport runway conditions (runway sediment accumulation, runway slope) 

• Aircraft operational capabilities (available thrust, structurally limited takeoff speeds, VR, CL, etc.) 

• Aircraft takeoff limitations from regulations (VMBE, VTIRE) 

• Aircraft configuration (ECS on/off, anti-ice on/off, flap setting, engine configuration) 

• Weight and balance 

• Pilot recognition time (time at V1)  
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Considering the gaps identified in the literature and the assessment of the existing TOD deterministic 

model, the TOD is selected as the case study for this research because it is a high complexity non-linear 

regression optimization problem which is a function of a diverse set of parameters; requires much expert 

knowledge to develop; involves the processing of large amounts of data; and requires much development 

time and effort when done using deterministic models. Based on the literature survey, a traditional 

feedforward backpropagation neural network with two or more hidden layers will be tested using large 

datasets considering that this type of model has shown the most promise when applied to this type of 

problem. Two types of datasets were analyzed: 1) A deterministic dataset generated from an existing aircraft 

performance takeoff distance model and 2) A non-deterministic dataset consisting of empirical flight data 

from sensors onboard an aircraft. The selected research approach is explained in detail in Chapter 4.  



 

25 

4. Research Methodology 

This chapter details the process followed in order to develop the different neural networks that were used 

in this study. Section 4.1 presents an overview of the chosen neural network development process. Section 

4.2 defines clear requirements and objectives used to properly evaluate the performance of the NNs being 

developed. Section 4.3 covers the process of selecting and preprocessing the dataset that are used to develop 

the NNs. Two different selection and preprocessing methods were used for the deterministic and non-

deterministic datasets. Section 4.4 details the development of the NN architecture, which includes defining 

key parameters constituting the foundation of the NN’s mathematical structure. Once the architecture is 

defined, the NN can be trained and tested to evaluate its performance (Section 4.5). Finally, it is shown in 

Section 4.6 how a trained NN can be used in practical applications. 

4.1 The Neural Network Development Process 

Figure 12 illustrates the procedure that was used to develop the neural network application. The first step 

is to define the desired objectives and requirements for the NN. These are used to determine when to stop 

the optimization of the network. The next step is to analyze the dataset’s properties (i.e. dataset distribution, 

size, file format, etc.) in order to appropriately select the optimal dataset properties. The dataset is then 

preprocessed to retain only the desired data properties and to facilitate data integration with the Python code 

environment. Based on the dataset’s characteristics, a preliminary architecture can be defined, which is 

subsequently optimized using a topological study. The network is trained using the training dataset and 

tested using the testing dataset. If the network objectives are not met, the network architecture must be 

updated, and this process is iterated until the desired training and testing results are obtained. Once the 

network requirements are met, the weights matrix of the trained network are saved to a local file, which can 

then be used by a predictive tool application.  Each step will be explained in more detail in the following 

sections. 

 

 

Figure 12 – Neural network development process 
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4.2 Network Objectives and Requirements Definition 

The neural network’s objectives and requirements depend on what it will be used for. For the calculation 

of TOD, data found in aircraft flight manuals (AFM) are typically acceptable when errors are lower or equal 

to 1 % of the flight test data. For the purposes of this research, the lowest possible error margins are desired. 

20 hours have been arbitrarily selected as the maximum training and testing times. The time was chosen 

based on a conveniently long enough time for the NN to extract complex patterns of acceptable precision 

for the demonstrative purposes of this research. Since the tool making use of the trained NN could 

potentially be used onboard aircraft or be part of the development of software versions of AFMs, this tool 

must be able to compute TOD predictions very fast. It was set as a requirement for that time to be equal to 

or lower than 1 second. This research is used as a proof of concept, but it would be advantageous to develop 

it in a way that would also be adaptable to work with other aircraft performance scenarios than TOD (i.e. 

landing distance predictions). It must also be able to be integrated easily with existing technology (i.e. with 

a software AFM or with an Electronic Flight Bag). Table 4 summarizes the NN requirements. 

Table 4 – Summary of the NN requirements and objectives 

Neural Network Parameter Requirements & Objectives 

Maximum training and testing time 20 hours 

Maximum predictive tool run time 1 sec 

Network re-usability Able to be re-used for alternate applications 

Integration with existing technology Able to integrate easily with existing technology 

Outlier data points Able to deal with outliers 

 

4.3 Dataset Selection Process 

The first of the two datasets used in the current research project was generated from a deterministic takeoff 

distance model based on the principles described in Section 3.2 and in accordance with Part 25 of the 

Federal Aviation Regulations (FARs) and Part V of the Canadian Aviation Regulations (CARs) 

(Airworthiness Standards for Transport Category Airplanes). The second dataset was obtained from 

NASA’s DASHlink [68] (Discovery in Aeronautics Systems Health) initiative, a web-based tool for 

collaborative research in data mining and systems health. The primary goal of DASHlink is to disseminate 

information on the latest data mining and systems health algorithms, data and research. This dataset comes 

in the form of flight data collected from sensors onboard an unidentified aircraft (for legal purposes). 
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4.3.1 Deterministic Takeoff Distance Dataset 

The first dataset’s parameters are shown in Table 5. Based on the deterministic relationships describing the 

calculation of the TOD described in Section 3.3, it was decided that only the most influential factors 

affecting the TOD performance would be varied for development of the NN. Consequently, all other 

parameters involved in the TOD deterministic model were kept constant and are listed in the first column 

of Table 5. The parameters of interest are listed in the second column of Table 5 and are the aircraft weight, 

the pressure altitude, the temperature, the wind speed and the runway slope. Figure 13 shows the parameters 

as input and output values of the neural network, where the takeoff distance corresponds to the Takeoff 

Field Length (TOFL), which is the most constraining out of the TODOEI, TODAEO, and TODASD. Figure 14 

shows a sample of the raw deterministic TOD model used to generate the dataset. It is a text format file 

(.txt), which facilitates customization of the dataset as well as optimizes file size. This is an important 

choice as the customization will allow only the desired parameters to be selected for the NN or to modify 

the dataset to better suit the optimization of the NN architecture. The file size consideration is also important 

as this dataset can be very large in size (between 70 MB and 61 GB depending on what parameters and the 

number of test cases that are selected).  

Table 5 – Parameters affecting TOD that can be obtained from the TOD deterministic model 

Constant Input Parameters Varying Input Parameters Output Parameters 

Aircraft & Engine Configuration Weight TODOEI 

Flap Configuration Pressure Altitude TODAEO 

Balanced V1 Temperature TODASD 

V2 Wind Speed TOFL 

Runway Condition (Dry) Runway Slope  

Thrust Setting   

Engine ECS (Off)   

Anti-Ice (Off)   

BTMS   

MMEL/CDL effects   
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Figure 13 – Selected input and output values for the neural network 

 

Figure 14 – Sample of the deterministic dataset1 

Figure 15 shows how the deterministic dataset can be preprocessed and compressed to optimize run time 

and local storage. All unnecessary string characters are removed (i.e. spaces, character returns, paragraph 

returns) and only the five selected input parameters and the output TOFL value are kept. 

 

Figure 15 – Compressed deterministic dataset 

 

1 The font in the figure was intentionally sized to be unreadable due to proprietary reasons and is only used for 

illustrative purposes. 
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Figure 16 shows the distribution of each of the parameters from the dataset. The distribution for all input 

parameters is linear and the distribution for the output TOFL parameter is polynomial. The y-axis shows 

the amount of test cases generated from the TOD deterministic model and the x-axis shows the values of 

each test case generated. Values in the y-axis are scaled to allow for a better comparison. For some test 

cases, the TOD deterministic model cannot produce any values since they are physically impossible. For 

example, some test cases with DISA temperatures lower than -50 C are impossible for the aircraft to operate 

in and a reduction in generated number of test cases results from this fact. 

 

Figure 16 – Dataset distribution for individual input and output parameters 
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Three different preprocessing operations were tested: 1) the raw distribution without any modifications, 2) 

a normalized distribution, and 3) a standardized distribution. The raw distribution shows that the values of 

each parameter can vary greatly, which will affect the NN’s prediction accuracy. The normalized and 

standardized distribution were generated to solve this problem. Normalization is selected as the best option 

using trial and error. 

4.3.2 NASA DASHlink Non-Deterministic Dataset 

The NASA DASHlink dataset is composed of aggregate flight recorded data, consisting of actual data 

recorded onboard a single type of regional jet operating in commercial service over a three-year period 

(2001-2004). NASA states the following about the flight data [68]: “While the files contain detailed aircraft 

dynamics, system performance, and other engineering parameters, they do not provide any information that 

can be traced to a particular airline or manufacturer. […] The appropriate parties have allowed NASA to 

provide the data to the general public for the purpose of evaluating and advancing data mining capabilities 

that can be used to promote aviation safety”. The flight data provides an exhaustive list of parameters that 

are not required for this study. The parameters used for the current work can be found in Figure 17 and 

include the pressure altitude, fuel quantities, aircraft weight, total air temperature, wind speed, ground 

speed, altitude and Greenwich mean time. The figure also shows how each sensor value can be used to 

calculate aircraft total weight, distance traveled, the normalized wind speed, the elapsed time and takeoff 

distance; which are all values required for the calculation of TOD. The selected input and output parameters 

are the same as for the previous deterministic dataset shown in Figure 13 with the exception of runway 

slope, which was not possible to calculate due to lack of sensor accuracy. 



 

31 

 

Figure 17 – Process of generating secondary data from the flight data  
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Upon further analysis of each input parameter of the original dataset’s distribution as seen in Figure 18, 

distinct zones in the data distribution were identified for which not enough datapoints are available to build 

a NN capable of adequately generalizing patterns. This observation was validated through empirical trial 

and error. These problematic distribution zones are highlighted in red in Figure 18, and were removed from 

the datasets to be tested in the research. This data preprocessing approach is based on the following 

reasoning: 

1. Some datapoints were physically unrealistic. These are attributed to sensor errors or inaccuracy. 

Examples include TOFL values lower than zero or aircraft weights more than ten times higher than 

other values, considering all values are meant to be attributable to the same type of regional jet.   

2. Values that are not proportionately distributed. The flap drag and normalized wind speed 

distributions both show values that are not proportionately distributed as almost all datapoints are 

concentrated with a very small number of test cases. This significantly increase the difficulty in 

training a NN that generalizes well across all datapoints.  

3. Zones of higher probability. The zones having the highest distributions, highlighted in green in 

Figure 18, were prioritized to facilitate generalization by reducing the amount of outlier datapoints. 

The original dataset was separated into two distinct datasets: one consolidating data for a single aircraft and 

another for the entire fleet of twelve aircraft. The preprocessing approach discussed above was used to 

reduce the dataset using the limits shown in Table 6 and Table 7 respectively. Figure 19 and Figure 20 show 

the distributions of the two finalized datasets used in this study. 
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Figure 18 – Original dataset distribution for the fleet of 12 aircraft 

 

 

Table 6 – Limits imposed on original dataset for 1 aircraft 

Parameter Limits 

Weight > 0 & < 23000 

Flap Drag [drag counts] > 2400 & < 2470 

Pressure Altitude [feet] > -800 & < 2400 

Total Air Temperature [deg C] > -10 

Normalized Wind Speed [ft/s] = 0 

TOFL > 0 & < 10000 

Table 7 – Limits imposed on original dataset for the fleet of 12 aircraft 

Parameter Limits 

Weight > 0 & < 23000 

Flap Drag [drag counts] > 1800 & < 2600 

Pressure Altitude [feet] > -800 & < 2400 

Total Air Temperature [deg C] None 

Normalized Wind Speed [ft/s] = 0 

TOFL > 4700 & < 6500 
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Figure 19 – Selected dataset distribution for 1 aircraft 

 

Figure 20 – Selected dataset distribution for the fleet of 12 aircraft 

4.4 Neural Network Architecture Development 

The development of the network architecture involves the definition of the architecture components listed 

below and depicted in Figure 21.  

1. the optimization function; 

2. the loss function; 

3. the activation function;  

4. the number of hidden layers; 

5. the number of neurons per hidden layer; and 
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6. the maximum allowable number of epochs. 

Layer 1 is the input layer and its number of neurons must be equal to the number of input values in the 

dataset. The last layer, Layer 4, is the output layer and its number of neurons must be equal to the number 

of output values in the dataset. Layers 2 and 3 are referred as ‘hidden layers’ and are used to propagate the 

information in a parallel manner towards the output solution. The more hidden layers a network has the 

‘deeper’ a network is said to be. The term Deep Learning is generally used to describe a NN which has two 

or more hidden layers. Each neuron is constructed of an activation function, which decides when and if a 

neuron is used in the calculation, an optimization function, which is used to decide how to propagate the 

information on to the next neuron, and a loss function, which is the function the optimization function is 

trying to optimize. The combined objective of these components is to work in a manner that finds the 

weighted dot product of the value attributed to each neuron which gives the closest value to the desired 

output value. This is done by updating the weights and biases of each network connection. This type of 

‘feedforward backpropagation’ neural network uses the backpropagation algorithm to update the weights 

and biases which will yield the best outcome solution. The number of times the weights and biases are 

updated and backpropagated down the network are called ‘epochs’, which can be viewed as a back-and-

forth iteration. Selecting different types of functions and values for these architecture parameters 

significantly affects the network performance. General rules from the literature can be used [9, 13] in order 

to narrow down the search: 

1. As a general observation, the deeper the network, the higher the generalization capability of the 

network. This comes with an increased need in computing power, longer run times, and may not 

necessarily always yield better results in cases where there is not enough data to extract patterns or 

the data is too noisy. 

2. Certain types of optimization, loss and activation functions are more efficient for specific 

applications and datasets. These will be explained in more detail further in the current section. 

3. The number of neurons per hidden layer and maximum allowable number of epochs are a function 

of the dataset size. 
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Figure 21 – Neural network architecture development process [69] 

A number of different tools are available for the development of a neural network. NNs can be programmed 

directly in low-level of abstraction programming languages like C, but the associated workload and 

programming knowledge required is high. A number of different programming frameworks have been 

created in an effort to alleviate these issues. Programming frameworks have different purposes and 

orientations including industrial development, academic research, fast prototyping, and ease of model 

implementation. Machine learning frameworks include TensorFlow, Keras, PyTorch, Theano, Matlab, and 

Caffee, among others. Figure 22 shows a ranking of the most commonly used ML frameworks based on a 

study done by Jeff Hale [70, 71], which looked at ranking different deep learning frameworks with respect 

to various categories. The Keras API was selected for the current research based on the following 

advantages: 

1. Efficiency in reducing cognitive load (i.e. consistent and simple APIs, minimizes number of user 

actions required for common use cases, and it provides clear and actionable feedback upon user 

error). 

2. Useful for fast prototyping and experimentation. 

3. Ease of implementation across a wide variety of products (iOS, android, browser, Google Cloud, 

Raspberry Pi etc.). 

4. Widespread adoption and ease of access on supporting documentation. It is fully recognized as a 

front end to TensorFlow, which could be used in future research to further the optimization of the 

designed network. 
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Figure 22 – Ranking of deep learning frameworks [70] 

Figure 23 shows a classification of the parameters commonly used in ML that can be selected when defining 

a network architecture. All the functions present in the figure are available in Keras, and there is also an 

option to create customized functions.  

Selecting the Relevant Loss Functions 

The current work is interested in solving a regression optimization problem rather than a classification 

problem, which narrows down the architecture selection process. From the loss functions shown in Figure 

23, the logcsoh, MAPE, MAE, MSE, and MSLE functions are relevant for a regression problem. Table 8 

shows definitions for each loss function as well as their most used applications. Grover [71] explains that 

median is more robust to outliers than mean, which consequently makes MAE more robust to outliers than 

MSE. Furthermore, De Myttenaere et al. [72] explain that finding the best model under the MAPE is 

equivalent to doing weighted Mean Absolute Error (MAE) regression. For these reasons, MSLE and MAPE 

are used for NN testing. 

Due to safety considerations associated with aerospace applications, the predictions generated by the NN 

must be conservative. Even though it is desirable to have the NN architecture that produces the lowest 

MSLE or MAPE values (which are a measure of the overall error for all test cases), it must be noted that 

the driving metric to determine the best model is the worst-case error for all possible test cases.  
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Figure 23 – Commonly used NN architecture parameters 

  

NN 
Architecture 
Parameters

Loss Functions

Classification

Log

Binary 
Crossentropy

KLD / Relative 
Entropy

Exponential

Hinge

Cateorical 
Hinge

Squared hinge

Regression

MSE / 
Quadratic Loss

MSLE

MAE

MAPE

Huber Loss / 
Smooth MAE

Quantile Loss

Optimization 
Functions

Gradient 
Descent 

Algorithm

Gradient 
Descent 
Variants

Batch Gradient 
Descent

Stochastic 
Gradient 
Descent

SGD w/ 
accelerated 

direction

Momentum

Nesterov
Accelerated 

Gradient 
(NAG)

SGDs w/ 
adaptive 

learning rates

AdaGrad

AdaDelta

RMS prop

AdaM
(Momentum + 

AdaGrad)

AdaMax

NAdaM

Mini Batch 
Gradient 
Descent

Activation 
Functions

Linear

Sigmoid

Hard Sigmoid

Exponential

tan

elu

Relu

Selu

Softmax

Softplus

Softsign



 

39 

Table 8 – Loss function definitions and applications 

Definition Typical Application 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)

2

𝑛

𝑖=1

 
Well suited for datasets that have gaussian 

distributions. 

𝑀𝑆𝐿𝐸 =
1

𝑛
∑[log(𝑎𝑐𝑡𝑢𝑎𝑙𝑖) − log(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)]

2

𝑛

𝑖=1

 

Well suited for datasets that have high variance. 

It suffers from the problem of gradient and 

hessian for very large off-target predictions being 

constant. 

𝑀𝐴𝐸 =
1

𝑛
∑(|𝑎𝑐𝑡𝑢𝑎𝑙𝑖| − |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖|)

𝑛

𝑖=1

 
Well suited for datasets that have mostly 

gaussian distributions, but that contain outliers. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
𝑎𝑐𝑡𝑢𝑎𝑙𝑖

|

𝑛

𝑖=1

 
Same as MAE, but as a function of relative 

percentage error. 

 

Selecting the Relevant Optimization Functions 

For ML regression problems, the optimization functions shown in Figure 24 used are variants of gradient 

descent algorithms called stochastic gradient descents (SGD) [9, 73]. A gradient descent is an optimization 

algorithm used to minimize some loss function by iteratively moving in the direction of steepest descent as 

defined by the negative of the gradient. In ML, gradient descent is used to update the weights of the NN. 

The SGD algorithm can be faced with two known problems [74]: 

1. Local Minimum: SGDs have issues dealing with regression curves that are very steep. These can 

lead to local minimum problems, which traps the SGD algorithm in an incorrect local optimum 

solution. Momentum [75] was developed to solve this issue by accelerating the SGD solution 

towards a relevant direction. 

2. Learning Rate Selection: Selecting the optimal learning rate is difficult as one that is too small can 

lead to a very slow convergence, while a one that is too large can hinder convergence and cause 

the loss function to fluctuate around the minimum or even to diverge. Some SGD variants make 

use of adaptive learning rates, which update depending on other parameters. 

Table 9 shows a summary of the relevant SGD optimization functions. The Nadam (Nesterov-accelerated 

Adaptive Moment Estimation) optimization function was selected because it provides the most benefits in 

dealing with local minimum and for finding optimal learning rates. 
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Table 9 – Optimization functions and their applications 

Optimization Function Typical Applications 

Nesterov Accelerated Gradient (NAG) 
Helps accelerate SGD out of problematic local minimum 

solutions. 

Adagrad 
Adapts the learning rate to the frequency of occurrence of 

parameters. It is well-suited for dealing with sparse data. 

Adadelta and RMSprop 
An extension of Adagrad that seeks to reduce its 

aggressive, monotonically decreasing learning rate. 

Adam (Adaptive Moment Estimation) [76] 

Adapts the learning rate by storing an exponentially 

decaying average of past squared gradients (like Adadelta 

and RMSprop), while also keeping an exponentially 

decaying average of past gradients (like momentum). 

AdaMax 

A variant of Adam useful for dealing with unstable 

learning norms of past gradient. Practical when dealing 

with larger norm values for past gradients. 

Nadam (Nesterov-Accelerated Adaptive 

Moment Estimation) 

Combines Adam and NAG capabilities. 

 

Selecting the Relevant Activation Functions 

The selection of the appropriate activation function depends on the application of the NN. Some are 

developed to give binary inputs (0 or 1), others to give values between 0 and 1 and others to give exact 

values. Goodfellow et al. [9] recommend using the ReLU (Rectified Linear Units) activation function for 

the input and hidden layers and linear or sigmoid functions for the output layer. If the ReLU function does 

not yield acceptable results, derivatives of the ReLU (eLU, SeLU) or Softmax, Softplus, and Softsign can 

be empirically tested. 

Epochs 

For the current research, the maximum number of allowed epochs is not considered a critical parameter for 

the architecture definition. Goodfellow et al. [9] explain that it is often more useful to define an “early 

stopping criteria”, which, when triggered, will stop the training regardless of the number of epochs reached. 

The criteria used is: “if the last ten epochs have produced no improvement of mean average percentage 

error the training will stop”. This criterion has the added benefit of saving computation time as the NN will 

not be training for further epochs which would in any case not produce better results. 
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Table 10 provides a matrix of the different combinations of NN architectures that were tested using the 

different datasets, the results of which will be provided in Chapter 5. 

Table 10 – Selected architecture parameters to test using the datasets 

Optimization 

Function 

Loss 

Function 

Activation 

Function 
Nodes/Input Layer Hidden Layers Nodes/Hidden Layer 

Adadelta MAPE ReLU 1000 1 10 

Adamax MSLE  3000 2 100 

Nadam   5000 3 1000 

 

4.5 Training and Testing a Neural Network 

Training a NN involves using a dataset to update the weights of the NN in order to find the closest values 

to the output solution, while testing a NN uses the training weights to make predictions with a new dataset 

to validate the results. Testing is also a good validation method to experiment for cases that were not 

covered in the training dataset. Training and testing of a NN can be done using the same dataset and splitting 

it in two. Most regression problems use a validation split of 70 % for training and 30 % for testing. This 

ratio will be used for all the results presented in this thesis. The Keras application has the ability to generate 

graphs that can be used to evaluate the performance during training and testing such as the one shown in 

Figure 24. For each tested architecture in this study, these graphs were used to evaluate the NN performance. 

The y-axis plots the performance metric of choice while the x-axis shows the number of epochs, and thus, 

is a measure of the training time. In Figure 24 for example, the chosen metric is MAPE and is compared 

for training and testing values. The graph is an indication of: 1) How fast a metric can converge to a steady-

state value and 2) the precision of the steady-state value. 

A known problem that can occur when comparing training and testing results is overfitting or underfitting. 

Underfitted values are not able to extract the underlying pattern found in the dataset while overfitted values 

are able to extract this pattern too well as depicted in Figure 25. Underfitted values generally cannot 

converge to an acceptable solution while overfitted values do not allow accommodation for gaps between 

datapoints. This can result in poor model performance when testing values from a different dataset than in 

training. These issues can be mitigated by using a validation ratio close to the 30/70 and by providing 

enough data. 

Appendix A provides an example of the code that can be used to train and test a NN using Keras in Python.  
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Figure 24 – Training and testing MAPE vs epoch 

 

Figure 25 – Comparison of underfitting and overfitting [77] 

4.6 Using the Trained Network to Make Predictions 

Once the NN model is trained, a file is generated that contains only the trained weights of the network. A 

simple prediction tool program can be developed to give an output similar to the one of Figure 26. The user 

feeds the tool inputs for which they desire the tool to predict TOD for and the tool predicts TOD and 

compares the NN value with the actual value from the dataset it was trained on. The run time of the 

prediction tool is very fast as it only looks up the weights and calculates one output based on a set of given 

Epoch 

Loss 
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input parameters. The format of the trained weights of the NN also facilitates integration with existing tools 

(FMS, EFB, software AFMs, etc.).  

 

Figure 26 – Output of the tool making use of the trained NN 

Figure 27 depicts the file structure of the Python programs used in this research and described in this section. 

A dataset is analyzed using a “dataset_properties.py” file. This is done to facilitate the data preprocessing 

phase when dealing with very large datasets. Most datasets will not be in the proper format or will need to 

be preprocessed before they can be used for the development of NNs by removing datapoints or modifying 

the dataset distribution. This is done using the “clean_out_file.py” file. Next the 

“neural_network_architecture_selection.py” file is used to train and test the network and evaluate its 

performance. This code facilitates experimentation in selecting the optimal NN architecture for each 

dataset. For example, it provides graphs such as the one shown in  Figure 28 and summary tables similar to 

Table 12 for each tested architecture. Each trained network is saved in “saved_net.hdf5” file types, which 

are very memory efficient, and can then be used by “neural_network_tool.py” to make predictions based 

on user input. 

  

Actual value 
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Figure 27 – Diagram of the code structure  
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5. Results 

The following discussion of the results is organized according to which dataset was used to produce the 

neural network predictions. Section 5.1 reviews results found using datasets generated from the takeoff 

distance deterministic model described in Section 4.3.1. Section 5.2 reviews results found using the 

DASHlink dataset provided by NASA and described in Section 4.3.2. 

5.1 Deterministic Takeoff Distance Dataset Results 

For the NN developed using the deterministic TOD model dataset, three separate datasets were tested. 

1. A small dataset totaling 1,000 test cases (dataset 1.1);  

2. a medium sized dataset with the full scope of possible test cases totaling 358,722 test cases (dataset 

1.2), and  

3. a larger sized dataset with the full scope of possible test cases totaling 1,294,777 test cases (dataset 

1.3).  

Dataset 1.1 was used to provide a first estimate as to which optimization, loss and activation functions work 

best for the type of data used. A smaller dataset was selected in order to be able to run all available 

optimization, loss and activation functions efficiently.  

Dataset 1.2 was used to evaluate the full scope of possible test cases that can be calculated by the 

deterministic model for the takeoff scenario. It is important to note that, since the dataset is based on the 

deterministic model’s calculations, the interval between each test case value can be chosen, which affects 

the dataset distribution as seen in Table 11. The calculated values are also limited by the deterministic 

model’s operating limitations. For example, the calculation might return errors or warnings if the calculated 

TOD is outside the physical limitations of the system or if the calculated value is for an aircraft operating 

in a dangerous zone. For the sake of convenience, the error and warning calculations were neglected in this 

study. This may also affect the dataset distribution since fewer test cases are present in zones where more 

errors or warnings occur.  

Finally, dataset 1.3 was used to improve dataset 1.2’s results and analyze the effect of increasing the size 

of the dataset on the results. Table 11 summarizes the dataset properties for datasets 1.1, 1.2, and 1.3. 
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Table 11 – TOD model dataset properties 

Dataset Input Parameters Minimum Input Step Size Maximum Input Unit 

1.1 Weight 70000 500 73500 lb 

Runway Slope -2 0.25 2 deg 

Pressure Altitude 0 1000 10000 feet 

ISA Temperature -30 10 40 deg C 

Wind Speed -10 10 30 knots 

Training Test Cases 700 

Testing Test Cases 300 

Total Test Cases 1000 

1.2 Weight 70000 500 110000 lb 

Runway Slope -2 0.25 2 deg 

Pressure Altitude 0 1000 10000 feet 

ISA Temperature -50 10 40 deg C 

Wind Speed -10 10 30 knots 

Training Test Cases 251105 

Testing Test Cases 107623 

Total Test Cases 358722 

1.3 Weight 70000 500 110000 lb 

Runway Slope -2 0.25 2 deg 

Pressure Altitude 0 1000 10000 feet 

ISA Temperature -50 5 40 deg C 

Wind Speed -10 5 30 knots 

Training Test Cases 906343 

Testing Test Cases 388434 

Total Test Cases 1294777 

 

  



 

47 

5.1.1 Dataset 1.1 Results 

The Python code is able to run multiple network architectures at once and presents the results in a manner 

that facilitates the review of each architecture. The 448 different architecture combinations of optimization, 

loss, and activation functions selected in Section 4.4 were all tested using Dataset 1.1. Figure 28 shows 

training and testing results for six NN architectures of interest. Model #1 and Model #2 are examples of 

training that encounters local minimum convergence, which leads the NN to make the same prediction for 

all test cases. Model #3 and Model #4 show results that are not trapped in a local minimum but that are 

much too high in percentage errors (around 99 %). Results for these models could be improved using more 

data but that approach was not undertaken because this thesis is focused on getting the best results for the 

least required amount of data. Model #5 and Model #6 demonstrate results which meet the criteria 

established as part of the research objectives. The resulting top ten model architectures obtained are 

summarized in Table 12, where the focus is on generating the lowest worst percentage error (perr,train and 

perr,test) while keeping the lowest mean average percentage error (MAPE) as a secondary priority. Upon 

evaluation of these results, the optimal optimization functions are adadelta, adagrad, adamax, adam, and 

nadam; the optimal loss functions are MSE, MAE and MAPE; and the optimal activation functions are all 

relu. These results validate the observations made in Section 4.4 as to which combination of network 

architecture is most efficient. As Nadam can deal with momentum best and MAPE gives the same results 

as MAE, it was chosen to use Nadam, MAPE and ReLU as the optimization, loss, and activation functions 

respectively for further testing with datasets 1.2 and 1.3. 

Table 12 – Summary of the top 10 dataset 1.1 results based on best MAPE 

model_id opt_f loss_f actvn_f MAPE2 p_errtrain
3 p_errtest

4 errtrain
5 errtest

6 

194 adadelta MSE relu 1.89 9.76 9.12 474.71 467.76 

193 adadelta MSE relu 1.99 9.19 7.83 420.44 401.91 

146 adagrad MAE relu 2.17 12.60 11.68 449.55 450.67 

338 adamax MAE relu 2.18 14.39 11.53 418.19 417.82 

162 adagrad MAPE relu 2.19 11.83 12.17 472.37 472.85 

354 adamax MAPE relu 2.19 12.68 11.60 458.08 459.06 

290 adam MAPE relu 2.20 13.80 12.16 412.98 412.57 

273 adam MAE relu 2.20 11.66 12.58 465.97 467.83 

401 nadam MAE relu 2.20 15.36 11.86 380.36 380.26 

417 nadam MAPE relu 2.20 13.46 11.91 423.09 422.36 

 

2 Mean average percentage error 
3 Worst percentage error for all test cases for the training results 
4 Worst percentage error for all test cases for the testing results 
5 Worst error for all test cases for the training results 
6 Worst error for all test cases for the testing results 
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Table 13 – Summary of the top 10 dataset 1.1 results based on best p_errtrain 

model_id opt_f loss_f actvn_f MAPE p_errtrain p_errtest errtrain errtest 

201 adadelta MSE softplus 2.29 8.64 9.23 355.13 346.82 

193 adadelta MSE relu 1.99 9.19 7.83 420.44 401.91 

118 rmsprop MSLE elu 2.38 9.43 9.29 479.96 467.16 

409 nadam MAE softplus 2.31 9.43 9.89 314.10 307.21 

73 rmsprop MSE softplus 2.79 9.68 10.16 380.75 373.39 

194 adadelta MSE relu 1.89 9.76 9.12 474.71 467.76 

297 adam MAPE softplus 2.70 9.84 10.05 400.33 400.43 

120 rmsprop MSLE selu 2.48 9.87 9.57 502.54 490.83 

391 nadam MSE selu 2.42 9.90 10.40 508.02 493.85 

105 rmsprop MAPE softplus 2.70 9.91 10.10 393.16 394.20 

 

Table 14 – Summary of the top 10 dataset 1.1 results based on best p_errtest 

model_id opt_f loss_f actvn_f MAPE p_errtrain p_errtest errtrain errtest 

193 adadelta MSE relu 1.99 9.19 7.83 420.44 401.91 

197 adadelta MSE elu 2.35 11.90 8.71 442.46 429.52 

386 nadam MSE relu 2.32 14.05 8.95 433.57 418.17 

66 rmsprop MSE relu 2.42 14.13 8.98 433.77 418.43 

194 adadelta MSE relu 1.89 9.76 9.12 474.71 467.76 

201 adadelta MSE softplus 2.29 8.64 9.23 355.13 346.82 

118 rmsprop MSLE elu 2.38 9.43 9.29 479.96 467.16 

70 rmsprop MSE elu 2.42 14.03 9.29 412.73 398.21 

199 adadelta MSE selu 2.35 12.23 9.34 380.26 368.24 

72 rmsprop MSE selu 2.54 11.76 9.54 502.59 489.45 
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Figure 28 – Training and testing results for 6 different NN architectures 

Model #4 

Model #5 

Model #6 

Test Case [#] 

Test Case [#] 

Test Case [#] 

Test Case [#] 

Test Case [#] Test Case [#] 

Percent Error [%] Percent Error [%] 

Percent Error [%] Percent Error [%] 

Percent Error [%] Percent Error [%] 

TOFL Testing Results 

TOFL Testing Results 

TOFL Testing Results 

TOFL Training Results 

TOFL Training Results 

TOFL Training Results 



 

51 

5.1.2 Dataset 1.2 Results 

Dataset 1.2 was used to develop a NN model that can satisfy the NN requirements and objectives set out in 

Section 4.2, and which uses the optimization, loss, and activation functions found using dataset 1.1. To 

accomplish this, the effect of varying the following parameters was studied: 

1. the number of nodes per input layer, 

2. the number of hidden layers, and 

3. the number of nodes per hidden layer. 

For each varying parameter, the ranges that were tested are listed in Table 15 below. 

Table 15 – Summary of the test ranges for models using dataset 1.2 values 

Number of Nodes per Input Layer 1000, 3000, 5000 

Number of Hidden Layers 1, 2, 3 

Number of Nodes per Hidden Layer 10, 100, 1000 

 

Table 16 shows the results of the best combination of the different architectures tested, and Figure 29 shows 

the error distribution for each test case for the training and testing dataset. The x-axis has 358,722 test cases 

(which encompass the full scope of possible TOD scenarios) and the y-axis has percentage errors between 

NN-predicted values and actual values calculated by the TOD deterministic model. For this model 

architecture, the MAPE is 0.04 % and worst percentage error is 1.29 %. The training time was 9.9 hours 

and when the trained NN is used to make predictions the run time is 0.03 seconds. When comparing the 

training and testing values in Figure 29, a slight underfitting of the testing data is observed. This could 

potentially be reduced using more data or a validation split higher on the testing side (i.e. 40 % for testing 

and 60 % for training). The results show that, for a given dataset, a larger number of nodes per input layer, 

number of hidden layers, and number of nodes per hidden layers give better model performance up to a 

point where it no longer provides any improvement. The following dataset 1.3 will test if adding more test 

cases will help push this bottleneck point and allow the use of a greater number of nodes per input layer, 

number of hidden layers, and number of nodes per hidden layer to reduce the worst-case error even lower. 
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Table 16 – Summary of the results for the optimal NN architecture using dataset 1.2 

MAPE [%] 0.04 

Worst-Case Error [%] 1.29 

Train Time [hour] 9.9 

Run Time [s] 0.03 

Total Number of Test Cases 358722 

Optimization Function Nadam 

Loss Function MAPE 

Activation Function ReLU 

Number of Nodes per Input Layer 3000 

Number of Hidden Layers 2 

Number of Nodes per Hidden Layer 100 
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Figure 29 – Training and testing results for the optimal NN architecture using dataset 1.2 
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5.1.3 Dataset 1.3 Results 

Dataset 1.3 was used to improve dataset 1.2’s results and analyze the effect of increasing the size of the 

dataset on the results. The results from dataset 1.2 were analyzed and it was found that the test cases with 

the highest errors were values with high values of temperature and wind speed, as shown in Figure 30. 

Consequently, dataset 1.3 was produced using increased numbers of test cases for the temperature and wind 

parameters only. Table 11 lists the parameters used in dataset 1.3.  

 

Figure 30 – Distribution of test cases with MAPE higher than 0.20 % 
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Tested models with dataset 1.3 did show improved predictions compared to the results from dataset 1.2.  

Table 17 presents a summary of the NN architecture selected as the most appropriate for the dataset 1.3. 

This architecture has a lower number of hidden layers and nodes per layers than the best dataset 1.2 result, 

which leads to a slightly bigger MAPE of 0.05 %. Although this model has a higher MAPE, its value of 

worst-case percentage error as shown in Figure 31 is 0.61 %, which satisfies the NN requirements. The 

training time increased significantly from 9.9 hours to 19.4 hours but is still within the required 20 hours 

of training time. The increased dataset size also helped to solve the underfitting problem observed in the 

results obtained from dataset 1.2 as the predictions of Figure 31 generalize well to the testing results. Even 

though the dataset size has increased significantly, the run time to execute the prediction tool has not 

increased as both networks have similar structure (number of hidden layer and nodes). 

Table 17 – Summary of the dataset 1.3 results 

MAPE [%] 0.05 

Worst-Case Error [%] 0.61 

Train Time [hour] 19.4 

Run Time [s] 0.02 

Total Number of Test Cases 1294777 

Optimization Function Nadam 

Loss Function MAPE 

Activation Function ReLU 

Number of Nodes per Input Layer 1000 

Number of Hidden Layers 2 

Number of Nodes per Hidden Layer 1000 
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Figure 31 – Training and testing results for the optimal NN architecture using dataset 1.3 
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5.2 NASA DASHlink Non-Deterministic Dataset Results 

For the NN developed using the non-deterministic DASHlink dataset, two separate datasets were tested:  

1. Dataset 2.1 uses flight data from a single aircraft and the limits imposed in Section 4.3.2 and 

detailed in Table 6; and  

2. dataset 2.2 uses the full fleet of 12 aircraft and the limits shown in Table 7.  

The reasoning behind separating the original dataset into two distinct datasets is to analyze if the NN can 

generalize takeoff performance predictions well enough to encompass the differences in performance 

between individual aircraft. The limits imposed on the original dataset, explained in Section 4.3.2, produce 

the dataset properties shown in Table 18, below. The number of total test cases for each dataset is 

considerably smaller than for the deterministic datasets 1.2 and 1.3, with 1,873 and 16,079 test cases 

respectively. Based on the value ranges of each dataset, it is observed that the flap drag and normalized 

wind speed parameters have very small ranges. This can negatively affect NN performance if the 

distribution of datapoints is concentrated in a localized area. For this reason, flap drag and normalized wind 

speed are removed as input parameters for the NN. 

  



 

58 

Table 18 – DASHlink dataset properties 

Dataset Input Parameters Minimum Maximum Unit 

2.1 Weight 7144 20904 lb 

Flap Drag 2443 2461 drag counts 

Pressure Altitude -514 2202 feet 

TAT Temperature -9 36 deg C 

Normalized Wind Speed 0 0 knots 

TOFL 4704 6499 feet 

Training Test Cases 1311 

Testing Test Cases 562 

Total Test Cases 1873 

2.2. Weight 5904 21776 lb 

Flap Drag 2393 2596 deg 

Pressure Altitude -643 2363 feet 

TAT Temperature -32 40 deg C 

Normalized Wind Speed 0 0 knots 

TOFL 4702 6500 feet 

Training Test Cases 11255 

Testing Test Cases 4824 

Total Test Cases 16079 

 

5.2.1 Dataset 2.1 Results 

The purpose for using dataset 2.1 is to develop a NN model that can satisfy the NN requirements and 

objectives from Section 4.2 while using readily available non-deterministic flight data for a single aircraft. 

Table 19 lists the architecture parameters that were tested in order to select the best NN model based on the 

established performance criteria. The test parameters were selected based on their ability for being applied 

to different datasets and dealing with high variance and data distribution. Table 20, Table 21, and Table 22 

show the top 10 model architectures obtained based on best MAPE, best perr,train, and best perr,test. Results 

show that all tested optimization, loss, and activation functions produce results in the same ranges. One 

hidden layer demonstrates the best values of MAPE while two or more hidden layers give better perr,train and 

perr,test values. As the results are more constraining for the perr,train and perr,test values, the Table 21 and Table 

22 results are prioritized as the most appropriate models. For the number of nodes, results vary, and no 
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general trend can be identified. Based on these results, the recommended NN architecture is model 153 (see 

Table 23 and Figure 32).  

Table 19 – Summary of the test ranges for models using dataset 2.1 values 

Optimization Function  adamax, adadelta, nadam 

Loss Function MAPE, MSLE 

Activation Function ReLU 

Number of Nodes per Input Layer 1000, 3000, 5000 

Number of Hidden Layers 1, 2, 3 

Number of Nodes per Hidden Layer 10, 100, 1000 

 

Table 20 – Summary of the top 10 dataset 2.1 results based on best MAPE 

model opt_f loss_f actvn_f nb_hl nd_pl nd_il 
MAPE 

[%] 

p_errtrain 

[%] 

p_errtest 

[%] 

3 adadelta MAPE relu 1 10 5000 3.81 22.36 21.10 

1 adadelta MAPE relu 1 10 1000 3.81 21.64 20.22 

2 adadelta MAPE relu 1 10 3000 3.81 22.53 21.02 

87 adamax MSLE relu 1 100 5000 3.82 24.48 22.06 

82 adamax MSLE relu 1 10 1000 3.82 22.65 20.16 

145 nadam MSLE relu 2 10 1000 3.83 23.24 20.80 

4 adadelta MAPE relu 1 100 1000 3.83 22.05 20.36 

6 adadelta MAPE relu 1 100 5000 3.83 22.87 21.00 

138 nadam MSLE relu 1 10 5000 3.83 23.07 20.67 

58 adamax MAPE relu 1 100 1000 3.83 23.09 21.04 

Table 21 – Summary of the top 10 dataset 2.1 results based on best p_errtrain 

model opt_f loss_f actvn_f nb_hl nd_pl nd_il 
MAPE 

[%] 

p_errtrain 

[%] 

p_errtest 

[%] 

153 nadam MSLE relu 2 1000 5000 3.95 18.59 16.40 

122 nadam MAPE relu 2 100 3000 4.27 18.76 16.47 

67 adamax MAPE relu 2 100 1000 3.88 19.22 16.75 

99 adamax MSLE relu 2 1000 5000 3.86 20.04 18.33 

64 adamax MAPE relu 2 10 1000 4.12 20.24 19.19 

114 nadam MAPE relu 1 100 5000 3.87 20.39 18.34 

71 adamax MAPE relu 2 1000 3000 3.96 20.51 19.08 

128 nadam MAPE relu 3 10 3000 3.86 20.56 18.60 

79 adamax MAPE relu 3 1000 1000 3.94 20.69 18.63 

10 adadelta MAPE relu 2 10 1000 3.88 20.75 18.71 
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Table 22 – Summary of the top 10 dataset 2.1 results based on best p_errtest 

model opt_f loss_f actvn_f nb_hl nd_pl nd_il 
MAPE 

[%] 

p_errtrain 

[%] 

p_errtest 

[%] 

153 nadam MSLE relu 2 1000 5000 3.95 18.59 16.40 

122 nadam MAPE relu 2 100 3000 4.27 18.76 16.47 

67 adamax MAPE relu 2 100 1000 3.88 19.22 16.75 

99 adamax MSLE relu 2 1000 5000 3.86 20.04 18.33 

114 nadam MAPE relu 1 100 5000 3.87 20.39 18.34 

128 nadam MAPE relu 3 10 3000 3.86 20.56 18.60 

79 adamax MAPE relu 3 1000 1000 3.94 20.69 18.63 

10 adadelta MAPE relu 2 10 1000 3.88 20.75 18.71 

118 nadam MAPE relu 2 10 1000 3.96 20.99 18.88 

119 nadam MAPE relu 2 10 3000 4.09 20.94 18.94 

 

The MAPE for the best NN model is of 3.95 % while the worst percentage error is 18.59 % for training and 

16.40 % for testing. These values present the highest error values obtained in this research and possible 

explanations for these values are detailed in Chapter 6. Figure 32 illustrates the distribution of the NN model 

error for all trained test cases, where it is shown that most test case errors are lower than 10 % but that a 

small amount of test cases constrain the model’s worst-case performance in the error range of 10 – 19 %.  

Table 23 – Summary of the results for the optimal NN architecture using dataset 2.1 

MAPE [%] 3.95 

Worst-Case Error [%] 18.59 

Train Time [hour] 0.48 

Run Time [s] 0.09 

Total Number of Test Cases 1873 

Optimization Function Nadam 

Loss Function MSLE 

Activation Function ReLU 

Number of Nodes per Input Layer 5000 

Number of Hidden Layers 2 

Number of Nodes per Hidden Layer 1000 
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Figure 32 – Training and testing results for the optimal NN architecture using dataset 2.1 
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5.2.2 Dataset 2.2 Results 

Dataset 2.2 was used to develop a NN model that can satisfy the NN requirements and objectives from 

Section 4.2 using the non-deterministic flight data for a fleet of aircraft of the same model rather than an 

individual aircraft as was the case for dataset 2.1. The model architectures tested are the same as for the 

dataset 2.1 models presented in Table 19, and Table 24, Table 25, and Table 26 show the top 10 model 

architectures obtained based on best MAPE, best perr,train, and best perr,test. Results show that the adadelta 

optimization function and the MAPE loss function are best at finding the lowest MAPE values. Higher 

numbers of hidden layers and nodes per layer generally demonstrate better perr,train and perr,test values. From 

the model architectures studied, those with the lowest worst-case training and testing errors are prioritized 

as the most appropriate models since this is the most conservative error as required for aerospace 

applications. Based on these results, the optimal NN architecture is model 106, detailed in Table 27 and 

Figure 33.  
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Table 24 – Summary of the top 10 dataset 2.2 results based on best MAPE 

model opt_f loss_f actvn_f nb_hl nd_pl nd_il 
MAPE 

[%] 

p_errtrain 

[%] 

p_errtest 

[%] 

20 adadelta MAPE relu 3 10 3000 3.82 22.98 22.17 

4 adadelta MAPE relu 1 100 1000 3.83 21.43 21.28 

1 adadelta MAPE relu 1 10 1000 3.84 21.28 21.27 

24 adadelta MAPE relu 3 100 5000 3.84 20.31 19.67 

10 adadelta MAPE relu 2 10 1000 3.84 22.31 21.79 

82 adamax MSLE relu 1 10 1000 3.84 20.87 20.47 

19 adadelta MAPE relu 3 10 1000 3.84 22.25 21.75 

2 adadelta MAPE relu 1 10 3000 3.84 20.65 20.22 

7 adadelta MAPE relu 1 1000 1000 3.84 22.53 21.83 

3 adadelta MAPE relu 1 10 5000 3.85 21.82 21.74 

Table 25 – Summary of the top 10 dataset 2.2 results based on best p_errtrain 

model opt_f loss_f actvn_f nb_hl nd_pl nd_il 
MAPE 

[%] 

p_errtrain 

[%] 

p_errtest 

[%] 

106 adamax MSLE relu 3 1000 1000 4.00 18.50 18.00 

66 adamax MAPE relu 2 10 5000 3.95 18.96 18.25 

23 adadelta MAPE relu 3 100 3000 3.86 19.08 19.66 

97 adamax MSLE relu 2 1000 1000 3.98 19.35 18.99 

108 adamax MSLE relu 3 1000 5000 3.97 19.75 18.72 

118 nadam MAPE relu 2 10 1000 3.90 19.77 19.39 

62 adamax MAPE relu 1 1000 3000 3.88 19.84 19.17 

127 nadam MAPE relu 3 10 1000 3.88 20.07 19.60 

120 nadam MAPE relu 2 10 5000 3.93 20.08 19.24 

99 adamax MSLE relu 2 1000 5000 3.96 20.15 20.01 

Table 26 – Summary of the top 10 dataset 2.2 results based on best p_errtest 

model opt_f loss_f actvn_f nb_hl nd_pl nd_il 
MAPE 

[%] 

p_errtrain 

[%] 

p_errtest 

[%] 

106 adamax MSLE relu 3 1000 1000 4.00 18.50 18.00 

66 adamax MAPE relu 2 10 5000 3.95 18.96 18.25 

108 adamax MSLE relu 3 1000 5000 3.97 19.75 18.72 

97 adamax MSLE relu 2 1000 1000 3.98 19.35 18.99 

62 adamax MAPE relu 1 1000 3000 3.88 19.84 19.17 

120 nadam MAPE relu 2 10 5000 3.93 20.08 19.24 

118 nadam MAPE relu 2 10 1000 3.90 19.77 19.39 

117 nadam MAPE relu 1 1000 5000 3.95 20.23 19.55 

144 nadam MSLE relu 1 1000 5000 3.90 20.26 19.57 

127 nadam MAPE relu 3 10 1000 3.88 20.07 19.60 
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The MAPE for the best NN model is 4.00 % while the worst percentage error is 18.50 % for training and 

18.00 % for testing. Possible explanations for these values are detailed in the Chapter 6. Figure 33 shows 

the distribution of the NN model error for all trained test cases. Similar to the results of the previous dataset 

for a single aircraft, it may be observed that most test case errors are lower than 10 % but that a small 

amount of test cases constrain the model’s worst-case performance in the error range of 10 – 18 %.  

Table 27 – Summary of the results for the optimal NN architecture using dataset 2.2 

MAPE [%] 4.00 

Worst-Case Error [%] 18.50 

Train Time [hour] 0.28 

Run Time [s] 0.11 

Total Number of Test Cases 16079 

Optimization Function adamax 

Loss Function MSLE 

Activation Function ReLU 

Number of Nodes per Input Layer 1000 

Number of Hidden Layers 3 

Number of Nodes per Hidden Layer 1000 
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Figure 33 – Training and testing results for the optimal NN architecture using dataset 2.2  



 

66 

6. Discussion 

6.1 Review of the Deterministic Dataset Results 

The dataset 1.1 results were used to determine the most effective optimization, loss, and activation functions 

for the selected case study, which could then be used for a larger number of test cases in datasets 1.2 and 

1.3 in order to encompass all TOD scenarios. Table 12, Table 13, and Table 14 show the best NN 

architectures to produce the lowest MAPE, worst-case percentage error for training (perr,train), and worst-

case percentage error for testing (perr,test) respectively. After reviewing these results, it was observed that the 

ReLU activation function (and its derivatives elu and selu) consistently yielded the best results for all cases. 

Looking at the loss function results, MSE, MAE, and MAPE have best results for obtaining best MAPE 

and perr,train but MSE has the overall the best results as it ranks highest for MAPE, perr,train, and perr,test. For the 

optimization functions, adadelta and nadam demonstrated the best results for obtaining lowest values of 

MAPE, perr,train, and perr,test. These results validate the research listed in the Research Methodology Section 

on each architecture parameter. For this reason, it was decided to use these parameters for the architectures 

of datasets 1.2 and 1.3’s architectures.  

The dataset 1.2 results showed the impact of modifying the number of hidden layers and nodes per layers 

on the NN prediction accuracy for the complete envelope of possible test case ranges. Results showed that, 

for a given dataset, larger values of number of nodes per input layer, number of hidden layers, and number 

of nodes per hidden layers give better model performance up to a point where it no longer provides any 

improvement. 

Dataset 1.3 was used to investigate if the point where adding more hidden layers and nodes no longer helps 

increase performance could be pushed further by adding more datapoints to the dataset. Results showed 

that it is possible to increase performance even further by adding more datapoints combined with higher 

values of hidden layers and nodes per layers. The observed drawback from this approach is the 

computational time and power required is increased and limited performance past a certain NN architecture 

and dataset size. 

The optimal NN model developed using the dataset 1.3 values as seen in Figure 31 shows the final and best 

model to predict deterministic TOD values. Performance values from this model are listed in Table 17 and 

satisfy the requirements listed in Table 4.  

6.2 Review of the Non-Deterministic Dataset Results 

The NN models developed using the non-deterministic flight data from datasets 2.1 and 2.2 show that the 

provided data is enough to develop a NN model with MAPE errors lower than 4 % both for the performance 



 

67 

of a single aircraft as well as for a fleet of aircraft. On the other hand, these NN models had high values of 

worst-case percentage error (perr), which were 18.59 % off from actual values. Comparing the values from 

the optimal NN model for the fleet of aircraft and the values for the single aircraft, with the bigger sized 

dataset of 2.2, a reduction in performance is observed when compared with the single aircraft results in 

dataset 2.1. This implies that the quality of the dataset is in question or that a better preprocessing operation 

would be required in future research. 

The higher errors can be attributed to two main factors: 

1. A dataset size that is too small 

2. The presence of unknowns in the dataset for critical parameters  

41,000 test cases were available from the original NASA DASHlink dataset. Following the preprocessing 

of the dataset, the resulting datasets were of 16079 test cases or smaller. It was experimentally found that, 

due to the two potential sources of errors just listed, the results from the non-deterministic datasets 2.1 and 

2.2 show higher worst-case percentage errors than for the results from the deterministic datasets 1.2 and 

1.3. Furthermore, as the NASA DASHlink dataset is open source, there were parameters considered critical 

to this study that were not specified such as the aircraft model, number of service hours, and the payload 

weight. This is important information since the dataset could potentially be combining different aircraft 

models with differing levels of operational capabilities, though with the provided data, it is not possible to 

separate these different cases. The same could be said for the number of service hours and payload weight. 

Another fact that could potentially explain these results is the degree of sensitivity of the flight data sensors. 

These were also not specified and if they were available for study they could possibly help explain outlier 

or erroneous datapoints which negatively influences the training results. 

Nevertheless, the results obtained for the non-deterministic data show that a NN can be developed with 

acceptable MAPE for aircraft performance flight data. In future research, it would be worthwhile to 

investigate a similar study with a non-deterministic dataset that does not have the two limitations observed 

in the DASHlink dataset. 

6.3 Comparing Deterministic and Non-Deterministic Results 

Table 28 shows a summary of all the results obtained for the developed NNs, including deterministic and 

non-deterministic results. The results show that deterministic data can produce NN models that are much 

more robust than non-deterministic data. On the other hand, the greatest benefit of using non-deterministic 

data for this thesis is that it can allow the extraction of complex patterns for real-time empirical flight data, 

which may not be fully covered in the equivalent deterministic data. 
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The run time values show the performance of the prediction tool that makes use of the trained weights of 

the NN. An interesting discovery is that the run time is not a function of the dataset size but rather of the 

number of weights in the NN. Consequently, run time is a function of number of hidden layers and nodes 

per layer. This allows very large datasets to be used as effectively as smaller datasets using the prediction 

tool.  

Table 28 – Comparison of deterministic and non-deterministic results 

Dataset 
MAPE 

[%] 

Worst-Case Error 

[%] 

Training Time 

[hour] 

Run Time 

[s] 
Total # Test Cases 

1.1 1.8982 9.76 0.25 0.01 1000 

1.2 0.0439 1.29 9.90 0.03 358722 

1.3 0.0595 0.61 19.40 0.02 1294777 

2.1 3.9452 18.59 0.48 0.09 1873 

2.2 4.0030 18.50 0.28 0.11 16079 

 

6.4 Summary of the Findings 

Seven findings were determined from the results. Some can be associated with all ML regression 

optimization applications and some are more specific to the case study at hand in this research. These 

findings are presented in the present section.  

Dealing with Sparsity Errors 

Data sparsity is usually not desired as it means that information is missing that might be important to 

developing the pattern to the output solution. The chart on the left of Figure 34 is an example of data 

sparsity, where there is little data available for aircraft weighing less than 10,000 lb. Sparsity errors are a 

result of missing datapoints in the dataset and can lead to suboptimal NN performance. Allison et al. [78] 

review the problem and explains that when adding more data in the gaps, model accuracy increases. The 

results obtained from experimental models validate this statement. For the case of the deterministically 

generated datasets of this research, smaller increment sizes can be selected between each datapoint which 

allows to control the size and distribution of the dataset which best suits the needs of the designer. It is also 

possible to select the distribution and values of input parameters for which more data is required. The results 

of dataset 1.2 and 1.3 show that, when adding more datapoints for only the input parameters that had the 

highest errors, the model error can be reduced. For the case of the non-deterministic dataset, and all non-

deterministic datasets in general, the provided dataset must be used or, if possible, more data can be acquired 

to solve the problem. Allison et al. further analyze different ML techniques that can help increase model 

performance when filling in the data sparsity when acquiring new data is not possible. Filtering techniques 
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exist to bridge gaps in the data (which are out of the scope of the current research) and different 

regularization methods exist to preprocess the data to yield better model performance. One such 

preprocessing operation that was used successfully in this research is the normalization of the dataset 

values.  

  

Figure 34 – Difference between a sparse and gaussian distribution 

Generalization vs Specificity 

One of the main hurdles when developing ML models is to be able to create NNs that are good at 

generalization. Figure 35 shows two different sample models. The model on the left (general model) is able 

to make predictions for a much wider scope of input parameters, but its worst-case percentage error is of 

7.86 %. The model on the right (specific model) has a better worst-case percentage error of 0.92% but is 

only able to make predictions for a narrower scope of input parameters. The best-case model would be a 

model that is capable of making predictions for the range of input parameters of the general model with the 

precision of the specific model. In this research, this issue was solved by having multiple specific models 

with high accuracy that can be used depending on what range of input parameters and output parameters 

are of interest. Other methods exist to solve the problem. One method [27] uses an expert system with a 

gating logic which looks at multiple specific NNs in order to optimize the overall system’s efficiency and 

accuracy. Another method [79] uses a type of NN called a Recurrent Neural Network (RNN) which can 

significantly improve the generalization performance of trained recurrent networks. 
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Figure 35 – Comparison of a general model and a specific model 

No Free Lunch Theorem 

The “no free lunch theorem” [80] states that no machine learning algorithm is universally any better than 

any other. This means that each implementation of ML methodologies to a real-world application problem 

must be optimized for this very specific problem and its data distribution. Wolpert [80] shows that 

generalization of one specific NN’s results to another more general NN (with a large dataset) does not scale 

well. This explains why in general, when adding more data to increase model performance, it is 

exponentially more expensive with respect to the amount of data required and computational power. This 

observation can be a leading cause for reaching bottlenecks when developing ML models for novel 

applications. For the selected case study, it is observed that dataset 1.3 has an increased performance when 

compared with dataset 1.2 but its training time is over 19 hours instead of 9 hours. 

Validating NN Results with Physical Phenomena 

An important observation that was made in this research is that the physical interpretation of the NN values 

must always be validated for different reasons. The values produced by the NN could be validated simply 

to make sure that they are physically possible, to make sure they are desirable, or to discover new 

deterministic patterns. For all the deterministic datasets observed in this research, only values that did not 

give warning or error messages were used, which are an indication that the calculated TOD is close to 

operational limits or outside the physically possible values. For the non-deterministic datasets, it was 

explained in previous sections that much of the flight sensor data had to be omitted in the training data as 

the values were judged physically impossible. As TOD predictions that are shorter than the actual TOD 

values can result is dangerous situations, which are not desirable, all prediction values that are lower than 
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the actual solution must be processed in a way that can incorporate more safety into the model. Figure 36 

shows one way to deal with this problem, by adding a safety margin to all values to shift them all upwards 

by a value that makes all predictions positive when compared with the actual values. This is the most 

conservative solution and can affect the network’s prediction accuracy. A more sophisticated approach 

could also be used which could employ an expert system to decide what safety margin to apply based on 

each range of values. When using non-deterministic data, the NN results can be used to find new 

deterministic relations. This can be done by looking at the trained weight matrix of the NN and making 

interpretations. For example, the parameters having the highest weights could be used to update existing 

equations describing the physical system under study.  

 

Figure 36 – NN model that adds a safety margin to all predictions 

Selecting the Appropriate Performance Indicator 

It was found that the selection of the appropriate performance metric used to evaluate the NN’s success is 

case specific. Off the shelf performance metrics like MSE or MAE can be used, if relevant, but in most 

cases prior knowledge of the deterministic system under study is required as described in Section 3.2, in 

order to be able to choose an appropriate metric for the intended use. For example, in the case study, it is 

more relevant to look at worst-case percentage errors than MAPE, in order to be as conservative as possible 

across the whole scope of test cases.  

Test Case [#] 

Percent Error [ft] 
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How Much Expert Knowledge is Actually Required? 

One of the main advantages of using machine learning is to reduce the need for expert-level knowledge in 

developing a model. For the selected case study, it was found that a basic understanding of the parameters 

affecting takeoff distance as well as the overall expected behavior of aircraft in takeoff scenarios were 

required to develop the NNs successfully. This background information was covered in Section 3. This 

shows that for the case study, ML does not remove the need for expert-level knowledge completely and 

that, at best, a basic understanding of the main drivers of the system under study are still required. 

Using Deterministic Models to Generate ML Datasets 

All the NN models that were developed using the deterministic datasets (datasets 1.1, 1.2, and 1.3) produced 

results which met the defined NN requirements and objectives. This can be generally attributed to the fact 

that for these datasets it was possible to control the dataset size and distribution in order to give better 

predictive accuracy. This shows that using existing deterministic models to generate ML datasets can be 

very practical, as they allow for more control of the dataset properties.  

7. Conclusion 

The objective of this research was to investigate if Artificial Neural Networks could be used effectively as 

an alternative to current aircraft performance models. Based on the results obtained from the deterministic 

dataset generated using an existing TOD model, it can be stated that the NN’s results were in line with the 

existing model. For the optimal NN model, these results matched the existing TOD model values within 

0.61 % or lower and had an overall average model error of 0.05 %. Training Neural Networks using data 

from an existing deterministic model proved to be very effective, mainly due to its ability to generate 

different dataset distributions and dataset sizes. For the NN results based on the non-deterministic flight 

data, it was also found that the NN could produce acceptable predictions. For the optimal NN model 

generated using the flight data, the average error for all predicted test cases demonstrated performance of 

3.94 %, but the network was most constrained by outlier test cases in error ranges of 18.59 %. Reasons to 

explain the unacceptable results were reviewed and it is believed that with a similar dataset with an 

increased size and more detailed information on each data value, acceptable performance could potentially 

be obtained. Future research could investigate a more in-depth rationale to why these specific outlier test 

cases produce higher error values. 

In future research, it would be of value to analyze if it would be possible to get performance even more 

accurate than the existing deterministic model by using a more comprehensive non-deterministic dataset. 

The NN results found using the deterministic TOD dataset showed almost no error, but even if this network 
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would be perfectly modeled, it could never give results better than the ones of the deterministic TOD values. 

This fact shows the value in being able to model non-deterministic data, since much of real-life empirical 

data is non-deterministic (i.e. flight data from onboard sensors).  

Another avenue of interest would be to review the performance of existing NN models and apply them to 

the case study that is the subject of this thesis. This research focused on developing a proof of concept using 

a straightforward multiple layer feedforward backpropagation neural network. More sophisticated NN 

models exist that are tailored to solve specific problem sets. Scikit-Learn, a Python data processing library, 

provides a flowchart (see Figure 37) for selecting the appropriate NN model based on the ML problem at 

hand and the available dataset. Lasso, ElasticNet, SVR, Ridge Regression, or Ensemble Regressors could 

potentially be promising NNs for TOD prediction. 

 

 

Figure 37 – Scikit-learn’s cheat-sheet for selecting existing NN models [81] 
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9. Appendix A – Python Program 
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10.  Appendix B – Developed Neural Network Tools  

 

Figure 38 –TOFL prediction tool 

 

Figure 39 – NN architecture optimization tool 


