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Abstract 

Non-linear dynamic instability analysis of uniform and thickness-tapered composite 

plates  

Mehdi Darabi, Ph.D. 

Concordia University, 2020 

Laminated composite plates and shells are being increasingly used in aerospace, automotive, 

and civil engineering as well as in many other applications of modern engineering structures. 

Tailoring ability of fiber-reinforced polymer composite (FRPC) materials for the stiffness and 

strength properties with regard to the reduction of structural weight made them superior 

compared with metals in such structures. In some specific applications such as aircraft wing 

skins composite structures need to be stiff at one location and flexible at another location. It is 

desirable to tailor the material and structural arrangements so as to match the localized strength 

and stiffness requirements by dropping the plies in laminates. Such laminates are called as 

tapered laminates.  

In the dynamic instability that occurs in the structures subjected to harmonic in-plane 

loading not only the amplitude of the harmonic in-plane load but also the forcing frequencies 

make the structures fail at load amplitude that is much less than the static buckling load and 

over a range of forcing frequencies rather than at a single value. In this case, the bending 

deformations, the rotations and the strains are not small enough in comparison with unity, so 

the linear theory just provides an outline about the dynamically-unstable regions and is not 

capable to determine the amplitude of the steady-state vibration in these instability regions. 

The main objective of this dissertation is to develop a geometric non-linear formulation and 

the corresponding solution method for uniform and internally-thickness-tapered laminated 

composite plates. This Ph.D. research work is completed by extension of this developed 
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geometric non-linear formulation to the uniform laminated composite cylindrical shells as well. 

The novel parts of this Ph.D. dissertation are the geometric non-linear formulations and 

corresponding displacement-based solutions obtained using approximate analytical methods, 

for dynamic instability analysis of internally-thickness-tapered laminated composite plates and 

cylindrical panels. To the best of author knowledge, there is no non-linear dynamic instability 

study on internally-thickness-tapered laminated composite plates and cylindrical panels in 

literature. There is only one study on the linear dynamic instability of internally-thickness-

tapered flat plates using the FEM and Ritz method.  Here the developed analytical geometric 

nonlinear formulation not only is capable of predicting the instability regions but also is capable 

of determining both stable- and unstable-solutions amplitudes of steady-state vibrations of such 

internally-thickness-tapered laminated composite plates and cylindrical panels in these 

dynamically-unstable regions. Furthermore, the effect of the influential parameters on the non-

linear dynamic instability of laminated plates and cylindrical shells is extensively studied. 

These parametric studies were carried out on cross-ply laminated composite uniform plates, 

flat and cylindrical tapered plates, and uniform cylindrical shells. In this study, the non-linear 

von Karman strains associated with large deflections are considered. Considering the simply 

supported boundary condition the Navier’s double Fourier series with the time-dependent 

coefficient is chosen to describe the out-of-plane displacement function. For the uniform 

laminated composite rectangular plates and uniform laminated composite cylindrical shells, a 

combination of displacement and a stress-based solution is considered while for the internally-

thickness-tapered laminated composites plates and cylindrical panels a displacement-based 

solution is considered to solve the equations of motion. Then the general Galerkin method is 

used for the moment-equilibrium equation of motion to satisfy spatial dependence in the partial 

differential equation of motion to produce a set of non-linear Mathieu-Hill equations. These 

equations are ordinary differential equations, with time-dependency. Finally, by applying the 
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Bolotin’s method to these non-linear Mathieu-Hill equations, the dynamically-unstable 

regions, stable-, and unstable-solutions amplitudes of the steady-state vibrations in these 

dynamically-unstable regions are obtained for both the uniform and the internally-thickness-

tapered laminated composites plates and uniform cylindrical shells. 

A comprehensive parametric study on the non-linear dynamic instability of these simply 

supported cross-ply laminated composite uniform plates, flat and cylindrical internally-

thickness-tapered plates and uniform cylindrical shells are carried out to examine and compare: 

the effects of the orthotropy in the laminated composite uniform plates, number of layers for 

symmetric and antisymmetric uniform cross-ply laminated composite plates and cylindrical 

shells, different taper configurations and  taper angles in both flat tapered plates and tapered 

cylindrical panels, magnitudes of both tensile and compressive axial loads in the uniform and 

tapered plates and uniform cylindrical shells, aspect ratios of the loaded-to-unloaded widths of 

the uniform plates, flat and cylindrical internally-thickness-tapered panels and length-to-radius 

ratio of the cylindrical shells, length-to-average-thickness ratio of the flat plates and cylindrical 

panels and radius-to-thickness ratio of the cylindrical shells, and curvature of the tapered 

cylindrical panels i.e. radius-to-loaded widths ratio on the instability regions and the parametric 

resonance particularly the steady-state vibrations amplitudes of cross-ply laminated composite 

uniform plates, flat and cylindrical internally-thickness-tapered plates and uniform cylindrical 

shells. The present results show good agreement with those available in the literature. 
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CHAPTER 1 

1 Introduction and scope of the dissertation 

 

 

1.1 Introduction and motivation 

 

Structures composed of composite materials are among the most important structures used 

in modern engineering, especially, in the aerospace industry. Due to various advantageous 

properties such as high strength-to-weight ratio, high stiffness-to-weight ratio, and flexibility 

in design, laminated composite structures have been increasingly used in various engineering 

disciplines such as automotive industries, transportation, and civil infrastructure. Tailoring 

ability of the stiffness and strength properties and substantial reduction in part count offered by 

such material systems are other advantages that made them superior compared with metals in 

aerospace applications. Fiber-reinforced-polymer composites can also be manufactured in 

complex geometric shapes resulting in both higher product performance and manufacturability.  

In some specific applications, the composite structure needs to be stiff at one location and 

flexible at another location. It is desirable to tailor the material and structural arrangements so 

as to match the localized strength and stiffness requirements by dropping the plies. Such a 

laminate is referred to as a tapered laminate. Aircraft wing skins, helicopter yoke and near field 

joints in solid rocket boosters are some applications of the tapered structures in aerospace 

industries. In the uniform thickness laminates, the material properties only change in the out-

of-plane direction by changing the fiber directions in the layers so the strength and stiffness of 

those structures are constant along the length.  In the tapered composite structures, the material 

properties not only change in the out-of-plane direction by changing the fiber directions in the 

layers but also change along the length of the structures by dropping the plies so this dropping 

the plies makes the strength and stiffness of the tapered composite structures to be functions of 
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the lengthwise coordinate. The behavior of structures composed of advanced composite 

materials is more complicated than isotropic structures and the tapered composite structures 

bring more complexity into the analysis than the uniform composite structures.  

The light-weight structures that are composed of slender columns and thin-walled plates and 

shells that have been developed with the advent of aircraft are stiff in axial or in-plane 

deformations but flexible in bending deformations. Since these structural members within the 

range of small strains can be easily deformed into states with the finite rotation they are 

oversensitive to various instability phenomena. In fact, when they are subjected to axial or in-

plane forces they often lose stability at fairly low-stress levels that results in large bending 

deformations.  

If composite plates or shells are subjected to the static longitudinal load, gradually 

increasing this static longitudinal load when the load reaches a critical level, by a very small 

out-of-plane transverse disturbance, the composite plates or shells may suddenly change shape 

and undergo a large out-of-plane deflection (bending), so that the composite plate or shell 

structures are said to have buckled. When composite plates and shells are subjected to the 

dynamic longitudinal load, they may fail in dynamic buckling or dynamic instability.  If the 

dynamic load is suddenly applied, or it is changing instantaneously, such as impulsive loading 

then dynamic buckling will happen for the plates or shells. If a composite plate is subjected to 

a longitudinal periodically pulsating load as shown in Fig. 1.1 and described in  Eq. (1.1), for 

certain relationships between the amplitude of both static and harmonic components of the 

longitudinal periodically pulsating load, frequency of the harmonic component of the 

longitudinal periodically pulsating load, and the natural frequency of the composite plate for 

out-of-plane transverse vibrations which are explained in more detail in the next few sentences, 

the composite plate becomes dynamically unstable and the out-of-plane transverse vibrations 

occur. Because this longitudinal periodically pulsating load is parametric load compared to  
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Figure 1.1 The geometry and loading condition of a laminated composite rectangular thickness-tapered plate 

 

 the out-of-plane transverse deflections (out-of-plane transverse vibrations) but not compared 

to (respected with) the longitudinal deformations (longitudinal vibrations) this phenomenon is 

called the “dynamic instability of elastic systems” (here dynamic instability of composite plate) 

as the study of vibrations induced by the parametric pulsating loading [1].  The mechanism of 

dynamic buckling is similar to that of the static buckling and the only difference is that in 

dynamic buckling the inertia forces are taken into account so the dynamic buckling load is 

lower than the static buckling load for the same structure. But when such plates are subjected 

to the longitudinal periodically pulsating load as shown in Fig. 1.1 they may fail in dynamic 

instability which is more complicated than either dynamic buckling or static buckling. Figure 

1.1 shows the geometry and loading condition of a typical laminated composite rectangular 

thickness-tapered plate, having length 𝑎 and width 𝑏 with respect to the Cartesian coordinates 
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(𝑥, 𝑦, 𝑧)  which are assigned in the mid-plane of the plate. Here, 𝑢 , 𝑣  and 𝑤  are the 

displacement components of the plate regarding this coordinate system in the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 

directions, respectively. The rectangular plate as shown in Fig.1.1 is subjected to a longitudinal 

periodically pulsating load per unit width as follow:  

𝐹𝑥𝑥(𝑡) =  𝐹𝑠 + 𝐹𝑑𝑐𝑜𝑠𝑃𝑡                                                                 (1.1) 

where 𝐹𝑠 is a time-invariant component, 𝐹𝑑𝑐𝑜𝑠𝑃𝑡 is the harmonically-pulsating component, 

and 𝑃 denotes the frequency of excitation in radians per unit time. 

When a composite plate is subjected to the longitudinal periodically pulsating load as shown 

in Fig. 1.1, if the amplitude of both static and harmonic components of the load together is less 

than that of the static buckling value, then in general, the plate experiences only longitudinal 

vibrations. However, for certain relationships between the frequency of harmonic component 

of the load (𝑃) and the natural frequency of the composite plate for out-of-plane transverse 

vibrations (𝜔), the plate becomes dynamically unstable i.e. out-of-plane transverse vibrations 

occur. The amplitude of these out-of-plane transverse vibrations rapidly increases to large 

values. This large value is not infinite, it means that it is limited but also large compared to the 

plate thickness which will be explained in more detail later. For sufficiently small values of 

harmonic component of the longitudinal periodic load, when the frequency of harmonic 

component of the longitudinal periodic load (𝑃) is equal to double the natural frequency of 

plate for out-of-plane transverse vibrations (𝜔)  then parametric resonance occurs. This 

parametric resonance caused by the parametric pulsating loading (explained above) differs 

from the ordinary resonance of forced vibrations in which vibrations of the system caused by 

the applied periodic load in the same direction of the vibrations of the system. The ordinary 

resonance of forced vibrations occurs when the natural frequency of the system and exciting 

frequency (frequency of the periodic load) are equal. Whenever longitudinal static loading 

causes static instability (static buckling), the longitudinal periodically pulsating load which is 
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a combination of both static and harmonic components will cause dynamic instability as 

explained above. In both the static and dynamic buckling, the main factor is only the critical 

load, but in dynamic instability, not only the amplitude of both static and harmonic components 

of the longitudinal periodically pulsating load (𝐹𝑠  and 𝐹𝑑) but also the natural frequency of out-

of-plane transverse vibrations (𝜔) together with the frequency of the harmonic component of 

the longitudinal periodically pulsating load (𝑃) will play important roles. When the frequency 

of the harmonic component of longitudinal periodically pulsating load and the natural 

frequency of out-of-plane transverse vibrations of the plate structure satisfies some specific 

conditions, parametric resonance will happen in the plate structure, which makes the plate to 

fall into a state of dynamic instability. This instability is of concern because it can occur at load 

amplitudes that are much less than the static buckling load (𝑁𝑐𝑟), so a structural component 

designed to withstand static buckling may fail in a periodic loading environment. Further, the 

dynamic instability occurs over a range of forcing frequencies rather than at a single value [2, 

3] as shown in Fig. 1.2. Those dynamic instability regions are separated by two lines with a 

common point of origin in the load amplitude vs forcing frequencies as shown in the sample 

graph in Fig. 1.2. The aforementioned two lines are not perfectly straight and they curve slightly 

outwards. In this sample graph in Fig. 1.2 The static and harmonic components of the 

longitudinal periodically pulsating load are considered as 𝐹𝑠 = 𝛼𝑁𝑐𝑟  and 𝐹𝑑 = 𝛽𝑁𝑐𝑟 , 

respectively. In this figure, the static load factor is 20%  and the dynamic load factor is varied 

from zero to 80%. It means that 20% of the critical buckling load of the plate is applied to the 

static component (𝐹𝑠) of the longitudinal periodically pulsating load (𝐹𝑥𝑥 ) in Eq. 1.1, and the 

harmonic component (𝐹𝑑) of  the pulsating longitudinal load (𝐹𝑥𝑥 ) is varied from 0 to 80% of 

the critical buckling load of that plate.  
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Figure 1.2 A sample dynamically-unstable region of a thickness-tapered plate subjected to longitudinal 

periodically pulsating load having static load factor of α = 0.2   

 

Stability analysis based on classical linear theories provided only an outline of the instability 

regions. The majority of the research works available in the literature on dynamic instability of 

plates, shells and all other engineering structures are limited to the linear analysis. According 

to linear theory, one expects the vibration amplitudes in the regions of dynamic instability to 

increase unboundedly with time indeed very rapidly so as to increase exponentially. But studies 

[1, 2] show that there is vibration with steady-state amplitudes in dynamically-unstable regions. 

Figure 1.3 shows the amplitudes of steady-state out-of-plane transverse vibrations of the 

internally-thickness-tapered laminated composite plate in the dynamically-unstable region of 

the plate shown in Fig.1.2. The graphs in Fig. 1.3 are plotted for both the static and dynamic 

load factor of 20%.  As shown in Fig. 1.3 in addition to zero solution correspond to the case 

where out-of-plane transverse vibrations of the plate are absent, there exists simultaneously 

both the stable (solid curve) and unstable (dashed curve)  non-zero solutions correspond to the 

stable- and unstable-amplitudes of steady-state vibrations of the laminated composite plate in 

a state of dynamic instability. When the frequency of the harmonic component of the  
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Figure 1.3 Sample graphs of both the stable- and unstable-solution amplitudes of steady-state vibrations of a 

thickness-tapered plate subjected to longitudinal periodically pulsating load having the static load factor of α =
0.2 and the dynamic load factor of 𝛽 = 0.2  

 

longitudinal periodically pulsating load is lower than the corresponding frequency of point 

C in this figure there are not any out-of-plane transverse vibrations of the plate subjected to the 

longitudinal periodically pulsating load. But for the frequencies higher than the frequency of 

point C and lower than the frequency of point D, with very small out-of-plane transverse 

disturbance the longitudinal periodically pulsating load causes the plate to fall into the 

dynamically-unstable region i.e. the out-of-plane transverse steady-state vibrations occur in the 

plate that its amplitude increases on the stable-amplitude curve of CE. As one can see from 

Fig. 1.3 the frequencies of points C and D are the same frequencies of the lower and upper 

boundaries of the corresponding dynamically-unstable region shown in Fig.1.2 having a 

harmonic component load factor of  20%, respectively, and for the range of frequencies being 

in this domain i.e. CD region the plate is dynamically-unstable subjected to the longitudinal 

periodic pulsating load. So when both stable- and unstable-amplitude of steady-state vibrations 
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are zero, the range of frequencies between these two zero-amplitude i.e region bounded by the 

line CD, predicate also the dynamically-unstable region at this certain value of harmonic 

component load factor of  20%. As shown in a sample graph in Fig. 1.3, initially stable-

amplitude on branch CE curve increases approximately exponentially in this dynamically-

unstable region but while the frequency of harmonic component of the longitudinal periodically 

pulsating load is increased in this region (from point C to D) the speed of the growth of 

amplitudes decreases gradually. 

Let us assume that the harmonic component of the longitudinal periodically pulsating load 

has a frequency as point M which is greater than the frequency of point D at the upper boundary 

of the dynamically-unstable region. In this case, the zero solution is stable so out-of-plane 

transverse vibrations will not occur. However, at the same frequency still, another stable 

solution is possible, corresponding to the steady-state out-of-plane transverse vibrations with 

amplitude MN. These vibrations can be realized by selecting a frequency value from the 

dynamically-unstable region CD and through this stable-amplitude of out-of-plane transverse 

vibrations of the plate on curve CN by a stepwise increasing the frequency of the harmonic 

component of the longitudinal periodically pulsating load. These same out-of-plane transverse 

vibrations at the frequency of point M having stable-amplitude as MN can be developed 

differently; if one enforces a sufficiently strong out-of-plane disturbance to the plate, the out-

of-plane vibrations of the plate can occur and its amplitude grows on the branch CN of the non-

zero stable-amplitude curve. The unstable-amplitude branch DK plays an important role in the 

determination of the magnitude of the initial out-of-plane transverse disturbance to cause this 

steady-state out-of-plane transverse vibrations at such frequency as M of the harmonic 

component of the longitudinal periodically pulsating load. This branch separates the region of 

zero solutions (zero stable-amplitude) from the region of non-zero solutions which corresponds 

to the non-zero stable-amplitude of out-of-plane transverse vibrations located on the branch 
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CN curve. As long as the initial out-of-plane transverse disturbance on the plate is smaller than 

MK, the plate returns to the original state of equilibrium. If the disturbance is larger than MK, 

steady-state out-of-plane transverse vibrations arise with a non-zero stable-amplitude MN. This 

out-of-plane transverse vibration of the plate subjected to longitudinal periodically pulsating 

load is limited and determined by the “Stability in large” [1]. If one uses the theory of small 

disturbances, the steady-state out-of-plane transverse vibrations having non-zero stable-

amplitude as on the branch CN can occur only for the frequencies of the harmonic component 

of the longitudinal periodically pulsating load that its range belongs to the frequencies in 

dynamically-unstable region CD. However,  experiments show that frequencies lying only 

slightly at the higher frequencies than the dynamically-unstable region CD cause a “break” [1]  

of out-of-plane transverse vibrations. The existence of two stable amplitudes at frequencies 

higher than the frequencies of dynamically-unstable region CD leads to a phenomenon which 

is called the “overhang” [1]. By a gradual increase in the frequency of harmonic component of 

the longitudinal periodically pulsating load, we can bring the steady-state out-of-plane 

vibrations of the plate into this region where these two stable solutions (stable-amplitudes) 

exist. The growth of amplitude will continue initially with the non-zero stable curve CE until 

a jump of out-of-plane transverse vibrations occurs at a certain point of curve EN. The 

amplitude of steady-state out-of-plane vibrations of the plate decreases suddenly to the 

magnitude of the other stable-amplitude at this frequency which is zero and continues along 

the zero-stable-amplitude curve (line). Steady-state out-of-plane transverse vibrations are 

stable until the vibrations of the plate are transferred to the unstable branch DK by the 

disturbances that are not eliminated in practice [1]. Therefore for small out-of-plane initial 

disturbance for the frequencies of the harmonic component of the longitudinal periodically 

pulsating load that their ranges are outside the dynamically-unstable regions,  the out-of-plane 
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transverse vibrations do not occur in the plate and those regions as shown in Fig. 1.2 are called 

dynamically-stable regions. 

When the plates fall into the dynamically-unstable regions the dynamic instability problem 

should be considered as per the non-linear large deflection theory i.e. it should be modeled 

based on the geometrical non-linearity. The graphs in Fig. 1.2 and Fig.1.3 are the results of a 

square internally-thickness-tapered plate with 12 and 6 plies at its thick and thin sections, 

respectively that its length-to-average-thickness ratio is equal to 193.24. As we can see in Fig. 

1.3 at the end of the dynamically-unstable region, at point E on the stable-amplitude curve CEN 

of the steady-state out-of-plane transverse vibrations of the plate, the stable-amplitude is equal 

to 0.004 of the length of the tapered plate. So if we multiply the 0.004 (amplitude-to-length 

ratio) to 193.24 (length-to-average- thickness ratio), the stable-amplitude of steady-state out-

of-plane transverse vibrations of the tapered plate subjected to the longitudinal periodically 

pulsating load having both the static and harmonic components are 20% of its critical buckling 

load, will become 0.772 of its average-thickness.  Since the plate undergoes large deflections 

compared to the thickness of the plate that is to say that the out-of-plane transverse deflection 

is of the same order as the thickness of the plate due to the out-of-plane transverse vibrations, 

we thus have a geometrical non-linearity in the plate at this stage (dynamically-unstable region) 

and the strains-displacements relations are non-linear as follows:  

𝜖𝑥𝑥 = 
𝜕𝑢

𝜕𝑥
+
1

2
[(
𝜕u

𝜕𝑥
)2 + (

𝜕v

𝜕𝑥
)2 + (

𝜕𝑤

𝜕𝑥
)2]                                          (1.2a) 

𝜖𝑦𝑦 = 
𝜕𝑣

𝜕𝑦
+
1

2
[(
𝜕u

𝜕𝑦
)2 + (

𝜕v

𝜕𝑦
)2 + (

𝜕w

𝜕𝑦
)2]                                          (1.2b) 

𝜖𝑧𝑧 = 
𝜕w

𝜕𝑧
+
1

2
[(
𝜕𝑢

𝜕𝑧
)2 + (

𝜕v

𝜕𝑧
)2 + (

𝜕w

𝜕𝑧
)2]                                          (1.2c) 

𝛾𝑥𝑦 = 
𝜕𝑢

𝜕𝑦
+

𝜕v

𝜕𝑥
+ [

𝜕u

𝜕𝑥

𝜕u

𝜕𝑦
+

𝜕v

𝜕𝑥

𝜕v

𝜕𝑦
+
𝜕w

𝜕𝑥

𝜕w

𝜕𝑦
]                                          (1.2d) 

𝛾𝑥𝑧 = 
𝜕𝑢

𝜕𝑧
+
𝜕w

𝜕𝑥
+ [

𝜕u

𝜕𝑥

𝜕u

𝜕𝑧
+

𝜕v

𝜕𝑥

𝜕v

𝜕𝑧
+
𝜕w

𝜕𝑥

𝜕w

𝜕𝑧
]                                          (1.2e) 
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𝛾𝑦𝑧 = 
𝜕𝑣

𝜕𝑧
+
𝜕w

𝜕𝑦
+ [

𝜕u

𝜕𝑦

𝜕u

𝜕𝑧
+

𝜕v

𝜕𝑦

𝜕v

𝜕𝑧
+
𝜕w

𝜕𝑦

𝜕w

𝜕𝑧
]                                          (1.2f) 

where 𝑢, 𝑣 and 𝑤 are displacements of a generic point of the plate at the distance 𝑧 from the 

mid-plane of the plate in the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 directions, respectively. And 𝜖𝑥𝑥, 𝜖𝑦𝑦 , 𝜖𝑧𝑧, 𝛾𝑥𝑦, 𝛾𝑥𝑧 

and 𝛾𝑦𝑧 are 3D strains components of an element of the plate at this generic point with regard 

to the Cartesian coordinates (𝑥, 𝑦, 𝑧) based on the Green-Lagrange strain components.   

If we assume that the plate is sufficiently thin, based on Kirchhoff’s hypotheses, we can 

define the displacement of this generic point of the plate at the distance 𝑧 from the mid-plane 

in terms of the displacements of a generic point of the mid-plane of the plate as follows:   

𝑢 = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥,𝑦,𝑡)

𝜕𝑥
                                                     (1.3) 

𝑣 = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥,𝑦,𝑡)

𝜕𝑦
                                                      (1.4) 

𝑤 = 𝑤0(𝑥, 𝑦, 𝑡)                                                                          (1.5) 

Where 𝑢0, 𝑣0 and 𝑤0 are displacements of a generic point of the mid-plane of the plate in 

the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 directions, respectively. Therefore, the strain components 𝜖𝑥𝑥, 𝜖𝑦𝑦 and 𝛾𝑥𝑦 at 

an arbitrary point of the plate are related to the membrane strains (mid-plane strains) 𝜖𝑥𝑥
(0)

, 𝜖𝑦𝑦
(0)

 

and 𝛾𝑥𝑦
(0)

 , and to the bending curvatures in the x and y directions and twisting curvature of the 

mid-plane which are denoted as 𝜖𝑥𝑥
(1)

 , 𝜖𝑦𝑦
(1)

 and 𝛾𝑥𝑦
(1)

, as follows: 

{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

} =

{
 

 𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
+z

{
 

 𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
                                                 (1.6)  

For von Karman hypothesis, the in-plane displacements 𝑢0 and 𝑣0 are infinitesimal, and in 

the strain-displacement relations, only those non-linear terms which depend on 𝑤0  are 

preserved and all other non-linear terms of  𝑢0 and 𝑣0  were neglected. Hence the following 

membrane strains and the flexural (bending) strains are given by: 
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{𝜖0} =

{
 

 𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
 = 

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝜕𝑥
)2

𝜕𝑣0

𝜕𝑦
+
1

2
(
𝜕𝑤0

𝜕𝑦
)2

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
+ (

𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦
)}
 
 

 
 

                                          (1.7) 

{𝜖1} =

{
 

 𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
 = 

{
 
 

 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

                                                   (1.8) 

As mentioned above dynamic instability can occur in much lower loads than critical 

buckling load and we consider a percentage of critical buckling load. In Fig.1.2 the static 

component of the longitudinal periodically pulsating load is 20% of the critical buckling load 

of the plate and the harmonic component of the longitudinal periodically pulsating load is 

varied from 0 to 80% of the critical buckling load of that plate. By increasing the harmonic 

component of the longitudinal periodically pulsating load from 0 to 80% the width of the 

dynamically-unstable region is increased. This means that a longer frequencies range of the 

harmonic component of the longitudinal periodically pulsating load causes the plate to become 

dynamically-unstable. In Fig. 1.3 the graphs of amplitudes of the steady-state out-of-plane 

transverse vibrations of the plate subjected to longitudinal periodically pulsating load are 

plotted for both the static and harmonic component of  20% of its critical buckling load.  In 

this case, as mentioned above the stable-amplitude of steady-state out-of-plane transverse 

vibrations of the tapered plate is  0.772 of its average-thickness at the highest point inside the 

dynamically-unstable region which is of the same order as plate thickness. We suppose at this 

level of loading that the static and harmonic component of the longitudinal periodically 

pulsating load together includes 40% of its critical buckling load and corresponding out-of-

plane transverse deflection of the plate is almost as large as the plate thickness in the 

dynamically-unstable region, the stress-strain relations to remain linear. In this thesis also for 

the parametric studies of the amplitude of the out-of-plane transverse vibrations of the studied 
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composite plates and shells, the composite plates and shells subjected to the lower level of 

longitudinal periodically pulsating loadings that the amplitudes in the dynamically-unstable 

regions do not exceed to a much higher level of the out-of-plane deflections in which, the 

stresses-strains relations become non-linear. However, for the out-of-plane deflections caused 

by the out-of-plane vibrations in the dynamically-unstable region, it needs strain analysis for 

the chosen composite materials in this thesis to know whether the stresses-strains relations are 

linear or not. In this thesis, the linear stress-strain relations considered in the formulations of 

the dynamic instability problem, and the effect of material non-linearity doesn’t take into 

account. So here in this thesis anywhere we say non-linear or non-linear terms it refers to 

geometrical non-linearity. 

 The influence of the non-linear terms is therefore very important and essential, which shows 

that steady-state out-of-plane transverse vibrations exist in the dynamically-unstable regions. 

With increasing amplitudes, the influence of non-linear terms becomes more and more 

apparent, i.e, these terms limit the infinite increase in amplitudes predicted by linear theory. 

Initially, amplitudes of the out-of-plane vibrations increase approximately exponentially. As 

the amplitudes increase, the character of the vibrations changes i.e. the speed of amplitudes 

growth decreases gradually.  

In this research work which is on the non-linear dynamic instability analysis of uniform and 

tapered composite plates and uniform composite cylindrical shells, the following assumptions 

are considered in the formulations: 

• The boundary condition for all the studied composite plates and shells in this 

research is simply supported. 

• The in-plane inertia forces in the equation of motions are neglected. 

• The damping effects are not considered in the formulations. 
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• The formulations of the dynamic instability problems of all the studied composite 

plates and shells in this research are limited to the cross-ply laminated composites. 

• For the laminated composite internally-thickness-tapered flat plates and cylindrical 

panels, the extensional stiffness terms are replaced by their average values in the 

formulation.  Without this assumption, it is mathematically impossible to solve the 

two in-plane force-equilibrium equations of motion. This simplification is therefore 

taken into account in the solution method of this study. 

In this research work, the von Karman-type of plate equation is used to develop the 

equations of motion of the plate, including geometrical non-linearity. The first two equations 

of motion of the plate are the force-equilibrium equations.  From these two in-plane force-

equilibrium equations of motion, the two in-plane displacements are determined in terms of the 

out-of-plane transverse displacement function of the mid-plane of the plate. Consequently, the 

in-plane force-resultants are obtained from the in-plane displacements and further by applying 

the boundary conditions. Then, we substitute these in-plane force-resultants in the third 

equation of motion which is the moment-equilibrium equation of motion. The general Galerkin 

method is applied to the third equation of motion which is the moment-equilibrium equation 

of motion, to obtain a set of non-linear Mathieu-Hill equations as follows:  

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + 𝐾𝑚𝑛𝑞𝑚𝑛(𝑡) − (𝐹𝑠 + 𝐹𝑑 cos 𝑃𝑡)𝑄𝑚𝑛𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0       (1.9) 

Where the coefficients 𝑀𝑚𝑛, 𝐾𝑚𝑛 , 𝑄𝑚𝑛 and 𝜂𝑚𝑛 are functions of mass density, extensional 

stiffnesses, bending stiffnesses, plate geometries, and the number of longitudinal (m) and 

transverse (n) half-waves in the corresponding standing wave pattern of the out-of-plane 

displacement function.  And 𝑞𝑚𝑛(𝑡) is the time-dependent coefficient (amplitude) of the out-

of-plane displacement function. The subscripts m and n have the following ranges:  

𝑚, 𝑛 = 1,2,3,4, . . , 𝑁.                                                          (1.10) 
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This differential equation describes the parametric out-of-plane transverse vibrations of the 

internally-thickness-tapered plate shown in Fig. 1.1, include the effects of geometrically non-

linear terms. As mentioned above, the dynamically-unstable regions are determined by the 

linear parts of the Eq. (1.9) [1], it is, therefore, more convenient (practical) to write the non-

linear Mathieu-Hill equation (1.9) in the following form which only includes the linear parts: 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + (𝐾𝑚𝑛
∗ − 𝑄𝑚𝑛

∗ cos 𝑃𝑡)𝑞𝑚𝑛(𝑡) =  0                      (1.11) 

where 

𝐾𝑚𝑛
∗ = 𝐾𝑚𝑛 − 𝐹𝑠𝑄𝑚𝑛                                              (1.12) 

and  

𝑄𝑚𝑛
∗ = 𝐹𝑑𝑄𝑚𝑛                                                    (1.13) 

The basic solutions of Mathieu-Hill equation include two periodic solutions: that is to say 

periodic solutions of periods 𝑇 and 2𝑇 with 𝑇 = 2𝜋 𝑃⁄ . The solutions with the period 2𝑇 are 

of greater practical importance because the widths of these unstable regions are generally larger 

than those associated with solutions having the period 𝑇. By using Bolotin’s method [1] for the 

parametric out-of-plane transverse vibrations, the solution of period 2𝑇   is given by the 

following equation:  

𝑞(𝑡) = ∑ 𝑓𝑘 sin
𝑘𝑃𝑡

2
+ 𝑔𝑘 cos

𝑘𝑃𝑡

2
 ∞

𝑘=1,3,5,…                                      (1.14) 

where 𝑓𝑘  and 𝑔𝑘are arbitrary vectors. If one investigates the instability at the principal 

dynamically-unstable region, one can neglect the influence of higher harmonics in the 

expansion of the above equation and can assume    

𝑞(𝑡) = 𝑓 sin
𝑃𝑡

2
+ 𝑔 cos

𝑃𝑡

2
                                                  (1.15) 

The principal region of dynamic instability, which corresponds to the solution of the period, 

2𝑇 is determined by substituting Eq. (1.15) in Eq. (1.11) and equating the determinant of the 

coefficient matrix of the linear part of the governing equation to zero as follows:   
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|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2 0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2
| = 0                    (1.16) 

Equation (1.16) can be reorganized in the most simplified form of an eigenvalue problem as 

follow:  

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2

| − 𝑃2 |

𝑀𝑚𝑛

4
0

0
𝑀𝑚𝑛

4

| = 0                 (1.17) 

In this eigenvalue equation  𝐾𝑚𝑛
∗  and 𝑄𝑚𝑛

∗  are functions of the static component 𝐹𝑠 and of 

the harmonic component of the longitudinal periodically pulsating load, respectively. Solving 

this equation gives two roots for frequency 𝑃 which are functions of the harmonic component 

of the longitudinal periodic pulsating load corresponding to the lower and the upper boundaries 

of the dynamically-unstable region. By setting  𝐹𝑠 = 0.2𝑁𝑐𝑟 and by defining 𝐹𝑑 = 𝛽𝑁𝑐𝑟 ,  these 

two frequency functions 𝑃 are plotted in terms of the dynamic load factor 𝛽 which varies from 

zero to 80% as shown in Fig. 1.2. The critical buckling load 𝑁𝑐𝑟  of the studied thickness-

tapered composite plate is obtained as follows:    

|𝐾𝑚𝑛 − 𝑁𝑐𝑟𝑄𝑚𝑛| = 0                                                     (1.18) 

The fundamental frequency of the studied thickness-tapered plate is also calculated as 

follow:  

|𝐾𝑚𝑛
∗ − 𝜔2𝑀𝑚𝑛| = 0                                                     (1.19) 

Now we introduce the following notations:  

𝜔𝑚𝑛 = √
𝐾𝑚𝑛

𝑀𝑚𝑛
                                                  (1.20) 

𝛾𝑚𝑛 =
𝜂𝑚𝑛

𝑀𝑚𝑛
                                                     (1.21) 

𝑁∗ =
𝐾𝑚𝑛

𝑄𝑚𝑛
                                                        (1.22) 

Then rewrite the Eq. (1.9) in the most common form of the non-linear Mathieu-Hill equation 

as follows:  
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𝑞̈𝑚𝑛(𝑡) + Ω𝑚𝑛
2  (1 − 2𝜇𝑚𝑛 cos 𝑝𝑡)𝑞𝑚𝑛(𝑡) + 𝛾𝑚𝑛𝑞𝑚𝑛

3 (𝑡) = 0                                (1.23) 

where Ω𝑚𝑛 is the frequency of the free vibration of the plate loaded by a constant 

longitudinal force 𝐹𝑠,   

Ω𝑚𝑛 = 𝜔𝑚𝑛√1 −
𝐹𝑠

𝑁∗
                                                (1.24) 

and 𝜇𝑚𝑛 is a quantity that is called the excitation parameter, 

μ𝑚𝑛 =
𝐹𝑑

2(𝑁∗−𝐹𝑠)
                                                   (1.25) 

Using again the first Bolotin’s approximation, considering the case of the out-of-plane 

transverse vibrations at the principal dynamically-unstable region, substituting Eq. (1.15) in 

Eq. (1.23) then by equalizing the coefficients of the terms sin(𝑃𝑡 2⁄ ) and cos(𝑃𝑡 2⁄ ), and 

neglecting the terms containing higher harmonics, the following system of equations for the 

coefficients 𝑓 and 𝑔 remains:  

[Ω𝑚𝑛
2 (1 + 𝜇𝑚𝑛) −

𝑃2

4
] 𝑓 + Γ(𝑓, 𝑔) = 0,                                      (1.26a) 

[Ω𝑚𝑛
2 (1 − 𝜇𝑚𝑛) −

𝑃2

4
] 𝑔 + Ψ(𝑓, 𝑔) = 0,                                    (1.26b) 

where Γ(𝑓, 𝑔) and Ψ(𝑓, 𝑔) are defined as: 

Γ(𝑓, 𝑔) =
3𝛾𝑚𝑛

4
𝐴2𝑓                                                    (1.27a) 

Ψ(𝑓, 𝑔) =
3𝛾𝑚𝑛

4
𝐴2𝑔                                                   (1.27b) 

and 𝐴 is the amplitude of steady-state out-of-plane transverse vibrations of the plate which 

is given by:  

𝐴 = √𝑓2 + 𝑔2                                                          (1.28) 

By substitution of Eqs. (1.27a, b) in Eqs. (1.26a, b) a system of two homogeneous linear 

equations with respect to 𝑓  and 𝑔  can be obtained. It is obvious that this system of two 

homogeneous linear equations will be satisfied for 𝑓 = 𝑔 = 𝐴 = 0. This solution corresponds 

to the case where the out-of-plane transverse vibrations of the plate are absent.  However, this 
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system of two homogeneous linear equations (Eqs. (1.26a,b) still has solutions that differ from 

zero only in the case where the determinant composed of the coefficients vanishes:   

|
1 + 𝜇𝑚𝑛 − 𝑛𝑚𝑛

2 +
3𝛾𝑚𝑛

4Ω𝑚𝑛
2 𝐴2 0

0 1 − 𝜇𝑚𝑛 − 𝑛𝑚𝑛
2 +

3𝛾𝑚𝑛

4Ω𝑚𝑛
2 𝐴2

| = 0                   (1.29) 

where 

𝑛𝑚𝑛= 
𝑃

2Ω𝑚𝑛
                                                              (1.30) 

By expanding the determinant, and then by solving the resulting equation with respect to the 

amplitude, 𝐴, of the steady-state out-of-plane transverse vibrations of the plate, the following 

equation is obtained:   

𝐴 =
2Ω𝑚𝑛

√3𝛾𝑚𝑛
√𝑛𝑚𝑛2 − 1 ± 𝜇𝑚𝑛                                               (1.31) 

In the above equation, only the term +𝜇𝑚𝑛  yields a stable solution, and the term −𝜇𝑚𝑛  

yields an unstable solution [1]. The amplitudes of the steady-state out-of-plane transverse 

vibrations of the plate as obtained in the Eq. (1.31) are in terms of Ω𝑚𝑛, 𝜇𝑚𝑛, and 𝑛𝑚𝑛 which 

include the static component, the static and harmonic components, and the frequency of the 

harmonic component of the longitudinal periodically pulsating load, respectively. By setting 

respectively 𝐹𝑠 = 0.2𝑁𝑐𝑟  and 𝐹𝑑 = 0.2𝑁𝑐𝑟  , these amplitudes of steady-state out-of-plane 

vibrations of the plate are plotted as a function of the frequency of the harmonic component of 

the longitudinal periodically pulsating load 𝑃 as shown in Fig. 1.3.   

Comparison of Eq. (1.29) with Eq. (1.16) by replacing μ𝑚𝑛, n𝑚𝑛 , 𝛾𝑚𝑛 and Ω𝑚𝑛 in terms of 

𝐾𝑚𝑛
∗ , 𝑄𝑚𝑛

∗  and 𝑀𝑚𝑛  reveals that dynamically-unstable regions can also be determined by 

setting 𝐴 = 0 in Eq. (1.29). This is also discussed earlier by comparing Fig. 1.2 and Fig. 1.3. 

In Fig. 1.3, when at the same time the stable-amplitude and unstable-amplitude of the steady-

state out-of-plane transverse vibrations of the plate are null, i.e. points C and D of Fig. 1.3, 
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these points exactly coincide with the corresponding points on the lower boundary and upper 

boundary of the dynamically-unstable region of Fig.1.2.  

   

1.2  Research objectives and organization of the Manuscript-Based Dissertation 

 

Based on the aforementioned discussion on the importance of the non-linear analysis of 

dynamic instability for composite plates and shells, the main objective of this dissertation is to 

develop a geometric non-linear formulation and corresponding solution method for uniform 

and internally-thickness-tapered laminated composite plates and uniform cylindrical shells. 

The contributions of this research work include four journal articles, which are presented in 

chapters 2 to 5 in this dissertation. The articles in Chapters 2, 3, and 5 have been published in 

international high-impact peer-reviewed journals, and the article in Chapter 4 is ready to be 

submitted to another international high-impact peer-reviewed journals. These articles are 

briefly explained and described in the following paragraphs. The articles that are presented in 

Chapters 2 and 5 are an extension from previous research work of the author of this Ph.D. thesis 

on the non-linear dynamic instability analysis of functionally graded cylindrical shells [2] to 

the non-linear dynamic instability analysis of uniform-thickness laminated composite plates 

and cylindrical shells, respectively. However, those articles in Chapters 3 and 4 contain newly 

developed displacement-based approximate analytical solutions for non-linear dynamic 

instability analysis of internally-thickness-tapered laminated composite plates and cylindrical 

panels, respectively. All these analytical geometric nonlinear formulations and corresponding 

approximate solutions that are presented in these chapters of the dissertation not only are 

capable of predicting the instability regions but also are capable of determining both stable- 

and unstable-solutions amplitudes of steady-state vibrations of uniform-thickness laminated 

composite plates, internally-thickness-tapered laminated composite plates, internally-

thickness-tapered laminated composite cylindrical panels, and uniform-thickness laminated 
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composite cylindrical shells in these dynamically-unstable regions. The importance of these 

solutions is that they give engineers and designers of composite plates and shells an overview 

of the vibrational state of these composite structures in these dynamically-unstable regions. 

The solutions reveal that vibrations with steady-state amplitudes exist in these dynamically-

unstable regions.  Moreover, they can know about the magnitude and the trend of growth of 

the amplitudes of steady-state vibrations of these composite structures in these dynamically-

unstable regions. The parametric studies carried out in this thesis, give a design criterion to 

engineers and designers of composite plates and shells, to design more efficient composite 

plates/shells which, for some reason, if these structures fall into dynamically-unstable regions, 

to have lower amplitudes of steady-state vibrations in these dynamically-unstable regions. 

Furthermore, the effect of the influential parameters on the non-linear dynamic instability of 

laminated plates and cylindrical shells is extensively studied. These parametric studies were 

carried out on cross-ply laminated composite uniform plates, flat and cylindrical tapered plates, 

and uniform cylindrical shells. To the best of author knowledge, there is no non-linear dynamic 

instability study on internally-thickness-tapered laminated composite plates and cylindrical 

panels in literature. There is only one study on the linear dynamic instability of internally-

thickness-tapered flat composite plates using the FEM and Ritz method conducted at Concordia 

University by the supervisor of the present thesis. The non-linear dynamic instability 

formulations and corresponding displacement-based solutions for internally-thickness-tapered 

laminated composite plates and cylindrical panels using approximate analytical methods are 

presented in chapters 3 and 4 of this Ph.D. thesis, respectively, are the novel parts of this 

dissertation. This manuscript based dissertation has been compiled based on requirements 

described in the “Thesis Preparation and Thesis Examination Regulation” booklet of the School 

of Graduate Studies at Concordia University. The dissertation includes six chapters addressing 

the objectives illustrated in the previous paragraph. Chapter 1 presents an introduction and 
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objective of this Ph.D. research work. In Chapter 2 the non-linear dynamic instability of 

laminated composite uniform thin plates subjected to periodic in-plane loads is studied. The 

non-linear dynamic instability of internally-thickness-tapered composite plates and internally-

thickness-tapered composite cylindrical panels are presented in Chapters 3 and 4, respectively. 

In Chapter 5 the non-linear dynamic instability analysis of laminated composite uniform 

cylindrical shells subjected to periodic axial loads is investigated. All these chapters from 

Chapter 2 to Chapter 5 include the state of the art review, modeling and formulation, solution 

of the problem, and finally the results that address comprehensive parametric studies for the 

mentioned corresponding composite structures of each chapter. Finally, the main conclusions 

of the dissertation research are highlighted with recommendations for future work in Chapter 

6. The articles in Chapters 2-5 are briefly described as follow: 

Chapter 2 presents the following article: 

M. Darabi, R. Ganesan.; “Non-linear dynamic instability analysis of laminated composite thin 

plates subjected to periodic in-plane loads”. International Journal of Non-linear Dynamics, 

Volume 91, Issue 1, January 2018, Pages 187-215. 

 https://doi.org/10.1007/s11071-017-3863-9 

In this chapter, the dynamic instability of thin laminated composite plates subjected to 

harmonic in-plane loading is studied based on the non-linear analysis. The equations of motion 

of the plate are developed using von Karman-type of plate equation including geometric non-

linearity. The non-linear large deflection plate equations of motion are solved by using 

Galerkin’s technique that leads to a system of non-linear Mathieu-Hill equations. Dynamically 

unstable regions and both stable- and unstable-solution amplitudes of the steady-state 

vibrations are obtained by applying the Bolotin’s method. The non-linear dynamic stability 

characteristics of both antisymmetric and symmetric cross-ply laminates with different 

lamination schemes are examined. A detailed parametric study is conducted to examine and 
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compare the effects of the orthotropy, the magnitude of both tensile and compressive 

longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness 

ratios, and in-plane transverse wave number on the parametric resonance particularly the 

amplitude of the steady-state vibration. The present results show good agreement with that 

available in the literature. 

Chapter 3 presents the following article: 

M. Darabi, R. Ganesan.; “Non-linear vibration and dynamic instability of internally-thickness-

tapered composite plates under parametric excitation”. International Journal of Composite 

Structures, Volume 176, September 2017, Pages 82-104. 

https://doi.org/10.1016/j.compstruct.2017.04.059 

Internally-tapered composite plates are formed by terminating or dropping-off some of the 

plies in the laminates at pre-determined locations, which is an important method for stiffness 

tailoring and weight saving in these structures. In the present work, the dynamic instability of 

internally-thickness-tapered laminated composite plates subjected to harmonic in-plane 

loading is studied based on non-linear vibration analysis. The non-linear von Karman strains 

associated with large deflections and curvatures are considered. The in-plane displacements 

are determined from the two in-plane force-equilibrium equations of motion of non-linear large 

deflection tapered plate. Consequently, the in-plane force-resultants can be obtained from the 

in-plane displacements and further applying the boundary conditions. Then the general 

Galerkin method is used for the moment-equilibrium equation of motion to satisfy spatial 

dependence in the partial differential equation of motion to produce a set of non-linear Mathieu-

Hill equations. These equations are ordinary differential equations, with time-dependency. By 

applying the Bolotin’s method to these equations, the dynamically-unstable regions, stable-, 

and unstable-solutions amplitudes of the steady-state vibrations are obtained. The non-linear 

dynamic stability characteristics of symmetric cross-ply laminates with different taper 

https://doi.org/10.1016/j.compstruct.2017.04.059
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configurations are examined. A comprehensive parametric study is carried out to examine and 

compare the effects of the taper angles, magnitudes of both tensile and compressive in-plane 

loads, aspect ratios of the tapered plate including length-to-width and length-to-average-

thickness ratios on the instability regions and the parametric resonance particularly the 

amplitude of the steady-state vibration. For linear vibrations, the present results show good 

agreement with those available in the literature which were obtained based on linear analysis. 

Chapter 4 presents the following article: 

M. Darabi, R. Ganesan.; “Non-linear analysis of parametric instability of internally-thickness-

tapered composite cylindrical panels”. Will be submitted to International Journal of Thin-

Walled Structures, 2020 

In the present work, the dynamic instability of internally-thickness-tapered laminated 

composite cylindrical panels subjected to harmonic in-plane loading is studied based on the 

large deflection shell theory. Internally-tapered laminated curved panels provide a considerable 

weight saving and stiffness tailoring by terminating or dropping-off some of the plies in the 

laminates at the pre-determined locations in the engineering applications. The non-linear von 

Karman strains associated with large deflections and curvatures are considered in the present 

work. Considering the simply supported boundary condition for the laminated orthotropic 

thickness-tapered cylindrical panel, the Navier’s double Fourier series with the time-dependent 

coefficient is chosen to describe the out-of-plane displacement function. Then the in-plane 

displacements are determined from the two in-plane force-equilibrium equations of motion of 

non-linear large deflection of tapered cylindrical panels. Consequently, the in-plane force-

resultants can be obtained from the in-plane displacements and further by applying the 

boundary conditions. Then the general Galerkin method is used for the moment-equilibrium 

equation of motion to satisfy spatial dependence in the partial differential equation of motion 

to produce a set of non-linear Mathieu-Hill equations. These equations are ordinary differential 
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equations, with time-dependency. By applying the Bolotin’s method to these equations, the 

dynamically-unstable regions, stable-, and unstable-solutions amplitudes of the steady-state 

vibrations are obtained. The non-linear dynamic stability characteristics of cylindrical 

symmetric cross-ply laminates with different taper configurations are examined. A 

comprehensive parametric study is carried out to examine and compare the effects of the taper 

angles, magnitudes of both tensile and compressive axial loads, curvature of the panel i.e. 

radius-to-side ratio, aspect ratios of the cylindrical tapered panel including the loaded-to-

unloaded width  and length-to-average-thickness ratios on the instability regions and the 

parametric resonance particularly the steady-state vibrations amplitude. The present results 

show good agreement with those available in the literature. 

Chapter 5 presents the following article: 

M. Darabi, R. Ganesan.; “Non-linear dynamic instability analysis of laminated composite 

cylindrical shells subjected to periodic axial loads”. International Journal of Composite 

Structures, Volume 147, July 2016, Pages 168-184. 

 https://doi.org/10.1016/j.compstruct.2016.02.064 

The dynamic instability of thin laminated composite cylindrical shells subjected to harmonic 

axial loading is investigated in the present work based on the non-linear analysis. The equations 

of motion are developed using Donnell’s shallow-shell theory and with von Karman-type of 

non-linearity. The non-linear large deflection shallow-shell equation of motion is solved by 

using Galerkin’s technique that leads to a system of non-linear Mathieu-Hill equations. Both 

stable and unstable solutions amplitude of the steady-state vibrations is obtained by applying 

the Bolotin’s method. The non-linear dynamic stability characteristics of both symmetric and 

antisymmetric cross-ply laminates with different lamination schemes are examined. A detailed 

parametric study is conducted to examine and compare the effects of the magnitude of both 

tensile and compressive axial loads, aspect ratios of the shell including length-to-radius and 

https://doi.org/10.1016/j.compstruct.2016.02.064
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thickness-to-radius ratios, and different circumferential wave numbers as well on the 

parametric resonance particularly the amplitude of the steady-state vibration. The present 

results show good agreement with that available in the literature.  
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CHAPTER 2 

2 Non-linear dynamic instability analysis of laminated composite thin 

plates subjected to periodic in-plane loads 
 

 

2.1 Introduction 

 

Laminated composite plates are being increasingly used in aerospace, automotive, and civil 

engineering as well as in many other applications of modern engineering structures. Tailoring 

ability of fiber-reinforced polymer composite (FRPC) materials for the stiffness and strength 

properties with regard to reduction of structural weight made them superior compared with 

metals in such structures. To use them efficiently as a structural component it is required to 

have a good knowledge and understanding of their mechanical behavior such as deformations, 

stress distributions, natural frequencies, and static and dynamic instabilities under various 

loading and boundary conditions. Many scholars and researchers from different disciplines 

have been conducting their research works to study and investigate those mentioned structural 

behavior of composite structures. One of the most interesting fields of study of laminated 

composite plates is the dynamic instability under periodic in-plane loads. 

When the lightweight structural components are subjected to dynamic loading particularly 

periodic in-plane loads, when the frequency of in-plane dynamic load and the frequency of 

vibration satisfy certain specific conditions, parametric resonance will occur in the structure, 

which makes the plate enter into a state of dynamic instability [2]. This instability is of concern 

because it can occur at load magnitudes that are much less than the static buckling load, so a 

component designed to withstand static buckling may fail in a periodic loading environment. 

Further, the dynamic instability occurs over a range of forcing frequencies rather than at a 

single value [2, 3].  
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The interest to study the dynamic stability behavior of engineering structures dates back to 

the text by Bolotin [1] which addresses numerous problems on the stability of structures under 

pulsating loads. According to the general theory of dynamic stability of elastic systems by 

using Bolotin’s method a set of differential equations of the Mathieu-Hill type are derived, and 

by seeking periodic solutions using Fourier series expansion the boundaries of unstable regions 

are determined. An extensive bibliography of the earlier works on parametric response of 

structures was presented by Evan-Iwanowsky [4]. 

A detailed research survey on the dynamic stability behavior of plates and shells in which 

the literature from 1987 to 2005 has been reviewed can be found in the review paper by Sahu 

and Datta [5].  

Srinivasan and Chellapandi [6] studied the dynamic instability of rectangular laminated 

composite plates under longitudinal periodic loads. They used finite strip method and using 

Bolotin’s procedure to obtain the parametric instability regions. Although the numerical results 

have been limited only for the clamped plates but their method is applicable for any boundary 

conditions. They investigated three different configurations including symmetric, 

antisymmetric and asymmetric plates and the effects of aspect ratios of the plate on unstable 

regions.  

Influence of out-of-plane transverse shear deformation on dynamic instability also has been 

addressed in literature [7, 8]. Moorthy and Reddy et al [9] used first order shear deformation 

plate theory to study the effects of damping, length-thickness ratio, boundary conditions, 

number of layers and lamination angles on instability regions.  

Dynamic instability of laminated composite plates supported on elastic foundation, 

subjected to periodic in-plane loads was investigated by Patel et al [10]. They used 𝐶1 eight-

nodded shear-flexible plate element which allows both displacement and stress continuity at 

the interfaces between the layers. The influences of various parameters such as ply-angle, static 
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load factor, thickness and aspect ratios, and elastic foundation stiffness on dynamic instability 

regions were examined.  

Ramachandra and Panda [11] investigated the dynamic instability problem of composite 

plates subjected to periodic non-uniform in-plane loads. Both the static and dynamic 

components of the applied load were assumed to vary according to either parabolic or linear 

distributions. They used Ritz method to estimate the in-plane stress distribution within the pre-

buckling range due to the applied non-uniform load. Galerkin’s method was implemented to 

derive the Mathieu type of equations. The effects of span-thickness and aspect ratios, boundary 

conditions and static load factor on dynamic instability regions were investigated.  

All these mentioned works are based on linear analysis and so lead to the determination of 

dynamic instability regions. Stability analysis based on classical linear theories provided only 

an outline of the parameter regimes where non-linear effects are of importance. According to 

Popov [12] without adequate non-linear analysis the results in some cases can be inaccurate. 

According to linear theory, one expects the vibration amplitudes in the regions of dynamic 

instability to increase unboundedly with time indeed very rapidly so as to increase 

exponentially. However, this conclusion contradicts experimental results which reveal that 

vibrations with steady-state amplitudes exist in the instability regions. As the amplitude 

increases, the character of the vibrations changes; the speed of the growth gradually decreases 

until vibrations of constant (or almost constant) amplitude are finally established [1]. 

Some non-linear vibrations of composite panels have been addressed by Alijani and Amabili 

[13] from 2003 to 2013. But a few works have been conducted considering the non-linear plate 

theories for dynamic stability problems. A higher-order geometrically non-linear theory was 

used by Librescu and Thangjitham [14] to investigate the parametric instability of 

symmetrically laminated plates. The geometrically non-linear parametric instability 

characteristics of composite plates based on finite element formulation using 𝐶1 eight-noded 
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shear-flexible plate element have been studied by Ganapathi et al [15]. They used Newmark 

integration scheme coupled with a modified Newton-Raphson iteration procedure to solve the 

non-linear governing equations.  

To the best of authors’ knowledge there is no comprehensive work on non-linear dynamic 

instability of thin laminated composite plates which considers the effects of stacking sequence, 

aspect ratios, lamination symmetry and so on. In the present work, von Karman-type of plate 

equation is used to develop the equation of motion of plate including geometric non-linearity 

for thin laminated composite flat plate subjected to harmonic in-plane loading. Galerkin’s 

technique is then employed to solve the non-linear large deflection plate equations of motion 

and a system of non-linear Mathieu-Hill equations are derived. The dynamically-unstable 

regions, and both stable and unstable solutions amplitudes of steady-state vibrations are 

determined by applying the Bolotin’s method. The parametric studies are performed to 

investigate and compare the effects of lamination schemes including stacking sequence and 

number of plies of symmetric and antisymmetric cross-ply laminated plates, the magnitude of 

in-plane loads both tensile and compressive loads, aspect ratios of the plate including length-

to-width and length-to-thickness ratios, and n-plane transverse wave number on the parametric 

resonance particularly of the steady-state vibrations. The present results show good agreement 

when compared with that available in the literature and hence can be used as bench mark results 

for future studies. 

 

2.2  Formulation 

 

A thin simply supported laminated composite rectangular plate, having length 𝑎 and width 

𝑏 with respect to the Cartesian coordinates (𝑋, 𝑌, 𝑍) which are assigned in the mid-plane of the 

plate is considered as shown in Fig. 2.1. 
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Figure 2.1 The geometry and loading condition of a laminated composite rectangular plate 

 

 

Here, 𝑢 , 𝑣  and 𝑤  are the displacement components of the plate with reference to this 

coordinate system in the 𝑋, 𝑌, 𝑎𝑛𝑑 𝑍 directions, respectively. 

The plate as shown in Fig.1 is subjected to a periodically pulsating load in the length direction 

with the longitudinal loading per unit length as follow: 

𝐹𝑥𝑥(𝑡) =  𝐹𝑠 + 𝐹𝑑𝑐𝑜𝑠𝑃𝑡                                                       (2.1) 

where 𝐹𝑠  is a time invariant component, 𝐹𝑑𝑐𝑜𝑠𝑃𝑡  is the harmonically pulsating component, 

and 𝑃 denotes the frequency of excitation in radians per unit time. 

Since 𝑢0 ≪ 𝑤0  and 𝑣0 ≪ 𝑤0  we can consider that 𝜌𝑡
𝜕2𝑢0

𝜕𝑡2
⁄ → 0  and  𝜌𝑡

𝜕2𝑣0
𝜕𝑡2
⁄ →

0 . Therefore by neglecting the in-plane inertia forces the equations of motion in the form of 

that originally presented by von Karman [16] and used in further development in Lagrangian 

coordinates by Fung [16, 17], under the longitudinal pulsating load are given by 

𝜕𝑁𝑥𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0                                                       (2.2) 

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 0                                                      (2.3) 
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𝜕2𝑀𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
+ 𝑁𝑥𝑥

𝜕2𝑤0

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2𝑤0

𝜕𝑥𝜕𝑦
+ 𝑁𝑦𝑦

𝜕2𝑤0

𝜕𝑦2
= 𝜌𝑡

𝜕2𝑤0

𝜕𝑡2
            (2.4) 

where  

𝜌𝑡 = ∫ 𝜌 𝑑𝑧
ℎ

2

−
ℎ

2

                                                            (2.5) 

and (𝑁𝑥𝑥 , 𝑁𝑦𝑦, 𝑁𝑥𝑦) are the total in-plane force resultants and (𝑀𝑥𝑥 , 𝑀𝑦𝑦, 𝑀𝑥𝑦) are the total  

moment resultants that are defined by 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} = ∫  {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}  𝑑𝑧
ℎ

2
−ℎ

2

                                                            (2.6) 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = ∫  {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} 𝑍 𝑑𝑧
ℎ

2
−ℎ

2

                                                         (2.7) 

The nonzero von Karman strains associated with non-linear large deflections and curvatures 

are given by  

 {

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

} =

{
 

 𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
+z

{
 

 𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
                                                         (2.8) 

{𝜖0} =

{
 

 𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
 = 

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝜕𝑥
)2

𝜕𝑣0

𝜕𝑦
+
1

2
(
𝜕𝑤0

𝜕𝑦
)2

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
+
𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦 }
 
 

 
 

                                                 (2.9) 

 {𝜖1} =

{
 

 𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
 = 

{
 
 

 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

                                                              (2.10) 

where (𝜖𝑥𝑥
(0)
, 𝜖𝑦𝑦
(0)
, 𝛾𝑥𝑦
(0)
) are the membrane strains, (𝜖𝑥𝑥

(1)
, 𝜖𝑦𝑦
(1)
, 𝛾𝑥𝑦
(1)
) are the flexural (bending) 

strains and (𝑢0, 𝑣0, 𝑤0) are mid-plane displacements. 

The thin rectangular plate is constructed by a cross-ply laminated composite material having 

density 𝜌. Hence the state of stress is governed by the generalized Hooke’s law. The linear 
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constitutive relations for the kth orthotropic lamina in the principal material coordinates of a 

lamina are 

{

𝜎1
𝜎2
𝜎6
}

(𝑘)

= [
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

]

(𝑘)

{

𝜖1
𝜖2
𝜖6
}                                                 (2.11) 

where [𝑄](𝑘) is the reduced stiffness matrix of the kth lamina and its components 𝑄𝑖𝑗
(𝑘)

 are 

known in terms of the engineering constants of the kth layer, as 

𝑄11 =
𝐸11

1−𝜐12𝜐21
                                                                  (2.12a) 

𝑄12 =
𝜐12𝐸22

1−𝜐12𝜐21
                                                                 (2.12b) 

𝑄22 =
𝐸22

1−𝜐12𝜐21
                                                                 (2.12c) 

𝑄66 = 𝐺12                                                                        (2.12d) 

where 𝐸11 and 𝐸22 are the elastic moduli in the principal material coordinates, 𝐺12 is the shear 

modulus and 𝜐12 and 𝜐21are the Poisson’s ratios. 

The constitutive equation of the laminate which is made of several orthotropic layers, with the 

arbitrarily oriented material axes to the laminate coordinate, can be obtained by transformation 

of the stress-strain relations in the laminate coordinates as follow: 

{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

}

(𝑘)

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]

(𝑘)

{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

}                                              (2.13) 

where [𝑄̅](𝑘) is the  transformed reduced stiffness matrix  defined as follow: 

[𝑄̅] = [𝑇]−1[𝑄][𝑇]−𝑇                                                             (2.14) 

where [𝑇] is the transformation matrix between the principal material coordinates and the 

plate’s coordinates given by 

[𝑇] = [
cos2 𝜗 sin2 𝜗 2 cos 𝜗 sin 𝜗
sin2 𝜗 cos2 𝜗 −2 cos 𝜗 sin 𝜗

− cos 𝜗 sin 𝜗 2 cos 𝜗 sin 𝜗 cos2 𝜗 − sin2 𝜗

]                               (2.15) 
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and 𝜗 is the angular orientation of the fibers. By following the equations (2.6)-(2.15) the force 

and moment resultants are defined as 

{
  
 

  
 
𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦
𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦}
  
 

  
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66]

 
 
 
 
 

{
 
 
 
 

 
 
 
 𝜖𝑥𝑥

(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 
 
 
 

 
 
 
 

                               (2.16) 

where 𝐴𝑖𝑗 denote the extensional stiffnesses, 𝐷𝑖𝑗 the bending stiffnesses, and 𝐵𝑖𝑗 the bending-

extensional coupling stiffnesses 

𝐴𝑖𝑗 =  ∑ 𝑄̅𝑖𝑗
(𝑘)(ℎ𝑘 − ℎ𝑘+1)

𝑁
𝑘=1         , (𝑖, 𝑗 = 1, 2, 6)                             (2.17a) 

𝐵𝑖𝑗 =
1

2
 ∑ 𝑄̅𝑖𝑗

(𝑘)(ℎ𝑘
2 − ℎ𝑘+1

2 ) 𝑁
𝑘=1                                                          (2.17b) 

𝐷𝑖𝑗 =
1

3
 ∑ 𝑄̅𝑖𝑗

(𝑘)(ℎ𝑘
3 − ℎ𝑘+1

3 ) 𝑁
𝑘=1                                                           (2.17c) 

where ℎ𝑘  and ℎ𝑘+1  are measured from the plate reference surface to the outer and inner 

surfaces of the kth layer, respectively, as shown in Fig. 1. From Eq.(2.16) the strains can be 

written as 

{

𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

} = [𝐴𝑖𝑗]
−1
{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} − [𝐴𝑖𝑗]
−1
 [𝐵𝑖𝑗] {

𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)

}   =

{
 

 𝑎11𝑁𝑥𝑥 + 𝑎12𝑁𝑦𝑦 − 𝑏11𝜖𝑥𝑥
(1)
− 𝑏12𝜖𝑦𝑦

(1)

𝑎12𝑁𝑥𝑥 + 𝑎22𝑁𝑦𝑦 − 𝑏21𝜖𝑥𝑥
(1) − 𝑏22𝜖𝑦𝑦

(1)

𝑎66𝑁𝑥𝑦 − 𝑏66𝛾𝑥𝑦
(1)

}
 

 
                 (2.18) 

where  

𝑎11 = Δ𝐴22 , 𝑎12 = −Δ𝐴12 , 𝑎22 = Δ𝐴11, 𝑎66 =
1

𝐴66
 , 

𝑏11 = Δ(𝐴22𝐵11 − 𝐴12𝐵12) , 𝑏12 = Δ(𝐴22𝐵12 − 𝐴12𝐵22) , 

𝑏21 = Δ(𝐴11𝐵12 − 𝐴12𝐵11),  𝑏22 = Δ(𝐴11𝐵22 − 𝐴12𝐵12)  , 
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𝑏66 =
𝐵66

𝐴66
 , Δ =

1

(𝐴11𝐴22−𝐴12
2 )

                                               (2.19) 

The moment resultants also can be written from Eq.(2.16) as 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = [𝑏𝑖𝑗]
𝑇
{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} + [𝑑𝑖𝑗] {

𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)

} =

{
 

 𝑏11𝑁𝑥𝑥 + 𝑏21𝑁𝑦𝑦 + 𝑑11𝜖𝑥𝑥
(1) + 𝑑12𝜖𝑦𝑦

(1)

𝑏12𝑁𝑥𝑥 + 𝑏22𝑁𝑦𝑦 + 𝑑12𝜖𝑥𝑥
(1) + 𝑑22𝜖𝑦𝑦

(1)

𝑏66𝑁𝑥𝑦 + 𝑑66𝛾𝑥𝑦
(1)

}
 

 
 

(2.20) 

where  

[𝑏𝑖𝑗] = [𝐴𝑖𝑗]
−1
[𝐵𝑖𝑗]                                                           (2.21a) 

[𝑑𝑖𝑗] = −[𝐵𝑖𝑗][𝑏𝑖𝑗] + [𝐷𝑖𝑗]                                               (2.21b) 

𝑑11 = Δ(𝐴11𝐴22𝐷11 − 𝐴11𝐵12
2 − 𝐴12

2 𝐷11 + 2𝐴12𝐵11𝐵12 − 𝐴22𝐵11
2 ) 

𝑑12 = Δ(𝐴11𝐴22𝐷12 − 𝐴11𝐵12𝐵22 − 𝐴12
2 𝐷12 + 𝐴12𝐵11𝐵22 + 𝐴12𝐵12

2 − 𝐴22𝐵11𝐵12) 

𝑑21 = Δ(𝐴11𝐴22𝐷12 − 𝐴11𝐵12𝐵22 − 𝐴12
2 𝐷12 + 𝐴12𝐵11𝐵22 + 𝐴12𝐵12

2 − 𝐴22𝐵11𝐵12) 

𝑑22 = Δ(𝐴11𝐴22𝐷22 − 𝐴11𝐵22
2 − 𝐴12

2 𝐷22 + 2𝐴12𝐵12𝐵22 − 𝐴22𝐵12
2 ) 

𝑑66 =
𝐴66𝐷66−𝐵66

2

𝐴66
                                                            (2.21c) 

Here we define the membrane forces in terms of Airy’s stress function 𝜑 as 

𝑁𝑥𝑥 = 
𝜕2ϕ

𝜕𝑦2
                                                                    (2.22a) 

𝑁𝑦𝑦 =  
𝜕2𝜙

𝜕𝑥2
                                                                   (2.22b) 

𝑁𝑥𝑦 = − 
𝜕2𝜙

𝜕𝑥𝜕𝑦
                                                              (2.22c) 

Substituting Equations (2.10) and (2.22 a-c) into equations (2.18) and (2.20) the strains and 

moment resultants are given in terms of the Airy’s stress function ϕ and 𝑤0. By combining the 

mid-plane strains, the compatibility equation can be expressed as 

𝜕2𝜖𝑦𝑦
(0)

𝜕𝑥2
+
𝜕2𝜖𝑥𝑥

(0)

𝜕𝑦2
−
𝜕2𝛾𝑥𝑦

(0)

𝜕𝑥𝜕𝑦
= (

𝜕2𝑤0

𝜕𝑥𝜕𝑦
)2 − 

𝜕2𝑤0

𝜕𝑥2
𝜕2𝑤0

𝜕𝑦2
                               (2.23) 
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Replacing the strains in terms of the Airy’s stress function ϕ  from Eq. (2.18) and 𝑤0  into Eq.( 

2.23) the non-linear equation of compatibility can be derived as: 

𝑎22
𝜕4ϕ

𝜕𝑥4
+ 𝑎11

𝜕4ϕ

𝜕𝑦4
+ (2𝑎12 + 𝑎66)

𝜕4ϕ

𝜕𝑥2𝜕𝑦2
+ 𝑏21

𝜕4𝑤0

𝜕𝑥4
+ 𝑏12

𝜕4𝑤0

𝜕𝑦4
+ (𝑏11+𝑏22 −

2𝑏66)
𝜕4𝑤0

𝜕𝑥2𝜕𝑦2
= (

𝜕2𝑤0

𝜕𝑥𝜕𝑦
)2 − 

𝜕2𝑤0

𝜕𝑥2
𝜕2𝑤0

𝜕𝑦2
                                                       (2.24) 

 

 

2.3 Solution for laminated orthotropic plates 

 

Considering the simply supported boundary condition for the laminated orthotropic plate, 

the Navier’s double Fourier series with the time dependent coefficient 𝑞𝑚𝑛(𝑡) is chosen to 

describe the out-of-plane displacement function 𝑤0(𝑥, 𝑦, 𝑡) : 

𝑤0 = ∑ ∑ 𝑞𝑚𝑛(𝑡) sin
𝑚𝜋

𝑎
𝑥 sin

𝑛𝜋

𝑏
𝑦∞

𝑛=1
∞
𝑚=1                                 (2.25) 

where m and n represent the number of longitudinal and transverse half waves in corresponding 

standing wave pattern, respectively. 

𝐹𝑥𝑥  is the average longitudinal force at the edge, thus the stress function has to satisfy the 

following condition 

1

𝑏
∫

𝜕2𝜙

𝜕𝑦2

𝑏

0
𝑑𝑦 =  𝐹𝑥𝑥     𝑎𝑡 𝑥 = 0 , 𝑎                                                  (2.26) 

Airy’s stress function can be governed by substituting Eq. (2.25) into Eq. (2.24) and 

applying different trigonometric relations, as: 

𝜙 =
1

2
𝐹𝑥𝑥𝑦

2   +  ∑ ∑ {−
1

2
𝐴𝑚𝑛𝑞𝑚𝑛(𝑡)𝜉1[sin(𝜆𝑚𝑥 − 𝜆𝑛𝑦) + sin(𝜆𝑚𝑥 + 𝜆𝑛𝑦)] +

∞
𝑛=1

∞
𝑚=1

1

32
𝐵𝑚𝑛𝑞𝑚𝑛

2 (𝑡)[𝜉2 cos(2𝜆𝑚𝑥) − 𝜉3 cos(2𝜆𝑛𝑦)]}                            (2.27) 

where 𝜆𝑚 = 𝑚𝜋 𝑎⁄  , 𝜆𝑛 = 𝑛𝜋 𝑏⁄  and  

Amn = b21λm
4 + b12λn

4 + (b11+b22 − 2b66)λm
2λn

2                    (2.28a) 

Bmn =  λm
2λn

2
                                                                                (2.28b) 

ξ1 =       
1
( a22λm

4 + a11λn
4 + (2a12 + a66) λm

2λn
2)⁄                  (2.28c) 
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ξ2 =
1
(a22λm

4)
⁄                                                                               (2.28d) 

ξ3 =
1
(a11λn

4)
⁄                                                                                (2.28e) 

Substituting the relations (2.22a-c) in Eqs. (2.2) and (2.3), these equations are satisfied 

automatically. With the definitions (2.22a-c), the membrane forces 𝑁𝑥𝑥  ,   𝑁𝑦𝑦  and 𝑁𝑥𝑦are 

computable by this solution and the boundary condition (2.26) is satisfied. As mentioned before 

by substituting Eqs. (2.10) and (2.22a-c) into equations (2.20) the moments are given in terms 

of the Airy’s stress function ϕ and 𝑤0   so by inserting these functions the moment resultants 

𝑀𝑥𝑥  ,   𝑀𝑦𝑦 and 𝑀𝑥𝑦 are also computable. By substituting these stress and moment resultants 

and the out-of-plane displacement as defined in Eq.(2.25) into the third equation of motion, Eq. 

(2.4) and after multiplying the governing equation by sin 𝜆𝑚𝑥 cos 𝜆𝑛𝑦 and  integrating over 

the plate area, a system of 𝑚 × 𝑛 second-order ordinary differential equations is obtained: 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + 𝐾𝑚𝑛𝑞𝑚𝑛(𝑡) − (𝐹𝑠 + 𝐹𝑑 cos 𝑝𝑡)𝑄𝑚𝑛𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0  (2.29) 

where 𝑀𝑚𝑛 , 𝐾𝑚𝑛  , 𝑄𝑚𝑛  and 𝜂𝑚𝑛  are matrices that are defined in the Appendix (Eqs.(A.1)-

(A.4)) and 𝑞̈𝑚𝑛(𝑡) ,  𝑞𝑚𝑛(𝑡)  and 𝑞𝑚𝑛
3 (𝑡)  are column vectors consisting of the 

𝑞̈𝑚𝑛(𝑡)’s, 𝑞𝑚𝑛(𝑡)’s and 𝑞𝑚𝑛
3 (𝑡)’s respectively. The subscripts 𝑚 and 𝑛 have the following 

ranges: 

𝑚, 𝑛 = 1,2,3,4, . . , 𝑁.                                                      (2.30) 

Introducing following notation: 

𝜔𝑚𝑛 = √
𝐾𝑚𝑛

𝑀𝑚𝑛
                                                               (2.31a) 

𝛾𝑚𝑛 =
𝜂𝑚𝑛

𝑀𝑚𝑛
                                                                   (2.31b) 

𝑁∗ =
𝐾𝑚𝑛

𝑄𝑚𝑛
                                                                      (2.31c) 

Eq. (2.29) can be written in the form of the non-linear Mathieu equation as follow: 

𝑞̈𝑚𝑛(𝑡) + Ω𝑚𝑛
2  (1 − 2𝜇𝑚𝑛 cos 𝑝𝑡)𝑞𝑚𝑛(𝑡) + 𝛾𝑚𝑛𝑞𝑚𝑛

3 (𝑡) = 0            (2.32) 
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where Ω𝑚𝑛is the frequency of the free vibration of the plate loaded by a constant longitudinal 

force 𝐹𝑠,  

Ω𝑚𝑛 = 𝜔𝑚𝑛√1 −
𝐹𝑠

𝑁∗
                                                       (2.33) 

and 𝜇𝑚𝑛 is a quantity that is called the excitation parameter, 

μ𝑚𝑛 =
𝐹𝑑

2(𝑁∗−𝐹𝑠)
                                                                (2.34) 

 

2.4 Amplitude of vibrations at the principal parametric resonance 

 

As mentioned above Eq. (2.32) is a non-linear Mathieu equation where the non-linear term 

𝛾𝑞𝑚𝑛
3 (𝑡)  represents the effect of large deflection. According to Liapunov Principle, 

dynamically-unstable region is determined by the linear parts of the Eq. (2.32) [1] which will 

be discussed in the next section. Here the focus is set on the parametric resonance of the system. 

The basic solutions of Mathieu equation include two periodic solutions: i.e. periodic solutions 

of periods 𝑇 and 2𝑇 with 𝑇 = 2𝜋 𝑃⁄ . The solutions with period 2𝑇 are of greater practical 

importance as the widths of these unstable regions are usually larger than those associated with 

solutions having period 𝑇.Using Bolotin’s [1] method for parametric vibration, the solution of 

period 2𝑇  is given by the following equation: 

𝑞(𝑡) = ∑ 𝑓𝑘 sin
𝑘𝑃𝑡

2
+ 𝑔𝑘 cos

𝑘𝑃𝑡

2
 ∞

𝑘=1,3,5,…                                             (2.35) 

where 𝑓𝑘 and 𝑔𝑘are arbitrary vectors. If we investigate the vibration at the principal resonance 

at frequency ≈ 2Ω , we can neglect the influence of higher harmonics in the expansion of above 

equation and can assume 

q(t) = f sin
Pt

2
+ g cos

Pt

2
                                                                    (2.36) 

as an approximation. By substituting this function into Eq. (2.32) and equating the coefficients 

of sin(𝑃𝑡 2⁄ ) and cos(𝑃𝑡 2⁄ ) terms and neglecting terms containing higher harmonics, the 

following system of equations for the coefficients 𝑎 and 𝑏 remains: 
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[Ωmn
2 (1 + μmn) −

P2

4
] f + Γ(f, g) = 0,                                            (2.37a) 

[Ωmn
2 (1 − μmn) −

P2

4
] g + Ψ(f, g) = 0,                                           (2.37b) 

where Γ(𝑓, 𝑔) and Ψ(𝑓, 𝑔) are defined as coefficients of the terms including sin(𝑃𝑡 2⁄ ) and 

cos(𝑃𝑡 2⁄ )which were obtained from the first approximation of expansion in a Fourier series 

as: 

Γ(f, g) =
3γmn

4
A2f                                                                      (2.38a) 

Ψ(f, g) =
3γmn

4
A2g                                                                    (2.38b) 

where 𝐴 is the amplitude of steady-state vibrations and is given by: 

𝐴 = √𝑓2 + 𝑔2                                                                             (2.39) 

By substitution of Eqs. (2.38a, b) into Eqs. (2.37a, b) a system of two homogeneous linear 

equations with respect to 𝑓 and 𝑔 can be obtained. This system has solutions that differ from 

zero only in the case where the determinant composed of the coefficients disappears: 

|
1 + μmn − nmn

2 +
3γmn

4Ωmn
2 A2 0

0 1 − μmn − nmn
2 +

3γmn

4Ωmn
2 A2

| = 0                     (2.40) 

where 

nmn= 
P

2Ωmn
                                                                             (2.41) 

Expanding the determinant and solving the resulting equation with respect to the amplitude, 𝐴, 

of the steady-state vibrations the following equation is obtained: 

A =
2Ωmn

√3γmn
√nmn2 − 1 ± μmn                                                           (2.42) 

It can be proved that in the ±𝜇𝑚𝑛 term of the above equation, only +𝜇𝑚𝑛term yields the stable 

solution, and all the other terms yield unstable solutions. 
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2.5 Dynamic instability regions 

 

The resonance curve is not influenced by non-linearity of Eq. (2.29) and as mentioned in 

the previous section the dynamic instability regions are determined by linear part of Mathieu-

Hill equation, and so the equation (2.29) can be rewritten as follow: 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + (𝐾𝑚𝑛
∗ − 𝑄𝑚𝑛

∗ cos𝑃𝑡)𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0              (2.43) 

where 

𝐾𝑚𝑛
∗ = 𝐾𝑚𝑛 − 𝐹𝑠𝑄𝑚𝑛                                                       (2.44) 

and  

𝑄𝑚𝑛
∗ = 𝐹𝑑𝑄𝑚𝑛                                                              (2.45) 

The principal region of dynamic instability which corresponds to solution of period 2𝑇 is 

determined by substituting Eq. (2.37) into Eq. (2.43) and equating the determinant of the 

coefficient matrix of linear part of the governing equation to zero as follow: 

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2 0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2
| = 0                               (2.46) 

Comparing equations (2.46) and (2.40) by replacing μ𝑚𝑛, n𝑚𝑛 , 𝛾𝑚𝑛 and Ω𝑚𝑛 in terms of 𝐾𝑚𝑛
∗ , 

𝑄𝑚𝑛
∗  and 𝑀𝑚𝑛 reveals that the dynamic instability regions are determined by setting 𝐴 = 0 in 

equation (2.40).  

Equation (2.46) can be rearranged to the more simplified form of an eigenvalue problem as 

follow: 

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2

| − 𝑃2 |

𝑀𝑚𝑛

4
0

0
𝑀𝑚𝑛

4

| = 0                                   (2.47) 

 

2.6 Numerical results and discussions 

 

Non-linear dynamic stability characteristics of cross-ply laminated composite rectangular 

plates subjected to combined static and periodic longitudinal loads are studied here. The 
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material properties used in the present analysis are chosen in accordance with Ramachandra. 

et al [11]  as 𝐸1 𝐸2 = 40⁄  , 𝐺12 𝐸2⁄ = 0.5 and 𝜐12 = 0.25. 

As mentioned before the main objective of this work is to study the influence of geometric 

non-linearity on the dynamic instability of laminated composite rectangular plates which are 

characterized by the non-linear Mathieu-Hill equation as given by Eqs. (2.29) and (2.32). In 

section 5 it was observed that the dynimaic instability regions based on the large deflection 

formulation are achieved by either linear part of the non-linear Mathieu-Hill equation or by 

setting 𝐴 = 0 in equation (2.40). 

2.6.1 Validation 

 

In order to validate the present formulation which is based on the non-linear analysis we 

also obtain the numerical results that correspond to the dynamically-unstable regions to 

compare them with those available in the literature [9, 11], for cross-ply laminated composite 

plates.  

Figure 2 displays the boundaries of the first (from left to the right of the frequency axis) 

dynamically-unstable region of a four-layered symmetric [(0°, 90°)1]𝑆 cross-ply laminated 

square plate having thickness ratio of 𝑎 ℎ⁄ = 25. Here to compare the results with Moorthy et 

al [9] and Ramachandra et al [11] the static and periodic components of the longitudinal load 

are considered as 𝐹𝑠 = 𝛼𝑁𝑐𝑟 and 𝐹𝑑 = 𝛽𝑁𝑐𝑟 where 𝛼  and β are static and periodic load factors, 

respectively. In this figure 𝛼 is zero and the critical buckling load 𝑁𝑐𝑟 of the studied plate has 

been calculated as follow: 

|Kmn − NcrQmn| = 0                                                  (2.48) 
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Figure 2.2 The first unstable region of a four-layered symmetric [(𝟎°, 𝟗𝟎°)𝟏]𝑺  cross-ply laminated square plate 

with thickness ratio of 𝒂 𝒉⁄ = 𝟐𝟓 subjected to periodic longitudinal load having static load factor of 𝜶 = 𝟎 

 

The free vibration frequencies of the studied plate are also calculated as follow:  

|𝐾𝑚𝑛 − 𝜔
2𝑀𝑚𝑛| = 0                                                    (2.49) 

As it can be observed from this figure each unstable region is separated by two lines with a 

common point of origin. Actually these two lines are not completely straight and they curved 

slightly outward. In this figure the “1st approximation” predicate to the smallest possible 

truncation which corresponds to 𝑘 = 1 in Eq. (2.35) and the next smallest truncation, called 

the “2nd approximation” corresponds to 𝑘 = 3 in Eq. (2.35). As it has been mentioned in 

section 4, in the present work the influence of higher harmonics in the expansion of Eq. (2.35) 

has been neglected and led to Eq. (2.36) which is the “1st approximation”. It is observed from 

this figure that there is an excellent agreement between the present results with those obtained 

by Moorthy et al [9] and Ramachandra et al [11] and as one can see all the corresponding three 

plots almost completely coincide with each other.  

As an another comparison of the present results with Moorthy et al [9] and also to investigate 

the effects of orthotropy on the first unstable region,(𝑚, 𝑛) = (1,1), the results are plotted in  
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Figure 2.3 Effect of orthotropy on the first unstable region,(𝒎, 𝒏) = (𝟏, 𝟏), of a four-layered symmetric 

[(𝟎°, 𝟗𝟎°)𝟏]𝑺  cross-ply laminated square plate with thickness ratio of 𝒂 𝒉⁄ = 𝟐𝟓 subjected to periodic 

longitudinal load having static load factor of 𝜶 = 𝟎 

 

Fig. 2.3. The figure represents the plots for four-layered symmetric [(0°, 90°)1]𝑆  cross-

ply laminated square plate with thickness ratio of 𝑎 ℎ⁄ = 25 subjected to periodic longitudinal 

load having again static load factor of  𝛼 = 0 . For a better comparison of the results here the 

plots are depicted based on the critical buckling load and fundamental frequency of the plate 

having orthotropic ratio of  
𝐸1

𝐸2
= 40 for all the three cases i.e. for  

𝐸1

𝐸2
= 40, 

𝐸1

𝐸2
= 30 and 

𝐸1

𝐸2
=

20. As it can be observed from this figure that for the case  
𝐸1

𝐸2
= 40 the present plot and the 

corresponding one by Moorthy et al [9] almost completely coincide with each other and there 

is a very small difference between present plots and that of Moorthy et al [9] for the orthotropic 

ratios of 30 and 20. This figure illustrates that at any certain value of load factor 𝛽, that is, at 

any certain longitudinal periodic load, once the ratio of  
𝐸1

𝐸2
  is decreased, the values of excitation 

frequency for instability tend to decrease and the range of values (or in other words the width 

of instability region) increases. Here again there is an excellent agreement between these two 

studies. 
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In the analysis of dynamic stability of plates and shells, there exists simultaneously the stable 

and unstable solutions. Figure 2.4 presents the effect of orthotropy on both the stable- and 

unstable-solution amplitudes of steady-state vibrations of the first mode, (𝑚, 𝑛) = (1,1), for 

the four-layered symmetric [(0°, 90°)1]𝑆 cross-ply laminated square plate. The plates have 

thickness ratio of 𝑎 ℎ⁄ = 25 and subjected to periodic longitudinal load with static load factor 

of 𝛼 = 0  and dynamicload factor of 𝛽 = 0.3. The critical buckling load and fundamental 

frequency of the plate for all these three cases of  
𝐸1

𝐸2
  are the same as the case which has been 

explained in Fig. 2.3. It is a characteristic of the non-linear response that the resonance curves 

are bent toward the axis of increasing frequencies [1]. The difference between these two 

solutions refers to the required magnitudes of frequency and amplitude to stimulate a 

parametric resonance. If this difference between them is small, then there might be the 

possibility of occurring parametric resonance. If the difference is large, it means high values of 

vibration frequency and amplitude are needed to stimulate a possible parametric resonance. 

The dynamic stability of such a plate or shell system is said to be good [2, 18]. As it is observed 

from this figure both the stable and unstable amplitudes of steady-state vibrations shift to the 

right having lower frequencies of excitation; Or in other words, at any certain excitation 

frequency both stable and unstable amplitudes of steady state vibrations increase as the ratio of 

𝐸1

𝐸2
 is decreased. Also it is evident from this figure that once the amplitude is zero the 

corresponding excitation frequency coincides with the boundaries of dynamically-unstable 

regions, having dynamic load factor of 𝛽 = 0.3 . The zero stable- and unstable-solution 

amplitudes of this figure exactly coincide with the left and right curves of corresponding 

unstable  
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Figure 2.4 Effect of orthotropy on both the stable- and unstable-solution amplitudes of steady-state vibrations of 

the first mode, (𝒎, 𝒏) = (𝟏, 𝟏), for the four-layered symmetric [(𝟎°, 𝟗𝟎°)𝟏]𝑺  cross-ply laminated square plate 

having thickness ratio of 𝒂 𝒉⁄ = 𝟐𝟓 subjected to periodic longitudinal load having static load factor of 𝜶 = 𝟎 

and dynamic load factor of 𝜷 = 𝟎. 𝟑 

 

regions, respectively shown in Figure 2.3 and the range of frequencies between these two 

solutions at 𝐴 = 0 predicate the dynamically-unstable regions at this certain value of dynamic 

load factor 𝛽. So this figure shows graphically that unstable regions could be obtained by 

setting  𝐴 = 0 in equation (2.40) and it could be considered as a validation of this non-linear 

part of dynamic instability analysis. 

As another validation of the non-linear part of dynamic instability analysis i.e. both the 

stable- and unstable-solution amplitudes of steady-state vibrations, the present results are 

compared with those given by Ostiguy et al [19] for isotropic homogeneous rectangular plate 

in Figs. 2.5 and 2.6. To compare the results we set in our formulation the material property as 

𝐸1 = 𝐸2 = 𝐸 = 4.83 𝐺𝑃𝑎 , 𝜐12 = 𝜐 = 0.38 and 𝜌 = 1190 𝑘𝑔 𝑚3⁄  and the geometry of the 

plate as 𝑎 = 50 𝑐𝑚 , 𝑏 = 20.4 𝑐𝑚 and ℎ = 0.125 𝑐𝑚. The static component of the periodic 

longitudinal load in these two figures is cosidered as 𝐹𝑠 = − 0.5 𝑁𝑐𝑟
∗  and 𝐹𝑠 = − 0.8 𝑁𝑐𝑟

∗  , 

respectively and the dynamic component is considered as 𝐹𝑑 = − 0.2 𝑁𝑐𝑟
∗  for both figures 

where 𝑁𝑐𝑟
∗  is the buckling load according to Ostiguy et al [19] as follow: 
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𝑁𝑐𝑟 = 
𝜋2𝐷

𝑏2
(𝑚𝑐

𝑏

𝑎
+

1

𝑚𝑐

𝑎

𝑏
)2                                                    (2.50a) 

where 

𝐷 =  
𝐸ℎ3

12(1−𝜐122)
                                                                (2.50b) 

and 𝑚𝑐 is the “number of half-waves of prevalent buckling mode” which “depends strongly 

on the aspect ratio of the plate” [19]. It is observed from these figures that there is an excellent 

agreement between the present results with those obtained by Ostiguy et al [19] and as one can 

see all the corresponding plots of (𝑚, 𝑛) = (3,1), (4,1) 𝑎𝑛𝑑 (5,1) completely coincide with 

each other and there is acceptable difference for the lower mode of (𝑚, 𝑛) = (2,1) between 

the present results and those by Ostiguy et al [19]. This difference could be due to considering 

the Navier’s double Fourier series for displacement function 𝑤0(𝑥, 𝑦, 𝑡) of simply supported 

boundary condition and using Airy’s stress function for the in-plane force resultants that are 

finally obtained by applying compatibility equation in terms of this displacement function in 

the present work which is done for one term of displacement function for all values of 𝑚 and 

𝑛, still it is more accurate even for the lower value of 𝑚 = 2  than the solution for the stress 

function which has been represented by a truncated double series consisting of Beam Functions 

in the later study that leads to “determination of the elasticity parameter, whose value is 

dependent on the number of terms taken in the double series” [19]. The authors of the later 

article also mentioned in their work that the convergence characteristic of that elasticity 

parameter indicates that more terms were needed for convergence as the order of (m) of the 

spatial mode is increased [19]. Hence their solution for lower values of 𝑚 doesn’t have 

sufficient accuracy so one can see from these two figures (Figs. 2.5 and 2.6) that once the upper 

limits of summation of 𝑚 in the work by Ostiguy et al [19] increase to 𝑚 = 3, 4, 5, …  an 

excellent agreement is achieved between these two studies. 
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Figure 2.5 Comparison of both the stable- and unstable-solution amplitudes of steady-state vibrations of the 

present study with those of Ostiguy et al [19] for isotropic homogeneous rectangular plate having aspect ratios 

of  𝒂 𝒉⁄ = 𝟒𝟎𝟎 and 𝒂 𝒃⁄ = 𝟐. 𝟒𝟓 subjected to periodic longitudinal load having static component of 𝑭𝒔 =
−𝟎. 𝟓 𝑵𝒄𝒓

∗  and dynamic component of 𝑭𝒅 = −𝟎. 𝟐 𝑵𝒄𝒓
∗  

 

 

 

 

 

 

Figure 2.6 Comparison of both the stable- and unstable-solution amplitudes of steady-state vibrations of the 

present study with those of Ostiguy et al [19] for isotropic homogeneous rectangular plate having aspect ratios 

of  𝒂 𝒉⁄ = 𝟒𝟎𝟎 and 𝒂 𝒃⁄ = 𝟐. 𝟒𝟓 subjected to periodic longitudinal load having static component of 𝑭𝒔 =
−𝟎. 𝟖 𝑵𝒄𝒓

∗  and dynamic component of 𝑭𝒅 = −𝟎. 𝟐 𝑵𝒄𝒓
∗  
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2.6.2 Effect of variation of lamination schemes 

 

For isotropic plate the buckling load in terms of engineering constants is given by 

Timoshenko and Gere as [20] 

𝑁𝑐𝑟 = 
𝜋2𝐷

𝑏2
(
𝑏

𝑎
+
𝑎

𝑏
)2                                           (2.51a) 

where 

𝐷 =  
𝐸ℎ3

12(1−𝜈2)
                                                 (2.51b) 

The mechanism of dynamic buckling is similar to static buckling and the only difference is 

the additional considerations of the inertia force so that it leads to the dynamic buckling load 

to be lower than the static buckling load for the same structure. But the mechanism of dynamic 

instability is much more complex since in both static and dynamic buckling the main factor is 

only the critical static or dynamic load amplitude while in dynamic instability, not only the 

vibration amplitude of dynamic load, but also the vibration frequency together with the 

simulating frequency will play important roles. So the dynamic instability of the plate or shell 

structure will be occurred at much lower loads.  

For laminated rectangular plates, the critical buckling load is approximated as  

(𝑁𝑐𝑟)𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 
𝜋2𝐷∗

𝑏2
(
𝑏

𝑎
+
𝑎

𝑏
)2                             (2.52a) 

where 

𝐷∗ = 
𝐸2ℎ

3

12(1−𝜈12𝜈21)
                                                  (2.52b) 

This approximates the static buckling load for laminated rectangular plate and hence for the 

dynamic instability analysis both the static part of the load 𝐹𝑠 and the periodic part 𝐹𝑑 in Eq. 

(2.1) should be a percentage of this buckling load. This is why we have considered 

conservatively in the next tables and figures that 𝐹𝑠 = (0.1 , 0.3, 0.5)𝑁𝑐𝑟 and corresponding 

periodic part as 𝐹𝑑 = 0.3𝐹𝑠.  
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The dimensionless excitation frequency parameter 𝑝 which is mentioned in the next figures 

and tables is introduced as follow:  

𝑝 = 2𝜋𝑏𝑃√
𝜌𝑡

𝐴11
                                                     (2.53) 

To compare the results in the following tables we specified each unstable region by the non-

dimensional frequency parameter 𝑝 of the point of origin and the half angle of the unstable 

region as 𝜃.  

Here and in following figures, tables and discussions the first two primary steady-state 

vibrations (from left to right) refer to the first two modes. 

The effects of variation of the lamination scheme on the first two modes, dynamically-

unstable regions and both stable and unstable solutions amplitude of steady-state vibrations of 

antisymmetric cross-ply laminated rectangular plates are presented in Fig. 2.7, Fig. 2.8, and 

Tables 2.1-2.13. Figure 2.7 and 2.8 show the influence of the lamination scheme on the 

fundamental mode of dynamically-unstable regions and corresponding stable-solution 

amplitude-frequency curve of steady-state vibrations for antisymmetric cross-ply laminated 

plates, respectively. The plates are subjected to tensile loading of 𝐹𝑠 = 0.1𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠. 

It is observed that the first mode unstable regions and amplitude of steady-state vibrations shift 

to the right along the frequency axis having higher frequencies of excitation as the number of 

layers are increased. This is probably due to the bending-extension coupling of lamination 

which is reduced by increasing the number of the plies in antisymmetric cross-ply laminates. 

This shifting to the right of frequency axis of both unstable regions and the steady-state 

amplitude (reducing the amplitude at a certain excitation frequency) is reduced once the 

number of layers is doubled and appears to converge at a certain value as can be observed from 

these figures that the unstable regions of eight- and ten-layered laminates are too close to each 

other and the amplitudes of eight- and ten-layered laminates almost coincide with each other.  
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Table 2.1 and Tables 2.2-2.12 also present a detailed study considering again the effects of 

variation of the lamination scheme on the first two modes of unstable regions and both stable 

and unstable solutions amplitude of steady-state vibrations of antisymmetric cross-ply 

laminated plate, respectively. In Table 2.1 the results have been listed for unstable regions 

which are specified by the points of origin and the half angle of the unstable region 𝜃 as 

mentioned before for the tensile load, 𝐹𝑠 = 0.1𝑁𝑐𝑟. Tables 2.2-2.7 present the result for both 

stable and unstable solutions amplitude of steady-state vibrations for three different tensile 

loads, 𝐹𝑠 = 0.1𝑁𝑐𝑟 , 𝐹𝑠 = 0.3𝑁𝑐𝑟  and 𝐹𝑠 = 0.5𝑁𝑐𝑟  and the corresponding results for 

compressive loads, 𝐹𝑠 = −0.1𝑁𝑐𝑟 , 𝐹𝑠 = −0.3𝑁𝑐𝑟  and 𝐹𝑠 = −0.5𝑁𝑐𝑟  are tabulated in Tables 

2.8-2.13. For the comparison studies the results in Tables 2.2-2.13 are normalized using the 

same non-dimensional excitation frequency 𝑝 = 1 . All the discussions and corresponding 

observations that were mentioned in the previous paragraph about Fig. 2.5 and Fig. 2.6 for 

unstable regions and amplitude of stead-state vibrations are also observed from Table 2.1 and  

 

Figure 2.7 The first mode unstable region corresponding to various lamination schemes for the antisymmetric 

cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to tensile 

loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 
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Figure 2.8 The stable-solution amplitude of steady-state vibrations of the first mode corresponding to various 

lamination schemes for the antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 

and 𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 

 

Table 2.1 The first two unstable regions of an antisymmetric cross-ply laminated rectangular plate having aspect 

ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 

Lamination scheme  1st Mode, 

 (𝑚, 𝑛) = (1,1) 
2nd Mode, 

 (𝑚, 𝑛) =
(1,2) 

2 Plies (0°, 90°) Point of origin 𝑝 (× 10−1) 4.3867410 16.4443734 

 𝜃 (× 10−3) 2.2243915 0.5940836 

2 Plies (90°, 0°) Point of origin 𝑝 (× 10−1) 4.3867410 16.4443734 

 𝜃 (× 10−3) 2.2243915 0.5940836 

4 Plies (0°, 90°)2 Point of origin 𝑝 (× 10−1) 6.8654193 26.2730634 

 𝜃 (× 10−3) 1.4223678 0.3718588 

4 Plies (90°, 0°)2 Point of origin 𝑝 (× 10−1) 6.8654193 26.2730634 

 𝜃 (× 10−3) 1.4223678 0.3718588 

6 Plies (0°, 90°)3 Point of origin 𝑝 (× 10−1) 7.2317969 27.7132649 

 𝜃 (× 10−3) 1.3503768 0.3525353 

6 Plies (90°, 0°)3 Point of origin 𝑝 (× 10−1) 7.2317969 27.7132649 

 𝜃 (× 10−3) 1.3503768 0.3525353 

8 Plies (0°, 90°)4 Point of origin 𝑝 (× 10−1) 7.3557191 28.1999640 

 𝜃 (× 10−3) 1.3276476 0.3464513 

8 Plies (90°, 0°)4 Point of origin 𝑝 (× 10−1) 7.3557191 28.1999640 

 𝜃 (× 10−3) 1.3276476 0.3464513 

10 Plies (0°, 90°)5 Point of origin 𝑝 (× 10−1) 7.4123760 28.4224148 

 𝜃 (× 10−3) 1.3175087 0.3437400 

10 Plies (90°, 0°)5 Point of origin 𝑝 (× 10−1) 7.4123760 28.4224148 

 𝜃 (× 10−3) 1.3175087 0.3437400 

 

Tables 2.2-2.13, respectively and hence are valid. In addition it is also observed from Table 

2.1 and Tables 2.2-2.3 which are for the first two modes' unstable regions and amplitude of 
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steady-state vibrations, respectively, of the plate with stacking sequence of (0𝜊/90𝜊 /0𝜊…) 

have exactly the same unstable regions and amplitude of steady-state vibrations both in stable- 

and unstable-solutions in comparison with the laminations with the stacking sequence of 

(90𝜊/0𝜊 /90𝜊…). It means that these two different stacking sequences for the plate show 

equal rigidity although in the study of Ng et al [21] for dynamic unstable regions of laminated 

cylindrical shells it is revealed that (0𝜊/90𝜊 /0𝜊…)  

laminate shows more rigidity. Hence in the following Tables 2.4-2.13 only the results are 

listed for one of these lamination stacking sequences i.e. the stacking sequence of 

(0𝜊/90𝜊 /0𝜊…).  

 

Table 2.2 The stable and unstable solution amplitudes corresponding to first mode, (𝒎, 𝒏) = (𝟏, 𝟏), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟏. 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 3.248133736 3.245776765 

2 Plies (90°, 0°) 3.248133736 3.245776765 

4 Plies (0°, 90°)2 2.628551757 2.625638661 

4 Plies (90°, 0°)2 2.628551757 2.625638661 

6 Plies (0°, 90°)3 2.49699994 2.493933187 

6 Plies (90°, 0°)3 2.49699994 2.493933187 

8 Plies (0°, 90°)4 2.449288107 2.446161538 

8 Plies (90°, 0°)4 2.449288107 2.446161538 

10 Plies (0°, 90°)5 2.426886808 2.423731342 

10 Plies (90°, 0°)5 2.426886808 2.423731342 

 

Table 2.3 The stable and unstable solution amplitudes corresponding to second mode, (𝒎, 𝒏) = (𝟏, 𝟐), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟑. 𝟓 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 2.871214011 2.871037694 

2 Plies (90°, 0°) 2.871214011 2.871037694 

4 Plies (0°, 90°)2 2.148992941 2.148992941 

4 Plies (90°, 0°)2 2.148992941 2.148757363 

6 Plies (0°, 90°)3 1.986641608 1.986386775 

6 Plies (90°, 0°)3 1.986641608 1.986386775 

8 Plies (0°, 90°)4 1.926589176 1.926326399 

8 Plies (90°, 0°)4 1.926589176 1.926326399 

10 Plies (0°, 90°)5 1.898150383 1.897883669 

10 Plies (90°, 0°)5 1.898150383 1.897883669 
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Table 2.4 The stable and unstable solution amplitudes corresponding to first mode, (𝒎, 𝒏) = (𝟏, 𝟏), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟑𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟏 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 3.234754859 3.227649473 

4 Plies (0°, 90°)2 2.612001258 2.60319663 

6 Plies (0°, 90°)3 2.479571523 2.470294934 

8 Plies (0°, 90°)4 2.431517728 2.422057098 

10 Plies (90°, 0°)5 2.408951185 2.399401578 

 

Table 2.5 The stable and unstable solution amplitudes corresponding to second mode, (𝒎, 𝒏) = (𝟏, 𝟐), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟑𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟑. 𝟓 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 2.870214739 2.869685571 

4 Plies (0°, 90°)2 2.147657656 2.146950405 

6 Plies (0°, 90°)3 1.985197125 1.984431973 

8 Plies (0°, 90°)4 1.925099634 1.924310586 

10 Plies (90°, 0°)5 1.896638506 1.895837613 

 

Table 2.6 The stable and unstable solution amplitudes corresponding to first mode, (𝒎, 𝒏) = (𝟏, 𝟏), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟏 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 3.221320417 3.209419798 

4 Plies (0°, 90°)2 2.595345219 2.580559438 

6 Plies (0°, 90°)3 2.462019734 2.44642829 

8 Plies (0°, 90°)4 2.413616518 2.397710346 

10 Plies (90°, 0°)5 2.390881019 2.374822573 

 

Table 2.7 The stable and unstable solution amplitudes corresponding to second mode, (𝒎, 𝒏) = (𝟏, 𝟐), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟑. 𝟓 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 2.869215118 2.86833281 

4 Plies (0°, 90°)2 2.146321541 2.145141924 

6 Plies (0°, 90°)3 1.98375159 1.982475243 

8 Plies (0°, 90°)4 1.923608938 1.922292658 

10 Plies (90°, 0°)5 1.895125423 1.893789346 
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Table 2.8 The stable and unstable solution amplitudes corresponding to first mode, (𝒎, 𝒏) = (𝟏, 𝟏), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟏𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟏 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 3.263803378 3.261457731 

4 Plies (0°, 90°)2 2.647890493 2.644998696 

6 Plies (0°, 90°)3 2.517349485 2.514307553 

8 Plies (0°, 90°)4 2.47003076 2.466930481 

10 Plies (90°, 0°)5 2.447819295 2.444690848 

 

Table 2.9 The stable and unstable solution amplitudes corresponding to second mode, (𝒎, 𝒏) = (𝟏, 𝟐), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟏𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟑. 𝟓 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 2.872389181 2.872212936 

4 Plies (0°, 90°)2 2.150562803 2.150327397 

6 Plies (0°, 90°)3 1.988339656 1.988085041 

8 Plies (0°, 90°)4 1.928340105 1.928077567 

10 Plies (90°, 0°)5 1.899927521 1.899661056 

 

Table 2.10 The stable and unstable solution amplitudes corresponding to first mode, (𝒎, 𝒏) = (𝟏, 𝟏), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟑𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟏 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 3.281730972 3.274727515 

4 Plies (0°, 90°)2 2.669956881 2.661343997 

6 Plies (0°, 90°)3 2.540549962 2.531496837 

8 Plies (0°, 90°)4 2.493671518 2.484447577 

10 Plies (90°, 0°)5 2.471672508 2.462366161 

 

Table 2.11 The stable and unstable solution amplitudes corresponding to second mode, (𝒎, 𝒏) = (𝟏, 𝟐) , of 

steady-state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ =
𝟐  and 𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟑𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation 

with non-dimensional frequency parameter 𝒑 = 𝟑. 𝟓 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 2.873740033 2.873211514 

4 Plies (0°, 90°)2 2.152366729 2.151661025 

6 Plies (0°, 90°)3 1.99029062 1.989527427 

8 Plies (0°, 90°)4 1.930351711 1.929564811 

10 Plies (90°, 0°)5 1.901969177 1.901170529 
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Table 2.12 The stable and unstable solution amplitudes corresponding to first mode, (𝒎, 𝒏) = (𝟏, 𝟏), of steady-

state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟓𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟏 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 3.299561161 3.287943744 

4 Plies (0°, 90°)2 2.691842386 2.67758952 

6 Plies (0°, 90°)3 2.563540481 2.548570188 

8 Plies (0°, 90°)4 2.517090249 2.501842027 

10 Plies (90°, 0°)5 2.495297712 2.479915498 

 

Table 2.13 The stable and unstable solution amplitudes corresponding to second mode, (𝒎, 𝒏) = (𝟏, 𝟐) , of 

steady-state vibrations for an antisymmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ =
𝟐  and 𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟓𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation 

with non-dimensional frequency parameter 𝒑 = 𝟑. 𝟓 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

2 Plies (0°, 90°) 2.875090249 2.874209745 

4 Plies (0°, 90°)2 2.154169145 2.152993827 

6 Plies (0°, 90°)3 1.992239674 1.990968768 

8 Plies (0°, 90°)4 1.932361222 1.931050909 

10 Plies (90°, 0°)5 1.904008644 1.902678805 

 

 

2.6.3 Effect of magnitude and direction of the longitudinal loads 

 

Comparing the results in the Tables 2.2-2.7 indicate that by increasing the magnitude of 

tensile longitudinal loading from 𝐹𝑠 = 0.1𝑁𝑐𝑟  to 𝐹𝑠 = 0.5𝑁𝑐𝑟   both the stable and unstable 

solutions of amplitudes decrease which means that the corresponding excitation frequency that 

causes instability shifts to the right along frequency axis having higher frequencies. Hence it 

can be expected that by increasing the tensile longitudinal load the plate stiffness is also 

increased. The inverse trend can be seen in the case of compressive loading. For the 

compressive loading the results for amplitudes have been listed in Tables 2.8-2.13. The plates 

have higher stable and unstable amplitudes as the magnitude of longitudinal compressive 

loading is increased from 𝐹𝑠 = −0.1𝑁𝑐𝑟  to 𝐹𝑠 = −0.5𝑁𝑐𝑟  meaning that the corresponding 

excitation frequency that causes instability shifts to the left along frequency axis having lower 

frequencies. This was expected since by increasing the magnitude of longitudinal compressive 

loading the plate stiffness reduces. To study these effects for first two modes of unstable regions 
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the results for points of origin and the corresponding angle of unstable region which predicate 

as a factor for magnitude of the areas of these regions, are listed in Tables 2.14 and 2.15 for a 

ten-layered antisymmetric laminated rectangular plate subjected to various magnitudes of 

tensile and compressive loads, respectively. The results illustrate that instability regions shift 

to the right along frequency axis having higher excitation frequencies once the magnitude of 

longitudinal tensile load is increased from 𝐹𝑠 = 0.1𝑁𝑐𝑟  to 𝐹𝑠 = 0.5𝑁𝑐𝑟 . This also can be 

expected as was mentioned above that increasing the tensile longitudinal loads causes the 

plate’s stiffness to increase. Although the results in Table 2.15 indicate that the inverse trend 

can be seen in the case of compressive loading, in compressive loading conditions increasing 

the absolute magnitude of compressive loads from 𝐹𝑠 = −0.1𝑁𝑐𝑟 to 𝐹𝑠 = −0.3𝑁𝑐𝑟 causes the 

instability region to shift to the left along frequency axis having lower excitation frequencies. 

This can be expected and noted in the above that by increasing the magnitude of longitudinal 

compressive loads plate’s stiffness is reduced. It can be observed from these two tables that the 

widths of instability regions are increased once the absolute values of magnitude of longitudinal 

loads are increased for both tensile and compressive loading conditions. Comparing the results 

for symmetric laminates in Tables 2.16-2.19 with corresponding results for antisymmetric 

laminate in Tables 2.5, 2.6 , 2.11 and 2.12 also reveal that at the same non-dimensional 

frequency parameter (𝑝) for both the tensile and compressive load conditions, symmetric 

laminates having stacking sequence of  [(0°, 90°)𝑛]𝑆 have higher amplitudes (having lower 

excitation frequencies) than antisymmetric (0°/90°/… ) laminates even though this trend is 

inverse for the case of lamination schemes of symmetric [(90°, 0°)𝑛]𝑆  and antisymmetric 

(90°/0°/… ) laminates. This outcome is in good agreement with that reported by Najafov et. 

al [22] for non-linear free vibration of truncated orthotropic thin laminated conical shells. 

However we know that the present results are for laminated uniform plates and the results by 
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Najafov et. al [22] is for laminated conical shells but the trend of changes in both these two 

different case studies confirm together. 

 

Table 2.14 The first two unstable regions of a ten-layered antisymmetric cross-ply laminated rectangular plate 

having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to various tensile loading 

Lamination scheme  1st Mode, 

 (𝑚, 𝑛) = (1,1) 
2nd Mode, 

 (𝑚, 𝑛) = (1,2) 
𝐹𝑠 = 0.1𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) 7.4123760 28.4224148 

 𝜃 (× 10−3) 1.3175087 0.3437400 

𝐹𝑠 = 0.3𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) 7.4649136 28.4361615 

 𝜃 (× 10−3) 3.9212851 1.0306588 

𝐹𝑠 = 0.5𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) 7.5170840 28.4499015 

 𝜃 (× 10−3) 6.4845977 1.7168306 

 

Table 2.15 The first two unstable regions of a ten-layered antisymmetric cross-ply laminated rectangular plate 

having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to various compressive loading 

Lamination scheme  1st Mode, 

 (𝑚, 𝑛) = (1,1) 
2nd Mode, 

 (𝑚, 𝑛) = (1,2) 
𝐹𝑠 = −0.1𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) 7.3594633 28.4086614 

 𝜃 (× 10−3) 1.3269728 0.3439064 

𝐹𝑠 = −0.3𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) 7.3061675 28.3949014 

 𝜃 (× 10−3) 4.0062542 1.0321562 

𝐹𝑠 = −0.5𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) 7.2524800 28.3811348 

 𝜃 (× 10−3) 6.7201068 1.7209891 

 

 

2.6.4 Effect of symmetry in variation of lamination schemes 

 

To examine the effect of symmetry in lamination schemes of the studied laminated plate on 

both stable and unstable solutions amplitudes of the steady-state vibrations, the results are listed 

in Tables 2.16-2.17 and Tables 2.18-2.19 for the tensile and compressive axial loads 

respectively. A graphical presentation of Table 2.16 also has been provided in Fig. 2.9. The 

first and second modes in these tables refer to the modes (1,1) and (1,2) respectively which 

shows no change in terms of  wave numbers in comparison with antisymmetric laminates which 

were listed in Tables 2.1-2.15. All the above discussions about Tables 2.6, 2.7, 2.12, and 2.13 

and Fig. 2.8 are valid about Tables 2.16-2.19 and Fig. 2.9, respectively. It can also be observed 

from these tables and Fig. 2.9 again that by increasing the number of plies in symmetric 

laminate the amplitude of steady-state vibrations converges at a certain value where the non-

dimentional amplitude vs non-dimentional frequency curves of twenty, twenty-four and  
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Figure 2.9 The stable-solution amplitude of steady-state vibrations of the first mode corresponding to various 

lamination schemes for the symmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 

and 𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 

 

Table 2.16 The stable and unstable solution amplitudes corresponding to first mode, (𝒎, 𝒏) = (𝟏, 𝟏), of steady-

state vibrations for a symmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉⁄ =
𝟏𝟎𝟎  subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-dimensional 

frequency parameter 𝒑 = 𝟏 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

4 Plies [(0°, 90°)1]𝑆  3.162137505 3.150013303 

4 Plies [(90°, 0°)1]𝑆 1.022314884 0.984173729 

8 Plies [(0°, 90°)2]𝑆  2.785788422 2.772018639 

8 Plies [(90°, 0°)2]𝑆 1.812077314 1.790836229 

12 Plies [(0°, 90°)3]𝑆  2.648481006 2.633993517 

12 Plies [(90°, 0°)3]𝑆 2.007433606 1.988280636 

16 Plies [(0°, 90°)4]𝑆  2.577085349 2.562194197 

16 Plies [(90°, 0°)4]𝑆 2.098302273 2.07998621 

20 Plies [(0°, 90°)5]𝑆  2.533282308 2.518132136 

20 Plies [(90°, 0°)5]𝑆 2.150981654 2.133117971 

24 Plies [(0°, 90°)6]𝑆  2.503654559 2.488324006 

24 Plies [(90°, 0°)6]𝑆 2.185395885 2.167815808 

28 Plies [(0°, 90°)7]𝑆  2.482275384 2.466811969 

28 Plies [(90°, 0°)7]𝑆 2.209649348 2.192263773 

 

twenty-eight plies almost coincide with each other. It is also observed that in symmetric 

laminated plates both stable and unstable-solutions amplitude of steady-state vibration do not 

have the same values for stacking sequence of  [(0°, 90°)𝑛]𝑆 and [(90°, 0°)𝑛]𝑆 although as it  
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was mentioned before these results have the same values in the case of  antysymmetric 

lamianted plates. However by increasing the number of plies in symmetric laminate the 

difference is decreased. 

 

Table 2.17 The stable and unstable solution amplitudes corresponding to second mode, (𝒎, 𝒏) = (𝟏, 𝟐) , of 

steady-state vibrations for a symmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎  subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟑. 𝟓 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

4 Plies [(0°, 90°)1]𝑆  2.903888647 2.903016878 

4 Plies [(90°, 0°)1]𝑆 0 0 

8 Plies [(0°, 90°)2]𝑆  2.432149154 2.43110823 

8 Plies [(90°, 0°)2]𝑆 0.938568047 0.938568047 

12 Plies [(0°, 90°)3]𝑆  2.25305931 2.251935606 

12 Plies [(90°, 0°)3]𝑆 1.311481313 1.309549904 

16 Plies [(0°, 90°)4]𝑆  2.157948013 2.156774755 

16 Plies [(90°, 0°)4]𝑆 1.462709767 1.460978295 

20 Plies [(0°, 90°)5]𝑆  2.098813391 2.097607058 

20 Plies [(90°, 0°)5]𝑆 1.54636407 1.544726369 

24 Plies [(0°, 90°)6]𝑆  2.058446744 2.05721674 

24 Plies [(90°, 0°)6]𝑆 1.599705126 1.599705126 

28 Plies [(0°, 90°)7]𝑆  2.029121828 2.027874037 

28 Plies [(90°, 0°)7]𝑆 1.636741915 1.635194733 

 

 

Table 2.18 The stable and unstable solution amplitudes corresponding to first mode, (𝒎, 𝒏) = (𝟏, 𝟏), of steady-

state vibrations for a symmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉⁄ =
𝟏𝟎𝟎  subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟓𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟏 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

4 Plies [(0°, 90°)1]𝑆  3.241806939 3.229981801 

4 Plies [(90°, 0°)1]𝑆 1.247127238 1.247127238 

8 Plies [(0°, 90°)2]𝑆  2.875902599 2.862566325 

8 Plies [(90°, 0°)2]𝑆 1.947773811 1.928028274 

12 Plies [(0°, 90°)3]𝑆  2.743109598 2.729124488 

12 Plies [(90°, 0°)3]𝑆 2.130724832 2.112689876 

16 Plies [(0°, 90°)4]𝑆  2.674241485 2.659894308 

16 Plies [(90°, 0°)4]𝑆 2.216544846 2.199213782 

20 Plies [(0°, 90°)5]𝑆  2.632055827 2.617477427 

20 Plies [(90°, 0°)5]𝑆 2.266477597 2.249531264 

24 Plies [(0°, 90°)6]𝑆  2.603552338 2.588813432 

24 Plies [(90°, 0°)6]𝑆 2.299163717 2.282460077 

28 Plies [(0°, 90°)7]𝑆  3.241806939 3.229981801 

28 Plies [(90°, 0°)7]𝑆 1.247127238 1.247127238 

 

 

Comparing the results of symmetric laminates in Tables 16-19 with corresponding results 

for antisymmetric laminate in Tables 2.5, 2.6 , 2.11 and 2.12 also reveal that at the same non-
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dimensional frequency parameter (𝑝) for the both tensile and compressive load conditions, 

symmetric laminates having stacking sequence of  [(0°, 90°)𝑛]𝑆  have higher amplitudes 

(having lower excitation frequencies) than antisymmetric (0°/90°/… )  laminates even though 

this trend is inverse for the case of lamination schemes of symmetric [(90°, 0°)𝑛]𝑆  and 

antisymmetric  (90°/0°/… ). This outcome is in good agreement with that reported by Najafov 

et. al [22] for non-linear free vibration of truncated orthotropic thin laminated conical shells. 

 

Table 2.19 The stable and unstable solution amplitudes corresponding to second mode, (𝒎, 𝒏) = (𝟏, 𝟐) , of 

steady-state vibrations for a symmetric cross-ply laminated rectangular plate having aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 

𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟓𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-

dimensional frequency parameter 𝒑 = 𝟑. 𝟓 

Lamination scheme Amplitude (A b⁄ ),  
Stable-Solutions (× 10−2) 

Amplitude (A b⁄ ),  
Unstable-Solutions (× 10−2) 

4 Plies [(0°, 90°)1]𝑆  2.909693768 2.908823738 

4 Plies [(90°, 0°)1]𝑆 0 0 

8 Plies [(0°, 90°)2]𝑆  2.439077296 2.43803933 

8 Plies [(90°, 0°)2]𝑆 0.956377815 0.953727552 

12 Plies [(0°, 90°)3]𝑆  2.260536397 2.259416411 

12 Plies [(90°, 0°)3]𝑆 1.324285385 1.322372678 

16 Plies [(0°, 90°)4]𝑆  2.165753489 2.164584462 

16 Plies [(90°, 0°)4]𝑆 1.474200939 1.47248298 

20 Plies [(0°, 90°)5]𝑆  2.066628062 2.06540293 

20 Plies [(90°, 0°)5]𝑆 1.557238063 1.55561181 

24 Plies [(0°, 90°)6]𝑆  2.066628062 2.06540293 

24 Plies [(90°, 0°)6]𝑆 1.61021894 1.608646249 

28 Plies [(0°, 90°)7]𝑆  2.037420904 2.036178199 

28 Plies [(90°, 0°)7]𝑆 1.647019321 1.645481802 

 

 

2.6.5 Effect of the length-to-width ratio 

 

The effect of variation of the aspect ratio of the laminated plates i.e., length-to-width ratio 

𝑎 𝑏⁄  on the instability regions and stable-solution amplitudes of the steady-state vibrations for 

the ten-layered (0°, 90°)5  cross-ply laminated plate having thickness ratio  𝑎 ℎ⁄ = 100 

subjected to longitudinal tensile loading of 𝐹𝑠 = 0.5𝑁𝑐𝑟 are shown in Fig. 2.10, Table 2.20 and 

Fig. 2.11, respectively. The plots of amplitudes are depicted in Fig. 2.11 based on the dynamic  
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Figure 2.10 Variation of the first mode unstable region with plate’s length of a ten-layered (𝟎°/𝟗𝟎°)𝟓 

antisymmetric cross-ply laminated rectangular plate having thickness ratio 𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to tensile 

loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓
∗ ; 𝑵𝒄𝒓

∗  corresponds to buckling load of the case 𝒂 𝒃⁄ = 𝟐 

 

 

 

Figure 2.11 Variation of the first two stable-solution amplitudes of steady-state vibrations with plate’s length of 

a ten-layered (𝟎°/𝟗𝟎°)𝟓 antisymmetric cross-ply laminated rectangular plate having thickness ratio 𝒂 𝒉⁄ = 𝟏𝟎𝟎 

subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓
∗ ; 𝑵𝒄𝒓

∗  corresponds to buckling load of the case  𝒂 𝒃⁄ = 𝟐 and 𝑭𝒅 =
𝟎. 𝟑𝑭𝒔 
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term of the longitudinal load as 𝐹𝑑 = 0.3𝐹𝑠 . Since here the length 𝑎  of the plates is kept 

constant and to study the variation of aspect ratio the width of the plates 𝑏 is varied the non-

dimensional frequency parameter 𝑝∗ is defined as follow: 

p∗ = 2πaP√
ρt

A11
                                                      (2.54) 

The results show that with a decrease in width of the plate, i.e. overall increase in aspect 

ratio of  𝑎 𝑏⁄  , the plate’s stiffness is increased as well, hence the dynamically-unstable regions 

shift to the right along frequency axis having higher frequencies of excitation of point of 

origins, the widths of instability regions are increased and also the amplitudes of steady-state 

vibrations at any specific frequency are decreased. In terms of point of origin of dynamically-

unstable region. This is in full agreement with the corresponding study of Ramachandra et al 

[11] for dynamically-unstable regions. 

 

Table 2.20 Variation of the first two unstable regions with plate’s aspect ratio of a ten-layered (𝟎°/𝟗𝟎°)𝟓 

antisymmetric cross-ply laminated plate having thickness ratio of 𝒂 𝒉⁄ = 𝟏𝟎𝟎 subjected to tensile loading of 𝑭𝒔 =
𝟎. 𝟓𝑵𝒄𝒓

∗ ; 𝑵𝒄𝒓
∗  corresponds to buckling load of the case  𝒂 𝒃⁄ = 𝟐 

Lamination scheme  1st Mode, 
(𝑚, 𝑛) = (1,1) 

2nd Mode, 
(𝑚, 𝑛) = (1,2) 

𝑎

𝑏
= 0.5 Point of origin 𝑝 (× 10−1) 

3.7585420 5.1944527 

 𝜃 (× 10−3) 3.2423329 2.3484589 
𝑎

𝑏
= 1 Point of origin 𝑝 (× 10−1) 

5.2672968 14.8142034 

 𝜃 (× 10−3) 5.9189258 2.1096994 
𝑎

𝑏
= 1.5 Point of origin 𝑝 (× 10−1) 

9.0773696 32.2468704 

 𝜃 (× 10−3) 9.0720438 2.5596828 
𝑎

𝑏
= 2 Point of origin 𝑝 (× 10−1) 

15.0341680 56.8998031 

 𝜃 (× 10−3) 12.9686501 3.4336510 

 

 

2.6.6 Effect of the length-to-thickness ratio 

 

Figure 2.12, Table 2.21 and Figure 2.13 present the effect of variation of the thickness ratio 

𝑎 ℎ⁄  on the instability regions and stable-solution amplitudes of the steady-state vibrations for 

the ten-layered (0°, 90°)5  cross-ply laminated square plate subjected to longitudinal 

compressive loading of 𝐹𝑠 = −0.3𝑁𝑐𝑟. The plots of amplitudes are depicted in Fig. 2.13 based  
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Figure 2.12 Variation of the first mode unstable region with plate’s thickness of a ten-layered (𝟎°/𝟗𝟎°)𝟓 

antisymmetric cross-ply laminated square plate subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟑𝑵𝒄𝒓
∗ ; 𝑵𝒄𝒓

∗  

corresponds to buckling load of the case  𝒂 𝒉⁄ = 𝟏𝟐𝟎 

 

Table 2.21 Variation of the first two dynamically-unstable regions with plate’s thickness of a ten-layered 

(𝟎°/𝟗𝟎°)𝟓 antisymmetric cross-ply laminated square plate subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟑𝑵𝒄𝒓
∗ ; 

𝑵𝒄𝒓
∗  corresponds to buckling load of the case  𝒂 𝒉⁄ = 𝟏𝟐𝟎 

Lamination scheme  1st Mode, 

 (𝑚, 𝑛) = (1,1) 
2nd Mode, 

 (𝑚, 𝑛) = (1,2) 
𝑎

ℎ
= 100 Point of origin 𝑝 (× 10−1) 

5.0738029 14.7465143 

 𝜃 (× 10−3) 3.6904626 1.2718097 
𝑎

ℎ
= 110 Point of origin 𝑝 (× 10−1) 

4.6125480 13.4059221 

 𝜃 (× 10−3) 3.3549686 1.1561907 
𝑎

ℎ
= 120 Point of origin 𝑝 (× 10−1) 

4.2281690 12.2887619 

 𝜃 (× 10−3) 3.0753897 1.0598416 

 

on the dynamic term of the longitudinal load as 𝐹𝑑 = 0.3𝐹𝑠. It is observed that with a decrease 

in thickness of the plate, i.e. overall increasing the length-to-thickness ratio 𝑎 ℎ⁄  , the 

dynamically-unstable regions shift to the left along the frequency axis having lower frequencies 

of point of origin, the widths of instability regions are decreased and also the amplitudes of  

steady-state vibrations at any specific frequency are increased. This is due to the fact that 

decreasing the thickness of plate makes the plate to be less stiff. This is also in full agreement 

with the corresponding study of Moorthy and Reddy [9]. This is also in full agreement with the  
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Figure 2.13 Variation of the first two stable-solution amplitudes of steady-state vibrations with plate’s thickness 

of a ten-layered (𝟎°/𝟗𝟎°)𝟓 antisymmetric cross-ply laminated square plate subjected to compressive loading of 

𝑭𝒔 = −𝟎. 𝟑𝑵𝒄𝒓
∗ ; 𝑵𝒄𝒓

∗  corresponds to buckling load of the case  𝒂 𝒉⁄ = 𝟏𝟐𝟎 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 

 

corresponding study of Lam and Ng [23] for dynamically-unstable regions of laminated 

composite cylindrical shells. 

 

2.7 Conclusions 

 

The non-linear dynamic stability of both antisymmetric and symmetric cross-ply laminated 

composite plates under combined static and periodic longitudinal loading has been studied. 

Equations of motion with von Karman-type of non-linearity were solved by employing 

Galerkin’s technique. By applying Bolotin’s method to the governing system of non-linear 

Mathieu-Hill equations the amplitudes of both stable and unstable solutions were obtained for 

steady-state vibrations. It is confirmed that instability regions and both stable and unstable 

solutions amplitudes of steady-state vibrations are significantly influenced by the lamination 

schemes including symmetric and antisymmetric lamination, the number and sequence of the 

plies, magnitude and direction of the longitudinal periodic loads, aspect ratios of the plate 
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including length-to-width and length-to-thickness ratios, and in-plane transverse wave number. 

Hence in any particular application specific configurations of laminate should be considered in 

design of composite plates. A comparative study of the present work with those available in 

literature shows a very good agreement. However, as the results of the present study reveal, the 

linear analysis carried out in available literature can only provide the information about the 

instability region and unable to predict the vibration amplitudes in these regions. The non-

linear analysis developed in the present work can determine such vibration amplitudes. The 

present work has shown that there is vibration with steady-state amplitude in the instability 

region which approaches almost constant amplitude when the excitation frequencies are 

increased. Hence, for more perfect and complete studies of dynamic instability of laminated 

plates, the non-linear analysis is required to determine both the stable and unstable amplitudes 

of steady-state vibrations in addition to instability regions. Where the occurrence of dynamic 

instability is inevitable, in order to have a control on vibration amplitudes in the unstable 

regions the non-linear analysis is required. By adjusting the corresponding effective parameters 

as explained in the present work, steady-state vibrations with allowable amplitudes based on 

the design criteria can be achieved in the dynamically-unstable regions.  

The major outcomes of the present study are summarized as follow: 

 

• For both symmetric and antisymmetric laminated plates, amplitudes of steady-state 

vibrations are decreased, corresponding dynamically-unstable regions shift to the right 

along the frequency axis having higher frequencies of excitation, and the widths of the 

instability regions are decreased when the number of plies are increased. Convergence 

is also achieved at a specific number of the plies in each case.  

• Increasing the magnitude of compressive longitudinal load causes increasing amplitude 

of steady-state vibrations, shifting dynamically-unstable regions to the left along the 

frequency axis, and increasing albeit the widths of instability regions. 
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• Increasing the magnitude of tensile longitudinal loads results in decreasing the 

amplitude of steady-state vibrations, shifting dynamically-unstable regions to the right 

along the frequency axis, and increasing albeit the widths of instability regions. 

• With an increase in aspect ratio  𝑎 𝑏⁄  of the plate, the dynamically-unstable regions shift 

to the right along frequency axis having higher frequencies of excitation of point of 

origin, the widths of instability regions are increased and also the amplitudes of steady-

state vibrations are decreased. 

• Increasing the thickness ratio 𝑎 ℎ⁄  causes the dynamically-unstable regions shift to the 

left along frequency axis having lower frequencies of excitation of point of origin. 

Moreover the widths of instability regions are decreased and also the amplitudes of 

steady-state vibrations are increased.  

The present work can be used as a bench mark study in future studies on dynamic instability 

of laminated composite plates.  
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CHAPTER 3 

3 Non-linear vibration and dynamic instability of internally-thickness-

tapered composite plates under parametric excitation 
 

 

3.1 Introduction 
 

Laminated composite plates are increasingly being used in aerospace, automotive, and civil 

engineering as well as in many other applications of modern engineering structures. The 

tailoring ability of fiber-reinforced polymer composite (FRPC) materials for the stiffness and 

strength properties with regard to reduction of structural weight made them superior compared 

with metals in such structures. One of the most efficient way to increase the stiffness and at the 

same time reduce the weight of the structures particularly in composite structures is the 

thickness-tapering of the structures. Also in some specific applications such as helicopter yokes 

and blades, wind mill blades and robot arms, the composite structure needs to be stiff at one 

location and flexible at another location. Tapered composites are formed by terminating or 

dropping-off some of the plies in the laminates which is an important method of stiffness 

tailoring and weight saving in these structures. Laminates are often thickness-tapered when 

changes in strength and stiffness along the length of the structure are required. Aircraft wing 

skins, helicopter yoke, flex-beams of helicopter rotor hubs, and near field joints in solid rocket 

boosters are few example applications of the tapered structures in aerospace industries. In order 

to design and use tapered composite structures in practical applications it is required to have a 

good knowledge of their mechanical and structural behavior such as deformations, stress 

distributions, natural frequencies, static and dynamic instabilities under various loading and 

boundary conditions. Due to the complexity of modeling and the analysis of tapered composite 

structures, limited research efforts have been devoted to this class of structures, which are 

described in terms of complex mechanical models. A detailed literature survey by He et.al. [24] 

studied research conducted before 2000 which focused on stress analysis, delamination 
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analysis and parametric study of the tapered composite structures. Ganesan and Zabihollah 

investigated the free un-damped vibration response of thickness-tapered composite beams, 

using higher-order finite element method [25, 26]. Steeves and Fleck [27] conducted 

experimental study on tapered laminates loaded in axial compression to investigate failures 

induced by either micro-buckling or delamination. Progressive failure and post buckling 

response of thickness-tapered composite plates under uni-axial compression were studied by 

Ganesan and Liu [28]. The buckling analysis was conducted by Ganesan and Akhlaque-E-

Rasul for tapered composite shells [29]. A simplified non-linear buckling analysis of tapered 

curved composite plates was conducted [30] and the compressive response of tapered curved 

composite plates was investigated based on a nine-node composite shell element [31].  

When lightweight structural components are subject to dynamic loading particularly periodic 

in-plane loads, and when the frequency of in-plane dynamic load and the frequency of vibration 

satisfy certain specific condition, parametric resonance will occur in the structure. This makes 

the plate enter into a state of dynamic instability [2, 32]. This instability is of concern because 

it can occur at load magnitudes that are much less than the static buckling load, so a component 

designed to withstand static buckling may fail in a periodic loading environment. Further, 

dynamic instability occurs over a range of forcing frequencies rather than at a single value [1, 

32]. 

 Forced vibration and dynamic stability of a rotating tapered composite Timoshenko shaft 

were studied by Kim et al. [33]. They studied the response and stability of high-speed extended 

length end-mill subjected to cutting forces typical of milling operations. To the best of authors’ 

knowledge, the only available literature on the dynamic instability of internally-tapered 

composite plate is the thesis work conducted by Liu [34] under the supervision of the present 

Ph.D. research work. This thesis considered the linear dynamic instability analysis of a 

simplified problem using Ritz and FEM. The dynamic instability of structures based on linear 
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analysis can only determinate the dynamically-unstable regions. For more accurate, and 

comprehensive study of dynamic instability of laminated plates a non-linear analysis is 

required to determine both the stable and unstable amplitudes of steady-state vibrations in 

addition to instability regions [32].  

The present work, the von Karman-type of plate equation is used to develop the equations 

of motion of the plate including geometric non-linearity for internally-thickness-tapered 

laminated composite plate subjected to harmonic in-plane loading. The in-plane displacements 

are determined from the two in-plane force-equilibrium equations of motion of non-linear large 

deflection tapered plate. Consequently, the in-plane force-resultants are obtained from the in-

plane displacements and further applying the boundary conditions. Then the general Galerkin 

method is used for the moment-equilibrium equation of motion to satisfy spatial dependence 

in the partial differential equation of motion to produce a set of non-linear Mathieu-Hill 

equations which are ordinary differential equations with time-dependency. The dynamically-

unstable regions, and both stable-, and unstable-solutions amplitudes of steady-state vibrations 

are determined by applying the Bolotin’s method. A comprehensive parametric study is carried 

out to examine and compare the effects of the various taper configurations, taper angles, 

amplitudes of both tensile and compressive in-plane loads, aspect ratios of the tapered plate 

including length-to-width and length-to-thickness ratios and in particular the length-to-

average-thickness ratio on the instability regions and the parametric resonance particularly the 

steady-state vibrations amplitude. The present results for the linear case show good agreement 

when compared with that available in the literature and hence can be used as benchmark results 

for future studies. 
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3.2  Formulation 
 

A simply supported laminated composite rectangular internally-thickness-tapered plate, 

having length 𝑎  and width 𝑏  with respect to the Cartesian coordinates (𝑥, 𝑦, 𝑧)  which are 

assigned in the mid-plane of the plate is considered as shown in Fig.3.1. 

 

 

Figure 3.1 The geometry and loading condition of a laminated composite rectangular thickness-tapered plate 

 

Here, 𝑢 , 𝑣  and 𝑤  are the displacement components of the plate with reference to this 

coordinate system in the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 directions, respectively. 

The plate as shown in Fig.1 is subjected to a periodically pulsating load in the length direction 

with the longitudinal loading per unit length as follow:  

𝐹𝑥𝑥(𝑡) =  𝐹𝑠 + 𝐹𝑑𝑐𝑜𝑠𝑃𝑡                                                     (3.1) 

where 𝐹𝑠  is a time invariant component, 𝐹𝑑𝑐𝑜𝑠𝑃𝑡 is the harmonically-pulsating component, 

and 𝑃 denotes the frequency of excitation in radians per unit time. 
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As mentioned above the plate is considered to be internally-tapered in the thickness and has 

been designed with any one of the four different taper configurations shown in Fig.3.2. 

 

 

Figure 3.2 Taper configurations of the rectangular internally-thickness-tapered composite plate 

 

Since 𝑢0 ≪ 𝑤0  and 𝑣0 ≪ 𝑤0  one can consider that 𝜌𝑡
𝜕2𝑢0

𝜕𝑡2
⁄ → 0 and 𝜌𝑡

𝜕2𝑣0
𝜕𝑡2
⁄ → 0 . 

Therefore by neglecting the in-plane inertia forces the equations of motion for the plate, in the 

form that was originally presented by von Karman [16] and used in further development in 

Lagrangian coordinates by Fung [16, 17], under the in-plane pulsating load are given by 

 

𝜕𝑁𝑥𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0                                               (3.2) 

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 0                                               (3.3) 

𝜕2𝑀𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
+ 𝑁𝑥𝑥

𝜕2𝑤0

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2𝑤0

𝜕𝑥𝜕𝑦
+ 𝑁𝑦𝑦

𝜕2𝑤0

𝜕𝑦2
= 𝜌𝑡

𝜕2𝑤0

𝜕𝑡2
                (3.4) 

where  
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𝜌𝑡(𝑥
1, 𝑥0) = ∑ 𝜌(𝑘)(ℎ𝑘(𝑥

1, 𝑥0) − ℎ𝑘+1(𝑥
1, 𝑥0))𝑁

𝑘=1                        (3.5) 

and (𝑁𝑥𝑥 , 𝑁𝑦𝑦, 𝑁𝑥𝑦) are the total in-plane force resultants and (𝑀𝑥𝑥 , 𝑀𝑦𝑦, 𝑀𝑥𝑦) are the total  

moment resultants that are defined by 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} = ∫  {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}  𝑑𝑧
ℎ

2
−ℎ

2

                                                                     (3.6) 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = ∫  {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} 𝑍 𝑑𝑧
ℎ

2
−ℎ

2

                                                                  (3.7) 

The non-zero von Karman strains associated with non-linear large deflections and curvatures 

are given by  

{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

} =

{
 

 𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
+z

{
 

 𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
                                                                  (3.8) 

{𝜖0} =

{
 

 𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
 = 

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝜕𝑥
)2

𝜕𝑣0

𝜕𝑦
+
1

2
(
𝜕𝑤0

𝜕𝑦
)2

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
+
𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦 }
 
 

 
 

                                            (3.9) 

{𝜖1} =

{
 

 𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
 = 

{
 
 

 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

                                                            (3.10) 

where (𝜖𝑥𝑥
(0)
, 𝜖𝑦𝑦
(0)
, 𝛾𝑥𝑦
(0)
) are the membrane strains, (𝜖𝑥𝑥

(1)
, 𝜖𝑦𝑦
(1)
, 𝛾𝑥𝑦
(1)
) are the flexural (bending) 

strains and (𝑢0, 𝑣0, 𝑤0) are mid-plane displacements. 

The rectangular thickness-tapered plate is considered to be constructed by a cross-ply 

laminated composite material having density 𝜌. As shown in Fig. 3.3 the stiffness matrix of a 

ply in the thickness-tapered laminate in the global coordinate system (𝑥, 𝑦, 𝑧) is calculated by 

using multiple transformations of the ply material stiffness matrix from principal material 
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coordinate system (𝑥′′, 𝑦′′, 𝑧′′) to local coordinate system (𝑥′, 𝑦′, 𝑧′), and then to the 

global coordinate system (𝑥, 𝑦, 𝑧) as follow: 

  [𝐶]𝑥𝑦𝑧 = [𝑇Ψ][𝑇θ][𝐶
′′]

𝑥′′𝑦′′ 𝑧′′
[𝑇θ]

𝑇[𝑇Ψ]
𝑇                              (3.11) 

where [𝑇θ]  and [𝑇Ψ]  are the stress transformation matrices corresponding to the fiber 

orientation angle 𝜃 and ply angle Ψ respectively that are defined in Appendix (Eq. (A.5) and 

(A.6)). The ply angle Ψ for a ply located above the mid-plane is equal to the taper angle 𝜙 and 

for the ply located below the mid-plane it is equal to –𝜙. The constitutive equation of the 

thickness-tapered laminate made of several orthotropic layers with the arbitrarily oriented 

material axes to the laminate coordinate can be obtained by the transformation of the stress-

strain relations to the laminate coordinates as follow: 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

}

(𝑘)

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]

(𝑘)

{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

}                                   (3.12) 

where [𝑄̅](𝑘) is the  transformed reduced stiffness matrix defined as follow: 

𝑄̅11
(𝑘)
= 𝐶11(𝜃

(𝑘), Ψ(𝑘)) −
𝐶13(𝜃

(𝑘),Ψ(𝑘))∗𝐶13(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

               (3.13-a)  

  𝑄̅12
(𝑘)
= 𝐶12(𝜃

(𝑘), Ψ(𝑘)) −
𝐶13(𝜃

(𝑘),Ψ(𝑘))∗𝐶23(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

               (3.13-b)   

 𝑄̅22
(𝑘)
= 𝐶22(𝜃

(𝑘), Ψ(𝑘)) −
𝐶23(𝜃

(𝑘),Ψ(𝑘))∗𝐶23(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

                (3.13-c)   

𝑄̅16
(𝑘)
= 𝐶16(𝜃

(𝑘), Ψ(𝑘)) −
𝐶13(𝜃

(𝑘),Ψ(𝑘))∗𝐶63(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

              (3.13-d)  

𝑄̅26
(𝑘)
= 𝐶26(𝜃

(𝑘), Ψ(𝑘)) −
𝐶23(𝜃

(𝑘),Ψ(𝑘))∗𝐶63(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

              (3.13-e)  

𝑄̅66
(𝑘)
= 𝐶66(𝜃

(𝑘), Ψ(𝑘)) −
𝐶63(𝜃

(𝑘),Ψ(𝑘))∗𝐶63(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

               (3.13-f)  
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Figure 3.3 Transformation of the principal material coordinates to global coordinates 

 

where 𝑄̅16
(𝑘)

 and 𝑄̅26
(𝑘)

 for the plies in the cross-ply laminate are zero and 𝐶𝑖𝑗 are elements of 

the stiffness matrix [𝐶] [35]. By following the equations (3.6)-(3.15) the force and moment 

resultants for the cross-ply symmetric laminated thickness-tapered plate are defined as 

{
  
 

  
 
𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦
𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦}
  
 

  
 

=

[
 
 
 
 
 
𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

[0]

[0]
𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66]

 
 
 
 
 

{
 
 
 
 

 
 
 
 𝜖𝑥𝑥

(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 
 
 
 

 
 
 
 

                                    (3.14) 

where 𝐴𝑖𝑗 and 𝐷𝑖𝑗 denote the extensional and bending stiffnesses respectively. 

𝐴𝑖𝑗(𝑥
1, 𝑥0) =  ∑ 𝑄̅𝑖𝑗

(𝑘)(ℎ𝑘(𝑥
1, 𝑥0) − ℎ𝑘+1(𝑥

1, 𝑥0))𝑁
𝑘=1         , (𝑖, 𝑗 = 1, 2, 6)           (3.15a) 

𝐷𝑖𝑗(𝑥
3, 𝑥2, 𝑥1, 𝑥0) =

1

3
 ∑ 𝑄̅𝑖𝑗

(𝑘)((ℎ𝑘(𝑥
1, 𝑥0))3 − (ℎ𝑘+1(𝑥

1, 𝑥0))3) 𝑁
𝑘=1                   (3.15b) 

where ℎ𝑘 and ℎ𝑘+1 are measured from the mid-plane to the outer and inner surfaces of the kth 

layer, respectively and calculated as follow: 

ℎ𝑘(𝑥
1, 𝑥0) =   {

(− tan𝜙) ∗ 𝑥 + 𝑧𝑘                    𝐼𝐹        𝑧𝑘 > 0 
(tan𝜙) ∗ 𝑥 + 𝑧𝑘                      𝐼𝐹        𝑧𝑘 < 0 

             (3.16) 
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Hence, although 𝐴𝑖𝑗 and 𝐷𝑖𝑗 are constant terms in uniform laminates, in the thickness-tapered 

laminates these extension- and bending-stiffnesses are linear and cubic functions of x-

coordinate respectively. These functions are step functions for all configurations of the 

thickness-tapered plate except for configuration A. The number of the corresponding intervals, 

𝑁𝑠, for the configurations B, C and D are expressed as follow: 

𝑁𝑠 =
1

2
(𝑁𝐿 − 𝑁𝑅)                                                     (3.17) 

where 𝑁𝐿 and 𝑁𝑅 refer to the number of plies at the left (thick) and right (thin) sides of the 

thickness-tapered plate respectively. 

 

3.3 Solution for laminated orthotropic thickness-tapered plates 
 

Since the gradients of variations of extensional stiffnesses 𝐴𝑖𝑗(𝑥
1, 𝑥0) from the thickest to 

the thinnest sides of the thickness-tapered plate are too small in comparison to the 

corresponding variations of bending stiffnesses 𝐷𝑖𝑗(𝑥
3, 𝑥2, 𝑥1, 𝑥0) , one can replace the 

𝐴𝑖𝑗(𝑥
1, 𝑥0) terms in Eq. 14 by their average values as follow: 

𝐴̅𝑖𝑗 = 
1

𝑎
∫ 𝐴𝑖𝑗(𝑥

1, 𝑥0)𝑑𝑥
𝑎

0
             , (𝑖, 𝑗 = 1, 2, 6)                  (3.18) 

It should be noted here that since extensional stiffnesses, 𝐴𝑖𝑗(𝑥
1, 𝑥0) , for all configurations of 

the thickness-tapered plate except for configuration A, are step functions,  the integration in 

Eq. (3.18) over the length of the thickness-tapered plate should be step integration. 

Substituting Eq. (3.9) and Eq. (3.18) into Eq. (3.14) the resultant membrane forces 𝑁𝑥𝑥  ,   𝑁𝑦𝑦 

and 𝑁𝑥𝑦  are defined and consequently the first-two equations of motion i.e. Eq. (3.2) and Eq. 

(3.3) are written in terms of the mid-plane displacement components i.e. 𝑢0(𝑥, 𝑦, 𝑡), 𝑣0(𝑥, 𝑦, 𝑡) 

and 𝑤0(𝑥, 𝑦, 𝑡). 

Considering the simply supported boundary condition for the laminated orthotropic thickness-

tapered plate, the Navier’s double Fourier series with the time dependent coefficient 𝑞𝑚𝑛(𝑡) is 

chosen to describe the out-of-plane displacement function 𝑤0(𝑥, 𝑦, 𝑡) : 
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𝑤0 = ∑ ∑ 𝑞𝑚𝑛(𝑡) sin 𝜆𝑚𝑥 sin 𝜆𝑛𝑦
∞
𝑛=1

∞
𝑚=1       ,   𝜆𝑚 =

𝑚𝜋

𝑎
   and   𝜆𝑛 =

𝑛𝜋

𝑏
             (19) 

where m and n represent the number of longitudinal and transverse half-waves in corresponding 

standing wave pattern, respectively. Substituting Eq. (3.18) in the displacement form of Eq. 

(3.2) and Eq. (3.3) and applying appropriate trigonometric relations, the solution of the 

differential equation system has the form as follow: 

𝑢0(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜁1 sin(2𝜆𝑚𝑥) + 𝜁2 sin(2𝜆𝑚𝑥) cos(2𝜆𝑛𝑦)
∞
𝑛=1

∞
𝑚=1 + 𝑢𝑐 (𝑥, 𝑦, 𝑡)       (3.20-a) 

𝑣0(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜁3 sin(2𝜆𝑛𝑦) + 𝜁4 cos(2𝜆𝑚𝑥) sin(2𝜆𝑛𝑦)
∞
𝑛=1

∞
𝑚=1 + 𝑣𝑐 (𝑥, 𝑦, 𝑡)         (3.20-b) 

Here 𝜁1  , 𝜁2 , 𝜁3  and 𝜁4  are unknown coefficients out of which  𝜁1  and 𝜁3  can be directly 

obtained from the displacement form of Eq. (3.2) and Eq. (3.3) , respectively as follow: 

 𝜁1 = −(𝐴̅11𝜆𝑚
2 − 𝐴̅12𝜆𝑛

2)𝑞𝑚𝑛(𝑡)
2 16𝜆𝑚𝐴̅11⁄                                                  (3.21-a)  

𝜁3 = (𝐴̅12𝜆𝑚
2 − 𝐴̅22𝜆𝑛

2)𝑞𝑚𝑛(𝑡)
2 16𝜆𝑛𝐴̅22⁄                                                     (3.21-b)  

and also 𝜁2 and 𝜁4 can be solved from the displacement form of the system of equations (2 and 

3) as follow:  

𝜁2 = 
1

16
𝜆𝑚𝑞𝑚𝑛(𝑡)

2                                                         (3.21-c)  

𝜁4 = 
1

16
𝜆𝑛𝑞𝑚𝑛(𝑡)

2                                                          (3.21-d) 

 𝑢𝑐 (𝑥, 𝑦, 𝑡)  and 𝑣𝑐 (𝑥, 𝑦, 𝑡)  are homogeneous solutions of the differential equation system 

given as: 

𝐴̅11
𝜕2𝑢𝑐 

𝜕𝑥2
+ (𝐴̅12 + 𝐴̅66)

𝜕2𝑣𝑐 

𝜕𝑥𝜕𝑦
+ 𝐴̅66

𝜕2𝑢𝑐 

𝜕𝑦2
= 0                                        (3.22-a)  

𝐴̅66
𝜕2𝑣𝑐 

𝜕𝑥2
+ (𝐴̅12 + 𝐴̅66)

𝜕2𝑢𝑐 

𝜕𝑥𝜕𝑦
+ 𝐴̅22

𝜕2𝑢𝑐 

𝜕𝑦2
= 0                                         (3.22-b)  

Since the solution should also satisfy the boundary conditions of the studied thickness-tapered 

plate which is subjected to in-plane loading, for the partial differential equation system of 

equations (3.22-a and b) the solution should have the forms as follow: 

𝑢𝑐 (𝑥, 𝑦, 𝑡) = 𝐴̅11(𝑎 − 2𝑥)𝜉𝑥(𝑡)                                                  (3.23-a) 
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𝑣𝑐 (𝑥, 𝑦, 𝑡) = 𝐴̅22(𝑏 − 2𝑦)𝜉𝑦(𝑡)                                                   (3.23-b) 

where 𝜉𝑥(𝑡)  and 𝜉𝑦(𝑡)  are unknown functions of time that can be determined from the 

following boundary conditions: 

1

𝑏
∫ 𝑁𝑥𝑥  
𝑏

0
𝑑𝑦 =  𝐹𝑥𝑥          𝑎𝑡 𝑥 = 0 , 𝑎                                             (3.24-a) 

1

𝑎
∫ 𝑁𝑦𝑦  
𝑎

0
𝑑𝑥 =  0             𝑎𝑡 𝑦 = 0 , 𝑏                                             (3.24-b) 

Hence by solving these two boundary condition equations, 𝜉𝑥(𝑡) and 𝜉𝑦(𝑡) are determined as 

follow: 

𝜉𝑥(𝑡) = ((𝐴̅11𝐴̅22−𝐴̅12
2
)𝜆𝑚

2
 𝑞𝑚𝑛(𝑡)

2 − 8𝐴̅22𝐹𝑥𝑥) (16𝐴̅11(𝐴̅11𝐴̅22 − 𝐴̅12
2
))⁄           (3.25-a) 

𝜉𝑦(𝑡) = ((𝐴̅11𝐴̅22−𝐴̅12
2
)𝜆𝑛

2
 𝑞𝑚𝑛(𝑡)

2 + 8𝐴̅12𝐹𝑥𝑥) (16𝐴̅22(𝐴̅11𝐴̅22 − 𝐴̅12
2
))⁄           (3.25-b) 

and consequently the resultant membrane forces 𝑁𝑥𝑥  ,   𝑁𝑦𝑦 and 𝑁𝑥𝑦  are determined as 

follow: 

𝑁𝑥𝑥 = 𝐹𝑥𝑥𝑏 − (𝐴̅11𝐴̅22 − 𝐴̅12
2
) 𝜆𝑚

2𝑞𝑚𝑛(𝑡)
2 sin(2𝜆𝑛𝑏) 16𝜆𝑛𝐴̅22⁄         (3.26-a) 

𝑁𝑦𝑦 = −(𝐴̅11𝐴̅22 − 𝐴̅12
2
) 𝜆𝑛

2𝑞𝑚𝑛(𝑡)
2 sin(2𝜆𝑚𝑎) 16𝜆𝑚𝐴̅11⁄                 (3.26-b) 

𝑁𝑥𝑦 = 0                                                                   (3.26-c) 

By substituting the resultant membrane forces and the moment resultants from Eq. (3.14) that 

are in terms of the out-of-plane displacement, 𝑤0, as defined in Eq.(3.19) into the third equation 

of motion i.e. Eq. (3.4), and then multiplying the governing equation by sin 𝜆𝑚𝑥 sin 𝜆𝑛𝑦 and 

integrating over the mid-plane area of the thickness-tapered plate a system of 𝑚 × 𝑛 second-

order ordinary differential equations is obtained. It should be noted again here that since 

bending stiffness for all configurations of the thickness-tapered plates except for configuration 

A, are step functions, hence the corresponding moment resultants are also step functions, 

therefore this integration over the area should be a step integration. 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + 𝐾𝑚𝑛𝑞𝑚𝑛(𝑡) − (𝐹𝑠 + 𝐹𝑑 cos 𝑝𝑡)𝑄𝑚𝑛𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0              (3.27) 
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where 𝑀𝑚𝑛 , 𝐾𝑚𝑛  ,  𝑄𝑚𝑛  and 𝜂𝑚𝑛  are matrices and 𝑞̈𝑚𝑛(𝑡),  𝑞𝑚𝑛(𝑡) and 𝑞𝑚𝑛
3 (𝑡) are column 

vectors consisting of the 𝑞̈𝑚𝑛(𝑡)’s, 𝑞𝑚𝑛(𝑡)’s and 𝑞𝑚𝑛
3 (𝑡)’s respectively. The subscripts 𝑚 and 

𝑛 have the following ranges: 

𝑚, 𝑛 = 1,2,3,4, . . , 𝑁.                                                     (3.28) 

Introducing following notation: 

𝜔𝑚𝑛 = √
𝐾𝑚𝑛

𝑀𝑚𝑛
                                                              (3.29a) 

𝛾𝑚𝑛 =
𝜂𝑚𝑛

𝑀𝑚𝑛
                                                                  (3.29b) 

𝑁∗ =
𝐾𝑚𝑛

𝑄𝑚𝑛
                                                                     (3.29c) 

Eq. (3.27) can be written in the form of the non-linear Mathieu-Hill equation as follow: 

𝑞̈𝑚𝑛(𝑡) + Ω𝑚𝑛
2  (1 − 2𝜇𝑚𝑛 cos 𝑝𝑡)𝑞𝑚𝑛(𝑡) + 𝛾𝑚𝑛𝑞𝑚𝑛

3 (𝑡) = 0                      (3.30) 

where Ω𝑚𝑛is the frequency of the free vibration of the plate loaded by a constant longitudinal 

force 𝐹𝑠,  

Ω𝑚𝑛 = 𝜔𝑚𝑛√1 −
𝐹𝑠

𝑁∗
                                                          (3.31) 

and 𝜇𝑚𝑛 is a quantity that is called the excitation parameter, 

μ𝑚𝑛 =
𝐹𝑑

2(𝑁∗−𝐹𝑠)
                                                                  (3.32) 

 

3.4 Amplitude of vibrations at the principal parametric resonance 
 

As mentioned above Eq. (3.30) is a non-linear Mathieu-Hill equation where the non-linear 

term 𝛾𝑞𝑚𝑛
3 (𝑡) represents the effect of large deflection. According to the Liapunov Principle, 

the dynamically-unstable region is determined by the linear parts of the Eq. (3.30) [1], which 

will be discussed in the next section. Here the focus is set on the parametric resonance of the 

system. The basic solutions of Mathieu-Hill equation include two periodic solutions: i.e. 

periodic solutions of periods 𝑇 and 2𝑇 with 𝑇 = 2𝜋 𝑃⁄ . The solutions with period 2𝑇 are of 

greater practical importance as the widths of these unstable regions are usually larger than those 
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associated with solutions having period 𝑇.Using Bolotin’s [1] method for parametric vibration, 

the solution of period 2𝑇  is given by the following equation: 

𝑞(𝑡) = ∑ 𝑓𝑘 sin
𝑘𝑃𝑡

2
+ 𝑔𝑘 cos

𝑘𝑃𝑡

2
 ∞

𝑘=1,3,5,…                                        (3.33) 

where 𝑓𝑘 and 𝑔𝑘are arbitrary vectors. If one investigates the vibration at the principal resonance 

≈ 2Ω , one can neglect the influence of higher harmonics in the expansion of above equation 

and can assume 

𝑞(𝑡) = 𝑓 sin
𝑃𝑡

2
+ 𝑔 cos

𝑃𝑡

2
                                                       (3.34) 

as an approximation. By substituting this function into Eq. (3.30) and equating the coefficients 

of sin(𝑃𝑡 2⁄ ),cos(𝑃𝑡 2⁄ )  terms and neglecting the terms containing higher harmonics, the 

following system of equations for the coefficients 𝑓 and 𝑔 remains: 

[Ω𝑚𝑛
2 (1 + 𝜇𝑚𝑛) −

𝑃2

4
] 𝑓 + Γ(𝑓, 𝑔) = 0,                                        (3.35a) 

[Ω𝑚𝑛
2 (1 − 𝜇𝑚𝑛) −

𝑃2

4
] 𝑔 + Ψ(𝑓, 𝑔) = 0,                                       (3.35b) 

where Γ(𝑓, 𝑔) and Ψ(𝑓, 𝑔) are defined as coefficients of the terms including sin(𝑃𝑡 2⁄ ) and 

cos(𝑃𝑡 2⁄ ) which were obtained from the first approximation of expansion in a Fourier series 

as: 

Γ(𝑓, 𝑔) =
3𝛾𝑚𝑛

4
𝐴2𝑓                                                         (3.36a) 

Ψ(𝑓, 𝑔) =
3𝛾𝑚𝑛

4
𝐴2𝑔                                                        (3.36b) 

where 𝐴 is the amplitude of steady-state vibrations and is given by: 

𝐴 = √𝑓2 + 𝑔2                                                                 (3.37) 

By substitution of Eqs. (36a, b) into Eqs. (35a, b) a system of two homogeneous linear 

equations with respect to 𝑓 and 𝑔 can be obtained. This system has solutions that differ from 

zero only in the case where the determinant composed of the coefficients vanishes: 
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|
1 + 𝜇𝑚𝑛 − 𝑛𝑚𝑛

2 +
3𝛾𝑚𝑛

4Ω𝑚𝑛
2 𝐴2 0

0 1 − 𝜇𝑚𝑛 − 𝑛𝑚𝑛
2 +

3𝛾𝑚𝑛

4Ω𝑚𝑛
2 𝐴2

| = 0                      (3.38) 

where 

𝑛𝑚𝑛= 
𝑃

2Ω𝑚𝑛
                                                                 (3.39) 

Expanding the determinant and solving the resulting equation with respect to the amplitude, 𝐴, 

of the steady-state vibrations the following equation is obtained: 

𝐴 =
2Ω𝑚𝑛

√3𝛾𝑚𝑛
√𝑛𝑚𝑛2 − 1 ± 𝜇𝑚𝑛                                                (3.40) 

It can be proved that for the ±𝜇𝑚𝑛 term in the above equation, only +𝜇𝑚𝑛 term yields the 

stable solution, and all the other terms yield unstable solutions. 

 

3.5 Dynamic instability regions 

 

The resonance curve is not influenced by the non-linearity of Eq. (3.28) and as mentioned in 

the previous section the dynamic instability regions are determined by linear part of the 

Mathieu-Hill equation, and so the Eq. (3.28) can be rewritten as follow: 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + (𝐾𝑚𝑛
∗ − 𝑄𝑚𝑛

∗ cos 𝑝𝑡)𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0             (3.41) 

where 

𝐾𝑚𝑛
∗ = 𝐾𝑚𝑛 − 𝐹𝑠𝑄𝑚𝑛                                                  (3.42) 

and  

𝑄𝑚𝑛
∗ = 𝐹𝑑𝑄𝑚𝑛                                                     (3.43) 

The principal region of dynamic instability, which corresponds to the solution of the period, 

2𝑇 is determined by substituting Eq. (3.34) into Eq. (3.41) and equating the determinant of the 

coefficient matrix of the linear part of the governing equation to zero as follow: 

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2 0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2
| = 0           (3.44) 
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Comparing Eq. (3.44) with Eq. (3.38) by replacing μ𝑚𝑛, n𝑚𝑛 , 𝛾𝑚𝑛 and Ω𝑚𝑛 in terms of 𝐾𝑚𝑛
∗ , 

𝑄𝑚𝑛
∗  and 𝑀𝑚𝑛 reveals that the dynamic instability regions are determined by setting 𝐴 = 0 in 

Eq. (3.38).  

Equation (3.44) can be rearranged to the more simplified form of an eigenvalue problem as 

follow: 

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2

| − 𝑃2 |

𝑀𝑚𝑛

4
0

0
𝑀𝑚𝑛

4

| = 0            (3.45) 

 

3.6 Numerical results and discussions 
 

Non-linear dynamic stability characteristics of thickness-tapered cross-ply laminated 

composite rectangular plates subjected to combined static and periodic in-plane loads are 

studied here. The material properties used in the present analysis are listed in Table 3.1. 

 

Table 3.1 Material properties of NCT/301 graphite-epoxy composite ply and epoxy materials 

Composite Ply  Epoxy 

Material Properties Value  Material Properties Value 

𝐸1 113.9 𝐺𝑃𝑎   𝐸1 = 𝐸2 = 𝐸3 3.93 𝐺𝑃𝑎 
𝐸2 = 𝐸3 7.985 𝐺𝑃𝑎  𝜈13 = 𝜈12 = 𝜈23 0.37 
𝜈13 = 𝜈12 0.28  𝜌 1200 𝐾𝑔 𝑚3⁄  
𝜈23 0.4    

𝐺13 = 𝐺12 3.1 𝐺𝑃𝑎    
𝐺23 2.8 𝐺𝑃𝑎    
𝜌 1480 𝐾𝑔 𝑚3⁄      

 

The static and periodic components of the in-plane load are considered as 𝐹𝑠 = 𝛼𝑁𝑐𝑟 and 𝐹𝑑 =

𝛽𝑁𝑐𝑟, respectively. The critical buckling load 𝑁𝑐𝑟 of the studied thickness-tapered composite 

plate has been calculated as follow: 

|𝐾𝑚𝑛 − 𝑁𝑐𝑟𝑄𝑚𝑛| = 0                                                     (3.46) 

The fundamental frequency of the studied thickness-tapered plate is also calculated as follow:  

|𝐾𝑚𝑛
∗ − 𝜔2𝑀𝑚𝑛| = 0                                                      (3.47) 

In order to validate the present formulation, which is based on the non-linear analysis, we 

compare the dynamically-unstable regions with those given by Liu [34]. As it has been 
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mentioned and proved in Section 3.5 of the present study, the dynamic instability regions based 

on the large deflection formulation are achieved by either the linear part of the non-linear 

Mathieu-Hill equation or by setting 𝐴 = 0 in equation (3.40).  Once the stable- and unstable-

solution amplitudes of steady-state vibrations is zero the corresponding excitation frequencies 

should coincide with the boundaries of the dynamically-unstable regions (having the same 

dynamic load factor 𝛽 ); therefore the accuracy of the amplitude-frequency curve is also 

confirmed by this comparison. Figures 3.4-3.11 give an illustrative graphical representation of 

dynamically-unstable region (Figs. 3.4a-3.11a) and also both stable- and unstable-solution 

amplitudes of steady-state vibrations (Figs. 3.4b-3.11b) of mode (1,1)  of four different 

configurations, i.e. configurations A, B, C and D of the thickness-tapered plate. To compare 

the graphs with that given in [34] which  considered the linear analysis and consequently lead 

only to the instability regions,  for all configurations the thickness-tapered plate is a square 

plate having length 𝑎 = 0.24 𝑚, ply thickness ℎ𝑝 = 0.138 𝑚𝑚 ( 𝑎 ℎ𝑎𝑣⁄ = 193.24) and with 

12 and 6 plies at the thick and thin sections of the thickness-tapered plate, respectively. The 

thickness-tapered composite plate is symmetric with stacking sequence of [(0°, 90°, 0°, … )1]𝑆 

and two comparative studies are considered having static loading amplitudes of 𝛼 = 0.2 and 

𝛼 = 0.8  respectively, and also the amplitudes of steady-state vibrations (Figs. 3.4b-3.11b) are 

plotted for the same loading condition having the dynamic load factor of 𝛽 = 0.2. As it can be 

observed from these figures (Figs. 3.4a-3.11a) each unstable region is separated by two lines 

with a common point of origin. Actually these two lines are not completely straight and they 

curved slightly outward. It is observed from these figures that there are excellent agreements 

between the present results and those obtained by Liu [34]. As it can be seen from these figures 

these agreements between the present results with the FEM analysis of their work are excellent 

although the Ritz analysis of their work deviate from these two agreements, particularly, the 

plots the configuration D subjected to the periodic axial loading having static load factor of  
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Figure 3.4 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a 12-6 layered symmetric [(𝟎°, 𝟗𝟎°, 𝟎°,  (𝐫𝐞𝐬𝐢𝐧)𝟑)𝟏]𝑺  cross-ply laminated square thickness-tapered 

plate with configuration A and thickness ratio of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟗𝟑. 𝟐𝟒 subjected to periodic in-plane load having 

static load factor of 𝜶 = 𝟎. 𝟐  

 

 

 

 

 

Figure 3.5 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a 12-6 layered symmetric [(𝟎°, 𝟗𝟎°, 𝟎°,  (𝐫𝐞𝐬𝐢𝐧)𝟑)𝟏]𝑺  cross-ply laminated square thickness-tapered 

plate with configuration A and thickness ratio of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟗𝟑. 𝟐𝟒 subjected to periodic in-plane load having 

static load factor of 𝜶 = 𝟎. 𝟖 
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Figure 3.6 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a 12-6 layered symmetric [(𝟎°, 𝟗𝟎°, 𝟎°, 𝐫𝐞𝐬𝐢𝐧, 𝟎°, 𝟗𝟎° )𝟏]𝑺  cross-ply laminated square thickness-

tapered plate with configuration B and thickness ratio of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟗𝟑. 𝟐𝟒 subjected to periodic in-plane load 

having static load factor of 𝜶 = 𝟎. 𝟐 

 

 

 

 

Figure 3.7 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a 12-6 layered symmetric [(𝟎°, 𝟗𝟎°, 𝟎°, 𝐫𝐞𝐬𝐢𝐧, 𝟎°, 𝟗𝟎° )𝟏]𝑺  cross-ply laminated square thickness-

tapered plate with configuration B and thickness ratio of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟗𝟑. 𝟐𝟒 subjected to periodic in-plane load 

having static load factor of 𝜶 = 𝟎. 𝟖 
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Figure 3.8 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a 12-6 layered symmetric [(𝟎°, 𝟗𝟎°, 𝟎°, 𝟗𝟎°, 𝟎°, 𝐫𝐞𝐬𝐢𝐧)𝟏]𝑺  cross-ply laminated square thickness-

tapered plate with configuration C and thickness ratio of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟗𝟑. 𝟐𝟒 subjected to periodic in-plane load 

having static load factor of 𝜶 = 𝟎. 𝟐 

 

 

 

 

Figure 3.9 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a 12-6 layered symmetric [(𝟎°, 𝟗𝟎°, 𝟎°, 𝟗𝟎°, 𝟎°, 𝐫𝐞𝐬𝐢𝐧)𝟏]𝑺  cross-ply laminated square thickness-

tapered plate with configuration C and thickness ratio of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟗𝟑. 𝟐𝟒 subjected to periodic in-plane load 

having static load factor of 𝜶 = 𝟎. 𝟐 
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Figure 3.10 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a 12-6 layered symmetric cross-ply laminated square thickness-tapered plate with configuration D 

and thickness ratio of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟗𝟑. 𝟐𝟒 subjected to periodic in-plane load having static load factor of 𝜶 = 𝟎. 𝟐 

 

 

 

 

 

Figure 3.11 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a 12-6 layered symmetric cross-ply laminated square thickness-tapered plate with configuration D 

and thickness ratio of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟗𝟑. 𝟐𝟒 subjected to periodic in-plane load having static load factor of 𝜶 = 𝟎. 𝟐 
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𝛼 = 0.8. As has been mentioned in [34] by the author Liu “the accuracy of their Ritz method 

depends on 1. the chosen approximate functions for deflections and their suitability for specific 

boundary conditions, and 2. the number of terms used. On the other hand, the finite element 

solution does not suffer from these limitations. Therefore, the finite element solution would be 

more accurate.” So as can be seen from these figures this research work also confirms the 

accuracy of their FEM solution which is for linear analysis and only limited to dynamically-

unstable regions and by these excellent agreements. There are not any specific reasons for the 

applied load factors and the modes except for comparison with the available results in that 

thesis research work by Liu [34]. Also, it is evident from these figures (Figs. 3.4b-3.11b) that 

once the amplitude is zero the corresponding excitation frequencies coincide with the 

boundaries of dynamically-unstable regions (Figs. 3.4a-3.11a), corresponding to the dynamic 

load factor of 𝛽 = 0.2. The zero stable- and unstable-solution amplitudes of these figures (Figs. 

3.4b-3.11b) exactly coincide with the left and right curves of the corresponding unstable 

regions (Figs. 3.4a-3.11a) respectively, and the range of frequencies between these two 

solutions at 𝐴 = 0 predicate the dynamically-unstable regions at this certain value of dynamic 

load factor 𝛽 . As a result, these figures show graphically that unstable regions could be 

obtained by setting 𝐴 = 0 in Eq. (3.38) and hence, this could be considered as a validation of 

the non-linear part of the dynamic instability analysis. 

The effects of various taper configurations on the first-two modes, dynamically-unstable 

regions and stable solution amplitudes of steady-state vibrations of symmetric thickness-

tapered cross-ply laminated rectangular plates are presented in Figs. 3.12-3.15. All thickness-

tapered configurations have 12 and 6 plies at the thick and thin section respectively, and also 

results are compared with the uniform plate having 9 plies (which is the average of 12 and 6 

plies) and with the same length-to-average-thickness ratio i.e. 𝑎 ℎ𝑎𝑣⁄ = 100 and length-to-

width ratio of 𝑎 𝑏⁄ = 2. Figures 3.12 and 3.13 correspond to the first-two modes, i.e. mode  
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Figure 3.12 Effects of various taper configurations on the first mode a) unstable region and b) stable-solution 

amplitude of steady-state vibrations of a 12-6 layered symmetric cross-ply laminated rectangular thickness-

tapered plate subjected to the tensile periodic in-plane loading 

 

 

 

 

Figure 3.13 Effects of various tape configurations, on the second mode a) unstable region and b) stable-solution 

amplitude of steady-state vibrations of a 12-6 layered symmetric cross-ply laminated rectangular thickness-

tapered plate subjected to the tensile periodic in-plane loading 
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Figure 3.14 Effects of various taper configurations, on the first mode a) unstable region and b) stable-solution 

amplitude of steady-state vibrations of a 12-6 layered symmetric cross-ply laminated rectangular thickness-

tapered plate subjected to the compressive periodic in-plane loading 

 

 

 

Figure 3.15 Effects of various taper configurations, on the second mode a) unstable region and b) stable-

solution amplitude of steady-state vibrations of a 12-6 layered symmetric cross-ply laminated rectangular 

thickness-tapered plate subjected to the compressive periodic in-plane loading 
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(1,1) and mode (1,2), under tensile in-plane pulsating load having static load factor of 𝛼 = 0.5. 

From here onwards in all of the figures the amplitudes of the steady-state vibrations are plotted 

for the loading conditions having dynamic load factor of 𝛽 = 0.25. The corresponding graphs 

for the compressive loading are represented in Fig. 3.14 and Fig. 3.15 respectively. It is also 

worthwhile to note here that in the tensile loading case we consider the absolute value of critical 

buckling load |𝑁𝑐𝑟| for both static and dynamic components of the in-plane harmonically-

pulsating load, while in the compressive case we use the actual value of critical buckling load 

𝑁𝑐𝑟 which is negative with respect to the assigned coordinate system shown in Fig. 3.1. In the 

comparative study of various configurations, the applied in-plane harmonically pulsating load 

for all configurations and the uniform plate is based on the critical buckling load of the 

configuration A. Here and in the following figures and tables, the dimensionless excitation 

frequency parameter 𝑝 is introduced as follow:  

𝑝 = 𝑃𝑎√
𝜌𝑐

𝐸2
                                                        (3.48) 

where 𝜌𝑐  is the mass density of the composite plies. It is observed that thickness-tapered 

composite plate having configuration C, has the highest frequency of excitation or in other 

words the most-shifted to the right along the frequency axis of both dynamically-unstable 

regions and amplitudes of steady-state vibrations among the other configurations. So 

consequently, it has the lowest amplitudes of steady-state vibrations at any specific excitation 

frequency. To provide a more detailed and a better comparison the corresponding results for 

the first-two modes of dynamically-unstable regions also are listed in Tables 3.2 and 3.3 

corresponding to tensile and compressive in-plane loadings respectively. To compare the 

results in these and the following tables we specified each unstable region by the non-

dimensional frequency parameter 𝑝 of the point of origin and the half angle of the unstable 

region as 𝛿. It is also observed from these figures and tables that configuration C has the 

smallest 𝛿 i.e. smallest width of the instability regions. All of these observations are confirmed  
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Table 3.2 Effects of various taper configurations on the first-two modes of the dynamically-unstable regions of a 

12-6 layered symmetric cross-ply laminated rectangular thickness-tapered plate subjected to the tensile periodic 

in-plane loading 

Taper 

Configuration 

Mode (1,1) of Dynamically-Unstable 

Region 

 Mode (1,2) of Dynamically-Unstable 

Region 

Point of origin 𝑝  
(× 10−1) 

𝛿 (× 10−1)  Point of origin 𝑝  
(× 10−1) 

𝛿 (× 10−1) 

A (12-6 Plies) 7.273486753 1.160318234  26.63182834 4.033661837 

B (12-6 Plies) 7.170241789 1.127398507  26.26533989 3.928456527 

C (12-6 Plies) 7.354430072 1.101373713  27.04124281 3.833745441 

D (12-6 Plies) 7.051689571 1.144781922  25.92035233 3.971943926 

Uniform (9 Plies) 7.134012328 1.109899102  26.27473998 3.855409063 

 

Table 3.3 Effects of various taper configurations on the first-two modes of the dynamically-unstable regions of a 

12-6 layered symmetric cross-ply laminated rectangular thickness-tapered plate subjected to the compressive 

periodic in-plane loading 

Taper 

Configuration 

Mode (1,1) of Dynamically-Unstable 

Region 

 Mode (1,2) of Dynamically-Unstable 

Region 

Point of origin 𝑝 

 (× 10−1) 
𝛿 (× 10−1)  Point of origin 𝑝  

(× 10−1) 
𝛿 (× 10−1) 

A (12-6 Plies) 4.199349535 1.865614554  15.37589326 6.047485315 

B (12-6 Plies) 4.202132441 1.793216102  15.40576975 5.854713696 

C (12-6 Plies) 4.509234017 1.693038991  16.69426471 5.550619329 

D (12-6 Plies) 3.996482897 1.86644874  14.80994015 6.004155401 

Uniform (9 Plies) 4.224835457 1.751863448  15.7271826 5.687899224 

 

even when changing the mode from the mode (1,1) to the mode (1,2) or loading directions from 

tensile to compressive. Hence, configuration C shows the most rigidity among all 

configurations and this can be expected since in this configuration the resin pockets are located 

very close to mid-plane of the plate and therefore its bending stiffnesses are less decreased due 

to the smaller bending stiffnesses of the resin pocket in comparison to the composite plies. It 

is also noted that although the amplitudes of steady-state vibrations of the configuration C in 

the initial stages of the excitation is lower than that of the uniform laminate, this trend is 

changed at the higher excitation frequencies that can be due to the existence of the resin pocket 

in configuration C while there isn’t any such resin pocket in uniform plate. Due to the less mass 

density of the resin (epoxy) to the graphite composite plies, overall it makes that the uniform 

plate be heavier than the thickness-tapered laminates or particularly here the thickness-tapered 

having configuration C (the total mass of plates having configuration A, B, C, D and the 

uniform plate with the same length-to-average-thickness ratio i.e. 𝑎 ℎ𝑎𝑣⁄ = 100 and length-to-
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width ratio of 𝑎 𝑏⁄ = 2 are 13.28, 13.88, 13.88, 13.88 and 14.18 grams, respectively. However 

it should be noted here that for the same size of uniform plate with 12 plies the total mass would 

be 18.91 grams.). So to summarize these, increasing the stiffnesses makes the instability 

regions or excitation to start at higher frequencies but the same time reducing the weight of the 

structures causes the speed of increasing of the amplitudes of steady-state vibrations be 

increased. However, as can be observed from these figures the increase of the amplitudes at 

those higher excitation frequencies are very small to compared amplitudes of the uniform 

laminate. Therefore it is concluded that configuration C is the most stable laminated plate under 

parametric excitation among all taper configurations and even uniform laminate. Another 

observation from these figures and tables reveal that since configuration D has the lowest 

stiffness due to the location of the resin pockets far from the mid-plane, its dynamically-

unstable regions or the parametric excitations start at the lowest frequencies. But since 

configuration A has the lowest total weight due to the largest amount of the resin pockets in 

this configuration, its amplitudes of steady-state vibrations are increased much faster than any 

other configuration and consequently reach the highest amplitudes of steady-state vibrations at 

higher frequencies. 

Figures 3.16 and 3.17 show the effects of the amplitudes of the tensile and compressive in-

plane harmonically pulsating load on the dynamically-unstable regions (Figs. 3.16a and 3.17a) 

and the stable-solution amplitudes of the steady-state vibrations (Figs. 3.16b and 3.17b), 

respectively. Here the graphs are plotted for thickness-tapered laminated plate with 

configuration C having 40 and 10 plies at the thickest and the thinnest sides, respectively. 

Therefore according to the Eq. (3.17) this reduction of the plies from 40- to 10-plies are 

performed in 15 steps.  The depicted graphs are for three different loading amplitudes having 

static load factors of  𝛼 = 0.1 , 𝛼 = 0.3 and 𝛼 = 0.5  respectively. In all of  these three cases 

of loadings for both the tensile and compressive load conditions the thickness-tapered 
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laminated plate has aspect and thickness ratios of  𝑎 𝑏⁄ = 2 and 𝑎 ℎ𝑎𝑣⁄ = 50 respectively, and 

also the graphs has been depicted for the first mode i.e. the mode (1,1). From Fig.16 it can be 

realized that increasing the magnitude of the tensile in-plane loading results in shifting the 

instability regions to the higher frequencies along the frequency axis (Fig. 3.16a), and 

consequently decreasing the stable-solution amplitudes of steady-state vibrations (Fig. 3.16b) 

and also decreasing very slightly the widths of dynamically-unstable regions (Fig. 3.16a). 

However increasing the magnitude of the compressive in-plane loading results in shifting the 

instability regions to the lower frequencies along the frequency axis (Fig. 3.17a), and 

consequently increasing the stable-solution amplitudes of the steady-state vibrations 

(Fig.3.17b) and also increasing the widths of dynamically-unstable regions (Fig. 3.17a). These 

 

Figure 3.16 Effects of the amplitude of tensile in-plane harmonically pulsating loads, on the first mode a) 

unstable region and b) stable-solution amplitude of steady-state vibrations of a 40-10 layered symmetric cross-

ply laminated thickness-tapered plate having configuration C 
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Figure 3.17 Effects of the amplitude of compressive in-plane harmonically pulsating loads, on the first mode a) 

unstable region and b) stable-solution amplitude of steady-state vibrations of a 40-10 layered symmetric cross-

ply laminated thickness-tapered plate having configuration C 

 

outcomes can be expected because increasing the tensile in-plane load makes the plate to be 

stiffer, and contrarily increasing the compressive in-plane load results in decreasing the plate’s 

stiffness.  

One of the most important parameters in the design of thickness-tapered plates is the taper 

angle 𝜙. In the very few works on the mechanical and structural behavior of thickness-tapered 

plates, most of the researchers in order to investigate the effect of this parameter decreased the 

length of the thickness-tapered plate [29, 31]. Although it is clear that decreasing the length of 

the plate and keeping the thickness of the thickness-tapered plate unchanged, overall the length-

thickness ratio is changed while this ratio is also another important parameter for both uniform 

and thickness-tapered plates that should be investigated independently. Here to avoid this 

interference of these two important parameters we introduce the following formulation which 

only changes the taper angles by keeping the length-to-average-thickness ratio as constant: 

𝜙 = tan−1((𝑁𝐿 − 𝑁𝑅) ((𝑎 ℎ𝑎𝑣⁄ )(𝑁𝐿 + 𝑁𝑅))⁄ )                                 (3.49) 
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Hence by keeping the 𝑎 ℎ𝑎𝑣⁄  ratio as constant in this equation and changing the number of plies 

at the thickest (here the left) and the thinnest (here the right) sides of the thickness-tapered plate 

respectively, the taper angle is changed without changing the length-thickness ratio. Variation 

of both the length 𝑎 and the thickness ℎ do not influence the response of the structure if the 

overall length-thickness ratio remains unchanged. Here to study the effect of taper angle we 

keep the number of plies at the thickest side of the taperd plate 𝑁𝐿 = 40 for all cases and by 

decresing the number of plies at the thinnest side of the taperd plate i.e. 𝑁𝑅 while we keep the 

length-to-average-thickness ratio as constant as 𝑎 ℎ𝑎𝑣⁄ = 50 in Figures 18 and 20 and Tables 

3.4 and 3.6 or 𝑎 ℎ𝑎𝑣⁄ = 10 in Figures 3.19 and 3.21 and Tables 3.5 and 3.7, the taper angle is 

increased. In addition, as it can be seen from Eq. (3.49)  the taper angle also is increased by  

 

Figure 3.18 Effects of the taper angle on the first mode a) unstable region and b) stable-solution amplitude of 

steady-state vibrations of symmetric cross-ply laminated thickness-tapered plates having configuration C, aspect 

ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟓𝟎 subjected to the tensile periodic in-plane loading 

 

 

 



 

95 

 

 

Figure 3.19 Effects of the taper angle on the first mode a) unstable region and b) stable-solution amplitude of 

steady-state vibrations of symmetric cross-ply laminated thickness-tapered plates having configuration C, aspect 

ratios of 𝒂 𝒃⁄ = 𝟎. 𝟓 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 subjected to the tensile periodic in-plane loading 

 

Figure 3.20 Effects of the taper angle on the first mode a) unstable region and b) stable-solution amplitude of 

steady-state vibrations of symmetric cross-ply laminated thickness-tapered plate having configuration C, aspect 

ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟓𝟎 subjected to the compressive periodic in-plane loading 
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Figure 3.21 Effects of the taper angle on the first mode a) unstable region and b) stable-solution amplitude of 

steady-state vibrations of symmetric cross-ply laminated thickness-tapered plate having configuration C, aspect 

ratios of 𝒂 𝒃⁄ = 𝟎. 𝟓 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎  subjected to the compressive periodic in-plane loading 

 

decreasing the length-to-average-thickness ratio i.e. 𝑎 ℎ𝑎𝑣⁄   therefore the reults are presented 

in these firgures and tables for 𝑎 ℎ𝑎𝑣⁄ = 50 and 𝑎 ℎ𝑎𝑣⁄ = 10 respectively. It is also noted here 

that by knowing the number of plies at the thickest and the thinnest sides and also the ply 

thickness ℎ𝑝 , the ℎ𝑎𝑣  of the thickness-tapered plate can be obtained. Then considering the 

length of the plate either 𝑎 = 50ℎ𝑎𝑣 or 𝑎 = 10ℎ𝑎𝑣, the length of the plate is also determined. 

The effects of the taper angle on both dynamically-unstable regions and the stable-solution 

amplitudes of steady-state vibartions are shown in Figures 3.18-3.21 that correspond to the 

tensile and compressive in-plane periodic loadings, respectivly. 

taperd laminated plate from 40 plies, which also correponds to the number of plies in the 

uniform plate, to 10 plies, the corresponding taper angle is increased from zero to 0.6875° in 

the plates having 𝑎 ℎ𝑎𝑣⁄ = 50  and from zero to 3.434°  in the plates having 𝑎 ℎ𝑎𝑣⁄ = 10 . 

Although we consider the static load factor 𝛼 = 0.5 for all these six taper ratios i.e. 40-40, 40-

34, 40-28, 40-22, 40-16 and 40-10 plies, it should be noted that corresponding dimensionless 
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critical bucklig loads, i.e. (𝑁𝑐𝑟)𝑁𝐷 , which is 𝑁𝑐𝑟𝑎
2 𝐸1⁄ ℎ𝑎𝑣

3
, are also increased. Both tensile 

(Figs. 3.18 and 3.19 and Tables 3.4 and 3.5) and compressive (Figs. 3.20 and 3.21 and Tables 

3.6 and 3.7) loading confirm that increasing the taper angle causes shifting the dynamically-

unstable regions to the higher frequencies along the frequency axis (Figs. 3.18a-3.21a, Tables 

3.4-3.7), and consequently decreasing the stable-solution amplitudes of the steady-state 

vibrations (Figs. 3.18b- 3.21b) and also decreasing very slightly the widths of dynamically-

unstable regions (Figs. 3.18a-3.21a, Tables 3.4-3.7). This is due to the fact that increasing taper 

angles results in higher stiffness of the plate. Another important outcome of these figures and 

tables is that these variations of dynamic instability response, highly deviate from thickness-

tapered plate having 40-10 to 40-16 and 40-22 plies but it shows the convergence of the 

response of the thickness-tapered plates having 40-28 plies and 40-34 plies with the uniform 

laminated plate having 40 plies. 

Figure 3.22 shows the variation of the both extension- and bending-stiffnesses ratios of the left 

(thick) side to the right (thin) side of symmetric cross-ply laminated thickness-tapered plate 

having configuration C with the taper ratio (𝑁𝐿 𝑁𝑅⁄ ). The results also are listed in Table 3.8. 

As it has been mentioned been mentioned in section 2 (Formulation) of this work in the 

thickness-tapered laminates the extension- and bending-stiffnesses are linear and cubic 

functions of x-coordinate respectively. So these stiffnesses are maximum in the left (thickest) 

side and minimum in the right (thinnest) side. However increasing the taper angle by varying 

𝑎 ℎ𝑎𝑣⁄ = 50 to 𝑎 ℎ𝑎𝑣⁄ = 10 only the speed of reaching from that maximum to minimum will 

accelerate without changing those maximum and minimum values of stifnesses from the 

thickest to the thinnest side at any specific 𝑁𝐿 and 𝑁𝑅. As it is clear from this figure and table 

the extension-stiffnesses ratio vs 𝑁𝐿 𝑁𝑅⁄  has almost linear distribution and increased linearly 

from 𝑁𝐿 𝑁𝑅 = 34/40⁄  to 𝑁𝐿 𝑁𝑅 = 10/40⁄  that all of those stiffness ratios are less than 4.4. 
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Figure 3.22 Variation of the both extension- and bending-stiffnesses ratios of the left (thick) side to the right 

(thin) side of symmetric cross-ply laminated thickness-tapered plate having configuration C with the taper ratio 

(𝑵𝑳 𝑵𝑹⁄ ) 

  

However the bending-stiffnesses ratio vs 𝑁𝐿 𝑁𝑅⁄  has cubic distribution and increased non-

linearly from 𝑁𝐿 𝑁𝑅 = 34/40⁄  to 𝑁𝐿 𝑁𝑅 = 10/40⁄  that those stiffness ratio are increased up 

to 80.5. On the other hand instability of structures either statically or dynamically are actually 

bending deflections rather than extensional deflections. So as also mentioned before we can 

take the average of extension-stiffnesses to solving the in-plane displacements i.e. 𝑢0(𝑥, 𝑦, 𝑡) 

and 𝑣0(𝑥, 𝑦, 𝑡) in terms of transverse displacement 𝑤0(𝑥, 𝑦, 𝑡) in the displacement form of  

Eqs. (3.2 and 3.3) and further Eqs. (3.22-a and b). To examin the effect of aspect ratio 𝑏 𝑎⁄  (as 

the ratio of the width of loaded edge to the width of unloaded edge) on the dynamic instability 

of thickness-tapered plate the graphs are presented in Figs. 3.23 and 3.24 corresponding to the 

tensile and compressive periodic in-plane loadings, respectively. Here 𝑎 is kept constant and 𝑏 

is varied and the length-to-average-thickness ratio is 𝑎 ℎ𝑎𝑣⁄ = 50. 
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Table 3.4 Effects of the taper angle on the first mode of dynamically-unstable region of symmetric cross-ply 

laminated thickness-tapered plate having configuration C, aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟓𝟎 subjected 

to the tensile periodic in-plane loading 

Plate Configuration Tap. Angle 𝜙𝜊  
(× 10−1) 

(𝑁𝑐𝑟)𝑁𝐷 Point of origin 𝑝 

 (× 10−1) 
𝛿 (× 10−1) 

Uniform (40 Plies) 0.00000 -7.57787 16.00123 2.51007 

C (40-34 Plies) 0.92912 -7.56606 16.02980 2.51436 

C (40-28 Plies) 2.02220 -7.61167 16.08169 2.52216 

C (40-22 Plies) 3.32681 -7.75019 16.23175 2.54470 

C (40-16 Plies) 4.91095 -8.04095 16.53886 2.59074 

C (40-10 Plies) 6.87516 -8.58747 17.09866 2.67437 

 * Non-dimensional critical buckling load, (𝑁𝑐𝑟)𝑁𝐷 = (𝑁𝑐𝑟𝑎
2) (𝐸1⁄ ℎ𝑎𝑣

3) 
 

Table 3.5 Effects of the taper angle on the first mode of dynamically-unstable region of symmetric cross-ply 

laminated thickness-tapered plate having configuration C, aspect ratios of 𝒂 𝒃⁄ = 𝟎. 𝟓 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 subjected 

to the tensile periodic in-plane loading 

Plate Configuration Tap. Angle 𝜙𝜊  
(× 10−1) 

(𝑁𝑐𝑟)𝑁𝐷 Point of origin 𝑝  
(× 10−1) 

𝛿 (× 10−1) 

Uniform (40 Plies) 0.00000 -0.52769 21.11247 3.26233 

C (40-34 Plies) 4.64550 -0.53144 21.24169 3.28089 

C (40-28 Plies) 10.10997 -0.54003 21.41759 3.30613 

C (40-22 Plies) 16.62959 -0.55632 21.74416 3.35287 

C (40-16 Plies) 24.54032 -0.58521 22.30880 3.43333 

C (40-10 Plies) 34.33630 -0.63529 23.25326 3.56688 

 * Non-dimensional critical buckling load, (𝑁𝑐𝑟)𝑁𝐷 = (𝑁𝑐𝑟𝑎
2) (𝐸1⁄ ℎ𝑎𝑣

3) 
 

Table 3.6 Effects of the taper angle on the first mode of dynamically-unstable region of symmetric cross-ply 

laminated thickness-tapered plate having configuration C, aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟓𝟎 subjected 

to the compressive loading 

Plate Configuration Tap. Angle 𝜙𝜊 (×
10−1) 

(𝑁𝑐𝑟)𝑁𝐷 Point of origin 𝑝 (×
10−1) 

𝛿 (× 10−1) 

Uniform (40 Plies) 0.00000 -7.57787 9.23832 3.93586 

C (40-34 Plies) 0.92912 -7.56606 9.25481 3.94218 

C (40-28 Plies) 2.02220 -7.61167 9.28477 3.95365 

C (40-22 Plies) 3.32681 -7.75019 9.37140 3.98677 

C (40-16 Plies) 4.91095 -8.04095 9.54872 4.05427 

C (40-10 Plies) 6.87516 -8.58747 9.87191 4.17630 

* Non-dimensional critical buckling load, (𝑁𝑐𝑟)𝑁𝐷 = (𝑁𝑐𝑟𝑎
2) (𝐸1⁄ ℎ𝑎𝑣

3) 
 

Table 3.7 Effects of the taper angle on the first mode of dynamically-unstable region of symmetric cross-ply 

laminated thickness-tapered plate having configuration C, aspect ratios of 𝒂 𝒃⁄ = 𝟎. 𝟓  and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎  

subjected to the compressive loading 

Plate Configuration Tap. Angle 𝜙𝜊 (×
10−1) 

(𝑁𝑐𝑟)𝑁𝐷 Point of origin 𝑝 (×
10−1) 

𝛿 (× 10−1) 

Uniform (40 Plies) 0.00000 -0.52769 12.18929 5.01227 

C (40-34 Plies) 4.64550 -0.53144 12.26390 5.03802 

C (40-28 Plies) 10.10997 -0.54003 12.36545 5.07296 

C (40-22 Plies) 16.62959 -0.55632 12.55399 5.13748 

C (40-16 Plies) 24.54032 -0.58521 12.87999 5.24792 

C (40-10 Plies) 34.33630 -0.63529 13.42528 5.42954 

* Non-dimensional critical buckling load, (𝑁𝑐𝑟)𝑁𝐷 = (𝑁𝑐𝑟𝑎
2) (𝐸1⁄ ℎ𝑎𝑣

3) 
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Table 3.8 Variation of the both extension- and bending-stiffnesses ratios of the left (thick) side to the right (thin) 

side of symmetric cross-ply laminated thickness-tapered plate having configuration C with the taper ratio 

(𝑵𝑳 𝑵𝑹⁄ ) 

stiffnesses ratios 40-34 Plies 40-28 Plies 40-22 Plies 40-16 Plies 40-10 Plies 

(𝐴11)𝐿 (𝐴11)𝑅⁄  1.12 1.42 1.68 2.49 3.40 

(𝐴12)𝐿 (𝐴12)𝑅⁄  1.16 1.41 1.80 2.47 3.98 

(𝐴22)𝐿 (𝐴22)𝑅⁄  1.13 1.30 1.80 2.28 4.41 

(𝐴66)𝐿 (𝐴66)𝑅⁄  1.14 1.39 1.77 2.43 3.89 

(𝐷11)𝐿 (𝐷11)𝑅⁄  1.61 2.84 5.73 14.31 54.23 

(𝐷12)𝐿 (𝐷12)𝑅⁄  1.63 2.92 6.01 15.66 64.50 

(𝐷22)𝐿 (𝐷22)𝑅⁄  1.65 3.00 6.37 17.45 80.53 

(𝐷66)𝐿 (𝐷66)𝑅⁄  1.63 2.92 6.01 15.62 64.00 

 

 

Again we keep the static load factor 𝛼 = 0.5  for all these six aspect ratios i.e., 𝑏 𝑎⁄ =

2, 1, 2/3,0.5, 2/5 𝑎𝑛𝑑 1/3. It should be noted that the corresponding dimensionless critical 

bucklig loads are increased by decreasing the width-to-length ratio. The graphs indicate that 

with a decrease in width of the plate, i.e. overall decrease in aspect ratio of  𝑏 𝑎⁄  , the thickness-

tapered plate’s stiffness is increased as well, hence the dynamically-unstable regions shift to 

the right along the frequency axis having higher frequencies of excitations of points of origins 

(Figs. 3.23a and 3.24a), and consequently the amplitudes of steady-state vibrations at any 

specific frequency are decreased (Figs. 3.23b and 3.24b)  and further, the widths of instability 

regions are also increased (Figs. 3.23a and 3.24a). It is noticed that increase in the widths of 

instability regions are more influenced by the compressive loading (Fig. 3.24a) than the tensile 

loading (Fig. 3.23a). However the points of origins of dynamically-unstable regions are more 

influenced by the tensile loading (Fig. 3.23a) than the compressive loading (Fig. 3.24a). These 

are in full agreement qualitatively with the corresponding study of Ramachandra and Panda 

[11] for dynamically-unstable regions of uniform laminated plates. In order to investigate the 

effect of the variation of the length-to-average-thickness ratio, 𝑎 ℎ𝑎𝑣⁄  , on the instability 

regions and the stable-solution amplitudes of steady-state vibrations, as it has been mentioned 

above since the taper angle and length-thickness ratio are influenced by each other, here to 

avoid this interference of these two important parameters we keep the length 𝑎 of the thickness- 
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Figure 3.23 Effects of the variation of the length-to-width ratio, on the first mode a) unstable region and b) 

stable-solution amplitude of steady-state vibrations of 40-10 layered symmetric cross-ply laminated thickness-

tapered plate having configuration C and 𝒂 𝒉𝒂𝒗⁄ = 𝟓𝟎 subjected to the tensile periodic in-plane loading 

 

 

 

 

Figure 3.24 Effects of the variation of the length-to-width ratio, on the first mode a) unstable region and b) 

stable-solution amplitude of steady-state vibrations of 40-10 layered symmetric cross-ply laminated thickness-

tapered plate having configuration C and 𝒂 𝒉𝒂𝒗⁄ = 𝟓𝟎 subjected to the compressive periodic in-plane loading 
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Figure 3.25 Effects of the variation of the length-to-average-thickness ratio on the first mode a) unstable region 

and b) stable-solution amplitude of steady-state vibrations of 40-10 layered symmetric cross-ply laminated 

thickness-tapered plate having configuration C and aspect ratios of 𝒂 𝒃⁄ = 𝟎. 𝟓 subjected to the tensile periodic 

in-plane loading 

 

 

Figure 3.26 Effects of the variation of the length-to-average-thickness ratio, on the first mode a) unstable region 

and b) stable-solution amplitude of steady-state vibrations of 40-10 layered symmetric cross-ply laminated 

thickness-tapered plate having configuration C and aspect ratios of 𝒂 𝒃⁄ = 𝟎. 𝟓 subjected to the compressive 

periodic in-plane loading 
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tapered plate constant and change the length-to-average-thickness ratio by increasing the 

number of plies. Figures 3.25 and 3.26 present a graphical illustration of the effect of length-

to-average-thickness ratio on dynamic instability of thickness-tapered plate with configuration 

C having three different numbers of plies i.e. 40-10 plies, 50-20 plies and 60-30 plies. The taper 

angle for all these three different thickness-tapered plates remains constant as 𝜙 = 0.344°.  

The length-to-width ratio 𝑎 𝑏⁄ = 2 and the static load factor 𝛼 = 0.5 for all these three diferent 

thickness ratios i.e., 𝑎 ℎ𝑎𝑣⁄ = 100, 71.43 𝑎𝑛𝑑 55.56 corresponding to the 40-10 plies, 50-20 

plies and 60-30 plies, respectively. It is confirmed that in both tensile (Fig. 3.25) and 

compressive (Fig. 3.26) loading conditions with increasing the number of plies, i.e. with 

decreasing the length-to-average-thickness ratio 𝑎 ℎ𝑎𝑣⁄  , the dynamically-unstable regions 

(Figs. 3.25a and 3.26a) shift to the right along the frequency axis having higher excitation 

frequencies, and consequently decreasing the stable-solution amplitudes of steady-state 

vibrations (Figs. 3.25b and 3.26b) and also increasing the widths of dynamically-unstable 

regions (Figs 25a and 26a). It should be noted here again that increase in the widths of 

instability regions is more influenced by the compressive loading (Fig. 3.26a) than the tensile 

loading (Fig. 3.25a). However the points of origins of dynamically-unstable regions are more 

influenced by the tensile loading (Fig. 3.25a) than the compressive loading (Fig. 3.26a). These 

outcomes are also due to the fact that increasing the thickness of plate makes the plate stiffer. 

 

3.7 Conclusions 
 

When the plate is subjected to periodically-varying in-plane loading, the parametric 

instability can occur, and the nature of this instability is flutter. Here the non-linear vibration 

and dynamic instability of thickness-tapered laminated composite plates under parametric in-

plane excitation have been studied. The non-linear von Karman strains associated with large 

deflections are considered. The in-plane displacements are determined from the force-

equilibrium equations of motion in the x and y direction of non-linear large deflection 
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thickness-tapered plate. Consequently, the in-plane force-resultants are obtained from the in-

plane displacements and further applying the boundary conditions. Then the general Galerkin 

method is used for the moment-equilibrium equation of motion to satisfy the spatial 

dependence in the partial differential equation of motion and to produce a set of non-linear 

Mathieu-Hill equations. These equations are ordinary differential equations with time-

dependency. Applying Bolotin’s method to these set of equations, the dynamically-unstable 

regions and both stable-, and unstable-solutions amplitudes of the steady-state vibrations are 

obtained. It was confirmed that instability regions,  stable-, and unstable-solutions amplitudes 

of steady-state vibrations are significantly influenced by taper configurations, taper angles, 

magnitudes of both tensile and compressive in-plane loads, aspect ratios of the thickness-

tapered plate including length-to-width and length-to-thickness ratios and particularly here 

length-to-average-thickness ratio. Hence in any particular application specific considerations 

of all these important parameters should be taken into account in the design of thickness-

tapered composite plates. A comparative study of the present work with those available in 

literature shows a very good agreement. However, as the results of the present study reveal, the 

linear analysis carried out in available literature can only provide the information about the 

instability region and is unable to predict the vibration amplitudes in these regions. The non-

linear analysis developed in the present work can determine such vibration amplitudes. The 

present work has shown that there is vibration with steady-state amplitude in the instability 

region which approaches almost constant amplitude when the excitation frequencies are 

increased. Hence, for more perfect and complete studies of dynamic instability of laminated 

plates, the non-linear analysis is required to determine both the stable and unstable amplitudes 

of steady-state vibrations in addition to instability regions. Where the occurrence of dynamic 

instability is inevitable, in order to have a control on vibration amplitudes in the unstable 

regions non-linear analysis is required. By adjusting the corresponding effective parameters as 
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explained in the present work, design criteria based on and in terms of the steady-state 

vibrations with allowable amplitudes in the dynamically-unstable regions can be established 

for thickness-tapered composite plates in practice.  

The major outcomes of the present study are summarized as follow: 

• Both dynamically-unstable regions and corresponding amplitudes of the steady-state vibrations 

are significantly influenced by taper configurations. The results show that configuration C is 

the most stable thickness-tapered plate under parametric excitation among all the thickness-

tapered configurations i.e. configurations A, B, C and D, and also the uniform-thickness 

laminate having the thickness equal in value to the average thickness of the corresponding 

thickness-tapered plate. Overall, tapering the plate makes the plate’s stiffness to be increased 

although its total weight might be decreased due to the existence of resin pockets. Increasing 

the stiffness of the thickness-tapered plate results in the shifting of the dynamically-unstable 

regions toward higher frequencies and consequently decreasing both stable- and unstable-

solutions amplitudes of the steady-state vibrations and also decreasing the widths of these 

regions. Although reducing the total weight of the thickness-tapered structures causes the rate 

of increase of the amplitudes of the steady-state vibrations be increased.  Hence in comparison 

to the uniform plate, although the thickness-tapered plate with configuration C has the 

amplitude of steady-state vibrations lower than the uniform laminate in the initial stages of the 

excitation, by increasing the excitation frequencies this trend is changed; Influenced by the 

lower total weight of the thickness-tapered plate (configuration C)  at the higher level of the 

excitation frequencies, the steady-state vibration amplitude is very slightly increased from the 

steady-state vibration amplitude of the uniform plate. 

• The other most important parameter in the design of thickness-tapered plates is the taper angle. 

The higher the taper angle is, the higher the excitation frequencies corresponding to the 

dynamically-unstable regions are, and consequently the lower is the amplitude of the steady-
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state vibrations. Also the widths of dynamically-unstable regions decrease very slightly for 

higher values of taper angles. This is due to the fact that increasing the taper angle results in 

higher stiffness of the plate. The variation of dynamic instability response of thickness-tapered 

plate from that of the uniform plate is very smooth for smaller taper angles but the rates of the 

deviations are high for increasing values of taper angle. 

• Increasing the amplitude of the tensile in-plane harmonically-pulsating load results in the 

shifting of the instability regions to higher frequencies along the frequency axis, and 

consequently decreasing the amplitudes of the steady-state vibrations and also decreasing very 

slightly the widths of the dynamically-unstable regions. However, increasing the amplitude of 

the compressive in-plane load results in the shifting of the instability regions to lower 

frequencies along the frequency axis, and consequently increasing the amplitudes of the steady-

state vibrations and also increasing the widths of the dynamically-unstable regions. These 

outcomes can be expected because increasing the tensile in-plane load makes the plate to be 

stiffer, and contrarily increasing the compressive in-plane load results in decreasing the plate’s 

stiffness. 

• The results indicate that with a decrease in width 𝑏, i.e. overall decrease in aspect ratio 𝑏 𝑎⁄  , 

the thickness-tapered plate’s stiffness is increased as well, hence the dynamically-unstable 

regions shift to the right along the frequency axis having higher frequencies of excitation, and 

consequently decreasing the amplitudes of steady-state vibrations and further, the widths of 

instability regions are also increased. It is also noticed that increase in the widths of instability 

regions is more influenced by the compressive loading than the tensile loading. However, the 

points of origins of dynamically-unstable regions are more influenced by the tensile loading 

than the compressive loading.  

• It is confirmed that in both tensile and compressive loading conditions with increasing the 

number of plies, i.e. with decreasing the length-to-average-thickness ratio 𝑎 ℎ𝑎𝑣⁄  , the 
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dynamically-unstable regions shift to the right along the frequency axis having higher 

excitation frequencies, and consequently decreasing the amplitudes of  steady-state vibrations 

and also increasing the widths of dynamically-unstable regions. Increase in the widths of 

instability regions is more influenced by the compressive loading than the tensile loading. 

However, the points of origins of dynamically-unstable regions are more influenced by the 

tensile loading than the compressive loading. These outcomes are also due to the fact that 

increasing the thickness of plate makes the plate stiffer. 

The thickness-tapered plates, through increasing the stiffness and at the same time decreasing 

the weight, bring upon more complicated structural behavior as exhibited by their vibration 

response and dynamic instability characteristics, in comparison to the uniform plate. All of the 

parametric study results indicate that the thickness-tapered plates having configuration C is 

more stable and have better vibrational behavior in comparison to any other thickness-tapered 

configurations (A, B or D) and even in comparison to the uniform plate having the thickness 

as the average-thickness of the corresponding thickness-tapered plate having configuration C. 

It can also be concluded that the superiority of the thickness-tapered plate with configuration 

C could further be improved by decreasing the sizes of the resin pockets. The present work can 

be used as a benchmark study in future studies on the dynamic instability of laminated 

thickness-tapered composite plates.  
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CHAPTER 4 

4 Non-linear dynamic instability of internally-thickness-tapered 

composite cylindrical panels subjected to parametric excitation 

 

4.1 Introduction 

 

According to the literature survey done by Sahu and Datta [36] on the research advances in 

the dynamic stability behavior of plates and shells, Faraday was the first who observed dynamic 

instability in the liquid (wine) in a cylinder (wineglass) that oscillated with half of the frequency 

of the exciting force movement of moist fingers around the glass edge and the first 

mathematical explanation to this phenomenon was given by Rayleigh. However the dynamic 

instability of the elastic systems via governing systems of differential equations of the 

Mathieu–Hill type was presented in the bibliography of the works by Bolotin [1] and Ewan-

Iwanowski [37]. The dynamic instability of a structure subjected to periodic axial forces has 

been a very important topic in structural dynamics and is of practical importance in different 

engineering disciplines. Structural components under periodic loads can undergo parametric 

resonance which may occur over a range of forcing frequencies and has become a popular 

subject of study. A detailed research survey on the dynamic stability behavior of plates and 

shells in which the literature from 1987 to 2005 has been reviewed can be found in the review 

paper by Sahu and Datta [36]. By searching and reviewing through available literature it can 

be observed that considerable number of studies have been devoted to the dynamic instability 

of  flat plates and either cylindrical or conical shells. However, very few studies considered the 

dynamic instability of curved panels particularly laminated composite curved panels. Dynamic 

stability of simply-supported, isotropic cylindrical panels under combined static and periodic 

axial forces was investigated by Ng et.al, [38]. They used an extension of Donnell’s shell theory 

to a first-order shear deformation theory that via a normal-mode expansion a system of 
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Mathieu-Hill equations were derived and consequently by applying Bolotin’s method the 

parametric resonance response was obtained and analyzed. Ganapathi et. al. [39] established 

finite element method using 𝐶0 shear flexible continuous, nine-nodded quadrilateral (QUAD-

9) shell element to study the dynamic instability of laminated composite curved panels. 

Dynamic instability of laminated composite curved panels with cutouts subjected to in-plane 

static and periodic compressive loads was studied by Sahu and Datta [40]. They also 

implemented finite element method using a generalized shear deformable Sanders’ theory. 

Liew et. al. [41] used the mesh-free kp-Ritz method in which the mesh-free kernel particle 

estimate is employed to approximate the 2D transverse displacement filed then a system of 

Mathieu-Hill equations is obtained via applying the Ritz minimization procedure to the energy 

expressions to investigate the dynamic instability of laminated cylindrical panels. All the above 

mentioned literature for the curved panels are based on linear analysis that can only provide 

the information about the instability region and unable to predict the vibration amplitudes in 

these regions for which non-linear analysis is required. 

Due to the high strength-to-weight and stiffness-to-weight ratios of engineering composite 

structures they are increasingly being used in aerospace, mechanical and automotive industries. 

Considerable experimental, numerical and analytical studies in the past few decades were 

devoted to the mechanical behavior of these structures including stress analysis, fatigue and 

fracture, buckling, and vibrations. Dynamic stability has been considered in few of the works 

mentioned in the above. In all those studies the stiffness of the structure remain constant along 

the length and width of the beams, plates or shells. But in practical and in some specific 

applications a large number of those structures are tapered such as aircraft wing skins, turbine 

blades, helicopter yokes and blades, robot arms and satellite antennas, flex-beams of helicopter 

rotor hubs, and near field joints in solid rocket boosters, wherein the stiffness of the structure 

needs to be varied along the length of the structure. Tapered composite structures are formed 
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by terminating or dropping-off some of the plies in the laminates which is an important method 

of stiffness tailoring and weight saving in these structures. In these structures both the stiffness 

and the weight of the structure are varying along the tapering direction and makes that the 

structure be stiff at one end and flexible at another and. However such variation of the 

stiffnesses brings much complexity to their mechanical behavior and the analysis of such 

tapered structures mentioned in the above.  

So far, to the best of the authors’ knowledge, there is no work available in the published 

literature on the dynamic instability of internally-thickness-tapered composite curved panels 

subjected to in-plane periodically pulsating loads. In this work the dynamically-unstable 

regions, and both stable-, and unstable-solutions amplitudes of steady-state vibrations at these 

regions of internally-thickness-tapered composite cylindrical panels are investigated based on 

non-linear analysis. The non-linear von Karman strains associated with large deflections and 

curvatures are considered. Considering the simply supported boundary condition the in-plane 

displacements are determined in terms of the out-of-plane displacement function. The in-plane 

force-resultants which are determined based on those in-plane displacements and 

corresponding boundary conditions are substituted in the moment-equilibrium equation of 

motion with the moment-resultants which directly are defined in terms of the out-of-plane 

displacement function. Then the general Galerkin method are applied to the resultant equation 

and a set of non-linear Mathieu-Hill equations are obtained. Eventually the principal 

dynamically-unstable regions, stable-, and unstable-solutions amplitudes of the steady-state 

vibrations at these regions are calculated via Bolotin’s first approximation. Numerical 

comparisons are made with those available in literature to validate the present methodology. 

Four different configurations of internally-thickness-tapered panels are considered for the 

studied laminated cylindrical panels. A comprehensive parametric study is carried out to 

examine and compare the effects of the various taper configurations, taper angles, amplitudes 
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of both tensile and compressive axial loads, panel curvature or in particular radius-to-width 

ratio, aspect ratios of the tapered cylindrical panel including the loaded-to-unloaded width and 

length-to-thickness ratios which is in particular the length-to-average-thickness ratio on the 

instability regions and the parametric resonance particularly the steady-state vibrations 

amplitude. The present results show good agreement when compared with those available in 

the literature and hence can be used as benchmark results for future studies. 

 

4.2  Formulation 

 

A simply supported laminated composite internally-thickness-tapered cylindrical panel, 

having length 𝑎, width 𝑏 and radius 𝑅 with respect to the Cartesian coordinates (𝑥, 𝑦, 𝑧) which 

are assigned in the mid-plane of the plate is considered as shown in Fig. 4.1. 

 

 

Figure 4.1 The geometry and loading condition of a laminated composite cylindrical thickness-tapered panel 
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Here, 𝑢, 𝑣 and 𝑤 are the displacement components of the cylindrical panel with reference to 

this coordinate system in the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧  directions, respectively. The cylindrical panel as 

shown in Fig.1 is subjected to a periodically pulsating load in the length direction with the axial 

loading per unit length as follow:  

𝐹𝑥𝑥(𝑡) =  𝐹𝑠 + 𝐹𝑑𝑐𝑜𝑠𝑃𝑡                                                            (4.1) 

where 𝐹𝑠  is a time invariant component, 𝐹𝑑𝑐𝑜𝑠𝑃𝑡 is the harmonically-pulsating component, 

and 𝑃 denotes the frequency of excitation in radians per unit time. 

As mentioned above the panel is considered to be internally-tapered in the thickness and has 

been designed with any one of the four different taper configurations shown in Fig. 4.2. 

 

Figure 4.2 Taper configurations of the internally-thickness-tapered composite cylindrical panel 

 

The rectangular thickness-tapered cylindrical panel is considered to be constructed by a cross-

ply laminated composite material having density𝜌(𝑘) of each lamina or the resin pockets and 𝑘 

refers to the corresponding lamina’s number. Therefore the mass per unit length per unit width 

of the laminated thickness-tapered cylindrical panel can be calculated as  
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𝜌𝑡 = 𝜌𝑡(𝑥
1, 𝑥0) = ∑ 𝜌(𝑘)(ℎ𝑘(𝑥

1, 𝑥0) − ℎ𝑘+1(𝑥
1, 𝑥0))𝑁

𝑘=1                             (4.2) 

where ℎ𝑘 and ℎ𝑘+1 are measured from the mid-plane to the outer and inner surfaces of the kth 

layer, respectively and calculated as follow: 

ℎ𝑘(𝑥
1, 𝑥0) =   {

(− tan𝜙) ∗ 𝑥 + 𝑧𝑘                    𝐼𝐹        𝑧𝑘 > 0 
(tan𝜙) ∗ 𝑥 + 𝑧𝑘                      𝐼𝐹        𝑧𝑘 < 0 

                    (4.3) 

Hence, although 𝜌𝑡  is a constant parameter for uniform laminate, for thickness-tapered 

laminate it is a linear function of x-coordinate. This function consists of step functions for all 

taper configurations of the thickness-tapered cylindrical panel except for the configuration A. 

The number of the corresponding intervals, 𝑁𝑠, for the configurations B, C and D are expressed 

as follow: 

𝑁𝑠 =
1

2
(𝑁𝐿 − 𝑁𝑅)                                                                (4.4) 

where 𝑁𝐿 and 𝑁𝑅 refer to the number of plies at the left (thick) and right (thin) sides of the 

thickness-tapered plate respectively. 

The displacements of a generic point of the mid-plane of the cylindrical panel are denoted by 

𝑢0 , 𝑣0  and 𝑤0  in 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧  directions, respectively; the corresponding displacements of a 

generic point of the cylinder panel at distance 𝑧 from the mid-plane are denoted by 𝑢, 𝑣 and 𝑤, 

which are defined based on Kirchhoff hypotheses as follow: 

𝑢 = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥,𝑦,𝑡)

𝜕𝑥
                                                     (4.5) 

𝑣 = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥,𝑦,𝑡)

𝜕𝑦
                                                      (4.6) 

𝑤 = 𝑤0(𝑥, 𝑦, 𝑡)                                                                          (4.7) 

The strain components 𝜖𝑥𝑥, 𝜖𝑦𝑦 and 𝛾𝑥𝑦 at an arbitrary point of the curved panel are related to 

the membrane strains (mid-plane strains) 𝜖𝑥𝑥
(0)

, 𝜖𝑦𝑦
(0)

 and 𝛾𝑥𝑦
(0)

 and to the bending curvatures in 

the x and y directions and twisting curvature of the mid-plane which are denoted as 𝜖𝑥𝑥
(1)

 , 𝜖𝑦𝑦
(1)

 

and 𝛾𝑥𝑦
(1)

, are obtained as follow: 
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{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

} =

{
 

 𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
+z

{
 

 𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
                                                 (4.8)  

For von Karman hypothesis, the in-plane displacements 𝑢0 and 𝑣0 are infinitesimal, and in the 

strain-displacement relations only those non-linear terms that depend on 𝑤0  need to be 

retained. Hence all other non-linear terms may be neglected and the following membrane 

strains and the flexural (bending) strains are given by 

{𝜖0} =

{
 

 𝜖𝑥𝑥
(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
 = 

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝜕𝑥
)2

𝜕𝑣0

𝜕𝑦
+
𝑤0

𝑅
+
1

2
(
𝜕𝑤0

𝜕𝑦
)2

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
+
𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦 }
 
 

 
 

                                          (4.9) 

{𝜖1} =

{
 

 𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
 = 

{
 
 

 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

                                                   (4.10) 

The total in-plane force resultants which are forces per unit length, and the total moment 

resultants, which are moments per unit length are defined respectively as 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} = ∫  {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}  𝑑𝑧
ℎ

2
−ℎ

2

                                                     (4.11) 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = ∫  {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} 𝑍 𝑑𝑧
ℎ

2
−ℎ

2

                                                  (4.12) 

which are based on Kirchhoff stresses 𝜎𝑖𝑗  and are referred to the initial undeformed 

configuration of the cylindrical panel.  

As shown in Fig.4.3 the stiffness matrix of a ply in the thickness-tapered laminate in the global 

coordinate system (𝑥, 𝑦, 𝑧) is calculated by using multiple transformations of the ply material 

stiffness matrix from principal material coordinate system (𝑥′′, 𝑦′′, 𝑧′′)  to local 

coordinate system (𝑥′, 𝑦′, 𝑧′), and then to the global coordinate system (𝑥, 𝑦, 𝑧) as follow: 
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Figure 4.3 Transformation of the principal material coordinates to global coordinates 

 

[𝐶]𝑥𝑦𝑧 = [𝑇Ψ][𝑇θ][𝐶
′′]

𝑥′′𝑦′′ 𝑧′′
[𝑇θ]

𝑇[𝑇Ψ]
𝑇                                              (4.13) 

where [𝑇θ]  and [𝑇Ψ]  are the stress transformation matrices corresponding to the fiber 

orientation angle 𝜃 and ply angle Ψ respectively that are defined in Appendix (Eqs. (A.5) and 

(A.6)). The ply angle Ψ for a ply located above the mid-plane is equal to the taper angle 𝜙 and 

for the ply located below the mid-plane it is equal to –𝜙. The constitutive equation of the 

thickness-tapered laminate made of several orthotropic layers with the arbitrarily oriented 

material axes to the laminate coordinate can be obtained by the transformation of the stress-

strain relations to the laminate coordinates as follow: 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

}

(𝑘)

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]

(𝑘)

{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

}                                        (4.14) 

where [𝑄̅](𝑘) is the transformed reduced stiffness matrix defined as follow: 

𝑄̅11
(𝑘)
= 𝐶11(𝜃

(𝑘), Ψ(𝑘)) −
𝐶13(𝜃

(𝑘),Ψ(𝑘))∗𝐶13(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

                                   (4.15-a)  

𝑄̅12
(𝑘)
= 𝐶12(𝜃

(𝑘), Ψ(𝑘)) −
𝐶13(𝜃

(𝑘),Ψ(𝑘))∗𝐶23(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

                                   (4.15-b)   
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𝑄̅22
(𝑘)
= 𝐶22(𝜃

(𝑘), Ψ(𝑘)) −
𝐶23(𝜃

(𝑘),Ψ(𝑘))∗𝐶23(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

                                   (4.15-c)   

𝑄̅16
(𝑘)
= 𝐶16(𝜃

(𝑘), Ψ(𝑘)) −
𝐶13(𝜃

(𝑘),Ψ(𝑘))∗𝐶63(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

                                   (4.15-d)  

𝑄̅26
(𝑘)
= 𝐶26(𝜃

(𝑘), Ψ(𝑘)) −
𝐶23(𝜃

(𝑘),Ψ(𝑘))∗𝐶63(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

                                   (4.15-e)  

𝑄̅66
(𝑘)
= 𝐶66(𝜃

(𝑘), Ψ(𝑘)) −
𝐶63(𝜃

(𝑘),Ψ(𝑘))∗𝐶63(𝜃
(𝑘),Ψ(𝑘))

𝐶33(𝜃
(𝑘),Ψ(𝑘))

                                   (4.15-f)  

where 𝑄̅16
(𝑘)

 and 𝑄̅26
(𝑘)

 for the plies in the cross-ply laminate are zero and 𝐶𝑖𝑗 are elements of 

the stiffness matrix [𝐶] [35]. By following the equations (4.11)-( 4.15) the force and moment 

resultants for the cross-ply symmetric laminated thickness-tapered cylindrical panel are defined 

as 

{
  
 

  
 
𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦
𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦}
  
 

  
 

=

[
 
 
 
 
 
𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

[0]

[0]
𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66]

 
 
 
 
 

{
 
 
 
 

 
 
 
 𝜖𝑥𝑥

(0)

𝜖𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

𝜖𝑥𝑥
(1)

𝜖𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 
 
 
 

 
 
 
 

                          (4.16) 

where 𝐴𝑖𝑗 and 𝐷𝑖𝑗 denote the extensional and bending stiffnesses respectively. 

𝐴𝑖𝑗(𝑥
1, 𝑥0) =  ∑ 𝑄̅𝑖𝑗

(𝑘)(ℎ𝑘(𝑥
1, 𝑥0) − ℎ𝑘+1(𝑥

1, 𝑥0))𝑁
𝑘=1         , (𝑖, 𝑗 = 1, 2, 6)           (4.17a) 

𝐷𝑖𝑗(𝑥
3, 𝑥2, 𝑥1, 𝑥0) =

1

3
 ∑ 𝑄̅𝑖𝑗

(𝑘)((ℎ𝑘(𝑥
1, 𝑥0))3 − (ℎ𝑘+1(𝑥

1, 𝑥0))3) 𝑁
𝑘=1                    (4.17b) 

Hence, although 𝐴𝑖𝑗  and 𝐷𝑖𝑗  are constant terms for the uniform laminate, for the thickness-

tapered laminate these extension- and bending-stiffnesses are linear and cubic functions of x-

coordinate respectively. These functions are step functions for all configurations of the 

thickness-tapered cylindrical panel except for the configuration A. The number of the 

corresponding intervals, 𝑁𝑠, as mentioned before for the configurations B, C and D are obtained 

from Eq. (4.4). 
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As mentioned above since 𝑢0 ≪ 𝑤0  and 𝑣0 ≪ 𝑤0  one can consider that 𝜌𝑡
𝜕2𝑢0

𝜕𝑡2
⁄ → 0  

and  𝜌𝑡
𝜕2𝑣0

𝜕𝑡2
⁄ → 0 . Therefore by neglecting the in-plane inertia forces the equations of 

motion for the cylindrical panel [42] under the in-plane pulsating load are given by 

𝜕𝑁𝑥𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0                                                           (4.18) 

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 0                                                           (4.19) 

𝜕2𝑀𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
− 

1

𝑅
𝑁𝑦𝑦 +

𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝜕𝑤0

𝜕𝑥
+ 𝑁𝑥𝑦

𝜕𝑤0

𝜕𝑦
) +

𝜕

𝜕𝑦
(𝑁𝑥𝑦

𝜕𝑤0

𝜕𝑥
+ 𝑁𝑦𝑦

𝜕𝑤0

𝜕𝑦
) =

𝜌𝑡
𝜕2𝑤0

𝜕𝑡2
                                                                     (4.20) 

 

4.3 Solution for laminated orthotropic thickness-tapered panels 

 

Since the gradients of variations of extensional stiffnesses 𝐴𝑖𝑗(𝑥
1, 𝑥0) from the thickest to 

the thinnest sides of the thickness-tapered plate are too small in comparison to the 

corresponding variations of bending stiffnesses 𝐷𝑖𝑗(𝑥
3, 𝑥2, 𝑥1, 𝑥0) (see the figure (Fig. A.1) 

and corresponding table (Table A.1) in Appendix), one can replace the 𝐴𝑖𝑗(𝑥
1, 𝑥0) terms in Eq. 

4.14 by their average values as follow: 

𝐴̅𝑖𝑗 = 
1

𝑎
∫ 𝐴𝑖𝑗(𝑥

1, 𝑥0)𝑑𝑥
𝑎

0
             , (𝑖, 𝑗 = 1, 2, 6)                 (4.21) 

It should be noted here that since extensional stiffnesses, 𝐴𝑖𝑗(𝑥
1, 𝑥0) , for all configurations of 

the thickness-tapered plate except for configuration A, are step functions,  the integration in 

Eq. (4.21) over the length of the thickness-tapered plate should be step integration. 

Substituting Eq. (4.9) and Eq. (4.21) into Eq. (4.16) the resultant membrane forces 𝑁𝑥𝑥  ,   𝑁𝑦𝑦 

and 𝑁𝑥𝑦 are defined and consequently the first-two equations of motion i.e. Eq. (4.18) and Eq. 

(4.19) are written in terms of the mid-plane displacement components i.e. 𝑢0(𝑥, 𝑦, 𝑡) , 

𝑣0(𝑥, 𝑦, 𝑡) and 𝑤0(𝑥, 𝑦, 𝑡). 
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Considering the simply supported boundary condition for the laminated orthotropic thickness-

tapered cylindrical panel, the Navier’s double Fourier series with the time dependent 

coefficient 𝑞𝑚𝑛(𝑡) is chosen to describe the out-of-plane displacement function 𝑤0(𝑥, 𝑦, 𝑡) : 

𝑤0 = ∑ ∑ 𝑞𝑚𝑛(𝑡) sin 𝜆𝑚𝑥 sin 𝜆𝑛𝑦
∞
𝑛=1

∞
𝑚=1       ,   𝜆𝑚 =

𝑚𝜋

𝑎
   and   𝜆𝑛 =

𝑛𝜋

𝑏
             (4.22) 

where m and n represent the number of longitudinal and transverse half-waves in corresponding 

standing wave pattern, respectively. Substituting Eq. (4.21) in the displacement form of Eq. 

(4.18) and Eq. (4.19) and applying appropriate trigonometric relations, the solution of the 

differential equation system has the form as follow: 

𝑢0(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜁1 sin(2𝜆𝑚𝑥) +
∞
𝑛=1

∞
𝑚=1

 𝜁2 cos(𝜆𝑚𝑥) sin(𝜆𝑛𝑦)+ 𝜁3 sin(2𝜆𝑚𝑥) cos(2𝜆𝑛𝑦) + 𝑢𝑐 (𝑥, 𝑦, 𝑡)                                   (4.23-a) 

𝑣0(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜁4 sin(2𝜆𝑛𝑦) +
∞
𝑛=1

∞
𝑚=1

𝜁5 sin(𝜆𝑚𝑥) cos(𝜆𝑛𝑦)+ 𝜁6 cos(2𝜆𝑚𝑥) sin(2𝜆𝑛𝑦) + 𝑣𝑐 (𝑥, 𝑦, 𝑡)                                   (4.23-b) 

Here 𝜁1 , 𝜁2, 𝜁3, 𝜁4, 𝜁5and 𝜁6 are unknown coefficients out of which  𝜁1 and 𝜁4 can be directly 

obtained from the displacement form of Eq. (18) and Eq. (19) , respectively as follow: 

𝜁1 = (𝐴̅11𝜆𝑚
2 − 𝐴̅12𝜆𝑛

2)𝑞𝑚𝑛(𝑡)
2 16𝜆𝑚𝐴̅11⁄                                   (4.24-a)  

𝜁4 = (𝐴̅12𝜆𝑚
2 − 𝐴̅22𝜆𝑛

2)𝑞𝑚𝑛(𝑡)
2 16𝜆𝑛𝐴̅22⁄                                    (4.24-b)  

and also 𝜁2 and 𝜁5 can be solved from the displacement form of the system of equations (4.18 

and 4.19) as follow: 

𝜁2 =
(𝐴̅12𝜆𝑚

2− 𝐴̅22𝜆𝑛
2)𝐴̅66𝜆𝑚𝑞𝑚𝑛(𝑡)

∆
                                          (4.24-c)  

𝜁5 =
(𝐴̅11𝐴̅22𝜆𝑚

2− 𝐴̅12
2
𝜆𝑚

2
− 𝐴̅12𝐴̅66𝜆𝑚

2+  𝐴̅22𝐴̅66𝜆𝑛
2)𝜆𝑛𝑞𝑚𝑛(𝑡)

∆
                         (4.24-d)  

where 

∆ = 𝑅(𝐴̅11𝐴̅22𝜆𝑚
2𝜆𝑛

2 + 𝐴̅11𝐴̅66𝜆𝑚
4 − 𝐴̅12

2
𝜆𝑚

2
𝜆𝑛

2 −  2𝐴̅12𝐴̅66𝜆𝑚
2𝜆𝑛

2 +  𝐴̅22𝐴̅66𝜆𝑛
4)  

(4.24-e)  
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and similarly 𝜁3  and 𝜁6  can be solved from again the displacement form of the system of 

equations (4.18 and 4.19) as follow:  

𝜁3 = 
1

16
𝜆𝑚𝑞𝑚𝑛(𝑡)

2                                                        (4.24-f)  

𝜁6 = 
1

16
𝜆𝑛𝑞𝑚𝑛(𝑡)

2                                                        (4.24-g) 

 𝑢𝑐 (𝑥, 𝑦, 𝑡)  and 𝑣𝑐 (𝑥, 𝑦, 𝑡)  are homogeneous solutions of the differential equation system 

given as: 

𝐴̅11
𝜕2𝑢𝑐 

𝜕𝑥2
+ (𝐴̅12 + 𝐴̅66)

𝜕2𝑣𝑐 

𝜕𝑥𝜕𝑦
+ 𝐴̅66

𝜕2𝑢𝑐 

𝜕𝑦2
= 0                                        (4.25-a) 

𝐴̅66
𝜕2𝑣𝑐 

𝜕𝑥2
+ (𝐴̅12 + 𝐴̅66)

𝜕2𝑢𝑐 

𝜕𝑥𝜕𝑦
+ 𝐴̅22

𝜕2𝑢𝑐 

𝜕𝑦2
= 0                                        (4.25-b)  

Since the solution should also satisfy the boundary conditions of the studied thickness-tapered 

cylindrical panel which is subjected to in-plane loading, for the partial differential equation 

system of equations (4.25-a and b) the solution should have the forms as follow: 

𝑢𝑐 (𝑥, 𝑦, 𝑡) = 𝐴̅11(𝑎 − 2𝑥)𝜉𝑥(𝑡)                                                  (4.26-a) 

𝑣𝑐 (𝑥, 𝑦, 𝑡) = 𝐴̅22(𝑏 − 2𝑦)𝜉𝑦(𝑡)                                                  (4.26-b) 

where 𝜉𝑥(𝑡)  and 𝜉𝑦(𝑡)  are unknown functions of time that can be determined from the 

following boundary conditions: 

1

𝑏
∫ 𝑁𝑥𝑥  
𝑏

0
𝑑𝑦 =  𝐹𝑥𝑥          𝑎𝑡 𝑥 = 0 , 𝑎                                         (4.27-a) 

1

𝑎
∫ 𝑁𝑦𝑦  
𝑎

0
𝑑𝑥 =  0             𝑎𝑡 𝑦 = 0 , 𝑏                                          (4.27-b) 

Hence by solving these two boundary condition equations, 𝜉𝑥(𝑡) and 𝜉𝑦(𝑡) are determined as 

follow: 

𝜉𝑥(𝑡) = ((𝐴̅11𝐴̅22−𝐴̅12
2
)𝜆𝑚

2
 𝑞𝑚𝑛(𝑡)

2 − 8𝐴̅22𝐹𝑥𝑥) (16𝐴̅11(𝐴̅11𝐴̅22 − 𝐴̅12
2
))⁄     (4.28-a) 

𝜉𝑦(𝑡) = ((𝐴̅11𝐴̅22−𝐴̅12
2
)𝜆𝑛

2
 𝑞𝑚𝑛(𝑡)

2 + 8𝐴̅12𝐹𝑥𝑥) (16𝐴̅22(𝐴̅11𝐴̅22 − 𝐴̅12
2
))⁄      (4.28-b) 

and consequently the resultant membrane forces 𝑁𝑥𝑥  ,   𝑁𝑦𝑦 and 𝑁𝑥𝑦 are determined and all 

the three are too long functions. All the described calculations and following algorithm were 
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performed with the Symbolic Toolbox of Maple, which incorporates symbolic computations 

into the numeric environment of MATLAB. 

By substituting the resultant membrane forces and the moment resultants from Eq. (4.16) that 

are in terms of the out-of-plane displacement,  𝑤0 , as defined in Eq. (4.22) into the third 

equation of motion i.e. Eq. (4.20), and then multiplying the governing equation by 

sin 𝜆𝑚𝑥 sin 𝜆𝑛𝑦 and integrating over the mid-plane area of the thickness-tapered cylindrical 

panel a system of 𝑚 × 𝑛 second-order ordinary differential equations is obtained. It should be 

noted again here that since bending stiffness for all configurations of the thickness-tapered 

cylindrical panel except for configuration A, are step functions, hence the corresponding 

moment resultants are also step functions, therefore this integration over the area should be a 

step integration. 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + 𝐾𝑚𝑛𝑞𝑚𝑛(𝑡) − (𝐹𝑠 + 𝐹𝑑 cos 𝑝𝑡)𝑄𝑚𝑛𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0       (4.29) 

where 𝑀𝑚𝑛 , 𝐾𝑚𝑛  ,  𝑄𝑚𝑛  and 𝜂𝑚𝑛  are matrices and 𝑞̈𝑚𝑛(𝑡),  𝑞𝑚𝑛(𝑡) and 𝑞𝑚𝑛
3 (𝑡) are column 

vectors consisting of the terms 𝑞̈𝑚𝑛(𝑡)’s, 𝑞𝑚𝑛(𝑡)’s and 𝑞𝑚𝑛
3 (𝑡)’s respectively. The subscripts 

𝑚 and 𝑛 have the following ranges: 

𝑚, 𝑛 = 1,2,3,4, . . , 𝑁.                                              (4.30) 

It should be noted here that for the case with 𝑚 = 𝑛 = 1,3,5,… an additional term appears as 

𝐾𝑚𝑛́ 𝑞𝑚𝑛
2 (𝑡) in the Eq. (4.29) which is due to the geometric asymmetry of curved panel and it 

doesn’t have any contribution either on the dynamically-unstable regions or amplitudes of the 

steady-state vibrations at the principal parametric resonance, so by introducing the following 

notation: 

𝜔𝑚𝑛 = √
𝐾𝑚𝑛

𝑀𝑚𝑛
                                                  (4.31a) 

𝛾𝑚𝑛 =
𝜂𝑚𝑛

𝑀𝑚𝑛
                                                     (4.31b) 

𝑁∗ =
𝐾𝑚𝑛

𝑄𝑚𝑛
                                                        (4.31c) 



 

121 

 

Eq. (4.29) can be written in the form of the non-linear Mathieu-Hill equation as follow: 

𝑞̈𝑚𝑛(𝑡) + Ω𝑚𝑛
2  (1 − 2𝜇𝑚𝑛 cos 𝑝𝑡)𝑞𝑚𝑛(𝑡) + 𝛾𝑚𝑛𝑞𝑚𝑛

3 (𝑡) = 0                                (4.32) 

where Ω𝑚𝑛is the frequency of the free vibration of the plate loaded by a constant longitudinal 

force 𝐹𝑠,  

Ω𝑚𝑛 = 𝜔𝑚𝑛√1 −
𝐹𝑠

𝑁∗
                                                (4.33) 

and 𝜇𝑚𝑛 is a quantity that is called the excitation parameter, 

μ𝑚𝑛 =
𝐹𝑑

2(𝑁∗−𝐹𝑠)
                                                   (4.34) 

 

4.4 Dynamic instability regions 

 

The resonance curve is not influenced by the non-linearity of Eq. (4.32) and according to the 

Liapunov theorem [1] the trivial solution of the non-linear system is stable everywhere except 

in the regions of excitation of the linear system. Therefore, the dynamically-unstable regions 

are determined by the linear parts of the Eq. (4.32) [1] so it is more convenient to write the 

non-linear Mathieu-Hill equation (4.32) in the following form which only includes the linear 

parts: 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + (𝐾𝑚𝑛
∗ − 𝑄𝑚𝑛

∗ cos 𝑝𝑡)𝑞𝑚𝑛(𝑡) =  0                      (4.35) 

where 

𝐾𝑚𝑛
∗ = 𝐾𝑚𝑛 − 𝐹𝑠𝑄𝑚𝑛                                              (4.36) 

and  

𝑄𝑚𝑛
∗ = 𝐹𝑑𝑄𝑚𝑛                                                    (4.37) 

The basic solutions of Mathieu-Hill equation include two periodic solutions: i.e. periodic 

solutions of periods 𝑇 and 2𝑇 with 𝑇 = 2𝜋 𝑃⁄ . The solutions with period 2𝑇 are of greater 

practical importance as the widths of these unstable regions are usually larger than those 
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associated with solutions having period 𝑇. Using Bolotin’s method [1] for parametric vibration, 

the solution of period 2𝑇  is given by the following equation: 

𝑞(𝑡) = ∑ 𝑓𝑘 sin
𝑘𝑃𝑡

2
+ 𝑔𝑘 cos

𝑘𝑃𝑡

2
 ∞

𝑘=1,3,5,…                                      (4.38) 

where 𝑓𝑘  and 𝑔𝑘 are arbitrary vectors. If one investigates the instability at the principal 

resonance ≈ 2Ω , one can neglect the influence of higher harmonics in the expansion of the 

above equation and can assume 

𝑞(𝑡) = 𝑓 sin
𝑃𝑡

2
+ 𝑔 cos

𝑃𝑡

2
                                                  (4.39) 

The principal region of dynamic instability, which corresponds to the solution of the period, 

2𝑇 is determined by substituting Eq. (4.39) into Eq. (4.35) and equating the determinant of the 

coefficient matrix of the linear part of the governing equation to zero as follow: 

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2 0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2
| = 0                    (4.40) 

Equation (4.40) can be rearranged to the more simplified form of an eigenvalue problem as 

follow: 

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2

| − 𝑃2 |

𝑀𝑚𝑛

4
0

0
𝑀𝑚𝑛

4

| = 0                 (4.41) 

 

4.5 Amplitude of vibrations at the principal parametric resonance 

 

As mentioned above, Eq. (4.32) is a non-linear Mathieu-Hill equation where the non-linear 

term 𝛾𝑞𝑚𝑛
3 (𝑡) represents the effect of large deflection. As also mentioned in the previous 

section, the dynamically-unstable region is determined by the linear parts of the Eq. (4.32) and 

correspondingly leads to the eigenvalue problem which is governed by Eq. (4.41). Here the 

focus is set on the parametric resonance of the system. Again using Bolotin’s first 

approximation, considering the case of the vibration at the principal resonance ≈ 2Ω  , 

substituting Eq. (4.39) into Eq. (4.32) and equating the coefficients of sin(𝑃𝑡 2⁄ ),cos(𝑃𝑡 2⁄ ) 
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terms and neglecting the terms containing higher harmonics, the following system of equations 

for the coefficients 𝑓 and 𝑔 remains: 

[Ω𝑚𝑛
2 (1 + 𝜇𝑚𝑛) −

𝑃2

4
] 𝑓 + Γ(𝑓, 𝑔) = 0,                                      (4.42a) 

[Ω𝑚𝑛
2 (1 − 𝜇𝑚𝑛) −

𝑃2

4
] 𝑔 + Ψ(𝑓, 𝑔) = 0,                                    (4.42b) 

where Γ(𝑓, 𝑔) and Ψ(𝑓, 𝑔) are defined as coefficients of the terms including sin(𝑃𝑡 2⁄ ) and 

cos(𝑃𝑡 2⁄ ) which were obtained from the first approximation of expansion in a Fourier series 

as: 

Γ(𝑓, 𝑔) =
3𝛾𝑚𝑛

4
𝐴2𝑓                                                    (4.43a) 

Ψ(𝑓, 𝑔) =
3𝛾𝑚𝑛

4
𝐴2𝑔                                                   (4.43b) 

where 𝐴 is the amplitude of steady-state vibrations and is given by: 

𝐴 = √𝑓2 + 𝑔2                                                          (4.44) 

By substitution of Eqs. (4.43a, b) into Eqs. (4.42a, b) a system of two homogeneous linear 

equations with respect to 𝑓 and 𝑔 can be obtained. This system has solutions that differ from 

zero only in the case where the determinant composed of the coefficients vanishes: 

|
1 + 𝜇𝑚𝑛 − 𝑛𝑚𝑛

2 +
3𝛾𝑚𝑛

4Ω𝑚𝑛
2 𝐴2 0

0 1 − 𝜇𝑚𝑛 − 𝑛𝑚𝑛
2 +

3𝛾𝑚𝑛

4Ω𝑚𝑛
2 𝐴2

| = 0                   (4.45) 

where 

𝑛𝑚𝑛= 
𝑃

2Ω𝑚𝑛
                                                              (4.46) 

Expanding the determinant and solving the resulting equation with respect to the amplitude, 𝐴, 

of the steady-state vibrations the following equation is obtained: 

𝐴 =
2Ω𝑚𝑛

√3𝛾𝑚𝑛
√𝑛𝑚𝑛2 − 1 ± 𝜇𝑚𝑛                                               (4.47) 

It can be proved that for the ±𝜇𝑚𝑛 term in the above equation, only +𝜇𝑚𝑛 term yields the 

stable solution, and all the other terms yield unstable solutions. 
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Comparing Eq. (4.45) with Eq. (4.40) by replacing μ𝑚𝑛, n𝑚𝑛 , 𝛾𝑚𝑛 and Ω𝑚𝑛 in terms of 𝐾𝑚𝑛
∗ , 

𝑄𝑚𝑛
∗  and 𝑀𝑚𝑛 reveals that the dynamic instability regions can also be determined by setting 

𝐴 = 0 in Eq. (4.45). 

 

4.6 Numerical results and discussions 

 

Non-linear dynamic stability characteristics of thickness-tapered cross-ply laminated 

composite cylindrical panels subjected to combined static and periodic in-plane loads are 

studied here. The material properties used in the present analysis are listed in Table 4.1. 

 

Table 4.1 Material properties of NCT/301 graphite-epoxy composite ply and epoxy materials 

Composite Ply  Epoxy 

Material Properties Value  Material Properties Value 

𝐸1 113.9 𝐺𝑃𝑎   𝐸1 = 𝐸2 = 𝐸3 3.93 𝐺𝑃𝑎 

𝐸2 = 𝐸3 7.985 𝐺𝑃𝑎  𝜈13 = 𝜈12 = 𝜈23 0.37 

𝜈13 = 𝜈12 0.28  𝜌 1200 𝐾𝑔 𝑚3⁄  

𝜈23 0.4    

𝐺13 = 𝐺12 3.1 𝐺𝑃𝑎    

𝐺23 2.8 𝐺𝑃𝑎    

𝜌 1480 𝐾𝑔 𝑚3⁄      

 

The static and periodic components of the in-plane load are considered as 𝐹𝑠 = 𝛼𝑁𝑐𝑟 and 𝐹𝑑 =

𝛽𝑁𝑐𝑟, respectively. The critical buckling load 𝑁𝑐𝑟 of the studied thickness-tapered composite 

plate has been calculated as follow: 

|𝐾𝑚𝑛 − 𝑁𝑐𝑟𝑄𝑚𝑛| = 0                                                     (4.48) 

The fundamental frequency of the studied thickness-tapered plate is also calculated as follow:  

|𝐾𝑚𝑛
∗ − 𝜔2𝑀𝑚𝑛| = 0                                                     (4.49) 

 

4.6.1 Validation 

 

To validate the present formulation, which is based on the non-linear analysis, we compare 

the dynamically-unstable regions of the present formulation with those given by Liew et al. 

[41] in Fig. 4.4a. To compare the graphs with that given in [41] which has considered the linear 

analysis and consequently leads only to the instability regions, a four layered uniform  
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Figure 4.4 The first a) unstable region and b) both stable- and unstable-solution amplitudes of steady-state 

vibrations of a four layered symmetric [𝟎°, 𝟗𝟎°]𝑺  cross-ply laminated cylindrical panel with the geometry of 

𝒂 𝑹⁄ = 𝟐 , 𝑹 𝒉⁄ = 𝟏𝟎𝟎 and 𝒃 = 𝝅𝑹 𝟑⁄  , subjected to compressive periodic axial load having static component 

of 𝑭𝒔 = 𝟎. 𝟑 𝑵𝒄𝒓
∗  

 

symmetric [0°, 90°]𝑆  cross-ply laminated cylindrical panel with the geometry of 𝑎 𝑅⁄ = 2 , 

𝑅 ℎ⁄ = 100 and 𝑏 =  𝜋𝑅 3⁄  , is subjected to compressive periodic in-plane load having static 

component of 𝐹𝑠 = 0.3 𝑁𝑐𝑟
∗ . Here 𝑁𝑐𝑟

∗  is the critical buckling load that is approximated for 

laminated cylindrical panel by Liew et al. [41] based on the critical buckling load of isotropic 

cylindrical panel which has been given by Timoshenko and Gere [20]  as follow: 

𝑁𝑐𝑟
∗ = 

𝐸2ℎ
2

[3(1−𝜈12𝜈21)]1 2⁄ 𝑅
                                                 (4.50) 

As it can be observed from this figure (Fig. 4.4a) each unstable region is separated by two lines 

with a common point of origin. Actually these two lines are not completely straight and they 

curved slightly outward. To compare the graphs here and in the following figures and tables 

we specified each unstable region by the non-dimensional frequency parameter 𝑝 of the point 

of origin and the half angle of the unstable region as 𝛿 which is a parameter that indicates the 

width of dynamically unstable region. Here the dimensionless excitation frequency parameter 

𝑝 is introduced as follow:  
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𝑝 = 𝑃𝑅√
𝜌𝑐(1−𝜈12𝜈21)

𝐸2
                                                      (4.52) 

where 𝜌𝑐 is the mass density of the composite plies. The point of origin and the half angle of 

unstable region of the present formulation are 𝑝 = 0.7126 and 𝛿 = 0.343°, respectively and 

those values with the kp-Ritz method obtained by Liew et al. [41] are 𝑝 = 0.6821 and 𝛿 =

0.355°, respectively. The difference between these two studies are 4.47% and 3.38% for the 

point of origin and the width of unstable regions, respectively; hence it shows a good agreement 

between the present formulation and that by Liew et al. [41] and the small differences could be 

due to the numerical method used by the later and neglecting the in-plane inertia forces in the 

present study. In Fig. 4.4b the amplitudes of the steady-state vibrations are plotted for the same 

loading conditions and having harmonic component load of 𝐹𝑑 = 0.25 𝐹𝑠. In the analysis of 

dynamic stability of plates and shells, there exists simultaneously the stable- and unstable 

solutions. The difference between these two solutions refers to the required magnitudes of 

frequency and amplitude to stimulate a parametric resonance. If this difference between them 

is small, then there might be the possibility of parametric resonance occurring. If the difference 

is large, it means high values of vibration frequency and amplitude are needed to stimulate a 

possible parametric resonance. The dynamic stability of such a plate or shell system is said to 

be good [2, 43]. As it has been mentioned and proved in Section 5 of the present study, the 

dynamic instability regions based on the large deflection formulation are achieved by either the 

linear part of the non-linear Mathieu-Hill equation or by setting 𝐴 = 0 in equation (4.45). Once 

the stable- and unstable-solution amplitudes of steady-state vibrations is zero the corresponding 

excitation frequencies should coincide with the boundaries of the dynamically-unstable regions 

(having the same harmonic component of 𝐹𝑥𝑥(𝑡) i.e. the same value of 𝐹𝑑). As can be seen 

from Fig. 4.4b when the amplitude of steady-state vibrations i.e. 𝐴 = 0 the corresponding 

excitation frequencies are 𝑝 = 0.711  and 𝑝 = 0.714  for stable- and unstable-solutions, 
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respectively which exactly coincide with that for 𝐹𝑑 𝐹𝑠⁄ = 0.25 in the Fig. 4.4a with the left 

and right curves of the corresponding unstable regions, respectively, and the range of 

frequencies between these two solutions at 𝐴 = 0 predicate the dynamically-unstable regions 

at this certain ratio of harmonic-to-static component of the pulsating longitudinal load. Hence, 

this could be considered as a validation of the non-linear part of the dynamic instability analysis 

too. 

As an another validation of the non-linear part of dynamic instability analysis i.e. both the 

stable- and unstable-solution amplitudes of steady-state vibrations, the present results which 

are for laminated cylindrical panel are compared with those given by Ostiguy et al [19] for 

isotropic homogeneous rectangular plate in Figs. 4.5-4.10. To compare the results we set in our 

formulation the material property as 𝐸1 = 𝐸2 = 𝐸 = 4.83 𝐺𝑃𝑎 , 𝜐12 = 𝜐 = 0.38  and 𝜌 =

1190 𝑘𝑔 𝑚3⁄  and the geometry of  

 

Figure 4.5 Comparison of both the stable- and unstable-solution amplitudes of steady-state vibrations of the 

present cylindrical panel with those of Ostiguy et al [19] for isotropic homogeneous rectangular plate in the 

mode (𝒎, 𝒏) = (𝟑, 𝟏), having aspect ratios of  𝒂 𝒉⁄ = 𝟒𝟎𝟎 and 𝒂 𝒃⁄ = 𝟐. 𝟒𝟓 subjected to periodic in-plane 

load having static component of 𝑭𝒔 = −𝟎. 𝟓 𝑵𝒄𝒓
∗  and dynamic component of 𝑭𝒅 = −𝟎. 𝟐 𝑵𝒄𝒓

∗  
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Figure 4.6 Comparison of both the stable- and unstable-solution amplitudes of steady-state vibrations of the 

present cylindrical panel with those of Ostiguy et al [19] for isotropic homogeneous rectangular plate in the 

mode (𝒎, 𝒏) = (𝟒, 𝟏), having aspect ratios of  𝒂 𝒉⁄ = 𝟒𝟎𝟎 and 𝒂 𝒃⁄ = 𝟐. 𝟒𝟓 subjected to periodic in-plane 

load having static component of 𝑭𝒔 = −𝟎. 𝟓 𝑵𝒄𝒓
∗  and dynamic component of 𝑭𝒅 = −𝟎. 𝟐 𝑵𝒄𝒓

∗  

 

 

 

 

Figure 4.7 Comparison of both the stable- and unstable-solution amplitudes of steady-state vibrations of the 

present cylindrical panel with those of Ostiguy et al [19] for isotropic homogeneous rectangular plate in the 

mode (𝒎, 𝒏) = (𝟓, 𝟏), having aspect ratios of  𝒂 𝒉⁄ = 𝟒𝟎𝟎 and 𝒂 𝒃⁄ = 𝟐. 𝟒𝟓 subjected to periodic in-plane 

load having static component of 𝑭𝒔 = −𝟎. 𝟓 𝑵𝒄𝒓
∗  and dynamic component of 𝑭𝒅 = −𝟎. 𝟐 𝑵𝒄𝒓

∗  
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Figure 4.8 Comparison of both the stable- and unstable-solution amplitudes of steady-state vibrations of the 

present cylindrical panel with those of Ostiguy et al [19] for isotropic homogeneous rectangular plate in the 

mode (𝒎, 𝒏) = (𝟑, 𝟏), having aspect ratios of  𝒂 𝒉⁄ = 𝟒𝟎𝟎 and 𝒂 𝒃⁄ = 𝟐. 𝟒𝟓 subjected to periodic in-plane 

load having static component of 𝑭𝒔 = −𝟎. 𝟖 𝑵𝒄𝒓
∗  and dynamic component of 𝑭𝒅 = −𝟎. 𝟐 𝑵𝒄𝒓

∗  

 

 

 

 

Figure 4.9 Comparison of both the stable- and unstable-solution amplitudes of steady-state vibrations of the 

present cylindrical panel with those of Ostiguy et al [19] for isotropic homogeneous rectangular plate in the 

mode (𝒎, 𝒏) = (𝟒, 𝟏), having aspect ratios of  𝒂 𝒉⁄ = 𝟒𝟎𝟎 and 𝒂 𝒃⁄ = 𝟐. 𝟒𝟓 subjected to periodic in-plane 

load having static component of 𝑭𝒔 = −𝟎. 𝟖 𝑵𝒄𝒓
∗  and dynamic component of 𝑭𝒅 = −𝟎. 𝟐 𝑵𝒄𝒓

∗  
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Figure 4.10 Comparison of both the stable- and unstable-solution amplitudes of steady-state vibrations of the 

present cylindrical panel with those of Ostiguy et al [19] for isotropic homogeneous rectangular plate in the 

mode (𝒎, 𝒏) = (𝟓, 𝟏), having aspect ratios of  𝒂 𝒉⁄ = 𝟒𝟎𝟎 and 𝒂 𝒃⁄ = 𝟐. 𝟒𝟓 subjected to periodic in-plane 

load having static component of 𝑭𝒔 = −𝟎. 𝟖 𝑵𝒄𝒓
∗  and dynamic component of 𝑭𝒅 = −𝟎. 𝟐 𝑵𝒄𝒓

∗  

 

the plate as 𝑎 = 50 𝑐𝑚 , 𝑏 = 20.4 𝑐𝑚 and ℎ = 0.125 𝑐𝑚. Since there is only one layer in both 

the left (thickest) and the right (thinnest) sides of the cylindrical tapered panel so the number 

of layers in these two sides of the cylindrical tapered panel is the same, consequently the taper 

angle is zero. Figures 4.5-4.7 are for the modes (𝑚, 𝑛) = (3,1), (𝑚, 𝑛) = (4,1), (𝑚, 𝑛) =

(5,1)  , respectively where the static component of the periodic longitudinal load is 𝐹𝑠 =

− 0.5 𝑁𝑐𝑟
∗∗ and the dynamic component is 𝐹𝑑 = − 0.2 𝑁𝑐𝑟

∗∗. Figures 4.8-4.10 are for the modes 

(𝑚, 𝑛) = (3,1), (𝑚, 𝑛) = (4,1), (𝑚, 𝑛) = (5,1) , respectively where in these figures the static 

component of the periodic longitudinal load is 𝐹𝑠 = − 0.8 𝑁𝑐𝑟
∗∗ and the dynamic component is 

𝐹𝑑 = − 0.2 𝑁𝑐𝑟
∗∗ where 𝑁𝑐𝑟

∗∗ in these figures is the buckling load according to Ostiguy et al [19] 

as follow: 

𝑁𝑐𝑟
∗∗ = 

𝜋2𝐷

𝑏2
(𝑚𝑐

𝑏

𝑎
+

1

𝑚𝑐

𝑎

𝑏
)2                                            (4.51a) 

where 

𝐷 =  
𝐸ℎ3

12(1−𝜐122)
                                                        (4.51b) 
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and 𝑚𝑐 is the “number of  half-waves of prevalent buckling mode” which “depends strongly 

on the aspect ratio of the plate” [19]. It is observed from these figures that increasing the radius 

of the cylindrical panel results that both stable- and unstable solution amplitude-frequency 

curve of steady-state vibrations shift to the left along the frequency axis having lower 

frequencies of excitation. This shifting to the left of frequency axis of the steady-state 

amplitude (increasing the amplitude at a certain excitation frequency) is fast for the smaller 

radius (larger curvature) i.e. 𝑅 𝑏⁄ = 5 , 10, 15  but very slightly approaches once the radius 

increases as 𝑅 𝑏⁄ = 20 𝑡𝑜 50 and appears to converge at a certain value as can be observed 

from these figures that the amplitude-frequency curve of steady-state vibrations of 𝑅 𝑏⁄ =

100 𝑡𝑜 ∞  are too close to each other and almost completely coincide with each other and 

actually overlap the plot on the corresponding curve given by Ostiguy et al [19]. This gradual 

convergence by decreasing the curvature and coinciding with those by Ostiguy et al [19] for 

very small curvature of 𝑅 𝑏⁄ = 100 and for completely flat plate i.e. 𝑅 𝑏⁄ =∞ validates the 

present study and shows an excellent agreement with Ostiguy et al [19] for all the different 

modes and loading conditions. The reason for the chosen modes and loading conditions is only 

due to the comparison of the present study with those available in the literature which is the 

article by Ostiguy et al [19] here. 

 

4.6.2 Comparison of influences of various taper configurations  

 

In Figs. 4.11-4.14 for the first-two modes, dynamically-unstable regions and stable solution 

amplitudes of steady-state vibrations of four different configurations of symmetric thickness-

tapered cross-ply laminated cylindrical panel (as shown in Fig. 4.2) are compared together and 

with the uniform cylindrical panel. Here all those four taper configurations have 12 and 6 plies 

at the thick and thin section respectively and the uniform panel has 9 plies (which is the average 

of 12 and 6 plies) with the same length-to-average-thickness ratio i.e. 𝑎 ℎ𝑎𝑣⁄ = 100 , length-

to-width ratio of 𝑎 𝑏⁄ = 2 and the same radius-to-width ratio of 𝑅 𝑏⁄ = 2.  
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Figure 4.11 Comparison of various taper configurations, on the first mode a) unstable region and b) stable-

solution amplitude of steady-state vibrations of a 12-6 layered symmetric cross-ply laminated thickness-tapered 

cylindrical panel subjected to the tensile periodic in-plane loading 

 

 

 

 

 

Figure 4.12 Comparison of various taper configurations, on the second mode a) unstable region and b) stable-

solution amplitude of steady-state vibrations of a 12-6 layered symmetric cross-ply laminated thickness-tapered 

cylindrical panel subjected to the tensile periodic in-plane loading 
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Figure 4.13 Comparison of various taper configurations, on the first mode a) unstable region and b) stable-

solution amplitude of steady-state vibrations of a 12-6 layered symmetric cross-ply laminated thickness-tapered 

cylindrical panel subjected to the compressive periodic in-plane loading 

 

 

 

 

 

Figure 4.14 Comparison of various taper configurations, on the second mode a) unstable region and b) stable-

solution amplitude of steady-state vibrations of a 12-6 layered symmetric cross-ply laminated thickness-tapered 

cylindrical panel subjected to the compressive periodic in-plane loading 
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Figures 4.11 and 4.12 correspond to the first-two modes, i.e. mode (1,1) and mode (1,2), 

under tensile in-plane pulsating load having static load factor of 𝛼 = 0.5. From here onwards 

in all figures the  

amplitudes of the steady-state vibrations are plotted for the loading conditions having dynamic 

load factor of 𝛽 = 0.25. The corresponding graphs for the compressive loading are represented 

in Fig. 4.13 and Fig. 4.14 respectively. It is also worthwhile to note here that in the tensile 

loading case we consider the absolute value of critical buckling load |𝑁𝑐𝑟| for both static and 

dynamic components of the in-plane harmonically-pulsating load, while in the compressive 

case we use the actual value of critical buckling load 𝑁𝑐𝑟 which is negative with respect to the 

assigned coordinate system shown in Fig. 4.1. In the comparative study of various 

configurations, the applied in-plane harmonically pulsating load for all configurations and the 

uniform plate is based on the critical buckling load of the configuration A. Here and in the 

following figures and tables, the dimensionless excitation frequency parameter 𝑝 is introduced 

as follow:  

𝑝 = 𝑃𝑎√
𝜌𝑐

𝐸2
                                                               (4.52) 

It is observed that thickness-tapered composite cylindrical panel having configuration C, has 

the highest frequency of excitation or in other words the most-shifted to the right along the 

frequency axis of both dynamically-unstable regions and amplitudes of steady-state vibrations 

among the other configurations. So consequently, it has the lowest amplitudes of steady-state 

vibrations at any specific excitation frequency. To provide a more detailed and a better 

comparison the corresponding results for the first-two modes of dynamically-unstable regions 

also are listed in Tables 4.2 and 4.3 corresponding to tensile and compressive in-plane loadings 

respectively. It is also observed from these figures and tables that configuration C has the 

smallest 𝛿  i.e. smallest width of the instability regions among all other configurations and 

uniform one except in the first mode i.e. mode (1,1) that uniform one is very slightly smaller 
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than configuration C. All of these observations are confirmed even when changing loading 

directions from tensile to compressive. Hence, configuration C shows the most rigidity among 

all configurations and this can be expected since in this configuration the resin pockets are 

located very close to mid-plane of the cylindrical panel and therefore its bending stiffnesses 

are less decreased due to the smaller bending stiffnesses of the resin pocket in comparison to 

the composite plies. It is also noted that although the amplitudes of steady-state vibrations of 

the configuration C in the initial stages of the excitation is lower than that of the uniform 

laminate, this trend is changed at the higher excitation frequencies that can be due to the 

existence of the resin pocket in configuration C while there isn’t any such resin pocket in 

uniform cylindrical panel. Due to the less mass density of the resin (epoxy) to the graphite 

composite plies, overall it makes that the uniform cylindrical panel be heavier than the 

thickness-tapered laminates or particularly here the thickness-tapered laminate having 

configuration C (the total mass of plates having configuration A, B, C, D and the uniform panel 

with the same length-to-average-thickness ratio i.e. 𝑎 ℎ𝑎𝑣⁄ = 100 , length-to-width ratio of 

𝑎 𝑏⁄ = 2 and the radius-to-width ratio of 𝑅 𝑏⁄ = 2 are 13.28, 13.88, 13.88, 13.88 and 14.18 

grams, respectively. However it should be noted here that for the same size of uniform panel 

with 12 plies the total mass would be 18.91 grams.). So to summarize these, increasing the 

stiffnesses makes the instability regions or excitation to start at higher frequencies but at the 

same time reducing the weight of the structure causes the speed of increasing of the amplitudes 

of steady-state vibrations very slightly be increased. However, as can be observed from these 

figures once comparing both configuration C and uniform one at those higher excitation 

frequencies the increase of the amplitudes are very small. Therefore it is concluded that 

configuration C is the most stable laminated cylindrical panel under parametric excitation 

among all taper configurations and even uniform laminate. 
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Another observation from these figures and tables reveal that since configuration D has the 

lowest stiffness due to the location of the resin pockets far from the mid-plane, its dynamically-

unstable regions or the parametric excitations start at the lowest frequencies except in the first 

mode i.e. mode (1,1) under compressive load that the dynamically-unstable region or the 

parametric excitations of configuration A starts at the lowest frequencies. But since 

configuration A has the lowest total weight due to the largest amount of the resin pockets in 

this configuration, its amplitudes of steady-state vibrations are increased much faster than any 

other configuration and consequently reach the highest amplitudes of steady-state vibrations at 

higher frequencies. 

 

Table 4.2 Effects of various taper configurations on the first-two modes of the dynamically-unstable regions of a 

12-6 layered symmetric cross-ply laminated cylindrical thickness-tapered panel subjected to the tensile periodic 

in-plane loading 

Taper 

Configuration 

Mode (1,1) of Dynamically-Unstable 

Region 

 Mode (1,2) of Dynamically-Unstable 

Region 

Point of origin 𝑝  
(× 10−1) 

𝛿 (× 10−1)  Point of origin 𝑝  
(× 10−1) 

𝛿 (× 10−1) 

A (12-6 Plies) 9.763303022 1.581653529  26.76816776 4.12239619 

B (12-6 Plies) 9.802930381 1.510221573  26.41098446 4.012912881 

C (12-6 Plies) 9.938445085 1.490670764  27.18273024 3.914163511 

D (12-6 Plies) 9.716555286 1.522945597  26.06792482 4.058302518 

Uniform (9 Plies) 9.829966074 1.475642672  26.42380154 3.936854735 

 

Table 4.3 Effects of various taper configurations on the first-two modes of the dynamically-unstable regions of a 

12-6 layered symmetric cross-ply laminated cylindrical thickness-tapered panel subjected to the compressive 

periodic in-plane loading 

Taper 

Configuration 

Mode (1,1) of Dynamically-Unstable 

Region 

 Mode (1,2) of Dynamically-Unstable 

Region 

Point of origin 𝑝 (×
10−1) 

𝛿 (× 10−1)  Point of origin 𝑝 (×
10−1) 

𝛿 (× 10−1) 

A (12-6 Plies) 5.636845628 2.602393063  15.45460886 6.306150135 

B (12-6 Plies) 5.93956602 2.389706164  15.50369371 6.095758611 

C (12-6 Plies) 6.160656719 2.314283771  16.78467282 5.762438002 

D (12-6 Plies) 5.79589916 2.441220958  14.911778 6.260495975 

Uniform (9 Plies) 6.089968055 2.292536076  15.83199303 5.913413684 

 

 

4.6.3 Effects of magnitude and direction of in-plane loads 

 

Figures 4.15-4.18 show the effects of the amplitudes of the tensile and compressive in-plane 

harmonically pulsating load on the dynamically-unstable regions (Figs. 4.15a-4.18a) and the  
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Figure 4.15 Effects of the amplitude of tensile in-plane harmonically pulsating loads, on the first mode a) 

unstable region and b) stable-solution amplitude of steady-state vibrations of a 40-10 layered symmetric cross-

ply laminated thickness-tapered cylindrical panel having configuration C 

 

 

 

 

 

Figure 4.16 Effects of the amplitude of tensile in-plane harmonically pulsating loads, on the second mode a) 

unstable region and b) stable-solution amplitude of steady-state vibrations of a 40-10 layered symmetric cross-

ply laminated thickness-tapered cylindrical panel having configuration C 
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Figure 4.17 Effects of the amplitude of compressive in-plane harmonically pulsating loads, on the first mode a) 

unstable region and b) stable-solution amplitude of steady-state vibrations of a 40-10 layered symmetric cross-

ply laminated thickness-tapered cylindrical panel having configuration C 

 

 

 

 

 

Figure 4.18 Effects of the amplitude of compressive in-plane harmonically pulsating loads, on the second mode 

a) unstable region and b) stable-solution amplitude of steady-state vibrations of a 40-10 layered symmetric 

cross-ply laminated thickness-tapered cylindrical panel having configuration C 
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stable-solution amplitudes of the steady-state vibrations (Figs. 4.15b-4.18b), respectively. Here 

the graphs are plotted for thickness-tapered laminated cylindrical panel with configuration C 

having 40 and 10 plies at the thickest and the thinnest sides, respectively. Therefore according 

to the Eq. (4.17) this reduction of the plies from 40- to 10-plies are performed in 15 steps. The 

depicted graphs are for three different loading amplitudes having static load factors of = 0.1 , 

𝛼 = 0.3 and 𝛼 = 0.5  respectively. In all these three cases of loadings for both the tensile and 

compressive load conditions the thickness-tapered laminated cylindrical panel has aspect and 

thickness ratios of 𝑎 𝑏⁄ = 2 and 𝑎 ℎ𝑎𝑣⁄ = 50 , respectively and radius-to-width ratio of 𝑅 𝑏⁄ =

2, and also the graphs have been depicted for the first-two modes i.e. the modes (1,1) and (1,2). 

From Figs. 4.15 and 4.16 it can be realized that increasing the magnitude of the tensile in-plane 

loading results in shifting the instability regions to the higher frequencies along the frequency 

axis (Fig. 4.15a and 4.16a), and consequently decreasing the stable-solution amplitudes of 

steady-state vibrations (Figs. 4.15b and 4.16b). However increasing the magnitude of the 

compressive in-plane loading results in shifting the instability regions to the lower frequencies 

along the frequency axis (Fig. 4.17a and 4.18a), and consequently increasing the stable-solution 

amplitudes of the steady-state vibrations (Fig. 4.17b and 4.18b). These outcomes can be 

expected because increasing the tensile in-plane load makes the cylindrical panel to be stiffer, 

and contrarily increasing the compressive in-plane load results in decreasing the cylindrical 

panel’s stiffness. Also it can be observed from these figures (Figs. 4.16a-4.18a) that the width 

of instability regions are increased once the absolute value of magnitude of in-plane loads are 

increased for both tensile and compressive loading conditions. All these outcomes are in an 

excellent conformance with those reported by Ng et al. [21] for the dynamic instability of 

cylindrical shells where their analysis are based on linear analysis and consequently limited to 

only the dynamically-unstable regions so their results and corresponding outcomes are for only 

instability regions and not the amplitudes of the steady-state vibrations at this regions. 
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4.6.4 Effects of taper angle 

 

One of the most important parameters in the design of thickness-tapered panels is the taper 

angle 𝜙. Decreasing the length of the thickness-tapered panel makes the taper angle to increase 

but it is clear that decreasing the length of the panel and keeping the thickness of the thickness- 

tapered panel unchanged, the overall length-to-thickness ratio is changed while this ratio is also 

another important parameter for both uniform and thickness-tapered panels that should be 

investigated independently. Here to avoid this interference of these two important parameters 

i.e. taper angle and length-to-thickness ratio we introduce the following formulation which only 

changes the taper angles by keeping the length-to-average-thickness ratio as constant: 

𝜙 = tan−1((𝑁𝐿 − 𝑁𝑅) ((𝑎 ℎ𝑎𝑣⁄ )(𝑁𝐿 + 𝑁𝑅))⁄ )                                     (4.53) 

Hence by keeping the 𝑎 ℎ𝑎𝑣⁄  ratio as constant in this equation and changing the number of plies 

at the thickest (here the left) and the thinnest (here the right) sides of the thickness-tapered 

cylindrical panel respectively, the taper angle is changed without changing the length-thickness 

ratio. Variation of both the length 𝑎 and the thickness ℎ do not influence the response  

of the structure if the overall length-thickness ratio remains unchanged. Here to study the effect 

of taper angle we keep the number of plies at the thickest side of the taperd plate 𝑁𝐿 = 40 for 

all cases and by decresing the number of plies at the thinnest side of the taperd plate i.e. 𝑁𝑅 

while we keep the length-to-average-thickness ratio as constant as 𝑎 ℎ𝑎𝑣⁄ = 10 in Figs. 4.19-

4.22 and Tables 4.4-4.7, the taper angle is increased. It is also noted here that by knowing the 

number of plies at the thickest and the thinnest sides and also the ply thickness ℎ𝑝, the ℎ𝑎𝑣 of 

the thickness-tapered cylindrical panel can be obtained. Then considering the length of the 

cylindrical panel as 𝑎 = 10ℎ𝑎𝑣 , the length of the cylindrical panel is also determined; 

consequently setting 𝑏 = 2𝑎 and 𝑅 = 2𝑏 we keep the loaded-to-unloaded width ratio (𝑎 𝑏)⁄  

and radius-to-width ratio (𝑅 𝑏)⁄  unchanged, respectively. The effects of the taper angle on both  
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Figure 4.19 Effects of the taper angle on the first mode a) unstable region and b) stable-solution amplitude of 

steady-state vibrations of symmetric cross-ply laminated thickness-tapered cylindrical panels having 

configuration C, aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 , and radius-to-width ratio of 𝑹 𝒃⁄ = 𝟐 subjected to 

the tensile periodic in-plane loading 

 

 

 

 

Figure 4.20 Effects of the taper angle on the second mode a) unstable region and b) stable-solution amplitude of 

steady-state vibrations of symmetric cross-ply laminated thickness-tapered cylindrical panels having 

configuration C, aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 , and radius-to-width ratio of 𝑹 𝒃⁄ = 𝟐 subjected to 

the tensile periodic in-plane loading 
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Figure 4.21 Effects of the taper angle on the first mode a) unstable region and b) stable-solution amplitude of 

steady-state vibrations of symmetric cross-ply laminated thickness-tapered cylindrical panels having 

configuration C, aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 , and radius-to-width ratio of 𝑹 𝒃⁄ = 𝟐 subjected to 

the compressive periodic in-plane loading 

 

 

 

 

Figure 4.22 Effects of the taper angle on the second mode a) unstable region and b) stable-solution amplitude of 

steady-state vibrations of symmetric cross-ply laminated thickness-tapered cylindrical panels having 

configuration C, aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 , and radius-to-width ratio of 𝑹 𝒃⁄ = 𝟐 subjected to 

the compressive periodic in-plane loading 
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Table 4.4 Effects of the taper angle on the first mode  dynamically-unstable region of symmetric cross-ply 

laminated thickness-tapered cylindrical panel having configuration C aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 

, and radius-to-width ratio of 𝑹 𝒃⁄ = 𝟐  subjected to the tensile periodic in-plane loading 

Plate 

Configuration 

Tap. Angle 𝜙𝜊  
(× 10−1) 

−(𝑁𝑐𝑟)𝑁𝐷 Point of origin 𝑝 (×
10−1) 

𝛿 (× 10−1) 

Uniform (40 Plies) 0.00000 0.584591658 22.22165 3.42094 

C (40-34 Plies) 4.64550 0.587117143 22.32675 3.43588 

C (40-28 Plies) 10.10997 0.595681653 22.49410 3.45964 

C (40-22 Plies) 16.62959 0.611819331 22.80294 3.50337 

C (40-16 Plies) 24.54032 0.640578634 23.34040 3.57914 

C (40-10 Plies) 34.33630 0.690443031 24.24172 3.70524 

 * Non-dimensional critical buckling load, (𝑁𝑐𝑟)𝑁𝐷 = (𝑁𝑐𝑟𝑎
2) (𝐸1⁄ ℎ𝑎𝑣

3) 
 

Table 4.5 Effects of the taper angle on the second mode dynamically-unstable region of symmetric cross-ply 

laminated thickness-tapered cylindrical panel having configuration C aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 

, and radius-to-width ratio of 𝑹 𝒃⁄ = 𝟐  subjected to the tensile periodic in-plane loading 

Plate Configuration Tap. Angle 𝜙𝜊  
(× 10−1) 

−(𝑁𝑐𝑟)𝑁𝐷 Point of origin 𝑝  
(× 10−1) 

𝛿 (× 10−1) 

Uniform (40 Plies) 0.00000 0.584591658 27.21238 2.86376 

C (40-34 Plies) 4.64550 0.587117143 27.32758 2.87785 

C (40-28 Plies) 10.10997 0.595681653 27.50923 2.90043 

C (40-22 Plies) 16.62959 0.611819331 27.88241 2.93843 

C (40-16 Plies) 24.54032 0.640578634 28.55980 3.00175 

C (40-10 Plies) 34.33630 0.690443031 29.72121 3.10501 

 * Non-dimensional critical buckling load, (𝑁𝑐𝑟)𝑁𝐷 = (𝑁𝑐𝑟𝑎
2) (𝐸1⁄ ℎ𝑎𝑣

3) 
 

Table 4.6 Effects of the taper angle on the first mode of dynamically-unstable region of symmetric cross-ply 

laminated thickness-tapered cylindrical panel having configuration C aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 

, and radius-to-width ratio of 𝑹 𝒃⁄ = 𝟐  subjected to the compressive periodic in-plane loading 

Plate Configuration Tap. Angle 𝜙𝜊  
(× 10−1) 

(𝑁𝑐𝑟)𝑁𝐷 Point of origin 𝑝  
(× 10−1) 

𝛿 (× 10−1) 

Uniform (40 Plies) 0.00000 -0.584591658 12.82967 5.23096 

C (40-34 Plies) 4.64550 -0.587117143 12.89035 5.25141 

C (40-28 Plies) 10.10997 -0.595681653 12.98698 5.28386 

C (40-22 Plies) 16.62959 -0.611819331 13.16528 5.34343 

C (40-16 Plies) 24.54032 -0.640578634 13.47559 5.44610 

C (40-10 Plies) 34.33630 -0.690443031 13.99596 5.61545 

* Non-dimensional critical buckling load, (𝑁𝑐𝑟)𝑁𝐷 = (𝑁𝑐𝑟𝑎
2) (𝐸1⁄ ℎ𝑎𝑣

3) 
 

Table 4.7 Effects of the taper angle on the second mode dynamically-unstable region of symmetric cross-ply 

laminated thickness-tapered cylindrical panel having configuration C aspect ratios of 𝒂 𝒃⁄ = 𝟐 and 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 

, and radius-to-width ratio of 𝑹 𝒃⁄ = 𝟐  subjected to the compressive periodic in-plane loading 

Plate Configuration Tap. Angle 𝜙𝜊 (×
10−1) 

(𝑁𝑐𝑟)𝑁𝐷 Point of origin 𝑝 (×
10−1) 

𝛿 (× 10−1) 

Uniform (40 Plies) 0.00000 -0.584591658 20.28085 3.69520 

C (40-34 Plies) 4.64550 -0.587117143 20.35864 3.71387 

C (40-28 Plies) 10.10997 -0.595681653 20.48010 3.74391 

C (40-22 Plies) 16.62959 -0.611819331 20.75523 3.79147 

C (40-16 Plies) 24.54032 -0.640578634 21.27156 3.86818 

C (40-10 Plies) 34.33630 -0.690443031 22.17152 3.99074 

* Non-dimensional critical buckling load, (𝑁𝑐𝑟)𝑁𝐷 = (𝑁𝑐𝑟𝑎
2) (𝐸1⁄ ℎ𝑎𝑣

3) 
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dynamically-unstable regions and the stable-solution amplitudes of steady-state vibartions are 

shown in Figs. 4.19-4.22 that correspond to the first two modes of the cylindrical panel 

subjected to the tensile and compressive in-plane periodic loadings, respectivly. To more 

clearly compare the dynamic instability regions particularlly the width of dynamically-unstable 

regions the tabular presentation is also provided in the Tables 4.4-4.7 corresponding to the first 

two modes of dynamic intability of the cylindrical panel subjected to the tensile and 

compressive loadings, respectivly. In those tables the variation of taper angles from zero 

(uniform) to that for the most tapered panel which is cylindrical panel having 40 and 10 plies 

at the thickest and thinest sides respectivly are listed and corresponding buckling loads as well. 

Although we consider the static load factor 𝛼 = 0.5 for all these six taper ratios i.e. 40-40, 40-

34, 40-28, 40-22, 40-16 and 40-10 plies, it should be noted that corresponding dimensionless 

critical bucklig loads, i.e. (𝑁𝑐𝑟)𝑁𝐷 , which is 𝑁𝑐𝑟𝑎
2 𝐸1⁄ ℎ𝑎𝑣

3
, are also increased. For the second 

mode i.e. mode (1,2) the loading is considered based on the critical bucklig loads which 

actually corresponds to the first mode (1,1) so it means that the loading conditions in both 

tensile and compressive cases are the same for both first two modes. Both tensile (Figs. 4.19 

and 4.20 and Tables 4.4 and 4.5) and compressive (Figs. 4.21 and 4.22 and Tables 4.6 and 4.7) 

loadings confirm that increasing the taper angle causes shifting the dynamically-unstable 

regions to the higher frequencies along the frequency axis (Figs. 4.19a-4.22a, Tables 4.4-4.7), 

and consequently decreasing the stable-solution amplitudes of the steady-state vibrations (Figs. 

4.19b-4.22b) and also increasing very slightly the widths of dynamically-unstable regions 

(Figs. 4.19a-4.22a, Tables 4.4-4.7). This is due to the fact that increasing taper angles results 

in higher stiffness of the cylindrical panel. Another important outcome of these figures and 

tables is that these variations of dynamic instability response, highly deviate from thickness-

tapered cylindrical panel having 40-10 to 40-16 and 40-22 plies but it shows the convergence 
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of the response of the thickness-tapered cylindrical panel having 40-28 plies and 40-34 plies 

with the uniform laminated cylindrical panel having 40 plies. 

 

4.6.5 Variation of curvature 

 

Figures 4.23 and 4.24 present the effects of the radius-to-width ratio on the first mode dynamic 

instability of thickness-tapered squer cylindrical panel subjected to the tensile and compressive 

periodic in-plane loadings, respectively. Here b is kept constant and the radius of the square 

cylindrical panel is varied and the length-to-average-thickness ratio is 𝑎 ℎ𝑎𝑣𝑒⁄ = 50. We keep 

the static load factor 𝛼 = 0.5  for all these five radius-to-width ratios i.e., 𝑅 𝑏⁄ =

1, 3, 5,10 𝑎𝑛𝑑 ∞  (flat plate) and the critical buckling load is the same for all those five 

cylindrical panels and corresponds to the critical buckling load of the flat plate. We can clearly 

observe from these figures that in both tensile and compressive loading cases decreasing the 

curvature or increasing the overal radius-to-width of the laminated tapered cylindrical panel 

results in shifting dynamically-unstable regions to the left along the frequenccy axis having 

lower frequencies of excitations of origins (Figs. 4.23a and 4.24a), increasing the width of 

instability regions (Figs. 4.23a and 4.24a) and also increasing the amplitudes of steady-state 

vibrations at any specific frequency (Figs. 4.23b and 4.24b). These behaviors confirm the 

corresponding conclusions of Ref. [39] for dynamically-unstable regions of uniform curved 

panels. However their study, corresponding results and conclusions are only about the 

dynamically-unstable regions based on the linear analysis done in their works. It is to be noted 

that the amplitude of steady-state vibrations in the dynamically-unstable regions can only be 

determined by a non-linear analysis, as is done in the present work. Results of the present sub-

section also confirm that increasing the curvature of the laminated tapered cylindrical panel 

makes the panel stiffer. 
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Figure 4.23 Effects of the variation of curvature on the first mode a) unstable region and b) stable-solution 

amplitude of steady-state vibrations of symmetric cross-ply laminated thickness-tapered square cylindrical 

panels having configuration C, length-to-thickness ratios of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 subjected to the tensile periodic in-

plane loading 

 

 

 

Figure 4.24 Effects of the variation of curvature on the first mode a) unstable region and b) stable-solution 

amplitude of steady-state vibrations of symmetric cross-ply laminated thickness-tapered square cylindrical 

panels having configuration C, length-to-thickness ratios of 𝒂 𝒉𝒂𝒗⁄ = 𝟏𝟎 subjected to the compressive periodic 

in-plane loading 
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4.6.6 Effect of the loaded-to-unloaded width ratio 

 

Here in Figs. 4.25 and 4.26 corresponding to the tensile and compressive periodic in-plane 

loadings, respectively we examine the effect of width-to-length aspect ratio 𝑏 𝑎⁄  which is the 

ratio of the width of loaded edge to the width of unloaded edge on the dynamic instability of 

thickness-tapered cylindrical panel with configuration C having 40-10 plies. The length 𝑎 is 

kept constant and the width 𝑏 is varied; the length-to-average-thickness ratio and the radius-to-

width ratio are 𝑎 ℎ𝑎𝑣⁄ = 50 and 𝑅 𝑏⁄ = 2, respectively. Again we keep the static load factor 

𝛼 = 0.5 for all these six aspect ratios i.e. 𝑏 𝑎⁄ = 2, 1, 2/3, 0.5, 2/5 𝑎𝑛𝑑 1/3. It should be noted  

 

Figure 4.25 Effects of the variation of the loaded-to-unloaded width ratio, on the first mode a) unstable region 

and b) both stable-and unstable-solution amplitude of steady-state vibrations of 40-10 layered symmetric cross-

ply laminated thickness-tapered cylindrical panel having configuration C, 𝒂 𝒉𝒂𝒗⁄ = 𝟓𝟎 and 𝑹 𝒃⁄ = 𝟐 subjected 

to the tensile periodic in-plane loading 

 

 

 



 

148 

 

 

Figure 4.26 Effects of the variation of the loaded-to-unloaded width ratio, on the first mode a) unstable region 

and b) both stable-and unstable-solution amplitude of steady-state vibrations of 40-10 layered symmetric cross-

ply laminated thickness-tapered cylindrical panel having configuration C, 𝒂 𝒉𝒂𝒗⁄ = 𝟓𝟎 and 𝑹 𝒃⁄ = 𝟐 subjected 

to the compressive periodic in-plane loading 

that the corresponding dimensionless critical bucklig loads are increased by decreasing the 

loaded-to-unloaded width. The graphs indicate that in both tensile and compressive loadings 

with a decrease in width of the cylindrical panel, i.e. overall decrease in aspect ratio of  𝑏 𝑎⁄  , 

the thickness-tapered cylindrical panel’s stiffness is increased as well, hence the dynamically-

unstable regions shift to the right along the frequency axis having higher frequencies of 

excitations of points of origins (Figs. 4.25a and 4.26a), and consequently both the stable- and 

unstable solutions amplitudes of steady-state vibrations at any specific frequency are decreased 

(Figs. 4.25b and 4.26b) and further, the widths of instability regions are also increased (Figs. 

4.24a and 4.26a). It is noticed that increase in the widths of instability regions are more 

influenced by the compressive loading (Fig. 4.25a) than the tensile loading (Fig. 4.26a) and 

also most affected by the loads i.e. as mentioned above by decreasing the width-to length aspect 

ratio dimensionless critical bucklig loads are increased therefor it makes that the widths of 

instability region be increased too. However the points of origins of dynamically-unstable 

regions are more influenced by the tensile loading (Fig. 4.25a) than the compressive loading 
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(Fig. 4.26a). These are in full agreement qualitatively with the corresponding study of 

Ramachandra and Panda [11]  for dynamically-unstable regions of uniform laminated plates. 

However again their study, corresponding results and conclusions are only about the 

dynamically-unstable regions based on the linear analysis done in their works and doesn’t lead 

to the amplitude of steady-state vibrations at these regions. 

 

4.6.7 Effect of the length-to-thickness ratio 

 

As the final parametric study in Figs. 4.27 and 4.28 we investigate the effect of the variation 

of the length-to-average-thickness ratio, 𝑎 ℎ𝑎𝑣𝑒⁄  , on the instability regions and the both stable- 

and unstable-solution amplitudes of steady-state vibrations subjected to the tensile and 

compressive periodic in-plane loadings respectively. As it has been mentioned above since the 

taper angle and length-thickness ratio are influenced by each other, here to avoid this  

 

Figure 4.27 Effects of the variation of the length-to-average-thickness ratio on the first mode a) unstable region 

and b) both stable-and unstable-solution amplitude of steady-state vibrations of 40-10 layered symmetric cross-

ply laminated thickness-tapered cylindrical panel having configuration C, 𝒂 𝒃⁄ = 𝟐 and 𝑹 𝒃⁄ = 𝟐 subjected to 

the tensile periodic in-plane loading 
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Figure 4.28 Effects of the variation of the length-to-average-thickness ratio on the first mode a) unstable region 

and b) both stable-and unstable-solution amplitude of steady-state vibrations of 40-10 layered symmetric cross-

ply laminated thickness-tapered cylindrical panel having configuration C, 𝒂 𝒃⁄ = 𝟐 and 𝑹 𝒃⁄ = 𝟐 subjected to 

the compressive periodic in-plane loading 

 

interference of these two important parameters in Eq. (4.50) we keep the length 𝑎  of the 

thickness-tapered cylindrical panel constant and change the length-to-average-thickness ratio 

by increasing the number of plies. These figures present a graphical illustration of the effect of 

length-to-average-thickness ratio on dynamic instability of thickness-tapered cylindrical panel 

with configuration C having three different numbers of plies i.e. 40-10 plies, 50-20 plies and 

60-30 plies where the taper angle for all these three different thickness-tapered plates remains 

constant as 𝜙 = 0.344°. The length-to-width ratio 𝑎 𝑏⁄ = 2 and the static load factor 𝛼 = 0.5 

for all these three diferent thickness ratios i.e., 𝑎 ℎ𝑎𝑣⁄ = 100, 71.43 𝑎𝑛𝑑 55.56 corresponding 

to the 40-10 plies, 50-20 plies and 60-30 plies, respectively. It is confirmed that in both tensile 

(Fig. 4.27) and compressive (Fig. 4.28) loading conditions with increasing the number of plies, 

i.e. with decreasing the length-to-average-thickness ratio 𝑎 ℎ𝑎𝑣⁄  , the dynamically-unstable 

regions (Figs. 4.27a and 4.28a) shift to the right along the frequency axis having higher 

excitation frequencies, and consequently decreasing both the stable- and unstable-solution 
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amplitudes of steady-state vibrations (Figs. 4.27b and 4.28b) and also increasing the widths of 

dynamically-unstable regions (Figs 4.27a and 4.28a). It should be noted here again that increase 

in the widths of instability regions is more influenced by the compressive loading (Fig. 4.28a) 

than the tensile loading (Fig. 4.27a). However the points of origins of dynamically-unstable 

regions are more influenced by the tensile loading (Fig. 4.27a) than the compressive loading 

(Fig. 4.28a). These outcomes are also due to the fact that increasing the thickness of cylindrical 

panel makes the panel stiffer. 

 

4.7 Conclusions 

 

A displacement approach taking into account the non-linear von Karman strains associated 

with large deflections and curvatures was applied to investigate parametric instability of 

internally thickness-tapered laminated composite cylindrical panels having four different taper 

configurations. Considering the simply supported boundary condition the in-plane 

displacements were determined in terms of the out-of-plane displacement function. The in-

plane force-resultants were determined based on the in-plane displacements and corresponding 

boundary conditions, and the moment-resultants were directly defined in terms of the out-of-

plane displacement function after substituting it in the moment-equilibrium equation of motion. 

Applying the general Galerkin method to the resultant equation a set of non-linear Mathieu-

Hill equations were obtained. Eventually the principal dynamically-unstable regions, stable-, 

and unstable-solutions amplitudes of the steady-state vibrations at these regions were 

calculated via Bolotin’s first approximation. Numerical comparisons were made with those 

results available in literature, and the present methodology was validated. Based on the 

parametric studies, the following observations are made:  

• Both dynamically-unstable regions and corresponding amplitudes of the steady-state vibrations 

are significantly influenced by taper configurations. The results show that configuration C is 

the most stable thickness-tapered cylindrical panel under parametric excitation among all the 
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thickness-tapered configurations i.e. configurations A, B, C and D, and also the uniform-

thickness laminate having the thickness equal in value to the average thickness of the 

corresponding thickness-tapered cylindrical panel. Overall, tapering the cylindrical panel 

makes the panel’s stiffness to be increased although its total weight might be decreased due to 

the existence of resin pockets. Higher stiffness of the thickness-tapered cylindrical panel results 

in the shifting of the dynamically-unstable regions toward higher frequencies and consequently 

decreasing both stable- and unstable-solutions amplitudes of the steady-state vibrations. 

However, almost the same widths of instability regions as that of uniform cylindrical panel 

having its thickness as the average thickness of the tapered plate are obtained, although 

reducing the total weight of the thickness-tapered structure causes the rate of increase of the 

amplitudes of the steady-state vibrations be increased.  Hence in comparison to the uniform 

cylindrical panel, although the thickness-tapered cylindrical panel with configuration C has the 

amplitude of steady-state vibrations lower than that of the uniform laminate in the initial stages 

of the excitation, by increasing the excitation frequencies this trend is changed; influenced by 

the lower total weight of the thickness-tapered cylindrical panel (configuration C) at the higher 

level of the excitation frequencies, the first mode steady-state vibration amplitude is very 

slightly increased from the first mode steady-state vibration amplitude of the uniform 

cylindrical panel. 

• Taper angle is the other most important parameter in the design of thickness-tapered cylindrical 

panel which, as observed from the results obtained, makes the cylindrical panel stiffer. The 

higher the taper angle is, the higher the excitation frequencies corresponding to the 

dynamically-unstable regions are, and consequently the lower is the amplitude of the steady-

state vibrations. Also the widths of dynamically-unstable regions decrease very slightly for 

higher values of taper angles. The variation of dynamic instability response of thickness-



 

153 

 

tapered cylindrical panel from that of the uniform one is very smooth for smaller taper angles 

but the rates of the deviations are high for increasing values of taper angle. 

• Dynamically-unstable regions occur later with an increase of the amplitude of the tensile in-

plane harmonically-pulsating load for laminated thickness-tapered cylindrical panel, with 

narrower width of instability regions, and consequently the lower amplitudes of the steady-

state vibrations. However, with an increase of the amplitude of the compressive in-plane load, 

dynamically-unstable regions occur earlier with wider width of instability regions, and 

consequently the higher amplitudes of the steady-state vibrations. These outcomes can be 

expected because increasing the tensile in-plane load makes the cylindrical panel to be stiffer, 

and contrarily increasing the compressive in-plane load makes the cylindrical panel be less 

stiff. 

• Thickness-tapered cylindrical panel with higher values of curvature have greater dynamic 

stability strength. In both tensile and compressive loadings decreasing the curvature or 

increasing the overal radius-to-width of the laminated tapered cylindrical panel results in 

shifting dynamically-unstable regions to the left along the frequenccy axis having lower 

frequencies of excitations of origins, increasing the width of instability regions and also 

increasing the amplitudes of steady-state vibrations at any specific frequency. This shifting to 

the left along the frequency axis of the dynamically-unstable regions, increasing steady-state 

amplitudes and the width of instability regions is very fast for values from 𝑅 𝑏⁄ = 1  to 𝑅 𝑏⁄ =

3, is moderate thereafter until 𝑅 𝑏⁄ = 5 and is very slow until 𝑅 𝑏⁄ = 10 and appears to have 

converged to a certain value thereafter. The dynamic instability’s parameters are too close to 

each other for 𝑅 𝑏⁄ = 10  and 𝑅 𝑏⁄ = ∞ (flat plate).  

• The results in both tensile and compressive loading conditions indicate that with a decrease in 

width 𝑏, i.e. overall decrease in aspect ratio 𝑏 𝑎⁄  , the thickness-tapered cylindrical panel’s 

stiffness is increased as well, hence the dynamically-unstable regions shift to the right along 
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the frequency axis having higher frequencies of excitation, and consequently decreasing the 

amplitudes of steady-state vibrations and further, the widths of instability regions are also 

increased. It is also noticed that increase in the widths of instability regions is more influenced 

by the compressive loading than the tensile loading. However, the points of origins of 

dynamically-unstable regions are more influenced by the tensile loading than the compressive 

loading.  

• It is confirmed that in both tensile and compressive loading conditions with increasing the 

number of plies, i.e. with decreasing the length-to-average-thickness ratio 𝑎 ℎ𝑎𝑣⁄  , the 

dynamically-unstable regions shift to the right along the frequency axis having higher 

excitation frequencies, and consequently decreasing the amplitudes of  steady-state vibrations 

and also increasing the widths of dynamically-unstable regions. Increase in the widths of 

instability regions is more influenced by the compressive loading than the tensile loading. 

However, the points of origins of dynamically-unstable regions are more influenced by the 

tensile loading than the compressive loading. These outcomes are also due to the fact that 

increasing the thickness of plate makes the plate stiffer. 

The thickness-tapered cylindrical panels, through increasing the stiffness and at the same time 

decreasing the weight, brings upon more complicated structural behavior as exhibited by their 

vibration response and dynamic instability characteristics, in comparison to the uniform 

cylindrical panels. All of the parametric study results indicate that the thickness-tapered 

cylindrical panels having configuration C is more stable and have better vibrational behavior 

in comparison to any other thickness-tapered configurations (A, B or D) and even in 

comparison to the uniform cylindrical panels having the thickness as the average-thickness of 

the corresponding thickness-tapered cylindrical panels having configuration C. It can also be 

concluded that the superiority of the thickness-tapered cylindrical panels with configuration C 

could further be improved by decreasing the sizes of the resin pockets. The present work can 
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be used as a benchmark study in future studies on the dynamic instability of laminated 

thickness-tapered composite cylindrical panels. 
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CHAPTER 5 

5 Non-linear dynamic instability analysis of laminated composite 

cylindrical shells subjected to periodic axial loads 
 

 

5.1 Introduction 

 

Composite structures have been progressed from almost an engineering curiosity to widely 

used structures in aerospace, automotive, and civil engineering as well as in many other 

applications in everyday life. Advantages of fiber-reinforced composite materials including 

their outstanding strength and stiffness particularly the specific stiffness which is the stiffness-

to-density make them more attractive for use in weight-sensitive structures such as aircraft or 

spacecraft structures [44].  

When the lightweight structural components are subjected to dynamic loading particularly 

periodic loads, when the frequency of in-plane dynamic load and the frequency of vibration 

satisfy certain specific condition, parametric resonance will occur in the structure, which makes 

the plate or shell structure to enter into a state of dynamic instability [2]. This instability is of 

concern because it can occur at load magnitudes that are much less than the static buckling 

load, so a component designed to withstand static buckling may fail in a periodic loading 

environment. Further, the dynamic instability occurs over a range of forcing frequencies rather 

than at a single value [2, 3]. 

The interest to study the dynamic stability behavior of engineering structures dates back to 

the text by Bolotin [1] which addresses numerous problems on the stability of structures under 

pulsating loads. According to the general theory of dynamic stability of elastic systems by 

using Bolotin’s method a set of differential equations of the Mathieu-Hill type are derived, and 

by seeking periodic solutions using Fourier series expansion the boundaries of unstable regions 

are determined. An extensive bibliography of the earlier works on parametric response of 

structures was presented by Evan-Iwanowsky [4]. 
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A detailed research survey on the dynamic stability behavior of plates and shells in which 

the literature from 1987 to 2005 has been reviewed can be found in the review paper by Sahu 

and Datta [5].  

The dynamic instability regions of laminated anisotropic cylindrical shells were studied by 

Argento and Scott [3, 45] using a perturbation technique. The shell’s ends were clamped and 

subjected to axial periodic loading. In the numerical part [45]  they discussed the effect of 

circumferential wave number and magnitude of external axial load on instability regions. 

Argento [46] then extended this work to compare the instability regions of the shell subjected  

to pure axial, pure torsional, and combined axial and torsional loadings. Extensive studies of 

dynamic stability of laminated composite cylindrical shells have been carried out by Ng. et al. 

[21, 23, 38, 41, 47, 48], using Love’s classical thin shell theory for antisymmetric cross-ply 

laminate to investigate the effects of different lamination schemes and magnitude of the axial 

periodic loading [21], and length-to-radius and thickness-to radius ratios [23]. A comparison 

of different thin shell theories namely, Donnell’s , Love’s and Flugge’s shell theories in 

predicting dynamically unstable regions of cross-ply laminated  cylindrical shells has been 

provided [49]. Cylindrical panels with transverse shear effects have been studied using 

Donnell’s shell theory and then extended using first-order shear deformation theory [47]. 

Donnell’s equation has been used to study thin rotating isotropic cylindrical shells subjected to 

periodic axial loading [48] and, dynamic instability of laminated cylindrical shells has been 

studied via the mesh-free kp-Ritz method [50]. Fazilati and Ovesy used finite strip method to 

study the parametric instability of laminated composite plates and shells [51] , subjected to 

non-uniform in-plane loads [52] , moderately thick cylindrical panels with internal cutouts [53] 

and longitudinally stiffened curved panels with cutout [54] as well. 

All these mentioned works are based on linear analysis and so lead to dynamic instability 

regions. Stability analysis based on classical linear theories provided only an outline of the 
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parameter regimes where non-linear effects are of importance. According to Popov [12] 

without adequate non-linear analysis the results in some cases can be inaccurate. “According 

to linear theory, one expects the vibration amplitudes in the regions of dynamic instability to 

increase unboundedly with time indeed very rapidly so as to increase exponentially. However, 

this conclusion contradicts experimental results which reveal that vibrations with steady-state 

amplitudes exist in the instability regions. As the amplitude increases, the character of the 

vibrations changes; the speed of the amplitude growth gradually decreases until vibrations of 

constant (or almost constant) amplitude are finally established” [1].  

Some non-linear problems of laminated shells have been addressed in literature including 

initial post-buckling behavior [55], and free vibration and dynamic analysis of cylindrical and 

conical shells [56-60]. 

A comprehensive literature review covering the period 2003- 2013 on non-linear vibrations 

of shells has been done by Alijani and Amabili [13]  

Few works have been conducted considering the non-linear shell theories for dynamic 

stability problems. Cheng-Ti and Li-Dong [18] used Hamilton principle to derive the equation 

of motion and solved this equation with variational methods to study the effect of large 

deflection which leads to non-linear dynamic instability for three typical laminated composite 

cylindrical shells, viz, Graphite epoxy, E-glass epoxy and ARAAL shells. Their studies were 

limited to overall trend of variation of the amplitude with these three composites.  

To the present authors’ knowledge a comprehensive study which considers the effects of 

stacking sequence and aspect ratios has not been carried out on the non-linear dynamic 

instability of thin laminated shells. In the present part of the thesis, the Donnell’s shallow-shell 

theory with von Karman-type of non-linearity is considered for thin, laminated composite 

cylindrical shell subjected to harmonic axial loading. Galerkin’s technique is then employed to 

solve the non-linear large deflection shallow-shell equations of motion and a system of non-
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linear Mathieu-Hill equations are derived. The steady-state amplitudes of both stable and 

unstable solutions are determined by applying the Bolotin’s method. The parametric studies 

are performed to investigate and compare the effects of different lamination schemes of 

symmetric and antisymmetric cross-ply laminated shells, the magnitude of axial loads both 

tensile and compressive loads, different aspect ratios of the shell including length-to-radius and 

thickness-to-radius ratios and different circumferential wave numbers as well on the parametric 

resonance particularly of the steady-state vibrations. The present results show good agreement 

when compared with that available in the literature and hence can be used as bench mark results 

for future studies. 

5.2 Formulation 

 

A thin simply supported laminated composite cylindrical shell, having length 𝐿 and radius 𝑅 

with respect to the curvilinear coordinates (𝑋, 𝜃, 𝑍)which are assigned in the mid-surface of 

the shell is considered as shown in Fig. 5.1. 

Here,  𝑢 , 𝑣  and 𝑤  are the displacement components of the shell with reference to this 

coordinate system in the 𝑋, 𝜃, 𝑍, directions, respectively. 

The cylindrical shell is subjected to a periodically pulsating load in the axial direction with 

the axial loading per unit length as follow:  

𝐹𝑥𝑥(𝑡) =  𝐹𝑠 + 𝐹𝑑𝑐𝑜𝑠𝑃𝑡                                                         (5.1) 

where 𝐹𝑠 is a time invariant component, 𝐹𝑑𝑐𝑜𝑠𝑃𝑡 is the harmonically pulsating component, 

and 𝑃 denotes the frequency of excitation in radians per unit time.  

Donnell’s theory for thin cylindrical shells is employed for this analysis. Thus the equations 

of motion under the axial pulsating load are given by 

𝜕𝑁𝑥𝑥

𝜕𝑥
+

1

𝑅

𝜕𝑁𝑥𝜃

𝜕𝑥
= 𝜌𝑡

𝜕2𝑢0

𝜕𝑡2
                                                   (5.2) 

𝜕𝑁𝑥𝜃

𝜕𝑥
+

1

𝑅

𝜕𝑁𝜃𝜃

𝜕𝜃
= 𝜌𝑡

𝜕2𝑣0

𝜕𝑡2
                                                    (5.3) 
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Figure 5.1 The geometry of a laminated composite cylindrical shell and the cross-sectional view 

 
𝜕2𝑀𝑥𝑥

𝜕𝑥2
+

2

𝑅

𝜕2𝑀𝑥𝜃

𝜕𝑥𝜕𝜃
+

1

𝑅2
𝜕2𝑀𝜃𝜃

𝜕𝜃2
−

1

𝑅
𝑁𝜃𝜃 + 𝑁𝑥𝑥

𝜕2𝑤0

𝜕𝑥2
= 𝜌𝑡

𝜕2𝑤0

𝜕𝑡2
                      (5.4) 

where  

                                                                   (5.5) 

and (𝑁𝑥𝑥 , 𝑁𝜃𝜃, 𝑁𝑥𝜃) are the total in-plane force resultants and (𝑀𝑥𝑥 , 𝑀𝜃𝜃, 𝑀𝑥𝜃) are the total  

moment resultants that are defined by 

{
𝑁𝑥𝑥
𝑁𝜃𝜃
𝑁𝑥𝜃

} = ∫  {

𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑥𝜃

}  𝑑𝑧
ℎ

2
−ℎ

2

                                                       (5.6) 

{
𝑀𝑥𝑥

𝑀𝜃𝜃

𝑀𝑥𝜃

} = ∫  {

𝜎𝑥𝑥
𝜎𝜃
𝜎𝑥𝜃

} 𝑍 𝑑𝑧
ℎ

2
−ℎ

2

                                                    (5.7) 

The nonzero von Karman strains associated with non-linear large deflections and curvatures 

according to Donnell’s theory are given by  

{

𝜖𝑥𝑥
𝜖𝜃𝜃
𝛾𝑥𝜃

} = {

𝜖𝑥𝑥
(0)

𝜖𝜃𝜃
(0)

𝛾𝑥𝜃
(0)

}+z{

𝜖𝑥𝑥
(1)

𝜖𝜃𝜃
(1)

𝛾𝑥𝜃
(1)

}                                                     (5.8) 

,
2

2−=
h

h
t dz
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{𝜖0} = {

𝜖𝑥𝑥
(0)

𝜖𝜃𝜃
(0)

𝛾𝑥𝜃
(0)

} = 

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝜕𝑥
)2

1

𝑅
(
𝜕𝑣0

𝜕𝜃
+𝑤0) +

1

2𝑅2
(
𝜕𝑤0

𝜕𝜃
)2

1

𝑅

𝜕𝑢0

𝜕𝜃
+
𝜕𝑣0

𝜕𝑥
+

1

𝑅

𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝜃 }
 
 

 
 

                                           (5.9) 

{𝜖1} = {

𝜖𝑥𝑥
(1)

𝜖𝜃𝜃
(1)

𝛾𝑥𝜃
(1)

} = 

{
 
 

 
 −

𝜕2𝑤0

𝜕𝑥2

−
1

𝑅2
𝜕2𝑤0

𝜕𝜃2

−
2

𝑅

𝜕2𝑤0

𝜕𝑥𝜕𝜃 }
 
 

 
 

                                                  (5.10)  

where (𝜖𝑥𝑥
(0)
, 𝜖𝜃𝜃
(0)
, 𝛾𝑥𝜃
(0)
) are the membrane strains, (𝜖𝑥𝑥

(1)
, 𝜖𝜃𝜃
(1)
, 𝛾𝑥𝜃
(1)
) are the flexural (bending) 

strains and (𝑢0, 𝑣0, 𝑤0) are mid-plane displacements. 

The thin shell is constructed by a cross-ply laminated composite material having density𝜌. 

Hence the state of stress is governed by the generalized Hooke’s law. The linear constitutive 

relations for the kth orthotropic lamina in the principal material coordinates of a lamina are 

{

𝜎1
𝜎2
𝜎6
}

(𝑘)

= [
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

]

(𝑘)

{

𝜖1
𝜖2
𝜖6
}                                         (5.11) 

where [𝑄](𝑘) is the reduced stiffness matrix of the kth lamina and its components 𝑄𝑖𝑗
(𝑘)

 are 

known in terms of the engineering constants of the kth layer, as 

𝑄11 =
𝐸11

1−𝜐12𝜐21
                                                            (5.12a) 

𝑄12 =
𝜐12𝐸22

1−𝜐12𝜐21
                                                            (5.12b) 

𝑄22 =
𝐸22

1−𝜐12𝜐21
                                                            (5.12c) 

𝑄66 = 𝐺12                                                                   (5.12d) 

where 𝐸11 and 𝐸22 are the elastic moduli in the principal material coordinates, 𝐺12 is the shear 

modulus and 𝜐12 and 𝜐21are the Poisson’s ratios. 

The constitutive equation of the laminate which is made of several orthotropic layers, with 

the arbitrarily oriented material axes to the laminate coordinate, can be obtained by the 

transformation of the stress-strain relations to the laminate coordinates as follow: 
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{

𝜖𝑥
𝜖𝜃
𝛾𝑥𝜃

}

(𝑘)

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]

(𝑘)

{

𝜖𝑥𝑥
𝜖𝜃𝜃
𝛾𝑥𝜃

}                                         (5.13) 

where [𝑄̅](𝑘) is the  transformed reduced stiffness matrix  defined as follow: 

[𝑄̅] = [𝑇]−1[𝑄][𝑇]−𝑇                                                        (5.14) 

where [𝑇] is the transformation matrix for the principal material coordinates and the shell’s 

coordinates given by 

[𝑇] = [
cos2 𝛼 sin2 𝛼 2 cos 𝛼 sin 𝛼
sin2 𝛼 cos2 𝛼 −2 cos𝛼 sin 𝛼

− cos 𝛼 sin 𝛼 2 cos𝛼 sin 𝛼 cos2 𝛼 − sin2 𝛼

]                            (5.15) 

and 𝛼 is the angular orientation of the fibers. By following the equations (6)-(15) the force and 

moment resultants are defined as 

{
 
 

 
 
𝑁𝑥𝑥
𝑁𝜃𝜃
𝑁𝑥𝜃
𝑀𝑥𝑥

𝑀𝜃𝜃

𝑀𝑥𝜃}
 
 

 
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66]

 
 
 
 
 

{
 
 
 
 

 
 
 
 𝜖𝑥𝑥

(0)

𝜖𝜃𝜃
(0)

𝛾𝑥𝜃
(0)

𝜖𝑥𝑥
(1)

𝜖𝜃𝜃
(1)

𝛾𝑥𝜃
(1)
}
 
 
 
 

 
 
 
 

                         (5.16) 

where 𝐴𝑖𝑗 denote the extensional stiffnesses, 𝐷𝑖𝑗 the bending stiffnesses, and 𝐵𝑖𝑗 the bending-

extensional coupling stiffnesses 

𝐴𝑖𝑗 = ∑ 𝑄̅𝑖𝑗
(𝑘)(ℎ𝑘 − ℎ𝑘+1)

𝑁
𝑘=1                     , (𝑖, 𝑗 = 1, 2, 6)            (5.17a) 

𝐵𝑖𝑗 =
1

2
 ∑ 𝑄̅𝑖𝑗

(𝑘)
(ℎ𝑘

2 − ℎ𝑘+1
2 ) 𝑁

𝑘=1                                                      (5.17b) 

𝐷𝑖𝑗 =
1

3
 ∑ 𝑄̅𝑖𝑗

(𝑘)(ℎ𝑘
3 − ℎ𝑘+1

3 ) 𝑁
𝑘=1                                                       (5.17c) 

where ℎ𝑘and ℎ𝑘+1 are measured from the shell reference surface to the outer and inner surfaces 

of the kth layer, respectively, as shown in Fig. 1. From Eq.( 5.16) the strains can be written as 
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{

𝜖𝑥𝑥
(0)

𝜖𝜃𝜃
(0)

𝛾𝑥𝜃
(0)

} = [𝐴𝑖𝑗]
−1
{
𝑁𝑥𝑥
𝑁𝜃𝜃
𝑁𝑥𝜃

}  − [𝐴𝑖𝑗]
−1
 [𝐵𝑖𝑗] {

𝜖𝑥𝑥
(1)

𝜖𝜃𝜃
(1)

𝛾𝑥𝜃
(1)

}   = {

𝑎1𝑁𝑥𝑥 + 𝑎2𝑁𝜃𝜃 + 𝑎3𝜖𝑥𝑥
(1)
+ 𝑎4𝜖𝜃𝜃

(1)

𝑎2𝑁𝑥𝑥 + 𝑎1𝑁𝜃𝜃 + 𝑎4𝜖𝑥𝑥
(1) + 𝑎3𝜖𝜃𝜃

(1)

𝑎5𝑁𝑥𝜃 + 𝑎6𝛾𝑥𝜃
(1)

}        

(5.18) 

where  

𝑎1 = Δ𝐴22 , 𝑎2 = 𝐷12 , 𝑎3 = Δ(𝐴12𝐵12 − 𝐴22𝐵11) 

 𝑎4 = Δ(𝐴12𝐵22 − 𝐴22𝐵12) , 𝑎5 =
1

𝐴66
 , 𝑎6 = −

𝐵66

𝐴66
 

Δ =
1

(𝐴11
2 −𝐴12

2 )
                                                                   (5.19) 

The moment resultants also can be written from Eq.(16) as 

{
𝑀𝑥𝑥

𝑀𝜃𝜃

𝑀𝑥𝜃

} = [𝑏𝑖𝑗]
𝑇
{
𝑁𝑥𝑥
𝑁𝜃𝜃
𝑁𝑥𝜃

} + [𝑑𝑖𝑗] {

𝜖𝑥𝑥
(1)

𝜖𝜃𝜃
(1)

𝛾𝑥𝜃
(1)

}  = {

𝑏1𝑁𝑥𝑥 + 𝑏2𝑁𝜃𝜃 + 𝑏3𝜖𝑥𝑥
(1) + 𝑏4𝜖𝜃𝜃

(1)

𝑏2𝑁𝑥𝑥 + 𝑏1𝑁𝜃𝜃 + 𝑏4𝜖𝑥𝑥
(1) + 𝑏3𝜖𝜃𝜃

(1)

𝑏5𝑁𝑥𝜃 + 𝑏6𝛾𝑥𝜃
(1)

}          (5.20) 

where  

[𝑏𝑖𝑗] = [𝐴𝑖𝑗]
−1
[𝐵𝑖𝑗]                                                        (5.21a) 

[𝑑𝑖𝑗] = −[𝐵𝑖𝑗][𝑏𝑖𝑗] + [𝐷𝑖𝑗]                                            (5.21b) 

𝑏1 = −𝑎3  , 𝑏2 = −𝑎4  , 𝑏3 = 𝑎3𝐵11 + 𝑎4𝐵12 + 𝐷11  

𝑏4 = 𝑎4𝐵12 + 𝑎3𝐵22 + 𝐷22  , 𝑏5 = 𝑎6  , 𝑏6 = 𝑎6𝐵66 +  𝐷66                 (5.21c) 

Here we define the membrane forces in terms of Airy’s stress function 𝜑 as 

𝑁𝑥𝑥 = 
1

𝑅3
 
𝜕2ϕ

𝜕𝜃2
                                                             (5.22a) 

𝑁𝜃𝜃 =  
𝜕2𝜙

𝜕𝑥2
                                                                 (5.22b) 

𝑁𝑥𝜃 = − 
1

𝑅

𝜕2𝜙

𝜕𝑥𝜕𝜃
                                                          (5.22c) 

Substituting Equations (5.10) and (5.26) into equations (5.18) and (5.20) the strains and 

moment resultants are given in terms of the Airy’s stress function ϕ and 𝑤0. 

By combining the mid-plane strains, the compatibility equation can be expressed as 
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𝜕2𝜖𝜃𝜃
(0)

𝜕𝑥2
+

1

𝑅2
𝜕2𝜖𝑥𝑥

(0)

𝜕𝜃2
−

1

𝑅

𝜕2𝛾𝑥𝜃
(0)

𝜕𝑥𝜕𝜃
= 

1

𝑅

𝜕2𝑤

𝜕𝑥2
𝜕2𝑤0

𝜕𝜃2
+

1

𝑅2
𝜕2𝑤0

𝜕𝑥𝜕𝜃
                              (5.23) 

Replacing the strains in terms of the Airy’s stress function ϕ  from Eq. (18) and 𝑤0 into Eq.( 

5.23) the non-linear equation of compatibility can be derived as: 

𝑎1
𝜕4ϕ

𝜕𝑥4
+

𝑎1

𝑅4
𝜕4ϕ

𝜕𝜃4
+

1

𝑅2
(2𝑎2 + 𝑎5)

𝜕4ϕ

𝜕𝑥2𝜕𝜃2
− 𝑎4

𝜕4𝑤0

𝜕𝑥4
−

𝑎4

𝑅4
𝜕4𝑤0

𝜕𝜃4
+ 

2

𝑅2
(𝑎6 − 𝑎3)

𝜕4𝑤0

𝜕𝑥2𝜕𝜃2
=

1

𝑅

𝜕2𝑤0

𝜕𝑥2
− 

1

𝑅2
𝜕2𝑤0

𝜕𝑥2
𝜕2𝑤0

𝜕𝜃2
+

1

𝑅2
𝜕2𝑤0

𝜕𝑥𝜕𝜃
                                                         (5.24) 

 

5.3 Solution for laminated orthotropic shells 

 

Considering the simply supported boundary condition for the studied laminated orthotropic 

cylindrical shell, the Navier’s double Fourier series with the time-dependent coefficient 𝑞𝑚𝑛(𝑡) 

is chosen to describe the transverse displacement function 𝑤0(𝑥, 𝜃, 𝑡): 

𝑤0 = ∑ ∑ 𝑞𝑚𝑛(𝑡) sin
𝑚𝜋

𝐿
𝑥 cos 𝑛𝜃∞

𝑛=1
∞
𝑚=1                                            (5.25) 

where m, n represent the number of axial half waves in corresponding standing wave pattern 

and the  circumferential wave number, respectively. 

𝐹𝑥𝑥 is the average axial force at the edge, thus the stress function has to satisfy the following 

condition 

1

2𝜋𝑅2
∫

𝜕2𝜙

𝜕𝜃2

2𝜋

0
𝑑𝜃 =  𝐹𝑥𝑥     𝑎𝑡 𝑥 = 0 , 𝐿                                     (5.26) 

Airy’s stress function can be governed by substituting Eq. (25) into Eq. (24) and applying 

different trigonometric relations, as: 

𝜙 =
1

2
𝑅2𝐹𝑥𝑥𝜃

2   + ∑ ∑ {
1

2
𝐴𝑚𝑛𝑞𝑚𝑛(𝑡)𝜉1[sin(𝜆𝑚𝑥 − 𝑛𝜃) + sin(𝜆𝑚𝑥 + 𝑛𝜃)] +

∞
𝑛=1

∞
𝑚=1

1

32
𝐵𝑚𝑛𝑞𝑚𝑛

2 (𝑡)[𝜉2 cos(2𝜆𝑚𝑥) − 𝜉3 cos(2𝑛𝜃)]}                                (5.27) 

where 𝜆𝑚 = 𝑚𝜋 𝐿⁄  and  

𝐴𝑚𝑛 =
1

𝑅4
 𝑎4𝑛

4 −
2

𝑅2
 (𝑎6 − 𝑎3)𝜆𝑚

2𝑛2 − 
1

𝑅
 𝜆𝑚

2 + 𝑎4𝜆𝑚
4                              (5.28a) 

𝐵𝑚𝑛 = 
1

𝑅
 𝜆𝑚

2𝑛2                                                                   (5.28b) 
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𝜉1 =      
1
( 
1

𝑅4
 𝑎1𝑛4 + 

1

𝑅2
 (2𝑎2 + 𝑎5) 𝜆𝑚

2𝑛2 + 𝑎1𝜆𝑚
4)⁄                            (5.28c) 

𝜉2 =
1
(𝑎1𝜆𝑚

4)
⁄                                                                     (5.5.28d) 

𝜉3 =
𝑅4

(𝑎1𝑛4)
⁄                                                                      (5.28e) 

Taking the inertia forces 𝜌𝑡
𝜕2𝑢0

𝜕𝑡2
⁄ → 0  and 𝜌𝑡

𝜕2𝑣0
𝜕𝑡2
⁄ → 0  into consideration 

since 𝑢0 ≪ 𝑤0  and 𝑣0 ≪ 𝑤0  and substituting the relations (5.22a-c) in Eqs. (5.2) and (5.3), 

these equations are satisfied automatically. With the definitions (5.22a-c), the membrane 

forces𝑁𝑥𝑥  ,   𝑁𝜃𝜃and𝑁𝑥𝜃are computable by this solution and the boundary condition (5.26) is 

satisfied. As mentioned before by substituting Eqs. (5.10) and (5.22a-c) into equations (5.20) 

the moments are given in terms of the Airy’s stress function ϕ and 𝑤0   ; so by inserting these 

functions the moment resultants 𝑀𝑥𝑥  ,   𝑀𝜃𝜃  and 𝑀𝑥𝜃  are also computable. By substituting 

these stress and moment resultants and the transverse displacement as defined in Eq.( 5.25) 

into the third equation of motion (5.4) and after multiplying the governing equation by 

sin
𝑚𝜋

𝐿
𝑥 cos 𝑛𝜃 and  integrating over the shell area, a system of 𝑚 × 𝑛 second-order ordinary 

differential equations is obtained: 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + 𝐾𝑚𝑛𝑞𝑚𝑛(𝑡) − (𝐹𝑠 + 𝐹𝑑 cos 𝑝𝑡)𝑄𝑚𝑛𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0      (5.29) 

where 𝑀𝑚𝑛 , 𝐾𝑚𝑛  , 𝑄𝑚𝑛and 𝜂𝑚𝑛  are matrices that are defined in the Appendix ((Eqs.(A.7)-

(A.10))) and 𝑞̈𝑚𝑛(𝑡) ,  𝑞𝑚𝑛(𝑡) and 𝑞𝑚𝑛
3 (𝑡)  are column vectors consisting of the 

𝑞̈𝑚𝑛(𝑡)’s, 𝑞𝑚𝑛(𝑡)’s and 𝑞𝑚𝑛
3 (𝑡)’s respectively. The subscripts 𝑚 and 𝑛 have the following 

ranges: 

𝑚, 𝑛 = 1,2,3,4, . . , 𝑁.                                                                 (5.30) 

Introducing following notation: 

𝜔𝑚𝑛 = √
𝐾𝑚𝑛

𝑀𝑚𝑛
                                                               (5.31a) 
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𝛾𝑚𝑛 =
𝜂𝑚𝑛

𝑀𝑚𝑛
                                                                   (5.31b) 

𝑁∗ =
𝐾𝑚𝑛

𝑄𝑚𝑛
                                                                      (5.31c) 

Eq.(5.29) can be written in the form of the non-linear Mathieu equation as follow: 

 𝑞̈𝑚𝑛(𝑡) + Ω𝑚𝑛
2  (1 − 2𝜇𝑚𝑛 cos 𝑝𝑡)𝑞𝑚𝑛(𝑡) + 𝛾𝑚𝑛𝑞𝑚𝑛

3 (𝑡) = 0                   (5.32) 

where Ω𝑚𝑛is the frequency of the free vibration of the shell loaded by a constant longitudinal 

force 𝐹𝑠,  

Ω𝑚𝑛 = 𝜔𝑚𝑛√1 −
𝐹𝑠

𝑁∗
                                                             (5.33) 

and 𝜇𝑚𝑛 is a quantity that is called the excitation parameter, 

μ𝑚𝑛 =
𝐹𝑑

2(𝑁∗−𝐹𝑠)
                                                                   (5.34) 

 

5.4 Amplitude of vibrations at the principal parametric resonance 

 

As mentioned above Eq. (5.32) is a non-linear Mathieu equation where the non-linear term 

𝛾𝑞𝑚𝑛
3 (𝑡)  represents the effect of large deflection. According to Liapunov Principle, 

dynamically unstable region is determined by the linear parts of the Eq. (5.32) [1] which will 

be discussed in the next section. Here the focus is set on the parametric resonance of the system. 

The basic solutions of Mathieu equation include two periodic solutions: i.e. periodic solutions 

of 𝑇 and 2𝑇 with 𝑇 = 2𝜋 𝑃⁄ . The solutions with period 2𝑇 are of greater practical importance 

as the widths of these unstable regions are usually larger than those associated with solutions 

having period 𝑇.Using Bolotin’s [1] method for parametric vibration, the solution of period 2𝑇 

is given by the following equation: 

𝑞(𝑡) = ∑ 𝑎𝑘 sin
𝑘𝑃𝑡

2
+ 𝑏𝑘 cos

𝑘𝑃𝑡

2
 ∞

𝑘=1,3,5,…                                           (5.35) 

where 𝑎𝑘  and 𝑏𝑘 are arbitrary vectors. If we investigate the vibration for the principal 

resonance𝑃 ≈ 2Ω , we can neglect the influence of higher harmonics in the expansion of above 

equation and can assume 
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𝑞(𝑡) = 𝑎 sin
𝑃𝑡

2
+ 𝑏 cos

𝑃𝑡

2
                                                     (5.36) 

as an approximation. By substituting this function into Eq. (5.32) and equating the coefficients 

of sin(𝑃𝑡 2⁄ )  and cos(𝑃𝑡 2⁄ ) terms and neglecting terms containing higher harmonics, the 

following system of equations for the coefficients 𝑎 and 𝑏 remains: 

[Ω𝑚𝑛
2 (1 + 𝜇𝑚𝑛) −

𝑃2

4
] 𝑎 + Γ(𝑎, 𝑏) = 0,                                       (5.37a) 

[Ω𝑚𝑛
2 (1 − 𝜇𝑚𝑛) −

𝑃2

4
] 𝑏 + Ψ(𝑎, 𝑏) = 0,                                      (5.37b) 

where Γ(𝑎, 𝑏) and Ψ(𝑎, 𝑏) are defined as coefficients of the terms including sin(𝑃𝑡 2⁄ ) and 

cos(𝑃𝑡 2⁄ ) which were obtained from the first approximation of expansion in a Fourier series 

as: 

Γ(𝑎, 𝑏) =
3𝛾𝑚𝑛

4
𝐴2𝑎                                                       (5.38a) 

Ψ(𝑎, 𝑏) =
3𝛾𝑚𝑛

4
𝐴2𝑏                                                          (5.38b) 

where 𝐴 is the amplitude of steady-state vibrations and is given by: 

𝐴 = √𝑎2 + 𝑏2                                                                       (5.39) 

By substitution of Eqs. (5.38a, b) into Eq. (5.37a, b) a system of two homogeneous linear 

equations with respect to 𝑎 and 𝑏 can be obtained. This system has solutions that differ from 

zero only in the case where the determinant composed of the coefficients is equal to zero: 

|
1 + 𝜇𝑚𝑛 − 𝑛𝑚𝑛

2 +
3𝛾𝑚𝑛

4Ω𝑚𝑛
2 𝐴2 0

0 1 − 𝜇𝑚𝑛 − 𝑛𝑚𝑛
2 +

3𝛾𝑚𝑛

4Ω𝑚𝑛
2 𝐴2

| = 0                 (5.40) 

where 

𝑛𝑚𝑛= 
𝑃

2Ω𝑚𝑛
                                                                        (5.41) 

Expanding the determinant and solving the resulting equation with respect to the amplitude, 𝐴, 

of the steady-state vibrations the following equation is obtained: 

𝐴 =
2Ω𝑚𝑛

√3𝛾𝑚𝑛
√𝑛𝑚𝑛2 − 1 ± 𝜇𝑚𝑛                                                         (5.42) 
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It can be proved that in the ±𝜇𝑚𝑛 term of the above equation, only +𝜇𝑚𝑛term is the stable 

solution, and all the other terms are unstable solutions. 

 

5.5 Dynamic instability regions 

 

The resonance curve is not influenced by non-linearity of Eq. (5.29) and as mentioned in the 

previous section the dynamic instability regions are determined by linear part of Mathieu-Hill 

equation, and so the equation (5.29) can be rewritten as follow: 

𝑀𝑚𝑛𝑞̈𝑚𝑛(𝑡) + (𝐾𝑚𝑛
∗ − 𝑄𝑚𝑛

∗ cos 𝑝𝑡)𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0             (5.43) 

where 

𝐾𝑚𝑛
∗ = 𝐾𝑚𝑛 − 𝐹𝑠𝑄𝑚𝑛                                                     (5.44) 

and  

𝑄𝑚𝑛
∗ = 𝐹𝑑𝑄𝑚𝑛                                                          (5.45) 

The principal region of dynamic instability which corresponds to solution of period 2𝑇 is 

determined by substituting Eq. (5.36) into Eq. (5.43) and equating the determinant of the 

coefficient matrix of linear part of the governing equation to zero as follow: 

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2 0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2
−
𝑀𝑚𝑛

4
𝑃2
| = 0                          (5.46) 

Comparing equations (5.46) and (5.40) by replacing μ𝑚𝑛, n𝑚𝑛 , 𝛾𝑚𝑛 and Ω𝑚𝑛 in terms of 

𝐾𝑚𝑛
∗ , 𝑄𝑚𝑛

∗  and 𝑀𝑚𝑛 reveals that the dynamic instability regions are determined by setting 𝐴 =

0 in equation (5.40).  

Equation (5.46) can be rearranged to the more simplified form of an eigenvalue problem as 

follow: 

|
𝐾𝑚𝑛
∗ −

𝑄𝑚𝑛
∗

2
0

0 𝐾𝑚𝑛
∗ +

𝑄𝑚𝑛
∗

2

| − 𝑃2 |

𝑀𝑚𝑛

4
0

0
𝑀𝑚𝑛

4

| = 0                               (5.47) 
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5.6 Numerical results and discussion 

 

Non-linear dynamic stability characteristics of cross-ply laminated composite cylindrical 

shells subjected to combined static and periodic axial loads are studied here. The material 

properties used in the present analysis are chosen in accordance with Ng et al. [21] as 

𝐸1 𝐸2 = 40⁄  , 𝐺12 𝐸2⁄ = 0.5 and 𝜐12 = 0.25. 

For isotropic cylindrical shells the critical static buckling load in terms of engineering 

constants is given by Timoshenko and Gere as [20] 

𝑁𝑏𝑢𝑐 = 
𝐸ℎ2

𝑅√[3(1−𝜈2)]
                                                            (5.48) 

The mechanism of dynamic buckling is similar to static buckling and the only difference is 

the additional considerations of the inertia force so that it leads to the dynamic buckling load 

to be lower than the static buckling load for the same structure. But the mechanism of dynamic 

instability is much more complex since in both static and dynamic buckling the main factor is 

only the critical static or dynamic load amplitude while in dynamic instability, not only the 

vibration amplitude of dynamic load, but also the vibration frequency together with the 

stimulating frequency will play important roles. So the dynamic instability of the plate or shell 

structures will occur at much lower loads.  

For laminated circular cylindrical shells, the critical static buckling load is approximated as 

[50] 

𝑁𝑐𝑟 = 
𝐸2ℎ

2

𝑅√[3(1−𝜈12𝜈21)]
                                                       (5.49) 

This approximates the static buckling load for laminated cylindrical shell and hence for the 

dynamic instability analysis both the static part of the load 𝐹𝑠 and the periodic part 𝐹𝑑 in Eq. 

(5.1) should be a percentage of this buckling load. This is why we have considered 

conservatively in the following tables and figures that 𝐹𝑠 = (0.1 ,0.2, 0.3, 0.5)𝑁𝑐𝑟  and 

corresponding periodic part as 𝐹𝑑 = (0. . .0.5)𝐹𝑠.  
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In order to compare the results, the following dimensionless excitation frequency parameter 

𝑝 is considered according to the references [21, 23]  

𝑝 = 2𝜋𝑅𝑃√
𝜌𝑡

𝐴11
                                                              (5.50) 

As mentioned before the main objective of this work is to study the influence of geometric 

non-linearity on the dynamic instability of laminated composite cylindrical shells which leads 

to the non-linear Mathieu-Hill equation as Eqs. (5.29) and (5.32). In section 5 it was observed 

that the dynamic instability regions based on the large deflection formulation are achieved by 

either linear part of the non-linear Mathieu-Hill equation or by setting 𝐴 = 0 in equation (5.40). 

So to validate the present formulation which is based on the non-linear analysis first we obtain 

the numerical results that corresponds to the dynamically unstable regions to compare with 

those in available in literatures [21, 23] for cross-ply laminated composite cylindrical shells.  

Figure 5.2 displays the boundaries of the first (from left to the right of the frequency’s axis) 

dynamically unstable region of a two- layered (90𝜊/0𝜊) cross-ply laminated cylindrical shell 

having aspect ratios of 𝐿 𝑅⁄ = 2 and 𝑅 ℎ⁄ = 200 subjected to tensile loading of 𝐹𝑠 = 0.1𝑁𝑐𝑟 

As it can be observed from this figure each unstable region is separated by two lines with a 

common point of origin. Actually these two lines are not completely straight and they curved 

slightly outward. To compare the results in the following tables we specified each unstable 

regions by the non-dimensional frequency parameter 𝑝 of the point of origins and the half angle 

of the unstable regions as 𝜃.  
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Figure 5.2 Dynamically unstable region corresponding to the first transverse mode, mode (1, 6) of a two- 

layered (𝟗𝟎𝝄/𝟎𝝄) cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐 and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 

subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 

 

 

 

 

Figure 5.3 Variation of the first mode unstable regions with different lamination schemes for the antisymmetric 

cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐 and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to tensile 

loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 
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Figure 5.3 shows a graphical representation of the influence of lamination schemes on the 

distribution of dynamically unstable regions. The graphs have been plotted for various number 

of plies for antisymmetric cross-ply laminated cylindrical shells subjected to tensile loading of 

𝐹𝑠 = 0.1𝑁𝑐𝑟. It is observed that the first unstable regions shifts to the right along the frequency 

axis so as to have higher frequencies of excitation as the number of layers are increased. This 

is probably due to the bending-extension coupling of lamination which is reduced by increasing 

the number of the plies in antisymmetric cross-ply laminates. This shifting to the right of the 

frequency axis of the unstable regions is reduced once the number of layers is doubled and 

appears to converge at a certain value as can be observed from this figure. The instability 

regions of eight- and ten-layered laminates are too closed to each other in comparison with 

those for two- and four-layered laminates. To compare these results in more detail with the 

corresponding one of the work of Ng et al. [21] they have been listed in Table 5.1. The results 

are for the first two dynamically unstable regions. In addition to all discussions about Fig. 3, it 

is also observed that for the studied antisymmetric cylindrical shell, the shells with stacking 

sequence of (0𝜊/90𝜊 /0𝜊…) generally have slightly higher excitation frequency and smaller 

unstable region than that for the laminations having the stacking sequence of (90𝜊/0𝜊 /

90𝜊 …). So it can be concluded that (0𝜊/90𝜊 /0𝜊…) laminate shows more rigidity. All these 

outcomes are in excellent agreement with those reported by Ng et al. [21] and also in terms of 

the accuracy of the results there are good agreements between these two studies. The major 

differences between them have been originated from the neglecting of the in plane inertia forces 

in the present study although as it can be observed from the table the differences are very small 

particularly when the number of the plies are increased. The differences between the present 

work with those by Ng et al. [21] for eight layered laminated composite cylindrical shells 

having  stacking sequence of (90𝜊/0𝜊 /90𝜊 …) for the point of origins of the first two modes 

are 6.9% and 5.4%  respectively, and the corresponding results for the width of dynamically-
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unstable regions as the half-angle of the unstable regions i.e. 𝜃  are 6.4%  and 5.1% 

respectively. 

Table 5.1 The first two unstable regions of an antisymmetric cross-ply laminated cylindrical shells having aspect 

ratios of 𝑳 𝑹⁄ = 𝟐 and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 

Lamination 

scheme 

  1st Mode 2nd Mode 

2 Plies (0°, 90°) Point of origin 𝑝 (× 10−1) Present 6.9016008 6.9705860 

  Ref. [21] 5.7294728 6.0209359 

 𝜃 (× 10−3) Present 1.9845085 1.9648964 

  Ref. [21] 2.3895200 2.2740400 

2 Plies (90°, 0°) Point of origin 𝑝 (× 10−1) Present 6.3547085 6.3959595 

  Ref. [21] 5.6544179 5.9596621 

 𝜃 (× 10−3) Present 2.1550190 2.1411435 

  Ref. [21] 2.4209600 2.2971400 

4 Plies (0°, 90°)2 Point of origin 𝑝 (× 10−1) Present 7.4216213 7.9993525 

  Ref. [21] 6.7444835 7.2631657 

 𝜃 (× 10−3) Present 1.8456368 1.7124891 

  Ref. [21] 2.0304200 1.8856600 

4 Plies (90°, 0°)2 Point of origin 𝑝 (× 10−1) Present 7.1582175 7.7424176 

  Ref. [21] 6.7139982 7.2272139 

 𝜃 (× 10−3) Present 1.9134623 1.7692547 

  Ref. [21] 2.0395200 1.8949200 

6 Plies (0°, 90°)3 Point of origin 𝑝 (× 10−1) Present 7.4831878 7.9920178 

  Ref. [21] 6.8675170 7.4502604 

 𝜃 (× 10−3) Present 1.8304709 1.7140591 

  Ref. [21] 1.9941000 1.8382800 

6 Plies (90°, 0°)3 Point of origin 𝑝 (× 10−1) Present 7.3101192 7.8215051 

  Ref. [21] 6.8471840 7.4332544 

 𝜃 (× 10−3) Present 1.8737527 1.7513850 

  Ref. [21] 1.9999200 1.8424200 

8 Plies (0°, 90°)4 Point of origin 𝑝 (× 10−1) Present 7.4982173 7.9831185 

  Ref. [21] 6.9092540 7.4640614 

 𝜃 (× 10−3) Present 1.8268063 1.7159678 

  Ref. [21] 1.9820400 1.8348800 

8 Plies (90°, 0°)4 Point of origin 𝑝 (× 10−1) Present 7.3690617 7.8554361 

  Ref. [21] 6.8940005 7.4512986 

 𝜃 (× 10−3) Present 1.8587842 1.7438284 

  Ref. [21] 1.9863800 1.8379600 

10 Plies 

(0°, 90°)5 

Point of origin 𝑝 (× 10−1) Present 

7.5022391 7.9760989 

 𝜃 (× 10−3) Present 1.8258282 1.7174763 

10 Plies 

(90°, 0°)5 

Point of origin 𝑝 (× 10−1) Present 

7.3991511 7.8740275 

 𝜃 (× 10−3) Present 1.8512348 1.7397156 

 

Tables 5.2 and 5.3 listed the first two instability regions of a two-layered cross-ply (90𝜊/0𝜊) 

laminate subjected to various magnitudes of tensile and compressive loadings respectively. The 

results illustrate that the instability regions shifted to the higher excitation frequencies once the 

magnitude of tensile axial loading is increased from 𝐹𝑠 = 0.1𝑁𝑐𝑟 to 𝐹𝑠 = 0.3𝑁𝑐𝑟 Hence it can 
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be expected that by increasing the tensile axial load the shell’s stiffness is also increased. 

Although the results in Table 3 indicate that the inverse trend can be seen in the case of 

compressive loading, in compressive loading conditions increasing the absolute magnitude of 

compressive loads from 𝐹𝑠 = −0.1𝑁𝑐𝑟 to 𝐹𝑠 = −0.3𝑁𝑐𝑟 causes the instability region to shift to 

lower excitation frequencies. This can be expected again since by increasing the magnitude of 

axial compressive loads the shell’s stiffness is reduced. Also it can be observed from these 

tables that the width of instability regions are increased once the absolute value of magnitude 

of axial loads are increased for both tensile and compressive loading conditions. All these 

outcomes again are in an excellent conformance with those reported by Ng et al. [23] and also 

in terms of the accuracy of the results there are good agreements between these two studies. 

Table 5.2 The first two unstable regions of an antisymmetric cross-ply laminated cylindrical shells having aspect 

ratios of 𝑳 𝑹⁄ = 𝟐 and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to various tensile loading 

Load   1st Mode 
(𝑚, 𝑛) = (1,6) 

2nd Mode 
(𝑚, 𝑛) = (1,5) 

𝐹𝑠 = 0.1𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.3547085 6.3959595 

  Ref. [62] 5.6544179 5.9596621 

 𝜃 (× 10−3) Present 2.1550190 2.1411435 

  Ref. [62] 2.4095530 2.2971360 

𝐹𝑠 = 0.2𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.3977001 6.4386756 

  Ref. [62] 5.7026828 6.0054732 

 𝜃 (× 10−3) Present 4.2775352 4.2504033 

  Ref. [62] 4.7959232 4.5549685 

𝐹𝑠 = 0.3𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.4404047 6.4811102 

  Ref. [62] 5.7505425 6.0509375 

 𝜃 (× 10−3) Present 6.3686202 6.3288172 

  Ref. [62] 7.1268993 6.7749563 

Table 5.3 The first two unstable regions of an antisymmetric cross-ply laminated cylindrical shells having aspect 

ratios of 𝑳 𝑹⁄ = 𝟐 and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to various compressive loading 

Load   1st Mode 
(𝑚, 𝑛) = (1,6) 

2nd Mode 
(𝑚, 𝑛) = (1,5) 

𝐹𝑠 = −0.1𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) Present 6.2678408 6.3096597 

  Ref. [62] 5.5566307 5.8669669 

 𝜃 (× 10−3) Present 2.1886489 2.1741179 

  Ref. [62] 2.4634550 2.3333558 

𝐹𝑠 = −0.2𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) Present 6.2239523 6.2660642 

  Ref. [62] 5.5070860 5.8200656 

 𝜃 (× 10−3) Present 4.4121140 4.3823579 

  Ref. [62] 4.9655192 4.6995054 

𝐹𝑠 = −0.3𝑁𝑐𝑟  Point of origin 𝑝 (× 10−1) Present 6.1797521 6.2221631 

  Ref. [62] 5.4570915 5.7727834 

 𝜃 (× 10−3) Present 6.6716455 6.6259279 

  Ref. [62] 7.5075589 7.0994407 
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To investigate the effects of geometric non-linearity on the dynamic instability of cross-ply 

laminated composite cylindrical shells the results are plotted in Figures 5.4-5.10 and listed in 

Tables 5.4-5.11. 

In the analysis of dynamic stability of shells, there exist simultaneously the stable and 

unstable solutions. Figure 5.4 displays the both stable and unstable solutions of amplitude-

frequency of steady-state vibrations for a two-layered (90𝜊/0𝜊) laminated cylindrical shell 

subjected to tensile load of  𝐹𝑠 = 0.1𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠 . The graphs show the fundamental 

(first) mode i.e. mode (1, 6) having aspect ratios of 𝐿 𝑅⁄ = 2 and 𝑅 ℎ⁄ = 200 . It is a key 

feature of the non-linear response that the amplitude-frequency curves are sloping toward the 

axis of increasing frequencies [1]. 

 

 

Figure 5.4 The stable and unstable solution amplitude of steady-state vibrations of the first transverse mode, 

mode (1, 6) of a two- layered (𝟗𝟎𝝄/𝟎𝝄) cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐 

and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 

The width of the region bounded by stable and unstable solutions of amplitude-frequency 

curves refers to the possibility of a parametric resonance i.e. closer these two stable and 

unstable amplitude curves to each other the more possibility of parametric resonance occurring. 
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Therefore if this region width is large, the dynamic stability of such a shell system is said to be 

good [1, 18]. 

Here and in following figures, tables and discussions the first two amplitude-frequency 

curves i.e. from left to right of the frequency’s axis refer to the first two modes. Figures 5.5 

and 6 show the variation of stable-solutions amplitude of steady-state vibrations corresponding 

to the circumferential wave numbers 𝑚 = 1 , 𝑛 = 1,2,3,4,5,6,7,8 for a two-layered and ten- 

layered (90𝜊/0𝜊 /… )cross-ply laminated cylindrical shell with aspect ratios of 𝐿 𝑅⁄ = 2 and 

𝑅 ℎ⁄ = 200 subjected to tensile loading of 𝐹𝑠 = 0.1𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠. 

As it can be observed from Fig.5 the sequences of the transverse modes from left to right of 

frequency’s axis for two-layered laminated shell are as (1, 6) , (1, 5), (1, 7) , (1, 4), (1, 8) , 

(1, 3) , (1, 2) and (1, 1) while from Fig. 5.6 these sequences for ten-layered shell are as (1, 5) 

, (1,4), (1, 6) , (1, 7), (1, 3) , (1, 8) , (1, 2) and (1, 1). Hence the sequence of the vibration 

modes for the same geometric and loading conditions are affected by the number of the layers. 

So in the results in the Tables 5.1-5.6 the first two modes of the two-layered shell are mode 

(1, 6) and mode(1, 5), respectively and the first two modes of four-, six-, eight- and ten-layered 

laminated composite shells are mode (1, 5) and mode (1, 4), respectively. 

Fig. 5.7 shows the influence of the lamination scheme on the fundamental mode of stable-

solution amplitude-frequency of steady-state vibrations for antisymmetric cross-ply laminated 

cylindrical shells subjected to tensile loading of  𝐹𝑠 = 0.1𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠. It is observed 

that the first mode amplitude of steady-state vibrations shifts to the right along the frequency 

axis where having higher frequencies of excitation as the number of layers are increased. This 

is probably due to the bending-extension coupling of lamination which is reduced by increasing 

the number of the plies in antisymmetric cross-ply laminates. This shifting to the right of the 

frequency axis of the steady-state amplitude (reducing the amplitude at a certain excitation 

frequency) is reduced once the number of layers is doubled and appears to converge at a certain  
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Figure 5.5 Variation of stable-solution amplitude of steady-state vibrations corresponding to the circumferential 

wave numbers 𝒎 = 𝟏 , 𝒏 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖 for a two-layered (𝟗𝟎𝝄/𝟎𝝄)cross-ply laminated cylindrical shell 

having aspect ratios of 𝑳 𝑹⁄ = 𝟐 and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 

 

 

 

Figure 5.6 Variation of stable-solution amplitude of steady-state vibrations corresponding to the circumferential 

wave numbers 𝒎 = 𝟏 , 𝒏 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖 for a ten-layered (𝟗𝟎𝝄/𝟎𝝄/𝟗𝟎𝝄/… ) cross-ply laminated 

cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐 and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 
and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 
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Figure 5.7 The stable-solution amplitude of steady-state vibrations of the first mode corresponding to various 

lamination schemes for the antisymmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐 

and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 

 

value as can be observed from this figure the amplitudes of eight- and ten-layered laminates 

almost coincide with each other. 

Tables 5.4-5.9 also present a detailed study considering again the effects of variation of the 

lamination scheme on the first two modes, both stable and unstable solutions amplitude of 

steady-state vibrations of antisymmetric cross-ply laminated cylindrical shells. Tables 5.4-5.6 

present the result for tensile load,𝐹𝑠 = 0.1𝑁𝑐𝑟, 𝐹𝑠 = 0.3𝑁𝑐𝑟 and 𝐹𝑠 = 0.5𝑁𝑐𝑟 respectively and 

the corresponding results for compressive loads, 𝐹𝑠 = −0.1𝑁𝑐𝑟 , 𝐹𝑠 = −0.3𝑁𝑐𝑟  and 𝐹𝑠 =

−0.5𝑁𝑐𝑟 are tabulated in Tables 5.7-5.9 respectively. For the comparison studies the results are 

normalized using the same non-dimensional excitation frequency parameter 𝑝 = 1. All the 

discussions and corresponding observations that were mentioned in the previous paragraph 

about Fig. 5.7 are also observed from these tables and hence are valid. In addition it is also 

observed that for the studied antisymmetric cylindrical shell, the shell with stacking sequence 

of (0𝜊/90𝜊 /0𝜊…) generally have slightly lower amplitude of steady-state vibrations both in 

stable and unstable solutions in comparison with the laminations having the stacking sequence 
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of (90𝜊/0𝜊 /90𝜊 …) so it can be concluded that (0𝜊/90𝜊 /0𝜊…)  laminate shows more 

rigidity.  

Table 5.4 The stable and unstable solution amplitudes corresponding to first two modes of steady-state vibrations 

for an antisymmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐  and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 

subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟏𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-dimensional 

frequency parameter 𝒑 = 𝟏 

Lamination scheme Non-Dimensional Amplitude (A R⁄ ) 1st Mode 2nd Mode 

2 Plies (0°, 90°) Stable-Solutions (× 10−2) 10.78910398 10.69022499 

 Unstable-Solutions (× 10−2) 10.7721744 10.67313857 

2 Plies (90°, 0°) Stable-Solutions (× 10−2) 11.51062486 11.45980633 

 Unstable-Solutions (× 10−2) 11.49475799 11.443869 

4 Plies (0°, 90°)2 Stable-Solutions (× 10−2) 9.99371264 8.949960089 

 Unstable-Solutions (× 10−2) 9.975433268 8.929544341 

4 Plies (90°, 0°)2 Stable-Solutions (× 10−2) 10.41140806 9.438122574 

 Unstable-Solutions (× 10−2) 10.3938633 9.418765008 

6 Plies (0°, 90°)3 Stable-Solutions (× 10−2) 9.891296312 8.964490851 

 Unstable-Solutions (× 10−2) 9.872827319 8.944108271 

6 Plies (90°, 0°)3 Stable-Solutions (× 10−2) 10.17446934 9.292273366 

 Unstable-Solutions (× 10−2) 10.15651529 9.272611329 

8 Plies (0°, 90°)4 Stable-Solutions (× 10−2) 9.866003675 8.982071823 

 Unstable-Solutions (× 10−2) 9.847487246 8.961729229 

8 Plies (90°, 0°)4 Stable-Solutions (× 10−2) 10.07966226 9.228531861 

 Unstable-Solutions (× 10−2) 10.06153903 9.208733727 

10 Plies (0°, 90°)5 Stable-Solutions (× 10−2) 9.859215961 8.995901351 

 Unstable-Solutions (× 10−2) 9.84068676 8.975590101 

10 Plies (90°, 0°)5 Stable-Solutions (× 10−2) 10.03062259 9.193301364 

 Unstable-Solutions (× 10−2) 10.0124106 9.173427196 

 

Table 5.5 The stable and unstable solution amplitudes corresponding to first two modes of steady-state vibrations 

for an antisymmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐  and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 

subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟑𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-dimensional 

frequency parameter 𝒑 = 𝟏 

Lamination scheme Non-Dimensional Amplitude (A R⁄ ) 1st Mode 2nd Mode 

2 Plies (0°, 90°) Stable-Solutions (× 10−2) 10.69281527 10.59303753 

 Unstable-Solutions (× 10−2) 10.64148618 10.54122259 

2 Plies (90°, 0°) Stable-Solutions (× 10−2) 11.42042112 11.36919939 

 Unstable-Solutions (× 10−2) 11.37237654 11.32093744 

4 Plies (0°, 90°)2 Stable-Solutions (× 10−2) 9.88968281 8.833647001 

 Unstable-Solutions (× 10−2) 9.834162685 8.771445091 

4 Plies (90°, 0°)2 Stable-Solutions (× 10−2) 10.31159306 9.327898557 

 Unstable-Solutions (× 10−2) 10.25835665 9.269014032 

6 Plies (0°, 90°)3 Stable-Solutions (× 10−2) 9.786177828 8.848368774 

 Unstable-Solutions (× 10−2) 9.730067118 8.786271086 

6 Plies (90°, 0°)3 Stable-Solutions (× 10−2) 10.07230659 9.180298365 

 Unstable-Solutions (× 10−2) 10.01779865 9.120460937 

8 Plies (0°, 90°)4 Stable-Solutions (× 10−2) 9.760612802 8.866180011 

 Unstable-Solutions (× 10−2) 9.704354275 8.80420795 

8 Plies (90°, 0°)4 Stable-Solutions (× 10−2) 9.976528703 9.115773915 

 Unstable-Solutions (× 10−2) 9.921494574 9.055510129 

10 Plies (0°, 90°)5 Stable-Solutions (× 10−2) 9.753751745 8.880190024 

 Unstable-Solutions (× 10−2) 9.697453416 8.818316421 

10 Plies (90°, 0°)5 Stable-Solutions (× 10−2) 9.926979564 9.080105931 

 Unstable-Solutions (× 10−2) 9.871669205 9.019603836 
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Table 5.6 The stable and unstable solution amplitudes corresponding to first two modes of steady-state vibrations 

for an antisymmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐  and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 

subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓  and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔  under the excitation with non-dimensional 

frequency parameter 𝒑 = 𝟏 

Lamination scheme Non-Dimensional Amplitude (A R⁄ ) 1st Mode 2nd Mode 

2 Plies (0°, 90°) Stable-Solutions (× 10−2) 10.59565157 10.49495011 

 Unstable-Solutions (× 10−2) 10.50917289 10.40763472 

2 Plies (90°, 0°) Stable-Solutions (× 10−2) 11.3294992 11.27786454 

 Unstable-Solutions (× 10−2) 11.2486637 11.19665626 

4 Plies (0°, 90°)2 Stable-Solutions (× 10−2) 9.784546992 8.715781841 

 Unstable-Solutions (× 10−2) 9.690832914 8.610443416 

4 Plies (90°, 0°)2 Stable-Solutions (× 10−2) 10.24054967 9.24930255 

 Unstable-Solutions (× 10−2) 10.09093631 9.08337688 

6 Plies (0°, 90°)3 Stable-Solutions (× 10−2) 9.679917884 8.730702361 

 Unstable-Solutions (× 10−2) 9.585180904 8.625546154 

6 Plies (90°, 0°)3 Stable-Solutions (× 10−2) 9.969096941 9.066940599 

 Unstable-Solutions (× 10−2) 9.877134025 8.965728891 

8 Plies (0°, 90°)4 Stable-Solutions (× 10−2) 9.654071474 8.748753154 

 Unstable-Solutions (× 10−2) 9.559078342 8.643816545 

8 Plies (90°, 0°)4 Stable-Solutions (× 10−2) 9.872317798 9.001603625 

 Unstable-Solutions (× 10−2) 9.779444843 8.8996489 

10 Plies (0°, 90°)5 Stable-Solutions (× 10−2) 9.647134645 8.762950908 

 Unstable-Solutions (× 10−2) 9.552072529 8.658186378 

10 Plies (90°, 0°)5 Stable-Solutions (× 10−2) 9.822242973 8.965481442 

 Unstable-Solutions (× 10−2) 9.72889201 8.863111204 

 

 

 

Table 5.7 The stable and unstable solution amplitudes corresponding to first two modes of steady-state vibrations 

for an antisymmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐  and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 

subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟏𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-dimensional 

frequency parameter 𝒑 = 𝟏 

Lamination scheme Non-Dimensional Amplitude (A R⁄ ) 1st Mode 2nd Mode 

2 Plies (0°, 90°) Stable-Solutions (× 10−2) 10.901296 10.8034439 

 Unstable-Solutions (× 10−2) 10.88454092 10.78653682 

2 Plies (90°, 0°) Stable-Solutions (× 10−2) 11.61585014 11.56549397 

 Unstable-Solutions (× 10−2) 11.6001272 11.54970248 

4 Plies (0°, 90°)2 Stable-Solutions (× 10−2) 10.11473094 9.084892695 

 Unstable-Solutions (× 10−2) 10.09667067 9.064780848 

4 Plies (90°, 0°)2 Stable-Solutions (× 10−2) 10.52762592 9.566172036 

 Unstable-Solutions (× 10−2) 10.51027516 9.547074105 

6 Plies (0°, 90°)3 Stable-Solutions (× 10−2) 10.01355244 9.099207983 

 Unstable-Solutions (× 10−2) 9.995309349 9.079127847 

6 Plies (90°, 0°)3 Stable-Solutions (× 10−2) 10.29336272 9.422305132 

 Unstable-Solutions (× 10−2) 10.27561641 9.402915003 

8 Plies (0°, 90°)4 Stable-Solutions (× 10−2) 9.988569377 9.11652916 

 Unstable-Solutions (× 10−2) 9.970280575 9.09648726 

8 Plies (90°, 0°)4 Stable-Solutions (× 10−2) 10.19966082 9.359449236 

 Unstable-Solutions (× 10−2) 10.19966082 9.339928616 

10 Plies (0°, 90°)5 Stable-Solutions (× 10−2) 9.981865009 9.130155027 

 Unstable-Solutions (× 10−2) 9.963563901 9.110143103 

10 Plies (90°, 0°)5 Stable-Solutions (× 10−2) 10.15120088 9.324713383 

 Unstable-Solutions (× 10−2) 10.1332056 9.305119893 
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Table 5.8 The stable and unstable solution amplitudes corresponding to first two modes of steady-state vibrations 

for an antisymmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐  and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 

subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟑𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-dimensional 

frequency parameter 𝒑 = 𝟏 

Lamination scheme Non-Dimensional Amplitude (A R⁄ ) 1st Mode 2nd Mode 

2 Plies (0°, 90°) Stable-Solutions (× 10−2) 11.028906 10.93219617 

 Unstable-Solutions (× 10−2) 10.97914829 10.88199627 

2 Plies (90°, 0°) Stable-Solutions (× 10−2) 11.73569289 11.68585315 

 Unstable-Solutions (× 10−2) 11.68894423 11.63890431 

4 Plies (0°, 90°)2 Stable-Solutions (× 10−2) 10.25213613 9.23762894 

 Unstable-Solutions (× 10−2) 10.19858935 9.178165289 

4 Plies (90°, 0°)2 Stable-Solutions (× 10−2) 10.65971015 9.711341853 

 Unstable-Solutions (× 10−2) 10.60822088 9.654796229 

6 Plies (0°, 90°)3 Stable-Solutions (× 10−2) 10.1523271 9.2517079 

 Unstable-Solutions (× 10−2) 10.0982511 9.192335324 

6 Plies (90°, 0°)3 Stable-Solutions (× 10−2) 10.42841451 9.56965763 

 Unstable-Solutions (× 10−2) 10.3757775 9.512269803 

8 Plies (0°, 90°)4 Stable-Solutions (× 10−2) 10.12768638 9.268744094 

 Unstable-Solutions (× 10−2) 10.0734781 9.209481349 

8 Plies (90°, 0°)4 Stable-Solutions (× 10−2) 10.33593702 9.507775931 

 Unstable-Solutions (× 10−2) 10.28282664 9.450012317 

10 Plies (0°, 90°)5 Stable-Solutions (× 10−2) 10.12107416 9.282146517 

 Unstable-Solutions (× 10−2) 10.06683028 9.222969891 

10 Plies (90°, 0°)5 Stable-Solutions (× 10−2) 10.28811899 9.473583948 

 Unstable-Solutions (× 10−2) 10.23476048 9.415610573 

 

 

Table 5.9 The stable and unstable solution amplitudes corresponding to first two modes of steady-state vibrations 

for an antisymmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐  and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 

subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟓𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-dimensional 

frequency parameter 𝒑 = 𝟏 

Lamination scheme Non-Dimensional Amplitude (A R⁄ ) 1st Mode 2nd Mode 

2 Plies (0°, 90°) Stable-Solutions (× 10−2) 11.15505628 11.05944964 

 Unstable-Solutions (× 10−2) 11.07294737 10.97662558 

2 Plies (90°, 0°) Stable-Solutions (× 10−2) 11.85432414 11.80498526 

 Unstable-Solutions (× 10−2) 11.77709147 11.72742767 

4 Plies (0°, 90°)2 Stable-Solutions (× 10−2) 10.38772393 9.38788057 

 Unstable-Solutions (× 10−2) 10.29949955 9.290166001 

4 Plies (90°, 0°)2 Stable-Solutions (× 10−2) 10.81833195 9.885193279 

 Unstable-Solutions (× 10−2) 10.67681807 9.73011737 

6 Plies (0°, 90°)3 Stable-Solutions (× 10−2) 10.28923023 9.401734533 

 Unstable-Solutions (× 10−2) 10.20015399 9.304165462 

6 Plies (90°, 0°)3 Stable-Solutions (× 10−2) 10.56173955 9.714775361 

 Unstable-Solutions (× 10−2) 10.47498091 9.620381647 

8 Plies (0°, 90°)4 Stable-Solutions (× 10−2) 10.26491814 9.418499363 

 Unstable-Solutions (× 10−2) 10.17562908 9.32110578 

8 Plies (90°, 0°)4 Stable-Solutions (× 10−2) 10.47043969 9.653823922 

 Unstable-Solutions (× 10−2) 10.38291818 9.55882833 

10 Plies (0°, 90°)5 Stable-Solutions (× 10−2) 10.25839439 9.431688986 

 Unstable-Solutions (× 10−2) 10.16904804 9.334433022 

10 Plies (90°, 0°)5 Stable-Solutions (× 10−2) 10.42323872 9.620151037 

 Unstable-Solutions (× 10−2) 10.33531752 9.524819615 
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Comparing the results in the Tables 5.4-5.6 indicate that by increasing the magnitude of 

tensile axial loading from 𝐹𝑠 = 0.1𝑁𝑐𝑟 to 𝐹𝑠 = 0.5𝑁𝑐𝑟 both the stable and unstable solutions of 

amplitudes decrease which means that the corresponding excitation frequency that causes 

instability shifts to the right of frequency axis having higher frequencies. Hence it can be 

expected that by increasing the tensile axial load the shell stiffness is also increased. The 

inverse trend can be seen in the case of compressive loading. For the compressive loading the 

results have been listed in Tables 5.7-5.9. The shells have higher stable and unstable amplitudes 

as the magnitude of axial compressive loading is increased from  𝐹𝑠 = −0.1𝑁𝑐𝑟  to 𝐹𝑠 =

−0.5𝑁𝑐𝑟  meaning that by increasing the magnitude of axial compressive loading the 

corresponding excitation frequency that causes instability shifts to the left of frequency axis 

having lower frequencies. This was expected since by increasing the magnitude of axial 

compressive loading the shell stiffness reduces. 

To comparatively study the effect of symmetry in the lamination schemes of the above 

studied cylindrical shells the numerical results for both the stable and unstable solutions 

amplitude of steady-state vibrations were determined and are listed in Tables 5.10 and 5.11 for 

the tensile and compressive axial loads respectively. A graphical presentation of Table 5.10 

has also been provided in Fig. 5.8. The first and second modes in these two tables refer to the 

modes (1,5) and (1,4) respectively which shows no change in terms of circumferential wave 

numbers in comparison with antisymmetric laminates. All the above discussions about Table 

5.6, Table 5.9 and Fig. 5.5 remain valid about Table 5.10, Table 5.11 and Fig. 5.8 respectively. 

It can also be observed from these two tables (Tables 5.10 and 5.11) and Fig. 5.8 that by 

increasing the number of plies in symmetric laminate the amplitude of steady-state vibration 

converges to a certain value where the non-dimensional amplitude vs non-dimensional 

frequency curves of symmetric laminates having twenty, twenty-four and twenty-eight plies 

almost coincide with each other. 
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Figure 5.8 The stable-solution amplitude of steady-state vibrations of the first mode corresponding to various 

lamination schemes for the symmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐 and 

𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 

 

Another comparison of the results for symmetric laminates in Tables 5.10 and 5.11 with 

corresponding results for antisymmetric laminates in Tables 5.6 and 5.9 reveals that at the same 

non-dimensional frequency parameter (𝑝) for both tensile and compressive loading conditions, 

symmetric laminates having stacking sequence of  [(90°, 0°)𝑛]𝑆 have higher amplitude than 

antisymmetric (90°/0°/… )  laminate even though this trend is inverse for the case of 

lamination schemes of symmetric [(0°, 90°)𝑛]𝑆  and antisymmetric (0°/90°/… ) laminates. 

This behavior is in good agreement with that reported by Najafov et. al [22] but for non-linear 

free vibration of truncated orthotropic thin laminated conical shells. 

Figure 5.9 displays the effects of variation of the length-to-radius ratio 𝐿 𝑅⁄  on the stable-

solution  amplitude of steady-state vibrations for the eight-layered (90°/0°/ 90°/… ) cross-ply 

laminated cylindrical shell having thickness ratio 𝑅 ℎ⁄ = 100 subjected to the axial tensile 

loading of 𝐹𝑠 = 0.5𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠 . As expected at the specific excitation frequency the 

shell having higher aspect ratio 𝐿 𝑅⁄  has a larger amplitude or in other words the corresponding 
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excitation frequency that causes instability shifts to the left of frequency axis corresponding to 

lower frequencies, once the aspect ratio 𝐿 𝑅⁄  is increased. This is due to the fact that increasing 

the length of the shell makes the shell to be less stiff. 

 

Table 5.10 The stable and unstable solution amplitudes corresponding to first two modes of steady-state vibrations 

for a symmetric cross-ply laminated cylindrical shell having aspect ratios of 𝐋 𝐑⁄ = 𝟐 and 𝐑 𝐡⁄ = 𝟐𝟎𝟎 subjected 

to tensile loading of 𝑭𝒔 = 𝟎. 𝟓𝑵𝒄𝒓  and 𝐅𝐝 = 𝟎. 𝟑𝐅𝐬  under the excitation with non-dimensional frequency 

parameter 𝐩 = 𝟏 

Lamination scheme Non-Dimensional Amplitude (A R⁄ ) 1st Mode 2nd Mode 

4 Plies [(0°, 90°)]𝑆 Stable-Solutions (× 10−2) 8.287918645 8.205471326 

 Unstable-Solutions (× 10−2) 8.177070269 8.093493832 

4 Plies [(90°, 0°)]𝑆 Stable-Solutions (× 10−2) 10.96460814 9.36844586 

 Unstable-Solutions (× 10−2) 10.88106219 9.270526445 

8 Plies [(0°, 90°)2]𝑆 Stable-Solutions (× 10−2) 8.975131066 8.570830826 

 Unstable-Solutions (× 10−2) 8.872872161 8.463688545 

8 Plies [(90°, 0°)2]𝑆 Stable-Solutions (× 10−2) 10.34405209 9.11033656 

 Unstable-Solutions (× 10−2) 10.25545203 9.009612365 

12 Plies [(0°, 90°)3]𝑆 Stable-Solutions (× 10−2) 9.217413791 8.663081991 

 Unstable-Solutions (× 10−2) 9.117872543 8.557094852 

12 Plies [(90°, 0°)3]𝑆 Stable-Solutions (× 10−2) 10.12875482 9.022659459 

 Unstable-Solutions (× 10−2) 10.03825468 8.920945378 

16 Plies [(0°, 90°)4]𝑆 Stable-Solutions (× 10−2) 9.336197655 8.708841131 

 Unstable-Solutions (× 10−2) 9.237936424 8.603417727 

16 Plies [(90°, 0°)4]𝑆 Stable-Solutions (× 10−2) 10.01937147 8.978499844 

 Unstable-Solutions (× 10−2) 9.927874262 8.876279748 

20 Plies [(0°, 90°)5]𝑆 Stable-Solutions (× 10−2) 9.406748027 8.736181569 

 Unstable-Solutions (× 10−2) 9.309231503 8.631092117 

20 Plies [(90°, 0°)5]𝑆 Stable-Solutions (× 10−2) 9.953164463 8.951899513 

 Unstable-Solutions (× 10−2) 9.953164463 8.849372159 

24 Plies [(0°, 90°)6]𝑆 Stable-Solutions (× 10−2) 9.453489108 8.754361091 

 Unstable-Solutions (× 10−2) 9.356459749 8.649492519 

24 Plies [(90°, 0°)6]𝑆 Stable-Solutions (× 10−2) 9.9087807 8.934121959 

 Unstable-Solutions (× 10−2) 9.816252732 8.831388221 

28 Plies [(0°, 90°)7]𝑆 Stable-Solutions (× 10−2) 9.486734599 8.767323385 

 Unstable-Solutions (× 10−2) 9.39004878 8.662611734 

28 Plies [(90°, 0°)7]𝑆 Stable-Solutions (× 10−2) 9.876955904 8.921402018 

 Unstable-Solutions (× 10−2) 9.876955904 8.818520096 

 

It is also observed from the Figure 5.9 that by increasing the length, the circumferential wave 

numbers corresponding to the first two modes approach successively to lower values. The first 

two modes at 𝐿 𝑅⁄ = 1 are modes (1, 5) and (1, 4), for 𝐿 𝑅⁄ = 5 they are modes (1, 4) and 

(1, 3) , and for 𝐿 𝑅⁄ = 10 they are modes (1, 3) and (1, 2) respectively.  
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Table 5.11 The stable and unstable solution amplitudes corresponding to first two modes of steady-state vibrations 

for a symmetric cross-ply laminated cylindrical shell having aspect ratios of 𝑳 𝑹⁄ = 𝟐 and 𝑹 𝒉⁄ = 𝟐𝟎𝟎 subjected 

to compressive loading of 𝑭𝒔 = −𝟎. 𝟓𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 under the excitation with non-dimensional frequency 

parameter 𝒑 = 𝟏. 

Lamination scheme Non-Dimensional Amplitude (A R⁄ ) 1st Mode 2nd Mode 

4 Plies [(0°, 90°)]𝑆 Stable-Solutions (× 10−2) 8.992054491 8.916120691 

 Unstable-Solutions (× 10−2) 8.889990252 8.813177118 

4 Plies [(90°, 0°)]𝑆 Stable-Solutions (× 10−2) 11.50608883 9.996760792 

 Unstable-Solutions (× 10−2) 11.42650265 9.905054723 

8 Plies [(0°, 90°)2]𝑆 Stable-Solutions (× 10−2) 9.629144622 9.253463652 

 Unstable-Solutions (× 10−2) 9.53390313 9.154314408 

8 Plies [(90°, 0°)2]𝑆 Stable-Solutions (× 10−2) 10.91635755 9.755289885 

 Unstable-Solutions (× 10−2) 10.83243947 9.661292019 

12 Plies [(0°, 90°)3]𝑆 Stable-Solutions (× 10−2) 9.855362271 9.338974145 

 Unstable-Solutions (× 10−2) 9.762328012 9.240742438 

12 Plies [(90°, 0°)3]𝑆 Stable-Solutions (× 10−2) 10.71256845 9.673460199 

 Unstable-Solutions (× 10−2) 10.62704124 9.57865935 

16 Plies [(0°, 90°)4]𝑆 Stable-Solutions (× 10−2) 9.966545798 9.381437116 

 Unstable-Solutions (× 10−2) 9.874559123 9.283654726 

16 Plies [(90°, 0°)4]𝑆 Stable-Solutions (× 10−2) 10.60920606 9.632284669 

 Unstable-Solutions (× 10−2) 10.52283877 9.537074534 

20 Plies [(0°, 90°)5]𝑆 Stable-Solutions (× 10−2) 10.0326645 9.406822892 

 Unstable-Solutions (× 10−2) 9.941289638 9.309307151 

20 Plies [(90°, 0°)5]𝑆 Stable-Solutions (× 10−2) 10.54670239 9.607494647 

 Unstable-Solutions (× 10−2) 10.45981903 9.512036381 

24 Plies [(0°, 90°)6]𝑆 Stable-Solutions (× 10−2) 10.07650261 9.423708751 

 Unstable-Solutions (× 10−2) 9.985528906 9.326369569 

24 Plies [(90°, 0°)6]𝑆 Stable-Solutions (× 10−2) 10.50482667 9.590932368 

 Unstable-Solutions (× 10−2) 10.41759407 9.495307599 

28 Plies [(0°, 90°)7]𝑆 Stable-Solutions (× 10−2) 10.10769914 9.435751578 

 Unstable-Solutions (× 10−2) 10.01700876 9.338537924 

28 Plies [(90°, 0°)7]𝑆 Stable-Solutions (× 10−2) 10.47481295 9.579084636 

 Unstable-Solutions (× 10−2) 10.3873283 9.483340402 

 

The effect of the thickness ratio 𝑅 ℎ⁄  on the stable-solution amplitude of steady-state 

vibrations for the eight-layered (90°/0°/ 90°/… ) cross-ply laminated cylindrical shell with 

length ratio 𝐿 𝑅⁄ = 2 subjected to axial compressive loading of 𝐹𝑠 = −0.3𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠 

is presented in Figure 5.10. Here the first two modes are modes (1, 5) and (1, 4) respectively. 

It shows that by increasing the thickness ratio 𝑅 ℎ⁄ , at any specific frequency, the amplitude of 

steady-state vibrations is also increased or in other words the corresponding frequency of 

excitation that causes instability shifts to the left of frequency axis having lower frequencies, 

by increasing the thickness ratio 𝑅 ℎ⁄  . This is again due to the fact that decreasing the thickness 

of the shell makes the shell to be less stiff.  



 

186 

 

 

Figure 5.9 Variation of the first two stable-solution amplitudes of steady-state vibrations with shell length of an 

eight-layered (𝟗𝟎°/𝟎°/ 𝟗𝟎°/… ) antisymmetric cross-ply laminated cylindrical shell having thickness  

 

 

 

 

Figure 5.10 Variation of the first two stable-solution amplitudes of steady-state vibrations with shell thickness 

of an eight-layered (𝟗𝟎°/𝟎°/ 𝟗𝟎°/… ) antisymmetric cross-ply laminated cylindrical shell having length 

ratio 𝑳 𝑹⁄ = 𝟐 subjected to compressive loading of 𝑭𝒔 = −𝟎. 𝟑𝑵𝒄𝒓 and 𝑭𝒅 = 𝟎. 𝟑𝑭𝒔 
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5.7 Conclusions 

 

In the present work, the non-linear dynamic stability of both symmetric and antisymmetric 

cross-ply laminated composite cylindrical shells under combined static and periodic axial 

loading has been studied. Donnell’s shallow-shell equations of motion with von Karman-type 

of non-linearity were solved by employing Galerkin’s technique. By applying Bolotin’s 

method to the governing system of non-linear Mathieu-Hill equations the amplitudes of both 

stable and unstable solutions were obtained for steady-state vibrations. It is confirmed that the 

both instability regions and amplitudes of stable and unstable solutions are significantly 

influenced by the lamination schemes including symmetry, antisymmetry and the number and 

sequence of the plies, the magnitude and direction of the axial periodic loads, different aspect 

ratios of the shell including length-to-radius and thickness-to-radius ratios, and circumferential 

wave numbers. So for any particular application specific configurations of laminate should be 

considered in the design of composite cylindrical shells. A comparative study of the present 

work with those available in literature shows a very good agreement However, as the results of 

the present study reveal, the linear analysis carried out in available literature can only provide 

the information about the instability region and unable to predict the vibration amplitudes in 

these regions. The non-linear analysis developed in the present work can determine such 

vibration amplitude. The present work has shown that there is vibration with steady-state 

amplitude in the instability region which approaches almost constant amplitude when the 

excitation frequencies are increased. Hence, for more perfect and complete studies of dynamic 

instability of laminates, the non-linear analysis is required to determine both the stable and 

unstable vibration amplitudes in addition to instability regions. Where the occurrence of 

dynamic instability is inevitable, in order to have a control on vibration amplitudes in the 

unstable regions the non-linear analysis is required. By adjusting the corresponding effective 
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parameters as explained in the present work, steady-state vibrations with allowable amplitudes 

based on the design criteria can be achieved in the dynamically-unstable regions.  

The major outcomes of the present study are summarized as follow: 

• The sequence of the vibration modes are affected by the number of the layers and aspect 

ratios. 

• For both symmetric and antisymmetric laminated cylindrical shells, amplitude of 

steady-state vibrations are decreased, corresponding dynamically-unstable regions shift 

to the right along the frequency axis having higher frequencies of excitation, and the 

widths of the instability regions are decreased when the number of plies are increased. 

Convergence is also achieved at a specific number of the plies in each case.  

• Increasing the magnitude of compressive axial load causes increasing amplitude of 

steady-state vibrations, shifting dynamically-unstable regions to the left along the 

frequency axis, and increasing albeit very slowly the widths of instability regions. 

• Increasing the magnitude of tensile axial loads results in decreasing the amplitude of 

steady-state vibrations, shifting dynamically-unstable regions to the right along the 

frequency axis, and increasing albeit very slowly the widths of instability regions. 

• The shell having higher aspect ratio 𝐿 𝑅⁄  has a larger amplitude of steady-state 

vibrations. 

• By increasing the thickness ratio 𝑅 ℎ⁄ , the amplitude of steady-state vibrations is also 

increased. 

The present work can be used as a bench mark study in future studies on dynamic instability 

of composite shells.  
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CHAPTER 6 

6 Contribution, conclusions, and future work 

 

 

6.1 Major Contributions 

 

This research dissertation presents a comprehensive study and investigation on non-linear 

dynamic instability of uniform and internally-thickness-tapered laminated composite plates 

and uniform composite cylindrical shells. The major contribution of this dissertation research 

is that the non-linear von Karman strains associated with large deflections are considered not 

only to predict the dynamically-unstable regions but also to determine both the stable and 

stable- and unstable-solutions of steady-state vibrations in these regions for these uniform 

laminated composite plates, internally-thickness-tapered laminated composite flat plates, 

internally-thickness-tapered laminated composite cylindrical panels, and uniform laminated 

composite cylindrical shells.  

The displacement-based approximate analytical solutions considering the non-linear von 

Karman strains associated with large out-of-plane deflections in the modeling and in 

formulations of the dynamic instability problems that are generated in this dissertation for the 

internally-thickness-tapered laminated composite plates and cylindrical panels form the 

novelty of this Ph.D. research work. These approximate analytical solutions of dynamic 

instability, allow engineers and designers of composite structures to specify the dynamically-

unstable regions of composite plates/shells, to avoid applying unreliable periodic axial loads 

that cause these composite structures to fall into these dynamically-unstable regions.  However, 

for whatever reason in practice, these composite plates/shells may be subjected to larger 

periodic axial loads or have higher excitation frequencies than reliable periodic axial loads so 

as to fall into these dynamically-unstable regions. The parametric studies were carried out in 
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this dissertation provide an additional design criterion to engineers and designers of composite 

plates and shells, to design more efficient composite plates/shells so as to have lower 

amplitudes of steady-state vibrations in these dynamically-unstable regions in such a practical 

case. The two in-plane displacements were determined from the two in-plane force-equilibrium 

equations of motion. Then the in-plane force-resultants were obtained from the in-plane 

displacements and further by applying the boundary conditions. Substituting the moment 

resultants which are in terms of the out-of-plane displacement function and the computed in-

plane force-resultants together in the moment-equilibrium equation of motion, then applying 

the general Galerkin method to this equation to satisfy spatial dependence in the partial 

differential equation of motion, a set of non-linear Mathieu-Hill equations were obtained. Then 

Bolotin’s method is applied to these non-linear Mathieu-Hill equations to determine the 

dynamically-unstable regions, and also the stable- and unstable-solutions amplitudes of the 

steady-state vibrations in these dynamically-unstable regions. 

Here in this dissertation research work a comprehensive parametric study on non-linear 

dynamic instability of these simply supported cross-ply laminated composite uniform plates, 

flat and cylindrical internally-thickness-tapered plates and uniform cylindrical shells is 

conducted in order to understand the effects of various parameters on the dynamic instability 

regions and steady-state vibrations amplitudes in these regions to provide a basis and guidelines 

in the design of these four composite structures for better dynamic stability. These parametric 

studies are on the effects of the orthotropy in the laminated composite uniform plates, number 

of layers for symmetric and antisymmetric uniform cross-ply laminated composite plates and 

cylindrical shells, different taper configurations and taper angles in both flat tapered plates and 

tapered cylindrical panels, magnitudes of both tensile and compressive axial loads in the 

uniform and tapered plates and uniform cylindrical shells, aspect ratios of the loaded-to-

unloaded width of the uniform plates, flat and cylindrical thickness-tapered plates, and length-
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to-radius of the cylindrical shells, length-to-average-thickness ratios of the flat plates and 

cylindrical panels and radius-to-thickness ratio of the cylindrical shells, and curvature of the 

tapered cylindrical panels i.e. radius-to-side ratio on the instability regions and the parametric 

resonance particularly the steady-state vibrations amplitudes of all these four composite 

structures. 

 

6.2 Major Conclusions 

 

The major conclusions extracted from the present dissertation research  which is on the non-

linear dynamic instability of uniform and internally-thickness-tapered cross-ply laminated 

composite plates and uniform cross-ply laminated composite cylindrical shells are summarized 

as follow: 

• When the number of plies is increased in both symmetric and antisymmetric uniform 

laminated plates and uniform cylindrical shells, the dynamically-unstable regions 

occur at higher excitation frequencies, the instability regions become smaller and 

consequently, the amplitudes of steady-state vibrations are decreased. However at a 

specific number of plies in each case these dynamically-unstable regions and the 

amplitudes of steady-state vibrations are converged i.e. increasing the number of 

plies above ten layers in antisymmetric or twenty layers in symmetric uniform 

laminated plates and uniform cylindrical shells doesn’t have any significant effect 

in these instability regions and the corresponding amplitudes of steady-state 

vibrations in these regions. 

• Both dynamically-unstable regions and corresponding amplitudes of the steady-state 

vibrations are significantly influenced by taper configurations. The results show that 

configuration C is the most stable flat thickness-tapered plates and cylindrical 

thickness-tapered panels under parametric excitation among all the thickness-

tapered configurations i.e. configurations A, B, C and D, and also the uniform-
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thickness laminate having the thickness equal in value to the average thickness of 

the corresponding thickness-tapered cylindrical panel. Overall, tapering the flat 

plates /cylindrical panels makes the panel’s stiffness to be increased although its 

total weight might be decreased due to the existence of resin pockets. In physical 

meaning, increasing stiffness and decreasing mass make the natural frequency of the 

system, here the laminated composite flat thickness-tapered plates and cylindrical 

thickness-tapered panels, to be increased. Hence, higher stiffness of the thickness-

tapered cylindrical panel results in the shifting of the dynamically-unstable regions 

toward higher frequencies and consequently decreasing both stable- and unstable-

solutions amplitudes of the steady-state vibrations. However, almost the same widths 

of instability regions as that of flat thickness-tapered plates and cylindrical 

thickness-tapered panels having its thickness as the average thickness of the tapered 

plate are obtained, although reducing the total weight of the thickness-tapered 

structure causes the rate of increase of the amplitudes of the steady-state vibrations 

to be increased. Hence in comparison to the uniform flat plate and uniform 

cylindrical panel, although the flat thickness-tapered plate and cylindrical thickness-

tapered panel with configuration C has the amplitude of steady-state vibrations lower 

than that of the uniform laminate in the initial stages of the excitation, by increasing 

the excitation frequencies this trend is changed; influenced by the lower total weight 

of the flat thickness-tapered plate and cylindrical thickness-tapered panel 

(configuration C) at the higher level of the excitation frequencies, the first mode 

steady-state vibration amplitude is very slightly increased from the first mode 

steady-state vibration amplitude of the uniform flat plate and uniform cylindrical 

panel. 
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• The taper angle is the other most important parameter in the design of the thickness-

tapered flat plate and thickness-tapered cylindrical panel which, as observed from 

the results obtained, makes the flat plate/cylindrical panel stiffer. The higher the 

taper angle is, the higher the excitation frequencies corresponding to the 

dynamically-unstable regions are, and consequently, the lower is the amplitude of 

the steady-state vibrations. Also, the widths of dynamically-unstable regions 

decrease very slightly for higher values of taper angles. The variation of dynamic 

instability response of thickness-tapered flat plate and thickness-tapered cylindrical 

panel from that of the uniform one is very smooth for smaller taper angles of less 

than 0.3° but the rates of the deviations are high for increasing values of taper angle 

above 0.5°. 

• Increasing the amplitude of the tensile in-plane harmonically pulsating load results 

in the shifting of the instability regions to higher frequencies along the frequency 

axis, and consequently decreasing the amplitudes of the steady-state vibrations and 

also decreasing very slightly the widths of the dynamically-unstable regions. 

However, increasing the amplitude of the compressive in-plane load results in the 

shifting of the instability regions to lower frequencies along the frequency axis, and 

consequently increasing the amplitudes of the steady-state vibrations and also 

increasing the widths of the dynamically-unstable regions. These outcomes can be 

expected because increasing the tensile in-plane load makes the plate/shell to be 

stiffer that physically means they have a higher natural frequency, and contrarily 

increasing the compressive in-plane load results in decreasing the plate’s/shell’s 

stiffness that physically means they have a lower natural frequency. 

• With a decrease in width, i.e. overall decrease in aspect ratio of width over length, 

uniform plate stiffness, flat thickness-tapered plate stiffness and cylindrical 
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thickness-tapered panel stiffness are increased as well such that as mentioned before 

it means to make the natural frequency of these composite structures to be increased, 

hence the dynamically-unstable regions occur at higher frequencies of excitation, 

and consequently the amplitudes of steady-state vibrations are decreased and further, 

the widths of instability regions are also increased. It is also noticed that the increase 

in the widths of instability regions is more influenced by the compressive loading 

than the tensile loading. However, the points of origins of dynamically-unstable 

regions are more influenced by the tensile loading than the compressive loading. The 

uniform laminated composite cylindrical shell having a higher aspect ratio 𝐿 𝑅⁄  has 

a larger amplitude of steady-state vibrations too. 

• In the internally-thickness-tapered laminated composite flat plates and cylindrical 

panels with decreasing the length-to-average-thickness ratio which is achieved by 

increasing the number of plies, in the laminated composite uniform plates with 

decreasing the length-to-thickness ratio, and in the uniform laminated composite 

cylindrical shells with decreasing the radius-to-thickness ratio, the dynamically-

unstable regions occur at higher excitation frequencies, and consequently the 

amplitudes of steady-state vibrations are decreased and also the widths of 

dynamically-unstable regions are increased. An increase in the widths of instability 

regions is more influenced by the compressive loading than the tensile loading. 

However, the points of origins of dynamically-unstable regions are more influenced 

by the tensile loading than the compressive loading. These outcomes are due to the 

fact that increasing the thickness of the plate/shell makes the plate/shell stiffer and 

consequently, the natural frequencies of those structures are increased. 

• Thickness-tapered cylindrical panels with higher values of curvature are 

dynamically more stable. Subjected to either the tensile or the compressive loadings, 
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decreasing the curvature or increasing the overall radius-to-width ratio of the 

laminated tapered cylindrical panel, makes the dynamically-unstable regions occur 

at lower frequencies of excitation, the widths of instability regions are increased, and 

consequently, the amplitudes of steady-state vibrations are increased. These changes 

are very fast for the radius-to-width ratio between 1 to 3, are moderate thereafter 

until 5 and are very slow until 10 and thereafter it appears to be converged at a certain 

value. The dynamic instability’s parameters are too close to each other for the radius-

to-width ratio equal to 10 to ∞ (flat plate). 

The thickness-tapered flat plates and thickness-tapered cylindrical panels, through increasing 

the stiffness and at the same time decreasing the weight, cause more complicated structural 

behavior as exhibited by their vibration response and dynamic instability characteristics, in 

comparison to the uniform plates and uniform cylindrical panels, respectively. All of the 

parametric study results indicate that the thickness-tapered cylindrical panels with higher 

values of curvature (lower values of radius-to-width ratio) having configuration C are more 

stable and have better vibrational behavior in comparison to any other thickness-tapered 

configurations (A, B or D) and even in comparison to the uniform cylindrical panels having 

the thickness as the average-thickness of the corresponding thickness-tapered cylindrical 

panels having configuration C. The present work can be used as a benchmark study in future 

studies on the dynamic instability of laminated composite plates and shells either uniform or 

internally-thickness-tapered ones. The approximate analytical solution method proposed in this 

Ph.D. research work is limited to the dynamic instability which is the loadings are harmonic 

in-plane loadings and it is not capable of the other insatiability analysis of the plates and shells 

such as buckling and post-buckling analysis. This research work and the proposed solution is 

limited to the simply supported boundary conditions, and the in-plane inertia forces in the 

equation of motions have been neglected. The damping term wasn’t considered in the 
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formulation too. Considering other boundary conditions,   in-plane inertia forces to increase 

the accuracy, the damping terms in the solution and corresponding damping effects in the 

results are addressed in the future works. The other limitation of this approximate analytical 

solution for the laminated composite internally-thickness-tapered flat plates and cylindrical 

panels is those extensional stiffnesses terms were replaced by their average values in the 

formulation.  Without this assumption solving the two in-plane force-equilibrium equations of 

motion are impossible mathematically with the analytical method so this simplification was 

applied in the solution method in this study.  

 

6.3 Recommendation for the future works 

 

In this dissertation, the non-linear dynamic instability of uniform and internally-thickness-

tapered cross-ply laminated composite plates and uniform cross-ply laminated composite 

cylindrical shells were studied based on the analytical approach. All these uniform and 

internally-thickness-tapered cross-ply laminated composite plates and uniform cross-ply 

laminated composite cylindrical shells are considered to be under simply supported boundary 

conditions. In internally-thickness-tapered cross-ply laminated composite plates either the flat 

plates or the cylindrical panels  since the gradients of variations of extensional stiffnesses from 

the thickest to the thinnest sides of the thickness-tapered plate are too small in comparison to 

the corresponding variations of bending stiffnesses, the extensional stiffnesses terms were 

replaced by their average values.  Without this assumption solving the two in-plane force-

equilibrium equations of motion are impossible mathematically with the analytical method so 

this simplification was applied in the solution method in this study. Hence, this study can be 

continued in future studies on these following recommendations: 

➢ Non-linear dynamic instability analysis of damped uniform-thickness and damped 

internally-thickness-tapered laminated composite plates and cylindrical shells 

subjected to periodic in-plane loads  
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➢ Non-linear dynamic instability analysis of uniform-thickness and internally-

thickness-tapered laminated composite plates and cylindrical shells with cut-outs 

subjected to periodic in-plane loads 

➢ Non-linear dynamic instability analysis of uniform-thickness and internally-

thickness-tapered laminated composite stiffened plates subjected to periodic in-

plane load 

➢ Effect of boundary conditions on the non-linear dynamic instability of uniform-

thickness and internally-thickness-tapered laminated composite plates and 

cylindrical shells subjected to non-uniform periodic in-plane loads 

➢  Non-linear dynamic instability analysis of uniform-thickness and internally-

thickness-tapered composite plates and cylindrical shells with piezoelectric layers 

subjected to periodic in-plane load 
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8 Appendix  
 

(A.1) 

 

(A.2) 

 

(A.3) 

  

(A.4) 

𝑇𝜃 =

[
 
 
 
 
 
(cos 𝜃)2 (sin 𝜃)2 0

(sin𝜃)2 (cos 𝜃)2 0
0 0 1

0 0 −2 sin 𝜃 cos 𝜃
0 0 2 sin 𝜃 cos 𝜃
0 0 0

0 0 0
0 0 0

sin 𝜃 cos 𝜃 −sin 𝜃 cos 𝜃 0

cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0
0 0 (cos 𝜃)2 − (sin𝜃)2]

 
 
 
 
 

…  

……………………………………………………………………………………………(A.5) 

 

 

𝑇Ψ =
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(cosΨ)2 0 (sinΨ)2

0 1 0
(sinΨ)2 0 (cosΨ)2

0 2 sinΨ cosΨ 0
0 0 0
0 −2 sinΨ cosΨ 0

0 0 0
−sinΨ cosΨ 0 sinΨ cosΨ

0 0 0

cosΨ 0 −sinΨ
0 (cosΨ)2 − (sinΨ)2 0

sinΨ 0 cosΨ ]
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Table A.1 Variation of the both extension- and bending-stiffness ratios of the left (thick) side to the right (thin) 

side of symmetric cross-ply laminated thickness-tapered cylindrical panel having configuration C with the taper 

ratio (𝑁𝐿 𝑁𝑅⁄ ). 

Stiffness ratios 40-34 Plies 40-28 Plies 40-22 Plies 40-16 Plies 40-10 Plies 

(𝐴11)𝐿 (𝐴11)𝑅⁄  1.12 1.42 1.68 2.49 3.40 

(𝐴12)𝐿 (𝐴12)𝑅⁄  1.16 1.41 1.80 2.47 3.98 

(𝐴22)𝐿 (𝐴22)𝑅⁄  1.13 1.30 1.80 2.28 4.41 

(𝐴66)𝐿 (𝐴66)𝑅⁄  1.14 1.39 1.77 2.43 3.89 

(𝐷11)𝐿 (𝐷11)𝑅⁄  1.61 2.84 5.73 14.31 54.23 

(𝐷12)𝐿 (𝐷12)𝑅⁄  1.63 2.92 6.01 15.66 64.50 

(𝐷22)𝐿 (𝐷22)𝑅⁄  1.65 3.00 6.37 17.45 80.53 

(𝐷66)𝐿 (𝐷66)𝑅⁄  1.63 2.92 6.01 15.62 64.00 

 

 

 

Figure A.1 Variation of the both extension- and bending-stiffness ratios of the left (thick) side to the right (thin) 

side of symmetric cross-ply laminated thickness-tapered cylindrical panel having configuration C with the taper 

ratio (𝑵𝑳 𝑵𝑹⁄ ). 
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