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ABSTRACT 

Discovery of Fifteen New Aging-Delaying Plant Extracts That Extend the Longevity of 

Budding Yeast and Make Yeast Cells More Resistant to Long-Term Oxidative and 

Thermal Stresses  

 

Monica Enith Lozano Rodriguez, M.Sc. 

 

            In a quest for previously unknown aging-delaying (geroprotective) natural chemicals, we 

used a robust cell viability assay to conduct a screen of a library of commercially available plant 

extracts. Our screen was aimed at the identification of those plant extracts in the library that can 

significantly prolong the chronological lifespan of budding yeast. Many of the plant extracts in 

the library have been used in traditional Chinese and other herbal medicines or the 

Mediterranean and other customary diets. The screen allowed us to discover fifteen plant extracts 

that considerably extend the longevity of chronologically aging budding yeast not limited in 

calorie supply. We demonstrated that each of the fifteen longevity-extending plant extracts is a 

geroprotector that decreases both the extrinsic and the intrinsic rates of aging in budding yeast. 

Our findings provided evidence that each of the fifteen longevity-extending plant extracts makes 

yeast more resistant to chronic (long-term) oxidative and thermal stresses. We also revealed that 

each of the fifteen geroprotective plant extracts mimics the longevity-extending and stress-

protecting effects of a caloric restriction diet in yeast cells that are not limited in calorie supply 

and age chronologically. 
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1 Introduction 

 

1.1 Studies in the budding yeast Saccharomyces cerevisiae discovered mechanisms of 

cellular processes that are common to all eukaryotes  

            The budding yeast S. cerevisiae is a useful model for elucidating mechanisms that underlie 

various cellular processes in eukaryotic organisms across species. S. cerevisiae is a single-cellular 

eukaryotic organism that people used in winemaking, brewing and baking over the last ten 

thousand years [1-3]. Since the discovery of alcoholic yeast fermentation and because of the 

significant improvement of the genetics approaches for studying S. cerevisiae [4, 5], this fast-

growing under controllable culturing conditions unicellular eukaryote has also been used 

extensively as a model organism for elucidating the molecular mechanisms of many cellular 

processes [2, 6-8]. These cellular processes include the critical pathways of primary and secondary 

metabolism, DNA replication, DNA damage and repair, cell cycle regulation, vesicular protein 

traffic, transcription and translation mechanisms, cytoskeleton organization and function, 

mitochondrial respiration and oxidative phosphorylation, cellular signal transduction, cellular 

proteostasis maintenance, autophagy, lipid metabolism and transport, and many others [2, 6-10]. 

The rapid progress in using S. cerevisiae as a model organism in molecular biological studies of 

complex cellular processes was further speeded up after its genome was sequenced entirely, and 

the commercial libraries of gene-deletion, gene-overexpression and protein-tagging mutants of 

various genes became available [2, 7, 8, 10-13]. This progress was enhanced even more with the 

development and application of high-throughput methods for chemical biological, system 

biological and microfluidic dissection analyses of cellular processes in budding yeast [6-8, 10, 14-

16]. The subsequent studies in multicellular eukaryotes have convincingly demonstrated that the 

molecular mechanisms underlying many cellular processes and initially discovered in budding 

yeast operate similarly in other eukaryotic organisms [6-8, 10, 17-19]. Such a great extent of 

evolutionary conservation further emphasizes the importance of using S. cerevisiae as a model 

organism for uncovering the mechanistic basis of essential cellular processes. 

 

1.2 Two different methods of investigating S. cerevisiae aging in laboratory settings 

            Aging of S. cerevisiae under the controllable laboratory conditions can be investigated in 

two different ways, each corresponding to a different way the eukaryotic cells can become old. It 
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is a tradition to use robust laboratory assays for examining each of these two modes of cellular 

aging separately from each other [20-23]. These two different modes are called the replicative and 

chronological modes of yeast aging.        

            S. cerevisiae reproduces by asymmetric cell divisions called buddings [21, 23]. In the 

laboratory assay for yeast replicative aging, every new daughter cell formed by budding from a 

mother cell is removed with the help of a micromanipulator and the maximal number of daughter 

cells that each mother cell can form before irreversibly exiting mitosis is counted (Figure 1.1) [21, 

23]. Thus, the maximal number of the mitotic divisions that a yeast cell can undergo before 

becoming mitotically senescent (i.e., incapable of dividing) defines the replicative mode of S. 

cerevisiae aging under laboratory conditions (Figure 1.1) [21, 23]. It is commonly believed that 

the replicative mode of yeast aging mimics the aging of mitotically active mammalian cells that 

can undergo only a limited number of divisions before becoming unable to divide [24-27]. 

Emerging evidence supports the notion that the replicative mode of yeast aging can be also be 

considered as a model for the aging of post-mitotic tissues in the nematode Caenorhabditis elegans 

and the organismal aging in humans [28-30]. Indeed, many genes that influence the replicative 

lifespan in S. cerevisiae also affect the reproductive lifespan in C. elegans [28, 29]. Furthermore, 

the hallmark events characteristic of replicatively old yeast cells are very similar to the ones 

observed in cells of elderly human individuals [30].   

            After S. cerevisiae cells cultured under laboratory conditions in a liquid medium with 

glucose consume this exogenous carbon source, they undergo a cell-cycle arrest in the G1 phase 

and enter a reversible G0 state of quiescence [20, 22]. Two characteristics of quiescent yeast cells 

distinguish them from non-quiescent cells. First, a quiescent yeast cell can form a colony after 

being transferred from a nutrient-depleted liquid medium to a surface of a nutrient-rich solid 

medium [20, 22]. Second, a population of quiescent yeast cells can synchronously re-enter the 

mitotic cell cycle after being transferred from a nutrient-depleted liquid medium to a nutrient-rich 

liquid medium [20, 22]. Under the laboratory conditions, a yeast cell in a nutrient-depleted liquid 

medium can maintain quiescence only for a limited number of days [20, 22]. Following this limited 

number of days, the S. cerevisiae cell exits quiescence and enters an irreversible state of mitotic 

senescence [20, 22]. The mitotically senescent yeast cells ultimately undergo an apoptotic or 

necrotic mode of regulated death [20, 22, 31, 32]. A laboratory clonogenic assay for yeast 

chronological aging measures the number of days required for such transition of the yeast cell from 
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being quiescent to becoming senescent (Figure 1.1) [20, 22, 31, 32]. Hence, the number of days 

during which a yeast cell undergoes a transition from quiescence to senescence defines the 

chronological mode of S. cerevisiae aging under laboratory conditions (Figure 1.1) [20, 22]. It is 

generally accepted that the chronological mode of yeast aging mimics the aging of mitotically 

inactive mammalian cells that lost the ability to proliferate by growth and division [25, 26, 33, 34].     

            The above two methods have been employed to investigate the replicative and 

chronological modes of yeast aging separately from each other and under controllable laboratory 

conditions. Such conditions may differ substantially from those existing within various natural 

ecosystems inhabited by budding yeast. Recent findings indicate that the replicatively old yeast 

cells are also chronologically old and, thus, that an aging process of yeast residing in the wild may 

integrate the replicative and chronological modes of aging [35-40]. A challenge for the future is to 

investigate the aging process of budding yeast within natural ecosystems and/or under field-like 

laboratory conditions.  

 

1.3 S. cerevisiae is a valuable model organism for uncovering mechanisms of cellular 

aging and longevity regulation in other eucaryotes 

            As discussed above, the replicative and chronological lifespans of budding yeast are both 

relatively short and easy to measure under controllable laboratory conditions [20-23]. Besides (as 

was also discussed above), many advanced molecular and cell biological approaches for 

investigating mechanisms of aging and other complex cellular processes have been developed for 

S. cerevisiae [6-8, 10, 14-16]. These two factors facilitate the discoveries of the key molecular 

players in the replicative and chronological modes of aging in budding yeast. Because the research 

topic of my thesis concerns yeast chronological aging, I will mainly discuss this mode of yeast 

aging further in the text.    

            Research on chronological aging of S. cerevisiae led to the discovery of many genes and 

their protein products that control the rate of chronological aging and regulate longevity of budding 

yeast (Figure 1.2) [17, 25, 41, 42].  

            Studies in budding yeast also revealed a distinct set of cellular processes that are essential 

contributors to the pace of yeast chronological aging and define the longevity of chronologically 

aging S. cerevisiae [17, 25, 41, 42]. These processes include protein synthesis in the cytosol and 

mitochondria, stress protection, genome stability maintenance, mitochondrial respiration, 
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glyoxylate metabolic cycle, gluconeogenesis, glycogen synthesis and degradation, amino acid and 

fatty acid synthesis, autophagy, and peroxisome biogenesis (Figure 1.2) [17, 25, 41, 42].   

   

 
Figure 1.1. Laboratory assays for measuring the replicative and chronological lifespans 
under controllable conditions. A laboratory assay for replicative yeast aging measures the 
maximal number of mitotic divisions that a mother cell can undergo by budding a daughter cell 
before irreversibly exiting mitosis. A laboratory clonogenic assay for yeast chronological aging 
measures the number of days that are required for a quiescent cell to become senescent. See the 
text for more details.  
 

            Also, aging research in S. cerevisiae revealed specific signaling pathways and protein 

kinases that control the longevity-defining cellular processes [17, 25, 41, 42].  It was discovered 

that these signaling pathways and protein kinases are integrated into a hierarchical network (Figure 

1.2) [17, 25, 41, 42]. The network assimilates the pro-aging (further referred to also as “aging-

accelerating”) TORC1 (target of rapamycin complex 1) pathway, pro-aging PKA (protein kinase 

A) pathway, pro-aging PKH1/2 (Pkb-activating kinase homolog) pathway, anti-aging (further 

referred to also as “aging-decelerating” or “aging-delaying”) SNF1 (sucrose non-fermenting) 

pathway, anti-aging ATG (autophagy) pathway, pro-aging protein kinase Sch9 and anti-aging 

protein kinase Rim15 (Figure 1.2) [17, 25, 41, 42].   
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Figure 1.2. Several signaling pathways and protein kinases are integrated into a network 
that controls the rate of yeast chronological aging and defines yeast longevity. This network 
controls longevity-defining cellular processes shown in the boxes. Activation arrows and 
inhibition bars indicate pro-aging processes (presented in blue color) or anti-aging processes 
(shown in red color). Pro-aging or anti-aging signaling pathways and protein kinases are shown in 
blue or red color, respectively. Please see the text for additional details. Abbreviations: ATG, 
autophagy; PKA, protein kinase A; PKH1/2, Pkb-activating kinase homologs 1 and 2; Rim15, an 
anti-aging protein kinase; Sch9, a pro-aging protein kinase; SNF1, sucrose non-fermenting protein 
1; TORC1, the target of rapamycin complex 1. 
 

            The pro-aging TORC1 pathway and its downstream target, the pro-aging protein kinase 

Sch9, are activated in response to the excessive amounts of nitrogen-rich nutrients (ammonium 

sulfate and amino acids) in a growth medium [17, 25, 41, 42]. Mutations that impair the 

functionalities of TORC1 or Sch9 delay yeast chronological aging and extend chronological 

lifespan in budding yeast [17, 25, 41, 42]. Furthermore, rapamycin-, caffeine- or cryptotanshinone-

dependent inhibition of TORC1 has aging-delaying and longevity-extending effects in 

chronologically aging S. cerevisiae [17, 25, 41, 42]. After being activated by an excessive supply 

of nitrogen-rich nutrients, TORC1 and Sch9 accelerate chronological aging and shorten the 

chronological lifespan of S. cerevisiae because they phosphorylate and inhibit proteins involved 

in several anti-aging cellular processes [17, 25, 41, 42].  These anti-aging processes include the 

maintenance of nuclear genome stability and protein synthesis in mitochondria Rim15 (Figure 1.2) 
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[17, 25, 41, 42]. Besides, after being activated in response to excessive supply of nitrogen-

containing nutrients, TORC1 and Sch9 phosphorylate and stimulate the pro-aging cellular process 

of protein synthesis in the cytosol (Figure 1.2) [17, 25, 41, 42]. Another downstream target of 

TORC1 and Sch9 is the anti-aging protein kinase Rim15. After being subjected to the Sch9-

dependent phosphorylation and inhibition, the ability of Rim15 to stimulate the ant-aging process 

of cellular stress protection declines (Figure 1.2) [17, 25, 41, 42].       

            Sch9 is not the only phosphorylation target of activated TORC1 in budding yeast. The other 

TORC1 target is the anti-aging SNF1 pathway (Figure 1.2) [17, 25, 41, 42]. After being subjected 

to the TORC1-driven inhibitory phosphorylation, SNF1 less intensively promotes the anti-aging 

processes of mitochondrial respiration, glyoxylate cycle in mitochondria and the cytosol, 

gluconeogenesis in the cytosol, cytosolic glycogen synthesis, peroxisome biogenesis and 

autophagy in vacuoles (Figure 1.2) [17, 25, 41, 42]. The TORC1-driven phosphorylation of SNF1 

also suppresses its ability to inhibit the pro-aging cellular processes of amino acids synthesis in 

mitochondria and the cytosol, fatty acid synthesis in the cytosol and cytosolic glycogen 

degradation (Figure 1.2) [17, 25, 41, 42].      

            Yet, another inhibitory phosphorylation target of activated TORC1 is the aging-delaying 

process of autophagy. After activated TORC1 phosphorylates several proteins implicated in the 

autophagic degradation of damaged proteins and organelles, the intensity of such degradation 

declines, cellular proteostasis is weakened and the process of yeast chronological aging is 

accelerated (Figure 1.2) [17, 25, 41, 42].            

            The essential role of TORC1 in the acceleration of cellular and organismal aging has been 

conserved in the course of evolution. Indeed, the mechanistic target of rapamycin TOR complexes 

1 (mTORC1) and 2 (mTORC2) promote aging in nematodes, fruit flies, laboratory rodents and 

non-human primates because they phosphorylate and inhibit an evolutionarily conserved set of 

aging-decelerating cellular processes and phosphorylate and activate a set of aging-accelerating 

cellular processes similar to the ones subjected to activating phosphorylation in budding yeast 

(Figure 1.2) [17, 25]. 

            The pro-aging protein kinase Sch9 is a downstream activating phosphorylation target not 

only for TORC1 but also for the sphingolipid long-chain base-activated PKH1/2 pathway in 

budding yeast (Figure 1.2) [17, 25, 41, 42]. In response to an increase in the concentration of 

complex sphingolipids within the plasma membrane, the PKH1/2 pathway promotes the activating 
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phosphorylation of Sch9, thus initiating the Sch9-dependent activation of pro-aging cellular 

processes and inhibition of anti-aging cellular processes in budding yeast  (Figure 1.2) [17, 25, 41, 

42]. Noteworthy, mutations that impair the functionality of the Pkh1 and Pkh2 protein components 

of the PKH1/2 pathway or cell treatment with myriocin (an indirect inhibitor of this pathway) slow 

down aging and prolong lifespan in chronologically aging S. cerevisiae [17, 25, 41, 42].     

            The longevity regulation network depicted in Figure 1.2 also integrates the pro-aging PKA 

pathway [17, 25, 41, 42]. This pathway is activated when yeast cells are cultured in a medium 

initially containing high concentrations of glucose [17, 25, 41, 42]. Mutations that impair the 

functionality of several protein components of the PKA pathway slow down yeast chronological 

aging and prolong chronological lifespan in budding yeast [17, 25, 41, 42]. The activated PKA 

pathway accelerates yeast chronological aging and shortens yeast chronological lifespan because 

it elicits the inhibitory phosphorylation of Rim15, thus weakening the aging-delaying process of 

cellular stress protection (Figure 1.2) [17, 25, 41, 42]. The activated PKA pathway also promotes 

aging and decreases the longevity of chronologically aging yeast by promoting activating 

phosphorylation of proteins involved in the aging-accelerating process of protein translation in the 

cytosol (Figure 1.2) [17, 25, 41, 42]. The PKA pathway is an essential contributor to longevity 

regulation not only in budding yeast but also in laboratory mice [17, 25]. Hence, the essential role 

of the PKA pathway in accelerating cellular and organismal aging has been conserved in the course 

of evolution. 

            Moreover, studies in budding yeast discovered several small chemical molecules that slow 

yeast chronological aging and prolong yeast longevity because they control the information flow 

through the signaling network of longevity regulation [17, 25, 41, 42]. These molecules include 

resveratrol, rapamycin, caffeine, myriocin, spermidine, cryptotanshinone, quercetin and 

lithocholic bile acid [17, 25, 41, 42]. Although resveratrol increases the replicative lifespan of 

budding yeast because it stimulates the NAD+-dependent protein deacetylase Sir2, it extends yeast 

chronological lifespan in a Sir2-independent manner – perhaps by activating some other NAD+-

dependent protein deacetylases [17, 25, 41, 42]. The longevity-extending abilities of rapamycin, 

caffeine and cryptotanshinone in chronologically aging yeast are due to their direct (rapamycin 

and caffeine) or indirect (cryptotanshinone) inhibitory effects on TORC1 [17, 25, 41, 42]. 

Myriocin extends yeast chronological lifespan because it indirectly inhibits the Pkh1 and Pkh2 

protein components of the PKH1/2 pathway [17, 25, 41, 42]. Spermidine increases the replicative 
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lifespan of budding yeast because it stimulates transcription of genes encoding proteins that 

involve in the aging-decelerating process of autophagy [17, 25, 41, 42]. Quercetin extends the 

chronological lifespan of budding yeast by causing a significant decline in the intracellular 

concentration of reactive oxygen species (ROS), thereby protecting cellular macromolecules from 

oxidative damage [17, 25, 41, 42]. Lithocholic bile acid increases yeast chronological lifespan 

because it alters the mitochondrial membrane lipidome, thereby improving mitochondrial 

functionality [17, 25, 41, 42]. 

            After all these genes, proteins, cellular processes, signaling pathways, protein kinases and 

small chemical molecules were discovered in chronologically aging yeast, aging research in 

several multicellular eukaryotic organisms (including the nematode Caenorhabditis elegans, the 

fruit fly Drosophila melanogaster, laboratory rodents and non-human primates) revealed that 

similar genes, proteins, cellular processes, signaling pathways, protein kinases and small chemical 

molecules control the rates of cellular and organismal aging and regulate organismal lifespan and 

healthspan in these eukaryotes. These findings provided evidence that mechanisms of aging and 

aging delay have been conserved in the evolution [8, 10, 17-19, 25-27, 29, 30, 41, 42]. Thus, S. 

cerevisiae is a useful model organism for uncovering these evolutionarily conserved mechanisms.               

 

1.4 Phytochemicals produced by plants slow aging and prolong the longevity of S. 

cerevisiae 

            Plants synthesize phytochemicals as the products of secondary metabolic pathways that, 

unlike the primary metabolic pathways, do not provide the host plants with significant amounts of 

energy or abundant quantities of biosynthetic products needed for their growth and reproduction 

[43-45]. Based on the chemical structure and functionality of phytochemicals, they belong to 

eleven different classes. These chemical classes of phytochemicals include phenolic compounds, 

terpenes, betalains, polysulfides, organosulfides, indoles, protease inhibitors, organic acids, 

modified purines, quinones and polyamines [46-48].  

            It has been proposed that plants evolved the secondary metabolic pathways for the 

synthesis of phytochemicals because these diverse chemical compounds can help the host plants 

to survive and reproduce [49-56]. The survival and reproduction benefits that phytochemicals 

provide to the host plants include protection from various environmental stresses and pollutants, a 
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defense from invading insects and many viral and microbial infections, and an attraction of 

pollinators and other symbiotes [49-56].  

            In addition to the above benefits that phytochemicals provide to the host plants, they are 

known for their abilities to slow cellular aging and prolong longevity in budding yeast [57-62]. 

            Resveratrol is a polyphenolic phytochemical that increases the replicative lifespan of 

budding yeast because it stimulates the NAD+-dependent protein deacetylase called Sir2 [57]. The 

resveratrol-dependent stimulation of Sir2 suppresses rDNA recombination, thereby enhancing the 

stability of nuclear DNA and extending the longevity of replicatively aging S. cerevisiae [57].  

            Quercetin is a flavonoid phytochemical compound that extends the longevity of 

chronologically aging budding yeast because it elicits a significant decline in the intracellular level 

of ROS, thus lowering the extent of glutathione oxidation, lipid peroxidation and protein 

carbonylation [58]. These quercetin-driven changes increase cell resistance to oxidative stress, thus 

slowing down the chronological aging of S. cerevisiae [58].     

            Caffeine is a purine-like phytochemical compound that slows the chronological mode of 

yeast aging by inhibiting the protein kinase activity of TORC1, thus stimulating the aging-delaying 

cellular processes and suppressing the aging-accelerating cellular processes described in section 

1.3. The aging-delaying cellular processes that are stimulated by the caffeine-dependent inhibition 

of TORC1 include the maintenance of nuclear genome stability, protein synthesis in mitochondria, 

cellular stress protection, mitochondrial respiration, glyoxylate cycle in mitochondria and the 

cytosol, gluconeogenesis in the cytosol, cytosolic glycogen synthesis, peroxisome biogenesis, 

autophagy and cellular proteostasis maintenance (Figure 1.2) [17, 25, 41, 42, 59]. The aging-

accelerating cellular processes that are suppressed in response to the caffeine-dependent inhibition 

of TORC1 include protein synthesis in mitochondria, amino acids synthesis in mitochondria and 

the cytosol, fatty acid synthesis in the cytosol and cytosolic glycogen degradation (Figure 1.2) [17, 

25, 41, 42].       

            Spermidine is a polyamine phytochemical compound that prolongs the chronological 

lifespan oh S. cerevisiae because it promotes the deacetylation of histone H3 by inactivating 

histone acetyltransferases [83]. The spermidine-dependent deacetylation of histone H3 promotes 

transcription of several autophagy-related genes, thus enhancing autophagic removal of 

dysfunctional organelles, promoting cellular proteostasis and delaying the onset of an age-related 

mode of regulated necrotic cell death [83]. 
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            Phloridzin is a polyphenolic phytochemical compound that increases the replicative 

lifespan of S. cerevisiae because it promotes transcription of the genes for the cytosolic and 

mitochondrial forms of superoxide dismutase (Sod1 and Sod2, respectively) as well as for the 

NAD+-dependent protein deacetylase Sir2 [272]. The phloridzin-driven increase in the enzymatic 

activities of Sod1 and Sod2 suppresses the aging-accelerating process of oxidative macromolecular 

damage by reducing the intracellular levels of ROS [272]. The phloridzin-driven rise in the 

enzymatic activity of Sir2 inhibits rDNA recombination, thereby stimulating the aging-delaying 

process of nuclear DNA maintenance [272]. All these effects of phloridzin extend the replicative 

lifespan of budding yeast.   

             Cryptotanshinone is a quinone phytochemical compound that extends the chronological 

lifespan of S. cerevisiae because it elicits the following two effects: 1) it inhibits the pro-aging 

protein kinases TORC1 and Sch9, thus lowering the inhibitory phosphorylation of their numerous 

aging-decelerating protein targets and promoting the activating phosphorylation of their many 

aging-accelerating protein targets (see section 1.3), and 2) it activates mitochondrial superoxide 

dismutase Sod2, thus reducing the intracellular levels of ROS and suppressing the aging-

accelerating process of oxidative macromolecular damage [62].                

 

1.5 The objectives of studies described in this thesis  

            The objective of studies presented in my thesis was to apply a robust clonogenic assay to 

search for previously unknown aging-delaying (geroprotective) plant extracts that can extend the 

longevity of chronologically budding yeast. Many of these commercially available plant extracts 

have been used in traditional Chinese and other herbal medicines or the Mediterranean and other 

customary diets. However, none of them has been known for their ability to slow aging and prolong 

the organismal lifespan. My search discovered fifteen plant extracts that significantly extend the 

longevity of chronologically aging yeast not limited in calorie supply. I found that each of the 

fifteen longevity-extending plant extracts makes yeast cells resistant to long-term oxidative and 

thermal stresses. All findings described in my thesis were published in Oncotarget. 2020; 11:2182-

2203. Dr. Titorenko intellectually directed this project. He also corrected the first draft of my thesis 

and the entire manuscript of the above research paper. 
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2 Materials and methods 

 

2.1 Yeast strains, media and growth conditions 

            The wild-type (WT) strain Saccharomyces cerevisiae BY4742 (MAT his31 leu20 

lys20 ura30) and single-gene-deletion mutant strains in the BY4742 genetic background (all 

from Thermo Scientific/Open Biosystems) were grown in a synthetic minimal YNB medium 

(0.67% (w/v) Yeast Nitrogen Base without amino acids from Fisher Scientific; #DF0919-15-3) 

initially containing 2% (w/v) or 0.5% (w/v) glucose (#D16-10; Fisher Scientific), 20 mg/l L-

histidine (# H8125; Sigma), 30 mg/l L-leucine (#L8912; Sigma), 30 mg/l L-lysine (#L5501; 

Sigma) and 20 mg/l uracil (#U0750; Sigma), with a plant extract (PE) or without it. A stock 

solution of each PE in ethanol was made on the day of adding this PE to cell cultures. For each 

PE, the stock solution was added to growth medium with 2% (w/v) or 0.5% (w/v) glucose 

immediately following cell inoculation into the medium. In a culture supplemented with a PE, 

ethanol was used as a vehicle at the final concentration of 2.5% (v/v). In the same experiment, 

yeast cells were also subjected to ethanol-mock treatment by being cultured in growth medium 

initially containing 2% (w/v) or 0.5% (w/v) glucose and 2.5% (v/v) ethanol. Cells were cultured 

at 30oC with rotational shaking at 200 rpm in Erlenmeyer flasks at a “flask volume/medium 

volume” ratio of 5:1. 

 

2.2 Chronological lifespan (CLS) assay 

            A sample of cells was taken from a culture at a certain day following cell inoculation and 

PE addition into the medium. A fraction of the sample was diluted to determine the total number 

of cells using a hemacytometer. Another fraction of the cell sample was diluted, and serial dilutions 

of cells were plated in duplicate onto YEP medium (1% (w/v) yeast extract, 2% (w/v) peptone; 

both from Fisher Scientific; #BP1422-2 and #BP1420-2, respectively) containing 2% (w/v)  

glucose (#D16-10; Fisher Scientific) as carbon source. After 2 d of incubation at 30oC, the number 

of colony-forming units (CFU) per plate was counted. The number of CFU was defined as the 

number of viable cells in a sample. For each culture, the percentage of viable cells was calculated 

as follows: (number of viable cells per ml/total number of cells per ml) × 100. The percentage of 

viable cells in the mid-logarithmic growth phase was set at 100%. 
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2.3 Plating assays for the analysis of resistance to oxidative and thermal stresses 

            For the analysis of hydrogen peroxide (oxidative stress) resistance, serial dilutions (1:100 

to 1:105) of cells removed from each culture at various time-points were spotted onto two sets of 

plates. One set of plates contained a YP medium with 2% glucose alone, whereas the other set 

contained a YP medium with 2% glucose supplemented with 5 mM hydrogen peroxide. Pictures 

were taken after a 3-day incubation at 30oC. 

            For the analysis of thermal stress resistance, serial dilutions (1:100 to 1:105) of cells 

removed from each culture at various time-points were spotted onto two sets of plates containing 

the YP medium with 2% glucose. One set of plates was incubated at 30oC. The other set of plates 

was initially incubated at 60oC for 60 min and was then transferred to 30oC. Pictures were taken 

after a 3-day incubation at 30oC. 

 

2.4 Statistical analysis 

            Statistical analysis was performed using Microsoft Excel’s Analysis ToolPack-VBA. All 

data on cell survival are presented as mean ± SEM (n = 6). The p values for comparing the means 

of two groups using an unpaired two-tailed t-test were calculated with the help of the GraphPad 

Prism 7 statistics software. The logrank test for comparing each pair of survival curves was 

performed with GraphPad Prism 7. Two survival curves were considered statistically different if 

the p value was less than 0.05. 
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3 Results 

 

3.1 Identification of new PEs that prolong the longevity of chronologically aging budding 

yeast 

            In search of new aging-delaying (geroprotective) PEs, we performed a screen of fifty-three 

commercially available PEs. The origin and properties of these PEs are shown in Table 3.1. These 

PEs are believed to have positive effects on human health, and many of them have been used in 

traditional Chinese and other herbal medicines or the Mediterranean and other long-established 

diets. 

 
Table 3.1. Properties of plant extracts (PEs) used to conduct a new screen for PEs that can 
prolong the longevity of chronologically aging budding yeast. 
 

Abbreviated 
name of a PE 

The botanical 
name of a plant    

Plant part used 
to make a PE  

Properties of a PE A commercial 
source of a PE 

PE26 Serenoa repens Berry Extraction solvent: carbon 
dioxide. Extract ratio: 15:1. 
Composition: natural extract 
(oil) (45-55%), silica (45-55%). 

Idunn 
Technologies 

PE38 Centella 
asiatica 

Herb Extraction solvent: alcohol (50-
70%), water (30-50%). Extract 
ratio: (8-12):1. Composition: 
10% asiaticoside, 30% total 
triterpenes. 

Idunn 
Technologies 

PE39 Hypericum 
perforatum 

Aerial parts Extraction solvent: ethanol (60-
80%), water (20-40%). Extract 
ratio: (5-10):1. Composition: 
0.3% hypericin. 

Idunn 
Technologies 

PE40 Boswellia 
serrata 

Resin Extraction solvent: methanol 
(80%), water (20%). Extract 
ratio: 20:1. Composition: 65% 
boswellic acids. 

Idunn 
Technologies 

PE41 Ruscus 
aculeatus 

Root Extraction solvent: ethanol (70-
80%), water (20-30%). Extract 
Ratio: 8:1. Composition: 10% 
ruscogenins.  

Idunn 
Technologies 

PE42 Ilex 
paraguariensis 

Leaf Extraction solvent: water. 
Extract ratio: (3-10):1. 
Composition: 2% caffeine. 

Idunn 
Technologies 

PE43 Schisandra 
chinensis 

Berry Extraction solvent: ethanol 
(30%), water (70%). Extract 
ratio: 4/1, 1% schizandrins. 

Idunn 
Technologies 
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PE44 Cynara 
scolymus L. 

Leaf Extraction solvent: water. 
Extract ratio: 4:1. Composition: 
> 5% cynarin. 

Idunn 
Technologies 

PE45 Allium cepa L. Bulb skin Extraction solvent: ethanol 
(70%), water (30 %). Extract 
ratio: (20-25):1. Composition: > 
5% quercetin glycoside 
derivates. 

Idunn 
Technologies 

PE46 Matricaria 
recutita L. 

Flower Extraction solvent: ethanol 
(80%), water (20%). Extract 
ratio: 5:1. Composition: 3% 
apigenins.  

Idunn 
Technologies 

PE47 Ocimum 
tenuiflorum 

Leaf Extraction solvent: ethanol 
(90%), water (10%). Extract 
ratio: 10:1. Composition: > 5% 
ursolic acid. 

Idunn 
Technologies 

PE48 Rhaphanus 
sativus L. var. 
niger 

Root Extraction solvent alcohol (60-
80%), water (40-20%). Extract 
ratio: 4:1. Composition: 
unknown. 

Idunn 
Technologies 

PE49 Rosmarinus 
officinalis L. 

Leaf Extraction solvent: acetone. 
Extract ratio: (35-50):1. 
Composition: > 50% carnosic 
acid. 

Idunn 
Technologies 

PE50 Angelica 
archangelica L. 

Root Extraction solvent: ethanol 
(50%), water (50%). Extract 
ratio: 4:1. Composition: > 3% 
organic acids. 

Idunn 
Technologies 

PE51 Epimedium 
grandiflorum 

Herb Extraction solvent: ethanol 
(60%), water (40%). Extract 
ratio: 20:1. Composition: 20% 
icariin. 

Idunn 
Technologies 

PE52 Bacopa 
monnieri 

Leaf Extraction solvent: aqueous 
alcohol. Extract ratio: 10:1. 
Composition: 20% bacosides. 

Idunn 
Technologies 

PE53 Phaseolus 
vulgaris 

Bean Extraction solvent: aqueous 
alcohol. Extract ratio: 10:1. 
Composition: unknown.  

Idunn 
Technologies 

PE54 Allium sativum 
L. 

Bulb Extraction solvent: water. 
Extract ratio: 120:1. 
Composition: 4.5% alliin. 

Idunn 
Technologies 

PE55 Morus alba Leaf Extraction solvent: ethanol 
(70%), water (30%). Extract 
ratio: 4:1. Composition: 1% 1-
deoxynojirimycin. 

Idunn 
Technologies 
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PE56 Saphora 
Japonica  

Flower Extraction solvent: ethanol, 
water. Extract ratio: unknown. 
Composition: rutin (40%), 
quercetin (60%). 

Idunn 
Technologies 

PE57 Morus nigra Fruit Extraction solvent: ethanol, 
water. Extract ratio: 4:1. 
Composition: unknown. 

Idunn 
Technologies 

PE58 Magnolia 
officinalis 

Bark  Extraction solvent: unknown. 
Extract ratio: (35-40):1. 
Composition: 40% honokiol. 

Idunn 
Technologies 

PE59 Solidago 
virgaurea 

Herb Extraction solvent: ethanol 
(30%), water (70%). Extract 
ratio: 4:1. Composition: > 2% 
flavonoid hyperosides. 

Idunn 
Technologies 

PE60 Astragalus 
membranaceus 

Root Extraction solvent: ethanol, 
water. Extract ratio: 8:1. 
Composition: 16% 
polysaccharides. 

Idunn 
Technologies 

PE61 Lepidium 
meyenii 

Root Extraction solvent: water, then 
ethanol (96%) and water (4%). 
Extract ratio: (22-27):1. 
Composition: 0.6% macamides 
and macaenes. 

Idunn 
Technologies 

PE62 Taraxacum 
officinale 

Leaf Extraction solvent: ethanol (70-
80%), water (20-30%). Extract 
ratio: (4-7):1. Composition: 3% 
vitexin. 

Idunn 
Technologies 

PE63 Taraxacum 
officinale 

Root Extraction solvent: ethanol 
(60%), water (40%). Extract 
ratio: 15:1. Composition: 0.3-
0.4% phenolic acids (chicoric, 
chlorogenic and 
caftaric acids). 

Idunn 
Technologies 

PE64 Citrus sinensis Fruit Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: ≥ 20% limonene. 

Idunn 
Technologies 

PE65 Piper 
methysticum 

Root Extraction solvent: ethanol 
(65%), water (35%,). Extract 
ratio: 8:1. Composition: > 30% 
kavalactones. 

Idunn 
Technologies 

PE66 Handroanthus 
chrysotrichus 

Bark Extraction solvent: ethanol 
(70%), water (30%). Extract 
ratio: (9-15):1. Composition: 
unknown. 

Idunn 
Technologies 

PE67 Euterpe 
oleracea 

Fruit Extraction solvent: water. 
Extract ratio: 20:1. 

Idunn 
Technologies 
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Composition: > 10% 
polyphenols. 

PE68 Humulus 
lupulus 

Whole plant Extraction solvent: unknown. 
Extract ratio: (5.5-6.5):1. 
Composition: unknown. 

Idunn 
Technologies 

PE69 Vitis vinifera Grape skin Extraction solvent: ethanol 
(30%), water (70%). Extract 
ratio: 450:1. Composition:  
5% trans-resveratrol. 

Idunn 
Technologies 

PE70 Vitis vinifera Grape Extraction solvent: water (4%), 
ethanol (96%). Extract ratio: 
200:1. Composition: ≥ 20% 
oligostilbenes. 

Idunn 
Technologies 

PE71 Malus 
domestica + 
Vitis vinifera 

Grape + Fruit Extraction solvent: water (5%), 
ethanol (95%). Extract ratio: 
(500-600):1. Composition: ≥ 
95% polyphenols.  

Idunn 
Technologies 

PE72 Andrographis 
paniculata 

Whole plant Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: ≥ 20% 
andrographolids. 

Idunn 
Technologies 

PE73 Oryza sativa 
fermented with 
Monascus 
purpureus yeast  

Fermented rice  Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: ≥ 20% monacolin 
K. 

Idunn 
Technologies 

PE74 Melissa 
officinalis 

Leaf Extraction solvent: unknown. 
Extract ratio: 4:1. Composition: 
≥ 1% rosmarinic acid. 

Idunn 
Technologies 

PE75 Hydrastis 
canadensis 

Root Extraction solvent: ethanol 
(75%), water (25%). Extract 
ratio: (5-7):1. Composition: ≥ 
5% berberine and other 
alkaloids. 

Idunn 
Technologies 

PE76 Polygonum 
cuspidatum 

Root Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: ≥ 20% 
resveratrol. 

Idunn 
Technologies 

PE77 Trigonella 
foenum-
graecum 

Seed Extraction solvent: ethanol 
(60%), water (40%). Extract 
ratio: (5-8):1. Composition: 
50% saponins.  

Idunn 
Technologies 

PE78 Berberis 
vulgaris 

Root bark Extraction solvent: ethanol 
(50%), water (50%). Extract 
ratio: (10-12):1. Composition: 
6% berberine.  

Idunn 
Technologies 
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PE79 Crataegus 
monogyna  

Leaf, flower 
and stem 

Extraction solvent: ethanol 
(80%), water (20%). Extract 
ratio: (3-6):1. Composition: 
1.5% flavonoids. 

Idunn 
Technologies 

PE80 Sophora 
japonica L. 

Flower bud 
 

Extraction solvent: water. 
Extract ratio: (16-20):1. 
Composition: 95% quercetin. 

Idunn 
Technologies 

PE81 Taraxacum 
erythrospermum 

Leaf Extraction solvent: ethanol (70-
80%), water (20-30%). Extract 
ratio: (4-7):1. Composition: 3% 
vitexin. 

Idunn 
Technologies 

PE82 NA NA Na-RALA Powder, Sodium R-
lipoate (> 80 % Total R-lipoic 
Acid) from synthesis. 

Idunn 
Technologies 

PE83 Ilex 
paraguariensis 

Whole plant Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: unknown. 

Idunn 
Technologies 

PE84 Vitis vinifera L. Seed Extraction solvent: ethanol, 
water. Extract ratio: unknown. 
Composition: 95% polyphenols. 

Idunn 
Technologies 

PE85 Ganoderma 
lucidum 

Mushroom 
body 

Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: unknown. 

Idunn 
Technologies 

PE86 Panax ginseng Root Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: unknown. 

Idunn 
Technologies 

PE87 Lycium 
barbarum 

Whole plant Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: unknown. 

Idunn 
Technologies 

PE88 Hemerocallis 
fulva 

Flower Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: unknown. 

Idunn 
Technologies 

PE89 Curcuma L. Root Extraction solvent: unknown. 
Extract ratio: unknown. 
Composition: curcumin solid 
lipid microparticles to improve 
absorption.  

Idunn 
Technologies 

      
            To conduct the screen, we exploited a robust clonogenic cell viability assay for measuring 

yeast chronological lifespan (CLS) [63]. In this assay, the wild-type (WT) strain BY4742 was 

cultured in the synthetic minimal YNB medium initially containing 2% (w/v) glucose, as described 

in Materials and Methods. Cells of budding yeast cultured under such non-caloric restriction (non-

CR) conditions are known to age chronologically faster than the ones cultured under CR conditions 

on 0.2% (w/v) or 0.5% (w/v) glucose [25, 26, 42, 63]. 
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            At the time of cell inoculation into the culturing medium, we added each of the assessed 

PEs at a final concentration ranging from 0.02% (w/v) to 1.0% (w/v). We found that PE40, PE41, 

PE44, PE50, PE53, PE66, PE73, PE84, PE86 and PE87 do not affect the mean and maximum CLS 

of WT yeast if exogenously supplemented within this wide range of initial concentrations (Figures 

3.1-3.7). In contrast, PE38, PE43, PE45, PE46, PE48, PE49, PE51, PE52, PE54-PE58, PE60-

PE63, PE65, PE67, PE70, PE71, PE74, PE76, PE80, PE82, PE85, PE88 and PE89 were cytotoxic 

at certain concentrations; they decreased the mean and/or maximum CLS of WT yeast if used at 

the final concentrations in the 0.1 (w/v) to 1.0% (w/v) range (Figures 3.1-3.7). 

            Our screen revealed that fifteen of fifty-three tested PEs statistically significantly increase 

the mean and maximum CLS of WT yeast cultured under non-CR conditions on 2% (w/v) glucose 

(Figures 3.1-3.6; Figures 3.8-3.9). Each of these fifteen PEs extended the longevity of 

chronologically aging WT yeast if used within a specific concentration range and exhibited the 

highest longevity-extending effect at a certain concentration within this range (Figures 3.1-3.6). 

The following PEs exhibited the highest longevity-extending effect under non-CR conditions of 

cell culturing: 0.5% (w/v) PE26 from berries of Serenoa repens (Figures 3.1 and 3.8A), 0.5% (w/v) 

PE39 from aerial parts of Hypericum perforatum (Figures 2.1 and 2.8B), 0.5% (w/v) PE42 from 

leaves of Ilex paraguariensis (Figures 3.1 and 3.8C), 0.3% (w/v) PE47 from leaves of Ocimum 

tenuiflorum (Figures 3.1 and 3.8D), 0.3% (w/v) PE59 from the whole plant of Solidago virgaurea 

(Figures 3.1 and 3.8E), 0.1% (w/v) PE64 from fruits of Citrus sinensis (Figures 3.4 and 3.8F), 

0.5% (w/v) PE68 from the whole plant of Humulus lupulus (Figures 3.4 and 3.8G), 1.0% (w/v) 

PE69 from grape skins of Vitis vinifera (Figures 3.5 and 3.8H), 0.1% (w/v) PE72 from the whole 

plant of Andrographis paniculata (Figures 3.5 and 3.9A), 0.3% (w/v) PE75 from roots of Hydrastis 

canadensis (Figures 3.5 and 3.9B), 0.5% (w/v) PE77 from seeds of Trigonella foenum-graecum 

(Figures 3.6 and 3.9C), 0.3% (w/v) PE78 from root barks of Berberis vulgaris (Figures 3.6 and 

3.9D), 0.5% (w/v) PE79 from leaves, flowers and stems of Crataegus monogyna (Figures 3.6 and 

3.9E), 0.3% (w/v) PE81 from leaves of Taraxacum erythrospermum (Figures 3.6 and 3.9F), and 

0.5% (w/v) PE83 from the whole plant of Ilex paraguariensis (Figures 3.6 and 3.9G). 
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Figure 3.1. PE26, PE39 and PE42, but not PE38, PE40, PE41, PE43 or PE44, increase the 
mean and maximum CLS of WT yeast cultured under non-CR conditions on 2% (w/v) 
glucose. WT cells were cultured in the synthetic minimal YNB medium initially containing 2% 
(w/v) glucose, in the presence of a PE or its absence. The mean and maximum lifespans of 
chronologically aging WT strain cultured under non-CR conditions without a PE or with a PE 
added at various concentrations are shown; data are presented as means ± SEM (n = 6; * p < 0.05, 
** p < 0.01, *** p < 0.001, ns, not significant; the p values for comparing the means of two groups 
were calculated using an unpaired two-tailed t test as described in Materials and Methods). Note 
that PE38 and PE43 can decrease the CLS of WT yeast under non-CR conditions if added at a final 
concentration of 0.5 (w/v) or 1.0% (w/v).  
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Figure 3.2. PE47, but not PE45, PE46, PE48, PE49, PE50, PE51 or PE52, increases the mean 
and maximum CLS of WT yeast cultured under non-CR conditions on 2% (w/v) glucose. 
WT cells were cultured as described in the legend to Figure 2.1. The mean and maximum lifespans 
of chronologically aging WT strain cultured under non-CR conditions without a PE or with a PE 
added at various concentrations are shown; data are presented as means ± SEM (n = 6; * p < 0.05, 
** p < 0.01, *** p < 0.001, ns, not significant; the p values for comparing the means of two groups 
were calculated as described in the legend to Figure 2.1). Note that PE45, PE46, PE48, PE49, PE51 
and PE52 can decrease the CLS of WT yeast under non-CR conditions if added at a final 
concentration ranging from 0.1% (w/v) to 1.0% (w/v).  
 



21 
 

 
Figure 3.3. PE59, but not PE53, PE54, PE55, PE56, PE57, PE58 or PE60, increases the mean 
and maximum CLS of WT yeast cultured under non-CR conditions on 2% (w/v) glucose. 
WT cells were cultured as described in the legend to Figure 2.1. The mean and maximum lifespans 
of chronologically aging WT strain cultured under non-CR conditions without a PE or with a PE 
added at various concentrations are shown; data are presented as means ± SEM (n = 6; * p < 0.05, 
** p < 0.01, *** p < 0.001, ns, not significant; the p values for comparing the means of two groups 
were calculated as described in the legend to Figure 2.1). Note that PE54, PE55, PE56, PE57, PE58 
and PE60 can decrease the CLS of WT yeast under non-CR conditions if added at a final 
concentration ranging from 0.1% (w/v) to 1.0% (w/v).  
 



22 
 

 
Figure 3.4. PE64 and PE68, but not PE61, PE62, PE63, PE65, PE66 or PE67, increase the 
mean and maximum CLS of WT yeast cultured under non-CR conditions on 2% (w/v) 
glucose. WT cells were cultured as described in the legend to Figure 2.1. The mean and maximum 
lifespans of chronologically aging WT strain cultured under non-CR conditions without a PE or 
with a PE added at various concentrations are shown; data are presented as means ± SEM (n = 6; 
* p < 0.05, ** p < 0.01, *** p < 0.001, ns, not significant; the p values for comparing the means 
of two groups were calculated as described in the legend to Figure 2.1). Note that PE61, PE62, 
PE63, PE65 and PE67 can decrease the CLS of WT yeast under non-CR conditions if added at a 
final concentration ranging from 0.1% (w/v) to 1.0% (w/v). 
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Figure 3.5. PE69, PE72 and PE75, but not PE70, PE71, PE73, PE74 or PE76, increase the 
mean and maximum CLS of WT yeast cultured under non-CR conditions on 2% (w/v) 
glucose. WT cells were cultured as described in the legend to Figure 2.1. The mean and maximum 
lifespans of chronologically aging WT strain cultured under non-CR conditions without a PE or 
with a PE added at various concentrations are shown; data are presented as means ± SEM (n = 6; 
* p < 0.05, ** p < 0.01, *** p < 0.001, ns, not significant; the p values for comparing the means 
of two groups were calculated as described in the legend to Figure 2.1). Note that PE70, PE71, 
PE74 and PE76 can decrease the CLS of WT yeast under non-CR conditions if added at a final 
concentration ranging from 0.3% (w/v) to 1.0% (w/v). 
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Figure 3.6. PE77, PE78, PE79, PE81 and PE83, but not PE80, PE82 or PE84, increase the 
mean and maximum CLS of WT yeast cultured under non-CR conditions on 2% (w/v) 
glucose. WT cells were cultured as described in the legend to Figure 2.1. The mean and maximum 
lifespans of chronologically aging WT strain cultured under non-CR conditions without a PE or 
with a PE added at various concentrations are shown; data are presented as means ± SEM (n = 6; 
* p < 0.05, ** p < 0.01, *** p < 0.001, ns, not significant; the p values for comparing the means 
of two groups were calculated as described in the legend to Figure 2.1). Note that PE80 and PE82 
can decrease the CLS of WT yeast under non-CR conditions if added at a final concentration of 
0.5% (w/v) or 1.0% (w/v). 
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Figure 3.7. Neither PE85, PE86, PE87, PE88 nor PE89 can increase the mean or maximum 
CLS of WT yeast cultured under non-CR conditions on 2% (w/v) glucose. WT cells were 
cultured as described in the legend to Figure 2.1. The mean and maximum lifespans of 
chronologically aging WT strain cultured under non-CR conditions without a PE or with a PE 
added at various concentrations are shown; data are presented as means ± SEM (n = 6; * p < 0.05, 
** p < 0.01, ns, not significant; the p values for comparing the means of two groups were calculated 
as described in the legend to Figure 2.1). Note that PE85, PE88 and PE89 can decrease the CLS 
of WT yeast under non-CR conditions if added at a final concentration ranging from 0.3% (w/v) 
to 1.0% (w/v). 
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Figure 3.8. 0.5% (w/v) PE26, 0.5% (w/v) PE39, 0.5% (w/v) PE42, 0.3% (w/v) PE47, 0.3% 
(w/v) PE59, 0.1% (w/v) PE64, 0.5% (w/v) PE68 and 1.0% (w/v) PE69 exhibit the highest 
extending effects on the chronological lifespan (CLS) of wild-type (WT) yeast cultured under 
non-CR conditions on 2% (w/v) glucose. WT cells were cultured in the synthetic minimal YNB 
medium initially containing 2% (w/v) glucose, in the presence of a PE or its absence. In the cultures 
supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% (v/v). In 
the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured 
in the synthetic minimal YNB medium initially containing 2% (w/v) glucose and 2.5% (v/v) 
ethanol. Survival curves (the upper panels in A-H) and the mean and maximum lifespans (the 
lower two panels in A-H) of chronologically aging WT cells cultured without a PE (cells were 
subjected to ethanol-mock treatment) or with a PE (which was added at the concentration optimal 
for CLS extension) are shown. Data are presented as means ± SEM (n = 6). In the upper panels in 
A-H, CLS extension was significant for each of the PEs tested (p < 0.05; the p values for comparing 
each pair of survival curves were calculated using the logrank test as described in Materials and 
Methods). In the lower two panels in A-H, *p < 0.05, **p < 0.01, ***p < 0.001; the p values for 
comparing the means of two in groups were calculated using an unpaired two-tailed t test as 
described in Materials and Methods). Data for mock-treated WT cells are replicated in graphs A-
H of this Figure. Data for WT cells cultured with a PE added at the concentration optimal for CLS 
extension are replicated in Figure 2.1 (for 0.5% (w/v) PE26, 0.5% (w/v) PE39 and 0.5% (w/v) 
PE42), Figure 2.2 (for 0.3% (w/v) PE47), Figure 2.3 (for 0.3% (w/v) PE59), Figure 2.4 (for 0.1% 
(w/v) PE64 and 0.5% (w/v) PE68) and Figure 2.5 (for 1.0% (w/v) PE69). 
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Figure 3.9. 0.1% (w/v) PE72, 0.3% (w/v) PE75, 0.5% (w/v) PE77, 0.3% (w/v) PE78, 0.5% 
(w/v) PE79, 0.3% (w/v) PE81 and 0.5% (w/v) PE83 exhibit the highest extending effects on 
the CLS of WT yeast cultured under non-CR conditions on 2% (w/v) glucose. WT cells were 
cultured in the synthetic minimal YNB medium initially containing 2% (w/v) glucose, in the 
presence of a PE or its absence. In the cultures supplemented with a PE, ethanol was used as a 
vehicle at a final concentration of 2.5% (v/v). In the same experiment, WT cells were also 
subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium 
initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. Survival curves (the upper panels in 
A-G) and the mean and maximum lifespans (the lower two panels in A-G) of chronologically aging 
WT cells cultured without a PE (cells were subjected to ethanol-mock treatment) or with a PE 
(which was added at the concentration optimal for CLS extension) are shown. Data are presented 
as means ± SEM (n = 6). In the upper panels in A-G, CLS extension was significant for each of 
the PEs tested (p < 0.05; the p values for comparing each pair of survival curves were calculated 
using the logrank test as described in Materials and Methods). In the lower two panels in A-G, *p 
< 0.05, **p < 0.01, ***p < 0.001; the p values for comparing the means of two in groups were 
calculated using an unpaired two-tailed t test as described in Materials and Methods). Data for 
mock-treated WT cells are replicated in graphs A-G of this Figure. Data for WT cells cultured with 
a PE added at the concentration optimal for CLS extension are replicated in Figure 1.4 (for 0.1% 
(w/v) PE72 and 0.3% (w/v) PE75) and Figure 2.6 (for 0.5% (w/v) PE77, 0.3% (w/v) PE78, 0.5% 
(w/v) PE79, 0.3% (w/v) PE81 and 0.5% (w/v) PE83).  
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3.2 Each of the fifteen longevity-prolonging PEs mimics longevity extension by CR   

            CR without malnutrition is a low-calorie dietary regimen that extends lifespan in many 

evolutionarily distant organisms and improves healthspan in laboratory rodents and rhesus 

monkeys [17, 26, 64-66]. Certain natural chemicals and synthetic drugs have been shown to elicit 

the CR-like lifespan-extending and healthspan-improving effects even under non-CR conditions 

(i.e., when calorie supply is not limited) [67-72]. These natural and synthetic chemical compounds 

are called CR mimetics (CRMs) if they not only extend longevity under non-CR conditions but 

also if they exhibit three other effects. First, CRMs do not impair food intake. Second, CRMs have 

CR-like effects on metabolism and physiology. Third, akin to CR, CRMs decrease the 

susceptibility to diverse stresses [73, 74]. In the present study, we found that each of the fifteen 

longevity-extending PEs increases yeast CLS under non-CR conditions on 2% (w/v) glucose 

(Figures 3.1-3.6, Figures 3.8 and 3.9). Besides, our recent unpublished data revealed that none of 

the fifteen longevity-extending PEs compromises glucose intake during culturing under these 

conditions. Thus, it seems that all these PEs are CRMs. This conclusion is further supported by 

our observations that each of the fifteen longevity-extending PEs exhibits a CR-like effect on stress 

resistance (see below). 

            Of note, we previously reported that if the CR diet is administered by culturing yeast in the 

YNB medium initially containing 0.5% (w/v) glucose, it significantly increases both the mean and 

maximum CLS of S. cerevisiae [63]. In the present study, we investigated how each of the fifteen 

PEs that extends longevity under non-CR conditions influences the longevity of yeast cultured 

under CR conditions on 0.5% (w/v) glucose. We found that eight of the fifteen PEs that prolong 

the longevity of chronologically aging yeast under non-CR conditions do not increase either the 

mean or the maximum CLS of S. cerevisiae under CR conditions (Figures 3.10 and 3.11). These 

PEs included 0.3% (w/v) PE47 (Figure 3.10D), 0.1% (w/v) PE64 (Figure 3.10F), 1.0% (w/v) PE69 

(Figure 3.10H), 0.1% (w/v) PE72 (Figure 3.11A), 0.3% (w/v) PE75 (Figure 3.11B), 0.5% (w/v) 

PE77 (Figure 3.11C), 0.5% (w/v) PE79 (Figure 3.11E) and 0.3% (w/v) PE81 (Figure 3.11F). It 

seems conceivable, therefore, that each of these eight PEs increases yeast CLS because it 

modulates the same or highly overlapping sets of longevity-defining cellular processes under both 

CR and non-CR conditions. 

            We also revealed that seven of the fifteen PEs that extend yeast longevity under non-CR 

conditions also increase both the mean and maximum CLS of S. cerevisiae under CR conditions 
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(Figures 3.10 and 3.11). 0.5% (w/v) PE26 (Figure 3.10A), 0.5% (w/v) PE39 (Figure 3.10B), 0.5% 

(w/v) PE42 (Figure 3.10C), 0.3% (w/v) PE59 (Figure 3.10E), 0.5% (w/v) PE68 (Figure 3.10G), 

0.3% (w/v) PE78 (Figure 3.11D) and 0.5% (w/v) PE83 (Figure 3.11G)  were among these PEs. 

Therefore, we hypothesize that each of these seven PEs increases yeast CLS under CR conditions 

because it regulates the sets of longevity-defining cellular processes that differ from (or only 

partially overlap with) the ones it modulates under non-CR conditions. 

            We then compared the efficiency with which each of the fifteen PEs increases yeast CLS 

under non-CR conditions to that under CR conditions. Our comparison revealed that each of these 

PEs extends the longevity of chronologically aging yeast under non-CR conditions significantly 

more efficiently than it does under CR conditions (Figure 3.12). This finding shows that each of 

the fifteen PEs is a more effective longevity-prolonging intervention in chronologically aging yeast 

not-limited in calorie supply than it is in yeast placed on a CR diet. 

 

  
Figure 3.10. 0.5% (w/v) PE26, 0.5% (w/v) PE39, 0.5% (w/v) PE42, 0.3% (w/v) PE59 and 
0.5% (w/v) PE68 (but not 0.3% (w/v) PE47, 0.1% (w/v) PE64 or 1.0% (w/v) PE69) extend 
the CLS of WT yeast cultured under CR conditions on 0.5% (w/v) glucose. WT cells were 
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cultured in the synthetic minimal YNB medium initially containing 0.5% (w/v) glucose, in the 
presence of a PE or its absence. In the cultures supplemented with a PE, ethanol was used as a 
vehicle at a final concentration of 2.5% (v/v). In the same experiment, WT cells were also 
subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium 
initially containing 0.5% (w/v) glucose and 2.5% (v/v) ethanol. Survival curves (the upper panels 
in A-H) and the mean and maximum lifespans (the lower two panels in A-H) of chronologically 
aging WT cells cultured without a PE (cells were subjected to ethanol-mock treatment) or with a 
PE (which was added at the concentration optimal for CLS extension under non-CR conditions) 
are shown. Data are presented as means ± SEM (n = 6). In the upper panels in A-C, E and F, CLS 
extension was significant for each of the PEs tested (p < 0.05; the p values for comparing each pair 
of survival curves were calculated using the logrank test as described in Materials and Methods). 
In the lower two panels in A-C, E and F, **p < 0.01, ***p < 0.001; the p values for comparing the 
means of two in groups were calculated using an unpaired two-tailed t test as described in Materials 
and Methods). In the upper panels in D, F and H, CLS extension was statistically not significant 
for each of the PEs tested (the p values for comparing each pair of survival curves were calculated 
using the logrank test as described in Materials and Methods). In the lower two panels in D, F and 
H, ns, not significant; the p values for comparing the means of two in groups were calculated using 
an unpaired two-tailed t test as described in Materials and Methods). Data for mock-treated WT 
cells are replicated in graphs A-H of this Figure and graphs A-G of Figure 2.11. 
 
 

 
Figure 3.11. 0.3% (w/v) PE78 and 0.5% (w/v) PE83 (but not 0.1% (w/v) PE72, 0.3% (w/v) 
PE75, 0.5% (w/v) PE77, 0.5% (w/v) PE79 or 0.3% (w/v) PE81) extend the CLS of WT yeast 
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cultured under CR conditions on 0.5% (w/v) glucose. WT cells were cultured in the synthetic 
minimal YNB medium initially containing 0.5% (w/v) glucose, in the presence of a PE or its 
absence. In the cultures supplemented with a PE, ethanol was used as a vehicle at a final 
concentration of 2.5% (v/v). In the same experiment, WT cells were also subjected to ethanol-
mock treatment by being cultured in the synthetic minimal YNB medium initially containing 0.5% 
(w/v) glucose and 2.5% (v/v) ethanol. Survival curves (the upper panels in A-G) and the mean and 
maximum lifespans (the lower two panels in A-G) of chronologically aging WT cells cultured 
without a PE (cells were subjected to ethanol-mock treatment) or with a PE (which was added at 
the concentration optimal for CLS extension under non-CR conditions) are shown. Data are 
presented as means ± SEM (n = 6). In the upper panels in D and G, CLS extension was significant 
for each of the PEs tested (p < 0.05; the p values for comparing each pair of survival curves were 
calculated using the logrank test as described in Materials and Methods). In the lower two panels 
in D and G, **p < 0.01; the p values for comparing the means of two in groups were calculated 
using an unpaired two-tailed t test as described in Materials and Methods). In the upper panels in 
A-C, E and F, CLS extension was statistically not significant for each of the PEs tested (the p 
values for comparing each pair of survival curves were calculated using the logrank test as 
described in Materials and Methods). In the lower two panels in A-C, E and F, ns, not significant; 
the p values for comparing the means of two in groups were calculated using an unpaired two-
tailed t test as described in Materials and Methods). Data for mock-treated WT cells are replicated 
in graphs A-G of this Figure and graphs A-H of Figure 2.10. 
 
 

 
Figure 3.12. Each of the fifteen PEs extends the longevity of chronologically aging yeast 
under non-CR conditions on 2% (w/v) glucose significantly more efficiently than it does 



32 
 

under CR conditions on 0.5% (w/v) glucose. WT cells were cultured in the synthetic minimal 
YNB medium initially containing 2% (w/v) or 0.5% (w/v) glucose, in the presence of a PE or its 
absence. In the cultures supplemented with a PE, ethanol was used as a vehicle at a final 
concentration of 2.5% (v/v). In the same experiment, WT cells were also subjected to ethanol-
mock treatment by being cultured in the synthetic minimal YNB medium initially containing 0.5% 
(w/v) or 2% (w/v) glucose and 2.5% (v/v) ethanol. The extent to which each of the PE tested 
increases the mean (A) and maximum (B) CLS under non-CR and CR conditions were calculated 
based on the data presented in Figures 2.8-2.11. *p < 0.05, **p < 0.01, ***p < 0.001; the p values 
for comparing the means of two in groups were calculated using an unpaired two-tailed t test as 
described in Materials and Methods.  
 

3.3 Each of the fifteen longevity-prolonging PEs is a geroprotector that decreases both 

the extrinsic and the intrinsic rates of aging in budding yeast  

            Our data allow us to conclude that each of the fifteen longevity-prolonging PEs slows yeast 

chronological aging because it decreases both the extrinsic and the intrinsic rates of aging. This 

conclusion is based on our findings that each of these PEs extends both the mean and maximum 

CLS of yeast (Figures 3.10-3.12). The mean lifespans of evolutionarily distant organisms are 

thought to depend on specific environmental (extrinsic) factors to which cells are exposed before 

they enter the quiescent or senescent state [75, 76-78]. In contrast, the maximum lifespans of 

organisms across species are considered to rely on specific cellular and organismal longevity 

modifiers that operate after cells enter the quiescent or senescent state [75-77, 79, 80]. 

 

3.4 Each of the fifteen geroprotective PEs increases cell resistance to long-term oxidative 

and thermal stresses   

            Genetic, dietary and chemical interventions that decrease cell susceptibility to chronic 

(long-term) oxidative and/or thermal stresses have been shown to decelerate the aging process and 

extend longevity in yeast and other organisms across species [25, 26, 42]. Therefore, we 

investigated the effect of each of the fifteen geroprotective PEs on the susceptibility of 

chronologically aging yeast cells to these two types of chronic stresses.  

            To examine aging-associated changes in cell susceptibility to these long-term stresses, we 

recovered aliquots of yeast cells on days 1, 2, 3 and 4 of culturing under non-CR conditions in 

liquid YNB medium with 2% (w/v) glucose. To assess cell susceptibility to chronic oxidative 

stress, we spotted serial dilutions of these cell aliquots on solid YEP medium with 2% (w/v) 

glucose and 5 mM hydrogen peroxide and incubated them for 3 days. To assess cell susceptibility 
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to chronic thermal stress, we spotted serial dilutions of these cell aliquots on solid YEP medium 

with 2% (w/v) glucose, incubated at 60oC for 60 min, transferred the plates to 30oC and incubated 

at this temperature for 3 days. 

            We found that each of the fifteen geroprotective PEs makes yeast cells more resistant to 

chronic oxidative and thermal stresses, especially cells in ST-phase cultures recovered on days 3 

and 4 (Figures 3.13B and 3.13C, respectively). 

 

 
Figure 3.13. Each of the fifteen geroprotective PEs makes yeast more resistant to chronic 
(long-term) oxidative and thermal stresses. WT cells were cultured in the synthetic minimal 
YNB medium initially containing 2% (w/v) glucose, in the presence of a PE or its absence. In the 
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cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% 
(v/v). In the same experiment, WT cells were also subjected to ethanol-mock treatment by being 
cultured in the synthetic minimal YNB medium initially containing 2% (w/v) glucose and 2.5% 
(v/v) ethanol. Spot assays for examining cell resistance to chronic oxidative (B) and thermal (C) 
stresses were performed as described in Materials and Methods. (A) In control samples, serial 10-
fold dilutions of cells recovered on different days of culturing were spotted on plates with solid 
YEP medium containing 2% (w/v) glucose. All pictures were taken after a 3-d incubation at 30oC. 
(B) In samples subjected to long-term oxidative stress, serial 10-fold dilutions of cells recovered 
on different days of culturing were spotted on plates with solid YEP medium containing 2% (w/v) 
glucose and 5 mM hydrogen peroxide. All pictures were taken after a 3-d incubation at 30oC. (C) 
In samples subjected to long-term thermal stress, serial 10-fold dilutions of cells recovered on 
different days of culturing were spotted on plates with solid YEP medium containing 2% (w/v) 
glucose, incubated at 60oC for 60 min and then transferred to 30oC. All pictures were taken after a 
3-d incubation at 30oC. 
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4 Discussion  

            In search of new aging-delaying (geroprotective) PEs, we screened a library of PEs for 

extracts that can increase yeast CLS. This library includes 53 different PEs of known origin and 

properties. We discovered 15 PEs that extend the longevity of chronologically aging budding 

yeast. The high percentage (i.e., ~ 28%) of geroprotective PEs in this library was not surprising 

because our previous screen of a different set of 35 PEs from the same library led to the 

identification of 6 PEs exhibiting geroprotective effects [63]; thus, the percentage of geroprotective 

PEs discovered in this previous screen was ~ 17%. How to explain such high percentages of 

geroprotective PEs within the same library that was used for both screens? Two important aspects 

of these PEs origin and their geroprotective efficiencies need to be considered. First, it needs to be 

emphasized that the library includes mainly PEs known for their positive effects on human health 

because they have been for centuries used in traditional Chinese and other herbal medicines. 

Furthermore, some PEs from the library have been used in the Mediterranean and other long-

established diets. Second, it is important to note that each of the 15 geroprotective PEs identified 

here extends yeast CLS much more efficiently than any of the 42 individually added geroprotective 

compounds (either synthetic drugs or natural chemicals) known to prolong lifespan in budding and 

fission yeast as well as in other organisms [63]. These other organisms include filamentous fungi, 

nematodes, fruit flies, daphnias, mosquitoes, honeybees, fishes, mammals and cultured human 

cells [63]. Indeed, we found that under non-CR conditions, the 15 geroprotective PEs increase the 

mean and maximum CLS of S. cerevisiae by 140%-445% and 109%–460%, respectively (Figure 

3.12). Furthermore, the 6 geroprotective PEs that were discovered in the previous screen of the 

same library increase the mean and maximum CLS of yeast by 145%–475% and 80%–369%, 

respectively [63]. In contrast, any of the 42 presently known geroprotective compounds is known 

to prolong cellular and/or organismal lifespan in evolutionarily distant eukaryotes much less 

efficiently, within the 5% to 75% range, if it is applied individually [63]. 

            Considering the above two aspects of the origin and longevity-extending efficiencies of the 

15 geroprotective PEs that we discovered here (and of the 6 geroprotective PEs that were found 

earlier in a screen of the same library), we propose the following. It is possible that the high 

percentages of geroprotective PEs within the library used for both screens and the high longevity-

extending efficiencies of these geroprotectors was due to the presence of several geroprotective 

chemical compounds within each of the discovered PEs. We also propose that each of these 
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geroprotective chemical compounds may extend yeast CLS by targeting different signaling 

pathways and cellular processes contributing to longevity assurance in S. cerevisiae. Hence, both 

the high percentages of geroprotective PEs within the same library and the high longevity-

extending efficiencies of these PEs may be caused by the additive or synergistic longevity-

extending effects of the individual geroprotective chemical compounds that are present within each 

of the discovered PEs.  

            A similar idea of the additive or synergistic longevity-extending effects for the mixtures of 

individual geroprotective chemicals was proposed by others [92-96]. The following three multi-

component combinations of several chemical compounds were proposed in these studies as 

therapeutic geroprotective interventions. First, a three-component mixture was proposed. It 

contains epigallocatechin gallate (which is a known activator of cAMP synthesis), N-acetyl-L-

cysteine (which suppresses cell proliferation) and myricetin (which is known for its ability to 

stimulate integrin signaling pathway, DNA repair, cAMP synthesis and hypoxia-responsive 

signaling pathways) [92]. Second, a seven-component mixture of rapalogs (i.e.,  rapamycin and its 

synthetic chemical derivates that directly inhibits the aging-accelerating TORC1 pathway), 

metformin (which stimulates AMP-activated protein kinase (AMPK), a master regulator of 

glucose and lipid metabolism), losartan or lisinopril (both of which are known inhibitors of 

angiotensin II signaling), a statin (atorvastatin, simvastatin or lovastatin, all of which are known 

for their abilities to lower blood cholesterol concentrations), propranolol (which is known as a 

non-cardioselective beta-adrenergic antagonist), aspirin (which inhibits cyclooxygenase) and a 

phosphodiesterase 5 inhibitor, in combination with physical exercise and CR diet or intermittent 

fasting [94, 96]. Third, another three-component mixture was proposed. It includes rapamycin, 

acarbose (which inhibits α-glucosidase) and a cardiolipin-binding peptide [95]. 

            Considering the high longevity-extending efficiencies of all 21 discovered geroprotective 

PEs in budding yeast and the fact that the Health Canada government agency defines 19 of them 

[83] as the ones that are health-improving natural product safe for human consumption (see below 

for more details), it is not unreasonable to think that in the future some of them can be used to 

extend the lifespan and healthspan of humans. For each of them, Health Canada provides a detailed 

description of the source material, routes of administration, doses and dosage forms, uses or 

purposes, durations of use, risk information, cautions and warnings, contraindications, known 

adverse reactions, non-medicinal ingredients, specifications, references cited and reviewed, 
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examples of appropriate dosage preparations, and frequencies of use [83]. The ongoing 

collaboration between the Titorenko laboratory and Idunn Technologies Inc. addresses this 

challenge by investigating which of the discovered geroprotective PEs can increase the replicative 

lifespan of cultured human fibroblasts or improve the health of the ob/ob mice model of type II 

diabetes. 

            Certain natural chemicals and synthetic drugs have been shown to elicit the CR-like 

lifespan-extending and healthspan-improving effects even under non-CR conditions (i.e., when 

calorie supply is not limited) [67-72]. These natural and synthetic chemical compounds are called 

CR mimetics (CRMs) if they not only extend longevity under non-CR conditions but also if they 

exhibit three other effects. First, CRMs do not impair food intake [67-72]. Second, CRMs have 

CR-like effects on metabolism and physiology [97-102]. Third, akin to CR, CRMs decrease the 

susceptibility to diverse stresses [67-72]. Data presented in this Thesis and a recent article from 

the Titorenko laboratory [97] provide evidence that each of the 15 geroprotective PEs satisfies all 

the criteria previously proposed for a CRM. Indeed, each of these PEs increases yeast CLS under 

non-CR conditions on 2% (w/v) glucose and none of them compromises glucose intake during 

culturing under these conditions (this thesis and reference [97]). Furthermore, each of the 15 

geroprotective PEs exhibits CR-like effects on specific aspects of the metabolism and physiology 

of budding yeast [97]. These effects include an increased rate of coupled mitochondrial respiration 

and an altered chronology of changes in intracellular ROS concentrations [97]. ROS are mildly 

toxic cellular molecules known to play essential pro-hormetic roles in regulating the longevity of 

many evolutionarily distant organisms) [97]. These effects also include a decline in the oxidative 

damage to cellular proteins, membrane lipids and mitochondrial DNA [97]. Moreover, each of the 

15 geroprotective PEs makes yeast cells more resistant to long-term oxidative and thermal stresses 

(this thesis), likely because of the above effects of these PEs on intracellular ROS and oxidative 

macromolecular damage.  

            Of note, PE26, PE39, PE42, PE59, PE68, PE78 and PE83 can prolong yeast CLS even 

under CR conditions, when all cellular processes that limit longevity under non-CR conditions are 

likely to be suppressed. Therefore, it is possible that each of these 7 PEs may stimulate the 

longevity-extending cellular processes and/or may suppress the longevity-shortening cellular 

processes that operate only under CR conditions. Moreover, each of these 7 PEs may target both 
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CR-regulated and housekeeping (i.e., not regulated by CR) cellular processes (including cell 

susceptibility to long-term oxidative and thermal stresses).      

            Our goals for the future research of the 15 geroprotective PEs described here are outlined 

below. 

            First, we collaborate with Idunn Technologies Inc. in identifying chemical compounds that 

are responsible for the geroprotective effects of these PEs. Each of the 15 geroprotective PEs has 

already been fractionated with the help of the high-performance liquid chromatography on a C18 

reversed-phase column. We identified individual chromatography fractions capable of a 

statistically significant extension of yeast CLS. Chemical compounds present in these fractions 

will be identified by Idunn Technologies Inc. with the help of tandem mass spectrometry and 

nuclear magnetic resonance spectroscopy. It is possible that some of these chemical compounds 

are present in some (or even all) of the 15 geroprotective PEs, whereas others are unique to a 

particular PE.          

            Second, we are interested in investigating and understanding the molecular and cellular 

mechanisms through which each of these PEs slows yeast chronological aging. We have recently 

described mechanisms underlying the aging-delaying action of PE21 [91], an extract from the 

white willow Salix alba we discovered in our previous screen for geroprotective PEs [63]. 

            Third, we would like to explore how each of the 15 geroprotective PEs may coordinate the 

information flow through a longevity-defining network of signaling pathways and protein kinases 

operating in budding yeast and other organisms. This network incorporates the pro-aging TORC1, 

PKA and PKH1/2 pathways as well as the pro-aging serine/threonine-protein kinase Sch9 [17, 26, 

42, 81]. This network also integrates the anti-aging SNF1 and ATG pathways as well as the anti-

aging serine/threonine-protein kinase Rim15 [17, 26, 42, 81]. Our recent study has revealed that 

each of the 6 geroprotective PEs we discovered in the previous screen [63] slows yeast 

chronological aging through different functional modules of this longevity-defining signaling 

network [81]. Of note, pairwise mixes of these 6 geroprotective PEs slow the process of yeast 

chronological aging in a synergistic or additive manner only if they include the PEs that target 

different modules of this network [82]. Therefore, we are interested in investigating how different 

combinations of the 15 geroprotective PEs described here influence the extent of yeast 

chronological aging delay. We will be looking for the combinations of geroprotective PEs that 

exhibit synergistic or additive effects on the extent of yeast chronological aging delay. 
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