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ABSTRACT

Nelson-Siegel vs. Constant Spread Bond Price Prediction

Martha Zaverdinos

This thesis contributes to the topic of developing methods for bond price pre-

dictions over a time horizon of one to five days. This is done by first representing

yields as a term structure of spot rates by introducing an alternative Nelson-Siegel

model which includes a linearized estimation procedure provided with a new ap-

proach in determining a λ − parameter. We then proceed by comparing this

representation of yields to a flat spread structure across maturities. This is fol-

lowed by applying the latter approaches to the U.S. Treasury, Goldman Sachs and

Verizon Communications during the years 2017 and 2018. In order to assess the

accuracy of bond price predictions, we compare three distinct approaches for the

representation of interest rates and yields. In addition, we want to know if more

complex yield curve modeling provides better price predictions than more naive

approaches.
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1. Introduction

The objective of this thesis is to develop methods for bond price predictions over a time

horizon of one to five days. Government or corporate bonds oblige an issuer to repay a

bondholder borrowed money at a given point in time. The bond issuer makes payments

to the bondholder at a fixed or variable interest rate for a specified period. With respect

to a short time horizon, the prediction of the bond market performance is particularly

very important to issuers of debt as a useful indicator in order to time their issuance and

issue the debt at the right price.

Corporate bond markets have more than doubled in size over the last ten years, reaching

a size exceeding that of the Treasury markets (Ericsson, & Reneby, 2005). During the

years 1997 to 2000, approximately 70% of new capital raised by the U.S. corporations was

in the form of debt.1 Given the corporate bond market growth, modeling and forecasting

the term structure of interest rates are important in financial economics for the reasons of

pricing financial assets and their derivatives, allocating portfolios and managing financial

risk. With concern to all these key challenges, researchers have developed several models

and techniques which involve the dynamic evolution of yield curves (Härdle, & Majer,

2012).

A yield curve is an instrument for portfolio management and for pricing securities (Diebold,

& Li, 2006). It is a functional representation of the relationship between spot rates and

the time to maturity where a spot rate is the yield quoted for immediate settlement at a

given maturity. The yield curve represents the discount rates to a bullet bond maturing

1Retrieved from the Securities Industry and Financial Markets Association at www.sifma.org
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on a given date. The connection between maturities and spot rates is used as the core

assumption when building yield curves. An important tool in the development of financial

theory is the term structure of interest rates where the relationship between rates and

maturity has proved to be critical to market practitioners (Ioannides, 2003).

According to Stojanovic and Vaughan (1997), since yields for bonds of all maturities

change every day due to market fluctuations, the shape of the yield curve is always chang-

ing. In light of this, the process of fitting yield curves is a demanding task. The most

popular approaches of modeling the term structure of interest rates are equilibrium and

no-arbitrage models (Härdle, & Majer, 2012). Longstaff and Schwartz (1992) developed

a two-fractor general equilibrium model of the term structure. They derive closed-form

expressions for discount bonds and study the properties of the term structure implied by

the model. The equilibrium framework provides exact fits to the observed term structure

(Longstaff, & Schwartz, 1992). One of the main contributors to no-arbitrage models are

Hull and White (1990), where they present two one-state variable models of the short-

term interest rate. However, according to Härdle and Majer (2012), both of the above

models do not provide a good predictive performance since forecasting is not the main

goal of these approaches.

Nevertheless, thanks to the econometricians Nelson and Siegel, the related literature pro-

vides an efficient solution to solving the problem of poor predictive performance through

a three-factor latent model (Nelson, & Siegel, 1987). Nelson and Siegel (1987) mention

that the fitting of yield curves date back to at least the first half of the 20th century. The

majority of yield curve models which followed were based on the methodology of multi-

linear regression and spline interpolation. Without being entirely complex and efficient,

these models were able to capture the basic shapes observed in yield curves which include

monotonic, humped and S-shaped (Nelson & Siegel, 1987). The Nelson-Siegel model is

now widely used, mostly as the foundation for other models. Diebold and Li (2006) pro-

posed the Nelson-Siegel curve with time varying parameters which has gained popularity

among financial market practitioners and central banks (Härdle, & Majer, 2012).

Throughout this research, we have used many variations of the Nelson-Siegel model, in-
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troduced by Nelson and Siegel (1987), in order to fit the spot rate curves. In light of

the fact that the Nelson-Siegel model leads to easy estimation and exhibits computa-

tional tractability, both Nelson and Siegel (1987) and Diebold and Li (2006) implement

the Nelson-Siegel model on zero coupon bonds only. Generally, coupon bearing bond

prices differ tremendously from zero coupon bond prices. In order to better deliver for-

ward price trends, all debt securities used must first be converted to zero-coupon bonds.

Gauthier and Simonato (2012) present an alternative approach to estimating the Nelson-

Siegel parameters which relies on linearization where the steps to this alternative model

are implemented on coupon-bearing bonds. Gauthier and Simonato (2012) describe how

the Nelson-Siegel parameter estimation which relies on linearization compares favorably

to the original model which includes shorter computing time.

The structure to this thesis starts with summarizing the data used within the research

described further in Chapter 2. To follow, Chapter 3 breaks down into two main topics.

The first being our initial method which is based on representing the risk-free rates and

spread as a term structure of spot rates. This is done by initially including a detailed

description of the Nelson-Siegel model followed by applying Gauthier and Simonato’s

(2012) linearized estimation procedure to both government and corporate bonds. Fi-

nally, we provide a new insight which introduces our alternative model for determining a

λ−parameter similarly done in Diebold and Li (2006). The second main topic introduces

a method which uses spreads that are idiosyncratic for all securities and flat across ma-

turities compared to a single curve applied to all tenors. We then proceed by comparing

three distinct approaches for the representation of interest rates and yields in Chapter

4. To obtain such predictions, we forecast bond yields instead of prices since the latter

are more stationary. The first two approaches are done by using the two aforementioned

representation of bond yields within our forecasting procedures. Finally, the last approach

involves directly forecasting corporate yields-to-maturity. Although this last approach is

not theoretically sound, it is used only for comparison with the forecasts generated by

sophisticated techniques as in the first two approaches.

Results are then provided in Chapter 5. For both yield curve estimation and price forecast-

ing we compare all approaches among themselves and express our findings via framework

3



of tables and figures with short comments on each. In terms of price forecasting errors, we

take advantage of five forecasting methods. The first method entails a naive benchmark

model with the simple assumption that the best forecast corresponding to the quantity

of interest in subsequent days is its current value. Next we consider two different linear

approaches to model the relationship between the time differences of a process or between

values of a process itself. Finally, similarly to the linear approaches, we implement an

AR(1) model to the time difference of a process or alternatively a process itself. Results

show that constructing a single curve for all bonds is the least favorable. In addition,

modeling the linear relationship of a process through Ordinary Least Squares regression

performs best in comparison to the other four price forecasting methods. Finally, we end

this thesis with Chapter 6, labelled as Conclusion, where we provide a short discussion

on obtained results and put them into wider economical context.
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2. Data

Data used for this research was retrieved by Overbond, an Artificial Intelligence (AI) com-

pany. In this study we employ various variables retrieved from Overbond’s centralized

hub which are pooled from different data sources. The data used was extracted from the

following sources: Trade Reporting and Compliance Engine (TRACE), Bloomberg and

Refinitiv. Firstly, TRACE reports over-the-counter transactions for the eligible fixed-

income securities. Secondly, the Bloomberg Terminal is a computer software system

through which users can monitor and analyze real-time financial market data. Finally,

Refinitiv is a global provider of financial market data and infrastructure.

As the frequency of corporate bond transactions are low, in order to get a reasonably large

sample, we chose bonds that traded daily. In light of this, we use daily traded securities

issued during the years 2017 and 2018 by a multinational American investment bank and

financial services, the Goldman Sachs Group, Inc. All data used includes dates within

January 3rd, 2017 to December 31st, 2018 with a total of 499 trading days. In addition

to the firm data, to implement the Nelson-Siegel model, the risk-free interest rates are

needed in order to discount the cash flows. Therefore, we also use the U.S. Treasury

(UST) daily traded securities during the same dates within the years 2017 and 2018.

The observed data, in both the corporate and Treasury datasets, include the clean daily

closing bid and ask yields-to-maturity, coupon class, coupon frequency, principal amount

(all $100), currency, seniority, instrument type, indicator for convertible bonds, indicator

for callable bonds, issue date and maturity date. When collecting data, bonds that did

not meet the following criteria were excluded from our dataset:
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• Fixed coupons;

• USD currency;

• Unsecured and Senior Unsecured notes and bonds pertaining to the Treasury and

Goldman Sachs datasets respectively;

• Nonconvertible bonds;

• Noncallable bonds;

• Bonds with a total initial amount issued more than $1 million;

• Bonds which are traded on each 499 days previously mentioned;

• Yields-to-maturity below 700 basis points;

• More than 0.5 years between the trade date and the maturity date;

• Bonds that were issued after 1999.

After all data cleaning was applied, a total of 99 UST bonds and 409 Goldman Sachs

bonds were ultimately retained in the final dataset which are traded on every day of the

sample. This being said, the convention used in the current thesis is that the ith bond on

day t is equivalent to the ith bond on day t+ 1.

For each bond traded daily, we use the closing mid yields which are computed as the

average between the clean closing bid and ask yields-to-maturity. Since the bond prices

are not observed, they are computed by using the formula below which is used strictly for

recovering prices as per quoting convention from the data provider Refinitiv:

B =
C

n
× 100×

[
1−

(
1 + Y TM

n

)−nT]
Y TM/n

+ 100

(
1 +

Y TM

n

)−nT

. (2.1)

In (2.1), for each corresponding bond, C represents the coupon rate, n is the coupon

frequency, Y TM is the clean closing mid yield-to-maturity observed on the trade date

and T represents the time in years between the trade date and the maturity date based on

a 365 day-count convention. These computed mid prices correspond to the clean prices.
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In order to obtain a true reflection of the bond value, accrued interest is added to (2.1).

This leads to the prices used within this research and otherwise known as the dirty price.
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3. Term Structure Representation of

Bond Yields

The ultimate objective of this thesis is to obtain price predictions for bonds over a time

horizon of one to five days. According to Bauer and Rudebusch (2017), standard finance

models of the yield curve assume that interest rates are stationary, where the expecta-

tions component of long-term interest rates varies only modestly. Given this, to obtain

predictions, we proceed by forecasting bond yields instead of prices since the latter are

more stationary. The current chapter considers two methods in representing the term

structure of bond yields for such purposes. To begin, the yields are represented as a term

structure of spot rates. Furthermore, spot rates are broken down into a risk-free rate

component and a spread component. Under both methods, the whole term structure of

the risk-free component of spot rates is considered and modeled through treasury securi-

ties. Conversely, the spread component is obtained by using corporate bonds. The first

method decomposes the spread into a term structure, whereas it is idiosyncratic to each

bond in the second method. The second method involves a flat spread across maturities.

To begin, since the datasets used cover multiple days where each day includes a cross-

section of bonds, the price of the ith bond on day t can be defined as

Bi,t =

#τi,t+h∑
j=1

c
(j)
i,t × P (t, τ

(j)
i,t ), (1)

where

P (t, τ
(j)
i,t ) = e−yi(t,τ

(j)
i,t )τ

(j)
i,t . (2)
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The vector τi,t =
(
τ
(1)
i,t , . . . , τ

(mi,t)
i,t

)
represents the times-to-maturity in years correspond-

ing to all remaining cash flows from the bond, where the jth cash flow among these is

denoted c
(j)
i,t , j = 1, . . . ,mi,t and mi,t is the total number of remaining cash flows for the ith

bond in the cross-section of a given day t. In addition, ci,t =
(
c
(1)
i,t , . . . , c

(mi,t)
i,t

)
represents

the vector of cash flows corresponding to the ith bond on day t. Finally, (2) represents the

discount factor2 and yi(t, τ
(j)
i,t ) is the spot rate corresponding to the jth time-to-maturity,

denoted τ
(j)
i,t , of the ith bond3 on day t.

In addition, the times-to-maturity corresponding to each cash flow per bond is obtained

in years by working back from the maturity date of each bond depending on the coupon

frequency. We work backwards in order to compute the timing of cash flows since the last

cash flow is paid on the maturity date.

For the various models considered, a breakdown of the corporate spot rates is viewed by

separation between a risk-free and a spread component denoted as

yi(t, τi,t) = y
(gov)
i (t, τi,t) + y

(spread)
i (t, τi,t).

Within our dataset, the spot rates associated to each unique bond i for all days included

in our sample are not observed and must be obtained through modeling. A two-step pro-

cedure is followed by first obtaining risk-free spot rates, and only then obtaining spreads

based on results from the first step. These steps are done by applying the Nelson-Siegel

model. Since the bonds in our datasets are coupon bearing bonds, we then proceed with

a detailed estimation procedure provided by Gauthier & Simonato (2012) which incor-

porates an estimation relying on linearization. Gauthier & Simonato (2012) show that

the linearized estimation procedure saves on computational time when running a simula-

tion. It is also highlighted by Sundaram & Das (2010) that a problem encountered with

Nelson-Siegel modeling is the possibility of mulitple local optima due to the nonlinearities

in the parameters. In this regard, the possibility of finding several “optimal” solutions is

2The second argument in the discount function P (t, τ
(j)
i,t ) represents the time-to-maturity and not the

maturity date itself.
3Under the first method provided in this section, spot rates are the same for all bonds in a given day

t. Therefore, dependence on i can de dropped for that specific method.
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not uncommon. In light of these issues, we provide a new approach in order to stabilize

our daily Nelson-Siegel paramaters.

3.1 The Nelson-Siegel Model

This section reviews the Nelson-Siegel model in order to fit daily risk-free curves. We first

describe the original Nelson-Siegel base case model introduced by Nelson and Siegel (1987)

and then proceed by illustrating the linearized estimation approach proposed by Gauthier

& Simonato (2012) in order to optimize the curve parmaters. Finally, in comparison to

the approach in Diebold and Li (2006) of fixing the λ parameter to a predetermined value,

we introduce an alternative way in order to optimize bond price predictions.

To begin, the Nelson-Siegel function, which will subsequently be used in diverse ways to

model spot rates, is defined as

y(τ ;θ) = β0 + β1φ1 (τ ;λ) + β2φ2 (τ ;λ) , (3)

where τ is the time-to-maturity expressed in years, θ = (β0, β1, β2, λ) is a vector of

unknown parameters,

φ1 (τ ;λ) = λ
τ

(
1− e

−τ
λ

)
,

and

φ2 (τ ;λ) =
(

λ
τ

(
1− e

−τ
λ

)
− e

−τ
λ

)
.

As described by Gauthier & Simonato (2006), the parameters in θ can be interpreted

through the behavior of φ1 (τ ;λ) and φ2 (τ ;λ) as τ varies. Indeed, as τ → ∞, φ1(·)

and φ2(·) tend to 0, and therefore, y(τ ;θ), tends to β0. Hence, β0 can be viewed as the

long-term factor and the level of the spot rate curve. Using the same methodology as

above, we can conclude that β1 represents the short-term factor and is characterized as

10



the slope of the spot rate curve. Thirdly, β2 represents the medium-term factor and the

curvature of the spot rate curve. Finally, as stated by Diebold and Li (2006), λ governs

the exponential decay rate. Small values for λ produce low decay and can better fit the

curve for larger τ values whereas large values for λ can better fit the curve for smaller τ

values.

3.1.1 Nelson-Siegel Linearized Estimation

Gauthier & Simonato (2012) describe how a Nelson-Siegel parameter estimation which

relies on linearization compares favorably to the original estimation approach which in-

cludes a naive multivariate optimization of paramaters. For the purpose of this work, the

linearization procedure is only used to obtain starting parameters in our optimization.

Gauthier & Simonato (2012) demonstrate that this procedure easily provides acceptable

starting parameters that saves on computational time when running a simulation. To

summarize, once we obtain reasonable starting parameters we then proceed with a nu-

merical optimization, which does not rely on the linear approximation in order to achieve

further accurate results.

As described in Gauthier & Simonato (2012), the Nelson-Siegel price associated to the ith

bond on day t can be defined as

B(ci,t, τi,t;θ) =

#τi,t+h∑
j=1

c
(j)
i,t × P (t, τ

(j)
i,t ;θ), (4)

In comparison to (2), P (t, τ
(j)
i,t ;θ) = e−y(t,τ

(j)
i,t ;θ)τ

(j)
i,t represents the discount factor where the

spot rate y(t, τ
(j)
i,t ;θ) is now a function of the vector of parameters θ = (β0, β1, β2, λ).

For each day t, a separate estimation of paramaters is computed, and therefore we intro-

duce the time-dependent vector of paramaters θt = (β0,t, β1,t, β2,t, λt). Parameters in θt

are estimated by minimizing the weighted average of squared errors for each day t defined

as

11



Q(θt) =
1

N

(
N∑
i=1

[(
B(ci,t, τi,t;θt)− B(obs)

i,t

)
× 1

Di,t

]2)
, (5)

where

Di,t =

 1

B
(obs)
i,t

#τi,t+h∑
j=1

τ
(j)
i,t c

(j)
i,t

(
1 +

Y TMi,t

ni

)−niτ
(j)
i,t

× (1 +
Y TMi,t

ni

)−1

(6)

and N denotes the total number of bonds traded daily. In (6), Di,t represents the modified

duration, B
(obs)
i,t is the observed bond price, Y TMi,t is the yield-to-maturity and ni repre-

sents the coupon frequency4 of the ith bond on day t. According to Gauthier & Simonato

(2012), weighting the prices by inverse durations produces a better fit in spot rates and

decreases the computing time by avoiding the extra numerical work required by the spot

rate conversion. Bonds with higher durations have prices which are more sensitive to its

yield-to-maturity and thus are more likely to produce higher errors. Therefore, in order

to avoid the mean squared error being driven more heavily by this category of bonds, a

weighting by duration is performed.

Gauthier & Simonato (2012) adapt a parameter estimation approach which cuts down the

number of parameters over which a non-linear search must be performed. This approach is

obtained through an approximation of the Nelson-Siegel price in (4). In order to linearize

the discount factor P (t, τ ;θ) = exp {−y(t, τ ;θ)× τ} in (4), Gauthier & Simonato (2012)

incorporate the Taylor approximation defined as ex ≈ 1 + x, where this approximation is

true only if x is in the neighborhood of zero. In this case, x is defined as y(t, τ ;θ) × τ .

Since τ is not in the neighborhood of zero, especially for long maturities, Gauthier &

Simonato (2012) proceed by introducing a parameter ϕ incorporated into the discount

factor which is then rewritten as

P (t, τ ;θ) = exp {−ϕτ} exp {(ϕ− y(t, τ ;θ)) τ} . (7)

In general, the parameter ϕ is meant to represent a proper centering point for our Taylor

4Coupon frequency is represented as number of coupons per year.
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expansion in (7). To successfully linearize the discount function in (4), the expression

(ϕ− y(t, τ ;θ)) τ in the second exponential of (7) must be as close as possible to zero in

order to incorporate the Taylor approximation previously defined. In light of this, Gau-

thier & Simonato (2012) propose to fix ϕ0,t = 1
N

∑N
i=1 Y TMi,t, where Y TMi,t represents

the observed yield-to-maturity of the ith bond on each given day t.

By fixing the parameters ϕ and λ to some values ϕ0 and λ0, the Nelson-Siegel price in (4)

is now of linear form and defined as

B(ci,t, τi,t;θt) =

#τi,t+h∑
j=1

c
(j)
i,t exp

{
−y
(
t, τ

(j)
i,t ;θt

)
τ
(j)
i,t

}
,

=

#τi,t+h∑
j=1

c
(j)
i,t exp

{
−ϕ0τ

(j)
i,t

}
exp

{[
ϕ0 − y

(
t, τ

(j)
i,t ;θt

)]
τ
(j)
i,t

}
.

where the Nelson-Sigel spot rate function, defined in (3), is now linear since λ0 is set as

a fixed value. Finally, the approximated linearized transformation of the Nelson-Siegel

bond price allows for the optimization of the other three paramaters in θ.

As defined in Gauthier & Simonato (2012), Appendix A.1 shows how the linearization

previously introduced leads to an approximate system of the form Yϕ0 = Xϕ0,λ0θϕ0,λ0 +ε,

where ε = > (ε1, . . . , εN) is a vector of error terms and expressions Yϕ0 and Xϕ0,λ0 are

further defined in Appendix A.1.

Finally, given the fixed values for ϕ0 and λ0, the least squares estimator for θϕ0,λ0 is:

θ̂ϕ0,λ0 =
(
XT
ϕ0,λ0

Xϕ0,λ0

)−1
XT
ϕ0,λ0

Yϕ0 ,

where θϕ0,λ0 now depends on parameters ϕ0 and λ0.

As previously mentioned, because this linearized approach relies on an approximation, we

proceed with a full optimization using the parameters θ̂ϕ0 = (β0,ϕ0,λ0 , β1,ϕ0,λ0 , β2,ϕ0,λ0 , λ0)

as initial values which then minimizes the weighted average squared errors in (5). In such
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optimization, bonds are priced in (5) according to their exact formula (4) which does not

rely on linearization. This being said, the optimization used to obtain θ̂ =
(
β̂0, β̂1, β̂2, λ̂

)
,

which is an implementation of that of Nelder & Mead (1965), gives further accurate

results. The above steps are repeated for each day t in order to obtain an optimal set of

parameters, denoted as θ̂t =
(
β̂0,t, β̂1,t, β̂2,t, λ̂t

)
, corresponding to each trading day.

3.1.2 New Approach in Determining a λ-Parameter

When estimating the Nelson-Siegel paramaters using a linearized estimation procedure as

defined by Gauthier & Simonato (2012) and described in Section 3.1.1, the results lead to

daily instability in the paramater estimate λ̂t for each day t. This can be seen in Figure

3.1.1 where each estimated spot rate curve parameter associated to the U.S. Treasury

data are plotted. In light of this, a new approach is applied by using a grid search to

obtain a single fixed optimal λ∗ parameter used for all days within the dataset. In order

to obtain a fixed optimal λ∗, the steps described in Section 3.1.1 are repeated daily as

whole for various fixed values of λ.

To begin, we repeat all steps provided in Section 3.1.1 given a fixed value λj, where

j = 1, 2, . . . , k and k represents the total number of fixed λ values within our grid. With

a fixed value for ϕ0, previously defined as the average observed yields-to-maturity, and

λj, the least squares estimator for θϕ0,λj is

θ̂ϕ0,λj =
(
XT
ϕ0,λj

Xϕ0,λj

)−1

XT
ϕj ,λ0

Yϕ0 ,

Similar to Section 3.1.1, the estimated parameters θ̂ϕ0 =
(
β̂0,ϕ0,λj , β̂1,ϕ0,λj , β̂2,ϕ0,λj

)
, which

now does not include λj since this value stays fixed, are used as initial parameters

and optimized using an implementation of that of Nelder & Mead (1965) to obtain

θ̂ =
(
β̂0, β̂1, β̂2, λj

)
. This is done for each day t using the same fixed λj in order to

obtain the daily parameter estimates denoted as θ̂t =
(
β̂0,t, β̂1,t, β̂2,t, λj

)
.

Finally, we compute the estimated price MSE for all bonds i = 1, . . . , N associated to

each day t as
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MSEλj ,t =
1

N

(
N∑
i=1

[(
B(ci,t, τi,t;θλj ,t)− B

(obs)
i,t

)
× 1

Di

]2)
.

Therefore, given there are T days in the sample dataset, the total estimated price MSE

associated to fixed λj is defined as

MSE
(TOT )
λj

=
1

T

T∑
t=1

MSEλj ,t.

The optimal paramater λ∗ is then defined as

λ∗ = argmin
λj

MSE
(TOT )
λj

,

for all j = 1, . . . , k.

Figure 3.1.1 shows the estimated spot rate curve parameters for the U.S. Treasury data

during years 2017 and 2018. All graphs show a comparison between parameter estimates

using a fixed optimal λ∗ parameter versus a daily optimal λ∗t for each day t. Comparing

both methods, there is minimal change in the level, slope and curvature of the estimated

spot rate curve paramaters. In terms of λ, there is noticeable instability during the year

2018 compared to the constant optimal λ∗ = 3.7. Finally, 85.97% of the daily estimated

price MSE associated to the fixed optimal λ∗ are smaller compared to a daily change in λ.

In light of these results and for stability purposes, we chose to subsequently use a fixed λ

parameter across all days in our dataset which can be selected according to our proposed

methodology in Section 3.1.2.
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Fig. 3.1.1: Estimated spot rate curve parameters associated to U.S. Treasuries 2017-2018

Above plots show a comparison between parameter estimates using a fixed optimal λ∗

versus a daily optimal λ∗t for each day t.

3.2 Nelson-Siegel Spread Curve

A credit spread is the yield differential between a corporate and Treasury bond of the same

maturity. In other words, the amount of adding the spread to one point on the treasury

yield curve represents the discount factor that will make a corporate security’s cash flow

equal to its current market price. This being said, corporate yields are a function of the

risk-free rate defined as

Y TM = rf + S,

where rf represents the risk-free yields and S represents the credit spread. Corporate yield

fluctuations are commonly due to change in firm creditworthiness, demand for investment

within particular markets and economic conditions such as interest rates, inflation, and

economic growth5. The corporate yield fluctuations due to economic conditions indicate

5Retrieved from www.investopedia.com
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that efforts to forecast corporate spot rates may be driven by economic factors that im-

pact Treasury yields where the risk associated to the Treasury yield will affect all the

bonds within the country. Given this, removing the risk-free rate from the firms risk in

order to obtain the credit spread is necessary since it is a key metric to gauge the level of

expense for corporate bonds.

Sections 3.1.1 and 3.1.2 focused on representing yields as a term structure of spot rates.

Applying the steps described in these previous sections on Treasury data leads to the

Treasury spot rate parameters for each day t denoted as θ
(gov)
λ∗,t =

(
β
(gov)
0,t , β

(gov)
1,t , β

(gov)
2,t

)
.

Given these Treasury spot rate parameters, this section focuses on decomposing the credit

spread into term structures of spot rates.

To begin, the Nelson-Siegel estimated corporate bond price is defined as

B(ci,t, τi,t;θ
(gov),θ(spread)) =

#τi,t+h∑
j=1

c
(j)
i,t × P (t, τ

(j)
i,t ;θ(gov),θ(spread)), (8)

where

P (t, τ
(j)
i,t ;θ(gov),θ(spread)) = exp

{
−
[
y(t, τ

(j)
i,t ;θ(gov)) + y(t, τ

(j)
i,t ;θ(spread))

]
× τ (j)i,t

}
.

Equation (18) represents the discount factor which is now a function of the two sets of

paramaters θ(gov) and θ(spread). Since parameters θ
(gov)
λ∗,t , previously described, are already

estimated for each day, the Nelson-Siegel spread parameters are the only values in (8) left

unknown.

The steps involved in the linearization of equation (8), defined in Gauthier & Simonato

(2012), are shown in Appendix A.2. These equations lead again to an approximate system

of the form Y
(corp)
ϕ0 = X̃ϕ0,λ0θ

(spread)
ϕ0,λ0

+ ε, where each component is defined in Appendix

A.2 and ε = > (ε1, . . . , εN) is a vector of error terms. A described in Section 3.1.1, ϕ0 is

fixed to represent the average yields-to-maturity corresponding to a given day t and λ0

represents a fixed arbitrary value. Finally, given the fixed values for ϕ0 and λ0, the least

squares estimator for θ
(spread)
ϕ0,λ0

is
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θ̂
(spread)
ϕ0,λ0

=
(
X̃T
ϕ0,λ0

X̃ϕ0,λ0

)−1

X̃T
ϕ0,λ0

Y(corp)
ϕ0

. (9)

As previously stated in Section 3.1.1, the estimated parameters in θ̂
(spread)
ϕ0,λ0

are then opti-

mized using an implementation of that of Nelder & Mead (1965) to obtain θ̂(spread) which

minimizes the sum of squared errors defined as

Q(θ) =
N∑
i=1

[(
B(corp)(mi, ci, τi;θ

(gov),θ(spread))− B(obs)
i

)
× 1

Di

]2
. (10)

The next steps involve obtaining an optimal λ̃∗ parameter as described in Section 3.1.2.

In order to do so, we apply (9) with λ0 = λj to obtain the estimated parameters

in θ̂
(spread)
ϕ0,λj

where j = 1, 2, . . . , k and k represents the total number of fixed λ values

within our grid. Finally, these estimated parameters are optimized to obtain θ̂(spread) =(
β̂
(spread)
0 , β̂

(spread)
1 , β̂

(spread)
2 , λj

)
which minimizes the sum of squared errors in (10). This

is done for each day t using the same fixed λj in order to obtain the time-dependent

parameter estimates denoted as θ̂
(spread)
t =

(
β̂
(spread)
0,t , β̂

(spread)
1,t , β̂

(spread)
2,t , λj

)
.

This process is continued by computing the estimated price MSE for all bonds i = 1, . . . , N

associated to each day t as

MSE
(spread)
λj ,t

=
1

N

(
N∑
i=1

[(
B(corp)(ci,t, τi,t;θ

(spread)
λj ,t

,θ
(gov)
λ∗,t )− B(obs)

i,t

)
× 1

Di,t

]2)
.

where Di,t is as defined in (6). Finally, given there are T days in the sample dataset, the

optimal parameter λ̃∗ is defined as

λ̃∗ = argmin
λj

{
1

T

T∑
t=1

MSE
(spread)
λj ,t

}
,

for all j = 1, . . . , k.
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3.3 Zero-Volatility Spread

The current section introduces an alternative approach for representing credit spreads.

Contrarily to the previous approach in Section 3.2, which models daily spread curves

applying to all securities of the same issuer, here we use spreads that are idiosyncratic to

each security. The flat structure is being considered in order to avoid over-parametrization

and provide unique solutions to spread determination. By modeling daily spread curves

in the approach of Section 3.2, we are making the assumption that all cash flows of various

securities on a given day are priced using the same set of discount factors which leads

to over- or under-pricing securities, as seen in subsequent sections providing empirical

tests. Various bonds with identical cash flows might be priced differently due for instance

to different bond liquidity. The assumption that all cash flows of various securities on a

given day are priced using the same set of discount factors would not hold anymore for

the current Z-spread representation.

3.3.1 Methodology

The flat spread structure is referred to in practice as the zero-volatility spread (Z-spread)

which measures the spread that an investor will receive over the entire Treasury spot

rate curve of a given day t. It is the Z-spread that makes the price of a security equal

to the present value of its cashflows when added to the yield at each point on the spot

rate Treasury curve where cashflow is received (Yen et al., 2007). In other words, each

cashflow is discounted at the appropriate Treasury spot rate plus the Z-spread. To sum-

marize, in order to calculate the Z-spread, an investor must take the Treasury spot rate

at each relevant maturity, add the Z-spread to this rate, and then use this combined rate

to compute the price of the corporate bond.

Since the correct Z-spread is the one that makes the present value of cashflows equal to

the price of the bond, we may represent the price of the ith bond for a given day t as,

B(corp)
(
ci,t, τi,t;θ

(gov)
λ∗,t , S

(i)
t

)
=

#τi,t+h∑
j=1

c
(j)
i,t × exp

{
−
(
y(t, τ

(j)
i,t ;θ

(gov)
λ∗,t ) + S

(i)
t

)
τ
(j)
i,t

}
. (11)

19



The set of parameters θ
(gov)
λ∗,t are provided by the methodology from Section 3.2 and S

(i)
t

represents the Z-spread for the ith bond on day t. In general, this method allows for

obtaining a set of Z-spreads denoted as S
(i)
t for i = 1, ..., N bonds and t = 1, ...,M days.

Z-spreads may then be computed for all i = 1, ..., N and t = 1, ...,M by using a numerical

solver on

B(corp)
(
ci,t, τi,t;θ

(gov)
λ∗,t , S

(i)
t

)
= B

(obs)
i,t

which is straightforward due to bond prices being a monotonic decreasing function of the

spread.
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4. Price Forecasting

This chapter describes the methodology to construct forecasts of bond prices based on

the approaches summarized in Chapter 3. The first section of this chapter outlines all five

forecasting models considered in this research. The forecasting models are described in a

general format by using an arbitrary time series. Finally, the forecasting models are then

applied to three different representation methods for yields. The first entails forecasting

the treasury and spread curves. This approach relies on the representation of both the

risk-free rate and the spread as a term structure seen in Sections 3.1 and 3.2. The second

approach entails forecasting the Z-spreads, as seen in Section 3.3, followed by forecasting

the corresponding treasury curves as in the first approach. The last being a more naive

approach which involves no curve fitting and depends upon directly forecasting observed

corporate yields-to-maturity.

4.1 Forecasting Models

This section outlines the five forecasting methods used in this research in order to predict

future bonds prices based on their price history. All methods are described in a general

format by using an arbitrary time series process. We start by describing a more naive

benchmark method with the simple assumption that the best forecast corresponding to

the quantity of interest in subsequent days is its current value. Table 4.1 contains the

descriptive statistics associated to the daily change in the estimated Nelson-Siegel pa-

rameters associated to the UST and Goldman Sachs data respectively for years 2017 and

2018. As we could see, according to the standard deviation of all parameters, there is
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very minimal change between days. In light of this, the naive benchmark method might

be thought to be efficient. Next we consider two different linear regression methods to

model the relationship between successive values of the considered process or its time

differences. Finally, we consider a first order autoregressive (AR(1)). Given our interest

in quantifying potential momentum in the market, AR(1) models are typical in such cir-

cumstances. Similarly to the linear methods, we implement an AR(1) model to the time

difference of the process or alternatively the process itself.

Table 4.1: Descriptive statistics and sample autocorrelations of the daily change in esti-
mated U.S. treasury Nelson-Siegel and Goldman Sachs coefficients for 2017 and 2018.

Coefficient ∆β̂0 ∆β̂1 ∆β̂2

U.S. Treasury: Descriptive statistics
Mean 0.03314 -0.01738 0.00033

Std. Dev. 0.00183 0.00853 0.00536
Minimum 0.02920 0-0.03219 -0.01673
Maximum 0.03697 -0.00581 0.01129

U.S. Treasury: Sample Autocorrelations
ρ̂(1) 0.076(0.0895) 0.136(0.0024) 0.015(0.7376)
ρ̂(2) -0.030(0.5029) -0.052(0.2452) 0.047(0.2937)
ρ̂(3) -0.097(0.0302) -0.087(0.0520) 0.021(0.6391)
ρ̂(4) -0.005(0.9108) 0.007(0.8760) 0.006(0.8934)
ρ̂(5) -0.075(0.0939) -0.080(0.0739) -0.036(0.4214)

Goldman Sachs: Descriptive statistics
Mean 0.02126 -0.00549 -0.02534

Std. Dev. 0.00088 0.00558 0.01249
Minimum 0.01942 -0.02583 -0.04179
Maximum 0.02349 0.00241 0.01011

Goldman Sachs: Sample Autocorrelations
ρ̂(1) -0.072(0.1078) -0.047(0.2937) -0.030(0.5029)
ρ̂(2) -0.053(0.2364) -0.016(0.7211) -0.056 (0.2109)
ρ̂(3) 0.060(0.1802) 0.014(0.7534) 0.008(0.8579)
ρ̂(4) 0.009(0.8407) 0.077(0.0854) 0.106(0.0179)
ρ̂(5) -0.045(0.3149) 0.006(0.8934) -0.006(0.8934)

This table contains the mean, standard deviation, minimum value, maximum value and the sam-
ple autocorrelations ρ̂(j) of lag j associated to the daily changes in the Nelson-Siegel estimated
parameters for the U.S. Treasury and Goldman Sachs data respectively for the years 2017 and
2018. In addition, the p-values associated to the sample autocorrelations are in brackets where
they are computed given the assumption that ∆β̂i for i = 1, 2 and 3 are i.i.d. and Gaussian.
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To begin, we define X = {X}Tt=1 to be a arbitrary time series of T discrete observations

X1, X2, . . . , XT with mean µX . In the forecasting models described below, the time series

X will be substituted by the various quantities of interest among the different spot rate

curve representation models.

The first method considered is the naive benchmark method and as previously mentioned,

this method assumes that the best forecast corresponding to the quantity of interest in

subsequent days is its current value. In general, the predicted observation as of time t is

defined as

X̂t,h = Xt,

where h = 1, . . . , 5 is the forecasting day horizon and for t = 1, . . . , T .

Secondly, the first linear approach considered consists of regressing Xt+h on Xt where

t = 1, . . . , T − h. Separate regressions are performed for the various prediction horizons

h = 1, . . . , 5. The predicted observation at time t+ h is then defined as

X̂t,h = γ̂h + α̂hXt, (12)

where γ̂h and α̂h represent estimated ordinary least squared (OLS) linear regression coef-

ficients with respect to the day horizon h.

The third forecasting model considered also involves a linear approach. This model focuses

on regressing the time difference of the process X. In general, this is defined by regressing

Xt+h −Xt on Xt −Xt−1 for t = 1, . . . , T − h with the intercept set to 0. The predicted

observation at time t+ h is then defined as

X̂t,h = Xt + α̃h (Xt −Xt−1) (13)
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where α̃h represents the estimated OLS linear regression slope parameter which depends

on the day horizon h.

The fourth forecasting method consists of implementing an AR(1) model to the process

X. Firstly, µX , defined as the expected value of xt, is estimated by the same mean of all

the observation from time t = 1 to T where its estimated value is denoted as µ̂X1:T
. The

fourth forecasting method is then defined by regressing (Xt − µ̂X1:T
) on (Xt−1 − µ̂X1:T

)

with the intercept set to 0 and for t = 1, . . . , T . Therefore, the predicted observation at

time t+ h is then defined as

X̂t,h = α̂h (Xt − µ̂X1:T
) + µ̂X1:T

, (14)

where α̂ represents the estimated OLS linear regression slope parameter.

Finally, the last forecasting method similarly consists of implementing an AR(1) model but

this time it is implemented on the time difference of the process X. The last forecasting

method is then defined by regressing Vt+1 on Vt, where Vt = Xt − Xt−1 for all t =

1, . . . , T − 1. In general, the predicted observation at time t+ h is defined as

X̂t,h = Xt +
h∑
j=1

V̂t,j, (15)

where

V̂t,j = α̃jVt,

for h = 1, . . . , 5 and where α̃ represents the estimated OLS linear regression slope param-

eter with the intercept set to 0. In addition, when the day horizon h = 1, this forecasting

method coincides with the second forecasting method.

24



4.2 Forecasting Approaches

This section focuses on applying the forecasting methods described in the previous Section

4.1 to three different approaches applied for the representation of interest rates and yields

described in Chapter 3. As earlier described, the first forecasting approach depends on

the representation of both the risk-free rate and the spread as a term structure. The sec-

ond approach requires separately forecasting the Z-spreads. Finally, the last forecasting

approach involves no curve fitting and entails directly forecasting the observed yields-to-

maturity.

To begin, the Nelson-Siegel curve bond price prediction demonstrates our first method-

ology to construct forecasts of bond prices which requires forecasting the treasury and

spread curve parameters. The first step entails replacing the process X in equations

(12) to (15) with each estimated parameter in θ̂
(gov)
λ∗,t =

(
β̂
(gov)
0,t , β̂

(gov)
1,t , β̂

(gov)
2,t

)
and in

θ̂
(spread)
λ∗,t =

(
β̂
(spread)
0,t , β̂

(spread)
1,t , β̂

(spread)
2,t

)
for each day t. This is done in order to obtain the

predicted government and spread parameters on day t+h denoted as θ̃
(gov)
λ∗,t,h,k and θ̃

(gov)
λ∗,t,h,k

respectively for each day horizon h = 1, . . . , 5 and where k = 1, . . . , 5 represents the five

forecasting methods described in Section 4.1. Finally, the predicted bond price on day

t+ h corresponding to the kth forecasting method of the ith bond as of time t is given by

B̂
(corp)
t+h,k (ci,t, τi,t+h; θ̂

(gov)
λ∗,t,h,k, θ̂

(spread)
λ∗,t,h,k ) =

#τi,t+h∑
j=1

c
(j)
i,t exp

{
−
[
yk

(
τ
(j)
i,t+h; θ̂

(gov)
λ∗,t,h,k

)
+yk

(
τ
(j)
i,t+h; θ̂

(spread)
λ∗,t,h,k

)]
× τ (j)i,t+h

}
.

Next, the second approach consists of constructing forecasts of bond prices which requires

forecasting estimated Z-spread contrarily to the previous approach where spread curves

were considered. We first replace the process X in equations (12) to (15) with each

estimated Z-spread S
(i)
t for each day t. This is done in order to obtain the ith predicted

Z-spread as of time t, denoted as Ŝ
(i)
t,h,k where h and k are as previously defined. Finally

the predicted bond price on day t+ h corresponding to the kth forecasting method of the
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ith bond as of time t is given by,

B̃
(corp)
t+h,k (ci,t, τi,t+h; θ̂

(gov)
λ∗,t,h,k, Ŝ

(i)
t,h,k) =

#τi,t+h∑
j=1

c
(j)
i,t exp

{
−
[
y1

(
τ
(j)
i,t+h; θ̂

(gov)
λ∗,t,h,k

)
+ Ŝ

(i)
t,h,k

]
× τ (j)i,t+h

}
,

where the predicted parameter θ̂
(gov)
λ∗,t,h,k is computed using the first forecasting method

previously described.

Finally, the last bond price prediction approach involves directly forecasting observed

yields-to-maturity (Y TM). Spot rate curve modeling is often used in financial theory

including numerous theoretically sound research approaches such as the popular Nelson-

Siegel model. Applying theoretical algorithms in practice might be too complex or com-

plicated. In light of this, we introduce this very simple benchmark which does require any

modeling steps in comparison to the more sophisticated methods from previous sections.

The steps to this naive approach begins by replacing the process X in equations (12) to

(15) with each observed Y TM
(i)
t for each day t. We then obtain the ith predicted Y TM

on day t + h denoted as Ŷ TM
(i)

t,h,k where h and k are as previously defined. Finally, the

predicted bond price on day t+ h corresponding to the kth forecasting method of the ith

bond as of time t is given by,

B̄
(corp)
t+h,k (Ci, ni, Ti,t,h; Ŷ TM

(i)

h,k) =
Ci
ni
×

[
1−

(
1 +

Ŷ TM
(i)

h,k

ni

)−niTi,t,h
]

Ŷ TM
(i)

h,k/ni

+ 100

1 +
Ŷ TM

(i)

h,k

ni

−niTi,t,h

. (16)

In (16), Ci and ni represent the coupon rate in percentage and frequency, respectively,

associated to the ith bond where the sum of discounted coupons are calculated using the

formula for a flat annuity with a constant rate. In addition, Ti,t,h represents the time-to-
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maturity in years computed by the difference between the maturity date and day t+ h of

the ith bond.
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5. Results

This chapter applies the theoretical framework given in Chapters 3 and 4 to the data

described in Chapter 2. We take both U.S. Treasury and Goldman Sachs data, one after

another, and evaluate both fitting and forecasting performance of the approaches previ-

ously described. We will first begin with a short description of the metrics used in order

to measure the precision of our bond price forecasts. The following two sections applies

the Nelson-Siegel curve, Z-spread and naive bond price prediction results corresponding

to the U.S. Treasury and Goldman Sachs data respectively. In addition to the results, we

have included analysis pertaining to the company Verizon Communications where results

are shown in Appendix B.

5.1 Precision Metrics

To begin, as a measure of success, we use two different statistical indicators. The first

precision metric that is used is the Root Mean Square Error (RMSE). RMSE is applied

instead of Mean Square Error (MSE) since the latter will produce results in dollar units

instead of squared dollars. Seeing that our sample datasets include a total of 249 trading

days in 2018, the predicted bond price RMSE is computed as

RMSE
(j)
h =

√√√√√ 1

Nj × 249

249∑
t=1


Nj∑
i=1

(
B̂

(j)
i,t,h(ci,t, τi,t,h)− B

(obs)
i,t,h

)2, (17)

In (17), h = 1, . . . , 5 represents the predicted day horizon, j = 1 represents the data asso-

ciated to the U.S. Treasury and j = 2 represents the data obtained by Goldman Sachs. In
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addition, Nj represents the number of bonds traded daily corresponding to the jth dataset.

The second precision metric used is the Mean Absolute Error (MAE). Although optimiza-

tion is based on the MSE objective function, MAE is still a relevant precision metric given

that it is a more intuitive interpretation of price errors since it does not rely on dollars

squared. Finally, using the same methodology as above, the MAE is computed as

MAE
(j)
h =

1

Nj × 249

249∑
t=1


Nj∑
i=1

∣∣∣B̂(j)
i,t,h(ci,t, τi,t,h)− B

(obs)
i,t,h

∣∣∣
 .

5.2 U.S. Treasury Bond Price Prediction Results

This section summarizes the bond price prediction results obtained by applying the

methodology described in Section 4.1 and 4.3 to the U.S. Treasury data detailed in Chap-

ter 2. We begin by summarizing the estimated spot rates obtained by following the steps

detailed in Section 3.1. This is followed by the bond price prediction results derived by

forecasting the estimated treasury yield curves and comparing this to the naive approach

of directly forecasting the observed UST yields-to-maturity. Note that the Z-spread bond

price prediction methodology described in Section 4.2 cannot be applied to UST bonds

given this approach is only for corporate bonds including a spread component.

We begin by first constructing U.S. Treasury (UST) yield curves pertaining to each trading

day in our sample. This step is done before computing any forecasts. The UST yield curves

are constructed by applying the methodologies described in Section 3.1 to obtain the daily

estimated parameters. The estimated parameters are then input into (3) with respect to

the constant optimal Nelson-Siegel parameter λ∗(UST ) = 3.7. Figure 5.2.1 shows a visual

representation of these estimated spot rates with a 3D plot. We see smoothness in the

evolution of the estimated UST spot rate curves which is consistent with the assumption

that Government bonds are usually viewed as low-risk investments. In addition, Table

5.1 contains the UST spot rate estimates in percentage corresponding to standard tenors

of 1 to 30 years where the sample dates include the first day of every month between

2017-01-03 and 2018-12-31.
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Fig. 5.2.1: 3D plot of the U.S. Treasury estimated spot rate curves for the years 2017 and
2018

Next, Table 5.2 contains the 1 to 5 day horizon UST bond price prediction MSE, with

MAE in brackets, averaged for all dates associated to the trading days in 2018 from our

sample dataset where values are in dollar units over a face value of $100. The rows

correspond to the five forecasting methods previously discussed in Section 4.1. These

forecasting methods include a naive benchmark, two linear methods and two AR(1) models

which both model the relationship between time differences of a time series and on a

time series itself. The table also breaks down into sections associated to two of the

three representation of yield approaches described in Section 4.2. The first approach

includes predicting the Nelson-Siegel estimated parameters and the second approach is

predicting the observed yields-to-maturity. With respect to all forecasting day horizon,

the smallest RMSE of 0.276 and associated MAE of 0.157 arise under the naive benchmark

approach of predicting the observed yields-to-maturity. The results obtained when directly

forecasting the observed yields-to-maturity show greater improvement with respect to

predicting Nelson-Siegel paramaters under all forecasting day horizons. In conclusion,

this implies that the most naive approach described in Section 4.2 performs best.

30



Table 5.1: UST spot rate estimates for years 2017-2018

Date 1-YR 5-YR 7-YR 10-YR 15-YR 20-YR 30YR

2017-01-03 0.8592% 2.0032% 2.3196% 2.6293% 2.9135% 3.0640% 3.2149%
2017-02-01 0.8574% 1.9999% 2.3202% 2.6367% 2.9308% 3.0884% 3.2477%
2017-03-01 1.0473% 2.0541% 2.3461% 2.6414% 2.9240% 3.0795% 3.2391%
2017-04-03 0.9844% 1.9177% 2.2031% 2.5016% 2.7991% 2.9682% 3.1455%
2017-05-01 1.0345% 1.8974% 2.1796% 2.4863% 2.8055% 2.9931% 3.1933%
2017-06-01 1.0820% 1.8190% 2.0737% 2.3589% 2.6647% 2.8483% 3.0467%
2017-07-03 1.1320% 1.9749% 2.2230% 2.4765% 2.7221% 2.8585% 2.9996%
2017-08-01 1.1022% 1.8536% 2.1031% 2.3767% 2.6639% 2.8338% 3.0158%
2017-09-01 1.1472% 1.7903% 2.0195% 2.2799% 2.5634% 2.7355% 2.9223%
2017-10-02 1.2698% 1.9788% 2.2055% 2.4488% 2.6987% 2.8440% 2.9983%
2017-11-01 1.4296% 2.0568% 2.2586% 2.4760% 2.7001% 2.8309% 2.9699%
2017-12-01 1.6415% 2.1467% 2.3045% 2.4718% 2.6410% 2.7383% 2.8410%
2018-01-02 1.7595% 2.2638% 2.4127% 2.5651% 2.7131% 2.7954% 2.8807%
2018-02-01 1.9709% 2.5961% 2.7444% 2.8722% 2.9682% 3.0084% 3.0419%
2018-03-01 2.0612% 2.6152% 2.7629% 2.9036% 3.0280% 3.0914% 3.1535%
2018-04-02 2.1367% 2.5790% 2.6973% 2.8103% 2.9106% 2.9620% 3.0124%
2018-05-01 2.3765% 2.8504% 2.9581% 3.0471% 3.1085% 3.1310% 3.1471%
2018-06-01 2.3417% 2.7838% 2.8858% 2.9713% 3.0322% 3.0557% 3.0737%
2018-07-02 2.4557% 2.7892% 2.8676% 2.9347% 2.9843% 3.0046% 3.0212%
2018-08-01 2.5729% 2.9135% 2.9955% 3.0674% 3.1228% 3.1469% 3.1677%
2018-09-04 2.5859% 2.8192% 2.8897% 2.9628% 3.0351% 3.0759% 3.1185%
2018-10-01 2.7340% 2.9976% 3.0719% 3.1457% 3.2147% 3.2518 % 3.2895%
2018-11-01 2.7825% 3.0107% 3.0989% 3.2028% 3.3199% 3.3926% 3.4725%
2018-12-03 2.8173% 2.8837% 2.9489% 3.0455% 3.1746% 3.2630% 3.3647%

This table contains a sample of the UST spot rates in percentage. The dates from the sample
include the first day of every month from January 3rd, 2003 to December 31st, 2018.

5.3 Goldman Sachs Bond Price Prediction Results

This section summarizes the bond price prediction results obtained by applying the

methodology described in Chapter 4 to the Goldman Sachs data. To begin, we estimate

the Goldman Sachs daily spread yield curves by following the methodology in Section 3.2

along with the estimated Z-spreads as described in Section 3.3. This is followed by obtain-

ing the bond price prediction results derived by forecasting the estimated U.S. Treasury

and Goldman Sachs spread Nelson-Siegel estimated parameters with respect to the day

horizon of interest for all dates within the year 2018. These results are then compared to

the Z-spread approach and to the naive predictions approach which directly forecasts the

observed Goldman Sachs corporate yields-to-maturity.
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Table 5.2: UST average 1-5 day horizon bond price prediction errors for all of 2018.

Forecast Method 1-DAY 2-DAY 3-DAY 4-DAY 5-DAY

Nelson-Siegel Predicted Parameters
Benchmark 0.300 (0.174) 0.404 (0.236) 0.486 (0.282) 0.559 (0.322) 0.628 (0.366)

OLS(1) 0.299 (0.173) 0.399 (0.233) 0.478 (0.277) 0.547 (0.317) 0.612 (0.360)

OLS(2) 0.301 (0.174) 0.404 (0.236) 0.485 (0.281) 0.559 (0.322) 0.627 (0.367)

AR(1)(1) 0.300 (0.175) 0.401 (0.237) 0.482 (0.282) 0.555 (0.324) 0.623 (0.370)

AR(1)(2) 0.301 (0.174) 0.403 (0.236) 0.487 (0.282) 0.560 (0.322) 0.627 (0.365)

Predicted Yields-to-Maturity
Benchmark 0.276 (0.157) 0.384 (0.224) 0.470 (0.270) 0.545 (0.312) 0.615 (0.357)

OLS(1) 0.279 (0.159) 0.390 (0.227) 0.478 (0.276) 0.555 (0.319) 0.625 (0.364)

OLS(2) 0.277 (0.158) 0.387 (0.225) 0.472 (0.271) 0.548 (0.314) 0.618 (0.359)

AR(1)(1) 0.280 (0.160) 0.394 (0.232) 0.485 (0.282) 0.567 (0.328) 0.644 (0.378)

AR(1)(2) 0.277 (0.158) 0.385 (0.225) 0.471 (0.271) 0.546 (0.313) 0.616 (0.358)

This table contains the 1 to 5 day horizon UST bond price prediction RMSE, with MAE in
brackets. The rows correspond to the five forecasting methods previously discussed in Section
4.1. The table also breaks down into sections associated to the three forecasting approaches
described in Section 4.2. In addition, all units are in dollar unit over a bond face value of $100.
(1) Forecast method associated to the process itself.
(2) Forecast method associated to the time differences of the process.

As described in the previous paragraph, we first construct the Goldman Sachs (GS) cor-

porate yield curves pertaining to each trading day in our sample. This step is done

by applying the methodologies described in Section 3.2 along with incorporating the es-

timated UST spot rates. The estimated UST and Goldman Sachs spread parameters

are then inputted into (3) with respect to the constant optimal Nelson-Siegel parameter

λ∗(UST ) = 3.7 and λ∗(GSspread) = 2. Figure 5.3.1 shows us a visual representation of the

estimated Goldman Sachs spread spot rates with a 3D plot. Similarly to Figure 5.2.1, we

see smoothness in the evolution for all 499 trading days between 2017-01-03 and 2018-12-

31.

Once the Goldman Sachs spread yield curves pertaining to each trading day in our sam-

ple are constructed, we move onto the next methodology of estimating the associated

Z-spreads as described in Section 3.3. The estimated Z-spreads are computed by in-

putting the estimated UST Nelson-Siegel paramaters into (11). Figure 5.3.2 contains two

estimated Z-spread times series for the years 2017 and 2018. The first Z-spread time
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Fig. 5.3.1: 3D plot of the Goldman Sachs estimated spread spot rate curves for the years
2017 and 2018

series is associated to a bond with a short maturity, i.e. of 2.8 years on January 3rd, 2017,

whereas the second corresponds to a bond with a long maturity of 28.8 years on January

3rd, 2017. As a result, during the year 2017, the Z-spread time series associated to a

shorter maturity time follows the same pattern in comparison but with higher Z-spread

values. As time progresses, we see that both Z-spread time series merge closer to value

while still keeping a similar pattern to eachother.

Table 5.3 reports the 1 to 5 day horizon Goldman Sachs bond price prediction MSE (and

MAE in brackets) averaged for all dates associated to the trading days in 2018 from our

sample dataset. Similarly to Table 5.2, the rows correspond to the same five forecasting

methods previously discussed in Section 4.1. The table also breaks into sections associated

to all three of the representation of yield approaches described in Section 4.2. The first ap-

proach includes predicting the Nelson-Siegel estimated parameters, the second approach

predicts the estimated Z-spreads and the third predicts the observed yields-to-maturity.

In addition, for all three methods, the same methodology is used for the risk-free rate
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Fig. 5.3.2: Plot of the Goldman Sachs estimated Z-spreads for two bonds during the years
2017 and 2018

(1) Z-spread time series associated to the bond with a maturity time of 2.8 years on January
3rd, 2017.
(2) Z-spread time series associated to the bond with a maturity time of 28.8 years on January
3rd, 2017.

and the spread curves. In comparison to Table 5.2, forecasting both treasury and spread

curves is also the least favorable approach. These results imply that the first methodology

of using a single curve for all bonds of Goldman Sachs might be missing idiosyncraticities

of bonds, which for instance have different liquidity characteristics. Given this, there is a

much bigger difference between this approach and the predicted Z-spreads and predicted

yields-to-maturity approach. In analyzing the last two approaches, the errors associated

to predicting Z-spreads are very similar to those errors associated to predicting yields-

to-maturity. Given the similarities between these two approaches, for all day horizons,

the most favorable results fall under the linear forecasting approach of regressing the

Z-spreads time series with itself. In addition, we have computed the difference between
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the one day horizon predicted prices of two securities for each day in 2018 associated to

the linear forecasting approach of regressing the Z-spreads time series with itself and the

corresponding observed prices. The time series of such prediction errors is provided in

Figure 5.3.3. As we could see, there is an increase in the prediction errors for the security

with a larger time to maturity.

Table 5.3: Goldman Sachs average 1-5 day horizon bond price prediction errors for all of
2018.

Forecast Method 1-DAY 2-DAY 3-DAY 4-DAY 5-DAY

Nelson-Siegel Predicted Parameters
Benchmark 1.627 (1.180) 1.648 (1.193) 1.666 (1.206) 1.687 (1.220) 1.708 (1.234)

OLS(1) 1.627 (1.180) 1.647 (1.193) 1.666 (1.206) 1.688 (1.220) 1.711 (1.236)

OLS(2) 1.627 (1.180) 1.648 (1.193) 1.666 (1.206) 1.687 (1.220) 1.708 (1.235)

AR(1)(1) 1.627 (1.180) 1.647 (1.193) 1.668 (1.207) 1.691 (1.222) 1.715 (1.239)

AR(1)(2) 1.627 (1.180) 1.648 (1.193) 1.666 (1.206) 1.687 (1.220) 1.708 (1.234)

Predicted Z-Spreads
Benchmark 0.308 (0.204) 0.421 (0.290) 0.505 (0.345) 0.584 (0.399) 0.652 (0.451)

OLS(1) 0.306 (0.203) 0.418 (0.290) 0.498 (0.344) 0.574 (0.396) 0.639 (0.449)

OLS(2) 0.308 (0.202) 0.420 (0.289) 0.504 (0.344) 0.583 (0.399) 0.652 (0.453)

AR(1)(1) 0.308 (0.204) 0.420 (0.292) 0.504 (0.348) 0.584 (0.402) 0.654 (0.457)

AR(1)(2) 0.308 (0.202) 0.420 (0.289) 0.504 (0.346) 0.584 (0.399) 0.652 (0.451)

Predicted Yields-to-Maturity
Benchmark 0.308 (0.204) 0.421 (0.290) 0.505 (0.345) 0.584 (0.398) 0.653 (0.452)

OLS(1) 0.311 (0.207) 0.427 (0.296) 0.514 (0.352) 0.595 (0.409) 0.664 (0.465)

OLS(2) 0.307 (0.204) 0.422 (0.290) 0.506 (0.346) 0.585 (0.401) 0.655 (0.455)

AR(1)(1) 0.311 (0.208) 0.430 (0.299) 0.522 (0.359) 0.609 (0.421) 0.688 (0.483)

AR(1)(2) 0.307 (0.204) 0.420 (0.289) 0.504 (0.345) 0.583 (0.399) 0.652 (0.451)

This table contains the 1 to 5 day horizon Goldman Sachs bond price prediction RMSE, with
MAE in brackets. The rows correspond to the five forecasting methods previously discussed
in Section 4.1. The table also breaks down into sections associated to the three forecasting
approaches described in Section 4.2. In addition, all units are in dollar unit over a bond face
value of $100.
(1) Forecast method associated to the process itself.
(2) Forecast method associated to the time differences of the process.
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Fig. 5.3.3: One day horizon prediction error time series associated to the linear forecasting
approach of regressing the Z-spreads time series with itself for two bonds during the year
2018.

(1) Bond price forecasting error associated to the bond with a maturity time of 2.8 years on
January 3rd, 2017.
(2) Bond price forecasting error associated to the bond with a maturity time of 28.8 years on
January 3rd, 2017.

5.4 Verizon Communications Bond Price Prediction

Results

This section includes a short summary on the results associated to the data retrieved

from the company Verizon Communications. After following the data criteria described

in Chapter 2, a total of 23 Verizon bonds were ultimately retained in the final data set

which are traded on everyday of the sample. In comparison to the Goldman Sachs data,
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there are much less Verizon bonds traded daily. Even in the context of scarce data, we

further analyze if the results associated to the Verizon data point in the same direction

as the results obtained from the larger data set of Goldman Sachs.

Table 6.1 in Appendix B reports the 1 to 5 day horizon Verizon Communications bond

price predictions MSE and MAE in brackets averaged for all dates associated to the trad-

ing days in 2018 from our sample data set. Similarly to Tables 5.1 and 5.2, the rows

correspond to the same five forecasting methods previously discussed in Section 4.1. In

addition, the tables break down into the same sections as in Table 5.2 which includes the

three forecasting approaches described in Section 4.2.

To begin, the results obtained from the Nelson-Siegel predicted paramaters approach is

also the least favorable approach. In comparison to the results obtained from Goldman

Sachs, we see that the results from Verizon follow a similar direction with the errors

associated to the predicted Z-spreads and predicted yields-to-maturity being very similar.

For all day horizons, the most favorable approach falls under the results obtained by the

linear forecasting method which consists of regressing the Z-spreads with past Z-spreads

depending on the day horizon of interest. Even though the Verizon Communications data

set consists of less bonds traded daily, we can conclude the results point in the same

direction as the results obtained from the larger data set of Goldman Sachs.
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Table 5.4: Verizon Communications average 1-5 day horizon bond price prediction errors
for all of 2018.

Forecast Method 1-DAY 2-DAY 3-DAY 4-DAY 5-DAY

Nelson-Siegel Predicted Parameters
Benchmark 1.633 (1.230) 1.683 (1.257) 1.727 (1.281) 1.774 (1.309) 1.818 (1.334)

OLS(1) 1.657 (1.250) 1.709 (1.279) 1.761 (1.312) 1.819 (1.349) 1.872 (1.383)

OLS(2) 1.635 (1.231) 1.683 (1.257) 1.726 (1.281) 1.772 (1.307) 1.818 (1.334)

AR(1)(1) 1.661 (1.252) 1.739 (1.304) 1.813 (1.356) 1.886 (1.402) 1.957 (1.448)

AR(1)(2) 1.635 (1.231) 1.683 (1.257) 1.728 (1.281) 1.775 (1.309) 1.818 (1.334)

Predicted Z-Spreads
Benchmark 0.589 (0.413) 0.781 (0.556) 0.912 (0.658) 1.031 (0.739) 1.129 (0.811)

OLS(1) 0.584 (0.408) 0.767 (0.546) 0.888 (0.637) 0.996 (0.710) 1.082 (0.777)

OLS(2) 0.590 (0.412) 0.778 (0.555) 0.907 (0.652) 1.026 (0.732) 1.121 (0.801)

AR(1)(1) 0.585 (0.407) 0.770 (0.546) 0.896 (0.639) 1.010 (0.721) 1.102 (0.790)

AR(1)(2) 0.590 (0.412) 0.778 (0.554) 0.910 (0.656) 1.029 (0.736) 1.123 (0.804)

Predicted Yields-to-Maturity
Benchmark 0.589 (0.413) 0.781 (0.556) 0.912 (0.658) 1.031 (0.739) 1.128 (0.811)

OLS(1) 0.591 (0.417) 0.779 (0.557) 0.907 (0.655) 1.022 (0.735) 1.114 (0.809)

OLS(2) 0.585 (0.411) 0.774 (0.552) 0.908 (0.653) 1.028 (0.737) 1.122 (0.803)

AR(1)(1) 0.591 (0.417) 0.792 (0.567) 0.938 (0.677) 1.071 (0.772) 1.185 (0.864)

AR(1)(2) 0.585 (0.411) 0.773 (0.551) 0.907 (0.652) 1.025 (0.734) 1.121 (0.803)

This table contains the 1 to 5 day horizon Verizon Communications bond price prediction RMSE,
with MAE in brackets. The rows correspond to the five forecasting methods previously discussed
in Section 4.1. The table also breaks down into sections associated to the three forecasting
approaches described in Section 4.2. In addition, all units are in dollar unit over a bond face
value of $100.
(1) Forecast method associated to the process itself.
(2) Forecast method associated to the time differences of the process.
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6. Conclusion

This thesis aims for an overall development of bond price prediction models over a time

horizon of one to five days. The purpose is to test several bond pricing methods including

various forecasting approaches to then compare the performance of each method individu-

ally. Pricing bonds was done by comparing three distinct approaches for the representation

of interest rates and yields. To summarize, the first approach consisted of forecasting the

estimated Nelson-Siegel paramaters which includes a new insight in incorporating a grid

search in order to obtain a fixed optimal λ∗ parameter. The second approach entails

forecasting estimated Z-spreads which incorporates a flat spread structure. The last ap-

proach involves directly forecasting observed yields-to-maturity. In addition to the three

approaches of the representation of yields, five forecasting methods were considered and

used within this research. These methods include a naive benchmark method and two

different linear regression approaches to model the relationship between the time differ-

ences of a time series and between the values of the time series itself. Finally, similarly to

the linear approaches, we implement an AR(1) model to the time difference and between

the values of a time series.

From the results in Chapter 5, the approach of constructing a single curve for all bonds is

the least favorable. These results are consistent with the UST government data and both

Goldman Sachs and Verizon Communications corporate data sets. This implies a lack of

bond liquidity features in pricing by using a single curve across all securities of the same

issuer. We also see that, in comparing the last two approaches of predicting Z-spreads

and yields-to-maturity, the results are very similar and much more superior compared to

constructing yield curves. This being said, modeling the linear relationship through OLS
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regression between past estimated Z-spreads performed best under both corporate issuers.

All this considered, applying theoretical algorithms in practice can be complex or compli-

cated. From the results provided in this thesis, using more simple albeit less theoretically

sound approaches is more efficient than a complex model to predict the evolution of bond

prices using historical data.

In conclusion, it is generally difficult to overperform very naive approaches in order to

predict the evolution of liquid bond prices using only information contained in historical

bond prices over a very short time horizon. Results show that the more naive method

of predicting Z-spreads works best for corporate issuers. In addition, comparing the two

approaches of predicting Z-spreads or yields-to-maturity directly, the results are very sim-

ilar even though directly forecasting observed yields-to-maturity is not fully theoretically

sound due to non-stationarities caused by the modification of cash flow maturities through

time. In addition, for better precision in bond price predictions, additional information

might be needed. For example, information on who is buying or selling the bonds, signals

from the equity market or trade volumes to analyze clusters in bond liquidity could prove

useful. Further research may show how this additional information may be beneficial in

improving bond price prediction accuracy.
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APPENDIX A.1

Linearized Nelson-Siegel model for coupon bonds

To simplify notation in this appendix, the subscript t and i are dropped. To begin, we

introduce a new paramater ϕ to obtain the following coupon bond pricing equation:

B(c, τ ;θ) =
m∑
j=1

c(j)exp
{
−y
(
τ (j);θ

)
× τ (j)

}
,

=
m∑
j=1

c(j)exp
{
−ϕτ (j)

}
exp

{[
ϕ− y

(
τ (j);θ

)]
× τ (j)

}
.

The equation above is then linearized in the second exponential to obtain:

B(c, τ ;θ) ≈
m∑
j=1

c(j)exp
{
−ϕτ (j)

} (
1 + ϕτ (j) − y

(
τ (j);θ

)
× τ (j)

)
,

=
m∑
j=1

c(j)ψ0

(
τ (j)
)
− β0

m∑
j=1

c(j)ψ1

(
τ (j)
)
− β1

m∑
j=1

c(j)ψ2

(
τ (j)
)
− β2

m∑
j=1

c(j)ψ3

(
τ (j)
)

where

ψ0

(
τ (j)
)

= exp
{
−ϕτ (j)

} (
1 + ϕτ (j)

)
, ψ1

(
τ (j)
)

= exp
{
−ϕτ (j)

}
τ (j),
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ψ2

(
τ (j)
)

= exp
{
−ϕτ (j)

}
τ (j)φ1

(
τ (j);λ

)
and ψ3

(
τ (j)
)

= exp
{
−ϕτ (j)

}
τ (j)φ2

(
τ (j);λ

)
.

We could then approximate the bond price with

B̂(c, τ ) =
m∑
j=1

c(j)ψ0

(
τ (j)
)
−β0

m∑
j=1

c(j)ψ1

(
τ (j)
)
−β1

m∑
j=1

c(j)ψ2

(
τ (j)
)
−β2

m∑
j=1

c(j)ψ3

(
τ (j)
)
+ε.

By setting the parameters ϕ and λ to some fixed values ϕ0 and λ0, the above equation

is linear in the other three paramaters β0, β1 and β2. Assuming that N bond prices are

observed during a given day, the bond prices can be rewritten as a linear system with the

N × 1 vectors

X =


1
D1

∑m1

j=1 c
(j)
1 ψ0

(
τ
(j)
1

)
1
D1

∑m1

j=1 c
(j)
1 ψ1

(
τ
(j)
1

)
1
D1

∑m1

j=1 c
(j)
1 ψ2

(
τ
(j)
1

)
...

...
...

1
DN

∑mN

j=1 c
(j)
N ψ0

(
τ
(j)
N

)
1
DN

∑mN

j=1 c
(j)
N ψ1

(
τ
(j)
N

)
1
DN

∑mN

j=1 c
(j)
N ψ2

(
τ
(j)
N

)
 ,

and

Yϕ0 =


1
D1

[∑m1

j=1 c
(j)
1 ψ0

(
τ
(j)
1

)
− B(obs)

1 (c1, τ1)
]

...

1
DN

[∑mn

j=1 c
(j)
N ψ0

(
τ
(j)
N

)
− B(obs)

N (cN , τN)
]
 ,

where Xk represents the kth column and each elements of the system of equations are now

weighted with the inverse of the modified duration.
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APPENDIX A.2

Linearized Nelson-Siegel spread model for coupon
spread bonds

To simplify notation in this appendix, the subscript t and i are dropped. To begin, we

introduce a new parameter ϕ to obtain the following coupon bond pricing equation:

B(corp)(c, τ ;θ(gov),θ(spread)) =
m∑
j=1

c(j)exp
{
−
[
y
(
τ (j);θ(gov)

)
+ y

(
τ (j);θ(spread)

)]
× τ (j)

}
,

Since θ(gov) is a set of parameter that are fixed due to being previously estimated, this

implies that y
(
τ (j);θ(gov)

)
is also known by equation (1) for all j = 1, . . . ,m. Therefore,

let K(j) := c(j)exp
{
−y(gov)

(
τ (j);θ(gov)

)
× τ (j)

}
and we have:

B(corp)(K, τ ;θ(gov),θ(spread)) =
m∑
j=1

K(j)exp
{
−ϕτ (j)

}
exp

{[
ϕ− y

(
τ (j);θ(spread)

)]
× τ (j)

}
.

The equation above is then linearized in the second exponential to obtain:
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B(corp)(K, τ ;θ(spread)) ≈
m∑
j=1

K(j)exp
{
−ϕτ (j)

} (
1 + ϕτ (j) − y

(
τ (j);θ(spread)

)
× τ (j)

)
,

=
m∑
j=1

K(j)ψ0

(
τ (j)
)
− β(spread)

0

m∑
j=1

K(j)ψ1

(
τ (j)
)
− β(spread)

1

m∑
j=1

K(j)ψ2

(
τ (j)
)

− β(spread)
2

m∑
j=1

K(j)ψ3

(
τ (j)
)

where

ψ0

(
τ (j)
)

= exp
{
−ϕτ (j)

} (
1 + ϕτ (j)

)
, ψ1

(
τ (j)
)

= exp
{
−ϕτ (j)

}
τ (j),

ψ2

(
τ (j)
)

= exp
{
−ϕτ (j)

}
τ (j)φ1

(
τ (j);λ(spread)

)
and ψ3

(
τ (j)
)

= exp
{
−ϕτ (j)

}
τ (j)φ2

(
τ (j);λ(spread)

)
.

We could then approximate the bond price with

B̂(corp)(K, τ ) =
m∑
j=1

K(j)ψ0

(
τ (j)
)
− β(spread)

0

m∑
j=1

K(j)ψ1

(
τ (j)
)
− β(spread)

1

m∑
j=1

K(j)ψ2

(
τ (j)
)

− β(spread)
2

m∑
j=1

K(j)ψ3

(
τ (j)
)

+ epsilon.

By setting the parameters ϕ and λ(spread) to some fixed values ϕ0 and λ0, the above equa-

tion is linear in the other three paramaters β
(spread)
0 , β

(spread)
1 and β

(spread)
2 . Assuming that

N corporate bond prices are observed during a given day, the corporate bond prices can

be rewritten as a linear system with the N × 1 vectors
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X̃ =


1
D1

∑m1

j=1K
(j)
1 ψ0

(
τ
(j)
1

)
1
D1

∑m1

j=1K
(j)
1 ψ1

(
τ
(j)
1

)
1
D1

∑m1

j=1K
(j)
1 ψ2

(
τ
(j)
1

)
...

...
...

1
DN

∑mN

j=1K
(j)
N ψ0

(
τ
(j)
N

)
1
DN

∑mN

j=1K
(j)
N ψ1

(
τ
(j)
N

)
1
DN

∑mN

j=1K
(j)
N ψ2

(
τ
(j)
N

)
 ,

and

Y (corp)
ϕ0

=


1
D1

[∑m1

j=1K
(j)
1 ψ0

(
τ
(j)
1

)
− B(obs)

1 (c1, τ1)
]

...

1
DN

[∑mn

j=1K
(j)
N ψ0

(
τ
(j)
N

)
− B(obs)

N (cN , τN)
]
 ,

where X̃k represents the kth column and each elements of the system of equations are now

weighted with the inverse of the modified duration.
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