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Abstract

Deep Learning and Trigonometric Adjustment in Estimation of Lower

Extremity Angles

Pouria Chalangari

An Anterior Cruciate Ligament (ACL) injury can cause a severe burden, especially for
athletes participating in relatively risky sports. This risk raises a growing incentive
for designing injury-prevention programs. For this purpose, for example, the analysis
of the drop vertical jump test can provide a useful asset for recognizing those who
are more likely to sustain knee injuries. Landing Error Score System (LESS) pro-
vides an excellent opportunity to predict the level of vulnerability for each individual
who participates in the drop jump test process. Knee flexion angle plays a key role
within these test scenarios. Multiple research efforts have been conducted on engag-
ing existing technologies such as the Microsoft Kinect sensor and Motion Capture
(MoCap) to investigate the connection between the lower limb angle ranges during
jump tests and the injury risk associated with them. Even though these technologies
provide sufficient capabilities to researchers and clinicians, they need certain levels of
knowledge to enable them to utilize these facilities in an effective manner. Moreover,
these systems demand special requirements and setup procedures, which make them
limiting. Due to recent advances in the area of Deep Learning, numerous powerful
pose estimation algorithms have been developed over the last few years. Having ac-
cess to relatively reliable and accurate 3D body keypoint information can lead to the
successful detection and prevention of injury.

The idea of combining temporal convolutions in video sequences with deep Con-
volutional Neural Networks (CNNs) offers a substantial opportunity to tackle the
challenging task of accurate 3D human pose estimation. Utilizing a fast and accurate
2D pose estimation approach has also enabled us to develop a better and real-time
solution for the problem of 3D knee flexion angle estimation. Using the Microsoft

Kinect sensor as our ground truth, we analyzed the performance of CNN-based 3D

il



human pose estimation and our proposed method based on a CNN-based 2D pose
estimation method in everyday settings. The qualitative and quantitative results are
convincing to give an incentive to pursue further improvements, especially in the task
of lower extremity kinematics estimation. In addition to the performance compari-
son between Kinect and CNN, we have also verified the high-margin of consistency

between two Kinect sensors.
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Chapter 1
Introduction

In this chapter, we begin with the clinical background and the motivation behind
the thesis (Section 1.1). In Section 1.2, we go through the available solutions to
the outlined problem. Then, we briefly explain the objective and organization of the
thesis in Sections 1.3 and 1.4, respectively. We conclude the chapter by mentioning the

paper published as the outcome of the research conducted in the thesis in Section 1.5.

1.1 Clinical Background

1.1.1 Anterior Cruciate Ligament Injury

The importance of lower extremity kinematic analysis can be identified from the
extensive research conducted in sports medicine [1], [2], [3], [4], [5], [6]. The Anterior
Cruciate Ligament (ACL) injury is one of the most common lower limb injuries that
has attracted many researchers and physicians. Twisting or tearing of ACL may
occur due to sudden movements during a game which is categorized as a non-contact
injury [7], [8]. Figure 1 depicts a before and after shot of an ACL injury case.

The unbearable pain caused by a torn ACL and financial burden of rehabilitation
and surgery is inevitable for the patients and athletes suffering from this injury. This
has motivated scientists to design several screening tools and prevention programs to
understand the likelihood of the occurrence of such injuries [10], [11], [12], [13], [14].
The population of women vulnerable to this injury is surprisingly multi-fold compared
to men [10]. Conducting the drop vertical jump test, Hewett et al. [10] studied the

role of knee motion and knee loading in ACL injury risk in women athletes. They
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(a) Before injury (b) After injury

Figure 1: Demonstration of Anterior Cruciate Ligament injury (from [9]).

used lower body 3-Dimensional (3D) joint angles and joint moments as proof of their
hypothesis related to risk factors. Figure 2 illustrates the procedure of conducting the
drop vertical jump test. Initially, the subject is standing straight on top of a box with
a 31lcm height. Then a vertical drop off the box on the force plates happens (initial
contact), followed by a maximum vertical jump. Several data points are collected

during this test.

1.1.2 Landing Error Score System

Research has shown that the Landing Error Scoring System (LESS) is effectively
able to recognize the risk of ACL injury in elite-youth soccer athletes [15], [16], [11].
Through analyzing the Jump-Landing task, this screening tool identifies the athletes
at higher risk of sustaining ACL injury by assigning a risk score. The higher the
score, the more probable that the subject may sustain an ACL injury. Each par-
ticipant is required to conduct three trials of the test to minimize the possibility of
considerable discrepancy in the results. Most of the items involved in the LESS score
are qualitative, and the screening needs to be done offline, meaning an operator has
to monitor the recordings and decide on the outcome of each item in the list. One of
the principal quantitative items in the LESS score is the maximum knee flexion angle
at initial contact. To have a visual clue, Figure 3 depicts the knee flexion angle in a
sagittal plane view. The maximum flexion angle refers to the position where the hip

joint has the minimum vertical distance to the ground.
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Figure 2: An illustration of drop vertical jump test (from [10]).

In a nutshell, we need a way to measure the lower extremity angle to complete

the screening task. Throughout the next section, we try to address this concern.

1.2 Problem Solutions

1.2.1 Gait Analysis

In order to extract 3D kinematics information, gait analysis laboratories could be
used. Tao et al. [18] discussed the use of wearable sensors in gait analysis labs and
their applications in health-related problems, for instance, rehabilitation. These labs
provide their services at prohibitive cost, and the process involves the attachment
of markers, which can take many hours to complete. Traditional Motion Capture
(MoCap) systems are commercially available, which offer accurate and reliable 3D
skeletal tracking. Apart from the high cost, it requires a dedicated lab environment
and complicated camera setup and synchronization. To avoid this complexity and to

have more reachable solutions, we shall look for other options.
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Figure 3: Knee flexion angle (from [17]).

1.2.2 Microsoft Kinect®

The second version of the Microsoft Kinect sensor was released in 2014 for the Xbox
One console. It is an affordable and portable device used for many Computer Vision
applications, coming with an official Software Development Kit (SDK) provided by
Microsoft. Figure 4 presents a Microsoft Kinect Version 2.

Eltoukhy et al. [19] validated the Kinect’s performance in terms of sagittal plane
kinematics by comparing it to a motion analysis system. Their study suggested a
rather acceptable consistency between the two technologies. Others [20], [21] also
assessed the reliability of the Kinect in clinical and sports medicine applications and
confirmed its effectiveness by a negligible deviation from measurements using a Mo-
Cap system.

The ultimate goal of this thesis is to offer a solution that is independent of an extra
hardware setting and only utilizes one simple RGB camera. Ideally, this camera is our
cellphone, which does not require additional utilities, and the tests can be performed

in real-time.

1.2.3 Artificial Neural Networks

Artificial neural networks (ANNs) are systems motivated by the distributed, mas-

sively parallel computation in the brain that enables it to be so successful at complex
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Figure 4: A Microsoft Kinect Version 2

control and recognition/classification tasks [22]. These networks are motivated by the
functionality of the biological neural units, also known as neurons. The combination
of these neurons in a multi-layered structure with specific weights creates an ANNs.
Their main purpose is to learn from experiences (training data) and apply this new
knowledge to a set of unseen data. The capability of modeling non-linear tasks en-
ables these networks to participate in solving many critical problems in numerous
applications. Xiong et al. [23] used Artificial Neural Networks to predict the human
lower extremity joint movement using a limited amount of inputs for training in an

unconstrained manner.

1.2.4 Convolutional Neural Networks

Deep learning discovers intricate structure in large data sets using the backpropaga-
tion algorithm to indicate how a machine should change its internal parameters that
are used to compute the representation in each layer from the representation in the
previous layer [24]. A Convolutional Neural Network (CNN) is a Deep ANN that
has shown superior performance in learning from images, audio, etc., inputs. They
reduce the number of connections and parameters inside the network and apply a
kernel convolution to the input of each layer. CNNs are widely used in Computer
Vision problems, e.g., 3D human pose estimation, which will be discussed in detail

through the rest of the chapters.



1.3 Contributions of the Thesis

In this thesis, we present new approaches to estimate the sagittal-plane knee flexion
angles using CNN-based human pose estimation methods. We chose the work of Cao
et al. [25] (aka, OpenPose) and Pavllo et al. [26] (aka, VideoPose3D) to estimate the
joint positions and then we carry out the angle calculations using these predictions
since it has shown a relatively promising performance on in-the-wild data. We propose
a novel approach of calculating a 3D quantity (knee flexion angle) by combining a
CNN-based 2D pose estimation method (OpenPose) with a trigonometric adjustment
approach. For the purpose of comparison, we also used the Kinect frames as the input
sequence to CNN and Kinect 3D keypoints as the quantitative analysis reference.
Although these methods do not offer the ultimate and the most accurate solution,
they open doors to more robust opportunities. More details are coming through the

next chapters.

1.4 Organization of the Thesis

The thesis is organized in the following order: In Chapter 2, we present the technical
details about Microsoft Kinect. We continue the chapter by reviewing the literature
in human pose estimation and discussing different 2D /3D pose estimation approaches.
Then we talk about the details of OpenPose, Detectron, and VideoPose3D. In Chap-
ter 3, we give an explanation of our data collections using Microsoft Kinect and then,
we introduce our CNN-based approach for knee flexion angle estimation, which we
name DeepLEAD. Chapter 4 is where we evaluate the methods we talked about in
previous chapters, both qualitatively and numerically, by conducting several experi-

ments. Finally, we wrap up the thesis with conclusions and future work in Chapter 5.

1.5 Publication

Part of the research in this thesis is accepted as a full contributed paper named ”3D
Human Knee Flexion Angle Estimation using Deep Convolutional Neural Networks”
to be presented at IEEE EMBC 2020.



Chapter 2
Background and Literature Review

The outline of this chapter begins with a brief introduction to Microsoft Kinect and
some of its technical details in Section 2.1 followed by a quick glance at 2D pose
estimation in Section 2.2. In Section 2.3, we talk about OpenPose, some of its key
features that allow us to choose it as our 2D pose estimation method, along with
its architecture details. We continue the background with introducing Detectron as
the 2D keypoint detection package used by VideoPose3D in Section 2.4. Section 2.5
provides a literature review of 3D pose estimation methods. In Section 2.6, we covered
the basic building blocks of a Recurrent Neural Networks. Section 2.7 explains the
architecture used by VideoPose3D, the concept of temporal convolution, the dataset
preparation and the training procedure of VideoPose3D on Human3.6m dataset. We

conclude the chapter by a summary in Section 2.8.

2.1 Microsoft Kinect®: How Does It Work?

Microsoft Kinect can primarily be used as a motion detector in many applications,
such as physical therapy, Virtual Reality (VR) and gaming, Robotics, 3D reconstruc-
tion, and many more. It contains two separate cameras: RGB and infrared (IR).
Using these two cameras, Kinect is able to dump color, IR, and depth images to a
computer using Microsoft Kinect SDK. Kinect V2, compared to Kinect V1, offers
improved performance and quality, in terms of hardware specifications and sensing

technologies. Figure 5 highlights some of these enhancements. Due to an extension



Feature

Kinect v1

Kinect v2

Depth Sensing Technology

Triangulation
with structured light

Time of flight

Color Image Resolution

640x480 30fps
1280x960 12fps

1920x1080 30fps
(12fps low light)

IR Image Resolution

640x480 30fps

512x424 30fps

Depth Sensing Resolution

640x480 30fps
320x240 30fps
80x60 30fps

512x424 30fps

Field of View

43° vertical
57° horizontal

> 43° vertical
70° horizontal 0

Depth Sensing Range

0.4m - 3m (near mode)
0.8m - 4m (default mode)

0.5m - 4.5m
Up to 8m without skeletonization

Skeleton Tracking
(with full skeleton)

Up to 2 subjects
20 joints per skeleton

Up to 6 subjects
25 joints per skeleton

Built-in Gestures

None

Hand state (open, close, lasso)
Hand pointer controls; lean

Unity Support

Third party

Yes

Face APIs

Basic

Extended massively

Runtime Design

Can run multiple Kinect
sensors per computer;

At most one Kinect per computer;
Multiple apps share

same Kinect
Yes

One app per Kinect
Cannot publish to

Windows Store

Figure 5: A comparison of main features between Kinect V1 and Kinect V2

(from [27]).

of Field of View (FOV), both in horizontal and vertical directions, along with uti-
lizing a higher quality camera has enabled Kinect V2 to achieve better resolution
(1920 x 1080) in a color image. Skeleton tracking capability with full-body skeleton,
as one of Kinect’s major features, tripled in terms of maximum number of subjects it
can detect simultaneously. Kinect V2, in spite of its companion, offers hand pointers
and controls as well.

The technology that Kinect V1 employs to capture depth information is fundamen-
tally different than Kinect V2’s Time-of-Flight (ToF). A structured light technique
that uses an IR emitter and the depth sensor enables Kinect V1 to calculate a pixel-
wise depth map. Figure 6-(a) depicts the details of the triangulation approach in
Kinect V1. Using this method, the distance of an object to the device surface plane
can be estimated.

Kinect V2 uses an IR laser diode that sends modulated signals that are emitted in
a controlled manner with the depth sensor. The depth of each pixel can be calculated

based on the phase shift between the emitted light and the reflected light [27]. As
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demonstrated in Figure 6-(b), a timing generator is responsible for synchronizing
the IR emitter and the depth sensor. For the duration that the IR light is on, the
depth sensor receives both the IR light combined with the ambient light, while in the
period that the IR light is off, the received signal at the depth sensor only contains
the ambient light. By subtracting these two, the remained IR light can be used to
calculate the depth accurately.

Considering these technology changes from one generation to another, the depth
sensing range has shown an approximately 50% improvement in favor of Kinect V2.
Moreover, the quality of the depth image and IR image has experienced a considerable
boost.

2.2 2D Pose Estimation

The process of extracting and detecting pose information from a single image is one
of the most challenging problems in Computer Vision. When this effort leads to a
successful outcome, it can be used in countless other application, from markerless
motion capture to autonomous driving systems, to name a few. This has attracted
many researchers and engineers to work on this task and come up with multiple
solutions.

Toshev et al. [28] used Deep Neural Networks to regress the body joints from im-
ages. As another example of pose estimation methods, a CNN-based hourglass design
was proposed by Newell et al. [29]. CNNs have shown great potential in extracting
numerous patterns in the images and obviously, can achieve superior performances
when it comes to images. The person’s orientation, the arrangement of their limbs,
and the relationships of adjacent joints are among the many cues that are best recog-
nized at different scales in the image [29]. Convolutional Pose Machines (CPMs) [30]
utilize a multi-stage architecture to continuously iterate the process of refining the

confidence maps and offers the position of important pixels in the image (joints).

2.3 OpenPose

OpenPose [25] is a real-time multi-person 2D pose estimation method. OpenPose is an

open-source project that provides the code for Ubuntu, Microsoft Windows, macOS

10



Figure 7: Sample output frame from OpenPose

and Nvidia TX2 Operating Systems. It accepts many types of inputs, e.g., images,
videos, webcam, etc., which can be added to the target project. The output can be in
multiple forms as well. From images/videos overlaid by the 2D skeleton (Figure 7) to
well-known structured data-serialization formats such as json, YAML, and XML, to
name a few. For a better performance, it is better to install the GPU-based version of
the program, rather than the CPU-based one. OpenPose requires CUDA and Caffe,
a deep learning framework made with expression, speed, and modularity in mind [31],
for the GPU-based installation. We used a Dell AlienWare 13-inch laptop with 16GB
of RAM and a GeForce GTX 1060 GPU with 6GB memory, for all of our model
trainings, data collection and simulations.

Apart from the very well-documented repository on Github, it also provides easy-
to-use APIs for C++ and Python. The combination of all the above-mentioned
features and the level of accuracy and speed compared to its rivals have convinced us

to choose OpenPose for our approach.

2.3.1 Network Architecture

In order for the algorithm to detect all the body parts and joints of all the subjects
in the input image, OpenPose introduces Part Affinity Fields (PAFs) for each limb
and confidence maps for each joint. PAFs are a set of 2D vector fields that encode
the location and orientation of limbs over the image domain [25]. The importance of
PAF refinement dominates the body part detection while the goal is to maximize the

accuracy. By eliminating the body part refinement and increasing the network depth,

11



both accuracy and speed improve significantly. Figure 8 demonstrates a sample image

and its corresponding PAFs and confidence maps.

-

(b) Part Confidence Maps

(a) Input Image (c) Part Affinity Fields

Figure 8: Demonstration of PAFs and confidence maps of an input image (from [25]).

To better understand the network architecture of OpenPose, Figure 9 provides a
visualization of different components in that structure. The input to the network, F,
are the feature maps extracted by a VGG-19 [32] CNN with 10-layers.

The refinement process happens over multiple stages, ¢, motivated by the approach
in CPM [30]. Tp and T¢ refer to the total number of PAF and confidence map stages,
respectively. The process of PAF refinement in the blue box needs to reach the Tp
stages, before the L' can be passed to the confidence map stage, in the beige box.
The pink rectangles represent a convolution block with 3 x 3 kernels. At the end of
the process, the network produces L and S sets which contain the PAF of each body
part and keypoint confidence maps of each joint, respectively. By combining these

two sets, we achieve the joint keypoints.

2.4 Detectron

In [26], the task of 3D pose estimation is followed by an initial 2D keypoint detec-
tion that was done by Detectron [33], an off-the-shelf object detection platform that
includes multiple object detection algorithms, e.g., Mask R-CNN [34].

Regardless of the type of the input to the Detectron, i.e., individual frames or
videos, it produces the same results in terms of 2D keypoint detection. It exports the
2D keypoints of each frame into an array, by which we can create a custom dataset

as a reference for 3D keypoint detection.

12
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Figure 9: Multi-stage CNN-based network architecture of OpenPose (from [25]).

Clonvolution Block

Detectron2 is a ground-up rewrite of the previous version, Detectron, and it origi-
nates from Mask R-CNN benchmark [35]. It adds new features, e.g., rotated bounding
boxes, etc., to Detectron. As we do not need those added features and could not spot
meaningful difference in our results after using Detectron2, we decided to keep using
Detectron as the 2D keypoint extractor for VideoPose3D (2.7).

2.5 3D Pose Estimation

In order to have a sense of depth in a single frame, for every pixel, at least two
frame from different angles are required. This is one of the fundamental aspects in
Computer Vision. However, what if we only have one frame and we want to extract
the depth information of each pixel using that frame? For the case of 3D human
pose estimation, we are only interested in the 3D coordinates of each body joint.
The 3D positions of these joints can be regressed either in the camera space or the
world coordinate space. Figure 10 shows a sample frame and its corresponding 3D
reconstructed skeleton in camera space. The 3D positions, in this case, are with
respect to a reference joint.

With the advances of Machine Learning and Deep Learning algorithms, 3D human
pose estimation methods have been extensively developed for dozens of applications.
Due to a limited amount of training data, these tasks are extremely challenging. These
methods can be further sub-categorized based on different approaches and most of

them utilize the abundant potential of Convolutional Neural Networks as their core.

13



Reconstruction

Figure 10: Sample frame overlaid by 2D keypoints from Detectron and its correspond-
ing 3D reconstruction in camera space

The input to these networks could either be a monocular image or a video sequence
and in terms of their method, they could either implement an end-to-end input-to-3D
joints [36], [37], or lifting 2D joint detection to 3D predictions [26], [38], [39], [40],
[41], [42]. Here we provide a quick glance of these works:

e Mehta et al. [36] developed VNECT as a real-time 3D pose estimation method
that directly extracts the joint locations using CNN. They use root relative
joint positions and bone lengths as a control parameter during training and
inference. By the help of 2D heatmaps for each joint, they predict the 3D joint
positions. We have tested this method on our in-the-wild data and could not
achieve reliable and consistent results. Although it is real-time, it does not offer

jitter-free and precise estimations.

e Li et al. [37], without explicitly including any kind of constraints about different
body parts, found a meaningful dependency between them while training their

CNN network. They use two strategies for the training phase:

1. training the network on the task of regression, that was pre-trained on the
task of body part detection.
2. training the network jointly for the task of regression and body part de-

tection using a multi-task framework.

e Zhou et al. [38] proposed a weakly-supervised transfer learning method that

uses mixed 2D and 3D labels in a unified Deep Neural Network that presents
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two-stage cascaded structure [38]. They adopted stacked hourglass network [29]
as part of their 2D pose estimation module. To mitigate the lack of abundant
3D ground truth data for training, they proposed a weakly-supervised algorithm

by incorporating a geometric constraint on 2D labeled training data.

e Martinez et al. [39] used an off-the-shelf 2D pose estimation and tried to lift it
to 3D predictions by using a simple multi-layer Deep Neural Network. Their
network architecture consist of a deep linear block followed by batch normal-
ization, Rectified Linear Unit (ReLU), and a 50% dropout block and this block
is concatenated with its replica to form a bigger block. In this block, there is
a residual connection that inter-connects the input to the first linear block to
the output of this big block. This whole structure is repeated again to finalize
the network design. Due to the simple connections and building blocks, the
authors proved that their work can be used for real-time applications. But the
dependency to the off-the-shelf 2D detector introduces a soft spot to their im-
plementation that can be affected by the probable failures of that 2D detector.

e Tome et al. [40] proposed a complementary approach for 2D and 3D poses.
Their multi-stage method used 2D belief-maps regressed at every stage for each
landmarks (keypoints) and a 3D-to-2D projection to refine the 2D predictions
at every stage. After each stage, they showed that the error rate was decreasing.
Their solution to the problem of insufficient 3D ground truth data was to ignore
some limiting criteria in the process of training. For instance, rather than
imposing a length constraint on each limb, they decided to normalize these
lengths and only considered the sum of squared normalized lengths to be equal
to 1.

e Chen et al. [41] offered to use a separated approach for 2D and 3D poses,
meaning they used an intermediate 2D detector to predict the 3D keypoints.
They mentioned accomplish this 3D detection by exemplar matching. To bet-
ter accomplish the task of matching exemplars to 2D estimations, instead of
introducing an optimization problem, they use a simple warping method which

makes the whole process way easier.

e Pavlakos et al. [42] decided to avoid approaching the pose estimation problem
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Figure 11: Architecture of a traditional RNN (from [43]).

by a 2D-to-3D prediction paradigm. They discretize the area around the sub-
ject to voxels (volumetric pixels) and perform the task of training the network
for predicting a likelihood for each joint, in each voxel. In other words, they
proposed a volumetric method that performs end-to-end training and predic-
tion. They could increase the accuracy by an acceptable margin but since the
probabilistic approach needs to consider all of the voxels for every single joint,

the processing time and computation overhead is inevitable.

Not all the methods above in the bullet points offer a free version of their infer-
ence/training code or trained models. For the ones that do, we tested them on our
in-the-wild data. The reason we decided not to use them relates closely to their poor
and unacceptable performance. In Section 2.7, we specifically go through the selected
method named VideoPose3D from Facebook AI Research (FAIR).

2.6 Recurrent Neural Networks

Recurrent Neural Networks (RNNs), by their nature, are used to model sequential
data. It means that there is some kind of temporal correlation between consecutive
data samples. Speech, text, and video (sequence of frames) are examples of sequential
data. End-to-end training methods such as connectionist temporal classification make
it possible to train RNNs for sequence labelling problems where the input-output

alignment is unknown [44]. Figure 11 depicts the traditional structure for a RNN.
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Figure 12: Fully convolutional 3D pose estimation architecture (from [26]).

The sequence of data is fed to the network, one sample at a time. The current state

is a function of the previous state and the input in the same time frame.

a<t> — g1<Waaa<t71> + Wax33<t> + ba) (1)

y<t> = 92(Wyaa<t> + by) (2)

Equations 1 and 2 define the current state and the current output of the network
in which g; and g are the activation functions of current state and current output
and Weq, Wez, be, and b, are the weights and bias values for the current state and
the current output, respectively.

Since the parameters of the network are shared throughout the time and the
network is able to remember previous inputs (to some extent- not very long time

though), the complexity of the model reduces and the network can handle any input
length [43].

2.7 VideoPose3D

2.7.1 Architecture

The basic network architecture (model and its weights) for the the 2D detector that
we used in our simulations was adopted from Feature Pyramid Networks (FPN) [45],
with ResNet-101 backbone [46] trained on Common Objects in Context (COCO)
dataset [47]. Although employing RNNs alleviates the ambiguity imposed by the two-
stage pose estimation [48], VideoPose3D proves the superiority of the performance of
CNNs over RNNs in handling those difficulties. Plus, CNNs are capable of handling

multi-frame parallel processing, which cannot happen with RNNs.

17



ULULULLL

7\%7@@&
m;z Yefon-Yoyoyey
Tﬂ\’ﬁ*ﬁﬁﬁﬁ{kii‘?

Figure 13: Temporal convolution implementation scheme which maps dilated 2D
keypoints to 3D poses (from [26]).

The combination of residual links (Figure 12) and the dilated temporal convolution
(Figure 13) successfully maintains the long-term information flow which is required
for effective sequence processing in this specific task.

Figure 12 indicates the default number of receptive fields, which is 243 frames.
The green rectangle at the beginning of the first convolution layer denotes 2 x J input
channels, where J refers to the number of joints. Since our 2D detection network is
trained on COCO, we have J = 17. In 3dl, etc., as seen in Figure 12, the kernel
size is 3 and d1 means the convolutions are calculated with dilation equal to 1. And
finally, 1024 denotes the number of channels in the output. This convolution layer
is followed by 1D batch normalization, a Rectified Linear Unit (ReLU) and a 25%
dropout layer. This pattern, with some minor variations, is replicated throughout the
architecture. The tensor dimensions are specified in parentheses. For instance, the
input tensor is of shape 243 (frames) by 34. To comply with the subsequent tensors,

the residual tensors are sliced before being used in the pipeline.

2.7.2 Temporal Convolutions

In Figure 13, the blue skeletons at the bottom depict the 2D keypoints. The dilated
combination of these keypoints are mapped to 3D poses. Since by default, the input to
the system is a video, the temporal characteristic of this video is being used properly

by this convolution scheme.
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2.7.3 Training on Human3.6m Dataset

Human3.6M [49], [50] is one of the most famous datasets in the literature of the human
pose estimation. The models (including 6 males and 5 females) are professional actors.
Usually for training a model, 7 subjects (4 males and 3 females) are used and the rest
of 4 subjects will be considered for the testing phase. Each subject is recorded during
17 different scenarios, e.g., walking, sitting on chair, etc. The whole scene is covered
by 4 calibrated and synchronized digital cameras with known intrinsic parameters.
Recording the video at 50 Hz produces more than 3.6 Million of frames which provides
an extraordinary amount of data for data-hungry tasks like pose estimation. Although
each frame is associated with 24 keypoints in this dataset, since the 2D detector is
trained on COCO (with 17 joints), the camera-space 3D joints in the output of the
architecture contains a flattened 3 x 17 tensor.

In order to make the dataset ready to use, we applied preprocessing and data
re-ordering. For each frame in the sequence, we take the bounding box (determined
by the 2D keypoints found by Detectron) with the highest probability. In case of a
missing bounding box for a frame, an interpolation of keypoints from adjacent frames
will be considered. Data re-ordering only applies to frame inputs, not videos, which
is basically stacking all of the keypoints into a single .npz file.

We trained the 3D network on this dataset with a fine-tuned CNN model as the 2D
detector for 200 epochs. Figure 14 depicts Mean Per Joint Position Error (MPJPE)
as one of the most commonly used evaluation metric in human pose estimation. Per
Joint Position Error is simply the Euclidean distance between the ground truth and
the network prediction.

In Figure 14-(a), the MPJPE is reported for the 2D predictions for each epoch
in meters. As we expected, the error for the labeled training data (blue) is the
lowest one since this is easier than the unlabeled training task. In Figure 14-(b), the
MPJPE is reported for the 3D predictions for each epoch in meters. The final value of
MPJPE always falls below 8cm during training or validation. It is vital to remember
that having the best performance and lowest possible error almost always comes at a
price. This compensation, such as speed, might not be affordable in some applications
that require real-time solutions. Therefore, as long as the validation error is within
the scope of the error tolerance of the problem in-hand, the algorithm remains an

option to be considered.
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By looking at both figures and paying close attention to the validation error levels,
it is notable that the final MPJPE for the 3D predictions is almost 4 times the MPJPE
for the 2D predictions. This is, again, compatible with theoretical concepts. The task
of the 3D pose estimation is always harder that the 2D pose estimation, therefore it

is more error-prone.

2.8 Summary

In this chapter, we covered a wide range of background materials, from details about
Microsoft Kinect to 2D/3D pose estimation methods. We reviewed multiple 3D hu-
man pose estimation methods in which the 3D keypoints can either be extracted
directly from an input image or by lifting an initial 2D detection to 3D estima-
tion. Although these methods offer rather acceptable performances but almost all of
them not only require power-intensive hardware with considerable amount of RAM
and GPU but they compromise the running time and cannot be used for real-time
applications (like lower extremity angles). On the other hand, 2D pose estimation
algorithms offer much simpler solutions in terms of CNN network architecture and
run-time delays. Using one of these methods as the base to our proposed algorithm,
we want to mitigate the need for sophisticated implementations and methods while
avoiding losing significant performance and accuracy. Through the coming chapter,
we try to address this issue by presenting our new approach and conducting several

experiments to back its empirical feasibility.
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Figure 14: MPJPE for VideoPose3D training and validation
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Chapter 3

Methods and Algorithms

In this chapter, we provide some details about the data collection procedure using
Microsoft Kinect V2 (Section 3.1). Then, we introduce the methods we want to eval-
uate in the next chapter (Section 3.2). In Section 3.3, we explain the details of our
proposed method using OpenPose as the basic component combined with trigono-
metric adjustments. We summarize DeepLEAD in an algorithm representation in
Section 3.4. Finally, we conclude the chapter and summarize the findings in Sec-
tion 3.5.

3.1 Data Collection using Microsoft Kinect

In order to evaluate the methods and algorithms on our own in-the-wild data, we
need to have a unified method of data collection to create unbiased results. Using
a Microsoft Kinect V2 sensor, we exported RGB and 3D skeleton keypoints with a
single person standing in the middle of the scene in an indoor configuration. The
toolbox can be found in [51]. The RGB frames from the Kinect were affected by
radial distortion imposed by the Kinect RGB camera’s intrinsic characteristics. This
distortion somehow affects the performance of the CNN on in-the-wild data (also
mentioned by Pavllo et al. [26] in paper’s Github repository) since it should infer the
depth information from these distorted frames. Kim et al. [52] designed an experi-
ment to estimate the Kinect’s intrinsic parameters. As these intrinsic parameters are
completely dependent on the physical structure of the lens, the parameters slightly

change from one camera to another. In order to investigate this, we used two sets
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of parameters from two different Kinect and the effect on the 3D estimations were
negligible. As we mentioned earlier, the CNN was trained on Human3.6M dataset
which contains 50 frames per second (fps) videos. To avoid performance degradation,
these undistorted frames from the Kinect were converted to a sequence data with the
same frame rate.

It is worth mentioning that the Kinect toolbox that we used outputs each joint’s
information in different coordinate systems. In our case, the origin is considered to
be the IR laser diode. Considering Figure 4, x and y unit vectors are in parallel with
the sensor’s plane and z increases in the direction the Kinect is faced. All of these
values are exported in meters. Generally, since our goal is to estimate a 3D angle
that is calculated using 3D points relative to the system’s origin, it does not matter
which coordinate system we consider as the reference.

During the data collection process, the subject performs kneeling and standing
up several times. The amount of displacements towards or away from camera (z
direction) is always maintained to be negligible compared to the subject’s distance
from the sensor (almost 15 times smaller). This enables us to impose a fundamental
assumption we make in Section 3.3 on the length of lower limbs (femur and tibia).
To clarify this, suppose the subject is standing in a reference location. The closer
she/he gets to the camera, the larger become the length of lower limb vectors, and
vice versa. Therefore, this controlled movement needs to be considered during the

data collection.

3.2 Methods

In previous chapter, we introduced two CNN-based pose estimation methods. Open-
Pose offers a highly-reliable 2D pose estimation with great documentation and code
support. In Section 3.3, we come up with a novel algorithm that utilizes OpenPose
as a companion to predict the 3D angles. VideoPose3D, on the other hand, provides
a 3D keypoint detection that can be used to calculate the 3D angle that should be
estimated.

In brief, we evaluate two methods in Chapter 4:

1. VideoPose3D

2. Using OpenPose and trigonometric adjustments (Section 3.3)
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3.3 Our Approach

In this section, our goal is to overlay the steps we took to calculate 3D angles using
OpenPose and trigonometric adjustments. We have introduced OpenPose in previous
chapter. OpenPose only provides us the value of 2D coordinates. Figure 15 shows
a sample sketch of a knee flexion angle. To make the explanation process easy, we
index the 3D hip, knee, and the ankle joints as h, k, and a, respectively.

In order to calculate the angle between two 3D space vectors, we need to use
Equation 3, where f (Equations 4), t (Equation 5), Iy (Equation 6) and /; (Equation 7)
represent the 3D femur vector, 3D tibia vector, femur vector’s length and tibia vector’s

length, respectively.

0= arccos(ﬁ)

o 3)
_ arccos<($k —zp) (@0 — 1) + (Yo — yn) Wa — i) + (26 — 21) (20 — Zk))
_ o
F=(@x —21), (e — yn), (2 — 21)] (4)
t = [(va — 1), Ya — Uk), (20 — 21)] (5)
lp =/ (zk — 2n) + (Y — yn)2 + (2 — 2)? (6)
b=V (T — 26)2+ Yo — Y)> + (20 — 21)? (7)

At the beginning of the calculations using OpenPose, we suppose that the target
is standing straight in front of the camera (which is the case in a drop vertical jump
test). With this assumption, all of the joints have the same value of z and Equations 6

and 7 reduce to Equations 8 and 9, respectively.

Iy =V (6 — 2)? + (Y — yn)? (8)
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Figure 15: Knee flexion angle and the corresponding point and vector definitions from
sagittal plane view. Figure corresponds to knee joint shown in Figure 3.

Now, we have [; and [, and we can use these values for the next frames. In the
case of our drop vertical jump test, the subject gets closer to the camera by a very
small amount (with respect to the distance to the camera, which is at least 3 meters
in our experiments) and assuming the length of femur and tibia to be the same for the
rest of the frames does not affect the results. This assumption is backed by several
tests we conducted.

For the next frame, the only unknown quantities in Equation 3 are the differences
in the depth information. Therefore, we rearrange Equations 6 and 7 and calculate

these depth differences. Note that, for every frame, we have the values of x and y.

(2x — 2n) \/lf (zr — on)? = (Yr — yn)? (10)

— 2k) \/l2 — )% — (Yo — Yr)? (11)
Both values of depth differences in Equations 10 and 11 are considered to be
positive. These quantities, despite the depth values in Kinect which are estimated
from the sensor to the subject, are in camera space. It means that we only care about
the absolute value of the depth difference and use them in Equation 3 to estimate the
angle. To verify this, we considered one of the values in Equations 10 and 11 to be
negative. This change affects the results of the experiments in an unacceptable and
wrong manner, meaning that these depth differences are always positive.
And finally, we can now use Equation 3 and calculate the knee flexion angle for

each leg. Once again, we should mention that the initial estimated length for femur
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Algorithm 1: DeepLEAD

1 Input: A sequence of frames or a video with total number of N frames
2 Output: N x 2 array containing knee flexion angles of both legs

3 N json files containing 2D keypoints <— OpenPose

4 angles < zeroes(N, 2)

5 frame <0

6 for each json file do

7 | OpenPoseData(frame,:,:) < (6 x 2) keypoints

8 if (frame = 0) then

9 ‘ 2DLengths <— 2D limb lengths

10 else

11 calculate DepthDifferences

12 angles < calculate angles using DepthDifferences and 2D Lengths
13 end if

14 frame < frame + 1
15 end for

and tibia is used for all the respective frames. This procedure is applied to both legs

separately.

3.4 DeepLEAD

In Section 3.3, we explained an approach by which we employed the 2D keypoints
extracted by a deep learning method and using some trigonometric adjustments,
we could estimate the lower extremity angle (knee). We name this algorithm as
DeepLEAD, in which the first half, Deep, indicates the Deep Learning backbone of
the algorithm (OpenPose). The second half, LEAD, stands for Lower Extremity Angle
Determination.

Using this novel approach is totally effective and the reason for that is three-fold.
First, we are using a 2D pose estimation method (OpenPose) that is very robust and
extremely powerful. It can easily be used for real-time applications (like our problem)
and it does not require exhaustive hardware and processing backbone. Second, the
simple trigonometric-based idea behind projecting the 2D information into a 3D angle
is quite easy to digest and comprehend. And finally, we can use a straightforward
code to implement it in Python.

Algorithm 1 summarizes the steps in DeepLEAD. As the algorithm indicates,
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the input is the image sequence, which comes from Kinect in our case. In general,
the input images could be from any source, e.g., webcams or smartphone cameras.
Following the procedure, we will have an array of size N x 2, in which N refers to the
number of total frames in the sequence. This array contains the knee flexion angles
of the right and left legs, estimated by DeepLEAD, for every single input frame. The
6 x 2 keypoints in line 6 refers to the 6 lower extremity keypoints, each having 2
coordinates (x,y).

In Algorithm 1, after deriving the 2D keypoints from OpenPose in line 3, the rest
of the algorithm contains what we propose as the novelty and our contribution to
the problem. The for loop in line 6 performs all the processing on each json file
separately and saves the estimated angles in the appropriate array. This procedure
checks if the current frame corresponds to the first frame in the sequence. In this
case, the depth differences are considered to be zero and therefore, the 2D length of
the lower limb vectors will be saved for the next frames. Otherwise, when we are not
dealing with the first frame, the algorithm calculates the depth differences using the
2D lengths from the first round of the for loop and carries on the angle estimations.

The coordinate system in OpenPose originates at the top-left pixel (0,0) and ends
at the bottom-right pixel (1919, 1079) in an exported RGB image. Both x and y are
in the image plane and they grow in width and height directions, respectively. They
can take either a real pixel value or a value relative to the width and the height of the
image (width=1920, height=1080). We can specify the output format by a keyword
when running the code for inference. In order to avoid using large numbers in the
order of 1000, e.g., values between 0 and 1919 for x, and also to keep the consistency

in our implementation, we use normalized coordinate value which are between 0 and

1.

3.5 Summary

In this section, we introduced DeepLEAD, which is a novel approach towards using
a 2D pose estimation method based on deep learning and combining it by a trigono-
metric adjustment to estimate the 3D angle of the knee joint. To investigate the
feasibility of this algorithm, we will present our experimental setup and provide the

results in the next chapter.
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Chapter 4
Experiments and Results

We start this chapter by introducing our numerical error metrics in Section 4.1. For
the sake of verification, we conduct an experiment with two Kinects in Section 4.2.
In Section 4.3, we present the quantitative and qualitative results of two sets of
experiments. Section 4.4 provides an insight about the execution time of each method
and finally, we conclude the chapter in Section 4.5 by a brief discussion about the

outcome of the experiments.

4.1 Numerical Error Metrics

In this section, we will introduce the error metrics that we use to quantitatively
evaluate the performance of our implementations with respect to the reference, which
is the Microsoft Kinect. Since the output values we are dealing with are the angles
(in degree), we can consider our target as a regression problem and use the numerical
metrics that are usually used for these types of situations. It is also very important
to select the relevant specific metrics according to the problem. For example, in
situations where the error in each data point is greater than 1, Mean Squared Error
(MSE) might not be a relevant choice, since the value of error grows significantly by
a factor of 2 and it does not offer a meaningful comparison. Having that in mind, we

chose the following metrics.
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4.1.1 Mean Absolute Error

Mean Absolute Error (MAE), as the name suggests, is simply the mean of absolute
errors between the two quantities in comparison and it is defined by Equation 12.

MAE can tell us what magnitude of error we should expect on average.

1

In Equation 12, N denotes the total number of frames in the sequence, a; and
6; represent the calculated knee flexion angles of the estimator (VideoPose3D or
DeepLEAD, in our case) and Kinect.

4.1.2 Root Mean Squared Error

It is worth mentioning that MAE considers errors on an average scale and it can
obviously understate the infrequent large errors that exist. To better accommodate
these outliers and to offer a more robust metric, we nominate Root Mean Squared
Error (RMSE). Equation 13 defines RMSE.

RMSE — \/ %Efv (i — 6)2 (13)

Statistically speaking, RMSE is able to pinpoint the occasional, infrequent but
big errors by assigning a relatively bigger weight to them. In other words, we can
recognize the occurrence of these outliers by comparing RMSE against MAE. This

enables us to effectively evaluate our implementations.

4.2 Double-Kinect Verification

Although we have highlighted some papers that investigated the margin of reliability
and accuracy of Microsoft Kinect on real-world data in chapter 1 ([19], [20], [21]), we
decided to demonstrate a simple test to verify that. For that matter, we used two
separated Kinect V2s (named Kinectl versus Kinect2, for simplicity). One Kinect is
connected to a laptop and the other one to a PC. The Kinects were placed on top
of each other. Then we carried on the calculations for 3D knee flexion angles of the
same synchronized frames. Therefore, we are only dealing with the extracted data

from the two Kinects.
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(b) Knee flexion angle of the right legs (top) and the left legs (bottom) from Kinectl and Kinect2

Figure 16: Double-Kinect demonstration
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Table 1: Error metric for knee flexion angle of Kinectl versus Kinect2.

Metric Right leg Left leg

MAE (deg) 1.871 1.361
RMSE (deg)  2.688 2.672

4.2.1 Qualitative Evaluation

In Figure 16, we can see a sample at the top and the calculated knee flexion angles
for both legs at the bottom. As we expected, they produce very similar results. It
is not possible that both devices produce exactly the same results, with no jitter.
By its nature, Kinect is not a perfect device and several factors, such as the PC
configuration, the fluctuation in each Kinect’s framerate, etc. can affect the Kinect
keypoint prediction, and eventually, the angles. Therefore, this is acceptable for the

purpose of comparison.

4.2.2 Quantitative Evaluation

When comparing two Kinects under relatively similar circumstances, we do not expect
to have big jitters. Therefore, it is totally reasonable to choose MAE as the numerical
metric. We also added the RMSE to have a consistency between our tables. Table 1
reflects the amount of discrepancy between our two Kinect devices. As explained in
the previous subsection, this magnitude of error between the two devices is almost

negligible.

4.3 Experiments and Results

In all of our experiments, we consider the Kinect as the reference. All of our data
collections are done using a Kinect V2. For the purpose of comparing VideoPose3D
and DeepLEAD to Kinect, we conducted two separate experiments with 70 (named
experiment 1) and 85 (named experiment 2) consecutive frames exported by Kinect.
We fed these sequences to both VideoPose3D and DeepLEAD to measure their per-
formance. These sequences start with a frame where the subject is standing straight

in front of the camera to comply with the fundamental assumption we made for the
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proposed algorithm, DeepLEAD.

4.3.1 Experiment 1

Figure 17-(a) depicts a randomly-selected test frame from the sequence. The corre-
sponding OpenPose output of that sample frame is included in Figure 17-(b) where
the 2D skeleton is overlaid on top of the original frame. The left picture in Figure 17-
(c) depicts the 2D keypoints detected by Detectron and the right picture shows the
corresponding 3D skeleton. The model that we used to predict the 3D keypoints is
the one that we talked about in Section 2.7. We need to mention that the 3D posi-
tion of the predictions for VideoPose3D are exported with respect to a reference joint,
meaning that those numbers are in camera space. As discussed before, this does not
affect the result of angle calculations.

In Figure 18, we can see the estimated knee flexion angles from DeepLEAD and
VideoPose3D for both legs where each of them are compared against Kinect, sepa-
rately. By looking at Figure 18-(a), we realize that DeepLEAD is trying to follow
the pattern of Kinect’s output. In case of Figure 18-(b), VideoPose3D fails to predict
the angles for frame 20 and its neighbor frames. It seems that VideoPose3D is not
responding effectively to sudden changes of the knee angle.

Figure 19 combines the two figures in Figure 18 and demonstrates the performance
of DeepLEAD and VideoPose3D versus Kinect, all in the same figure and for both
legs.

To have a sense of numerical performance versus Kinect, Tables 2 and 3 present
the MAE and RMSE of both legs for DeepLEAD and VideoPose3D, respectively. In
both tables, the 2 to 4 degrees difference between MAE and RMSE implies that we
have infrequent large errors for some frames. That was the main motivation behind

choosing RMSE to reflect these kinds of errors.
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(a) Original test frame

Reconstruction

(c) VideoPose3D output along with its 3D reconstruction

Figure 17: Experiment 1 to compare the visual output of OpenPose and VideoPose3D
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(b) Kinect versus VideoPose3D

Figure 18: Knee flexion angle comparison of DeepLEAD and VideoPose3D versus

Kinect for both legs in experiment 1 a4
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Figure 19: Knee flexion angle comparison of DeepLEAD, VideoPose3D, and Kinect
in experiment 1

Table 2: Error metrics for knee flexion angle of DeepLEAD versus Kinect in experi-

ment 1

Metric Right leg Left leg

MAE (deg) 8.352 7.138
RMSE (deg)  11.627 9.270

Table 3: Error metrics for knee flexion angle of VideoPose3D versus Kinect in exper-

iment 1

Metric Right leg Left leg

MAE (deg) 6.957 6.306
RMSE (deg)  9.344 9.216
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(b) OpenPose output

Reconstruction

(c) VideoPose3D output along with its 3D reconstruction

Figure 20: Experiment 2 to compare the visual output of OpenPose and VideoPose3D
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Figure 21: Knee flexion angle comparison of DeepLEAD and VideoPose3D versus

Kinect for both legs in experiment 2 -
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Figure 22: Knee flexion angle comparison of DeepLEAD, VideoPose3D, and Kinect

in experiment 2

4.3.2 Experiment 2

To have a rigorous verification of our results, in this subsection, we present figures and
tables for a new sequence similar to experiment 1. In Figure 20, we can find a sample
frame, the OpenPose 2D skeleton and the corresponding output of VideoPose3D, from
top to bottom, respectively.

To visually examine the performance in experiment 2, we refer to Figure 21.
DeepLEAD seems to have a good grasp of the changes, except for the frames between
20 to 40 of the left leg where we find a rather considerable error. The same happens
with VideoPose3D in right leg.

Overall, as Tables 4 and 5 shows, we are experiencing a better performance in
terms of MAE and RMSE for VideoPose3D.

The subject’s orientation in front of the camera seems to have an impact on the
results. For example, in experiment 2, the subject is looking at the camera with no
rotation whereas in experiment 1, the subject turns slightly away from the camera.

Therefore, it is important to consider this when designing the experiment setup.
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Table 4: Error metrics for knee flexion angle of DeepLEAD versus Kinect in experi-

ment 2

Metric Right leg Left leg

MAE (deg)  5.059 7.877
RMSE (deg)  6.211 10.201

Table 5: Error metrics for knee flexion angle of VideoPose3D versus Kinect in exper-

iment 2

Metric Right leg Left leg

MAE (deg) 6.127 3.541
RMSE (deg)  7.859 5.202

4.4 Running Time

In order to investigate which method works more efficiently in terms of running time,
we measured the time it took for both DeepLEAD and VideoPose3D from receiving
an input video with 50 frames per second (fps) to calculate the knee flexion an-
gles of all the frames. The end-to-end runtimes are reported in seconds in Table 6.
As the numbers in the table suggest, VideoPose3D is almost 8 times slower than
DeepLEAD. This automatically rules out VideoPose3D for real-time processing and
gives DeepLEAD a great margin over VideoPose3D.

Table 6: Runtime comparison of DeepLEAD versus VideoPose3D in experiments 1
and 2

Experiment DeepLEAD VideoPose3D

Exp. 1 (sec) 9.435 72.741
Exp. 2 (sec) 11.188 87.217
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4.5 Discussion

The numbers in Tables 2, 4, 3, and 5 are proving a slightly better performance of
VideoPose3D against DeepLEAD. We should remember that in the case of DeepLEAD,
we are predicting a 3D value (angle) without having any kind of clue of the depth but
VideoPose3D is doing a 3D(keypoints)-to-3D(angles) mapping. Intuitively, this can
justify the numbers and figures in the results. To achieve this, VideoPose3D compro-
mises the speed versus DeepLEAD. On the other hand, VideoPose3D can accomplish
the task in-hand utilizing a much more complicated and compute-hungry procedure.
In addition, Section 4.4 gives us an empirical insight about this issue. This indicates
that VideoPose3D might not be the best choice for a rather real-time purpose, e.g.,
smart phones, where the processing resources are limited. Therefore, DeepLEAD
seems to be a better choice considering both performance and execution time.

We can also realize that for both DeepLEAD and VideoPose3D, RMSE is about
2 to 4 degrees greater than MAE. According to the discussion in section 4.1, this
implies that we have infrequent large errors. We can also verify this by looking at
Figures 19 and 22.

Due to the basic assumptions we made in DeepLEAD, for some frames, the argu-
ment inside the arccos function exceeds the permissible range (—1 < cos(f) < 1). To
alleviate this situation, we had to clip the values to the maximum valid quantities.
This suppressed the angle prediction to 0 degree for some middle frames. There might
be a better solution for this issue which opens another door for improvement of the

algorithm.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we studied two CNN-based methods for estimating lower extremity
angles for the first time. We validated the possibility of using CNNs as a more conve-
nient alternative to older technologies such as Microsoft Kinect and motion analysis
systems, particularly in the task of lower limb injury prediction. These CNN-based
methods can eliminate the need of using non-portable traditional MoCap systems
for accurate skeletal data collection in sports medicine. Thanks to the extraordinary
capabilities of CNNs in predicting body keypoints from image sequences, they con-
siderably simplify the whole process — as easy as taking a video from the subject
and feeding them to the network. While VideoPose3D, as an already established
method for 3D pose estimation is widely available as an open-source package with
multiple pre-trained models, it offers a solution that is computationally expensive
and time-consuming. Therefore, we designed another algorithm that is also based on
CNNs. We used OpenPose as the backbone and developed few strategies to mitigate
the need for an end-to-end 3D skeletal tracking system. We named our proposed
method DeepLEAD wherein LEAD stands for Lower Extremity Angle Determina-
tion. It works at a frame rate of almost 8 fps with rather acceptable performance
which makes it a better choice compared to VideoPose3D. Although DeepLEAD, like
any other novel approaches has its own presumptions that might limit its capabili-
ties, the improvement doors always remain open. It started a novel journey towards

using deep learning in that specific application in sports medicine and is capable of
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motivating others to shift their work towards using CNNs and machine learning.

5.2 Future Work

The work presented in this thesis can be improved on different fronts. Here are some

suggestions for future avenues of research:

e We have seen that Microsoft Kinect might not offer the best accuracy and
reliability, when it comes to comparing it to a newly proposed approach. In
that case, for the sake of having a very accurate reference while developing
a new method, MoCap systems in a dedicated lab environment can be the

alternative way to go.

e DeepLEAD shows a promising performance and might be able to surpass Video-
Pose3D in terms of performance while maintaining the low computational com-
plexity. By applying and testing more conditions on the algorithm we proposed

in DeepLEAD, this might become a reality.

e In some situations in DeepLEAD, the argument of arccos becomes greater than
1 or less than —1. To mitigate this, we had to round it to 1 or —1, respectively,
which is the underlying reason we had 0 degree values in DeepLEAD figures in
the previous chapter. There might be some other way to alleviate this problem

rather than rounding the angle to 0.

e The task of 3D pose estimation has been remaining as a highly challenging
problem and the extensive attention continues to grow among researchers. By
designing new algorithms that do not compromise speed over accuracy, or vice
versa, these methods can become a great candidate for the task of automating

the lower extremity angle predictions.

e As the current methods presented in the thesis have acceptable performances,
they can be ported to smart phones or tablets to offer a great degree of porta-

bility and ease of use.

e We fed the full size (1920 x 1080) images exported by Kinect as input to the
methods which might become an overhead for the CNN to process it. The

images could potentially be down-sampled to achieve a faster implementation.
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e By improving DeepLEAD in terms of accuracy, the study of knee injury pre-
diction programs could eventually be shifted to a solution where deep learning
plays an undeniable role in these studies. Although most of the items in LESS
system’s checklist relies on an operator to meticulously monitor the process of
the vertical drop jump test, the items that require precise angle calculations
could be delegated to the algorithms. The only input these algorithms need

from the subject is multiple frames during the test procedure.

e One of the assumptions we made when we came up with DeepLEAD was to
consider the length of femur and tibia (Equations 6 and 7) to be constant
throughout the whole sequence. Although VideoPose3D is a general 3D pose
estimation method which does not imply any kind of constraint on the depth
information of the subject, imposing a fixed length criterion on lower limbs

might improve the accuracy in VideoPose3D.

The work presented in this thesis is a novel approach to lower extremity angle
estimation that uses deep learning. Given that CNNs has shown very promising
solutions when the input to the algorithm is an image, it motivated us to go through
that path and try to make use of their capabilities in our own project. As technology
evolves over time, improving different components of this work, such as employing
better CNN models or using deeper networks with more efficient training strategies

might offer further improvements.
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