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Abstract

Identity-Preserved Face Beauty Transformation with Conditional
Generative Adversarial Networks

Zhitong Huang

Identity-preserved face beauty transformation aims to change the beauty scale of a face

image while preserving the identity of the original face. In our framework of conditional

Generative Adversarial Networks (cGANs), the synthesized face produced by the generator

would have the same beauty scale indicated by the input condition. Unlike the discrete

class labels used in most cGANs, the condition of target beauty scale in our framework is

given by a continuous real-valued beauty score in the range [1 to 5], which makes the work

challenging. To tackle the problem, we implement a new triple structure similar to [1], in

which the conditional discriminator is divided into a normal discriminator and a separate

face beauty predictor. We also develop another new structure called Conditioned Instance

Normalization to replace the original concatenation used in cGANs, which makes the com-

bination of the input image and condition more effective. Furthermore, Self-Consistency

Loss is introduced as a new parameter to improve the stability of training and quality

of the generated image. In the end, the objectives of beauty transformation and iden-

tity preservation are evaluated by the pretrained face beauty predictor and state-of-the-art

face recognition network. The result shows that certain facial features could be synthe-

sized by the generator according to the target beauty scale, while preserving the original

identity.
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Chapter 1

Introduction

Face beauty (or facial attractiveness) has drawn the interest and attention of computer

vision and pattern recognition researchers. The topic of face beauty remains arguable

because of its subjective properties. However, in recent research [2]–[5], it has been proven

that face beauty could be correctly predicted by computer to a certain extent.

Generative Adversarial Networks [6] (GANs) have succeeded in many applications such as

style transfer [7]–[9] and image-to-image translation [10]–[12] and become one of the most

popular generative models. As one of the extensions, conditional Generative Adversarial

Networks [13] (cGANs) allow control of the output through conditioning on some labels,

which motivates us to implement face beautification with cGANs. In our work, the inputs

to cGANs are the original face image and the target beauty scale indicated by a real-valued

beauty score.

The most important consideration of face beautification is to maintain the original identity

of the input face because face beautification would become meaningless if the input face is

turned into another identity. Xu et al. [14] introduce a mature architecture for identity-

preserved face aging. The problem domain of face aging is very similar to ours of face

beautification. Therefore, we decide to use IPCGANs [14] as the basic architecture of our

work.

The conditioning labels in most applications of cGANs including IPCGANs are formed in
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one-hot vectors such as the class labels in [1] and age groups in [15]. However, in the face

beauty dataset, the beauty scale of a face is labeled as a continuous real-valued beauty

score. One way to address the problem is to discretize the beauty score and divide the face

images into separate groups. A significant problem of this method is that the images in

two adjacent groups could be very similar when they are close to the threshold. Another

problem is the unbalanced data of different groups due to the Gaussian-like distribution of

beauty score. Therefore, we decide to use the original continuous labels of beauty score as

the input condition feeding to cGANs. However, in our initial experiments, we find that

the switch to continuous input condition causes instability in training and degrading of

image quality. To address these problems, we introduce modifications to current cGANs

including conditioned instance normalization and self-consistency loss.

The choice to use continuous labels also inspires us to enlarge our topic from face beautifi-

cation to face beauty transformation where the beauty scale of a face can be transformed

into arbitrary scales indicated by the input condition. The objective of beauty transfor-

mation is not limited to beautify the input face, but to generate a sequence of face images

corresponding to different beauty scales indicated by the given beauty score.

To sum up, the main contributions of our work are:

(1) We develop a framework of automatic face beauty transformation with cGANs, where

the identity of the input face image is preserved. The experimental results show that certain

facial features could be synthesized according to different target beauty scales.

(2) We implement a new framework called conditioned instance normalization to combine

the input condition with the input face more effectively. Such an operation improves the

quality of generated face images.

(3) We introduce the self-consistency loss which stabilizes the training process and improves

the image quality.
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Chapter 2

Literature Review

Style Transfer

As one of the most popular applications of GANs, style transfer aims to apply the color and

contrast style of a given image (style image) onto another one (content image), of which the

content remains unchanged. Correspondingly, the beauty features of a face image could be

interpreted as a style of color and contrast, such as makeup, skin color, and texture. There-

fore, we could consider beauty transformation as a kind of style transfer and the techniques

used in style transfer should also work in beauty transformation. Despite the similarity, the

target style in style transfer is extracted from the style image, whereas the target beauty

scale in beauty transformation is directly indicated by a real-valued beauty score. This is

also the reason why we name our work as beauty transformation instead of beauty trans-

fer, where the beauty scale of the input face image is transformed to a target scale rather

than transferred from another face image. Considering the similarities and differences, we

inspect instance normalization [8] and its derivatives conditional instance normalization

[16] and adaptive instance normalization [9], from which we derive conditioned instance

normalization for beauty transformation.

IPCGANs

In IPCGANs [14], a framework of identity-preserved face aging is implemented with cGANs,

3



in which the input face is transformed into different age groups indicated by a one-hot con-

dition. Our framework uses a similar structure consisting of generator, discriminator, face

beauty predictor (FBP) (face age estimator in IPCGANs) and face recognition network

(FRN). However, continuous real-valued condition of beauty score is used in our work

instead of discrete one-hot label. In our experiments, we find that feeding condition of

continuous value to cGANs makes the training extremely difficult and unstable. Therefore,

we replace the conditional discriminator with a normal discriminator which only focuses

on deciding if an input image is real or fake. Furthermore, we introduce the conditioned

instance normalization to replace the traditional concatenation in cGANs. Another diffi-

culty is the lack of data. Compared with various sources of huge face age datasets, face

datasets labeled with beauty score is rare and usually very small (less than 10 K images).

To relieve the problem, we further introduce the self-consistency loss to improve the quality

of generated face and stability of training.

Triple-GAN

Li et al. [1] point out the problem of existing cGANs in semi-supervised learning (SSL),

where the discriminator of a two-player structure plays two conflicting roles of discriminator

and classifier. To relieve the problem, a triple structure is introduced, where the conditional

discriminator is divided into two components: a discriminator and a classifier [1]. In our

experiments, we find the triple structure performs better than the traditional architecture

of cGANs in aspects of training stability and quality of generated images.

Beholder-GAN

To solve the problem of lack of face beauty datasets, Beholder-GAN [17] labels CelebAHQ

[18] dataset with CNNs pretrained with face beauty dataset SCUT-FBP5500 [19]. How-

ever, CelebAHQ mainly consists of wild faces (with different poses and expressions, etc.),

whereas SCUT-FBP5500 contains almost all frontal face portraits. Additionally, there

are 80% of Asian faces and merely 20% of Caucasian faces in SCUT-FBP5500 dataset,

while CelebAHQ contains various faces world-wide. Therefore, we believe that the original

dataset labeled with beauty score should provide more accurate information of beauty. In

our work, only SCUT-FBP5500 dataset is applied throughout the whole training, which
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makes cGANs difficult to produce realistic faces. By applying a small dataset, we could

also research on how to train a stable cGANs with limited number of samples. Another

significant difference is that the identity of the input face is not preserved during the beau-

tification process in Beholder-GAN.

BeautyGAN

The objective of BeautyGAN [20] is to perform instance-level and identity-preserved trans-

fer of makeup style from a reference face image to one without makeup. Compared with

BeautyGAN where only the makeup style of the face image is considered, our work exam-

ines the general features of a face image in aspects of beauty including makeup, texture,

facial features, and illuminance, etc. Nevertheless, the result of our work shows that the

makeup of a face also plays a very significant role in beauty transformation, which coincides

with the idea of BeautyGAN.

Cycle-Consistency Loss

Zhu et al. [12] introduce cycle-consistency loss in their framework of image-to-image trans-

lation where the content of an image is required to be consistent after a cycle of forward and

backward translation. The similar concept could be introduced to beauty transformation

where a cycle is defined as a process when an image is transformed to target beauty scale

and then transformed back to its original scale. However, in our experiments, we find this

approach unstable. To stabilize the training, we introduce the self-consistency loss where

the input face image is required to stay unchanged after being transformed to its original

ground truth beauty scale. With the self-consistency loss, we could obtain generated face

images of better quality.
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Chapter 3

Background

In this chapter, we will review the fundamental concepts of Generative Adversarial Net-

works and Instance Normalization, from which we derive our framework and new method-

ology.

3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) is a framework for training a generative model

which can produce realistic samples close to real data distribution [6]. Typically, there are

two components in GANs playing against each other: (1) a discriminator which learns the

real data distribution and differentiates fake samples from real samples; and (2) a generator

which focuses on generating real-like fake samples that could confuse the discriminator and

let it believe the generated samples come from the real data distribution. In this adversarial

game, the discriminator, which has the knowledge of real data distribution, guides the

generator to produce good fake samples towards real data distribution.

The adversarial loss of the minimax game is described in Eqn. (1) listed below:

min
G

max
D

V (D, G) = Ex∼pdata
[log D(x)] + Ez∼pz [log (1 − D(G(z)))]. [6] (1)
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where x ∼ pdata is data sampled from real data distribution, z ∼ pz is sampled from

Gaussian noise.

Eqn. (1) shows that the discriminator is trained to maximize log-likelihood of x from real

data distribution and negative log-likelihood of G(z) generated by generator, whereas the

generator is trained to minimize negative log-likelihood of G(z). The first term in Eqn. (1)

lets the discriminator learn the distribution of real data, and the second term is where the

”adversarial game” happens: while D tries to maximize the term, G minimizes the term in

opposite.

3.1.1 Conditional GANs

From the original GANs, Conditional GANs (cGANs) can be introduced by adding con-

ditional constraints to both the generator and discriminator [13]. Then Eqn. (1) can be

rewritten as:

min
G

max
D

V (D, G) = Ex∼pdata
[log D(x|y)] + Ez∼pz [log (1 − D(G(z|y)|y))]. (2)

The extra constraints could be any conditions such as class of objects, identity, and age

of faces, and in our work, beauty score of face images. With the constraint of extra

information, the discriminator is required to not only judge whether a sample is from real

data distribution, but also decide whether the sample meets the condition, e.g., whether

an image belongs to a specific class. In the meantime, the generator is also conditioned by

the same extra information, which allows the generator to produce samples according to

the condition. In our work, the conditional generator is capable of generating face images

which meet with the target beauty score.

3.1.2 Conditional GANs with real data input

In previous sections, the generator produces samples from scratch with Gaussian noise

input which is adequate when the generated sample is only required to be in a certain

distribution, e.g., a group or a class of objects. However, in some cases, the generator
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needs to produce specific samples, such as a specified identity in our work, which is almost

impossible to achieve when the input is a random noise. In age-cGAN [15], an encoder is

applied to extract the identity information from a face image and uses this information as

input to the generator. Then the generator is trained to reconstruct the face of the same

identity based on the encoded identity information. However, in more recent papers [8],

[10], [14], an encoder-to-decoder structured network [21] is applied in the generator, which

enables a real data input to the generator and an end-to-end training of the generator.

Then Eqn. (2) can be rewritten as:

min
G

max
D

V (D, G) = Ex∼pdata
[log D(x|y)] + Ex∼pdata

[log (1 − D(G(x|y)|y))]. (3)

Note that here real data x ∼ pdata is input to G instead of random noise z ∼ pz.

3.1.3 Least Squares Loss

As mentioned in [22], the original objective function of GANs may lead to unstable learning,

which is mainly caused by the vanishing gradients. Specifically, the sigmoid function used

at output of the discriminator and the logarithm function used in loss function both have

a “flat” region where the value of gradient is small. To address this problem, the least

squares loss function in LSGANs [22] is applied and Eqn. (3) can be written as:

min
D

V (D) = 1
2Ex∼pdata

[(D(x|y) − a)2] + 1
2Ex∼pdata

[(D(G(x|y)|y) − b)2].

min
G

V (G) = 1
2Ex∼pdata

[(D(G(x|y)|y) − c)2].
(4)

Note that the output of the last fully connected layer in discriminator is no longer passed

through sigmoid function which means D(x|y) is in range (−∞, +∞) rather than (0, 1).

In practice, a is usually set to a = 1 for real samples and b is set to b = 0 for fake samples.

Accordingly, c is set to c = a = 1, which enables the generator to produce samples similar to

the real samples. Compared with log-likelihood loss in Eqn. (3) where generated samples

are trained towards positive infinity, the least squares loss could motivate the generator

to produce samples closer to real data by pushing the generated samples towards the real

8



samples [22].

3.2 Instance Normalization

Instance normalization (IN) [8] is a kind of contrast normalization which helps to improve

the quality of image generation. As shown in Figure 3.1, each channel of the feature tensor

x ∈ RB×C×W ×H is normalized to have zero mean and unit variance:

ytkij = xtkij − µtk√
σ2

tk + ε
(5)

where xtkij is the tkij-th element of x ∈ RB×C×W ×H . i and j are the spatial dimensions, k

denotes the channel of the feature maps and t represents the t-th image in the batch. ε is

a small number added to avoid square root of zero.

The statistics of mean and variance is calculated separately for each channel of each feature

map:

µtk = 1
WH

W∑
i=1

H∑
j=1

xtkij

σ2
tk = 1

WH

W∑
i=1

H∑
j=1

(xtkij − µtk)2
(6)

where µtk is the mean and σ2
tk is the variance of the k-th channel of the t-th image.

After the normalization, a set of learnable affine parameters is applied to the normalized

feature, which allows the feature to have new mean and variance:

ytkij = γ

xtkij − µtk√
σ2

tk + ε

 + β (7)

where γ and β are the learnable affine parameters corresponding to the new variance and

mean respectively.
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In our experiments, we find that instance normalization improves the quality of the gener-

ated images and also accelerates the convergence of the generator.

... ...

Batch

Height

Width

Channel

Figure 3.1: Instance Normalization. A batch of features with size B × C × W × H, where
W and H represent the spacial dimensions, C is the number of channels and B is the
batch size. The statistics of instance normalization is calculated within each channel of the
feature maps (the red region indicates one of them).

3.2.1 Conditional Instance Normalization

Conditional Instance Normalization (CIN) is a technique used in style transfer, which en-

ables a single generator to transfer multiple styles. Instead of learning only one set of affine

parameters, there is a group of parameters learned in conditional instance normalization

[16], where each pair of parameters in the group corresponds to a specific style. As shown

in Figure 3.2, different pairs of affine parameters from (γ1, β1) to (γn, βn) corresponding to

different styles are trained. The mean and variance of the input feature are swapped to new

mean and variance defined by the affine parameters. During testing, one can get generated

images with different styles by choosing different pairs of affine parameters.

10



Instance
Normalization

Group of affine parameters

...

...

Figure 3.2: Conditional Instance Normalization. x is the input feature, y is the normalized
feature with zero mean and unit variance and γny + βn is the new feature with new mean
of βn and variance of γn.

3.2.2 Adaptive Instance Normalization

To transfer the image to an arbitrary style, Huang and Belongie [9] introduce a new frame-

work named Adaptive Instance Normalization (AdaIN). As shown in Figure 3.3, the input

image and style image are fed to the same encoder which extracts high level features. Then

the feature x of the input image is normalized to zero mean and unit variance through IN.

After that, the mean and variance (γs, βs) of the feature xs of the style image are applied to

the normalized feature y. This operation swaps the mean and variance of the input feature

to those of the style feature. With the stylized feature γsy + βs, a decoder with reversed

structure as the encoder could generate an output image with content of the input image

and style of the style image.

Arbitrary style 
image

Input image
Instance

Normalization

Encoder

Figure 3.3: Adaptive Instance Normalization. x and xs are the extracted features of the
input image and style image respectively. (γs, βs) are the channel-wise mean and variance
of xs. y is the normalized feature of x with zero mean and unit variance. γsy + βs is the
new feature with mean of βs and variance of γs.
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3.3 Cycle-Consistency Loss

In an image-to-image translation framework [12], a generator G is trained to transfer the

images from style X to Y and another generator F is supposed to do the inverse mapping:

Y → X. To enhance the capability of the generators and improve the quality of the

generated images, cycle-consistency loss is introduced to maintain the consistency of G

and F :

Lcyc(G, F ) = ||F (G(x)) − x||1 + ||G(F (y)) − y||1 (8)

where ||.||1 is the L1 norm.

As in Eqn. (8), the image after the cycles through two generators ( x → G(x) → F (G(x))

and y → F (y) → G(F (y)) ) should be consistent with the original image.

In starGAN [11], the idea of cycle-consistency loss is extended to conditional GANs with

only one generator:

Lrec = ||G(G(x, c′), c)||1 (9)

where c is the original ground truth label of x and c′ is the label of another domain. As

in Eqn. (9), an image is translated to another domain c′ and then brought back to its

original domain c. The generator is required to maintain the content of the image in this

cycle.
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Chapter 4

Methodology

In this Chapter, we will first present an overview of our framework and then the overall

architecture and procedures will be introduced. After that, each individual component and

procedure will be described in detail. At last, we will introduce the Conditioned Instance

Normalization and Self-Consistency Loss.

4.1 Overview

The beauty transformation is implemented with a Conditional Generative Adversarial Net-

works (cGANs) [13], which can generate images constrained on some conditions. In our

framework, the input is the original face image sampled from real face dataset, and the

output is a synthesized image conditioned on a target beauty score which indicates the

target beauty scale we want the generator to produce. Meanwhile, the generator is also

expected to generate realistic face images and preserve the identity of the input face, i.e.

the output face shares the same identity as the input face.

4.2 Overall Architecture

As shown in Figure 4.1, a similar architecture used in IPCGANs [14] for face-aging is ap-

plied in our framework. The input face xu ∈ D, sampled from a real face dataset D, is first
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forwarded to the generator which consists of four parts: (1) Down-sampling Convolutional

Layers which extract high-level features of input face; (2) Conditioned Instance Normaliza-

tion block which combines the extracted feature and target beauty score yu; (3) Residual

Blocks [23]; and (4) Up-sampling Transposed Convolutional Layers which up-samples the

feature conditioned on target beauty score yu to the same size as the input face xu.

Residual BlocksDown-sample
CNN Layers

Up-sample
CNN Layers

Conditioned
Instance

Normalization

C
onv 1

C
onv 2

C
onv 3

C
onv 4

C
onv 5

Pretrained VGGFace Face
Recognition CNN

Patch
Discriminator

Adversarial
Loss 

Generated Face

Real

Fake

-

Real Face

Beauty score

Beauty Loss

Pretrained
Face Beauty

Predictor

Generator
Input face

Target beauty score

Identity preserve loss

Figure 4.1: Overall structure. Input face xu is forwarded to the generator which produces
output face G(xu, yu) conditioned on target beauty score yu. The generated face is then
fed to three other networks to compute the corresponding losses.

The generated face G(xu, yu) is then input to the discriminator whose task is to distinguish

between fake images (generated faces) and real images(xd ∈ D). Through Adversarial Loss,

the generator is trained to “fool” the discriminator by letting it believe the generated image

is real [6]. Thus, the generator could produce images which are considered to be from the

same distribution as real images by the discriminator.

Furthermore, the generated face is fed to a Face Recognition Network (FRN) which is

pretrained to recognize the identity of human face. In this network, the feature of the

intermediate layer, which is supposed to extract high-level feature related to the identity of

a face, is selected to be the identity feature. Both the generated face and the original input

face is forwarded to the network, after that, the mean-squared difference between their
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identity features is defined as Identity-Preserve Loss. By minimizing the Identity-Preserve

Loss, the generator is trained to generate a face with same identity as the original input

face.

Finally, a pretrained Face Beauty Predictor (FBP) is used to label the beauty score of the

generated face. Recall that the generated face G(xu, yu) is conditioned on a target beauty

score yu, therefore, the labeled beauty score yg of the generated face is supposed to be equal

to the target beauty score yu. Thus, the Beauty Loss could be defined as the mean-squared

difference between the labeled beauty score yg of the generated face and desired target

beauty score yu. By minimizing this Beauty Loss, the generator could output a face which

has the same beauty score as the target.

Now, by combining all the three losses mentioned above, the generator could transform the

input face into a face with the desired target beauty score while preserving its identity and

making it look realistic.

4.3 Conditional GANs Module

In cGANs introduced in Section 3.1.3, the generator is trained to output G(x|y) based on

the input x and conditioned on y. Meanwhile, the discriminator is optimized to decide

whether a pair of sample x and condition y is real or fake, i.e., whether the sample x comes

from the data distribution conditioned on y. This is feasible when the condition y is a group

or class label and the discriminator only needs to perform work similar to a classifier, i.e.,

determine whether the input sample x belongs to the class y. However, in our work, the

condition y is a continuous real-valued beauty score instead of a class label, which makes it

difficult to determine whether the input sample x comes from the distribution specified by

y because every single sample in the real data distribution has a different value of y.

To tackle this problem, we apply the structure introduced in Triple-GAN [1]. The generator

is kept unchanged but the task of discriminator is decomposed into two parts: (1) whether

the sample comes from the real data distribution; and (2) whether the sample matches

the condition. The first task could be accomplished with a normal discriminator without
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condition and the second task is fulfilled with a separated face beauty predictor (see detail

in Section 4.4).

Therefore, the adversarial loss for our cGANs is:

LD = Ex∼pdata
[(D(x) − 1)2] + Ex∼pdata

[(D(G(x|y)))2].

LG = Ex∼pdata
[(D(G(x|y)) − 1)2].

(10)

Both D and G are trained to minimize their own loss LD and LG respectively. Note that

we directly use the MSE without multiplying with 1
2 .

4.4 Face Beauty Predictor Module

The main objective of our work is to transform the input face to the target beauty score

indicated by the input condition. At the input side of the generator, the target beauty

score is input as condition so that the generator could output face G(x|y) conditioned on

beauty score y. To ensure the beauty score of the output face equals to the target, a Face

Beauty Predictor (FBP) is introduced. FBP is a pretrained deep convolutional network

which can predict the beauty score of a given face and the parameters of FBP are fixed

during the whole training process. The performance of FBP is measured in terms of root

mean squared error, mean absolute error, and Pearson correlation as shown in Table 4.1.

RMSE MAE PC
0.2272 0.1753 0.9437

Table 4.1: Performance of pretrained face beauty predictor.

To ensure the beauty score of the output face meets the target, the generated face is fed

to the FBP and the beauty loss is defined as the mean square error (MSE) between the

predicted beauty score and the target:

Lbeauty = ||FBP (G(x|y)) − y)||2 (11)
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where y is the target beauty score and FBP (.) is the predicted beauty score.

With this beauty loss, the generator could get essential information related to face beauty

from the FBP and thus generate faces with the desired beauty score.

4.5 Identity-Preserve Module

Another significant objective of our work is to maintain the identity of the input face, i.e.,

the identity of the input face and the generated face should be the same. As stated in [14],

the identity information should be encoded in the intermediate layers of a face recognition

network (FRN). Therefore, to preserve the identity of the input face, a pretrained FRN is

introduced to extract the identity features of both the input face and the generated face.

Then the identity preserve loss is defined as the mean square error (MSE) between the

identity features:

Lidentity = ||h(G(x|y)) − h(x)||2 (12)

where h(.) stands for the intermediate features of the FRN. We choose the 5th convolutional

layer as the identity features.

4.6 Conditioned Instance Normalization

In normal cGANs, the input image and condition are combined through simple concatena-

tion. As shown in Figure 4.2, assume that the input image is of size w × h × c, and the

input condition is of size 1 × 1 × c′. The input condition y is first reshaped to w × h × c′

through simple replication and then concatenated with the input image x. After that, the

concatenated input of size w×h×(c + c′) is fed to the generator which produces the output

image G(x|y).
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Reshape

Concatenate
Generator

Figure 4.2: Concatenation in cGANs. x is the input image of size w × h × c, y is the input
condition of size 1 × 1 × c′ and G(x|y) is the generated image.

Through the concatenation, the generator could generate an image based on both the input

image x and condition y. However, this operation is inefficient because the input condition

only has one single value in each channel and after the replicate reshape, each channel will

be filled with the same single value. In Appendix A, a detailed proof will be given to show

that the condition only acts as a bias term after the concatenation.

Therefore, to combine the input image and condition more efficiently, we introduce a new

framework named Conditioned Instance Normalization (CondIN) based on the ideas of

CIN (details in Section 3.2.1) and AdaIN (details in Section 3.2.2). The experiments in [9],

[16] show that tuning the affine parameters of IN could control the style of the generated

image, which proves that the mean and variance of the extracted feature of an image could

represent the style of that image. Therefore, if we consider beauty scale as kind of style

of face images, we could change the beauty scale of a face image by tuning the mean and

variance of its intermediate feature. In CIN and AdaIN, the affine parameters are either

selected from a group set or extracted from a style image. However, in our work, the input

condition is a single real-valued number of beauty score. To map the beauty score to the

affine parameters, we use a network which consists of three fully connected layers.
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Channel-wise multiplication
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FC3

Figure 4.3: Conditioned Instance Normalization. x is the feature of size C × W × H and
xnorm is the normalized feature. y is the single value of beauty score. FC1, FC2, and FC3
denote the fully connected layers. γ and β are the channel-wise mean and variance to be
aligned to xnorm. CondIN(x|y) is the feature conditioned on y through CondIN.

As shown in Figure 4.3, the intermediate feature x of the input face image is first normalized

to have zero mean and unit variance through IN. Meanwhile, the input condition y of beauty

score is mapped to γ and β with the same size as the channel size C through three fully

connected layers FC1, FC2, and FC3. After that, channel-wise multiplication and addition

are applied to align the new variance γ and mean β to the normalized feature xnorm. Finally,

we could output a feature with new mean and variance conditioned on the beauty score

y.

The choice of the activation function of the three fully connected layers is also important.

We choose sigmoid function for FC1 to allow more nonlinearity for the mapping. As for FC3

which outputs the mean of the feature, we use the raw output without activation function to

enlarge the range of the output mean. To stabilize the training process, sigmoid function

is applied to FC2 as activation function which limits the range of the output variance.

After that the output variance is multiplied by 2 because of two reasons: (1) the output

variance should have a larger range of (0, 2) instead of (0, 1); (2) the weights and bias in

fully connected layer are initialized with small values, thus the output after sigmoid should
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be around 0.5 and after multiplied by 2, the output variance is around 1.0 at the beginning

of training which increases the stability.

Finally, the formula of CondIN is:

CondIN(x) = γ � IN(x) ⊕ β (13)

where � and ⊕ are channel-wise multiplication and addition. γ and β are the mapped

mean and variance from the condition:

γ = 2δ (g2[δ(g1[y])])

β = g3[δ(g1[y])]
(14)

where δ(.) is the sigmoid function. g1[.], g2[.], and g3[.] are the fully connected layers FC1,

FC2, and FC3 respectively.

Compared with the normal way to combine the feature and condition through concatenation

where the condition acts as a bias term which affects only the mean of the feature (see

details in Section 4.6 and proof in Appendix A), CondIN allows the input condition to

control both the variance and mean of the feature. Therefore, our framework CondIN

makes the combination of the feature and condition more efficient.

4.7 Self-Consistency Loss

In conditional GANs module (Section 4.3), the generator is trained to generate faces which

are realistic and close to the real face distribution by minimizing the adversarial loss.

Furthermore, by minimizing the identity preserve loss in Section 4.5, the identity of the

input face is maintained. However, in our experiments, the quality of the generated faces

is unsatisfactory with blurs and artifacts. To further improve the quality of the generated

faces, we introduce consistency loss to our framework.

Cycle-consistency loss (see details in Section 3.3) is proved to be effective in GANs where

the images are translated between two or more domains such as styles and classes. However,
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in our work, beauty score of face images contains infinite continuous domains. To improve

the quality of the generated faces and stability of the training, we introduce a simplified

version of consistency loss called self-consistency loss which only considers one forward pass

through the generator:

Lconsist = ||h(G(x|y)) − h(x)||2 (15)

where y is the ground truth beauty score of x and h(.) is the intermediate feature of a

pretrained face recognition network.

As shown in Eqn. (15), the generator is required to duplicate the content of the input

image x if the input condition y is exactly the ground truth beauty score of the input

image. As for the feature h(.), we use the same face recognition network as in Section 4.5

and experiment with raw pixel and all intermediate layers of the FRN. At last, we find that

raw pixel is the optimal option, therefore, the self-consistency loss is defined as:

Lconsist = ||G(x|y) − x||2 (16)

As shown in Figure 4.4, a sampled face image xc is input to the generator with the target

beauty score being equal to its ground truth beauty score, then the pixel-wise mean square

error between the input face and generated face is minimized. In our experiments, this

approach improves the performance of the generator by a large scale.

Generator

Ground Truth Beauty
Score of input face

Input Face Output Face

-
Self-consistency loss

Figure 4.4: Self-consistency loss.
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Another significant consideration to use self-consistency loss is the trade-off between iden-

tity preserve loss and beauty loss. If we use low-level features or raw pixels for identity

preserve loss to improve the quality of the generated face, the generator may learn to ignore

the input condition of beauty score and thus always produces identical face as the input

face. In opposite, if high-level features are applied in identity loss to ensure enough free-

dom for the generator to synthesize the face according to input beauty score, the quality

of the generated face will become worse. Because of this trade-off, we need to sacrifice the

quality of the generated face for accurate beauty transformation or vice versa. However, in

self-consistency loss, we require the generator to produce identical face only when the input

condition is the ground truth beauty score of the input face. This method could improve

the quality of the generated faces without affecting the ability of beauty transformation of

the generator.

4.8 Training

4.8.1 Training Loss

The training loss of our conditional GANs consists of four parts: adversarial loss, beauty

loss, identity-preserve loss, and self-consistency loss:

Dloss = λ1LD

Gloss = λ2LG + λ3Lbeauty + λ4Lidentity + λ5Lconsist

(17)

where Dloss is the training loss of the discriminator and Gloss is the training loss of the

generator. λ1 and λ2 control the adversarial game between D and G. λ3 and λ4 control to

what extent the beauty of the face is edited and the identity is maintained, respectively.

λ5 controls the effect of self-consistency loss. For different losses, we may use different data
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samples (xd, (xu, yu) and (xc, yc)). Therefore, we rewrite all terms in Eqn. (17):

LD = (D(xd) − 1)2 + (D(G(xu|yu)))2

LG = ||D(G(xu|yu)) − 1||2

Lbeauty = ||FBP (G(xu|yu)) − yu||2

Lidentity = ||h(G(xu|yu)) − h(xu)||2

Lconsist = ||G(xc|yc) − xc||2

(18)

xd, xu, and xc are sampled from the same dataset but with different samplers. yc is the

ground truth label of xc. yu is not the label of xu but sampled from a uniform distribution

in range [1.0, 5.0].

4.8.2 Training Algorithm of cGANs

Algorithm 1 Training cGANs

foreach training iteration do
• Sample a batch of face images xd ∼ pdata, a batch of face images xu ∼ pdata, a batch

of labeled face images with beauty scores (xc, yc) ∼ pdata, and a batch of random

beauty scores yu from uniform distribution in range [1.0, 5.0].

• Feed (xu, yu) to G and get the generated faces: xg = G(xu, yu).

• Update D by descending along its gradient:

∇θD
[λ1 [(D(xd) − 1)2 + (D(xg))2]]

• Pass the generated faces xg to the face beauty predictor: yg = FBP (xg).

• Extract identity features of xu and xg with the face recognition network: fu = h(xu),

fg = h(xg).

• Update G by descending along its gradient:

∇θG
[λ2(D(xg) − 1)2 + λ3(yg − yu)2 + λ4(fg − fu)2]

• Feed (xc, yc) to G and get the generated faces: x′
c = G(xc, yc).

• Update G again by descending along its gradient:

∇θG
[λ5(x′

c − xc)2]
end
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4.9 Analysis on Beauty transformation

To understand how the training loss improves the performance of beauty transformation,

we must identify the difference between beauty transformation and other research topics

such as image-to-image translation [10], [12], and style transfer [7], [8]. In style transfer, the

generator maps the input image from one domain to another domain specified by the input

condition. As shown in Figure 4.5, these domains are separated and defined by discrete

index and label. Usually, different styles will have totally different intensity, texture, and

contrast. However, in beauty transformation, faces of a same identity with different beauty

scores should look similar to certain extent and cannot be considered as different styles or

domains. For example, the faces of the same identity with beauty scores of 3.0 and 3.1

should look almost the same. Therefore, we consider the beauty of a face as a continuous

number axis ranging from 1.0 to 5.0 as shown in Figure 4.6. Each point on the axis

represents a face image with beauty score specified by the value of the point.

S1

S3

S2

Figure 4.5: Style transfer. S1, S2, and S3 are different domains with different styles. Arrows
stand for transfer between styles

1.0 5.0
1.5 Original

3.2
2.25 4.754.0

Figure 4.6: Beauty transformation. Beauty scores range from 1.0 to 5.0. Each point on the
axis corresponds to a face image with specified beauty score.
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With this assumption, our objective of beauty transformation becomes generating all the

face images on the axis given the original face. To achieve this objective, identity-preserve

loss is first applied to ensure all the face images belong to the same identity as the original

face. Then beauty loss guarantees the beauty score of the generated face equals to the

value of corresponding points on the axis. However, with only the identity and beauty

information, the generator is not able to produce the details of the face. This problem

is solved by self-consistency loss, which actually provides a reference point for beauty

transformation. Feeding a face image along with its ground truth beauty score shows the

generator that the generated face image on that point should be the same as the original

one. Therefore, the generator will learn to produce identical face as the input face when

the input condition is close to the ground truth beauty score, and for other conditions, the

generator will edit some details based on the reference face.

25



Chapter 5

Experimental Setup

5.1 Dataset

We use SCUT-FBP5500 [19] as the face beauty dataset throughout the whole training and

testing processes. The dataset consists of four racial and gender groups: Asian female,

Asian male, Caucasian female, and Caucasian male with 2000, 2000, 750 and 750 images,

respectively. Since we believe that the evaluation of face beauty is closely related to the race

and gender of individuals, we only use the 2000 Asian female faces in our experiments (1800

for training and 200 for testing). The face beauty is labeled by 60 raters aged from 18-27

(average 21.6), who annotate each face image with a scale of beauty in [1.0, 2.0, 3.0, 4.0, 5.0]

[19]. Then the beauty score of a face image is calculated by averaging the scores from

the 60 raters. Therefore, the beauty score is theoretically in range [1.0 to 5.0], however,

approximately 98.55% of the scores drop in the interval [1.5 to 4.5]. Due to this fact, the

quality of the generated faces is not ideal when the input target beauty score is in [1.0 to

1.5] and [4.5 to 5.0].

5.2 Image Preprocessing & Data Augmentation

As shown in Figure 5.1, each face image in the dataset is annotated with 86 landmarks

[19]. With these landmarks, we can locate the rectangular bounding box (blue rectangle)
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of face by taking the minimum and maximum values of x − y coordinate. Then the size of

the bounding box is scaled up by a factor 1.1. Finally, the face image is cropped from the

square bounding box (green square) with the side length being equal to the longer side of

the rectangle.

Figure 5.1: Face Crop. The red points are the 86 landmarks. The blue rectangle indicates
the face bounding box where the green square represents the scaled square cropping region.

After cropping, the face image is resized to 236 × 236. During training, the resized image

is randomly cropped to 224 × 224 and then random horizontal flip is applied for data

augmentation. For testing, 224 × 224 center crop is applied with no horizontal flip. The

pixel value is normalized to range [−1.0, 1.0] to fit the range of tanh which we use as the

output activation function of the generator.

In experiments, we find that using the cropped face improves the performance of the face

beauty predictor and the quality of the generated face compared with the raw face image.

Data augmentation could stabilize the training process by slowing down the convergence

of the discriminator.
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5.3 Details of Training

We train our conditional GANs using Adam optimizer (β1 = 0.5 and β2 = 0.99) for 300

epochs with batch size of 16. The initial learning rate is 0.0001 and decayed by 0.3 every

100 epochs. The weights of adversarial loss are set to λ1 = λ2 = 1.0 and the weight of

beauty loss is λ3 = 1.0. The optimal weights of identity preserve loss and self-consistency

loss are λ4 = 0.8 and λ5 = 0.08, respectively. In experiments, we find that all the loss

weights can be set to around 1.0 which does not affect the result much, except the weight

of self-consistency loss, which must be set to around 0.1. There could be many possible

combinations of loss weights, however, we find the settings above are the most stable and

converge fastest during random search.

5.4 Network Details

In the following sections, the detailed information and structure of all the networks used in

our experiments will be described. We use the notation “k × k conv - c - St” to represent

a convolutional layer with kernel size k, stride t, and output channels of c. Max-pooling

layer with kernel size k and stride t is denoted as “k × k maxpool - St”. Fully connected

layer with x units is denoted as “fc - x”.

5.4.1 Face Beauty Predictor

We use Resnet-18 [23] as the face beauty predictor and replace the last fully connected layer

as in Figure 5.2. The network is first pretrained with ImageNet [24] and then finetuned with

the face beauty dataset. We fix the parameters of the whole network during the training

of cGANs. Batchnorm [25] layer and ReLU activation are applied after each convolutional

layer. We use no norm layer or activation function for the last fully connected layer which

outputs the real-valued beauty score.
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7x7 conv - 64 - S2

3x3 maxpool - S2

3x3 conv - 64 - S1

3x3 conv - 64 - S1

3x3 conv - 128 - S2

3x3 conv - 128 - S1

3x3 conv - 256 - S2

3x3 conv - 256 - S1

3x3 conv - 512 - S2

3x3 conv - 512 - S1

fc - 1

224x224 image

3x3 conv - 64 - S1

3x3 conv - 64 - S1

3x3 conv - 128 - S1

3x3 conv - 128 - S1

3x3 conv - 256 - S1

3x3 conv - 256 - S1

3x3 conv - 512 - S1

3x3 conv - 512 - S1

Average pooling

Figure 5.2: FBP Structure. The input is a 224 × 224 image and the output is a real-valued
beauty score. The skip arrow stands for residual connection.
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5.4.2 Face Recognition Network

We use a deep convolutional face recognition network [26] pretrained with VGGFace dataset

as our FRN to extract the identity feature of the face image. As shown in Figure 5.3, each

convolutional layer and fully connected layer is followed by a Batchnorm [25] layer and

ReLU activation except the last fully connected layer.

7x7 conv - 96 - S2

3x3 maxpool - S2

5x5 conv - 256 - S2

3x3 maxpool - S2

3x3 conv - 512 - S1

3x3 maxpool - S2

fc - 2622

224x224 image

3x3 conv - 512 - S1

3x3 conv - 512 - S1

fc - 4096

fc - 4096

Identity feature

Figure 5.3: FRN Structure. The input is a 224×224 image and the output consists of 2622
identity indices. The red arrow indicates the feature layer used as identity feature.

As in Eqn. (12), a feature layer needs to be selected to represent the identity feature h(.)

which is significant as it directly affects the quality of the generated face and whether the

generated face maintains the same identity as the input face. In our experiments, we line

search from the first convolutional layer to the last second fully connected layer and finally

choose the intermediate feature of the 5th convolutional layer (conv5) to be the identity

feature of the face. During the whole training, the parameters of the whole network are

fixed.

30



5.4.3 Discriminator

We use an architecture similar to the Patch Discriminator in [10]. As shown in Figure 5.4,

the discriminator consists of 6 convolutional layers and the outputs are 4 × 4 scores, each

of which indicates a 64 × 64 patch of the input image is real or fake. We use Leaky-ReLU

activation with a negative slope of 0.2 for each convolutional layer except the last layer.

To avoid border artifacts, no pooling layers are introduced and reflection padding is used

in the first layer. We replace batchnorm with weightnorm [27] for stability [28]. Dropout

with drop rate 0.5 is applied after the last second layer to provide noise and limit the

discriminative power of the discriminator.

5x5 conv - 64 - S2

3x3 conv - 128 - S2

3x3 conv - 256 - S2

3x3 conv - 512 - S2

224x224 image

3x3 conv - 512 - S2

Dropout - 0.5

3x3 conv - 1 - S2

4x4 scores

Figure 5.4: Patch Discriminator. The input is a 224 × 224 image and the outputs are 4 × 4
scores.

5.4.4 Generator

As shown in Figure 5.5, the input image is down-sampled by 4 convolutional layers (in

blue) and then the extracted feature is normalized and combined with the target beauty

score through conditioned instance normalization (in yellow). The combined feature is fed

to n residual blocks (in purple) and then up-sampled by 3 transpose-convolutional layers

(in green). Finally, a convolutional layer (in red) maps the feature to 3 RGB channels
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followed by a tanh activation. The pixel value of the generated face is zero-centered in

range [−1, 1]. No normalization is used for all the layers and ReLU activation is applied to

the first three down-sample layers and up-sample layers.

7x7 conv - 64 - S1

3x3 conv - 128 - S2

3x3 conv - 256 - S2

3x3 conv - 512 - S2

3x3 deconv - 256 - S2

3x3 deconv - 128 - S2

3x3 deconv - 64 - S2

7x7 conv - 3 - S1

Generated face

fc - 512

fc - 512fc - 512

224x224 image

Target beauty
 score

Instancenorm

Combine

Residual Block

...
Residual Block

Figure 5.5: Generator. The input 224 × 224 face image is combined with the target beauty
score to output the generated face.

Each residual block consists of two convolutional layers and a skip connection from input to

output as shown in Figure 5.6. In our experiments, the optimal number of residual blocks

is 4.
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3x3 conv - 512 - S1
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Figure 5.6: Residual Block. Consists of two 3×3 convolutional layers and a skip connection
from input to output.
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Chapter 6

Experimental Results

6.1 Loss

In this section, we train our GANs with the configurations and settings described in Chapter

5 and show the training and testing loss throughout the training. We use the square root

of all the losses because RMSE could clearly indicate the real difference which is helpful

for evaluation.

6.1.1 Adversarial Loss of Conditional GANs

From Figures 6.1 and 6.2, we could observe that the adversarial loss of discriminator for

both real and fake images drops towards zero at the beginning of the training, which

indicates the discriminator could easily distinguish between the real and fake images. As

the training proceeds, the generator gradually learns to generate face-like images. After

nearly 100 epochs, the adversarial losses for both the discriminator and generator converge

to 0.5 which coincides with the proposition described in [6] (the global optimality of GANs

appears when D(x) = D(G) = 0.5). After 100 epochs, we reduce the learning rate for

fine-tuning and the adversarial losses begin to fluctuate around 0.5.
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Figure 6.1: Adversarial loss for real face images (first term of LD in Eqn. (18)).
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Figure 6.2: Adversarial loss for fake generated face images (LG and second term of LD in
Eqn. (18)).
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6.1.2 Identity-Preserved Loss

As shown in Figure 6.3, the identity-preserved losses of training and testing samples drop

and keep similar during the whole training, which indicates that the trained generator

could preserve the identity of the input face images from both trainset and testset without

obvious overfitting.
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Figure 6.3: Identity-preserved loss for generated face images (Lidentity in Eqn. (18)).

Training Testing
RMSE 0.0793 0.0790

Table 6.1: Identity-preserved loss.

6.1.3 Beauty Loss

Similar to identity-preserved loss, the beauty losses of training and testing samples are

almost equal during the whole training process as shown in Figure 6.4. This means the

generator could synthesize the input face images according to the input condition and

produce faces correctly labeled by the FBP.

36



0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Be
au

ty
 lo

ss
 (R

M
SE

)

training
testing

Figure 6.4: Beauty loss for generated face images (Lbeauty in Eqn. (18)).

Training Testing
RMSE 0.0585 0.0752

Table 6.2: Beauty loss.

6.1.4 Self-consistency Loss

As shown in Figure 6.5, the self-consistency loss drops during training which means the

generator learns to duplicate the input face images when the input condition is the ground

truth beauty score of the input image. Compared with identity-preserved loss, the value

of self-consistency loss is much higher, which is because the two losses are measured dif-

ferently. The identity-preserved loss is calculated with the features of FRN, where the

self-consistency loss is measured by raw pixel value.
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Figure 6.5: Self-consistency loss for the generator (Lconsist in Eqn. (18)).

Training Testing
RMSE 0.1789 -

Table 6.3: Self-consistency loss.

6.2 Generated Faces

As shown in Figure 6.6, we select five face images with different beauty scores from the

testset and input them to the generator. Each face is mapped to five target beauty scores.

From the result, we could observe that low score faces tend to have darker skins and more

noises compared with high score faces. High score faces usually have clearer facial contours

and heavier makeup. The basic features of the face, such as the shape of face and the

position of eyes and nose, etc., are kept unchanged to preserve the identity of the original

face.
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Original
Face

1.63

1.50

2.50

3.50

4.50

4.75

2.72 3.5 4.17 4.35

Figure 6.6: Generated faces. The first row shows the original face images and each row
below shows the generated faces with the target beauty score indicated on the left. The
numbers above the original faces show the original ground truth beauty score.

As the generator could receive continuous real-valued input condition, we display generated

faces with smaller gaps to show how the faces gradually evolve with the beauty score in

Figure 6.7.
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Figure 6.7: Generated faces with smaller gaps.

6.3 Comparison & Analysis

In this section, we will inspect the details of the generated faces and compare the distinctions

between faces with different beauty scores. Because some differences in facial features could

be very tiny when the beauty score is close, we choose the generated faces with big gaps in

beauty score to show the differences more clearly.

6.3.1 Facial Features & Makeup

In our experiments, we observe that the relative positions of eyes, nose, and mouth are kept

almost unchanged in the generated faces from the same input face, which is probably the

reason why the FRN cannot distinguish them. The differences in beauty mainly reflect in

makeup, texture, and illumination. As shown in Figure 6.8, the faces with higher beauty

score look smoother than the faces with lower beauty score. Obvious makeup could be

observed on the eyes (eyebrows and eyelashes) and mouths. Furthermore, the illumination
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also plays an important role. For example, the light in the eyes makes them look clear and

shining, where the highlight on the bridge of nose enhances the nose contour and looks

more three-dimensional.

2.50 3.50 4.75

Figure 6.8: Generated faces with large gaps of beauty score. Each row is generated from
the same input face.

6.3.2 Lying Silkworm

“Lying silkworm” is a special name for the eye fat below the lower eyelid. It is usually

confused with eye bag which is caused by the skin under the lower eyelid. More specifically,

lying silkworm is a narrow band of fat with a height of 4-7 mm, where eye bag is an inverted

triangle shape with a height of 2-3 cm. As shown in Figure 6.9, the main difference between

lying silkworm and eye bag is the shape and height. Compared with eye bag which looks old

and listless, lying silkworm is considered to be a symbol of young, innocent, and intimate

in many Asian countries such as China and South Korea.
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Lying silkworm

Eye bag

Figure 6.9: Lying silkworm. Lying silkworm is a narrow band of fat with a height of 4-7
mm, where eye bag is an inverted triangle shape with a height of 2-3 cm. Image source:
http://finance.cz001.com.cn/2019-06/13/content_3620455.htm.

In our experiments, we find that the generator is able to catch the features of eye bag and

lying silkworm. As shown in Figure 6.10, the faces with beauty score of 2.50 have obvious

eye bags which are eliminated in the faces with beauty score of 3.50, while lying silkworms

could be observed in the faces with beauty score of 4.75. Therefore, we could conclude that

the feature of lying silkworm is considered as a symbol of beauty by the generator, while

eye bag represents the feature of faces with lower beauty score.

2.50 4.753.50

Eye bag None Lying silkworm

Figure 6.10: Generated faces with eye bags and lying silkworms. The red curves indicate
the region of eye bags and lying silkworms.
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6.3.3 Identity-Preserve Analysis

To further understand how the identity of the input face is preserved, we inspect the relation

between the identity feature and the input face image. We design an experiment to quantify

the influence of each pixel of the face image on the identity feature. Recall that in Section

4.5, the 5th convolutional layers of FRN is chosen to be the identity feature:

h(x) = FRN(x)conv5 (19)

where h(.) is the identity feature. Then the influence of each pixel is defined as the gradient

of the identity feature w.r.t. this pixel:

Inf(xi,j) = ∂
∑

h(x)
∂xi,j

(20)

where xi,j is a single pixel in the input face image. From the result illustrated in Figure

6.11, we could observe that the pixels around the facial landmarks tend to have a stronger

influence on the identity feature. Therefore, we could conclude that the identity of a face

image is mainly determined by the pixels around the facial landmarks. To preserve the

identity of the input face, the generator should maintain the positions of facial landmarks,

i.e., the face contours and positions of eyes, nose, and mouth.

Original
face

Facial
landmarks

Pixel
influence Keypoints

Figure 6.11: The 1st column presents the original input faces. The 2nd column presents
the facial landmarks. The 3rd column presents the influence of each pixel (whiter means
higher influence). The 4th column shows the top 5% keypoints with the strongest influence.
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Chapter 7

Conclusions and Future Research

In this work, we propose a framework which consists of cGANs, FBP, and FRN for identity-

preserved face beauty transformation. The trained generator could transform the beauty

scale of the input image to the target scale indicated by the input condition of real-valued

beauty score. To train such a framework, we introduce conditioned instance normalization

and self-consistency loss. The result shows that certain features of the input face image are

edited, including makeup, skin texture, illuminance, and other facial features. With regard

to the ethical issues related to face beauty, we claim that this work is purely a research on

face image generation and the bias which may occur in the experiments merely reflects the

preferences of the raters of the dataset.

In future works, we consider three aspects:

(1) Artifacts could be observed in some generated images, especially in those images with

uncommon occlusions or illuminance. A similar problem also occurs when the generator

is required to produce face images with very low or high beauty scores. We believe the

problems are mainly caused by the lack of data and the Gaussian-like distribution of the

beauty score. In future works, we could enlarge our dataset by labeling other datasets with

pretrained FBP as in [20]. Alternatively, we could improve our work when another large

face beauty dataset is available or create our own dataset.

(2) In this work, only Asian female faces are considered. In future works, we should include
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more faces with different races and both genders. However, annotators may have different

standards of beauty towards different races and genders. There could also be significant

bias, e.g. the average scores of female faces may be larger than those of male faces, which

may cause the generator to produce face images of one specific gender or race. To address

the problem, we could encode the race and gender information in the generator, so that

face images of different races and genders could be treated differently.

(3) Through the experimental results, we observe that the color tones and contrast styles

of transformed faces with close beauty scores are similar, even when the identity of original

input face is different. Additionally, the facial features and makeup also appear to be

almost the same. This means the generator synthesizes all the input images in a similar

way regardless of their identities and original facial features. Therefore, in future works,

we could research on instance-level face beauty transformation where the generator could

edit the input face intelligently according to its original features. For example, some face

images are labeled as low scores mainly because of their poor illuminance. To beautify such

face images, we may focus on optimizing the illuminance to make the images look clearer

instead of editing the facial features. Another possibility is that the generator could figure

out the most appropriate makeup for different face images.
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Appendix A

Proof: Inefficiency of concatenation

in cGANs

In this section, we will prove that concatenation, which is used in normal cGANs to com-

bine the input image and condition, is inefficient in a convolutional structure because it

only works as a bias term. The basic operation of concatenation can be found in Section

4.6.

Input
Kernel

= +

Figure A.1: Convolution of concatenated feature could be decomposed into convolution of
input image and convolution of input condition.

As shown in Figure A.1, the concatenated input image and condition convolves with the

kernel in a convolutional layer (only one kernel is considered for simplicity). Because of

the linear property of convolution, the operation could be decomposed into two convolu-

tions:

Xconcat ~ K = Ximage ~ K1 + Xcond ~ K2 (21)
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where Ximage is the input image of size h × w × c. Xcond is the reshaped input condition

of size h × w × 1 which has the same height and width with the input image. Xconcat is

the concatenated input of size h × w × c + 1. K is the kernel in convolutional layer of size

k × k × c + 1. K1 and K2 are the decomposed kernels of size k × k × c and k × k × 1,

respectively.

After the decomposition, the first term in Eqn. (21) (Ximage ~ K1) would become the

convolution of the input image in a normal convolutional layer. Then the second term

(Xcond ~ K2) is the effect of the input condition added to the original result. Recall that

Xcond is reshaped from a 1-d real-valued number, therefore, Xcond is an h × w × 1 tensor

filled with a single value. The convolution can be written as:

Ycond = Xcond ~ K2

yij
cond =

k
2∑

m=− k
2

k
2∑

n= k
2

xi+m,j+n
cond · kmn

2

= x · (
∑
m

∑
m

kmm
2 )

(22)

where Ycond is the convolution result and yij
cond is the ith row, jth col element of Ycond. xij

cond

and kij
2 are the elements of Xcond and K2, respectively.

=

Reshaped condition

Kernel

Convolution result

Figure A.2: Convolution of reshaped condition. x is the input real-valued condition. kij is
the element of the kernel. The output of the convolution is an h × w × 1 tensor full of the
value y.

As shown in Figure A.2, the convolution output of the input condition is a tensor of size

h × w × 1 filled with the same value. Adding this tensor to the convolution output of
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the input image is actually adding a bias term. Specifically, the input condition merely

serves as a bias term in cGANs when the input image and condition are combined through

concatenation.
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