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ABSTRACT 

Characterization and Attempted Isolation of Bacteria from the Marine Myxobacterial Clade 

Bahar Pakseresht 

Antibiotic resistant infections are caused by antibiotic resistant microorganisms. According to 

World Health Organization (WHO) antibiotic resistance is one of the major threats to global health, 

food and development. The increasing rate of mortalities caused by antibiotic resistant infections 

has highlighted the need to find a way to tackle these resistant microbes. One of the ways to solve 

this problem is to introduce novel antibiotics, the likes of which bacteria have not encountered 

before. Most of the antibiotics are natural products derived from bacteria. Among these natural 

product producers, myxobacteria have proven themselves as one of the main sources of antibiotics. 

These bacteria carry large numbers of gene clusters that can express different secondary 

metabolites for various purposes. Most of these gene clusters can encode secondary metabolites 

that not only help the bacteria to survive but also can be biologically active. Marine myxobacteria, 

in particular, produce biologically active natural products that are different from the ones terrestrial 

myxobacteria make. Therefore in this study we looked into an environment with unique conditions 

from terrestrial or marine, Gulf of Saint-Lawrence, to find novel strains from the marine 

myxobacterial clade. Sediment samples were extracted from six stations in Gulf of Saint-

Lawrence. Based on the studies conducted on the DNA content of the sediments we learned that 

the primers that were previously designed to specifically target MMC were also detecting other 

strains of bacteria closely related to MMC. Furthermore, we isolated the RNA content of the 

sediment samples to get an insight into their metabolic activity. For this purpose we employed 

qPCR techniques to measure their abundance and ribosome content. Furthermore, in an attempt to 

cultivate marine myxobacterial clade (MMC) we isolated the bacteria present in the sediment 

samples to use them as prey for marine myxobacterial clade. Based on qPCR studies we were able 

to conclude that the MMC were growing actively under estuary conditions. However, the attempt 

to cultivate the MMC on the bait plates led to emergence of vancomycin resistant Bacillus strains 

along with other saprophytes on the plates. These findings suggest that members of the MMC are 
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active under the Estuary condition and can be cultivated if subjected to the same condition as 

present in the Estuary of St-Lawrence.  
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Chapter 1. Introduction 

 

 

1.1 Antibiotics, the force against infections  

 

The word “antibiotic” refers to compounds produced by microbes that can kill other microbes or 

stop them from growing and was first used by Selman Waksman.1 The first antimicrobial 

compound was discovered by Ehrlich in 1911. This compound was considered as a “magic bullet” 

that could cure Syphilis without harming the patient.2 The “magic bullet” was actually 

arsphenamine and being the 606th compound that was tested by Ehrlich, it was also called 606.3 

Later this compound was called Salvarsan and it was widely used as an effective cure for syphilis 

until the 1940s, when penicillin became accessible.3  

 In 1928 penicillin was serendipitously discovered by Alexander Fleming.4 Although the discovery 

of penicillin offered an effective solution to cure infections, it was not purified and produced for 

medical use until 1940.5–7 By late 1940, a team of scientists in Oxford University led by Howard 

Florey designed a method to produce penicillin in large quantities.8 The discovery of penicillin 

and its healing effects on infections prompted the research into the identification of many other 

new antibiotics. This marked the beginning of an era, 1950 to 1960, known as golden age of 

antibiotic discovery.9,10 

Although the antibiotics were effective in curing infections, the battle against infections didn’t end. 

Unfortunately, soon after antibiotics were discovered, the bacteria grew resistance against the 

antibiotics that were meant to kill them.10 However, while antibiotic-resistant bacteria have 

increased in prevalence since the 1940’s, metagenomic studies have demonstrated that many 

resistance-conferring genes clusters are millions of years old.11,12 These gene clusters might have 

appeared due to early use of natural products with antibiotic activity in ancient times.11–13  
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Antibiotic resistant infections cause problems in many ways. They take lives, hinder healing 

processes from different diseases and increase costs. According to the Centers for Disease Control 

and Prevention (CDC) every year over 2.8 million people are affected by antibiotic-resistant 

infections, leading to over 35,000 deaths in United States.14 Even when they do not kill, antibiotic-

resistant infections can cause longer stays at the hospital which in turn makes the patients more 

prone to acquiring other infections.15 According to a study published in Health Affairs, these 

prolonged hospital stays increase medical costs by 2.2 billion dollars every year in the United 

States.18 Antibiotic resistant infections have been listed as major threats to human health.16 As 

shown in Figure 1, it is postulated that antibiotic resistant infections will be the leading cause of 

death by year 2050.16 

 

Figure 1. Deaths projected in 2014. Based on information retrieved from Review on Antimicrobial Resistance 

2014.17 Antimicrobial resistant (AMR) infections (shown in red) are expected to be the leading cause of death in year 

2050.  

 The unremitting problem of antibiotic resistance has led to the development of many tactics to 

combat antibiotic resistance. One very efficient and immediate solution to antibiotic resistance is 

finding novel antibiotics from natural resources.18  

 

AMR Road traffic accidents Measles Diarrhoeal disease Diabetes Cholera Cancer

Year 2050

Year 2014
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1.2 Natural products are a key source of new antibiotics 

 

Natural products are compounds made by living organisms.19 Secondary metabolites, compounds 

synthesized by organisms that aren’t directly needed for growth, form the bulk of bioactive natural 

products. Secondary metabolites can help organisms to adapt to their environment better, protect 

themselves against any external threats, and be used as a means of communication.20,21  

The process to find a new bioactive natural product includes screening and testing the extracts 

collected from the natural resource for biological activity at every level of purification, which 

makes this process time consuming and costly.22 However, natural products possess the 

complexity and diversity that makes them more preferred than synthetic drugs in drug discovery.23 

Another reason that makes natural products more desired than synthetic drugs in drug discovery 

is the fact that bioactive secondary metabolites possess good bioavailability which makes them 

good drug candidates despite not following the Lipinski rule. Lipinski rule states that synthetic 

drugs in order to be active have to have a molecular weight less than 500 Da, 5 hydrogen bond 

donor, 10 hydrogen bond acceptors and log P of 5 to have good bioavailability.24 Unlike synthetic 

drugs, the bacterial secondary metabolites that are already bioactive when extracted don’t need 

refinements and modifications to penetrate the cell membrane, they reach their target within the 

cell through transmembrane transporters. This comes as an advantage for natural products, since 

they don’t need modifications to enable them to pass through the membrane.24 

These bioactive compounds can have a wide range of actions, one of which is antibiotic activity. 

These compounds can be retrieved from many natural product resources and bacteria have proven 

themselves as good resources for potent antibiotics. They account for more than 75% of the 

antibiotics found in the years between 1981 and 2006.25 These compounds produced by bacteria 

can act through different mechanisms for instance shutting down the protein synthesis “factory”, 

preventing their target from completing the DNA replication, etc.26 This provides an advantage, 

since using different mechanisms to fight off the bacteria can decrease the chance of bacteria 

growing resistance against that particular class of antibiotics.26 



 

 4 

 Bioactive secondary metabolites isolated from different strains of bacteria like the species from 

Streptomyces have been successfully used in medicine for many years.27 Although there are many 

known bioactive secondary metabolite producers that can be used as sources of natural products, 

finding other resources offer discovering compounds with different scaffolds which appears as an 

advantage in the battle against antibiotic resistant infections.28  

Myxobacteria in particular are a group of predatory bacteria that have established themselves as 

significant producers of bioactive secondary metabolites with new chemical scaffolds.29 They prey 

upon other microorganisms to get their essential nutrients. These bacteria secrete secondary 

metabolites which provide myxobacteria with strategies to incapacitate the prey.29 Their ability to 

make biologically active secondary metabolites has put myxobacteria amongst the greatest natural 

product producers like Actinomycetes spp.30,31  

 

1.3 Myxobacteria are potent bioactive natural product producers 

 

Myxobacteria are rod-shaped Gram-negative proteobacteria capable of moving and preying on 

other microorganisms present in the environment. They have been found ubiquitously in soils from 

all seven continents32–34and were first described in 1892 by Thaxter, an American mycologist.35 In 

this article, he described finding samples resembling fungi in New England and the Southern 

United States which, given the samples lacked hyphae, Thaxter assumed that they were dried fungi 

in the course of forming fruiting bodies.35 His work was followed by additional seminal studies on 

myxobacteria by researchers such as Baur, Kofler, Jahn, and Kühlwein.36 Myxobacteria, apart 

from being a prolific natural product resource, also exhibit interesting social behaviour.29 The 

small molecules that are transferred within the extracellular matrix that myxobacteria have 

secreted, are responsible for their communication.37 The matrix is also used as a platform for their 

group movement towards the prey. As a result, when grown on agar myxobacteria form large 

swarms that can be used to visually identify members of this group.37 

The survival of myxobacteria in harsh conditions depends on myxobacteria adopting a more 

resilient form. Therefore they have evolved a strategy in which they form fruiting bodies that 
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harbor dormant cells, myxospores.37 Fruiting body formation is triggered by nutrient limitation, 

and allows cells to survive until conditions improve.37 Fruiting bodies are visible to the naked eye, 

and can be used to distinguish myxobacteria from other bacterial species.37  

Natural products that have been isolated from these bacteria so far not only exhibit antibiotic 

effects but also are potent antifungal, antimalarial, immunosuppressant, antioxidative and 

anticancer agents.38 So far 100 core structures and at least 500 derivatives have been identified 

from different strains of myxobacteria.29 These metabolites are from different classes of natural 

products including polyketides, phenyl-propanoids, and alkaloids. These secondary metabolites 

have their own biosynthetic gene clusters in the myxobacterial genome along with many other 

gene clusters that encode novel bioactive secondary metabolites.30 The natural products produced 

by myxobacteria have diverse structures, mechanism of action and effects on microorganisms. It 

is reported that about 54% of these compounds are known to act as antifungal agents. They can 

interfere with electron flow in the respiratory chain of mitochondria. Around 29% of the secondary 

metabolites produced by myxobacteria are antibacterial.39 Thuggacin is one of these secondary 

metabolites that targets the electron transport chain and can act against Mycobacterium 

tuberculosis.40 While other compounds like corallopyronin41, etnangien42, myxopyronin43, 

ripostatin, and sorangicin44are known to inhibit RNA polymerase.  
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Figure 2. Chemical structure of the secondary metabolites isolated from Myxobacteria.  

  

The secondary metabolites produced by myxobacteria have a wide range of actions, while some 

are capable of acting as antimicrobial agents others display anticancer activity.45 Some of these 

compounds that have shown promising activity against tumor cells are disorazol, tubulysin45, and 

epothilone.46 They target the tubulin structure of the tumor cells and they interfere with the cell 

division.47 Since these secondary metabolites have shown promising biological effects, studying 

myxobacteria as natural product producers is important in drug discovery.  

Myxobacteria were initially thought to inhabit terrestrial environments exclusively48, but 

halotolerant species have later been identified in marine sediments and saline lakes.32 These 

microorganisms are a rich source of bioactive lead compounds.49  

Marine Myxobacteria are bacteria related to terrestrial myxobacteria and their existence was first 

hypothesized in 1999 by Hans Reichenbach.48 They differ in many ways from their terrestrial 
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counterparts, but to date all marine myxobacteria are still able to prey upon other microorganisms, 

form fruiting bodies and glide over solid surfaces.50–52 However some of the secondary metabolites 

that have been isolated from these bacteria are different from the ones terrestrial myxobacteria 

produce.53 The explanation for this behavior is that in response to environmental changes the 

bacteria are provoked to produce secondary metabolites that help them survive the new 

conditions.54 For instance, to cope with the tremendous amount of pressure that is subjected upon 

bacteria living on the ocean floor, they develop strategies to survive. These strategies can be 

through synthesizing proteins and secondary metabolites or structural changes.55,56 For instance in 

P. profundum SS9 the cell membrane has become more fluid due to the ratio of unsaturated to 

saturated lipids in the membrane.57  

Some of these secondary metabolites that have been produced in response to the stress have various 

biological effects . Therefore strains of bacteria that are already known to be potent producers of 

bioactive compounds and are found in a different environment than their original habitat can be 

interesting targets for natural product studies.53 

Although marine myxobacteria have not been as thoroughly studied as terrestrial myxobacteria, 

there have been papers published on the potent bioactive secondary metabolites derived from these 

strains.58,59 For instance haliangicin, is a potent antifungal agent produced by Haliangium luteum 

that was isolated by Ryosuke Fudon et al. in 2000.58 These compounds not only can be used as 

treatments for diseases but also studying these structures provides scientists with insights into 

antibiotic biosynthesis and their mechanism of action. To isolate and investigate on these small 

molecules it is necessary to cultivate these strains and isolate the metabolites they produce.  

The marine myxobacterial clade (MMC) is a recently discovered cluster of myxobacteria that are 

distantly related to both the currently cultured marine myxobacteria and terrestrial myxobacteria.60 

Like the currently cultured marine myxobacteria, bacteria from the MMC inhabit environments 

with salinity ranging from brackish to marine.60 Metagenomic studies suggest these bacteria may 

also produce a multitude of secondary metabolites, with biosynthetic gene clusters responsible for 

the production of type I polyketides, highlighting the importance of continuous effort to isolate 

and cultivate these natural product producers.61–63 
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Isolating novel secondary metabolites from marine myxobacteria can help address the ongoing 

problem of antibiotic resistance. However, this requires pure cultures of each strain of interest, and 

despite several attempts, to date no MMC strains have been cultured in the lab.64 

 

1.4 Assessing marine myxobacterial activity using qPCR methods 

 

Real time quantitative polymerase chain reaction, abbreviated as qPCR, is a technique in which 

the amplification of a target DNA can be monitored throughout the PCR process.65 In this process 

a fluorescent dye is introduced to the mixture containing the DNA template. After being excited 

by ultraviolet light, the dye bound to double-stranded DNA fluoresces, producing a visible signal 

that is detected by a conventional UV-Vis spectrometer.65 As the template is amplified the signal 

increases in intensity, and this increase is plotted against the corresponding cycle number. This is 

then plotted against a standardized exponential curve, revealing the starting copy number for the 

DNA of interest. In cases where the starting material is RNA, an additional step of generating the 

cDNA is conducted prior to qPCR.66 One of the most popular applications of qPCR is to quantify 

the expression level of a target gene. This goal can be reached by using the specific primers to 

target the desired fragment of RNA.67  

Like all known organisms, bacteria produce ribosomes to translate RNA into protein.68,69 The small 

ribosomal subunit, 30S, contains 16S rRNA that is commonly used in phylogenetic studies. What 

makes 16s rRNA a favored target in these kind of studies is that it can be used to distinguish 

different bacterial strains.70 16s rRNA is composed of both hypervariable and conserved regions. 

The conserved regions are common among all the bacterial strains while the hypervariable regions 

are specific to each strain.70 These sequences can be used to assess their similarity to the other 

strains of bacteria that have been already discovered.70 Targeting the conserved region of 16S 

rRNA helps to identify the different strains of bacteria present in the sample, while targeting the 

hypervariable region assists studies conducted on a specific strain of bacteria.70  

Furthermore, 16S rRNA can be used to measure the 16S rRNA copies of a particular strain. 

Knowing that 16S rRNA is a part of the ribosome scientists can relate the amount of 16S rRNA 
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transcripts to the metabolic activity of the bacteria.71,72 This idea has been used in different studies 

to measure the activity of the bacteria or to measure their abundance in different samples.73 For 

instance, Axel Fey and his colleagues sought to quantify the titre of pathogenic bacteria in 

environmental water samples. They determined the expression level of the genes using qPCR and 

the specific primers designed to identify them.74 Since 16S rRNA also contains a fragment that is 

common amongst all strains of bacteria, it can also be used to reflect the total amount of bacteria 

present in the sample. An example for this case is a study conducted by Axel Schippers and Lev 

N. Neretin. They used universal primers for 16S rRNA gene to quantify the total amount of bacteria 

in their sediment samples.72 

It’s been suggested that quantifying 16S rRNA might not reflect the accurate information on 

bacterial community and their state of activity.75 Other ways to determine bacteria’s level of 

activity includes measuring their consumption of organic sources like oxygen.75 However the 

sediment samples consist of many different strains of bacteria and measuring the oxygen content 

of the sediments might not give insights into MMC level of activity.  

As a conclusion, by comparing the amount of MMC 16S rRNA to MMC 16S rRNA gene we can 

learn more about their metabolic activity and come up with ways to grow these bacteria under 

laboratory conditions to extract secondary metabolites. 

 

 

1.5 Previous attempts to cultivate members of the marine myxobacterial  

clade 

 

There are an estimated 5×1030 bacterial species in the world70, but only approximately 2 % of these 

are culturable.71 This discrepancy, the difference between the number of culturable bacteria and 

the total bacteria present in the sample, has been termed the Great Plate Count Anomaly.76 Some 

strains of myxobacteria, like the members of marine myxobacterial clade are good examples for 

this concept. There can be several reasons to explain why they cannot be cultivated. Some of the 
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reasons refer to the media the bacteria is being seeded in. The physical condition present in the lab 

can also hinder the growth of bacteira.71 Myxobacteria are slow growing microorganisms in nature, 

and this gives the other saprophytes present in the environment the chance to over grow 

myxobacteria.77  

Although many members of the marine myxobacterial clade are unculturable, many terrestrial 

strains have been successfully cultivated in the lab.78 A classic way to isolate terrestrial 

myxobacteria is to grow them on rabbit dung and if cultivated in a moist chamber at room 

temperature the colonies will start to form within a few days.79 Rabbit dung provides a nutritious 

source for myxobacteria and stimulates them to form fruiting bodies.80 These fruiting bodies can 

form in different colors and they are used to visually distinguish terrestrial myxobacteria.80 This 

method of cultivation seems to work fine for isolation of bacteriolytic myxobacteria.80 There are 

also other ways to cultivate terrestrial myxobacteria, like using prey species as bait in their 

culture.81 Almost all of the myxobacterial strains would grow with the presence of a bait, in most 

cases E. coli, in the media.81 This method is called baiting method and includes suspending live 

prey bacteria, E. coli, in a nutrient poor media as the sole nutrient source for myxobacteria and 

incubate them at room temperature for a month.29 Although this method will provoke 

myxobacteria into forming swarms and fruiting bodies to make them easier to identify, the growth 

of myxobacteria is hindered by contamination with amoeba and other bacteria.29  

Some species within myxobacterial clade would grow easier if provided with more specific 

nutrients to grow. For instance, Sorangium strains that are cellulose degraders would grow easier 

if cultivated on filter paper pads. These species grow slowly, and in case of Sorangium, it can take 

12 to 14 days for them to grow into visible colonies.79 

The marine myxobacteria strains that have been cultivated heretofore are mostly classified in 

Nannocystineae, Haliangium, Enhygromyxa, and Plesiocystis suborders.64 Furthermore these 

strains are found to be halophiles and they need salts in their media to grow.82 After a few years 

since the discovery of marine myxobacteria suborders a novel clade was discovered that 

represented a range of myxobacteria strains relating to marine myxobacteria. Attempts to cultivate, 

this newly discovered marine myxobacteial clade were unsuccessful . Based on previous 

studies60,83, the strains of marine myxobacteria clade discovered so far seem to exclusively inhabit 
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environments with salinity of about 3.5 %.83,84 In research studies conducted so far the samples 

were isolated from seawater and sediment samples.60,84,85  

This finding indicates that some of the MMC strains may need fastidious conditions to grow, 

including the salinity and the elements present in their original habitat.82 The ability of MMC to 

grow in saline environment serves a few benefits to the study, one of them being able to isolate 

MMC from the bacteria that can’t survive saline conditions. Terrestrial myxobacteria cannot 

tolerate a salinity percentage of 1 or above, which in turn can lead to members of the MMC being 

able to grow in environments that restrict the growth of terrestrial myxobacteria.79  

 

Previous attempts to isolate members of the MMC led to the conclusion that the condition under 

which the MMC were being cultivated should be similar to the conditions in which the bacteria 

were initially isolated from.60,82 This idea of subjecting the sediment samples to ocean like 

condition to grow MMC was confirmed by the studies conducted in the same manner to cultivate 

marine myxobacterial strains.77,85 There have been attempts to cultivate MMC, in a study 

conducted by Till F. Schaberle et al. They isolated members of the marine myxobacteria from 

beach sediments and cultivated them under ocean-like conditions using artificial sea water.77 In 

this study it was stated that if cultivated in rich media cell density would be low. In order to screen 

for marine myxobacteria, samples retrieved from the beach were spotted on E.coli in agar 

containing an antifungal agent: cycloheximide.77  

The members of the MMC appear to be very difficult to cultivate and no one was able to cultivate 

them to this date. In the previous sections we discussed using qPCR techniques to verify MMC 

metabolic activity. By using the information collected from the assessment of MMC metabolic 

activity we will be able to comprehend their living needs better. In other words, we surmised that 

the MMC could be cultivated if subjected to the same condition as their original habitat.  

If the MMC are active in the estuary we can mimic some of the conditions present there, including 

the salt concentration and their food source, bait bacteria, in the sediment, to cultivate MMC. In 

order to apply exactly the same salt concentration we collected the water samples from the Gulf of 

St-Lawrence to provide the bacteria with the same concentrations of salts and other organic matters 
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they would need. Also, we tried to isolate the other strains of bacteria present in the sediment 

samples to prepare the MMC with the prey it would need to grow. 

This study focuses on the assessment of MMC metabolic activity and using that information to 

cultivate MMC.  
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Chapter 2. Experimental 

 

2.1. Materials  

 

2.1.1. Reagents and kits  

 

Here the reagents and kits used in this study are listed in regard to the provider and their catalog 

number.  

Table 1. The list of important reagents and kits used in this study.  

Product Manufacturer CAT# 

RNeasy® PowerSoil® Total RNA 

Kit 

QIAgen, Germantown, MD, United States 12866-25 

EZ-10 Spin Column Plasmid DNA 

Miniprep Kit 

Bio Basic, Markham, ON, Canada BS614 

Milli-Q® IQ 7003/05/10/15 Water 

Purification Systems 

Sigma-Aldrich, St. Louis, MO, United States  

MBI evolution EvaGreen qPCR 

master mix 

Montreal Biotech, Dorval, QC, Canada MBI-E250 

                  

Low-retention aerosol filter tips 

(10µl, 20µl, 100µl, 1000µl) 

VWR, Radnor, PA, United States 89174-520 

(10µl) 

89174-524 

(20µl) 

10126-388 

(100µl) 
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89174-530 

(1000µl) 

Phusion® High-Fidelity DNA 

Polymerase 

New England Biolabs, Ipswich, MA, United States M0530S 

Falcon® 96-Well Cell Culture 

Plates, Corning® 

VWR, Radnor, PA, United States CA15705-

064 

GeneJET PCR Purification Kit Thermo Fisher, Waltham, MA, United States K0702 

Eco qPCR Thermo resistive 

sealing film 

Montreal Biotech, Dorval, QC, Canada EC-200-

1003 

Eco qPCR 48 well custom reaction 

plate 

Montreal Biotech, Dorval, QC, Canada EC-200-

1002-10 

Taq DNA Polymerase with 

ThermoPol® Buffer 

New England Biolabs, Ipswich, MA, United States M0267L 

TaqMan™ Reverse Transcription 

Reagents 

Applied Biosystems, Foster City, CA, United States N8080234 

Proteinase K Solution Bio Basic, Markham, ON, Canada PB0451 

Difco™ Marine Broth 2216, BD VWR, Radnor, PA, United States CA90004-

006 

VWR® Vacuum Filtration 

Systems, Standard Line 

VWR, Radnor, PA, United States 10040-436 

T4 DNA Ligase New England Biolabs, Ipswich, MA, United States M0202S 

PCR clean up for DNA sequencing BioBasic, Markham, ON, Canada BT5100 

CloneJET PCR Cloning Kit Thermo Fisher, Waltham, MA, United States K1232 
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RNaseZAP™ Sigma-Aldrich, St. Louis, MO, United States R2020-

250ML 

Phenol TCI chemicals, Portland, OR, USA P1610 

Disposable Inoculating Loops and 

Needles, Sterile, BD Difco™ 

VWR, Radnor, PA, United States 220217 

EZ-10 Spin Column Bacterial 

Genomic DNA Miniprep Kit 

BioBasic, Markham, ON, Canada BS624 

 

 

2.1.2. Bacterial strains 

 

Escherichia coli DH5-α cells were used for transformation. E. coli DH5-α has the genotype:  

fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80Δ (lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 

hsdR17.86 

The strain of E. coli used to produce the qPCR standard curve was MG1655.  

The strains, provided in Table 2, used for preparing bait plates were retrieved from Zachary 

Schiffman, a former undergraduate student in the lab. He isolated these strains from bait plates in 

his attempts to cultivate marine myxobacteria.  

Also some unidentified strains (A, B and C) were retrieved from the undergraduate volunteers 

working in the lab, Seydee Bien-Aime and Harman Warraich. 
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Table 2. Strains of bacteria used as bait. The list of bacteria isolated by Zachary Shiffman, that were used as bait in 

this study. These strains were selected from a list of bacteria that were present in the sediment samples of the Gulf of 

St-Lawrence.  

Sample ID Station Closest relative Identity Accession 

number 

18B-C2 S19 Paenibacillus taiwanensis 99 % NR_044007.1 

25B-B2 S25 Psychrobacter cryohalolentis 82 % NR_075055.1 

22B-B2 S19 Pseudoalteromonas nigrifaciens 99 % NR_114188.1 

 

 

2.1.3. Plasmids  

 

The plasmid used for transformation was pJET1.2/blunt. This plasmid bears an ampicillin resistant 

gene and a lethal restriction enzyme gene. The gene encoding the restriction enzyme is Eco47I, 

and is responsible for production an endonuclease that cleaves DNA at GGWCC sites. During 

ligation, the insert is placed in between this gene, disrupting its function. As a result the colonies 

that emerge on the plate are the ones that hold the insert in their plasmids. 

 

2.1.4.  Primers 

 

Primers were synthesized on demand by Integrated DNA Technologies, Inc. (IDT), USA. The 

lyophilized primers were dissolved in TE buffer upon arrival. The final concentration of the stock 

solution for each primers was 100µM and the samples were stored at -20 ℃.  

The primers used in this study are listed along with their sequences in Table 3. 
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Table 3. The list of primers used in this study. 

Primer  Sequence (5’-3’) 

MMC 4F AATGGAGAGGGTGGCGGAA 

MMC 155R CGTGGACTACCAGGGTATC 

341F CCTACGGGAGGCAGCAG 

518R ATTACCGCGGCTGCTGGCA 

1492R TACGGYTACCTTGTTACGACTT 

27F AGAGTTTGATCMTGGCTCAG 

pJET F CGACTCACTATAGGGAGAGCGGC 

pJET R AAGAACATCGATTTTCCATGGCAG 

MMC 655F AGTAATGGAGAGGGTGGC 

MMC 841R GGCACAGCAGAGGTCAAT 

 

 

2.1.5. Culture media  

 

Marine broth was used in this research project to cultivate the bait bacteria. The composition of 

this media is explained in Table 4. 

Table 4. Composition of DifcoTM Marine Broth 2216. The formula is per Liter. 

Compound Amount (grams) 



 

 18 

Peptone 5.0 g 

Yeast Extract 1.0 g 

Ferric Citrate 0.1 g 

Sodium Chloride 19.45 g 

Magnesium Chloride 5.9 g 

Magnesium Sulfate 3.24 g 

Calcium Chloride 1.8 g 

Potassium Chloride 0.55 g 

Sodium Bicarbonate 0.16 g 

Potassium Bromide 0.08 g 

Strontium Chloride 34.0 mg 

Boric Acid 22.0 mg 

Sodium Silicate 4.0 mg 

Sodium Fluoride 2.4 mg 

Ammonium Nitrate 1.6 mg 

Disodium Phosphate 8.0 mg 

 

Marine broth was diluted in half strength sea water that was isolated from the Gulf of St-Lawrence. 

In order to prepare the solid media agar (1.5 %) was added. In order to sterilize the liquid media, 

the final mixture was autoclaved at 121℃ for 30 minutes.  

For transformation Lysogeny Broth (LB) was used.  
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Table 5. Composition of LB broth. The formula is per Liter. 

Compound Amount (grams) 

Tryptone 10.0 g 

Yeast extract  5.0 g 

NaCl 5.0 g 

 

To mitigate the risk of contamination ampicillin (final concentration of 100 µg/mL ) was added to 

the LB media after the media was autoclaved and cooled to room temperature.  

 

2.1.6. Gel electrophoresis 

 

All the PCR products were run on 0.8% agarose gel. The dye used for detection was ethidium 

bromide. The running buffer used in this study was Tris-Acetate-EDTA (TAE) 1X (Table6). The 

buffer was stored at room temperature after preparation. 

Table 6. Composition of 1X TAE buffer. 

Compound Concentration 

Tris 40 mM 

Acetic acid 20 mM 

EDTA 1 mM 
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2.1.7. Software: 

 

Phylogenetic trees were built with Mega-X version 10.0.5.87  

qPCR data was analyzed with the Eco study software supplied with the EC-101-1001 qPCR 

thermocycler.  

Primers were designed with the help of the primer-blast tool (NCBI).88–90 

2.2. Methods 

2.2.1. Study sites and sampling acquisition 

  

The sediment samples were collected from six different stations by Anic Imfled from Dr. Gelinas 

research group during a cruise to Gulf of St-Lawrence in the summer of 2017. The samples were 

collected using a box-core in Stations 19, 21, 23 and 25 and Van Veen grabs in Station DE aboard 

the RV Coriollis II. The top 10 cm of sediment were collected from the box core and distributed 

in Eppendorf tubes and stored at -20°C until further treatment. 

 

2.2.2. Isolating bait bacteria 

 

The strains used to prepare bait plates were retrieved from Zachary Schiffman, a former 

undergraduate student in the lab. Strains A, B and C, that were used as bait were obtained by the 

volunteers working in the lab, Seydee Bien-Aime and Harman Warraich. As shown in Figure 3, 

the sediment samples were spread on top of the marine broth agar plate and incubated in a dark 

place at room temperature, overnight. 

The colonies that had formed on nutrient-rich agar plates were isolated and streaked to purity on 

nutrient rich media. For long-term storage of the bait bacteria, -80 ℃ stock of the strains were 
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prepared by adding 60 % glycerol (final concentration of 30 %) to 1mL of liquid cultures, then the 

samples were frozen using liquid nitrogen. 

 

Figure 3. Isolating bait from the sediment samples. The initial culture contains nutrient rich media (marine broth) 

with seawater. a) The sediment samples that were dispersed in seawater by sonication are then spread over the plate 

and b) the plate was incubated at room temperature in the dark. c) the colonies that had grown on the plate were 

isolated and streaked to purity. 

 

2.2.3. Preparation of bait plates 

 

As illustrated in Figure 4, the isolated strains were inoculated initially in 5 mL seed cultures 

containing marine broth and autoclaved seawater. The liquid cultures were incubated at room 

temperature in a rotary shaker at 225 rpm for approximately 24 hours.91 Then 1 mL of the seed 

cultures were inoculated in 1 L of marine broth liquid media and incubated at room temperature 

in the shaker for approximately 18 hours. Later on the cells were harvested by two tandem steps 

of first centrifugation at 5000 rpm for 20 min and then washing with distilled water. The cells were 

then suspended in agar along with vancomycin (20 µg/mL ) and cycloheximide (100 µg/mL ).  
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Figure 4. Preparation of bait plates. The seed culture contains marine broth and seawater. The bacteria are initially 

cultivated in the 5 ml seed culture in the shaker at 225 rpm adjusted to room temperature. Then 1 mL of the seed 

culture is inoculated in 1 L of marine broth and incubated in the shaker at 225 rpm and room temperature. Later the 

culture is spun down to harvest the cells. The cell pellets were then suspended in agar media along with vancomycin 

and cycloheximide and then poured into petri-dishes.  

 

2.2.4. Cultivation, purification and extraction of putative marine myxobacterial clade 

members 

 

About 1-2 mg of the sediment samples were dispersed in milliQ water via micropipette. Working 

close to the flame, approximately 100 µL of the mentioned solution was spread on each bait plate. 

The plates were then stored in the dark at room temperature to grow. Visible colonies started 

forming after 3-4 weeks of incubation. Representative colonies were then isolated and streaked to 

purity on separate agar plates containing marine broth, vancomycin (20 µg/mL) and cycloheximide 

(100 µg/mL). After 2-3 subcultures the bacteria were suspended in 30 % glycerol, and frozen using 

liquid nitrogen, for long term storage.  
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2.2.5. Genomic DNA extraction  

 

Genomic DNA from strains speculated to be from the MMC were extracted with EZ-10 Spin 

Column Bacterial Genomic DNA Miniprep Kit. The 16S rRNA fragments of the genome were 

then amplified with universal primers 27F and 1492R. The amplified fragments were harvested 

using a PCR clean up kit for DNA sequencing. Then the fragments were blunt-end ligated into 

pJET 1.2/ blunt and transformed into E. coli DH5-α.  

 

2.2.6. Transformation  

 

E. Coli DH5-α cells were transformed using the pJET 1 2/blunt vector kit. For transforming E .coli 

DH5-α, approximately 1 µL of the ligation mixture was added to 100 µL of chemically competent 

DH5-α and mixed by pipetting. The mixture was then left to incubate on ice for about 10 minutes 

followed by a 45 second heat shock at 42 ℃.92 Later the mixture was put on ice for 3 minutes. In 

order to let the bacteria grow the mixture was inoculated in 1 mL of LB media and then incubated 

in 37 ℃ incubator for about 1 hour. Then using the benchtop centrifuge, that can hold 1.5 mL to 

2 mL tubes, the cells were harvested by centrifugation at maximum speed (15000 rpm) for 3 

minutes.92 The transformed DH5-α cells were then suspended in 200 µL of Lysogeny Broth (LB) 

and spread on top of LB ampicillin plates while working close to the flame. The plates were sealed 

with parafilm and incubated on the bench for 5 minutes and then transferred to a 37 ℃ incubator 

for 14 hours incubation. The colonies formed on the plates were then isolated for plasmid 

extraction.92 

 

 

2.2.7. Plasmid purification 
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The pJET 1 2/blunt plasmids were extracted from E. Coli DH5-α using the GeneJET plasmid 

purification kit. Using Nandrop (ND-1000, Thermo Fisher) the concentration of the extracts were 

measured. In addition, the 260 nm/230 nm and 260 nm/280 nm UV absorption ratios were obtained 

to check for presence of protein or other contaminants. The cut off value for 260/280 was 

approximately 1.8 to ensure the integrity of the DNA samples. 

 

2.2.8. DNA extraction from the sediment samples 

 

The DNA content of the sediment was extracted by Susan McLatchie using the Powersoil DNA 

isolation kit. For long term storage all the DNA extracts were stored at -80℃.  

 

2.2.9. Detecting MMC 

 

The primers used to amplify the 16S rRNA using PCR were derived from a previous study on the 

MMC.60 The forward and reverse primers are as follows: MMC655f (5-AGT 

AATGGAGAGGGTGGC-3)/MMC841r (5-GGCACAG CAGAGGTCAAT-3). The PCR 

products were generated using the 50 µL mixture detailed in Table 7.  

Table 7. PCR reaction mixture to amplify MMC 16S rRNA. The primers designed by Bronkhoff et al60were used 

to identify and amplify MMC 16S rRNA. The total volume of the reaction mixture is 50 µL.  

Reagent  Amount  

5X Phire reaction buffer  10 µL 

dNTP (10mM)      1 µL 

Forward primer (final concentration of 0.5µM)  2.5 µL 
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Reverse primer(final concentration of 0.5µM) 2.5 µL 

Phire Hot Start DNA Polymerase   1 µL 

MilliQ 31.75 µL 

Template DNA          1.25 µL 

 

Fragments were amplified in a Applied Biosystems® 2720 Thermal Cycler under these conditions: 

1 denaturation step at 98 ℃ for 30 seconds followed by 30 cycles of 5 seconds at 98 ℃, 5 seconds 

at 55 ℃, an 10 seconds at 72 ℃. The last step consists of polymerization at 72 ℃ for 1 minute. 

The PCR products were kept at 4 ℃ upon the completion of PCR. In order to check the integrity 

of PCR products the fragments were cast into 0.8 % agarose gel and electrophoresed for 60 minutes 

under 70 V.  

 

2.2.10. Phylogenetic tree analysis 

 

To construct a phylogenetic tree for the strains found in the sediment the sequences were aligned 

with their closest relatives using the MUSCLE software. Phylogenetic trees were constructed using 

the maximum likelihood method and Tamura-Nei model93. The initial trees for the heuristic were 

constructed by applying Neighbor-Join and BioNJ algorithms to a matrix pairwise distance that 

was estimated using the maximum Composite Likelihood (MCL) approach, and then selecting the 

topology with superior log likelihood value in MEGAX software.87 

 

2.2.11. RNA extraction from the sediment samples 
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The sediment samples collected from all the stations were weighed, then extracted with the RNeasy 

power soil total RNA kit according to manufacturer’s instructions. The mass of the sediment 

samples ranged from 0.64 to 2.35 g. RNA extracts were diluted in 100 µL RNase free TE (Tris-

EDTA) buffer and stored at -80℃. Aliquots of 10 µL were prepared and kept at -20℃ for further 

experiments. RNA concentrations of the samples were measured using a Nanodrop ND-1000. 

Their 260/230 and 260/280 were measured to check the purity of the extracts. The 260/230 ratio 

for RNA samples varied between 0.83 and 1.24, and the 260/ 280 ratio was between 1.57 and 1.72.  

 

2.2.12. cDNA synthesis 

 

The cDNA samples were prepared from the RNA extracts on October 30th of 2019, with TaqMan™ 

Reverse Transcriptase according to manufacturer’s instructions. The amount of RNA in the 100 

µL cDNA synthesis cocktail was maintained at a maximum of 2 µg according to manufacturer’s 

instructions 51,94. The mixture was transferred to the thermocycler for cDNA synthesis. The 

mixture was first kept at 48 ℃ for 30 min and then the temperature was elevated to 95 ℃ and 

maintained for 5 min. The products were kept at 4 ℃ for further experiments.  

 

2.2.13. qPCR assay 

 

MMC-specific primers 4F and 155R were used to quantify the amount of MMC DNA/RNA in the 

samples. Standards for quantifying MMC RNA and DNA copy numbers were obtained from Susan 

McLatchie. The qPCR master mix consisted of Eva green super mix, forward and reverse primers 

and 1 µL of the cDNA or DNA samples.  

To measure the abundance of MMC in the samples the total amount of bacteria was quantified 

using universal primers (341F/518R). In addition, the standards for universal primers were made 

using a pure culture of E. coli MG1655. The qPCR standard curve was generated on March 11th
,
 

2020 for measuring the total amount of 16S rRNA and 16S rRNA gene in the sediment samples. 
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The total amount of 16S rRNA was measured on October 31st 2019, and the amount of 16S rRNA 

gene was measured through qPCR on October11th 2019.  

The amount of the MMC 16S rRNA was measured on October 31th 2019. And the data used for 

the MMC 16S rRNA gene was retrieved from Susan McLactchie back in 2017 (August and 

September).  

The values reported by the qPCR machine for total 16S rRNA gene standards were normalized by 

dividing the values by the standard concentrations. 

The R2 cut off value for the standard curve was 0.99, which ensured the precision of the 

experiment. 
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Chapter 3. Results and Discussion 

 

This section is divided into two sections: one that focuses on arguments towards the presence and 

prevalence of MMC in the sediment and another that studies their cultivation.  

 

3.1. Presence of MMC in Saint-Lawrence estuary 

 

In the Summer of 2017 the research vessel Coriolis II did a tour of the Estuary and Gulf of St. 

Lawrence. During this time 30 cm core samples of St. Lawrence sediments were collected by Anic 

Imfled. The samples were collected from six different stations starting from the estuary going 

farther into the Gulf of St Lawrence. 

 

Figure 5. Sampling sites in the Gulf of Saint Lawrence. Six different stations were chosen for collecting sediment 

samples. The sampling started from Station DE located in the estuary and going farther into the Gulf to Station 19. 
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The sediment samples were collected from different depths of the sediment, from surface to 10 cm deep. The sampling 

was conducted by Anic Imfled in the Summer of 2017.  

The sampling starts from station DE, deep in the estuary and represents a semi-saline environment. 

By sampling environments with same salt concentrations as the Estuary we could determine the 

impact of salt concentration on MMC prevalence, and potential increase the diversity of 

isolated/isolatable myxobacterial strains.  

Strains from the marine myxobacterial clade (MMC) can be detected by qPCR. Therefore, prior 

to my arrival on the project the samples were weighed and their DNA content was extracted by 

Susan McLatchie. To verify the presence of MMC in the samples, the 16S rRNA gene fragment 

of the DNA extracts were amplified using MMC specific primers designed by Brinkhoff et al.60 

The successful amplification of the fragments was verified by gel electrophoresis, demonstrating 

the right amplification of the amplicon in all stations (DE, 25, 23, 22, 20 and 19) and depths of 

sediment tested (surface, 3 to 5 cm and 5 to 10 cm).  

    

   

Figure 6. Gel electrophoresis of amplified MMC 16S rRNA fragments present in Station 19. Lanes 1 to 3 

represent the MMC 16S rRNA fragments obtained from sediment samples in 3-5 cm depth. Lanes 4-6 show the 

samples taken from 5-10cm of sediment depth. Lanes 7-9 display the 16S rRNA fragments taken from the sediment 

samples collected from the surface of the ocean floor. Lane 10 represents the negative control, no DNA template was 

added. The DNA ladder is 100bp plus and the amplified fragment is 186bp long. The upper arrow on the DNA ladder 

shows 200bp and the lower arrow shows 100bp.   

To further study the sequences of these fragments and create a phylogenetic tree, these fragments 

were inserted into pJET vectors and transformed into E. coli DH5α. The DNA of the cells lacking 

the insert in their vector were cut upon activation of endunoclease-1, greatly reducing the rate of 

1 2 3 4 5 6 7 8 9 10 
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false-positives. The E. coli cells that had not absorbed the vector were susceptible to ampicillin, 

and so their growth was inhibited by streaking onto LB-amp plates. Thus the colonies that had 

formed on the plate were thought to harbor the vector with the insert. Antibiotic activity was 

verified after each transformation with a negative control, which had E. coli cells “transformed” 

with nanopure water. Positive colonies had their plasmids extracted and sent to Eurofins for 

sequencing. The identity of strains with 16S sequences close to these metagenomic samples were 

then obtained with the blastn tool.95–102 To construct a phylogenetic tree the retrieved sequences 

were aligned using MUSCLE tool, MEGAX software. The final phylogenetic tree was then 

constructed using MEGA (Figure 7).  

Strains sequenced as part of this work fell into several distinct clades. Based on the results retrieved 

from the phylogenetic tree (Figure 7), we can see that the strains that were identified by the MMC 

primers designed by Brinkhoff et al60fall into two separate clades closely related to each other 

the,MMC and Nb1-J. These observations led to the conclusion that the previously designed MMC 

specific primers are not exclusively targeting MMC strains. The bootstrap values shows the 

certainty of the position of the clades, and we can see that Nb1-J has fallen apart from MMC in 

the tree with the bootstrap value of 87. However based on the data presented in the phylogenetic 

tree we can see that this clade, Nb1-J, is closely related to marine, Plesiocystis and Enhygromyxa, 

and terrestrial myxobacteria, Sorangiineae and Cystobacterineae.  

In the phylogenetic tree shown in Figure 7 the out groups were chosen based on their proximity to 

delta proteobacteria class. The out-group strains; Bacillus mycoids, Bacillus subtilis, and Bacillus 

thuringiensis, were selected from Firmicutes phylum to represent the root of the tree.  
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Figure 7. The phylogenetic tree of MMC strains isolated from Gulf of St. Lawrence. The strains isolated from 

the sediment samples were extracted and identified through 16S rRNA gene sequencing. The bootstrap values below 

80 are not shown. The strains shown in orange were isolated by Susan McLatchie103, and the strains shown in green 

were isolated by me. Some of the branches have been compressed due to lack of space.  
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As shown in the phylogenetic tree, the MMC specific primers that were previously designed by 

Brinkhoff et al60are also identifying some other closely related strains to marine myxobacteria. 

This in turn suggests that using these primers for qPCR may lead to errors in the quantification of 

strains from the MMC clade.  

Based on the results obtained from the sequencing studies and the phylogenetic tree, we were able 

to conclude that strains from the MMC are present in some of the sediment samples, regardless of 

depth. These findings encouraged us to study MMC abundance and metabolic activity. 

Investigating their abundance and metabolic activity can give us insights into methods of 

cultivating them.  

 

3.2. Abundance of MMC in Gulf of Saint-Lawrence 

 

The qPCR studies were conducted using MMC primers designed by Susan McLatchie, to measure 

the amount of bacteria from the MMC present in the sediment, and universal primers, to measure 

the total amount of bacteria present. Both primers were designed to amplify a small fragment of 

the 16S rRNA (about 150bp) to guarantee efficient qPCR amplification.104  

Table 8. The list of the primers used in these qPCR studies. The MMC specific primers were used to quantify 

MMC abundance and the universal primers were used to measure the total amount of bacteria in sediment samples.  

Targeted 

group 

Type of extract F primer R primer Amplicon size 

   MMC DNA 4F 155R 151bp 

RNA 4F 155R 151bp 

Total 

bacteria 

DNA 341F 518R 177bp 

RNA 341F 518R 177bp 
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As previously isolated marine myxobacteria prefer saline environments60,82, we hypothesized that 

that their abundance would be low in the sediment samples with low salinity, Station DE, and their 

abundance would increase as we move farther into the sea, through Stations 25, 23, 22, 20 and 19. 

Furthermore, we hypothesized that metabolic activity would increase as the environmental 

condition becomes more suitable for marine myxobacteria. 

To measure the abundance of MMC in the sediment, their 16S rRNA gene were amplified and 

quantified through qPCR using specific primers (4F and 155R) by Susan MacLatchie. I then 

adjusted these copy numbers to the total mass of the sediment sample (Table 9).  

The limitation of this experiment was that the melt curve generated by Eco software showed broad 

peaks along the curve (Figure 8). Based on these observations it is possible that the designed 

primers (4F and 155R) were not exclusively targeting MMC, because of the broad peak we see in 

Figure 8. However, further studies need to be conducted to elucidate the possibility of targeting 

other bacterial strains than the MMC. The melt curve generated from Station 19 in Figure 8, is 

shown as an example.  
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Figure 8. The melt curve generated from Station 19. The melt curve shows broad peaks starting from approximately 

77 ℃ to 90 ℃. The curves are triplicates of the sample from Station 19. One of the curves does not overlap with the 

other two curves, that might be due to an error in the experiment.  

 

Table 9. Amount of MMC present in the sediment samples. 16S rRNA gene copies were measured through qPCR 

using MMC specific primers. The amount of MMC strains was calculated by dividing 16S rRNA gene copies by 16S 

rRNA copy number in E. salina (Enhygromyxa salina ASM299463v1)105and P. pacifica (Plesiocystis pacifica SIR-

1)106gnome (6 copies in the genome). This data was generated by Susan McLatchie. 

Station Sediment depth 

interval 

Abundance (16S rRNA gene 

copies/g) 

Abundance (amount of 

bacteria/ g) 

DE Surface 5.98×107± 9.43% 9.96×106 ± 9.44% 

25 Surface 3.57×107 ± 10.33% 5.95×106 ± 10.33% 

3-5 cm 4.11×106 ± 4.94% 6.85×105 ± 4.94% 

5-10 cm 9.56×106 ± 54.39% 1.59×106 ± 54.52% 
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23 
 

Surface 5.95×107± 7.56% 9.92×106 ± 7.56% 

3-5 cm 4.87×107 ± 8.7% 8.12×106 ± 8.7% 

5-10 cm 4.09×107 ± 18.33% 6.82×106 ± 18.32% 

22 Surface 6.31×107 ± 4.56% 1.05×107 ± 4.57% 

 3-5 cm 4.58×107 ± 2.59% 7.63×106 ± 2.59% 

 5-10 cm 2.41×107 ± 20.12% 4.02×106 ± 20.12%  

20 Surface 3.95×107 ± 3.24% 6.59×106 ± 3.24% 

 3-5 cm 3.39×107 ± 4.69% 5.65×106 ± 4.69% 

 5-10 cm 2.52×107 ± 13.09% 4.19×106 ± 13.09% 

19 Surface 5.95×107 ± 6.84%  9.91×106 ± 6.84% 

 
3-5 cm 3.19×107 ± 11.56% 5.31×106 ± 11.56%  

5-10 cm 1.86×107 ± 12.47% 3.10×106 ± 12.47% 

 

As seen above in Table9, the number of bacteria decreases as we go deeper into the sediment. 

These findings suggest that the MMC and the strains identified by primers are mostly aerobic, as 

their abundance decreases with drop in oxygen availability. In the surface layers of the sediment 

more oxygen is available compared to the lower layers.108 Furthermore, myxobacteria are 

generally known as aerobic microbes.32 However, this doesn’t overrule the possibility of the 

presence of anaerobic strains of marine myxobacteria109in the Gulf of St. Lawrence.  

The amount of the MMC and other strains identified by the primers, slightly increases in the 

surface layer of the sediment samples as we move farther into the sea, where the salinity along 
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with other characteristics of marine environment is more preferable for marine myxobacterial 

strains.60,82 However, analysis of the melt curve suggests that these primers may be amplifying 

non-myxobacteria (vide supra). It is possible that Table9 tracks the activity of these strains in 

addition to the MMC.110  

 

Figure 9. The prevalence of MMC 16S rRNA genes in Stations DE, 25, 23, 22, 20 and 19. The ordinate shows the 

logarithm base 10 of the number of the MMC and strains identified along them. Abscissa shows the stations and the 

sediment depth.  

 

As they readily form spores in marginal environments32,111, the presence of myxobacterial DNA 

isn’t a guarantee that these strains are active. To determine the activity of the MMC and other 

strains identified along them in the St. Lawrence Gulf and Estuary I determined the copy numbers 

of the concentration of MMC 16s rRNA fragments in the sediment samples by qPCR, then 

compared to these values to the concentration of MMC 16s rRNA genes.  

Table10. MMC 16S rRNA copies. The amount of MMC 16S rRNA was measured using MMC specific primers 

through qPCR. 
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DE Surface 1.68×106 ± 8.15% 

25 Surface 1.79×108 ± 18.10% 

3-5 cm 6.77×10 6 ± 24.51% 

5-10 cm 1.84×106 ± 4.40% 

23 Surface 3.33×108 ± 0.73% 

3-5 cm 5.21×107 ± 5.66% 

5-10 cm 3.09×106 ± 13.62% 

22 Surface 4.33×108 ± 18.75% 

3-5 cm 1.33×107 ± 23.53% 

5-10 cm 2.79×107 ± 20.39% 

20 Surface 1.98×108 ± 16.51% 

3-5 cm 8.73×107 ± 26.11% 

19 Surface 2.26×108 ± 24.55% 

3-5 cm 7.58×107 ± 20.84% 

 

As shown above (Table10), the concentration of 16S rRNA decreases as we go deeper into the 

sediment. This is in agreement with the 16S RNA gene data, suggesting that the MMC strains 

and/or their close relatives aren’t as prevalent deeper in the sediment.  
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Figure 10. Bar chart of the MMC 16S rRNA copies in stations DE, 25, 23, 22, 20 and 19. The ordinate represents 

the logarithm base 10 of the values reported in Table10. Abscissa shows the stations and the depth of the sediment 

studied for the amount of MMC 16S rRNA. The standard deviation of the logarithm base 10 of the values varies 

between 0.003 and 0.120.  

There are several factors that are different between the surface layer and the layers underneath. 

One the most important factors is the availability of oxygen. In the shallow parts of the ocean, for 

instance the parts closer to land, oxygen cannot penetrate the sediment below 10mm depth112, and 

the samples taken from any depth lower than that would be lacking oxygen. This trend can be seen 

in Station 25, where the surface holds more bacteria and their abundance decreases by 10-fold in 

the lower layer (3-5 cm), and 3.67-fold in 5-10 cm depth.  

However in the deeper regions of the ocean depending on the salinity the oxygen content of the 

sediment increases in comparison to the deep sediment samples isolated from estuary.113 The 

reason for increased oxygen availability is that deep sea sediments are low in nutrients, therefore 

less organisms are present to consume the oxygen at hand.113 Hence the oxygen remains available 

for bacteria inhabiting the layers down to 10 cm deep.113 This change can be seen starting from 

Station 23, the amount of active bacteria in 3-5 cm sediment sample is approximately 10 times as 

much as the bacteria present in the same layer in Station 25. Furthermore this amount is to some 

extent sustained in Stations 22, 20 and 19.  
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The other factor affecting the bacterial community is salinity, which increases as we go farther 

into the sea. It is hypothesized that bacteria from the MMC prefer environments with higher 

salinities than brackish water82, thus we would expect their abundance to increase with higher salt 

concentrations.82 Our data supports this conclusion, with the prevalence of the MMC and its 

closely related strains, increases starting from Station DE to Station 25 (Table10).  

The ratio of 16S rRNA copies to 16S rRNA gene copies were calculated and reported in Table 11. 

This ratio is a common means of determining bacterial activity.103,110 

Table 11. Metabolic activity of MMC strains in the Gulf and Estuary of St. Lawrence. The 16s rRNA to 16s 

rRNA gene ratio in the St. Lawrence sediments. 

Station Sediment depth interval 16S rRNA copies/amount of bacteria from 

the MMC 

DE Surface 17.872 ± 0.117 

25 

 

 

23 

Surface 24.631 ± 0.270 

3-5 cm 20.098 ± 0.372 

5-10 cm 

Surface 

18.194 ± 0.014 

25.506 ± 0.004 

 3-5 cm 22.844 ± 0.075 

 5-10 cm 18.772 ± 0.185 

22 Surface 25.851 ± 0.272 

 3-5 cm 20.847 ± 0.321 

 

20 

5-10 cm 

Surface 

21.980 ± 0.333 

24.7744 ± 0.229 
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 3-5 cm 23.570 ± 0.394 

19 Surface 24.896 ± 0.370 

3-5 cm 23.398 ± 0.277 

  

 

Figure 11. The ratio of MMC 16S rRNA copies over the MMC 16S rRNA gene copies. Stations are arranged by 

colors. Yellow represents Station DE, values from Station 25 are shown in green, Station 23 is marked as blue, values 

from Station 22 are shown in purple, Station 20 is shown in light blue and values from Station 19 are shown in black. 

The ordinate represents the logarithm base two of the values in Table 11 and the abscissa shows the stations and the 

depth of the sediment. The standard deviation ranges from 0.046 to 0.570.  

 

As shown in Figure 11, the ratio of 16S rRNA copies over the 16S rRNA gene copies are highest 

in surface sediment samples from Station 25, 23, 22, 20 and 19. And the values start to decrease 

in deeper layers of the sediment, which suggests lower activity of the MMC and the strains 

identified along them. In Station 25 the ratio of the 16S rRNA copies over the 16S rRNA gene 

copies, as shown in Table 11, is 5.14 and this amount decreases to 1.64 and 0.24 in the 3-5 cm and 
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5-10 cm samples respectively. This suggests that the MMC and other bacteria identified along with 

them are more active in the surface were the oxygen is more available.60 The same trend can be 

observed in the other stations, Station 23, 22, 20 and 19. It is worth mentioning that the ratio varies 

between 3.79 and 6.93 in surface sediment samples in all the stations except for Station DE (Table 

11). In order to compare the amount of the MMC to other bacteria present in the sediment samples, 

I measured the total amount of bacteria present in the sediment through qPCR. The primers used 

in these measurements were universal primers (341f/ 518r)114, previously used for the same 

purpose by Kamarisima et al.115  

Table 12. Total amount of bacteria present in different sediment samples collected from each station. Universal 

primers 341f/ 518r were used to quantify 16S rRNA gene copies. The copy numbers were normalized to ng DNA of 

the standards. Data shown in the Tablerepresent the 16S rRNA gene copies in one gram of the sediment. The fourth 

column represents the number of bacteria per gram of the sediment. The 16S rRNA gene copies values were divided 

by 5.5, which is the average 16S rRNA gene repetitions in bacteria.116  

Stations Sediment depth 

interval 

Abundance (16S rRNA gene 

copies/g) 

Number of bacteria per 

gram of the sediment 

(16S rRNA copies/ 5.5)  

DE 

25 

Surface 

Surface 

1.88×1010 ± 4.49% 

1.04×1010 ± 2.63% 

3.41×109 ± 4.49% 

1.89×109 ± 2.63% 

 3-5 cm 3.52×109 ± 2.89% 6.39×108 ± 2.89% 

 5-10 cm 3.43×109 ± 9.63% 6.24×108 ± 9.63% 

23 Surface 1.08×1010 ± 6.24% 1.96×109 ± 6.24% 

 3-5 cm 1.12×109 ± 4.52% 2.04×108 ± 4.52% 

 5-10 cm 1.24×109 ± 1.90% 2.26×108 ± 1.90% 

22 Surface 1.27×1010 ± 6.81% 2.32×109 ± 6.81% 

 5-10 cm 5.22×109 ± 9.15% 9.49×108 ± 9.15% 
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20 3-5 cm 6.89×109 ± 7.94% 1.25×109 ± 7.94% 

 5-10 cm 5.85×109 ± 2.84% 1.06×109 ± 2.84% 

19 Surface 9.47×109 ± 2.59% 1.72×109 ± 2.59% 

 3-5 cm 7.49×109 ± 4.40% 1.36×109 ± 4.40% 

 5-10 cm 5.07×109 ± 3.55% 9.21×108 ± 3.55% 

 

The data presented in Table 12 shows that the total amount of 16S rRNA gene copies varies 

between 1.12 × 109 and 1.88 × 1010 copies/g, which is close to the amount calculated by other 

papers, 108−1010 copies/cm-3.73 These values should be corrected against the 16S rRNA copy 

number in genome to reflect the amount of bacteria in the sediment, which is represented in the 

fourth column in Table 12. The average 16S rRNA gene copy number is around 5.5 in soil.116 The 

fourth column in Table 12 represents the corrected values for each station. We can conclude that 

the total number of bacteria in the sediment is 3.4 × 109 cells/g. 

To measure the total amount of 16S rRNA copies, universal primers were used (Table 13). This 

will give us insights into bacterial community present in the sediment of Gulf of St. Lawrence. 

However, this can not be the sole representative of the bacterial activity, since the values obtained 

from qPCR studies using universal primers will measure the 16S rRNA in dormant and active cells 

altogether. To gain an understanding of the full bacterial community the primers specific to each 

strain of bacteria in the estuary should be designed and tested.  

Table 13. Total amount of bacterial 16S rRNA copies. The 16S rRNA fragments extracted from the sediment 

samples were quantified using universal primers (341f/ 518r) through qPCR. These values reflect the total amount of 

metabolically active bacteria present in the sample. 

Stations Sediment depth interval Abundance (16S rRNA copies/g) 

DE Surface 1.02×109 ± 15.19% 
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25 Surface 5.57×109 ± 15.45% 

 3-5 cm 1.34×109 ± 11.64% 

 5-10 cm 7.63×108 ± 4.33% 

23 Surface 8.01×109 ± 7.87% 

 3-5 cm 2.32×109 ± 38.53% 

 5-10 cm 8.58×108 ± 13.75% 

22 Surface 8.38×109 ± 9.90% 

 3-5 cm 1.57×109 ± 11.59% 

 5-10 cm 2.38×109 ± 44.95% 

20 Surface 4.54×109 ± 28.19% 

 3-5 cm 2.80×109 ± 41.78% 

19 Surface 8.81×109 ± 10.22% 

 3-5 cm 4.09×109 ± 2.64% 

 

The increasing amount of 16S rRNA fragments in surface layers of the sediment samples starting 

from Station DE indicates the increasing bacterial level of activity. Based on the values obtained 

from qPCR (presented in Table 13), the amount of 16S rRNA is higher in the surface layers 

compared to the layers underneath. This suggests that most of the bacteria present in the sediment 

samples are aerobic.  
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Figure 12. Bar chart representation of the total amount of 16S rRNA fragments in stations DE, 25, 23, 22, 20 

and 19. The values shown on the ordinate are the logarithm base 10 of the values presented in Table 13. The standard 

deviation varies between 0.0189 and 0.2059.  

To understand the abundance of MMC and closely related strains in comparison to other bacteria 

present in the sediment, I then calculated the ratio MMC over total amount of bacteria present in 

the sediment (Table 14). 

Table 14. Abundance of MMC per gram of the sediment per ng of the DNA. The amount of MMC present in the 

sediment is compared to the total amount of bacteria by getting the ratio of the abundance of MMC to the total amount 

of bacteria. 

Stations Depth MMC /Total amount of bacteria (percentage) 

 DE Surface 0.296 ± 0.0409 

 25  

  

Surface 0.311 ± 0.0350 

3-5 cm 0.106 ± 0.00728 
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5-10 cm 0.244 ± 0.133 

 23 Surface 0.516 ± 0.0680 

3-5 cm 3.89 ± 0.320 

5-10 cm 3.01 ± 0.577 

22 Surface 0.454 ± 0.0259 

 5-10 cm 0.438 ± 0.117 

20 3-5 cm 0.444 ± 0.0283 

 5-10 cm 0.399 ± 0.0545 

 19  

  

Surface 0.580 ± 0.0531  

3-5 cm 0.390 ± 0.0291 

 5-10 cm 0.331 ± 0.0348 

 

 

Based on the qPCR results, we can conclude that MMC are active in all the stations and their 

abundance decreases slightly with depth. This suggests that the MMC is well adapted to growth in 

an estuary environment. To determine the metabolic potential of these strains I then set out to 

cultivate them from the sediment samples.  
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3.3. Cultivation of representatives of the MMC 

 

Cultivating an unculturable strain of bacteria entails mimicking conditions in which the bacteria 

grows well, usually their original habitat.117 Therefore, to isolate strains from the MMC we need 

to subject them to the representative conditions present in the Saint-Lawrence Estuary. Since the 

fresh water coming from the land is mixed with seawater in the estuary, the salinity is low in the 

parts of the estuary that are closest to land. The brackish water contains a salinity range of 0.5 to 

35 ppt.82  

To mimic the concentration of salt and other minerals in to the estuary, the water used in media 

preparation was the water extracted from the Gulf of St. Lawrence, diluted two fold to approximate 

the semi-saline environment present in the estuary. The other factor that is of importance in 

cultivating marine myxobacteria is to acknowledge their ecological behavior. Since a few known 

halophile myxobacteria, H. ochraceum, H. tepidum, and Enhygromyxa niigatensis, are able to lyse 

and consume live cells, marine myxobacteria are expected to be bacterial predators and presence 

of prey bacteria in their habitat is anticipated.82 Hence to mimic the environment in which marine 

myxobacterial cluster existed, it is necessary to also isolate their prey. 

In order to isolate bait from the sediment, the samples were spread on Marine agar plates. After 

overnight incubation at room temperature in the dark, colonies were observed on the plates. A 

subset of these colonies were then streaked to purity on separate nutrient rich plates, then cultivated 

in 5 mL of liquid marine broth media. For the preparation of bait plates this seed culture was then 

inoculated into 1 L of marine broth liquid media and left to grow overnight. The cells were then 

harvested by centrifugation, washed with either saltwater or distilled water, and then suspended in 

agar diluted with half strength saline water from the Gulf of St. Lawrence.  

The bait plates are considered nutrient poor media, since the only source for bacterial growth is 

expected to be the prey bacteria. However, agar itself can serve as a carbon source which would 

let other contaminants like fungi grow.118 To suppress the growth of fungi on the bait plates, 

cycloheximide was added. Moreover, to limit the risk of contamination we added vancomycin to 

the media. Vancomycin is a bactericidal antibiotic that has little to no effect on Gram negative 
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bacteria but can block the growth of Gram positive bacteria.88 Considering that marine 

myxobacteria are Gram negative, vancomycin was chosen to be added to the bait plates.  

  

Figure 13. Sample bait plates used to isolate representatives of the MMC. Bait plates were prepared by suspending 

prey bacteria along with cycloheximide (100µg/mL) and vancomycin (20 µg/mL) in a liquid media composed of agar 

and filter sterilized sea water.  

Over the Summer of 2018, 184 bait plates were prepared with the assistance of two CEGEP 

students, Safiya Soullane and Pascale Coulombe. The bait bacteria used in these plates included 

strains most similar to Pseudoalteromonas nigrifaciens, Paenibacillus taiwanensis, Psychrobacter 

cryohalolentis (isolated from SLE), which were provided by a former undergraduate student, 

Zachary Schiffman, and three unknown marine strains by undergraduate students volunteering in 

the lab, Seydee Bien-Aime and Harman Warraich.  

The sediment samples were then spread on top of the bait plates to let the MMC strains grow. 

Following 1-2 weeks of incubation at room temperature colonies began to emerge on the plates. 

Many of these colonies were brightly colored, including bright orange, black and red, while others 

formed structures similar to terrestrial fruiting bodies, and others appeared to move over the agar 

in swarms. All three of these features are found in terrestrial myxobacteria32, and so colonies with 

these features, as shown in Figure 14, were streaked to purity on nutrient-rich agar plates for further 

analysis.  
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Figure 14. Putative MMC strains. Colorful colonies, red and yellow, emerged on the plate after one week of 

incubation (a and b). The brown clumps are bait bacteria suspended in agar along with cycloheximide and vancomycin. 

Colonies with characteristics typical of myxobacteria were streaked to purity on a marine agar (half strength) with sea 

water media, Figure c. 

Based on my observations, the plates containing the bait bacteria most similar to 

Pseudoalteromonas nigrifaciens had the most colonies growing on them. As shown in Figure 15, 

74  plates out of 129 plates that had colonies growing on them had Pseudoalteromonas nigrifaciens 

bait. Furthermore11 plates had Paenibacillus taiwanensis as the prey bacteria, and 23 of the bait 

plates had Psychrobacter cryohalolentis. Also, 9 of the plates were supplied with strain A 

(provided by the undergraduate volunteers, Seydee Bien-Aime and Harman Warraich), 4 plates 

with strain B, 3 plate with strain C, 4 plates with strain D (strains A, B, C and D have not been 

identified, but were isolated from sediments found in the Gulf of St. Lawrence).  

a b c 
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Figure 15. The type of bait plates prepared. In total 129 plates were prepared. About 74 plates had 

Pseudoalteromonas nigrifaciens, 11 plates had Paenibacillus taiwanensis, 23 plates had Psychrobacter 

cryohalolentis, and 20 had unknown strains (A, B,C and D) as bait. 

The 131 strains that were chosen for further studies were grown on separate petri-dishes containing 

half strength marine broth and half strength filter sterilized seawater (about 17.5 ppt). These strains 

were then streaked to purity for 3 times. All 131 strains underwent genomic DNA extraction using 

a EZ-10 Spin Column Bacterial Genomic DNA Miniprep Kit . Their 16S rRNA fragments were 

amplified using 27F and 1492R universal primers. The 1500 bp PCR products were run on 0.8 % 

agarose gel to verify the correct amplification of the fragments. Representative amplicons are 

shown in the Figure below (Figure 16). 

57%

9%

18%

16%

Pseudoalteromonas nigrifaciens Paenibacillus taiwanensis Psychrobacter cryohalolentis Unknown strains
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Figure 16. The 16S rRNA fragments amplified using the universal primers. The DNA ladder used here is 1kb 

plus. The fragments projected in this gel are 1500bp long. Each lane represents the different colonies isolated from 

the bait plates.  

In this step the 16S rRNA fragment of approximately 95 strains were successfully amplified and 

then passed through PCR cleanup in preparation for transformation. About 60 strains were chosen 

to be transformed into DH5-α cells using pJET vector. The PCR products were inserted into pJET 

vector and then transformed into E. coli DH5-α. Colony PCR confirmed the correct insertion of 

the fragments into the vector. After approximately 14h of incubation at 37 ℃, the plasmids were 

extracted from the DH5-α cells and sent for sequencing by Eurofins. 

Around 50 strains were successfully sequenced. The sequences were then aligned with other 

strains of bacteria from the NCBI database using the blastn tool. Largest fraction of the strains, 22 

strains out of 50 strains, found on the bait plates were related to Pseudomonas spp (44%). Around 

19 strains were closely related to Bacillus spp, 38 %. And around 9 strains out of 50 strains 

sequenced were closely related to Stenotrophomonas spp (Figure 17). The list of the stains 

successfully sequenced are presented in Appendix.  
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Figure 17. The pie chart illustration of the isolates extracted from the bait plates. Most of the isolates extracted 

from the bait plates are related to either Pseudomonas spp. or Bacillus spp. 22 strains were related to Pseudomonas 

spp, 19 strains were related to Bacillus spp, and 9 strains were related to Stenotrophomonas spp. 

As mentioned above largest fraction of the plates had Pseudomonas strains growing on them. Most 

of these strains were closely related to Pseudomonas lactis, Pseudomonas azotoformans, 

Pseudomonas plecoglossicida or Pseudomonas taeanensis. Pseudomonas strains are known 

saprophytes, able to grow on any decaying matter119and here it seems that the prey bacteria and 

the agar provided enough nutrient sources for the Pseudomonas strains to grow. 

Also Stenotrophomonas rhizophila were observed in some of the bait plates. These bacteria are 

known to inhabit terrestrial environments and the fact that they appeared on the bait plates suggests 

that they were brought to the estuary from land. However there have been reports of some of the 

strains of Stenotrophomonas being isolated from marine invertebrates and this suggests that the 

Stenotrophomonas strains growing on the plate also might have originated from marine 

environment.120 Considering their Gram negative nature121, vancomycin could not have stopped 

them from growing. It is worth mentioning that these strains were growing on the plates that had 

Pseudoalteromonas nigrifaciens as bait. In addition, the sediment samples that were spread on 

38%

44%

18%

Bacillus Pseudomonas Stenotrophomonas
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these bait plates were mostly from Station 25 and DE which are the closest stations to land, 

suggesting that these strains were washed from the land and brought to the Estuary.  

The inspection of the plates revealed that most of the strains closely related to Bacillus spp were 

growing on the plates that had the unidentified strains (B and C) or Pseudoalteromonas 

nigrifaciens as bait. The strains found on plates with strain B as bait, were related to Bacillus 

thuringiensis, Bacillus toyonensis and Bacillus pacificus. Hence we can conclude that using strain 

B as the prey will mostly result in emergence of the strains closely related to Bacillus spp on the 

plate. The plates containing strain C as prey, selected for strains closely related to Bacillus cereus 

and Bacillus wiedmannii. Plates that contained Pseudoalteromonas nigrifaciens as bait, had strains 

related to Bacillus nitratireducens, Bacillus tropicus, Bacillus thuringiensis, Bacillus toyonensis, 

Bacillus proteolyticus, Bacillus wiedmannii and Bacillus cereus growing on them. These 

observations suggest that using Pseudoalteromonas nigrifaciens as prey will create an opportunity 

for Bacillus spp to grow on the bait plates. The reason that Bacillus strains showed up on the bait 

plates might be due to them developing resistance against vancomycin. Also myxobacteria are 

slow growing bacteria, that gave Bacillus strains, which mostly are known as saprophytes122,123, 

the chance to grow on the bait plates. 
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Figure 18. Phylogenetic tree of isolated strains most similar to bacillus spp. The isolates extracted from bait plates 

that showed most similarity to Bacillus strains were chosen to build the phylogenetic tree. E. coli strain U 5/41 serves 

as the outgroup.  

Some of the isolates most similar to Bacillus strains were aligned with a subset of well-known 

Bacillus species to construct a phylogenetic tree (Figure 18). Some of the strains found on the plate 

showed high similarity to Bacillus cereus, Bacillus luti, Bacillus thuringiensis and Bacillus 

gaemokensis. About two of the strains found on the bait plates were closely related to Bacillus 

cereus. Bacillus cereus have been known to inhabit terrestrial environments.124 However, it has 

been reported that the strains from this bacteria have been isolated from the marine environment.125 

Four strains isolated from the bait plates were closely related to Bacillus thuringiensis, which are 

also considered soil-dwelling bacteria. Since the sediment samples were extracted from the 

estuary, it is probable that some of these strains were washed from the land and brought to the 

estuary.  

Bacillus spp. are not well known for vancomycin resistance,126,127 but vancomycin resistance has 

been observed in some Bacillus strain like B. popilliae. B. popilliae and several other isolates from 

this strain were found to be vancomycin resistant.128 This in turn led Rippere et al. to speculate the 

possibility of vancomycin resistant genes being transferred to other Gram positive bacteria.128 
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While it is possible that the strains we isolated are also vancomycin resistant, that is not the only 

potential reasons for these results. Vancomycin can only be stored at room temperature for up to 

10 days before it begins to degrade in buffer.93 The agar plates that were prepared had to be stored 

at room temperature for weeks for myxobacteria to grow, allowing plenty of time for the 

vancomycin stored in the plates to become ineffective.129 To determine if the marine Bacillus 

isolates were vancomycin resistant I performed a minimum inhibitory concentration test (MIC).130  

 

3.4. MIC test 

 

To determine the vancomycin susceptibility of strains isolated from the bait plates the strains were 

treated with different concentrations of the aforementioned antibiotic. The concentration at which 

vancomycin is known to inhibit Bacillus subtilis is 4 µg/mL.131 The susceptibility of the bacillus 

strains were tested against different concentrations of vancomycin ranging from 128 µg/mL to 

0.025 µg/mL . The incubation was carried out for 18 hours. 

Table15. MIC values for the isolates retrieved from bait plates. Isolate Z6A-A-B1 is most similar to B. 

zhangzhouensis and was isolated by Zachary Schiffman. Isolates C4 and B4 were provided by Seydee Bien-Aime and 

Harman Warraich, volunteers working in the lab. Isolate C4 showed the greatest 16S rRNA sequence identity to B. 

cereus and isolate B4 was most similar to B. pacificus.  

Isolate  Vancomycin mg/L negative 

control 

positive 

control 
128 64 32 16 8 4 2 1 0.5 0.025 

Z6A-A-

B1 

_ _ + + + + + + + + _ + 

C4 _ _ _ _ + + + + + + _ + 

B4 _ _ _ _ _ _ + + + + _ + 
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Isolate Z6A-A-B1, most closely related to B. zhangzhouensis, showed resistance against 

vancomycin up to 32 mg/L of the antibiotic, beyond the clinical breakpoint for this antibiotic.132 

While Isolate C4, closely related to B. cereus, did not show the same level of resistance as Z6A-

A-B1, it was able to grow at 8 mg/L, close to the 10 mg/L concentration found in the bait plates. 

Isolate B4, most similar to B. pacificus, did not grow until the concentration of vancomycin was 

lowered to 2 mg/L. These findings showed that some of the isolates like Z6A-A-B1 and C4 are 

resistant to vancomycin while some other strains like isolate B4 are still susceptible to vancomycin.  
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Chapter 4. Conclusion 

 

In this study we aimed to isolate the MMC strains from the sediment samples collected from Gulf 

of St. Lawrence. Based on the results retrieved from 16S rRNA gene sequencing, we found out 

that the previously designed MMC specific primers were also targeting other strains closely related 

to MMC.  

The presence of MMC strains in the sediment samples of Gulf of St. Lawrence raised the question 

about their state of activity. In order to obtain information about their abundance and their 

ribosome content, we conducted qPCR studies on 16S rRNA gene and 16S rRNA content of the 

sediment. By measuring MMC 16S rRNA gene and 16S rRNA copy numbers we were able to 

conclude that MMC strains are metabolically active under the conditions present in the estuary. 

This in turn revealed that MMC strains present in the sediment samples might grow if subjected 

to same condition as the estuary.  

To mimic the conditions present in the estuary prey bacteria, Pseudoalteromonas nigrifaciens, 

Psychrobacter cryohalolentis and Paenibacillus taiwanensis were retrieved from Zachary 

Schiffman. The prey bacteria were cultivated in liquid media and then harvested and suspended in 

nutrient poor media along with seawater to replicate the MMC strains original habitat. After two 

weeks of incubation the strains that grew on the plates containing the prey bacteria were isolated 

and their genomic content was extracted. The 16S rRNA gene sequencing studies on the strains 

isolated from the bait plates revealed that none of the mentioned strains were MMC and most of 

them were either Bacillus or Pseudomonas strains. This led us to speculate that the Bacillus strains 

were resistant to vancomycin. 

Vancomycin was added to the bait plates to decrease the risk of contamination with Gram positive 

bacteria like Bacillus. Since Bacillus strains started to grow on the plate we suspected that these 

bacillus strains were resistant to vancomycin. The MIC test showed that the bacillus strains we 

isolated from the bait plates were resistant to vancomycin.   
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Chapter 5. Future work  

 

In this study we found out that the primers designed by Brinkhoff et al60 were not exclusively 

detecting the MMC strains. Therefore, a new set of primers need to be designed to specifically 

target the MMC. Since the primers designed for qPCR studies were not specific either, the 16S 

rRNA copies should be measured again with the new primers that are going to be designed.  

In addition, in our qPCR studies the amount of 16S rRNA fragments were measured on separate 

days than the samples used to construct the standard curve. To minimize potential variation these 

experiments should be repeated on the same day.  

On a separate note, since MMC presents as a potent natural product producer the attempts to 

cultivate the MMC should be continued by modifying the cultivation conditions and the antibiotics 

added to the bait plates. In addition, the strains that were isolated from bait plates might be resistant 

to other antibiotics as well. Therefore more studies are needed to unravel the possibility of their 

resistance to other antibiotics. 

These experiments can lead to discovery of novel bioactive secondary metabolites that can help us 

tackle the ongoing problem of antibiotic resistance. In addition, the strains found in the Gulf of 

Saint-Lawrence are from different recently discovered bacterial clades which makes this 

environment interesting for further studies on the bacterial community. This can help in discovery 

of more novel bacterial strains that are capable of producing new biologically active secondary 

metabolites.  
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Appendix 

 

 

Table 16. The list of strains isolated from the bait plates. 

Sample ID Closest relative Bait Station 

C4_C3_12 Bacillus cereus C Unknown 

C4_C2_8 Bacillus wiedmannii C Unknown 

B4_C1_9 Bacillus toyonensis B Unknown 

B4_C2_10 Bacillus thuringiensis B Unknown 

B4_C2_8 Bacillus mobilis B Unknown 

22B-A2-2 Bacillus cereus pseudoalteromonas 

nigrifaciens 

19 

22B-B2-2 Bacillus wiedmannii pseudoalteromonas 

nigrifaciens 

19 

22B-A2-1 Bacillus proteolyticus pseudoalteromonas 

nigrifaciens 

19 

22B-C2-2 Bacillus toyonensis pseudoalteromonas 

nigrifaciens 

19 
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22B-A2-7 Bacillus thuringiensis pseudoalteromonas 

nigrifaciens 

19 

22B-F2-6 Bacillus tropicus pseudoalteromonas 

nigrifaciens 

19 

22B-G2-3 Bacillus 

nitratireducens 

pseudoalteromonas 

nigrifaciens 

19 

22B-H2-7 Bacillus thuringiensis pseudoalteromonas 

nigrifaciens 

19 

22B-H2-1 Bacillus proteolyticus pseudoalteromonas 

nigrifaciens 

19 

22B-F2-2 Bacillus thuringiensis pseudoalteromonas 

nigrifaciens 

19 

22B-G2-5 Bacillus 

nitratireducens 

pseudoalteromonas 

nigrifaciens 

19 

22B-E2-6 Bacillus 

nitratireducens 

pseudoalteromonas 

nigrifaciens 

19 

B4-C3-11 Bacillus gaemokensis B Unknown 

22B-C2(2)-Col4 Pseudomonas 

azotoformans 

pseudoalteromonas 

nigrifaciens 

19 

22B-E2(8)-Col3 Pseudomonas 

gessardii 

pseudoalteromonas 

nigrifaciens 

19 

22B-A2(1)-Col2 Pseudomonas 

reinekei 

pseudoalteromonas 

nigrifaciens 

19 
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22B-A2(1)-Col1 Pseudomonas 

reinekei 

pseudoalteromonas 

nigrifaciens 

19 

22B-F2(1)-Col3 Pseudomonas lactis pseudoalteromonas 

nigrifaciens 

19 

22B-F2(6)-Col3 Pseudomonas lactis pseudoalteromonas 

nigrifaciens 

19 

22B-E2(8)-Col2 Pseudomonas 

azotoformans 

pseudoalteromonas 

nigrifaciens 

19 

22B-E2(8)-Col1 Pseudomonas 

azotoformans 

pseudoalteromonas 

nigrifaciens 

19 

18B-B2(6)-Col3  Pseudomonas 

gessardii 

pseudoalteromonas 

nigrifaciens 

19 

18B-B2(4)-Col2 Pseudomonas 

libanensis 

pseudoalteromonas 

nigrifaciens 

19 

18B-B2(6)-Col2 Pseudomonas 

synxantha 

pseudoalteromonas 

nigrifaciens 

19 

18B-B2(4)-Col1 Pseudomonas 

libanensis 

pseudoalteromonas 

nigrifaciens 

19 

25B-A2-A(4)-

Col2 

Pseudomonas 

monteilii 

Psychrobacter 

cryohalolentis 

25 

25B-A2-B(4)B-

Col4 

Pseudomonas 

plecoglossicida 

Psychrobacter 

cryohalolentis 

25 

25B-A2-B(5)-

Col2 

Pseudomonas 

plecoglossicida 

Psychrobacter 

cryohalolentis 

25 
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25B-A2-A(4)-

Col4 

Pseudomonas 

monteilii 

Psychrobacter 

cryohalolentis 

25 

25B-A2-B(2)-

Col1 

Pseudomonas 

guariconensis 

Psychrobacter 

cryohalolentis 

25 

22B-C2(2)-Col3 Pseudomonas 

azotoformans 

pseudoalteromonas 

nigrifaciens 

19 

22B-C2(3)-Col2 Pseudomonas 

azotoformans 

pseudoalteromonas 

nigrifaciens 

19 

22B-E2(6)-Col3 Pseudomonas 

azotoformans 

pseudoalteromonas 

nigrifaciens 

19 

22B-E2(5)-Col1  Pseudomonas 

monteilii 

pseudoalteromonas 

nigrifaciens 

19 

22B-E2(3)-Col2 Pseudomonas 

azotoformans 

pseudoalteromonas 

nigrifaciens 

19 

18B-D2(2)-Col2 Stenotrophomonas 

rhizophila 

pseudoalteromonas 

nigrifaciens 

19 

18B-D2(2)-Col1 Stenotrophomonas 

rhizophila 

pseudoalteromonas 

nigrifaciens 

19 

18B-D2(4)-Col2  Stenotrophomonas 

maltophilia 

pseudoalteromonas 

nigrifaciens 

19 

18B-C2(3)-Col3 Stenotrophomonas 

rhizophila 

pseudoalteromonas 

nigrifaciens 

19 

18B-D2(4)-Col1 Stenotrophomonas 

maltophilia 

pseudoalteromonas 

nigrifaciens 

19 
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