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ABSTRACT
Nhat Linh Vu, Ph.D.
Concordia University, 2020

Part I: Some Fluctuation Results on Draw-down Times for Spectrally Negative
Lévy Processes

In this thesis, we first introduce and review some fluctuation theory of Lévy processes, espe-
cially for general spectrally negative Lévy processes and for spectrally negative Lévy taxed
processes. Then we consider a more realistic model by introducing draw-down time, which is
the first time a process falls below a predetermined draw-down level which is a function of the
running maximum. Particularly, we present the expressions for the classical two-sided exit
problems for these processes with draw-down times in terms of scale functions. We also find
the expressions for the discounted present values of tax payments with draw-down time in
place of ruin time. Finally, we obtain the expression of the occupation times for the general
spectrally negative Lévy processes to spend in draw-down interval killed on either exiting a
fix upper level or a draw-down lower level.

Part II: On Estimation of Entropy and Residual Entropy for Nonnegative
Random Variables

Entropy has become more and more essential in statistics and machine learning. A large
number of its applications can be found in data transmission, cryptography, signal processing,
network theory, bio-informatics, and so on. Therefore, the question of entropy estimation
comes naturally. Generally, if we consider the entropy of a random variable knowing that it
has survived up to time t, then it is defined as the residual entropy. In this thesis we focus on
entropy and residual entropy estimation for nonnegative random variable. We first present a
quick review on properties of popular existing estimators. Then we propose some candidates
for entropy and residual entropy estimator along with simulation study and comparison
among estimators.
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PART I: Some fluctuation results on
draw-down times for spectrally
negative Lévy processes

1 Introduction

Lévy processes have been applied widely in a lot of fields of science. Some examples can
be listed here such as for the study of turbulence, laser cooling and quantum field theory in
physics; for the study of networks, queues and dams in engineering; for continuous time-series
models and risk models in economics, for risk theory in actuarial mathematics, and of course,
in mathematical finance, for the stock price in the market and calculations of insurance
and re-insurance risk. Readers, who are interested in a deep comprehensive overview of
Lévy process applications, can find answers in Prabhu (1998), in Barndorff et al. (2001), in
Pistorius (2003), in Kyprianou et al. (2005), and in Kyprianou (2006).

Lévy processes are stochastic processes with independent and stationary increments. The
best known and most important examples are Poisson processes, Brownian motion, Cauchy
processes, and more general the stable processes. They are prototypes of Markov processes
(actually they form the class of space-time homogeneous Markov processes) and of semi-
martingales. Historically, the first researches go back to the late 20’s with the study of
infinitely divisible distributions, and their general structure had been gradually discovered
by de Finetti, Kolmogorov, Lévy, Khintchine and Ito. After the pioneer contribution of Hunt
in the mid-50’s, the developments of the theory of Markov processes and their connection
with abstract potential theories have had a considerable impact on Lévy processes. Many
important properties of sample paths of Lévy processes have been noted by Getoor (1961),
Rogozin (1972), and others. Further developments in this setting are made quite recently
by Bertoin (1996), Barndorff et al. (2001), Doney and Kyprianou (2006), Sato (2013) and
others.

In mathematical finance, back to the very beginning, people used Brownian motion to
model and describe the observed reality of financial markets. However, In the real world,
Brownian motion is not a good candidate for financial modeling because the actual asset price
processes have jumps or spikes, and risk managers have to take them into consideration. As a
result, risk managers seek for models that accurately fit return distributions for the estimation
of profit and loss distributions. Another similar situation in the risk-neutral world, traders
realized that the model of Black and Scholes (1973) cannot model the implied volatilities
which can be constant neither across strikes nor across maturities. Therefore, in order to
handle the risk of trades, traders need models that can capture the behavior of the implied
volatility smiles more accurately. Consequently, Lévy processes are becoming more and more
fashionable and one of the best choices in mathematical finance because Lévy processes can
provide the appropriate tools to adequately and consistently describe all these observations,
both in the real and risk-neutral world.

One of the most obvious and fundamental problems that can be stated for Lévy processes,
particularly in relation to their role as modeling tools, is the distributional characterization



of the time at which a Lévy process first exits an interval together with its overshoot and
undershoot beyond the boundary of that interval. With the solution of one-sided and two-
sided exit problems on hand, researchers can develop lots of relative properties of Lévy
processes. The theory of Lévy processes forms the cornerstone of an enormous volume of
mathematical literature which supports a wide variety of applied and theoretical stochastic
models. As a family of stochastic processes, Lévy processes are now well understood and
the exit problems have been solved by many different approaches dating back to the 1960s.
Namely, Getoor (1961) and Rogozin (1972) are the foundation for other researchers to study
more on the exit problems of Lévy processes.

Nonetheless, the theory of Lévy processes is still a large field to study and it is very
challenging to characterize their properties without restricting ourselves into their sub-classes
and then explore them separately. Consequently, Lévy processes are categorized into different
classes such as stable processes, jump-diffusion processes, processes with one-sided jump and
so on. The latter processes have attracted many researchers, and many of their fluctuation
identities have been established explicitly or semi-explicitly due to their essential and obvious
characteristics. That is, they are allowed to have only one-sided jump, either positive or
negative jump but not both (for more details see Bertoin (1996), Avram et al. (2004), Chiu
and Yin (2005), Doney and Kyprianou (2006), and Baurdoux (2009)). Among the class one-
sided jump processes, spectrally negative Lévy processes (SNLPs) have been noticed recently
because of their special applications in risk theory for insurance (an introduction of spectrally
negative Lévy processes can be found in Kyprianou (2006)).

For the sake of expressing the solution of fluctuation identities associated with the one-
sided and two-sided exit problems for spectrally negative Lévy processes in a closed, nice and
simple form, researchers have literally introduced the so-called g-scale functions. Despite of
the convenient use of g-scale functions, their explicit form is not available for most of Lévy
processes as a result of the complexity of the Laplace exponent. So the numerical estimation
must be employed in these cases. However, for some spectrally negative Lévy processes, such
as the Brownian motion with or without drift, specially one-sided compound Poisson pro-
cesses, spectrally one-sided a-stable processes with a € (0,2), and jump-diffusion processes,
one can obtain the explicit form of the g-scale functions. Readers can refer to Kuznetsov et
al. (2013) for the detail on evaluating scale functions of spectrally negative Lévy processes.

Beside the solution to the exit problems, occupation time for stochastic processes is also
an important quantity that is used in many fields such as mathematical finance and risk
theory. In the former, the distribution of occupation times is the key for the pricing of a
certain class of average options (so-called a-quantile options), while in the latter, the Laplace
transform of the occupation time is associated with the bankruptcy probability. The idea was
first introduced in Gerber (1990) as follow. Some companies can have enough funds available
or ask for external funds to support short periods in which the surplus of the company falls
below zero, in the hope that it will recover soon in the future. Therefore, there is distinction
between ruin (negative surplus) and bankruptcy (going out of business). That is, the Omega
risk model assumes that the business still continue until bankruptcy occurs. The question
arises here is the duration that the recovery will take in order to decide whether or not to
continue the business. This is, indeed, related to the occupation time for the surplus process.

The study of occupation times has attracted researchers since the paper of Lévy (1939)
in which he derived the density of occupation time for standard Brownian motion. In the



recent decade, the investigation on occupation times for Lévy processes has grown widely,
and many interesting results of occupation times have been derived. However, most of the
existing papers can be classified into two categories depending on the the assumptions of the
underlying process. The first group works with the occupation times for those Lévy processes
whose two-sided jumps follow exponential or hyper-exponential distribution only (see Cai et
al. (2010) and Wu and Zhou (2016)), whereas the second group focuses on the occupation
times for SNLPs whose the jumps are only one-sided but no restriction on their distribution
(see Laudriault et al. (2011) and Loeffen et al. (2014)).

Back to the very beginning of the theory of insurance risk, the classical Cramér-Lundberg
surplus process, introduced in Lundberg (1903), were used to model the insurance risk. And
then it was soon replaced by SNLPs which could capture the fluctuation of insurance risk
better. However, to make it more practical to investigate the influences of tax on quantita-
tive and qualitative behavior of the infinite time ruin probability, the model was modified to
spectrally negative Lévy taxed processes (SNLTPs). It is assumed that the tax is paid at a
fixed rate «y of the policy holders income (premium) whenever their risk process is at running
maximum (profitable time). For the past ten years, the SNLTPs have been used to defined
the so called risk process with tax in actuarial mathematics. The fluctuation identities for
SNLTPs can be found in Albrecher and Hipp (2007) and Albrecher at al. (2008).

More recently, the models have been modified to be more flexible by replacing the ruin
time by a varying draw-down time, which is a function of the running maximum. The draw-
down can be interpreted as the investor’s sustained loss between a peak (new maximum)
and subsequent valley (points in between two maxima). It has recently become more and
more considerably interesting in various areas of applied probability such as in queuing the-
ory, risk theory and mathematical finance. For example, in the fund management industry,
draw-down is used as the quoted indices; in mathematical finance, it is an indicator of risk
in performance measure like the Calmar ratio, the Sterling ratio, and the Burke ratio. For
further literature review on draw-down, readers are referred to Landriault et al. (2017).
Therefore, associating draw-down times to SNLPs, SNLTPs, and occupation times is our
main goal in this thesis.

Among different methodologies in dealing with stochastic processes, excursion theory has
been introduced and successfully used to derive many well-known results. Especially, it comes
to handy when we work on spectrally negative Lévy processes with draw-down times because
many explicit calculations can be carried out using the fundamental property of excursion
process, which is a Poisson point process. In particular, with the help of excursion theory, we
were able to obtain the expression of the classical two-sided exit problems in terms of scale
functions for SNLPs and SNLTPs with draw-down times. Also, we found the expressions for
the discounted present values of tax payments, and the solution to the occupation times of
a SNLP in a given draw-down interval.

This thesis is organized as follows. The introduction to Lévy processes along with their
well-known properties are given in the first part of Section 2. The second part of Section 2 is
devoted to a brief introduction of excursion theory which will play a central role in our main
results. The definition of spectrally negative Lévy taxed processes and some existing results
regarding to this process are given in the subsequent section. And the rest of the Section 2 is
reserved for occupation times along with their previous results. Section 3 contains our main
works and results involving drawn-down times regarding to exit problem of the SNLPs (in



the first part), the SNLTPs (in the second part), and the occupation times (in the last part).
Finally in Section 4, we present some results that related to draw-down times together with
our interests and future works in joint distribution of a SNLP and the occupation times in a
given draw-down intervals.

This part of thesis is based on Avram et al. (2017) and Li et al. (2019).

2  Spectrally negative Lévy process and its fluctuation
theory

2.1 Lévy processes
2.1.1 Definitions and examples

In this section, we introduce some basic concepts of Lévy processes.

Definition 2.1. (Lévy process) A process X = {X; : t > 0}, defined on a probability space
(Q, F,P), is said to be one-dimensional Lévy process taking real value if it possesses the
following properties:

(1) The paths of X are P-almost surely right-continuous with left limit.

(11)) P(Xy=0)=1.

(111) For 0 < s <t,X; — X follows the same distribution as X;_;.

(iv) For 0 < s <t,X; — X is independent of {X, : u < s}.

From the definition above, it is difficult to see how rich the class of Lévy processes is. De
Finetti (1929) introduced the notion of infinitely divisible distributions and showed that they
have an intimate relationship with Lévy processes.

Definition 2.2. We say that a real-valued random wvariable, ©, has an infinitely divisi-
ble distribution if, for each n = 1,2, ..., there exists a sequence of i.i.d. random wvariables

O1ns ey Onpn such that
OLO,+ ...+ O,

where £ denotes equality in distribution.

Alternatively, we can express this relation in terms of probability laws. That is to say,
the law n of a real-valued random variable is infinitely divisible if, for each n = 1,2,...
there exists another law 7, of a real-valued random variable such that n = n". (Here n}"
denotes the n-fold convolution of 7,.) So, one way to establish whether a given random
variable has an infinitely divisible distribution is via its characteristic exponent. Suppose
that © has characteristic exponent W(u) := —log[E(e™®), defined for all u € R. Then ©
has an infinitely divisible distribution if, for all n > 1, there exists a characteristic exponent
of a probability distribution, say W¥,,, such that ¥(u) = nV,(u), for all v € R. The full
extension to which we may characterize infinitely divisible distributions is described by the

4



characteristic exponent ¥ and an expression known as the Lévy Khintchine formula, which
can be found in Kyprianou (2006).

Theorem 2.1. (Lévy-Khintchine formula) A probability law, n, of a real-valued random
variable is infinitely divisible with characteristic exponent (Lévy exponent) W

/eiexn(dx) = YO or W() = —logE(e?Y) for 6 R,
R

if and only if there exists a triple (p, 0,11), where p,o € R, and 11 is a measure concentrated
on R\{0} satisfying [,(1 A 2*)II(dx) < oo, such that

1 .
U(0) =iud + 50292 + /(1 — " 4021, ) (d), (2.1)
R

for every 8 € R. Moreover, the triple (j1, 02, 11) is unique.

Note that the measure II is called the Lévy (characteristic) measure. This Lévy measure
describes the size and the rate of jumps of the Lévy process. The condition [, (1Az*)II(dz) <
oo in the theorem above ensures that the integral in the Lévy-Khintchine formula converges.
Roughly speaking, in a small period of time dt, a jump of size x will occur with probability
II(dx)dt + o(dt). In fact, the smaller the jump size results in the greater the intensity, and so
the discontinuities in the path of the Lévy process is predominantly made up of arbitrarily
small jumps. The converse of Theorem 2.1 which defines a Lévy process is given in the
following theorem.

Theorem 2.2. (Lévy-Khintchine formula for Lévy processes) Suppose that pu, o € R, and 11
is a measure concentrated on R\{0} such that [, (1A z*)II(dx) < co. From this triple, define
for each 0 € R,

1 .
\I/(Q) =iub + 50'292 + /(1 — et + Z'Qxl‘xkl)ﬂ(dl’).
R

Then there exists a probability space, (2, F,P), on which a Lévy process is defined having the
characteristic exponent W.

To clarify the concept of Lévy processes, we present here some examples of Lévy processes.

Compound Poisson processes

The first example of Lévy processes concerns processes whose paths are of bounded variation
over finite time horizons. The necessary and sufficient conditions for a SNLP X = (X});>¢
to have paths of bounded variation are

/ |z|I1(dx) < 0 and o=0.
(71»0)
In this case, X can be rewritten as

Xt:Mt+Sta tZOa

5



where {S; : ¢t > 0} is a pure jump subordinator which we will define later. Let {N; : ¢ > 0}
be a Poisson process such that, for each ¢ > 0, IV, is a Poisson distribution with parameter
At. Then a compound Poisson process X; is defined as

N¢
Xt - Z }/;'7
i=1

where {Y;};>0 is a sequence of independent identical random variables with common law F'.
Also, it is well-known that

E[eN] = exp{ - A/R(em — 1)F(dx)} = {exp{ — %/R(em — 1)F(dx)Hn.

From the above expression, we see that the distribution of X, is infinite divisible. So it is a
Lévy process. Also its characteristic exponent is given by ¥(0) = X [ (e’" — 1) F(dx), which
implies that o = —A [, ., 2F'(dz),0 = 0 and I(dz) = AF(dz).

Linear Brownian Motion

Our second example of Lévy processes is processes with unbounded variation over finite time
horizons. A linear Brownian Motion is defined as

Xy = put + o By, t>0,0>0,

where B = {B; : t > 0} is a standard Brownian motion. With some algebra, one can show
that

i0.X —10262+i6 —l(L)292+iaﬁ !
E[ez 1]2620 +ZM:€2\/E ® :

which is of the form of an infinitely divisible distribution. So, it is a Lévy process with
characteristic exponent W () = £026% — ifpu with 4 = —p,0 = o and I = 0.

Jump-diffusion processes

A jump-diffusion process X; is just a sum of the compound Poisson process and an indepen-
dent linear Brownian motion. That is

Nt
Xy =pt + 0B+ Y Vi

i=1

A well-known application of this process is modeling the stock price introduced in Merton
(1976). That is, the stock price can be defined as S; = Spe*t, where X, is the jump-diffusion
process and Y; follows a Gaussian distribution. The process X; has the characteristic exponent

0262

V() = —ifu + 5 )\/R(ew” — 1)F(dz).




We observe that this is very close to (1). Indeed, by the Lévy-1t6 Decomposition Theorem,
in general any Lévy process can be written as

Xy = pt + 0By + Zy,

where put is interpreted as the drift component, o B, is the diffusion component, and Z; is the
jump process with possibly infinitely many jumps over any finite time interval.

Stable processes

Stable processes are those processes with characteristic exponent of the form of stable dis-
tributions which is another example of infinitely divisible distributions. Y is called a stable
distribution if, for all n > 1, it can be decomposed into

nOY b, LY At Y,

where Y7, ..., Y, are independent copies of Y and b, € R and a € (0,2] is known as the
stability index. Note that for the case o = 2, it turns out to be a zero mean Gaussian
distribution. The Stable process X has a characteristic exponent of the form

() - c|f]*(1 — iB tan Zsgn ) + ifn for a € (0,1) U (1,2),
] o] (1 +1iB2sgn Olog|d|) + ibn for =1,

where 5 € [-1,1], n € R, ¢ > 0 and sgn 6 = 1(p~¢) — 1(g<p). This results in o = 0,

colz|™t7dx  for z € (—00,0),

H(dx) {clx_l_o‘daf; for z € (0, 00),

where ¢, co > 0, and the choice of a € R is implicit.

Lévy processes with one-sided jumps

In general, it is very difficult to study the properties of the whole class of Lévy process due
to the complexity jump part. It could be either a positive jump or a negative jump and it
could happen infinite many times in a short interval. However, if we narrow our research to
only one-sided jump Lévy processes, then we can explore a lot of interesting properties of
this sub-class of Lévy processes.

Definition 2.3. Suppose that 11(—o0,0) = 0, which implies that the corresponding Léuvy
processes have no negative jumps. Also, suppose further that f(o Oo)(1 Ax)(dz) < oo, 0 =0,
and positive drift g > 0, then the process is called subordinator.

A process X is called a spectrally positive Lévy process if II(—o0,0) = 0, X does not
have monotone paths, and it is not a pure negative linear drift. Lastly, if —X is spectrally
positive, then X is called a spectrally negative Lévy process. In this thesis, we only focus on
the spectrally negative Lévy processes (SNLPs).

7



2.1.2 Some basic properties and facts about SNLPs

In order to facilitate the expression of results, we write
P, =P(|Xo=2) and E,=E(/|X,=2x).

And for the case of x = 0, we write P = Py and E = [E,, respectively.

Laplace exponent

Since a SNLP does not have positive jumps, its Laplace exponent exists and is defined as

]E[eeXt] _ etw(f))’

SO
1
$(0) = u + 50°6” — / (1™ + 621 (o) (de), (22)

(=00,0)
given the triple (u, o, II) for all # > 0. The function v : [0,00) — R satisfies
(1) 1(0) =0.
(i) lim v(a) = oo.
(iii) ¢ is infinitely differentiable and strictly convex on (0, 00).
(iv) ©'(04) = E[X] € [—00, ).
For each ¢ > 0, the right inverse of v is defined as

®(q) =sup{A = 0:9¥(A) = ¢} (2.3)

Note that if the overall drift ¢/'(0+) > 0, then v is strictly increasing. So A = 0 is the unique
solution to ¥(A) = 0. If ¢/(0+) < 0, then the equation 1(A) = 0 has two solutions. One of
them is zero, and the other is greater than 0.

Creeping upwards

Given a fixed level a > 0, the first passage time above this level a is defined as 7,5 := inf{t >
0: X; > a} with the convention that inf () := oco. Also, we define the first passage time below
level a as 7,7 := inf{t > 0 : X; < a}. Due to the fact that the SNLP has no positive jumps,
it is shown by Corollary 3.13 in Kyprianou (2006) that

IP’[XTJ =a|r] < o] =1. (2.4)

That is, SNLPs necessarily creep upwards. But if ¢ > 0, then the process can creep down-
wards.

Drifting and oscillating

Since ¢'(04) = E[X;] is the overall drift of the process, the SNLP
(i) drifts to oo if and only if ¢/(0+) > 0,



(ii) oscillates if and only if ¢/(04) = 0,
(iii) drifts to —oo if and only if ¢'(0+) < 0.

The Wiener-Hopf factorisation

For t > 0, define
X, =supX, and X, = inf Xj.
s<t s<t
By the duality Lemma in Kyprianou (2006), the pairs (X;, X; — X;) and (X; — X,, —X,) have
the same distribution in P. Then we have the following Wiener-Hopf factorization theorem
which plays an essential role in developing fluctuation identities of Lévy processes. For 5 > 0,

p%.,1 _ _ 2() X, _ p  ®0)-5
Bl =50+ ™ B =50 oy (2:5)

where e, is an independent exponential distribution with parameter p. The first expression
implies that X, follows an exponential distribution with parameter ®(p).

g-Scale functions

It is surprising and interesting that most of the properties of SNLPs can be expressed in
terms of the so-called ¢-scale functions. For ¢ > 0, the g-scale function W@ of a process X
is defined on [0, 00) as a continuous function with Laplace transform of the form

[ee])
LIVDI(A) := / WD (y)dy = —<—,
0 V(A —q
The function W@ is unique, positive and strictly increasing for « > 0. To extend the

domain of W@ to the whole real line, we set W@ (z) = 0 for 2 < 0. For simplicity, we write
W = WO whenever ¢ = 0. Furthermore, we define another scale function Z@ as

for A > ®(q). (2.6)

ZD(x) =1+ q/w W@ (y)dy. (2.7)

It is shown that for all SNLPs, g-scale functions exist for all ¢ > 0 (see Kuznetsov et al.
(2013)). This is a fundamental result because from here we can express the fluctuation
identities of general SNLPs in terms of scale functions. Moreover, the g-scale function W (@
is continuous and almost everywhere differentiable. Indeed, for each ¢ > 0, the scale function
W@ belongs to C*(0, 00) if and only if at least one of the following three criteria holds

(i) o =0.
(i1) f(—l,O) |z|TI(dx) = 0.

(iii) TI(dx) := II(—o0, —x) is continuous.



Let d:=pu— f£)1 2T1(dz), then the initial values of W@ and W' are

. 0
WO (04) = {1/d if o =0and [, 2II(dz) < o0,

0 otherwise,
and
2/0? if 0 >0,
W'D (0+) = { (II(—o00,0) + q)/d? if o =0 and f81 2I1(dz) < o0,
00 otherwise.

Here we derive some explicit expressions of g-scale function taken from Biffis and Kyprianou
(2010) and Kuznetsov et al. (2013) (for a deep study on scale functions of SNLPs, readers
are referred to Chan et al. (2009) and Hubalek et al. (2010)).

e The first example is the linear Brownian motion with drift X which is of the form
Xy = pt + o By, where o>0,uelR.

Its Laplace exponent can be obtained directly from its corresponding characteristic

exponent.

0.2 02

for 6 € R.

»(0) = —W(—if) = ub +
Then the Laplace transform of the scale function W@ for the linear Brownian motion
with drift X can be expressed as
1 2

02232 —|—/LS —q - 0'2(3 — 51)(8 - 82)7
where s; = @ and sy = @

we can re-write the Laplace transform as

LW )(s) =

. S0, by partial fraction decomposition,

LIV () = — [ Lo }

V2ot +p?ls—5 Ss—s1

Therefore, by inverse Laplace transform, we obtain the explicit expression of the g-scale
function W(@:

(@ = —1 (V2q02+p2—p) 5 —(\/2q02+p2+p) 5
W9 (z) e e .
/2q0-2 + MQ

e The second example is the compound Poisson processes with a positive drift and with
exponential jumps

N
Xt = :ut - Z }/;7
i=1
where ¢ > 0 and Y follows exponential distribution with parameter p and N; is an

10



independent Poisson process with intensity A > 0. The Laplace exponent of X can be
derived directly as

Y(O) = —VY(—i0)
= uf+ A\ e’ — 1) F(dx
o+ /(_Oom< ) F(dz)

= ub+ )\/ (7% —1)pe r*dx
0
M
p+6

So after some algebra, the Laplace transform of L[IW(@](s) can be expressed as

p+s B p+s B 1 <p+52_p+51>
ps® = A+ q+pp)s —pg  p(s—si)(s —s2)  plsz—s1)\s—s2 s—s
where
1 2
s1= g\ (gt o) = Vgt )+ dupg ).
1
Sy = ﬂ((k+q+pu)+\/(A+Q+pu)2+4upq>-

As a result, by inverse Laplace transform, we obtain the explicit expression of g-scale
function for compound Poisson processes with a positive drift and exponential jumps

1
W9 () = —( + 59)e** — (p+s es”““).
(x) Y E— (p+ s2) (p+ s1)
Note that, for the special case where ¢ = 0, the expression of 0-scale function is sim-
plified into the form
W(z) = L (iéﬁ—mﬁx _ 1>.
A = pi\ pp

The third example is the a-stable process X, o € (1,2), which is defined in a way that
for each t > 0, X, is equal in distribution to t'/*X;. It is interesting that the O-scale
function for this process has a very simple form. That is

If the a-stable process plus a drift ut is considered, then its 0-scale function has a form

Wi(x) = i(l — Eo_11(—cz®™")),

11



where

Eoora(2) =) 2%/T(1 4 (a = 1)/k).

k>0

Exponential change of measure
Thanks to the fact that, for each ¢ > 0, {e“X*=¥(©* . + > 0} is a positive martingale, we can

define the change of measure for each ¢ > 0,

dP©) <
— Xt —w(c)t (2 8)
e s .
dP |,

where (F3)i>o is the filtration generated by X. The change of measure plays an important
role in deriving some properties of SNLPs in such a way that it changes a SNLP X with non-
positive drift ¢'(0+) < 0 into another SNLP X with a positive drift ¢/.(0+) > 0. Particularly
with an appropriate choice of ¢, given (X, P) is a SNLP, then by the change of measure from
P to P, (X, P()) is also a spectrally negative Lévy process with Laplace exponent given by

ve() = (0 +c)—v(c)
Ccr 1
= 49(0-20 —u+ /(0070) x(e® — 1)1($>1)H(d1‘)) + 50202

—i—/ (" —1— 021 (4 1))e“TI(dz),
(—O0,0)

for & > —c given the triple (i, o,1I) of X. By inspecting the above expression, we see that
the triple of the process X under the new measure becomes

e = — (O’QC — 1 +/ (e — 1)1(x>_1)H(dw)>,
(_0070)
o, = o,

[I.(dx) = e“Il(dz).

Moreover, the g-scale function Wi and Z9 of X under P© can be expressed in terms of
the g-scale function W@ and Z@ of X under PP respectively as

WC(Q)(I) _ 6—cmw(Q+¢(C))(x) and Z(E‘D () =1+ q/ Wc(q) (y)dy. (2.9)
0
The one-sided and two-sided exit problems

The solutions for the one-sided and two-sided exit problems are stated in the following the-
orem (Kyprianou 2006).
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Theorem 2.3. For any x € R and ¢ > 0,

- 7';" _ - a
Ele ™ 1,1 0] = @ (2.10)

E.[e 901, _ — 7@ 9 211
x[e (7o <oo)] (ZL’) (I)(q)W (1’), ( )

where we understand q/®(q) in the limiting sense for ¢ =0, so that

P [ < o] = L= (0+)W(x) if '(0+) >0, (2.12)
wro 1 if ¥/ (04) < 0. '

Also, for any x < a and ¢ > 0,

ot W ()
E. [6 ! 1(TO_>T;")] = W(q—)(a)’ (213)
e W@ (7)
E, [6 o 1(T(;<T; } = Z(q) ([E) - Z(Q)(a) W(Q)(a) ) (214>
and for u,v > 0 the joint Laplace transform of 7, and XT(; 18
E[e 0] = e (Z&’) (2) - W5P><x>p/<1>v<p>), (2.15)

where p = u — Y(v), ®,(p) is the largest root of ¥, (0) = p, and Wip),Zép) are the g-scale
functions under the new measure PV.

Resolvent measures

The g-potential measure, or known as the resolvent measure, is defined as
UD(a,z,dy) = / e P (X € dy, T > t)dt, (2.16)
0

where 7 := 7 A7y . Also we denote U := U, If for each = € [0, a], a density of U@ (a, z, dy)
exists with respect to Lebesgue measure, then u'?(a,z,dy) is called the potential density.
Potential measure have played an important role in derivation of fluctuation identities of
Lévy processes especially in SNLPs. Moreover, It is interesting for the case of SNLPs, in
which the potential density always exists and can be expressed in terms of scale functions.
The following theorem is taken from Kyprianou (2006).

Theorem 2.4. For ¢ > 0 and x,y € [0,a], the density u9(a,z,y) of g-potential measure of
a SNLP killed on exiting [0, a] is given by

L@ W@ ()W @ (aq — Y)
W (@) (a)

—WD(z —y). (2.17)
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Reflected SNLPs

Process Y;

Figure 1: An example of sample path of SNLP X along with the reflected SNLP Y;.

We want to close this sub-section by a brief introduction to reflected SNLPs which take
essential part in excursion theory. For z > 0, the process

is called the process reflected at its supremum. The following two theorems from Kyprianou
(2006) present the exit problem and the potential measure of the process Y respectively.

Theorem 2.5. Suppose for a fized a > 0, we define the first passage time of the process Y
as of :==inf{t > 0:Y; > a}. Then, for x € [0,a], 0 € R such that ¥(0) < oo, we have

(2.19)

(p) AL
E, [e—qtﬁ—@yoﬂ _ be (Ze(p)m — ) — We(p)m _ x)pWG (a) +0Zy (a))’

Wy (a) + 6W," (a)
where p == q — (0) and W'9'(a) is the right derivative of W9 at a.

Theorem 2.6. For a > 0, > 0, and z,y € [0,a] the potential measure of the reflected
process Y, denoted by U9, can be expressed as

_ (9) (q)
U9 (a,z,dy) = (W(q) (a— w)MM;T/(((C)L))) do(dy) + (W(Q)(a — x)% — WD (y — a:)) dy.

2.2 Excursion theory for SNLPs

Since most of our main results mainly rely on the excursion theory, we want to dedicate this
sub-section to briefly introduce this concept. In order to introduce the theory of excursion,
we need the notion of the Poisson random measure which plays a central role in the theory
of Lévy processes.
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2.2.1 Poisson random measure
First, we present the definition of random measure.

Definition 2.4 (Random measure). Let (2, F,P) be a probability space and (E,&) be a
measurable space. Then M : Q) x & — R is a random measure if

(i) for every w € Q, M(w, ) is a measure on &,
(i1) for every A € &, M(-, A) is measurable.
Then the Poisson random measure is defined as follow.

Definition 2.5 (Poisson random measure). Let (2, F,P) be a probability space and (E,E,n)
be a measurable space. Then N : 2 x £ — R is a Poisson random measure with intensity 7
measure on & if

(i) for every A € € withn(A) < oo, N(-, A) follows the Poisson distribution with parameter
n(A),

(ii) for any disjoint sets Ay, ..., A, € E, N(-, A1),...,N(+, A,) are independent,
(iii) for every w € Q, N(w,-) is a measure on .

The existence of the Poisson random measure for SNLPs 