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Abstract

Green function and self-adjoint Laplacians on polyhedral

surfaces

Kelvin A. Lagota, Ph.D.

Concordia University, 2019

Using Roelcke’s formula for the Green function, we explicitly construct a basis in

the kernel of the adjoint Laplacian on a compact polyhedral surface X and compute the

S-matrix of X at the zero value of the spectral parameter. We apply these results to

study various self-adjoint extensions of a symmetric Laplacian on a compact polyhedral

surface of genus two with a single conical point. It turns out that the behaviour of the

S-matrix at the zero value of the spectral parameter is sensitive to the geometry of the

polyhedron.
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Chapter 1

Introduction

1.1 Background

The spectral geometry of a Riemannian manifold X with singularities is more involved

than that of smooth manifolds, in particular, due to the following reason: it may happen

that the symmetric Laplacian ∆ (usually defined on smooth functions supported in

X\{singularities}) is not essentially self-adjoint, and, in order to consider the spectrum

of the Laplacian, one has to make a choice from (infinitely) many possible self-adjoint

extensions of ∆.

The case of Euclidean spaces R2 and R3 with punctures is investigated in great

detail in [4] (see also the references therein), and manifolds of higher dimension with

cone like singularities are also considered, for example, in the papers [16], [17], [25], [30]

to mention a few. In this thesis, we consider the case of compact polyhedral surfaces

(closed surfaces glued from Euclidean triangles). These are compact Riemann surfaces

equipped with flat conformal metrics with conical singularities at the vertices of the
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corresponding polyhedron (it should be noted that the metric of a polyhedron does not

see the edges: interior points of an edge are ordinary smooth point of the corresponding

Riemannian manifold).

A question of general interest here can be formulated as follows: how do the spectral

characteristics of the polyhedron depend on the choice of the self-adjoint extension of the

symmetric Laplacian, the choice of conformal polyhedral metric, and the moduli of the

underlying Riemann surface? This question was partially addressed in [13], where the

dependence of an important spectral invariant, the ζ-regularized spectral determinant of

the Laplacian, on the choice of the self-adjoint extension was analysed. It turned out that

one can write a comparison formula for two determinants of the Laplacian corresponding

to different self-adjoint extensions, and the main ingredient of this formula is the so-called

S-matrix of the polyhedral surface. The S-matrix depends on a spectral parameter λ

and is defined via the coefficients in the asymptotic expansions near the conical points

of some special solutions (in classical sense) to the homogeneous Helmholtz equation

(∆ − λ)u = 0 on the polyhedron. Moreover, the behaviour of S(λ) at the zero value

of the spectral parameter plays especially important role; for instance, the order of the

zero of a certain minor of S(λ) at λ = 0 is related to the number of zero modes of

the corresponding self-adjoint extension; most of the entries of the matrix S(0) admit

explicit expressions through holomorphic invariants of the underlying Riemann surface

(Bergman kernel, Schiffer projective connection), and in case of a smooth surface with

punctures (which can be considered as conical points of angle 2π), the entries of S(0)

are related to the Robin mass of the surface, etc.
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1.2 Organization of the thesis

In this thesis, we apply and further develop the results of [13]. In Chapter 2, we discuss

the general properties of the symmetric Laplacian ∆ on an arbitrary polyhedral surface:

we give an explicit description of the domain of its adjoint ∆∗ and, in particular, explicitly

construct a basis of the kernel ker ∆∗. Using the latter basis, we compute the matrix

S(0), expressing its entries via some holomorphic invariants of the underlying Riemann

surface. Our main technical tool here is the Roelcke formula for the Green function of

a closed surface which we briefly discuss in Section 2.1.

In Chapter 3, we apply the results of the previous chapter to the simplest example of

a polyhedral surface, having (the lowest possible) genus two with one conical point. We

study three concrete self-adjoint extensions of the symmetric Laplacian on this surface:

the Friedrichs extension, the so-called holomorphic extension, and the maximal singular

extension. Using the results of [13] and the explicit formulas for S(0), we write down

the precise (with all the auxiliary constants computed) comparison formulas relating the

ζ-regularized determinants of these three extensions. It turns out that properties of the

S-matrix depend on geometric properties of the polyhedral surface. We show that the

dimension of the kernel of the holomorphic extension (related to the order of the zero of

a certain minor of S(λ)) depends on the class of linear equivalence of the divisor (2P ),

where P is the vertex of the polyhedron (this effect was previously found in [14], where

the polyhedra of genus g with 2g − 2 vertices were considered), and that the dimension

of the kernel of the maximal singular extension can be higher than usual if the surface

has a very large group of symmetry.

Finally in Chapter 4, proofs of some results from Chapters 2 and 3 are provided.
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Chapter 2

Green function and the kernel of the

adjoint Laplacian for compact

polyhedral surfaces

2.1 Roelcke’s formula for the Green function

Let X be a compact Riemann surface endowed with a conformal metric m; we as-

sume that m is either smooth or flat with conical singularities. In the latter case, let

P1, P2, . . . , PM be the conical singularities and denote X0 = X \ {P1, . . . , PM}. Let ∆

denote an unbounded densely-defined, symmetric operator in L2(X,m) with initial do-

main C∞
0 (X0) and let ∆ be its closure whose domain D(∆) is the completion of C∞

0 (X0)

in the graph norm (︂⃦⃦
u;L2(X,m)

⃦⃦2
+
⃦⃦
∆u;L2(X,m)

⃦⃦2)︂1/2
. (2.1)
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We leave it to the readers to verify that this graph norm is equivalent to ∥u;L2(X,m)∥+

∥∆u;L2(X,m)∥. Let ∆∗ be the adjoint of ∆ in L2(X,m) (with initial domain C∞
0 (X0))

and denote by D(∆∗) its domain.

Let ∆m be the corresponding self-adjoint Laplace operator (in the case of conical

metric, we define ∆m as the Friedrichs extension of the symmetric Laplace operator

with domain consisting of smooth functions vanishing near the conical points: the func-

tions from the domain of the Friedrichs extension are known to be bounded near the

conical points), and let G(x, y) be the Green function corresponding to ∆m; this is de-

fined to be the constant term of the Laurent expansion of the resolvent kernel function

R(x, y;λ) corresponding to ∆m at λ = 0:

R(x, y;λ) = − 1

Area(X)λ
+G(x, y) +O(λ). (2.2)

The Green function is real-valued and satisfies the following properties:

1. G(x, y) = G(y, x);

2. For x ̸= y, (∆m)xG(x, y) = (∆m)yG(x, y) = − 1

Area(X)
;

3. G(x, y) = − 1

2π
log |x− y|+O(1) as x→ y;

4. In the case of conical metric, the Green function G(·, y) is bounded near all conical

points (unless y itself is a conical point and the first argument approaches y);

5. For any x ∈ X, one has ˆ
X

G(x, y) dS(y) = 0, (2.3)

where dS is the volume element of the metric m.
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In the case when the metric m is smooth, the Green function is given explicitly by

the formula

G(x, y) =
1

2πArea(X)2

ˆ
X

ˆ
X

Re

ˆ x

p

Ωy−q dS(p) dS(q), (2.4)

where Ωp−q is the meromorphic one-form (2.5) below. The formula, which appeared

in [8] (see equation (2.19) on page 31) is called there Roelcke’s formula (without any

reference). Unfortunately, we were unable to identify the primary source and it seems

that [8] is the only published text containing this result in its full generality (it should

be noted that the “Green function of a closed orientable surface” from [37], Section 4.2

is just the function FP1,Pk
from Proposition 2.10 below and has nothing to do with the

Green function discussed here). Formula (2.4) and its proof are also valid for conical

metrics. For the reader’s convenience, we decipher here the derivation of this formula

given in passing in [8].

Choose a standard basis of a- and b-cycles onX. Let {vj} be the basis of the holomor-

phic one-forms on X that are normalized via
´
ai
vj = δij. Let Ωp−q be the meromorphic

one-form (see, e.g., page 4 of [7] with a different normalization of basic holomorphic

differentials) defined by

Ωp−q(z) =

ˆ q

p

W (z, ·)− 2πi
∑︂
α,β

(ImB)−1
αβvα(z) Im

ˆ q

p

vβ (2.5)

where B = [
´
bi
vj] is the matrix of b-periods and W is the canonical meromorphic bidif-

ferential (see (3.17) below) on X. This one-form is the unique differential of the third

kind with simple poles of residue −1 and 1 at p and q, respectively, and moreover, it has

purely imaginary periods. Hence, the real part of the integral
´ y
x
Ωp−q does not depend

on the path of integration and gives a harmonic function (with logarithmic singulari-
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ties) with respect to the arguments x, y, p, q. Using the known singularities of the latter

function, one can express it as

Re

ˆ y

x

Ωp−q = 2π (G(y, p)−G(y, q) +G(x, q)−G(x, p)) . (2.6)

Integrating (2.6) over X twice (first with respect to dS(x) and then with respect to

dS(q)), using (2.3), and renaming the arguments in the resulting expression, one obtains

Roelcke’s formula (2.4).

2.2 Harmonic functions with prescribed singulari-

ties

2.2.1 Domain of the self-adjoint operator

For a conical point Pj with conical angle βj, let nj be the integer such that 2πnj < βj ≤

2π(nj + 1). In the proof of Proposition 2.7 below, a conical point with conical angle

2π will be considered. In this case, nj = 0 and all the sums
∑︁nj

m=1 appearing in (2.7)

in Proposition 2.1 are equal to 0 by definition. Introduce ζj to denote the distinguished

local parameter near Pj: note that in the vicinity of Pj, one has

m(ζj, ζ̄j)|dζj|2 = |ζj|2bj |dζj|2

(see [13], Definition 1) and

∆∗ = −4|ζj|−2bj∂ζj∂ζ̄j
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where βj = 2π(bj + 1). In polar coordinates (r, θ) where r =
|ζj|bj+1

bj + 1
and θ = arg(ζj),

one can write

m dx = dr2 + (bj + 1)2r2dθ2 and ∆∗ = − 1

r2

(︃
(r∂r)

2 +
1

(bj + 1)2
∂2θ

)︃
.

Proposition 2.1. In the vicinity of the point Pj, a function u ∈ D(∆∗) has the asymp-

totics

u =
i√
2π

Lj(u) log |ζj|+
nj∑︂

m=1

1√
4πm

Hj,m(u)
1

ζmj
+

nj∑︂
m=1

1√
4πm

Aj,m(u)
1

ζ̄
m
j

+
i√
2π

cj(u) +

nj∑︂
m=1

1√
4πm

hj,m(u)ζ
m
j +

nj∑︂
m=1

1√
4πm

aj,m(u)ζ̄
m
j + χv,

(2.7)

where χ is a smooth cut-off function that has compact support in a small vicinity of Pj

and that is equal to 1 in a smaller vicinity, and v is a function from the domain of the

closure D
(︁
∆
)︁
. One has the asymptotics v = o(|ζj|nj) as ζj → 0.

The notation for the coefficients comes from the form of the corresponding term in

the asymptotics: growing holomorphic (H), growing antiholomorphic (A), (growing) log-

arithmic (L), constant (c), decreasing holomorphic (h), and decreasing antiholomorphic

(a). The normalizing factors

(︃
1√
4πm

,
i√
2π
, etc.

)︃
are introduced to obtain the stan-

dard Darboux basis for the symplectic form (2.9) below. The proof for the asymptotics

(2.7) is given in Section 4.1.

2.2.2 Gelfand symplectic form

Let Ω be the symplectic form on the factor space D(∆∗)/D(∆):

Ω ([u], [v]) := ⟨∆∗u, v⟩ − ⟨u,∆∗v⟩ , (2.8)

8



where ⟨u, v⟩ =
´
X
uv dS is the usual hermitian product with volume element

dS = m(ζ, ζ̄)
dζ ∧ dζ̄
−2i

= − 1

2i
m(ζ, ζ̄)|dζ|2.

Straightforward computations (see Section 4.2) prove the next proposition:

Proposition 2.2. One has

Ω ([u], [v]) =
M∑︂
k=1

Xk(u)

⎛⎜⎝ 0 −I2nk+1

I2nk+1 0

⎞⎟⎠Xk(v)
t (2.9)

where Xk(u) = (Lk(u),Hk,1(u), . . . ,Hk,nk
(u),Ak,1(u), . . . ,Ak,nk

(u), ck(u), hk,1(u), . . . ,

hk,nk
(u), ak,1(u), . . . , ak,nk

(u)).

Remark 2.3. Notice that an extension ∆E is self-adjoint if Ω
(︂
[u], [v]

)︂
= 0 for all

u, v ∈ D(∆E).

In fact, the Lagrangian (with respect to the form (u, v) ↦→ Ω([u], [v])) subspaces of

the factor space D(∆∗)/D(∆̄) are in one-to-one correspondence with the self-adjoint

extensions of ∆̄. Moreover, an extension can be defined by specifying conditions on

the coefficients in the asymptotic expansion (2.7) of a given function u ∈ D(∆∗). For

instance, the Friedrichs extension ∆F is defined on functions u ∈ D(∆∗) not having

the growing terms, i.e., Lk(u) = Hk,m(u) = Ak,m(u) = 0 ([11], Proposition 3.5); or

the holomorphic extension ∆hol is defined on functions u ∈ D(∆∗) having only the

holomorphic terms in their asymptotics, i.e., Lk(u) = Ak,m(u) = ak,m(u) = 0.

9



2.3 S-matrix of the polyhedral surface X

2.3.1 Special growing solutions

It is known that the kernel of the Friedrichs extension ∆F has dimension 1 and consists

of constants functions. For λ ∈ C not belonging to the spectrum of ∆F , define for each

k = 1, . . . ,M and s = 1, . . . , nk the unique special growing solutions

G1/ζsk
(·;λ), G1/ζ̄

s
k
(·;λ), Glog |ζk|(·;λ) (2.10)

of the homogeneous equation

∆∗u− λu = 0 (2.11)

via their asymptotic expansions near the conical points. More precisely, define G1/ζsk
via

G1/ζsk
(ζk;λ) =

1

ζsk
+O(1)

as ζk → 0 and

G1/ζsk
(x;λ) = O(1)

as x→ Pl with l ̸= k. Others are defined similarly.

Definition 2.4. (See [13]) The constant terms and the coefficients of the powers of the

decreasing terms ζsk and ζ̄
s
k (k = 1, . . . ,M , s = 1, . . . , nk) in the asymptotic expansions

of the special growing solutions form the so-called S-matrix, S(λ), of the surface X.

For instance, the entry S
1
ζr
k
, ζ̄

s
l (λ) of the S-matrix is given by the coefficient of the

term ζ̄
s
l in the asymptotic expansion of the special growing solution G1/ζrk

(·;λ) near the

conical point Pl. Similarly, the entry Slog |ζk|, 1l(λ) is the constant term in the asymptotic

10



expansion of the special growing solution Glog |ζk|(·;λ) near the conical point Pl.

The next proposition is a slightly improved version of Proposition 7 in [12]:

Proposition 2.5. All the entries of the matrix S(λ) except Slog |ζk|,1l(λ) admit holomor-

phic continuation to λ = 0; the entries Slog |ζk|,1l(λ) have a simple pole at λ = 0.

Proof. We start with reminding the reader the construction of the special growing solu-

tions (2.10). Let F be one of the following functions defined on the whole X:

χ log |ζk|, χ
1

ζ lk
, χ

1

ζ̄
l
k

,

where χ is a smooth cut-off function supported in a small vicinity of Pk such that χ = 1

in some smaller vicinity of Pk. Let λ do not belong to the spectrum of ∆F . Introduce

the function

f := (∆∗ − λ)F

and define g(·;λ) as the (unique) solution of the equation

(∆F − λ)g = (∆∗ − λ)F (2.12)

(it should be noticed that the right-hand side of this equation belongs to L2(X,m)).

Then

G(·;λ) = F (·)− g(·;λ)

is the special growing solution with principal part F . It follows from the above con-

struction that

11



g(·;λ) = g(·;λ) + 1

Area(X)λ

ˆ
X

f(·;λ)− 1

Area(X)λ

ˆ
X

f(·;λ)

=
[︂
(∆F − λ)

⃓⃓⃓
1⊥

]︂−1
(︃
(∆∗ − λ)F − 1

Area(X)

ˆ
X

(∆∗ − λ)F

)︃

− 1

Area(X)λ

ˆ
X

f(·;λ).

(2.13)

The first term in (2.13) is holomorphic in a vicinity of the point λ = 0 (a simple eigenvalue

of ∆F ). The behaviour of the second term at λ = 0 depends on the choice of the principal

part F . In the case of F = χ 1
ζlk

or χ 1

ζ̄
l
k

, the second term is again holomorphic at λ = 0,

thanks to the obvious relation ˆ
X

f(·; 0) = 0 . (2.14)

If the principal part F is logarithmic (F = χ log |ζk|), then (2.14) is no longer true and

g(·;λ) has a simple pole with residue

− 1

Area(X)

ˆ
X

∆∗F = − 2π

Area(X)

Summing up, the special growing solution G1/ζlk
(·;λ) and G

1/ζ̄
l
k
(·;λ) are holomorphic

with respect to λ at λ = 0, whereas

Glog |ζk|(·;λ) =
2π

Area(X)λ
+ h(·;λ)

where h(·;λ) is holomorphic near λ = 0. Thus, all the coefficients in the asymptotic

expansion of G1/ζlk
(·;λ) and G

1/ζ̄
l
k
(·;λ) are holomorphic at λ = 0; the constant term in

the asymptotics Glog |ζ|(·;λ) blows up at λ = 0, all other coefficients in the asymptotics

Glog |ζ|(·;λ) are holomorphic at λ=0.
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Remark 2.6. The values at λ = 0 of nonsingular entries of the S-matrix do depend

on the choice of a metric m within a given conformal class through their dependence on

the distinguished local parameters of the metric near the conical points. The opposite

statement in Proposition 7 from [12] was made under an implicit assumption that the

conformal factor is equal to one in small vicinities of the conical points.

The values of the nonsingular entries of the S-matrix at λ = 0 can be found from

the asymptotics of the (unique) special growing solutions G1/ζlk
(·; 0), G

1/ζ̄
l
k
(·; 0) of the

equation

∆∗u = 0 (2.15)

subject to the condition ˆ
X

udS = 0 . (2.16)

It should be noted that there is no harmonic function on X with a single logarithmic sin-

gularity, so the special growing solutions Glog |ζk|(·; 0) do not exist. The following propo-

sition gives the first new results. A closely related statement for the Green functions of

elliptic boundary value problems in domains with conical points at the boundaries can

be found in [28].

Proposition 2.7. Let y ∈ X \ {P1, . . . , PM}.

1. The special growing solutions G1/ζlk
(y; 0), G

1/ζ̄
l
k
(y; 0), l = 1, . . . , nk, of the equa-

tion (2.15) are related to the coefficients of the asymptotic expansion of the Green

function G(·, y) at the conical point Pk via

G(ζk, y) = G(Pk, y)−
nk∑︂
l=1

1

4πl
G1/ζlk

(y; 0)ζ lk −
nk∑︂
l=1

1

4πl
G

1/ζ̄
l
k
(y; 0)ζ̄

l
k + o(|ζk|nk) . (2.17)
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2. The constant term, G(Pk, y), in (2.17) can be represented as

G(Pk, y) =
1

2π
lim
λ→0

[︃
Glog |ζk|(y;λ)−

2π

Area(X)λ

]︃
. (2.18)

Proof. Until the end of this proof, assume that X0 = X \ {P1, . . . , PM , y}, that is, the

point y is considered a conical point with conical angle 2π. Then G(·, y) belongs to

the domain of the operator ∆∗; the latter operator is now the adjoint to the symmetric

Laplacian with domain C∞
0 (X \ {P1, . . . , PM , y}).

It should be noticed that the functions u from D(∆∗) have the asymptotics

u(ζ(x)) =
i√
2π

Ly(u) log |ζ|+
i√
2π

cy(u) + o(1)

as x → y (here the local parameter ζ is defined via m = |dζ|2 near y and ζ(y) = 0).

Since
´
X
G1/ζlk

dS = 0 and ∆∗
xG(x, y) = − 1

Area(X)
(a constant), one has

Ω([G(·, y)], [G1/ζlk
(y; 0)]) = 0 . (2.19)

On the other hand, (2.9) implies

Ω([G(·, y)], [G1/ζlk
(y; 0)]) = hk,l(G(·, y))Hk,l(G1/ζlk

(·; 0))− Ly(G(·, y))cy(G1/ζlk
(·; 0))

=
√
4πlhk,l(G(·, y))−

1√
2π i

[︄√
2π

i
G1/ζlk

(y; 0)

]︄

and, therefore,

hk,l(G(·, y)) = − 1√
4πl

G1/ζlk
(y; 0) .

Similarly,

ak,l(G(·, y)) = − 1√
4πl

G
1/ζ̄

l
k
(y; 0),

and (2.17) follows.
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To show (2.18), let R(x, y;λ) be the resolvent kernel of ∆F . Consider the expression

E(λ) =

⟨︃
(∆∗ − λ)

[︂
R(·, y;λ) + 1

Area(X)λ

]︂
, Glog |ζk|(·;λ)−

2π

Area(X)λ

⟩︃
−

⟨︃
R(·, y;λ) + 1

Area(X)λ
, (∆∗ − λ)

[︂
Glog |ζk|(·;λ)−

2π

Area(X)λ

]︂⟩︃ (2.20)

Since lim
λ→0

[︂
R(·, y;λ) + 1

Area(X)λ

]︂
= G(·, y)⊥1 and

ˆ
X

[︂
Glog |ζk|(·;λ)−

2π

Area(X)λ

]︂
= 0, 1

one has E(λ) = o(1) as λ→ 0. On the other hand, computing E(λ) via (2.9), one gets

E(λ) =

[︃
Glog |ζk|(y;λ)−

2π

Area(X)λ

]︃
− 2π

[︃
R(Pk, y;λ) +

1

Area(X)λ

]︃
which implies (2.18).

The next proposition immediately follows from (2.17), (2.18), and Roelcke’s formula

(2.4). See Section 4.3 for the details.

Proposition 2.8. One has the following explicit expressions for the special growing so-

lutions of the homogeneous Laplace equation (2.15) subject to (2.16):

G1/ζlk
(y; 0) = − 1

(l − 1)! Area(X)

ˆ
X

Ω
(l−1)
y−q (Pk)dS(q) l = 1, . . . , nk, (2.21)

G
1/ζ̄

l
k
(y; 0) = G1/ζlk

(y; 0) . (2.22)

Moreover, one has the relation

lim
λ→0

[︃
Glog |ζk|(y;λ)−

2π

Area(X)λ

]︃
=

1

Area(X)2

ˆ
X

ˆ
X

Re

ˆ Pk

p

Ωy−q dS(p)dS(q) . (2.23)

1 The equality can be checked as follows:

ˆ
X

G =

ˆ
X

(F − g) =

ˆ
X

F −
(︃
1

λ

ˆ
X

∆∗g − 1

λ

ˆ
X

f

)︃
=

ˆ
X

F +
1

λ

ˆ
X

f =
1

λ

ˆ
X

∆∗F =
2π

λ
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In (2.21), the expression Ω
(l−1)
y−q (Pk) should be understood as follows. Write the one

form Ωy−q in the distinguished local parameter ζk in a vicinity of the conical point Pk:

Ωy−q = ω(ζk)dζk .

Then

Ω
(l−1)
y−q (Pk) :=

(︃
d

dζk

)︃l−1

ω(ζk)|ζk=0 .

2.3.2 Explicit expressions for S(0)

Rewriting Ωy−q as

Ωy−q(z) =

ˆ q

y
W (z, · )− π

g∑︂
α,β=1

(ImB)−1
αβ vα(z)

ˆ q

y
vβ + π

g∑︂
α,β=1

(ImB)−1
αβ vα(z)

ˆ q

y
vβ (2.24)

and using in (2.23) the reciprocity law for normalized differentials of the third kind

Re

ˆ R

S

ΩP−Q = Re

ˆ P

Q

ΩR−S

(see, e.g., [6], p. 67), one can easily find all the terms of the asymptotic expansions of

G1/ζlk
(y; 0) and limλ→0

[︃
Glog |ζk|(y;λ)−

2π

Area(X)λ

]︃
as y → Pl, l = 1, . . . ,M . This results

in explicit formulas for all the finite entries of the matrix S(0). For instance, (2.23) and

the reciprocity law immediately imply that

Slog |ζk|, ζl(0) =
1

2Area(X)

ˆ
X

ΩPk−p(Pl)dS(p), l ̸= k. (2.25)

Similarly, from (2.21) and (2.24), one gets the relation

S
1
ζk

, ζ̄l(0) = π

g∑︂
α,β=1

(ImB)−1
αβvα(Pk)vβ(Pl) = πB(Pk, Pl) , (2.26)
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where B is the Bergman reproducing kernel for holomorphic differentials (see, e.g., [8],

equation (1.25)). (Here the value of a differential at Pl means its value in the distin-

guished local parameter at this point.) Following [7] and [42], introduce the Schiffer

bidifferential on X as

S(P,Q) = W (P,Q)− π

g∑︂
α,β=1

(ImB)−1
αβ vα(P )vβ(Q) . (2.27)

The Schiffer projective connection, SSch, is defined via the asymptotics of the Schiffer

bidifferential at the diagonal P = Q:

S(x(P ), x(Q))

dx(P )dx(Q)
=

1

(x(P )− x(Q))2
+

1

6
SSch(x(P )) +O(x(P )− x(Q)) , (2.28)

as Q→ P . From (2.21) and (2.24) together with (2.27) and (2.28), one gets (cf. [14])

S
1
ζk

, ζl(0) = −S(Pk, Pl); l ̸= k, (2.29)

and

S
1
ζk

, ζk(0) = −1

6
SSch(ζk)

⃓⃓⃓
ζk=0

. (2.30)

In the same manner, one can find explicit expressions for all the remaining (finite) entries

of S(0).

Remark 2.9. It looks natural to define the regularized values of the singular entries of

S(λ) at λ = 0 via

regSlog |ζk|, 1l(0) := lim
λ→0

(︃
Slog |ζk|, 1l(λ)− 2π

Area(X)λ

)︃
. (2.31)

In the case of a smooth surface X with a puncture P , considered as a conical point of

angle 2π (see, e.g., [43], [2]), the special growing solution Glog d(·,P )(·;λ) coincides with

2π R(·, P ;λ), where R is the resolvent kernel of the Friedrichs extension of the Laplacian
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on X \ {P} and d is the geodesic distance on X; the above regularization of a (single)

entry of S(0) coincides with 2πm(P ), where m(P ) is the so-called Robin’s mass (see,

e.g., [39], [32])

regSlog d(P,·),1(0) = m(P ) = lim
Q→P

(︂
G(P,Q) +

1

2π
log d(P,Q)

)︂
.

In particular, formula (2.23) leads to an explicit expression for m(P ). Unfortunately,

the latter expression contains the finite part of a diverging line integral and, therefore,

is not as that effective as formulas (2.25), (2.26), (2.29), and (2.30). It should be noticed

that using the technique of string theorists ([33], [44]), one can get a nice expression for

the centered Robin’s mass

m(P )− M(X)

Area(X)
,

where

M(X) =

ˆ
X

m(P )dS(P ).

Following [44], define the function Φ on X ×X via

−4πΦ(z, w) := −2π

[︃ˆ z

w

−→v
]︃t
(ImB)−1 Im

ˆ z

w

−→v + log
(︁
|E(z, w)|2(ρ(z)ρ(w))1/2

)︁
.

Here ρ(z, z̄)|dz|2 is the (smooth) metric on X and E(z, w) is the prime form (see, e.g.,

[7]), −→v = (v1, . . . , vg)
t. The results from Section 5 of [44] imply the relation

−G(z, w) +
1

2
m(z) +

1

2
m(w) = Φ(z, w) + C (2.32)

with some constant C. Integrating (2.32), one gets

M(X)

2
+

1

2
m(w)Area(X) =

ˆ
X

Φ(z, w)dS(z) + C Area(X) (2.33)
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and, therefore,

M(X)Area(X) =

¨
X×X

Φ(z, w)dS(z)dS(w) + C Area(X)2 .

This gives the following explicit expression for centered Robin’s mass:

m(w)− M(X)

Area(X)
=

2

Area(X)

ˆ
X

Φ(z, w)dS(z)

− 2

Area(X)2

¨
X×X

Φ(z, w)dS(z)dS(w) .

(2.34)

Moreover, from (2.32) and (2.33) follows an interesting counterpart of Roelcke for-

mula (2.4)

G(z, w) =
1

2

(︃
m(z)− M(X)

Area(X)

)︃
+

1

Area(X)

ˆ
X

Φ(z, w)dS(z)− Φ(z, w), (2.35)

mentioned in the last lines of Section 5 of [44].

2.3.3 Kernel of ∆∗

Motivated by the recent paper [26], we shall write down the basis in the kernel of the

adjoint operator ∆∗ (we remind the reader that ∆ is the symmetric Laplacian with

domain C∞
0 (X0)). This makes the constructions from Theorem 1 in [26] more explicit.

Putting v = 1 in (2.9), one gets

M∑︂
k=1

Lk(u) = 0 (2.36)

for any u ∈ ker(∆∗). On the other hand, for any two points P and Q of X, there exists

a harmonic function u on X \ {P,Q} with asymptotics u(x) = log d(x, P ) + O(1) as

x → P and u(x) = − log d(x,Q) + O(1) as x → Q. Thus, Proposition 2.8 and the
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equality ker(∆F ) = {const} imply the following statement:

Proposition 2.10. The basis of ker(∆∗) consists of

1. 1;

2. functions G1/ζlk
(·; 0); k = 1, . . . ,M ; l = 1, . . . , nk from Proposition 2.8;

3. functions G
1/ζ̄

l
k
(·; 0); k = 1, . . . ,M ; l = 1, . . . , nk from Proposition 2.8; and

4. functions FP1,Pk
(P ) = Re

´ P
ΩP1−Pk

; k = 2, . . . ,M , where ΩP1−Pk
is the meromor-

phic one form from (2.5).
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Chapter 3

Self-adjoint Laplacians on genus two

polyhedral surfaces with one conical

point

3.1 Comparison formulas for det∆hol and det∆sing

In this section, several applications of the results of the previous chapter will be con-

sidered, particularly, to concrete classes of polyhedral surfaces. In order to avoid un-

necessary technical complications, the simplest case of genus two surfaces with a single

conical point P of conical angle 6π is studied. Thus, using the setting of Section 2.2.1,

one has M = 1, n1 = 2, β := β1 = 6π,

Ω([u], [v]) = X(u)

⎛⎜⎝ 0 −I5

I5 0

⎞⎟⎠X(v)t, (3.1)
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X(u) = (L(u),H1(u),H2(u),A1(u),A2(u), c(u), h1(u), h2(u), a1(u), a2(u)),

and the asymptotics in the vicinity of the point P of a function u from D(∆∗) in the

distinguished local parameter ζ has the form

u =
1√
8π

H2(u)
1

ζ2
+

1√
8π

A2(u)
1

ζ̄
2 +

1√
4π

H1(u)
1

ζ
+

1√
4π

A1(u)
1

ζ̄
+

i√
2π

L(u) log |ζ|

+
i√
2π

c(u) +
1√
4π

h1(u)ζ +
1√
4π

a1(u)ζ̄ +
1√
8π

h2(u)ζ
2 +

1√
8π

a2(u)ζ̄
2
+ v

with v = o(|ζ|2).

The following three regular1 self-adjoint extensions of the symmetric Laplacian ∆

with domain C∞
0 (X \ {P}) will be considered:

• the Friedrichs extension ∆F corresponding to the Lagrangian subspace ofD(∆∗)/D(∆̄)

L(·) = H1(·) = H2(·) = A1(·) = A2(·) = 0 ,

• the maximal singular extension ∆sing corresponding to the Lagrangian subspace

L(·) = h1(·) = h2(·) = a1(·) = a2(·) = 0 ,

• the holomorphic extension ∆hol corresponding to the Lagrangian subspace

L(·) = A1(·) = A2(·) = a1(·) = a2(·) = 0 .

Proposition 3.1. The operators (∆sing−λ)−1−(∆F−λ)−1 and (∆hol−λ)−1−(∆F−λ)−1

are finite dimensional, and one has the following representations for their traces:

1 A regular extension is one that is defined on a class of functions u ∈ D(∆∗) such that u does
not have any logarithmic term in its asymptotic expansion ([13], Definition 5.2).
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Trace[(∆sing − λ)−1 − (∆F − λ)−1] = −Trace
(︁
T−1(λ)T ′(λ)

)︁
(3.2)

Trace[(∆hol − λ)−1 − (∆F − λ)−1] = −Trace
(︁
P−1(λ)P ′(λ)

)︁
, (3.3)

where the matrices T (λ) and P (λ) are given in (3.6) and (3.16) below.

Proof. Notice that the kernel of the operator ∆∗−λ with λ ∈ C\ spec(∆F ) is generated

by the special growing solutions

G1/ζ2(·;λ), G1/ζ̄
2(·;λ), G1/ζ(·;λ), G1/ζ̄(·;λ), Glog |ζ|(·;λ)

of the equation ∆∗u− λu = 0 and, therefore, the deficiency indices of ∆ are (5, 5). So,

the Krein formula for the difference of the resolvents of two self-adjoint extensions of a

symmetric operator with (equal) finite deficiency indices can be applied (see Appendix

A for a brief discussion; see also, e.g., [3], Vol. 2, Section 84): given f ∈ L2(X),

[(∆sing − λ)−1 − (∆F − λ)−1](f) =
∑︂
α

Gα(·;λ)
∑︂
β

xαβ(λ)
⟨︁
f,Gβ(·, λ̄)

⟩︁
=
∑︂
α

Gα(·;λ)Xα(λ)

(3.4)

where α = 1/ζ2, 1/ζ, 1/ζ̄
2
, 1/ζ̄, and β = 1/ζ2, 1/ζ, 1/ζ̄

2
, 1/ζ̄, log |ζ|. Introducing

u ∈ D(∆F ) via (∆F − λ)u = f and comparing the coefficients in the asymptotic expan-

sion of the left- and right-hand sides of (3.4), one gets

−
(︂ 1√

4π
h1(u),

1√
8π

h2(u),
1√
4π

a1(u),
1√
8π

a2(u)
)︂t

= T (λ)
(︂
X1/ζ , X1/ζ2 , X1/ζ̄ , X1/ζ̄

2

)︂t
(3.5)

with
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T (λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1/ζ, ζ(λ) S1/ζ2, ζ(λ) S1/ζ̄, ζ(λ) S1/ζ̄
2
, ζ(λ)

S1/ζ, ζ2(λ) S1/ζ2, ζ2(λ) S1/ζ̄, ζ2(λ) S1/ζ̄
2
, ζ2(λ)

S1/ζ, ζ̄(λ) S1/ζ2, ζ̄(λ) S1/ζ̄, ζ̄(λ) S1/ζ̄
2
, ζ̄(λ)

S1/ζ, ζ̄
2

(λ) S1/ζ2, ζ̄
2

(λ) S1/ζ̄, ζ̄
2

(λ) S1/ζ̄
2
, ζ̄

2

(λ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.6)

Since (3.5) holds with an arbitrary left-hand side (one can take as u an arbitrary function

from D(∆F )), the matrix T (λ) is invertible.

Notice that⟨︁
(∆∗ − λ)u,G1/ζ̄(·; λ̄)

⟩︁
=
⟨︂
(∆∗ − λ)u,G1/ζ(·;λ)

⟩︂
−
⟨︂
u, (∆∗ − λ)G1/ζ(·;λ)

⟩︂
= Ω(u,G1/ζ(·;λ)) =

√
4πh1(u) .

(3.7)

Similarly, ⟨︁
(∆∗ − λ)u,G1/ζ(·; λ̄)

⟩︁
=

√
4πa1(u), (3.8)

⟨︂
(∆∗ − λ)u,G1/ζ̄

2(·; λ̄)
⟩︂
=

√
8πh2(u), (3.9)

and ⟨︁
(∆∗ − λ)u,G1/ζ2(·; λ̄)

⟩︁
=

√
8πa2(u) . (3.10)

Meanwhile, differentiating (2.12) with respect to λ and using (3.7)-(3.10), one gets

d

dλ
S⋆,ζ(λ) =

1

4π

⟨︁
G⋆(·, λ), G1/ζ̄(·; λ̄)

⟩︁
,

d

dλ
S⋆,ζ2(λ) =

1

8π

⟨︂
G⋆(·, λ), G1/ζ̄

2(·; λ̄)
⟩︂
,

d

dλ
S⋆,ζ̄(λ) =

1

4π

⟨︁
G⋆(·, λ), G1/ζ(·; λ̄)

⟩︁
,

d

dλ
S⋆,ζ̄

2

(λ) =
1

8π

⟨︁
G⋆(·, λ), G1/ζ2(·; λ̄)

⟩︁
,

(3.11)

24



with ⋆ = 1/ζ, 1/ζ̄, 1/ζ2, 1/ζ̄
2
. Now, (3.4) can be rewritten as[︂

(∆sing − λ)−1 − (∆F − λ)−1
]︂
(f)

= −
(︂
G1/ζ(·;λ), G1/ζ2(·;λ), G1/ζ̄(·;λ), G1/ζ̄

2(·;λ)
)︂
T−1(λ)×(︃

1√
4π

h1(u),
1√
8π

h2(u),
1√
4π

a1(u),
1√
8π

a2(u)

)︃t

= −
(︂
G1/ζ(·;λ), G1/ζ2(·;λ), G1/ζ̄(·;λ), G1/ζ̄

2(·;λ)
)︂
T−1(λ)×(︂ 1

4π

⟨︂
f,G1/ζ̄(·, λ̄)

⟩︂
,
1

8π

⟨︂
f,G

1/ζ̄
2(·, λ̄)

⟩︂
,
1

4π

⟨︁
f,G1/ζ(·; λ̄)

⟩︁
,
1

8π

⟨︁
f,G1/ζ2(·; λ̄)

⟩︁ )︂t

(3.12)

(here, the × is just the usual matrix multiplication). Relation (3.2) immediately follows

from (3.12), the elementary relation

Trace g ⟨·, h⟩ = ⟨g, h⟩ , (3.13)

and the identities (3.11).

Similarly,

[(∆hol − λ)−1 − (∆F − λ)−1](f) =
∑︂

α=1/ζ2, 1/ζ

Gα(·;λ)Xα(λ) (3.14)

and

−
(︂ 1√

4π
a1(u),

1√
8π

a2(u)
)︂t

= P (λ) (X1/ζ(λ), X1/ζ2(λ))
t (3.15)

with

P (λ) =

⎛⎜⎝S1/ζ, ζ̄(λ) S1/ζ2, ζ̄(λ)

S1/ζ, ζ̄
2

(λ) S1/ζ2, ζ̄
2

(λ)

⎞⎟⎠ , (3.16)

and (3.3) follows from the same considerations as above.

The next proposition is an immediate corollary of (2.21) (cf. Section 2.3.2).
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Proposition 3.2. Introduce the function H(·, ·) (both arguments are distinguished local

parameters in a small vicinity of P ) via

W =

[︃
1

(ζ(Q)− ζ(R))2
+H(ζ(Q), ζ(R))

]︃
dζ(Q)dζ(R) (3.17)

as Q,R → P , where W is the canonical meromorphic bidifferential on X (in particular,

one has the relation

6H(ζ(P ), ζ(P )) = SB(ζ(P )) ,

where SB is the Bergman projective connection). Then the matrix T (0) is given via

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11(0)

T21(0)

T31(0)

T41(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
6
SSch(0)

−1
2
H ′

ζ′(ζ, ζ
′)|(0,0) + π

2

∑︁
(ImB)−1

αβvα(0)v
′
β(0)

πB(0, 0)

π
2

∑︁
(ImB)−1

αβvα(0)v
′
β(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.18)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

T12(0)

T22(0)

T32(0)

T42(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−H ′
ζ(ζ, ζ

′)|(0,0) + π
∑︁

(ImB)−1
αβvα(0)v

′
β(0)

−1
2
H ′′

ζζ′(ζ, ζ
′)|(0,0) + π

2

∑︁
(ImB)−1

αβv
′
α(0)v

′
β(0)

π
∑︁

(ImB)−1
αβv

′
α(0)vβ(0)

π
2

∑︁
(ImB)−1

αβv
′
α(0)v

′
β(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.19)

and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

T13(0) T14(0)

T23(0) T24(0)

T33(0) T34(0)

T43(0) T44(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

T31(0) T32(0)

T41(0) T42(0)

T11(0) T12(0)

T21(0) T22(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.20)
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One also has

P (0) =

⎛⎜⎝ πB(0, 0) π
∑︁

(ImB)−1
αβv

′
α(0)vβ(0)

π
2

∑︁
(ImB)−1

αβvα(0)v
′
β(0)

π
2

∑︁
(ImB)−1

αβv
′
α(0)v

′
β(0)

⎞⎟⎠ . (3.21)

The following proposition describes the asymptotic behaviour of the S-matrix as

λ→ −∞.

Proposition 3.3. All the entries of the matrix T (λ) except S1/ζ,ζ̄(λ), S1/ζ2,ζ̄
2

(λ) and

their conjugates S1/ζ̄,ζ(λ), S1/ζ̄
2
,ζ2(λ) are O(|λ|−∞) as λ → −∞. One has the asymp-

totics

S1/ζ,ζ̄(λ) = −21/3
√
3Γ(2/3)

πΓ(4/3)
(−λ)1/3 +O(|λ|−∞);

S1/ζ2,ζ̄
2

(λ) = −2−1/3
√
3Γ(1/3)

πΓ(5/3)
(−λ)2/3 +O(|λ|−∞);

(3.22)

and

detT (λ) =

(︃
27

2π2

)︃2

λ2 +O(|λ|−∞) and detP (λ) = − 27

2π2
λ+O(|λ|−∞) (3.23)

as λ→ −∞.

Proof. (cf. [12]). Passing to polar coordinates, r, ϕ such that ζ = r1/3eiϕ/3; 0 ≤ ϕ ≤ 6π,

one finds that the functions

Kν(
√
−λr)e−iνϕ; ν =

1

3
,
2

3
,

where Kν is the modified Bessel function (see discussion in Section 4.1.1), satisfy the

equation (2.11) in a vicinity of P . The well-known asymptotics of the modified Bessel

function (with ν > 0) reads as
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Kν(y) =
π

2 sin(νπ)

[︃
y−ν

2−νΓ(1− ν)
− yν

2νΓ(1 + ν)
+O(y2−ν)

]︃
as y → 0. Thus, the functions Φν := π−12−νΓ(1 − ν) sin(πν)(

√
−λ)νKν(

√
−λr)e−iνϕ;

ν = 1/3, 2/3 satisfy (2.11) in a vicinity of P and have the asymptotics

Φ1/3(ζ, ζ̄;λ) =
1

ζ
− 21/3

√
3Γ(2/3)

πΓ(4/3)
(−λ)1/3ζ̄ + o(|ζ|2)

Φ2/3(ζ, ζ̄;λ) =
1

ζ2
− 2−1/3

√
3Γ(1/3)

πΓ(5/3)
(−λ)2/3ζ̄2 + o(|ζ|2)

(3.24)

as ζ → 0.

Now, notice that one can change the construction of the special growing solutions

from the proof of Proposition 2.5 replacing the function F by Φν ; this gives

G1/ζ(·;λ) = Φ1/3(·;λ)− (∆F − λ)−1(∆∗ − λ)[χΦ1/3(·;λ)];

G1/ζ2(·;λ) = Φ2/3(·;λ)− (∆F − λ)−1(∆∗ − λ)[χΦ2/3(·;λ)] .
(3.25)

Since Kν(x) and all its derivatives are O(e−x) as x → +∞ and the support of

(∆∗ − λ)[χΦν(·;λ)] is separated from the origin, all the coefficients in the asymptotic

expansions (2.7) of second terms in the right-hand sides of (3.25) are exponentially

decreasing as λ→ −∞ and, therefore, all the statements of the proposition follow from

(3.24).

The next proposition is a direct consequence of Theorem 2 from [13] and (3.23). The

proof is provided in Section 4.4.

Proposition 3.4. Introduce the zeta-regularized determinants of the operators ∆F − λ,
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∆sing − λ, and ∆hol − λ via

detA = exp{−ζ ′A(0)},

where ζA(s) is the operator zeta-function of an operator A (without zero modes). Then

det(∆sing − λ) =

(︃
2π2

27

)︃2

detT (λ) det(∆F − λ) (3.26)

for real λ not belonging to the union of the spectra of ∆F and ∆sing. Similarly,

det(∆hol − λ) =
2π2

27
detP (λ) det(∆F − λ) (3.27)

for real λ not belonging to the union of the spectra of the operators ∆F and ∆hol.

Since dimker∆F = 1, the preceding proposition shows that the order of the zero

of det T (λ) (respectively, det P (λ)) at λ = 0 is one unit less than the dimension of

the kernel of ∆sing (respectively, ∆hol). We shall prove in Section 3.2 that generically

dim ker∆hol = 1. We conjecture that this is also the case for ∆sing (i.e., generically

det T (0) ̸= 0). However, we shall show that by choosing a “very symmetric” polyhedron

X, one can get dimker∆sing = 3.

So, under assumption of genericity, passing to the limit λ → 0 in (3.26) and (3.27),

one gets the following comparison formulas for modified (i.e., with zero modes excluded)

determinants of self-adjoint extensions ∆F , ∆sing, and ∆hol.

Theorem 3.5. Suppose dimker ∆sing = 1. Then

det∗∆sing =

(︃
2π2

27

)︃2

det T (0) det∗∆F , (3.28)

where T (0) is explicitly given by (3.18)-(3.20).

Suppose dimker ∆hol = 1 (i.e., P is not a Weierstrass point of X, see Proposition
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3.10 below). Then

det∗∆hol =
2π2

27
det P (0) det∗∆F , (3.29)

where P (0) is given by (3.21).

Remark 3.6. If (2P ) = C, where C is in the canonical class, then the flat metric on X

with a single conical point at P has the form |ω|2, where ω is a holomorphic differential

on X with double zero at P . In this case, an explicit expression for det∗∆F can be found

in [22]. An explicit formula for det∗∆F for an arbitrary P can be found in [18].

Remark 3.7. Let us mention two geometric constructions leading to a flat surface X

of genus two with a single conical singularity.

1. Take a compact Riemann surface X of genus two and choose a point P ∈ X.

Then according to the Troyanov theorem (see [41]), there exists the unique (up to

rescaling) flat conformal metric on X with conical singularity of angle 6π at P . If

the divisor (2P ) is in the canonical class, then there exists a holomorphic one form

ω on X with divisor (2P ) and the Troyanov metric necessarily coincides (up to

resacaling) with |ω|2. In this case, the metric has trivial holonomy. If the divisor

(2P ) does not belong to the canonical class, then the Troyanov metric must have

nontrivial holonomy along some nontrivial cycle on X. (It should be noted that

the holonomy of the Troyanov metric along a small loop around the conical point

is always trivial: the tangent vector turns to the angle 6π after parallel transform

along this loop.)

2. (See Figure 3.1.) In case of trivial holonomy, the flat surface X can be produced

via the well known pentagon construction (see, e.g., [29]). Consider a pentagon Π
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in the complex plane. Let the center of one of its sides coincide with the origin.

Gluing the parallel sides of the octagon Π ∪ (−Π) together one gets a flat surface

X of genus 2 with a single conical singularity of conical angle 6π. The one form

dz in the complex plane gives rise to a holomorphic one form ω on X with a single

double zero at the point P on X that came from eight vertices of the octagon

glued together. The natural flat metric on X has trivial holonomy and coincides

with |ω|2.

Now take the octagon Π ∪ (−Π) and deform it keeping the lengths of all the

sides fixed (after this deformation the opposite sides are no longer parallel). Glue

the sides together following the same gluing scheme as before. Again one gets a

flat surface of genus two with a single conical singularity of angle 6π but now the

corresponding flat metric has nontrivial holonomy: the parallel transport along

the closed loop which came from a segment connecting two points on the opposite

sides of the deformed octagon turns the tangent vector for the angle which is equal

to the angle between these two opposite sides.

d

c

b

a

O

a
b

c

d ab

c

d

a b

c

d

Figure 3.1: Gluing schemes for X: trivial (left) and nontrivial (right) holonomy
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One more comparison formula for resolvent kernels.

Here we briefly describe an interesting counterpart to formula (3.14) which holds in

case of general conformal flat conical metrics of trivial holonomy on compact Riemann

surfacesX of genus g ≥ 2. All these metrics have the form |ω|2, where ω is a holomorphic

one form on X. Flat surfaces X of genus 2 with a single conical point P of angle 6π

enter this class if and only if P is a Weierstrass point of X.

Proposition 3.8. Let the metric on X be given by |ω|2, where ω is a holomorphic one

form. Let P1, P2, . . . , PM , M ≤ 2g − 2, be the distinct zeros of ω or, what is the same,

the conical points of the metric |ω|2. Then there is the following relation between the

resolvent kernels, Rhol and RF , of the holomorphic and Friedrichs extensions of the sym-

metric Laplacian on X \ {P1, . . . , PM}:

Rhol(x, y;λ) =
4

λ

1

ω(x)ω(y)
∂x∂ȳRF (x, y;λ) (3.30)

Proof. We start with reminding the reader the standard relation

∂x∂ȳGF (x, y) = −1

4

g∑︂
α,β=1

(ImB)−1
αβ vα(x)vβ(y) = −1

4
B(x, ȳ), (3.31)

where B(x, ȳ) is the reproducing kernel for holomorphic differentials. Here GF is just

the Green function from (2.4), the subscript is introduced to emphasize that we deal

with the Green function of the Friedrichs Laplacian. Equation (3.31) directly follows

from (2.4) (the factor 1/4 appears due to the presence of the factor 4 in the definition

of the Laplacian, some authors do not introduce these factors).

According to [11], one has the relations

∆F = 4D∗
zDz and ∆hol = 4DzD

∗
z , (3.32)
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where Dz is the closure of the operator

1

ω
∂z : C

∞
0 (X \ {P1, . . . , PM}) ⊂ L2(X, |ω|2) −→ L2(X, |ω|2) .

Clearly, D∗
z acts as 1

ω̄
∂z̄.

Now (3.32) immediately implies that the function ϕm is a normalized eigenfunction

of ∆F corresponding to a nonzero eigenvalue λm if and only if 2√
λm
Dzϕm is a normalized

eigenfunction of ∆hol corresponding the eigenvalue λm. Taking into account that ker∆hol

is spanned by the functions vα
ω

and, therefore, the orthogonal projection in L2(X, |ω|2)

onto ker ∆hol is the integral operator with the integral kernel
B(x, ȳ)

ω(x)ω(y)
, one gets the

following representation for the resolvent kernel of ∆hol (in the sense of distribution

theory):

Rhol(x, y;λ) = − B(x, ȳ)

ω(x)ω(y)

1

λ
+ 4

∑︂
λm ̸=0

Dxϕm(x)Dyϕm(y)

(λm − λ)λm
. (3.33)

Taking into account the relations

1

(λm − λ)λm
=

1

λ

(︃
1

λm − λ
− 1

λm

)︃
,

RF (x, y, λ) = − 1

Area(X)λ
+
∑︂
λm ̸=0

ϕm(x)ϕm(y)

λm − λ
,

and

GF (x, y) =
∑︂
λm ̸=0

ϕm(x)ϕm(y)

λm
,

and making use of (3.31), one arrives at (3.30).

Corollary 3.9. For flat metrics |ω|2 with trivial holonomy, the Green function Ghol of
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the holomorphic extension ∆hol is related to the Friedrichs Green function GF via

Ghol(x, y) =

ˆ
X

∂xGF (x, z)∂ȳGF (z, y)
1

ω(x)ω(y)
dS(z) .

3.2 Kernels of ∆hol and ∆sing.

3.2.1 Kernel of the holomorphic extension

The following proposition gives the complete description of the kernel of the holomorphic

extension of the symmetric Laplacian on X \ {P}.

Proposition 3.10. If P is not a Weierstrass point of X, then the kernel of ∆hol consists

of constants and so dimker ∆hol = 1.

If P is a Weierstrass point, then the kernel of ∆hol has dimension 2, and is spanned

by 1 and a meromorphic function with single pole at P of multiplicity 2.

Proof. Let u ∈ ker ∆hol. Let ζ be the distinguished local parameter near P and let

Xϵ = X \ {|ζ| ≤ ϵ}. Using Stokes formula, one gets

0 = −1

4
⟨u,∆u⟩ = lim

ϵ→0

{︂¨
Xϵ

|∂̄u|2 +
˛
|ζ|=ϵ

(A/ζ2 +B/ζ + C +Dζ + Eζ2 + o(|ζ|2))×

∂ζ̄(A/ζ
2 +B/ζ + C +Dζ + Eζ2 + o(|ζ|2))

}︂
=

¨
X

|∂̄u|2

and, therefore, u is meromorphic on X with a single pole of degree less or equal to 2 at

P . It remains to notice that

• there are no meromorphic functions with a single pole of order 1 on Riemann
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surfaces of positive genus; and

• for Riemann surfaces X of genus 2, the point P ∈ X is a Weierstrass point if and

only if there exists a meromorphic function on X with single double pole at P .

The proof is complete.

Remark 3.11. If P is a Weierstrass point (and, therefore, dimker∆hol = 2), then

det∗∆hol =
2π2

27

d detP (λ)

dλ

⃓⃓⃓
λ=0

det∗∆F . (3.34)

The value of the factor ddetP (λ)
dλ

⃓⃓⃓
λ=0

in (3.34) can be obtained by explicitly calculating

the derivatives of the entries of P (λ) at λ = 0. The computation is similar to the one

after Remark 3.13 below so we skip the details here.

3.2.2 Singular extension: very symmetric case

Consider a hyperelliptic surface X of genus 2 via µ2 =
6∏︂

j=1

(λ − λj) with λk = λ1 +

r2e
2πi(k−1)

5 ; k = 2, . . . , 6; r > 0. Consider a holomorphic 1-form ω on X given by

ω =
(λ− λ1) dλ√︂∏︁6

j=1(λ− λj)
.

Clearly, ω has a double zero at P = (λ1, 0) ∈ X and the metric |ω|2 is a flat metric on

X with unique conical point at P of angle 6π.

Proposition 3.12. The kernel of the singular self-adjoint extension ∆sing of a symmet-

ric Laplacian on X \ {P} has dimension 3.

35



Proof. There are two natural holomorphic local parameters on X near P : the one re-

lated to the ramified double covering X ∋ (λ, µ) ↦→ λ ∈ C ⊂ P1,

ζ =
√︁
λ− λ1 ,

and the distinguished local parameter ξ for the conical metric |ω|2 related to the param-

eter ζ via

ξ(ζ) =

(︃ˆ ζ

0

2w2dw√
w10 − r10

)︃1/3

.

Since

ω = C(ζ2 +O
(︁
ζ12)

)︁
dζ

and, therefore,

ξ3 = C
(︁
ζ3 +O(ζ13)

)︁
, (3.35)

one has

1

ζ2
=
C

ξ2
+ o(|ξ|3) (3.36)

as ξ, ζ → 0 (the constant C differs from one formula to another). Now, equation (3.36)

implies that the meromorphic function

P ↦→ f(P ) =
1

λ(P )− λ1
(3.37)

onX with only one double pole at P belongs to ker∆sing. Clearly, the complex conjugate

f̄ and 1 also belong to ker∆sing. Thus, dim ker∆sing ≥ 3.

It turns out that in the case of the surface X, one can further specify the asymptotic

expansion of the (unique up to a constant) harmonic function g on X with a single
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singularity at P with

g(ξ, ξ̄) =
1

ξ
+O(1) . (3.38)

Namely, one has

g =
1

ξ
+ C + αξ̄ + o(|ξ|2) (3.39)

with α ̸= 0. This means that in the asymptotic expansion of the function g, there are no

ξ, ξ2, and ξ̄
2
terms. Indeed, according to (2.30) the coefficient near ξ in the asymptotic

expansion of g near P is equal to −1

6
SSch(ξ)|ξ=0. Using the Z5-symmetry of X, it is

easy to show that this coefficient must vanish. First, notice that this quantity vanishes if

SSch(ζ)|ζ=0 = 0. (3.40)

This follows from the change of variables rule for a projective connection:

SSch(ξ) = SSch(ζ)

(︃
dζ

dξ

)︃2

+ {ζ, ξ} (3.41)

(due to (3.35), the Schwarzian derivative in the right-hand side of the last equality

vanishes at ξ = 0).

Without loss of generality one can assume that λ1 = 0. Consider the automorphism

of X

λ ↦→ e
2πi
5 λ .

Under the automorphism ζ ↦→ e
πi
5 ζ and, since the Schiffer projective connection is inde-

pendent of the choice of basic cycles on X, one gets from (3.41) the relation

SSch(ζ)|ζ=0 = e
2πi
5 SSch(ζ)|ζ=0,

which implies SSch(ζ)|ζ=0 = 0, and, therefore, the term ξ is absent.
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Next, using the matrix T (0) (refer to equations (3.18)-(3.20)) and (3.37) together,

one can easily show that there are no ξ2 and ξ̄
2
terms in the asymptotic expansion of g.

Indeed, notice that the normalized holomorphic differentials v1 and v2 on X are linear

combinations of

ω1 =
dλ√︂∏︁6

k=1(λ− λk)
=

2dζ√︁
ζ10 − r10

and

ω2 =
λdλ√︂∏︁6

k=1(λ− λk)
=

2ζ2dζ√︁
ζ10 − r10

,

and, therefore,

v′1,2(ζ)|ζ=0 = 0 .

Since

v′1,2(ξ) = v′1,2(ζ)

(︃
dζ

dξ

)︃2

+ v1,2(ζ)
d2ζ

dξ2

and
d2ζ

dξ2

⃓⃓⃓
ξ=0

= 0 (follows immediately from (3.35)), one gets

v′1,2(ξ)|ξ=0 = 0 . (3.42)

Relation (3.37) implies that one has T12(0) = 0 in (3.19), and from the symmetry

H(x, y) = H(y, x) of the function H from Proposition 3.2 and (3.42), one concludes that

T21(0) = 0. Therefore, there is no ξ2 term in the expansion of g. Due to (3.42), one has

T41(0) = 0, and, therefore, the term ξ̄
2
is also absent.

It remains to notice that the coefficient α of the term ξ̄ equals to πB(ξ, ξ̄)|ξ=0. Since

the imaginary part of the matrix of b-periods, ImB, is positive definite, one has α ̸= 0,

and (3.39) is proved.
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To prove that ker ∆sing = lin.span{f, f̄ , 1}, it suffices to prove that a function W

from D(∆∗) with asymptotics

W =
A

ξ
+
B

ξ̄
+ o(|ξ|2)

cannot belong to ker ∆sing, unless A = B = 0. Assuming W ∈ ker ∆sing, one finds that

W − Ag −Bḡ ∈ ker ∆F , and, therefore,

W = Ag +Bḡ + C

which contradicts (3.39), unless A = B = 0. This completes the proof.

Remark 3.13. In the case of the very symmetric surface X with dimker∆sing = 3, the

comparison formula for the determinants (i.e., equation (3.28)) turns into

det∗∆sing = 2

(︃
π2

27

)︃2
d2 detT (λ)

dλ2

⃓⃓⃓
λ=0

det∗∆F . (3.43)

It should be noticed that the derivatives of the entries of the matrix T (λ) from (3.6)

at λ = 0 (and, therefore, the factor d2 detT (λ)
dλ2

⃓⃓⃓
λ=0

in (3.43)) can be explicitly computed.

Namely, explicit expressions for the derivatives of the first order can be obtained via

plugging λ = 0 in (3.11) and then using (2.21). To get expressions for the second deriva-

tives, for instance d2

dλ2S
1/ζ2, ζ(λ)

⃓⃓⃓
λ=0

, introduce (following the proof of Proposition 2.5)

F = χ 1
ζ2

and the solution g( · ;λ) of the equation

(∆F − λ)g = (∆∗ − λ)F . (3.44)

Then G1/ζ2( · ;λ) = F − g( · , λ). Denoting by dot the derivative with respect to λ and

differentiating (3.44) (cf. Section 4.5), one gets

− ġ = (∆F − λ)−1G1/ζ2( · ;λ) (3.45)
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and

(∆F − λ)(−g̈) = 2(−ġ) . (3.46)

Now, (3.8) gives

√
4π

d2

dλ2
S1/ζ2,ζ(λ)

⃓⃓⃓
λ=0

=
⟨︁
2(−ġ), G1/ζ( · ; λ̄)

⟩︁
= 2

⟨︁
(∆F − λ)−1G1/ζ2( · ;λ), G1/ζ( · ; λ̄)

⟩︁
.

Since G1/ζ2( · ; 0)⊥1, this implies

d2

dλ2
S1/ζ2,ζ(λ)

⃓⃓⃓
λ=0

=
1√
π

ˆ
X

ˆ
X

G(x, y)G1/ζ2(x; 0)G1/ζ̄(y; 0)dS(y)dS(x),

whereG(x, y) is the Green function from (2.4) and the special growing solutionsG1/ζ2( · ; 0)

and G1/ζ̄( · ; 0) are explicitly computed in (2.21).
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Chapter 4

Proofs of auxiliary results from

Chapters 2 and 3

In this chapter, we provide the proofs of several results from the main chapters.

4.1 Proof of Proposition 2.1

The proof of the following proposition from Chapter 2 was outlined in the appendix of

[19]. In this section, the details of the proof are presented. An alternative proof (of a

closely related statement) based on different technical tools can be found in [30].

Proposition 2.1. In the vicinity of the point Pj, a function u ∈ D(∆∗) has the asymp-

totics

u =
i√
2π

Lj(u) log |ζj|+
nj∑︂

m=1

1√
4πm

Hj,m(u)
1

ζmj
+

nj∑︂
m=1

1√
4πm

Aj,m(u)
1

ζ̄
m
j

+
i√
2π

cj(u) +

nj∑︂
m=1

1√
4πm

hj,m(u)ζ
m
j +

nj∑︂
m=1

1√
4πm

aj,m(u)ζ̄
m
j + χv,

(2.7)
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where χ is a smooth cut-off function that has compact support in a small vicinity of Pj

and that is equal to 1 in a smaller vicinity, and v is a function from the domain of the

closure D
(︁
∆
)︁
. One has the asymptotics v = o(|ζj|nj) as ζj → 0.

From here and until the end of the section, we shall remove the subscript j appearing

in the proposition. So, let P be a conical point with conical angle β = 2π(b+ 1). Let n

be the integer such that 2πn < β ≤ 2π(n+ 1) and denote by ζ the distinguished local

parameter near P . Recall that the part of the Riemann surface X near any conical point

is isometric to a neighborhood of the tip of a Euclidean cone (see, e.g., [11]). For the

given conical point P , denote by K the cone in R2 with vertex at O = ζ(P ). In polar

coordinates, K has the representation

K = {(r, θ) : r > 0, θ ∈ S1
β := [0, β]}. (4.1)

Introduce the Sobolev space H l(K) with norm

⃦⃦
u;H l(K)

⃦⃦
=

⎛⎝ˆ
K

∑︂
|α|≤l

|∂αxu(x)|
2 dx

⎞⎠1/2

. (4.2)

In particular, H0(K) := L2(K). Introduce also the weighted Sobolev space H l
γ(K) with

norm ⃦⃦
u;H l

γ(K)
⃦⃦
=

⎛⎝∑︂
|α|≤l

ˆ
K

r2(γ−l+|α|)|∂αxu(x)|2 dx

⎞⎠1/2

. (4.3)

This norm is equivalent to the norm

(︂ l∑︂
j=0

l−j∑︂
k=0

ˆ β

0

ˆ ∞

0

r2(ν+j)−1|(r∂r)j∂kθ u(r, θ)|2 dr dθ
)︂1/2

,

where γ = ν + l − 1. Observe that if u ∈ H l
γ(K), then rγu ∈ H l(K).
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We remind the readers about the definition of Mellin transformation and some of its

basic properties. For a given function u ∈ C∞
0 (R+), its Mellin transformation is given

by

ˆ︁u(λ) = (Mr→λu)(λ) =

ˆ ∞

0

r−λ−1u(r)dr. (4.4)

Lemma 4.1 (See Lemma 6.1.3 in [23]).

1. The Mellin transformation is a linear and continuous mapping from C∞
0 (R+) into

the space of analytic functions on C.

2. Every function u ∈ C∞
0 (R+) satisfies

Mr→λ(r∂r u) = λMr→λu.

Furthermore, for all u, v ∈ C∞
0 (R+), the Parseval equality

ˆ ∞

0

r2γ−1u(r)v(r) dr =
1

2πi

ˆ
Reλ=−γ

ˆ︁u(λ)ˆ︁v(λ) dλ (4.5)

is valid.

3. The inverse Mellin transformation is given by

u(r) = (M−1
λ→rˆ︁u)(r) = 1

2πi

ˆ
Reλ=−γ

rλ ˆ︁u(λ) dλ.
4. If rγi−1/2u ∈ L2(R+) for i = 1, 2, where γ1 < γ2 are arbitrary real numbers, then ˆ︁u

is holomorphic in the strip −γ2 < Re(λ) < −γ1.

4.1.1 Solutions to the homogeneous equation (∆∗ − ρ2)u = 0

Consider the self-adjoint Laplace operator L = −(b + 1)−2∂2θ on L2(S1
β). It is easy

to show that its eigenvalues µk are of the form µk = k2/(b + 1)2 with corresponding
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eigenfunctions φk = eikθ, k = 0,±1,±2, . . . .

Introduce the operator pencil

A (λ) = L+ (iλ)2 = L− λ2, (4.6)

which is defined on the Sobolev space H2(K). One easily finds that the spectrum of the

pencil consists of λk = k/(b+ 1).

Consider the homogeneous problem(︁
∆∗ − ρ2

)︁
u = 0 in K, (4.7)

where ρ is a complex parameter. For k > 0, let λ−k = −√
µ−k = −k/(b + 1). We shall

find a solution u of the problem (4.7) such that u ∼ rλ−kφ−k as r → 0 and u ∈ L2(K\Bϵ),

where Bϵ := {x ∈ R2 : |x| < ϵ} for sufficiently small ϵ > 0. Set

u(r, θ, ρ) = rλ−kζ(rρ)φ−k(θ),

where ζ (not the distinguished local parameter) is some function to be determined and

such that ζ(0) = 1. Observe that(︂
(r∂r)

2 + (b+ 1)−2∂2θ

)︂
(rλ−kφ−k(θ)) = λ2−kr

λ−kφ−k(θ)− k2(b+ 1)−2rλ−kφ−k(θ) = 0.

Thus,

0 = −r2 (∆∗ − ρ2)u(r, θ, ρ) =
(︂
(r∂r)

2 + (b+ 1)−2∂2θ + (rρ)2
)︂
(rλ−kζ(rρ)φ−k(θ))

= φ−k(θ)
[︂
λ2−kr

λ−kζ(rρ) + (2λ−k + 1)rλ−k(rρ)ζ ′(rρ) + rλ−k(rρ)2ζ ′′(rρ)
]︂

−λ2−kr
λ−kζ(rρ)φ−k(θ) + (rρ)2rλ−kφ−k(θ)ζ(rρ)

= φ−k(θ)r
λ−k

(︂
(rρ)2ζ(rρ) + (2λ−k + 1)(rρ)ζ ′(rρ) + (rρ)2ζ ′′(rρ)

)︂
,
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and, so,

(rρ)2ζ(rρ) + (2λ−k + 1)(rρ)ζ ′(rρ) + (rρ)2ζ ′′(rρ) = 0. (4.8)

Put y = rρ and ζ(y) = yνξ(y), where ν = −λ−k = k/(b+ 1). It follows from (4.8) that

y2ξ′′(y) + yξ′(y) + (y2 − ν2)ξ(y) = 0. (4.9)

Now, put Θ(y) = ξ(−iy). Then (4.9) turns to the modified Bessel’s equation

y2Θ′′(y) + yΘ′(y)− (y2 + ν2)Θ(y) = 0. (4.10)

Thus, taking Θ(y) = Kν(y), the modified Bessel’s function of the second kind, one

obtains

ζ(rρ) = c(rρ)νKν(irρ),

where c is a constant satisfying the condition ζ(0) = 1. In particular,

c−1iν = lim
z→0

(iz)νKν(iz) = lim
z→0

π(iz)ν

2 sin(πν)

[︂
I−ν(iz)− Iν(iz)

]︂

= lim
z→0

π(iz)ν

2 sin(πν)

[︄
∞∑︂

m=0

(iz/2)2m−ν

m!Γ(m− ν + 1)
−

∞∑︂
m=0

(iz/2)2m+ν

m!Γ(m+ ν + 1)

]︄

=
π2ν−1

sin(πν)Γ(1− ν)
,

and, therefore, c = π−1 sin(πν)Γ(1 − ν)iν21−ν . In the computation above, Iν is the

modified Bessel’s function of the first kind and is given by

Iν(z) =
∞∑︂

m=0

(z/2)2m+ν

m!Γ(m+ ν + 1)
. (4.11)

Now, Kν has the asymptotics (see, e.g., [1], equation 9.7.2 on page 378)
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Kν(z) =
(︂ π
2z

)︂1/2
exp(−z)

[︄
N−1∑︂
m=0

cν,m(2z)
−m +O(|z|−N)

]︄

as |z| → +∞. Since exp(−z) decreases rapidly as |z| → +∞, it follows that the solution

u(r, θ, ρ) = c(rρ)νrλ−kKν(irρ)φ−k(θ)

belongs to L2(K \Bϵ). Thus, for k > 0, set

w−k(r, θ, ρ) =
21−ν

Γ(ν)
(irρ)νrλ−kKν(irρ)φ−k(θ), (4.12)

where ν = k/(b+ 1).

Similarly, let λk = k/(b + 1), k > 0. We now find a solution u of (4.7) such that

u ∼ rλkφk as r → 0. As in before, set u(r, θ, ρ) = rλkζ(rρ)φk(θ), where ζ(rρ) is a

function to be determined and such that ζ(0) = 1. With some modifications in the

computations above, one gets

u(r, θ, ρ) = 2νΓ(1 + ν)(irρ)−νIν(irρ)r
λkφk(θ),

where ν = k/(b+ 1). Hence, for k > 0, set

wk(r, θ, ρ) = 2νΓ(1 + ν)(irρ)−νIν(irρ)r
λkφk(θ)

= Γ(1 + ν)rλkφk(θ)
∞∑︂

m=0

(irρ/2)2m

m!Γ(m+ ν + 1)
.

(4.13)

Finally, we shall find a solution u of (4.7) such that u ∼ ln r as r → 0. This solution

corresponds to the eigenvalue λ0 = 0 of the operator pencil A (λ). Since that eigenvalue

λ0 has algebraic multiplicity 2, one finds two linearly independent solutions, namely

w01(r, θ, ρ) = c1βI0(irρ) and w02(r, θ, ρ) = c2βK0(irρ), (4.14)
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where c1β and c2β depend only on the conical angle β. These solutions can be obtained

by setting u(r, θ, ρ) = ζ(rρ). It follows that

0 = −r2(∆∗ − ρ2)ζ(rρ) = (rρ)2ζ ′′(rρ) + (rρ)ζ ′(rρ) + (rρ)2ζ(rρ).

Using a similar computation as in above, the last equations turns to (4.10), with ν = 0,

whose two linearly independent solutions are of the form (4.14). Of course, K0(z) has a

logarithmic singularity at z → 0, while I0(0) is finite.

In summary, the solutions of the problem (4.7) are of the form

wk(r, θ, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

21−ν

Γ(ν)
(irρ)νKν(irρ) r

λkφk(θ), if k < 0

2νΓ(1 + ν)(irρ)−νIν(irρ) r
λkφk(θ), if k > 0

c2βK0(irρ) + c1βI0(irρ), if k = 0.

(4.15)

4.1.2 Some a priori estimates

Consider the model problem

∆∗u = f in K, (4.16)

where f ∈ L2(K). Writing in polar coordinates, equation (4.16) is equivalent to the

problem

−
(︁
(r∂r)

2 + (b+ 1)−2∂2θ
)︁
u(r, θ) = r2f(r, θ) =: F (r, θ). (4.17)

If one applies Mellin transformation (4.4) to (4.17), the preceding equation turns to an

ordinary differential equation with parameter problem

(L− λ2)ˆ︁u(λ, θ) = ˆ︁F (λ, θ), (4.18)
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where ˆ︁F ∈ L2(S1
β) (compare the operator in (4.18) with the operator pencil (4.6)). If

one finds solutions of (4.18) for every λ ∈ C, using the inverse Mellin transformation on

these solutions gives solutions of (4.17).

First, consider the Green function (the integral kernel of the inverse operator)

Φ(|x− y|) = π

λ
e−λ|x−y|

of the operator λ2 − (d/dx)2 on R (see [40], equation (5.30) on page 220). Then the

Green function of (4.18) is given by∑︂
n∈Z

Φ(|θ − τ + βn|).

The sum of the preceding series gives the needed expression for the Green function of

(4.18):

Γ(θ, τ ;λ) =
π

λ

e−λ|θ−τ | + eλ|θ−τ |e−β

1− e−βλ
= − π

λ2
e−λ|θ−τ | + eλ|θ−τ |e−β∑︁∞
n=1(−β)nλn−1(n!)−1

. (4.19)

The last expression implies that the Green function Γ has a double pole at λ = 0 and

simple poles at λk = k/(b+ 1), k = ±1,±2, . . . . It follows that

ˆ︁u(θ, λ) = ˆ β

0

Γ(θ, τ ;λ) ˆ︁F (τ, λ) dτ.
Using Cauchy-Schwarz inequality, its L2(S1

β)-norm satisfies⃦⃦ˆ︁u(·, λ);L2(S1
β)
⃦⃦2

=

ˆ β

0

⃓⃓⃓ˆ β

0

Γ(θ, τ ;λ) ˆ︁F (τ, λ) dτ ⃓⃓⃓2 dθ
≤
⃦⃦⃦ ˆ︁F ;L2(S1

β)
⃦⃦⃦2 ˆ β

0

ˆ β

0

|Γ(θ, τ ;λ)|2 dτ dθ.

Furthermore, the estimate

ˆ β

0

ˆ β

0

|Γ(θ, τ ;λ)|2 dτ dθ ≤ c|λ|−4
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holds true for Re(λ) ̸= k/(b+ 1). It follows that⃦⃦ˆ︁u(·, λ);L2(S1
β)
⃦⃦2 ≤ c1|λ|−4

⃦⃦⃦ ˆ︁F ;L2(S1
β)
⃦⃦⃦2
, (4.20)

with Re(λ) ̸= k/(b+ 1) and c1 is independent of λ. Meanwhile,

∂

∂θ
Γ(θ, τ ;λ) =

π(θ − τ)

|θ − τ |
−e−λ|θ−τ | + eλ|θ−τ |e−β

1− e−βλ
,

and, therefore, the estimate⃦⃦
∂θˆ︁u(·, λ);L2(S1

β)
⃦⃦2 ≤ c2|λ|−2

⃦⃦⃦ ˆ︁F ;L2(S1
β)
⃦⃦⃦2

(4.21)

holds for Re(λ) ̸= k/(b+1) and c2 is independent of λ. Also, using (4.18), one can write

∂2θˆ︁u = −(b+ 1)2λ2ˆ︁u− (b+ 1)2 ˆ︁F , and, hence,⃦⃦
∂2θˆ︁u(·, λ);L2(S1

β)
⃦⃦
≤ (b+ 1)2|λ|2

⃦⃦ˆ︁u(·, λ);L2(S1
β)
⃦⃦
+ (b+ 1)2

⃦⃦⃦ ˆ︁F ;L2(S1
β)
⃦⃦⃦
.

Thus, the last inequality together with (4.20) imply⃦⃦
∂2θˆ︁u(·, λ);L2(S1

β)
⃦⃦2 ≤ c3

⃦⃦⃦ ˆ︁F ;L2(S1
β)
⃦⃦⃦2
. (4.22)

Combining the estimates (4.20)-(4.22) yields to

2∑︂
j=0

|λ|2j
⃦⃦
∂2−j
θ ˆ︁u(·, λ);L2(S1

β)
⃦⃦2 ≤ C

⃦⃦⃦ ˆ︁F ;L2(S1
β)
⃦⃦⃦2

(4.23)

for Re(λ) ̸= k/(b + 1), k = 0,±1,±2, . . . and C is independent of λ. In particular, if

b is not an integer (or, equivalently, the conical angle β is not a multiple of 2π), the

inequality (4.23) remains valid when |λ| is replaced by 1, and, therefore,

2∑︂
j=0

(1 + |λ|2)j
⃦⃦
∂2−j
θ ˆ︁u(·, λ);L2(S1

β)
⃦⃦2 ≤ C

⃦⃦⃦ ˆ︁F ;L2(S1
β)
⃦⃦⃦2

(4.24)

still holds.
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Now, let 0 < δ < 1/2 be sufficiently small and consider the tip of the cone Kδ =

{(r, θ) : 0 < r < 2δ, θ ∈ [0, β]}. Note that all the estimates above remain valid

(extend all functions to whole of K by zero). Using Parseval’s identity (4.5) with

Re(λ) = −γ ̸= k/(b+ 1), the left-hand side of (4.24) converts to
ˆ β

0

ˆ 2δ

0

r2γ−1
[︂
|∂2θu(r, θ)|2 + |∂θu(r, θ)|2 + |r∂r∂θu(r, θ)|2

+ |(r∂r)2u(r, θ)|2 + 2|r∂ru(r, θ)|2 + |u(r, θ)|2
]︂
dr dθ,

(4.25)

and, since r < 1, the right-hand side of (4.24) satisfies

C

ˆ β

0

ˆ 2δ

0

r2δ−1|r2f(r, θ)|2 dr dθ ≤ C̃

ˆ β

0

ˆ 2δ

0

r2δ−1|f(r, θ)|2 dr dθ. (4.26)

Finally, expressions (4.25) and (4.26) imply the following estimate:⃦⃦
u;H2

γ+1(K)
⃦⃦
≤ C0

⃦⃦
f ;H0

γ+1(K)
⃦⃦
. (4.27)

At this point, note that if b is not an integer, then the γ in (4.27) can be any integer.

Now, if f ∈ Hm
γ+1, then it follows from (4.18) that

∂2+m
θ ˆ︁u = −(b+ 1)2λ2∂mθ ˆ︁u− (b+ 1)2∂mθ ˆ︁F .

With some slight modification in the computations above, one gets the following propo-

sition:

Proposition 4.2. If f belongs to Hm
γ+1(K), where γ−m ̸= k/(b+1) for k = 0,±1,±2, . . . ,

then there exists a unique solution u ∈ Hm+2
γ+1 (K) of the problem (4.16). Furthermore,

the solution u satisfies the estimate⃦⃦
u;Hm+2

γ+1 (K)
⃦⃦
≤ C0

⃦⃦
f ;Hm

γ+1(K)
⃦⃦
. (4.28)
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4.1.3 Asymptotics for functions from D(∆̄)

Let u ∈ C∞
0 (K \ {O}) and let 0 ≤ χ ≤ 1 be a smooth cut-off function such that χ ≡ 1

if 0 < r < δ < 1/2, and χ ≡ 0 if r > 2δ, where δ is sufficiently small. Let ϵ > 0 be

sufficiently small. Using (4.27), one finds that⃦⃦
χu;H2

ϵ (K)
⃦⃦
≤ c1

⃦⃦
∆(χu);H0

ϵ (K)
⃦⃦
≤ c2

⃦⃦
∆(χu);L2(K)

⃦⃦
,

for some constants c1 and c2. Noting that ∆(χu) = (∆χ)u+2∇χ ·∇u+χ(∆u), one has⃦⃦
χu;H2

ϵ (K)
⃦⃦
≤ c2

(︂ ⃦⃦
(∆χ)u;L2(K)

⃦⃦
+ 2

⃦⃦
∇χ · ∇u;L2(K)

⃦⃦
+
⃦⃦
χ(∆u);L2(K)

⃦⃦ )︂
.

Definition of χ implies that

ˆ 2δ

0

|χ(∆u)|2dr ≤
⃦⃦
∆u;L2(R+)

⃦⃦2
.

Also, Mean-value theorem for integrals gives

ˆ 2δ

δ

|(∆χ)u|2dr ≤ δmax |∆χ|2
⃦⃦
u;L2(R+)

⃦⃦2
.

Finally, using the standard elliptic estimate (see, e.g. [5], Theorem 2.1 in Supplement

2), one finds that ˆ 2δ

δ

|∇χ · ∇u|2dr ≤ C̃
⃦⃦
∆u;L2(R+)

⃦⃦2
,

for some constant C̃. Therefore,⃦⃦
χu;H2

ϵ (K)
⃦⃦
≤ C

(︁⃦⃦
∆u;L2(K)

⃦⃦
+
⃦⃦
u;L2(K)

⃦⃦)︁
.

Since χ was arbitrary, the estimate⃦⃦
u;H2

ϵ (K)
⃦⃦
≤ C

(︁⃦⃦
∆u;L2(K)

⃦⃦
+
⃦⃦
u;L2(K)

⃦⃦)︁
(4.29)
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holds true.

Now, if u belongs to D(∆̄), then there is a sequence {un} ⊂ C∞
0 (K \ {O}) such that

un → u in the graph norm (2.1). Hence, the a priori estimate (4.29) also holds true if u

belongs to D(∆̄). Moreover, the estimate (4.29) also implies that if u ∈ D(∆̄) near the

tip of K, then u also belongs to H2
ϵ (K). Using the standard Sobolev lemma, one has

sup
1/2≤|x|≤1

|u(x)|2 ≤ C
∑︂
|α|≤2

ˆ
1/2≤|x|≤1

r2(ϵ−2+|α|)|∂αxu(x)|2dx,

with a constant C (not the same C from (4.29)) independent of u ∈ H2
ϵ (K). Thus, for

sufficiently small δ > 0,

∑︂
|α|≤2

ˆ
δ/2≤|x|≤δ

r2(ϵ−2+|α|)|∂αxu(x)|2dx

= δ2(ϵ−1)
∑︂
|α|≤2

ˆ
1/2≤|x|≤1

r2(ϵ−2+|α|)|∂αxu(δx)|2dx

≥ C−1δ2(ϵ−1) sup
δ/2≤|x|≤δ

|u(x)|2,

and, therefore,

u = O(r1−ϵ) (4.30)

for u ∈ D(∆̄) near O. The latter estimate can be improved to u = O(r) in case of conical

angles not equal to an integer multiple of 2π.

4.1.4 Elements in D(∆∗)

A standard result from Operator theory (see, e.g., [36] Section X.1) states that
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D(∆∗) = ker(∆∗ + i)⊕ ker(∆∗ − i)⊕D(∆̄).

Thus, if u ∈ D(∆∗), one can find u1,2 ∈ ker(∆∗ ± i) and u3 ∈ D(∆̄) such that u =

u1 + u2 + u3. So to find the complete asymptotics of u ∈ D(∆∗), it suffices to find

the asymptotics of the functions from ker(∆∗ − i) (the asymptotics of the functions

from ker(∆∗ + i) is done similarly, and the asymptotics of the functions from D(∆̄) was

obtained in Section 4.1.3).

Let v ∈ ker(∆∗− i). Then v belongs to both L2(K) and C∞(K \ {O}). We prove the

following lemma:

Lemma 4.3. For some ϵ > 0, one has

ˆ
{x∈K:|x|≤ϵ}

(︁
r4|∇2v|2 + r2|∇v|2

)︁
dx <∞.

Proof. It is enough to show that v ∈ H2
2 (K) near O. Let χ be the cut-off function as in

before and consider v1 = χv. Then

∆v1 = iv1 + f, (4.31)

where f ∈ C∞
0 (K \ {O}). Let κ, ϕ ∈ C∞

0 (K \ {O}) be such that ϕκ = κ and suppκ is

contained in the support of ϕ. Using the standard elliptic estimates, one has⃦⃦
κv1;H

2(K)
⃦⃦
≤ c

(︁⃦⃦
ϕ∆v1;L

2(K)
⃦⃦
+
⃦⃦
ϕv1;L

2(K)
⃦⃦)︁
. (4.32)

Choose a partition of unity {κj} and functions ϕj ∈ C∞
0 (K \ {O}) such that ϕjκj = κj,

suppκj ⊂ {x : 2j−1 < |x| < 2j+1},

suppκj ⊂ suppϕj ⊂ {x : 2j−2 < |x| < 2j+2},

53



and

|Dακj|+ |Dαϕj| < Cα2
−j|α|.

Then for each j, using (4.32) and (4.31), one gets∑︂
|α|≤2

ˆ ∞

0

|(R∂R)2−|α|∂
|α|
θ κj(R, θ)v1(R, θ)|2RdR

≤ C1

(︂ ˆ ∞

0

|ϕj(R, θ)∆v1(R, θ)|2RdR +

ˆ ∞

0

|ϕj(R, θ)v1(R, θ)|2RdR
)︂

≤ C2

(︂ ˆ ∞

0

|ϕj(R, θ)v1(R, θ)|2RdR +

ˆ ∞

0

|ϕj(R, θ)f(R, θ)|2RdR
)︂
.

(4.33)

Using the change of variable R = 2−jr, the left-hand side of (4.33) turns to∑︂
|α|≤2

ˆ 22j+1

22j−1

|(2−2jr∂r)
2−|α|∂

|α|
θ κj(r, θ)v1(r, θ)|2 2−jr d(2−jr)

=
∑︂
|α|≤2

ˆ 22j+1

22j−1

2−4j(2−|α|)|(r∂r)2−|α|∂
|α|
θ κj(r, θ)v1(r, θ)|2 2−2jr dr

≥
∑︂
|α|≤2

ˆ 22j+1

22j−1

2−10j−2|α|r2|α||(r∂r)2−|α|∂
|α|
θ κj(r, θ)v1(r, θ)|2 r dr.

(4.34)

Since v1 ∈ L2(K) and f ∈ C∞
0 (K\{O}), summing over j = 0,−1,−2, . . . and integrating

over [0, β] imply that the last expression in (4.33) is finite, while the last expression in

(4.34) becomes ∥v1;H2
2 (K)∥2. Since χ is arbitrary, we conclude that v ∈ H2

2 (K).

In the preceding proof, one finds that the solution v1 to the problem

(∆− i)w = f in K, (4.35)

with f ∈ C∞
0 (K \ {O}) belongs to the Sobolev space H2

2 (K). In fact, one may find

other solutions to (4.35) in other weighted Sobolev spaces. Moreover, if v1 ∈ H2
γ1
(K)

and v2 ∈ H2
γ2
(K), where γ1 < γ2, are two solutions of (4.35), then one can write
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χv1 = χ
∑︂
k

Wk + χv2,

for some functionsWk which depends on the eigenvalues λk of the pencil A (λ) inside the

strip −γ2 < Re(λ) < −γ1. To see this, we may assume that v1, v2 ∈ L2(K \ Bϵ), where

Bϵ := {x ∈ R2 : |x| < ϵ} for sufficiently small ϵ > 0. Then, the function v1 − v2 solves

the homogeneous problem (4.7), where ρ2 = i. Therefore, for some index set Z ⊂ Z,

v1 − v2 =
∑︂
k∈Z

wk, (4.36)

where w′
ks are given by (4.15). Here, Z := {k ∈ Z : −γ2 < Re(λk) < −γ1}. Particularly,

let ϵ > 0 be such that n/(b + 1) < 1 − ϵ < (n + 1)/(b + 1) (recall that n is the integer

such that 2πn < β = 2π(b+ 1) ≤ 2π(n+ 1)). Then by (4.36),

χv1 =
−1∑︂

k=−n

dkK−k/(b+1)(re
3πi/4)rk/(b+1)φk(θ) + c0K0(re

3πi/4)

+ c̃0I0(re
3πi/4) +

n∑︂
k=1

dkIk/(b+1)(re
3πi/4)rk/(b+1)φk(θ) + χv2,

where v2 satisfies the asymptotics v2 = o(r
n

b+1 ). Note that in the distinguished local

parameter ζ near the vertex O, one has rk/(b+1)φk(θ) = ckζ
k + c̃kζ̄

−k
for some constants

ck and c̃k.

4.1.5 Proof of Proposition 2.1: Conclusion

At this point, the function v1 takes the form (2.7) with remainder R satisfying the

asymptotics R = o(r
n

b+1 ) = o(|ζ|n). This remainder is smooth away from the vertex and

the derivative R′ satisfies the asymptotics R′ = o(r
n

b+1
−1). It remains to prove that R

belongs D(∆̄). For this, put ψ = 1 − χ, where χ is as in above. For sufficiently small
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ϵ′ > 0, one has

∆(ψ(x/ϵ′)R(x)) = ∆(ψ(x/ϵ′))R(x) + 2∇ψ(x/ϵ′) · ∇R(x) + ψ(x/ϵ′)∆(R(x)).

Now, since
n+ 1

b+ 1
> 1,⃦⃦

(∆ψ(x/ϵ′))R(x);L2(R+)
⃦⃦2 ≤ c

ˆ 2δϵ′

δϵ′
|∆ψ(x/ϵ′)|2r

2n+2
b+1

+1 dr

≤ c′(ϵ′)
2n+2
b+1

+2 1

(ϵ′)4
≤M1,

for some constant M1. Similarly,⃦⃦
∇ψ(x/ϵ′) · ∇R(x);L2(R+)

⃦⃦2 ≤ c

ˆ 2δϵ′

δϵ′
|∇ψ(x/ϵ′)|2r

2n+2
b+1 dr

≤ c′(ϵ′)
2n+2
b+1

+1 1

(ϵ′)2
≤M2,

for some constant M2. Moreover,⃦⃦
ψ(x/ϵ′)∆R(x);L2(X)

⃦⃦2
=

ˆ
X

|ψ(x/ϵ′)∆R(x)|2dx ≤ c
⃦⃦
∆R(x);L2(X)

⃦⃦2
.

Hence, ∆(ψ(x/ϵ′)R(x)) is uniformly bounded in L2(X) as ϵ′ → 0, for instance, by M .

Put ψϵ′ := ψ(·/ϵ′). For any test function w ∈ D(∆∗),

|⟨R,∆∗w⟩| = lim
ϵ′→0

|⟨ψϵ′R,∆
∗w⟩|

= lim
ϵ′→0

|⟨∆(ψϵ′R), w⟩|

≤ sup
ϵ′

∥∆(ψϵ′R);L
2(X\{P})∥ ∥w;D(∆∗)∥

≤M∥w;D(∆∗)∥,

and, therefore, R belongs to D((∆∗)∗) = D(∆). The proof of Proposition 2.1 is now

complete.
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4.2 Proof of Proposition 2.2

Let Ω be the symplectic form on the factor space D(∆∗)/D(∆):

Ω ([u], [v]) := ⟨∆∗u, v⟩ − ⟨u,∆∗v⟩ ,

where ⟨u, v⟩ =
´
X
uv dS is the usual hermitian product with volume element

dS = m(ζ, ζ̄)
dζ ∧ dζ̄
−2i

= − 1

2i
m(ζ, ζ̄)|dζ|2.

Proposition 2.2. One has

Ω ([u], [v]) =
M∑︂
k=1

Xk(u)

⎛⎜⎝ 0 −I2nk+1

I2nk+1 0

⎞⎟⎠Xk(v)
t (2.9)

where Xk(u) = (Lk(u),Hk,1(u), . . . ,Hk,nk
(u),Ak,1(u), . . . ,Ak,nk

(u), ck(u), hk,1(u), . . . ,

hk,nk
(u), ak,1(u), . . . , ak,nk

(u)).

Proof. For k = 1, . . . ,M , let Γk be a sufficiently small disk, oriented clockwise, with

radius ϵk > 0 and centered at Pk, and such that Γk ∩Γj = ∅ for k ̸= j. Put Γ =
⋃︁M

k=1 Γk

and ϵ0 = max ϵk. Then, for any u, v ∈ D(∆∗), by using Green’s formula, one obtains

⟨∆∗u, v⟩ − ⟨u,∆∗v⟩ = lim
ϵ0→0

[︃ˆ
X\Γ

v∆∗u dS −
ˆ
X\Γ

u∆∗v dS

]︃

= lim
ϵ0→0

(︃
2i

ˆ
⋃︁

Γk

v ∂ζu dζ̄ − 4

ˆ
X\Γ

∂ζ̄u∂ζv dS

−2i

ˆ
⋃︁

Γk

u ∂ζv dζ + 4

ˆ
X\Γ

∂ζv∂ζ̄u dS

)︃
(4.37)
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= lim
ϵ0→0

M∑︂
k=1

2i

fi
Γk

v ∂ζku dζ̄ − lim
ϵ0→0

M∑︂
k=1

2i

fi
Γk

u ∂ζkv dζ

= lim
ϵ0→0

M∑︂
k=1

2i

[︃fi
Γk

v ∂ζku dζ̄ −
fi
Γk

u ∂ζkv dζ

]︃
.

Let u, v ∈ D(∆∗). Near a conical point Pk, using (2.7), one gets

∂ζ̄ku =
i

2
√
2π

Lk(u)
1

ζ̄k
− 1√

4π

nk∑︂
m=1

Ak,m(u)

√
m

ζ̄
m+1
k

+
1√
4π

nk∑︂
m=1

ak,m(u)
√
m ζ̄

m−1
k + ∂ζ̄k(χu0),

∂ζkv =
i

2
√
2π

Lk(v)
1

ζk
− 1√

4π

nk∑︂
m=1

Hk,m(v)

√
m

ζm+1
k

+
1√
4π

nk∑︂
m=1

hk,m(v)
√
mζm−1

k + ∂ζk(χv0).

Hence,

u∂ζkv =
(︂
− 1

4π
Lk(v)ck(u)−

1

4π
Hk(v)hk(u) +

1

4π
Hk(u)hk(v)

)︂1
ζ
+Θ1(ζ, ζ̄),

v∂ζ̄ku =
(︂
− 1

4π
Lk(u)ck(v)−

1

4π
Ak(u)ak(v) +

1

4π
Ak(v)ak(u)

)︂1
ζ
+Θ2(ζ, ζ̄)

where Θ1 and Θ2 are functions such that

lim
ϵ0→0

fi
Γk

Θ1(ζ, ζ̄) dζ = lim
ϵ0→0

fi
Γk

Θ2(ζ, ζ̄) dζ̄ = 0.

It follows from Cauchy’s integral formula that

2i
[︂ fi

Γk

v ∂ζku dζ̄ −
fi
Γk

u ∂ζkv dζ
]︂

= −(2i)(2πi)
[︂
− 1

4π
Lk(u)ck(v)−

1

4π
Ak(u)ak(v) +

1

4π
Ak(v)ak(u)

+
1

4π
Lk(v)ck(u) +

1

4π
Hk(v)hk(u)−

1

4π
Hk(u)hk(v)

]︂
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= −Lk(u)ck(v)− Ak(u)ak(v) + Ak(v)ak(u) + Lk(v)ck(u)

+Hk(v)hk(u)− Hk(u)hk(v)

and, therefore,

⟨∆∗u, v⟩− ⟨u,∆∗v⟩ =
M∑︂
k=1

(︂
Lk(v)ck(u)− Lk(u)ck(v) +

nk∑︂
m=1

hk,m(u)Hk,m(v)

−
nk∑︂

m=1

Hk,m(u)hk,m(v)−
nk∑︂

m=1

Ak,m(u)ak,m(v) +

nk∑︂
m=1

ak,m(u)Ak,m(v)
)︂
.

Formula (2.9) follows.

4.3 Proof of Proposition 2.8

The next proposition immediately follows from (2.17), (2.18), and Roelcke’s formula.

For completeness, the proof is provided below.

Proposition 2.8. One has the following explicit expressions for the special growing so-

lutions of the homogeneous Laplace equation (2.15) subject to (2.16):

G1/ζlk
(y; 0) = − 1

(l − 1)! Area(X)

ˆ
X

Ω
(l−1)
y−q (Pk)dS(q) l = 1, . . . , nk, (2.21)

G
1/ζ̄

l
k
(y; 0) = G1/ζlk

(y; 0) . (2.22)

Here the expression Ω
(l−1)
y−q (Pk) should be understood as follows. Write the one form Ωy−q

in the distinguished local parameter ζk in a vicinity of the conical point Pk:

Ωy−q = ω(ζk)dζk .
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Then

Ω
(l−1)
y−q (Pk) :=

(︃
d

dζk

)︃l−1

ω(ζk)|ζk=0 .

Moreover, one has the relation

lim
λ→0

[︃
Glog |ζk|(y;λ)−

2π

Area(X)λ

]︃
=

1

Area(X)2

ˆ
X

ˆ
X

Re

ˆ Pk

p

Ωy−q dS(p)dS(q) . (2.23)

Proof. Rewriting (2.6) as

2π (G(x, y)−G(x, q) +G(p, q)−G(p, y)) = Re

ˆ x

p

Ωy−q (4.38)

then integrating the latter with respect to q gives

2πArea(X) (G(x, y)−G(p, y)) =

ˆ
X

Re

ˆ x

p

Ωy−q dS(q)

=
1

2

ˆ
X

(︄ˆ x

p

Ωy−q +

ˆ x

p

Ωy−q

)︄
dS(q).

(4.39)

On the one hand, take p = Pk. In the distinguished local parameter ζk near Pk,

equation (4.39) becomes

2πArea(X) (G(ζk, y)−G(Pk, y)) =
1

2

ˆ
X

(︄ˆ ζk

0

ω(τ) dτ +

ˆ ζk

0

ω(τ) dτ

)︄
dS(q). (4.40)

Differentiating the last equation with respect to ζk l-times and then evaluating at ζk = 0

give (︃
∂

∂ζk

)︃l

G(ζk, y) =
1

4πArea(X)

ˆ
X

(︃
d

dζk

)︃l−1

ω(ζk)|ζk=0 dS(q)

=
1

4πArea(X)

ˆ
X

Ω
(l−1)
y−q (Pk) dS(q).

(4.41)

On the other hand, differentiating (2.17) with respect to ζk l-times and then sending ζk

to 0 give (︃
∂

∂ζk

)︃l

G(ζk, y) = −(l − 1)!

4π
G1/ζlk

(y; 0). (4.42)
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Formula (2.21) follows.

For the second statement, taking x = Pk in Roelcke’s formula (2.4) and combining

it with (2.18) give (2.23).

4.4 Proof of Proposition 3.4

The proof of the next proposition is analogous to the discussion in Section 5 of [13]. For

self-containment, the details are provided here.

Proposition 3.4. Introduce the zeta-regularized determinants of the operators ∆F − λ,

∆sing − λ, and ∆hol − λ via

detA = exp{−ζ ′A(0)},

where ζA(s) = ζ(s, A) is the operator zeta-function of an operator A (without zero

modes). Then

det(∆sing − λ) =

(︃
2π2

27

)︃2

detT (λ) det(∆F − λ) (3.26)

for real λ not belonging to the union of the spectra of ∆F and ∆sing. Similarly

det(∆hol − λ) =
2π2

27
detP (λ) det(∆F − λ) (3.27)

for real λ not belonging to the union of the spectra of the operators ∆F and ∆hol.

Proof. For λ ∈ C, let D(λ) = detT (λ). If λ does not belong to spec(∆F ) ∪ spec(∆sing),

one can write

Trace
[︁
(∆sing − λ)−1 − (∆F − λ)−1

]︁
= −D

′(λ)

D(λ)
. (4.43)

Observe that the right-hand side of (4.43) is the logarithmic derivative of D, and extends
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Re(z)

Im(z)

× × × × ×

· · ·

Ωsing

Figure 4.1: Ωsing = C \ {λ+ it : λ ∈ spec(∆sing)∪ spec(∆F ), t ∈ (−∞, 0]}. The × denotes
an eigenvalue of ∆sing or ∆F .

to a meromorphic function whose poles are the eigenvalues of ∆sing and ∆F . Each pole

has residue equal to the difference dimker(∆sing − λ)− dimker(∆F − λ). Put

Ωsing := C \ {λ+ it : λ ∈ spec(∆F ) ∪ spec(∆sing), t ∈ (−∞, 0]}

(see Figure 4.1).

On this domain, define ξ̃(λ) := − 1

2πi
log detT (λ). By definition,

D(λ) = exp(−2πiξ̃(λ)). (4.44)

Let λ̃ ∈ Ωsing with Re(λ̃), Im(λ̃) > 0. Let C be a sufficiently large negative number;

without loss of generality, choose C such that |λ̃| < −C. Let cλ̃ be the cut consisting of

the half-line (−∞, C) along the real-line and the segment from λ̃ to C + 0i. Note that

for any λ̃ and s ∈ C, the functions λ ↦→ (λ − λ̃)−s is well-defined whenever λ − λ̃ is a

positive real number. This function can be extended to a holomorphic function on the
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complements of cλ̃. Furthermore, as λ tends to the cut cλ̃ from above or from below,

the following equality holds:

lim
λ↓cλ̃

e−iπs(λ− λ̃)−s = lim
λ↑cλ̃

eiπs(λ− λ̃)−s.

Denote the equal limits by (λ− λ̃)−s
0 .

Let ϵ > 0 be sufficiently small. Choose 0 < A /∈ spec(∆F ) ∪ spec(∆sing) sufficiently

large. Let γ be the contour consisting of circles with centers λ ∈ spec(∆F )∪ spec(∆sing),

each has radius ϵ, and

Aϵ := {x± ϵi : x ≥ A} ∪
{︃
A+ ϵeiθ : θ ∈

[︃
π

2
,
3π

2

]︃}︃
.

Let cλ̃,ϵ be the contour

cλ̃,ϵ := {z ± ϵi : z ∈ cλ̃} ∪
{︂
λ̃+ ϵeiθ : θ ∈

[︂
−π
2
,
π

2

]︂}︂
.

One can choose the contours so that they do not intersect. Denote by c̃1 the part of cλ̃,ϵ

with real part less than C and denote by c̃2 the part of cλ̃,ϵ with real part greater than

or equal to C. (See Figure 4.2.)

If Re(s) > 1, using a simple change of integration, one gets

ζ
(︂
s,∆sing − λ̃

)︂
=

1

2πi
Trace

(︃ˆ
γ

(︂
λ− λ̃

)︂−s

(∆sing − λ)−1 dλ

)︃
.

Furthermore, noting that the contribution of a large circle centered at λ̃ vanishes as the

radius of the circle increases, Cauchy integral formula implies that

ζ
(︂
s,∆sing − λ̃

)︂
=

1

2πi
Trace

(︄ˆ
cλ̃,ϵ

(︂
λ− λ̃

)︂−s

(∆sing − λ)−1 dλ

)︄
.

One also gets similar formulas for ∆F (and ∆hol).

Since the difference (∆sing − λ)−1 − (∆F − λ)−1 is of trace class for Re(s) > 1, the
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Re(z)

Im(z)

λ̃

|

C

cλ̃,ϵ

|

A

××× × ×

γ

Figure 4.2: Contour for the integration

contour integration and the trace operator can be interchanged so that one obtains

ζ(s,∆sing−λ̃)−ζ(s,∆F−λ̃) =
1

2πi

ˆ
cλ̃,ϵ

(λ−λ̃)−sTrace
(︁
(∆sing − λ)−1 − (∆F − λ)−1

)︁
dλ.

Using the definition of ξ̃ and the decomposition of cλ̃,ϵ into c̃1 and c̃2, the last equation

becomes

ζ(s,∆sing − λ̃)− ζ(s,∆F − λ̃) =

ˆ
cλ̃,ϵ

(λ− λ̃)−sξ̃
′
(λ) dλ

=

(︃ˆ
c̃1

+

ˆ
c̃2

)︃
(λ− λ̃)−sξ̃

′
(λ) dλ.

(4.45)

Denote by ζ̃k the contour integration along c̃k in (4.45). Observe that ζ̃2 extends to an

entire function of s. Moreover, for any s with Re(s) < 1, passing to the limit as ϵ goes

to zero gives

ζ2(s) := lim
ϵ→0

ζ̃2(s) = −2i sin(πs)

ˆ λ̃

C

(λ− λ̃)−s
0 ξ̃

′
(λ) dλ. (4.46)

Lemma 4.4. Let ρ : C×{|z| < 1} be defined by ρ(s, z) = (1−z)−s−1 and let 0 < r < 1
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and R > 0. For any |z| ≤ r and |s| ≤ R, the following estimate holds:

|ρ(s, z)| ≤
exp

(︁
rR
1−r

)︁
1− r

|s| |z|.

Proof. Consider the absolutely convergent series representation of ρ: for |z| < 1,

ρ(s, z) =
∞∑︂
k=1

(−s)k [log(1− z)]k

k!
.

Observe that for |z| ≤ r < 1,

|log(1− z)| ≤
∞∑︂
k=1

|z|k

k
≤ |z|

∞∑︂
k=0

rk =
|z|

1− r
.

Therefore, for |z| ≤ r < 1 and |s| ≤ R,

|ρ(s, z)| ≤
∞∑︂
k=1

|s|k| log(1− z)|
k!

≤
∞∑︂
k=1

|s|k
(︂

|z|
1−r

)︂k
k!

= exp

(︃
|s||z|
1− r

)︃
− 1.

Finally, observe that

exp

(︃
|s||z|
1− r

)︃
− 1 =

ˆ |s||z|
1−r

0

eτ dτ ≤ exp

(︃
|s||z|
1− r

)︃
|s||z|
1− r

≤ exp

(︃
Rr

1− r

)︃
|s||z|
1− r

,

and the conclusion of the lemma follows.

If λ ∈ C \ (−∞, C) with Re(λ) < C, then⃓⃓⃓
λ̃/λ

⃓⃓⃓
<

−C√︁
Re(λ)2 +Re(λ)2

< 1,

and so there exists 0 < r < 1 such that |λ̃/λ| ≤ r. Using the previous lemma, one can

write (︂
λ− λ̃

)︂−s

= λ−s
(︂
1 + ρ

(︂
s, λ̃/λ

)︂)︂
. (4.47)

The function ζ̃1 can be written as

ζ̃1(s) =

(︃ˆ C+ϵi

−∞+ϵi

−
ˆ C−ϵi

−∞−ϵi

)︃
(λ− λ̃)−sξ̃

′
(λ) dλ.
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Using (4.47) and sending ϵ to zero yield

ˆ C+ϵi

−∞+ϵi

(λ− λ̃)−sξ̃
′
(λ) dλ =

ˆ C+ϵi

−∞+ϵi

λ−s
(︂
1 + ρ

(︂
s, λ̃/λ

)︂)︂
ξ̃
′
(λ) dλ

=

ˆ C

−∞
(λ+ ϵi)−s

(︄
1 + ρ

(︄
s,

λ̃

λ+ ϵi

)︄)︄
ξ̃
′
(λ+ ϵi) dλ

ϵ→0
= e−iπs

ˆ C

−∞
|λ|−s

(︂
1 + ρ

(︂
s, λ̃/λ

)︂)︂
ξ̃
′
(λ) dλ.

Note that this is possible since both ρ and ξ̃
′
are continuous functions of λ. Similarly,

ˆ C−ϵi

−∞−ϵi

(λ− λ̃)−sξ̃
′
(λ) dλ

ϵ→0
= eiπs

ˆ C

−∞
|λ|−s

(︂
1 + ρ

(︂
s, λ̃/λ

)︂)︂
ξ̃
′
(λ) dλ.

Thus, passing to the limit as ϵ→ 0,

ζ1(s) := −2i sin(πs)

(︃ˆ C

−∞
|λ|−sξ̃

′
(λ) dλ+

ˆ C

−∞
|λ|−sρ

(︂
s, λ̃/λ

)︂
ξ̃
′
(λ) dλ

)︃
. (4.48)

Therefore, as ϵ tends to zero, (4.45) becomes

ζ(s,∆sing − λ̃)− ζ(s,∆F − λ̃) = −2i sin(πs)

ˆ C

−∞
|λ|−sξ̃

′
(λ) dλ+RC(s, λ̃) + ζ2(s)

where

RC(s, λ̃) = −2i sin(πs)

ˆ C

−∞
|λ|−sρ

(︂
s, λ̃/λ

)︂
ξ̃
′
(λ) dλ. (4.49)

For the moment, consider the function RC(s, λ̃). From (4.49), RC(0, λ̃) = 0. Mean-

while, for Re(λ) < C, there exists some constant K that depends only on C and λ̃ such

that ⃓⃓⃓
|λ|−sρ

(︂
s, λ̃/λ

)︂
ξ̃
′
(λ)
⃓⃓⃓
≤ K|s||λ|−Re(s)−2

and the preceding estimate is uniform for |s| ≤ R. Indeed, the identity (3.23) implies
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that

− 2πiξ̃
′
(λ) =

2

|λ|
+O(|λ|−1), (4.50)

and using Lemma 4.4, one obtains the estimate. This implies that RC can be analytically

extended to Re(s) > −1. Moreover, for Re(s) > −1,

∂

∂s
RC(s, λ̃) = 2πi cos(πs)

ˆ C

−∞
|λ|−sρ

(︂
s, λ̃/λ

)︂
ξ̃
′
(λ) dλ

+2i sin(πs)

ˆ C

−∞
|λ|−s(− log λ)ρ

(︂
s, λ̃/λ

)︂
ξ̃
′
(λ) dλ

+2i sin(πs)

ˆ C

−∞
|λ|−sρ

(︂
s, λ̃/λ

)︂
(− log(1− λ̃/λ))ξ̃

′
(λ) dλ ,

and since ρ(0, λ̃/λ) = 0, it follows that
∂

∂s
RC(s, λ̃)

⃓⃓⃓
s=0

= 0. Observe that RC can also

be written as

RC(s, λ̃) = ζ(s,∆sing − λ̃)− ζ(s,∆F − λ̃)− ζ2(s)

+ 2i sin(πs)

ˆ C

−∞
|λ|−sξ̃

′
(λ) dλ.

(4.51)

Now, observe that the last term of (4.51) can be written as

2i sin(πs)

ˆ C

−∞
|λ|−sξ̃

′
(λ) dλ

=
sin(πs)

π

[︂ ˆ C

−∞
|λ|−s

(︃
2πiξ̃

′
(λ) +

2

|λ|

)︃
dλ−

ˆ C

−∞
2|λ|−s−1dλ

]︂

=
sin(πs)

π

ˆ C

−∞
|λ|−s

(︃
2πiξ̃

′
(λ) +

2

|λ|

)︃
dλ+

2(−C)−s sin(πs)

πs
.

Thanks to (4.50), one can conclude that all the terms in (4.51) are regular at s = 0.

Employing the last observation, equation (4.51) can be written as
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ζ(s,∆sing − λ̃) = ζ(s,∆F − λ̃)− sin(πs)

π

ˆ C

−∞
|λ|−s

(︃
2πiξ̃

′
(λ) +

2

|λ|

)︃
dλ

−2(−C)−s sin(πs)

πs
+ ζ2(s) +RC(s, λ̃).

(4.52)

Denote by hC(s) the integral

ˆ C

−∞
|λ|−s

(︃
2πiξ̃

′
(λ) +

2

|λ|

)︃
dλ. Differentiating (4.52) with

respect to s and then evaluating at s = 0, one gets

ζ ′(0,∆sing − λ̃) = ζ ′(0,∆F − λ̃) + hC(0) + ζ ′2(0) + 2 log(−C).

Meanwhile,

ζ ′2(0) = −2πi
(︂
ξ̃(λ̃)− ξ̃(C)

)︂
= −2πiξ̃(λ̃)− logD(C)

and

hC(0) =

ˆ C

−∞

(︃
2πiξ̃

′
(λ) +

2

|λ|

)︃
dλ.

Furthermore, it follows from (4.50) that hC(0) vanishes for sufficiently large −C. Thus,

sending C to −∞ and recalling (4.44) yield

ζ ′(0,∆sing − λ̃)− ζ ′(0,∆F − λ̃) = log

(︃
2π2

27

)︃2

− 2πiξ̃(λ̃) = log

(︃
2π2

27

)︃2

+ log detT (λ̃),

and, therefore,

detζ

(︂
∆sing − λ̃

)︂
detζ

(︂
∆F − λ̃

)︂ =

(︃
2π2

27

)︃2

detT (λ̃).

Analogously, the second statement can be obtained by doing similar calculations as

in above. The first change in the computations starts at equation (4.50): one gets the

asymptotics

−2πiξ̃
′
(λ) =

1

|λ|
+O(|λ|−1).
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By making all the necessary modifications, one obtains the relations

detζ

(︂
∆hol − λ̃

)︂
detζ

(︂
∆F − λ̃

)︂ =
2π2

27
detP (λ̃).

4.5 Proof of identities (3.11)

Write the special growing solutions G⋆(·;λ) as

G⋆(·;λ) = ⋆+ S⋆,1(λ) +
2∑︂

m=1

(︂
S⋆,ζm(λ)ζm + S⋆,ζ̄

m

(λ)ζ̄
m
)︂
+ o(|ζ|2)

= F⋆ + u⋆(·;λ),

where F⋆ is the principal part of G⋆(·;λ). Note that u⋆(·;λ) belongs to the domain of

the Friedrichs extension ∆F . Recalling the construction of the special growing solutions

(see proof of Proposition 2.5), one has the relation

(∆F − λ)u⋆(·;λ) = −(∆∗ − λ)F⋆.

Differentiating the last equation with respect to λ, one gets

(∆F − λ)∂λu⋆(·;λ) = F⋆ + u⋆(·;λ) = G⋆(·;λ).

Thus, using the identity (3.7),⟨︁
G⋆(·;λ), G1/ζ̄(·; λ̄)

⟩︁
=
⟨︁
(∆F − λ)∂λu⋆(·;λ), G1/ζ̄(·; λ̄)

⟩︁
=

√
4πh1(∂λu⋆(·;λ))

=
√
4π

√
4π

d

dλ
S⋆,ζ(λ),

and the first identity of (3.11) follows. The rest are done similarly.
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4.6 Proof of the elementary relation (3.13)

Denote by Λµν the rank-one operator on L2:

Λµνf = Gµ(·;λ) ⟨f,Gν(·;λ)⟩ .

Let {en} be an orthonormal basis in L2. Then

Trace (Λµν) =
∑︂
n

⟨Λµν en, en⟩

=
∑︂
n

⟨︂
Gµ(·;λ) ⟨en, Gν(·;λ)⟩ , en

⟩︂
=
∑︂
n

⟨Gµ(·;λ), en⟩ ⟨en, Gν(·;λ)⟩

=
∑︂
n

⟨︂
⟨Gµ(·;λ), en⟩ en, Gν(·;λ)

⟩︂
=
⟨︂∑︂

n

⟨Gµ(·;λ), en⟩ en, Gν(·;λ)
⟩︂

= ⟨Gµ(·;λ), Gν(·;λ)⟩ .
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Appendix A

Krein’s formula

In this section, we provide a little discussion on the derivation of Krein’s formula. See

[4], Appendix A, for the details.

Let H be a Hilbert space and let A be a densely defined, closed, and symmetric

operator on H with deficiency indices n+ = n− = n, where n ∈ N. Let A1 and A2 be

self-adjoint extensions of A. Let λ ∈ (spec(A1)∪ spec(A2))
c. One can decompose H into

H = ran(A− λ)⊕ ker(A∗ − λ) = ran(A− λ)⊕ ker(A∗ − λ).

Denote by Rλ(Am) the resolvent operator (Am − λ)−1 of Am at λ.

Proposition A.1. The operator Rλ(A1)− Rλ(A2) is finite-rank. Furthermore, the op-

erator sends ran(A− λ) to {0}, and ker(A∗ − λ) to ker(A∗ − λ).

Proof. By assumption, dimker(A∗−λ) = n. Thus, it is enough to show that the second

statement is true. On the one hand, let f ∈ ran(A − λ) and let x ∈ D(A) such that
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f = (A− λ)x. Then

[︁
(A1 − λ)−1 − (A2 − λ)−1

]︁
f =

[︁
(A1 − λ)−1 − (A2 − λ)−1

]︁
(A− λ)x = x− x = 0,

noting that A1 and A2 are extensions of A. On the other hand, let f ∈ ker(A∗−λ). For

any h ∈ ran(A− λ),

⟨︁[︁
(A1 − λ)−1 − (A2 − λ)−1

]︁
f, h
⟩︁
=
⟨︁
f,
[︁
(A1 − λ)−1 − (A2 − λ)−1

]︁
h
⟩︁
= ⟨f, 0⟩ = 0.

Thus, [(A1 − λ)−1 − (A2 − λ)−1] f ∈ ran(A − λ)⊥ = ker(A∗ − λ). This completes the

proof.

Now, fix λ ∈ (spec(A1)∪spec(A2))
c. Choose a basis for ker(A∗−λ): {g1(λ), ..., gn(λ)},

and a basis for ker(A∗ − λ): {g1(λ), ..., gn(λ)}. For any h ∈ H,

[Rλ(A1)−Rλ(A2)] f =
n∑︂

k=1

ck(f)gk(λ)

where ck(·) is a bounded linear functional on H. Thus, Riesz’ representation theorem

implies that ck(f) = ⟨f, hk⟩ for some hk ∈ H. From the previous proposition, if f ∈

ran(A−λ), then ⟨hk, f⟩ = 0. Hence hk ∈ ker(A∗−λ) and therefore, it can be written as

hk =
n∑︂

s=1

pk,s(λ)gs(λ)
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for some constants pk,s(λ). Therefore,

[Rλ(A1)−Rλ(A2)] f =
n∑︂

k,s=1

pk,s(λ)
⟨︁
f, gs(λ)

⟩︁
gk(λ).

We just proved Krein’s formula:

Theorem A.2 (Krein’s formula for deficiency indices n > 1). Let A, A1, and A2 be as

in above. If λ ∈ (spec(A1) ∪ spec(A2))
c, then

Rλ(A1)−Rλ(A2) =
n∑︂

k,s=1

pk,s(λ)
⟨︁
·, gs(λ)

⟩︁
gk(λ) (A.1)

Definition A.3. The self-adjoint extensions A1 and A2 of A are said to be relatively

prime if D(A1) ∩D(A2) = D(A).

Proposition A.4. Let P(λ) = ∥pk,s(λ)∥. If A1 and A2 are relatively prime, then

detP(λ) ̸= 0.

Proof. For each k = 1, 2, ..., n, set

hk =
n∑︂

s=1

pk,s(λ)gs(λ).

If detP(λ) = 0, then h1, ..., hn are linearly dependent. There exists h ∈ ker(A∗ − λ),

h ̸= 0 such that h ⊥ hk for all k = 1, ..., n. Hence,

[R(λ,A1)−R(λ,A2)]h =
n∑︂

k=1

⟨h, hk⟩ gk(λ) = 0
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and so

R(λ,A1)h = R(λ,A2)h.

The left-hand side of the last equation is in D(A1) while the right-hand side is in D(A2).

Since A1 and A2 are relatively prime, R(λ,A1) ∈ D(A). Thus, (A− λ)(A1 − λ)−1h = h

so that h ∈ ran(A − λ). But h ∈ ker(A∗ − λ) = [ran(A− λ)]⊥ implying that h = 0, a

contradiction.

Remark A.5. In equation (A.1), gk and pk,s can be chosen as regular functions in C\R.

Furthermore, if λ0 ∈ [spec(A)]c, then

gk(λ) = gk(λ0) + (λ− λ0)Rλ(A1)gk(λ0)

where λ ∈ C \ R.
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