
The Sense of Logging in the Linux Kernel

Keyurbhai Hasmukhbhai Patel

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

August 2020

© Keyurbhai Hasmukhbhai Patel, 2020

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Keyurbhai Hasmukhbhai Patel

Entitled: The Sense of Logging in the Linux Kernel

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Juergen Rilling

External Examiner
Dr. Olga Ormandjieva

Examiner
Dr. Juergen Rilling

Supervisor
Dr. Abdelwahab Hamou-Lhadj

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2020
Dr. Mourad Debbabi, Interim Dean
Gina Cody School of Engineering and Computer Science

Abstract

The Sense of Logging in the Linux Kernel

Keyurbhai Hasmukhbhai Patel

Logging is an important activity in software engineering. Developers use log

data for a variety of tasks including debugging, performance analysis, detection of

anomalies, and so on. Despite the importance of this data, the practice of logging

still suffers from the lack of common guidelines and best practices. Recently, there

have been studies that investigate the practice of logging in C/C++ and Java open-

source systems. In this thesis, we complement these studies by presenting the first

empirical study aimed at understanding the practice of software logging in the Linux

kernel, which is perhaps the most elaborate open source development project in the

computer industry. We achieve this by analysing the evolution history of the Linux

kernel with a focus on three main aspects: the pervasiveness of logging code, the type

of changes made to logging statements, and the rationale behind these changes. Our

findings show that logging is pervasive as 3.73% of the Linux kernel source is logging

code. We also found that 72.36% of the total number of files in the Linux kernel have

at least one logging statement, while only 26.12% of functions are logged. Similar

to other studies, the if-block gets the lion’s share with 57% of the total number of

logging statements. However, the distribution of logging statements across the Linux

kernel subsystems and their components vary significantly with no apparent reason,

suggesting that developers use different criteria when logging. We also observed

that the use of logging has been gradually declining in recent years with a reduction

of 9.27% from version v4.3 to version v5.3. This may be due to the availability

iii

of other alternatives to logging such as the use of tracing (a more structured form

of logging) and other dynamic analysis techniques. By manually investigating 900

commits that aim to fix or improve logging code, we found that the majority of

changes are to fix spelling/grammar mistakes, fix incorrect log levels, and upgrade

logging code to use new logging functions to improve the precision and consistency

of log output. Based on these findings, we propose many recommendations such

as the use of static analysis tools to detect defective logging code at commit-time,

use of automatic spell/grammar checkers, adoption of common writing styles for log

messages, a systematic review of logging code, and guidance on the use of log levels.

We believe that these recommendations can serve as the basis for developing common

logging guidelines, as well as better logging processes, tools, and techniques.

iv

Acknowledgments

I would like to express my sincere appreciation to Dr Wahab Hamou-Lhadj for

believing in me. His door has always been open to me. I have learnt a lot from

you. I would never forget the invaluable help that you provided during my period at

Software Research and Technology Lab.

I would like to extend my sincere thanks to the entire team at Ericsson Global AI

Accelerator (GAIA) in Montreal, for their feedback and support. I would also like to

thank Ericsson GAIA, MITACS, NSERC, and the Gina Cody School of Engineering

and Computer Science at Concordia University for their financial support.

I wish to thank all the people from SRT Lab. Especially, MohammadReza Rejali

and Mohammed Shehab.

To my friends, Payal, Vrund, Krunal, Mithil, Darshak, and Meet, I am also

grateful for your support and help.

Thanks to my parents and sister. Without the financial support from my brother,

Suhag, I would have never been able to complete my study in Canada.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Related Work 5

2.1 Empirical Research on Logging Practices 5

2.2 Where, What, and How to Log . 7

3 Background 10

3.1 The Linux Kernel . 10

3.2 Logging in the Linux kernel . 11

4 Study Design 14

4.1 Research Questions . 14

4.2 Subject Project . 15

4.3 Identification of logging functions . 15

5 Empirical Study 18

5.1 RQ1: What is the pervasiveness of logging in the Linux kernel? . . . 18

5.1.1 Data Gathering and Extraction 18

5.1.2 Data Analysis . 19

vi

5.2 RQ2: How does the logging code in the Linux kernel evolve? 25

5.2.1 Data Gathering and Extraction 26

5.2.2 Data Analysis . 27

5.3 RQ3: What are the characteristics of changes made to logging code as

afterthoughts? . 37

5.3.1 Data Gathering and Extraction 39

5.3.2 Data Analysis . 40

6 Discussions and Threats to Validity 54

6.1 Discussions . 54

6.2 Threats to Validity . 56

6.2.1 Internal Validity . 56

6.2.2 External Validity . 58

7 Conclusion and Future Work 59

7.1 Summary of the Findings . 59

7.2 Future Directions . 60

7.3 Closing Remarks . 61

vii

List of Figures

Figure 5.1 RQ1 data collection process 19

Figure 5.2 Value of log ratio at the file level (Total #files = 25,814) . . . 22

Figure 5.3 Distribution of logging statements across different program

constructs . 24

Figure 5.4 Retrieving changes to logging statements 26

Figure 5.5 Evolution in the use of logging code between Linux v4.3 and v5.3 29

Figure 5.6 RQ3 data collection process 39

Figure 5.7 Example of adding information to a log message to improve

debuggability . 41

Figure 5.8 Example of an ambiguity in a log error message 42

Figure 5.9 Example of an error message which may mislead end-users . . 43

Figure 5.10 Example of clarifying an error message to avoid user confusion 44

Figure 5.11 Example of NULL pointer dereference in a logging statement . 45

Figure 5.12 Example of a simple spelling mistake in a debugging message . 45

Figure 5.13 Example of increasing the severity of a logging statement to

enhance visibility . 46

Figure 5.14 Example of change to format specifier for consistency with other

parts of the Linux kernel . 47

Figure 5.15 Example of a simple early logging mistake 49

Figure 5.16 Example of incorrect logging message due to a simple

copy/paste oversight . 50

viii

Figure 5.17 Example of reporting wrong information in the logging statement 51

Figure 5.18 Example of revealing raw kernel pointers 52

Figure 5.19 Example of reporting redundant information 53

ix

List of Tables

Table 3.1 Linux kernel architectural decomposition 11

Table 3.2 The eight possible log levels defined in the Linux kernel. 12

Table 3.3 New sets of logging functions. 13

Table 5.1 Metrics used to answer RQ1 20

Table 5.2 Summary of metrics collected from the entire system and its

subsystems . 21

Table 5.3 Counting of functions by their number of logging statements . 23

Table 5.4 Distribution of modifications made to logging statements . . . 31

Table 5.5 Breakdown of logging statements added or deleted along with

the file . 31

Table 5.6 Distribution of updates made to logging statements 32

Table 5.7 Frequency of changes made to logging functions (frequency > 100) 34

Table 5.8 Breakdown of the log level changes made between Linux kernel

v4.3 and Linux kernel v5.3. 36

Table 5.9 Characterization of fixes to the problematic logging code 40

Table 6.1 Lack of consistency in the text of the error messages 57

x

Chapter 1

Introduction

Software logging is a practice that has long been used by developers to record

information about a running system. Many studies have demonstrated the importance

of log data in various areas including the diagnosis of system failures [Kha+18;

El-+20], detection of vulnerabilities and malware infections [Yen+13; Zho+20],

profiling of distributed systems [PCZ18], troubleshooting cloud computing

environments [KG11; Mir+16], detecting anomalies [Ber+17; IKH18; OAS08], and

reliability evaluation of web applications [TRL04].

Despite the importance of log analysis, the practice of logging remains largely ad-

hoc with no recognized guidelines and systematic processes [YPZ12; Fu+14; Pec+15].

Software developers continue to insert logging statements in the source code without

clear and sufficient guidance. Often the decisions on how and where to log are left to

the discretion of the developers, resulting in inconsistencies even among developers

working on the same projects. In a user study performed at Microsoft, Zhu et al.

[Zhu+15] showed that around 68% of the participants find it hard to make decisions

on how and where to log. Moreover, the lack of systematic and automated approaches

for logging raises serious questions as to the validity of the generated log data as well

as the efficacy of existing log analytic tools, which may impede failure diagnosis and

other log-related tasks, threatening the stability of deployed software systems.

1

In recent years, we have seen the emergence of empirical studies investigating

the practice of logging in different environments [Pec+15; CJ17b; Zhu+15; Zen+19;

YPZ12]. To our knowledge, the first attempt to characterize logging practices in open-

source projects was made by Yuan et al. [YPZ12]. The authors analyzed four server-

side C/C++ projects and provided many findings with respect to the pervasiveness of

logging code, how often logging code is changed, and what kind of changes are made

to it. Chen et al. [CJ17b] conducted an extensive replication study, with a focus on

21 open-source projects written in Java.

In this thesis, we build on the studies of Yuan et al. [YPZ12] and Chen et al.

[CJ17b] to present the first empirical study that focuses on understanding the practice

of logging in the Linux kernel. The Linux kernel is considered as one of the greatest

collaborative efforts in the computer industry, with more than a thousand experienced

developers contributing to its growth on a regular basis. Many studies have examined

the structure and evolution of the Linux kernel from different perspectives [Bag+18;

Lot+10; PCW12; Lu+14; IF10], but a little is known about the logging practices

followed by Linux kernel developers. Even with extensive documentation, existing

Linux kernel development guidelines do not include guidelines for making logging

decisions.

We thus in this thesis present the first empirical study that focuses on

understanding the practice of logging in the Linux kernel, complementing the

aforementioned studies. Similarly to previous studies [YPZ12; CJ17b], we explore

three main aspects related to the practice of logging: (1) the pervasiveness of logging

in Linux, (2) the types of changes made to logging statements over several releases,

and (3) the rationale underlying changes to logging code. From this perspective, this

thesis can be seen as a replication study with a focus on the Linux kernel, further

contributing to the corpus of knowledge on the practice of logging in large systems.

Studying how Linux kernel developers use logging will also reveal specific logging

problems related to the Linux kernel and shed further light on the challenges that

2

developers face when performing logging activities in software engineering.

Our findings show that there is one line of logging code in every 27 lines of code in

Linux v5.3 (the latest version when this study was conducted). The pervasiveness of

logging; however, varies from one Linux kernel subsystem to another, with filesystem

and drivers being the most logged subsystems. After investigating changes made to

logging statements across 22 releases of the Linux kernel, we found that developers

tend to modify logging code to improving the quality of the logging output by

enhancing precision, conciseness, and consistency. We also found that about one-third

of the total number of log level changes were between ERR and DEBUG, suggesting

that developers have difficulties distinguishing between fatal and recoverable errors.

Through a qualitative analysis of 900 commits that target fixes and improvement

of logging code, we found that the reasons behind these changes are similar to

those reported by other studies [Has+18; YPZ12; CJ19; CJ17a] such as ambiguous

log messages, redundant information, logging the wrong variables, etc. We also

found many issues that pertain to the Linux kernel such as revealing sensitive data

and problems related to early logging. Based on these result, we propose many

recommendations throughout the thesis that are not only applicable to the Linux

kernel but can readily be generalized to any software system. Our long-term goal is

to help design better processes, techniques, and tools for effective logging, and set the

groundwork for establishing logging standards.

The remaining parts of the thesis are structured as follows. The current literature

that focuses on empirical research on logging practices and tools that provide logging

suggestions is discussed in Chapter 2. In Chapter 3, we provide an overview of the

Linux kernel and how logging activities are performed in the Linux kernel. We present

the study design in Chapter 4. The empirical study on logging practices in the Linux

kernel is presented in Sections 5.1, 5.2 and 5.3. In Chapter 6, we discuss our findings

and implications as well as threats to validity. We conclude the thesis in Chapter 7.

Specifically in Section 7.1, we summarize our findings of the study. Moreover, in

3

Section 7.2, we discuss the directions for future work.

4

Chapter 2

Related Work

As discussed, although there are previous studies that aimed at understanding logging

practices, they targeted systems with characteristics different from the Linux kernel.

Our work is thus a replication study, focusing on an extremely relevant long-lived

large-scale system. In this section, we provide an overview of the existing literature

on software logging, which is complementary to our study. We first focus on empirical

research on logging practices, and then on tools that provide logging suggestions.

2.1 Empirical Research on Logging Practices

A substantial amount of effort has been directed towards the understanding of many

aspects of the logging practice in different contexts. In an attempt to understand the

characteristics of software logging in open-source projects, Yuan et al. [YPZ12] carried

out one of the first investigations to examine in detail the practice of software logging

by mining evolution history of a project. Their subject systems included four widely

popular C/C++ projects, which are named as follows: Apache httpd, OpenSSH,

PostgreSQL, and Squid. While commenting on the pervasiveness of software logging,

they reported that 3.30% of the total source code accounts for the logging code.

The study also reported that developers often find it hard to get logging statement

5

right at the first try, as developers changed 36% of all log messages at least once

as after-thoughts. Further, they break down the modification to logging code into

three categories: changes to verbosity level, changes to static content, and changes

to variables. They found that developers often struggle to get verbosity level right

at the first try. They also reported that around three quarter (75%) of the log

modifications to static content are fixing inconsistent and confusing log messages.

They also designed simple verbosity level checker to help developers decide correct

log level.

In order to confirm that findings reported by Yuan et al. [YPZ12] holds true or

not for software systems written in Java programming language, Chen et al. [CJ17b]

conducted a replication the study on popular Java projects which came from diverse

domains. Several findings reported by Chen et al. [CJ17b] does not align with the

findings reported by Yuan et al. [YPZ12]. For example, Yuan et al. [YPZ12] reported

that around 67% of updates to logging code are consistent updates in C/C++ based

software projects, while Chen et al. [CJ17b] found that only 41% of updates to logging

code are consistent updates in Java-based software projects.

The study conducted by Pecchia et al. [Pec+15], for instance, investigated the

practice of logging on the development process of critical software in a particular

company. By analyzing more than 2 million de-parameterized log entries, they

identified three main reasons for using logging code: state dump, execution

tracing, and event reporting. Nevertheless, the usage of logging statements to that

purpose presented limitations regarding the lack of standardization over key-value

representations and missing contextual information, which could hinder the adoption

of automated log analysis tools. The work of Shang et al. [Sha+14] focused on

understanding the impact that logging code modifications have on these tools. The

authors analyzed the evolution history of two large scale systems and found that 60%

of execution logs were changed, which were not necessarily followed by modifications

on log analysis tools. Between 10% to 70% of performed changes, however, were found

6

to be avoidable.

A study on the relationship between logging characteristics and code quality was

conducted by Shang et al. [SNH15]. They studied two open-source software systems

to find out that it is possible to relate post-release defects to some log-related metrics,

even though there is no causal relationship between them. In fact, logging statements

tend to be added where developers have concerns about their code. It thus suggests

that more maintenance effort should be devoted to files with logging code as they are

more susceptible to present problems. The quality of logging code was investigated

by Hassani et al. [Has+18]. Their goal was to characterize log-related issues regarding

aspects such as the number of files involved on the issue, the time required to fix it,

and who provides the fix. In addition, they manually examined more than 500 log-

related issues in order to identify common problems associated with logging code,

which served as the basis for developing a tool to automatically detect issues such as

spelling errors and empty catch blocks.

The study conducted by Zeng et al. [Zen+19], in turn, investigated the use

of logging code in open-source Android apps. The authors find that there exists

a difference between logging practice observed in mobile apps than those findings

reported for desktop and server applications. In contrast to earlier findings, logging

is less pervasive in mobile apps. They also found that developers do not actively

maintain logging code in mobile applications, as compared to desktop and server

counterparts. A recent qualitative study conducted by Li et al. [Li+20] aimed

at understanding the benefits developers seek from software logging and the costs

associated with it.

2.2 Where, What, and How to Log

There are many decisions that must be made by developers when logging. Focused

on understanding where developers log, Fu et al. [Fu+14] performed an empirical

7

investigation on enterprise applications written in C#. They found that logging

statements can be categorized according to five major groups: assertion-check logging,

return-value-check logging, exception logging, logic-branch logging, and observing-point

logging. They found that 39%~53% of the logging statements are placed to capture

information when the software fails while 47%~61% of the logging statements are

used to capture the normal execution flow. To complement their findings, the authors

trained a decision tree model that suggests where to log based on contextual keywords

extracted from code snippets. A similar tool, named LogAdvisor, was built by Zhu

et al. [Zhu+15]. It helps developers by providing suggestions on where to log with a

balanced accuracy of 84.6%~93.4%. Developers need to carry out logging activities

while keeping the performance of the system in mind. Zhao et al. [Zha+17] addressed

this issue by proposing a tool named Log20 that could find an appropriate position

for the logging statement to be placed within the given performance constraints.

Because there is no standardization over what information should be included in

logs, developers insert logging statements into code in an ad-hoc manner. Sometimes,

the information from these logs may not be sufficient to diagnose software failures.

To handle this issue, Yuan et al. [Yua+12] built a tool called LogEnhancer. This

tool is able to infer what information could be helpful to narrow down the root cause

of failures and to include that information into existing logging code automatically.

In order to help developers decide which variables should be included in the logging

statement, a recent study by Liu et al. [Liu+19] proposed a recurrent neural network-

based model which achieved an average MAP score of 0.84 on nine open-source Java

projects. The work of He et al. [He+18] is also focused on what is logged. They

manually analyzed 385 logging statements in order to understand the goal of the

static text used in these statements. Their results suggest that static text is used

essentially for describing program operation, error conditions, and high-level code

semantics. To validate their finding, which indicated that there exists a repetitiveness

in logging descriptions, they proposed an approach based on simple information

8

retrieval technique which can generate logging message automatically. The single

attempt to address challenges of logging in Linux kernel was made by Senna Tschudin

et al. [SLM15]. They proposed a machine learning-based approach to suggest the

most appropriate logging function, using the evolution history of the Linux kernel.

However, the approach consists of a conceptual description of a framework that still

needs to be implemented and validated.

Many previous studies found that developers have a difficult time regarding how

to log, especially when they are required to determine the correct log level to be

used [YPZ12; CJ17b; Has+18; CJ17a]. Li et al. [LSH17] addressed this difficulty

by proposing a prediction model that suggests the most appropriate log level to new

logging statements using features such as average log level and log churn. In addition,

five anti-patterns were identified by Chen et al. [CJ17a] in a study that analyzed many

code-independent log updates from three open-source Java projects. A tool, named

LCAnalyzer was developed in order to allow the automatic identification of these poor

logging practices.

9

Chapter 3

Background

In this chapter, we present an overview of the Linux kernel project, its structure, the

logging libraries used by Linux kernel developers, and how logging in Linux kernel is

different from other projects written in C/C++.

3.1 The Linux Kernel

The Linux kernel is a free and open-source software distributed under the GPLv21

license. It is responsible for managing the interactions between hardware components

and the higher-level programs that make use of them. Used across a wide range of

computer systems, from mobile devices and server systems to supercomputers, the

Linux kernel can be considered as one of the most important software components in

the computing industry. In fact, we are surrounded by the Linux kernel in one way

or another. Being developed by roughly fifteen thousand developers throughout its

history, as of 2020, it contains around 18M lines of C code. This project is continuously

evolving in order to meet both hardware manufacturers’ requirements and end-user

expectations. In its version 5.3, the Linux kernel received 14,605 commits from 1,881

developers, adding 837,732 and removing 253,255 lines of code, which represents an
1https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

10

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

increase of 584,477 lines of code when compared to its previous version. 2

The Linux kernel consists of five major subsystems3; each of them covering

particular aspects of the project. Table 3.1 shows the system decomposition. The

core subsystem is in charge of memory management, inter-process communication,

management of I/O operations, among others. The filesystem subsystem is

responsible for providing the file system interface as well as individual file system

implementations. The drivers subsystem provides device and sound drivers as well as

the implementation of cryptography algorithms used within the system and other

security-related code. Finally, the net and arch subsystems are responsible for

networking and architecture-specific code, respectively. In the following sections,

we frequently refer to these subsystems while discussing our results.

Table 3.1: Linux kernel architectural decomposition

Subsystem Top level directories
core init, block, ipc, kernel, lib, mm, virt
filesystem fs
drivers crypto, drivers, sound, security
net net
arch arch

3.2 Logging in the Linux kernel

Log messages are used to record relevant information about a running system. These

messages usually comprise three elements: (i) the log level of the event being recorded;

(ii) a static message that describes that event; and, optionally, (iii) variables related to

the logged event. A log message is typically generated by the execution of a function

specifically created for that purpose. These functions can be either project-specific

or provided by external logging libraries and frameworks.
2https://github.com/gregkh/kernel-history/
3https://github.com/gregkh/kernel-history/blob/master/scripts/genstat.pl

11

https://github.com/gregkh/kernel-history/
https://github.com/gregkh/kernel-history/blob/master/scripts/genstat.pl

The Linux kernel provides to developers its own set of logging functions. One of

the simplest ways to write a message to the kernel log buffer is by using the printk()

function. It is the kernel’s equivalent of printf(), with the difference that it allows

developers to specify the log level of the event being recorded [CRK05]. An example

of a log statement is as follows:

printk(KERN_ERR "Device initialized with return code %d\n", code);

where KERN_ERR corresponds to the log level, "Device initialized with return

code %d\n" is the error message, and code is the corresponding variable.

There are eight log levels defined in the Linux kernel, representing different degrees

of severity (see Table 3.2). KERN_WARNING is the default log level and is assigned to a

message in case no log level is specified when calling printk().

Table 3.2: The eight possible log levels defined in the Linux kernel.

Log level Description
KERN_EMERG System is unusable
KERN_ALERT An action must be taken immediately
KERN_CRIT Critical conditions
KERN_ERR Error conditions
KERN_WARNING Warning conditions
KERN_NOTICE Normal but significant condition
KERN_INFO Informational
KERN_DEBUG Debug-level messages

Additional sets of logging functions were introduced in the Linux kernel v1.3.983

with the aim of making logging statements more concise. These functions incorporate

log levels in their names. Therefore, in order to log a debug or informational

message, instead of using the printk() function with the KERN_DEBUG and KERN_INFO

levels as parameters, developers can use the pr_debug() and pr_info() functions,

respectively. Another family of functions specifically designed for device drivers, e.g.

dev_dbg() and dev_info(), automatically include device names in their outputs,

making it easier to identify where log messages are originated from. Table 3.3 lists

12

both sets of functions and their corresponding log levels. Currently, some kernel

components present their own logging functions, which are able to generate messages

with service-specific information. Examples include network device and TI wl1251

drivers, which provide the netdev_*() and wl1251_*() families of logging functions,

respectively. In this thesis, we may refer to logging functions and logging macros

interchangeably.

Table 3.3: New sets of logging functions.

Log level pr_*() function dev_*() function
KERN_EMERG pr_emerg() dev_emerg()
KERN_ALERT pr_alert() dev_alert()
KERN_CRIT pr_crit() dev_crit()
KERN_ERR pr_err() dev_err()
KERN_WARNING pr_warn() dev_warn()
KERN_NOTICE pr_notice() dev_notice()
KERN_INFO pr_info() dev_info()
KERN_DEBUG pr_debug() dev_dbg()

13

Chapter 4

Study Design

4.1 Research Questions

In this study, our goal is to characterize how logging is carried out in the Linux kernel.

To do so, we analyze the project considering three broader aspects: (i) how pervasive

is logging in the Linux kernel and where logging code is located; (ii) how it changes;

and (iii) why it changes. To achieve this goal, we focused on answering the following

research questions.

RQ1 What is the pervasiveness of logging in the Linux kernel?

RQ2 How does the logging code in the Linux kernel evolve?

RQ3 What are the characteristics of changes made to logging code as afterthoughts?

By answering RQ1, we aim to understand whether logging is a practice

consistently adopted by Linux kernel developers or not. Identifying where logging

statements are located can also provide insights into the reasons they are placed in

these locations. With RQ2, in turn, we focus on investigating the life cycle of logging

statements, i.e. when they are created, updated or removed. These two research

questions are similar to questions answered in previous studies [YPZ12; CJ17b].

14

This allow us not only to understand these aspects in a project with distinguished

characteristics but also to contrast obtained results.

Previous research studies classified changes to logging code as code consistent and

afterthought changes [YPZ12; CJ17b]. Consistent changes are those changes made to

logging statements as a result of changes made in other parts of the code. Renaming

a variable used in the logging statement in order to reflect the same modification

in the code is an example of a code consistent change. Afterthought changes, in

turn, are those changes made to logging statements in order to fix or improve the

logging statements in question. In this thesis, we are interested in investigating

afterthought changes to provide insight on the effort required to maintain logging

code. By answering RQ3, we also aim to identify the reasons behind afterthought

changes, which we hope can help researchers and practitioners develop techniques to

prevent, detect and fix such changes automatically.

4.2 Subject Project

In Section 3 we introduced the Linux kernel project, which is the target of our study.

We study the development history between v4.3 1 and v5.3 2 of the Linux kernel,

comprising 285,045 commits. This corresponds to an interval of almost four years of

software development, from November 2015 to September 2019. All releases used in

this study are available in the official Linux kernel repository3.

4.3 Identification of logging functions

Traditional approaches to automatically locate logging statements into the source

code rely on logging functions that are known in advance (e.g., Log4J in Java) or use

regular expression looking for variations of the term ”log”. Although these methods
1https://github.com/torvalds/linux/commit/6a13feb9
2https://github.com/torvalds/linux/commit/4d856f72
3https://github.com/torvalds/linux

15

https://github.com/torvalds/linux/commit/6a13feb9
https://github.com/torvalds/linux/commit/4d856f72
https://github.com/torvalds/linux

have been successfully adopted in previous studies [SNH15; Zhu+15; CJ17b; YPZ12],

we cannot apply them to the Linux kernel. This is because the Linux kernel uses a

wide variety of functions and macros for logging purposes (see Section 3), and it is not

unusual to find situations in which customized calls to these macros are implemented

by particular services (e.g, _enter 4, pr_pic_unimpl 5). Listing 4.1 presents an

example of such a situation. A macro named adsp_dbg() is implemented with the

aim of ensuring the invocation of dev_dbg() with a particular set of parameters and

formatting (lines 2–3), thus preventing the need for the specification of such elements

in further calls (line 5). This type of logging statements cannot be detected unless

we know that adsp_dbg() is a logging function.

1 [...]

2 #define adsp_dbg(_dsp, fmt, ...) \

3 dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)

4 [...]

5 adsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);

6 [...]

Listing 4.1: Logging macro defined in /sound/soc/codecs/wm_adsp.c

In this study, to identify logging functions and macros in the Linux kernel, we take

advantage of the pattern-based method presented by Senna Tschudin et al. [SLM15].

The authors proposed an identification method, which consists of three semantic

patterns that, despite describing general properties when taken individually, are able

to correctly characterize logging functions when combined, yielding a low number of

false positives.

The first pattern states that logging functions should be called at least once inside

an if block that ends with a return statement. The second pattern describes logging

functions as those functions that have at least one string argument, representing a
4https://github.com/torvalds/linux/blob/v5.3/fs/afs/internal.h#L1449
5https://github.com/torvalds/linux/blob/v5.3/arch/x86/kvm/i8259.c#L37

16

https://github.com/torvalds/linux/blob/v5.3/fs/afs/internal.h#L1449
https://github.com/torvalds/linux/blob/v5.3/arch/x86/kvm/i8259.c#L37

log message. Finally, the third pattern requires logging functions to have a variable

number of arguments. Listing 4.2 shows how macro adsp_dbg() satisfies all three

patterns and thus can be considered as a logging function.

1 [...]

2 if (val == 0) {

3 adsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);

4 return 0;

5 }

6 [...]

7 adsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);

Listing 4.2: A logging macro defined in /sound/soc/codecs/wm_adsp.c that

satisfies the identification patterns.

Although, this approach yields good results, it misses logging functions with a

fixed number of arguments (e.g., PRINTK_2 6, PRINTK_4 7) or logging functions that

lack variability in their use. These functions do not satisfy the third pattern. We,

therefore, decided to relax the third pattern by including logging functions that

contain a fixed number of arguments (i.e., the ones that are not overloaded). In

addition to these patterns, we reviewed manually the resulting logging functions

generated in the Linux kernel versions studied in this thesis to ensure their correctness.

Once we know which functions/macros are used for logging, we simply write a script to

detect all calls to these functions/macros to retrieve the specific logging statements.

6https://github.com/torvalds/linux/blob/v5.3/drivers/char/mwave/mwavedd.h#L79
7https://github.com/torvalds/linux/blob/v5.3/drivers/char/mwave/mwavedd.h#L89

17

https://github.com/torvalds/linux/blob/v5.3/drivers/char/mwave/mwavedd.h#L79
https://github.com/torvalds/linux/blob/v5.3/drivers/char/mwave/mwavedd.h#L89

Chapter 5

Empirical Study

In this chapter, we will present results addressing each research questions as stated

in Section 4.1.

5.1 RQ1: What is the pervasiveness of logging in

the Linux kernel?

To examine the pervasiveness of logging in the Linux kernel, we consider its latest

available version when we conducted this study (v5.3). We extract a set of metrics

to quantitatively assess the widespread usage of logging statements with respect

to different levels of granularity (Linux kernel subsystems, files, and programming

constructs) (see Fig. 5.1). We detail these metrics and how they are collected in

Section 5.1.1 and present our results in Section 5.1.2.

5.1.1 Data Gathering and Extraction

To assess the pervasiveness of logging code in Linux kernel, we extracted the number

of lines of source code (SLOC) and the number of lines of logging code (LLOC),

similar to previous studies (e.g., Yuan et al. [YPZ12]). We only included .c files

in our analysis. (Header files were not taken into account). Comments and empty

18

Linux kernel
v5.3

Extract
Metrics

RQ1 Results

Figure 5.1: RQ1 data collection process

lines were removed when measuring SLOC. These metrics were collected considering

different levels of granularity, namely (i) the overall system and subsystem level;

(ii) the file level; and (iii) the programming construct level. The latter comprises

functions, as well as do-while, if, else, else-if, for, switch, and while blocks.

We also computed the Log Density [YPZ12; CJ17b; Zen+19] and Log Ratio metrics

(see Equations 1 and 2). The log density measures the number of lines of source

code per line of logging code, whereas the log ratio measures the number of lines of

logging code per line of source code. For example, a log density of 10 would mean

that for every ten lines of the source code, there is one line of the logging code. A log

ratio of 0.2 means that 20% of the source code consists of the logging code. Table 5.1

summarizes the metrics used to measure the pervasiveness of logging in the Linux

kernel.

Log Density =
SLOC

LLOC
(1)

Log Ratio =
LLOC

SLOC
(2)

5.1.2 Data Analysis

5.1.2.1 System and subsystem level

We analyzed the log density and log ratio in the Linux kernel and its subsystems.

Table 5.2 shows the results. We found that from a total of 13,390,131 lines of source

19

Table 5.1: Metrics used to answer RQ1

Metric Description

SLOC Number of lines of source code excluding comments and empty lines

LLOC Number of lines of logging code

Log Density The number of lines of source code per line of logging code

Log Ratio The percentage of number of lines of logging code per source line of code

code, 3.73% are lines of logging code. It is equivalent to a logging density of 27,

which means that for every 27 lines of source code in the Linux kernel, we have one

line of the logging code. This finding is in line with that from Yuan et al. [YPZ12],

which reported an average log density of 30 for four C/C++ applications. On the

other hand, this result differs from the study of Chen et al. [CJ17b], which reported

an average log density of 50 for 21 Java applications. Although these results are not

conclusive, they suggest that the language in which the project is written may affect

in the prevalence of logging statements in the source code.

When looking at each subsystem individually, we obtain heterogeneous results.

The log ratio ranges from 1.94% to 4.26%. A deeper look into the components

of the Linux kernel subsystems shows important discrepancies. For example, we

observe that the init component of core subsystem, which consists of only 2,935

SLOC, contains 192 lines of logging code (6.54% log ratio). This is considerably

higher than the other components. This may be explained by the fact that the init

component is responsible for the initialization of the console and other key kernel

services such as the security framework, scheduler, memory allocation [Boo20]. For

these services, it is important to log all possible errors in order to quickly debug

potential failures. However, the idea that critical components are logged the most

does not always hold. Take for example the ipc component from the core subsystem

with the highest log density (498). This component, which contains only six files,

is responsible for setting up the inter-process communication mechanisms on which

the processes rely for communication with each other and coordination. Despite

20

Table 5.2: Summary of metrics collected from the entire system and its subsystems

Subsystem Component SLOC LLOC Log Density Log Ratio

core

lib 106,577 2,296 46 2.15%
kernel 208,000 4,396 47 2.11%
mm 86,921 1,940 45 2.23%
block 31,846 713 45 2.24%
ipc 6,468 13 498 0.20%
init 2,935 192 15 6.54%
virt 16,839 184 92 1.09%

459,586 9,734 47 2.12%

filesystem fs 840,527 35,780 23 4.26%

drivers

drivers 9,358,913 384,269 24 4.11%
sound 765,988 19,673 39 2.57%
security 57,974 1,192 49 2.06%
crypto 52,888 835 63 1.58%

10,235,763 405,969 25 3.97%

net net 746,263 14,490 52 1.94%

arch arch 1,107,992 32,924 34 2.97%

Total 13,390,131 498,897 27 3.73%

being critical, this component is the least logged. Without further studies, we can

only attribute these variations to the fact that different groups of developers are

maintaining each subsystem, and there are no recognized (or common) guidelines on

how to log.

Finding 1: The log density in the Linux kernel v5.3 is 27, i.e., there is

one line of logging code for every 27 lines of the source code. Logging

code represents 3.73% of the total source code, with filesystem and drivers

being the most logged subsystems with a log ratio of 4.26% and 3.97%

and a log density of 23 and 25, respectively.

5.1.2.2 File level

Similar to the previous study [LSS15], we also calculate the log ratio at the file level.

Note that we do not use log density here due to the fact that many files do not

21

contain logging statements. Log density will not make sense in such cases. The log

ratio provides a more accurate measurement by assessing the pervasiveness of logging

across the Linux kernel files. Figure 5.2 shows the results. We found that 94.34% of

the total number of files in the Linux kernel v5.3 have a log ratio between 0% and 10%.

More precisely, 7,134 files (27.64%) do not contain any logging statements, while a

significant number of files (66.70%) have a log ratio greater than 0% and less than or

equal to 10%. Files with a log ratio greater than 10% account for only 5.66% of the

total number of files. We found a very small number of file with a log ratio close to

90%. We manually inspected these files and found that they contain mostly debugging

routines. For example, drivers/scsi/qla4xxx/ql4_dbg.c contains functions, which

dump relevant information about the Linux Host Adapter structure.

Figure 5.2: Value of log ratio at the file level (Total #files = 25,814)

22

Finding 2: We found that 72.36% of the total number of files in the Linux

kernel have at least one logging statement.

5.1.2.3 Programming construct level

In this section, we measure the number of logging statements in program constructs

of the Linux kernel including functions, do-while, if, else, else-if, for, switch,

and while. Determining where logging statements are located can help understand

the purpose they serve. There exist studies that examine the location of logging

statements in source code, among which we found that the work of Pecchia et al.

[Pec+15] very comprehensive in the sense that they measured the number of logging

statements in the same program constructs as the ones listed above. Their work was

on two large C/C++ industrial applications. We followed the same approach and

compared our results to theirs.

Table 5.3 shows the distribution of logging statements in the kernel functions.

We found that from a total of 476,522 functions, 352,045 (73.88%) do not have any

logging statements. For the remaining functions (26.12%), 91.84% of these have the

number of logging statements in the range of one to five. Less than 1% of the total

number of functions have the number of logging statements more than eight.

Table 5.3: Counting of functions by their number of logging statements

#Logging Statements #Functions

0 352,045 (73.88%)
1 64,553 (13.55%)
2 25,823 (5.42%)
3 12,432 (2.61%)
4 7,075 (1.48%)
5 4,432 (0.93%)
6 2,752 (0.58%)
7 1,902 (0.40%)
8 1,282 (0.27%)
≥ 9 4,226 (0.89%)

Total 476,522 (100.00%)

23

Figure 5.3: Distribution of logging statements across different program constructs

24

Figure 5.3 shows the distribution of logging statements in different program

constructs. We found that 55.66% (168,539 out of 302,799) of logging statements are

used inside the if block and 4,585 (1.51%) inside the else-if. Together, they represent

57.17%, which is similar to the study of Pecchia et al. [Pec+15] who reported that

around 60% of the total logging statements are used inside the if blocks. These

logging statements are typically used for logging errors after checking the return

value of function calls.

The logging statements in the else block accounts for 4.16% (12,586 out of total

302,799 logging statements). The switch block, which is another control statement

available in C, we found that they account for 6.05% of the total logging statements.

The logging statements used directly inside loop controls represents only 2.52% of

the total logging statements. The logging statements used directly inside functions

(i.e., not in any of the program constructs) accounts for 30.10% of the total number

of logging statements.

Finding 3: We found that only 26.12% of the functions in the Linux

kernel have one or more logging statements. Further studies, such as the

work from Li et al. [Li+18], are needed in order to understand whether

there is any relationship between topic of source code and it having a

logging statement.

Finding 4: 57.17% of the logging statements are used inside an if and

else-if blocks, while 30.10% are used inside functions directly.

5.2 RQ2: How does the logging code in the Linux

kernel evolve?

In the previous section, we showed that the use of logging code is widespread in

the Linux kernel (3.73% of the Linux kernel source code is logging code). In this

RQ, similar to previous studies [Li+19a; YPZ12; CJ17b], we want to understand how

25

often the logging code changes over various releases of the Linux kernel. We do this by

measuring the number of logging statements that are added, deleted, or updated. In

addition, we examine the type of updates made to logging statements such as changes

to logging message, log level, and logged variables (dynamic part). Similar to RQ1,

we compare our findings to the studies conducted by Yuan et al. [YPZ12] (C/C++

systems) and that of Chen et al. [CJ17b] (Java systems) whenever applicable.

5.2.1 Data Gathering and Extraction

Linux kernel
git repository

Extract
commits

between Linux
kernel v4.3
and v5.3

285, 045
Commits

Code
Revision 1

Code
Revision n

Identify
changes to

logging code
Insert Delete Update

Logging code modifications

Figure 5.4: Retrieving changes to logging statements

5.2.1.1 Use of logging statements

To understand how the use of logging code has changed over various Linux kernel

releases, we study the evolution history between the Linux kernel v4.3 and v5.3,

which represents 22 releases covering the period from November 2015 to September

2019, with a total of 285,045 commits. Given the number of releases and commits,

this dataset is representative of the changes made to logging statements over the

years. For each release, we first identify the logging functions used in that release

using the approach described in Section 4.3. We then retrieve calls to these functions

and calculate the log ratio (LLOC/SLOC) for each release.

26

5.2.1.2 Retrieving changes to logging statements

To understand how logging code evolves in the Linux kernel, we study three types

of modifications made to logging code—log insertion, log deletion, and log update—

similarly to the previous work [YPZ12; CJ17b; Zen+19]. We further divide the

insertion and deletion of logging statements into two categories: logging statements

that are added or deleted along with the addition or deletion of the files.

We use the git rev-list command with --no-merges option to retrieve the

commits. Note that the --no-merges option omits commits with more than one

parent. This is necessary in order to avoid duplicate commits. For each commit, we

extract two adjacent versions of each file that are changed in the commit. We only

consider .c files. Then, in order to generate an edit script representing syntactic

modifications by inferring changes at the level of the abstract syntax tree, we use

GumTree, which is state of the art AST differencing tool [Fal+14]. Figure 5.4 shows

our workflow for retrieving changes to logging statements.

5.2.2 Data Analysis

5.2.2.1 How does the use of logging code evolve over in the Linux kernel?

We first analyze the size of logging code, looking at two perspectives. First, we observe

how the proportion of logging code evolved, measured by the log ratio metric. Second,

we compare the evolution of SLOC and LLOC. The evolution of the log ratio metric

for the Linux system from v4.3 to v5.3 can be seen in Figure 5.5a. It is possible to

observe that it been decreasing over the years. This analysis is complemented by

Figure 5.5b, which indicates how LLOC and SLOC, individually, increased across the

different versions. SLOC and LLOC are normalized using min-max normalization to

fall in the [0, 1] interval.

We can see in Figure 5.5b that the SLOC and LLOC curves follow the same

trend, except v4.11 to v4.18. By going through the Linux kernel changelogs, we found

27

that these inconsistencies seem to be the result of the addition/removal of drivers or

filesystems, which contained a large amount of logging code. The Linux kernel v4.12

added Intel atomisp camera drivers (commit a49d253) and rtl8723bs sdio wifi driver

(commit 554c0a3a). These two changes increased the number of logging statements

by 6,103, which contributed to a sharp increase in the number of lines of logging code.

Similarly, we can see a sudden decrease in SLOC and LLOC between v4.16 and v4.18

releases. After inspecting the Linux kernel v4.18 changelogs, we found that SLOC

of the Linux kernel v4.18 was smaller than its previous release, and that occurred

just three times in the history of the Linux kernel before the release of kernel v4.18.

The reason for this can be attributed to removal of the lustre filesystem (commit

be65f9e) and the atomisp driver (commit 51b8dc51), which earlier contributed to

10,442 logging statements.

From Figure 5.5a and Figure 5.5b, we can see that despite the fact that the newer

versions of Linux kernel contain a higher number of lines of code, the log ratio is

lower than the previous versions. In other words, Linux kernel developers do not

log as much as before if we compare the number of lines of logging code to the

number of lines of the source code. This may be due to the fact that the code has

become more mature over the years, reducing the need to track faults and failures

or to the increase in the number of debugging and tracing tools, which can be used

to diagnose problems as shown by Corbet [Cor16] and Edge [Edg19]. The authors

noticed an increase in the use of tracepoints rather than simple printk() in recent

versions of Linux kernel. The term tracing is used here to show the flow of execution

of specific program constructs, for example, traces of routine calls, system calls, etc.

There exist several studies that investigate the use of traces in software engineering

(e.g., Hamou-Lhadj et al. [HL02; HL04]). An opportunity for future research is to

study the relationship between tracing and logging, two powerful dynamic analysis

approaches.

28

(a) Evolution in the value of log ratio (b) Evolution of SLOC and LLOC

Figure 5.5: Evolution in the use of logging code between Linux v4.3 and v5.3

Finding 5: The log ratio (LLOC/SLOC) has been gradually declining

from v4.3 to v5.3 to go from 4.10% in v4.3 to 3.72% in v5.3, a net reduction

of 9.27%. SLOC and LLOC are closely correlated across most versions of

Linux kernel between v4.3 and v5.3.

Similar to previous studies [Li+19a; YPZ12; CJ17b; Zen+19], to understand how

often a source code revision involves a modification to logging code, we calculate

the ratio of the number of commits that involve modifications to logging code (i.e.,

addition, deletion, or update to the logging statement) to the total number of

commits. Out a total of 285,045 commits, we found that 39,351 (14%) commits

involve modifications to logging code. This result compares to that of the study

of Yuan et al. [YPZ12] on C/C++ systems who found that 18% of the commits they

studied involve log modifications. It is also similar to the results reported by Chen

et al. [CJ17b] who found that there are around 16% of such commits when studying

Java systems.

Finding 6: We found that 14% of commits made between the Linux

kernel versions v4.3 and v5.3 involves modifications to logging code.

29

5.2.2.2 What type of modifications are made to logging statements?

Given that logging code changes over time, we now look at the types of modifications

that are made. Table 5.4 shows the distribution of modifications made to logging code

in terms of the number of logging statements added, deleted, and updated between

Linux versions v4.3 and v5.3. There are 211,437 logging statement modifications, out

of which 24.78% are log updates, 45.99% are log insertions, and log deletions account

for 29.23%. The drivers subsystem alone represents 86.60% of the total modifications

made to logging code, followed by arch (5.47%), and filesystem (3.74%). This is

somewhat expected since the drivers subsystem is considerably larger (over 10 million

SLOC) than the other subsystems, see Table 5.2.

The percentage of log additions in the Linux kernel is similar to the one reported

by Chen et al. [CJ17b] who showed that log additions contribute to 18%~41% of

the total log modifications. A similar result has also been observed by Zeng et al.

[Zen+19] when studying log practices in Android applications (55.5% of the total

modifications). Yuan et al. [YPZ12] did not report the percentage of log additions in

their examination of C/C++ systems.

We found that the number of log deletions accounts for 29.23% of the total

number of modifications made to logging statements. This result differs significantly

from work of Yuan et al. [YPZ12] who reported that the number of log deletions is

only 2% of the total number of modifications. Our result is however similar to that

of Chen et al. [CJ17b] who reported that log deletion contributes to 26% of the total

modifications in Java systems. Such evolution of logging code may adversely impact

the bug triaging process as developers rely on the logs contained in the bug reports

as noted by Ran [Ran19]. The authors found that it is not possible to rebuild the

execution paths for bug reproduction from logs embedded in the bug report in 34%

cases. They also argued that the continuous evolution of system logs could have an

effect on the accuracy of log processing tools and machine learning models deployed

for identifying anomalous activities, as models need to be retrained whenever logging

30

statements are changed.

To drill down, we categorized log addition and deletions into two categories: added

along with the addition of a new file and deleted along with the deletion of an existing

file. Table 5.5 shows a detailed breakdown. We found that 55.77% of all log insertions

were made along with the addition of new files. Similarly, we found that 55.34% of

the deleted logging statements were deleted along with the deletion of existing files.

Table 5.4: Distribution of modifications made to logging statements

Subsystem Insertion Deletion Update
arch 3,987 4,620 2,962
core 1,863 647 1,700
driver 87,125 53,235 42,748
fs 2,776 1,626 3,502
net 1,490 1,677 1,479

Total 97,241 (45.99%) 61,805 (29.23%) 52,391 (24.78%)

Table 5.5: Breakdown of logging statements added or deleted along with the file

Subsystem Added with a new file Deleted with an existing file
arch 1,289 3,038
core 614 84
driver 51,178 30,452
fs 833 409
net 320 218

Total 54,234 (55.77%) 34,201 (55.34%)

Finding 7: Out of the 211,437 logging statements modifications, 24.78%

are log updates, 45.99% are log insertions, and 29.23% are log deletions.

The majority of changes to logging code (86.60%) are made in the drivers

subsystem.

5.2.2.3 Which updates are made to logging statements?

We now proceed to a deeper analysis of log changes, analyzing how log statements are

updated. We classify log updates into three categories depending on which part of the

31

logging statement has been modified including the logging function (or macro), the

static content representing the log message, the log level, and the dynamic content,

i.e., the variables and function calls. Table 5.6 reports the results. Note that one

update may consist of one or more changes to the same logging statement. For

example, if the log function and the static content of one logging statement have

changed, this will be counted as two updates. This explains why the total number of

log updates can be higher than the total number of updated logging statements. We

next analyze the different categories of updates.

Table 5.6: Distribution of updates made to logging statements

Subsystem Logging function Dynamic content Static content
arch 1,226 1,284 2,014
core 606 721 979
driver 15,685 28,501 23,127
fs 1,344 1,863 2,422
net 435 952 809

Total 19,296 (36.83%) 33,321 (63.60%) 29,351 (56.02%)

Changes made to the logging function: Of the 52,391 updated logging

statements, 19,296 (36.83%) include modifications to the logging functions that were

used as shown in Table 5.7. We only show important changes in this table, which we

define as changes that appear at least 100 times. Showing all the changes will take

too much space without necessarily adding much value to the analysis.

The analysis of the changes to the logging functions revealed that 6,512 (33.75%)

of these updates are changes between printk, pr_<*>, and dev_<*> macros. For

example, in commit 26a0a10, a developer updated logging statements from printk to

using device-aware dev_err()/dev_info() logging functions to improve the precision

of the resulting logs by including device-specific information. This is further cemented

by an observation that there has been a steady decrease in the usage of the printk()

function, with a usage reduction of 29.32% between version 4.3 and 5.3 of the Linux

kernel. On the other hand, we find that the use of pr_*() and dev_*() functions is

32

gradually increasing, as more and more printk() call sites are now being converted

to use them [Cor12].

We also found an increasing use of so-called ”rate limited” logging functions

such as the <*>[_once/_ratelimited] 1 family of macros, which can be seen in

commit 527aa2a, where all calls to pr_info were converted to pr_info_ratelimited.

The objective of this type of functions is to prevent overloading the log buffers by

controlling the amount of logs generated in a given period of time.

Moreover, we observed that many changes to logging functions are triggered by

the need to make them more concise. For example, in commit 466414a, a developer

introduced btc_alg_dbg and btc_iface_dbg logging macros, and converted all calls

to BTC_PRINTK to the new logging macros (btc_<*>_dbg). The benefit is that software

developers do not have to specify btc_msg_type in the function argument, resulting

in more concise logging statements. Ten months later, in commit 10468c3, all calls

to btc_<*>_dbg were again changed to another logging function, named RT_TRACE,

to be consistent with the use of this function in other drivers.

We thus conclude from the above observations that changes to logging functions

are aimed at improving the quality of the logging output by either enhancing precision,

conciseness, or consistency. However, after analyzing many commits related to log

updates, we could not find any evidence that there was a Linux-wide strategy, which

suggests that these updates are a result of pre-established guidelines. It appears that

the decision on how to log is left to the discretion of the developers.

Finding 8: The changes to logging functions are triggered by the need to

improve the quality of the logging output by either enhancing precision,

conciseness, or consistency.

The second reason for logging function modification is changing the severity of

logging statements by specifying log levels. The printk function allows one of the

eight log levels defined in /include/linux/kern_levels.h. For example,
1https://github.com/torvalds/linux/blob/v5.3/include/linux/printk.h#L418

33

https://github.com/torvalds/linux/blob/v5.3/include/linux/printk.h#L418

Table 5.7: Frequency of changes made to logging functions (frequency > 100)

Old logging function New logging function Frequency

printk pr_err 950
printk pr_info 881
BTC_PRINT btc_alg_dbg 663
btc_alg_dbg RT_TRACE 621
printk pr_cont 606
printk pr_warn 591
PDEBUG gspca_dbg 477
pr_err dev_err 440
pr_info ioc_info 418
PDBG pr_debug 392
dev_err DRM_DEV_ERROR 387
pr_debug dev_dbg 369
test_msg test_err 345
brcmf_err bphy_err 315
RT_TRACE pr_err 275
pr_warning pr_warn 262
pr_err ioc_err 231
printk pr_debug 226
BT_ERR bt_dev_err 205
DTRACE dml_print 173
PRINT_ER netdev_err 169
dev_dbg musb_dbg 163
pr_info dev_info 161
SSI_LOG_DEBUG dev_dbg 156
BUGMSG arc_printk 153
SSI_LOG_ERR dev_err 152
dev_info dev_dbg 151
dev_err dev_dbg 146
DRM_ERROR DRM_DEBUG 145
dev_info pci_info 139
PERR gspca_err 129
btc_iface_dbg RT_TRACE 119
BTC_PRINT btc_iface_dbg 119
pr_info pr_debug 119
gvt_err gvt_vgpu_err 118
DRM_ERROR DRM_DEV_ERROR 104
pr_warn dev_warn 102
pr_info pr_info_ratelimited 102
pr_err pr_debug 100

34

printk(KERN_ERR "GCT Node MAGIC incorrect - GCT invalid\n");

However, the new set of logging API introduced in Linux kernel 1.3.982 embedded

log levels into the function names, such as pr_debug and pr_info.

Table 5.8 provides the distribution of changes made to the severity of logging

statements. If the developer updates a logging statement to use a new logging

function, while keeping the same log level, we do not consider this change as a log level

change. As stated in previous work [YPZ12], developers often fail at determining how

critical an error is in the first attempt. This observation is confirmed by the finding

from our study that, out of total 4,127 log level changes, approximately 1/3 of the

total log level changes were between ERR and DEBUG log levels. Specifically, 720

(17.45%) logging statements lowered the severity of the log message from ERR to

DEBUG, and 616 (14.93%) from ERR from DEBUG. We found a total of 1,522

(36.88%) instances where developers increased the severity of a logging statement to

increase their visibility. In addition, logging debugging messages at the ERROR level

would result in log flooding, making it difficult to diagnose the real problems. We

found that a total of 2,605 (63.12%) instances where developers reduced the severity

of a logging statement in order to prevent log flooding. In fact, of these 4,127 log

level modifications, 3,832 (92.85%) changes are between ERR, WARNING, INFO,

and DEBUG log levels.

Finding 9: We found that 92.85% of the changes of log levels are between

ERR, WARNING, INFO, and DEBUG log levels, suggesting that it is

difficult for Linux developers to decide on which log level to use.

Changes made to the dynamic content: Of the 52,391 updated logging

statements, 33,321 (63.60%) include modifications to the dynamic content (i.e.,

variables and function calls). Yuan et al. [YPZ12] found that developers often add

variables into existing logging statements as afterthoughts, which can aid in the failure
2https://repo.or.cz/davej-history.git?a=commit;h=aa66269c

35

https://repo.or.cz/davej-history.git?a=commit;h=aa66269c

Table 5.8: Breakdown of the log level changes made between Linux kernel v4.3 and
Linux kernel v5.3.

Old
New EMERG ALERT CRIT ERR WARN NOTICE INFO DEBUG

EMERG 0 1 10 51 30 0 1 0
ALERT 0 0 6 8 10 0 0 0
CRIT 1 0 0 8 3 0 0 0
ERR 1 0 5 0 242 19 195 720
WARN 22 2 14 343 0 14 336 346
NOTICE 0 0 0 10 5 0 21 22
INFO 1 0 1 188 62 23 0 562
DEBUG 0 0 0 616 77 6 145 0

diagnosis process. However, changes to dynamic content represented only 27% of all

log modifications in their study. [YPZ12].

Our finding is; however, in line with the study of [Li+19a] on 12 C/C++ open-

source projects, where the authors found that 69.1% revisions made modifications to

the dynamic content of logging statements. This high number regarding changes

to dynamic content has also been observed by Chen et al. [CJ17b] and Zeng et

al. [Zen+19] where they studied server/desktop application and android application

written in Java, respectively.

One possible explanation for this high number of changes of the logging statement

dynamic content in Linux kernel can be seen in commit 6be9005, where the developer

switched to DRM_DEV_DEBUG_<*> instead of DRM_DEBUG. DRM_DEV_DEBUG_<*> are

device-aware logging macros and they require struct *device as an argument to

include device name in the log output. In order to help developers decide which

variables should be included in the logging statement, a recent study by Liu et al.

[Liu+19] proposed a deep learning-based approach which achieved an average MAP

score of 0.84 on nine open-source Java projects. Such approaches tailored to the Linux

kernel domain could be helpful to alleviate this problem of what information should

be included in the logging statement.

Changes made to the static content: 56.02% of the 52,391 changed logging

36

statements include modifications to the static content (i.e., the log message). A

similar result has also been observed by Chen et al. [CJ17b] and Yuan et al. [YPZ12]

who reported a range of 14%~65% and 18%~56%, respectively. Prior studies list

fixing inconsistency, clarification, and spelling/grammar mistakes as the major causes

of this type of modifications [CJ17b; YPZ12; CJ19]. Deep learning based approaches

similar to Panthaplackel et al. [Pan+20] should be explored to automatically update

the static text in the logging statements based on changes made to the surrounding

source code.

Finding 10: We found that 63.60% of the updated logging statements

made modifications to the dynamic content, while 56.02% made changes

to the static content.

5.3 RQ3: What are the characteristics of changes

made to logging code as afterthoughts?

A change to logging code is considered as an afterthought if the change explicitly

addresses a bug caused by or is used to enhance the logging code [YPZ12; CJ17b].

Afterthought changes are different from log updates seen in RQ2. In RQ2, a change

to a logging statement can be triggered by changes to other parts of the code. For

example, if the developer changes the name of a variable that is logged, then change

to the corresponding logging statement is needed. Afterthought changes, on the other

hand, take the form of commits that explicitly target logging statements to fix bugs

caused by these statements or for enhancement purposes. It is essential to study

afterthought changes because they add to the overall maintenance effort. Having a

large number of afterthought log changes may defeat the very purpose of logging,

which is to reduce the maintenance effort by facilitating debugging and other failure

diagnosis tasks.

An example of a commit addressing a problem associated with logging code can

37

be seen in Listing 5.1, where an error message is displayed by the thinkpad_acpi

driver when brightness interfaces are not supported, encouraging the user to contact

IBM for this problem. However, according to the developer who handled this

commit, back-light interfaces on newer devices are supported by the i915 driver.

The developer decided to change the log level from ”error” to ”info” to reduce the

visibility of the log message. Another example can be seen in commit e404f94. In

this revision, the developer decided to enhance the existing logging statements by

including qp_num(qp) in debug messages in order to improve debugging tasks.

--- a/drivers/platform/x86/thinkpad_acpi.c

+++ b/drivers/platform/x86/thinkpad_acpi.c

@@ -6459,8 +6459,7 @@ static void __init

↪→ tpacpi_detect_brightness_capabilities(void)

pr_info("detected a 8-level brightness capable ThinkPad\n");

break;

default:

- pr_err("Unsupported brightness interface, "

- "please contact %s\n", TPACPI_MAIL);

+ pr_info("Unsupported brightness interface\n");

tp_features.bright_unkfw = 1;

bright_maxlvl = b - 1;

}

Listing 5.1: Commit d618651 - thinkpad_acpi: Don’t yell on unsupported

brightness interfaces

To understand the nature of afterthought changes made to logging code, we

conduct a qualitative analysis in which we manually examine the corresponding fixes

provided by the Linux kernel developers. The ultimate goal is to gain deep insight into

the reasons behind these changes, which we hope can help developers and researchers

design new approaches and tools to prevent these problems in the first place. We detail

38

the data extraction process in Section 5.3.1 and present our results in Section 5.3.2.

5.3.1 Data Gathering and Extraction

14, 427
commits

which involve
the update
of logging
statements

Manual
inspection

4, 323 commits
which are
fixes/im-

provements to
logging code

900 commits

R
andom

sam
pling

Qualitative
analysisRQ3 Results

Figure 5.6: RQ3 data collection process

Considering the 14,427 commits used for answering RQ2, not all aim to provide

fixes or improvements to logging code, which is the type of change in logging code

that we are interested in to answer RQ3. To identify those that are afterthought

log changes, previous studies [Has+18; Maz+20], rely on a keyword-based approach

by searching for commits that contain in their message variations of the word “log”.

This strategy may miss many commits in the Linux kernel such as the one described

above.

In this study, the author of the thesis manually examined all 14,427 commits

by reading the commit titles and messages if necessary. He identified that 4,323

commits out of 14,427 commits that explicitly discuss changes to logging statements.

This task took several weeks to complete and required multiple iterations. He then

selected randomly 900 commits out 4,323 for the qualitative analysis. This subset is

statistically representative with a confidence level of 99% and a margin of error of

±4% [Bos12].

39

5.3.2 Data Analysis

To analyze the resulting 900 commits, for each commit, the author reviewed

the commit message, the commit diff, related artefacts such as bug reports, and

discussions on the Linux kernel mailing lists, if available. He classified the reasons

behind these afterthought changes into 13 categories, which were reviewed and

validated by two more researchers. These categories are shown in Table 5.9 and are

discussed in more detail in the subsequent sections. We also provide recommendations

to prevent the type of problems depicted in these categories.

Table 5.9: Characterization of fixes to the problematic logging code

Reason for the change #Commits

Improving debuggability 92
Reword ambiguous/misleading logging message 62
NULL pointer dereference 13
Spelling/Grammar mistakes 171
Fix incorrect loglevel 156
Formatting issues 71
Modernize logging code 163
Fix early logging 9
Copy-Paste mistakes 6
Logging wrong information 28
Revealing kernel pointers 16
Remove redundant information 31
Fix format specifier 125

Total 900

5.3.2.1 Improving debuggability

We found that 10.22% of the studied commits are about improving debuggability

by adding information to logging code with the aim of reducing the time needed to

diagnose program failures. This is in line with the finding of Yuan et al. [YPZ12],

where the authors stated that developers often add information to the existing logging

statements to narrow down the root causes of the underlying problems. For example,

40

in commit d0de579, the developer mentioned: ”Identify Namespace failures are logged

as a warning but there is not an indication of the cause for the failure. Update the

log message to include the error status”. Another example is commit 077c066, which

added a local variable idx, representing a section index, to the logging statement as

shown in Figure 5.7. The reason for this change is given by the developer as: ”While

debugging a bpf ELF loading issue, I needed to correlate the ELF section number

with the failed relocation section reference. Thus, add section numbers/index to the

pr_debug.”.

We also found many cases where developers added logging statements to record

additional runtime information. One example of this can be seen in commit 9ef8690,

where the developer inserted few additional logging points in order to make errors

more visible: ”The NCSI driver is mostly silent which becomes a headache when trying

to determine what has occurred on the NCSI connection. This adds additional logging

in a few key areas such as ...”.

Recommendation: To prevent these changes, we recommend that

developers provide beforehand detailed information on where the failures

are located and any other information relevant to failure that can facilitate

debugging. Including error code in the logging statement, if available, is

always a good idea.

tools/libbpf: improve the pr_debug statements to contain
section numbers | linux@077c066
pr_warning("failed to alloc name for prog under section %s\n", section_name);

pr_warning("failed to alloc name for prog under section(%d) %s\n", idx,
↪→ section_name);

Figure 5.7: Example of adding information to a log message to improve debuggability

41

5.3.2.2 Reword ambiguous/misleading logging messages

Ambiguity in an error message can delay the process of diagnosis as it does not allow

end-users to easily uncover the part of the programs that failed. One example of this

is shown in Figure 5.8. Here, the developer chose to use the full register name in the

error message because a short version of the register name may be ambiguous when

diagnosing a fault. A similar example can be found in commit 2e5d04dad where

the iwlagn driver uses exactly the same error message in three different functions.

Therefore, the developer chose to add the name of the function to the error string to

disambiguate from where the error originated.

ASoC: tas6424: Print full register name in error message |
linux@919869214
dev_err(dev, "failed to read FAULT1 register: %d\n", ret);

dev_err(dev, "failed to read GLOB_FAULT1 register: %d\n", ret);

Figure 5.8: Example of an ambiguity in a log error message

Another common problem is the ambiguity of a log message, which can be very

misleading during the analysis phase. Figure 5.9 shows an example where the earlier

log message did not consider the fact that while we were unable to use DMA, we

could still complete the transfer by PIO mode. The log message "failed to start

DMA" is being printed with the error log level, which might mislead users to think that

a fatal error occurred.

Developers often reword the logging message to make the logs more informative

and facilitate analysis. An example from this category is shown in Figure 5.10,

where developers decided to reword NULL pointer dereference message. The logging

message was modified to drop ”unable to handle” from the message. As it might

imply that in some cases the kernel actually handles NULL pointer dereference, which

is not valid. A similar example is found in commit 135e535, where the developer

42

mmc: dw_mmc: fix misleading error print if failing to do
DMA transfer | linux@d12d0cb
/* We can't do DMA */
dev_err(host->dev, "%s: failed to start DMA.\n", __func__);

/* We can't do DMA, try PIO for this one */
dev_dbg(host->dev, "%s: fall back to PIO mode for current transfer\n",

↪→ __func__);

Figure 5.9: Example of an error message which may mislead end-users

clarified an error message to avoid user confusion. He reported that: ”Some user

who install SIGBUS handler that does longjmp out therefore keeping the process alive

is confused by the error message [188988.765862] Memory failure: 0x1840200

: Killing cellsrv:33395 due to hardware memory corruption Slightly modify

the error message to improve clarity.” In conclusion, poorly worded log messages may

lead to user confusion and fixing these logs takes up maintenance time and effort.

Another issue that may have contributed to ambiguity is logging statements with

the same static text in a single file. This practice of duplication in logging code was

rightfully reported by Li et al. [Li+19b] as a logging code smell. One example of this

practice is depicted in commit a15e824 and commit 90cc7f1, where the developer

added additional information so that log messages can be uniquely identified using

search techniques.

Recommendation: To avoid this type of log-related changes, we

recommend putting in place a review process, just like for reviewing other

parts of the code. This task can be done before accepting the commits.

Including the review of log statements during the code review phases is

also another possibility.

43

x86/fault: Reword initial BUG message for unhandled
page faults | linux@f28b11a
pr_alert("BUG: unable to handle kernel %s at %px\n",

address < PAGE_SIZE ? "NULL pointer dereference" : "paging request", (void
↪→ *)address);

if (address < PAGE_SIZE && !user_mode(regs))
pr_alert("BUG: kernel NULL pointer dereference, address = %px\n", (void *)

↪→ address);
else

pr_alert("BUG: unable to handle page fault for address = %px\n", (void *)
↪→ address);

Figure 5.10: Example of clarifying an error message to avoid user confusion

5.3.2.3 NULL pointer dereference

We found 1.44% cases where a developer attempted to dereference a pointer which

may have a NULL value or a variable which may not be initialized. A NULL

pointer dereferencing causes a runtime crash. Figure 5.11 shows an example. This

fix occurred in commit 95d2a32 and the message reads as follow: ”A null pointer

dereference will occur when skb is null and skb->dev->name is printed. Replace

the skb->dev->name with plain text ks_wlan to fix this.”. To prevent this type of

problems, developers should incorporate tools such as Coccinelle 3 in their workflow

for detecting dereferences of NULL pointers.

Recommendation: A potential NULL pointer dereferencing can be

avoided by adding automatic checks to logged variables, and function

return values that are used as logging statements arguments.

5.3.2.4 Spelling/Grammar mistakes

19% of the 900 studied log updates are caused by spelling or grammar mistakes.

Figure 5.12 shows an example where the word ”synchronously” was misspelt as
3http://coccinelle.lip6.fr/rules/#null

44

http://coccinelle.lip6.fr/rules/#null

staging: ks7010: don’t print skb->dev->name if skb is null |
linux@95d2a32
printk(KERN_WARNING "%s: Memory squeeze, dropping packet.\n",

skb->dev->name);

printk(KERN_WARNING "ks_wlan: Memory squeeze, dropping packet.\n");

Figure 5.11: Example of NULL pointer dereference in a logging statement

”synchronuously” in the static text. Another example can be seen in commit 748ac56.

To correct a grammatical mistake, the static text was changed from "Failed to

registered ssb SPROM handler" to "Failed to register ssb SPROM handler".

We also noticed that there is a lack of any kind of standardization over the use of

capitalization, grammatical style, punctuation, etc.

Recommendation: It is recommended to use a spell checker, as provided

by many IDEs. This is an initial step to prevent the need for this kind of

corrections. Additional tools for grammar checking could be embedded in

current IDEs. Guidelines for a common writing style should be developed

and promoted. Tools such as kernelscan should be incorporated into

build pipelines. 4

usbip: vhci: fix spelling mistake: ”synchronuously” →
”synchronously” | linux@cb48326
dev_dbg(&urb->dev->dev, "urb seq# %u was unlinked %ssynchronuously\n", seqnum

↪→ , status == -ENOENT ? "" : "a");

dev_dbg(&urb->dev->dev, "urb seq# %u was unlinked %ssynchronously\n", seqnum,
↪→ status == -ENOENT ? "" : "a");

Figure 5.12: Example of a simple spelling mistake in a debugging message

4https://github.com/ColinIanKing/kernelscan

45

https://github.com/ColinIanKing/kernelscan

5.3.2.5 Fix incorrect log levels

We found 17.33% cases where developers failed to make a distinction between fatal

errors and errors that are recoverable, which have led to changes to log levels. Using

a non-error log level for logging error conditions would make it hard to diagnose such

errors as the corresponding error messages would go unnoticed. Likewise, logging

debugging messages as errors will also result in a flood of log messages making it

hard to concentrate on the real problems.

i2c: imx: notify about real errors on dma
i2c_imx_dma_request | linux@5b3a23a
dev_dbg(dev, "can't configure rx channel\n");

dev_err(dev, "can't configure rx channel (%d)\n", ret);

Figure 5.13: Example of increasing the severity of a logging statement to enhance
visibility

One such example is shown in Figure 5.13, where the developer mentioned that

”... In contrast real problems that were only emitted at debug level before should be

described at a higher level to be better visible and so understandable.”. Thus, the

developer decided to change the log level from ”debug” to ”error”.

Developers need to carry out logging activities taking into account performance

constraints [Din+15; Sig+10]. One of the most frequent issues is log spamming, which

often leads to the degradation of system performance. One example of this category

can be seen in commit 7f20d83, where the developer downgraded the log message to

”debug” level to suppress frequent ”VTU miss violations” messages, as ”VTU miss

violations” are rather common.

46

Recommendation: Even though the existing description of log levels

in the Linux kernel provides guidance on how they should be used, a

suggestion is to detail it even more. For instance, the error level should

only be used in situations in which components may fail and compromise

system operation. There is clearly a need for more detailed guidelines on

how to use log levels.

5.3.2.6 Fix format specifiers

We found 13.89% of the 900 studied revisions are the result of using improper format

specifiers in logging statements. 5 A typical issue related to printk format specifier

is shown in Figure 5.14. Here, the developer decided to use the %pS printk format

specifier for printing symbols from direct addresses. Moreover, the explanation for this

change was given as ”This is important for the ia64, ppc64 and parisc64 architectures,

while on other architectures there is no difference between %pS and %pF. Fix it

for consistency across the kernel.”. It appears that the majority of this type of

changes are motivated by the intention to fix build warnings, which developers should

have addressed at the commit-time. We found that developers often get around

using proper format specifier by resorting to unnecessary casts. 6 This practice was

rightfully reported by Chen et al. [CJ17a] as a logging anti-pattern.

ti_sci: Use %pS printk format for direct addresses |
linux@595f3a9
dev_err(dev, "Mbox timedout in resp(caller: %pF)\n", (void *)_RET_IP_);

dev_err(dev, "Mbox timedout in resp(caller: %pS)\n", (void *)_RET_IP_);

Figure 5.14: Example of change to format specifier for consistency with other parts
of the Linux kernel

5https://www.kernel.org/doc/Documentation/printk-formats.txt
6https://github.com/torvalds/linux/commit/3fcb3c836ef413d3fc848288b308eb655e08d853

47

https://www.kernel.org/doc/Documentation/printk-formats.txt
https://github.com/torvalds/linux/commit/3fcb3c836ef413d3fc848288b308eb655e08d853

Recommendation: There exist static analysis tools such as smatch 7

and sparse 8 that are useful at detecting incorrect format specifiers.

Developers should consider using these tools to detect this type of problems

at commit-time rather than fixing the corresponding code as afterthought.

5.3.2.7 Modernize logging code

We found 163 commits (18.11%) that were the result of ongoing modernization of

logging code. Usually, such improvements do not address severe problems associated

with the logging code; instead, they arise from attempts to improve the consistency

of logging code across various parts of the Linux kernel. One such change is the use of

device-managed logging macros in order to simplify error handling, reduce source code

size, improve readability, and/or reduce the risks of bugs. Another improvement is

the use of __func__ and pr_fmt rather than hard-coding function names and module

names in error messages. For example, in commit a8ab042, the developer mentioned:

”Instead of having the function name hard-coded (it might change and we forgot to

update them in the debug output) we can use __func__ instead and also shorter the

line so we do not need to break it.”. As Yuan et al. [YPZ12] pointed out, inconsistency

in the function names referred in the log message is one of the main reasons for behind

changes made to logging code.

Recommendation: Enforcement of simple practices such as no hard-

coded module names or function names in the error message at the commit-

time could go a long way.

5.3.2.8 Fix early logging

Out of 900 commits, we found 9 cases in which log messages refer to devices before

they are registered. These logs contain messages referring to "(unnamed net device)
7https://repo.or.cz/w/smatch.git
8https://sparse.wiki.kernel.org/

48

https://repo.or.cz/w/smatch.git
https://sparse.wiki.kernel.org/

(uninitialized)", which lead to logs that may confuse end-users. Figure 5.15 shows

a fix to one of these problems.

Recommendation: Developers should only use the device or network-

specific logging macros after checking that the devices were correctly

initialized and registered. Besides, static analysis tools can be used to

check that all variables are initialized before they are used for logging.

staging: fsl-dpaa2/eth: Don’t use netdev_err too early |
linux@0f4c295
netdev_err(net_dev, "Failed to configure hashing\n");

dev_err(dev, "Failed to configure hashing\n");

Figure 5.15: Example of a simple early logging mistake

5.3.2.9 Copy-Paste mistakes

We noticed six instances where developers were trying to save time by copying

and pasting a few snippets of code; however, they forgot to make the necessary

modifications. One such example is shown in Figure 5.16. In the gpbridge_init

method, the developer entered an incorrect logging message, caused by a simple

copy/paste mistake. In this case, it seems that the developer copied line if

(gb_usb_protocol_init()) and corrected it. However, the debugging statements

were not updated accordingly.

Recommendation: Developers should avoid copying and pasting logging

statements. If they do not match the targeted subject, they may confuse

and mislead developers when debugging and analyzing logged messages.

49

greybus: gpb: Fix print mistakes | linux@b908dec
if (gb_usb_protocol_init()) {

pr_err("error initializing usb protocol\n");
goto error_usb;

}
if (gb_i2c_protocol_init()) {

pr_err("error initializing usb protocol\n");
goto error_i2c;

}

if (gb_usb_protocol_init()) {
pr_err("error initializing usb protocol\n");
goto error_usb;

}
if (gb_i2c_protocol_init()) {

pr_err("error initializing i2c protocol\n");
goto error_i2c;

}

Figure 5.16: Example of incorrect logging message due to a simple copy/paste
oversight

5.3.2.10 Logging wrong information

We found 28 cases where developers specified the wrong variables as arguments of

the logging function calls. The root causes of these issues are simple copy/paste

mistakes or typographical errors 9. One example of this shown in Figure 5.17.

In this case the developer first checks the condition btrfs_dir_name_len(leaf,

dir_item) > namelen and if it is true, report the name_len of dir_item in the error

message. By mistake, however, the developer ended up reporting data_len instead

of name_len. Such errors are difficult to detect using static analysis tools, since both

btrfs_dir_name_len and btrfs_dir_data_len have the same return type.

Recommendation: Developers should review the logging statement just

like any other part of the code.

9https://cwe.mitre.org/data/definitions/688.html

50

https://cwe.mitre.org/data/definitions/688.html

btrfs: tree-log.c: Wrong printk information about namelen
| linux@286b92f
btrfs_crit(fs_info, "invalid dir item name len: %u", (unsigned)

↪→ btrfs_dir_data_len(leaf, dir_item));

btrfs_crit(fs_info, "invalid dir item name len: %u", (unsigned)
↪→ btrfs_dir_name_len(leaf, dir_item));

Figure 5.17: Example of reporting wrong information in the logging statement

5.3.2.11 Revealing kernel pointers

Missing key/vital information from log messages can delay the diagnosis process.

However, revealing sensitive information such as cryptographic keys or kernel

addresses can lead to information leaks 10. We found 16 commits, which mentioned

these cases. On example can be seen in commit 9cdf0ed where the commit message

reads as ”Printing raw kernel pointers might reveal information which sometimes we

try to hide (e.g. with Kernel Address Space Layout Randomization). Use the ”%pK”

format so these pointers will be hidden for unprivileged users.”. Other examples of such

cases can be seen at CVE-2018-5995 11 and CVE-2018-7273 12, where developers print

kernel addresses into logs which can allow an attacker to extract sensitive information.

The problem of accidental data leakage through the misuse of logs has recently been

examined by Zhou et al. [Zho+20]. The authors showed that logs could reveal sensitive

information in Android apps. Similar studies should be conducted for larger systems

such as the Linux kernel to understand the extent of this serious problem. Research

tools such as KALD [Bel+19] should be included into Linux kernel development

pipeline.
10https://cwe.mitre.org/data/definitions/200.html
11https://nvd.nist.gov/vuln/detail/CVE-2018-5995
12https://nvd.nist.gov/vuln/detail/CVE-2018-7273

51

https://cwe.mitre.org/data/definitions/200.html
https://nvd.nist.gov/vuln/detail/CVE-2018-5995
https://nvd.nist.gov/vuln/detail/CVE-2018-7273

Recommendation: Tests should be put in place to verify that logs do not

accidentally cause security and data privacy breaches. This effort should

adhere to the broader task of ensuring the security of the Linux kernel.

drm/exynos: Print kernel pointers in a restricted form |
linux@9cdf0ed
dev_dbg(dev, "< xfer %p: tx len %u, done %u, rx len %u, done %u\n", xfer,

↪→ length, xfer->tx_done, xfer->rx_len, xfer->rx_done);

dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n", xfer,
↪→ length, xfer->tx_done, xfer->rx_len, xfer->rx_done);

Figure 5.18: Example of revealing raw kernel pointers

5.3.2.12 Remove redundant information

We found 31 cases in which developers report information that is not needed or

is redundant. One illustration of this case found in commit 2bcfdc2 is shown

in Figure 5.19 where the developer removed uuid from the debug messages in

bus-fixup.c as this was already part of the device name. Another common pattern

that we observed is the removal of __func__ from dev_dbg() calls. The reason for

this change is given in commit b814735 as ”Dynamic debug can be instructed to add

the function name to the debug output using the +f switch, so there is no need for the

nfit module to do it again. If a user decides to add the +f switch for nfit’s dynamic

debug this results in double prints of the function name Thus remove the stray

__func__ printing.”. In addition, removing __func__ from dev_*() callsites helps

reduce the Linux kernel size as pointed out by Wolfram Sang, the current maintainer

of the Linux I2C subsystem. 13

13https://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux.git/commit/?h=
strings/rtc-no-func&id=762c5af234c5b816b7da3687a3e703cf8cdc2214

52

https://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux.git/commit/?h=strings/rtc-no-func&id=762c5af234c5b816b7da3687a3e703cf8cdc2214
https://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux.git/commit/?h=strings/rtc-no-func&id=762c5af234c5b816b7da3687a3e703cf8cdc2214

Recommendation: Developers should strive for writing concise logging

statement to prevent redundant information. Automatic tools can be

developed to detect redundancies. However, some redundancies may

require domain knowledge. These can be detected by developers when

reviewing the code.

mei: bus: remove redundant uuid string in debug messages
| linux@2bcfdc2
dev_dbg(&cldev->dev, "running hook %s on %pUl\n", __func__, mei_me_cl_uuid(

↪→ cldev->me_cl));

dev_dbg(&cldev->dev, "running hook %s\n", __func__);

Figure 5.19: Example of reporting redundant information

5.3.2.13 Formatting issues

We found 71 cases where developers fix the formatting of log messages. Poorly

formatted messages make it difficult to search for matching text in the log file. We can

see this issue in commit a790634 where certain messages were appearing on separate

lines resulting in a strange output. This was fixed using line continuations where

necessary. Another issue that falls under this group is that developers frequently

break log message strings over several lines to meet the checkpatch’s 80 characters

per line restriction. According to commit 4bd69e7b, this is no longer considered a

good practice, because it makes it more difficult to grep for strings at the source

code.

Recommendation: Developers should avoid breaking log message lines

to facilitate post-mortem analysis of the logs.

53

Chapter 6

Discussions and Threats to Validity

In Section 6.1, we discuss our findings and implications. In Section 6.2, we discuss

threats to the internal and external validity of our work.

6.1 Discussions

Logging is pervasive in the Linux kernel, as 3.73% of the Linux kernel source is

logging code. However, when we evaluate the pervasiveness of logging as file and

method level, we find that distribution of logging code is very skewed, suggesting

that certain aspects of the Linux kernel are more likely to have logging code than

others. It would be interesting to assess the correlation between log ratio of a method

and cyclomatic complexity of a method in future studies. We also find that many

old drivers and file-systems have custom logging macros 1 defined to trace function

entry/exit. Even though tools like ftrace can be used to trace Linux kernel function

calls, use of logging statements for function tracing is still prevalent.

In the Linux kernel, logging code is actively maintained. Although only 3.73%

of the Linux kernel source is logging code, we find that 14% of commits related

to Linux kernel versions 4.3 to 5.3 involves modifications to logging code resulting
1https://github.com/torvalds/linux/blob/v5.3/fs/afs/internal.h#L1449

54

https://github.com/torvalds/linux/blob/v5.3/fs/afs/internal.h#L1449

in a total of 211,437 logging statements modifications, which represents 66.19% of

the total number of logging statements present in Linux kernel v5.3. Moreover,

we find that logging code deletion accounts for 29.23% of total modifications to

logging code, in contrary to findings reported by Yuan et al. [YPZ12]. Although

the majority of logging code deletion happens as the file is deleted, there exists non-

negligible amount (44.66%) of deletion of logging code occurring as afterthoughts. A

possible explanation for this might be observed in commit a8d5dad where developer

deleted two logging statements which were put there to report memory allocation

failures. There exist a rule in checkpatch.pl to check for possible unnecessary

out of memory message; however; it seems that developers do not care to fix this

issue at the commit-time, provided that a large number of commits removing out of

memory error message as afterthoughts. Another scenario observed for logging code

deletion is removing logging statements which are redundant. For instance, in commit

c99a23e55 where developer removed an error message present inside error handling

code when i2c_mux_add_adapter fails, because i2c_mux_add_adapter will print an

error message itself on failure.

We found that developers often face difficulties specifying the right log level in the

first try, as it is difficult to statically test whether a given log level is correct or not.

If we look at commit 3b364c659, developer downgraded the logging message to info

log level from warn, and reason for this change was mentioned as: ”On an embedded

system it is quite possible for the bootloader to avoid configuring PCIe devices if they

are not needed.”. It is surprising that it took the developers two years and two months

to notice this problem.

In Section 5.1.2, we find that 55.66% of the logging statements are used inside

the if block, most of which is used for logging errors after checking the return

value of function calls. As this decision is left to developers, we noticed many

inconsistencies in the text of an error message, logging function used, and information

included in an error message. Table 6.1 shows one such example. A call to

55

thermal_zone_device_register() returns a pointer to the newly created struct

thermal_zone_device, and in case of error returns an ERR_PTR. 2 All these three

drivers performs a registration of a new thermal zone device and check the return

value using IS_ERR() macros, and in case of an error logs an error using dev_err().

Even though all three drivers are performing the same action, we can see that there

is no similarity between error messages.

We also notice inconsistencies in the information included when logging an error

message. For example, when reporting an error when the call to devm_request_irq

fails, at many places caller of devm_request_irq does not even include the irq

requested and an error code returned. 3 A possible solution to avoid such

inconsistencies would be centralizing error reporting rather than leaving the decision

to the developers. One such change made to get more consistent error reporting can

be seen in commit 7723f4c, the reason for this change was mentioned as ”A grep of

the kernel shows that many drivers print an error message if they fail to get the irq

they’re looking for. Furthermore, those drivers all decide to print the device name,

or not, and the irq they were requesting, or not, etc. Let’s consolidate all these

error messages into the API itself, allowing us to get rid of the error messages in

each driver.”. Such centralization of error reporting helps in reducing the size of the

Linux kernel. This also reduces the number of commits made as afterthoughts to add

additional information or fixing typographical mistakes.

6.2 Threats to Validity

6.2.1 Internal Validity

Threats to internal validity are associated with factors that may impact our results. In

this study, a source of bias is an automated data collection process. To identify logging
2https://github.com/torvalds/linux/blob/v5.3/drivers/thermal/thermal_core.c#

L1211
3https://github.com/torvalds/linux/blob/v5.3/drivers/usb/dwc2/gadget.c#L4846

56

https://github.com/torvalds/linux/blob/v5.3/drivers/thermal/thermal_core.c#L1211
https://github.com/torvalds/linux/blob/v5.3/drivers/thermal/thermal_core.c#L1211
https://github.com/torvalds/linux/blob/v5.3/drivers/usb/dwc2/gadget.c#L4846

Table 6.1: Lack of consistency in the text of the error messages

spear_thermal = thermal_zone_device_register(...);
if (IS_ERR(spear_thermal)) {

dev_err(&pdev->dev, "thermal zone device is NULL\n");
[...]

}

drivers/thermal/spear_thermal.c

priv->zone = thermal_zone_device_register(...);
if (IS_ERR(priv->zone)) {

dev_err(dev, "can't register thermal zone\n");
[...]

}

drivers/thermal/rcar_thermal.c

sensor->thermal_dev = thermal_zone_device_register(...);
if (IS_ERR(sensor->thermal_dev)) {

dev_err(dev, "failed to register thermal zone device\n");
[...]

}

drivers/thermal/st/st_thermal.c

statements, we rely on the semantic patterns specified by [SLM15]. However, this

approach may not identify statements that lack variability in their use. To mitigate

this issue, we manually examined macros containing calls to basic functions such as

printk(), pr_*(), and dev_*() in order to identify missed logging functions. The set

of functions collected by combining both processes was thus manually reviewed with

the aim of eliminating obvious false positives. While evaluating the pervasiveness of

logging statements at program constructs level, we were unable to assign few logging

statements to any constructs due to the limitation of the static analysis approaches.

In order to automatically identify and classify changes made to logging code, we

use a pipeline comprised of GumTree [Fal+14] and a script specifically developed for

this study. To mitigate possible misclassifications, we manually inspected a sample of

100 randomly selected modifications, which showed an accuracy of 98% on classified

modifications.

57

Another threat to this study is the manual classification of log-related commits.

We manually examined all commits by their title and message whenever necessary.

However, we can not eliminate the possibility that errors may have occurred during

this manual analysis. We thus do not claim that our dataset is complete. This threat

is mitigated by the fact that our goal was to collectively study the nature of the

problematic logging code rather than collecting every possible revision made to fix or

improve logging code.

Because we perform a qualitative analysis in order to categorize changes made

to logging code and the nature of problematic logging code, researcher bias also

becomes a threat to the internal validity of our study. In this kind of analysis, results

are associated with researcher interpretation of the data. Therefore, to mitigate it,

every classification that raised questions were discussed by the researchers until they

reached an agreement.

6.2.2 External Validity

Threats to external validity are related to which extend our results can be generalized.

In fact, in this work, we focused solely on the Linux kernel project, which is known

for having its own development culture. Nevertheless, it is a large scale, the open-

source project maintained by developers from different companies, which constitutes

a representative sample of C/C++ projects.

58

Chapter 7

Conclusion and Future Work

7.1 Summary of the Findings

In this thesis, we presented an empirical study on the practice of logging in the Linux

kernel. We found that there is one line of logging code in every 27 lines of the source

code in the Linux kernel v5.3, which represents 3.73% of the total source code. We also

found that logging density varies across the Linux kernel subsystems and components

with no apparent reason. This could be due to the fact that each component is

maintained by different development teams and that there are no common logging

guidelines for Linux developers.

We also found that 72.36% of the total number of files in the Linux kernel have at

least one logging statement, while only 26.12% of functions are logged. The program

constructs that are logged the most are if-blocks (including else-if blocks) with 57% of

the total number of logging statements. These statements are mainly used for logging

information when the function call fails. This is equivalent to logging the try/catch

block in other programming languages such as C++ and Java.

After studying 22 releases of the Linux kernel (from versions v4.3 to v5.3), we

found that the use of logging code has been declining. We attributed this to the

increase in debugging and tracing tools. We also found that out of 211,437 logging

59

statements modifications that occurred between versions v4.3 and v5.3, 24.78% are

log updates, 45.99% are log insertions, and 29.23% are log deletions.

By manually investigating 900 commits that aim to fix or improve logging code,

we found that the majority of changes are to fix spelling/grammar mistakes, fix

incorrect log levels, and upgrade logging code to use new logging macros to improve

the precision and consistency of log output.

Many of these changes could be avoided if Linux kernel developers use static

analysis tools to detect potential null references in logging statements, spell/grammar

checkers, basic writing styles for log messages. We also recommend that the Linux

kernel developers organize systematic review sessions to review the quality of logging

statements. Finally, we strongly recommend the development of guidelines to

standardize the logging practice across the Linux kernel development teams.

7.2 Future Directions

An important future direction is to conduct a qualitative study to understand the

rationale behind logging. This can be done by selecting one or two Linux kernel

components and examine the various purposes for which logging is used. This study

should not be limited to the analysis of the source code of these components but must

include a user study, which involves the development teams. We believe that insight

obtained from developers will improve significantly our understanding of how logging

is used in practice.

In addition, we need to work towards developing guidelines and standards for

logging. To do so, we should start by putting in place a catalogue of good and

bad logging practices. This work can lead to the development of tools that can be

embedded in software development toolkits to enforce good logging practices. We

also believe that this work can lead to tools and processes for the detection of logging

smells (similar to code smells), logging patterns, and logging anti-patterns.

60

Furthermore, while doing this study, we observed that there are not many studies

that combine logging with tracing. By tracing, we mean tracing the program

control flow (e.g., tracing function calls [HL02]). In our research lab, we have

developed many trace analysis and modeling techniques that we believe can be

readily used for large streams of log data including techniques for trace abstraction

and summarization [HL06; Pir+13], trace modeling and metamodeling [Hoj+20;

HL12], and trace analysis tools [HL04]. We, therefore, recommend (1) extending

these techniques to support the analysis of log data, and (2) start working toward

holistic approaches that combine logging and tracing in one robust dynamic analysis

framework.

7.3 Closing Remarks

Despite the many benefits of log data, the practice of logging is still ad-hoc and

without recognized guidelines. This study examines in depth the practice of logging

in the Linux kernel. By doing so, we hope that this study contributes to the corpus of

knowledge on the practice of logging in large systems, while highlighting the challenges

that developers face when performing logging activities in software engineering. The

long-term goal is to help develop standards and common guidelines for logging, as

well as better processes, techniques, and tools.

61

Bibliography

[Bag+18] Mojtaba Bagherzadeh, Nafiseh Kahani, Cor-Paul Bezemer, Ahmed E

Hassan, Juergen Dingel, and James R Cordy. “Analyzing a decade of

Linux system calls”. In: Empirical Software Engineering 23.3 (2018),

pp. 1519–1551.

[Bel+19] Brian Belleville, Wenbo Shen, Stijn Volckaert, Ahmed M Azab,

and Michael Franz. “KALD: Detecting Direct Pointer Disclosure

Vulnerabilities”. In: IEEE Transactions on Dependable and Secure

Computing (2019).

[Ber+17] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, and Gilles Trédan.

“Experience report: Log mining using natural language processing and

application to anomaly detection”. In: 2017 IEEE 28th International

Symposium on Software Reliability Engineering (ISSRE). IEEE. 2017,

pp. 351–360.

[Boo20] Bootlin. Embedded Linux kernel and driver development training.

CreateSpace Independent Publishing Platform, 2020. url: https : / /

github.com/bootlin/training-materials.

[Bos12] Sarah Boslaugh. Statistics in a nutshell: A desktop quick reference. ”

O’Reilly Media, Inc.”, 2012.

62

https://github.com/bootlin/training-materials
https://github.com/bootlin/training-materials

[CJ17a] Boyuan Chen and Zhen Ming Jiang. “Characterizing and detecting anti-

patterns in the logging code”. In: 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). IEEE. 2017, pp. 71–81.

[CJ17b] Boyuan Chen and Zhen Ming Jack Jiang. “Characterizing logging

practices in Java-based open source software projects–a replication study

in Apache Software Foundation”. In: Empirical Software Engineering 22.1

(2017), pp. 330–374.

[CJ19] Boyuan Chen and Zhen Ming Jack Jiang. “Extracting and studying the

Logging-Code-Issue-Introducing changes in Java-based large-scale open

source software systems”. In: Empirical Software Engineering 24.4 (2019),

pp. 2285–2322.

[Cor12] Jonathan Corbet. “The perils of pr_info()”. In: LWN. net (2012).

[Cor16] Jonathan Corbet. “Tracepoint challenges”. In: LWN. net (2016).

[CRK05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux

Device Drivers: Where the Kernel Meets the Hardware. ” O’Reilly Media,

Inc.”, 2005.

[Din+15] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin,

Qiang Fu, Dongmei Zhang, and Tao Xie. “Log2: A Cost-Aware Logging

Mechanism for Performance Diagnosis”. In: Proceedings of the 2015

USENIX Conference on Usenix Annual Technical Conference. USENIX

ATC ’15. Santa Clara, CA: USENIX Association, 2015, pp. 139–150. isbn:

9781931971225.

[Edg19] Jake Edge. “Unifying kernel tracing”. In: LWN. net (2019).

[El-+20] Diana El-Masri, Fabio Petrillo, Yann-Gaël Guéhéneuc, Abdelwahab

Hamou-Lhadj, and Anas Bouziane. “A systematic literature review on

automated log abstraction techniques”. In: Information and Software

Technology 122 (2020), p. 106276.

63

[Fal+14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,

and Martin Monperrus. “Fine-grained and accurate source code

differencing”. In: ACM/IEEE International Conference on Automated

Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19,

2014. 2014, pp. 313–324. doi: 10.1145/2642937.2642982. url: http:

//doi.acm.org/10.1145/2642937.2642982.

[Fu+14] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei

Lin, Dongmei Zhang, and Tao Xie. “Where do developers log? an

empirical study on logging practices in industry”. In: Companion

Proceedings of the 36th International Conference on Software Engineering.

2014, pp. 24–33.

[Has+18] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis.

“Studying and detecting log-related issues”. In: Empirical Software

Engineering 23.6 (2018), pp. 3248–3280.

[He+18] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R. Lyu.

“Characterizing the Natural Language Descriptions in Software Logging

Statements”. In: Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering. ASE 2018. Montpellier,

France: ACM, 2018, pp. 178–189. isbn: 978-1-4503-5937-5. doi: 10.1145/

3238147.3238193. url: http://doi.acm.org/10.1145/3238147.

3238193.

[HL02] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. “Compression

techniques to simplify the analysis of large execution traces”. In:

Proceedings 10th International Workshop on Program Comprehension.

IEEE. 2002, pp. 159–168.

[HL04] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. “A survey of trace

exploration tools and techniques”. In: Proceedings of the 2004 conference

64

https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.1145/3238147.3238193
https://doi.org/10.1145/3238147.3238193
http://doi.acm.org/10.1145/3238147.3238193
http://doi.acm.org/10.1145/3238147.3238193

of the Centre for Advanced Studies on Collaborative research. 2004,

pp. 42–55.

[HL06] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. “Summarizing the

content of large traces to facilitate the understanding of the behaviour of

a software system”. In: 14th IEEE International Conference on Program

Comprehension (ICPC’06). IEEE. 2006, pp. 181–190.

[HL12] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. “A metamodel

for the compact but lossless exchange of execution traces”. In: Software

& Systems Modeling 11.1 (2012), pp. 77–98.

[Hoj+20] Fazilat Hojaji, Bahman Zamani, Abdelwahab Hamou-Lhadj, Tanja

Mayerhofer, and Erwan Bousse. “Lossless compaction of model execution

traces”. In: Software and Systems Modeling 19.1 (2020), pp. 199–230.

[IF10] Ayelet Israeli and Dror G Feitelson. “The Linux kernel as a case study

in software evolution”. In: Journal of Systems and Software 83.3 (2010),

pp. 485–501.

[IKH18] Md Shariful Islam, Wael Khreich, and Abdelwahab Hamou-Lhadj.

“Anomaly detection techniques based on kappa-pruned ensembles”. In:

IEEE Transactions on Reliability 67.1 (2018), pp. 212–229.

[KG11] Kamal Kc and Xiaohui Gu. “ELT: Efficient log-based troubleshooting

system for cloud computing infrastructures”. In: 2011 IEEE 30th

International Symposium on Reliable Distributed Systems. IEEE. 2011,

pp. 11–20.

[Kha+18] Subhendu Khatuya, Niloy Ganguly, Jayanta Basak, Madhumita Bharde,

and Bivas Mitra. “Adele: Anomaly detection from event log empiricism”.

In: IEEE INFOCOM 2018-IEEE Conference on Computer Communica-

tions. IEEE. 2018, pp. 2114–2122.

65

[Li+18] Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Ahmed E Hassan.

“Studying software logging using topic models”. In: Empirical Software

Engineering 23.5 (2018), pp. 2655–2694. doi: 10.1007/s10664-018-

9595-8. url: https://doi.org/10.1007/s10664-018-9595-8.

[Li+19a] Shanshan Li, Xu Niu, Zhouyang Jia, Xiangke Liao, Ji Wang, and Tao Li.

“Guiding log revisions by learning from software evolution history”. In:

Empirical Software Engineering (2019), pp. 1–39.

[Li+19b] Zhenhao Li, Tse-Hsun Chen, Jinqiu Yang, and Weiyi Shang. “DLFinder:

Characterizing and detecting duplicate logging code smells”. In: 2019

IEEE/ACM 41st International Conference on Software Engineering

(ICSE). IEEE. 2019, pp. 152–163.

[Li+20] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed

E Hassan. “A Qualitative Study of the Benefits and Costs of Logging

from Developers’ Perspectives”. In: IEEE Transactions on Software

Engineering (2020).

[Liu+19] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li. “Which Variables

Should I Log?” In: IEEE Transactions on Software Engineering (2019),

pp. 1–1.

[Lot+10] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and

Andrzej Wąsowski. “Evolution of the linux kernel variability model”.

In: International Conference on Software Product Lines. Springer. 2010,

pp. 136–150.

[LSH17] Heng Li, Weiyi Shang, and Ahmed E. Hassan. “Which log level should

developers choose for a new logging statement?” In: Empirical Software

Engineering 22.4 (Aug. 2017), pp. 1684–1716. issn: 1573-7616. doi: 10.

1007/s10664-016-9456-2. url: https://doi.org/10.1007/s10664-

016-9456-2.

66

https://doi.org/10.1007/s10664-018-9595-8
https://doi.org/10.1007/s10664-018-9595-8
https://doi.org/10.1007/s10664-018-9595-8
https://doi.org/10.1007/s10664-016-9456-2
https://doi.org/10.1007/s10664-016-9456-2
https://doi.org/10.1007/s10664-016-9456-2
https://doi.org/10.1007/s10664-016-9456-2

[LSS15] Sangeeta Lal, Neetu Sardana, and Ashish Sureka. “Two level empirical

study of logging statements in open source Java projects”. In:

International Journal of Open Source Software and Processes (IJOSSP)

6.1 (2015), pp. 49–73.

[Lu+14] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and

Shan Lu. “A Study of Linux File System Evolution”. en. In: ACM

Transactions on Storage 10.1 (Jan. 2014), pp. 1–32. issn: 1553-3077, 1553-

3093. doi: 10.1145/2560012. url: https://dl.acm.org/doi/10.1145/

2560012 (visited on 04/06/2020).

[Maz+20] Alejandro Mazuera-Rozo, Catia Trubiani, Mario Linares-Vásquez, and

Gabriele Bavota. “Investigating types and survivability of performance

bugs in mobile apps”. In: Empirical Software Engineering (2020), pp. 1–43.

[Mir+16] Andriy Miranskyy, Abdelwahab Hamou-Lhadj, Enzo Cialini, and Alf

Larsson. “Operational-log analysis for big data systems: Challenges and

solutions”. In: IEEE Software 33.2 (2016), pp. 52–59.

[OAS08] Adam J Oliner, Alex Aiken, and Jon Stearley. “Alert detection in system

logs”. In: 2008 Eighth IEEE International Conference on Data Mining.

IEEE. 2008, pp. 959–964.

[Pan+20] Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and

Raymond J. Mooney. Learning to Update Natural Language Comments

Based on Code Changes. 2020. arXiv: 2004.12169 [cs.CL].

[PCW12] Leonardo Passos, Krzysztof Czarnecki, and Andrzej Wąsowski. “Towards

a catalog of variability evolution patterns: the Linux kernel case”. en.

In: Proceedings of the 4th International Workshop on Feature-Oriented

Software Development - FOSD ’12. Dresden, Germany: ACM Press, 2012,

pp. 62–69. isbn: 9781450313094. doi: 10.1145/2377816.2377825. url:

67

https://doi.org/10.1145/2560012
https://dl.acm.org/doi/10.1145/2560012
https://dl.acm.org/doi/10.1145/2560012
https://arxiv.org/abs/2004.12169
https://doi.org/10.1145/2377816.2377825

http://dl.acm.org/citation.cfm?doid=2377816.2377825 (visited

on 04/06/2020).

[PCZ18] Aidi Pi, Wei Chen, and Xiaobo Zhou. “Profiling Distributed Systems

in Lightweight Virtualized Environments with Logs and Resource

Metrics”. In: Proceedings of the 27th International Symposium on High-

Performance Parallel and Distributed Computing. HPDC ’18. Tempe,

AZ, USA: Association for Computing Machinery, 2018, pp. 9–10. isbn:

9781450358996. doi: 10.1145/3220192.3220197. url: https://doi.

org/10.1145/3220192.3220197.

[Pec+15] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico

Cotroneo. “Industry practices and event logging: Assessment of a

critical software development process”. In: 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering. Vol. 2. IEEE. 2015,

pp. 169–178.

[Pir+13] Heidar Pirzadeh, Sara Shanian, Abdelwahab Hamou-Lhadj, Luay

Alawneh, and Arya Shafiee. “Stratified sampling of execution traces: Ex-

ecution phases serving as strata”. In: Science of Computer Programming

78.8 (2013), pp. 1099–1118.

[Ran19] Chen An Ran. “Studying and Leveraging User-Provided Logs in Bug

Reports for Debugging Assistance”. 2019. url: https : / / spectrum .

library.concordia.ca/985950/.

[Sha+14] Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Michael

W. Godfrey, Mohamed Nasser, and Parminder Flora. “An exploratory

study of the evolution of communicated information about the execution

of large software systems”. In: Journal of Software: Evolution and Process

26.1 (2014), pp. 3–26. doi: 10 . 1002 / smr . 1579. eprint: https : / /

68

http://dl.acm.org/citation.cfm?doid=2377816.2377825
https://doi.org/10.1145/3220192.3220197
https://doi.org/10.1145/3220192.3220197
https://doi.org/10.1145/3220192.3220197
https://spectrum.library.concordia.ca/985950/
https://spectrum.library.concordia.ca/985950/
https://doi.org/10.1002/smr.1579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1579

onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1579. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/smr.1579.

[Sig+10] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephen-

son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.

Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Tech.

rep. Google, Inc., 2010. url: https://research.google.com/archive/

papers/dapper-2010-1.pdf.

[SLM15] Peter Senna Tschudin, Julia Lawall, and Gilles Muller. “3L: Learning

Linux Logging”. In: BElgian-NEtherlands software eVOLution seminar

(BENEVOL 2015). Lille, France, Dec. 2015. url: https://hal.inria.

fr/hal-01239980.

[SNH15] Weiyi Shang, Meiyappan Nagappan, and Ahmed E Hassan. “Studying

the relationship between logging characteristics and the code quality of

platform software”. In: Empirical Software Engineering 20.1 (2015), pp. 1–

27.

[TRL04] Jeff Tian, Sunita Rudraraju, and Zhao Li. “Evaluating web software

reliability based on workload and failure data extracted from server

logs”. In: IEEE Transactions on Software Engineering 30.11 (2004),

pp. 754–769.

[Yen+13] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William

Robertson, Ari Juels, and Engin Kirda. “Beehive: Large-scale log analysis

for detecting suspicious activity in enterprise networks”. In: Proceedings

of the 29th Annual Computer Security Applications Conference. 2013,

pp. 199–208.

[YPZ12] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. “Characterizing

logging practices in open-source software”. In: Proceedings of the 34th

69

https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1579
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1579
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1579
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://hal.inria.fr/hal-01239980
https://hal.inria.fr/hal-01239980

International Conference on Software Engineering. IEEE Press. 2012,

pp. 102–112.

[Yua+12] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage.

“Improving Software Diagnosability via Log Enhancement”. In: ACM

Trans. Comput. Syst. 30.1 (Feb. 2012), 4:1–4:28. issn: 0734-2071. doi:

10.1145/2110356.2110360. url: http://doi.acm.org/10.1145/

2110356.2110360.

[Zen+19] Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun Peter Chen. “Studying

the characteristics of logging practices in mobile apps: a case study on

F-Droid”. In: Empirical Software Engineering 24.6 (2019), pp. 3394–3434.

[Zha+17] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan,

and Yuanyuan Zhou. “Log20: Fully automated optimal placement

of log printing statements under specified overhead threshold”. In:

Proceedings of the 26th Symposium on Operating Systems Principles.

2017, pp. 565–581.

[Zho+20] Rui Zhou, Mohammad Hamdaqa, Haipeng Cai, and Abdelwahab Hamou-

Lhadj. “MobiLogLeak: A Preliminary Study on Data Leakage Caused by

Poor Logging Practices”. In: 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER). IEEE. 2020,

pp. 577–581.

[Zhu+15] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and

Dongmei Zhang. “Learning to Log: Helping Developers Make Informed

Logging Decisions”. In: Proceedings of the 37th International Conference

on Software Engineering - Volume 1. ICSE ’15. Florence, Italy: IEEE

Press, 2015, pp. 415–425. isbn: 978-1-4799-1934-5. url: http://dl.

acm.org/citation.cfm?id=2818754.2818807.

70

https://doi.org/10.1145/2110356.2110360
http://doi.acm.org/10.1145/2110356.2110360
http://doi.acm.org/10.1145/2110356.2110360
http://dl.acm.org/citation.cfm?id=2818754.2818807
http://dl.acm.org/citation.cfm?id=2818754.2818807

	List of Figures
	List of Tables
	Introduction
	Related Work
	Empirical Research on Logging Practices
	Where, What, and How to Log

	Background
	The Linux Kernel
	Logging in the Linux kernel

	Study Design
	Research Questions
	Subject Project
	Identification of logging functions

	Empirical Study
	RQ1: What is the pervasiveness of logging in the Linux kernel?
	Data Gathering and Extraction
	Data Analysis

	RQ2: How does the logging code in the Linux kernel evolve?
	Data Gathering and Extraction
	Data Analysis

	RQ3: What are the characteristics of changes made to logging code as afterthoughts?
	Data Gathering and Extraction
	Data Analysis

	Discussions and Threats to Validity
	Discussions
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion and Future Work
	Summary of the Findings
	Future Directions
	Closing Remarks

