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Abstract

Integrated Scheduling Problems in Healthcare and Logistics

Maryam Haghi, Ph.D.

Concordia University, 2020

Scheduling is one of the important components of operation management in different

services. The goal of scheduling is to allocate limited available resources over time

for performing a set of activities such that one or more objectives are optimized.

In this thesis, we study several interesting applications of scheduling in health care

and logistics. We present several formulations and algorithms to efficiently solve the

scheduling problems that arise in these areas.

We first study static and dynamic variants of a multi-appointment, multi-stage

outpatient scheduling problem that arises in oncology clinics offering chemotherapy

treatments. We present two integer programming formulations that integrate nu-

merous scheduling decisions, features, and objectives of a major outpatient cancer

treatment clinic in Canada. We also develop integrated and sequential scheduling

strategies for the dynamic case in which arriving requests are processed at specific

points of time. The results of computational experiments show that the proposed

scheduling strategies can achieve significant improvements with respect to the sev-

eral performance measures compared to the current scheduling procedure used at the

clinic.

We next present a daily outpatient appointment scheduling problem that simul-

taneously determines the start times of consultation and chemotherapy treatment

appointments for different types of patients in an oncology clinic under uncertain

treatment times. We formulate this stochastic problem using two two-stage stochas-

tic programming models. We also propose a sample average approximation algorithm

to obtain high quality feasible solutions. We use an efficient specialized algorithm that

quickly evaluates any given first-stage solution for a large number of scenarios. We
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perform several computational experiments to compare the performance of proposed

two-stage stochastic programming models. In the next part of the experiments, we

show that the quality of the first-stage solutions obtained by the sample average ap-

proximation is significantly higher than those of the expected value problem, and the

value of stochastic solution is extremely high specially for higher degrees of uncer-

tainty.

Finally, we address two variants of a cross-dock scheduling problem with handling

times that simultaneously determines dock-door assignments and the scheduling of the

trucks. In the general variant of the problem we assume that unit-load transfer times

are door dependent, whereas in the specific case variant, unit-load transfer times are

considered to be identical for all pairs of doors. We present constraint programming

formulations for both variants of the problem, and we compare the performance of

these models with mixed integer programming models from the literature. For the

specific case, we propose several families of valid inequalities that are then used within

a branch-and-cut framework to improve the performance of a time-index model. To

solve the general problem efficiently, we also develop an approximate algorithm that

first solves the specific case problem with the developed branch-and-cut algorithm to

obtain a valid lower-bound, and then applies a matheuristic to obtain a valid upper-

bound for the general problem and to compute the optimality gap. According to the

computational experiments, we show that the proposed formulations and algorithms

are able to solve the studied problems efficiently, and they outperform other models

and heuristics that were previously developed for the problem in the literature.
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Chapter 1

Introduction

Scheduling integrates resource allocation and sequencing decisions and plays an im-

portant role in many service industries. Using sophisticated scheduling tools enables

service providers to utilize their scarce resources efficiently while delivering high qual-

ity services to customers. Health care and logistics are two common examples of ser-

vice industries in which scheduling has many applications. This thesis addresses two

important scheduling problems in these areas: appointment scheduling in healthcare

as a tool to manage patient arrivals such that resources are utilized properly and pa-

tient queues are avoided [52], and cross-dock scheduling in logistics as an important

step to efficiently synchronize incoming and outgoing trucks such that intermediate

storage inside the facility is kept low and deliveries are expedited [10].

In the first part of the thesis, we focus on one of the applications of outpatient

appointment scheduling arising at the Segal Cancer Center, a major cancer center in

Canada. Oncology centres are among the most highly demanded outpatient clinics

due to the increasing cancer rates and growing demand for cancer treatments such

as chemotherapy. Designing efficient scheduling systems for such clinics is required

to ensure that all requests can be granted with a satisfactory service quality and

with reasonable access and service times. We study a comprehensive chemother-

1



apy scheduling problem that aims to properly coordinate multiple appointments of

patients for several stages including blood test, oncologist consultation, drug prepa-

ration, and chemotherapy treatment. We develop integer programming formulations

to model this problem. We also design an online scheduling algorithm to address

dynamic arrival of appointment requests to the clinic.

In the second part of the thesis, we again study the application of appointment

scheduling in oncology clinics, while considering a different setting. Stochastic service

time is one of the main challenges in any appointment scheduling problem. Incorpo-

rating such uncertainties in the scheduling process is important for obtaining efficient

and reliable schedules that satisfy decision-makers expectations in reality. There are

several reasons for the uncertain duration of chemotherapy treatments. The main

reasons include early termination of the treatment when patients cannot tolerate

the injected drug, and longer treatment times due to the complications caused by

patients’ adverse reactions to drugs. We develop two-stage stochastic programming

formulations to address an integrated daily consultation and chemotherapy scheduling

problem where treatment duration times are stochastic. We also present a sampling-

based algorithm to find high quality feasible solutions for this stochastic problem.

In the last part of this thesis, we address an important application of scheduling

in modern logistics systems. Cross-docking is a logistic strategy that facilitates rapid

movements of products from origins to destinations with minimal requirement of

storage in between, which helps to improve the efficiency of the logistic operations

by reducing costs and accelerating the process. Efficient scheduling of the incoming

and outgoing trucks is a vital step to achieve these goals. Therefore, we study two

variants of a cross-dock scheduling problem considering handling times. We propose

constraint programming formulations for the studied problems that can provide high

quality feasible solutions. We also develop exact and approximate algorithms to

efficiently solve both problems.
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The contributions of this thesis can be categorized as follows:

• Problem definition:

– Addressing a comprehensive chemotherapy scheduling problem while con-

sidering the dynamic nature of appointment requests arrivals.

– Addressing simultaneous scheduling of consultation and treatment ap-

pointments for different types of patients under uncertain treatment times.

– Addressing a cross-dock scheduling problem with handling times including

unloading, transfer and loading times of products.

• Problem modeling:

– Development of two alternative integer programming formulations for a

comprehensive chemotherapy scheduling problem.

– Development of two alternative two-stage stochastic programming models

for a chemotherapy scheduling problem with uncertain treatment times.

– Development of constraint programming formulations for two variants of

a cross-dock scheduling problem with handling times.

• Algorithmic development:

– Development of integrated and sequential scheduling strategies for online

scheduling of arriving requests to an oncology clinic.

– Development of a sample average approximation algorithm for the stochas-

tic chemotherapy scheduling problem that includes a specialized algorithm

for quick evaluation of a given solution.

– Development of an exact branch-and-cut algorithm that uses several fami-

lies of valid inequalities, a matheuristic and an approximate algorithm for

the cross-dock scheduling problem.
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• Managerial insights:

– Providing an analysis on the input parameters’ effects on the performance

of the designed scheduling algorithm for oncology clinics.

– Providing an analysis on the effects of different levels of uncertainty on the

value of the stochastic solution.

– Providing an analysis on the impacts of incorporating accurate transfer

times on the quality of the obtained cross-dock schedules.

The reminder of this thesis consists of four more chapters, three of which corre-

spond to manuscripts that are or will be shortly submitted for publication in peer-

reviewed scientific journals. Chapter 2 addresses a comprehensive multi-appointment,

multi-stage chemotherapy scheduling problem that integrates numerous scheduling

decisions, features, and objectives of a major outpatient cancer treatment clinic in

Canada. It presents two mathematical formulations, two scheduling strategies and

an online algorithm for this problem. Chapter 3 studies the integrated scheduling

of consultation and treatment appointments for different types of chemotherapy pa-

tients, while taking into account stochastic duration of injection. It provides two

two-stage stochastic programming formulations and a sample average approximation

algorithm that includes a specialized algorithm for the evaluation of a given solution

for this stochastic problem. Chapter 4 presents two variants of a cross-dock scheduling

problem considering unloading, transfer and loading times of products that assigns

incoming and outgoing trucks to doors and simultaneously determines the schedul-

ing of trucks assigned to the same door. We develop constraint programming for-

mulations, several families of valid inequalities, an exact branch-and-cut algorithm,

two matheuristics, and an approximate algorithm for the studied problems. Finally,

Chapter 5 provides conclusions and several avenues for future research.
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Chapter 2

Static and Dynamic

Multi-Appointment, Multi-Stage

Outpatient Chemotherapy Scheduling

The content of this chapter is submitted as a manuscript for publication to the journal

Omega in August 2020 [31].

Abstract

Outpatient oncology clinics offering chemotherapy treatment are among the most

demanded multi-stage, multi-resource healthcare systems. In these clinics patients

must pass through several interrelated stages during each appointment. In order

to continuously coordinate all required patient appointments properly while utilizing

scarce resources efficiently, we propose comprehensive scheduling problems to schedule

multiple appointment requests of different types of patients for each of the stages. The

proposed problem integrates numerous scheduling decisions, features, and objectives

of a major outpatient cancer treatment clinic in Canada. We model and solve the

static and dynamic cases of the considered scheduling problem. We present two
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integer programming formulations for the static case. We develop integrated and

sequential scheduling strategies for the dynamic case in which arriving requests are

processed at specific points of time. Extensive computational results based on real

data from the Segal Cancer Centre are reported.

2.1 Introduction

Current growing demand for healthcare services, along with the great emphasis on

preventive actions and cost reduction, have made outpatient clinics an essential com-

ponent of healthcare systems [14]. As a consequence, the development of efficient

scheduling tools for such clinics has received increased attention in recent years. On-

cology centres are among the most highly demanded outpatient clinics due to the

increasing cancer rates and growing demand for cancer treatments such as chemother-

apy. Based on the Canadian Cancer Society report 1, cancer is the leading cause of

death in Canada and the average annual number of new cancer cases is expected

to significantly increase in future years. Therefore, efficient scheduling systems for

cancer-care provider clinics, including outpatient chemotherapy clinics, are required

to ensure that all requests can be granted with a satisfactory service quality and with

reasonable access and service times.

Outpatient chemotherapy clinics have some unique characteristics which make

their scheduling decisions different and more complicated than scheduling problems

in other typical outpatient clinics [36]. One of these characteristics is the existence of

several stages including blood test, consultation with an oncologist (or doctor visit),

drug preparation in pharmacy, and chemotherapy treatment (or infusion). Each pa-

tient must go through all or a subset of these stages following a predefined sequence,

and consequently, different paths for patients exist in such clinics. Figure 2.1 repre-

1http://www.cancer.ca/en/cancer-information/cancer-101/canadian-cancer-statistics-
publication/?region=qc
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sents the flow of patients in an outpatient chemotherapy clinic. In order to visit an

oncologist or start preparing a chemotherapy drug, the patient needs to have the re-

sults of a blood test which is done at most 48 hours in advance. The patient may come

to the clinic with blood test results or may request for an appointment to perform

the blood test at the clinic. If the patient needs to visit the oncologist before his/her

treatment appointment, drug preparation can begin only once consultation with the

physician is completed. All these stages in chemotherapy clinics are completely de-

pendent on each other and a proper coordination between them is essential in order

to provide patients with efficient care services [41]. However, there is a lack of studies

that integrate multiple stages [41]. Moreover, the requirement of the simultaneous

presence of a nurse and a chair for completing the treatment stage is another unique

characteristic of chemotherapy scheduling problems that is rarely considered.

Figure 2.1: Flow of patients in an outpatient chemotherapy clinic

Chemotherapy services are typically administered in repetitive cycles. The fre-

quency and structure of each cycle (i.e., types and doses of drugs in each treatment

and rest periods between different treatments) are determined by regimens. Based on

the patient’s type of cancer, stage of the cancer growth, and current health situation,

oncologists prescribe an appropriate regimen for each patient and recommend treat-
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ment dates. Deviations from these recommended dates may decrease the efficiency

of the cure and put the patient’s health in danger. It is thus better for the sched-

uler to immediately schedule all the required appointments in order to guarantee the

availability of the later appointments [2].

There are two systems commonly used for planning and scheduling in outpatient

chemotherapy clinics. The first one is the next-day scheduling system, where patients

have a blood test and an oncologist consultation appointment one day before the

treatment [20]. In such systems if the lifetime of a chemotherapy drug allows it, the

drug can also be prepared by a pharmacist one day before the treatment appointment.

Otherwise, it will be prepared on the treatment day, a few hours before infusion begins.

Such drugs with a short lifetime are referred to as special drugs in this paper. The

second scheduling system is the same-day scheduling system, where patients have all

the required appointments on the same day.

There are also two approaches for assigning nurses to patients in chemotherapy

clinics. In the first approach, referred to as functional care delivery, patients are

assigned to arbitrary nurses on different days of their treatment, while in the sec-

ond approach, known as primary care delivery, each patient must be assigned to one

member of a specific group of nurses at every referral [44]. Each chemotherapy treat-

ment appointment needs the simultaneous availability of two resources to start. A

chair or a bed must be fully dedicated to each patient during the complete treatment

stage. The complete assignment of a nurse to a patient is also necessary for setting

up a patient. However, during the infusion a nurse can monitor up to four patients

simultaneously.

In this paper we study a comprehensive chemotherapy scheduling problem, de-

noted as the multi-appointment, multi-stage chemotherapy scheduling problem (MM-

CSP), considering unique characteristics and realistic assumptions arising at the Segal

Cancer Center (SCC), a major cancer center in Canada. SCC is one of the most highly
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demanded oncology centers in Canada, as it currently schedules on a daily basis about

100 to 250 consultation appointments and 60 to 80 chemotherapy treatment appoint-

ments [62]. Managing such a high volume of patients requires an efficient scheduling

strategy that enables the clinic not only to schedule each appointment in an opti-

mized way, but also to provide a good coordination between different interrelated

stages to increase the efficiency of the entire system and to improve the overall staff

and patients’ satisfaction.

At the SCC, different types of patients request multiple appointments for several

stages, and each stage requires one or more types of resources with limited capacity to

serve patients. Moreover, following the practice at the SCC we use a next-day system

for scheduling decisions and a primary care delivery approach for nurse-to-patient

assignments. However, our model can be easily modified to consider a functional care

delivery approach as well. Other distinguishing features incorporated in our prob-

lem are: i) different patient types with different requirements and paths to follow,

ii) heterogeneous infusion equipment, iii) nurses’ daily workload balancing consider-

ations, and iv) chemotherapy drugs’ lifetime. To the best of our knowledge, this is

the most comprehensive outpatient scheduling problem that has ever been studied in

the literature.

The other main contributions of our work are the following. We propose a static

version of the MMCSP in which we integrate all scheduling decisions. In the static

MMCSP, all appointment requests pertaining to a fixed planning horizon are known

at the beginning of the planning horizon. In order to assess the value of integrating

all decisions, we also propose two sequential approaches for the static MMCSP in

which either consultation appointments are scheduled before treatment appointments

or the other way around. We refer to them as consultation-treatment (CT) and

treatment-consultation (TC) approaches. We also consider the dynamic MMCSP in

which appointment requests arrive in real time over a rolling horizon. We develop
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and computationally compare two integer programming (IP) formulations for the

integrated static MMCSP. We then use the most promising of these IPs to solve

the dynamic version in which a scheduling algorithm schedules the appointments

dynamically as they arrive (in the form of waiting lists) at discrete points of time. In

the dynamic case, it is assumed that the scheduling of patients is started by filling out

a partially-filled schedule (i.e., some of the resources are occupied by already booked

patients). The remainder of this paper is organized as follows. In Section 2.2, the most

recent and relevant literature is reviewed. Section 2.3 formally describes the MMCSP.

Section 2.4 presents two IP formulations for the integrated static MMCSP, whereas

Section 2.5 presents the two sequential approaches for solving the static MMCSP.

A description of the proposed online scheduling algorithm is given in Section 2.6.

Extensive computational experiments and analyses on input parameters are reported

in Section 2.7. Finally, Section 2.8 provides some conclusions.

2.2 Literature Review

There are many papers that have reviewed outpatient scheduling and appointment

systems. In particular, Cayirli and Veral [14], Gupta and Denton [29] and Ahmadi-

Javid et al. [1] provide three examples of these review papers. Furthermore, Lamé

et al. [41] focus their review on the planning of outpatient chemotherapy clinics.

Marynissen and Demeulemeester [49] review multi-stage scheduling problems and

mention oncology clinics among the important applications of such problems. How-

ever, these studies highlight that most of the research has focused on scheduling pa-

tients for the treatment stage only rather than considering all required stages. For ex-

amples of single-stage problems, we refer to [2, 7, 13, 18, 26, 27, 32, 35, 37, 38, 44, 65].

There are few studies in which at least two stages have been taken into account. Sadki

et al. [57], Sadki et al. [58], and Garaix et al. [22] focus on scheduling patients for
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same-day consultation and treatment appointments on a daily basis assuming that

all patients require both appointments. In addition to consultation and treatment

appointments, Bouras et al. [9] consider the drug preparation stage. Liang et al.

[45] and Suss et al. [63] use discrete event simulation to model oncology clinics with

a same-day scheduling system in which different types of patients request appoint-

ments. Contrary to our work, none of the above mentioned studies have modeled all

the required stages of an oncology clinic using a mathematical program.

After an oncologist prescribes a regimen involving several chemotherapy treat-

ments, each patient should start their treatment as soon as possible. It is thus re-

quired to determine a date and time for each appointment. Some studies only focus

on determining a date for each appointment or start date of the treatment plan (see

[26, 27]); while other studies consider a daily version of the problem and determine the

start time of appointments of a given day (see [9, 13, 22, 32, 35, 37, 44, 45, 57, 58, 63]).

However, both of these decisions have been jointly considered in some studies (see

[2, 7, 18, 38, 65]), which is also the case in our work.

Turkcan et al. [65] develop two integer programming formulations for assigning a

start date, start time and required resources for new patients requesting appointments

for chemotherapy treatment. In the first formulation, new patients are assigned to a

day of the planning horizon to start their treatment. The second formulation is then

solved for each day of the planning horizon to determine start time of treatments

along with the nurse and chair assignments. Condotta and Shakhlevich [18] focus

on the scheduling of multiple appointments for the chemotherapy stage. In order

to deal with the uncertainty of the number and type of future requests, the authors

generate a template schedule for a set of artificial patients which contains more pre-

booked appointments than anticipated, providing flexibility for handling unexpected

arrivals. Alvarado and Ntaimo [2] introduce a two-stage stochastic programming

formulation for scheduling multiple chemotherapy appointments for a single patient
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where the acuity level of the patient, appointment duration, and the number of nurses

on duty for each day are uncertain. Benzaid et al. [7] propose a two-step procedure

for online scheduling of chemotherapy appointments for new patients. In the first

step, the authors consider a planning horizon and assign a date and a time to each

appointment request. In the second step, they solve a mathematical model for each

day of the planning horizon to determine the number of required nurses on each day

and also to assign patients to the available nurses. They have also proposed another

daily-basis mathematical model to include patient cancellations and nurse absences

in which they solve the problem for an updated set of patients and nurses without

considering resource capacity constraints. However, all these studies focus only on

the treatment stage. The need for booking multiple appointments for other stages of

the oncology clinic, along with the treatment stage, has not been addressed in the

literature.

The most relevant studies to our work are [63] and [38]. In particular, Suss et al.

[63] propose a scheduling algorithm which uses lean principles to obtain a master

appointment schedule for patient arrivals to SCC, so that different types of patients

can have all the required appointments with the minimum waiting time. Using a

discrete event simulation model, the authors test the proposed algorithm which cal-

culates the best patient arrival rate based on the service rate at the pharmacy stage.

Based on the results, it is observed that using even a simple patient appointment

scheduling algorithm, patient waiting times can be reduced by at least 40%. They

also highlight that a reduction of the non-value-added work by the staff in managing

multiple appointment schedules and the efficient utilization of clinic’s resources are

other potential benefits of using scheduling algorithms. However, this paper considers

a same-day scheduling system and only schedules single appointment of patients on

a daily basis. It also focuses only on reducing waiting times and does not consider

other key performance measures such as balancing the workload of nurses or assigning
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patients to preferred nurses and time slots. In a follow-up paper, Hooshangi-Tabrizi

et al. [38] study an online multi-appointment scheduling problem for chemotherapy

patients at SCC. The authors develop a mathematical programming formulation that

assigns a date, starting time, chair, and a nurse to each arriving request with the goal

of minimizing the number of unscheduled appointments, nurses’ overtime and non-

preferred nurse and time assignments. They also propose a daily rescheduling model

which may change the assigned chair, nurse or starting time of appointments when

either new information is revealed or an unexpected event like a nurse’s absence or

an appointment cancellation happens. Our work also differs from [38], as we consider

a more comprehensive scheduling problem that incorporates requests arising from

different patient categories and schedules appointments for all stages at the SCC.

Finally, we would like to highlight that our scheduling problem shares some fea-

tures to other problems in flexible job shop scheduling (FJSS) [15]. However, our

problem differs from FJSS problems in several aspects. In a FJSS problem, only

one resource is required to process each job. However, in our problem a simulta-

neous presence of a chair and a nurse is necessary to start the process. Moreover,

the full attention of a nurse is only required for starting the process and then, one

nurse can handle several patients simultaneously. Online scheduling has been rarely

considered for FJSS problems and thus, it is assumed that all machines are available

at the scheduling starting point. However, we also solve the dynamic (or online)

variant of the problem and we assume that all resources may not be available at the

starting point. In FJSS problems, the waiting times of jobs between two stages are

not important as long as a specific due date is respected. However, in our problem

we are dealing with patients and therefore, minimizing the waiting time is a critical

performance measure.
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2.3 Problem Definition

Let A be the set of five services offered by the four main stages in an outpatient

oncology clinic: 1) blood test for consultation, 2) blood test for treatment, 3) consul-

tation, 4) drug preparation, and 5) chemotherapy treatment. Let P denote the set

of all patients from different groups requesting at least one appointment for one or

more services during the planning horizon. Let D be the set of days in the current

planning horizon and S represent the set of time slots on each day. We define FP

as the set of new consultation patients who request a visit to an oncologist for the

first time, and NP as the set of new treatment patients who have previously visited

an oncologist and want to receive their first treatment. New treatment patients may

also require a consultation with the physician before their first treatment. We also

define RP as the set of recurring patients whose treatment plan has already been

determined and they may require multiple appointments. Let CAp and T Ap denote

the sets of consultation and treatment appointments requested by patient p ∈ P , re-

spectively. From the definition of patient groups, we note that for p ∈ FP , |CAp| = 1

and |T Ap| = 0, and for p ∈ NP , |CAp| ≤ 1 and |T Ap| = 1.

For each requested consultation appointment k′ ∈ CAp of patient p, we define the

parameter BCpk′ equal to 1 if and only if a blood test appointment is also required.

Similarly, for each requested treatment appointment k ∈ T Ap of patient p, the pa-

rameter BTpk is equal to 1 when booking a blood test appointment is also needed.

For new treatment patient p ∈ NP , if in addition to the infusion, both blood test and

consultation appointments are required, it is assumed that BCp1 = 1 and BTp1 = 0.

However, if only a blood test appointment is needed, BTp1 = 1 and since in this case

|CAp| = 0, BCp1 is not defined for the patient. Let PT ipk represent the processing

time of service i ∈ A for the appointment k of patient p. Processing times of different

services can differ from one patient to another and even among different appoint-

ments of a patient. For instance, one patient might need different drugs at different
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appointments and thus different infusion times are needed.

Let O, N and C denote the sets of oncologists, nurses and chairs, respectively. It

is assumed that the oncologist of each patient is known and the assignment of nurses

to chairs is done in advance. We define POo ⊆ P as the set of all patients served

by oncologist o ∈ O, and CNnd ⊆ C as the set of chairs assigned to nurse n ∈ N on

day d ∈ D. Furthermore, working days and hours of oncologists and nurses are also

assumed to be known. Let DOo ⊆ D and DNn ⊆ D denote working days of oncologist

o and nurse n, respectively. In this paper, chairs are considered to be heterogeneous.

In some appointments, based on the prescribed drug, patients might be required to

be assigned to a particular chair with a special port or based on the health status

of the patient, some drugs are only allowed to be injected while the patient is lying

down on a bed. Therefore, we define CPpk ⊆ C as the set of chairs which are allowed

for the treatment appointment k of patient p.

For the recurring patients, the exact dates of requested treatment and consultation

appointments are defined by the prescribed regimen. However, for both groups of

new patients, i.e., p ∈ FP ∪ NP , the goal is to assign a date, as soon as possible,

before a specific deadline and based on the patients’ priorities. Furthermore, new

treatment patients need to attend an information session before their first treatment

appointment, which should also be taken into account. Let Dipk ⊆ D and S ipkd ⊆ S

represent the sets of all possible days and time slots, respectively, which can be

assigned to appointment k of patient p for service i, considering all the conditions.

For example, D5
pk includes only the exact infusion dates for the treatment appointment

k of recurring patient p, while it includes the days after the information session and

before the deadline for new treatment patient p. As another example, D3
pk for a first

consultation patient contains a subset of days before the deadline when the oncologist

is available, either due to the working hours or regarding the partially-filled schedule

in an online mode, and for each d ∈ D3
pk, associated time slots set, S3

pkd, excludes the
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time slots on which the oncologist is not available.

In the current work a next-day system is assumed. Therefore, special drug prepa-

rations should be scheduled on the same day as the infusion, whereas blood test,

consultation and non-special drug preparations are scheduled one day before the treat-

ment appointment. For each patient p and each k ∈ T Ap, we define the parameter

SDpk equal to 1 when the required drug is considered to be special, otherwise it is as-

sumed as a non-special drug. The preparation of a non-special drug for a treatment

that is following a consultation appointment should start only once the oncologist

visit is finished. Consider k′ ∈ CAp and k ∈ T Ap as the required consultation and

treatment appointments for patient p ∈ RP . We define the parameter SeCpk′k equal

to 1 when a doctor visit k′ is followed by the infusion appointment k on the next day.

Although the main scheduling system is considered to be a next-day system, for the

after-weekend days (days that are located after holidays or weekends) a same-day sys-

tem for blood test, non-special drug preparation and the infusion is considered. We

define DH to be the set of after-weekend days. Figure 2.2 illustrates the precedence

constraints between different stages for regular and after week-end days.

Figure 2.2: Precedence constraints between different stages for regular and after week-
end days

In the MMCSP, the goal is to schedule as many appointments as possible requested

by all patients p ∈ FP ∪ NP ∪ RP for different services i ∈ A offered by the SCC.
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That is, for each requested appointment of each of the services a decision has to be

made: either the appointment is scheduled or is left as unscheduled. If the current

available resources are not enough to serve all the requested appointments, some of

the appointments will be directed to a buffer (i.e., a virtual waiting list). In practice,

after cancellations or changes in the appointments have been revealed, the scheduler

will try to squeeze the appointments in the buffer into the schedule.

The MMCSP seeks to assign a date and a time and reserve the required resources

for each appointment. Scheduling decisions are made by taking into account the

following (conflicting) objective categories: i) minimizing oncologists’ overtime and

completion time, ii) minimizing nurses’ overtime, iii) minimizing patients’ waiting

time, iv) balancing daily workload of nurses, and v) maximizing the assignment of

patients to their primary nurses and preferred treatment times.

2.4 Formulations for the Static MMCSP

In this section we describe two integer programming (IP) formulations for the static

MMCSP. They use the same set of variables but differ in the sets of constraints used

to model the precedence constraints between services. In what follows, we provide

the definition of the decision variables, the considered objective functions, and the

constraints needed to model the MMCSP.

2.4.1 Decision variables

We recall that each nurse is responsible for a predefined set of chairs. Therefore,

when assigning an appointment to a chair the assigned nurse is known. We use the

following sets of binary decision variables.

• y1
pk′ds (p ∈ P , k′ ∈ CAp, d ∈ D1

pk, s ∈ S1
pkd): takes value 1 if and only if the blood

test needed for consultation appointment k′ of patient p is scheduled on day d
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starting at time slot s;

• y2
pkds (p ∈ NP ∪ RP , k ∈ T Ap, d ∈ D2

pk, s ∈ S2
pkd): takes value 1 if and only if

the blood test needed for treatment appointment k of patient p is scheduled on

day d starting at time slot s;

• y3
pk′ds (p ∈ P , k′ ∈ CAp, d ∈ D3

pk, s ∈ S3
pkd): takes value 1 if and only if consul-

tation appointment k′ of patient p is scheduled on day d starting at time slot

s;

• y4
pkds (p ∈ NP ∪ RP , k ∈ T Ap, d ∈ D4

pk, s ∈ S4
pkd): takes value 1 if and only if

drug preparation for treatment appointment k of patient p is scheduled on day

d starting at time slot s;

• xpkdsc (p ∈ NP ∪RP , k ∈ T Ap, d ∈ D5
pk, s ∈ S5

pkd, c ∈ CPpk): takes value 1 if and

only if treatment k of patient p is scheduled on day d starting at time slot s on

chair c;

• z1
pk′ (p ∈ P , k′ ∈ CAp): takes value 1 if and only if consultation appointment k′

of patient p is placed in the buffer;

• z2
pk (p ∈ NP∪RP , k ∈ T Ap): takes value 1 if and only if treatment appointment

k of patient p is placed in the buffer.

2.4.2 Objectives

Consultation and treatment schedules have a direct impact on the quality of health-

care services offered to patients as well as the workload of physicians and nurses. It is

thus critical to employ different performance measures (i.e., objective functions) that

can integrate both clinic staff and patients perspectives when evaluating the efficiency

of appointment schedules. In what follows, we overview eight different objectives that

we include in our model: two are nurse-related, one is physician-related, and five are
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patient-related. For details on how these objectives are mathematically stated using

the above decision variables, we refer the reader to Appendix A.

2.4.2.1 Nurse-related objectives

We use the following two objectives to improve nurses’ satisfaction.

• g1(x): is a minmax objective that seeks to balance the nurses’ daily workload

as much as possible during the entire planning horizon by minimizing the sum

of the maximum daily workload differences among all nurses pairs.

• g2(x): is a minsum objective that aims at minimizing the sum of daily nurses

overtime or patients hand overs (i.e., a change of nurse in the middle of a

patient’s treatment).

2.4.2.2 Physician-related objectives

We consider the objective g3(y3) = g1
3(y3) + g2

3(y3) + g3
3(y3), which incorporates on-

cologists preferences using the following three performance measures:

• g1
3(y3): minimizes the sum of daily completion time of gynecology oncologists.

This objective is relevant given that at the SCC gynaecologists usually leave the

clinic as soon as all assigned patients are served. We note that in this paper,

we have focused on the oncology, hematology and gynecology departments of

the SCC.

• g2
3(y3): minimizes the sum of daily overtime of oncologists except for the gy-

naecologists.

• g3
3(y3): minimizes the number of patients assigned to the oncologists’ break

times. Although oncologists prefer to rest during breaks, sometimes it is needed

to skip a break to be able to serve more patients.
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2.4.2.3 Patient-related objectives

We use the following five objectives to improve patients’ satisfaction.

• g4(x, y1, y2, y3) = g1
4(y1, y3)+g2

4(x, y2)+g3
4(x, y2): this objective seeks to reduce

excessive direct waiting times of patients by considering the following three

terms:

– g1
4(y1, y3): minimizes the sum of patients’ waiting time between blood test

and consultation stages.

– g2
4(x, y2): minimizes the sum of recurring patients’ waiting time between

blood test and treatment stages whenever the blood test for the next treat-

ment appointment has to be scheduled on the same day as the treatment

appointment.

– g3
4(x, y2): minimizes patients’ waiting time between blood test and treat-

ment stages when both appointments are scheduled on a same after-weekend

day.

• g5(x): minimizes the sum of waiting time (i.e., access time) for new treatment

patients. This objective has the goal of assigning the soonest possible date to

the patients with the highest priority.

• g6(x): minimizes the number of non-preferred assignments of patients to nurses.

• g7(x): minimizes the number of non-preferred time assignments for treatment

appointments.

• g8(z1, z2): minimizes the number of unscheduled consultation and treatment

appointments.

20



2.4.3 Modeling the feasible region

To model the set of all feasible schedules for the MMCSP, we need to simultaneously

consider a large number of system’s characteristics and assumptions that arise when

scheduling a set of patients requesting multiple appointments over multiple stages,

and requiring several resources from a chemotherapy clinic. In what follows, we

introduce each class of constraints and provide an explanation for them.

2.4.3.1 Day-assignment constraints

For an arriving patient’s request k ∈ CAp∪T Ap, p ∈ P , and for each of its associated

clinic service i ∈ A, either a date and a start time is assigned to it or it is redirected

to the buffer as an unscheduled request. The following are the assignment constraints

for each of the five services:

∑
d∈D1

pk′

∑
s∈S1

pk′d

y1
pk′ds + z1

pk′ = 1 p ∈ P , k′ ∈ CAp : BCpk′ = 1 (2.1)

∑
d∈D2

pk

∑
s∈S2pkd

y2
pkds + z2

pk = 1 p ∈ NP ∪RP , k ∈ T Ap : BTpk = 1 (2.2)

∑
d∈D3

pk′

∑
s∈S3

pk′d

y3
pk′ds + z1

pk′ = 1 p ∈ P , k′ ∈ CAp (2.3)

∑
d∈D4

pk

∑
s∈S4pkd

y4
pkds + z2

pk = 1 p ∈ NP ∪RP , k ∈ T Ap (2.4)

∑
d∈D5

pk

∑
s∈S5pkd

∑
c∈CPpk

xpkdsc + z2
pk = 1 p ∈ NP ∪RP , k ∈ T Ap. (2.5)

2.4.3.2 Buffer-related constraints

If a recurring patient p needs to have his/her k′th visit with the doctor one day before

his/her kth treatment appointment, i.e., SeCpk′k = 1, and that consultation appoint-

ment cannot be scheduled, then the treatment appointment should also be redirected
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to the buffer. For such treatments, the patient should not receive the infusion be-

fore his/her status has been examined by the doctor. However, if the treatment

appointment remains unscheduled, the consultation appointment can still be sched-

uled. These assumptions are reasonable because in practice, there are always some

treatment cancellations, so it is most likely possible to schedule a treatment appoint-

ment later, after cancellations occur. This interrelationship between consultation and

treatment appointments can be modeled as:

z2
pk ≥ z1

pk′ p ∈ RP , k ∈ T Ap, k′ ∈ CAp : SeCpk′k = 1. (2.6)

For the case of new treatment patients, we assume that either both consultation

and treatment appointments are scheduled or both are not, which causes them to be

assigned to the buffer. Given that one objective (g5(x)) is to assign a start date for

their first treatment as soon as possible, we cannot schedule in practice only one of

these appointments. To ensure this is satisfied, we add the following constraints:

z1
pk = z2

pk′ p ∈ NP , k ∈ T Ap, k′ ∈ CAp. (2.7)

2.4.3.3 Resource capacity constraints

There exist limited resources that are used in each of the four stages on an outpa-

tient oncology clinic. In what follows, we discuss each one of them and provide their

associated capacity constraints that need to be considered.

Consultation services

The oncologists are the only resources associated with the consultation services

and they are assumed to have unitary capacity. More precisely, the following con-
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straints ensure that at most one patient is served by each oncologist in each time

slot:

∑
p∈POo

∑
k′∈Kp(d,s)

s∑
s′=s(PT 3

pk′ )

y3
pk′ds′ ≤ 1 o ∈ O, d ∈ DOo , s ∈ S, (2.8)

where s(PT 3
pk′) = max

{
1, s− PT 3

pk′ + 1
}
and Kp(d, s) = {k′ ∈ CAp : d ∈ D3

pk′ , s ∈

S3
pk′d}.

Blood test services

Phlebotomists are the required resources for performing blood tests. The following

capacity constraints ensure that the number of patients assigned to a time slot s in

day d is no larger than the number of available phlebotomists (RB
ds):

∑
p∈P

∑
k′∈K1

p(d,s)

s∑
s′=s(B)

y1
pk′ds′ +

∑
p∈NP∪RP

∑
k∈K2

p(d,s)

s∑
s′=s(B)

y2
pkds′ ≤ RB

ds d ∈ D, s ∈ S, (2.9)

where s(B) = max {1, s−B + 1}, and B is the time needed for taking blood

samples. K1
p(d, s) = {k′ ∈ CAp : BCpk′ = 1, d ∈ D1

pk′ , s ∈ S1
pk′d} and K2

p(d, s) = {k ∈

T AP : BTpk = 1, d ∈ D2
pk, s ∈ S2

pkd}.

Drug preparation services

Pharmacists are the required resources for drug preparation. The following ca-

pacity constraints ensure that the number of patients assigned to a time slot s in day

d is no larger than the number of available pharmacists (RD
ds):
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∑
p∈NP∪RP:

∑
k∈K′p(d,s)

s∑
s′=s(PT 4

pk)

y4
pkds′ ≤ RD

ds d ∈ D, s ∈ S, (2.10)

where s(PT 4
pk) = max

{
1, s− PT 4

pk + 1
}
, and K′p(d, s) = {k ∈ T AP : d ∈ D4

pk, s ∈

S4
pkd}.

Treatment services - Chairs

Similar to oncologists, chairs are also assumed to have unitary capacity. The

following constraints ensure that at most one patient is seated in each chair at each

time slot:

∑
p∈NP∪RP

∑
k∈Kp(c,d,s)

s∑
s′=s(PT 5

pk)

xpkds′c ≤ 1 c ∈ C, d ∈ D, s ∈ S, (2.11)

where s(PT 5
pk) = max

{
1, s− PT 5

pk + 1
}
, and Kp(c, d, s) = {k ∈ T AP : d ∈ D5

pk, s ∈

S5
pkd, c ∈ CPpk}.

Treatment services - Nurses

Nurse availability requires a more granular modeling. We recall that during setup

time, the nurse can only be with one patient at a time. However, during the infusion

time a nurse can monitor up to four patients simultaneously. We denote as STpk the

required time to set up a patient on the infusion chair. The following constraints

ensure that at most one patient is assigned to a nurse at each time slot during setup

time:
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∑
p∈NP∪RP

∑
k∈K′′p (d,s)

s∑
s′=s(STpk)

∑
c∈CPpk∩C

N
nd

xpkds′c ≤ 1 n ∈ N , d ∈ DNn , s ∈ S, (2.12)

where s(STpk) = max {1, s− STpk + 1}, and K′′p(d, s) = {k ∈ T AP : d ∈ D5
pk, s ∈

S5
pkd}.

At SCC, chemotherapy equipment is placed in two stations j ∈ {1, 2} located

within walking distance from each other. However, it is not possible for a nurse

to monitor patients sitting in different stations and each nurse is only assigned to

chairs belonging to the same station on each day. Therefore, it is required to have

monitoring constraints for each station, separately. For each station, the following

constraint should be respected:

∑
p∈NP∪RP

∑
k∈K′′p (d,s)

∑
c∈CPpk∩Cj

 s∑
s′=s(STpk)

3

4
xpkds′c +

s∑
s′=s(PT 5

pk)

1

4
xpkds′c

 ≤ RN
dsj

d ∈ DNn , s ∈ S, (2.13)

where RN
dsj is the total number of available nurses at time slot s and day d in station

j and Cj is the set of chairs located in station j.

At SCC, nurses start their shifts at different time slots which in turn has an impact

on the availability of nurses (and their associated chairs) during specific time slots.

Moreover, when solving the dynamic variant, we schedule arriving patients while

considering a partially-filled schedule, i.e., some nurses (and chairs) are no longer

available during specific time slots. Therefore, every time a patient is scheduled for

treatment, the availability of the assigned nurse (and chair) needs to be considered

for the entire treatment time. The following constraints are used to fix some of the x

variables to zero whenever nurses and chairs are not available for the entire duration
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of the treatment time:

∑
c∈CPpk∩C

N
nd

xpkdsc ≤
∑s(STpk)

s′=s ANnds′

STpk

p ∈ NP ∪RP , k ∈ T Ap, d ∈ D5
pk ∩ DNn , s ∈ S5

pkd, n ∈ N (2.14)

xpkdsc ≤
∑s(PT 5

pk)

s′=s ACcds′

PT 5
pk

p ∈ NP ∪RP , k ∈ T Ap, d ∈ D5
pk, s ∈ S5

pkd, c ∈ CPpk, (2.15)

where s(PT 5
pk) = min

{
|S|, s+ PT 5

pk − 1
}

and s(STpk) = min {|S|, s+ STpk − 1}.

ACcds and ANnds are binary parameters denoting whether a chair or nurse, respec-

tively, is available in day d at time slot s.

2.4.3.4 Next-day precedence constraints

The MMCSP considers a next-day system for scheduling of appointments. It is thus

important to make sure that required appointments for blood test, consultation and

non-special drug preparation are scheduled one day before the treatment appointment.

The following constraints ensure these precedence relationships:

∑
s∈S5p1d

∑
c∈CPp1

xp1dsc =
∑
s∈Sjp1d

yjp1(d−1)s j ∈ {2, 3, 4}, p ∈ P5,j, d ∈ D5,j
p1 , (2.16)

where P5,2 = {p ∈ NP : BTp1 = 1}, denotes the set of new treatment patients

requesting blood test appointments, P5,3 = {p ∈ NP : |CAp| = 1} defines a set

of new treatment patients who need a consultation appointment before their first

infusion, and P5,4 = {p ∈ NP : SDp1 = 0}, represents the set of new treatment

patients requiring non-special drugs. Moreover, D5,j
p1 = {d ∈ D5

p1 : d > 1, (d −

1) ∈ Djp1, d /∈ DH} denotes the set of all possible days for the patient’s infusion

starting from the second day of the planning horizon which are not after-weekend
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days and their previous day is a valid day for receiving service j. Note that, because

in constraints (2.16) different appointments dates are coordinated to form a next-day

system, it is necessary to make sure that the selected infusion day is not an after-

weekend day and also it is a valid day with respect to the other services that should

be scheduled one day before.

2.4.3.5 Same-day precedence constraints

The two proposed IP formulations differ in the way same-day precedence constraints

are modeled. To explain the underlying modeling principles of these two formulations

we first focus on a simplified scheduling problem involving one patient with two

consecutive activities j → i, that must be scheduled on a predetermined day d. Let

si denote the starting time of activity i and PTi its processing time. Given the

precedence j → i, any feasible solution must satisfy

si − sj ≥ PTj, (2.17)

which implies that any solution that satisfies

si − sj < PTj, (2.18)

is infeasible (see Figure 2.3).

t t+PTj

PTj

sj

si

T0

Figure 2.3: Incompatibilities between time periods when scheduling consecutive ac-
tivities j → i.
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Let xisd denote a binary variable equal to one if and only if activity i is scheduled

to start at period s ∈ T at given day d. Condition (2.17) can be modeled as

∑
s

sxisd ≥
∑
s

(s+ PTj)x
j
sd, (2.19)

whereas condition (2.18) can be modeled as

∑
s<t+PTj

xisd +
∑
s≥t

xjsd ≤ 1 ∀t ∈ T . (2.20)

We note that both sets of constraints (2.19) and (2.20) provide necessary condi-

tions for feasibility. Therefore, each of them independently provides a valid formu-

lation for the simplified scheduling problem with one day. However, the associated

linear programming (LP) relaxations may be different.

Consider now a slightly more general case in which there exists a set of days D

to schedule one patient with two consecutive activities j → i. However, we assume

that activities must be scheduled during the same day. The same-day assumption

and condition (2.17) can be modeled as

∑
s

xisd =
∑
s

xjsd ∀d ∈ D (2.21)∑
d

∑
s

sxisd ≥
∑
d

∑
s

(s+ PTj)x
j
sd, (2.22)

whereas the same-day assumption and condition (2.18) can be modeled as

∑
d′ 6=d

∑
s

xisd′ +
∑

s<t+PTj

xisd +
∑
s≥t

xjsd ≤ 1 ∀t ∈ T , d ∈ D. (2.23)

We use either (2.21) and (2.22), or (2.23) as a basis to develop alternative valid

inequalities to model several same-day precedence conditions of service pairs of new

and recurring patients. In what follows, we discuss each of these precedence condi-
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tions and provide two alternative ways to model each of them.

Drug preparation-treatment precedence constraints

The preparation of special drugs must be scheduled on the same day as the treat-

ment and be completed before the latter starts. For each p ∈ NP such that SDp1 = 1,

this requirement is stated either as:

∑
s∈S5p1d

∑
c∈CPp1

xp1dsc =
∑
s∈S4p1d

y4
p1ds d ∈ D5

p1 ∩ D4
p1 (2.24)

∑
d∈D5

p1

∑
s∈S5p1d

∑
c∈CPp1

sxp1dsc ≥
∑
d∈D4

p1

∑
s∈S4p1d

(
s+ PT 4

p1

)
y4
p1ds, (2.25)

or as

∑
d′∈D5

p1

d′ 6=d

∑
s′∈S5

p1d′

∑
c∈CPp1

xp1d′s′c +
∑

s′∈S5p1d
s′<(s+PT 4

p1)

∑
c∈CPp1

xp1ds′c +
∑

s′∈S4p1d
s′≥s

y4
p1ds′ ≤ 1

d ∈ D5
p1 ∩ D4

p1, s ∈ S. (2.26)

If treatment of a new patient is scheduled on an after-weekend day, preparation

of the non-special drugs must also be scheduled on the treatment day. Thus, for each

p ∈ NP such that SDp1 = 0, this condition is guaranteed by:

∑
s∈S5p1d

∑
c∈CPp1

xp1dsc ≤
∑
s∈S4p1d

y4
p1ds d ∈ D5

p1 ∩ D4
p1 ∩ DH. (2.27)

Please note that if non-special drug preparation is scheduled on an after-weekend

day, it is not necessarily the case that treatment appointment is also assigned to the

same day. Treatment appointment can also be scheduled on the following day. How-

ever, if treatment is assigned to an after-week-end day, drugs must also be prepared

on the same day. In this case, it is important to make sure that drug is prepared
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before treatment starts. For p ∈ NP such that SDp1 = 0, this precedence constraint

can be modeled either as:

∑
d∈(D5

p1∩DH)

∑
s∈S5p1d

∑
c∈CPp1

(s− |S|)xp1dsc + |S| ≥
∑

d∈(D4
p1∩DH)

∑
s∈S4p1d

(
s+ PT 4

p1

)
y4
p1ds, (2.28)

or as

∑
s′∈S5p1d:

s′<(s+PT 4
p1)

∑
c∈Cp

xp1ds′c +
∑

s′∈S4p1d:

s′≥s

y4
p1ds′ ≤ 1 d ∈ D5

p1 ∩ D4
p1 ∩ DH, s ∈ S. (2.29)

Given that the exact treatment dates for recurring patients are known in advance,

for the treatments whose target date is an after-weekend day the required drugs are

considered as special drugs, i.e., they must be prepared the same day as the treatment

day. Therefore, D5
pk = D4

pk and |D5
pk| = |D4

pk| = 1, which implies there is no need

to explicitly consider constraints similar to (2.24) and (2.27) for recurring patients.

For each p ∈ RP and k ∈ T Ap, such that SDpk = 1, precedence constraints between

drug preparation and treatment can be modeled either as:

∑
s∈S5

pkd
′

∑
c∈CPpk

sxpkd′sc ≥
∑

s∈S4
pkd
′

(
s+ PT 4

pk

)
y4
pkd′s

, (2.30)

where d′ denotes the singleton in D5
pk = D4

pk, or as

∑
s′∈S5

pkd′ :

s′<(s+PT 4
pk)

∑
c∈CPpk

xpkd′s′c +
∑

s′∈S4
pkd′ :

s′≥s

y4
pkd′s′ ≤ 1 s ∈ S. (2.31)

Blood test-consultation precedence constraints

If a new patient needs both blood test and consultation appointments then both

of them must be scheduled on a same day, and consultation should be started when
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the blood test is done and the results are ready. For each p ∈ FP ∪ NP such that

BCp1 = 1, this can be modeled as follows:

∑
s∈S3p1d

y3
p1ds =

∑
s∈S1p1d

y1
p1ds d ∈ D3

p1 ∩ D1
p1. (2.32)

∑
d∈D3

p1

∑
s∈S3p1d

sy3
p1ds ≥

∑
d∈D1

p1

∑
s∈S1p1d

(
s+ PT 1

p1

)
y1
p1ds, (2.33)

or as

∑
d′∈D3

p1:

d′ 6=d

∑
s′∈S3

p1d′

y3
p1d′s′ +

∑
s′∈S3p1d:

s′<(s+PT 1
p1)

y3
p1ds′ +

∑
s′∈S1p1d:

s′≥s

y1
p1ds′ ≤ 1

d ∈ D3
p1 ∩ D1

p1, s ∈ S. (2.34)

Since appointment dates for new patients requesting several stages are determined

by the model, it is necessary to define such relations between the assigned dates by

constraints (2.32) to make sure that given appointments are coordinated properly.

For recurring patients, it is assumed that the dates of appointments are known in

advance and such relations are already considered. Therefore, there is no need to have

similar constraints for recurring patients. However, we still need to define precedence

constraints between consultation and blood test services during the same day for these

patients. For each p ∈ RP and k′ ∈ CAp, such that BCpk = 1, these constraints can

be stated either as:

∑
d∈D3

pk

∑
s∈S3pkd

sy3
pkds ≥

∑
d∈D1

pk

∑
s∈S1pkd

(
s+ PT 1

pk

)
y1
pkds, (2.35)
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or as

∑
s′∈S3pkd:

s′<(s+PT 1
pk)

y3
pkds′ +

∑
s′∈S1pkd:

s′≥s

y1
pkds′ ≤ 1 d ∈ D3

pk ∩ D1
pk, s ∈ S. (2.36)

Consultation-drug preparation precedence constraints

If patients need to see a physician one day before the infusion for some of their ap-

pointments, the preparation of non-special drugs must be done after the consultation

is completed on the same day. For each p ∈ NP such that SDp1 = 0 and |CAp| = 1,

these precedence constraints can be modeled either as:

∑
d∈D4

p1

∑
s∈S4p1d

sy4
p1ds ≥

∑
d∈D3

p1

∑
s∈S3p1d

(
s+ PT 3

p1

)
y3
p1ds, (2.37)

or as

∑
s′∈S4p1d:

s′<(s+PT 3
p1)

y4
p1ds′ +

∑
s′∈S3p1d:

s′≥s

y3
p1ds′ ≤ 1 d ∈ D4

p1 ∩ D3
p1, s ∈ S. (2.38)

Similarly, for each recurring patient p ∈ RP , k′ ∈ CAP and k ∈ T Ap such that

SDpk = 0 and SeCpk′k = 1, the above precedence constraints can be modeled either as:

∑
d∈D4

pk

∑
s∈S4pkd

sy4
pkds + |S|z2

pk ≥
∑
d∈D3

pk′

∑
s∈S3

pk′d

(
s+ PT 3

pk′

)
y3
pk′ds, (2.39)

or as

∑
s′∈S4pkd:

s′<(s+PT 3
pk)

y4
pkds′ +

∑
s′∈S3pkd:

s′≥s

y3
pk′ds′ ≤ 1 d ∈ D4

pk ∩ D3
pk, s ∈ S. (2.40)

Note that constraints (2.39) should be activated if and only if both consultation
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and infusion appointments are scheduled.

Blood test-drug preparation precedence constraints

In a regular two-day scheduling system, blood test and special drugs preparation

are scheduled on two consecutive days. However, if special drug preparation is as-

signed to an after-weekend day, the blood test should also be assigned to the same

day and drug preparation must start after the blood test is complete and results are

ready. Therefore, for each p ∈ NP ∪ RP and k ∈ T Ap such that SDpk = 1 and

BTpk = 1, this condition can be modeled either as:

∑
d∈D4

pk∩DH

∑
s∈S4pkd

(s− |S|)y4
pkds + |S| ≥

∑
d∈D2

pk∩DH

∑
s∈S2pkd

(
s+ PT 2

pk

)
y2
pkds, (2.41)

or as

∑
s′∈S4pkd:

s′<(s+PT 2
pk)

y4
pkds′ +

∑
s′∈S2pkd:

s′≥s

y2
pkds′ ≤ 1 d ∈ D4

pk ∩ D2
pk ∩ DH, s ∈ S. (2.42)

Similarly, if a patient’s treatment appointment requires a blood test and the drug

is non-special, then the pharmacist can start drug preparation after the result of the

blood test is ready. For each p ∈ NP ∪ RP and k ∈ T Ap, such that SDpk = 0 and

BTpk = 1, this condition can be modeled either as:

∑
d∈D4

pk

∑
s∈S4pkd

sy4
pkds ≥

∑
d∈D2

pk

∑
s∈S2pkd

(
s+ PT 2

pk

)
y2
pkds, (2.43)

or as

∑
s′∈S4pkd:

s′<(s+PT 2
pk)

y4
pkds′ +

∑
s′∈S2pkd:

s′≥s

y2
pkds′ ≤ 1 d ∈ D4

pk ∩ D2
pk, s ∈ S. (2.44)
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Blood test-treatment precedence constraints

Regularly, blood test and treatment appointments of new treatment patients are

scheduled on two consecutive days. However, if a treatment appointment is scheduled

on an after-weekend day, the corresponding blood test appointment must also be

scheduled on the same day. Therefore, for p ∈ NP such that BTpk = 1, this condition

can be modeled by:

∑
s∈S5p1d

∑
c∈CPp1

xp1dsc ≤
∑
s∈S2p1d

y2
p1ds d ∈ D5

p1 ∩ D2
p1 ∩ DH . (2.45)

Sometimes recurring patients need to have infusions for several consecutive days.

Therefore, they need to do blood test every two days. For example, suppose that

a patient should receive chemotherapy from Tuesday to Friday and thus, he/she is

required to do a blood test on Monday and Wednesday. Thus, the patient should have

both a blood test and treatment on Wednesday and the treatment should be started

after the test is done. Thus, for each p ∈ RP and k ∈ T Ap such that BTp(k+1) = 1

and d5
pk = d2

p(k+1), where d
5
pk ∈ D5

pk and d2
p(k+1) ∈ D2

p(k+1), this situation is represented

as follows:

∑
d∈D5

pk

∑
s∈S5pkd

∑
c∈CPpk

sxpkdsc + |S|z2
pk ≥

∑
d∈D2

p(k+1)

∑
s∈S2

p(k+1)d

(
s+ PT 2

p(k+1)

)
y2
p(k+1)ds, (2.46)

or as

∑
s′∈S5pkd:

s′<(s+PT 2
p(k+1)

)

∑
c∈CPpk

xpkds′c +
∑

s′∈S2
p(k+1)d

:

s′≥s

y2
p(k+1)ds′ ≤ 1

d ∈ D5
pk ∩ D2

p(k+1), s ∈ S. (2.47)
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2.4.4 Mathematical programming formulations

We have described in the previous sections the decision variables, objectives, and

constraints needed to formulate the MMCSP. Depending on which condition is used

to model same-day precedence constraints, the feasible region of the MMCSP can

be represented in two different ways. Using condition (2.17), the MMCSP can be

formulated as the following multi-objective integer linear program:

(M1) minimize
{
g1 (x) , g2 (x) , g3

(
y3
)
, g4

(
x, y1, y2, y3

)
, g5 (x) , g6 (x) , g7 (x) , g8

(
z1, z2

)}
subject to (2.1)− (2.16), (2.24), (2.25), (2.27), (2.28), (2.30), (2.32), (2.33), (2.35),

(2.37), (2.39), (2.41), (2.43), (2.45), (2.46)

yipkds ∈ {0, 1} i ∈ {1, ..., 4}, p ∈ P , k ∈ CAp ∪ T Ap, d ∈ D, s ∈ S

xpkdsc ∈ {0, 1} p ∈ P , k ∈ k ∈ T Ap, d ∈ D, s ∈ S, c ∈ C.

Using condition (2.18), the MMCSP can be formulated as the following multi-

objective integer linear program:

(M2) minimize
{
g1 (x) , g2 (x) , g3

(
y3
)
, g4

(
x, y1, y2, y3

)
, g5 (x) , g6 (x) , g7 (x) , g8

(
z1, z2

)}
subject to (2.1)− (2.16), (2.26), (2.27), (2.29), (2.31), (2.34), (2.36), (2.38), (2.40),

(2.42), (2.44), (2.45), (2.47)

yipkds ∈ {0, 1} i ∈ {1, ..., 4}, p ∈ P , k ∈ CAp ∪ T Ap, d ∈ D, s ∈ S

xpkdsc ∈ {0, 1} p ∈ P , k ∈ T Ap, d ∈ D, s ∈ S, c ∈ C.

2.5 Sequential Approaches for the Static MMCSP

In the previous section we described two IP formulations that integrate the decisions

for all five services offered by the clinic. In this section we provide two sequen-
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tial approaches in which decisions are divided into two sets: consultation decisions

and treatment decisions. These approaches are used to schedule all the required ap-

pointments in two sequential steps, by solving a mathematical model at each step.

Decomposing the integrated problem into two smaller (and potentially easier) deci-

sion problems to solve may help to reduce the computational time at the expense of

potentially decreasing the quality of the obtained solutions. Section 2.7 provides a

comparison between the integrated and the two sequential approaches in a static and

dynamic setting.

In the first approach, denoted as the consultation-treatment approach, we first

solve a consultation model and then a treatment model. In the consultation model, we

schedule all consultation and related blood test appointments. Based on the output of

this model, and after updating the available resources, the treatment model schedules

all chemotherapy treatments, drug preparation, and related blood test appointments.

In the consultation model, we determine three decisions (y1
pkds, y

3
pkds, z

1
pk): date and

start time of consultation blood test appointments, date and start time of consultation

appointments, and the set of scheduled consultation appointments in the current

planning horizon. The objectives are g3(y3) : minimizing oncologists’ completion time

and overtime; g1
4(y1, y3) : patients’ waiting times between blood test and consultation

appointments, g′8(z1) : number of unscheduled consultation appointments, and g′5(y3) :

access time for new treatment patients that also require a consultation appointment.

In the treatment model, we determine four decisions (y2
pkds, y

4
pkds, xpkdsc, z

2
pk): date

and start time of treatment blood test appointments, date and start time of drug

preparations, date, start time and chair of treatment appointments, and the set of

scheduled treatment appointments in the current planning horizon. In this model, we

consider eight objectives: g1(x) : balancing workload of nurses on a daily basis, g2(x) :

minimizing nurses’ overtime, g2
4(x, y2)+g3

4(x, y2) : minimizing patients’ waiting times

between blood test and treatment appointments, g5(x) : minimizing access time of
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new treatment patients, g6(x) : maximizing number of preferred nurse assignments,

g7(x) : maximizing preferred time assignments, and g′′8(z2) : minimizing the number

of unscheduled treatment appointments. With these objectives, the treatment model

can be easily obtained from the integrated model. For additional details on the overall

consultation-treatment approach, we refer to Algorithm 7 and Appendices B and C.

In the second approach, denoted as the treatment-consultation approach, we first

solve a treatment model and then a consultation model. The treatment model first

schedules all chemotherapy treatments, drug preparation, and related blood test ap-

pointments and then, the consultation model schedules all consultation and related

blood test appointments. We note that the consultation and treatment models used

in both approaches, are exactly the same with the exception that in the consultation

model used in the treatment-consultation approach, we do not need to consider g′5(y3)

in the objective function given that g5(x) is considered in the first step (i.e., treat-

ment model). For additional details on the overall treatment-consultation approach,

we refer to Algorithm 8 and Appendix B.

2.6 An Online Scheduling Algorithm for the Dynamic

MMCSP

In the dynamic version of the MMCSP, appointment requests arrive in real time over

a rolling horizon in the form of waiting lists of newly requested appointments. Every

time a waiting list is received, all appointments are scheduled by solving an instance

of the static variant using either the integrated or sequential scheduling approaches.

Deciding when to schedule appointments of a waiting list and the number of appoint-

ments to schedule at each waiting list, depends on the clinic scheduling policies and

the scheduler preferences. Scheduling more appointments at a time (i.e., larger wait-

ing lists) result in more efficient overall schedules, since having more information helps
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to construct better solutions. However, waiting to populate a waiting list with a large

number of appointments causes delays in the confirmation of patient’s appointments,

which has a negative impact in the service provided.

Once a waiting list becomes available, the scheduling process starts by filling out

a partially-filled schedule. Therefore, before starting to schedule new appointment

requests, we need to determine resources’ availability and capacities due to the already

booked appointments. Moreover, in order to balance nurses workload more accurately,

it is important to consider previously assigned loads of each nurse on the partial

schedule. Also, to consider restrictions on the number of patients each nurse can

monitor simultaneously, we take into account the number of already booked patients

each nurse is planned to monitor. Algorithm 1 depicts the most important steps of

our online algorithm.

Algorithm 1: Online Outpatient Scheduling Algorithm
Given a partial schedule:

• Define oncologists, nurses and chairs availability

• Calculate available capacity of phlebotomists and pharmacists

• Calculate current workload of nurses

• Calculate available capacity of nurses

Schedule requested appointments using either integrated or sequential approaches
Return new partial schedule
Add unscheduled appointments to the next waiting list

2.7 Computational Experiments

This section provides a summary of the results of an extensive computational study

carried out to assess the empirical performance of the proposed static and dynamic

outpatient scheduling models. We next present the details of the experimental design

used to carry out our analyses.
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2.7.1 Experimental design and evaluation

We use the weighted sum method to solve the multi-objective IPs proposed in Section

2.4. An Analytic Hierarchy Process (AHP) is applied to determine the coefficient of

each objective function [56]. We note all objective function terms are first normalized,

and then using the coefficients obtained by AHP, the weighted sum of all objectives is

calculated. For additional details on the implementation aspects of the AHP method

and obtained objective coefficients we refer to Tables 2 and 3 of Appendix A. All IPs

were coded in C++ and solved with CPLEX 12.7.1 using Concert Technology on an

Intel Xeon CPU E5-2687W v3 processor at 3.10 GHz and 750 GB of RAM under a

Linux environment. We limit the maximum number of used threads by CPLEX to

seven.

In Section 2.7.2, we first explain how the instances have been generated using

real data from the SCC and the comparison criteria used in our experiments. In

Section 2.7.3, we then compare the computational performance of formulations M1

and M2 on the static MMCSP. In Section 2.7.4, we analyze the impact of integrating

all decisions into a single comprehensive model, as compared to using sequential

approaches to solve the static and dynamic variants of MMCSP. In Section 2.7.5, we

compare the integrated model with the actual plan used at the SCC at a given month.

Finally, Section 2.7.6 provides further analysis and discussion.

2.7.2 Instance generation and comparison criteria

In order to build our problem instances, we used real data from SCC. For this purpose,

we first recorded the actual initial partially-filled schedule of patients for consulta-

tion and treatment appointments at the beginning of the planning horizon, and then,

after 22 business day (i.e., at the end of the planning horizon), we again recorded

the actual complete schedule of patients in order to obtain the set of newly requested

appointments. These records revealed an initial partially-filled schedule containing
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1,587 pre-booked consultation and 559 pre-booked treatment appointments. Dur-

ing the same 22-day period, there were new requests for 733 consultation and 440

treatment appointments.

SCC has two chemotherapy stations. The first station has 13 regular chairs and

the second station has 14 regular chairs and three rooms. We note that in addi-

tion to these 30 chairs and rooms, there are three other chairs and two other rooms

in the first station which are reserved for drop-in patients. Therefore, we do not

consider them in our study. There were 18 nurses working at SCC during the consid-

ered period. The direct nursing times required to set up a patient on chemotherapy

equipment is considered to be 15 minutes and the number of patients each nurse can

monitor simultaneously is four. For the purpose of our evaluation, we have focused

our study on the oncology, hematology and gynecology departments which involve

25 physicians in total. The clinic operates from 8:00 to 18:00, and no patient can be

set up for treatment during the lunch time, i.e., from 12:00 to 13:00. Furthermore,

we have considered 15 minutes time slots which corresponds to 40 time slots per day.

Pharmacy and blood lab finish at 16:00 and 15:00, respectively. Moreover, there are

three pharmacists and four phlebotomists working on each day, which are not avail-

able during lunch time, i.e., from 12:00 to 13:00. The time needed for taking blood

samples (15 min), preparing blood test results (15 min), and drug preparation (30

min) is considered to be equal for all patients.

We have generated three sets of instances based on real data. The first data

set (T-set) contains ten small-size instances for the static case which can be solved

optimally within an hour. These instances are generated using real data and in a way

that reflects SCC characteristics on a small scale. The second data set (S-set) includes

one instance that considers all the requested appointments of SCC to be scheduled

over 22 days in the static version of the problem. For this instance, it is assumed

that all the requests for the entire planning horizon are known in advance and can be
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scheduled in a single step. Finally, the third data set (D-set) consists of four instances

that are used to solve a real-size problem dynamically. To build these instances we

assume that requests arrive in the form of waiting lists and we should schedule all the

requested appointments in several steps. Two, four, eight, and 12 waiting lists have

been considered to build these problem instances. In the dynamic problem, there are

different ways to decide when to schedule appointments. Two common approaches

are based on the time or number of patients. In the former case, the scheduler defines

several points of time (e.g., every three days), to schedule the appointment, while in

the latter case, he/she waits until a specific number of requests arrive and then starts

to schedule them. In this paper we have used the number of requests as a measure

to build the waiting lists. Table 4 and Table 5 in Appendix D give the setting used

for each of the generated instances.

We considered several individual performance measures derived from the compo-

nents of the multi-objective function introduced in Section 2.4.2. In the following,

these measures are defined and the calculation methods are described.

1. Unbalanced workload
(
g1(x)
|D|

)
: average daily maximum nurses’ workload differ-

ence (in hours).

2. Completion time
(

g12(y3)

|D|OGD

)
: average gynecologist daily completion time (in

hours), where OGD denotes the average number of gynecologists that work every

day at the clinic.

3. Oncologist overtime
(
g22(y3)

|D|OD

)
: average oncologist daily overtime (in hours),

where OD shows the average number of oncologists other than gynecologists

that work every day at the clinic.

4. Nurse overtime
(

g3(x)

|D|ND

)
: average nurse daily overtime (in hours), where ND

represents the average number of nurses that work every day at the clinic.
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5. Waiting time
(
g4(x,y1,y2,y3)

|D|PD

)
: average waiting time of each scheduled patient per

day (in hours), where PD shows the average number of patients per day.

6. Access time
(∑

p,d,s,c dxp1dsc

NPS

)
: average access time for each patient (in days),

where NPS is the number of scheduled new treatment patients.

7. Non-preferred nurses : percent of scheduled treatment appointments not as-

signed to a preferred nurse. It is calculated as the total number of such non-

preferred assignments divided by the number of scheduled treatment appoint-

ments.

8. Non-preferred times : percent of scheduled treatment appointments not assigned

to the preferred time slot. It is calculated as the total number non-preferred

assignments divided by the number of scheduled treatment appointments.

9. Buffer : number of unscheduled appointments.

Given that the number of patients assigned to oncologists’ break times are negligible,

this performance measure has not been considered. In addition to the above individual

measures, we also used an overall performance measure indicator (OPMI) that reflects

the overall performance of the final schedule, either in static or dynamic problems.

Similar to the objective function of the proposed models, OPMI is calculated as the

weighted sum of normalized individual objective components. Therefore, for the static

version, OPMI is equal to the objective function value of M1 and M2.

2.7.3 Comparison of formulations

We now computationally compare the two alternative IP formulations for the inte-

grated scheduling model proposed in Section 2.4. Table 2.1 summarizes the obtained

results using the T-set instances. For each formulation, we report the number of con-

straints, the number of explored nodes, LP gap, and computational time (in seconds).
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It should be noted that a one hour time limit was considered for solving each instance

and for those instances that couldn’t be solved optimally within the given time limit,

instead of the run time, the optimality gap is reported.

Table 2.1: Comparison of two IP formulations for the static integrated scheduling
model

Constraints Nodes LP Gap (%) Time (sec)
M 1 M 2 M 1 M 2 M 1 M 2 M 1 M 2

T1 10,351 11,986 13,703 6,215 4.00 3.81 34.07 27.30
T2 7,765 9,204 4,658 145 1.25 1.25 1.29 0.88
T3 5,961 8,612 3,148 5,488 17.01 16.67 5.33 3.52
T4 8,714 10,431 57,815 12,290 42.90 42.79 10.32 3.10
T5 6,508 9,905 81,917 17,967 6.16 6.05 time (0.48%) 385.66
T7 8,016 11,840 1,453,714 60,795 40.04 39.50 time (0.17%) 78.86
T8 11,717 13,513 3,349 3,283 68.24 68.24 3.21 2.75
T9 16,053 19,486 7,914,245 7,836 60.41 60.33 time (0.07%) 8.64
T10 17,098 19,867 4,666 3,330 46.11 46.05 3.39 4.23

Average 1,092.03 53.10

The results of Table 2.1 seem to indicate that M2 outperforms M1 in terms of

computational time and the number of explored nodes. In addition, the LP Gaps of

M2 are always at least as good as the ones of M1. Therefore, we use M2 for the

reminder of computational experiments.

2.7.4 A comparison between integrated and sequential ap-

proaches

We tested and compared the performance of the integrated and sequential approaches

using the instances from S-set and D-set. For these experiments, we considered a time

limit of 24 hours for the integrated model and 12 hours for each of the two models

in the sequential approaches for the static problem. As for the dynamic case, these

mentioned time limits are divided by the number of waiting lists to obtain the actual

considered time limit for scheduling the appointments of each waiting list.

Tables 2.2 and 2.3 summarize the obtained results with both static and dynamic
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variants. Since having the complete information about all requests is the best choice

for scheduling appointments, we have compared the results of the integrated and

sequential approaches for the dynamic version, and the results of the sequential ap-

proaches for the static version, with the results obtained by the integrated model for

the static instance S1. For this purpose, the values given in columns under the head-

ings CT(%) and TC(%) are calculated as 100(X − S1I)/S1I , where X denotes the

solution obtained by either one of approaches for the D-set instances (or sequential

approaches for the S-set instance). Therefore, any positive value in these columns

indicate that the associated performance measure is worse as compared to the inte-

grated approach, and any negative value shows an improvement.

Table 2.2 focuses on the static variant. The second column under the heading

value provides the value of each of the individual measures obtained by the inte-

grated model, while columns CT and TC denote the percent deviation in the asso-

ciated performance measure obtained by CT and TC approaches, respectively, when

compared to the integrated model. The last row reports the optimality gap obtained

by CPLEX after the given time limit. In the case of CT and TC approaches, these

gaps correspond to the average gap from both consultation and treatment models.

Table 2.2: Comparison of integrated and sequential approaches for static case.

Individual performance indicator Value CT (% dev) TC (% dev)
Unbalanced workload(hour) 2.10 -3.24 -3.78
Completion time(hour) 9.40 0.00 0.35
Oncologist overtime(hour) 0.34 4.87 5.31
Nurse overtime(hour) 0.06 0.00 2.50
Waiting time(hour) 0.04 -26.41 -6.67
Access time(day) 4.15 -6.06 0.00
Non-preferred nurses(%) 77.09 -6.44 -8.99
Non-preferred times(%) 98.16 -0.30 -0.29
Buffer 26.00 15.38 0.00
OPMI 35.25 7.35 -0.65
Remaining gap (%) 4.66 1.54 7.68

From Table 2.2 we note that the sequential treatment-consultation approach pro-
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vides a better solution in terms of the OPMI when compared to the integrated and

consultation-treatment approaches. In theory, the integrated approach will always

provide a solution at least as good as the sequential approaches. However, given that

none of the models associated with both approaches can be optimaly solved in one

day with CPLEX, the feasible solution obtained by TC is the best obtained solution

among the three approaches.

Table 2.3 compares the OPMI % deviation, computational time, and the remaining

% gap obtained by CPLEX after 24 hours for the dynamic instances from D-set using

each of the approaches. The reported relative values for the OPMI are calculated

with respect to the integrated model S1 instance.

Table 2.3: Comparison of integrated and sequential approaches for dynamic case.

OPMI % dev Time (sec) Rem. % gap
I CT TC I CT TC I CT TC

D1 27.13 39.72 24.05 time time time 2.00 0.93 2.42
D2 42.17 53.76 53.27 time 57,448 65,744 2.38 0.73 1.18
D3 62.36 63.22 70.93 75,842 28,188 27,987 0.68 0.11 0.10
D4 73.13 84.68 88.47 59,941 20,091 14,866 0.21 0.07 0.03

According to Table 2.3, in terms of quality of the obtained solutions the integrated

model is the best choice for the dynamic case. However, considering time needed to

solve the problem, sequential approaches can be a better choice as they can provide

good quality solution in shorter times. Selecting among the approaches ultimately

depends on the clinic managers’ perspective and current needs. If time is a key factor

for them, or if they can wait to collect as many appointments as possible, a sequential

approach would be preferable. If booking appointments should be done dynamically

and with higher frequency while a given time limit is respected, the integrated model

is the choice as it can provide solutions with the best quality in the dynamic case.
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2.7.5 Comparison between the integrated model and the ac-

tual plan

We next compare the integrated model with the actual executed plan. In order to

make a fair comparison between our proposed schedule and the actual schedule exe-

cuted at SCC, in this section we schedule patients only for consultation and treatment

stages and we ignore other stages because we do not have information about actual

blood test appointments and drug preparations of SCC during the studied period.

Moreover, since we do not know exactly when each request was made, we also neglect

the objective component related to the access time, since it would be unfair to com-

pare the results without having such information. Therefore, for this comparison we

have used objective coefficients as presented in the second column of Table 3 in Ap-

pendix D. Similar to the previous section, we considered a time limit of 24 hours for

the scheduling of all the requested appointments associated with one or more waiting

lists.

A summary of the results is given in Table 2.4. Similar to Section 2.7.4, we

compared the obtained results for dynamic instances and the actual plan with the

results obtained from the static variant using the integrated model.

Table 2.4 shows that when using the integrated model most performance indicators

can be significantly improved in both static and dynamic settings when compared to

the executed schedule. We also calculated the OPMI associated with the executed

plan and compared it with our obtained OPMI for the static problem. The results

show that using the proposed model, the OPMI can also be improved significantly.

Given that we considered a time limit for solving the problem instances, we were not

able to solve all models to optimality. Within the given time limit the final optimality

gap for the S1 problem is 29.54% and the average optimality gap over all waiting lists

for D-set instances are 12.21%, 9.15%, 3.16%, and 1.16%, respectively. For each

model, the optimality gap is calculated as (best integer - best bound)/best integer.
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Table 2.4: Comparison of the integrated model with the executed actual plan

(a) Solution of the static problem (S1)

S1
(1) Unbalanced workload(hour) 1.74
(2) Completion time(hour) 9.40
(3) Oncologist overtime(hour) 0.26
(4) Nurse overtime(hour) 0.03
(5) Non-preferred nurses(%) 74.18
(6) Non-preferred times(%) 98.22
(7) Buffer 1.00
(8) OPMI 8.91

(b) Comparison of the D-set instances and the real plan with the static problem

D1(%) D2(%) D3(%) D4(%) Actual plan(%)
(1) 86.27 173.80 223.53 242.48 535.95
(2) -0.23 3.80 4.03 8.17 7.36
(3) 4.65 9.88 8.14 6.40 1.74
(4) 41.67 166.67 37.50 308.33 575.005
(5) 3.54 8.88 11.79 13.11 12.37
(6) 0.00 0.00 0.14 0.00 0.28
(7) -100 -100 0.00 -100.00 -100.00
(8) 60.81 132.58 176.05 189.77 422.57

As expected, solving the dynamic problem with fewer waiting lists, i.e., having more

information before starting the scheduling process, results in better schedules, and as

the number of waiting lists increases, the efficiency of the final schedule decreases.

2.7.6 Analysis and discussion

In this section we perform several analyses to assess the impact of different parameters

and problem settings on the quality of the obtained solutions when using our proposed

approaches.

2.7.6.1 Functional care approach v.s. primary care approach

Functional care delivery and primary care delivery models are two common methods

for assigning nurses to patients for chemotherapy appointments. We recall that SCC
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uses a primary care delivery model for nurse assignments. However, in order to

examine the impact of nurse-to-patient assignment policies on the quality of obtained

schedules, we can adapt our models to schedule appointments considering a functional

care approach and compare the obtained schedule with the one considering a primary

care approach. For this comparison, we have considered a time limit of one hour

divided by number of waiting lists. In order to fairly compare the results, we also

considered an optimality gap limit for solving the models, so that we obtain a schedule

with similar optimality gaps for both considered policies. The considered optimality

gap for the static variant is 12%. For the D-set instances this gap is considered as 5%,

8.5%, 5.5%, and 3%. These values are selected based on the maximum gap obtained

by solving the instances in one hour. A summary of results are reported in Table 2.5,

where Pr and Fn are used to refer to primary and functional models, respectively.

Table 2.5: Impact of nurse-patient assignment policies on the quality of obtained
schedules

S1 D1 D2 D3 D4
Pr Fn Pr Fn Pr Fn Pr Fn Pr Fn

Unbalanced workload 2.89 3.00 4.45 4.60 5.65 5.97 6.45 6.73 6.56 6.66
Completion time 9.51 9.42 9.46 9.44 9.98 10.06 9.97 10.01 11.07 11.05
Oncologist overtime 0.47 0.39 0.38 0.38 0.53 0.43 0.45 0.47 0.46 0.49
Nurse overtime 0.12 0.10 0.12 0.11 0.19 0.18 0.14 0.13 0.19 0.15
Waiting time 0.03 0.03 0.04 0.04 0.04 0.06 0.05 0.06 0.05 0.05
Access time 4.06 4.09 4.21 4.30 3.88 4.03 4.13 4.18 3.97 3.88
Non-preferred nurses 83.59 91.23 78.24 89.87 77.94 90.52 82.36 91.87 84.05 92.44
Non-preferred times 98.02 97.88 98.29 98.57 98.57 98.56 98.69 98.55 98.97 98.40
Buffer 26.00 26.00 30.00 32.00 35.00 37.00 47.00 44.00 56.00 45.00
OPMI 37.67 37.97 45.31 47.23 51.83 54.07 62.31 61.09 67.86 61.10
Time (sec) 3,480 1,570 1,906 926 655 682 396 398 543 584
Gap (%) 11.16 11.83 4.90 4.93 7.79 6.26 4.16 4.36 2.12 2.24

We note that the performance of these policies are similar for most performance

indicators, expect for the non-preferred nurses in which the primary mode is always

better than the functional mode. When we have fewer waiting lists, using a primary

model results in slightly better schedules, but it needs more time to solve the problem.
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As the number of lists increases, a functional model provides slightly better solutions

in the same amount of time.

2.7.6.2 Impact of resource capacity

In order to assess the impact of the number of phlebotomists and pharmacists on the

quality of the final schedule, we next present the results of experiments obtained from

several scenarios considering an increase or decrease of capacity of these resources

using the integrated model. We considered a time limit of one hour divided by

the number of waiting lists. Similar to the experiments of the previous section, we

also considered an optimality gap limit when solving the models. The considered

optimality gap for the static problem is 20%. For the D-set instances this gap is

considered as 10%, 11.5%, 5.5%, and 3.5%. These values are selected taking into

account the maximum gap that was obtained by solving the instances in one hour.

Table 2.6: Solution of the problem instances with the current capacity

S1 D1 D2 D3 D4
(1) Unbalanced workload(hour) 3.99 5.24 5.80 6.45 6.55
(2) Completion time(hour) 9.52 9.53 10.53 9.97 11.04
(3) Oncologist overtime(hour) 0.56 0.43 0.52 0.45 0.45
(4) Nurse overtime(hour) 0.15 0.10 0.22 0.14 0.15
(5) Waiting time(hour) 0.03 0.05 0.05 0.05 0.05
(6) Access time(day) 4.06 4.24 3.88 4.13 3.97
(7) Non-preferred nurses(%) 80.06 78.68 80.20 82.36 84.23
(8) Non-preferred times(%) 97.88 98.28 98.42 98.69 98.83
(9) Buffer 26.00 34.00 36.00 47.00 48.00
(10) OPMI 41.17 50.23 53.07 62.31 62.60
Time (sec) 2,187 865 628 394 545
Gap (%) 18.73 8.31 9.59 4.16 2.53

Table 2.6 reports the obtained results within the given limits for the current

capacities, i.e., RB
ds = 4 and RD

ds = 3. Table 2.7 represents the relative OPMIs

with respect to the OPMI considering the current capacities, time needed to solve

the problem, and the average optimality gap. In this table, R′Bds and R′Dds represent
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changes occurred in the number of available phlebotomists and pharmacists at each

time slot, respectively. According to this table, it seems that with the current patient

mix and considered parameters, four phlebotomists and five pharmacists are ideal for

obtaining the best solution.

Table 2.7: Comparing the obtained solutions using different capacities with the cur-
rent capacity

R′Bds R′Dds OPMI (%) Time (sec) Gap(%)

S1

0 -1 83.28 2,106 16.14
-1 0 56.06 2,371 10.64
1 0 0.37 2,007 19.21
0 1 -31.35 2,483 19.79
0 2 -47.78 2,919 19.61

D1

0 -1 66.98 829 7.96
-1 0 50.05 1,043 7.86
1 0 -2.71 751 9.68
0 1 -32.17 1,066 8.98
0 2 -49.50 1,750 9.50

D2

0 -1 64.69 653 6.95
-1 0 55.21 638 7.39
1 0 -2.47 997 9.31
0 1 -23.63 996 9.65
0 2 -42.16 962 10.92

D3

0 -1 46.25 386 3.58
-1 0 43.34 397 3.94
1 0 -11.37 399 4.54
0 1 -26.84 481 4.61
0 2 -43.67 430 5.19

D4

0 -1 44.65 560 2.26
-1 0 42.73 599 2.07
1 0 -9.14 671 2.58
0 1 -25.73 694 2.66
0 2 -43.64 614 3.07

2.8 Conclusion

This paper studied a multi-appointment, multi-stage chemotherapy scheduling prob-

lem considering unique characteristics and realistic assumptions which arises in a
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major cancer center in Canada. In order to coordinate all the required patient ap-

pointments properly while utilizing valuable resources efficiently, an integrated model

was proposed to schedule multiple appointment requests of different types of patients

for each of the clinic stages including blood test, consultation, pharmacy, and treat-

ment stages. We considered that patients may follow different paths in the clinic

and may require special chemotherapy equipment for their treatment. Moreover,

chemotherapy drugs’ shelf-life has been taken into account for scheduling decisions.

We modeled and solved the static and dynamic cases of the studied problem. In addi-

tion to an integrated scheduling model, two sequential approaches were also proposed

to assess the value of integration. Extensive computational experiments were carried

out using real data to evaluate the performance of the proposed methods. The results

showed the potential for significant improvements in the actual schedule with respect

to several performance measures.

In this paper, we calculated the workload of the nurses by simply considering the

amount of time that each nurse spends to set up and monitor patients during the

day. However, we know that different patients need different levels of attention due

to their health status and acuity level. Thus, incorporating acuity levels of patients in

future researches to compute the workload of nurses results in more accurate results.

Flexibility in recurring patients’ appointment dates and possibility of appointment

cancellations can also be considered in future works.
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Chapter 3

Integrated Consultation and

Chemotherapy Scheduling under

Uncertain Treatment Times

The content of this chapter will be submitted as a manuscript for publication to the

journal Expert Systems with Applications in September 2020.

Abstract

This paper studies the integrated scheduling of consultation and treatment appoint-

ments for chemotherapy patients, while taking into account stochastic duration of

injection. Patients may require one or both types of consultation and treatment

appointments. The objective is to minimize the clinic’s overtime and the waiting

time of patients. To formulate the problem, we develop two two-stage stochastic

programming models. We also propose a sample average approximation algorithm

as the solution method. To improve the efficiency of our solution approach, we de-

vise a specialized algorithm that quickly evaluates a given first-stage solution for a

large set of scenarios, without solving the second-stage models. Several computa-
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tional experiments are carried out to evaluate the performance of proposed models

and algorithms.

3.1 Introduction

Oncology clinics providing chemotherapy treatments are among the most demanded

outpatient clinics, due to the increasing cancer rates. Based on a Canadian Cancer

Society report1, the number of annual cancer cases is increasing. However, the mor-

tality rate of cancer has been decreased in recent years because of the new advances

in cancer treatments. To keep this decreasing trend, it is necessary to provide high

quality services to the increasing number of cancer patients. A vital step in this re-

gard, is to design scheduling tools that enable health providers to serve more patients

with a satisfactory service quality, while efficiently utilizing the available resources.

Chemotherapy is one of the most effective cancer treatments that uses drugs to

destroy cancer cells. Patients receive chemotherapy drugs through a variety of meth-

ods. These drugs are commonly administered intravenously, that may take from

several minutes to hours to influence the patient, depending on the drug’s type and

dosage. Cancer patients usually require several chemotherapy sessions for a complete

cure plan. The appointment dates and the drugs’ type and dosage are prescribed

in advance by an oncologist in the first consultation appointment. The treatment

plan may require patients to visit their oncologist before some of their chemotherapy

appointments, so that their health conditions are examined and the prescribed drug

and dosage are revised if necessary.

There are two common procedures followed by oncology clinics to schedule con-

sultations with oncologists and chemotherapy appointments. In next-day scheduling

system, clinics schedule these two appointments on two different days , while in same-

1http://www.cancer.ca/en/cancer-information/cancer-101/canadian-cancer-statistics-
publication/?region=qc
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day scheduling system, they are scheduled on the same day [20]. The next-day system

is more flexible as clinic staff has more time to resolve pharmacy-related issues and

react appropriately to the last minute changes such as modifications in treatment.

However, it requires patients to come twice to the clinic that increases transportation

costs and the overall time patients spend to receive the service. Same-day scheduling

system is more cost and time effective for the patients, however, it is less flexible for

health staff to mitigate the negative impacts of the last-minute changes. Therefore,

the next-day scheduling system is usually preferred by the staff, while same-day sys-

tem is a better choice for the patients [42]. In this paper, we focus on the same-day

scheduling policy.

Stochastic service time is one of the main challenges in any appointment scheduling

problem. In absence of considering uncertain service times, the obtained appointment

schedules are inefficient and do not satisfy the expectations of the decision maker

in reality. There are several reasons for the uncertain duration of chemotherapy

treatments. The main reasons are 1) early termination of chemotherapy infusion

when patients cannot tolerate the injected drug and 2) longer infusion times due to

the complications caused by patients’ adverse reactions to the drugs. These deviations

from the expected treatment time affect all other appointments and increase patients’

waiting times and overtime of resources . Thus, incorporating uncertainty in the

scheduling process is vital and results in more efficient and reliable schedules.

There are several papers that study chemotherapy planning and scheduling prob-

lems, however, there is still the lack of a study that considers stochastic treatment

times along with other realistic assumptions in the literature. To the best of our

knowledge, [13] and [22] are the only optimization-based papers that considered un-

certain infusion durations for a set of patients. Castaing et al. [13] focus on scheduling

treatment appointments of patients with respect to a given sequence. Garaix et al.

[22] study the problem of determining a global sequence for both consultation and
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treatment appointments considering unlimited capacity for the nurses. Therefore,

there is still a lack of studies in the literature that simultaneously determine the

sequence of patients and the treatment start times considering limited capacity of

resources. To address the existing gaps in the literature, this paper studies a daily

consultation and chemotherapy scheduling problem (CCSP) in oncology clinics where

treatment durations are stochastic. We consider three types of patients: 1) the first

category of patients request to have only consultation visits with oncologists, 2) the

second type of patients require both consultation and chemotherapy appointments,

and 3) the last category of patients need to only receive the chemotherapy treatment.

Since the variability of consultation times is not as much as it is for the treatment

times, in this paper we only consider the variability in injection times and assume the

consultation times to be deterministic. Furthermore, for the second type of patients,

we take into account the required time for preparing the chemotherapy drug after the

consultation and consider it to be deterministic. We assume that there are always

enough resources available to prepare the chemotherapy drugs. Therefore, for the

third type of patients, we are sure that the required drugs are prepared in advance

and there is no need to consider drug preparation time. However, for the second type

of patients, as the drug type or dosage may be revised by oncologists, the preparation

can only start when the consultation is completed. Therefore, for these patients, there

is always a gap between the two appointments to address preparation of the drug.

We also take into account the fact that, each nurse can set up at most one patient

on a chemotherapy chair, while he/she can monitor several patients simultaneously,

during the rest of the infusion.

The main contributions of this paper are as follows:

• Problem definition: We consider simultaneous scheduling of consultation and

treatment appointments for different types of patients, while incorporating un-

certainty in the treatment times. We take into account several operational de-
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cisions such as assignment of patients to nurses and chairs, and also sequencing

of patients on the same chair and/or nurse.

• Formulation: We develop two two-stage stochastic programming models to for-

mulate the problem. One of these formulations uses the classic constraints of

machine scheduling to determine the assignment of patients to resources and

to sequence them. In the other formulation, assignment and sequences are de-

termined using similar constraints that formulate the multi-traveling salesman

problem (multi-TSP).

• Solution method: We use a sample average approximation (SAA) scheme to

obtain high quality feasible solutions. To enhance SAA, we also develop an effi-

cient specialized algorithm that quickly evaluates any given first-stage solution

for a large number of scenarios.

The remainder of this paper is organized as follows. In Section 3.2, we provide

a literature review. In Section 3.3, we describe the CCSP in more detail. Then,

in Section 3.4, we propose two two-stage stochastic programming models for the

stochastic CCSP. In Section 3.5, we present a sample average approximation algorithm

and a specialized algorithm to solve the problem with a large number of scenarios. We

report the computational results in Section 3.6. Finally, we provide the conclusion

and some future research avenues in Section 3.7.

3.2 Literature Review

Planning and scheduling problems arising in oncology clinics are examples of multi-

disciplinary and multi-stage scheduling problems. Leeftink et al. [43] and Marynissen

and Demeulemeester [49] have recently reviewed such scheduling problems in health-

care. For more specific review on the planning of outpatient chemotherapy clinics,

please refer to [41].
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In recent years, chemotherapy planning and scheduling problems have attracted

the attention of many researchers and several studies have been conducted on these

topics. However, according to the [49], most researchers restrictively focus only on

the scheduling of patients for treatment appointments (e.g., [2, 7, 13, 18, 25, 27, 32,

35, 37, 38, 44, 65]). There are a few papers that have also considered other types of

appointments such as consultation and blood test appointments. Liang et al. [45],

propose a discreet event simulation for an oncology clinic where different types of

patients request for consultation and/or chemotherapy appointments. In this simula-

tion model, the authors have addressed unpunctual arrivals, stochastic service times,

add-ons, and cancellations. Bouras et al. [9] develop a mixed integer programming

model for a daily scheduling of consultation and treatment appointments in an oncol-

ogy clinic, that minimizes patients waiting times between the appointments. In this

work, authors consider only one patient type by assuming that all patients have both

types of appointments. Suss et al. [63] propose a scheduling algorithm based on lean

principles that determines the best patient arrival rate to an oncology clinic such that

different types of patients can complete all the required appointments including blood

test, consultation and treatment, with the minimum waiting time. They use a dis-

crete event simulation model to evaluate the performance of the proposed algorithm.

Haghi et al. [31] study a comprehensive multi-appointment, multi-stage scheduling

problem in an oncology clinic. The authors present integrated and sequential ap-

proaches to schedule multiple-appointment requests of different types of patients for

blood test, consultation, and chemotherapy appointments over a planning horizon.

They have also developed an online scheduling tool to accommodate arriving requests

dynamically.

The majority of recent literature addressing chemotherapy scheduling related top-

ics, have either considered deterministic versions of the problem (see, [37, 44, 58]),

or have studied online scheduling and dynamic nature of the appointment arrivals
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(see, [18, 27, 32, 38, 54]). However, the literature on the scheduling of chemotherapy

appointments under uncertain infusion durations is scare. Castaing et al. [13] present

a two-stage stochastic programming approach for the chemotherapy scheduling prob-

lem with uncertain duration of treatment appointments, where the objective is to

minimize the expected waiting times of patients and the makespan. In this work,

the first-stage decisions fix the appointment times and then in the second stage, the

assignment of patients to chairs are determined and waiting time of patients and the

makespan are calculated. The authors design a heuristic algorithm to solve instances

with one nurse, three chairs and 12 patients. They also propose several lower-bounds

for the problem to evaluate the quality of the solution obtained by the heuristic.

This paper considers only the treatment appointments, and solves small instances.

Furthermore, the authors assume that the sequence of patients is known in advance

that significantly simplifies the problem. Alvarado and Ntaimo [2] propose three

mean-risk stochastic programming formulations to schedule multiple chemotherapy

appointments for a single new patient considering uncertainty in acuity level of the

patient, appointment duration and number of nurses on duty on each day. This

work focuses on the treatment appointment only, and considers the scheduling of

only one patient. Göçgün [25] studies the problem of determining chemotherapy

appointment dates dynamically considering the probability of appointment cancella-

tions and formulates the problem as a Markov decision process. To solve the problem,

the author develops a linear-programming-based approximate dynamic programming

method that provides approximate solutions. The focus of this paper is only on the

treatment stage and not the consultation stage. Furthermore, the proposed method

only determines appointment dates and neglects the assignment of start times and

required resources. The author also assumes that all treatment times are equal to

exactly one time slot and ignored the variability of treatment duration. Garaix et al.

[22] develop a heuristic approach for a same-day consultation and chemotherapy treat-
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ment scheduling problem considering uncertain treatment cancellations. Using this

heuristic, authors determine a visit sequence of patients that is the same for both

consultation and treatment appointments. Moreover, they assume that all oncolo-

gists are available all day and consultation times are equal for all patients. Also,

the authors assume that the number of available nurses is large enough to serve all

patients, and therefore do not consider them. Furthermore, they do not determine

the assignment of patients to the chairs. They also assume that all patients require

both consultation and treatment appointments, and thus, consider only one type of

patients.

Our work differs from all the mentioned studies in several aspects. First, we con-

sider three different patient types that require a consultation appointment, a treat-

ment appointment, or both appointments. Second, we consider the limited number of

nurses along with the chairs, and we also determine the exact assignments of patients

to these resources. Third, we assume that the sequences that patients visit oncolo-

gists, chairs, and nurses are not given in advance. In our models, these sequences are

determined independently, and thus could be different. This flexibility increases the

chance of obtaining higher quality solutions.

3.3 Problem Definition and Notation

We consider PC and PT as the sets of patients requesting for the oncologist con-

sultation and chemotherapy appointments, respectively. Furthermore, we let P i,

i ∈ {1, 2, 3} denote the set of patients of type i. We remind that the first-type pa-

tients only ask for the consultation appointment with one of the oncologists, patients

of type two need both consultation and treatment appointments, and the last category

of patients only need a treatment appointment. Therefore, we have PC = P1 ∪ P2

and PT = P2 ∪ P3. For p ∈ PC , we also define the deterministic parameter CTp as
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the required time for consultation appointment. For p ∈ P2, we let DTp represent

the preparation time of chemotherapy drug, that is also a deterministic parameter.

In our problem, we assume that there are a limited number of oncologists, chairs,

and nurses in the consultation and treatment stages. We use O, N and C to denote

the sets of oncologists, nurses and chairs, respectively. We assume that the oncologist

of each patient is known in advance, and all chairs and nurses are identical. We define

POo ⊆ PC as the set of all patients of oncologist o ∈ O. We also assume that each

oncologist o ∈ O has a specific working time window with a start time of SOo and a

finish time of FO
o . For p ∈ PC , we let Op denote the oncologist of the patient p.

We consider that the chemotherapy appointment for each patient consists of setup

time and the infusion time. Each nurse can only set up one patient at a time, while

he/she can monitor several patients during the infusion time. We consider the setup

and infusion durations to be stochastic and define Ω as the given set of stochastic

scenarios. Each scenario ω ∈ Ω provides the realizations of the setup and infusion

times of patients in that scenario. For p ∈ PT , STpω and TTpω respectively denote

the setup and infusion time of patient p in scenario ω.

In this problem, the goal is to schedule all the requested consultation and chemother-

apy treatment appointments on a given day. In the first stage, the decision maker

must decide about 1) allocation of the first appointment time of all patients, 2) alloca-

tion of patients to nurses and chairs in the treatment stage, and finally 3) sequencing

of patients allocated to the same chair/nurse. The actual start time of treatment ap-

pointments are later observed in the second stage based on the realization of stochastic

treatment times. The objective is to minimize the expected overtime of the clinic and

waiting times of the patients.
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3.4 Two-Stage Stochastic Programming Models

In this section, we propose two two-stage stochastic programming models to formu-

late the stochastic CCSP. In both of these models, in the first stage, we schedule

all consultation appointments, assign chairs and nurses to patients requiring treat-

ment appointments, and determine the sequence of patients assigned to the same

chair/nurse. We also decide about treatment appointment times of type-three pa-

tients in the first stage. This is because we must inform all patients about their

first appointment times (consultation or treatment) prior to the appointment day so

that they can plan their arrival to the clinic. Since type-three patients have only

chemotherapy appointments, their initial appointment times must be scheduled in

the first stage. However, In the second stage, we determine the actual treatment

appointment times of type-two and type-three patients, along with computing the

clinic’s over time and patients’ waiting times in each scenario.

3.4.1 Model 1

To formulate the first two-stage stochastic programming model, we define the follow-

ing first-stage variables: vpp′ is a binary variable taking value 1 if and only if patients

p ∈ PC is visited before patient p′ ∈ PC by the same oncologist (not necessarily

immediately). For each patient p ∈ PC , we also define scp as the scheduled start

time of the consultation appointment. The binary variable xpcn takes 1 if and only if

we assign patient p ∈ PT to chair c ∈ C and nurse n ∈ N during the chemotherapy

treatment. Furthermore, we let binary variables zpp′c and ypp′n represent the sequence

of patients on chairs and nurses, respectively. Variable zpp′c takes 1 if and only if

we schedule patient p ∈ PT before patient p′ ∈ PT (not necessarily immediately) on

chair c. Similarly, ypp′n takes 1 if and only if nurse n sets up patient p ∈ PT before

patient p′ ∈ PT (not necessarily immediately). Finally, we define St0p as the initial
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scheduled start time for the treatment of patient p ∈ P3.

We also define the following second-stage variables: stpω denotes the actual chemother-

apy appointment time for p ∈ PT in scenario ω ∈ Ω. To consider clinic’s overtime in

the model, we define two overtime variables ot1ω and ot2ω. When overtime is required,

ot1ω increases to a maximum threshold Omax that is a given parameter. Beyond this

threshold, ot2ω takes a positive value. In order to avoid excessive overtime, ot2ω has a

larger positive coefficient than ot1ω in the objective function. We assume that regular

clinic hours start at SC and end at FC . Finally, we define wtpω as the waiting time

of patient p ∈ PT in scenario ω ∈ Ω.

According to the defined variables, we formulate the stochastic CCSP as the fol-

lowing two-stage stochastic program:s;

(M1) minimize E
ω∈Ω

[Q(sc, x, z, y, ω)] (3.1)

subject to vpp′ + vp′p = 1 o ∈ O, p, p′ ∈ PO : p > p′ (3.2)

scp′ ≥ scp + CTp −M(1− vpp′) o ∈ O, p, p′ ∈ PO : p 6= p′ (3.3)∑
c∈C

∑
n∈N

xpcn = 1 p ∈ PT (3.4)

zpp′c + zp′pc ≤
∑
n∈N

xpcn p, p′ ∈ PT : p > p′, c ∈ C (3.5)

zpp′c + zp′pc ≤
∑
n∈N

xp′cn p, p′ ∈ PT : p > p′, c ∈ C (3.6)

zpp′c + zp′pc ≥
∑
n∈N

xpcn +
∑
n∈N

xp′cn − 1

p, p′ ∈ PT : p > p′, c ∈ C (3.7)

ypp′n + yp′pn ≤
∑
c∈C

xpcn p, p′ ∈ PT : p > p′, n ∈ N (3.8)

ypp′n + yp′pn ≤
∑
c∈C

xp′cn p, p′ ∈ PT : p > p′, n ∈ N (3.9)

ypp′n + yp′pn ≥
∑
c∈C

xpcn +
∑
c∈C

xp′cn − 1
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p, p′ ∈ PT : p > p′, n ∈ N (3.10)

SOOp ≤ scp ≤ FO
Op − CTp p ∈ PC (3.11)

st0p ≥ SC p ∈ P3 (3.12)

vpp′ ∈ {0, 1} p, p′ ∈ PC : p 6= p′ (3.13)

xpcn ∈ {0, 1} p ∈ PT , c ∈ C, n ∈ N (3.14)

zpp′c ∈ {0, 1} p, p′ ∈ PT : p 6= p′, c ∈ C (3.15)

ypp′n ∈ {0, 1} p, p′ ∈ PT : p 6= p′, n ∈ N , (3.16)

where

Q(sc, x, z, y, ω) = minimize α1ot
1
ω + α2ot

2
ω + β1

∑
p∈P2

wtpω + β2

∑
p∈P3

wtpω (3.17)

subject to stpω ≥ scp + CTp +DTp p ∈ P2 (3.18)

stp′ω ≥ stpω + STpω + TTpω −M(1−
∑
c∈C

zpp′c)

p, p′ ∈ PT : p 6= p′ (3.19)

stp′ω ≥ stpω + STpω −M(1−
∑
n∈N

ypp′n)

p, p′ ∈ PT : p 6= p′ (3.20)

stpω ≥ st0p p ∈ P3 (3.21)

wtpω ≥ stpω − st0p p ∈ P3 (3.22)

wtpω ≥ stpω − (scp + CTp +DTp) p ∈ P2 (3.23)

ot1ω + ot2ω ≥ stpω + STpω + TTpω − FC p ∈ PT (3.24)

stpω ≥ SC , wtpω ≥ 0 p ∈ PT (3.25)

0 ≤ ot1ω ≤ Omax, ot2ω ≥ 0. (3.26)

Objective function (3.1) minimizes the expected second-stage objective. Con-
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straints (3.2) determine the sequence of patients for each oncologist. Constraints (3.3)

calculate the start time of consultation appointments based on the defined sequence.

Constraints (3.4) assign a chair and a nurse to each patient with a chemotherapy ap-

pointment. Constraints (3.5)-(3.7) determine the sequence of patients assigned to the

same chair. Similarly, constraints (3.8)-(3.10) fix the sequence of the patients that are

allocated to the same nurse. Constraints (3.11) guarantee that consultation appoint-

ments of patents respect the working time window of the corresponding oncologist.

Constraints (3.12) indicate that the start time of treatment appointments for type-

three patients must be after the opening time of the clinic. Constraints (3.13)-(3.16)

state the standard integrality conditions of the decision variables.

The second-stage objective function (3.17) minimizes the clinic’s over time and

the patients’ waiting time. As discussed earlier, we consider two types of overtime

(i.e., ot1ω and ot2ω) in the objective function. We use α1 and α2 to define the weight

of these overtimes. We also consider β1 and β2 as the weights of waiting time for

type-two and type-three patients, respectively.

Constraints (3.18) ensure that treatment appointment of a type-two patient can

start after the finish time of the consultation appointment and the preparation of

the chemotherapy drug. Constraints (3.19) state that if patient p′ is scheduled after

patient p on the same chair, then his/her start time of treatment must be greater

than or equal to the time that patient p leaves the chair. Similarly, Constraints

(3.20) guarantee that if patient p′ is to be served after patient p by the same nurse,

then his/her start time of treatment must be greater than or equal to the time that

the nurse finishes setting up patient p. In constraints (3.19)-(3.20), M is a sufficiently

big number. Constraints (3.21) ensure that the actual start time of treatment for

any type-three patient must be larger than the scheduled time. This is to make sure

that the patient is present at the clinic. Furthermore, constraints (3.22) compute

the waiting times of these patients as the gap between the initial start time fixed in
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the first stage and the actual start time in the second stage. Similarly, constraints

(3.23) calculate the waiting time of type-two patients as the difference between their

consultation and treatment appointments. Constraints (3.24) compute the clinic’s

overtime with respect to the regular finish time of the clinic. Constraints (3.25)-(3.26)

state the standard non-negativity conditions of the second-stage decision variables.

3.4.2 Model 2

In this section, we provide an alternative formulation for the stochastic CCSP, that

partially models the problem as a multi-traveling salesman problem in the first stage.

Multi-TSP is a generalization of the traveling salesman problem where the decision

maker determines a set of tours for several salesmen that start from and return to

the same city. In multi-TSP, each city is visited exactly once [6]. In the CCSP, we

could consider chairs as salesmen, and the patients with treatment appointments as

the cities that must be visited exactly once by one of the salesmen (chairs). We

also define a dummy patient 0 as the origin city. Therefore, we could formulate the

problem of allocating patients to the chairs and their sequencing as a multi-TSP.

Patients that are assigned to the same tour must be served by a same chair. We let

binary variable z′pp′ take 1 if and only if there exists a tour from patient p ∈ PT ∪{0}

to the patient p′ ∈ PT ∪{0}. We remind that z′0p = 1 means that patient p is the first

patient to be visited in one of the chair tours, and z′p0 = 1 represents the case that

patient p is the last patient in a tour. According to these definitions, we formulate

the assignment of patients to chairs and their sequencing by the following constraints:

∑
p∈PT

z′0p ≤ |C| (3.27)

∑
p∈PT

z′p0 ≤ |C| (3.28)
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∑
p′∈PT∪{0}

z′pp′ = 1 p ∈ PT (3.29)

∑
p′∈PT∪{0}

z′p′p = 1 p ∈ PT . (3.30)

Constraints (3.27) -(3.28) guarantee that at most |C| tours are formed. If the

left-hand sides of these constraints are less than the right-hand sides, it means that

some chairs are not used. Constraints (3.29) and (3.30), respectively, indicate that

patient p ∈ PT has exactly one successor and one predecessor in the tour. It is

worth mentioning that, since we will use these constraints within a scheduling model,

sub-tours will not happen and therefore, sub-tour elimination constraints could be

ignored.

Similarly, we can formulate the assignment of patients to nurses and their sequenc-

ing as multi-TSP problem by considering nurses as a second type of salesmen, and

the patients with treatment appointments as the cities. We let binary variable y′pp′

take 1 if and only if there exists one nurse-tour from patient p ∈ PT ∪ {0} to the

patient p′ ∈ PT ∪ {0}. Thus, we can formulate allocation and sequencing of patients

with respect to nurses as follows:

∑
p∈PT

y′0p ≤ |N | (3.31)

∑
p∈PT

y′p0 ≤ |N | (3.32)

∑
p′∈PT∪{0}

y′pp′ = 1 p ∈ PT (3.33)

∑
p′∈PT∪{0}

y′p′p = 1 p ∈ PT . (3.34)

According to the multi-TSP reformulation, we propose an alternative model for
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the CCSP as follows:

(M2) minimize E
ω∈Ω

[Q(sc, z′, y′, ω)] (3.35)

subject to (3.2), (3.3), (3.11)− (3.13), (3.27)− (3.34)

z′pp′ ∈ {0, 1}, y′pp′ ∈ {0, 1} p, p′ ∈ PT ∪ {0} : p 6= p′, (3.36)

where

Q(sc, z′, y′, ω) = minimize α1ot
1
ω + α2ot

2
ω + β1

∑
p∈P2

wtpω + β2

∑
p∈P3

wtpω (3.37)

subject to (3.18), (3.21)− (3.26)

stp′ω ≥ stpω + STpω + TTpω −M(1− z′pp′)

p, p′ ∈ PT : p 6= p′ (3.38)

stp′ω ≥ stpω + STpω −M(1− y′pp′)

p, p′ ∈ PT : p 6= p. (3.39)

Constraints (3.38) and (3.39) are the equivalents of the constraints (3.19) and

(3.20), respectively, that compute start time of treatment appointments with respect

to the new variables z′pp′ and y′pp′ .

3.5 Solution Methodology

In this section, we propose a sample average approximation (SAA) scheme to solve

the CCSP with stochastic treatment times. SAA uses Monte Carlo simulation to

iteratively generate a set of random samples and to approximate the expected value

of the objective function. For more information on SAA method, we refer readers to

[39, 46, 48, 61].

At every iteration of the SAA, we first solve an extensive form of the two-stage
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formulation with a finite number of scenarios, and then evaluate the expected objec-

tive value of the obtained solution by a significantly larger number of scenarios. This

evaluation is usually simpler than the previous step as it is solved for a fixed first-

stage solution. In this section, we also design an specialized algorithm to efficiently

evaluate a given first-stage solution without solving the second-stage model. In the

following, we explain the general framework of the proposed SAA and the specialized

algorithm.

3.5.1 Sample average approximation

The main challenge in solving the stochastic CCSP is the large amount of scenarios

that can happen in reality. Solving the extensive formulation of the proposed stochas-

tic programming models for all the possible scenarios is computationally impossible.

To tackle this issue, in a SAA scheme, we generate a random sample of |N | scenar-

ios, N = {ω1, ..., ω|N |}, and then approximate the expected second-stage objective

function

E
ω

α1ot
1
ω + α2ot

2
ω + β1

∑
p∈P2

wtpω + β2

∑
p∈P3

wtpω

 ,
by

1

|N |
∑
n∈N

α1ot
1
ω + α2ot

2
ω + β1

∑
p∈P2

wtpω + β2

∑
p∈P3

wtpω

 .
Therefore, we can approximate the M1 by the following SAA problem:

minimize
1

|N |
∑
n∈N

α1ot
1
ω + α2ot

2
ω + β1

∑
p∈P2

wtpω + β2

∑
p∈P3

wtpω

 (3.40)

subject to (3.2)− (3.16), (3.18)− (3.26),
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where, in constraints (3.18)-(3.26), scenario index ω ∈ Ω is replaced by index of sample

scenario n ∈ N . Similarly, we can also approximate the M2 by a SAA problem.

We let x̂N and f̂N , denote the optimal first-stage solution and the optimal objective

value of the SAA problem. According to the [39], x̂N and f̂N converge to their true

counterparts with probability one, as the sample size |N | increases. However, in

the SAA algorithm, instead of solving one large SAA problem, we can generate |M |

independent samples of |N | scenarios and solve the smaller SAA problems for each

sample. Using the optimal objective values of these |M | samples, i.e. f̂ 1
N , ..., f̂

|M |
N , one

can compute statistical lower-bound (LB), upper-bound (UB), and optimality gap of

the original problem. Algorithm 2 shows the steps of the SAA algorithm that we have

implemented.

3.5.2 Specialized algorithm

Here, we develop a specialized algorithm to quickly evaluate a given first-stage solution

for a large number of scenarios. We show that, for a given first-stage solution, how

we can optimally calculate the values of the second-stage variables without solving

the second-stage model.

We remind that, in the proposed two-stage stochastic models, we determine the

assignment of patients to chairs and nurses and their sequencing in the first stage.

Then, in the second stage, we determine the actual start time of the treatment ap-

pointments according to the realization of the random parameters. The main idea

of the specialized algorithm is that the treatment appointment of a patient can start

only when the processing of previous patients assigned to the same chair and the

same nurse are completed. To better describe the proposed specialized algorithm,

we provide a small example with 10 patients, four chairs and two nurses. Let us

suppose that the assignments and sequences are as illustrated in figure 3.1a. Figure

3.1b represents job-on-node presentation of these given assignments and sequences.
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Algorithm 2: Sample Average Approximation
Choose algorithm parameters: |M |, |N |, |T | ;
Set the best known upper-bound to infinity: BU =∞;
for m = 1 to |M | do

Randomly generate |N | samples: N = {ω1, ..., ω|N |};
Solve the SAA problem considering the generated |N | samples;
Obtain the optimal value, f̂mN (x), and the optimal first-stage solution, x̂mN ;
Generate |T |(|T | >> |N |) independent random samples:
T = {ω1, ..., ω|T |};
for j = 1 to |T | do

Evaluate the first-stage decision, x̂mN , in scenario ωj;
Obtain the optimal value, f̂ j(x̂mN);

end

Calculate upper-bound estimator as Um
T = |T |−1

|T |∑
j=1

f̂ j(x̂mN);

Calculate UB variance estimator as σ2
UmT

= 1
|T |(|T |−1)

|T |∑
j=1

(
f̂ j(x̂mN)− Um

T

)2

;

if Um
T < BU then
bi = m;
BU = Um

T ;
σ2
BU = σ2

UmT
;

end
end

Calculate lower-bound estimator as LNM = |M |−1
|M |∑
m=1

f̂mN (x);

Calculate LB variance estimator as σ2
LNM

= 1
|M |(|M |−1)

|M |∑
m=1

(
f̂mN (x)− LNM

)2

;

Calculate gap estimator as gapN,M,T = UB − LNM ;
Calculate gap variance estimator as σ2

gap = σ2
LNM

+ σ2
UB;

Calculate confidence interval for the gap as (gap− zα
2
σgap, gap + zα

2
σgap);

Return x̂biN as the best first-stage solution.
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In this figure, for a fixed first-stage solution, solid arrows represent the precedence

relations on chairs, and dashed arrows denote the precedence relations on nurses.

According to this representation, treatment appointments of P4 and P5 can start at

time zero, as they have no predecessors. The dashed arrow from P5 to P2 shows that

P2 is served immediately after P5 by the same nurse. Therefore, the appointment

of P2 can start only after the processing of P5. After setting up P2 by the assigned

nurse, all the predecessors of P6 are completed, and thus the appointment of P6

can start. When the infusion of P2 is completed, the corresponding chair is released

and P1 can immediately start the treatment, supposing that his/her nurse is already

released by P4. We can further proceed on the presented graph and determine the

start time of the nodes for which all the predecessors are completed, until all patients

are scheduled. This is the procedure, that our proposed specialized algorithm follows

to compute the optimal appointment start times in the second stage. Algorithm 3

summarizes the steps of the proposed algorithm, for a given scenario ω and a given

first-stage solution z′pp, y′pp, scp, and st0p. According to the provided values of z′pp and

y′pp, we can easily determine the predecessor and the successor of each patient with

respect to the assigned chair and nurse.

(a) Illustration of the assignments and se-
quences

(b) Job-on-node presentation

Figure 3.1: An example of the assignment of patients to the chairs and nurses for the
treatment stage
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Algorithm 3: Specialized Algorithm
Initialize second-stage decision values:
∀p ∈ P2 : stpω = scp + CTp +DTp, wtpk = 0;
∀p ∈ P3 : stpω = st0p, wtpk = 0;
ot1ω = 0, ot2ω = 0;
Determine the predecessor and successor of the patients on chairs and nurses:
∀p ∈ PT : Chair(p), Chair_Predecessor(p), Chair_Successor(p);
∀p ∈ PT : Nurse(p), Nurse_Predecessor(p), Nurse_Successor(p);
Calculate actual start time for treatment appointments of the patients:
Scheduled_patients = 0, Pvisited = ∅;
∀c ∈ C : Chair_time(c) = SC , ∀n ∈ N : Nurse_time(n) = SC ;
while Scheduled_patients < |PT | do

for p ∈ PT \ Pvisited do
if Chair_Predecessor(p) = 0 & Nurse_Predecessor(p) = 0 then

stpω =
max{stpω, Chair_time(Chair(p)), Nurse_time(Nurse(p))};
Scheduled_patients+ +, Pvisited = Pvisited ∪ {p};
Chair_time(Chair(p)) = stpω + STpω + TTpω;
Nurse_time(Nurse(p)) = stpω + STpω;
if Chair_Successor(p) 6= 0 then

Chair_Predecessor(ChairSuccessor(p)) = 0;
end
if Nurse_Successor(p) 6= 0 then

Nurse_Predecessor(NurseSuccessor(p)) = 0;
end
break;

end
end

end
Calculate the performance measures:
for p ∈ P2 do

wtpω = max{0, stpω − (scp + CTp +DTp)};
end
for p ∈ P3 do

wtpω = max{0, stpω − st0p};
end
for p ∈ PT do

ot1ω = max{ot1ω, stpω + STpω + TTpω − FC};
end
if ot1ω ≤ Omax then

ot2ω = 0;
else

ot2ω = ot1ω −Omax, ot1ω = Omax;
end
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3.6 Computational Experiments

We provide the results of several computational experiments performed to assess the

performance of the proposed formulations and SAA algorithm. We have implemented

all models and algorithms in C++ using CPLEX 12.10.0 on an Intel Xeon CPU E5-

2687W v3 processor at 3.10 GHz and 750 GB of RAM where the number of threads

is set to seven.

We have generated our instances based on the date gathered from Segal Cancer

Center (SCC), a major oncology clinic in Canada. SCC has 30 chemotherapy chairs

to serve patients and each nurse is responsible for three or four chairs. Some days, the

center is fully loaded and needs to use the full capacity of chairs, while some other

days the demand is not that high and some chairs can remain unused. To better

reflect the actual behaviour of the clinic, we have sampled from different days with

different demand levels and generated 10 instances as shown in Table 3.1. In this

table, Columns 2 to 7 respectively represent numbers of all patients, patients with

consultation, patients with treatment, oncologists, chairs, and nurses in each instance.

Columns 8 to 10 , denote the average, minimum and maximum expected treatment

time (in hours) over the requested chemotherapy appointments in each instance. We

suppose that 30 percent of patients with treatment appointments, need to visit the

oncologists before their treatment. We also consider the drug preparation time and the

expected setup time to be equal to 30 minutes and 15 minutes, respectively. Moreover,

we consider the following weights in the objective function: α1 = 8, α2 = 32, β1 = 18,

and β2 = 42.

We assume that, STp and TTp are the expected setup and treatment times for

p ∈ PT . To consider the deviation of uncertain parameters from these values, we

introduce λpω as a random parameter that follows a normal distribution with mean

equal to zero and standard deviation of σ , and set STpω+TTpω = (1+λpω)(STp+TTp).

To have reasonable uncertain values for STpω and TTpω, we consider a truncated
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Table 3.1: Real-sized instances characteristics

Instance |P | |PC | |P T | |O| |C| |N | Avg(TT ) Min(TT ) Max(TT )

Exp1 117 98 29 5 18 5 2.96 0.5 6.75
Exp2 143 125 27 7 20 5 3.03 0.5 7
Exp3 120 96 35 6 24 6 3.64 1.25 7.25
Exp4 135 110 37 8 21 6 2.88 0.5 7.52
Exp5 150 116 50 7 28 8 2.75 0.5 6
Exp6 183 149 50 9 30 8 3.10 0.5 7.25
Exp7 98 63 51 4 30 8 2.55 0.5 6
Exp8 60 31 43 4 22 6 2.69 0.5 7.25
Exp9 78 51 40 4 19 5 2.57 0.5 7.25
Exp10 146 111 52 7 30 8 2.88 0.5 7

version of λpω where it belongs to [-0.5, 0.5]. According to the considered distribution

for the random deviations, we observe that for patient p, the mean for the random

service time is equal to the STp + TTp, and the standard deviation is equal to the

σ(STp + TTp), and thus the coefficient of variance (COV) is equal to σ.

3.6.1 Comparison of the formulations

In section 3.4, we proposed two formulations for the stochastic CCSP. In order to eval-

uate the performance of the proposed models, we solved deterministic and stochastic

versions of the CCSP using M1 and M2, with a time limit of one hour. The results

are reported in Table 3.2. According to this table, we observe that M2 outperforms

M1 significantly, in terms of the CPU time and the quality of obtained solutions

within the given time limit. Using M2 instead of M1, the CPU time can decrease

on average by 98% in the deterministic problem and 87%in the stochastic problem.

Furthermore, the number of variables decreases on average by about 91% in both

versions of the problem, when we use M2 instead of M1. Number of the constraints

can also be reduced on average by 93% in deterministic problem and by 69% in the

stochastic problem. Therefore, for the rest of the experiments, we use M2 to apply

SAA algorithm for stochastic problems.
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Table 3.2: Comparison of M1 and M2

Instance
Time (sec) Gap (%) Nodes (#) Variables (#) Constraints (#)

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

|Ω| = 1

Exp1 15 2 0.00 0.00 1,299 0 23,450 3,904 32,721 4,798
Exp2 12 1 0.00 0.00 1,301 50 22,739 4,001 31,260 5,020
Exp3 40 1 0.00 0.00 1,011 0 42,606 4,386 58,566 5,125
Exp4 44 2 0.00 0.00 1,563 1,771 42,566 4,752 59,335 5,504
Exp5 460 4 0.00 0.00 1,856 0 98,785 7,335 136,677 8,206
Exp6 792 12 0.00 0.00 4,824 3,057 108,086 8,086 148,779 9,283
Exp7 880 6 0.00 0.00 4,817 1,773 110,299 6,463 152,067 6,874
Exp8 164 3 0.00 0.00 1,635 1,762 56,671 4,211 80,035 4,316
Exp9 114 2 0.00 0.00 1,813 27 42,108 4,148 60,484 4,448
Exp10 555 14 0.00 0.00 1,766 3,381 115,482 7,738 159,613 8,609

Average 308 5 0.00 0.00 2,189 1,182 66,279 5,502 91,954 6,218

|Ω| = 10

Exp1 283 70 0.00 0.00 16,517 28,405 23,991 4,445 48,120 20,197
Exp2 117 13 0.00 0.00 3,520 1,915 23,244 4,506 44,625 18,385
Exp3 649 80 0.00 0.00 26,130 24,597 43,255 5,035 80,931 27,490
Exp4 501 119 0.00 0.00 6,590 26,667 43,251 5,437 84,310 30,479
Exp5 time 518 100.00 0.00 20,232 85,922 99,704 8,254 182,127 53,656
Exp6 time 464 87.26 0.00 17,136 33,788 109,005 9,005 194,229 54,733
Exp7 3,558 342 0.00 0.00 18,460 59,254 111,236 7,400 199,344 54,151
Exp8 3,107 351 0.00 0.00 32,763 30,463 57,464 5,004 113,704 37,985
Exp9 1,306 179 0.00 0.00 36,918 46,077 42,847 4,887 89,644 33,608
Exp10 time 576 93.39 0.00 9,135 108,741 116,437 8,693 208,753 57,749

Average 2,033 271 28.07 0.00 18,740 44,583 67,043 6,267 124,579 38,843
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3.6.2 Practical convergence of SAA algorithm

In this section, we analyze the convergence of the implemented SAA algorithm. We

remind that, in the SAA method, we generate |M | independent samples of |N | sce-

narios. Selecting larger values of |N | increases the probability of obtaining a more

accurate estimate on the true objective value. However, solving the SAA problem

with larger number of instances is computationally difficult. Therefore, it might be

better to select a smaller value for |N | and instead increase the value for |M |. The

goal of this part of the experiments is to find proper values for |M | and |N | in a

way that estimated optimality gap and estimated standard deviation of the gap are

sufficiently small and the required CPU time is reasonable.

In order to select proper values of |M | and |N |, we conduct several experiments

with different combinations of |M | ∈ {5, 10, 20, 30, 40, 60, 80} and |N | ∈ {5, 10, 20, 30, 50, 70}.

We also consider the evaluation sample size (i.e. |T |) to be equal to 10000. To per-

form this analysis, we selected instance Exp4 and set the coefficient of variance to

0.5. According to the previous experiments, Exp4 is not too easy and it is not also

too difficult and time consuming to solve. Therefore, it is a good candidate for the

analysis. Figure 3.2 plots the estimated optimality gap for different values of |M | and

|N |.

In Figure 3.2, we observe that for small values of |N | the estimated optimality

gap is very large even when the value of |M | increases. However, for larger values of

|N | (i.e., 50 and 70), even small values of |M | can provide high quality solutions.

Figure 3.3 plots the estimated standard deviation for the optimality gap with

different values of |M | and |N |. As expected, the estimated standard deviation of

the gap decreases as the sample sizes |M | and |N | increases. Furthermore, for larger

values of |N |, we observe that even by solving small number of SAA problems, the

estimated standard deviation is sufficiently small.

Figure 3.4 plots the required CPU time for the SAA algorithm with different
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values of |M | and |N |. We observe that CPU time increases as the values of |M | and

|N | increase. However, according to the considered random sample, we may observe

some exceptions. The results of the performed experiments indicate that it is better

to choose larger values for |N | to estimate the true objective value of the stochastic

CCSP more accurate. Furthermore, when we use larger values of |N |, we can obtain

high quality solutions even by solving small number of SAA problems. Therefore, for

the rest of the experiments we use sample sizes |M | = 30 and |N | = 50.
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3.6.3 Comparison of the SAA algorithm with the expected

value problem

Now we compare the performance of the proposed SAA algorithm with the solutions

obtained by the expected value problem (EVP). For this comparison we consider

coefficient of variance to be 0.5. The results are reported in Table 3.3. In this table,

first column represents the names of instances. In the second column, statistical lower-

bounds obtained by the SAA are provided. Next two columns denote the estimated

objective value obtained by the EVP and SAA. CPU time for the EVP and the SAA
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algorithm are presented in columns five and six. Seventh column represents the value

of stochastic solution (VSS) that is computed by UBEV P − UBSAA. Last column

denotes the percentage of decrease in the UB when we solve the stochastic problem

by SAA instead of the EVP, that is calculated by 100(V SS)/UBEV P .

Table 3.3: Comparison of the SAA and EVP

Instance
LB UB Time

VSS VSS(%)
SAA EVP SAA EVP SAA

Exp1 0.00 178.12 0.03 240 20,004 178.10 99.98
Exp2 0.00 152.47 0.05 73 4,761 152.42 99.97
Exp3 4.94 418.54 4.95 256 31,226 413.59 98.82
Exp4 5.53 153.00 5.63 354 57,403 147.37 96.32
Exp5 0.00 461.83 0.15 892 278,480 461.68 99.97
Exp6 6.01 333.58 6.09 1,067 152,517 327.49 98.17
Exp7 1.04 288.17 1.07 472 349,856 287.10 99.63
Exp8 9.03 229.27 9.39 371 531,788 219.88 95.90
Exp9 0.55 189.64 0.68 247 461,269 188.96 99.64
Exp10 0.12 437.39 0.27 764 535,162 437.12 99.94

According to this table, the objective value for the solution obtained by SAA

algorithm is significantly lower than the objective value for the EVP solution, and

the value of the stochastic solution is significant. The results of this table emphasize

the importance of incorporating uncertainty in the model for obtaining high quality

solutions.

3.6.4 Effects of different degrees of uncertainty on the quality

of the solutions

In this section we examine the impact of different degrees of the uncertainty on the

quality of solutions. We use the coefficient of variance as a control parameter to

impose different degrees of uncertainty in the stochastic CCSP. We considered five

degrees of uncertainty, and compared the solution obtained by the proposed SAA

algorithm with the solution of the expected value problem for the first four instances.

The results are reported in Table 3.4.
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Table 3.4: Comparison of the SAA algorithm and the EVP with different degrees of
uncertainty

COV Instance
LB UB Time

VSS VSS(%)
SAA EVP SAA EVP SAA

0.1

Exp1 0.00 53.97 0.13 239 16,854 53.84 99.75
Exp2 0.00 42.67 0.14 72 3,903 42.53 99.66
Exp3 0.19 132.79 0.49 261 27,851 132.30 99.63
Exp4 1.80 40.07 1.93 355 39,625 38.15 95.19

0.3

Exp1 0.00 151.30 0.07 238 20,848 151.23 99.96
Exp2 0.00 128.58 0.10 73 4,923 128.48 99.92
Exp3 3.69 357.80 3.93 260 40,803 353.87 98.90
Exp4 4.55 127.02 4.77 357 52,696 122.25 96.24

0.5

Exp1 0.00 178.12 0.03 240 20,004 178.10 99.98
Exp2 0.00 152.47 0.05 73 4,761 152.42 99.97
Exp3 4.94 418.54 4.95 256 31,226 413.59 98.82
Exp4 5.53 153.00 5.63 354 57,403 147.37 96.32

0.7

Exp1 0.00 186.54 0.04 237 25,284 186.50 99.98
Exp2 0.00 159.27 0.03 74 5,367 159.23 99.98
Exp3 4.96 437.08 5.21 259 43,383 431.87 98.81
Exp4 5.94 161.19 6.02 356 55,645 155.17 96.27

1

Exp1 0.00 191.52 0.03 234 101,664 191.49 99.98
Exp2 0.00 163.16 0.05 77 5,711 163.11 99.97
Exp3 5.34 445.35 5.49 256 116,253 439.86 98.77
Exp4 6.08 166.61 6.06 353 62,303 160.55 96.36
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According to Table 3.4, we observe that the statistical lower-bound and upper-

bound obtained by the SAA algorithm usually increase when the coefficient of variance

increases and higher degrees of uncertainty are imposed. This increase is most likely to

happen for the instances that are more affected by the uncertainty and have positive

values of the lower-bound. Furthermore, in all instances, we observe that the UB

associated with the EVP and the value of stochastic solution increase as coefficient

of variance increases. Moreover, the time needed to solve the problem increases as

we introduce higher degrees of uncertainty in the stochastic CCSP, which shows that

the complexity of the problem increases as we consider higher coefficients of variance.

3.7 Conclusion

In this paper we studied an integrated daily consultation and chemotherapy schedul-

ing problem considering stochastic treatment times and different patient types. We

proposed a two-stage stochastic programming model to formulate the problem. We

also provided an alternative formulation which partially models the problem as Multi-

TSP. The results of the computational experiments reveal that Multi-TSP based for-

mulations outperforms the other formulation significantly. We also presented a SAA

algorithm to solve the stochastic CCSP. A specialized algorithm was also designed to

quickly evaluate a given first-stage solution for a large number of scenarios. We com-

pared the quality of the solutions obtained by the SAA algorithm with the solutions

of the expected value problem. Using the SAA algorithm, we were able to reduce the

expected objective value by at least 95 percent in all the experiments. We also stud-

ied the impact of the uncertainty degree on the value of the stochastic solutions. We

observed that by increasing the coefficient of variance and imposing higher degrees

of uncertainty in to the problem, value of stochastic solution increases. Designing

decomposition-based algorithms to solve the SAA problems more efficiently is an in-
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teresting direction for future researches. Extending the model to also incorporate

treatment cancellations is also suggested.
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Chapter 4

Formulations and Algorithms for

Cross-dock Scheduling Problems with

Handling Times

The content of this chapter is submitted as a manuscript for publication to the journal

Transportation Research Part B: Methodological in August 2020 [30].

Abstract

We study a cross-dock scheduling problem with truckload and door-dependent han-

dling times. It considers the simultaneous assignment and scheduling of incoming

and outgoing trucks to inbound and outbound doors. Handling times include unload-

ing, transfer and loading times of products. We study two variants of the problem:

a general case with door-dependent unit-load transfer times, and a particular case

with constant unit-load transfer times. For the latter case, we propose several fami-

lies of valid inequalities that are effectively exploited within an exact branch-and-cut

algorithm. We also present constraint programming formulations for both variants.

Finally, we develop an approximate algorithm for the door-dependent case that uses
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the solution of the constant handling time case to obtain a valid lower bound and an

initial feasible solution. It then applies an iterated local search matheuristic to obtain

improved solutions and to provide an optimality gap. Extensive computational ex-

periments on benchmark instances confirm the efficiency of the proposed formulations

and solution algorithms.

4.1 Introduction

Cross-docking is a logistic strategy for managing effectively and efficiently distribution

activities in the supply chain. It facilitates the rapid movement of products between

multiple origins and destinations with minimal requirements in terms of storage area

and storage time in between. Cross-docking has been used by several companies in

manufacturing, retailing, and shipping service providers, among others, to improve

the efficiency of their logistic operations by reducing costs and accelerating the dis-

tribution process. In a cross-dock facility, incoming trucks bringing different types of

products from several origins are unloaded at inbound doors. Arriving products are

immediately sorted and consolidated based on their destinations, and then transferred

to outbound doors to be loaded into outgoing trucks departing for their destinations.

Optimizing the overall efficiency of cross-dock terminals has attracted significant at-

tention from researchers and practitioners. In recent years, greater emphasize on

reducing or eliminating inventory related costs using just-in-time systems has further

increased the popularity of cross-docking. There exist several excellent reviews and

surveys on cross-docking such as [10], [12], [40], and [64].

According to Buijs et al. [12], there are two general classes of cross-docking prob-

lems: local cross-dock management problems and cross-docking network management

problems. Each of these two classes consists of three sub-classes: design, planning and

scheduling, which are associated with strategic, tactical and operational decisions, re-
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spectively. The focus of the current study is on the integration of the operational

decisions of two important interrelated classes of local cross-dock management prob-

lems: cross-dock door assignment problems (CDAPs) and truck scheduling problems

(TSPs). In CDAPs, each incoming and outgoing truck must be assigned to an inbound

and an outbound door, respectively, such that the total cost of transferring products

within the cross-dock is minimized. In TSPs, the sequence of trucks, as well as the

processing start time of each truck (i.e., unloading start time for incoming trucks and

loading start time for outgoing trucks) should be determined in a way that the to-

tal time needed for completing all activities (makespan) or delays of outgoing trucks

(tardiness) is minimized. Dock-door assignment and truck scheduling decisions are

intertwined and both are needed to achieve the best performance of a cross-docking

facility. The integration of these two classes of decisions gives rise to the so-called

cross-dock scheduling problems (CDSPs). Although such integration seems to be the

best way of managing a cross-dock, most studies in the literature have focused on

CDAP or TSP independently, or have suggested sequential approaches to solve them

[see, 55].

Sayed et al. [59] introduced a general class of CDSPs with truckload and door-

dependent handling times. In this problem, denoted as the cross-dock scheduling

problem with handling times (CDSPHT), incoming trucks carrying different products

from different origins are assigned to inbound doors. Products received from each

incoming truck are then unloaded, sorted and labeled according to their destination.

The time required for each incoming truck to be processed depends on the truckload

(i.e., amount and type of products) and the employees and equipment assigned to the

assigned inbound door. When the processing of each incoming truck is completed,

products are transferred to the outbound doors where their associated outgoing trucks

are assigned to. Transfer times are considered to depend on the amount of products

to be moved from each incoming truck to their associated outgoing truck. It may also
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depend on the distance between the assigned inbound and outbound doors. When

all the required products of a given outgoing truck are transferred to the associated

outbound door, loading of the outgoing truck starts and it continues until all products

are fully loaded to the truck. Similar to incoming trucks, loading time of each outgoing

truck also depends on the truckload and the employees and equipment assigned to

the associated outbound door. The goal of the CDSPHT is to simultaneously assign

incoming trucks to inbound doors and outgoing trucks to outbound doors and to

determine the arrival time of trucks to doors such that the total time required to

process all trucks (i.e., makespan) is minimized. We assume that the destination

(i.e., outgoing truck) of each product arriving from each incoming truck is known

in advance (i.e., pre-distribution cross-dock setting). Furthermore, each door of the

cross-dock facility serves as either inbound or outbound door (i.e., exclusive door

environment), which is also determined in advance. An important feature of the

CDSPHT is that it incorporates handling times (i.e., loading, unloading and transfer

times). We consider loading and unloading times to depend on the truckload and the

assigned door, and transfer times to depend on the amount of product to be moved

between doors.

In this paper we focus on the modeling and methodological challenges faced when

solving CDSPHTs. We study two variants of the CDSPHT. In the first and most

general variant, transfer times depend not only on the amount of product but also

on the distance between doors and the used equipment at these doors. This de-

pendency can be modeled by considering different unit-load transfer times for each

inbound-outbound door pair. We refer to this general problem as the CDSPHT-G.

In the second variant, we study a particular case in which unit-load transfer times

are constant for all inbound-outbound door pairs. We refer to it as the CDSPHT-S.

The main contributions of this paper are the following. First, we introduce con-

straint programming (CP) formulations for both CDSPHT-G and CDSPHT-S and
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compare their performance with mixed integer programming (MIP) formulations pre-

viously introduced in the literature. Second, we propose several classes of valid in-

equalities for CDSPHT-S to strengthen the MIP formulations introduced in [59].

Third, we develop an exact branch-and-cut (BC) algorithm for the CDSPHT-S in

which theses inequalities are separated at some nodes of the enumeration tree. Fourth,

we present a matheuristic for the CDSPHT-G, that decomposes the problem into two

independent parallel machine scheduling problems with release dates. We enhance the

performance of this decomposition procedure by embedding it into an iterated local

search (ILS) framework. Fifth, we develop an approximate algorithm that exploits

the information generated by the solution of the CDSPHT-S with the BC algorithm

and the ILS matheuristic to compute lower and upper bounds, and thus an optimality

gap for the general CDSPHT-G.

The remainder of this paper is structured as follows. Section 4.2 reviews the most

recent and related literature in cross-docking. In Section 4.3, the CDSPHT-G and

CDSPHT-S are formally described and two MIP formulations are provided. Section

4.4 introduces CP formulations for both variants. In Section 4.5, several families of

valid inequalities are presented for the particular case CDSPHT-S as well as imple-

mentation details of our BC algorithm. Sections 4.6 and 4.7 present the matheuristic

and approximate algorithm, respectively. Section 4.8 reports the results of extensive

computational experiments performed to evaluate the proposed formulations and solu-

tion algorithms. Finally, Section 4.9 concludes the paper and provides future research

directions.

4.2 Literature Review

The increased popularity and use of cross-docking have encouraged the study of dif-

ferent modeling and solution approaches for complex decision problems arising at
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cross-dock facilities. Boysen and Fliedner [10] provide a classification of deterministic

TSPs and review the related literature based on this classification. Van Belle et al. [67]

describe different characteristics of cross-docking systems and classify related studies

according to such characteristics. Buijs et al. [12] classify and review the cross-docking

literature based on different decisions to be made within the cross-docking context.

Ladier and Alpan [40] compare cross-docking studies with the industry practices and

analyze the gaps between them. Theophilus et al. [64] provide an updated state-of-

the-art review on truck scheduling problems at cross-docking terminals.

There exist different scheduling problems arising in a cross-dock scheduling con-

text. Some of the existing work focuses on CDAPs [24, 28, 50, 51, 68], while some

others investigate TSPs [3, 8, 11, 16, 19, 21]. There are also some papers that have

studied both problems simultaneously [17, 33, 34, 55, 59, 60, 69]. Although the num-

ber of studies on CDSPs has increased in recent years, few papers have incorporated

handling times into their models [33, 55, 59, 69]. In the following, the most recent

and related papers to the current study are reviewed in more detail.

Wisittipanich and Hengmeechai [69] present an MIP formulation for a CDSP with

a post-distribution setting. The authors develop a modified particle swarm optimiza-

tion algorithm to solve the proposed problem, in which transfer times are assumed

to only depend on the distance between pairs of inbound-outbound doors and not

on the amount of products to be transferred. It is also assumed that loading and

unloading times only depend on the amount of products to be processed and they do

not depend on the assigned door. Heidari et al. [33] propose an MIP formulation for

a CDSP with arrival times and pre-distribution setting that aims to minimize trucks

waiting times and processing costs. In order to incorporate arrival uncertainty into

the model, the authors present a bi-objective bi-level optimization approach. It is

assumed that loading and unloading times of trucks depend on both the truck and

assigned door. Moreover, for each incoming truck a sorting time for the unloaded
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shipment is taken into account, which only depends on the truck and not the door.

However, the time needed for transferring products between incoming and outgoing

trucks is not considered. Bodnar et al. [8] study a TSP with truck arrival and de-

parture times, a pre-distribution setting and a mixed service mode door environment

considering an uncapacitated temporary storage area. The authors propose an MIP

formulation and an adaptive large neighborhood search algorithm with the objective

of minimizing cost of temporary storage and tardiness cost of outgoing trucks. The

proposed problem and algorithm have been extended by Rijal et al. [55] to include

dock-door assignments along with truck scheduling decisions and to also minimize the

cost of transferring products directly from incoming to the outgoing trucks. Although

in the proposed problem travel distances between inbound and outbound doors have

been considered in the objective function, it is assumed that the time required for

transferring products is the same for all products regardless of the associated truck or

door and is equal to one time period, and thus does not need to be considered in the

model. Furthermore, the authors also assume that loading and unloading processes

can also be done in one unit of time and thus processing times are also disregarded.

Ye et al. [70] propose an MIP formulation and a particle swarm optimization algo-

rithm for a CDSP with the requirement of unloading and loading products in a given

order and the objective of makespan minimization considering a pre-distribution set-

ting. It is assumed that loading and unloading times only depend on the amount of

product to be processed and not on the assigned door. Moreover, the time needed

to transfer products from incoming to outgoing trucks is assumed to depend only

on the associated assigned doors and to be independent from the amount and type

of products to be transferred. Fonseca et al. [21] model a TSP as a two-machine

flow shop scheduling problem with precedence constraints that aims to minimize the

makespan. It is assumed that loading and unloading times only depend on the trucks

and not on the doors. Transfer times between incoming and outgoing trucks are also
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neglected. The authors also generalize the model to the parallel-dock case in which

it is assumed that all loading and unloading times are equal to one unit of time and

transferring times are negligible. To solve the problem a hybrid Lagrangian meta-

heuristic is developed. Gaudioso et al. [23] study a CDSP with a post-distribution

setting. The authors formulate the problem with an MIP formulation with the objec-

tive of makespan minimization and develop a Lagrangian heuristic algorithm to solve

it.

Finally, we recall that Sayed et al. [59] introduce the CDSPHT-G. The authors

propose two time-index MIP formulations and two metaheuristic algorithms that can

obtain good quality solutions for the problem. In the next section, we present the two

formulations given that these form the basis for our BC algorithm for the CDSPHT-

S. In Section 4.8, we compare these formulations with our CP formulations. We

also compare the two metaheuristics presented in [59] with our proposed solution

algorithms for the CDSPHT-G.

4.3 Problem Definition and MIP Formulations

Let M, N , I, and J denote the set of incoming trucks, outgoing trucks, inbound

doors, and outbound doors, respectively. Let T be a set of time slots in the planning

horizon, and K be the set of products. For each product k ∈ K, let o(k) ∈M denote

its origin truck, d(k) ∈ N its destination truck, and wk the amount of product to

be transferred from o(k) to d(k). We assume that the material handling equipment

used to transfer products from the origin truck to the destination truck can carry one

unit-load each time it transfers the product from an inbound to an outbound door.

We define as dij the unit-load transfer time from inbound door i to outbound door j,

which depend on the distance and equipment used between doors. Therefore, wkdij

denotes the total time required to transfer all product k ∈ K from incoming truck
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o(k) ∈ M using inbound door i ∈ I to outgoing truck d(k) ∈ N using outbound

door j ∈ J . We define pumi as the time required to unload incoming truck m ∈ M

at inbound door i ∈ I, and plnj as the loading time of outgoing truck n ∈ N at

outbound door j ∈ J . Unloading and loading times depend on the skill of employee

and the material handling equipment assigned to each door and thus, can differ from

one door to another. Cross-dock terminals, relying on third party contractors to

hire temporarily workforce when needed, frequently employ a variety of loaders with

different skill levels (e.g., from beginners to well trained loaders). According to their

level, loaders may use simple material handling equipment such as manual carts, or

more advance equipment such as forklifts which in turn, affect the unloading, transfer

and loading times [see, 51].

We assume that all trucks are available at the beginning of the planning horizon

and preemption is not allowed. Each door can only process one truck at a time and

the time horizon is enough to process all trucks. Moreover, it is assumed that sorting

and transferring the products from an incoming truck to one or more outgoing trucks

can only take place after all products are unloaded. Similarly, an outgoing truck

cannot be assigned to an outbound door until all products are transferred at the

door.

To formulate both CDSPHT-G and CDSPHT-S we define several sets of decision

variables. Let xmit be a binary variable that takes value one if and only if incoming

truck m ∈ M is assigned to inbound door i ∈ I, and is scheduled to start the

unloading process at time t ∈ T . Similarly, binary variable ynjt is equal to one if and

only if outgoing truck n ∈ N is assigned to outbound door j ∈ J , and is scheduled

to start the loading process at time t ∈ T . We also define zkij as a binary variable

that takes one if and only if product k ∈ K is transferred from inbound door i ∈ I to

outbound door j ∈ J . Finally, we define Cmax as a continuous variable that captures

the value of makespan. Using these three sets of variables, the CDSPHT-G can be
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formulated as [59]:

(F1-G) minimize Cmax

subject to
∑
j∈J

∑
t∈T

(
t+ plnj

)
ynjt ≤ Cmax n ∈ N (4.1)

∑
i∈I

∑
t∈T

xmit = 1 m ∈M (4.2)

∑
j∈J

∑
t∈T

ynjt = 1 n ∈ N (4.3)

∑
m∈M

t∑
r=max{0,t−pumi+1}

xmir ≤ 1 t ∈ T , i ∈ I (4.4)

∑
n∈N

t∑
r=max{0,t−plnj+1}

ynjr ≤ 1 t ∈ T , j ∈ J (4.5)

∑
j∈J

∑
t∈T

tyd(k)jt −
∑
i∈I

∑
t∈T

txo(k)it ≥

∑
i∈I

∑
j∈J

(
puo(k)i + wkdij

)
zkij k ∈ K (4.6)

∑
i∈I

∑
j∈J

zkij = 1 k ∈ K (4.7)

∑
j∈J

zkij =
∑
t∈T

xo(k)it k ∈ K, i ∈ I (4.8)

∑
i∈I

zkij =
∑
t∈T

yd(k)jt k ∈ K, j ∈ J (4.9)

xmit ∈ {0, 1} m ∈M, i ∈ I, t ∈ T (4.10)

ynjt ∈ {0, 1} n ∈ N , j ∈ J , t ∈ T (4.11)

zkij ≥ 0 k ∈ K, i ∈ I, j ∈ J . (4.12)

The objective function minimizes the makespan. Constraints (4.1) capture the

value of makespan. Constraints (4.2) and (4.3) assign each incoming and outgoing

truck to a single door and time slot, respectively. Constraints (4.4) and (4.5) ensure

that each inbound and outbound door serves at most one truck at a time. Con-
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straints (4.6) guarantee that there is enough time for unloading and transferring all

products required at each outgoing truck before the loading process starts. Con-

straints (4.7)–(4.9) assign a proper value to the variable zkij to represent the selected

route of product k. Constraints (4.10)–(4.12) define the integrality and non-negativity

conditions of the decision variables.

Sayed et al. [59] provides an alternative formulation to CDSPHT-G that does not

require the use of the routing variables zkij to account for the transfer times in order

to determine the time at which products arrive at outbound doors. Let X ′ denote

the set of feasible solutions of CDSPHT-G. The following inequalities are valid for

X
′ :

yd(k)jt ≤
∑
i∈I

∑
s∈Skijt

xo(k)is k ∈ K, j ∈ J , t ∈ T , (4.13)

where Skijt =
{
s ∈ T |0 ≤ s ≤ t−

(
puo(k)i + wkdij

)}
denotes the set of time periods

that allow the completion of the unloading and transfer operations needed before

scheduling truck d(k) at time t. These constraints state that for each product k ∈ K,

if outgoing truck d(k) is scheduled to start loading at time t, the associated incoming

truck o(k) can be scheduled at time slots that provide enough time for unloading and

transferring processes before time t. These inequalities model the same conditions as

constraints (4.6), without the use of the zkij variables. The CDSPHT-G can thus be

stated as follows [59]:

(F2-G) minimize Cmax

subject to (4.1)− (4.5), (4.10), (4.11), (4.13).

Formulation F2-G has fewer variables than F1-G but a larger number of con-

straints. As shown in [59], none of these formulations dominate the other in terms of
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the quality of the linear programming relaxation bounds.

In the special case of CDSPHT-S, in which it is assumed that dij = d for all pairs

i ∈ I, j ∈ J , we can eliminate from F1-G the routing variables zkij given that the

transfer time does no longer depend on the selected inbound and outbound doors.

Therefore, the CDSPHT-S can be formulated as

(F1-S) minimize Cmax

subject to (4.1)− (4.5), (4.10), (4.11)∑
j∈J

∑
t∈T

tyd(k)jt ≥
∑
i∈I

∑
t∈T

(
t+ puo(k)i + wkd

)
xo(k)it

k ∈ K. (4.14)

Similar to (4.6), constraints (4.14) guarantee that there is enough time for un-

loading and transferring all the required products to each outgoing truck before the

loading process can be scheduled to start.

We can also adapt F2-G to obtain an alternative formulation for CDSPHT-S as:

(F2-S) minimize Cmax

subject to (4.1)− (4.5), (4.10), (4.11)

yd(k)jt ≤
∑
i∈I

∑
s∈Skit

xo(k)is k ∈ K, j ∈ J , t ∈ T , (4.15)

where Skit =
{
s ∈ T |0 ≤ s ≤ t−

(
puo(k)i + wkd

)}
. As we will see in Section 4.5,

constraints (4.15) are rather weak as they are dominated by several classes of valid

inequalities. Let X denote the set of feasible solutions of CDSPHT-S.
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4.4 Constraint Programming Formulations

In this section, we present CP formulations for both CDSPHT-G and CDSPHT-

S. We first provide a brief introduction to CP including some of the constraints

commonly used to formulate scheduling problems. We then describe the proposed

CP formulations.

CP is a technique for modeling and solving difficult combinatorial optimization

problems. It is mainly used for finding feasible solutions or to prove infeasibility,

but it can also be used to find optimal solutions with respect to a given objective

function. Similar to mathematical programming formulations, CP formulations use

set(s) of decision variables and constraints to formulate an optimization problem.

However, in CP there exist specialized variables and constraints that facilitate model

building, particularly for scheduling problems [see, 4, 5, for additional information].

Interval and sequence variables are two special types of decision variables in CP

that can be used to formulate scheduling problems. An interval variable corresponds

to a time interval during which a job is being processed. For each job m ∈M , we de-

fine the interval variable xm which is characterized by its start time, i.e., Start(xm),

end time, i.e., End(xm), processing time, and presence status, i.e., Presence(xm).

When solving a CP formulation, Start(xm), End(xm) and Presence(xm) are endoge-

nous decisions. Moreover, interval variables can be defined as optional or present.

If xm is defined as optional, the formulation determines if the variable is present

in the solution, i.e., Presence(xm) = 1 or not, i.e., Presence(xm) = 0. If xm is

defined as present, all feasible solutions must satisfy Presence(xm) = 1. Defining

optional interval variables is useful when a job has to be processed by exactly one

of several available machines and the assignment of jobs to machines are endogenous

decisions. For example, for each job m ∈ M and machine i ∈ I, we define x′mi as an

optional interval variable that represents the processing interval of job m on machine

i. Furthermore, xm can be defined as a present interval variable denoting the actual
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processing interval of job m.

The specialized constraint Alternative (xm, {x′mi}i∈I) can be used to state that

job m must be assigned to exactly one machine. If job m is assigned to machine

i, we have Presence(x′mi) = 1 and for i′ ∈ I \ i, we have Presence(x′m′i) = 0,

Start(xm) = Start(x′mi), and End(xm) = End(x′mi). Sequence variables are defined

on a set of interval variables and provide a permutation for the associated interval

variables that are present in the solution. These types of variables can be used to

define the processing sequence of a set of jobs on a machine. We note that sequence

variables define a sequence of interval variables without enforcing any constraint on

the relative position of the intervals in temporal dimension. Suppose that for machine

i ∈ I, yi is a sequence variable that is defined on the optional interval variables

{x′mi}m∈M . Specialized constraint NoOverlap(yi) can be used to make sure that

the associated interval variables present in the solution are sequenced in a way that

they do not overlap in time. That is, if both x′mi and x′m′i are present (i.e., jobs m

and m′ are assigned to machine i), and in yi, x′mi is sequenced before x′m′i, we will

have Start(x′m′i) ≥ End(x′mi). EndBeforeStart(x′mi, x′m′i′ , a) is another specialized

constraint in CP formulations to represent Start(x′m′i′) ≥ End(x′mi) + a [see, 53, 66].

Using interval and sequence variables, in combination with the above mentioned

specialized constraints, we can build CP formulations for our problems as follows.

Let αIm and αOn be interval variables representing the time intervals when incoming

truck m ∈ M and outgoing truck n ∈ N are being processed, respectively. We

define βImi and βOnj as optional interval variables to represent the time intervals for

the processing of incoming truck m ∈ M if assigned to inbound door i ∈ I, and

outgoing truck n ∈ N if assigned to outbound door j ∈ J , respectively. For incoming

truck m ∈ M and inbound door i ∈ I, the length of the interval variable βImi is

equal to pumi. Similarly, the length of the interval variable βOnj for outgoing truck

n ∈ N and outbound door j ∈ J , is equal to plnj. For each truck, exactly one of
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these interval variables will be present in any feasible solution. Let γIi be a sequence

variable that keeps the sequence of incoming trucks assigned to inbound door i ∈ I.

These sequence variables are defined on the set of interval variables βImi that are

present at the solution, i.e., γIi = sequence of
{
βImi|Presence

(
βImi
)

= 1,m ∈M
}
.

Similarly, γOj denotes a sequence variable that keeps the sequence of outgoing trucks

assigned to outbound door j ∈ J . These sequence variables are defined on the

set of interval variables βOnj that are present at the solution, i.e., γOj = sequence of{
βOnj|Presence

(
βOnj
)

= 1, n ∈ N
}
. Using the above variables together with zkij and

Cmax described in Section 4.3, the CDSPHT-G can be formulated as follows:

(CP-G) minimize Cmax

subject to Cmax = max
n∈N

{
End

(
αOn
)}

(4.16)

Alternative
(
αIm,

{
βImi
}
i∈I

)
m ∈M (4.17)

Alternative
(
αOn ,

{
βOnj
}
j∈J

)
n ∈ N (4.18)

NoOverlap
(
γIi
)

i ∈ I (4.19)

NoOverlap
(
γOj
)

j ∈ J (4.20)

If
(
Presence

(
βIo(k)i

)
= 1&Presence

(
βOd(k)j

)
= 1
)

Then (zkij = 1) k ∈ K, i ∈ I, j ∈ J (4.21)

End
(
αIm
)

+ wkdijzkij ≤ Start
(
αOn
)
k ∈ K, i ∈ I, j ∈ J . (4.22)

The objective function minimizes the makespan. Constraints (4.16) force the

makespan to be equal to the maximum end time among the interval variables αOn .

Constraints (4.17) and (4.18) assign each incoming and outgoing truck to exactly one

inbound and outbound door, respectively. Constraints (4.19) and (4.20) ensure that

the processing of trucks assigned to the same door do not overlap in time. Constraints
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(4.21) assign a proper value to the variable zkij with respect to the route assigned

for product k. Constraints (4.22) guarantee that there is enough time for completing

the unloading process and transferring all the required amounts of products to each

outgoing truck before the loading process is scheduled. In a similar way, the CDSPHT-

S can be formulated as follows:

(CP-S) minimize Cmax

subject to (4.16)− (4.20)

EndBeforeStart
(
αIm, α

O
n , wkd

)
k ∈ K. (4.23)

We note that constraints (4.23) are a simplified version of (4.22) to guarantee

that for each k ∈ K, the unloading process of the origin truck should end before the

loading process of the destination truck starts, given that there is enough time for

transferring all the products between the end of the unloading process and the start

of the loading processes.

4.5 An Exact Algorithm for the CDSPHT-S

In this section, we present an exact BC algorithm for the CDSPHT-S. It uses the linear

programming (LP) relaxation of formulation F1-S as a lower bounding procedure at

nodes of the enumeration tree. The formulation is strengthened by the incorporation

of several classes of valid inequalities that exploit the structure of the CDSPHT-S.

These inequalities improve the polyhedral description of the convex hull of X which in

turn, has a substantial positive impact in the overall convergence of the BC algorithm.
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4.5.1 Valid inequalities

We next present eight classes of valid inequalities for the CDSPHT-S. These inequali-

ties are designed to better characterize the interaction between incoming and outgoing

truck sequencing decisions. The first four classes focus on restricting the set of time

periods for scheduling outgoing trucks by taking into account the times at which in-

coming trucks are scheduled. Analogously, the last four classes focus on restricting the

set of time periods for scheduling incoming trucks by taking into account the times at

which outgoing trucks are scheduled. At the end of this section, we mention how all

these inequalities can be adapted to remain valid for the more general CDSPHT-G.

For the ease of readability, the proof of validity for each of these inequalities is pro-

vided in Appendix E. We recall that in the CDSPHT-S, transfer times are assumed

to be constant, i.e., dij = d̄, for all door pairs (i, j) ∈ I × J .

The first set of inequalities are obtained by noting that the left-hand-side of con-

straints (4.15) can be strengthened by considering other time periods compatible with

the incoming truck scheduling decisions presented in the right-hand-side of (4.15), and

also by exploiting the fact that the summation on the right-hand-side does not depend

on j.

Proposition 1. For k ∈ K and t ∈ T , the inequality

∑
j∈J

∑
t′≤t

yd(k)jt′ ≤
∑
i∈I

∑
s∈Skit

xo(k)is, (V1)

is valid for X.

Let Nm = {n ∈ N|∃k ∈ K : o(k) = m, d(k) = n} be the set of outgoing trucks

requiring products from incoming truck m ∈ M. For m ∈ M and n ∈ Nm, we

define kmn as the product to be transferred from m to n, that is, o(k) = m and

d(k) = n. For each m ∈M, we also define wminkm
= minn∈Nm {wkmn} as the minimum

amount of product to be transferred from incoming truck m to any outgoing truck.
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The second class of inequalities exploits the incompatibilities of assigning different

outgoing trucks to an outbound door j over a specific period of time.

Proposition 2. Form ∈M, j ∈ J , t ∈ T , Smit =
{
s ∈ T |0 ≤ s ≤ t−

(
pumi + wminkm

d
)}

,

and Rmjt =
{
r ∈ T |t−minn∈Nm

{
plnj
}
< r ≤ t

}
, the inequality

∑
n∈Nm

∑
r∈Rmjt

ynjr ≤
∑
i∈I

∑
s∈Smit

xmis, (V2)

is valid for X.

We next provide two classes of inequalities in an extended solution space consid-

ering the following set of decision variables. For each m ∈ M and i ∈ I, we define

the variable umi equal to one if and only if incoming truck m is assigned to inbound

door i.

Proposition 3. For k ∈ K, i ∈ I, and t ∈ T , the inequality

∑
j∈J

∑
t′≤t

yd(k)jt′ ≤
∑
s∈Skit

xo(k)is + 1− uo(k)i, (V3)

is valid for X.

Proposition 4. For m ∈M, i ∈ I, j ∈ J , and t ∈ T , the inequality

∑
n∈Nm

∑
r∈Rmjt

ynjr ≤
∑
s∈Smit

xmis + 1− umi, (V4)

is valid for X.

The next four classes of valid inequalities can be obtained using similar arguments

to the ones used in (V1)-(V4), when restricting the set of time periods for scheduling

incoming trucks by taking into account the times at which outgoing trucks are sched-

uled. The fifth class of inequalities are obtained by considering a set of time periods
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compatible with the outgoing truck scheduling decisions, and by exploiting the fact

that each truck can be assigned to exactly one door.

Proposition 5. For k ∈ K, t ∈ T , and Skt =
{
s ∈ T |t+ mini∈I{puo(k)i}+ wkd ≤ s ≤ T

}
,

the inequality

∑
i∈I

∑
t′≥t

xo(k)it′ ≤
∑
j∈J

∑
s∈Skt

yd(k)js, (V5)

is valid for X.

We define Mn = {m ∈M|∃k ∈ K : o(k) = m, d(k) = n} as the set of incoming

trucks that carry products requested by outgoing truck n ∈ N . We also define wminkn

as the minimum amount of product outgoing truck n must receive, i.e., wminkn
=

minm∈Mn {wkmn}. The sixth class of inequalities exploits the incompatibilities of

assigning different incoming trucks to an inbound door i over a specific time period.

Proposition 6. For n ∈ N , i ∈ I, t ∈ T , Rnit = {r ∈ T |t ≤ r < t+ minm∈Mn {pumi}},

and Snit =
{
s ∈ T |t+ minm∈Mn{pumi}+ wminkn

d ≤ s ≤ T
}
, the inequality

∑
m∈Mn

∑
r∈Rnit

xmit ≤
∑
j∈J

∑
s∈Snit

ynjs, (V6)

is valid for X.

Finally, we provide the two last classes of inequalities in an extended solution

space considering the following set of variables. For each n ∈ N and j ∈ J , we define

the variable vnj equal to one if and only if outgoing truck n is assigned to outbound

door j.

Proposition 7. For k ∈ K, j ∈ J , and t ∈ T , the inequality

∑
i∈I

∑
t′≥t

xo(k)it′ ≤
∑
s∈Skt

yd(k)js + 1− vd(k)j, (V7)
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is valid for X.

Proposition 8. For n ∈ N , i ∈ I, j ∈ J , and t ∈ T , the inequality

∑
m∈Mn

∑
r∈Rnit

xmit ≤
∑
s∈Snit

ynjs + 1− vnj, (V8)

is valid for X.

We conclude this section by noting that all these inequalities can be adapted for

the general CDSPHT-G. In particular, if we replace Skit in inequalities (V1) and (V3)

by S ′kit =
{
s ∈ T |0 ≤ s ≤ t−

(
puo(k)i + wk ×minj∈J {dij}

)}
, and Smit in inequalities

(V2) and (V4) by S ′mijt =
{
s ∈ T |0 ≤ s ≤ t−

(
pumi + wminkm

dij
)}

, the resulting inequal-

ities are valid for the CDSPHT-G. Moreover, if we replace Skt in inequalities (V5) and

(V7) by S
′

kjt =
{
s ∈ T |t+ mini∈I{puo(k)i}+ wk ×mini∈I{dij} ≤ s ≤ T

}
, and Snit in

inequalities (V6) and (V8) by S
′

nijt =
{
s ∈ T |t+ minm∈Mn{pumi}+ wminkn

dij ≤ s ≤ T
}
,

the resulting inequalities are valid for the CDSPHT-G.

4.5.2 A branch-and-cut algorithm

We now present an exact BC algorithm for solving the CDSPHT-S. The idea is to solve

the LP relaxation of F1-S with a cutting-plane algorithm by initially incorporating

constraints (4.1)-(4.5), (4.10), (4.11), (4.14), and

uim =
∑
t∈T

xmit m ∈M, i ∈ I (4.24)

vjn =
∑
t∈T

ynjt n ∈ N , j ∈ J (4.25)

uim ≥ 0 m ∈M, i ∈ I (4.26)

vjn ≥ 0 n ∈ N , j ∈ J , (4.27)
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and iteratively adding constraints (V1)-(V8) only when violated by the current LP

solution by a minimum threshold value ε. Note there is no need to force the in-

tegrality conditions on the u and v variables given that constraints (4.24), (4.25),

in combination with the integrality conditions of the x and y variables, will ensure

u and v variables to take binary values. When no more violated inequalities are

found, we resort to the branch-and-bound (BB) algorithm of CPLEX for solving the

resulting formulation by enumeration. We also use a call-back function for gener-

ating additional violated inequalities (V1)-(V8) at some nodes of the enumeration

tree. Preliminary experiments showed that adding this inequalities at the root node

had a negative impact on the overall CPU time. Therefore, the separation problem

of all inequalities is solved by inspection and is carried out at every other node for

which the depth is multiple of 20 (excluding the root node). We limit the number of

cutting-plane iterations at the nodes to two. In Section 4.8, we compare the relative

impact of each of these classes of inequalities and evaluate promising combinations for

separating only a subset of them. The outcome of these experiments is a fine-tuned

version of our BC algorithm in which only a subset of these inequalities is used to

further improve its convergence.

4.6 An Iterated Local Search Matheuristic for the

CDSPHT-G

In this section we introduce a matheuristic for the CDSPHT-G that decomposes the

problem into two independent parallel machine scheduling problems by temporarily

fixing in an iterative manner the incoming and outgoing trucks’ assignments and

sequencing decisions. This procedure can be seen as a local search (LS) in which two

very large neighborhoods, each associated with either incoming or outgoing trucks,

are used to improve an initial feasible solution. We start by fixing the assignment and
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sequencing decisions of one side of the cross-dock, and then solve a parallel machine

scheduling problem to obtain the trucks’ assignment and sequencing decisions on the

other side. This procedure alternates from one side to the other until the makespan

cannot be further improved.

To describe the details of our algorithm, we assume that we start by fixing in-

coming trucks’ assignments and sequencing decisions (in Section 4.8 we provide a

performance comparison when starting on either side). Therefore, the problem re-

duces to a parallel machine scheduling problem with release dates that determines

the outgoing trucks’ assignments and sequences. Given that the schedule of incoming

trucks is fixed, for each outgoing truck we can calculate a release date based on the

time required to unload all the associated incoming trucks and to transfer all the

products to such outgoing truck. We refer to this problem as the outgoing cross-dock

scheduling problem with release dates (OCDSP-RD). For each n ∈ N and j ∈ J ,

we define the parameter RDnj = maxm∈Mn

{
t∗m + pumd∗m + wkmndd∗mj

}
, equal to the

release time of outgoing truck n at door j, where t∗m and d∗m denote the start time

of incoming truck m and its assigned door, respectively, in the current solution. The

OCDSP-RD can be formulated as the following MIP:

(MIP-OT) minimize Cmax

subject to (4.1), (4.3), (4.5), (4.11)∑
t∈T

tynjt ≥ RDnj n ∈ N , j ∈ J . (4.28)

Alternatively, the OCDSP-RD can also be formulated as the following CP:

(CP-OT) minimize Cmax

subject to (4.14), (4.17), (4.19)

Start
(
βOnj
)
≥ RDnj n ∈ N , j ∈ J . (4.29)
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The optimal solution value of OCDSP-RD provides a valid upper bound on the

optimal solution value of CDSPHT-G. The proposed algorithm continues by fixing

the obtained outgoing trucks’ assignments and sequencing decisions from OCDSP-

RD. By doing so, the problem reduces to a parallel machine scheduling problem

with due dates to determine the best incoming trucks’ assignments and sequencing

decisions given the current outgoing trucks decisions. Given that the schedule of

outgoing trucks is fixed, for each incoming truck we can calculate a due date in such

a way that after unloading is completed, there is still enough time left to transfer

all the products to the associated outgoing trucks before the scheduled start times

of outgoing trucks. We refer to this problem as the incoming cross-dock scheduling

problem with due dates (ICDSP-DD).

Given that the makespan is calculated from the completion time of outgoing

trucks, if we derive a formulation for the ICDSP-DD directly from the F1-G, as is the

case for the OCDSP-RD, the obtained formulation will lack an objective function. As

suggested by Boysen et al. [11], makespan minimization can be expressed based on

incoming trucks by maximizing the start time of the first scheduled incoming truck(s).

In other words, the goal of the makespan minimization is to push back the schedule

of the trucks as much as possible in order to complete all tasks at the earliest possible

time. From the upper chart of Figure 4.1, we note that the objective function can

be alternatively calculated based on the start time of incoming trucks. In this case,

the goal is to finish all the tasks at time T and push forward the schedule of all the

trucks as much as possible in a way that all the trucks are scheduled and unloaded

in the smallest possible time interval.

The next result show that OCDSP-RD and ICDSP-DD are actually equivalent

from an optimization perspective. The proof is given in Appendix F.

Proposition 9. If dij = dji for all door pairs (i, j) ∈ I × J , any instance of the

ICDSP-DD can be transformed into an instance of the OCDSP-RD.
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Figure 4.1: Illustration of reverse planning horizon

An immediate consequence of the above result is that formulations MIP-OT and

CP-OT, and any other formulation and solution algorithm developed for the OCDSP-

RD, can also be used to solve the ICDSP-DD. This is the approach we follow in our

algorithms.

Algorithm 4 summarizes the steps of the proposed LS matheuristic, which requires

an initial feasible solution S0 as an input. Moreover, there are two parameters that

need to be set at the beginning of the algorithm. The first one (I_Side) relates to

the cross-dock side to be fixed first. If I_Side = in, the algorithm starts by fixing

the inbound side and if I_Side = out, the algorithm starts by fixing the outbound

side. The second one (Stoplimit) corresponds to the number of allowed iterations

without improvement before the algorithm terminates. At any iteration where the

algorithm fails to improve the best-known solution, we check if the obtained solution

is different from the ones previously evaluated. If the obtained solution has already

been visited, the algorithm terminates.

The quality of the solutions obtained by Algorithm 1 can be further improved by

incorporating a multi-start framework such as ILS [47]. ILS is an iterative procedure

that starts from an initial solution which is then improved by using local search. Once

a local optimal solution has been found, a new starting point is obtained by applying

destroy and repair mechanisms to the solution obtained by local search. Finally, an
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Algorithm 4: Local Search Matheuristic
Input: I_Side, Stop_limit and initial solution S0

Initialize: Ssolin = ∅,Ssolout = ∅, Current = 0, Best =∞, counter = 0, itr = 0
if I_Side = in then
S0 = {(assin) ∪ (seqin)} Ssolin ← S0, side← in, T R =M, DR = I

else
S0 = {(assignout) ∪ (seqout)} seqout ← reverse(seqout)
Ssolout ← S0, side← out, T R = N , DR = J

end
while Current ≤ Best & counter ≤ Stop_limit do

itr + +
Calculate release dates of trucks: RD = {RD1, .., RD|T R|}
Solve OCDSP-RD to obtain Cmax and S itr = {(assside) ∪ (seqside)}
Current← Cmax, seqside ← reverse(seqside)
Ssolside = Ssolside ∪ S itr
Update side, T R, DR
if Current < Best then

Best← Current, Ssolside ← S itr, Sbest ← S itr ∪ S itr−1 counter = 0
end
if Current = Best then

if S itr ∈ Ssolside then
break

else
counter + +

end
end

end
Output: best-known solution Sbest and valid upper bound Best.

acceptance criterion determines from which solution the search will continue. Al-

gorithm 5 depicts a summary of our ILS matheuristic. We start with the solution

obtained from Algorithm 1 and perturb it to find a new initial solution and apply

once more the LS matheuristic. This procedure is repeated for a fixed number of

iterations MaxIter. The ILS framework of the proposed algorithm is similar to the

ILS-VND algorithm proposed in [59]. There are several parameters in the algorithm.

Parameter p ∈ [0, 1] determines the degree of perturbation. We start with an initial

value of p0 and update it according to δp. We use λ to determine the acceptance

criteria of a perturbed solution. It is initially set to λ0 and is updated with respect
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to δλ. To obtain a perturbed solution, we first destroy the solution partially and then

repair it using a MIP (or CP) formulation to obtain a complete solution. However, it

may be the case that within the given CPU time limit, it is not possible to obtain an

optimal or even feasible solution. In these cases, if a feasible (but not necessarily opti-

mal) solution is obtained we apply a variable neighborhood descend (VND) procedure

given in [59] to improve the solution. In this VND procedure, five different neigh-

borhoods are explored with a given sequence. First, all solutions that are obtained

by choosing any pair of incoming trucks and exchanging their doors and positions in

the sequence, are explored. Then, all solutions that can be obtained by selecting one

incoming truck at a time and move it to a different door and/or a different position

in sequence, are explored. In the third and fourth steps, the same procedures are

applied for the outgoing trucks and the obtained solutions are explored. Finally, in

the fifth step, all solutions that can be obtained by simultaneously swapping a pair of

incoming trucks and a pair of outgoing trucks assigned to the doors within a specific

distance, are explored. If the MIP (or CP) formulation cannot find a feasible solution,

we apply a repair procedure that follows similar steps as the sequential constructive

algorithm in [59] to complete the solution. In order to repair a solution, each un-

scheduled incoming truck is assigned to an inbound door, as the last truck of the

sequence, such that minimum estimated makespan is obtained. Moreover, each un-

scheduled outgoing truck is allocated to the outbound door with the earliest starting

time to process that truck. After each outgoing truck is scheduled, a VND procedure

considering the first four neighborhoods described earlier, is applied to improve the

partial schedule. Once the solution is complete, another VND procedure considering

all the five neighborhoods is applied to improve the final schedule.
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Algorithm 5: Iterated Local Search Matheuristic
Input: MaxIter, p0, λ0, δp, δλ and initial solution S0

Initialize: p← p0, λ← λ0

Apply Local Search Matheuristic on S0 to obtain S∗ and Cmax
Best← Cmax, Current← Cmax, Sbest ← S∗, S ′∗ ← S∗
for itr = 0 to MaxIter do

Partially destroy S ′∗:
Randomly select V in ⊂M such that |V in| = dp× |M|e
Randomly select V out = {n ∈ N|∃m ∈ V in : n ∈ Nm}
Mark all trucks in V in and V out as unscheduled in S ′∗

Repair S ′∗ to obtain a complete solution:
Solve CDSPHT-G with partially fixed decisions and get the Status
if Status=feasible then

Apply V ND to improve the solution
end

if Status=infeasible then
Use a simple heuristic to complete the solution

end
Apply Local Search Matheuristic using S ′∗ to obtain Cmax
if Cmax < Best then

Best← Cmax, Sbest ← S ′∗
end
if λ× Cmax < Current then

Current← Cmax, S∗ ← S ′∗
end
p← p(1− δp), λ← λ(1 + δλ)

end
Output: best-known solution Sbest and valid upper bound Best.

4.7 An Approximate Algorithm for the CDSPHT-G

We next describe an approximate algorithm for the CDSPHT-G that provides both

lower and upper bounds on the optimal solution value to provide an optiality gap.

To obtain valid upper bounds, the algorithm uses the Matheuristics presented in

the previous section. To compute valid lower bounds, it resorts to the solution of

several (integer) relaxations of the CDSPHT-G. In particular, we consider four dif-

ferent integer relaxations obtained by relaxing the integrality conditions on either x

or y variables on both formulations F1-G and F2-G. Another integer relaxation of

CDSPHT-G is precisely CDSPHT-S. This is true given that the feasible region of
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CDSPHT-G is a subset of the feasible region of CDSPHT-S (i.e., X ′ ⊆ X) and the

objective function value of CDSPHT-S is always equal to that of CDSPHT-G for ev-

ery feasible solution in X ′ . Yet another relaxation of the CDSPHT-G is a problem in

which each side of the cross-dock is scheduled independently. We do so by solving two

MIP-OT with RDnj = 0 for each n ∈ N and j ∈ J , one for each inbound/outbound

side.

We use a combination of these relaxations in our algorithm to provide a lower

bound. In particular, we solve CDSPHT-S using our BC algorithm and solve one of

the other relaxations described above. Section 4.8 provides a comparison of all these

relaxation procedures to determine which one is the most promising to use in our

approximate algorithm. We then use the solution of CDSPHT-S as initial solution in

one of our matheuristics and we execute it two times, one by fixing first the inbound

side and another by fixing first the outbound side. Algorithm 6 depicts the proposed

approximate algorithm.

Algorithm 6: Approximate Algorithm
Solve F1-S using the BC algorithm and obtain LB and solution S (if it exists)
Solve another relaxation problem and obtain LB′ and solution S ′
if LB′ > LB then

LB ← LB′

end
if S = ∅ then
S ← S ′

end
Apply matheuristic with S and I_Side = in to obtain UB and Sbest
Apply matheuristic with S and I_Side = out to obtain the UB′and S ′
if UB′ < UB then

UB ← UB′, Sbest ← S ′
end
Calculate optimality gap: ∆ = 100× UB−LB

UB

Output: UB and ∆.
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4.8 Computational Experiments

This section summarizes the results of extensive computational experiments carried

out to evaluate the performance of the proposed formulations and solution algorithms.

All MIP/CP formulations and algorithms were coded in C/C++ and solved with

CPLEX 12.10.0 using Callable Library and Concert Technology on an Intel Xeon CPU

E5-2687W v3 processor at 3.10 GHz and 750 GB of RAM under a Linux environment.

The maximum number of used threads was set to seven.

We have used a set of 44 benchmark instances given by Sayed et al. [59] to perform

the experiments. These instances were generated following the procedures described

in [28] and [50] for the CDAP. To generate the flow matrix, for each product k the

amount of product wk that outgoing truck d(k) must receive from incoming truck

o(k) is randomly generated as an integer quantity that follows a uniform distribution

U [1, 5]. Generated instances consist of four subsets of instances that differ in terms

of the density of the flow matrix: 25%, 35%, 50%, and 75%. The density of the flow

matrix is defined as the ratio between the number of products that should be trans-

ferred from incoming to outgoing trucks and |M| × |N |. The number of considered

incoming/outgoing trucks is 8, 9, 10, 11, 12, 15, 20, and 50. The number of consid-

ered inbound/outbound doors is 4, 5, 6, 7, 10, and 30. Each instance is characterized

by three values and is referred to as AxBxC, where A, B, and C correspond to the

number of the incoming and outgoing trucks, the number of inbound and outbound

doors, and the density of the flow matrix, respectively.

The experiments are divided in four parts. In the first part, we compare the

performance of the MIP and CP formulations given in Sections 4.3 and 4.4 for the

CDSPHT-G and CDSPHT-S when solved by CPLEX using its default settings. In

the second part, we analyze the strength and usefulness of the valid inequalities

described in Section 4.5 when used within the BC algorithm. We also compare the

best configuration of our BC algorithm against F1-S when solved by CPLEX. In
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the third part, we evaluate the performance of the approximate algorithm for the

CDSPHT-G presented in Section 4.7 when using different integer relaxations and

matheuristics for computing lower and upper bounds, respectively. In the last part, we

study the impact in the quality of the obtained solutions when solving the CDSPHT-

G with door-dependent transfer times, or its relaxation CDSPHT-S with constant

transfer times.

4.8.1 A comparison of formulations for the CDSPHT-G and

CDSPHT-S

For CDSPHT-G, we compare the performance of the proposed CP-G formulation

with both F1-G and F2-G formulations proposed in [59]. To make the comparison

as fair as possible, we implemented and run F1-G and F2-G with the same version

of CPLEX and default settings on the same computer. Table 4.1 summarizes the

results of this comparison. For these experiments, we have considered a time limit

of 24 hours. The first four rows provide for each of the formulations: the number

of instances solved to optimality, the number of instances for which even a feasible

solution was not found within the time limit, the number of instances in which the

best-known solution was obtained, and the number of instances that provided the

best CPU time for finding the optimal solution, respectively. Furthermore, we report

for each formulation: the arithmetic and geometric means of the % deviations from

the best upper bounds obtained by at least one of the formulations, the arithmetic

and geometric means of obtained optimality gaps by CPLEX, and the arithmetic and

geometric means of CPU times. To calculate the geometric mean for a set of values

that includes zero, we have added one to each value and then, we have subtracted

one from the obtained mean.

According to Table 4.1, CP-G outperforms both MIP formulations with respect

to most measures. We note that the average optimality gap is calculate based on
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Table 4.1: A comparison of MIP and CP formulations for the CDSPHT-G.

F1-G F2-G CP-G
Optimal instances (#) 19/44 19/44 24/44
Infeasible instances (#) 10/44 6/44 4/44
Best UB (#) 30/44 30/44 40/44
Best time (#) 6/44 4/44 16/44
Arit. mean of dev (%) 0.14 0.14 0.00
Geo. mean of dev (%) 0.09 0.09 0.00
Arit. mean of gap (%) 2.65 4.96 6.93
Geo. mean of gap (%) 1.15 2.02 2.04
Arit. mean of time (sec) 50,109 49,433 37,008
Geo. mean of time (sec) 2,183 1,922 642

the instances for which at least one feasible solution is found, and since CP-G could

find feasible solutions for more instances than the MIPs, the average optimality gap

reported for CP-G is slightly higher than those reported for the MIPs. It is worth

mentioning that out of all 44 instances, 27 instances could be solved optimally using

at least one of the formulations. Out of those, 17 instances were solved by all formu-

lations, seven were solved by CP-G, two were solved by both F1-G and F2-G, one was

solved by F1-G, and one was solved by F2-G. For 14 of the instances, only a feasible

solution could be found and for three instances no feasible solution was found within

24 hours. For detailed results obtained by each formulation, we refer to Table 6 in

the Appendix G.

We now compare the MIP and CP formulations for the CDSPHT-S provided

in Sections 4.3 and 4.4. For these experiments, we have used a time limit of one

hour. Table 4.2 summarizes the obtained results. In this table, in addition to the

information given in the previous table we also report the number of instances for

which the best lower bound was obtained.

According to Table 4.2, both formulations have a similar performance in terms

of the number of instances solved to optimality. However, F1-S could not find even

a feasible solution for eight of the considered instances, while CP-S was able to find

at least one feasible solution for all instances. In general, we can observe that F1-S
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Table 4.2: A comparison of MIP and CP formulations for the CDSPHT-S.

F1-S CP-S
Optimal instances (#) 23/44 23/44
Infeasible instances (#) 8/44 0/44
Best UB (#) 30/44 44/44
Best LB (#) 39/44 24/44
Arit. mean of gap (%) 2.35 7.47
Geo. mean of gap (%) 0.88 2.59
Arit. mean of time (sec) 1,859 1,672
Geo. mean of time (sec) 112 92

works better in terms of the quality of lower bounds, while CP-S works well at finding

upper bounds. Detailed results obtained by F1-S and CP-S are given in Table 7 in

the Appendix G.

4.8.2 Impact of valid inequalities in BC algorithm for the

CDSPHT-S

We next present extensive computational experiments preformed to asses the pro-

posed BC algorithm using different subsets of inequalities described in Section 4.5.

We have proposed eight families of inequalities for the CDSPHT-S. To evaluate the

impact of these families of inequalities, we have classified them according to the type of

variables on the left-hand-side, the type of incompatible decisions that are aggregated

on the left-hand-side, and the use of extra variables on the right-hand-side. Accord-

ing to this classification, 27 combinations of inequalities are obtained and depicted in

Table 4.3. In this table, the first column represents the number of the combinations,

the second determines the type of variables on the left-hand-side of the inequalities.

X, Y , respectively, denote that the inequalities considered in the combination have

inbound-related variables and outbound-related variables on the left-hand-side, while

XY denotes that a mix of inequalities that have inbound- and outbound-related vari-

ables on the left-hand-side. The column under the heading Decision, shows whether

the aggregated decisions on the left-hand-side of the inequality are related to the
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doors (D), trucks (T), or both (DT). The fourth column denotes the variant of the

inequalities that has been used. Variant a represents inequalities that have a sum-

mation over doors on the right-hand-side, while b corresponds to the inequalities that

have an extra variable on the right-hand-side and are disaggregated with respect to

the doors. ab denotes that both variants a and b are considered. Finally, the last

column specifies the inequalities that are considered in each combination.

Table 4.3: Characteristics of different combinations of tested inequalities in BC algo-
rithm.

Combination Variable Decision Variant Inequalities
1

X

D
a 5

2 b 7
3 ab 5,7
4

T
a 6

5 b 8
6 ab 6,8
7

DT
a 5,6

8 b 7,8
9 ab 5,6,7,8
10

Y

D
a 1

11 b 3
12 ab 1,3
13

T
a 2

14 b 4
15 ab 2,4
16

DT
a 1,2

17 b 3,4
18 ab 1,2,3,4
19

XY

D
a 1,5

20 b 3,7
21 ab 1,3,5,7
22

T
a 2,6

23 b 4,8
24 ab 2,4,6,8
25

DT
a 1,2,5,6

26 b 3,4,7,8
27 ab 1,2,3,4,5,6,7,8

To assess the impact of the inequalities, we have tested each of the combinations

given in Table 4.3 on 11 instances with our BC algorithm for solving the CDSPHT-

S given a time limit of two hours. For these experiments, we have selected those
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instances which are not too easy to solve but also not too difficult to solve so that

the optimal solution can be found in 24 hours. To perform each of these experiments,

we have initially solved F1-S using the BB algorithm of CPLEX, and then, at the

nodes for which the depth is a multiple of 20, we solve several separation problems to

see if any of the considered inequalities are violated. All the violated inequalities are

added to the formulation. For the combinations that we consider the ab variant of

the inequalities, instead of adding all the violated inequalities, we only add the most

violated ones. Table 4.4, summarizes the results obtained for each combination over

11 instances. We have also included the results obtained by F1-S without considering

any of the inequalities in the first row of the table. For each row of the table, we

report the number of instances solved optimally, the number of instances for which the

best CPU time among all the combinations is obtained, the number of instances for

which a feasible solution could not be found within the time limit, average CPU time,

average number of explored nodes, average number of added user cuts, and the average

percentage of time spent to solve the separation problems, respectively. According to

Table 4.4, combination (3) outperforms all other combinations and combination (23)

shows the worst performance. Therefore, from now on we use combination (3) of the

inequalities in our BC algorithm.

In order to better evaluate the impact of using our proposed BC algorithm, we

tested the best version of our BC algorithm on all the instances given a time limit

of two hours. For comparison purposes, we have also solved the instances by sim-

ply solving the F1-S using CPLEX considering similar setting as the BC. Table 4.5

summarizes the obtained results. Using the proposed BC algorithm the number of

instances that can be solved optimally increases. Furthermore, we are able to find

feasible solutions for three instances for which we cannot find even a single feasible

solution using CPLEX. Furthermore, the proposed BC algorithms reduces the aver-

age CPU time and the number of explored nodes significantly. Detailed results are
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Table 4.4: A comparison of BC algorithm with different combinations of inequalities
for the CDSPHT-S.

Valid inequalities Opt.(#) Best(#) Inf.(#) Time Node(#) Cut(#) Sep.(%)
Original Problem 7 0 0 3,996 1,765,207 NA NA
1

X

D
a 11 3 0 1,036 99,836 1,070 2

2 b 4 0 0 5,533 605,258 5,986 9
3 ab 11 4 0 865 94,118 1,094 4
4

T
a 5 0 0 4,466 843,671 1,500 4

5 b 3 0 0 5,469 716,736 7,512 14
6 ab 4 1 0 5,187 997,903 1,664 7
7

DT
a 10 1 0 2,014 102,515 1,652 2

8 b 5 0 0 5,521 285,688 9,209 12
9 ab 9 0 0 2,390 90,132 1,842 3
10

Y

D
a 10 1 0 1,853 195,983 1,073 3

11 b 4 0 0 5,275 479,729 6,217 9
12 ab 9 0 0 1,938 166,250 1,180 4
13

T
a 7 0 0 3,837 398,766 1,456 2

14 b 4 0 0 5,853 461,325 7,800 8
15 ab 5 0 0 4,828 408,346 1,710 3
16

DT
a 8 0 0 2,696 43,277 1,878 1

17 b 4 0 0 5,267 165,195 10,219 7
18 ab 8 0 0 2,821 48,327 2,138 2
19

XY

D
a 9 0 0 2,388 140,277 2,136 4

20 b 4 0 1 5,693 169,640 9,782 5
21 ab 8 1 0 2,776 189,204 2,137 8
22

T
a 5 0 0 4,877 181,091 2,737 2

23 b 3 0 1 6,381 264,067 11,525 8
24 ab 4 0 0 5,407 207,169 2,971 3
25

DT
a 6 0 0 3,744 34,830 3,520 1

26 b 4 0 1 5,432 92,195 13,055 5
27 ab 7 0 1 3,406 32,625 3,574 2

given in Table 8 in Appendix G.

4.8.3 Analysis of the approximate algorithm for the CDSPHT-

G

We next present several experiments carried out to evaluate the performance of our

proposed approximate algorithm with respect to the different settings and also to

assess the quality of the obtained bounds as compared to the ones provided by MIP

and CP formulations. As discussed in Section 4.7, different relaxation problems can be
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Table 4.5: Performance of BC algorithm using combination (3).

CPLEX BC
Optimal instances (#) 27/44 31/44
Infeasible instances (#) 8/44 5/44
Best UB (#) 33/44 36/44
Best time (#) 15/44 31/44
Arit. mean of gap (%) 2.57 2.76
Geo. mean of gap (%) 0.68 0.63
Arit. mean of explored nodes 1,079,549 84,307
Geo. mean of explored nodes 10,423 1,328
Arit. mean of time (sec) 3,204 2,358
Geo. mean of time (sec) 138 74

used within our approximate algorithm. To evaluate the impact of these relaxations

on the performance of the algorithm, we considered eight different settings for the

approximate algorithm and compared them with respect to the obtained optimality

gaps. For this comparison, we considered one hour time limit for solving the relaxation

problems. After a relaxed problem is solved, we applied the local search matheuristic

(Algorithm 1) on the obtained solution, using CP-OT to calculate the upper bound.

The summary of the obtained results are reported in Table 4.6. The second and

third columns of this table show the results obtained by relaxing outbound variables

and inbound variables, respectively, in F1-G. The headings in and out indicate that

the matheuristic starts by either fixing the incoming trucks decisions or the outgoing

trucks decisions, respectively. We note that when we relax the outbound side in

the relaxed problem, we will obtain the decisions related to the inbound side, and

thus, the matheuristic starts by fixing these decisions. The fourth and fifth columns

give the results of relaxing outbound and inbound variables in F2-G, respectively. As

mentioned, we can also start the algorithm by solving the CDSPHT-S. We recall that,

according to Table 4.2, F1-S outperforms CP-S in terms of the quality of the lower

bounds. Since in the approximate algorithm the quality of the LB is very important,

we have used F1-S to solve the specific case problem. The results obtained using

this model are reported in the sixth and seventh columns. Finally, we have also used
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MIP-OT, considering all release dates to be zero, to solve two independent parallel

machine scheduling problems as the last relaxation problems. These results are shown

in the last two columns. For each of the considered relaxation problems the number

of optimal instances, the number of instances for which no feasible solution is found

within the time limit, and arithmetic and geometric means of the optimality gaps are

reported. For the detail results we refer to the Table 9 in Appendix G.

Table 4.6: A comparison of various integer relaxations for the CDSPHT-G.

F1-G F2-G F1-S MIP-OT
in out in out in out in out

Optimal instances (#) 6/44 7/44 12/44 18/44 27/44 21/44 5/44 5/44
Infeasible instances (#) 4/44 4/44 13/44 11/44 6/44 6/44 0/44 0/44
Arti. mean of gap (%) 13.39 9.53 8.96 3.64 3.15 3.56 10.07 10.56
Geo. mean of gap (%) 8.81 6.03 3.57 1.45 0.86 1.24 6.92 7.02

From Table 4.6, we note that solving CDSPHT-S as the relaxed problem in the

approximate algorithm outperforms the other relaxations in terms of the final opti-

mality gap and the number of optimal instances. According to the obtained results,

we also note that for the large-size instances involving 50 incoming/outgoing trucks,

the two independent scheduling problems solved by MIP-OT are the only relaxations

that can provide a feasible solution with a given optimality gap.

To have a better comparison of the relaxed problems, we have computed the %gap

for the best upper bounds obtained by any of the formulations within 24 hours, or

any setting of the approximate algorithm presented in Table 4.6 with respect to the

lower bounds obtained by each of the relaxation problems, as well as the LP bounds

obtained with F1-G and F2-G. Table 4.7, summarizes the obtained results. For each

of the relaxation problems the number of instances for which the optimality of the best

bound is proved, the number of instances for which the best lower bound is obtained,

and the arithmetic and geometric means of the optimality gap are reported. According

to this table, F1-S significantly outperforms other problems in terms of the quality
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of the provided lower bound and also the quality of the obtained % gap, by proving

optimality for 30 instances. For five of such instances the approximate algorithm is

capable of proving optimality for the first time. These instances are highlighted in

bold in the Table 10 in Appendix G, where the detail results are provided.

Table 4.7: A comparison of best-known solutions and different relaxations in approx-
imate algorithm.

F1-G F2-G
F1-S MIP-OT

LP Relax X Relax Y LP Relax X Relax Y
Proven optimality (#) 8/44 10/44 8/44 8/44 18/44 13/44 30/44 10/44
Best LB (#) 8/44 11/44 8/44 8/44 19/44 13/44 35/44 17/44
Arit. mean of gap (%) 16.29 7.51 11.27 16.77 7.00 13.25 4.17 8.26
Geo. mean of gap (%) 9.74 4.00 6.77 9.92 2.50 5.62 0.94 4.92

From the results that we have obtained so far, in our approximate algorithm it is

better to always use the BC algorithm for the CDSPHT-S as the main lower bounding

procedure. We also solve two parallel machine scheduling problems, to potentially

improve the lower bounds and to make sure that we always have a starting solution,

specially for larger instances. We recall that at every iteration of the matheuristic, we

need to solve a OCDSP-RD. In section 4.6, we have provided two formulations to solve

it: MIP-OT and CP-OT. Each of them can be used within the approximate algorithm,

and so two variants of the algorithm can be considered. In order to evaluate the overall

performance of our approximate algorithm, we have compared the obtained results

with the formulations for 40 instances with 8 to 20 trucks. For these experiments,

we have considered a time limit of one hour for solving each of the relaxations and a

time limit of 300 seconds for each of the formulations solved within the matheuristic.

In the worst case, the approximate algorithm takes up to three hours to terminate.

Therefore, to have a fair comparison, we have rerun the formulations with a time

limit of three hours. We only applied the local search matheuristic (Algorithm 1) in

the approximate algorithm in these experiments.

Table 4.8 summarizes the comparison between two variants of the proposed ap-
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proximate algorithm and the three formulations for the CDSPHT-G. For each of these

solution algorithms we report: the number of optimal instances, the number of in-

stances for which no solution is found, the number of instances for which the best

bound is obtained, arithmetic and geometric means of the % deviation from the best

upper bound obtained using any of these five approaches , arithmetic and geometric

means of the final % gap, and arithmetic and geometric means of CPU time. For the

detail results we refer to Table 11 in Appendix G

Table 4.8: A comparison between approximate algorithms, MIP and CP formulations
for the CDSPHT-G.

Approximate algorithm Formulations
CP-OT MIP-OT F1-G F2-G CP-G

Optimal instances (#) 27/40 25/40 16/40 17/40 22/40
Infeasible instances (#) 0/40 0/40 13/40 6/40 2/40
Best UB (#) 36/40 34/40 21/40 27/40 31/40
Arit. mean of dev (%) 0.23 0.30 0.36 0.30 0.20
Geo. mean of dev (%) 0.12 0.17 0.23 0.20 0.14
Arit. mean of gap (%) 3.60 3.67 3.72 6.06 8.89
Geo. mean of gap (%) 1.06 1.16 1.47 2.26 2.47
Arit. mean of time (sec) 1,567 1,321 6,649 6,322 5,304
Geo. mean of time (sec) 102 107 506 466 315

According to Table 4.8, both variants of the approximate algorithm significantly

outperform the formulations in terms of the CPU time and number of obtained op-

timal (or feasible) solutions. Among the two variants, the variant that uses CP-OT

has a slightly better performance. It is worth mentioning that using these approxi-

mate algorithms, we were able to prove the optimality for four instances (12x6x35,

12x6x50, 15x7x35, and 20x10x50) in less than two hours, whereas all formulations

fail to do so in 24 hours. We also improved the best-known solution for one of the

instances (15x7x50) with respect to the upper bound obtained by all formulations in

24 hours. Finally, we also found a feasible solution for one of the instances (15x6x75)

for which none of the formulations could find a solution in 24 hours.

In order to examine the impact of using the more sophisticated ILS matheuristic,
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we have solved 40 instances with two variants of the approximate algorithm using

the ILS matheuristic with 10 iterations. Since we apply the matheuristic twice, once

by fixing inbound and once by fixing outbound decisions, in total the matheuristic is

applied 20 times within each variant of the algorithm. The results are summarized in

Table 4.9. We note that for calculating the number of instances with the best bound

and the % deviations we have considered the best-known upper bound that we have

found for each instance using any of the formulations or solution algorithms. Detail

of the results can be found in Table 12 in Appendix G.

As can be seen from Table 4.9, using the ILS matheuristic significantly increases

the CPU time, while having only a marginal impact on the quality of the obtained

upper bounds. We also note that for the ILS matheuristic, MIP-OT outperforms CP-

OT. A positive outcome of the use of the ILS matheuristic within the approximate

algorithm is that the optimality of one additional instance (15x6x25) was proved for

the first time and the upper bounds for two instances (15x6x50 and 15x6x75) were

improved.

Table 4.9: Impact of using ILS matheuristic on the performance of approximate
algorithm.

CP-OT MIP-OT
LS ILS LS ILS

Optimal instances (#) 27/40 28/40 25/40 29/40
Infeasible instances (#) 0/40 0/40 0/40 0/40
Best UB (#) 33/40 37/40 32/40 39/40
Arit. mean of dev (%) 0.32 0.16 0.39 0.09
Geo. mean of dev (%) 0.19 0.08 0.23 0.04
Arit. mean of gap (%) 3.60 3.46 3.67 3.40
Geo. mean of gap (%) 1.06 1.00 1.16 0.94
Arit. mean of time (sec) 1,567 5,280 1,321 2,813
Geo. mean of time (sec) 102 303 107 387

Considering an easy to solve relaxation problem within the proposed approximate

algorithm enables us to obtain feasible solutions with a given optimality gap in just a
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few hours, even for the large-size instances for which none of the formulations could

find a single feasible solution within 24 hours. The results obtained for the large-size

instances using the LS and ILS matheuristic within the approximate algorithm are

provided in Table 4.10. These results are obtained using only CP-OT. In the case of

the MIP-OT, we noted that given the CPU limit of 300 seconds set to solve MIP-OT,

no solutions were found and the algorithm was interrupted.

Table 4.10: Detailed results of approximate algorithm for large-size CDSPHT-G in-
stances.

Instance LS ILS
Time UB Gap(%) Time UB Gap(%)

50x30x25 1,145 150 0.00 11,177 150 0.00
50x30x35 7,663 197 8.63 74,686 195 7.69
50x30x50 11,514 290 9.66 108,479 289 9.34
50x30x75 17,694 440 10.68 162,747 440 10.68

For a better comparison between the proposed approximate algorithm and the

formulations, the summary of the results obtained by the formulations within 24 hours

and different variants of the approximate algorithm for all instances are reported in

Table 4.11. According to this table, approximate algorithms with LS matheuristic

have a very good performance as compared to formulations, given that they can prove

the optimality of more instances and find high quality solutions for other instances in

just a fraction of time needed by the formulations. Moreover, approximate algorithms

with ILS matheuristic outperform the formulations significantly in terms of time,

quality of solutions, and the number of instances solved optimally.

Finally, we compare the solutions obtained by our approximate algorithms with

the solutions obtained by the two state-of-the-art metaheuristics given in [59]. Table

4.12 represents a summary of the results. In these experiments, to compute the %

deviations, we have considered the best bound obtained so far, by one of the formula-

tions, the approximate algorithms, or the heuristics from [59]. The best solution for

instance 20x10x75 was obtained by one of the heuristics from [59]. For all the other

instances, the best solutions were found by at least one of the algorithms reported in
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Table 4.11: A comparison of approximate algorithms and MIP and CP formulations
for the CDSPHT-G using a time limit of 24 hours.

Formulations Approximate algorithms

F1-G F2-G CP-G1 CP-OT MIP-OT
LS ILS LS ILS

Optimal instances (#) 19/44 19/44 24/44 28/44 29/44 25/44 29/44
Infeasible instances (#) 10/44 6/44 4/44 0/44 0/44 4/44 4/44
Best UB (#) 30/44 29/44 38/44 35/44 41/44 32/44 39/44
Arit. mean of Dev (%) 0.14 0.27 0.12 0.32 0.14 0.39 0.09
Geo. mean of Dev (%) 0.09 0.20 0.06 0.20 0.08 0.23 0.04
Arit. mean of Gap (%) 2.65 4.96 6.93 3.93 3.77 3.67 3.40
Geo. mean of Gap (%) 1.15 2.02 2.04 1.27 1.20 1.16 0.94
Arit. mean of time (sec) 50,109 49,433 37,008 2,289 12,915 2,183 3,539
Geo. mean of time (sec) 2,183 1,922 642 149 491 163 523

the current paper. The first two rows of this table, report, respectively, the number

of instances for which the best bound and the optimal bound are obtained. Next

rows present the arthimetic and geometric means of the % deviations for the best

bound obtained by each of the four variants of the proposed approximate algorithm,

and for the average, maximum, and minimum bounds obtained by each of the heuris-

tics. According to this table, our proposed approximate algorithms outperform the

metaheuristics of [59] in terms of the quality of the obtained solutions. For the detail

results we refer to Table 13 in Appendix G.

Table 4.12: A comparison of approximate algorithms and state-of-the-art metaheuris-
tics.

Approximate algorithms Sayed et al. [59]
CP-OT MIP-OT ILS-VND GRASP-VND

LS ILS LS ILS Avg. max min Avg. max min
Best Bound (#) 34/44 40/44 31/44 38/44 12/44 12/44 31/44 8/44 8/44 26/44
Optimal Bound (#) 28/44 29/44 25/44 30/44 12/44 12/44 27/44 8/44 8/44 24/44
Arit. Mean of dev (%) 0.33 0.16 0.40 0.11 1.33 2.28 0.42 1.88 2.68 0.60
Geo. Mean of dev (%) 0.21 0.09 0.25 0.05 1.01 1.68 0.28 1.46 2.10 0.42
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4.8.4 Impact of considering door-dependent transfer times

In this paper we have studied two variants of the CDSPHT. In the first variant, we

assumed that unit-load transfer time depends on the origin and destination doors,

while in the second variant, we relaxed the assumption of being door-dependent.

We are now interested to see how this relaxed assumption can impact the estimated

makespan and obtained solutions. In other words, if we solve the problem by as-

suming that unit-load transfer time does not depend on the doors, and then we use

the obtained assignment and sequences to schedule trucks in an environment with

door-dependant unit-load transfer time, what is the percentage of increment in the

makespan, with respect to the case were we directly solve the CDSPHT-G. To do so,

we compared the upper bounds obtained for the CDSPHT-G directly, with the ones

that can be calculated based on the solution of the CDSPHT-S. We have also included

the results for the case were we first solve a CDSP without considering handling times

(i.e. transfer times are equal to zero), and then we calculate the makespan for the

CDSPHT-G based on the obtained solution. For this comparison, we have chosen

those instances that could be solved optimally for all variants of the problem using

one of the proposed formulations or algorithms. Table 4.13 presents this comparison.

In the second and third columns of this table we report the CPU time and the optimal

value for the CDSPHT-G obtained by directly solving the problem. The CPU time

reported for each of the instances in the second column, is the best time that was

obtained among the provided formulations for the CDSPHT-G. For those instances

that could not be optimally solved with the formulations, the best time among the

variants of the approximate algorithm is reported. The next two columns denote

the CPU time and the bound obtained for the general problem through solving the

specific case problem using F1-S. In the fifth and sixth columns under the heading

T-Dec (%) and B-Inc (%), we report the percentage of decrease in CPU time and

increase in the makespan, when CDSPHT-G is indirectly solved through CDSPHT-S.
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The next four columns report the CPU time, makespan, % of decrease in time, and

% of increase in the makespan when we solve F1-S considering transfer times to be

zero, and then, based on the obtained solution, we calculate the makespan for the

CDSPHT-G.

Table 4.13: Impact of solving CDSPHT-G directly and indirectly through CDSPHT-S
and CDSP.

Instance
CDSPHT-G CDSPHT-S CDSP
Time UB Time UB T-Dec(%) B-Inc(%) Time UB T-Dec(%) B-Inc(%)

8x4x25 0 27 0 31 0.00 14.81 0 33 0.00 22.22
8x4x35 1 43 1 48 0.00 11.63 0 52 100.00 20.93
8x4x50 12 59 3 64 75.00 8.47 1 61 91.67 3.39
8x4x75 165 75 48 76 70.91 1.33 49 83 70.30 10.67
9x4x25 0 33 0 36 0.00 9.09 0 35 0.00 6.06
9x4x35 0 48 0 52 0.00 8.33 0 53 0.00 10.42
9x4x50 45 54 4 59 91.11 9.26 6 62 86.67 14.81

10x4x25 0 34 0 35 0.00 2.94 0 38 0.00 11.76
10x4x35 13 51 3 56 76.92 9.80 1 55 92.31 7.84
10x4x50 347 76 217 81 37.46 6.58 906 76 -161.10 0.00
10x5x25 0 35 0 38 0.00 8.57 0 37 0.00 5.71
10x5x35 1 44 0 48 100.00 9.09 0 54 100.00 22.73
10x5x50 2 69 0 71 100.00 2.90 0 74 100.00 7.25
10x5x75 2,523 95 347 99 86.25 4.21 2,082 100 17.48 5.26
11x5x25 4 36 1 39 75.00 8.33 0 44 100.00 22.22
11x5x35 68 53 2 54 97.06 1.89 1 58 98.53 9.43
11x5x50 1,849 74 220 78 88.10 5.41 183 78 90.10 5.41
12x5x25 263 46 11 51 95.82 10.87 3 54 98.86 17.39
12x5x35 6,315 63 341 68 94.60 7.94 1,470 67 76.72 6.35
12x6x25 0 41 0 45 0.00 9.76 0 44 0.00 7.32
12x6x35 143 52 136 56 4.90 7.69 68 59 52.45 13.46
12x6x50 1,438 76 1,423 79 1.04 3.95 1,181 82 17.87 7.89
15x6x25 410 55 342 59 16.59 7.27 202 62 50.73 12.73
15x6x35 6,542 84 199 87 96.96 3.57 12 92 99.82 9.52
15x7x25 4 46 6 48 -50.00 4.35 1 49 75.00 6.52
15x7x35 3,657 71 3,579 73 2.13 2.82 789 75 78.42 5.63

20x10x25 27,277 63 55 70 99.80 11.11 19 71 99.93 12.70
20x10x35 2,776 90 27 91 99.03 1.11 14 94 99.50 4.44
20x10x50 1,589 117 954 118 39.96 0.85 1,981 121 -24.67 3.42

Arit. mean 1,912 273 48.23 6.69 309 52.09 10.12
Geo. mean 63 17 5.41 14 8.40

According to Table 4.13, solving the CDSPHT-G indirectly through solving CDSPHT-

S reduces on average the CPU time by 48%, whereas it increases on average the
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makespan by 7%. However, looking into the instances, we observe that the makespan

increases up to 15% when the dependency of the transfer times are not considered.

In the case of solving the problem without considering the handling times, the CPU

time decreases on average by 52%, at the expense of increasing the makespan about

10%, while for some instances this increase can be up to 23%. These results reveal

that transfer times have a significant impact on the makespan and considering them

while solving the problem is important for obtaining more efficient schedules. We

expect that this impact will be more significant for cross-docks in which distances

between doors differ significantly.

4.9 Conclusion

In this paper we addressed two variants of a cross-dock scheduling problem with

handling times: a general case with door-dependent unit-load transfer time and a

particular case with constant unit-load transfer time. For each of these problems,

a constraint programming (CP) formulation was developed. By comparing our CP

formulation for the general problem with two mathematical programming formula-

tions that have been proposed in the literature, we showed that CP outperforms those

MIP formulations in terms of both the quality of the solution and the CPU time when

solved with CPLEX. We also developed several families of valid inequalities for the

specific case problem and described how can these be adapted for the general one.

The proposed inequalities were used within a branch-and-cut framework to improve

the performance of an MIP formulation. We also designed approximate algorithms

that combine integer relaxations with a matheuristic to compute optimality gaps for

the general case. Finally, we analyzed the impact of incorporating handling times

in the model on the quality of the obtained makespan. We compared three ways to

calculate makespan for the general problem: solving general problem directly, solv-
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ing general problem through the specific case, and solving the problem through the

specific case where all transfer times are zero. The results suggest that considering

true values of transferring times can significantly improve the makespan and thus, it

is important for obtaining efficient schedules.

Future research directions include the evaluation of the impact of the valid inequal-

ities when used within a BC algorithm for the general case problem. Incorporating the

storage capacity within the cross-dock facility and integrating employee time tabling

in to the current models are other promising future research directions.
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Chapter 5

Conclusions

This thesis studied two important applications of scheduling in service industries:

outpatient appointment scheduling in oncology clinics under uncertain arrival times

of appointment requests and uncertain service times, and cross-dock scheduling while

considering loading, transfer and unloading times of products.

HiIn Chapter 2, we studied a multi-appointment, multi-stage chemotherapy schedul-

ing problem considering unique characteristics and realistic assumptions. We pre-

sented two alternative integer programming formulations, that were compared com-

putationally. We used the most promising model to develop integrated and sequential

scheduling strategies and an online scheduling algorithm to accommodate arriving re-

quests dynamically. We performed several computational experiments to evaluate

the performance of the proposed algorithms using historical data gathered from a

major cancer center in Canada. The results revealed that the proposed algorithms

can potentially make significant improvements in the clinic schedule with respect to

several performance measures.

In Chapter 3 we addressed an integrated daily consultation and chemotherapy

scheduling problem considering stochastic treatment times and different patient types.

We developed two two-stage stochastic programming models for this problem. Ac-
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cording to the conducted computational experiments, one of the proposed formula-

tions that partially models the problem as Multi-TSP, outperforms the other formula-

tion significantly. We also presented a SAA algorithm to solve the stochastic problem

and to compute statistical lower-bound, upper-bound, and optimality gap. A spe-

cialized algorithm was also designed to quickly evaluate a given first-stage solution

for a large number of scenarios. We assessed the quality of the solutions obtained

by the SAA algorithm with the solutions of the expected value problem. The results

of the experiments showed that, comparing to the expected value problem, the SAA

algorithm is able to reduce the expected objective value by at least 95 percent.

Finally, in Chapter 4 we presented two variants of a cross-dock scheduling prob-

lem with handling times: a general case with door-dependent unit-load transfer times

and a specific case with constant unit-load transfer times. We developed constraint

programming formulations for each variant of the problem. We carried out several

computational experiments to evaluate the performance of the proposed CP for the

general problem in comparison with two mixed integer programming models from

the literature. The results verified that the CP outperforms the MIP formulations in

terms of both the quality of the solution and the CPU time. We also developed sev-

eral families of valid inequalities for the specific case problem that were used within a

branch-and-cut framework to improve the performance of a time-index formulation.

Conducted computational experiments revealed that using the best combination of

valid inequalities within a BC algorithm can significantly improve the performance

of the formulation. We also designed and computationally evaluated several approx-

imate algorithms that combine a relaxation problem with a matheuristic to com-

pute bounds for the general problem and also to provide optimality gaps. The re-

sults showed that these algorithms outperform the formulations and other developed

heuristics in the literature in terms of the quality of solutions.

There are several possibilities to extend the ideas presented in this thesis. In the
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following several directions for future researches are provided.

• Conducting simulation-based studies to determine the best time for scheduling

appointments in an online appointment scheduling system.

• Considering acuity level of patients to compute nurses’ daily workload for bal-

ancing purposes.

• Considering treatment cancellations in the stochastic chemotherapy scheduling

problem.

• Designing decomposition-based algorithms to efficiently solve SAA problems.

• Developing a branch-and-cut algorithm for the general variant of the studied

cross-dock scheduling problem.

• Considering a limited storage capacity within the cross-dock facility.
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A Detailed Description of the Multi-Objective Func-

tion

In this section we describe in detail the objectives defined in Section 2.4.2. Since most

of these objectives are non-linear in nature, their linearization is also provided using

auxiliary variables defined in Table 1.

Table 1: Auxiliary variables used to linearize the objective function terms

Variables Definition
bld ≥ 0 maximum workload difference between all pairs of nurses on day d ∈ D
cood ≥ 0 completion time of oncologist o ∈ OG on day d ∈ DO

o

otOod ≥ 0 overtime of oncologist o ∈ O \ OG on day d ∈ DO
o

otNnd ≥ 0 overtime of nurse n ∈ N on day d ∈ DN
n

wt1pk ≥ 0 first type waiting time of patient p ∈ P on appointment k ∈ CAp

wt2pk ≥ 0 second type waiting time of patient p ∈ P on appointment k ∈ T Ap

wt3pk ≥ 0 third type waiting time of patient p ∈ P on appointment k ∈ T Ap

The first objective balances the nurses daily workload and can be formulated as:

g1(x) =
∑
d∈D

max
n,n′∈N g1
n>n′


∣∣∣∣∣∣Lnd +

∑
p∈NP∪RP

∑
k∈Kp

∑
s∈S5pkd

∑
c∈CPpk∩C

N
nd

PT 5
pkxpkdsc

−Ln′d −
∑

p∈NP∪RP

∑
k∈Kp

∑
s∈S5pkd

∑
c∈CPpk∩C

N
n′d

PT 5
pkxpkdsc

∣∣∣∣∣∣
 ,

where for day d ∈ D, N g1 = {n ∈ N : d ∈ DNn }, denotes the set of nurses working

on that day and Kp = {k ∈ T Ap : d ∈ D5
pk}, represents the set of treatment appoint-

ments of patient p that are allowed to be scheduled on day d. Moreover, Lnd and Ln′d

denote the initial load of nurses n and n′, respectively, on day d, due to the partial

schedule in the dynamic variant. For the static variant, initial load of each nurse is

set to zero.

In order to linearize g1(x), we consider g1(x) =
∑

d bld, and for d ∈ D and n, n′ ∈
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N g1 such that n > n′, we define the following constraints:

bld ≥ Lnd +
∑

p∈NP∪RP

∑
k∈Kp

∑
s∈S5pkd

∑
c∈Cg1ndpk

PT 5
pkxpkdsc

− Ln′d −
∑

p∈NP∪RP

∑
k∈Kp

∑
s∈S5pkd

∑
c∈Cg1

n′dpk

PT 5
pkxpkdsc (1)

bld ≥ Ln′d +
∑

p∈NP∪RP

∑
k∈Kp

∑
s∈S5pkd

∑
c∈Cg1

n′dpk

PT 5
pkxpkdsc

− Lnd −
∑

p∈NP∪RP

∑
k∈Kp

∑
s∈S5pkd

∑
c∈Cg1ndpk

PT 5
pkxpkdsc. (2)

The second objective minimizes nurses overtime (patients hand overs) and can be

formulated as:

g2(x) =
∑
n∈N

∑
d∈DNn

max
p∈NP∪RP


∑
k∈Kp

∑
s∈S5pkd

∑
c∈CPpk∩C

N
nd

(
s+ PT 5

pk

)
xpkdsc − FNnd

+ ,

where FNnd denotes end of the regular working hours of nurse n on day d.

In order to linearize g2(x), we consider g2(x) =
∑

n

∑
d ot

N
nd, and for n ∈ N and

d ∈ DNn , we define the following constraint:

otNnd ≥
∑

p∈NP∪RP

∑
k∈Kp

∑
s∈S5pkd

∑
c∈CPpk∩C

N
nd

(
s+ PT 5

pk

)
xpkdsc − FNnd. (3)

The third objective consists of three terms that can be modeled as:

g1
3(y3) =

∑
o∈OG

∑
d∈DOo

max
p∈POo


∑
k′∈K′p

∑
s∈S3

pk′d

(
s+ PT 3

pk′

)
y3
pk′ds


g2

3(y3) =
∑

o∈O\OG

∑
d∈DOo

max
p∈POo


∑
k′∈K′p

∑
s∈S3

pk′d

(
s+ PT 3

pk′

)
y3
pk′ds − FOod


+
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g3
3(y3) =

∑
o∈OG

∑
p∈POo

∑
k′∈CAp

∑
d∈DOo ∩D3

pk′

∑
s∈S3

pk′d∩S
B
od

y3
pk′ds,

where for day d and patient p, K′p = {k′ ∈ CAp : d ∈ D3
pk′}, represents the set of all

patient’s consultation appointments that can be scheduled on day d. Furthermore,

FOod denotes the end of regular working hours of oncologist o on day d and SBod

represents the set of time slots corresponding to the break period of oncologist o

on day d. Moreover, OG denote the set of gynecology oncologists. We note that

(X)+ = max{X, 0}.

In order to linearize g1
3(y3), we consider g1

3(y3) =
∑

o

∑
d cood, and for o ∈ OG and

d ∈ DOo , we define the following constraint:

cood ≥
∑
p∈POo

∑
k′∈K′p

∑
s∈S3

pk′d

(
s+ PT 3

pk′

)
y3
pk′ds. (4)

In order to linearize g2
3(y3), we consider g2

3(y3) =
∑

o

∑
d ot

O
od, and for o ∈ O \OG

and d ∈ DOo , we define the following constraint:

otood ≥
∑
p∈POo

∑
k′∈K′p

∑
s∈S3

pk′d

(
s+ PT 3

pk′

)
y3
pk′ds − FOod. (5)

The fourth objective consists of three terms. The first term can be stated as:

g1
4(y1, y3) =

∑
p∈P

∑
k′∈K1

p

∑
d∈D3

pk′∩D
1
pk′

 ∑
s∈S3

pk′d

sy3
pk′ds −

∑
s∈S1

pk′

(
s+ PT 1

pk′

)
y1
pk′ds


+

,

where K1
p = {k′ ∈ CAp : BCpk′ = 1}, represents consultation appointments of patient

p that require blood test. In order to linearize this objective, we consider g1
4(y1, y3) =
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∑
p

∑
k′ wt

1
pk′ , and for p ∈ P and k′ ∈ K1

p, we define the following constraint:

wt1pk′ ≥
∑

d∈D3
pk′∩D

1
pk′

∑
s∈S3

pk′d

sy3
pk′ds −

∑
d∈D3

pk′∩D
1
pk′

∑
s∈S1

pk′

(
s+ PT 1

pk′

)
y1
pk′ds. (6)

The second term of the fourth objective can be stated as:

g2
4(x, y2) =

∑
p∈RP

∑
k∈K2

p

∑
d∈D5

pk∩D
2
p(k+1)

 ∑
s∈S5pkd

∑
c∈CPpk

sxpkdsc−

∑
s∈S2

p(k+1)d

(
s+ PT 2

p(k+1)

)
y2
p(k+1)ds − |S|z2

p(k+1)


+

,

where K2
p = {k ∈ T Ap : BTp(k+1) = 1, d5

pk = d2
p(k+1)}. In order to linearize this

objective term, we consider g2
4(x, y2) =

∑
p

∑
k wt

2
pk, and for p ∈ RP and k ∈ K2

p, we

define the following constraint:

wt2pk ≥
∑

d∈D5
pk∩D

2
p(k+1)

∑
s∈S5pkd

∑
c∈CPpk

sxpkdsc−

∑
d∈D5

pk∩D
2
p(k+1)

∑
s∈S2

p(k+1)d

∑
c∈CP

p(k+1)

(
s+ PT 2

p(k+1)

)
y2
p(k+1)ds − |S|z2

p(k+1). (7)

The last term of the fourth objective can be modeled as:

g3
4(x, y2) =

∑
p∈NP∪RP

∑
k∈K′′p

∑
d∈Dpk

 ∑
s∈S5pkd

∑
c∈CPpk

sxpkdsc −
∑
s∈S2pkd

(
s+ PT 2

pk

)
y2
pkds

+

,

where K′′p = {k ∈ T Ap : BTpk = 1}, represents treatment appointments that require

blood test as well and Dpk = D5
pk ∩ D2

pk ∩ DH.

In order to linearize this objective term, we consider g3
4(x, y2) =

∑
p

∑
k wt

2
pk, and
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for p ∈ NP ∪RP and k ∈ K′′p , we define the following constraint:

wt3pk ≥
∑
d∈D

g34
pk

∑
s∈S5pkd

∑
c∈CPpk

sxpkdsc −
∑
d∈D

g34
pk

∑
s∈S2pkd

(
s+ PT 2

pk

)
y2
pkds. (8)

The fifth objective minimizes the access time and can be stated as:

g5(x) =
∑

p∈NPPr

∑
d∈D5

p1

∑
s∈S5p1d

∑
c∈CPpk

CPpdxp1dsc,

where NPPr, is set of new treatment patients with the highest priority and CPp is

the cost defining the priority grade of the patient.

For the consultation model of the proposed consultation-treatment approach de-

scribed in Section 2.5, this objective can be alternatively expressed in terms of the y3

variables as:

g′5(y3) =
∑
p∈NP ′

∑
d∈D3

p1

∑
s∈S3p1d

CPp(d+ 1)y3
p1ds,

where NP ′ = {p ∈ NPPr : |CAp| = 1}.

The sixth objective maximizes the number of patients assigned to their primary or

secondary nurses. For each primary nurse, there is a secondary nurse who is preferred

to be assigned to the patient when the primary nurse is not available. This objective

can be formulated as:

g6(x) =
∑

p∈NP∪RP

∑
k∈T Ap

∑
n∈N

∑
d∈D5

pk∩DNn

∑
s∈S5pkd

∑
c∈CNnd

CNpnxpkdsc,

where CNpn is the cost of assigning patient p to the nurse n. For the primary nurse

of each patient, the cost is zero, for the secondary nurse it takes a small value and

for all other arbitrary nurse assignments, the cost will be higher. We note that

by considering zero costs for any nurse-to-patient assignments, the model can easily
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consider a functional care delivery model rather than the primary model.

The seventh objective minimizes the number of non-preferred time assignments.

Since chemotherapy treatments are usually given in cycles and the patients need

to come to the clinic frequently for the infusion, sometimes it is difficult to have

treatment appointments at certain times of the day. For example, patients may

study in the morning and can only come to the clinic in the afternoons, or they may

work in the evenings and only morning appointments work for them. Considering

these types of preferences can improve patients’ satisfaction and convenience. This

objective can be formulated as:

g7(x) =
∑

p∈NP∪RP

∑
k∈T Ap

∑
d∈D5

pk

∑
s∈S5pkd\S

P
pk

∑
c∈CPpk

CTpkxpkdsc,

where SPpk is the set of all preferred time slots for the treatment appointment k of

patient p and CTpk is the cost of non-preferred time assignments. The cost is assumed

to depend on both the patient and appointment, because for the appointments that

patient has more serious restrictions on the time, by imposing a higher cost, it is more

likely possible to respect such restrictions.

The last objective function minimizes the the number of unscheduled patients and

can be stated as:

g8(z1, z2) =
∑

p∈FP∪RP

∑
k′∈CAp

CBC
p z

1
pk′ +

∑
p∈NP∪RP

∑
k∈T Ap

CBT
p z

2
pk,

where CBC
p and CBT

p are the costs associated with nonscheduled consultation and

treatment appointments of patient p, respectively. We note that by defining different

costs for different patients, we can determine patients priorities for being scheduled.

For the consultation model of the proposed sequential approaches described in
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Section 2.5, the eighth objective can be rewritten as:

g′8(z1) =
∑
p∈P

∑
k′∈CAp

CBC
p z

1
pk′ .

Similarly, for the treatment model of the sequential approaches, this objective can

be stated as:

g′′8(z2) =
∑

p∈NP∪RP

∑
k∈T Ap

CBT
p z

2
pk.

B Algorithms
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Algorithm 7: Consultation-Treatment Approach
1: Initialization:

• Generate PC : set of patients with consultation appointments, and PT : set
of patients with treatment appointments.

• Generate set of all consultation appointments: APC =
⋃

p∈PC
CAp.

• Generate set of all treatment appointments: APT =
⋃

p∈PT
T Ap.

2: Solve Consultation-Model with PC and APC .
3: Update the number of available Phlebotomist.
4: Update set of appointments to be scheduled at the next step:

• For each unscheduled appointment of APC , if APT includes an associated
treatment appointment which would follow the consultation appointment,
remove such appointment from APT .

5: Update domain of next step variables:

• p ∈ NP ∩ PC : update set of possible days for drug preparation, D4
p1, to

include the scheduled consultation day or its following day, depending on
the drug lifetime.

• p ∈ NP ∩ PC : update set of possible days for treatment, D5
p1, to include

only the following day of the scheduled consultation day.

• For p ∈ PC ∩ PT : if the kth consultation appointment should be followed
by k′th treatment appointment on the next day, update set of possible time
slots for drug preparation on the scheduled consultation day, S4

pk′d, to
include only time slots after completing the consultation.

6: Solve Treatment-Model with PT and APT .
7: Update set of scheduled appointments at the previous step:

• For p ∈ NP ∩ PT : if the required treatment appointment could not be
scheduled in the second step, remove the associated scheduled consultation
appointment from the schedule.

8: Calculate performance measures and return the schedule of all appointments.
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Algorithm 8: Treatment-Consultation Approach
1: Initialization:

• Generate PC : set of patients with consultation appointments, and PT : set
of patients with treatment appointments.

• Generate set of all consultation appointments: APC =
⋃

p∈PC
CAp.

• Generate set of all treatment appointments: APT =
⋃

p∈PT
T Ap.

2: Solve Treatment-Model with PT and APT .
3: Update the number of available Phlebotomist.
4: Update set of appointments to be scheduled at the next step:

• For p ∈ NP ∩ PT : if the required treatment appointment could not be
scheduled, remove the associated consultation appointment from APC .

5: Update domain of next step variables:

• For p ∈ NP ∩ PT : update set of possible days for blood test, D1
p1, to

include only the day before the scheduled treatment day.

• For p ∈ NP ∩ PC : update set of possible days for consultation, D3
p1, to

include only the previous day of the scheduled treatment day.

• For p ∈ PT ∩ PC : if the kth treatment appointment should follows the k′th
consultation appointment on the next day, update set of possible time slots
for blood test and consultation on the scheduled drug preparation day,
S1
pk′d and S3

pk′d, to include only time slots before starting drug preparation.

6: Solve Consultation-Model with PC and APC .
7: Update set of scheduled appointments at the previous step:

• For each unscheduled appointment of APC : if APT includes an associated
scheduled treatment appointment which would follow the consultation
appointment, remove that appointment from the schedule.

8: Calculate performance measures and return the schedule of all appointments.
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C Sequential Models

We next provide mathematical programming formulations for the consultation and treatment

models, that are derived from M2.

Consultation model:

minimize
{
g3

(
y3
)
, g1

4

(
y1, y3

)
, g′5
(
y3
)
, g′8
(
z1
)}

subject to (2.1), (2.3), (2.8), (2.34), (2.36)∑
p∈P

∑
k′∈K1

p(d,s)

s∑
s′=s(B)

y1
pk′ds′ ≤ RB

ds d ∈ D, s ∈ S (9)

yipkds ∈ {0, 1} i ∈ {1, 3}, p ∈ P, k ∈ CAp, d ∈ D, s ∈ S. (10)

Treatment model:

minimize
{
g1 (x) , g2 (x) , g2

4

(
x, y2

)
, g3

4

(
x, y2

)
, g5 (x) , g6 (x) , g7 (x) , g′′8

(
z2
)}

subject to (2.2), (2.4), (2.5), (2.10)− (2.15), (2.26), (2.27), (2.29), (2.31), (2.42), (2.44),

(2.45), (2.47)∑
s∈S5p1d

∑
c∈CPp1

xp1dsc =
∑
s∈Sjp1d

yjp1(d−1)s j ∈ {2, 4}, p ∈ P5,j , d ∈ D5,j
p1 (11)

∑
p∈NP∪RP

∑
k∈K2

p(d,s)

s∑
s′=s(B)

y2
pkds′ ≤ RB

ds d ∈ D, s ∈ S (12)

yipkds ∈ {0, 1} i ∈ {2, 4}, p ∈ NP ∪RP, k ∈ T A, d ∈ D, s ∈ S (13)

xpkdsc ∈ {0, 1} p ∈ NP ∪RP, k ∈ T A, d ∈ D, s ∈ S, c ∈ C. (14)
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D Computational Experiments Supplements for Chap-

ter 2

Objective coefficients:

We have used the AHP method to determine the objective coefficients with respect to

the pair-wise comparison among all the objective components. Usually these pair-wise

comparisons are done by assigning a number from 1/9 to 9 that reflects the importance

of one objective when compared the other one. However, in this paper, we have used a

different scale to emphasize that the scheduling of appointments is the most important

goal and to make sure that the corresponding objective weight is high enough to reflect

this importance. We thus considered that the eighth objective is 40 and we used rates

1/5 to 5 to compare the other objectives. These comparisons are made according to

the information we obtained during our interviews with the head oncologist and head

nurse of the clinic. Table 2 gives the corresponding pairwise comparison matrix.

According to this matrix, we can calculate the coefficients indicating the relative

importance of objective terms. For this purpose, the sum of the values of each column

of the matrix must be calculated first, and then each value should be divided by its

column total value to obtain the relative importance matrix. The average of each

row in the relative importance matrix represents the corresponding weight of each

objective function.

Table 3 summarizes the obtained objective coefficients according to the described

procedure. The second and third columns of this table denote the considered weights

for the integrated model. The second column weights are used when we consider all

stages and all the objectives. The weights in the third column are used when we

want to compare our results to the actual plan where we only consider two stages

and ignore waiting time and access time minimization. The fourth and fifth columns

represent the weights for the consultation model in CT and TC approaches, respec-
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Table 2: Pair-wise comparison matrix

g1 g1
2 g2

2 g3
2 g3 g4 g5 g6 g7 g8

g1 1 2 2 4 2 0.5 0.33 2 4 0.03
g1

2 0.5 1 1 4 1 0.33 0.25 0.5 4 0.03
g2

2 0.5 1 1 4 1 0.33 0.25 0.5 4 0.03
g3

2 0.25 0.25 0.25 1 0.25 0.25 0.25 0.25 0.5 0.03
g3 0.5 1 1 4 1 0.33 0.25 0.5 4 0.03
g4 2 3 3 4 3 1 0.5 2 4 0.03
g5 3 4 4 4 4 2 1 2 4 0.03
g6 0.5 2 2 4 2 0.5 0.5 1 4 0.03
g7 0.25 0.25 0.25 2 0.25 0.25 0.25 0.25 1 0.03
g8 40 40 40 40 40 40 40 40 40 1

tively. Finally, the obtained coefficients for the treatment model are reported in the

sixth column. Please note that in the cases where we consider a subset of objective

functions instead of all of them, a similar pair-wise matrix as shown in Table 2 is used

for calculating the coefficients. The only difference is that we first remove the column

and rows related to the objective that are not considered, and we then perform the

calculations on the obtained smaller matrix.

Table 3: Objective function coefficients

Integrated Consultation TreatmentModel Real CT TC
g1(x) 3 4 - - 3
g1

2(y3) 2 3 2 3 -
g2

2(y3) 2 3 2 3 -
g3

2(y3) 1 1 1 1 -
g3(x) 2 3 - - 2
g4(x, y1, y2, y3) 4 - 4 5 4
g5(x) 6 - 6 - 5
g6(x) 3 4 - - 2
g7(x) 1 1 - - 1
g8(z1, z2) 76 81 85 88 83

Problem instance setting:

Table 4 summarizes the setting of problem instances in the T-set. The number of

consultation and treatment appointments that were previously booked in the initial
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schedule are shown in columns 11 and 12. Table 5 summarizes the setting of problem

instances in the S-set and D-set.

Table 4: Setting of instances in the T-set

|O| |C| |N | |D| |FP| |NP| |RP| |KC | |KT | |KCI | |KTI |
T1 3 13 5 1 3 2 35 22 18 4 6
T2 4 14 4 1 4 2 29 21 14 26 9
T3 3 9 6 2 3 1 61 53 13 44 5
T4 5 11 7 2 1 1 35 23 17 52 23
T5 5 4 4 3 6 6 59 48 28 10 4
T6 4 5 6 3 9 4 67 57 25 27 8
T7 5 5 6 4 2 3 80 65 23 60 12
T8 3 12 11 4 2 3 31 21 16 79 55
T9 3 9 11 5 2 2 70 50 31 112 37
T10 2 12 12 5 3 2 49 36 21 75 84

Table 5: Setting of instances in the S-set and D-set

WLs |FP| |NP| |RP| |K|
S-set S1 - 96 33 698 1173

D-set

D1 2 48 17 349 587
D2 4 24 8 174 293
D3 8 12 4 87 147
D4 12 8 3 58 98

E Proofs of Valid Inequalities

E.1 Proof of Proposition 1

Proof. Given r ≥ 0, we rewrite inequalities (4.15) for t′ = t − r and thus, we have

Skit′ =
{
s ∈ T |0 ≤ s ≤ t− r −

(
puo(k)i + wkd

)}
⊆ Skit. Therefore, for any t′ ≤ t, we

have:

yd(k)jt′ ≤
∑
i∈I

∑
s∈Skit′

xo(k)is ≤
∑
i∈I

∑
s∈Skit

xo(k)is, (15)
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where the second inequalities follows from Skit′ ⊆ Skit. Moreover, we know that

for any outgoing truck and a given outbound door j, at most one time slot can be

assigned. Therefore, we have:

∑
t′≤t

yd(k)jt′ ≤
∑
t∈T

yd(k)jt ≤ 1, (16)

where the first inequality follows from {t′ ∈ T |t′ ≤ t} ⊆ T . From (15) and (16),

and considering the fact that the maximum value for the left-hand-side of inequalities

(15) is one, for k ∈ K, j ∈ J , and t ∈ T , we obtain:

∑
t′≤t

yd(k)jt′ ≤
∑
i∈I

∑
s∈Skit

xo(k)is. (17)

Moreover, we know that each truck will be assigned to at most one door and one

time slot. Therefore, for each k ∈ K and t ∈ T , we have:

∑
j∈J

∑
t′≤t

yd(k)jt′ ≤
∑
j∈J

∑
t∈T

yd(k)jt = 1, (18)

where the first inequality follows from {t′ ∈ T |t′ ≤ t} ⊆ T . Combining (17) and (18),

we obtain:

∑
j∈J

∑
t′≤t

yd(k)jt′ ≤
∑
i∈I

∑
s∈Skit

xo(k)is,

and the result follows.
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E.2 Proof of Proposition 2

Proof. Using the definition of Nm, for m ∈ M, n ∈ Nm, j ∈ J , and t ∈ T , we can

rewrite inequalities (4.15) as:

ynjt ≤
∑
i∈I

∑
s∈Smnit

xmis, (19)

where, Smnit =
{
s ∈ T |0 ≤ s ≤ t−

(
pumi + wkmnd

)}
. For m ∈ M, n ∈ Nm, j ∈ J ,

and t ∈ T , using inequalities (19) and given that for each n ∈ Nm, Smnit ⊆ Smit, we

have:

ynjt ≤
∑
i∈I

∑
s∈Smnit

xmis ≤
∑
i∈I

∑
s∈Smit

xmis. (20)

Moreover, given that at any given door j and any given time slot t, at most one

truck can be scheduled, we have:

∑
n∈Nm

ynjt ≤
∑
n∈N

ynjt ≤ 1. (21)

where the first inequality follows from Nm ⊆ N . Given that the right-hand-side of

(20) does not depend on n and combining (21) and (20), for m ∈ M, j ∈ J , and

t ∈ T , the following inequalities are obtained:

∑
n∈Nm

ynjt ≤
∑
i∈I

∑
s∈Smit

xmis. (22)

According to (21), at any given door and time slot, it is not possible to schedule

more than one truck in n ∈ Nm. Moreover, it is also not possible to schedule more

than a truck in a set of periods before t that would create an overlap of two or more

trucks. This means that, if any of the trucks is scheduled to start the process at time

t ∈ T , the door will be occupied for a duration equal to the processing time of such
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truck, and thus no other truck can be scheduled during that time period. For j ∈ J

and t ∈ T , this situation can be stated as follows:

∑
n∈Nm

∑
r∈Rmjt

ynjr ≤
∑
n∈N

∑
r∈Rjt

ynjr ≤ 1, (23)

where, Rjt =
{
r ∈ T |t−minn∈N

{
plnj
}
< r ≤ t

}
and the first inequality follows from

Nm ⊆ N . Combining (22) and (23), we obtain

∑
n∈Nm

∑
r∈Rmjt

ynjr ≤
∑
i∈I

∑
s∈Smit

xmis,

and the result follows.

E.3 Proof of Proposition 3

Proof. To prove validity for inequalities (V3), we need to consider the two possible

values that variables u can take. If incoming truck o(k) is assigned to the door i, i.e.

uo(k)i = 1, inequality (V3) reduces to

∑
j∈J

∑
t′≤t

yd(k)jt′ ≤
∑
s∈Skit

xo(k)is,

which is valid and strengthens (V2) by exploiting the fact that

∑
i′∈I\{i}

∑
s∈Skit

xo(k)′ is = 0,

when uo(k)i = 1, in any feasible solution in X. If incoming truck o(k) is not assigned

to the door i, i.e. uo(k)i = 0, inequality (V3) reduces to

∑
j∈J

∑
t′≤t

yd(k)jt′ ≤
∑
s∈Skit

xo(k)is + 1,
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which is redundant and thus, valid for any feasible solution in X. Therefore, the

result follows.

Propositions 4 to 8 can be proved using similar arguments to the ones used above.

Therefore, we omit these proofs.

F Proof of Proposition 9

Proof. If we define Smin as the latest possible time at which the first incoming truck

is scheduled (at any door), we can reformulate the CDSPHT-G as follows:

(F3-G) maximize Smin

subject to (4.2)− (4.12)∑
i∈I

∑
t∈T

txmit ≥ Smin m ∈M.

(24)

We note that both F1-G and F3-G provide the same set of optimal assignments

and sequencing decisions for incoming and outgoing trucks. However, the optimal

scheduled start times will be different. In particular, any time t′ in F3-G, will corre-

spond to time t′ − Smin in F1-G. Let C∗max and S∗min be the optimal solution values

for the F1-G and F3-G, respectively, where C∗max = |T | − S∗min. To formulate the

ICDSP-DD, we reduce F3-G as follows:

(MIP-IT1) maximize Smin

subject to (4.2), (4.4), (4.10), (24)∑
t∈T

(t+ pumi)xmit ≤ DDmi m ∈M, i ∈ I,

(25)
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where DDmi denotes the due date of incoming truck m at door i and is calculated

based on a given schedule of outgoing trucks. Suppose that t∗n and d∗n represent the

start time of outgoing truck n ∈ N and the door assigned to it, respectively, in the

given outgoing trucks schedule. For each m ∈ M and i ∈ I, we have DDmi =

minn∈Nm
{
t∗n − wkmndid∗n

}
.

Consider a new coordinate system obtained by inverting the order of time periods

from zero to |T | as shown in the lower chart of Figure 4.1. The relation between

any time slot r in the original coordinate system and any time slot t′ in the inverted

coordinate system is t = |T | − t′. Therefore, Smin = |T | − C ′max. Moreover, suppose

that x′mit′ is defined in the inverted system and corresponds to xmit in the original

coordinate system, i.e., x′mit′ ≡ xmit ≡ xmi(|T |−t′). Now, considering t = |T | − t′, we

can rewrite the objective function of MIP-IT1 as:

maximize Smin ≡ maximize {|T | − C ′max}

≡ |T |+ maximize − C ′max (26)

≡ |T | −minimize C ′max.

Similarly, constraints (24) can be rewritten as:

∑
i∈I

|T |−t′=|T |∑
|T |−t′=0

(|T | − t′)xmi(|T |−t′) ≥ |T | − C ′max,

which are equivalent to

∑
i∈I

t′=0∑
t′=|T |

t′xmi(|T |−t′) ≤ C ′max.

The above constraint is still stated based on the original coordinate system using

the variables defined for that system. If we rewrite it according to the inverted
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coordinate system, we have:

∑
i∈I

∑
t′∈T

t′x′mit′ ≤ C ′max m ∈M. (27)

Replacing t with |T | − t′, and rewriting constraints (4.2) in the inverted system,

they will be the same, but with the new x′mit′ variables.

In constraints (4.4), we have an interval for r which is defined asmax {0, t− pumi + 1} ≤

r ≤ t. If we replace r and t with the corresponding values, we obtain:

max {0, |T | − t′ − pumi + 1} ≤ |T | − r′ ≤ |T | − t′ ⇒

max {0, |T | − t′ − pumi + 1} − |T | ≤ −r′ ≤ −t′ ⇒

t′ ≤ r′ ≤ |T | −max {0, |T | − t′ − pumi + 1} ⇒

t′ ≤ r′ ≤ |T |+min {0,−|T |+ t′ + pumi − 1} ⇒

t′ ≤ r′ ≤ min {|T |, t′ + pumi − 1} .

Therefore, we can rewrite constraints (4.4) as:

∑
m∈M

min{|T |,t′+pumi−1}∑
r′=t′

x′mir′ ≤ 1 t′ ∈ T , i ∈ I. (28)

Using the definition of DDmi, constraints (25) can be rewritten as:

∑
t∈T

(t+ pumi)xmit ≤ t∗n − wkmndid∗n m ∈M, i ∈ I, n ∈ Nm. (29)

Moreover, by substituting t by |T |−t′ and t∗n by |T |−t′∗n , we can rewrite constraints

(29) as:

∑
t′∈T

(t′ − pumi)x′mit′ ≥ t′∗n + wkmndid∗n m ∈M, i ∈ I, n ∈ Nm. (30)
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According to Figure 4.1, variables x′mit′ that are used in constraints (27), (28), and

(30), are pointing to the completion time of the processes and not to the start times.

More precisely, x′mit′ will take value one if and only if truck m is assigned to door i

and will complete the process at time t′. However, we can rewrite these constraints

using the x′′mit′ variables instead, which are defined based on start times:

∑
i∈I

∑
t′∈T

(t′ + pumi)x
′′
mit′ ≤ C ′max m ∈M (31)

∑
m∈M

t′∑
r′=max{1,t′−pumi+1}

x′′mir′ ≤ 1 t′ ∈ T , i ∈ I (32)

∑
t′∈T

t′x′′mit′ ≥ t′′∗n + plnd∗n + wkmndid∗n m ∈M, i ∈ I, n ∈ Nm. (33)

We note that in constraints (30), t′∗n is obtained based on directly mapping of the

variables in the inverted coordinate system, and thus it points to the completion time

of truck n. When we change the variables to point to the start times in constraints

(33), this also applies for the outbound side, and so we need to update t′∗n to t′′∗n +

plnd∗n , in which t′′∗ is obtained based on start time variables. If we define RD′mi =

maxn∈Nm

{
t′′∗n + plnd∗n + wkmndid∗n

}
, we can reformulate the ICDSP-DD as:

(MIP-IT2) minimize C ′max

subject to (4.2), (4.10), (30), (31)∑
t′∈T

t′x′′mit′ ≥ RD′mi m ∈M, i ∈ I.

(34)

We recall that given the optimal solution value C∗max of F1-G, we have C∗max =

|T |−S∗min. Moreover, we also showed that S∗min = |T |−C ′∗max. Therefore, we conclude

that C∗max = C ′∗max. This means that both MIP-IT2 and F1-G with fixed outbound

side decisions, result in exactly the same optimal solution value. Comparing MIP-
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IT1 and MIP-IT2, we observe that both models are exactly the same except for a few

details. In MIP-T2, as we have modified the coordinate system, we are obtaining a

sequence of trucks that is the inverse of the original sequence. Therefore, both MIP-

T1 and MIP-T2 result in the same assignment decisions and the obtained sequencing

decisions are the same but in a reverse order. Therefore, when we solve ICDSP-DD

with MIP-IT2, we should reverse the obtained sequence to be valid for the original

problem. Using MIP-IT2, we note that we have formulated the ICDSP-DD as the

OCDSP-RD and the result follows.

G Detailed Tables of Computational Experiments

for Chapter 3

Table 6 gives the details of the comparison between MIP and CP formulations devel-

oped for the CDSPHT-G. The first column provides each instance setting. The second

column provides the best upper bounds obtained using any of these three formula-

tions. Underlined numbers correspond to the instances that none of the formulations

can solve them to optimality. For each of these formulations, three columns are pro-

vided. First column reports CPU times. Using time in this column corresponds to an

instance that cannot be solved by the formulation within the time limit. In the second

column, final optimality gaps obtained by CPLEX after the time limit are reported.

These gaps are calculated as 100×(UB−LB)/UB, where UB and LB are the bounds

provided by CPLEX. The third column represents the % deviation of the obtained

UB by each formulation with respect to the best reported bound and is calculated

by 100× (UB −Best)/Best. Whenever a formulation cannot find a feasible solution

for the problem, we have used NA in the corresponding entries of the table. At the

bottom of the table arithmetic and geometric means for each column are reported.
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Table 6: Comparison of formulations for CDSPHT-G

Instance Best F1-G F2-G CP-G
Time Gap(%) Dev(%) Time Gap(%) Dev(%) Time Gap(%) Dev(%)

8x4x25 27 0.39 0.00 0.00 0.24 0.00 0.00 0.17 0.00 0.00
8x4x35 43 0.95 0.00 0.00 1.32 0.00 0.00 2.80 0.00 0.00
8x4x50 59 192.24 0.00 0.00 41.06 0.00 0.00 12.47 0.00 0.00
8x4x75 75 7,311.81 0.00 0.00 1,537.30 0.00 0.00 164.59 0.00 0.00
9x4x25 33 0.03 0.00 0.00 0.12 0.00 0.00 0.04 0.00 0.00
9x4x35 48 0.98 0.00 0.00 0.98 0.00 0.00 0.10 0.00 0.00
9x4x50 54 167.55 0.00 0.00 210.91 0.00 0.00 45.20 0.00 0.00
9x4x75 95 time 5.26 0.00 time 12.63 0.00 747.16 0.00 0.00
10x4x25 34 0.03 0.00 0.00 0.15 0.00 0.00 0.07 0.00 0.00
10x4x35 51 37.22 0.00 0.00 13.45 0.00 0.00 16.03 0.00 0.00
10x4x50 76 time 3.95 0.00 time 6.58 0.00 347.12 0.00 0.00
10x4x75 117 time 16.95 0.85 time 16.95 0.85 31,912.00 0.00 0.00
10x5x25 35 0.24 0.00 0.00 0.19 0.00 0.00 0.06 0.00 0.00
10x5x35 44 2.52 0.00 0.00 2.43 0.00 0.00 0.66 0.00 0.00
10x5x50 69 2.44 0.00 0.00 2.74 0.00 0.00 18.62 0.00 0.00
10x5x75 95 time 10.53 0.00 time 10.53 0.00 2,522.75 0.00 0.00
11x5x25 36 26.50 0.00 0.00 4.13 0.00 0.00 26.31 0.00 0.00
11x5x35 53 67.81 0.00 0.00 1,341.62 0.00 0.00 230.03 0.00 0.00
11x5x50 74 time 2.70 0.00 time 2.70 0.00 1,849.49 0.00 0.00
11x5x75 105 time NA NA time 14.15 0.95 time 25.71 0.00
12x5x25 46 6,813.79 0.00 0.00 262.64 0.00 0.00 343.42 0.00 0.00
12x5x35 63 time 3.17 0.00 time 4.76 0.00 6,314.89 0.00 0.00
12x5x50 87 time 8.05 0.00 time 11.36 1.15 time 11.49 0.00
12x5x75 130 time NA NA time 19.08 0.77 time 26.92 0.00
12x6x25 41 1.98 0.00 0.00 0.42 0.00 0.00 0.14 0.00 0.00
12x6x35 52 time 1.92 0.00 time 9.62 0.00 time 17.31 0.00
12x6x50 76 time 6.58 0.00 time 9.21 0.00 time 21.05 0.00
12x6x75 115 time NA NA time 12.07 0.87 time 21.74 0.00
15x6x25 55 time 3.57 1.82 time 5.45 0.00 time 7.27 0.00
15x6x35 84 time 1.19 0.00 6,542.35 0.00 0.00 time 3.57 0.00
15x6x50 114 time NA NA time 18.26 0.88 time 21.93 0.00
15x6x75 NA time NA NA time NA NA NA NA NA
15x7x25 46 41.46 0.00 0.00 46.69 0.00 0.00 3.67 0.00 0.00
15x7x35 71 time 2.82 0.00 time 2.82 0.00 time 15.49 0.00
15x7x50 93 time 3.23 0.00 time 6.38 1.08 time 20.43 0.00
15x7x75 157 time NA NA time 21.66 0.00 NA NA NA
20x10x25 63 27,277.01 0.00 0.00 time 1.59 0.00 time 4.76 0.00
20x10x35 90 2,775.66 0.00 0.00 4,958.17 0.00 0.00 time 12.22 0.00
20x10x50 117 time 2.52 1.71 time 2.52 1.71 time 17.09 0.00
20x10x75 198 time 17.59 0.51 time NA NA time 35.35 0.00
50x30x25 150 time NA NA NA NA NA 53,302.80 0.00 0.00
50x30x35 203 time NA NA NA NA NA time 14.78 0.00
50x30x50 NA time NA NA NA NA NA NA NA NA
50x30x75 NA time NA NA NA NA NA NA NA NA
Arithmetic mean 50,108.95 2.65 0.14 49,432.77 4.96 0.22 37,008.10 6.93 0.00
Geometric mean 2,183.26 1.15 0.09 1,921.69 2.02 0.16 641.64 2.04 0.00
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Table 7: Comparison of formulations for CDSPHT-S

Instance F1-S CP-S
Time LB UB Gap (%) Time LB UB Gap (%)

8x4x25 0.12 27 27 0.00 0.11 27 27 0.00
8x4x35 0.68 43 43 0.00 1.13 43 43 0.00
8x4x50 6.36 59 59 0.00 8.55 59 59 0.00
8x4x75 179.27 75 75 0.00 32.18 75 75 0.00
9x4x25 0.02 33 33 0.00 0.03 33 33 0.00
9x4x35 0.16 48 48 0.00 0.14 48 48 0.00
9x4x50 7.73 54 54 0.00 11.20 54 54 0.00
9x4x75 time 84 95 11.58 234.57 95 95 0.00
10x4x25 0.03 34 34 0.00 0.04 34 34 0.00
10x4x35 2.62 51 51 0.00 7.52 51 51 0.00
10x4x50 time 75 76 1.32 54.80 76 76 0.00
10x4x75 time 101 118 14.41 time 94 117 19.66
10x5x25 0.07 35 35 0.00 0.07 35 35 0.00
10x5x35 0.41 44 44 0.00 0.15 44 44 0.00
10x5x50 0.34 69 69 0.00 1.85 69 69 0.00
10x5x75 time 83 95 12.63 127.05 95 95 0.00
11x5x25 1.59 36 36 0.00 13.55 36 36 0.00
11x5x35 7.66 53 53 0.00 61.08 53 53 0.00
11x5x50 2,504.61 74 74 0.00 153.07 74 74 0.00
11x5x75 time 93 NA NA time 97 105 7.62
12x5x25 65.28 46 46 0.00 95.00 46 46 0.00
12x5x35 time 62 63 1.59 548.04 63 63 0.00
12x5x50 time 82 88 6.82 time 76 87 12.64
12x5x75 time 111 NA NA time 109 130 16.15
12x6x25 0.21 41 41 0.00 0.20 41 41 0.00
12x6x35 426.72 52 52 0.00 time 44 52 15.38
12x6x50 time 75 78 3.85 time 68 76 10.53
12x6x75 time 106 116 8.62 time 102 115 11.30
15x6x25 2,567.22 55 55 0.00 time 48 55 12.73
15x6x35 time 83 84 1.19 time 81 84 3.57
15x6x50 time 98 116 15.52 time 86 113 23.89
15x6x75 time 127 NA NA time 123 175 29.71
15x7x25 3.58 46 46 0.00 0.21 46 46 0.00
15x7x35 time 70 71 1.41 time 63 71 11.27
15x7x50 time 90 93 3.23 time 89 93 4.30
15x7x75 time 125 NA NA time 118 155 23.87
20x10x25 224.92 63 63 0.00 time 60 63 4.76
20x10x35 24.82 90 90 0.00 time 79 90 12.22
20x10x50 time 116 119 2.52 time 97 117 17.09
20x10x75 time 161 NA NA time 128 197 35.03
50x30x25 191.61 150 150 0.00 2.49 150 150 0.00
50x30x35 time 176 NA NA time 173 194 10.82
50x30x50 time 239 NA NA time 229 286 19.93
50x30x75 time 330 NA NA time 324 439 26.20

Arithmetic mean 1,859.72 2.35 1,672.52 7.47
Geometric mean 112.05 0.88 92.58 2.59
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Table 8: Performance of the proposed BC algorithm

Instance CPLEX BC
Time UB Gap(%) Node(#) Time UB Gap(%) Node(#)

8x4x25 0.09 27 0.00 0 0.12 27 0.00 0
8x4x35 0.57 43 0.00 57 0.61 43 0.00 57
8x4x50 9.96 59 0.00 32,306 3.77 59 0.00 4,522
8x4x75 128.46 75 0.00 374,634 46.28 75 0.00 51,068
9x4x25 0.02 33 0.00 0 0.02 33 0.00 0
9x4x35 0.12 48 0.00 0 0.13 48 0.00 0
9x4x50 5.22 54 0.00 4,610 4.31 54 0.00 715
9x4x75 6,675.43 95 0.00 5,918,523 2,186.45 95 0.00 566,570
10x4x25 0.03 34 0.00 0 0.03 34 0.00 0
10x4x35 2.13 51 0.00 101 3.02 51 0.00 323
10x4x50 2,392.31 76 0.00 1,650,375 237.23 76 0.00 40,622
10x4x75 time 118 18.53 4,358,995 time 117 23.08 883,100
10x5x25 0.07 35 0.00 0 0.07 35 0.00 0
10x5x35 0.36 44 0.00 0 0.36 44 0.00 0
10x5x50 0.36 69 0.00 0 0.33 69 0.00 0
10x5x75 2,932.62 95 0.00 1,985,471 349.25 95 0.00 52,669
11x5x25 1.31 36 0.00 19 0.67 36 0.00 0
11x5x35 7.51 53 0.00 4,502 1.85 53 0.00 421
11x5x50 1,278.39 74 0.00 265,851 210.56 74 0.00 15,677
11x5x75 time NA NA 4,139,856 time 105 3.81 219,721
12x5x25 37.23 46 0.00 18,837 9.07 46 0.00 2,311
12x5x35 time 63 1.59 1,627,120 333.33 63 0.00 32,342
12x5x50 time 88 9.13 1,394,551 time 87 3.45 281,110
12x5x75 time 131 15.27 1,659,203 time 132 16.86 92,132
12x6x25 0.19 41 0.00 0 0.21 41 0.00 0
12x6x35 time 52 1.92 6,612,240 159.04 52 0.00 29,156
12x6x50 1,782.42 76 0.00 512,291 1,361.61 76 0.00 83,653
12x6x75 time NA NA 4,444,739 time 115 9.57 578,143
15x6x25 800.84 55 0.00 50,427 342.31 55 0.00 12,057
15x6x35 1,959.01 84 0.00 117,065 216.01 84 0.00 6,987
15x6x50 time 115 20.57 1,050,201 time 116 22.41 42,308
15x6x75 time NA NA 2,550,005 time NA NA 10,026
15x7x25 4.46 46 0.00 311 4.41 46 0.00 282
15x7x35 time 71 1.41 2,186,801 3,526.12 71 0.00 242,146
15x7x50 time NA NA 889,857 time 93 2.15 187,503
15x7x75 time 155 20.65 1,344,708 time 157 26.37 12,987
20x10x25 243.87 63 0.00 20,909 51.19 63 0.00 1,089
20x10x35 26.96 90 0.00 2,562 20.81 90 0.00 154
20x10x50 time 118 3.47 455,670 887.44 117 0.00 5,004
20x10x75 time NA NA 588,724 time NA NA 1,714
50x30x25 215.38 150 0.00 0 204.62 150 0.00 0
50x30x35 time NA NA NA time NA NA NA
50x30x50 time NA NA NA time NA NA NA
50x30x75 time NA NA NA time NA NA NA

Arithmetic mean 3,204 2.57 1,079,549 2,358 2.76 84,307
Geometric mean 138 0.68 10,423 74 0.63 1,328
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Table 9: Comparison of different relaxations in the approximate algorithm for the
CDSPHT-G

Instance F1-G F2-G F1-S MIP-OT
in out in out in out in out

8x4x25 3.57 3.57 0.00 0.00 3.57 3.57 3.57 3.57
8x4x35 2.33 6.67 0.00 0.00 0.00 2.27 6.98 14.89
8x4x50 11.86 9.84 1.69 0.00 0.00 0.00 8.33 6.78
8x4x75 18.42 11.84 0.00 0.00 0.00 0.00 13.16 12.00
9x4x25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9x4x35 0.00 2.04 0.00 0.00 0.00 0.00 2.04 2.04
9x4x50 15.79 7.02 0.00 0.00 0.00 0.00 15.79 17.24
9x4x75 18.75 17.35 NA 1.05 0.00 0.00 17.71 19.39
10x4x25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10x4x35 13.73 3.85 1.96 0.00 0.00 3.77 7.55 9.26
10x4x50 12.66 13.92 23.68 6.58 0.00 0.00 17.72 16.67
10x4x75 21.85 15.97 29.91 NA 24.58 24.58 21.01 21.67
10x5x25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10x5x35 17.34 0.00 0.00 0.00 0.00 0.00 4.35 4.35
10x5x50 0.00 0.00 0.00 0.00 0.00 0.00 1.43 0.00
10x5x75 17.89 14.74 22.11 7.37 0.00 0.00 16.84 16.84
11x5x25 8.11 5.41 2.70 0.00 0.00 2.70 12.82 15.00
11x5x35 5.66 3.77 1.89 0.00 0.00 0.00 5.66 7.41
11x5x50 20.51 8.97 18.92 1.35 0.00 0.00 10.26 10.26
11x5x75 21.82 14.15 NA NA 5.71 5.71 14.29 18.18
12x5x25 10.64 8.33 4.35 0.00 0.00 0.00 10.42 10.42
12x5x35 10.94 7.69 20.31 3.17 0.00 0.00 14.71 13.43
12x5x50 18.89 14.44 23.86 10.23 5.75 5.75 12.50 14.44
12x5x75 21.64 19.70 NA NA 17.42 17.42 19.23 21.64
12x6x25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12x6x35 18.52 11.32 17.31 7.69 0.00 0.00 13.21 14.81
12x6x50 12.66 12.66 24.36 10.53 0.00 0.00 11.84 15.19
12x6x75 12.07 17.09 NA 15.65 10.43 10.43 17.95 17.95
15x6x25 8.93 8.77 19.64 8.93 1.79 1.79 10.53 12.07
15x6x35 10.59 5.75 9.52 2.38 0.00 1.18 3.53 4.65
15x6x50 31.09 18.97 NA 23.48 21.05 22.41 18.26 19.66
15x6x75 39.23 30.05 NA NA NA NA 23.63 21.91
15x7x25 4.17 2.13 0.00 0.00 2.13 2.13 2.13 0.00
15x7x35 12.50 6.76 15.49 2.82 0.00 0.00 2.82 5.48
15x7x50 9.18 14.74 22.92 NA 2.15 2.15 19.39 15.96
15x7x75 32.91 22.78 NA NA 25.16 25.16 18.99 17.42
20x10x25 11.76 7.69 6.25 6.25 0.00 3.08 13.04 11.76
20x10x35 13.04 0.00 10.99 0.00 0.00 1.10 1.11 1.11
20x10x50 16.53 4.13 NA 12.50 0.00 0.00 3.36 4.17
20x10x75 30.15 28.94 NA NA NA NA 17.68 17.68
50x30x25 NA NA NA NA NA NA 0.00 0.00
50x30x35 NA NA NA NA NA NA 8.63 9.09
50x30x50 NA NA NA NA NA NA 9.66 9.66
50x30x75 NA NA NA NA NA NA 10.88 10.68

Arithmetic mean 13.39 9.53 8.96 3.64 3.15 3.56 10.07 10.56
Geometric mean 8.81 6.03 3.57 1.45 0.86 1.24 6.92 7.02

Optimal (#) 6 7 12 18 27 21 5 5
Infeasible (#) 4 4 13 11 6 6 0 0
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Table 10: Comparison of % gap of best-known solution with respect to different
relaxations

Instance Best F1-G F2-G F1-S MIP-OTLP Relax X Relax Y LP Relax X Relax Y
8x4x25 27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8x4x35 43 11.63 2.33 2.33 11.63 0.00 0.00 0.00 6.98
8x4x50 59 20.34 6.78 11.86 20.34 0.00 1.69 0.00 6.78
8x4x75 75 24.00 10.67 17.33 24.00 0.00 0.00 0.00 12.00
9x4x25 33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9x4x35 48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9x4x50 54 16.67 1.85 11.11 16.67 0.00 0.00 0.00 11.11
9x4x75 95 31.58 14.74 17.89 32.63 1.05 26.32 0.00 16.84
10x4x25 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10x4x35 51 15.69 1.96 13.73 15.69 0.00 1.96 0.00 3.92
10x4x50 76 21.05 10.53 9.21 25.00 6.58 23.68 0.00 14.47
10x4x75 117 33.33 14.53 20.51 33.33 12.82 29.91 23.93 19.66
10x5x25 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10x5x35 44 9.09 0.00 4.55 9.09 0.00 0.00 0.00 0.00
10x5x50 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10x5x75 95 28.42 14.74 17.89 29.47 7.37 22.11 0.00 16.84
11x5x25 36 13.89 2.78 5.56 13.89 0.00 0.00 0.00 5.56
11x5x35 53 5.66 3.77 5.66 5.66 0.00 1.89 0.00 5.66
11x5x50 74 18.92 4.05 16.22 18.92 1.35 18.92 0.00 5.41
11x5x75 105 32.38 13.33 18.10 32.38 23.81 32.38 5.71 14.29
12x5x25 46 15.22 4.35 8.70 15.22 0.00 4.35 0.00 6.52
12x5x35 63 19.05 4.76 9.52 19.05 3.17 19.05 0.00 7.94
12x5x50 87 22.99 11.49 16.09 22.99 9.20 22.99 5.75 11.49
12x5x75 130 29.23 18.46 19.23 33.85 25.38 33.85 16.15 19.23
12x6x25 41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12x6x35 52 17.31 9.62 15.38 17.31 7.69 17.31 0.00 11.54
12x6x50 76 21.05 9.21 9.21 22.37 10.53 22.37 0.00 11.84
12x6x75 115 24.35 15.65 11.30 27.83 15.65 27.83 10.43 16.52
15x6x25 55 18.18 5.45 7.27 18.18 7.27 18.18 0.00 7.27
15x6x35 84 9.52 2.38 9.52 9.52 2.38 9.52 0.00 2.38
15x6x50 114 28.95 17.54 28.07 28.95 22.81 28.95 21.05 17.54
15x6x75 178 38.20 28.09 38.20 38.20 38.20 38.20 32.02 21.91
15x7x25 46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15x7x35 71 15.49 2.82 11.27 15.49 2.82 15.49 0.00 2.82
15x7x50 93 17.20 12.90 4.30 20.43 3.23 20.43 2.15 15.05
15x7x75 155 32.26 21.29 31.61 32.26 30.97 32.26 25.16 17.42
20x10x25 63 4.76 4.76 4.76 4.76 4.76 4.76 0.00 4.76
20x10x35 90 11.11 0.00 11.11 10.00 0.00 10.00 0.00 1.11
20x10x50 117 13.68 0.85 13.68 12.82 10.26 12.82 0.00 1.71
20x10x75 198 30.30 28.79 29.80 32.83 32.83 32.83 24.24 17.68
50x30x25 150 NA NA NA NA NA NA NA 0.00
50x30x35 197 NA NA NA NA NA NA NA 8.63
50x30x50 290 NA NA NA NA NA NA NA 9.66
50x30x75 440 NA NA NA NA NA NA NA 10.68
Arithmetic mean 16.29 7.51 11.27 16.77 7.00 13.25 4.17 8.26
Geometric mean 9.74 4.00 6.77 9.92 2.50 5.62 0.94 4.92

Optimal (#) 8 10 8 8 18 13 30 10
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Table 11: Performance comparison between approximate algorithms and formulations
for CDSPHT-G

Instance Best
Approximate algorithm Formulations

CP-OT MIP-OT F1-G F2-G CP-G
Time Gap Dev Time Gap Dev Time Gap Dev Time Gap Dev Time Gap Dev

8x4x25 27 1 3.57 3.70 1 3.57 3.70 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
8x4x35 43 2 0.00 0.00 2 2.27 2.33 1 0.00 0.00 1 0.00 0.00 2 0.00 0.00
8x4x50 59 5 0.00 0.00 7 0.00 0.00 111 0.00 0.00 99 0.00 0.00 19 0.00 0.00
8x4x75 75 53 0.00 0.00 62 0.00 0.00 time 5.33 0.00 time 1.33 0.00 103 0.00 0.00
9x4x25 33 1 0.00 0.00 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
9x4x35 48 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00 0 0.00 0.00
9x4x50 54 5 0.00 0.00 8 0.00 0.00 121 0.00 0.00 277 0.00 0.00 56 0.00 0.00
9x4x75 95 2,233 0.00 0.00 2,395 0.00 0.00 time NA NA time 21.05 0.00 5,336 0.00 0.00
10x4x25 34 1 0.00 0.00 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
10x4x35 51 5 0.00 0.00 5 0.00 0.00 27 0.00 0.00 23 0.00 0.00 19 0.00 0.00
10x4x50 76 220 0.00 0.00 251 0.00 0.00 time 9.21 0.00 time NA NA 321 0.00 0.00
10x4x75 118 3,618 20.34 0.00 4,112 20.34 0.00 time NA NA time 25.42 0.00 time 42.37 0.00
10x5x25 35 1 0.00 0.00 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
10x5x35 44 2 0.00 0.00 2 0.00 0.00 3 0.00 0.00 3 0.00 0.00 1 0.00 0.00
10x5x50 69 4 0.00 0.00 4 0.00 0.00 3 0.00 0.00 3 0.00 0.00 17 0.00 0.00
10x5x75 95 362 0.00 0.00 388 0.00 0.00 time 20.00 0.00 time 17.89 0.00 2,750 0.00 0.00
11x5x25 36 2 0.00 0.00 3 0.00 0.00 22 0.00 0.00 5 0.00 0.00 26 0.00 0.00
11x5x35 53 4 0.00 0.00 5 0.00 0.00 502 0.00 0.00 446 0.00 0.00 216 0.00 0.00
11x5x50 74 228 0.00 0.00 263 0.00 0.00 time 8.00 1.35 time 4.05 0.00 1,901 0.00 0.00
11x5x75 105 3,622 5.71 0.00 3,885 5.71 0.00 time NA NA time 22.86 0.00 time 43.40 0.95
12x5x25 46 13 0.00 0.00 15 0.00 0.00 5,922 0.00 0.00 181 0.00 0.00 434 0.00 0.00
12x5x35 63 346 0.00 0.00 372 0.00 0.00 time 11.11 0.00 time 4.76 0.00 6,550 0.00 0.00
12x5x50 87 3,614 5.75 0.00 3,858 5.75 0.00 time NA NA time 17.05 1.15 time 11.49 0.00
12x5x75 130 3,677 17.42 1.54 4,186 16.15 0.00 time NA NA time NA NA time 27.48 0.77
12x6x25 41 2 0.00 0.00 2 0.00 0.00 2 0.00 0.00 0 0.00 0.00 1 0.00 0.00
12x6x35 52 143 0.00 0.00 147 0.00 0.00 time 11.54 0.00 time 11.54 0.00 time 17.31 0.00
12x6x50 76 1,439 0.00 0.00 1,483 0.00 0.00 time 14.10 2.63 time 11.69 1.32 time 21.05 0.00
12x6x75 115 3,663 10.43 0.00 3,926 10.43 0.00 time NA NA time 11.21 0.87 time 21.74 0.00
15x6x25 55 349 1.79 1.82 384 1.79 1.82 time 7.14 1.82 time 10.71 1.82 time 10.91 0.00
15x6x35 84 210 0.00 0.00 299 1.18 1.19 time 5.88 1.19 time 5.88 1.19 time 4.76 0.00
15x6x50 114 3,885 17.54 0.00 4,198 18.26 0.88 time NA NA time 24.79 2.63 time 27.83 0.88
15x6x75 178 7,675 21.91 0.00 4,282 21.91 0.00 time NA NA time NA NA time NA NA
15x7x25 46 12 2.13 2.17 15 2.13 2.17 9 0.00 0.00 66 0.00 0.00 3 0.00 0.00
15x7x35 71 3,657 0.00 0.00 3,753 0.00 0.00 time NA NA time 8.45 0.00 time 15.49 0.00
15x7x50 93 3,779 2.15 0.00 3,834 2.15 0.00 time NA NA time 4.26 1.08 time 20.43 0.00
15x7x75 155 4,246 17.42 0.00 4,243 17.42 0.00 time NA NA time NA NA time NA NA
20x10x25 63 448 0.00 0.00 183 0.00 0.00 time 4.69 1.59 time 3.17 0.00 time 6.25 1.59
20x10x35 90 2,798 0.00 0.00 344 0.00 0.00 time 3.30 1.11 3,318 0.00 0.00 time 13.19 1.11
20x10x50 117 2,318 0.00 0.00 1,589 0.00 0.00 time NA NA time NA NA time 18.49 1.71
20x10x75 198 10,052 17.68 0.00 4,319 17.68 0.00 time NA NA time NA NA time 35.68 0.51
Arithmetic mean 1,567 3.60 0.23 1,321 3.67 0.30 6,649 3.72 0.36 6,322 6.06 0.30 5,304 8.89 0.20
Geometric mean 102 1.06 0.12 107 1.16 0.17 506 1.47 0.23 466 2.26 0.20 315 2.47 0.14

Optimal (#) 27 25 16 17 22
Infeasible (#) 0 0 13 6 2
Best UB (#) 36 34 21 27 31
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Table 12: Impact of using ILS matheuristic on the performance of the approximate
algorithm

Instance Best
CP-OT MIP-OT

LS ILS LS ILS
Time Gap Dev Time Gap Dev Time Gap Dev Time Gap Dev

8x4x25 27 1 3.57 3.70 5 3.57 3.70 1 3.57 3.70 8 3.57 3.70
8x4x35 43 2 0.00 0.00 9 0.00 0.00 2 2.27 2.33 13 0.00 0.00
8x4x50 59 5 0.00 0.00 20 0.00 0.00 7 0.00 0.00 36 0.00 0.00
8x4x75 75 53 0.00 0.00 97 0.00 0.00 62 0.00 0.00 184 0.00 0.00
9x4x25 33 1 0.00 0.00 5 0.00 0.00 1 0.00 0.00 8 0.00 0.00
9x4x35 48 1 0.00 0.00 6 0.00 0.00 1 0.00 0.00 12 0.00 0.00
9x4x50 54 5 0.00 0.00 17 0.00 0.00 8 0.00 0.00 42 0.00 0.00
9x4x75 95 2,233 0.00 0.00 2,278 0.00 0.00 2,395 0.00 0.00 3,890 0.00 0.00
10x4x25 34 1 0.00 0.00 7 0.00 0.00 1 0.00 0.00 11 0.00 0.00
10x4x35 51 5 0.00 0.00 19 0.00 0.00 5 0.00 0.00 23 0.00 0.00
10x4x50 76 220 0.00 0.00 245 0.00 0.00 251 0.00 0.00 554 0.00 0.00
10x4x75 117 3,618 20.34 0.85 3,763 20.34 0.85 4,112 20.34 0.85 8,703 19.66 0.00
10x5x25 35 1 0.00 0.00 7 0.00 0.00 1 0.00 0.00 12 0.00 0.00
10x5x35 44 2 0.00 0.00 12 0.00 0.00 2 0.00 0.00 20 0.00 0.00
10x5x50 69 4 0.00 0.00 38 0.00 0.00 4 0.00 0.00 40 0.00 0.00
10x5x75 95 362 0.00 0.00 492 0.00 0.00 388 0.00 0.00 753 0.00 0.00
11x5x25 36 2 0.00 0.00 15 0.00 0.00 3 0.00 0.00 21 0.00 0.00
11x5x35 53 4 0.00 0.00 22 0.00 0.00 5 0.00 0.00 33 0.00 0.00
11x5x50 74 228 0.00 0.00 305 0.00 0.00 263 0.00 0.00 653 0.00 0.00
11x5x75 105 3,622 5.71 0.00 3,813 5.71 0.00 3,885 5.71 0.00 6,446 5.71 0.00
12x5x25 46 13 0.00 0.00 30 0.00 0.00 15 0.00 0.00 48 0.00 0.00
12x5x35 63 346 0.00 0.00 389 0.00 0.00 372 0.00 0.00 643 0.00 0.00
12x5x50 87 3,614 5.75 0.00 3,731 5.75 0.00 3,858 5.75 0.00 6,177 5.75 0.00
12x5x75 130 3,677 17.42 1.54 4,360 16.15 0.00 4,186 16.15 0.00 9,443 16.15 0.00
12x6x25 41 2 0.00 0.00 14 0.00 0.00 2 0.00 0.00 22 0.00 0.00
12x6x35 52 143 0.00 0.00 208 0.00 0.00 147 0.00 0.00 244 0.00 0.00
12x6x50 76 1,439 0.00 0.00 1,579 0.00 0.00 1,483 0.00 0.00 2,016 0.00 0.00
12x6x75 115 3,663 10.43 0.00 4,215 10.43 0.00 3,926 10.43 0.00 6,842 10.43 0.00
15x6x25 55 349 1.79 1.82 410 1.79 1.82 384 1.79 1.82 756 0.00 0.00
15x6x35 84 210 0.00 0.00 299 0.00 0.00 299 1.18 1.19 1,193 0.00 0.00
15x6x50 113 3,885 17.54 0.88 6,397 16.81 0.00 4,198 18.26 1.77 9,527 16.81 0.00
15x6x75 175 7,675 21.91 1.71 44,288 20.57 0.00 4,282 21.91 1.71 10,348 20.57 0.00
15x7x25 46 12 2.13 2.17 70 0.00 0.00 15 2.13 2.17 95 0.00 0.00
15x7x35 71 3,657 0.00 0.00 4,347 0.00 0.00 3,753 0.00 0.00 5,312 0.00 0.00
15x7x50 93 3,779 2.15 0.00 5,381 2.15 0.00 3,834 2.15 0.00 5,921 2.15 0.00
15x7x75 155 4,246 17.42 0.00 10,026 17.42 0.00 4,243 17.42 0.00 10,000 17.42 0.00
20x10x25 63 448 0.00 0.00 3,975 0.00 0.00 183 0.00 0.00 1,323 0.00 0.00
20x10x35 90 2,798 0.00 0.00 27,715 0.00 0.00 344 0.00 0.00 3,176 0.00 0.00
20x10x50 117 2,318 0.00 0.00 14,555 0.00 0.00 1,589 0.00 0.00 7,261 0.00 0.00
20x10x75 198 10,052 17.68 0.00 68,029 17.68 0.00 4,319 17.68 0.00 10,703 17.68 0.00
Arithmetic mean 1,567 3.60 0.32 5,280 3.46 0.16 1,321 3.67 0.39 2,813 3.40 0.09
Geometric mean 102 1.06 0.19 303 1.00 0.08 107 1.16 0.23 387 0.94 0.04

Optimal (#) 27 28 25 29
Infeasible (#) 0 0 0 0
Best UB (#) 33 37 32 39
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Table 13: Comparison of % deviation from the best bound obtained by our approxi-
mate algorithms and the metaheuristics from [59]

Instance Best
Approximate algorithms Heuristics of [59]
CP-OT MIP-OT ILS-VND GRASP-VND

LS ILS LS ILS avg max min avg max min
8x4x25 27 3.70 3.70 3.70 3.70 2.44 3.70 0.00 3.04 3.70 0.00
8x4x35 43 0.00 0.00 2.33 0.00 0.23 2.33 0.00 0.42 2.33 0.00
8x4x50 59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8x4x75 75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.33 0.00
9x4x25 33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9x4x35 48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9x4x50 54 0.00 0.00 0.00 0.00 0.85 3.70 0.00 4.48 5.56 0.00
9x4x75 95 0.00 0.00 0.00 0.00 0.02 1.05 0.00 1.60 3.16 0.00
10x4x25 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10x4x35 51 0.00 0.00 0.00 0.00 0.35 1.96 0.00 3.06 3.92 0.00
10x4x50 76 0.00 0.00 0.00 0.00 0.95 2.63 0.00 2.37 3.95 0.00
10x4x75 117 0.85 0.85 0.85 0.00 0.94 1.71 0.00 1.23 1.71 0.00
10x5x25 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10x5x35 44 0.00 0.00 0.00 0.00 2.05 4.55 0.00 4.23 4.55 0.00
10x5x50 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 1.45 0.00
10x5x75 95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11x5x25 36 0.00 0.00 0.00 0.00 2.11 2.78 0.00 2.50 2.78 0.00
11x5x35 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11x5x50 74 0.00 0.00 0.00 0.00 2.00 4.05 0.00 3.03 5.41 0.00
11x5x75 105 0.00 0.00 0.00 0.00 1.28 1.90 0.00 1.77 2.86 0.95
12x5x25 46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 2.17 0.00
12x5x35 63 0.00 0.00 0.00 0.00 1.59 3.17 0.00 3.21 4.76 1.59
12x5x50 87 0.00 0.00 0.00 0.00 1.79 3.45 1.15 2.41 3.45 1.15
12x5x75 130 1.54 0.00 0.00 0.00 1.55 3.08 0.00 2.51 3.85 0.00
12x6x25 41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.95 2.44 0.00
12x6x35 52 0.00 0.00 0.00 0.00 1.50 3.85 0.00 1.65 1.92 0.00
12x6x50 76 0.00 0.00 0.00 0.00 2.29 3.95 0.00 2.66 3.95 1.32
12x6x75 115 0.00 0.00 0.00 0.00 0.82 0.87 0.00 0.87 0.87 0.87
15x6x25 55 1.82 1.82 1.82 0.00 3.93 5.45 1.82 4.76 5.45 1.82
15x6x35 84 0.00 0.00 1.19 0.00 2.31 3.57 1.19 2.55 3.57 1.19
15x6x50 113 0.88 0.00 1.77 0.00 3.26 4.42 1.77 3.31 4.42 1.77
15x6x75 175 1.71 0.00 1.71 0.00 1.47 2.86 0.57 1.45 2.29 0.00
15x7x25 46 2.17 0.00 2.17 0.00 2.35 4.35 0.00 2.30 4.35 2.17
15x7x35 71 0.00 0.00 0.00 0.00 2.34 2.82 1.41 2.45 2.82 0.00
15x7x50 93 0.00 0.00 0.00 0.00 2.37 3.23 1.08 3.10 4.30 2.15
15x7x75 155 0.00 0.00 0.00 0.00 1.29 1.94 0.65 1.34 1.94 1.29
20x10x25 63 0.00 0.00 0.00 0.00 5.20 7.94 3.17 5.84 7.94 3.17
20x10x35 90 0.00 0.00 0.00 0.00 2.29 3.33 0.00 2.44 3.33 1.11
20x10x50 117 0.00 0.00 0.00 0.00 3.93 5.13 2.56 3.66 4.27 2.56
20x10x75 197 0.51 0.51 0.51 0.51 0.68 1.02 0.00 0.84 1.02 0.51
50x30x25 150 0.00 0.00 NA NA 0.00 0.00 0.00 0.00 0.00 0.00
50x30x35 195 1.03 0.00 NA NA 2.77 3.08 2.05 2.97 3.59 2.05
50x30x50 289 0.35 0.00 NA NA 1.37 1.73 1.04 1.42 1.73 0.69
50x30x75 440 0.00 0.00 NA NA 0.43 0.68 0.23 0.52 0.68 0.23

Arithmetic mean 0.33 0.16 0.40 0.11 1.33 2.28 0.42 1.88 2.68 0.60
Geometric mean 0.21 0.09 0.25 0.05 1.01 1.68 0.28 1.46 2.10 0.42
Best Bound (#) 34 40 31 38 12 12 31 8 8 26

Optimal Bound (#) 28 29 25 30 12 12 27 8 8 24
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