
Caught-in-Translation (CiT): Detecting Cross-level

Inconsistency Attacks in Network Functions Virtualization

Sudershan Lakshmanan Thirunavukkarasu

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Information Systems Security) at

Concordia University

Montréal, Québec, Canada

August 2020

© Sudershan Lakshmanan Thirunavukkarasu, 2020

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Sudershan Lakshmanan Thirunavukkarasu
Entitled: Caught-in-Translation (CiT): Detecting Cross-level Inconsistency

Attacks in Network Functions Virtualization
and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Mohsen Ghafouri
Chair

Dr. Olga Ormandjieva
External Examiner

Dr. Chadi Assi
Internal Examiner

Dr. Lingyu Wang
Supervisor

Dr. Mengyuan Zhang
Co-supervisor

Approved by
Chair of Department or Graduate Program Director

August, 2020
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Caught-in-Translation (CiT): Detecting Cross-level Inconsistency Attacks
in Network Functions Virtualization

Sudershan Lakshmanan Thirunavukkarasu

By providing network functions through software running on standard hardware, Net-

work Functions Virtualization (NFV) brings many benefits, such as increased agility and

flexibility with reduced costs, as well as additional security concerns. Although existing

works have examined various security issues of NFV, such as vulnerabilities in VNF soft-

ware and DoS, there has been little effort on a security issue that is intrinsic to NFV, i.e.,

as an NFV environment typically involves multiple abstraction levels, the inconsistency

that may arise between different levels can potentially be exploited for security attacks.

Existing solutions mostly focus on verification, which is after the fact and cannot prevent

irreversible damages. Further adding to the complexity, the different abstraction levels can

be managed by multiple service providers, which may render the data required for verifi-

cation inaccessible. Moreover, many existing solutions are limited to a single abstraction

level and disregard the multi-level nature of NFV.

In this work, we propose the first NFV deployment model to capture the deployment

aspects of NFV at different abstraction levels, which is essential for an in-depth study

of the inconsistencies between such levels. We then present concrete attack scenarios in

which the inconsistencies are exploited to attack the network functions in a stealthy manner.

Based on the deployment model, we study the feasibility of detecting the inconsistencies

through verification. Furthermore, by drawing an analogy between multi-level NFV events

and natural languages, we propose a Neural Machine Translation (NMT)-based detection

iii

approach, namely, Caught-in-Translation (CiT), to detect cross-level inconsistency attacks

in NFV. Specifically, we first extract event sequences from different abstraction levels of an

NFV stack. We then leverage the Long Short-Term Memory (LSTM) to translate the event

sequences from one level to another. Finally, we apply both similarity metric and Siamese

neural network to compare the translated event sequences with the actual sequences to

detect attacks. We integrate CiT into OpenStack/Tacker, and evaluate its performance using

both real and synthetic data. Experimental results show that CiT outperforms traditional

anomaly detection and provides an accurate, efficient, and robust solution for detecting

inconsistency attacks in NFV.

iv

Acknowledgments

Firstly, I would like to thank my thesis advisor, Dr. Lingyu Wang. His continuous support,

guidance and belief in my research abilities helped me the most to finish this thesis work

successfully. Whenever I reached out to him with issues related to my work, he always put

me on the right path. With his inspiring speeches, he kept me inspired, motivated and driven

towards achieving the results. I am extremely fortunate to have had him as my supervisor.

I would also like to extend my thanks to my co-supervisor, Dr. Mengyuan Zhang, for the

time and effort she has invested to help me with my research. She has always made me

think out of the box by asking the right questions. Her invaluable support and guidance

helped me throughout my research and for completing my master’s thesis.

I would also like to express my deep gratitude to the members of Audit Cloud Ready

(ARC) research group from both Concordia University and Ericsson Research Canada for

all the insightful and enthusiastic discussions that has helped me in several occasions. I

thank all other faculty members of the CIISE department. I also thank all the examining

committee members of my master thesis defence.

Finally, I would like to acknowledge the unconditional support given by my family and

friends throughout the years of my master’s study. This accomplishment would not have

been possible without them.

v

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Inconsistencies in an NFV Stack . 1

1.2 Thesis Statement . 3

1.3 Contributions . 4

1.4 Thesis Organization . 5

2 NFV Deployment Model 6

2.1 Preliminaries . 6

2.1.1 The ETSI NFV Reference Architecture 6

2.1.2 NFV Service Models . 9

2.1.3 The Cloud Architecture . 9

2.2 Motivating Example . 10

2.3 The NFV Deployment Model . 12

2.3.1 Overview . 12

2.3.2 L1: Service Orchestration Level 14

2.3.3 L2: Resource Management Level 15

vi

2.3.4 L3: Virtual Infrastructure Level 16

2.3.5 L4: Physical Infrastructure Level 17

3 Inconsistencies in NFV Stack 18

3.1 Overview . 18

3.2 Threat Model . 20

3.3 Attacks targeting the consistency property 20

3.3.1 Attacks at L2 . 20

3.3.2 Attacks at L3 . 21

3.4 Attack Scenarios . 21

3.4.1 Attack Scenario 1 . 22

3.4.2 Attack Scenario 2 . 24

3.5 Feasibility of Consistency Verification . 25

4 Detecting Cross-level Inconsistency Attacks in NFV 27

4.1 Motivating Example . 27

4.2 Key Ideas . 29

4.3 CiT Overview . 30

4.3.1 Training Phase . 31

4.3.2 Detection Phase . 31

4.4 Data Preparation and Event Embedding Generation 32

4.4.1 Data Preparation . 32

4.4.2 Event Embedding Generation . 35

4.5 Neural Machine Translation . 36

4.5.1 Background on LSTM . 36

4.5.2 Event Sequence Translation . 36

4.6 Neural Network-based Inconsistency Detection 38

vii

4.6.1 Background . 38

4.6.2 Training . 39

4.6.3 Inconsistency Detection . 40

4.6.4 Diff-based TOSCA Verifier . 42

5 Implementation and Experiments 44

5.1 Implementation of NFV Testbed . 44

5.1.1 Onboarding Network Service Descriptors 46

5.1.2 Instantiating the Network Service 46

5.1.3 NFV Testbed Components . 47

5.2 Experiments . 52

5.2.1 Implementation Details and Experimental Settings 52

5.2.2 Datasets . 54

5.2.3 Challenges in Processing the Real-World Data 55

5.2.4 Evaluation on Out-of-Vocabulary (OOV) Events 56

5.2.5 Event Embedding Model . 58

5.2.6 Inconsistency Detection Evaluation 59

5.2.7 Robustness Evaluation . 67

5.2.8 Hyperparameter Selection . 70

5.2.9 Efficiency and Scalability . 76

6 Discussion 81

6.1 Additional Use Cases . 81

6.2 Feasibility of Training . 82

6.3 Employing Attention-based Translation Mechanisms 82

6.4 Adapting to other NFV Platforms . 83

6.5 Limitations . 83

viii

7 Related Work 84

7.1 NFV Models . 84

7.2 NFV Security . 84

7.3 Anomaly Detection on Sequential Data 85

7.4 Translation-based Security Approaches 86

8 Other Contributions 87

8.1 NFVGuard: Verifying the Security of Multilevel Network Functions Virtu-

alization (NFV) Stack . 87

8.2 NFV Testbed Deployment . 88

8.2.1 Implementation Challenges . 88

9 Future Work and Conclusion 91

9.1 Future Work . 91

9.2 Conclusion . 92

Bibliography 93

ix

List of Figures

1 The ETSI NFV reference architecture [19] 8

2 The NIST cloud model [59] depicting the two-layer view of a multi-tenant

virtualized infrastructure in cloud . 10

3 An inconsistency between the NS specification and instance 11

4 The multilevel NFV deployment model 13

5 An implemented attack at L2 causing inconsistency between the path spec-

ification VNFFG1:NFP1 and its instance nfp1-chain 22

6 An illustration of the attack timeline when Alice modifies Bob’s port-chain

nfp1-chain by adding a malicious mVDU at L2 23

7 An example showing the feasibility of verifying inconsistencies based on

data extracted from different levels . 25

8 The motivating example . 27

9 CiT System Overview . 30

10 An example of causal dependencies between events in Tacker/OpenStack

services . 33

11 Example Tacker log entries and the output of data pre-processing (event

sequences and corresponding parameters) 35

12 An example of Seq2Seq translation using the LSTM Encoder-Decoder model

for an event sequence from the VNF level to the NFVI level 37

x

13 An example of training the Siamese Manhattan Network with NFV event

sequences . 40

14 An example of event-level and workflow-level inconsistency detection . . . 41

15 A real-world NFV deployment on our testbed implemented using Open-

Stack Tacker and ODL. The circled numbers indicate deployment stages:

1) Onboarding the NS Descriptors, 2) Deploying the VNFs, 3) Configuring

the VNFs and 4) Instantiating the NS . 45

16 VNF catalog in Tacker Horizon showing a list of onboarded VNFDs 48

17 VNFM module in Tacker Horizon showing a list of deployed VNFs 48

18 VNFFG catalog in Tacker Horizon showing a list of onboarded VNFFGDs . 49

19 VNFFG manager module in Tacker Horizon showing a list of deployed

VNFFGs . 49

20 OpenStack VIM . 50

21 OpenStack system overview . 50

22 OpenStack system defaults . 51

23 A list of all the OpenStack services in the NFV testbed 51

24 OpenFlow Rules corresponding to the deployed VNFFGs 52

25 (a) The growth of vocabulary size, and (b) the proportion of unseen event

types . 57

26 Visualization of NFV events with t-SNE 58

27 The ROC evaluation results of CiTs based on D1 60

28 The ROC evaluation results of CiTs based on D2 61

29 The ROC evaluation results of CiTs based on D3 61

30 The ROC evaluation results of CiTs based on D4 62

31 The ROC evaluation results of CiTs based on D5 62

32 The ROC evaluation results of CiTs based on D6 63

xi

33 The ROC evaluation results of CiTs based on D7 63

34 The ROC evaluation results of CiTs based on D8 63

35 The ROC evaluation results of CiTs based on D9 64

36 The ROC evaluation results of CiTs based on D10 64

37 The ROC evaluation results of CiT based on the datasets D1 66

38 The ROC evaluation results of CiT based on the datasets D2 66

39 The ROC evaluation results of CiT based on the datasets D7 66

40 The ROC evaluation results of CiT based on the datasets D9 67

41 The ROC evaluation results of CiT based on D10 tested on D9 68

42 The impact of number of epochs on CiT - AUC vs. # of epochs 71

43 The impact of number of epochs on CiT - Loss vs. # of epochs 71

44 The impact of number of epochs on CiT - Accuracy vs # of Epoch 72

45 The impact of number of epochs on CiT - Precision vs # of Epoch 72

46 The impact of number of epochs on CiT - Recall vs # of Epoch 72

47 Evaluation of data separation ratio - AUC 73

48 Evaluation of data separation ratio - Loss 73

49 Evaluation of data separation ratio - Training Time 74

50 CiT efficiency study: Training Time. The results are obtained based on

LSTM with Em = 256 and U = 250. 77

51 CiT efficiency study: Time vs. Training Pairs. The results are obtained

based on LSTM with Em = 256 and U = 250. 77

52 CiT efficiency study: Hidden Unit Type. The results are obtained based on

LSTM with Em = 256 and U = 250. 78

53 CiT efficiency study: Event Embedding Dimension; The top sub-figure

shows the results from D9 dataset, and the bottom sub-figure shows the

results from D10 dataset. 78

xii

54 CiT efficiency study: Seq. Embedding Dimension; The top sub-figure

shows the results from D9 dataset, and the bottom sub-figure shows the

results from D10 dataset. 78

55 The evaluation of testing time . 80

56 The topology view of VNFs implemented in our NFV tested from Hori-

zon [66] . 90

xiii

List of Tables

1 Main acronyms used in this thesis . 7

2 Dataset statistics (the gray shaded datasets are processed real data) 53

3 Statistics of the original real data (from May 2017 to March 2020) 53

4 Robustness evaluation of CiT: Sequence label translation for the real-world

data. (%) indicates the percentage of correctly translated labels. 69

5 Robustness evaluation of CiT. Case study on real-world bugs and denied

operations . 70

6 The evaluation of data separation based on five metrics 74

7 AUC (%) vs. event embedding dimensions (U = 256) 75

8 AUC (%) vs. event sequences embedding dimensions (Em = 250) 75

9 AUC (%) vs. network hidden unit types (U = 256/Em = 250) 76

xiv

Chapter 1

Introduction

Network Functions Virtualization (NFV) has emerged as one of the main technology pillars

of 5G networks [35, 112]; for instance, 60% of network service providers will be adopting

NFV by 2021 [80] and the NFV market size is projected to grow from $12.9B in 2019 to

$36.3B by 2024 [34]. The main benefit of NFV comes from its power in decoupling the

network functions, such as firewall or intrusion detection, from dedicated and proprietary

hardware appliances. By providing network functions through software-based Virtual Net-

work Functions (VNFs) running on top of standard hardware infrastructures, NFV makes

it possible for providers to deploy dynamic, agile, scalable, and cost-efficient network ser-

vices.

1.1 Inconsistencies in an NFV Stack

Despite such advantages, the increased complexity of an NFV stack means the attack sur-

face of NFV environments will be significantly larger than that of traditional networks,

leading to novel security vulnerabilities and threats [30]. Existing works [26, 41, 83, 110]

have addressed various security threats in NFV (e.g., vulnerabilities in VNFs, vulnerabili-

ties due to orchestration and management complexities, and vulnerabilities resulting from

1

the lack of interoperability) and proposed corresponding solutions (e.g., hypervisor intro-

spection, secure zoning, and image signing).

However, a security issue that is intrinsic to NFV has received little attention, i.e., as

NFV environments typically involve several levels of abstraction, the inconsistency be-

tween those levels may arise due to the lack of proper synchronization between man-

agement and orchestration components, which can be exploited by malicious adversaries

for security attacks. Although the inconsistency threats have been investigated in other

contexts such as cloud and SDN [46], [109], it has only received limited attention in

NFV [23, 82, 83, 94] and there lacks an in-depth study about how such inconsistencies

may be instantiated and exploited based on concrete deployment of NFV, and how such

inconsistencies may be modeled and identified based on existing data in NFV. Addition-

ally, such attacks may cause severe security concerns, such as unauthorized modifica-

tions of Service Function Chains (SFCs), network eavesdropping, and DDoS, as evidenced

by real-world vulnerabilities (e.g., [56–58, 71, 72, 74, 75]) and reported in recent studies

(e.g., [23, 24, 41, 83, 90, 94, 110]). Therefore, to ensure the secure deployment of NFV, it is

essential to detect such inconsistency attacks (in fact, our solution is able to detect many of

the above-mentioned real-world vulnerabilities, as shown later in this work).

To that end, most of the existing works (e.g., [25,27,28,47,48,50,99,102,113,114]) ver-

ify the state (e.g., configurations) of the NFV system to detect such inconsistency attacks,

which suffers from the following limitations. First, those solutions are mostly retroac-

tive in nature as they can only conduct the inconsistency verification after the fact and

with a delay (e.g., time to verify). Therefore, those solutions cannot prevent irreversible

damages (e.g., information leakage and DoS). Second, most of those approaches (e.g.,

[25, 28, 50, 102, 114]) heavily rely on the access to lower-level configurational data (e.g.,

network flow rules, flow classifiers, etc.). However, the practicality of those works could

be limited when multiple providers are involved, as accessing the required lower-level data

2

may become infeasible [98]. Finally, to the best of our knowledge, none of the existing

works considers the implication of all abstraction levels in the NFV stack, whereas most

only focus on part of the NFV stack (e.g., the physical infrastructure [47], the virtual in-

frastructure [48], or Service Function Chaining (SFC) [27, 99, 102, 113, 114]).

1.2 Thesis Statement

In this work, we observe the gap between what is needed for understanding the inconsisten-

cies (i.e., detailed information about the NFV deployment) and what is currently available

in the ETSI NFV reference architecture [17]. The observation leads us to devise a novel

NFV deployment model based on studying existing NFV deployment in open source plat-

forms. Our deployment model complements the ETSI NFV architecture with details about

all the critical components of an NFV environment, their relationships, and their levels

of abstraction. Our deployment model enables us to present concrete attack scenarios in

which the inconsistency vulnerabilities are exploited to attack NFV in a stealthy manner.

We validate our model and attacks through implementation based on a real NFV testbed,

and presenting a feasibility study on the verification solution by gathering information re-

quired for identifying the consistency.

As a solution for detecting such inconsistencies in an NFV stack, we propose a novel

approach, namely, Caught in Translation (CiT), to translate event sequences between dif-

ferent levels of an NFV stack and detect cross-level inconsistency attacks. More specifi-

cally, we first study the cross-level mapping of NFV events and generate embeddings for

both events and event sequences. Second, we devise an NMT-based technique (tested with

Long Short-Term Memory (LSTM) [32], Gated Recurrent Unit (GRU) [14], and simple

Recurrent Neural Network (RNN) [3]) to translate event sequences between different lev-

els of NFV. Finally, we apply both Siamese neural network [55] and traditional similarity

3

metric [91] to quantify the similarity between a translated event sequence and the actual

event sequence in order to detect any inconsistencies. We implement CiT and integrate it

into OpenStack/Tacker [98], a popular choice for NFV deployment on cloud management

platform. Through extensive experiments with both real and synthetic data, we demon-

strate the accuracy and efficiency of our approach. Finally, we discuss several use-cases to

demonstrate the practicality of CiT.

1.3 Contributions

In summary, the main contributions of this work are as follows:

1. To the best of our knowledge, our NFV deployment model is the first effort to capture

how NFV is deployed in the real world based on open source platforms, and we

believe such a model may see many other applications.

2. The attack scenarios demonstrate both the feasibility and the severity of inconsistency-

based security threats, which could draw more attention to this issue and provide

insights to its mitigation. Our study about the information required for identifying

inconsistencies serves as a foundation for developing security verification solutions

to detect such threats.

3. To the best of our knowledge, CiT is the first event-based approach to detect inconsis-

tency attacks in an NFV stack. In contrast to most after-the-fact approaches, CiT can

catch malicious events at runtime before such events cause any potentially irrecover-

able damages, such as the leakage of sensitive information or denial of service.

4. CiT demonstrates the potential of a translation-based detection approach. First, CiT

is shown to outperform traditional anomaly-based detection in terms of accuracy.

Second, the comparison of the three variations of CiT shows that translation can

4

significantly improve the detection accuracy. Finally, the translation capability may

have other applications in NFV, such as providing translated events at a level where

the access to actual events is prohibited (e.g., by a different provider).

5. The practicality of CiT is demonstrated through its integration into OpenStack/-

Tacker. Its accuracy and efficiency are evaluated through extensive experiments using

both real and synthetic NFV datasets, and its robustness is examined through train-

ing and testing with data collected from different systems, and capturing anomalous

events triggered by real world bugs and errors. Additionally, we discuss the extension

of CiT to other NFV platforms (e.g., OSM [78], and OPNFV [77]).

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 reviews the ETSI NFV

architecture and introduces our NFV deployment model. Chapter 3 presents the attack

scenarios and studies the feasibility of consistency verification. Chapter 4 introduces our

translation-based inconsistency detection system. Chapter 5 details the implementation and

provides the experimental results. Chapter 6 provides more discussions. Chapter 7 reviews

the related work and Chapter 8 details contributions to other projects. Chapter 9 elaborates

the future work and concludes the thesis.

5

Chapter 2

NFV Deployment Model

In this chapter, we first review the ETSI NFV architecture and explain what additional

information is needed to understand the inconsistencies through a motivating example. We

then introduce our multi-level NFV deployment model.

2.1 Preliminaries

2.1.1 The ETSI NFV Reference Architecture

ETSI [19] introduced the NFV reference architecture as represented in Figure 1, to en-

able dynamic deployment and management of VNF instances and the relations between

them [19]. Figure 1 shows the NFV reference architecture from ETSI (the callouts are not

a part of ETSI NFV architecture and will be explained in Chapter 2.2). The architecture in-

cludes three main blocks, namely, Virtual Network Functions (VNFs), NFV Infrastructure

(NFVI), and NFV Management and Orchestration (MANO). First, VNFs provide a high-

level representation of network functions. Second, NFVI represents the cloud infrastruc-

ture that provides basic compute, network and storage capabilities. Third, MANO supports

dynamically managing and orchestrating the lifecycle of physical and virtual resources,

6

which is further divided into three managerial components, Virtual Infrastructure Manager

(VIM), Virtual Network Function Manager (VNFM), and Network Function Virtualization

Orchestrator (NFVO), to complete the entire deployment process. The Operating Support

System/Business Support System (OSS/BSS) is considered as an independent module sup-

ported by MANO.

Table 1 lists the main abbreviations we use in this thesis.

Acronym Full Form Acronym Full Form
CP Connection Point PPG Port Pair Group
EMS Element Management System RNN Recurrent Neural Network
FC Flow Classifier SDN Software Defined Networking
GRU Gated Recurrent Unit SDN-C SDN Controller
LSTM Long Short-term Memory SFC Service Function Chain
MANO Management and Orchestration SVM Support Vector Machine
NFP Network Forwarding Path TFIDF Term Frequency-inverse Document Frequency
NFV Network Function Virtualization VDU Virtual Deployment Unit
NFVI Network Function Virtualization Infrastructure VIM Virtual Infrastructure Manager
NFVO Network Function Virtualization Orchestrator VM Virtual Machine
NMT Neural Machine Translation VNF Virtual Network Function
NS Network Service VNFD VNF Descriptor
NSD Network Service Descriptor VNFFG VNF Forwarding Graph
OOV Out-of-Vocabulary VNFFGD VNFFG Descriptor
OvS Open vSwitch VNFM VNF Manager

Table 1: Main acronyms used in this thesis

Virtual Infrastructure Manager

VIM manages physical resources and the virtualized pool of compute, storage and network

resources in NFVI. VIM interacts with NFVO and SDN controller to facilitate network

service orchestration and traffic steering respectively. VIM’s northbound interface facil-

itates orchestration and management module of NFV. The southbound interface interacts

with the hypervisor and network controller to implement virtualization and traffic steering

respectively.

Virtual Network Function Manager

VNFM is responsible for performing the life-cycle operations (for e.g., instantiate, scale,

notify, alert, terminate) of the VNFs.

7









  













 







 

 









  
 








 

 



 

Figure 1: The ETSI NFV reference architecture [19]

Network Function Virtualization Orchestrator

NFVO handles the complete deployment process of an NS. The two main functionalities

of NFVO are: (i) Resource Orchestration, where it orchestrates the resources under the

control of multiple VIMs and (ii) Service Orchestration, where it coordinates with multiple

VNFMs to create and manage an end-to-end NS. Hence, NFVO is often referred as “the

brain of NFV”.

Hence, MANO can be considered as the most critical block inside this architecture in

terms of its role in inducing inconsistencies. For example, if the three managerial com-

ponents are in accordance with each other for every change inside the NFV environment,

inconsistency can certainly be avoided up to a degree. However, that is not the case accord-

ing to the current implementation methodologies. Therefore, it is important to understand

the role of each managerial component before exploring the inconsistency problem.

8

2.1.2 NFV Service Models

The following NFV use cases are proposed by ETSI which corresponds to the existing

cloud service models (IaaS, PaaS and SaaS) [18].

NFV Infrastructure as a Service (NFVIaaS)

This model enables cloud service providers to lease the infrastructure from another service

provider (e.g., a Network Service Provider) to deploy their virtual NSs. Network service

provider shall be able to integrate their VNF instances running on the leased infrastructure

into an end-to-end network service instance on their own NFV infrastructure.

Virtual Network Platform as a Service (VNPaaS)

In this case, the service provider builds a generic virtual platform which is used by an

enterprise to deploy their own network services. This model allows the enterprises to have

complete administrative privileges over the network service.

Virtual Network Function as a Service (VNFaaS)

VNFaaS is in accordance with Software as a Service (SaaS) model where a VNF is a

network service provider’s application and an enterprise (end-user) becomes the consumer

of the network service. The end-user is only able to configure the VNFs without being able

to control or manage the underlying platform.

2.1.3 The Cloud Architecture

NIST defines cloud architecture into two distinct layers [59]. The Management Layer

comprises of cloud management operations (e.g., create network), which assists tenants

to manage their virtual environment. The Infrastructure Layer includes underlying imple-

mentations (e.g., VXLAN tagging, flow table management, traffic steering), which is the

9

key to implement multi-tenancy. SDN can be integrated into the cloud architecture to fur-

ther define the east-west traffic flow, which provides the basis to realize service function

chaining.















  



































  

 

 





Figure 2: The NIST cloud model [59] depicting the two-layer view of a multi-tenant virtu-
alized infrastructure in cloud

2.2 Motivating Example

To illustrate what might be missing in the ETSI NFV architecture when it comes to study-

ing the inconsistencies, Figure 3 shows a simple example of inconsistency. First, the NS

specification (top of the figure) shows that Bob has specified a virtual firewall (vFw) with

two Virtual Deployment Units (VDUs), i.e., VDU2 with pfSense for routing and fire-

walling (the rule shows that any SSH requests should be rejected), and VDU3 with Snort

for IDS. Second, the corresponding NS instance depicts the changing state of VDU2 before

and after an attack is launched by another user, Alice. By exploiting a VM hopping vul-

nerability (e.g., CVE-2015-3456 (Venom), CVE-2015-7835, and CVE-2018-10853), Alice

10

gains control of VDU2 and modifies its pfSense rule to allow SSH requests to the Web

server. Importantly, such a change made by Alice on VDU2 will not be reflected at the

higher level (in the VNF Descriptor), which leads to a stealthy attack caused by the incon-

sistency between the two levels.








































 









 
























































 

Figure 3: An inconsistency between the NS specification and instance

To model this attack using the ETSI architecture, we revisit Figure 1. As the callouts

show, the attack involves the following NFV deployment details missing in the ETSI archi-

tecture.

- The mappings between VDUs and VNFs, NS instance and VNF, NS instance and

NFVI are all absent from the ETSI architecture, e.g., the mapping between the virtual

firewall descriptor and the two VDUs is essential to understand the inconsistency in

our example.

11

- The mapping between the management and implementation layers of clouds [59] is

also missing in the ETSI model, e.g., the mapping between Bob’s VM and VDU2

allows us to link the attack step 1 and step 2.

- Other details like the traffic steering related to the dependencies between the man-

agerial components and the corresponding virtual resources are also missing.

To complement the ETSI architecture with such missing details, the next chapter de-

vises an NFV deployment model.

2.3 The NFV Deployment Model

This chapter proposes a multilevel deployment model for NFV environments. We first

provide an overview and then detail each level of the model.

2.3.1 Overview

Our NFV deployment model is based on the NFV deployment of several popular open

source platforms including Open Networking Automation Platform (ONAP) [61], Tacker [64],

OpenStack [64], and OpenDaylight [62]. We extract the operational dependencies between

managerial components (i.e., NFVO, VNFM, VIM, and SDN-C) and functional elements

(e.g., VNF, VM, SFC, and virtual switches). We separate the NFV stack into four levels

as follows. The first level is based on the common deployment aspects from both ONAP

and Tacker, i.e., NFVO and VNFM collaborate together to process descriptors and perform

high-level management of VNFs and their connectivity. The second and third levels are

based on NIST’s cloud architecture [59], i.e., the management layer for cloud management

operations and the implementation layer for underlying implementations.

Figure 4 presents our multilevel NFV deployment model (middle) with the mapping to

the ETSI NFV reference architecture (left) and our motivating example (right). Specifically,

12

   
















 



















  





 















 



  


















































   


  

  























  

Figure 4: The multilevel NFV deployment model

1. The Service Orchestration (L1) level is the entry point for NFV users to input their

intended design specifications of network services (NS). The managerial components

at this level are VNFM and NFVO, which control the onboarding of VNF, and NS

based on user specifications.

2. The Resource Management (L2) level instantiates the specifications. The managerial

component at this level is VIM, which receives requests from NFVO and deploys the

corresponding NS instance accordingly.

3. The Virtual Infrastructure (L3) level incorporates the virtual compute, storage, and

network resource pool. The SDN controller (SDN-C) plays a critical role in manag-

ing network traffic steering at this level.

13

4. Finally, the Physical Infrastructure (L4) level depicts all physical resources to com-

plete an end-to-end NFV stack.

2.3.2 L1: Service Orchestration Level

L1 includes the deployment components such as NFVO, VNFM, NSD, VNF, and EMS.

Two key NFV managerial components at L1 are NFVO and VNFM, which manage NSs in

the form of catalogs such as network service descriptor (NSD). NSD can include other de-

scriptors, such as VNF descriptors (VNFD) and VNF forwarding graph descriptors (VNF-

FGD). Descriptors provide all necessary network service specifications and implementation

information in structured templates for orchestration. For example, the traffic steering is

defined in VNFFGD; the incoming network traffic would first pass flow classifiers (FC)

before being forwarded to a specific network function path (NFP). An NFP connects VNFs

with connection points (CPs) using virtual links.

To deploy an NS instance, an NFV user specifies the descriptors as inputs for NFVO.

After NFVO validates the technical accuracy of such inputs, NFVO and VNFM inform

VIM to allocate the underlying resources to implement the NS. NFVO manages the VNFFG

(network topology), whereas VNFM with Element Management System (EMS) performs

high-level management of the individual VNFs based on users’ specifications, e.g., the

logical mapping between VDUs and VNFs. However, the implementation details at lower

levels are not reflected in VNFM. We place VNFs at the same level of VNFM because of

this operational dependency.

Example 1. Tenant Bob wants to deploy an NS with three VNFs to steer traffic to two

destinations. The right side of L1 in Figure 4 shows this NS is deployed using four de-

scriptors. The NSD for this instance is the composition of VNFFG1D, vRtrD, vFwD, and

vDPID. The lower part of this sub-figure bridges the descriptors with the implementation.

For example, vFw at this level includes the interpretation of its corresponding descriptor

14

vFwD and the instance identifiers of VDU2 and VDU3 from the lower level. This logical

mapping helps to understand the deviation between vFwD and VDU2 should any inconsis-

tencies occur. Logically, NFP1 contains the sequential order of connection points (e.g.,

CP:vRtr) to chain all three VNFs. FC1 classifies all HTTP traffic to NFP1, while FC2

sends the management traffic through NFP2.

2.3.3 L2: Resource Management Level

L2 contains virtual resources such as VDUs, subnets, SFC, network ports, etc., depicting

how the NFV virtual resources are created and managed inside the cloud environment. VIM

is directly responsible for provisioning, interconnecting and decommissioning these virtual

resources contained in an NFVI-PoP domain (an NFVI instance). VDUs at L2 follow a

many-to-one relationship with the VNFs from L1 and a one-to-one logical mapping with

the VMs from the lower level. VNFFGs from L1 are instantiated as service function chains

(SFCs; also referred to as port chains). SFC is a sequence of port pair groups, which consist

of one or more port pairs.

Once the resource allocation request is received from NFVO, VIM allocates the com-

pute, storage and network resources corresponding to the given descriptors. Then, the

virtual resources, such as VDUs, subnets, network ports, routers, service chains, are in-

stantiated to build an NS. Although VIM can be considered as a part of both L2 and L3,

the management operations are executed by cloud tenants from L2 through VIM to directly

manage the virtual resources. Hence, VIM is considered as a part of L2 in our model.

Example 2. Once VIM receives the resource creation request from NFVO, it creates the

deployment units (e.g., VDU1) as shown on L2. These VDUs are then configured based on

NSD. For example, the mapping of vFw to VDU2 and VDU3 is configured to allow HTTP

traffic and block SSH traffic. After the creation and configuration of VNFs, the network

15

paths are created as defined in VNFFGD. These function paths are implemented as port-

chains nfp1-chain and nfp2-chain with the respective flow-classifier instances fc1

and fc2. By definition, nfp1-chain is an ordered list of port-pair-groups (CPs at L1)

PPG1, PPG2 and PPG3 corresponding to the virtual instances VDU1, VDU2 and VDU3,

respectively.

2.3.4 L3: Virtual Infrastructure Level

L3 includes SDN-C and the virtual networking elements, such as virtual switches, VLANs,

VxLANs, virtual routers, flow tables, virtual bridges, and the corresponding interfaces.

SDN-C is the management element inside this level (we follow the most widely adopted

use case in the SDN usage specification [20] to place SDN controller at this level for provid-

ing network connectivity). Flow-tables form the fundamental elements for network traffic

steering. These flow-tables are populated with flow-rules, which depict the forwarding be-

havior of the SFC. Once the service chains are created, the corresponding traffic flows for

each chain are deployed in the virtual switches for traffic steering through VMs. The de-

ployment of traffic flow rules is carried out by the SDN-C; this is another reason for us to

place SDN-C at this level.

Listing 2.1: Flow-rule that forwards HTTP traffic to vRtr VNF

c o o k i e =0 x794188fe368fe901 , d u r a t i o n =1108281.174 s , t a b l e =0 , n _ p a c k e t

s =0 , n _ b y t e s =0 , p r i o r i t y =30 , t cp , i n _ p o r t =" qvo6094f47a −3 f " , nw_src=

1 9 2 . 1 6 8 . 1 0 0 . 1 1 , nw_dst = 1 9 2 . 1 6 8 . 1 0 0 . 1 0 0 / 3 2 , a c t i o n s = group : 1

Example 3. Listing 2.1 shows the flow-rule that classifies and forwards the HTTP traffic

through vRtr to the web server. table0 acts as an FC for the SFC. Each flow-rule has a

match criteria followed by the action that is to be performed for the matched traffic. In case

of nfp1-chain, simple match criteria is to select all HTTP packets originating from the

16

in_port: qvo6094f47a-3f with the nw_src as 192.168.100.11 and the destination

as 192.168.100.100/32. Then the action is to forward the matched packets to vRtr

VNF, which is denoted as group:1 referencing the VNF’s port-pair-group. The traffic

is then forwarded to group:2 (vFw) and group:3 (vDPI) before it reaches the actual

destination.

2.3.5 L4: Physical Infrastructure Level

This level includes all the physical entities (e.g., COTS servers as controller and compute

nodes, and physical network functions (PNFs)) that are involved in the NFV stack. The

actors involved at this level are typically the physical infrastructure operators or facility

managers who also represent the managerial components. The model does not include

many details at this level for the sake of clarity.

17

Chapter 3

Inconsistencies in NFV Stack

In this chapter, we first discuss inconsistencies in NFV and explore potential attacks for

exploiting the inconsistencies at different levels. We then provide two concrete attack sce-

narios to validate our multi-level NFV deployment model.

3.1 Overview

The inconsistency between the NS specification and instance as discussed in our motivating

example (Chapter 2.2) is only a special case. Despite the fact that NFVO is considered as

the “brain” of an NFV environment, the other managerial components can operate at each

level autonomously, which is referred to as the “split-brain” issue in the literature [21].

For example, VIM and SDN-C can manipulate virtual resources and virtual network freely

without going through NFVO. Such autonomous management is intentional in order to

effectively manage multiple domains in a single NFV environment (e.g., there can be mul-

tiple VIMs managing many NFVI Points of Presence (NFVI-PoP)). However, the lack of

synchronization is not intended [82], and it can lead to inconsistencies whenever the states

of functional elements managed by two different managerial components differ from each

18

other. Additionally, in order to facilitate VNFs to mimic the promiscuous mode of tradi-

tional networking devices and to route traffic, port security (i.e., packet filtering on a port)

is disabled for the VNF instances during NFV deployment by default. The downside of this

feature is that, there is no network isolation between tenants who are on the same network.

These fundamental design properties of NFV greatly facilitate the attacks that lead to sig-

nificant discrepancies in the overall system. Aftermost, the NFV client who is dependent

on the underlying levels is unaware of the contemporary functionality of his own network

service. These inconsistencies can potentially lead to unexpected behaviors or network

errors, security threats [83, 94] including some stealthy attacks as presented later in this

chapter.

Therefore, the inconsistency may potentially arise between any managerial components

and their functional elements inside an NFV environment. To that end, our multilevel

NFV deployment model provides a foundation for analyzing potential inconsistencies, as

it sufficiently captures the relationships between different levels of components in an NFV

environment. For example, the inconsistencies between the management level and the

implementation level of cloud [46] and SDN [109] could be mapped to L2 and L3, while

the inconsistencies between user specification and the actual deployment could be captured

by comparing L1 to the lower levels.

Next, we investigate potential attacks exploiting the cross-level inconsistencies based

on our deployment model shown in Figure 4 and a concrete implementation based on Open-

Stack Tacker [64] and OpenDaylight (ODL) [62] (which will be detailed in Chapter 5). We

will focus on possible attacks originated at L2 and L3, respectively, which could cause

inconsistencies with the user specifications given at L1.

19

3.2 Threat Model

We assume that the adversary can be a malicious cloud tenant, an admin operator, or an

external attacker who controls a virtual machine (e.g., via malware infection) with system

privilege. The adversary is assumed to share part of the infrastructure (e.g., compute hosts

and physical network) with the victim. We also assume that the cloud infrastructure can

have vulnerabilities that the adversaries may identify and exploit. We do not assume the

adversaries can compromise the managerial elements, and we do not assume the adversaries

can compromise SDN controllers or switches.

3.3 Attacks targeting the consistency property

This chapter explains the possible attack cases which can lead the NFV stack to an incon-

sistent state.

3.3.1 Attacks at L2

By targeting the managerial component in this level (VIM) and the other functional ele-

ments such as VDU, port-chain, security groups etc., an attacker gains a variety of oppor-

tunities to render the NFV system to an inconsistent state.

The potential attacks originated at this level could lead to the modification of VDUs,

port-chain, security groups, etc., which could all lead to an inconsistent state of the NFV

system. We discuss several possibilities to achieve such attacks in the following.

– Through VIM, a malicious cloud admin, a cloud operator colluding with an external

attacker, or a malicious cloud user exploiting a privilege escalation vulnerability will

be able to modify the functional elements of another user’s NS. Over time, OpenStack

has seen several privilege escalation and sensitive data exposure vulnerabilities, such

20

as OSSA-2016-005 and OSSA-2017-004 [68]. By exploiting such vulnerabilities, an

attacker can perform many unauthorized operations, such as updating a service chain

by including a malicious VNF, for the system to reach an inconsistent state.

– As illustrated in our motivating example, an attacker can also take over the control

of a VM through exploiting a hypervisor vulnerability and then modifying either its

configurations or the traffic flow to lead to an inconsistent state in which the attacker’s

actions at L2 are not reflected at L1 causing a stealthy attack.

3.3.2 Attacks at L3

Existing security threats in SDN, such as malware infection, topology poisoning [33], con-

trol plane saturation [95], and state manipulation attacks [107], can be employed to manip-

ulate the traffic flow in L3. We discuss some possible attacks at this level as follows.

– An attacker can send crafted packets to the SDN controller to externally trigger un-

desirable events that lead to inconsistencies. For example, by enabling/disabling

the network interfaces on a host, the attacker can trigger host-related events such as

HOST_JOIN, HOST_LEAVE, etc.

– An attacker can compromise a virtual switch and program it to modify traffic flows

to cause inconsistencies. For example, a critical vulnerability (CVE-2018-1078 [63])

in ODL can be exploited to cause uncontrolled communication between VNFs by

programming the switch to reconnect to the network upon new flow update events.

3.4 Attack Scenarios

This chapter introduces two real attack scenarios which were implemented in our NFV

testbed (introduced in Chapter 5) highlighting the feasibility of an NFV stack to be led to

an inconsistent state.

21

3.4.1 Attack Scenario 1

Using our testbed, we have implemented a concrete attack that targets the integrity of a

service function chain (SFC).







 



  

  














































Figure 5: An implemented attack at L2 causing inconsistency between the path specifica-
tion VNFFG1:NFP1 and its instance nfp1-chain

In Figure 5, Bob is a network service provider serving enterprise NFV clients who

happens to share the physical infrastructure with a malicious tenant Alice. The red dashed

line shows a compromised service chain instance, nfp1-chain, which is modified by

Alice to include a malicious VNF. However, as our test has shown, such a modification

at L2 will not be reflected at L1, leading to an inconsistent state of the NFV stack and a

22

stealthy attack allowing Alice to inspect or modify traffic passing the chain.





  

 







  

 































  

 







  

 




















 

















 









Figure 6: An illustration of the attack timeline when Alice modifies Bob’s port-chain
nfp1-chain by adding a malicious mVDU at L2

More specifically, Figure 6 shows the attack timeline. The port-chain instance (nfp1-chain)

of NFP1 consists of three port-pair-groups corresponding to the three VNFs at t−i time. Al-

ice at tk could perform the aforementioned attack to execute the neutron port-chain-update

23

command which would update nfp1-chain by adding the port-pair-group of a malicious

VNF mVDU. Upon the execution of the neutron port-chain-update command, the flow-rules

will be updated in the virtual switches for vDPI to forward the traffic further to mVDU as

opposed to the path definition in the VNFFGD element of L1. To this end, the mVDU VNF

is added as a hop in Bob’s port-chain allowing Alice to have unauthorized access to any

traffic flowing through NFP1 without being noticed.

3.4.2 Attack Scenario 2

The second concrete attack targets the flow-tables at L3 for causing inconsistencies between

L3 and the upper levels. When the network topology gets updated, the SDN controller will

install new flow-rules in the virtual switches to reflect the changes. To manipulate the

flow-tables at L3, an attacker can trigger a virtual switch reconciliation (a functionality to

ensure that switches properly reflect intended controller configurations after restarts) by

sending crafted network packets during a network topology update. This would cause the

old flow-rules to be installed instead of the new flows. Therefore, the traffic will be steered

as specified by the old flow definition contravening the topology update.

Specifically, assuming the end user (NFV Client) updates NS’s topology by changing

its VNFFG1 definition at L1 to add vDPI to NFP2, which will redirect the management

server’s traffic through vDPI for further analysis. Upon the update, the corresponding port-

chain (nfp2-chain) and flow-rules in the virtual switches must be updated at L2 and L3,

respectively. Meanwhile, an attacker triggers a SWITCH_LEAVE event by continuously

resetting TCP sessions [107] between compute1_vswitch and the controller. When

the switch reconnects, the old flow-rules are re-installed as a consequence of the node-

reconciliation vulnerability, leading the traffic of NFP2 to be forwarded to the management

server directly without passing vDPI. However, L1 and L2 are not aware of this change in

the actual traffic flow, leading the NFV system into an inconsistent state.

24

In addition to the attacks presented in this chapter, there might be many other ways

for exploiting the cross-level inconsistencies in an NFV stack (e.g., attacking the flow-

classifier component). To address this issue, we provide a feasibility study on identifying

inconsistencies through verification.

3.5 Feasibility of Consistency Verification

Security verification using formal methods [44,94,109] or graph-based approaches [38] has

seen applications in clouds and SDN, and it can also provide a viable solution for detecting

the aforementioned inconsistencies in NFV. A key challenge is to understand what data

needs to be collected from which component of an NFV stack in order to identify the

inconsistencies. Based on our multilevel deployment model, we provide some preliminary

results on the data collection to show the feasibility of verifying the consistency of NFV.

















































































 





























Figure 7: An example showing the feasibility of verifying inconsistencies based on data
extracted from different levels

Specifically, Figure 7 shows an excerpt of the data sources within each level of our

deployment model.

25

– L1: the descriptors at this level represent users’ requirements, which provide the

baseline for verifying consistency. For example, NSD defines the path specification

nfp1-chain with three VNFs (vRtr, vFw and vDPI) and the corresponding net-

work path.

– L2: the information related to VNFs and SFCs can be extracted from VIM through

several sources, such as Heat, Nova, Neutron databases, and the VDUs (e.g., VNF

configurations and logs). The order of VNFs in a chain is preserved as the order of

records in Neutron database, while the number of VNFs in a chain is corresponding to

the number of records under the same chain_id. In our example, chain_id 50adae26

contains four VNFs instead of three as defined in NSD. The inconsistency created by

mVDU could be detected by comparing those data.

– L3: flow-tables from the virtual switches contain the information related to the for-

warding behavior of NS. The highlighted flow-rule is the maliciously added flow,

which forwards the traffic to mVDU (group 4 in the rule), and also shows the incon-

sistency w.r.t. NSD.

More generally, the user-defined NS specification at L1 and the NS deployment related-

data at L2 and L3 represent the current system state and will comprise the main inputs to

verification mechanisms for detecting inconsistencies.

26

Chapter 4

Detecting Cross-level Inconsistency

Attacks in NFV

Based on the NFV deployment model introduced in Chapter 2, we present Caught-in-

Translation (CiT), an LSTM-based sequence translation system for detecting inconsistency

attacks in an NFV stack in this chapter.

4.1 Motivating Example



 
















































 


















 



















 













  











Figure 8: The motivating example

27

We present a motivating example to further highlight existing challenges in cross-level

inconsistency detection for NFV and motivate towards our solution. The left side of Fig-

ure 8 shows the simplified NFV stack of a tenant Bob, which consists of an VNF level

with three VNFs (Virtual Router, Virtual Firewall, and Virtual DPI) and a NFVI level with

their corresponding Virtual Deployment Units (VDUs). For brevity, other virtual compo-

nents, e.g., virtual machines, are omitted from the figure. Knowing that an adversary Eve

could potentially inject a malicious VDU (mVDU) into Bob’s network directly at the NFVI

level, without causing any noticeable changes to the VNF level 1, Bob is concerned with

the following question: “Is my service function chain (SFC) properly deployed at the lower

levels?”

The right side of Figure 8 demonstrates the main ideas of our approach to detect incon-

sistency attacks. Specifically, a user-level operation Create VNFFG (i.e., creating a VNF

forwarding graph) triggers two sequences of events at the VNF-level (in Tacker) and the

NFVI level (in Neutron), respectively. Our key idea is to first translate the lower (Neutron)

event sequence to the upper (Tacker) level, and then compare the translated event sequence

to the actual Tacker event sequence, such that any inconsistency, such as the one shown

in the figure (i.e., the Neutron event updateflowrules does not correspond to any Tacker

event), can be detected. However, as shown at the bottom of the figure, a challenge here is

that the same Tacker event sequence may correspond to many different Neutron event se-

quences, depending on the nature of events and the specification of the VNFs (e.g., a VNF

may require multiple VDUs, and a VNF may have the autoscaling capabilities). There-

fore, there does not exist a trivial mapping between the event sequences which would allow

translation using simple rules. We will tackle this challenge using an NMT-based approach

in the remainder of the thesis.
1For instance, by exploiting existing vulnerabilities CVE-2015-3456 [56], CVE-2015-7835 [57], or CVE-

2018-10853 [58] in a specific way [96].

28

4.2 Key Ideas

In contrast to most existing works which mainly verify NFV configurations, our first idea

is to take an event-based approach, i.e., examining and comparing events that occur at dif-

ferent levels of an NFV stack which correspond to the same user-level operation. The main

advantage of relying on events instead of configurations is that we can potentially catch

malicious events before they cause any irreversible damages. The events could be inter-

cepted and checked (e.g., similar approaches exist for cloud platforms [4, 70]) to prevent

malicious events from materializing their negative impact, e.g., injecting a malicious VNF

into a Service Function Chain (SFC) to eavesdrop traffic flowing through the chain, or

deleting legitimate VNFs from the chain to cause a denial of service. To that end, the main

challenge is to detect the fact that certain events could cause inconsistencies between NFV

configurations at different levels, before such inconsistencies are materialized. A straight-

forward solution could be to apply a standard anomaly-based detection mechanism, which

will first train a model of normal events by considering event sequences at all levels of

the NFV stack as the training data, and then utilize this model to identify any anomalous

events causing inconsistencies. However, as evidenced by our experimental results, such

an approach will be outperformed by our solution.

Our second idea is that we can draw an analogy between comparing event sequences

at different NFV levels and translating sentences between different natural languages. As

a result, we can leverage existing Neural Machine Translation (NMT) techniques designed

for the latter to detect inconsistency attacks in NFV. Specifically, inside an NFV stack,

a user-level operation, such as creating a VNF, will typically trigger an event sequence at

each lower level. The fact that those lower-level event sequences all correspond to the same

user operation means that their relationship is similar to the equivalence between sentences

written in different natural languages. Thus, by leveraging this similarity to natural lan-

guages, we would be able to “translate” event sequences from one level to another, and

29

subsequently detect any inconsistencies by comparing the translated sequence to the ac-

tual one. Even though translation-based solutions (e.g., [15, 36, 85, 93, 105, 108, 115]) have

already shown promising results in other domains (e.g., binary code similarity, network

traffic anomaly, and Android malware detection), to the best of our knowledge, this is the

first effort to apply such an idea in the context of NFV.

4.3 CiT Overview

This chapter first provides an overview of CiT, followed by the detailed methodologies of

its major components.

Figure 9: CiT System Overview

Figure 9 depicts how CiT prepares the data and trains the neural network models (train-

ing phase), and how it applies the trained models to first translate event sequences from

one level of NFV to another, and then compare the event sequences to detect inconsistency

attacks (detection phase).

30

4.3.1 Training Phase

This phase (top of Figure 9) mainly consists of the following three steps. First, CiT extracts

events from all levels of the NFV stack, constructs sequences of events per level, and gen-

erates the embeddings of those event sequences (as explained in Chapter 4.4). Second, the

NMT model [40] and the neural network similarity learning model [55] are trained based

on the embeddings (as detailed in Chapter 4.5 and Chapter 4.6, respectively). Finally, the

trained models are updated through retraining when any substantial change is made to the

NFV system (e.g., major service updates which may potentially introduce new event types).

4.3.2 Detection Phase

This phase (bottom of Figure 9) mainly consists of the following steps. First, CiT generates

embeddings for event sequences at both the evaluated level (from which inconsistency

attacks are to be detected) and the reference level (to which the evaluated level will be

compared). The next two steps will apply the trained models to translate and compare

the event sequence from the evaluated level to the reference level in order to detect any

inconsistency attacks. However, to support various use cases (see Chapter 6), CiT couples

translation and detection in three different ways as follows.

- CiTts: This variation of CiT first translates an embedded event sequence at the eval-

uated level into another embedded event sequence at the reference level, and then

compares the similarities between those two embedded event sequences using neu-

ral network similarity learning (e.g., Siamese [55]). Finally, the similarity score is

compared to a pre-defined threshold value to determine whether an attack has been

detected.

- CiTtm: This variation first performs a similar translation step as CiTts, and then com-

pares the event sequences using a traditional similarity metric (e.g., Manhattan dis-

tance [1, 91]) to detect any inconsistency.

31

- CiTs: This variation skips the translation step, and directly applies neural network

similarity learning (e.g., Siamese [55]) on the collection of embedded event se-

quences from both levels to detect any inconsistency.

Finally, the resource-level inconsistencies are detected by generating and comparing TOSCA

templates. We further elaborate on our methodology as follows.

4.4 Data Preparation and Event Embedding Generation

This chapter describes how CiT processes the raw data extracted from an NFV stack to

construct event sequences and generate the embeddings (i.e., numerical representation) of

those event sequences to support translation and detection.

4.4.1 Data Preparation

The main challenges in preparing NFV data for training are as follows.

- To build the training datasets correctly, we need to first understand the causal depen-

dencies between events at different levels of the NFV stack as well as the mapping

between event sequences across different levels.2 This is challenging due to the com-

plexity and the multi-level nature of the NFV stack.

- Raw events (either gathered from NFV service logs or intercepted at runtime using

middleware plugins) typically contain many implementation specific details (e.g.,

platform-specific APIs) and parameters (e.g., request/resource IDs). Some of the

non-essential details in such raw data, if fed directly into the training modules, could

cause the Out-of-Vocabulary (OOV) challenge [11], a well-known problem in NMT.

Therefore, the raw data must be carefully processed in order to avoid the OOV issue

2Note that such understanding is only sufficient for preparing the training data and will not be exhaustive
enough to be directly applied for actual translation.

32

Figure 10: An example of causal dependencies between events in Tacker/OpenStack ser-
vices

while preserving all the essential details (e.g., parameters) such that events belong-

ing to the same sequence can still be identified even if they arrive out of order or

interleaved.

- Unlike in NMT where models are trained once using large text corpora (e.g., Word-

Net [103] and Wiki) and there exist pre-trained models which can be reused (e.g.,

GloVe [84] or fastText [5]), we are the first to apply such techniques in the context of

NFV, and therefore, we need to build our own domain specific corpus related to NFV

events and train our models from scratch.

To overcome the first challenge, we studied NFV documentations and implementation

details at different levels of the NFV stack. We have also deployed various network func-

tions in our NFV testbed, and then collected and analyzed the logs to learn events and

their order of occurrences within and across different levels using timestamps and resource

parameters.

Example 4. Figure 10 shows an excerpt of the causal dependencies between different

33

events of various Tacker/OpenStack services, such as Tacker [98] (which is the VNFM in

Figure 4), Heat [64] (which is the service orchestration engine), Neutron [64] (which is the

network service), and Nova [64] (which is the compute service). The black labels indicate

the timestamps of the events, and the dotted lines show the link between the events at differ-

ent levels. The flow of events starts with a user-level operation (create vnf at the timestamp

18:40:47.240), followed by a sequence of events in Tacker. After the _create_stack event

in Tacker, the stack create event is triggered in Heat at the timestamp 18:40:49.649, fol-

lowed by a sequence of events in Heat. Later, as consequences of those events in Heat, the

create port, create flavor and create server events are observed in the Neutron and Nova

services, respectively. In the end, after the stack create complete event in Heat, Tacker

finally generates the _create_vfn_post event to complete the VNF creation.

To address the second challenge, our data preparation step first extracts the relevant

events from different levels and aggregates those events into sequences corresponding to

the same user-level operation based on their parameters, such as the resource ID and project

ID, and timestamps. Afterwards, it strips out the implementation specific details and pa-

rameters from the sequences to avoid the out-of-vocabulary (OOV) problem, while keeping

essential information such as the events’ names before event embedding.

Example 5. Figure 11 shows an example of Tacker log records (top) and the correspond-

ing processed sequences of events and extracted parameters (bottom). From the raw data,

all events that correspond to the same user-level operation create vnf are identified, and

classified into the following three stages to build a corresponding sequence of events: the

initialization stage (i.e., _create_vnf_pre and _make_vnf_dict), the execution/creation stage

(i.e., _create_vnf), and the confirmation stage (i.e., _create_vnf_post).

In addition, even when the event sequences are consistent between all levels, finer-

grained inconsistencies may still occur at the level of resource allocation (e.g., the im-

plemented size of the memory is less than what is specified). Thus, our data preparation

34

Figure 11: Example Tacker log entries and the output of data pre-processing (event se-
quences and corresponding parameters)

step also outputs the required parameters to generate the user-level specifications (e.g., as

TOSCA templates [60]) to further support resource-level inconsistency detection (as dis-

cussed in Chapter 4.6.4). Finally, the output of our data preparation step is an NFV data

corpus ready to be fed into the training modules (which addresses the third challenge).

4.4.2 Event Embedding Generation

After building the data corpus, CiT generates event embedding similarly as generating

word embedding [42] in NMT. The event embedding provides numerical feature vectors to

capture the contextual meaning of events in the input corpus. CiT leverages the skip-gram

model of word2vec [53] to generate event embedding, which is denoted as a multidimen-

sional vector W. Specifically, CiT performs tokenization by assigning a unique index to

each event, which is simply an integer ID(i) for this event. Then for each event i, the word

embedding model generates the ith line of W. At the end of this step, we obtain the embed-

dings of all events in our vocabulary, i.e., all distinct event types. We illustrate the results

of our event embedding model using t-SNE [45] in Chapter 5.2.5.

35

Example 6. The embedding of the event createvnf (in Figure 11) is generated using

word2vec by learning the meaning from the corpus (i.e., the input event sequences). The

embedding of this event is a fixed length (e.g., 200) array which contains digitized features,

e.g., 〈−0.794841945,−0.719301224 − 0.445498794,−0.859628499, ..., 〉. We will utilize

such embeddings in the translation step.

4.5 Neural Machine Translation

This chapter details how CiT translates embedded event sequences between different levels

of an NFV stack by leveraging neural machine translation (NMT), particularly long short-

term memory (LSTM) [32]. We first present some background on LSTM and then describe

our translation approach.

4.5.1 Background on LSTM

The long short-term memory (LSTM) [32] is an artificial recurrent neural network that sup-

ports sequence-to-sequence learning (Seq2Seq) [97], a mechanism for training machine

learning models to convert text sequences from one language (e.g., English) to another

(e.g., French) by capturing the meaning of those sentences using fixed-length embeddings.

Particularly, the LSTM Encoder-Decoder model [49] has been shown to achieve good per-

formance especially for long sequences [97]. Therefore, we adopt this Encoder-Decoder

model for translation since the NFV event sequences are relatively long.

4.5.2 Event Sequence Translation

CiT performs event sequence translation in three main steps: choosing hyperparameters,

training LSTM models, and translating event sequences using the models. First, the hyper-

parameters (i.e., learning parameters that play a major role in shaping and maximizing the

36

performance of translation model [89]) used in LSTM for natural language translation or

other domains are not necessarily applicable to our context. Therefore, CiT evaluates dif-

ferent combinations of the hyperparameters that may affect the performance and accuracy

of the models (see Chapter 5.2.8).

Second, to train the LSTM model, CiT constructs pairs of event sequences at two dif-

ferent levels that correspond to the same user-level operation. For instance, a sequence of

normal events corresponding to a specific operation (e.g., Create VNF) at the VNF level is

provided as the input to LSTM, with the corresponding normal sequence of events related

to the same operation but at the NFVI level as the reference. Similarly, we train LSTM

models for each pair of levels in the NFV stack. Finally, CiT applies the trained LSTM

models to translate event sequences from each evaluated level to the corresponding refer-

ence level in the NFV stack in order to facilitate the next step of inconsistency detection.

Figure 12: An example of Seq2Seq translation using the LSTM Encoder-Decoder model
for an event sequence from the VNF level to the NFVI level

Example 7. Figure 12 shows an example of Seq2Seq translation using a trained LSTM

37

Encoder-Decoder model. The input event sequence (INPUT) from the VNF level is trans-

lated to an output event sequence (OUTPUT) at the NFVI level. Both INPUT and OUTPUT

correspond to the same NFV user-level operation, Create VNF. More specifically, the event

embeddings of INPUT are fed into the LSTM Encoder. Each LSTM cell in the Encoder

accepts an event, i, from INPUT and produces a corresponding hidden state, hi. The last

hidden state of Encoder, hT , is the sequence embedding of INPUT and is denoted as con-

text vector (cT). The Decoder, which is initialized with an arbitrary start event, TARGET,

takes cT as input and translates the next event (e.g., creatingstack). The translated event is

then appended to both OUTPUT and TARGET. This translation process is repeated until

the Decoder generates the end-event (〈EOS〉).

4.6 Neural Network-based Inconsistency Detection

This chapter describes how CiT detects inconsistency attacks by comparing the similarities

between the translated and actual event sequences using both neural network similarity

learning (e.g., Siamese [55]) and similarity metric (e.g, Manhattan Distance [91]).

4.6.1 Background

The Siamese network [55] is a deep learning model that has been applied to find similari-

ties between two comparable inputs. Specifically, Siamese network employs two identical

deep learning models that share the same weights of parameters; where each model takes

encoded inputs and generates its semantic representation as outputs. On the other hand,

Manhattan distance [91] is a similarity metric that can be applied to evaluate the distance

of two inputs and is mainly used with high dimensional data (such as ours).

38

4.6.2 Training

To facilitate the training of Siamese networks for detection, we prepare two kinds of train-

ing datasets: (i) the sequence of events at the same level (e.g., Tacker), and (ii) the sequence

of events at two different levels (e.g., Tacker and Heat). For each pair of sequences, we also

provide a ground truth similarity score based on whether the two sequences correspond to

the same user-level operation; if so, a pair is called a consistent pair; otherwise, it is an

inconsistent pair. The training process will vary depending on which variation, i.e., CiTts,

CiTtm, or CiTs (as mentioned in Chapter 4.3) of our detection technique is involved. First,

since CiTts translates the embedded event sequence from the evaluated level to the refer-

ence level and then compares the translated result to the embedded event sequence at the

reference level, the Siamese network is trained using the first kind of dataset (i.e., event se-

quences at the same level). Second, no training is needed for CiTtm as it compares using a

similarity metric (e.g., Manhattan distance) instead of Siamese network. Third, since CiTs

directly applies Siamese network on the embedded event sequences at both the evaluated

and reference levels, the Siamese network is trained using the second kind of dataset (i.e.,

event sequences at two different levels).

Example 8. Figure 13 shows the training of the Siamese network with a pair of event

sequences S1 and S2. The sequences S1 and S2 correspond to the same user-level operation,

Create VNF, but with certain differences (highlighted). Since both event sequences are

related to the same operation, this is a consistent pair and its ground truth similarity score is

1. First, the events in S1 and S2 are embedded and fed into two LSTM models (LSTM1 and

LSTM2), respectively. The LSTM networks then generate the event sequence embedding

for S1 and S2 as hidden state vectors, hT
1 and hT

2, respectively. As shown on the top of the

figure, the similarity score is calculated as the negative exponent of the Manhattan distance

calculated using hT
1 and hT

2. The training of the Siamese network will continue until the

loss function of the trained model reaches the minimum value. The parameters involved in

39

Figure 13: An example of training the Siamese Manhattan Network with NFV event se-
quences

Siamese training is further explained in Chapter 5.2.6.

4.6.3 Inconsistency Detection

CiT detects inconsistency attacks at two different levels of granularity: event-level (i.e.,

within the execution of one user-level operation) and workflow-level (i.e., during the ex-

ecution of a sequence of user-level operations). Figure 14 demonstrates how CiT detects

both kinds of attacks as follows.

Event-Level Detection. The first scenario is based on a real-world inconsistency that oc-

curred in our NFV testbed, which is diagnosed to be related to a version mismatch between

Neutron and OvS switches. In this scenario, CiT detects an event-level inconsistency attack

(highlighted with dashed red lines in Figure 14), where there is a missing sub-sequence of

events related to a user-level operation. More specifically, when the user level operation

E3 is performed at the reference level (RL), a series of corresponding events denoted as e3

40

should be executed at the evaluated level (EL) (Step 1). However, due to the aforemen-

tioned version mismatch issue, the OvS flow rules are not updated, resulting in missing

events. To detect this inconsistency, CiT first translates e3 (EL) to the corresponding event

sequence E3
′ (RL) (Step 2). When the translation module hits the unknown part of the event

sequence e3 (missing events in our case), it will repeat the last known event, which can be

observed as the repetitive events 89 in the translated event sequence. This inconsistency

is detected by the Siamese network through comparing the translated E3
′ to the actual E3

(Step 3.1).

Figure 14: An example of event-level and workflow-level inconsistency detection

Workflow-Level Detection. In the second scenario, CiT detects a workflow-level incon-

sistency attack (highlighted with solid red lines in Figure 14), where a malicious network

component (e.g., VDU) is stealthily added at the NFVI level without leaving any trace at

the VNF level (similar to the attack described in our motivating example in Chapter 4.1).

41

In this scenario, we consider the execution of four operations (E1-E4) as a workflow. Dur-

ing Step 1, an attacker operating at the evaluated level (EL) generates an operation em that

has no corresponding operation at the reference level (RL). Note that the RL workflow

sequence contains an embedded event sequence, em (shown in red), corresponding to the

attack. In Step 2, the workflow sequence translated from EL to RL leads to the creation

of an additional event sequence (shown in red) in the translated output, with no correspon-

dence to the actual workflow. At Step 3.2, this inconsistency is detected through comparing

the event sequences of the actual workflow and the translated workflow.

4.6.4 Diff-based TOSCA Verifier

Inconsistencies may still exist after the event sequence similarity comparison as we remove

the parameter values from the raw log entries as described in Chapter 4.4. As a result,

we lose few implementation specific details, such as the technical specifications of a VNF,

applications installed inside the VNF, etc. To compensate the loss, we utilize the parameters

from service logs to generate TOSCA template that reflects the implementation details to

verify the correctness of resource allocation. TOSCA template is stored in the YAML

format that could be compared between the elements (i.e., requested resources, such as

VDUs), e.g., mem_size is an attribute that denotes the memory size of a requested VDU.

Algorithm 1: TOSCA TEMPLATE TRANSLATOR
Input: Services Logs, Tenant_ID, TOSCA Template.Default
Output: TOSCA Template.Translated

1 for log in Services Logs do
2 Tenant_ID.logs = get(Services Logs, Tenant_ID)
3 for log in Tenant_ID.logs do
4 attribute.value, element = get(log)
5 search element in TOSCA Template.Default
6 add attribute.value to TOSCA Template.element
7 return TOSCA Template.Generated

In Algorithm 1, Lines 1-2 obtain the logs that associate with the input tenant ID. The

logs belong to this tenant gets separated into element, e.g., VDU, and attribute values, e.g.,

42

mem_size = 256MB in Lines 3-4. Then the element gets identified in the input default

TOSCA template and changes the attribute values into the ones obtained in Lines 5-6.

Once all the logs are processed, a TOSCA template contains lower level details, which

will be returned. Then Algorithm 2 takes the TOSCA user template and TOSCA generated

template as inputs and generate the difference from Lines 1-3. In the end, the inconsistency

between the requested resources and deployed resources will be return to the end user.

Algorithm 2: TOSCA TEMPLATE COMPARISON
Input: TOSCA UserTemplate, TOSCA GeneratedTemplate
Output: TOSCA diff

1 d = difflib.Differ() for text1, text2 in UserTemplate, GeneratedTemplate do
2 diff = d.compare(text1, text2)
3 return newline.join(diff)

43

Chapter 5

Implementation and Experiments

5.1 Implementation of NFV Testbed

To validate our deployment model and demonstrate concrete attack scenarios, we have

implemented a real NFV testbed with a telemetry NFV network service. We use Open-

Stack [64] as the VIM, which is considered as an essential cloud management solution by

96% of the CSPs, while more than 60% of the telecom operators are already using Open-

Stack for their NFV deployments [73].

OpenStack Tacker [64], an official OpenStack project for building a generic NFVM and

NFVO based on ETSI MANO Architectural framework, is integrated to deploy and operate

virtual network services on the VIM. We adopt the most widely used TOSCA [60] defini-

tion standards for defining network service descriptors. An ODL SDN controller is imple-

mented to build an OpenFlow-enabled NFV system. In our implementation, Tacker uses

OpenStack Heat [64] for VNF lifecycle management and user-defined VNF descriptors are

uploaded to the VNFM module of Tacker through Horizon/CLI. We build our testbed on a

SuperServer 6029P-WTR equipped with Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz

and 128GB of RAM. Figure 15 illustrates the detailed implementation and depicts different

44

deployment stages as described in Chapter 2.3.

Tacker incorporates a generic driver for service function chaining, and we use the Open-

Daylight SDN controller in our OpenFlow-enabled NFV system. OpenDaylight (ODL) [62]

is an official open source project by the Linux Foundation. A survey conducted in May

2017 revealed that the project has over one billion users with OpenDaylight-based net-

works [87].











 









 













 
























Figure 15: A real-world NFV deployment on our testbed implemented using OpenStack
Tacker and ODL. The circled numbers indicate deployment stages: 1) Onboarding the NS
Descriptors, 2) Deploying the VNFs, 3) Configuring the VNFs and 4) Instantiating the NS

The network service instantiation workflow involves three deployment stages: 1) on-

boarding VNF descriptors (VNFDs) to VNF catalog and network service descriptor (NSD)

to NS catalog, 2) deploying the VNFs, 3) configuring the VNFs and 4) instantiating the

network service.

45

5.1.1 Onboarding Network Service Descriptors

User-defined VNF descriptors are uploaded to the VNFM module of Tacker through Hori-

zon/CLI. These descriptors are stored in the VNF catalog serve as VNF deployment tem-

plates. The VNFD includes technical attributes of the incorporated VDUs, such as, com-

pute specifications (memory size, number of CPUs, image, etc.), connections points (virtual

ports) and virtual links. VNFDs are validated and stored in the Tacker database for VNF

instantiation.

For instance, the system specification of vFw may include the following properties

which are used by the VIM during deployment: host: VDU2; image: pfsense-fw; flavor:

m1.small;. The descriptor could also have network function configuration information,

placement policies, monitoring tasks and auto-healing properties. For example, a firewall

policy to allow HTTP traffic to be configured in vFw as config rule: [name: ‘allow-HTTP’;

src: ‘wan’; proto: ‘http’; family: ‘ipv4’; action: ‘accept’;].

Once VNFDs are in place, a user uploads network service descriptors to the NFVO

module of OpenStack Tacker. NSDs are validated and stored in the NS catalog of NFVO.

The network service descriptors mainly contain the topology description of all the network

services to be instantiated in the form of forwarding graph definitions. Firstly, the VNFs

belong to the network service are imported in the corresponding NSD. Then the network

paths are defined by referring the connection points of the participating VNFs. The NSD

template facilitates the service function chain implementation.

5.1.2 Instantiating the Network Service

Network service instantiation involves creating the referred VNFs followed by the deploy-

ment of service function chain. Tacker uses OpenStack Heat [65] for VNF instantiation and

termination. When the ns-create request is submitted by a user, NFVO extracts the VNFDs

and converts them to heat orchestration templates (HOTs) using the heat-translator. The

46

heat templates are then passed to heat-apis to orchestrate the requested VNFs. Once the

VNFs are created, Tacker initiates the chain implementation through the sfc-driver, which

is configured to use OpenDaylight (ODL) controller for managing the virtual switches. The

SFC module gathers the network topology information from OpenStack Neutron [67] and

generates the flow-rules to be installed. The new flow-rules are transferred to ODL which

in turn updates the OpenvSwitches to route packets through VNFs.

5.1.3 NFV Testbed Components

This chapter introduces the various components in our NFV testbed corresponding to our

NFV deployment model which is introduced in Chapter 2.3.

L1 Components

Figure 16 shows the VNF catalog module of Tacker’s VNFM component where the VNFDs

are onboarded. Only the VNFDs which have passed the input validation will be listed as

available as seen in the screenshot.

The onboarded VNFDs can then be used to deploy one or more VNFs Figure 17 shows

the deployed VNFs which are in ACTIVE state. VNFS will go into ERROR state if there is

any failure in the lower level deployment. For example, if there are insufficient number of

vCPUs to create a requested VNF, the following error message will be thrown: “No valid

host was found. There are not enough hosts available”.

Similar to the VNF catalog module, Tacker comprises of a VNFFG Catalog where

the VNFFGDs are onboarded as shown in Figure 18. These VNFFGDs are then used to

deploy VNFFGs to steer traffic through the VNFs. Figure 19 shows the VNFFG Manager

component where the ACTIVE VNFFGs are listed.

47

Figure 16: VNF catalog in Tacker Horizon showing a list of onboarded VNFDs

Figure 17: VNFM module in Tacker Horizon showing a list of deployed VNFs

48

Figure 18: VNFFG catalog in Tacker Horizon showing a list of onboarded VNFFGDs

Figure 19: VNFFG manager module in Tacker Horizon showing a list of deployed VNFFGs

49

L2 Components

Figure 20 show the screenshot of NFVO component where OpenStack has been registered

as a VIM (L2 component) which provides the virtual resources to build NFV systems.

Figure 20: OpenStack VIM

Figure 21 highlights the OpenStack system overview, whereas Figure 22 gives detailed

view of all the available virtual resources. OpenStack includes a stack of compute, storage,

networking and orchestration services to manage the virtual resources in order to facilitate

network functions virtualization.

Figure 21: OpenStack system overview

50

Figure 22: OpenStack system defaults

Figure 23 lists all the OpenStack services which are deployed in our NFV testbed.

Figure 23: A list of all the OpenStack services in the NFV testbed

51

L3 Components

As we have mentioned earlier, OpenFlow rules are considered as the most significant entity

in L3, since they control the traffic which is steered through the VNFs. Figure 24 shows an

excerpt of OpenFlow rules from the virtual switches deployed in our NFV testbed.

Figure 24: OpenFlow Rules corresponding to the deployed VNFFGs

5.2 Experiments

In this chapter, we evaluate the performance of CiT in terms of accuracy, efficiency, ro-

bustness, and usability using both real data (obtained from a real cloud hosted at one of the

largest telecommunications vendors) and synthetic data (collected from our NFV testbed).

First, Chapters 5.2.1 and 5.2.2 provide the implementation details and dataset description,

respectively. Chapter 5.2.4 then examines the impact of data pre-processing on out-of-

vocabulary events. Finally, Chapters 5.2.6 through 5.2.9 study the accuracy, robustness,

hyperparameter selection, and efficiency and scalability of CiT.

5.2.1 Implementation Details and Experimental Settings

In both the translation and inconsistency detection modules of CiT, we leverage the word2vec

[53] model from Genism [88] to learn event embeddings from the corpus. The embedding

vector is then fed into the embedding layer implemented based on Keras [37]. The deep

52

Table 2: Dataset statistics (the gray shaded datasets are processed real data)

Dataset Training Validation Testing Total
Con. Incon. Total Con. Incon. Total Con. Incon. Total Con. Incon. Total

D1: Tacker-SFC 16,023 15,628 31,651 1,960 1,996 3,956 1,968 198 2,166 19,951 17,822 37,773
D2: Tacker-Heat 65,223 64,956 130,179 8,090 8,182 16,272 8,416 785 9,201 81,729 73,923 155,652
D3: Heat-Nova 84,952 77,415 162,367 10,660 9,636 20,296 10,574 972 11,546 106,186 88,023 194,209
D4: Heat-Neutron 65,343 62,258 127,601 8,119 7,831 15,950 8,092 785 8,877 8,1554 70,874 152,428
D5: Neutron-OvS 14,022 12,344 26,366 1,674 1,622 3,296 1,742 155 1,897 17,438 14,121 31,559
D6: Heat-Nova 64,423 37,542 101,965 8,073 4,673 12,746 8,080 466 8,546 80,576 42,681 123,257
D7: Heat-Neutron 76,209 39,992 116,201 9,578 4,947 14,525 9,491 503 9,994 95,278 45,442 140,720
D8: Neutron-OvS 187,635 67,036 254,671 23,574 8,260 31,834 23449 838 24,287 234,658 76,134 310,792
D9: Multilevel 56,758 54,625 111,383 7,078 6,845 13,923 7,061 686 7,747 70,897 62,156 133,053
D10: Multilevel 85,245 63,315 148,560 10,671 7,899 18,570 10,520 805 11,325 106,436 72,019 178,455

Total 715,833 495,111 1,210,944 89,477 61,891 151,368 89,393 6,193 95,586 894,703 563,195 1,457,898

Table 3: Statistics of the original real data (from May 2017 to March 2020)

Size # of services Duration Heat/node (entries) Nova/node (entries) Neutron/node (entries) OvS/node (entries) Total # of event types
47.5G 10 3 years 951,053 1,977,847 3,957,313 2,950,495,169 164

learning layer, e.g., LSTM, is implemented based on the Keras.layers library to learn the

event sequence embeddings. For comparison, we have also implemented GRU and RNN.

The implementation of the evaluation metrics, e.g., Loss and AUC, is based on scikit-

learn [92], a well-known ML library. The implementation of data preparation is based on

pandas [81], a data analysis library. All the modules of CiT are developed in Python 3.7.4.

In order to test and evaluate CiT, we have additionally implemented an NFV testbed.

OpenStack [64] is used as the VIM component, which manages the virtual infrastruc-

ture. OpenStack Tacker [98], an official OpenStack project for building generic VNFM

and NFVO based on the ETSI MANO architectural framework, is used to deploy virtual

network services on the VIM. All the experiments are performed on a SuperServer6029P-

WTR running the Ubuntu 18.04 operating system equipped with Intel(R) Xeon(R) Bronze

3104CPU @ 1.70GHz and 128GB of RAM without GPUs.

53

5.2.2 Datasets

Table 2 summarizes all the datasets used in the evaluation of CiT. In total, we obtain

26,356 unique event sequences and generate 894,703 consistent pairs (i.e., two event se-

quences corresponding to the same user-level operation) and 563,195 inconsistent pairs.

The datasets follow the dependencies of services in the NFV deployment model described

in Chapter 2.3.

Real-World Data

We have collected around three years of OpenStack logs from a real cloud hosted at a

major telecommunications vendor with hundreds of users. Table 3 shows some statistics

of the original data, which we have processed to obtain the datasets D6, D7, D8, and D10

shown in Table 2 following the approach described in Chapter 4.6.2. In doing so, we

processed 47.5G of raw data and obtained 164 event types from four different services,

i.e., Heat, Nova, Neutron, and OvS. To obtain realistic testing datasets, the inconsistent

pairs in testing datasets are generated based on real-world bug patterns (detailed in Table 5,

where the inconsistency is caused by OpenStack implementation bugs) and denied event

sequences in the real data (where the inconsistency is caused by a violation). Among all

the processed raw data, 2∼8% of the data corresponds to denied user-level operations in

different services. Therefore, we inject inconsistent pairs following the similar percentage.

We split training, validation, and testing datasets into disjoint event sequences, so we can

evaluate the ability of CiT towards handling unseen event sequences. We discuss some the

challenges encountered while extracting the event sequences from individual services and

creating pairwise event sequences in Chapter 5.2.3.

54

Data Generation in the NFV Testbed

We have implemented an NFV testbed to collect datasets from the NFV stack, including

from the Orchestration Level (L1) which is not present in our real data. In Table 2, datasets

D1 through D5, and D9 are obtained from the NFV testbed. We used Python scripts to

automatically generate TOSCA templates in order to deploy NFV entities, such as VNFs

and VNFFGs. In total we have deployed 31 types of VNFs (e.g., with auto-scaling policies,

dedicated subnet, floating IPs, etc.), and 7 variations of VNFFGs in order to create sufficient

diversity in the corresponding event sequences. We have also randomized a few important

parameters in the template description, such as 1) the number of virtual network ports per

VNF, 2) the number of deployment units per VNF, 3) the node Flavor specification for each

VDU, 4) the number of VNFs for each Network Forwarding Path (NFP), 5) the order of

VNFs for each NFP, 6) the flow-classifier criteria for each NFP, and 7) the number of NFPs

for each VNFFG.

5.2.3 Challenges in Processing the Real-World Data

We briefly describe the challenges encountered while extracting the event sequences from

individual services and forming pairwise event sequences.

Obtaining the Event Vocabularies. Real-world data contains more diverse event vocab-

ularies than the data we obtained from our testbed as it was generated by hundreds of real

users. To address this issue, we first went through the real-world data to understand the

structure of the logs for each service, e.g., heat-engine, then we developed regular expres-

sion to extract the event vocabularies. Data entries that do not yield any event were output

for further evaluation through constructing new regular expressions to extract the missing

event types. After several rounds of evaluation, we obtained a complete collection of event

vocabulary from the real-world data.

55

Generating Event Sequences. Unlike the logs from our testbed, real data contains mixed

user-level operations that require proper separation before they can be used to extract event

sequences. To address this issue, we utilized four IDs, request_id, tenant_id, domain_id,

and stack_id (stack means a group of logs that perform similar user-level operations), to

group data into each user-level operation. Then we extracted the events and combined them

based on time stamps to form an event sequence. User-level operation became the label for

this group of data.

Generating Datasets with Ground Truth. As described in Chapter 4.6.2, in the dataset

generation, two event sequences corresponding to the same user-level operation would be

assigned with the consistent label, and vice versa. Unfortunately, the user-level operation

is missing from the real data we obtained. To address this issue, we applied the model

trained based on the data collected from our testbed to predict the user-level operation for

the real data. All the predicted labels are then validated by two domain experts to ensure

the correctness of the labeling.

5.2.4 Evaluation on Out-of-Vocabulary (OOV) Events

As we apply data pre-processing to address the OOV challenge (described in Chapter 4.4),

we evaluate its impact in two aspects, i.e., the size of vocabulary (all distinct events form a

vocabulary) and the proportion of unseen vocabulary in a new corpus, shown in Figure 25a

and Figure 25b. Both experiments are performed based on the real-world data.

We count the vocabulary size in terms of the percentage of the processed corpus (data

entries). The red line (with triangle marker) and the blue line (with cycle marker) and show

the growth of vocabulary size with or without pre-processing. This experiment is conducted

based on 951,053 Heat service log entries for three years. Since pre-processing remove

non-essential implementation details and parameters, as shown in Figure 25a, when pre-

processing is not applied to the dataset, the vocabulary size grows nearly linearly (reaching

56

more than 30,000 when 100% of the corpus is used) in the percentage of the analyzed

corpus, whereas the vocabulary size stays stable when pre-processing is applied (in total

164 event types).

��� ��
 ���
��������������������������������

�

�����

�����

	����

��
��
��

��
��
��
��

�

��
��
� �������

��������������

����
��������������

(a)

�� �� 	�
� �� ��
� �� �����
���������� �������!��������!����

����

����

��
�

����

��
��

��
��

��
 ��

��
��

�!
��

��
�

"�
��

�!
��

�$
���

� �
� �

��
��

!�
��

�

#� �
��������������

#� ��!
��������������

(b)

Figure 25: (a) The growth of vocabulary size, and (b) the proportion of unseen event types

We divide our data into two parts, with each part containing one year of the data, to

investigate the number of OOV cases, i.e., unseen vocabulary, in a later year of data. We

generate vocabulary based on the data from year 2018 to 2019, and then count the per-

centage of unseen vocabulary that does not exist in the vocabulary in the data from year

2019 to 2020. As shown in Figure 25b, the unseen vocabulary drops to less than 20%

when pre-processing is applied, whereas unseen vocabulary stays at around 80% without

57

pre-processing. This result shows that the pre-processing significantly increases the cov-

erage of the vocabulary; only 20% of the data from the previous year is needed to cover

most of the event vocabulary in the latter year (while 80% would be needed without pre-

processing).

5.2.5 Event Embedding Model

Figure 26: Visualization of NFV events with t-SNE

We utilize t-SNE clustering to visualize the embeddings of different event types in our

dataset. Each token is represented as a 200-dimensional numeric vector and learned by

word2vec using the event sequences extracted from the dataset. For visualization, t-SNE

reduces the vectors to two dimensions by nearest neighbor approximation. As shown in

Figure 26, all the event types are naturally separated into multiple clusters based on their

58

corresponding NFV service (For e.g., Heat, Tacker). Since, all the events related in service-

level appear together this result shows the event embedding model learns their semantic

information from the event sequences obtained from our datasets.

5.2.6 Inconsistency Detection Evaluation

In this chapter, we evaluate the accuracy of CiT and its three variations (as described in

Chapter 4.3). First, we compare CiTs with traditional machine learning model Support

Vector Machine (SVM) [106] with the TFIDF feature set [86, 111] based on all the 10

datasets including both the real-world data and testbed data (detailed in Table 2). SVM is

known as an effective method for sequence classification in the literature [106], and TFIDF

is used to extract text features for anomaly detection and failure prediction [16]. Therefore,

we choose SVM with TFIDF feature set for comparison with our solution. Second, we

compare the three variations of CiT, i.e., CiTs, CiTtm, and CiTts in terms of accuracy.

CiTs vs. SVM

Recall that CiTs directly applies Siamese network on the embedded event sequences at two

different level for inconsistency detection. The implementation of Support Vector Machine

(SVM) model is from scikit-learn. We have evaluated the SVM model based on five kernels

in which kernel rbf performs the best followed by kernel poly, and kernel linear ranks last.

Therefore, we only present the results generated from kernel rbf with γ = 1.0 and c = 1.0,

which achieves the best AUC, as a comparison to study the discriminative power of TFIDF

features and deep learning generated features (embedding).

Model Training. In this set of experiments, training, validation and testing datasets follow

the statistics presented in Table 2. We use 10 datasets to train CiTs up to 200 epochs.

We implement early stopping [8] to avoid overfitting. We choose the loss value of the

corresponding validation dataset as the performance measure with the trigger parameter set

59

to patience=3. While training the model, loss will be monitored as it is calculated after

each epoch. If there is no improvement in the loss value for 3 epochs, the training stops.

Other hyperparameters, such as the dimensions of the event embedding and the dimension

of sequence embedding, are set to 256 and 200, respectively (a more detailed study of

hyperparameters is presented in Chapter 5.2.8).

The training dataset for the SVM model is the same training dataset as CiTs. The im-

plementation of TFIDF features is from scikit-learn, which converts raw text inputs into

a matrix of TFIDF features. In the training of this experiment, we set the dimension of

the feature sets to 300 following the literature [111]. We also evaluate the performance of

SVM model under small feature dimension (max_features = 5) and large feature dimension

(max_features = 1000). Comparing to 300 dimensional TFIDF feature sets, small feature

dimension performs worse, while large feature dimension does not show stable improve-

ments. Thus, we only show the results with SVM model that is trained and tested on TFIDF

feature sets with 300 dimensions.

Inconsistency Detection Results for CiTs. We now evaluate the accuracy of CiTs using

the corresponding testing dataset of D1 to D10 that includes real bugs and denied event

sequences.

��� ��� ���
�������������������

���

���

���

��
��

��
��

���
��

���
��

CiTs��
�����������
�����
�����
���	�

Figure 27: The ROC evaluation results of CiTs based on D1

60

��� ��� ���
�������������������

���

���

���

��
��

��
��

���
��

���
��

CiTs����
���
�����
�������
����	����

Figure 28: The ROC evaluation results of CiTs based on D2

��� ��� ���
�������������������

���

���

���

��
��

��
��

���
��

���
��

CiTs����
���
��	��
�������
���
	����

Figure 29: The ROC evaluation results of CiTs based on D3

Under the evaluation with testbed datasets, the AUC value of CiTs for inconsistency

detection increases for all the datasets from D1 (AUC = 94.06%) to D5 (AUC = 100%).

Hierarchically, datasets from the higher level services, such as, D1 (Figure 27) and D2

(Figure 28), generally consist of longer event sequences, e.g., Tacker service generates

orchestration events that could be implemented with multiple lower level services; while D3

(Figure 29) to D5 (Figure 31) consist of lower level service events which generally have less

events and shorter event sequences. Notably, OvS service has only one event, flow_mods,

to implement the requested flows from Neutron service. Thus, the inconsistency detection

is relatively easy for CiTs and SVM (both reaching ∼100%). In general, the value of AUC

61

��� ��� ���
�������������������

���

���

���

��
��

��
��

���
��

���
��

CiTs����
���
	����
�������
���
��
��

Figure 30: The ROC evaluation results of CiTs based on D4

��� ��� ���
�������������������

���

���

���

��
��
��
��
���
��
���
��

CiTs��	�
����������

����	�
���������

Figure 31: The ROC evaluation results of CiTs based on D5

increases as the complexity of the datasets decreases due to event sequences from only

lower level services.

Under the evaluation with real data, CiTs performs well with D6 (Figure 32) and D8

(Figure 34), i.e., AUC increases from 98.27% to 100%, which leads to similar conclusion

drawn from the testbed datasets. However, the inconsistency detection evaluation with D7

(Figure 33) results in only 85.21%. This is mainly because the complexity of this dataset is

sufficiently higher due to the increased diversity of network-related events in real data, i.e.,

one event sequence from Heat service could be implemented in various ways based on user

chosen templates. As we will show shortly, this result will be significantly improved with

62

��� ��� ���
�������������������

���

���

���

��
��

��
��

���
��

���
��

CiTs��
������
��	�
�����
�����
�����

Figure 32: The ROC evaluation results of CiTs based on D6

��� ��� ���
�������������������

���

���

���

��
��

��
��

���
��

���
��

CiTs����
���
�����
�������
���	�����

Figure 33: The ROC evaluation results of CiTs based on D7

��� ��� ���

������������������

���

���

���

�
��
��
��
���
��
���
��

CiTs����	����������
�������	����������

Figure 34: The ROC evaluation results of CiTs based on D8

63

��� ��� ���
�������������������

���

���

���

��
��

��
��

���
��

���
��

CiTs��
��������	��
�����
�����
���	�

Figure 35: The ROC evaluation results of CiTs based on D9

��� ��� ���
�������������������

���

���

���

��
��

��
��

���
��

���
��

CiTs����
���
���	�
�������
���	�����

Figure 36: The ROC evaluation results of CiTs based on D10

CiTts and CiTtm since translation helps to reduce the detection complexity as explained in

Chapter 5.2.6. Nonetheless, CiTs still demonstrates good inconsistency detection ability

for both the testbed and real data, with AUC = 95.72% and 97.68%, respectively. AUC is

slightly lower in the testbed dataset because the long sequences from orchestration level

(D1 and D2), which are missing in the real dataset, increase the complexity of the dataset.

Comparison with SVM. After the models of CiTs and SVM are trained, we use the same

testing datasets to evaluate both. In general, the comparison between the two models in

terms of detecting inconsistencies shows similar results across different datasets. We can

64

observe that for all datasets, the ROC curves corresponding to CiTs are closer to the left-

hand and top border than SVM models, which indicates our model generally has better

accuracy. The majority of our models yield an ROC-AUC value higher than 94%, while

SVM stays around or less than 85% for six of the 10 datasets (D1, D2, D6, D7, D9, and

D10). Comparing to SVM, the improvement of CiTs is more significant when tackling the

datasets with longer or more diversified event sequences. This observation confirms that

the embedding and deep learning algorithms are more capable of handling complicated

event sequences.

CiTs vs. CiTtm vs. CiTts

In this set of experiments, we compare the three variations of CiT to evaluate the im-

provement of accuracy (AUC) introduced by the additional translation capability of CiTtm

and CiTts. Recall that CiTts applies LSTM to translate event sequences before applying

Siamese network on the embedded event sequences at the same level for inconsistency

detection, whereas CiTtm translate event sequences but then performs inconsistency detec-

tion based on the Manhattan distance, as descried in Chapter 4.6.2. For these experiments,

we use the datasets (D1, D2, D7, and D9) for which CiTs achieves relatively lower AUC

(<96%).

The Comparison of Inconsistency Detection Results. We present the ROC curves for

the inconsistency detection based on the aforementioned four datasets for all three varia-

tions of CiT. We can observe that CiTtm, which performs inconsistency detection based on

Manhattan distance, already achieves satisfying results (AUC>94.51%). Moreover, CiTts

achieves AUC = ∼100% in three datasets (D1, D2 and D9) shown in Figure 37, 38, and

40. Notably, CiTs only achieves AUC = 85.21% in D7 (shown in Figure 39), whereas, with

the help of translation, CiTtm and CiTts achieve AUC = 94.51% and 96.03%, respectively.

These results show that the translation module can significantly improve the accuracy of

65

��� ��� ���
�������������������

���

���

���

��
��
��
��
���
��
���
��

CiTts����
���

�	
�
CiTtm����
���
	����
CiTs����
���
���	�

Figure 37: The ROC evaluation results of CiT based on the datasets D1

��� ��� ���
�������������������

���

���

���

�
��
��
��
���
��
���
��

CiTts��
���	��������
CiTtm��
���	�������
CiTs��
���	�������

Figure 38: The ROC evaluation results of CiT based on the datasets D2

��� ��	 ���
�������������������

���

��	

���

��
��
��
��
���
��
���
��

CiTts������
��
����
CiTtm������
����	��
CiTs������
��	����

Figure 39: The ROC evaluation results of CiT based on the datasets D7

66

��� ��� ���
�������������������

���

���

���

��
��
��
��
���
��
���
��

CiTts��
���������	�
CiTtm��
������
�	
�
CiTs��
��������	��

Figure 40: The ROC evaluation results of CiT based on the datasets D9

inconsistency detection. We can conclude that CiTts achieves the best results on all the

datasets, followed by CiTtm.

5.2.7 Robustness Evaluation

We conduct three case studies to evaluate CiT’s robustness.

Training and Testing with Different Systems

We apply the inconsistency detection models trained on our testbed dataset D9 to test the

real-world dataset D10. These two datasets are obtained from two very different systems,

with one implemented by ourselves for experimental purposes, and the other hosted at a

major telecommunications vendor with hundreds of real-world users. Therefore, this ex-

periment evaluates the robustness of CiT when trained and tested on different NFV systems.

Results. The experimental results presented in Figure 41 show that, even under this chal-

lenging scenario with two significantly different datasets (e.g., even the event types are

different), CiTs still achieves an acceptable AUC (=73.58%). Aligned with the observa-

tions in Chapter 5.2.6, Figure 41 shows that the extra translation step helps to improve the

67

��� ��� ���
�������������������

���

���

���

��
��
��
��
���
��
���
��

CiTts��
���������	�
CiTtm��
�����������
CiTs��
�����
�����

Figure 41: The ROC evaluation results of CiT based on D10 tested on D9

AUC to 80.03% (CiTtm) and 83.46% (CiTts), respectively. These results confirm the ro-

bustness of CiT as well as the feasibility of training CiT under a controlled environment

and then applying it to a real world NFV system.

Label Translation for Real-World Data

As highlighted in Chapter 5.2.3, our real-world data does not include the corresponding

user-level operations, which are needed as labels to form consistent and inconsistent se-

quence pairs. It is infeasible to label these manually considering that there are 8,192 unique

event sequences in total in the real-world data. Thus, we utilize the translation module of

CiT to translate the corresponding labels (user-level operations) of event sequences from

our real-world data by feeding them as testing dataset. All the translated labels are validated

by two domain experts to ensure the correctness of the labeling.

Results. The label translation results are presented in Table 4. We only show the most

commonly occurring user-level operations for each service and their corresponding accu-

racy of label translation. Our translation module is able to correctly label up to ∼94% of

the events for the Heat service followed by Nova (∼88%) and Neutron (∼75%) services.

Also, most of the events are labeled with 100% accuracy except a few. Particularly, the

68

Service (%) Event Sequence Label (%) Description

Heat (∼94)

CreateServer (100) Creating a VM
CreateStack (84) Multiple operations
CreateCinderVolume (94) Creating a Cinder Volume
DeleteServer (100) Deleting a VM
DeleteStack (89) Multiple operations

Neutron (∼75)
CreatePort (100) Creating a virtual port
CreateFloatingIP (100) Creating a floating IP
UpdateFlowRuleStatus (70) Updating OvS flow rules

Nova (∼88)
CreateServer (100) Creating a VM
OSServerExternalEvents (85) Attaching a floating IP
OSSecurityGroupRules (100) Assigning a security group

Table 4: Robustness evaluation of CiT: Sequence label translation for the real-world data.
(%) indicates the percentage of correctly translated labels.

CreateStack event sequences of Heat service achieve a success rate of ∼84%. Upon inves-

tigation, we find that the real event sequences that fall under CreateStack category include

multiple create, update and delete event types since a “stack” executes multiple operations

at once. These event sequences are not correctly labeled by the model trained based on the

testbed data, since D9 contains only create event type for the label CreateStack. Further-

more, the Neutron service achieves comparatively the lowest success rate of ∼75%. The

reason is that the event sequences labeled with UpdateFlowRuleStatus in D9 contain the

Tacker service events, which are not included in dataset D10. The overall results again

confirm the robustness of CiT in applying its trained models to a different system.

Real-World Inconsistency Detection

To investigate how CiT detects real world inconsistencies, we conduct the following exper-

iment using event sequences including both real-world bugs and denied operations found

in our real data. The sequences are evaluated using CiTs trained with consistent and incon-

sistent pairs from the same level (e.g., Heat-Heat).

Results. Table 5 summarizes the results of this case study including the detailed descrip-

tion of the bugs or denied operations and their corresponding similarity scores. As we

can observe, majority of the sequences are assigned with a lower similarity score (<0.5).

69

OpenStack Implementation Error Description Severity Sim. Score
Bug#1527658 Block Device Mapping is Invalid NA 0.0038
Sequence#1 ValueError: <name>: nics are required after microversion <Version #> NA 0.0150
Bug#1653164 CinderVolume <name> Stack <name> [id] timed out Critical 0.1791
Sequence#2 NotFound: resource with id <id> not found NA 0.2003
Sequence#3 Resource CHECK failed NA 0.2395
Bug#1517355 Conflict: Port <id> is still in use High 0.2437
Sequence#4 OverQuotaClient: Quota exceeded for resources NA 0.3367
Sequence#5 Error: Volume in use NA 0.4380
Sequence#6 Resource CREATE failed: You are not authorized to use resource_types <name> NA 0.7047
Bug#1833455 Forbidden: rule <event> is disallowed by policy Medium 0.7396
Bug#1808112 Forbidden: resources. Offline rule <event> is disallowed by policy Medium 0.7970

Table 5: Robustness evaluation of CiT. Case study on real-world bugs and denied opera-
tions

Meanwhile, three of these obtain a comparatively higher similarity score (>0.7). Our inves-

tigation shows that this is mainly due to the fact that these sequences are relatively shorter

(with less events) and the bugs do not introduce significant differences to the events. For ex-

ample, the event sequence corresponding to Bug#1808112 is creatingport createport stack-

createfailed, whereas the normal sequence is creatingport createport stackcreatecomplete,

i.e., only one event is different, and both are relatively short sequences. To overcome such a

situation, CiT can be extended with a weighted similarity score measure (e.g., [9,43]) such

that more important events, e.g., stackcreatefailed (which indicates the requested operation

has failed due to an error), will carry more weight in the calculation of the similarity score

(which is considered as a future work).

5.2.8 Hyperparameter Selection

In this chapter, we evaluate the impact of hyperparameters involved in training CiT. Specif-

ically, we first study the AUC and loss metrics in terms of the number of epochs using five

datasets (D1, D2, D7, D9, and D10). We then investigate the impact of (both event and

sequence) embedding dimensions and network hidden unit types based on the multilevel

datasets (D9 and D10) for the three CiT variations.

70

Number of Epochs

Figure 42 and Figure 43 show the results of AUC and loss metrics for translation training

on the aforementioned five datasets, respectively. We train the translation model for 200

epochs and evaluate the model after each epoch. The curves of both AUC and loss metrics

become flat after 20 epochs for 4/5 datasets (only D7 requires around 50 epochs to become

stable, as the complexity of the dataset is higher). We can also observe that the early stop

implemented in each model stops around 20 epochs. In summary, we conclude that 20

epochs could be enough to obtain a good model in CiT.

�� �� ��� ��� ���
���
�

����

����

�
�
	

�

�

�

�

��

Figure 42: The impact of number of epochs on CiT - AUC vs. # of epochs

�� �� ��� ��� ���
���
�

����

����

�
�
	

�

�

�

�

��

Figure 43: The impact of number of epochs on CiT - Loss vs. # of epochs

71

�� �� ��� ��� ���
���
�

����

����

�
�
	

�

�

�

�

��

Figure 44: The impact of number of epochs on CiT - Accuracy vs # of Epoch

�� �� ��� ��� ���
���
�

����

����

�
�
	

�

�

�

�

��

Figure 45: The impact of number of epochs on CiT - Precision vs # of Epoch

�� �� ��� ��� ���
���
�

����

����

�
�
	

�

�

�

�

��

Figure 46: The impact of number of epochs on CiT - Recall vs # of Epoch

72

The results of three other metrics, accuracy, precision, and recall, for translation training

process on five datasets (D1, D7, D2, D9, and D10). Align with the AUC and loss results

we observed in Figure 42 and Figure 43 the metrics results become stable around 20 epochs.

It also confirms that our model could be trained around 20 epochs with good performance

in all the metrics in all the tested datasets (i.e., both real-world and testbed datasets).

Data Split Ratio

� �� ��
� �� ��� ��� ��� �
� ��� ���
�����

���	

����

���	

��
�

��
	

����

�
�

�

��������������
����������������
��������������
����������������

� �� ��
��
�

��
	

Figure 47: Evaluation of data separation ratio - AUC

� �� 	� �� �� ��� ��� �	� ��� ��� ���

����

���

���

���

��	

��

���

��
��

��������������
����������������
��������������
������������	���

� �� ��
���

���

���

Figure 48: Evaluation of data separation ratio - Loss

73

�������
������ ������� �����
�

������������������������������

�

��

��

��

��

	�

�

��
�

��
��

�

����������
����������

Figure 49: Evaluation of data separation ratio - Training Time

Tr: V: Te Loss AUC Accuracy Precision Recall
0.8: 0.1: 0.1 0.108 0.975 0.994 0.811 0.801
0.6: 0.2: 0.2 0.117 0.974 0.994 0.809 0.801
0.4: 0.3: 0.3 0.121 0.969 0.994 0.801 0.792
0.2: 0.4: 0.4 0.138 0.966 0.993 0.791 0.778

Table 6: The evaluation of data separation based on five metrics

For training, we split the training, validation and testing dataset using four different split

ratios in order to analyze the best split ratio. From the results, we can also infer that the

split ratio of 60%, 20%, and 20% for training, validation, and testing datasets, respectively,

could be considered as the optimal split ratio given the training time trade-off. Table 6

presents additional accuracy metrics to further validate the accuracy depending upon the

data separation ratio.

Event Embedding Dimensions

We study the impact of event embedding dimension (Em) in two multi-level datasets for

three CiT variations. The AUC values are presented in Table 7. We observe that, as the

event embedding dimension increases, all the models yield higher AUC values. Comparing

to D9, D10 achieves better results with all three variations. Overall, we can observe that

a higher embedding dimension generally leads to higher computational costs and longer

74

training time. Considering the fact that the training is a one-time effort (until the system

undergoes major changes), users could leverage such results to choose the right trade-off

based on their requirements.

Datasets

Em D9 D10
CiTs CiTtm CiTts CiTs CiTtm CiTts

50 93.14 95.04 97.72 95.42 96.01 98.16
100 93.63 96.49 98.29 95.65 96.55 98.82
150 94.88 97.70 98.81 95.92 97.13 99.59
200 95.42 98.11 99.49 96.33 97.35 99.73
250 95.72 98.78 99.67 97.68 98.36 99.92

Table 7: AUC (%) vs. event embedding dimensions (U = 256)

Sequence Embedding Dimension

We vary the sequence embedding size in terms of the number of LSTM network units (U)

and show the corresponding AUC results in Table 8. Similar to Table 7, the AUC values

of the three variations increase with the number of sequence embedding dimensions. We

conclude that embedding dimensions, both for event embedding and sequence embedding,

contribute positively to the accuracy of the models.

Datasets

U D9 D10
CiTs CiTtm CiTts CiTs CiTtm CiTts

32 93.24 95.37 96.77 94.55 96.49 97.76
64 93.87 96.16 97.46 95.61 97.24 98.07
128 94.81 96.86 98.12 95.85 97.64 98.55
192 95.12 97.38 98.73 96.36 97.99 99.38
256 95.72 98.78 99.67 97.68 98.36 99.92

Table 8: AUC (%) vs. event sequences embedding dimensions (Em = 250)

75

Other Deep Learning Algorithms

As the last part of the hyperparameter study, we train our approaches with different deep

learning algorithms. We conduct experiments on three types of recurrent neural network

units including LSTM, Gated Recurrent Unit (GRU), and simple Recurrent Neural Network

(RNN). As shown in Table 9, LSTM outperforms both GRU and RNN, while GRU and

RNN perform similarly. Therefore, in our implementation, all the CiT approaches are

trained based on LSTM to achieve the best detection results.

Datasets

Type D9 D10
CiTs CiTtm CiTts CiTs CiTtm CiTts

LSTM 95.72 98.78 99.67 97.68 98.36 99.92
GRU 93.73 95.76 94.33 93.81 95.82 96.78
RNN 92.54 93.24 93.64 93.66 94.78 96.45

Table 9: AUC (%) vs. network hidden unit types (U = 256/Em = 250)

5.2.9 Efficiency and Scalability

In this chapter, we study the efficiency and scalability of CiT by first analyzing the training

time for its three variations with five datasets (D1, D2, D7, D9, and D10), and the impact of

hyperparameters with D9 and D10. Then we investigate the testing time for both translation

and detection.

Training Time

Figure 50 shows the training time of CiT on the five datasets. For fair comparison, we

take the same number (50,000) of input pairs from each dataset. In general, CiTts (with

both LSTM and Siamese) requires the longest training time. The color separation of the

bars shows the training time for both translation and detection for this variation. However,

in practice the translation and detection models can be trained in parallel to reduce the

76

overall training time. We can also observe that the corpus size and the length of sequences

both affect the training time. Since the total number of input pairs is the same for different

datasets, the corpus size becomes the main factor that impacts the overall training time. For

instance, the corpus size in D7 is smaller and with shorter sequences, the training time is

shorter than other datasets. Figure 51 studies how the size of training dataset (the number

of input training pairs) affects the training time for the three variations. In general, training

time increases when the size of the dataset increases. The longest time needed for training

the largest dataset is 49 minutes per epoch in CiTts. Parallel training for both models at the

same time will reduce the overall training time to 38 minutes per epoch.

D150KD250KD750KD950KD1050K
��
��	
�

�

��

��

�

�
	�
��

�

CiTtm CiTs CiTts

Figure 50: CiT efficiency study: Training Time. The results are obtained based on LSTM
with Em = 256 and U = 250.

��
 ���
 ���
 ���
 �	�

���

�

��

��

	�

��
�

�
��

�

CiTtm CiTs CiTts

Figure 51: CiT efficiency study: Time vs. Training Pairs. The results are obtained based
on LSTM with Em = 256 and U = 250.

77

�� ���
��������

�

��

��

��
�
��
��

�

���
���
	
�

Figure 52: CiT efficiency study: Hidden Unit Type. The results are obtained based on
LSTM with Em = 256 and U = 250.

�

��
CiTs CiTtm CiTts

��� ���
��

���

�

��

���
���
���
���
���
���
���

��
	�
��

�

CiTs CiTtm CiTts

Figure 53: CiT efficiency study: Event Embedding Dimension; The top sub-figure shows
the results from D9 dataset, and the bottom sub-figure shows the results from D10 dataset.

�

�� CiTs
CiTtm

CiTts

	� ��

������

�

��

���
���
���
���
���
���
���

��

�
��

�

CiTs
CiTtm

CiTts

Figure 54: CiT efficiency study: Seq. Embedding Dimension; The top sub-figure shows
the results from D9 dataset, and the bottom sub-figure shows the results from D10 dataset.

78

The training time for other hyperparameters, network hidden layer types, event embed-

ding dimensions, and sequences embedding dimensions are shown in Figure 52, Figure 53,

and Figure 54, respectively. We observe that LSTM requires longer training time than GRU

and RNN due to its complexity (which also helps achieve better accuracy). The training

time also increases linearly with both event (Em) and sequence embedding (U) dimensions,

as presented in Figure 53 and Figure 54. This is expected as the number of embedding di-

mensions increases the increased complexity leading to a higher training time. As observed

in Chapter 5.2.8, we can achieve a good model with 20 epochs of training. The overall train-

ing time is approximately three and half hours (= 11 * 20/60) for obtaining a good CiTts

model with 50,000 training pairs. Since model training is a one-time effort and retraining

of the models only happens after major changes or upgrades to the platform, we conclude

our solution is scalable. Notably, we perform all the training on a server without GPUs and

utilizing GPUs could significantly reduce the training time [6, 79].

Testing Time

We investigate the testing time of CiT for both translation and inconsistency detection.

Figure 55a shows the translation time required for each dataset. As a general trend, longer

sequences naturally require longer translation time; however, our results show that even

the longest sequence only takes 0.12s to finish translation. In Figure 55b, we evaluate the

execution time of similarity score calculation versus the number of input event sequences

by testing the trained CiTs model with pairwise input sequences. In the zoomed in chart

inside Figure 55b, we can observe the detection time is around 4ms for a single event se-

quence pair input. Furthermore, the detection model only takes 1.5s to calculate similarity

scores for 10,000 pairs of inputs. In contrast, according to our real-world data, a user-level

operation would take OpenStack around 77 seconds on average to execute in a real cloud.

Therefore, we conclude that CiT is an efficient solution for detecting inconsistency attacks.

79

���

���
������� ���
�

���

���
������� �����

���

���
��� � ����! ���

�� ��
���� �����	"�� ����!�����

���

���

���
���

���
���

���
���

���
���

���
���

���
��

��
���

 ��
��

��
�

��
��

�

!� ���"��

(a) CiT translation time

� ���� �����
�����������������������
��

���

���

���

���

��
�

��
��

�

	�����������

�����������

� ��

�

�

���������

(b) CiT detection time

Figure 55: The evaluation of testing time

80

Chapter 6

Discussion

6.1 Additional Use Cases

Besides inconsistency detection, the translation capability of CiT can be applied to other

use cases. First, as CiT performs event-based detection, it can be leveraged for attack pre-

vention at runtime, e.g., integrating with a WSGI middleware [104] (or similar middleware

supports, e.g., Amazon Lambda Function [2], Google Cloud Metrics [29], and Azure Event

Grid [52]) to intercept and deny events that would cause inconsistencies. Our efficiency

results for detection (Chapter 5.2.9) demonstrate the feasibility of this use case. Second,

using CiTtm and CiTts (discussed in Chapter 4.6), we can translate VNF (e.g., Tacker)-level

events to the lower levels, even before the actual events are triggered at those lower levels.

This will enable us to proactively watch for (and deny) anomalous events without introduc-

ing extra delay. Third, CiT may help when data access is limited. As an NFV stack may

involve multiple providers or domains, a user may not be allowed to access all the lower-

level events and deployment details, which may be needed, e.g., for security verification,

resource allocation verification, or network service compliance verification purposes [100].

In such cases, CiTtm and CiTts can be utilized to translate the available events at a higher

81

level into the corresponding lower level events to facilitate those tasks (given that potential

inconsistencies are not an issue). Alternatively, the lower-level providers may also translate

their events into a higher level to share with the users.

6.2 Feasibility of Training

A well-known challenge faced by machine learning-based security solutions is to gather

attack-free data for training. As shown in Chapter 5.2.7, the CiT models trained using

data collected from our experimental testbed provided satisfactory results when tested on

data from a completely different, real-world system. Such results confirm the feasibility

of training CiT under a controlled environment and then applying it to a real-world NFV

system (the training system could be made more similar to the real system than in our case,

which will further improve the accuracy).

6.3 Employing Attention-based Translation Mechanisms

As shown in Chapter 5.2.1, CiT is not limited to any specific NMT implementation. It is

possible to use other NMT mechanisms, such as RNN or attention [101], with CiT to detect

inconsistencies. There exist several attention-based Seq2Seq translation mechanisms, such

as the Transformer [101], Transformer-XL [12], BERT [13], and Reformer [39], which

have proved to outperform RNN-based translation mechanisms in NMT. Our preliminary

study with Transformer shows its potential to provide better accuracy than LSTM; however,

it is significantly slower (∼10 times) than LSTM, and hence we adopt LSTM in this work

and will investigate Transformer in future work.

82

6.4 Adapting to other NFV Platforms

CiT can potentially be adapted to other NFV platforms (e.g., OSM [78] and OPNFV [77])

for inconsistency detection, since it has been designed based on the generic NFV archi-

tecture and deployment model. Most of the modules of CiT are platform agnostic except,

as a one-time effort, the data processing module needs to be adjusted to extract platform

specific event sequences through integration with either a generic middleware or logging

system (e.g., syslog).

6.5 Limitations

The main limitations of our work are as follows. First, since CiT relies on the provider for

collecting event sequences, how to ensure the integrity of such data (e.g., through trusted

computing techniques) is a future direction. Second, CiT currently relies on the access to

events at different levels, and anonymizing such events to avoid privacy concerns while

still allowing the translation and detection is an interesting challenge. Finally, we have not

considered potential adversarial attacks on the machine learning algorithms, and addressing

this issue in the particular context of NFV is an interesting future direction.

83

Chapter 7

Related Work

This chapter reviews existing approaches to NFV modeling, NFV security, anomaly detec-

tion, and translation-based security solutions, and compares them to this thesis.

7.1 NFV Models

To the best of our knowledge, this is the first work proposing a concrete model for the

deployment aspects of NFV. A few other models of NFV architecture are proposed for dif-

ferent use cases, e.g., mobile edge computing in 5G [22] and efficient VNF placement [54].

Pattaranantakul et al. [82] propose a framework to dynamically manage security functions

in NFV. Hoang et al. [31] propose an extended NFV architecture that uses Tacker to support

containers.

7.2 NFV Security

Unlike our work, which focuses on the inconsistencies, most existing studies on NFV se-

curity [26, 41, 83, 110] focus on issues related to virtualization. Lal et al. [41] propose to

adapt several well-known best practices like VM separation, hypervisor introspection, and

84

remote attestation. Pattaranantakul et al. [83] adopt best practices like access control to

address virtualization-related threats in NFV.

Most existing solutions in NFV that are related to inconsistency attacks (e.g., [25, 27,

50, 99, 102, 113, 114]) verify the NFVI-level configuration information (e.g., flow rues and

flow classifier) while focusing on one particular level (mostly SFC). Particularly, Chain-

Guard [27] and SFC-Checker [99] both verify the correct forwarding behavior of SFCs.

Moreover, vSFC [113] checks for a wide range of SFC violations (e.g., packet injection

attacks, flow dropping, and path non-compliance). Additionally, there exist some works

(e.g., [25, 50, 102, 114]) on verifying the functionality and performance of SFCs. For in-

stance, vNFO [25] and SLAVerifier [114] verify a wide-range of SFC functionalities (e.g.,

performance and accounting). Guido et al. [50] propose an approach for generating optimal

placement of SFCs based on given performance parameters (e.g., latency and CPU cycles)

and reachability policies. Wang et al. [102] propose a framework to automatically detect

the dependencies and conflicts between network functions. Unlike those approaches which

rely on configurations, CiT is an event-based approach which means it can potentially catch

an attack before it incurs any damage.

7.3 Anomaly Detection on Sequential Data

There exist many works (e.g., [7, 16, 36, 85, 93, 105]) that conduct anomaly detection on

sequential data (e.g., event logs, credit card transactions, and network traffic). Particularly,

DeepLog [16] and Brown et al. [7] both leverage RNNs to detect anomalies in system logs.

Also, Tiresias [93] utilizes RNNs to build a predictive model to detect future anomalies.

Jurgovsky et al. [36] use the LSTM-based sequence classification to detect anomalies in

credit card transactions. Radford et al. [85] propose a network traffic anomaly detection

85

solution by utilizing LSTM to learn and predict communications between two IPs. Simi-

larly, Xiao et al. [105] utilize the semantic information of system call sequences for Android

malware detection. Besides focusing on a different context (NFV), CiT applies the addi-

tional translation step before detection, which outperforms traditional anomaly detection

(see Chapter 5.2.6).

7.4 Translation-based Security Approaches

Most of the existing security solutions that leverage neural machine translation (e.g., [15,

51, 105, 108, 115]) focus on binary code analysis, e.g., to support multiple hardware archi-

tectures like x86 and ARM. In particular, SAFE [51] leverages GRU RNN [10] and learns

function embedding automatically where each assembly instruction is considered as a word

and each sequence of instructions as a sentence. To find similar functions from binary code,

INNEREYE [115] leverages LSTM and considers assembly instruction with its operands

as a single word and the basic block as a sentence. Xu et al. [108] and Asm2vec [15] apply

neural networks to translate binaries for code similarity detection. Although in a different

context, those works show the potential of applying neural machine translation to security,

and have inspired us for our work.

In summary, this is the first work proposing a concrete model for the deployment aspects

of NFV. Furthermore, though inspired by those existing works, CiT differs from them

because of its special focus on NFV, its event-based approach, and its use of neural machine

translation for detection.

86

Chapter 8

Other Contributions

During this master thesis study, we also contributed to other projects as follows.

8.1 NFVGuard: Verifying the Security of Multilevel Net-

work Functions Virtualization (NFV) Stack

Network functions virtualization (NFV) enables agile and cost-effective deployment of

multi-tenant network services on top of a cloud infrastructure. However, the multi-tenant

and multilevel nature of NFV may lead to novel security challenges, such as stealthy at-

tacks exploiting potential inconsistencies be- tween different levels of the NFV stacks.

Consequently, the secu- rity compliance of a multilevel NFV stack cannot be sufficiently

established using existing solutions, which typically focus on one level. Moreover, the

naive approach of separately verifying every level could be expensive or even infeasible.

In this work, we propose, NFVGuard, the first multilevel approach to the formal security

verification of NFV stacks. Our key idea is to conduct the security verification at only one

level, and then assure that verification result for other levels by verifying the consistency

between adjacent levels. We implement NFVGuard based on our OpenStack/Tacker NFV

87

testbed, and experimentally evaluate its efficiency using both real and synthetic data.

The following lists the contributions to this research work towards the NFV data gen-

eration task.

- Developed a Java program for generating valid VNFFG descriptors which are be

used to deploy VNFFGs.

- Developed bash scripts for automatically deploying a number of VNFs and VNF-

FGDs.

- Generated synthetic data for experiments using the NFV testbed.

- Assisted with writing the NFV data generation and its related challenges in the paper.

This research work is currently submitted to CloudCom’20.

8.2 NFV Testbed Deployment

Deployed and actively maintained the NFV testbed (See Chapter 5.1) which is used by

other NFV research projects. This chapter details the challenges encountered during the

implementation of the NFV testbed.

8.2.1 Implementation Challenges

- Need for manual efforts We utilized official OpenStack installation scripts [69] to

implement the services required for the NFV testbed. The scripts stopped unexpect-

edly during the installation of services like Mistral and Barbican (dependencies for

OpenStack Tacker) where inputs had to be provided during runtime. The services

were manually installed.

88

- Service version mismatch A basic NFV implementation requires at least 14 Open-

Stack services operating together as a stack. But a version mismatch among services

can cause the entire NFV deployment to collapse, and the troubleshooting becomes

very challenging.

- Conflicting service dependencies The services involved in the NFV stack require de-

pendencies which sometimes cause conflicts between each other during installation.

We used Python virtual environments to keep the service dependencies independent

from another.

- Faulty quota management During the large-scale deployment process where thou-

sands of VNFs and VNFFGs need to be created, the tenants’ resource quota alloca-

tion has to be adjusted. We were not able to update the resource quota of networking-

sfc [76] component which is responsible for chaining VNFs. We were able to create

only 10 VNFFGs per tenant. Hence, we increased the number of projects in order to

be able to create more VNFFGs.

- Undocumented deployment constraints We developed Python and Java programs to

automate the deployment of VNFs and VNFFGs by generating their corresponding

descriptors. During the deployment, we faced constraints which are not officially

documented thus resulting in deployment failures, such as (i) unable to chain VNFs

with their management ports, (ii) unable to chain VNFs from different subnets, and

(iii) the network traffic source must be within the same subnet as the VNFs. We vali-

dated all the generated VNFFG descriptors based on these constraints for a successful

deployment.

89

Figure 56: The topology view of VNFs implemented in our NFV tested from Horizon [66]

90

Chapter 9

Future Work and Conclusion

9.1 Future Work

As future work, in addition to formalizing the proposed NFV deployment model, we will

extend our network-centric model to include other computing or storage managerial com-

ponents. Furthermore, we intend to develop security verification tools based on open source

NFV environments. We will also investigate the possibility of utilizing attention-based

translation methodologies such as Transformer, BERT and Transformer-XL to further im-

prove the performance and efficiency of CiT. Furthermore, we will also further enhance

CiT to overcome its current limitations. For instance, since the results of the detection sys-

tem entirely depends upon the quality of the datasets used, we would like to evaluate the

data quality. Finally, we also intend to integrate CiT to other available open source NFV

platforms.

91

9.2 Conclusion

In this thesis, we presented a multilevel NFV deployment model, which complements the

ETSI architecture with essential details for exploring potential inconsistency vulnerabili-

ties in NFV. Our model showed that the autonomous management components at differ-

ent levels render cross-level inconsistencies an intrinsic threat to NFV. We validated our

model by implementing an NFV testbed and concrete attack scenarios. Our study on the

data collection paved the way for developing verification-based detection solution. Fur-

thermore, we have proposed an event-based, Neural Machine Translation (NMT)-powered

detection approach, namely, CiT, for cross-level inconsistency attacks in NFV. Specifically,

we have leveraged the Long Short-term Memory (LSTM) model to translate the event se-

quences between different levels of an NFV stack. We have applied both similarity metric

and Siamese neural network to compare the translated event sequences with the actual se-

quences to detect inconsistency attacks. As a proof of concept, we have integrated CiT into

OpenStack/Tacker and conducted extensive experiments using both real and synthetic data

to demonstrate the efficiency, accuracy, and robustness of our solution.

92

Bibliography

[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of
distance metrics in high dimensional space. In International conference on database
theory, pages 420–434. Springer, 2001.

[2] Amazon. AWS Lambda Features, 2020. Available at: https://aws.amazon.
com/lambda/, last accessed on: July 24, 2020.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[4] S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim. Proactive security analysis of
changes in virtualized infrastructures. In Proceedings of the 31st annual computer
security applications conference, pages 51–60, 2015.

[5] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguis-
tics, 5:135–146, 2017.

[6] D. Britz, A. Goldie, M.-T. Luong, and Q. Le. Massive exploration of neural machine
translation architectures. arXiv preprint arXiv:1703.03906, 2017.

[7] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols. Recurrent neural network atten-
tion mechanisms for interpretable system log anomaly detection. In Proceedings of
the First Workshop on Machine Learning for Computing Systems, pages 1–8, 2018.

[8] R. Caruana, S. Lawrence, and C. L. Giles. Overfitting in neural nets: Backpropa-
gation, conjugate gradient, and early stopping. In Advances in neural information
processing systems, pages 402–408, 2001.

[9] K. Chen, Z. Zhang, J. Long, and H. Zhang. Turning from TF-IDF to TF-IGM for
term weighting in text classification. Expert Systems with Applications, 66:245–260,
2016.

[10] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

93

[11] M. Creutz, T. Hirsimäki, M. Kurimo, A. Puurula, J. Pylkkönen, V. Siivola, M. Var-
jokallio, E. Arisoy, M. Saraçlar, and A. Stolcke. Morph-based speech recognition
and modeling of out-of-vocabulary words across languages. ACM Transactions on
Speech and Language Processing (TSLP), 5(1):1–29, 2007.

[12] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-
xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[14] R. Dey and F. M. Salemt. Gate-variants of gated recurrent unit (gru) neural net-
works. In 2017 IEEE 60th international midwest symposium on circuits and systems
(MWSCAS), pages 1597–1600. IEEE, 2017.

[15] S. H. Ding, B. C. Fung, and P. Charland. Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimiza-
tion. In 2019 IEEE Symposium on Security and Privacy (SP), pages 472–489. IEEE,
2019.

[16] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 1285–1298,
2017.

[17] ETSI. ETSI. https://www.etsi.org/.

[18] ETSI. Network functions virtualisation - Use cases, 2013.

[19] ETSI. Network functions virtualisation architectural framework, 2013.

[20] ETSI. Network functions virtualisation - Report on SDN usage in NFV architectural
framework, 2015.

[21] ETSI. Network function virtualisation (NFV); Reliability; Report on the resilience
of NFV-MANO critical capabilities, 2017.

[22] ETSI. MEC in 5G networks, 2018.

[23] ETSI. Network functions virtualisation (NFV) release 3; Management and orches-
tration; Architecture enhancement for security management specification, 2018.

[24] I. Farris, T. Taleb, Y. Khettab, and J. Song. A survey on emerging sdn and nfv
security mechanisms for iot systems. IEEE Communications Surveys & Tutorials,
21(1):812–837, 2018.

94

[25] S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar. Verifiable network function outsourc-
ing: requirements, challenges, and roadmap. In Proceedings of the workshop on Hot
topics in middleboxes and network function virtualization, pages 25–30, 2013.

[26] M. D. Firoozjaei, J. P. Jeong, H. Ko, and H. Kim. Security challenges with network
functions virtualization. Future Generation Computer Systems, 67:315–324, 2017.

[27] M. Flittner, J. M. Scheuermann, and R. Bauer. ChainGuard: Controller-independent
verification of service function chaining in cloud computing. In 2017 IEEE Con-
ference on Network Function Virtualization and Software Defined Networks (NFV-
SDN), pages 1–7. IEEE, 2017.

[28] G. Gardikis, K. Tzoulas, K. Tripolitis, A. Bartzas, S. Costicoglou, A. Lioy, B. Gas-
ton, C. Fernandez, C. Davila, A. Litke, et al. SHIELD: A novel NFV-based cyberse-
curity framework. In 2017 IEEE Conference on Network Softwarization (NetSoft),
pages 1–6. IEEE, 2017.

[29] Google. Google Cloud metrics, 2020.

[30] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualization:
Challenges and opportunities for innovations. IEEE Communications Magazine,
53(2):90–97, 2015.

[31] C.-P. Hoang, N.-T. Dinh, and Y. Kim. An extended virtual network functions man-
ager architecture to support container. In ICISS’18, pages 173–176, 2018.

[32] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[33] S. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network visibility in software-
defined networks: New attacks and countermeasures. In NDSS’15, pages 8–11,
2015.

[34] G. M. Insights. Network function virtualization (NFV) market size, 2020. Available
at: https://www.gminsights.com/industry-analysis/network-
function-virtualization-nfv-market, last accessed on: July 23, 2020.

[35] Intel. Realising the benefits of network functions virtualisation in telecoms
networks, 2014. Available at: https://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/benefits-
network-functions-virtualization-telecoms-paper.pdf, last
accessed on: July 24, 2020.

[36] J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P.-E. Portier, L. He-Guelton,
and O. Caelen. Sequence classification for credit-card fraud detection. Expert Sys-
tems with Applications, 100:234–245, 2018.

95

[37] Keras. Keras: The Python Deep Learning library. Available at: https://keras.
io/, last accessed on: July 24, 2020.

[38] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: Verifying
network-wide invariants in real time. In NSDI’13, pages 15–27, 2013.

[39] N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

[40] S. M. Lakew, M. Cettolo, and M. Federico. A comparison of transformer and re-
current neural networks on multilingual neural machine translation. In Proceedings
of the 27th International Conference on Computational Linguistics, pages 641–652,
Santa Fe, New Mexico, USA, Aug. 2018. Association for Computational Linguis-
tics.

[41] S. Lal, T. Taleb, and A. Dutta. NFV: Security threats and best practices. IEEE
Communications Magazine, 55(8):211–217, 2017.

[42] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization.
In Advances in neural information processing systems, pages 2177–2185, 2014.

[43] B. Li and L. Han. Distance weighted cosine similarity measure for text classifica-
tion. In International Conference on Intelligent Data Engineering and Automated
Learning, pages 611–618. Springer, 2013.

[44] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese. Checking
beliefs in dynamic networks. In NSDI’15, pages 499–512, 2015.

[45] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[46] T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang, M. Pourzandi,
L. Wang, and M. Debbabi. ISOTOP: Auditing virtual networks isolation across
cloud layers in openstack. ACM TOPS, 22(1):1:1–1:35, 2018.

[47] T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang, M. Pourzandi,
L. Wang, and M. Debbabi. ISOTOP: auditing virtual networks isolation across cloud
layers in OpenStack. ACM Transactions on Privacy and Security (TOPS), 22(1):1–
35, 2018.

[48] T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi, and L. Wang. Auditing
security compliance of the virtualized infrastructure in the cloud: Application to
OpenStack. In Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy, pages 195–206, 2016.

[49] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff.
LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint
arXiv:1607.00148, 2016.

96

[50] G. Marchetto, R. Sisto, J. Yusupov, and A. Ksentini. Virtual network embedding
with formal reachability assurance. In CNSM, 2018.

[51] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni. Safe: Self-
attentive function embeddings for binary similarity. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages 309–329.
Springer, 2019.

[52] Microsoft. Azure Event Grid, 2020. Available at: https://azure.
microsoft.com/en-us/services/event-grid/, last accessed on: July
24, 2020.

[53] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[54] H. Moens and F. De Turck. VNF-P: A model for efficient placement of virtualized
network functions. In CNSM’14, pages 418–423, 2014.

[55] J. Mueller and A. Thyagarajan. Siamese recurrent architectures for learning sentence
similarity. In thirtieth AAAI conference on artificial intelligence, 2016.

[56] National Institute of Standards and Technology. CVE-2015-3456 Detail, 2015.
Available at: https://nvd.nist.gov/vuln/detail/CVE-2015-3456,
last accessed on: April 17, 2020.

[57] National Institute of Standards and Technology. CVE-2015-7835 Detail, 2015.
Available at: https://nvd.nist.gov/vuln/detail/CVE-2015-7835,
last accessed on: April 17, 2020.

[58] National Institute of Standards and Technology. CVE-2018-10853 Detail,
2018. Available at: https://nvd.nist.gov/vuln/detail/CVE-2018-
10853, last accessed on: April 17, 2020.

[59] NIST. The NIST definition of cloud computing, 2011.

[60] Oasis. Topology and Orchestration Specification for Cloud Applications (TOSCA),
2013. Available at: https://www.oasis-open.org/committees/
tosca/, last accessed on: July 30, 2020.

[61] ONAP. Open Network Automation Platform. Available at: https://www.
onap.org/.

[62] OpenDaylight. OpenDaylight Project. Available at: https://www.
opendaylight.org/.

[63] OpenDaylight. CVE-2018-1078: OpenDaylight - Insecure behavior in node recon-
ciliation process, 2018.

97

[64] OpenStack. OpenStack. Available at: https://www.openstack.org/, last
accessed on: July 24, 2020.

[65] OpenStack. OpenStack Heat. Available at: https://docs.openstack.org/
heat/latest/.

[66] OpenStack. OpenStack Horizon. Available at: https://docs.openstack.
org/horizon/latest/, last accessed on: July 24, 2020.

[67] OpenStack. OpenStack Neutron. Available at: https://docs.openstack.
org/neutron/latest/.

[68] OpenStack. Openstack security advisories. Available at: https://security.
openstack.org/ossalist.html.

[69] OpenStack. OpenStack Training Labs. Available at: https://docs.
openstack.org/training_labs/, last accessed on: July 24, 2020.

[70] OpenStack. OpenStack Congress, 2015. Available at: https://wiki.
openstack.org/wiki/Congress, last accessed on: July 24, 2020.

[71] OpenStack. Stack update failed: port still in use, 2015. Available at: https:
//bugs.launchpad.net/heat/+bug/1517355, last accessed on: July 23,
2020.

[72] OpenStack. Cinder fails to create volume with gateway time-out error under high
load, 2016. Available at: https://bugs.launchpad.net/mos/+bug/
1653164, last accessed on: July 23, 2020.

[73] OpenStack. Heavy reading study on CSPs and OpenStack, 2016.

[74] OpenStack. Rule:shared is not respected in port/subnet create, 2018. Available
at: https://bugs.launchpad.net/neutron/+bug/1808112, last ac-
cessed on: July 23, 2020.

[75] OpenStack. User is not allowed to create port with fixed IP on shared network
via RBAC, 2019. Available at: https://bugs.launchpad.net/neutron/
+bug/1833455, last accessed on: July 23, 2020.

[76] OpenStack Networking-SFC. OpenStack Networking: Service Function Chain-
ing. Available at: https://docs.openstack.org/networking-sfc/
latest/, last accessed on: August 09, 2020.

[77] OPNFV. OPNFV. Available at: https://www.opnfv.org/, last accessed on:
July 24, 2020.

[78] OSM. Open source MANO. Available at: https://osm.etsi.org/, last ac-
cessed on: July 24, 2020.

98

[79] M. Ott, S. Edunov, D. Grangier, and M. Auli. Scaling neural machine translation.
arXiv preprint arXiv:1806.00187, 2018.

[80] Ovum. NFV deployments still on the rise, 2020. Available at: https:
//www.omdia.com/resources/product-content/ovum-survey-
results-on-nfv-adoption-spt002-000284, last accessed on: April 12,
2020.

[81] pandas. pandas - Python Data Analysis Library. Available at: https://pandas.
pydata.org/, last accessed on: July 24, 2020.

[82] M. Pattaranantakul, R. He, A. Meddahi, and Z. Zhang. SecMANO: Towards network
functions virtualization NFV based security management and orchestration. In IEEE
Trustcom/BigDataSE/ISPA, pages 598–605, 2016.

[83] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and A. Meddahi. NFV security
survey: From use case driven threat analysis to State-of-the-art countermeasures.
IEEE Communications Surveys & Tutorials, 20(4):3330–3368, 2018.

[84] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[85] B. J. Radford, L. M. Apolonio, A. J. Trias, and J. A. Simpson. Net-
work traffic anomaly detection using recurrent neural networks. arXiv preprint
arXiv:1803.10769, 2018.

[86] J. Ramos et al. Using TF-IDF to determine word relevance in document queries. In
Proceedings of the first instructional conference on machine learning, volume 242,
pages 133–142. New Jersey, USA, 2003.

[87] RedHat. The year of open source networking for CSPs, 2018. Available
at: https://www.redhat.com/en/blog/2018-year-open-source-
networking-csps.

[88] R. Rehurek and P. Sojka. Gensim—statistical semantics in Python. Retrieved from
genism. org, 2011.

[89] N. Reimers and I. Gurevych. Optimal hyperparameters for deep LSTM-networks
for sequence labeling tasks. arXiv preprint arXiv:1707.06799, 2017.

[90] F. Reynaud, F.-X. Aguessy, O. Bettan, M. Bouet, and V. Conan. Attacks against
network functions virtualization and software-defined networking: State-of-the-art.
In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pages 471–476. IEEE,
2016.

[91] C. Sammut and G. I. Webb, editors. Encyclopedia of Machine Learning and Data
Mining. Springer, 2017.

99

[92] scikitlearn. scikit-learn: Machine Learning in Python. Available at: https://
scikit-learn.org/stable/, last accessed on: July 24, 2020.

[93] Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini. Tiresias: Predicting security
events through deep learning. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 592–605, 2018.

[94] M.-K. Shin, Y. Choi, H. H. Kwak, S. Pack, M. Kang, and J.-Y. Choi. Verification for
NFV-enabled network services. In 2015 International Conference on Information
and Communication Technology Convergence (ICTC), pages 810–815. IEEE, 2015.

[95] S. W. Shin and G. Gu. Attacking software-defined networks: A first feasibility study.
In HotSDN’13, pages 165–166, 2013.

[96] L. T. Sudershan, M. Zhang, A. Oqaily, G. S. Chawla, L. Wang, M. Pourzandi, and
M. Debbabi. Modeling NFV deployment to identify the cross-level inconsistency
vulnerabilities. In 2019 IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pages 167–174. IEEE, 2019.

[97] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112,
2014.

[98] Tacker. OpenStack Tacker. Available at: https://wiki.openstack.org/
wiki/Tacker, last accessed on: July 24, 2020.

[99] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J.-M. Kang. Sfc-checker:
Checking the correct forwarding behavior of service function chaining. In 2016
IEEE Conference on Network Function Virtualization and Software Defined Net-
works (NFV-SDN), pages 134–140. IEEE, 2016.

[100] P. Twamley, M. Müller, P.-B. Bök, G. K. Xilouris, C. Sakkas, M. A. Kourtis,
M. Peuster, S. Schneider, P. Stavrianos, and D. Kyriazis. 5GTANGO: An approach
for testing nfv deployments. In 2018 European Conference on Networks and Com-
munications (EuCNC), pages 1–218. IEEE, 2018.

[101] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[102] Y. Wang, Z. Li, G. Xie, and K. Salamatian. Enabling automatic composition and
verification of service function chain. In 2017 IEEE/ACM 25th International Sym-
posium on Quality of Service (IWQoS), pages 1–5. IEEE, 2017.

[103] WordNet. WordNet: a lexical database for English. Available at:https://
wordnet.princeton.edu/, last accessed on: July 24, 2020.

100

[104] WSGI. Middleware and libraries for WSGI, 2016. Available at:
http://wsgi.readthedocs.io/en/latest/libraries.html, last accessed on: February 15,
2020.

[105] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah. Android malware detec-
tion based on system call sequences and lstm. Multimedia Tools and Applications,
78(4):3979–3999, 2019.

[106] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. ACM
Sigkdd Explorations Newsletter, 12(1):40–48, 2010.

[107] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu. Attacking the brain: Races in the
SDN control plane. In USENIX Security’17, pages 451–468, 2017.

[108] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song. Neural network-based graph
embedding for cross-platform binary code similarity detection. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security (CCS),
pages 363–376, 2017.

[109] Y. Xu, Y. Liu, R. Singh, and S. Tao. Identifying SDN state inconsistency in Open-
Stack. In SOSR’15, page 11, 2015.

[110] W. Yang and C. Fung. A survey on security in network functions virtualization. In
2016 IEEE NetSoft Conference and Workshops (NetSoft), pages 15–19. IEEE, 2016.

[111] W.-t. Yih, K. Toutanova, J. C. Platt, and C. Meek. Learning discriminative pro-
jections for text similarity measures. In Proceedings of the fifteenth conference on
computational natural language learning, pages 247–256, 2011.

[112] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider. NFV and SDN—key technol-
ogy enablers for 5G networks. IEEE Journal on Selected Areas in Communications,
35(11):2468–2478, 2017.

[113] X. Zhang, Q. Li, J. Wu, and J. Yang. Generic and agile service function chain
verification on cloud. In 2017 IEEE/ACM 25th International Symposium on Quality
of Service (IWQoS), pages 1–10, 2017.

[114] Y. Zhang, W. Wu, S. Banerjee, J.-M. Kang, and M. A. Sanchez. SLA-verifier: State-
ful and quantitative verification for service chaining. In INFOCOM, 2017.

[115] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang. Neural machine translation
inspired binary code similarity comparison beyond function pairs. In Network and
Distributed Systems Security (NDSS) Symposium, 2019.

101

