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ABSTRACT 

 

 

Predicting activity noise levels in occupied classrooms by means of cluster analysis 

 

 

Shiva Hadavi 

 

 

 

 

Educators have developed innovative teaching strategies in order to maximize learning 

outcomes in classrooms. Active learning classrooms are new learning spaces that facilitate the 

teaching strategies with enhanced students’ engagement and collaborative discussions. Previous 

studies showed that the design of learning spaces impacts on students’ achievement. However, 

acoustic requirements of the active learning classrooms have not been investigated yet. This 

study aims to estimate activity noise levels by means of unsupervised learning methods, while 

active learning is practiced in classrooms. Three clustering algorithms, including K-means 

clustering, Gaussian mixture model, and spectral clustering algorithms, are employed to analyze 

the continuous one-third octave band sound pressure levels (SPLs). The data were being 

collected from five active learning classes and two traditional lecture classes at Concordia 

University in Montreal, Canada. Based on the spectral characteristics of the speech and non-

speech signals, and by using the results of previous studies, a unique decision chart is developed 

in this study in order to assign the activities in to the clusters obtained from the algorithms.  

Employing the algorithms along with the decision chart, predicts the acoustic levels of assorted 
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class activities such as lecturer's speech, students’ group work and ambient condition. The 

predicted activities and their corresponding acoustic levels are then compared with the actual 

results obtained by the researcher during the measurements and the performance of each 

algorithm is evaluated. Lastly, this study compares the developed method to predict activity 

noise levels in occupied classrooms with the two other methods proposed in previous studies and 

the advantages and disadvantages of the developed method are further discussed. The results 

obtained from employing the Gaussian Mixture Model (GMM) along with the developed 

decision chart, indicates the best performance among the other methods investigated in this 

study. 
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1 CHAPTER 1: INTRODUCTION 

1.1 Background and Motivation 

From childhood to adulthood, students spend a considerable amount of their life in 

classrooms. The time individuals spend in these spaces has an important role in their personal 

and professional growth.  Students develop part of their personality at school and also gain 

knowledge and skills toward building a successful future. Accordingly, a proper learning 

environment plays a significant role in helping students achieve their future goals. If a learning 

space is poorly designed, it can adversely affect students’ creativity or feeling toward the 

learning process [1].  The impact of positive feeling in learning process is investigated in recent 

studies by Um et al. [2] and Heidig et al.[3]. Based on their conclusion on the role of the 

emotional regulation system in learning process, people are most likely to learn and remember 

things which stimulate positive feelings or arouse interest in them. Others discussed the 

importance of a comfortable learning environment by demonstrating its effects on learning 

process and students’ performance [4], [5].   

The necessity of acoustic comfort in learning environments and the impact it has on students’ 

learning capacity has been known for years. Numerous studies in this context, sought to 

determine regulations and standards in order to keep the acoustic comfort in core learning spaces 

on a satisfactory level. Knowing that the perception of teaching/leaning methods has not 

remained the same throughout time, an important question would be whether implementing new 

pedagogies has impacted the acoustic condition of new learning spaces significantly. If there is 

an impact, it is important to recognize the required measures in order to keep the acoustic 

comfort in a desired level in new learning spaces.  
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Traditionally, a learning space is a classroom with fixed seats towards the front of the room 

while the teacher positions themselves in the front of the classroom towards the students. These 

arrangements serve the purpose of traditional classes. This is because the teacher is the main 

speaker and subsequently the focal point in traditional classroom settings [6]. Introducing new 

teaching/leaning methods has inevitably imposed changes on the traditional arrangements of 

classrooms. Open plan classrooms, circle/semi circle seat arrangements etc. are some of the 

manifestations of the newly developed teaching spaces.  

Active Learning is among the newly developed pedagogies that employ students’ capacities 

by encouraging active participation in the teaching and learning process rather than being passive 

listeners and observers. Active learning methods require students to think, write and discuss their 

approaches in solving problems [7], [8]. Group discussions in classrooms are among the most 

common, yet effective strategies in promoting active learning. Movable furniture in circle 

arrangement facilitates students’ engagement in group discussions. Not only the layouts of 

classrooms are affected by new learning and teaching methods, but also the environmental 

factors such as acoustic comfort might be influenced by new teaching practices. The active 

learning techniques that require talking with nearby peers, such as Think-Pair-Share (TPS)[9], 

may increase the occupied sound pressure levels of learning spaces.   

This study aims to propose a method to predict the activity noise levels from the long term 

sound pressure levels of occupied classrooms, with focus on conditions in which active learning 

methods are practiced.  For the purpose of the study, the data were being collected from five 

active learning classes which were being held in three active learning spaces, and two traditional 

lecture style classes in two lecture rooms at Concordia University. Unsupervised learning is 

employed in order to identify the long term activity sound pressure levels in classrooms (i.e. 
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student silent activity, active learning activities and lecturer’s speech), from the long term one-

third octave band occupied sound pressure levels logged in 5 seconds intervals. 

1.2 Thesis Structure 

Chapter 2 reviews the importance of proper classroom acoustics as well as the impact of 

inappropriate acoustic conditions, e.g. excessive noise levels, on both students and teachers, 

based on previous studies done on the subject. The recent studies on the acoustic characteristics 

of modern learning spaces are reviewed in this chapter as well.  

Chapter 3 provides an overview of the measurement methods, including brief descriptions 

on the characteristics of the acoustically measured classrooms, the number of microphones and 

their locations in each room, as well as the equipment used to collect the occupied sound 

pressure levels in both active learning and traditional lecture classrooms. The theoretical 

framework of the three clustering algorithms employed, including K-means clustering, Gaussian 

Mixture Model and Spectral clustering are reviewed and their implementation in this study is 

discussed.  

Chapter 4 provides the results of the measurements and the algorithm analysis and discusses 

them in details. Moreover, the performances of the algorithms are evaluated and the 

disadvantages of the method proposed are discussed in this chapter.  

In Chapter 5 the main findings of the study are summarized. 
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2 CHAPTER 2: LITERATURE REVIEW 

2.1 Impacts of Acoustic Quality on Students and Instructors 

Despite all the technological developments, speech communication is still the most important 

tool in the learning process. As much as 60% of classroom activities involve in speech 

communication either between teachers and students or between students [10]. Therefore, proper 

environments that support clear communication should be recognized. 

 In general, inappropriate acoustic characteristics of classrooms such as high levels of 

background noise and reverberation, and low signal to noise ratios can affect stress level, the 

ability to be concentrated on a subject and academic performance of students in all different age 

groups. In a research discussion by Crandall and Sandino in 2000 [11], it is concluded that the 

off standard acoustical variables such as noise level, reverberation time and sound to noise ratio, 

adversely influence not only speech perception of both hearing impaired and normal students, 

but also their psycho educational and psychosocial achievements. Moreover, in young kids in 

particular, reading and spelling ability as well as their social behaviors are negatively influenced. 

These adverse effects are more detrimental to students with hearing impairment, learners of a 

second language and those with attention problems [12]–[15]. Based on a study conducted by 

Green et al. [16], excessive background noise in schools is negatively related to reading scores in 

elementary-school students. Similar to younger kids, adolescent students with additional learning 

needs have been reported to be affected by poor classroom acoustics [1], [17]. 

Improper acoustic conditions do not only affect students. Teachers in noisy and reverberant 

environments have to constantly raise their voices in order to be heard by the students. Being 

under this condition, over time, results in vocal fatigue, voice problems, increased level of stress 
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and also cognitive fatigue which decrease teachers’ performances at schools [18]–[21]. 

According to a subjective study conducted by Ahlander et al. [22], noise produced by the activity 

of pupils, ventilation and other equipment in the building was perceived disturbing by the 

majority of the teachers participating in the research. In a research from 2000 to 2006, a mixed 

team of acousticians, occupational health- and medical-scientists and pedagogues investigated 

the impact of classroom acoustic conditions on work and communication behavior in two 

elementary schools. It was observed that the heart rates of teachers increased due to the stress 

reaction caused by the noise level. Students were shown to have the same reactions [19].  

2.2 Activity Noise and Speech to Noise Ratio (SNR) in Occupied Classrooms 

There are numbers of studies, investigated the occupied conditions of classrooms in order to 

identify the occupied sound pressure levels associated with different activities during class time. 

Identifying the sound pressure levels of these activities including, teacher’s speech level and 

students’ activity noise, has been of interest for many years in order to evaluate and estimate the 

SNR in real time occupied conditions. 

In 1985, Markids [23] investigated the speech levels and speech to noise ratios of both 

teachers and students during class time in schools for deaf and partially hearing children. For the 

purpose of the study, he acoustically measured 12 classrooms in 5 schools for hearing impaired 

children. Both teachers’ and students’ speech levels were measured at 2m distance from their 

mouth. Students’ speech levels were measured for one student in each classroom by random 

selection, when they were responding to their teacher or commenting on other students. Three 

type of environmental background noise were measured for these spaces. Short duration noise 

was associated with noise generated from footsteps, banging doors and etc. Non-stationary long 

term noise reflected the ‘chatter’ and speech like noise of the students and Quasi-stationary noise 
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was related to the long term noise from machinery, cars, aircraft and etc. The results indicated 

that the mean A-weighted speech levels of the teachers and students were relatively low and 

measured to be 57.5 dBA and 52 dBA respectively, while the levels of background noise were 

unacceptably high, from 44.6 dBA (stationary noise) to 76.5 dBA (short-duration noise). 

 In 1991, Pekkarinen et al. [24] conducted a study in order to evaluate the acoustic conditions 

for speech communication in 31 classrooms in 26 schools in Finland. The occupied sound 

pressure level measurement in each classroom was carried out for 20 to 30 minutes while the 

microphone was located at the front of the classroom, approximately 2 to 3 meter away from the 

teachers’ desks.  The SNRs were calculated as the difference between the A-weighted equivalent 

continuous sound pressure levels, LAeq (considered as speech level) and L90 (considered as 

occupied ambient noise level). The mean A-weighted L90 and LAeq were reported to be 49(±6) 

dBA and 67(±5) dBA respectively. The mean SNR through all the measurements was calculated 

to be 18 dBA. For most of the spaces the SNRs were reported 15 dBA or higher. The authors 

concluded that the vocal effort of the teachers increased as the occupied background noise 

reached 40 dBA or above. 

 In 1998, Hodgson et al. [25] proposed a method to identify speech and ambient noise levels 

during lecture time by fitting three distributions into the frequency distributions of long term 

sound pressure levels of classrooms. The mean values of the 3 distributions were associated with 

the long term sound pressure levels of ventilation noise, students’ activity noise and speech. To 

collect data, they acoustically recorded 18 occupied classrooms at the University of British 

Columbia. Classrooms were lecture and seminar rooms with 10 to 291 seats and 6 to 254 

students present during the measurements.  To perform the measurements, classroom spaces 

were divided into three blocks, including front, middle and back. The recordings were conducted 
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in each block for 10 to 15 minutes at the beginning, middle and the end of class time. The 

recordings were then post processed and the short term mean squared pressures were calculated 

in 200 millisecond (ms) intervals. The A- weighted sound pressure level frequency distribution 

(in statistical sense, indicating the proportion of time for which the level took given values) for 

each measurement location was plotted. The obtained distributions were then fitted by one, two 

or more normal distributions. They concluded that fitting two curves resulted in a significantly 

good outcome with adjusted R
2
 = 0.95 and fitting 3 curves usually led to even better results with 

adjusted R
2
 = 0.99. Based on the similarities between the distribution of unoccupied sound 

pressure level (SPL) measurements and the lowest level curves obtained from the developed 

method, they associated the lowest level distributions to long term ventilation noise levels. The 

differences between the measured A-weighted equivalent unoccupied SPLs and the mean value 

of their corresponding distributions were up to 5 dBA. In the next step, by referring to the long 

term speech levels published in other studies, the highest level curves were associated with the 

instructors’ long term speech levels. Subsequently, the middle distributions were considered as 

long term students’ activity noise. The average ventilation noise was reported to be at 40.9(±3.9) 

dBA. The mean values of the second and the third distributions associated with the average 

students’ activity noise levels and instructors’ speech levels, were 41.9(±4.0) and dBA 

50.8(±3.7) dBA respectively. The values obtained for the mean students’ activity noise level and 

speech level were a few dB lower than the results reported in previous studies. They concluded 

that the level differences happened due to the age of the students as well as the inclusion of 

discussion classes in the measurements. Finally, they reported the A-weighted SNRs for different 

measurement locations to vary from 2.1 to 14.8 dBA with the average of 7.3 dBA. At no 

measurement point the calculated SNR, based on their developed method, exceeded 15 dBA. 
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 In 2003, Shield and Dockrell [26] measured the external and internal noise levels of 16 

schools in London area, UK. Overall, they measured 200 locations in these schools, from which 

110 were in occupied classrooms during class time. The occupied noise levels were divided into 

6 categories based on the activities that were taking place during the measurements. To have the 

least interference with the class environment, each activity was measured for two minutes with a 

hand-held sound level meter. Based on their observations, on average the difference between the 

noisiest and the quietest student activity was 20 dBA while the average ambient noise level was 

relatively high and measured to be 56 dBA. 

Sato & Bradley [27] measured the occupied noise levels and teachers speech levels at four 

measurement points in 28 elementary school classrooms in Ottawa, Canada. Using the 

distribution fitting method suggested by Hodgson et al. [25], the continuous sound pressure 

levels of 118 cases of occupied recording were averaged in 200ms intervals and the long term 

SPLs’ frequency distributions  were fitted by two normal distributions representing speech and 

occupied noise levels. The mean A-weighted speech and noise level averaged over 28 

classrooms’ recordings were found to be at 59.5 dBA and 49.1dBA respectively. Based on their 

results, only 2% of the cases met the 15 dBA speech to noise ratio requirement for speech 

communication [10]. In addition, they investigated the Lombard effect
1
 on the teachers’ voice 

levels when the occupied ambient noise level increased. The two were reported to be highly 

correlated.  

                                                 

 

1
 Lombard effect is an unintentional tendency in a speaker, who is talking in a noisy environment, to increase their 

voice level for noise compensation [43] 



9 

 

In 2011 Greenland and Shield [28] acoustically measured the noise levels in 42 open plan 

classrooms in 12 primary schools in England with a focus on activities involving speech. 

Multiples 2-minute recordings at three positions in each open plan class-base were collected. In 

total 561 samples were analyzed and activity sound levels, considering three main speech type 

activities took place during class time, were calculated. The LAeq,2min when one person (teacher 

or students) were talking in the main class-base and while students were working at their tables 

were reported to be 47.4 (±4.8) dBA and 53 (±5.5) dBA respectively. The highest activity 

noise level was associated with students work while moving between the tables at 57 (±4.8) 

dBA. Their results indicated a general trend in increasing the activity noise levels by getting 

farther from the teacher at the front of the room and being closer to the openings to adjacent 

activities at the back of the room. A significant positive correlation between the noise levels of 

the adjacent activities and the average intrusive noise was observed. 

In part of a large-scale in-situ study carried out in 2016 in University of Nebraska, Brill and 

Wang [29] investigated the correlation between occupied and unoccupied noise levels in 110 K-

12 classrooms. The occupied sound level measurements were conducted for 36 hours in two 

school days.  K-means clustering were used to categorize the collected data into occupied and 

unoccupied conditions. The results suggested a significant correlation between the occupied and 

unoccupied sound pressure levels with increase of 0.3 dBA in occupied sound levels for every 1 

dBA increase in unoccupied sound levels. Furthermore, K-means clustering was performed on 

observations associated with occupied conditions in order to identify the instructional activities. 

The sub-clusters obtained were associated with classroom activity sound levels and ventilation 

noise levels. A linear model between the classroom activity sound levels and ventilation noise 
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levels indicated an increase of 0.4 dBA in instructional sound levels for every 1 dBA increase in 

ventilation noise. 

Sala & Rantala [2] investigated the activity noise in 40 classrooms in 14 elementary schools 

in Finland. The occupied sound pressure levels were measured for the whole duration of the 

classes. Results indicated that the noise levels during the lectures were highly dependent on the 

activity which was taking place at the time of the measurement. The averaged LAeq, L10 and L90 

of all the measurements were calculated to be 68 dBA, 55 dBA and 42 dBA respectively. 

In 2017, Peng et al. [30] conducted a study to investigate the teaching speech levels and 

background noise levels in Chinese elementary schools. In total, 46 classrooms in three 

elementary schools were measured during three courses of Chinese, mathematics and English. In 

each classroom, data were collected from the front and back of the rooms for 15 minutes or 

more. The authors then calculated the mean A-weighted teaching SPL and background noise 

level by employing the distribution fitting method proposed by Hodgson et al. [25]. In 59 cases 

that the SRS (Sound Reinforcement System) were not used during the measurements, the mean 

A-weighted background noise level and teacher’s speech level were reported to be 62.8 (±4.7) 

dBA and 72 (±5.5) dBA respectively. The results illustrated a significant correlation between the 

background noise levels and the teachers’ speech levels.  

Following the previous studies in the field, the purpose of this study is to investigate the 

occupied conditions, including occupied ambient noise level, teachers’ speech levels and 

students’ activity levels in classrooms, while active learning methods are practiced, by means of 

unsupervised learning methods. Furthermore, this study aims to investigate the probable 

differences between the activity SPLs in active learning practices and traditional lecturing. For 

the purpose of the study, unsupervised learning methods are employed to predict the sound 
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pressure levels of the activities, and the results are compared with the previous methods 

proposed in similar subjects. The real time SNRs are investigated to evaluate the speech 

communication quality in these new learning spaces. 
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3 CHAPTER 3: METHODOLOGY 

3.1 General Overview 

A measurement setup was developed in order to do the acoustic measurement in occupied 

conditions. The locations of equipment were chosen based on the probable location of teacher 

and students in a classroom. A detailed description of each set up is provided in the following 

section. The long-term occupied sound pressure level measurements were conducted in both 

active learning and traditional classrooms. This chapter describes the methodologies utilized to 

obtain and analyze the data.  

3.2 Occupied Classroom Measurement 

The occupied sound pressure level measurement was conducted in the five active learning 

classrooms and two lecture-style classrooms, located at Sir George William campus, Concordia 

University. From these five active learning classes, four of them were held in three recently 

renovated active learning spaces and 1 took place in a traditional learning space. Traditional 

classrooms were chosen to have the most similarities to the active learning classrooms in terms 

of volumes and capacities. 

Table 1 lists some general characteristics of the measured classrooms such as the volume of 

the room, capacity, materials of the interior surfaces, classroom ID and the location of each 

classroom. 

For both active learning and traditional classrooms, the continuous sound pressure levels 

were measured at four locations in each classroom by using B&K LAN-XI system and 4 ½-inch 

free-filed microphones. All microphones where mounted at 0.5m under the ceilings. The 

microphones locations were determined as; Microphone 1 is placed in above the teacher’s 
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desk. Microphone 2 is placed next to the nearest students’ desk. Microphone 3 is placed in 6 

meter from teacher’s desk. Microphone 4 is placed next to the farthest students’ desk.  

To have the least interfere with the classes’ natural flows, all the microphones were mounted 

0.5m under the ceilings. 

Table 1: General descriptions of measured occupied active learning and traditional classrooms 

 Name 
Classroom 

Layout 

Volume 

(m
3
) 

Dimension  

L×W×H(m) 

#No of 

participant 
Capacity Surface material 

4
 

A
ct

iv
e 

L
ea

rn
in

g
 C

la
ss

es
 

H603 ALC 
323 

13.1×9×2.75 25 65 
ACT, drywall, 

white boards 

H605 ALC 
351 

14.3×9×2.75 59 65 
ACT, drywall, 

white boards 

H654-1 ALC 
636 

18.5×12.5×2.7 46 96 
ACT, drywall, 

smart boards 

H654-2 ALC 
636 

18.5×12.5×2.7 30 96 
ACT, drywall, 

smart boards 

H509 Traditional 
336 13.8×8.8×2.75 

52 84 ACT, drywall, 

T
ra

d
it

io
n
al

 

L
ec

tu
re

s MB.2.270 Traditional 
546 15.6×11.3×3 

67 80 

ACT, drywall, 

acoustical wall 

panels 

H561 Traditional 
326 13.5×8.8×2.75 

56 84 ACT, drywall 

Figure 1 shows the schematic plans of the measured classrooms. In active learning 

classrooms, the teacher’s desk might be in the front or in the middle of the room. As shown in 

Figure 1, whenever teacher’s position was in the middle, the microphones were positioned 

diagonally in the room to follow the same criteria mentioned above. 

Prior to the commencing of the class, the equipment was placed in their locations. In order to 

capture the sound levels from all over the room uniformly, four microphones connected to the 
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LAN-XI (Type 3056) - a multi channel data acquisition hardware-, were mounted from under the 

ceilings of the classrooms. The locations of the microphones in the classrooms are as described 

above. 

 

a) 

 

b) 

Figure 1: a) Teacher’s position in the middle-Active learning classroom H654.b) Teacher’s position 

in the front-Traditional classroom H561 
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For each classroom, the occupied continuous SPLs were monitored for the whole duration of 

the class. The researcher was present during each class to observe and note the activities and 

their durations as well as any occurrences of sudden high level noises and their related sources. 

The researcher recorded the name of the courses, the dates and times of the measurements and 

the numbers of students present during the measurements. Based on the observations, the 

measurement durations were allocated to three activities including: 

 Student individual silent work (e.g. quiz) which is referred to as ‘Ambient’ in this 

document 

 Teachers speaking which is referred to as ‘Lecture’ in this document 

 Student group work which is referred to as ‘Active Learning Activity’ in this 

document 

 Media playing session which is referred to as ‘Active Learning Activity’ in this 

document 

During the measurements LAN-XI Data Acquisition Hardware was connected to a lap top 

running BK Connect software where the audios were captured and stored. The post-processing of 

data was later performed by using BK Connect. For all classrooms, the signal recorded at each 

measurement location was processed. The one-third Constant Percentage Bandwidth (CPB) 

versus time analysis applied on the recorded signals and the one-third octave band un-weighted 

sound pressure levels (SPL), using linear averaging with “slow” time constant, logged in 5s 

intervals, were exported to Microsoft Excel data sheets.  

To collect data in occupied classrooms, an ethics certification acquired from the Concordia 

University Human Research Ethics Committee. The certificate number is 30011510. 
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The analyses of the one-third octave band sound pressure levels were performed using 

MathWorks MATLAB 20167b in order to identify the mean sound levels as well as the duration 

of each activity in the occupied classrooms. Three different clustering algorithms were applied to 

28 sets of 31-dimentional observations (1/3
rd

 octave band frequencies from 16Hz to 16 kHz). 

The  average duration of the recordings was 94       minutes in each classroom and the 

numbers of observations ranged from 606 to 1465 with the average of 1124       . The utilized 

clustering algorithms and their applications in this study are explained in details in the following 

section. 

4.1 Clustering 

Clustering analysis is the most commonly used method in unsupervised learning which aims 

to group the observations in a manner that maximize similarities in the same group and minimize 

similarities between the observations in different groups. Clustering analysis can be classified as 

hard and soft clustering. In hard clustering each observation can only belong to one cluster while 

in soft clustering (also known as fuzzy clustering or soft K-means) an observation can exist in 

multiple clusters at the same time. In soft clustering, a membership weight is assigned to each 

observation. The membership weight of each observation indicates to what degree the 

observation belongs to each cluster [31]. In order to identify the activities in occupied 

classrooms, in this study it is assumed that each observation can only belong to one activity at 

the time. Therefore, to assigns the data collected from the classrooms to each activity, hard 

clustering is implemented by means of three common clustering algorithms, including K-means 

clustering, Gaussian Mixture Model and spectral clustering. The following sections explain the 

theory and fundamentals of each algorithm.   
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4.1.1 K-means Clustering  

Combinatorial cluster analysis is a method to investigate data points and picking up the best 

fit for the optimized target function from all possible data arrangements in a search space. K-

means is considered to be one the most typical among the algorithms of combinatorial cluster 

analysis [32]. MacDueen [33] first proposed K-means method about 50 years ago, a method 

which is still among the ten most important algorithms in data mining on account of its 

simplicity and wide range of application.  

K-means clustering is an unsupervised learning method to partition a set of N-dimensional 

observation into K predefined non-overlapping clusters in a way that minimize the inner-cluster 

variation. [34]. To perform K-means clustering, the number of clusters (K) should be known in 

advance. Two remarkable properties of clustered set of data using K-means clustering that must 

be satisfied are as follow: 

1. Each data should at least belong to one cluster.(For a set of n observations, if 

           denote sets containing indices of the observations in each cluster, then 

                     ) 

2. There is no overlap between any two clusters. It means no data belong to more than 

one cluster. ( If     , then         ) 

If       is defined as a measure to specify within cluster variation of data, the purpose of K-

means clustering is to minimize the summation of       through all K clusters [34]. 

        
       

       

 

   

  (1) 
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The Equation (1) denotes that in order to partition a set of n data sets into K clusters using K-

means clustering, within cluster variations, summed over all K clusters should be minimized. 

Within cluster variation       may be defined in a variety possible ways, but in this study it is 

defined by squared Euclidean distances between observations in each cluster, as by far this is the 

most common method.  

Within cluster variation       for cluster k is defined as the summation of the all pair-wise 

squared Euclidean distances between the data in cluster k, divided by the numbers of data belong 

to that cluster [34]. 

      
 

    
   

 

          

         
  (2) 

By combining Equation (1) and Equation (2), K-means clustering is defined as an 

optimization problem as below: 

        
       

  
 

    
   

 

          

         
 

 

   

  (3) 

Solving Equation (3) is very difficult and time consuming as there are almost    ways of 

partitioning a set of n data into K cluster. A simple way of solving this equation is to write an 

algorithm to find the local optimum for this optimization problem. After specifying the number 

of clusters, the first step in clustering process is to randomly assign an index from 1 to K to each 

of the observations. As the initial random assignment is complete, the iterative process begins. 

This process continues until the solution converges to a local optimum and the cluster indices 

stop changing. In this process, the Equation (2) is simplified into Equation (4). 
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  (4) 

Where       
 

    
        

  is the mean for feature j in cluster Ck [34]. 

 The algorithm results in assigning observations in to K distinct clusters. Every observation 

will have a cluster assignment from 1 to K and every kth 
cluster will have observations assigned 

to it. 

4.1.1.1 Implementation of K-means Clustering 

In this study, K-means clustering algorithm was applied to 28 sets of 31- dimensional (one-

third octave band) time-averaged sound pressure levels in 5s intervals. Clustering was performed 

on data obtained from all four measurement locations in each classroom separately in order to 

identify the mean A-weighted sound pressure level of each activity during class time. Cluster 

centriods which represent the A-weighted sound pressure levels of the activities are then 

calculated by acoustical averaging of the observations in each cluster. 

The analyses were performed in MATLAB 2017 using Kmeans function. Initial centriods 

were chosen using the k-means++ algorithm in MATLAB 2017. Kmeans++ chooses K 

centroids starting positions based on heuristic instead of random assignments. For this purpose, 

the first cluster center is chosen randomly from the data points that are being clustered, after 

which, each subsequent cluster center is chosen from the remaining data points with probability 

proportional to its squared distance from the closest existing cluster center. Applying 

kmeans++ avoids the sometimes poor clustering found by the standard K-means algorithm and 

improves the algorithm and outperforms methods that use random seeding [35]. 
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4.1.2 Gaussian Mixture Model 

While using a clustering method, the focus might be on the population, from which a set of 

data is clustered, rather than the actual set of data itself. This population can be defined as a sum 

of statistical models which describe the observations in each cluster [32]. 

A mixture model is a probabilistic model that illustrates the presence of clusters within a 

population. If K distributions with density functions               are mixed in proportions  

       , the density function of the mixture distribution is defined as given by the Equation (5) 

[36]. 

        

 

   

      (5) 

A Gaussian Mixture Model (GMM) is defined as a parametric density function, consists of 

finites numbers of weighted Gaussian subpopulations densities. It is defined as shown in 

Equation (6). 

          

 

   

               (6) 

In the equation above,   is N-dimensional continuous-valued data set. For         when 

K is the numbers of clusters,            are the mixture proportion, mean value and the 

covariance matrix of the component k respectively. The                 , represents the 

complete set of parameters for a mixture model with K components. 

                  illustrates the Gaussian densities of the components for        ,  and  

can be calculated as given in Equation (7) [36]. 
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          (7) 

4.1.2.1 Expectation Maximization (EM) 

In order to solve the Equation (7), an optimization method should be implemented to find the 

parameters, (i.e.   ,      ) of a mixture model which maximize the likelihood of the observed 

data. To estimate the  parameters of a Gaussian Mixture Model(GMM) that maximize the 

likelihood of the observations, a common method is to use EM algorithm, a maximum likelihood 

method developed by Dempster et al. for a set of incomplete data [36], [32]. 

In a mixture model, the assumption is each vector    is generated by a single component k. 

the uncertainty about which of the K component generates vector    is given by the Equation (8) 

which reflects the “membership weight” of data vector    [32]. 

                  
               

                
 
   

                     
(8) 

The EM (Expectation-Maximization) algorithm is an iterative algorithm that starts from 

some initial estimate of mixture model parameters          and then proceeds to iteratively 

update them until convergence is detected. Iterations consist of two steps called E-step and M-

step as defined in the following.  

E-Step: Denote the current parameter values. Compute membership weights    , using the 

Equation (8), for all data vectors           and all mixture components      . Note that 

for each data vector   , the membership weights are defined such that        
   . This yields 

an N × K matrix of membership weights, where each of the rows sums to 1.  
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M-Step: By using the membership weights and the data, new parameter values are 

calculated. The effective number of data points assigned to component k is defined as    

    
 
   , i.e. the sum of the membership weights for the k

th
 component. 

The new parameters are calculated based on    ; 

  
     

  

 
              

(9 

  
     

 

  
     

 

   

                
(10 

And; 

  
     

 

  
     

 

   

       
          

                

(11 

After computing all of the new parameters, the M-step is complete and the iteration of the E-

step and M-step and updating the parameters continue, till convergence [36]. 

4.1.2.2 Implementation of GMM Clustering 

In this study, GMM clustering algorithm was applied to 28 sets of A-weighted 31- 

dimensional (one-third octave band) time-averaged sound pressure levels in 5s intervals. The 

analyses were performed in MATLAB 2017 by using fitgmdist function. First the optimal 

numbers of clusters is calculated by using Silhouette value. Silhouette measure is later explained 

in this document in details. The initial labels of the observations are assigned by using Kmean++ 

algorithm. The covariance type for each set of data was determined to be full and unshared 
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among the clusters. The maximum numbers of iterations for the Expectation Maximization (EM) 

steps are set at 1000. Figure 2 illustrates the flowchart of GMM employed in this study. 

 

Figure 2: flowchart of GMM algorithm in order to solve the GMM optimization problem plus estimation of the initial values 

for number of clusters (K) by using Silhouette values. 
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4.1.3 Spectral Clustering  

Spectral clustering is referred to a class of techniques for clustering that are based on pair-

wise similarity relations among data points. In spectral clustering the data clustering is treated as 

a graph partitioning problem while no assumption is made on the form of the clusters. The 

method makes use of dimension reduction of data by employing Eigenvalues and Eigenvectors 

of the graph Laplacian [32]. Prior to explaining the algorithm, the mathematical objects used by 

spectral clustering are introduced briefly. 

The ultimate goal of clustering is to divide data into several clusters in a way that similar 

points are in the same cluster and dissimilar points are in different clusters. For a given set of n 

data points          , where    is a N-dimensional row vector, data set can be represented as 

similarity graph          ; where   is the set of vertices and vertex      represents the 

row vector   ,   is a vector representing the edges between the vertices and W is the generalized 

adjacency matrix. In this study, it is assumed that   is a weighted graph where the edge     , 

between two vertices    and     carries a non-negative weight       . The entry     indicates 

the similarity between vertices    and     [32], [37]. 

There are several popular methods to construct a similarity graph for a given set         , of 

data, in order to model the local neighborhood relationships between the data points. In this 

study, the similarity graph is formed by using The fully connected graph method [37] which is 

explained in the following. 

The fully connected graph: similarity graph is constructed by connecting all points with 

positive similarity to each other, and weight all edges with     by using a similarity function. A 

common function to construct such a similarity matrix is the Gaussian kernel similarity function 
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which is defined as Equation (12), where   is a user-defined parameter that controls the width 

of the neighborhoods. In this study, by trial and error,   is considered as the difference between 

the maximum and minimum A-weighted equivalent sound pressure levels averaged in 5s 

intervals, at their corresponding measurement locations. 

          
         

 

   
) 

(12) 

The degree matrix   of graph   is defined as the diagonal matrix with the degrees         , 

on the diagonal and 0 value for off-diagonal elements [37]. 

If graph         is an udirected weighted graph and             and         ; 

          are its sets of vertices and edges respectively, each     which is the edge between 

vertices    and    carries a non-negative weight      . The adjacency matrix for graph G is 

defined as                       . Since the graph is undirected, for each                . 

If there is no edge between vertices    and   , then           [32], [37]. 

For graph        , the degree of a vertex      is defined as shown in Equation (13). 

       

 

   

 
(13) 

The degree matrix   of graph   is defined as the diagonal matrix with the degrees         , 

on the diagonal and 0 value on off-diagonal elements [37].  

Graph cut is removing edges connecting two parts of the graph   in order to partition the 

graph         into two disjoint sets of connected vertices   and   in a way that; 
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(14 

For two disjoint clusters (sub-graph)   and   the following terms are defined: 

– The sum of weight connections between two clusters (Equation (15)) 

             

       

 
(15) 

–The sum of weight connections within cluster A (Equation (12)): 

             

       

 
(16) 

– The total weights of edges originating from cluster (Equation (17)): 

          
   

 
(17) 

The objective of Min-Cut method is to find two sets (clusters) A and B which have the 

minimum weight sum connections. 

                 (18 

It is easy to prove that such equation can be written as: 

        
 

 
         

(19) 

      is the indicator vector of vertices belonging to clusters A and B such that: 
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(20) 

By relaxing the indicator vector   to real values, it is proved that, the solution minimizing the 

objective function will be equivalent to solve the following equation : 

          (21) 

Graph Laplacian matrices are essential measures to portion a graph, based on different cut 

methods. In this study the un-normalized graph Laplacian is utilized [37]. 

The un-normalized graph Laplacian matrix is defined as: 

      (22) 

Proposition 1: The matrix   satisfies the following properties: 

1- For every vector     : 

     
 

 
           

 

 

     

 
(23) 

2-   is a symmetric matrix, positive and semi-definite. 

3- The smallest Eigenvalue of   is   , corresponds to a constant eigenvector with elements of 

1. 

4-   has   non-negative, real-valued eigenvalues              

Proposition 2: Number of connected components and the spectrum of   

For undirected graph        ; with non-negative weights, the multiplicity   of the 

eigenvalue   of   equals the number of connected components            in the graph. The 

Eigenspace of Eigenvalue 0 is spanned by the indicator vectors          of the components. 
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4.1.3.1 Implementation of Spectral Clustering Algorithm 

In this study, spectral clustering algorithm was applied to 28 sets of A-weighted 31- 

dimensional (one-third octave band) time-averaged sound pressure levels in 5s intervals. 

The algorithm used on this study is summarized bellow [37]; 

Input: Similarity matrix W        , in order to partition data into K number of clusters. 

• Construct a fully connected similarity graph by using the Gaussian Kernel density function 

while W is its weighted adjacency matrix. 

• Compute the un-normalized Laplacian L by using Equation (22). 

• Compute the first k eigenvectors         of L while V        is the matrix containing the 

vectors         as columns. 

• For                     be the vector corresponding to the     row of V. 

• Cluster the points (  ) in    with the k-means algorithm into clusters        . 

Output: Clusters           with              . 

4.2 Optimal Number of Clusters 

To have and initial evaluation of the proper numbers of clusters, Silhouette measure [38] was 

employed. Silhouette is a graphical method to evaluate the within cluster consistency by looking 

at the tightness and separation of observations within their clusters. The average Silhouette width 

is among the common measures has been used to decide about the optimal numbers of clusters 

for clustering analysis in which the proximities are in ratio scale (as in cases of Euclidean 

distances).  
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To construct Silhouette for n observation divided into K>1 clusters, for any observation 

     when A is the cluster that i is assigned to and contains other observations rather than i; 

    : Average dissimilarity between i and other observations in A 

If C is any other cluster which is different from A; 

      : Represent the average dissimilarity between i and all other observations in C. in 

another word, it is the average of all lines going from i to C. 

For all clusters      the smallest average distance        is represented by      as shown in 

Equation (24). 

                       (24) 

Accordingly, the closest neighboring cluster of each observation which is also, the second-

best option for that observation, is determined. The term       is calculated by Equation (25). 

     
         

              
 (25) 

As s(i) get closer to 1, the within cluster dissimilarity a(i) is much smaller than b(i), meaning 

observation i is well-clustered. For different K, the average of s(i)s of all observations can be 

considered as an indicator of the “appropriate’ number of clusters.  

In this study, for        the K with the largest averaged Silhouette value is calculated 

for all measurement locations in each room. K obtained this way might be different among 

measurement locations in a classroom. Because it is expected that the number of activities 

remains the same among different measurement locations, the maximum K between four 

measurement locations was taken as the initial estimate for the appropriate number of clusters.  



30 

 

4.3 Identification of Clusters 

The activities noted by the researcher during the measurement were generalized into three 

categories, including ‘Lecture’, ‘Ambient’ and ‘Active Learning Activity’.  

Table 2 explains all the possible combinations of these three activities based on number of K; 

Table 2: possible combinations of the defined 3 activities, including ‘Lecture’, ‘Ambient’ and ‘Active 

Learning Activity’, based on calculated optimal K 

#K Activities 

2 
Ambient- Lecture 

Lecture- Active Learning Activity 

3 
Ambient- Lecture- Active Learning   Activity 

Lecture- Active Learning Activity 1 - Active Learning Activity 2 

4 Ambient- Lecture- Active Learning Activity1 - Active Learning Activity 1 

Criteria and assumptions employed to assign clusters to activities are defined in the 

following, based on the results of the previous studies [25], [39], [40], [9], [11]. The main 

assumptions are; 

1- ‘Lecture’ is always one of the activities. 

2- ‘Lecture’ and ‘Active Learning Activity’ mean SPLs are always higher than ‘Ambient’ 

noise levels. 

3- ‘Lecture’ is more likely to be the most frequent activity taking place which takes the 

largest portion of class duration comparing to other activities [25],[39]. 

The Criteria used are: 

1- Assuming the teacher’ location is in the front and students are uniformly distributed in the 

classroom, it is expected to observe drops in mean ‘Lecture’ SPL from the front to the back of 
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the room while ‘Ambient’ noise levels and ‘Active Learning Activity’ sound pressure levels 

should be more uniform over the four microphone locations in the room.  

2- Based on the averaged standard speech frequency spectra developed by Byrne et al. [40], 

and the results of a study by Weisser et al. [41] on the effect of noise on real time speech 

spectrums, the minimum frequency roll-off (or slope) for the speech spectra, at maximum 1.5m 

from the speaker, from 630Hz to 16KHz, is determined to be -15 dB/decade
2
. 

Table 3: Averaged standard speech frequency spectra[40] 

Fr [Hz] Male Female Combined 

630 60.6 60.4 60.5 

800 55.7 58 56.8 

1000 53.1 54.3 53.7 

1250 53.7 52.3 53 

1600 52.3 51.7 52 

2000 48.7 48.8 48.7 

2500 48.9 47.3 48.1 

3150 47 46.7 46.8 

4000 46 45.3 45.6 

5000 44.4 44.6 44.5 

6300 43.3 45.2 44.3 

8000 42.4 44.9 43.7 

10 000 41.9 45 43.4 

12 500 39.8 42.8 41.3 

16 000 38.9 37.8 40.7 

                                                 

 

2
 The unit to measure frequency ratio in logarithmic scale in called ‘decade’. dB/decade is defined as the unit of 

frequency roll-off.  
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Figure 3 : Standard speech spectrum frequency roll-off from 630Hz to 16 KHz for female speakers 

To assign clusters obtained from the results of the algorithms, for each classroom, the 

frequency spectrums of the clusters at measurement location1 (teachers’ desk) and measurement 

location 2 (closest students’ desk at 1.2m to 1.5m away from teacher’s desk), the clustered time 

history of the continuous un-weighted sound pressure levels averaged in 5s intervals and trends 

of changes in cluster SPLs from measurement location 1 to measurement location 4 are 

investigated. Figure 4 indicates the decision chart used to assign the activities, mainly ‘Lecture’ 

and ’Ambient’, into clusters. The implementation of the chart is explained in detail in the next 

chapter. 

  

Figure 4: Conditions and criteria that are considered for each cluster to be associated to an activity 

for different possible number of clusters 
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4.4 Clustering Performance Evaluation 

Typical objective functions in clustering are to attain high inter-cluster and low intra-cluster 

similarities. This is an internal criterion for the quality of a clustering, but good scores on an 

internal criterion do not necessarily translate into good effectiveness in an application. 

External criterion evaluates how well the clustering matches the standard classes. Setting of 

classes in an evaluation benchmark is ideally produced by human judges with a good level of 

inter-judge agreement. In this study, as the actual clustering index for each observation is known 

by the researcher, three external criterions, including Accuracy, Precision and Recall are used to 

evaluate the performance of the algorithms. The following explains these measures in detail. 

In machine learning, a confusion matrix is a main source to evaluate the performance of a 

clustering algorithm. In the common configuration of a confusion matrix, the rows and the 

columns represent the predicted and the actual classes respectively. Table 4 illustrates the 

common configuration of confusion matrices. 

Table 4: An example of a common confusion matrix 

  
Actual Classes 

  
Positive Negative 

P
re

d
ic

te
d

 C
la

ss
es

 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

In general, two observations are in the same group if and only if they are similar. A true 

positive (TP) decision assigns two similar observations to the same cluster while a true negative 

(TN) decision assigns two dissimilar observations to different clusters. There are two types of 
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errors to be considered in cluster evaluation. A (FP) decision assigns two dissimilar observations 

to the same cluster and a (FN) decision assigns two similar observations to different clusters. 

The Accuracy measures the overall percentage of decisions that are correct. It is calculated as 

the ratio of total number of decisions that correctly assigned similar observations to the same 

cluster (TP) and dissimilar observations to different clusters (TP) to the total number of 

assignments. Equation Error! Reference source not found.) indicates the formula to calculate 

he accuracy [42]. 

    
     

           
 

(26) 

Precision is calculated by dividing the correctly assigned decisions (TP) by the total of 

positive counts. Recall which is also known as Sensitivity is calculated by dividing the true 

positive assignments (TR) by the total number of true positive (TP) and incorrectly considered 

negative decisions (FN). Recall and Precision formulas are indicated in Equation ((27) [42]. 

          
  

     
 

       
  

     
 

 

(27) 

Table 5 summarizes the methods of collecting and analyzing the data in to 7 steps. 

Table 5: The summarized methods of collecting and analyzing the data 

Audio Measurement & Post processing 
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1- Audio recordings are collected from 4 measurement locations in each 

classrooms and the activities which were taking place during the measurements 

were noted by the researcher in 5 seconds intervals  

2- Post processing is performed on the audio files of each measurement location by 

using BK-Connect software and 1/3 octave band sound pressure levels logged in 

5 seconds intervals were exported to Excel data sheets (31 dimensional data sets 

ranged from 660 to 1500 observations in each set) 

Clustering Analysis 

3- The optimal numbers of clusters were evaluated by using GMM and Silhouette 

values. 1/3 octave band sound pressure levels stored in Excel sheets are  used as 

inputs of the algorithm   

4- 1/3 octave band sound pressure levels stored in Excel sheets and the optimal 

number of cluster for each classrooms are  used as inputs of GMM, KM and 

Spectral clustering  

5- Indices corresponding to the observation are obtained by each clustering method 

and observations in each cluster are acoustically averaged in order to calculate 

the mean value of each cluster 

6- By using the decision chart developed in this study, clusters in each classroom 

are associated with the activities (including ‘Ambient’, ‘Lecture’, ‘Active 

Learning Activity’)  
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Clustering Performance Evaluation 

7- Based on the actual labels of the observations noted by the researcher during the 

measurement the performance of each algorithm is evaluated 
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5 CHAPTER 4: RESULTS & DISCUSSION 

5.1 Long-term Sound Pressure Levels of Classroom Activities 

Table 6 provides the mean A-weighted activities sound pressure levels for each classroom, 

based on the labels assigned to each observation by the researcher during the measurements. For 

each classroom, the SPLs are averaged acoustically over four measurement locations. 

Table 6: the mean A-weighted activities’ sound pressure levels for each classroom, based on the 

labels assigned to each observation 

Mean A-weighted SPL [dBA] H509 H603 H605 H654-1 H654-2 H561 MB2-270 

Ambient noise 49.1 46.8 45.7 47.5 45.0 47.5 46.3 

Lecture (including Q/A 

sessions) 

56.9 62.6 61.9 57.4 55.9 62.2 60.9 

Active learning activity1 

(Group talk) 

63.1 56.5 70.2 59.5 57.6 - - 

Active learning activity2 

(Media) 

67.3 - 73.2 - - - - 

LAeq (equivalent continuous 

sound pressure level) 
64.5 61.4 68.5 57.4 56.1 62 63.8 

L10 68.6 62.2 71.8 60.1 60.6 65.4 67.4 

L90 45.9 44.9 44.7 45.3 49.3 43.6 44.4 

Speech to Noise Ratio 

(SNR) 
7.8 15.8 16.2 9.9 10.5 14.7 14.6 
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The mean A-weighted ‘Ambient’ noise level for the classrooms included in the 

measurements is 46.8 (±0.7) dBA and no significant difference is observed between the ambient 

noise levels in active learning and traditional lecture spaces. The mean A-weighted ‘Lecture’ 

SPL in traditional classrooms and active learning classrooms are 61.4 (±1.2) dBA and 59.8 

(±3.1) dBA respectively. The mean A-weighted ‘Active Learning Activity’ is measured to be 

63.9 (±4.2) dBA. The highest and lowest mean A-weighted ‘Active Learning Activities’ are 57.5 

dBA and 73.2 dBA respectively.  

By comparing the mean A-weighted equivalent continuous sound pressure level in MB2-270 

(63.8 dBA) and with H605 (68.5 dBA),(considering there is no significant difference between 

‘Ambient’ noise levels and ‘Lecture’ speech levels in these two spaces and the numbers os 

students in both classes were almost the same), one may conclude that the difference between 

their equivalent A-weighted sound pressure levels is due to students’ activities. Meaning, the 

active Learning classrooms experience higher sound pressure levels compared to traditional 

classrooms. More samples need to be investigated in order to draw stronger conclusions on this 

matter. 

The Speech to Noise Ratios (SNRs), averaged over measurement locations, in each 

classroom, indicate that four out of seven measured classrooms fulfill the 15 dB requirement [8] 

for speech communication. All four classrooms have been recently renovated. However, by 

investigating the SNRs at each measurement location, it is observed that only H605 met the 

requirements for SNR at the back of the classroom. H509 has the highest ‘Ambient’ noise level 

and the lowest speech to noise ratio at all measurement locations among the measured 

classrooms. During the measurement the researcher, who was sitting at the back of the room, 
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could clearly hear the voice of the teacher lecturing in the next door classroom. Table 7 provides 

the SNRs calculated at each measurement location for all the classrooms. 

 

Table 7: SNRs calculated at each measurement location for the measured classrooms 

Mean A-weighted SNR 

for each cluster 

Actual Result 

Teacher's desk Closest Student desk d = 6m Farthest Student desk 

H509 10.7 7.8 4.7 3.6 

H603 17.9 15.7 13.3 13.6 

H605 17.8 15.5 15.7 15.3 

H654(Han) 9.9 11.9 10.5 5.8 

H654(LYN) 12.7 12.2 9.1 8.9 

H561 18.6 17.6 13.2 9.3 

MB2-270 16.0 15.3 14.0 12.9 

In classroom H654 which is a large space, during both of the measurements, the teachers 

were moving in the classroom in order to be better heard by the students. Accordingly the SNR 

obtained in these two classes are likely to be underestimated at measurement location 1 and 2. 

Attaching a microphone to teachers during the measurements may help resolve this issue,  

A linear regression analysis is performed to investigate the potential correlations between the 

number of students per square meters of the classrooms (density of population) and the mean A-

weighted activity sound pressure levels. Although the lack of sufficient samples makes it 

difficult to have a firm conclusion on this matter, the results obtained (Figure 5) suggest that the 

‘Active Learning Activity’ sound pressure levels (Group work) in active learning classrooms are 

highly correlated (R
2
 = 0.72) to the number of students per square meter. In addition, There is a 

correlation between the ‘Lecture’ speech levels and number of students per square meter in all 
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classrooms involved in the measurements (R
2
 = 0.42) while for occupied ‘Ambient’ noise levels, 

no significant correlation is observed between the two terms. More samples need to be 

investigated in order to have a more reliable conclusion on this matter. 

  

Figure 5: Regression analysis between the ‘Active Learning Activity’ sound pressure levels [dBA], 

‘Lecture’ speech levels [dBA], ‘Ambient’ noise levels and the number of students per square meter 

present during the measurements 

In the next step, to perform the clustering analysis, the initial estimations of the number of 

clusters in each classroom were made by using the maximum number of clusters proposed by 
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Silhouette values over the four measurement locations. 

 

MB2-270 

Figure 6 illustrates the number of clusters obtained by using Silhouette criteria over four 

measurement Locations in each classroom. 

. 

 

a) H603 

 

b) H509 
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c) H605 

 

d) H654-1 

 

e) H654-2 

 

f) H561 

 

g) MB2-270 
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Figure 6: Maximum optimal number of clusters over four measurement locations, evaluated by 

Silhouette values for each classroom. 

Based on the results obtained, Silhouette failed to identify the true number of clusters in 

classroom H509 and H654-1. The number of clusters suggested by Silhouette values for these 

two classrooms is 2 while the true number of clusters for both classrooms is 3. 

According to Figure 6, the final number of clusters (k) chosen to perform clustering on the 

data obtained from each classroom is illustrated in Table 8 . In a traditional lecture classroom, 

i.e. classroom H561 and MB2-270, no ‘Active Learning Activity’ is expected; hence in these 

spaces the number of clusters is determined to be 2 (this assumption is confirmed with the 

number of k calculated by using Silhouette values for these spaces). 

Table 8: Number of clusters (k) considered to perform clustering for each classroom by using 

Silhouette values 

 H509 H603 H605 H654-1 H654-2 H561 MB2-270 

Number of Clusters (k) 2 3 4 2 2 2 2 

Table 9 provides the mean A-weighted sound pressure levels of the activities in each 

classroom, calculated by using 3 clustering methods, including K-means clustering Gaussian 

Mixture model and Spectral clustering. 

Table 9: A-weighted mean sound pressure levels of the clusters obtained from algorithm analysis in 

each classroom  

Mean A-weighted SPL [dBA] H509 H603 H605 H654-1 H654-2 H561 MB2-270 

K-means Clustering k1 52.5 46.6 47.4 48.1 52.1 50.3 49.3 

 k2 66.8 56.6 58.6 59.9 59.2 64.3 62.9 
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 k3 - 64.0 69.2 - - - - 

 k4 - - 72.9 - - - - 

GMM  Clustering k1 52.5 46.5 46.5 46.8 52.0 49.1 47.3 

 k2 66.8 56.3 59.2 58.8 59.1 63.4 62.4 

 k3 - 63.1 68.5 - - - - 

 k4 - - 72.8 - - - - 

Spectral Clustering k1 52.2 46.3 46.3 47.5 52.2 49.4 48.9 

 k2 66.8 55.6 57.0 59.6 59.2 64.0 62.8 

 k3 - 63.3 67.1 - - - - 

 k4 - - 72.0 - - - - 

Among three algorithms, K-means clustering is the most convenient to be implemented while 

there were limitations in application of GMM and spectral clustering. One of the initial 

assumptions was that the covariance matrices of the GMM components were full. However, it 

was observed that this assumption did not necessarily lead to consistent clusters at some 

measurement locations. Therefore, for classrooms H654-2 and H509 the covariance matrices 

were determined to be diagonal. Figure 7 provides an example of this, by comparing the results 

obtained for H509 when the covariance matrices of the clusters are full to when they 

are diagonal. 
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a) Location 1, Full covariance 

 

b) Location 2, Full covariance 

 

c) Location 3, Full covariance 

 

d) Location 1, Diagonal covariance 

 

e) Location 2, Diagonal covariance 

 

f) Location 3, Diagonal covariance 

 Figure 7 : Time history of long term A-weighted sound pressure levels averaged in 5s interval for 

classroom H509, a) , b) and c) at measurement location 1, 2 and 3 respectively , obtained by using GMM 

when  covariance matrices of the clusters are considered to be full, d), e) and f) when covariance 

matrices of the clusters are considered to be diagonal. 

Using spectral clustering analysis, in classrooms H654-1 and H654-2, the   values that 

control the width of the neighborhoods, were determined to be equal to two times the difference 

between the maximum and minimum A-weighted equivalent sound pressure level averaged in 5s 

intervals.    

5.2 Identification of Activities 

By using the developed decision chart (Figure 4), the clusters obtained from the algorithms 

are associated with the activities defined in methodology. The efficiency of employing 
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algorithms along with the developed decision chart in identifying the activities and their 

corresponding sound pressure levels and durations, is then evaluated by using three evaluation 

measures.  

The results of GMM algorithm for all the classrooms are investigated. For classroom H509, 

the time history of the equivalent un-weighted sound pressure levels, averaged in 5s intervals and 

the frequency spectrums of the clusters at measurement locations 1 and 2 are illustrated in Figure 

8. Moreover, it indicates the trends of changes in cluster SPLs over different measurement 

locations. At measurement location 1, which was above the teacher’s desk, the frequency roll-

offs for k1 and k2 are calculated to be -18 dB/decade and -24 dB/decade respectively. At 

measurement location 2 above the closest students’ desk, those values were calculated to be -

16.4dB/decade and -24.7dB/decade respectively. Accordingly, both k1 and k2 indicate the 

characteristics of a speech type activities. Based on Figure 8, k1 illustrates a drop of 3.5 dBA 

while k2 indicates a more uniform pattern with a slight rise at measurement location 2. 

Considering that k1 is the most frequent activity with the lowest mean sound pressure level over 

measurement locations, ‘Lecture’ is assigned to k1 and ‘Active Learning activity’ is assigned to 

k2. It is expected that the activities remain the same in the entire classroom and subsequently 

through different measurement locations; hence, for measurement location 3 and 4, ‘Lecture’ is 

assigned to k1 and ‘Active Learning Activity’ is assigned to k2 as well. 
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a) b) 

c) d) 

 

e) 
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Figure 8: Classroom H-509 a) The clustering results of the long-term sound pressure levels at 

measurement location 1. b) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at 

measurement location 1. c) The clustering results of the long-term sound pressure levels at measurement 

location 1. d) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at measurement 

location 1. e) The trends of changes in A-weighted activity sound pressure levels over different 

measurement locations. 

 For classroom H603, the continuous equivalent un-weighted sound pressure levels in 5s 

intervals and the frequency spectrums of the clusters at measurement locations 1 and 2 are 

illustrated in Figure 9. At measurement locations 1 and 2, the frequency roll-offs from 630 Hz to 

16 kHz for k1 are -14 dB/decade and -13.9 dB/decade respectively. Moreover, k1 has the lowest 

mean sound pressure level over different measurement locations. Based on Figure 9 k1 

illustrates more of a uniform pattern over different measurement positions. Accordingly, 

‘Ambient’ is assigned to k1. At measurement locations 1 and 2, cluster k2 and k3 indicate the 

characteristic of a speech type activity with frequency spectrum roll-offs greater than -15 

dB/decade. Considering that cluster 3 is the most frequent activity, ‘Lecture’ is assigned to k3. 

Subsequently ‘Active Learning Activity; is assigned to k2.  

 

a) 

 

b) 
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c) 

 

d) 

 

e) 

Figure 9: Classroom H-603 a) The clustering results of the long-term sound pressure levels at 

measurement location 1. b) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at 

measurement location 1. c) The clustering results of the long-term sound pressure levels at measurement 

location 1. d) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at measurement 

location 1. e) The trends of changes in A-weighted activity sound pressure levels over different 

measurement locations. 

In classroom H605 (Figure 10), at measurement location 1 and 2, the frequency roll-offs 

from 630 Hz to 16 kHz for k1 are -14.8 dB/decade and -14.5dB/decade respectively. k1 has the 

lowest mean sound pressure level and illustrates more of a uniform pattern over different 

measurement locations. Accordingly, ‘Ambient’ is assigned to k1. At measurement locations 1 
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and 2, cluster k2 indicates the characteristic of a speech type activity with frequency spectrum 

roll-offs greater than -15 dB/decade. Considering that k2 is the most frequent activity, ‘Lecture’ 

is assigned to k2. Subsequently ‘Active Learning Activity is assigned to k3 and k4. 

 

 

a) 

 

b) 

 

c) 

 

d) 
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e) 

Figure 10: Classroom H-605 a) The clustering results of the long-term sound pressure levels at 

measurement location 1. b) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at 

measurement location 1. c) The clustering results of the long-term sound pressure levels at measurement 

location 1. d) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at measurement 

location 1. e) The trends of changes in A-weighted activity sound pressure levels over different 

measurement locations. 

Figure 11 indicates that in classroom H564-1, the frequency roll-offs from 630 Hz to 16 kHz 

for k1 are -8.9 dB/decade and -11.3 dB/decade respectively. In addition, k1 does not illustrate 

sound level drops through measurement locations; hence ‘Ambient’ is assigned to k1. Based on 

assumption1, ‘Lecture’ is assigned to k2. 

Considering Figure 11, the frequency roll-offs from 630 Hz to 16 kHz for k2 at measurement 

location 1 and 2 are -20.7 dB/decade and -21.7 dB/decade respectively which indicate the 

characteristic of a speech type activity. k2 is the most frequent activity with sound level drops 

over measurement locations. These two observations confirm the assignment of ‘Lecture’ to k2.  
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a) 

 

b) 

 

c) 

 

d) 

  

e) 



53 

 

Figure 11: Classroom H-654-1 a) The clustering results of the long-term sound pressure levels at 

measurement location 1. b) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at 

measurement location 1. c) The clustering results of the long-term sound pressure levels at measurement 

location 1. d) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at measurement 

location 1. e) The trends of changes in A-weighted activity sound pressure levels over different 

measurement locations. 

In classroom H654-2, the frequency roll-offs from 630 Hz to 16 kHz for k1 are -17.5 

dB/decade and -16.8 dB/decade respectively (Figure 12). The frequency roll-offs from 630 Hz to 

16 kHz for k2 are -20.2 dB/decade and -20.0 dB/decade respectively. Although none of the two 

clusters indicate  meaningful sound level drops over measurement locations, because k2 is the 

most frequent activity by considering assumption 1 and 3, ‘Lecture’ is assigned to k2. 

Subsequently, ‘Active Learning Activity’ is assigned to k1. 

 

a) 

 

 

b) 
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c) 

 

d 

 

c) 

Figure 12: Classroom H-654-2 a) The clustering results of the long-term sound pressure levels at 

measurement location 1. b) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at 

measurement location 1. c) The clustering results of the long-term sound pressure levels at measurement 

location 1. d) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at measurement 

location 1. e) The trends of changes in A-weighted activity sound pressure levels over different 

measurement locations. 

In traditional lecture classrooms, the number of clusters were determined to be k=2. For these 

spaces, k1, which is the lowest activity, represents the ambient noise levels and k2 is associated 

with speech (i.e. ‘Lecture’ SPLs). These assumptions are aligned with the optimal number of 

clusters obtained by applying Silhouette measure for traditional lecture classes.   
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Figure 13 illustrates that in classroom H561, at measurement location 1 and 2, the frequency 

roll-offs from 630 Hz to 16 kHz for k1 are -16.8 dB/decade and -14.3 dB/decade. This suggests 

that the algorithm failed to detect ‘Ambient’ at measurement location 1.  For measurement 

location 2 to 4, based on Figure 13, ‘Lecture’ is assigned to k2. Subsequently, ‘Ambient’ is 

assigned to k1.  

 

 

a) 

 

b) 

 

c) 

 

d) 
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e) 

Figure 13: Classroom H-561 a) The clustering results of the long-term sound pressure levels at 

measurement location 1. b) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at 

measurement location 1. c) The clustering results of the long-term sound pressure levels at measurement 

location 1. d) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at measurement 

location 1. e) The trends of changes in A-weighted activity sound pressure levels over different 

measurement locations. 

In classroom MB2-270, results from Figure 14 indicate that at measurement location 1 and 2, 

the frequency roll-offs from 630 Hz to 16 kHz for k1 are                and          

       respectively, hence ‘Ambient’ is assigned to k1. Subsequently, ‘Lecture’ is assigned to 

k2.  
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a) 

 

b) 

 

d) 

 

e) 

 

e) 
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Figure 14: Classroom MB2-270 a) The clustering results of the long-term sound pressure levels at 

measurement location 1. b) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at 

measurement location 1. c) The clustering results of the long-term sound pressure levels at measurement 

location 1. d) The frequency spectrum roll-offs from 630 Hz to 16 kHz, for the clusters at measurement 

location 1. e) The trends of changes in A-weighted activity sound pressure levels over different 

measurement locations. 

By following the same procedure for the results obtained from K-means clustering and 

spectral clustering algorithms, activities assigned to clusters in all classrooms. To avoid 

repetition, the process is not explained. The detail information about the implementation of the 

decision chart for all three algorithms is provided in Appendix. 

The finalized activities considered in each classroom, based on explanations above, are 

summarized in Table 10. 

Table 10: Activities assigned to clusters in each classroom 

 H509 H603 H605 H654-1 H654-2 H561 MB2-270 

k1 Lecture Ambient Ambient Ambient Active Learning Ambient Ambient 

k2 Active Learning Active Learning Lecture Lecture Lecture Lecture Lecture 

k3 - Lecture Active Learning - - - - 

k4 - - Active Learning - - - - 

5.3 Performance Evaluation of the Algorithms and the Decision Chart 

To compare the performance of the clustering algorithms on estimating the long term sound 

pressure levels of the activities at each measurement location, linear regression analysis was 

performed between the actual mean A-weighted activity levels (as indicated in Table 6). Figure 
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15 visualizes the regression analysis between the results obtained from the algorithms and the 

actual mean A-weighted sound pressure levels of the activities.  

 

Figure 15: Linear regression between the actual mean A-weighted activity levels and calculated 

mean A-weighted sound levels of the clusters 

Based on the results of the analysis, GMM results with the highest coefficient of 

determination (R
2
=0.9204) predicts the mean activity levels better than the other two algorithms. 

K-means clustering performed slightly worse (R
2
=0.9072) followed by spectral clustering results 

with the coefficient of determination to be R
2
=0.8242.   

The performance of the algorithms and the developed decision criteria in identifying the 

activities in measured classrooms were then evaluated by calculating the Accuracy (ACC), 

Precision (PRC) and Recall (REC) for the assigned activities to clusters, at all the measurement 

positions in each classroom. Table 11 provides the results of the performance evaluations of the 

three clustering algorithms averaged over measured classrooms. 
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Table 11 : Results of performance evaluation for K-means, GMM and Spectral clustering algorithm 

by calculating the Accuracy (ACC), Precision (PRC) and Recall (REC 

 Activity ACC PRC REC 

G
M

M
 

Ambient 82% 40% 78% 

Lecture 67% 87% 63% 

Active Learning  74% 54% 70% 

Overall 76% 69% 69% 

K
-m

ea
n

s 

Ambient 72% 30% 86% 

Lecture 63% 87% 58% 

Active Learning  68% 40% 49% 

Overall 72% 63% 63% 

S
p

ec
tr

al
 C

lu
st

er
in

g
 

Ambient 72% 26% 77% 

Lecture 59% 86% 55% 

Active Learning  66% 44% 49% 

Overall 71% 61% 61% 

 

The results indicate that GMM performs the best among three algorithms. By employing 

GMM and applying the decision chart presented in this study, the highest average accuracy 

which belongs to identifying the ‘Ambient’ is 82%. It is followed by ‘Active Learning Activity’ 

that is identified accurately 74% of the time. The lowest accuracy is related to ‘Lecture’ which 

was identified correctly 67% of the time. The lowest accuracy in identifying ‘Lecture’ was 

related to classroom H654-2 (35%). The measurement performed in H654-2 was during a 

practice class (i.e. the session was not a regular class) in which ‘Lecture’ was not the dominant 

activity. The results of H654-2 suggests that assumption 3 in the decision chart might be 

misleading if the measurements are conducted in practice sessions in which most of the class 
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duration is spent on students’ activities. Overall, employing GMM along with the decision chart 

identify the activities discussed in this study in 76% of time. 

One-third octave band frequency spectrums of the ‘Ambient’ noise levels and ‘Lecture’ 

SPLs, obtained from the actual results, indicate that in all the classrooms the frequency spectrum 

roll-offs from 630 HZ to 16 kHz for ‘Ambient’ noise levels are lower than -15 dB/decade and for 

‘Lecture’ sound levels are higher than -15 dB/decade. Therefore, the second criteria of the 

decision chart developed in this study, is promising to be applied to future studies on similar 

subjects.   

5.4  Comparison with the Methods Proposed in Previous Studies 

The efficiency of the method proposed in this study in identifying the different sound sources 

and their corresponding mean sound levels, in comparison with other similar studies, is 

investigated. Two methods previously employed in studies by Pekkarinen et al. [24] and 

Hodgson et al. [25] are applied to the long-term occupied A-weighted sound pressure levels of 

the classrooms averaged in 5s intervals . Pekkarinen et al., associated the L90 and the LAeq, 

obtained from the long term continuous sound pressure level measurements in occupied 

classrooms, with the ‘Ambient’ noise level and ‘Lecture’ speech level respectively.  Following 

their method, in this study, L90 and LAeq, calculated from the long term A-weighted continuous 

sound pressure levels averaged in 5s intervals at each measurement location, are associated with 

the long-term ‘Ambient’ and ‘Lecture’ sound levels respectively. The other method, proposed by 

Hodgson et al, predicts the long-terms ‘Lecture’ sound pressure level and ‘Ambient’ noise level 

during lecture time by fitting three distributions into the long term sound pressure level 

frequency distributions of classrooms. The mean values of the three distributions were associated 

with the long-term sound pressure levels of ventilation noise, student activity noise and speech. 
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The average of the mean values of ventilation noise and student activity noise was considered as 

the ‘Ambient’ noise level in occupied classrooms.  In order to duplicate their proposed method, 

in this study, the frequency distributions of the occupied long-term A-weighted sound pressure 

levels averaged in 5s intervals at each measurement location, is fitted with two normal 

distributions. The mean value of the higher distribution is associated with ‘Lecture’ sound level 

and the mean value of the lower curve is to represent the occupied ‘Ambient’ noise level.  Figure 

16 illustrates the results obtained from the distribution fitting method, for classroom H603 at 

measurement location 2, as an example. 

 

Figure 16: probability density plot for the A-weighted long term sound pressure levels averaged in 5s 

intervals at measurement location 2 in classroom H603, fitted by two normal distributions representing 

‘Ambient’ and ‘Lecture 

To investigate the efficiency of the methods in predicting the ‘Ambient’ and ‘Lecture’ sound 

levels, Linear regression analysis was performed between the actual mean A-weighted sound 

pressure levels of ‘Ambient’ and ‘Lecture’ activity and the values predicted by GMM algorithm,  

L90/LAeq and distribution fitting methods. Figure 17  illustrates the linear regression between the 



63 

 

actual ‘Ambient’ and ‘Lecture’ sound levels and the values predicted by using the methods 

explained above. 

 

Figure 17: Linear regression between the actual ‘Ambient’ and ‘Lecture’ A-weighted sound pressure 

levels and the levels predicted by using GMM algorithm, L90 and LAeq and distribution-fitting methods 

Furthermore, Speech to Noise Ratio (SNR) is calculated at each measurement location by 

subtracting ‘Ambient’ noise levels from ‘Lecture’ sound levels. The actual SNRs are plotted 

against predicted SNRs by using GMM and the methods explained above. Figure 18 illustrates 

the linear regression between the actual SNRs and the values predicted by using GMM 

algorithm, L90 and LAeq and distribution-fitting methods.  
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Figure 18: Linear regression between the actual SNRs and the values predicted by using GMM 

algorithm, L90 and LAeq and distribution-fitting methods 

From Figure 17, GMM indicates the best performance in predicting ‘Ambient’ noise levels 

and ‘Lecture’ sound levels (R
2
=0.9087). L90/LAeq method indicates a tendency to overestimate 

the mean activity sound levels (R
2
=0.8398).  Based on Figure 18, among three methods, GMM 

predicts the SNR values better than the other two (R
2
=0.4411) while the same pattern of 

overestimating SNRs is observed in the values obtained from the L90/LAeq method. Distribution 

fitting method performs the worst in those classes where the duration of time that silent activities 

took place was proportionally too small compared to other activities. Accordingly in these 

spaces, ‘Ambient’ cannot be assigned to a distribution. For instance, in H509, the method 

proposed by Hodgson et al, assigned the lowest distribution to ‘Ambient’ while based on the 

actual results, it is associated with ‘Lecture’ sound levels.   
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Overall, using the GMM algorithm along with the decision criteria developed in this study 

performs better in predicting the sound pressure levels of the activities in occupied classrooms 

compared to the L90/ LAeq and distribution-fitting methods explained. Despite the fact that the 

decision criteria proposed in this study fails to distinguish between different active learning 

activities, it successfully recognizes the presence of them and with a good level of accuracy 

(74%) assigns their corresponding observations to these activities. The distribution-fitting 

method proposed by Hodgson et al., indicates two major drawbacks in comparison with GMM 

method, specifically in active learning classrooms. One major issue is that the distribution-fitting 

method dismisses the underlying ‘Active Learning Activity’ in active learning classrooms and 

merges all the potential existing activities into ‘Lecture’ and ‘Ambient’. Second, it fails to assign 

the observations to activities; therefore, it does not provide information on the location of the 

activities in the time history of the measurements, nor does it determine the proportion of the 

total class time that belongs to each activity.  
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6 CHAPTER 5: CONCLUSION 

In this study, the occupied activity sound pressure levels in active learning classrooms are 

investigated by using three unsupervised learning algorithms. The occupied sound pressure level 

measurements were conducted in five active learning and two traditional lecture classes at four 

measurement locations in the classrooms (overall 28 cases). During the measurements, the 

researcher noted the type of the activity and its corresponding duration. Based on the 

observations of the researcher, as well as the results of the previous studies, three main activities 

are considered to be detected in active learning classrooms, including ‘Ambient’, ‘Lecture’, 

‘Active Learning Activity’. The one-third octave band continuous sound pressure levels 

averaged in 5s intervals obtained at each measurement location are analyzed by using three 

clustering methods, including K-means clustering, Gaussian Mixture Model and Spectral 

clustering. In order to detect the number of activities in each classroom, Silhouette value is 

employed as an indicator to estimate the initial number of clusters in clustering analysis. 

Furthermore, by using the results of the previous studies, a decision chart has been developed in 

order to assign the clusters to activities. The performance of the algorithms in detecting the 

activities is evaluated by calculating the Accuracy, Precision and Recall for each activity. The 

results of the three algorithms are compared with the actual results through linear regression 

analysis. Gaussian Mixture model indicated a better performance (R
2
 =0.929) among three in 

predicting the occupied activity sound pressure levels. Overall GMM illustrated a better 

performance in assigning the observations to their corresponding activities. Moreover, the results 

obtained from GMM are compared to previously developed methods in similar subject. L90/LAeq 

and distribution fitting method were applied to the one-third octave band SPLs collected from the 
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classrooms. Results suggest that both methods lose accuracy in predicting the ‘Ambient’ noise 

level and ‘Lecture’ speech level due to dismissing the other underlying activities. 

       Overall GMM algorithm along with the decision criteria developed, perform better than 

the other methods investigated in this study in identifying the underlying activities and their 

corresponding sound pressure levels while active learning is practiced in classrooms. Although 

the proposed method is promising to be applied to future studies, silhouette measure proposed in 

this method indicates limitations in determining the optimal number of activities. In addition, 

assumption 3 of the decision chart was misleading in identifying the ‘Lecture’ speech levels in 

practice or discussion classes that the teacher may not be the main speaker.  Further research 

directions will focus on Limitations and down sides of the method, such as detecting the number 

of activities. Introducing supervised learning methods may potentially improve the assumptions 

and criteria developed to assign activities to clusters.  
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Appendix 

Implementation of the decision chart on GMM results: 

H509                 

  Measurement Location 1 Measurement Location 2 

  k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE -     TRUE -     

Condition 2 TRUE -     TRUE -     

Condition 3 TRUE -     TRUE -     

Condition 4 TRUE -     TRUE -     

Condition 5 N/A -     N/A -     

Activity Lecture 
Active 

Learning 
Activity 

    Lecture 
Active 

Learning 
Activity 

    

H603                 

  Measurement Location 1 Measurement Location 2 

  k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A N/A   TRUE N/A N/A   

Condition 2 FALSE TRUE TRUE   FALSE TRUE TRUE   

Condition 3 FALSE TRUE TRUE   FALSE TRUE TRUE   

Condition 4 N/A FALSE TRUE   N/A FALSE TRUE   

Condition 5 N/A N/A FALSE   N/A N/A FALSE   

Activity Ambient 
Active 

Learning 
Activity 

Lecture   Ambient 
Active 

Learning 
Activity 

Lecture   

H605     
      

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A - - TRUE N/A - - 

Condition 2 FALSE TRUE - - FALSE TRUE - - 

Condition 3 FALSE TRUE - - FALSE TRUE - - 

Condition 4 N/A TRUE - - N/A TRUE - - 

Condition 5 N/A FALSE - - N/A FALSE - - 

Activity Ambient Lecture 
Active 

Learning 
Activity 

Active 
Learning 
Activity 

Ambient Lecture 
Active 

Learning 
Activity 

Active 
Learning 
Activity 

H654-1 
        

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A     TRUE N/A     

Condition 2 FALSE TRUE     FALSE TRUE     

Condition 3 FALSE TRUE     FALSE TRUE     
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Condition 4 N/A TRUE     N/A TRUE     

Condition 5 N/A FALSE     N/A FALSE     

Activity Ambient Lecture     Ambient Lecture     

H654-2 
        

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A     TRUE N/A     

Condition 2 TRUE TRUE     TRUE TRUE     

Condition 3 FALSE TRUE     FALSE TRUE     

Condition 4 FALSE TRUE     FALSE TRUE     

Condition 5 N/A FALSE     N/A FALSE     

Activity 
Active 

Learning 
Activity 

Lecture     
Active 

Learning 
Activity 

Lecture     

H561 
        

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A     TRUE N/A     

Condition 2 TRUE TRUE     FALSE TRUE     

Condition 3 FALSE TRUE     FALSE TRUE     

Condition 4 FALSE TRUE     N/A TRUE     

Condition 5 N/A FALSE     N/A FALSE     

Activity - Lecture     Ambient Lecture     

MB2-270 
        

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A     TRUE N/A     

Condition 2 FALSE TRUE     FALSE TRUE     

Condition 3 FALSE TRUE     FALSE TRUE     

Condition 4 N/A TRUE     N/A TRUE     

Condition 5 N/A FALSE     N/A FALSE     

Activity Ambient Lecture     Ambient Lecture     
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Implementation of the decision chart on KM and SPC results: 

Graph and Figures from KM results: 

H509: 

 

a) 

 

b) 

 

c) 
 

d) 

 

e) 
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H603: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H605: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H654-1: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H654-2: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H561: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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MB2-270: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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Graph and Figures from SPC results: 

H509: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H603: 

 

a) 

 

b) 

 

c) 

 

d) 

 

 

e) 
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H605: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H654-1: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H654-2: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H561: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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MB2-270: 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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H509                 

  Measurement Location 1 Measurement Location 2 

  k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE -     TRUE -     

Condition 2 TRUE -     TRUE -     

Condition 3 TRUE -     TRUE -     

Condition 4 TRUE -     TRUE -     

Condition 5 N/A -     N/A -     

Activity Lecture 
Active 

Learning 
Activity 

    Lecture 
Active 

Learning 
Activity 

    

H603                 

  Measurement Location 1 Measurement Location 2 

  k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A N/A   TRUE N/A N/A   

Condition 2 FALSE TRUE TRUE   FALSE TRUE TRUE   

Condition 3 FALSE TRUE TRUE   FALSE TRUE TRUE   

Condition 4 N/A FALSE TRUE   N/A FALSE TRUE   

Condition 5 N/A N/A FALSE   N/A N/A FALSE   

Activity Ambient 
Active 

Learning 
Activity 

Lecture   Ambient 
Active 

Learning 
Activity 

Lecture   

H605     
      

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A - - TRUE N/A - - 

Condition 2 FALSE TRUE - - FALSE TRUE - - 

Condition 3 FALSE TRUE - - FALSE TRUE - - 

Condition 4 N/A TRUE - - N/A TRUE - - 

Condition 5 N/A FALSE - - N/A FALSE - - 

Activity Ambient Lecture 
Active 

Learning 
Activity 

Active 
Learning 
Activity 

Ambient Lecture 
Active 

Learning 
Activity 

Active 
Learning 
Activity 

H654-1 
        

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A     TRUE N/A     

Condition 2 FALSE TRUE     FALSE TRUE     

Condition 3 FALSE TRUE     FALSE TRUE     

Condition 4 N/A TRUE     N/A TRUE     

Condition 5 N/A FALSE     N/A FALSE     

Activity Ambient Lecture     Ambient Lecture     

H654-2 
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Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A     TRUE N/A     

Condition 2 TRUE TRUE     TRUE TRUE     

Condition 3 FALSE TRUE     FALSE TRUE     

Condition 4 FALSE TRUE     FALSE TRUE     

Condition 5 N/A FALSE     N/A FALSE     

Activity 
Active 

Learning 
Activity 

Lecture     
Active 

Learning 
Activity 

Lecture     

H561 
        

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A     TRUE N/A     

Condition 2 TRUE TRUE     FALSE TRUE     

Condition 3 FALSE TRUE     FALSE TRUE     

Condition 4 FALSE TRUE     N/A TRUE     

Condition 5 N/A FALSE     N/A FALSE     

Activity - Lecture     Ambient Lecture     

MB2-270 
        

 
Measurement Location 1 Measurement Location 2 

 
k1 k2 k3 k4 k1 k2 k3 k4 

Condition 1 TRUE N/A     TRUE N/A     

Condition 2 FALSE TRUE     FALSE TRUE     

Condition 3 FALSE TRUE     FALSE TRUE     

Condition 4 N/A TRUE     N/A TRUE     

Condition 5 N/A FALSE     N/A FALSE     

Activity Ambient Lecture     Ambient Lecture     

 

 


