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ABSTRACT 

Material Management Framework utilizing Near Real-Time Monitoring of Construction 

Operations 

 

Farzaneh Golkhoo, Ph.D. 

Concordia University, 2020 

 

Materials management is a vital process in the delivery of construction facilities. Studies by the 

Construction Industry Institute (CII) have demonstrated that materials and installed equipment can 

constitute 40– 70% of the total construction hard cost and affect 80% of the project schedule. 

Despite its significance, most of the construction industry sectors are suffering from poor material 

management processes including inaccurate warehouse records, over-ordering and large surpluses 

of material at project completion, poor site storage practices, running out of materials, late 

deliveries, double-handling of components, out-of-specification material, and out of sequence 

deliveries which all result in low productivity, delay in construction and cost overruns. Inefficient 

material management can be attributed to the complex, unstructured, and dynamic nature of the 

construction industry, which has not been considered in a large number of studies available in this 

field. 

The literature reveals that available computer-based materials management systems focus on (1) 

integration of the materials management functions, and (2) application of Automated Data 

Collection (ADC) technologies to collect materials localization and tracking data for their 

computerized materials management systems. Moreover in studies that focused on applying ADC 

technologies in construction materials management, positioning and tracking critical resources in 

construction sites, and identifying unique materials received at the job site are the main 

applications of their used technologies. Even though, various studies have improved materials 

management processes copiously in the construction industry, the benefits of considering the 

dynamic nature of construction (in terms of near real-time progress monitoring using state of the 

art technologies and techniques) and its integration with a dynamic materials management system 

have been left out. So, in contrast with other studies, this research presents a construction materials 

management framework capable of considering the dynamic nature of construction projects. It 

includes a vital component to monitor project progress in near real-time to estimate the installation 

and consumption of materials. This framework consists of three models: “preconstruction model,” 

“construction model,” and “data analysis and reporting model.” This framework enables (1) 

generation of optimized material delivery schedules based on Material Requirement Planning 

(MRP) and minimum total cost, (2) issuance of material Purchase Orders (POs) according to 

optimized delivery schedules, (3) tracking the status of POs (Expediting methods), (4) collection 

and assessment of material data as it arrives on site, (5) considering the inherent dynamics of 

construction operations by monitoring project progress to update project schedule and estimate 

near real-time consumption of materials and eventually (6) updating MRP and optimized delivery 

schedule frequently throughout the construction phase. 

An optimized material delivery schedule and an optimized purchase schedule with the least cost 

are generated by the preconstruction model to avoid consequences of early/late purchasing and 

excess/inadequate purchasing. Accurate assessment of project progress and estimation of installed 
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or consumed materials are essential for an effective construction material management system. 

The construction model focuses on the collection of near real-time site data using ADC 

technologies. Project progress is visualized from two different perspectives, comparing as-built 

with as-planned and comparing various as-built status captured on consecutive points of time. Due 

to the recent improvements in digital photography and webcams, which made this technology more 

cost-effective and practical for monitoring project progress, digital imaging (including 360° 

images) is selected and applied for project progress monitoring in the construction (data 

acquisition) model. In the last model, which is the data analysis and reporting model, Deep 

Learning (DL) and image processing algorithms are proposed to visualize and detect actual 

progress in terms of built elements in near real-time. In contrast with the other studies in which 

conventional computer vision algorithms are often used to monitor projects progress, in this 

research, a deep Convolutional Auto-Encoder (CAE) and Mask Region-based Convolutional 

Neural Network (R-CNN) are utilized to facilitate vision-based indoor and outdoor progress 

monitoring of construction operations. The updated project schedule based on the actual progress 

is the output of this model, and it is used as the primary input for the developed material 

management framework to update MRP, optimized material delivery, and purchase schedules, 

respectively. Applicability of the models in the developed material management framework has 

been tested through laboratory and field experiments. The results demonstrated the accuracy and 

capabilities of the developed models in the framework.  
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement and Research Motivation 

The significant role of materials management in the construction industry was first expressed in a 

report published by the Construction Industry Cost Effectiveness Committee (CICE) of Business 

Roundtable in 1982. After that, materials management as one of the vital functions of construction 

project management has been under the spotlight of study and development by the Construction 

Industry Institute (CII) and other researchers, which has resulted in the publication of various valuable 

handbooks and articles. For example, the procurement and materials management handbook was 

published as an implementation resource by CII in 1999 and was updated in 2011 to identify 

changes in materials management from 1999. Moreover, the Fully Integrated and Automated 

Technology (FIATECH) initiative presented a Material Management Framework (MMF) for the 

capital projects industry to integrate and automate procurement and supply management systems 

in 2011 as well. All these reputable works express the significance of materials management and 

its influence on the construction project. For instance, it has been stated that materials cost 

represents around either 50-60% of construction cost (Stukhart, 1995; CII, 1999; Nasir, 2008) or 

40-70% of the total construction hard cost (Jaśkowski et al. 2018). It can control 80% of the project 

schedule as well (Kerridge, 1987; Stukhart, 1995). Dakhli and Lafhaj (2018) have stated that 

although materials cost forms a remarkable amount of construction costs, there is no systematic 

approach to manage them, and they are managed under improvised conditions. According to CII 

(1999) questionnaire survey, the benefits derived from the implementation of a properly structured 

materials management system were 40% reduction in bulk surplus, 24% improvement in supplier 

performance, 23% increase in cash flow savings, 21% reduction in site storage and handling, 16% 

improvement in craft labor productivity, 16% improvement in the project schedule, 15% reduction 

in management manpower, and 5% risk reduction. However, in contrast with the general industry 

in which 1% of the cost spent in production is invested in materials management and control, only 

0.15% of the construction cost is assigned to materials management (Formoso and Revelo, 1999; 

Navon and Berkovich, 2006). In another study done by Rahman et al. (2013), it was shown that 

“late or irregular delivery or wrong types of material delivered during construction affect the 

utilization of other resources like manpower and machinery.” In other words, it can lead to low 

productivity, time delay, and also cost overrun. “Interruption to the work schedule, rework from 

having the wrong or out-of-order materials, double handling because of inadequate materials, 

material deterioration during extended storage periods, expenses associated with crews lacking 

proper materials, and lost items on or off-site” have been identified as the most common problems 

with materials in the small and medium-sized construction projects (Barry et al. 2014). The results 

achieved from the research done by Jung et al. (2018) showed that construction and material supply 

processes should be considered as one system while planning resource-constrained large-scale 

construction projects because of their interrelationships. They found that in high-rise building 

construction projects with many types of materials, the impact of changes in materials inventory 

levels for outdoor and indoor yard storage makes the entire construction process highly complex 

and unpredictable.  

On the one hand, derived statistics of the influencing role of materials management in the 

construction projects and on the other hand, existing issues (such as inaccurate warehouse records, 

over-ordering, and large surpluses, poor site storage practices, running out of materials, late 
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deliveries, out of sequence deliveries, etc.) resulted in conducting a bunch of studies to prevent 

these issues. First, researchers focused on the concepts of materials management to improve it 

through the implementation of Just In Time (JIT) strategies, materials storage optimization, 

performance measurement, investigation of proper materials management practices, measurement 

and reduction of the influences of the most probable issues on project cost, schedule and 

productivity. Then they concluded that managing materials on-site through paper documents were 

not practical in complex and large scale construction projects, and if materials management 

processes were executed in a consistent manner, it would operate more efficiently. As a result, 

they developed computerized systems. Computerized construction materials management systems 

could be implemented more appropriately and lead to more benefits such as uniformity of 

documents generation, speed, and efficiency, automatic process implementation from inputting 

information to report generation in a matter of hours.  In the next step, there was a question of the 

accuracy of input and output data obtained from their developed systems. In fact, a computerized 

system alone could not ensure the accuracy of the reports upon which corrective actions or various 

decisions were made, and the output information and reports were only as good as the input data 

created them. Since manual data collection was often slow, inaccurate, inefficient, and resulted in 

extensive amounts of paper-based reports, so Automated Data Collection (ADC) technologies 

were applied to reduce paper-based requirements and solve the issue (Golkhoo and Moselhi, 2017). 

Furthermore, the report of the NIST Workshop (A workshop namely “Data Exchange Standards 

at the Construction Job Site” was sponsored by the National Institute of Standards and Technology 

(NIST), in cooperation with the Fully Integrated and Automated Technology (FIATECH) 

consortium in May 2003) expressed that “materials tracking remains a huge problem on the current 

construction job site” (Saidi et al. 2003). So a large number of researchers developed different 

methods to automate construction materials and equipment tracking and locating for improving 

productivity and cost-effectiveness. Despite the developed materials management systems and 

construction materials tracking and locating models, Caldas et al. in 2015 concluded that just 

around 26% of entire organizations (surveyed owner and contractor organizations) had IT systems 

to support synchronization across major supply chain tiers of project schedules. They also found 

that only 25% of them had materials management systems that allow engineering requirements to 

go directly to the materials management system as electronic data. 

Studying the literature in depth resulted in identifying some issues and some points of view which 

have not been solved or addressed yet. The activities of construction projects are highly 

interdependent, and engineering, procurement, and construction phases overlap to a great extent 

(Yeo and Ning, 2002). It seems that the current state of research does not adequately consider the 

complex, unstructured, and dynamic nature of the construction projects in developing materials 

management systems. Even though various studies have improved the materials management 

process copiously in the construction industry using ADC technologies, most of them have applied 

these technologies only for positioning and tracking critical resources in construction sites and 

identifying unique materials received at the job site. In order to achieve an effective materials 

management framework especially in the construction phase not only the near real-time data 

related to the materials position, location and their arrival to the site should be acquired, but also 

the near real-time data of their consumption or installation on the construction site should be 

obtained. 
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It seems that the benefits of near real-time progress monitoring using state of the art technologies 

and techniques to estimate the quantities of installed or consumed materials in the job site and its 

integration with a materials management system have been left out. Such a dynamic framework 

resulting in taking more accurate and near real-time corrective actions, avoiding project schedule 

delays, and cost overruns has not been considered yet and hence is developed in this research. 

1.2 Research Objectives 

The main objective of this research is to develop a Construction Materials Management (CMM) 

framework to optimize material delivery schedules considering the inherent dynamics of 

construction operations through monitoring project progress. CMM framework consists of three 

models entitled “preconstruction model”, “construction model” and “data analysis model”. In 

order to achieve the main objective, following sub-objectives are defined: 

1. Developing a preconstruction model in which Material Requirement Planning (MRP) is 

generated, material delivery schedules are optimized, and materials management functions 

are integrated; 

2. Evaluating and applying the most efficient near real-time site data acquisition technologies 

for project progress monitoring to estimate the quantities of installed materials in the 

construction model; and 

3. Investigating and applying the most effective state-of-the-art image processing and 

computer vision algorithms to visualize and detect the actual progress in the data analysis 

model. 

1.3 Research Methodology 

Figure 1-1 illustrates the methodology followed to achieve the objective of this research. The 

current study began with a problem statement and objectives definition. In the next step, a 

comprehensive review was performed in the following domains: 

 Construction materials management  

 Automated construction materials management  

 Automated data acquisition technologies 

 Vision-based project progress monitoring methods  

 Deep Learning (DL) algorithms 

 Object detection algorithms 

After identifying gaps and limitations in the literature and in order to prevent the limitations and 

shortcomings, a framework was developed consisting of three models entitled “preconstruction 

model,” “construction model,” and “data analysis and reporting model.” Then to assess the 

feasibility of applying the developed models in the real world, laboratory and field experiments 

were conducted in the testing and validation stage. Eventually, findings, contributions, and 

limitations of this research, along with future works, are presented in conclusion. 
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Figure 1-1: Research Methodology 

1.4 Organization of the Thesis 

This dissertation is comprised of five chapters. The summary of each chapter is presented as 

follows:  

Chapter 2 reviews the previous works on the topics related to construction materials management, 

automated construction materials management, automated data acquisition technologies, vision-

based project progress monitoring methods, DL algorithms, and object detection algorithms. This 

chapter proceeds with the presentation of findings from the literature, research gaps identification, 

and the investigation of techniques suitable for this research, 

Chapter 3 presents the research methodology in detail. It is composed of three distinctive models, 

namely “preconstruction model,” “construction model,” and “data analysis and reporting model.” 
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Each model contains various sub-modules as well. 

Chapter 4 investigates the verification and validation of the models and algorithms developed in 

Chapter 3 through laboratory and field experiments.  

Finally, Chapter 5 highlights the expected contributions of the research and plans for future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

A report entitled "Modern Management Systems" was published in the year of 1982 by the 

Construction Industry Cost Effectiveness Committee (CICE) of Business Roundtable. In this 

report, two significant statements related to materials management in the construction industry 

resulted in conducting comprehensive research focusing on materials management by the 

Construction Industry Institute (CII) in 1984. Ignoring the significant contribution of materials 

management to the cost-effective execution of construction projects by senior construction 

managers and the hindrance of the construction industry against the manufacturing industry in 

applying the concepts of materials management were the construction industry problems 

mentioned in CICE report (Nasir, 2008). Research done by CII had two phases. The first phase 

investigated and defined the aspects of materials management systems being designed and 

executed properly. The second phase estimated and quantified both the benefits and costs of 

materials management systems. The second phase of this research indicated that improved craft 

labor productivity is the most significant benefit that can be derived from a proper materials 

management system. The improvement of craft labor productivity can be due to the fact that 

materials are more likely to be available when needed, and craft supervision can plan the work 

around material availability. Other benefits are reductions in bulk materials surplus, reductions in 

management manpower, purchasing improvements, cash flow savings, and reductions in required 

warehouse space (Bell and Stukhart, 1987). After the publication of the procurement and materials 

management handbook as an implementation resource by CII in 1999, another study was 

sponsored by CII to identify changes in materials management from 1999 and resulted in an 

updated handbook of materials management in 2011. This guide includes all materials 

management functions at both organizational and the project levels and recent practices and 

procedures of materials management. This reference guides material managers to handle material 

related issues from its production in manufacturing units to its installation on the construction site 

more properly by presenting and explaining a set of procedures, strategies, and necessary 

operations. Moreover, the Fully Integrated and Automated Technology (FIATECH) initiative 

presented a Material Management Framework (MMF) for the capital projects industry to integrate 

and automate procurement and supply management systems in 2011 as well. 

This chapter presents the main concepts and the background of construction materials management 

in five main sections. It starts with an introduction to the preliminary researches in the field of 

materials management in the construction industry (section 2.1). It provides a holistic overview of 

construction materials management, including definitions, various types of construction materials, 

materials management functions, and the role of materials management in the construction 

industry in subsection 2.1.1. Significant problems and needs of materials management and control 

are explained in the next subsection (subsection 2.1.2). The second section (section 2.2) is 

dedicated to delving into currently available literature, which includes construction materials 

management (subsection 2.2.1) and automated construction materials management domains 

(subsection 2.2.2). In the second domain, not only the application of Automated Data Collection 

(ADC) technologies in the construction projects and materials management but also computer-

based materials management systems have been investigated. Limitations and research gaps are 

identified and elaborated in section 2.3. Based on the identified limitations and requirements to 

develop a comprehensive construction materials management framework, genetic algorithm 
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optimization, Artificial Neural Network (ANN), and Multi-Layer Perceptron (MLP) are reviewed 

in sections 2.4 and 2.5 respectively. A review of project progress monitoring by focusing on the 

state of the art vision-based project progress monitoring methods has been elaborated in the next 

section (section 2.6). Three categories of vision-based methods are described in three subsections 

(subsections 2.6.1 to 2.6.3). Section 2.7 focuses on DL algorithms against conventional computer 

vision algorithms. Deep learning-based generic object detection is presented in section 2.8, and 

finally, identified limitations to be addressed are summarized in section 2.9. The structure of the 

chapter is illustrated in Figure 2-1.  
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 Figure 2-1: Structure of Chapter 2 (Literature Review) 
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2.1.1 Construction Materials Management Overview 

In this section, a general overview of construction materials management, including 

various types of construction materials, materials management definition, materials 

management functions, and the role of materials management in the construction industry, 

is provided. 

The term “materials” in the study done by Stukhart (1995) includes raw materials, 

components, finished products, consumables, packing and packaging, and equipment. 

Bailey and Farmer (1982) described construction materials as goods procured from sources 

out of the owner/contractor’s company and consumed to generate the construction project’s 

output. From the CII perspective of view, materials are categorized into three basic types: 

engineered (tagged) materials, bulk materials, and prefabricated materials (CII, 2011).  

 Engineered materials: materials with a unique tag number which can be referred to 

and identified. They are subcategorized in major and minor materials/equipment.  

 Bulk materials: materials manufactured to industry codes and standards and 

purchased in quantity. 

 Prefabricated materials: materials engineered and fabricated according to the 

engineered specifications at a fabrication shop or outside the construction site. 

Construction materials can be classified in the following groups as well (Chandler, Ian E., 

1978; El-Qader Al Haddad, 2006):  

 Bulk materials: this kind of material is delivered in mass. They are unloaded and 

deposited in containers, such as sand, gravel, cement, and concrete. 

 Bagged materials: for easy usage and handling, this kind of material is delivered in 

bags, such as cement. 

 Palleted materials: Bagged materials that are set on pallets for delivery are called 

palleted materials, such as cement and doors. 

 Packaged materials: To avoid damage and deterioration during materials 

transportation and stock respectively, this kind of material is packaged together, 

such as tiles, pipes and electrical fittings 

 Loose materials: this kind of material needs to be handled separately. They are 

partially fabricated, such as paving slabs, structural timbers, and pipes. 

In another study by Stukhart (1995), materials used in construction projects are categorized 

as follows: 

 Bulk materials: these kinds of materials, such as pipes, wiring, and cables, are 

produced meeting specific standards and are sold in quantity. Since their consumed 

amounts just can be measured at the end of the job, so their planning is much more 

difficult.  

 Engineered materials: these kinds of materials are designed and manufactured 

uniquely by the engineering staff for a particular project. Their production and 

fabrication have a significant influence on the project schedule. 

 Fabricated materials: these kinds of materials are manufactured based on a specific 

design for the project. 
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According to the study done by Halpin et al. (1987), materials for a construction project 

can be categorized into three groups: off-the-shelf, long-lead bulks, and engineered items. 

Materials management has several definitions. Planning and controlling all the required 

processes to specify the right quality and quantity of materials and equipment appropriately 

in time, obtain the needed materials at a reasonable cost, and make them available when 

required is called materials management system (The Business Roundtable report, 1982) 

Materials takeoff, purchasing, expediting, receiving, warehousing, and distributing 

integrated with a process is defined as materials management (Bell and Stukhart, 1986). 

CII (1999) states that materials management is an integrated process of various functions, 

including traditional materials management tasks such as planning, material takeoff, and 

engineering interface, supplier inquiry, and evaluation, purchasing, expediting and 

logistics, field control, and warehousing. Ren et al. (2011) state that materials management 

includes the process of planning, inventory control, receiving and storing, material 

handling, physical distribution, and relevant information from the origin to consumption to 

conform with the customer requirements. According to the definition by Vrat (2014) in his 

book, materials management is concerned with the design, specification, procurement, 

transportation, inspection, storage, retrieval, use, disposal, and accounting of materials to 

maximize return on investment in materials. Caladas et al. (2015) describe it as a process 

in which materials and equipment are identified, acquired, and delivered to their intended 

points of use. 

In addition to the definition of materials management, each study has defined various 

functions of the materials management process. In a holistic view, typical tasks associated 

with the materials management process are almost similar to each other, but each study has 

highlighted some functions more than the others based on its point of view.  For instance, 

a study done by Chapman et al. (1990) has deliberated the results of the Science and 

Engineering Research Council’s sponsored investigation. It has declared the following 

functions as materials management functions: 

 Planning and communication  

 Materials scheduling 

 Supplier inquiry and evaluation 

 Purchasing 

 Expediting and shipping 

 Receipt, storage, and distribution 

 Materials control 

According to the CII (1999) materials management process consists of the following 

functions: 

 Planning 

 Material take-off and design interface 

 Supplier inquiry and evaluation 

 Purchasing and subcontracts 

 Quality assurance 

 Expediting and transportation 
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 Warehousing and field control 

These functions are illustrated in Figure 2-2.  

Nasir (2008) illustrates the components of a materials management system in a flowchart 

(Figure 2-3), which is based on the research done by Stukhart (1995).  

Georgy and Basily (2008) stated that the materials management process consists of the 

following functions and steps: 

 Request for Quotation (RFQ) 

 Bids and vendor selection 

 Purchase Order (PO) 

 Tracking and expediting 

 Transport 

 Receiving and inspection 

 Inventory 

Activities of Construction Material Management (CMM) process, which is described 

complex, integrated, and dynamic by Ren et al. (2011) are as follows: 

 Material takeoff 

 Material planning 

 Ordering & purchasing 

 Material inventory 

 Site working  

 Monitoring 

 Control 
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Figure 2-2: Materials Management Functions (CII, 1999) 
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Figure 2-3: Flow Chart of Construction Materials Management (Nasir, 2008) 

Caldas et al. (2015) identified the following functions as the most significant materials 

management functions through the analysis of the results of the surveys and case studies and 

interviews with owners and contractors. 

 Materials Requirements Planning (MRP): MRP consists of identifying, quantifying, and 

scheduling the required materials and equipment for the project. 

 Project acquisition strategy: In this function, suppliers who can provide the required 

materials, equipment, and services are identified. So it needs knowledge related to industry, 

company procedures, required commodities, and the existing suppliers to qualify and 

certify the most proper suppliers. 

 Purchasing: After requirement identification, goods, and services meeting the established 

delivery, quality requirements, and reliability standards have to be ordered at a competitive 

price in the purchasing function. 
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 Subcontracting: Subcontracting encompasses assessing the project and company 

requirements, development of subcontracting strategies and plans, subcontractors 

identification and validation, Requests for Proposals (RFP) issuance, receiving bids, 

commercial evaluations, negotiation, funds commitment for goods and services, and 

eventually contract administration. 

 Expediting: In the expediting function, it should be guaranteed that the suppliers deliver 

materials, technical data, and equipment on time according to the purchase orders, the 

project’s requirements, and schedules. 

 Supplier quality management: The quality of construction materials, fabrication, and on-

site services provided by suppliers have to be monitored in this function. The quality 

defects of materials and poor performance in the service and construction would increase 

the risk of future operational problems and, subsequently, the maintenance and operations 

cost. 

 Transportation and logistics: The movement of materials to the job site has to be planned, 

controlled, and executed in this function, considering the engineering, procurement, and 

construction schedule requirements. 

 Site materials management: Site materials management is a function in which the existence 

of the right materials and equipment with the right quantities and at the right time to the 

construction forces must be ensured. 

 Materials management for operations and maintenance: This function consists of all 

aspects of running an asset. In this function, it should be ensured that the equipment is 

available as needed and is maintained for the startup. It is stated that the O&M materials 

requirements should be planned by the owner and the contractor jointly during the 

engineering and procurement phases of the project. 

The significance of the materials and materials management role in the construction industry can 

be illustrated through the various statistics which are presented in this section. On the one hand, 

around 50-60% of the industrial construction projects cost is composed of identifiable cost of 

material in which the economic costs are not considered (Bernold, 1990b; Stukhart, 1995) and on 

the other hand, materials control 80% of the project schedule from the initial materials acquisition 

to the delivery of the last item (Kerridge, 1987; Stukhart, 1995). Fallahnejad (2013) has stated that 

on-time construction materials procurement is a key factor that can result in completing 

construction projects on time. Even though the significant portion of the total cost of a construction 

project belongs to its construction materials, only 0.15% of the construction cost is invested in 

materials management and control in contrast with the general industry that spends 1% of the 

production cost in materials management and control (Formoso and Revelo,1999; Navon and 

Berkovich, 2006). In the Business Roundtable report (1982), it is stated that if materials and 

equipment had been available at the worksite when required, it could result in a 6% reduction of 

all construction labor costs (Bell and Stukhart, 1986).  

The craft foremen reports had indicated that when there was not an effective materials management 

system, around 20% of their time was spent to hunt materials and about 10% to track purchase 

orders and expedite. It is illustrated that the timing and materials volume of the initial orders are 

two significant influencing factors on the materials surplus. It is estimated that fragmented 

materials management system and performing final takeoff function before final design drawings 

result in a 10% bulk materials surplus (Bell and Stukhart, 1987).  
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Similarly, Bell and Stukhart (1986) tried to converse about the aspects of materials management 

systems. It was indicated that improper material management functions would result in materials 

surpluses, shortages, costly labor delays, and problems in cash flow. Large stock of material or 

inventory buffer affects cash flow, loss and damage potential, storage and handling costs, and the 

flexibility for addressing design changes (Bell and Stukhart, 1987). In summary, inefficient 

materials management including late, improper or out of order materials delivery, large inventory, 

and lack of material can result in low productivity, cost overrun, schedule delay and poor quality 

in construction projects. 

Some researchers investigate the mentioned causes and effects in their studies. For instance, Al-

Momani (2000) examined 130 residential and small commercial projects, and it was concluded 

that the main cause of delays was late materials and equipment. Ahmed et al. (2002) also indicated 

that late fabricated materials were the third most common cause of construction projects delay in 

380 building projects in the state of Florida. Perdomo and Thabet (2002) expressed that low labor 

productivity and project delay, which are the result of improper materials plan and control, lack of 

required materials, poor materials identification, re-handling, and insufficient storage, can lead to 

the project cost increase. Thomas et al. (2005) concluded that the documented frequent cause of 

disruptions in 125 studied projects was materials management problems. Considering lean 

construction researches, Kumar (2010) found that in the fast track projects, late delivery of 

drawings and materials force contractors to respond much more quickly, and it might result in 

lower quality performance. Another study done by Rahman et al. (2013) illustrated that contractors 

were often encountered with the late delivery of materials as the tenth most significant factor 

resulting in project cost overruns in Malaysia. 

Furthermore, they stated that “late or irregular delivery or wrong types of material delivered during 

construction affect the utilization of other resources like manpower and machinery.” In other 

words, it can lead to low productivity, time delay and cost overrun as well. Barry et al. (2014) 

stated that in the small and medium-sized construction projects most common problems with 

materials are an interruption to the work schedule, rework from having the wrong or out-of-order 

materials, double handling because of insufficient materials, material deterioration during 

extended storage periods, expenses associated with crews lacking proper materials, and lost items 

on or off-site. Moreover, Gurmu (2018) has mentioned that advanced technology and change in 

management practices are the most important influencing factors on labor productivity in the 

construction industry. So the lack of proper materials management system can severely affect 

productivity, mainly when the required materials are purchased and imported from overseas in a 

construction project. Three most essential construction materials management practices to improve 

labor productivity are materials procurement plans, identification of long-lead materials, and 

materials delivery schedule 

Considering studies’ outcomes and statistics mentioned before, it is easy to find out the significant 

role of materials management in construction projects and to see the negative impact that poor 

materials management can have on the cost and schedule of the construction projects. 

2.1.2 Major Problems and Needs of Materials Management and Control 

Shortcomings and problems concerning construction materials management and the main 

objective of this research to address the main issues have been presented in this section. Materials 

management significant problems are as follows (The Business Roundtable, 1982; Bell and 

Stukhart, 1986; CII, 1999; Formosoa and Revelob, 1999; Navon and Berkovich, 2006; Young et 
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al., 2011; Majrouhi Sardroud, 2012; Azarm, 2013; Barry et al., 2014; Ajayi et al., 2017; Dakhli 

and Lafhaj, 2018): 

 Materials required but not ordered/purchased ; 

 Materials purchased but not received; 

 Materials arriving at the site at the inaccurate time; 

 Materials arriving at the site in the incorrect quantity; 

 Materials with different specifications compared with those in the purchase order; 

 Lack of information associated with the status of the orders; 

 Lack of comprehensive and up-to-date information related to the arrival of materials on the 

site; 

 Lack of up-to-date information regarding site stocks; 

 Extensive multiple-handling of materials inappropriately stocked while searching required 

pieces; 

 Missing or surplus materials; 

 Storage space shortage for materials on-site; 

 Waste of man-hours to search and track materials; 

 Materials that are issued to crafts and are then not used or installed (untargeted materials); 

 Fragmented implementation of material management functions; 

 Minimal communication and no clear responsibilities defined for the owner, engineer or 

contractor to perform materials management; 

 The significant contribution of materials management to the cost-effectiveness of project 

operations is not recognized by the senior management; 

 Materials management personnel with inadequate training; 

 Damage of critical materials or equipment; 

 Improperly sequenced deliveries; 

 Incomplete, or erroneous definition of materials; 

 Massive wastage of materials (deterioration, theft, lost); 

 Inaccurate takeoff quantities; 

 Unnecessary reordering of material; 

 Materials ordered verbally or using short notice; 

 Inability to determine material locations. 

A couple of studies that have tried to obviate some of the mentioned shortcomings have been 

reviewed in the next section. 

According to the research by Bell and Stukhart (1986) a desirable materials management system 

used by owners and contractors should consist of various attributes such as planning and 

communications, material takeoff and engineering interface, vendor inquiry and evaluation, 

purchasing, expediting and shipping, warehousing, receiving and material distribution, material 

control, computer systems. It was stated that on-line computer systems, personnel training, 

preconstruction materials planning, and the communications among owner, contractor, and 

engineer are the influencing factors to make materials management successful and hinder the 

before mentioned problems.  
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The activities of construction projects are highly interdependent, and engineering, procurement, 

and construction phases overlap to a great extent (Yeo and Ning, 2002). The current state of 

research does not adequately consider the complex, unstructured, and dynamic nature of the 

construction projects in developing the materials management systems. So, the present study has 

investigated the functions and processes which have to be integrated with the materials 

management framework to make it capable of considering the dynamic nature of construction 

projects and being updated frequently during the construction phase. It will result in taking more 

accurate and near real-time corrective actions and prevention of project schedule delay and cost 

overrun. Thus, a framework for the configuration of the whole construction materials management 

system is developed, and the efficient technologies and methods to implement the processes are 

proposed as well. To evaluate the developed framework, its various models are validated by 

laboratory and field experiments.  

2.2 Existing Studies 

This section reviews the currently available literature classified into “construction materials 

management” and “automated construction materials management.” 

2.2.1 Construction Materials Management 

In the study done by Thomas et al. (1989), the benefits of applying efficient material management 

practices on two commercial construction projects were quantified. The cumulative productivity 

was calculated in both projects. One project had effective informal material management practices, 

including organizing the storage area, expediting and sequencing material deliveries, and erecting 

the steel directly from the truck as it was delivered. In contrast, the other project did not have 

effective material management. On top of that, work-hour losses were calculated in one project 

based on the comparison between the productivity of the days with adverse material-related 

conditions and the expected productivity of the days with no adverse conditions. The results 

indicated an 18% work-hour overrun and about 19% time overrun. Accuracy, quality, quantity, 

cost, timeliness, and availability were six key measures used to evaluate the effectiveness of the 

materials management process for industrial construction projects by Plemmons and Bell in 1995. 

They used an industry-wide benchmarking procedure to simplify the application of the 

effectiveness measures. Thomas et al. (1999) studied three various structural steel erection projects 

in which the delivery methods of material (structural steel members) as a component of materials 

management were different. By quantification of labor productivity using the multiple regression 

techniques, the best delivery method of material (steel erection directly from the truck against two 

others including steel off-loading, sorting, and then erecting, and three bulk steel deliveries) was 

indicated. The study by Kini (1999) focused on the effective implementation of the materials 

management process as the key element to successful project management. In this study, seven 

stages of an engineering/procurement/construction (EPC) project: “planning, preliminary design, 

final design, procurement, vendor control, construction, and closeout” were explained by focusing 

on material management. In the small-sized building firms, Formosoa and Revelob (1999) used 

Total Quality Management (TQM) principles in their developed method to enhance the materials 

supply system. They applied simple quality techniques, including flowchart, brainstorming, 

checklist, and Pareto diagram, to identify, analyze, and solve the problem. The main investigated 

problems in this research consisted of design problems, unorganized materials transportation and 

delivery, verbal materials order, imperfect or inappropriate materials specification, unavailable 

estimation of the required amounts of materials, delayed price assessment, and surveys. Delayed 
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materials orders and delays in checking stocks. Thomas and Sandivo (2000) tried to illustrate the 

quantitative impact of the fabricator on construction labor efficiency through three case study 

projects. It was found that some materials management issues related to site storage conditions, 

delivery and erection methods, and contractor-fabricator coordination had a significant effect on 

labor performance. So the labor inefficiency percentage, as well as the percentage of schedule 

delay, were calculated for each case study, and it was indicated that labor inefficiencies resulted 

from inefficient materials management ranged from a low of 5.4% to a high of 56.8%. Moreover, 

considering the activities of case studies which took 50 to 130% more workdays than the required 

workdays, it was concluded that poor materials management practices would result in schedule 

delays as well. Perdomo and Thabet (2002) tried to survey current materials management practices 

for an electrical contractor to recognize and summarize problems and bottlenecks through 

interview visits. Thomas et al. (2005) stated that poor site materials management results in 

inefficient labor productivity practices in construction projects. So they divided a construction into 

three zones (semi-permanent storage, staging areas, and workface storage) and then developed site 

construction management principles for each zone to hinder poor practices. Wickramatillake et al. 

(2007) investigated a performance measurement methodology through a real case company. They 

concluded that there existed eight key areas of concern relating to supply chain performance 

measurement of a large-scale project and then proposed and recommended some solutions for each 

concern area. Polat et al. (2007) proposed a simulation-based decision support system to achieve 

an economic rebar management system. They defined three differences between the Just In Time 

(JIT) and Just In Case (JIC) materials management systems, including buffer size, scheduling 

strategy, and lot size. Then considering buffer size in terms of large, medium, and small, 

scheduling strategy in terms of optimistic, neutral, and pessimistic, and lot size in terms of large 

and small, contractors were faced with 18 alternative rebar management systems between the JIT 

and JIC management systems. By applying Discrete Event Simulation (DES), the most economical 

rebar management system with the least inventory cost at the planning phase of a project was 

selected. JIC was selected as the most economical rebar management system in their case study, 

with 4.8% savings of the total cost of inventory over JIT. Sacks et al. (2009) tried to use computer-

aided visualization tools to support a set of lean construction management requirements for both 

planning and control. Lean construction requirements, including making the process transparent 

to all,  JIT delivery of materials and respond flexibly to change, were difficult to achieve in 

construction projects than in manufacturing. So they investigated visual tools applications such as 

Building Information Modeling (BIM)-based visualization user interfaces to achieve a clear mental 

image of what was taking place and what could be expected in the near future, which supported 

lean construction requirements.  

In research done by Azarm (2013), the shortcomings of the schedule performance index of Earned 

Value Method (EVM) were discussed. Then the material status index (MSI) was developed as a 

supplementary index to support the EVM. In this research, to improve the accuracy of duration 

forecasting and reporting on schedule performance of a project, it was stated that quantities of 

materials installed could represent schedule performance. So materials were considered as fuel to 

construction projects, and the physical progress of projects can be measured by defining the 

quantities of materials in place. Two automated data acquisition technologies (Radio Frequency 

Identification (RFID) and Light Detection And Ranging (LIDAR)) were only proposed to measure 

the current inventory. It was stated that the quantities of installed materials could be obtained by 

subtracting the current inventory and wasted materials (considered 10%-15% of the total amount 

installed) from replenished materials. All these steps are just proposed and have not been illustrated 
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and developed. Caladas et al. (2015) investigated 54 organizations through surveys, interviews, 

and case studies to identify current practices in terms of materials management techniques used in 

the capital projects industry. In fact, in their first survey, a preliminary snapshot of the current 

status of materials management functions in the construction industry was obtained and analyzed, 

in the second survey, trends and issues of materials management were predicted by leading 

industry practitioners. It was concluded that just around 26% of the entire organizations (surveyed 

owner and contractor organizations) had IT systems that supported synchronization across major 

supply chain tiers of project schedules and change to dates. Also, only 25% of them had materials 

management systems that allowed engineering requirements to go directly to the materials 

management system as electronic data.  

In addition to transportation costs, which have to be considered while planning industrial 

megaprojects, Ahmadian et al. (2016) illustrated the significance of off-site material transport time 

as another crucial variable. They developed a framework to estimate the duration of off-site 

transportation considering various construction materials categories, transport mode, size, and 

weight of consignments.  In one part of the study done by Gurmu (2019), a tool was proposed to 

score materials management practices for multistory construction building projects in Australia to 

predict construction productivity. It was shown that construction productivity could be increased 

by planning, monitoring, and evaluating materials management practices. Moreover, through in-

depth interviews with experts, he found that procurement plans for materials, long-lead materials 

identification, and materials delivery schedule were the most significant practices to improve the 

productivity of building projects. 

A group of researches has utilized simulation and optimization methods to enhance management 

processes, including material inventory optimization. Materials delivery and inventory were 

optimized by Georgy and Basily in 2008, utilizing Genetic Algorithm (GA). Project MRPs were 

used as input for GA to minimize the total material cost. Since the solution space for the 

optimization of delivery and inventory of materials is almost infinite, no specific number of orders 

is known in advance, material requisition schedule can be represented in a string form (consisting 

of material quantities delivered at a particular time) resembling the chromosomes used in GA as 

input and finally, a near-optimum solution minimizing material costs is obtained and is acceptable 

for all practical purposes, so they concluded that GA is a proper optimization engine for this 

purpose. Jang et al. (2007) optimized the floor-level construction material layout required for 

multiple-floor buildings in urban areas using GA and through remmoving unnecessary 

repositioning of construction materials. This optimized floor-level construction material layout 

determined how to appropriately position/place the construction materials to minimize the travel 

distance between work spots and construction materials. By implementing the proposed approach 

in a real case, it was found that inefficiencies in the positioning of construction materials at the 

floor-level could result in a 14% increase in the construction labor material handling distance. 

Fang and Ng (2011) used the Activity-Based Costing (ABC) approach to minimize logistics cost 

of construction materials (such as precast concrete units) between the supplier’s factory and the 

construction site. Logistics cost consisted of procurement, stocking at the supplier’s yard, 

transportation and loading and stocking on site. GA was used to find the optimal solution by 

defining activity start time and number of times for material delivery.  In the research done by Said 

and El-Rayes (2011), a construction logistics planning model was developed in which the 

decisions of material supply and site layout were optimized simultaneously to minimize logistics 

costs (ordering cost, financing cost, stock-out cost, and layout costs). The model considered 
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interdependencies between material supply and layout decisions and was able to measure the 

impact of these decisions on project delays. They extended their research and developed a novel 

Congested Construction Logistics Planning (C2LP) model to optimize logistics plans. A multi-

objective genetic algorithm was used to reach a trade-off between minimization of total logistics 

costs and schedule criticality. They considered different decision variables, including material 

procurement, material storage, facility layout, and scheduling of noncritical activities. Through 

shifting of noncritical activities, they tried to offer additional interior spaces for material storage 

and minimize the project logistics costs (Said and El-Rayes, 2013). One year later, they proposed 

a new Automated Multi-objective Construction Logistics Optimization System (AMCLOS) to 

optimize material supply and storage planning. Project spatial and temporal data are automatically 

retrieved from BIM and project schedule and integrated with contractor and suppliers' data to 

minimize total logistics costs (Said and El-Rayes, 2014). In all their researches, a fixed-ordering-

period was selected in every construction stage. It means each material was considered to be 

delivered to the job site in fixed intervals. Inventory replenishment and allocation decisions were 

modeled by Lu et al. (2018) through integrating supply logistics and site logistics issues in a novel 

framework. By applying the GA-based simulation optimization method, they could find the 

optimal inventory level under various allocation policies (including schedule-based, cost-based, 

demand-based, schedule-cost-based, and schedule-demand-based policies.) It was concluded that 

the schedule-based policy was the best policy when the Path Difference (PD) value of a project 

network was small (or large). 

According to the above literature review, it can be stated that research developments related to 

construction material management have been expanded in the following areas:  

 Site layout planning for material storage or optimization of material storage on-site; 

 Simulation and optimization of logistics plans, material delivery, and inventory to enhance 

management processes; 

 Effectiveness and performance measurement of the materials management process; 

 Efficient materials management practices and their applied approaches, materials 

management problems and their influences on project productivity, cost and schedule; and 

 Lean construction or investigating the implementation of Just-In-Time (JIT) strategies in 

construction projects. 

There are some studies as well which have focused on material waste management and 

quantification areas such as works done by Poon et al. (2001), Poon et al. (2004), Jalali (2007), 

Ajayi et al. (2017) and Mahmood Maad and Noori Sadeq (2019). In the research done by Ajayi et 

al. (2017), it is stated that to minimize construction waste, not only construction stages and the 

design impacts should be considered but also materials procurement process has to be observed 

and improved. They found that for waste mitigation, the five most critical procurement measures 

are: “commitment to take back scheme,” “procurement of waste efficient materials/technology,” 

“use of minimal packaging,” “use of Just in Time (JIT) delivery system,” and “prevention of over-

ordering.” 

The construction materials management concepts, efficient materials management practices, and 

their applied approaches, which have been discussed in this section, are considered in this research 

for the development of the materials management framework. For example, in the first 

(preconstruction)  model of the developed framework, an optimized material delivery schedule 
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with the least cost is generated to avoid early/late purchasing and excess/inadequate purchasing 

because early purchasing and excess purchasing result in cash flow problems and wast or surplus, 

respectively. 

2.2.2 Automated Construction Materials Management 

In the reviewed studies in the previous section, researchers tried to focus on the concepts of 

materials management and improve it through the implementation of JIT strategies, materials 

storage optimization, performance measurement, investigation of proper materials management 

practices, measurement and reduction of the influences of the most probable issues on project cost, 

schedule and productivity. But there were other points of view to improve construction materials 

management as well. It was concluded that managing materials on-site through paper documents 

was not practical in complex and large scale construction projects. Moreover, it was stated that 

when materials management processes were executed in a consistent manner, it operated more 

efficiently. So through a computerized system, construction materials management could be 

implemented more appropriately and lead to more benefits such as uniformity of documents 

generation, speed, and efficiency, automatic process implementation from inputting information 

to report generation in a matter of hours.  But a computerized system alone could not ensure the 

accuracy of the reports upon which corrective actions or various decisions were made. The output 

information and reports were only as good as the input data created them. Therefore on top of the 

development of a computerized system, there was a question of the accuracy of input data. Since 

manual data collection was slow, inaccurate, and resulted in extensive amounts of paperwork and 

also paper-based reports were problematic, error-prone, and inefficient, so Automated Data 

Collection (ADC) technologies were applied to reduce paper-based requirements and solve the 

issue. The studies related to (1) computer-based materials management systems and (2) application 

of ADC technologies in the construction projects and materials management are reviewed and 

described below.  

With respect to the first front (computer-based materials management systems),  Elzarka and Bell 

(1995) developed materials management systems using an Object-Oriented Methodology (OOM) 

data structure. Its attributes included automated commodity code creation, automated takeoff, 

intelligent purchase order issuance, and integration of design and schedule. They believed that 

since many firms have applied the relational database model for their MMS, so they could not 

integrate it with external computer-based systems related to design, project scheduling, and cost 

accounting. 

Wong and Norman (1997) presented a computer-aided Materials Planning System (MPS) in 

construction to increase cost savings. A study done by Chapman et al. (1990) brought up the result 

of the Science and Engineering Research Council’s sponsored investigation into the impact and 

problems of automation in materials management on large construction projects. Through 

surveying five large construction firms in the U.K., the level of automation in materials 

management was assessed. In fact, in this research, automation refers to the degree to which the 

companies used computers. It was found that none of the companies had an integrated system for 

materials management, and the problems of using an automated materials management system 

were the attitude of the building firm, attitude of the firm’s personnel, software, and hardware 

available. An e-commerce system named Construction Materials Exchange (COME) was 

developed by Kong et al. (2001) to hinder the limitations of the traditional construction materials 

procurement process and improve its effectiveness and efficiency. A software system entitled 
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“Virtual Construction Material Router (VCMR)” was designed and implemented by Nialidjoubi 

and Yang (2001) to behave as a decision‐support system for materials movement in complex 

construction sites. Software systems such as computer‐aided design, geographical information 

systems, and fuzzy logic were integrated to help site managers and planners to assess materials 

movement in the construction site and select the best available route. Subsomboon et al. (2003) 

proposed a three-dimensional (3D) and four-dimensional (4D) computer model, and a Fully 

Integrated and Automated Project Process (FIAPP-based) system for procurement and materials 

management. A material-status monitoring system was developed, which, along with the three-

dimensional model, could record and retrieve construction material procurement status visually. 

So this status-monitoring system would “color-code” 3D objects in the computer model upon their 

procurement status (ordered, delivered, on-site, etc.). El-Qader Al Haddad (2006) developed a 

construction materials management software entitled "Construction Materials Management 

Software"(CMMS) using Microsoft Excel. His work was a solution to some issues, such as 

manually managing of construction materials in contracting companies, and shortage of user-

friendly construction materials software packages. Navon and Berkovich (2006) developed an 

automated model for material management and control procedures, including materials 

purchasing, following up the status of PO, recording materials data when delivered at the site and 

their movement in the site, making recommendations, generating reports and issues warnings. 

They tried to replace manual materials management with an automated model to reduce materials 

surplus, delays, to remove the lack of timely information associated with the purchase orders (POs) 

status, the inventory levels, and the actual vs. planned materials consumption and to improve the 

productivity. Their study consisted of three major parts: literature was investigated in the first part 

to identify and analyze construction materials management problems and issues. An automated 

construction materials management was developed in the second part to prevent the identified 

issues, and the evaluation and application of the system under real condition was conducted in the 

third part. Lu et al. (2011) built a Materials Tracking Management Information System (MTMIS) 

for railway construction. Through establishing materials supplier files and recording key 

information from materials testing, receiving and allocation in the MTMIS, the supplier who has 

provided the materials and the place where those materials have been used, can be identified. In 

the case of material quality problems, other sites where the same batch of materials have been used 

can be traced. Tian et al. (2012) developed an electric materials management system/software in 

which two-dimensional barcode technologies were used for automated collection of material 

information and acceleration of inventory turnover. Ma et al. (2013) presented an integrated 

Mobile Material Management System (MMMS) in which Quick Response (QR) code and mobile 

terminals were applied with a special tagging method to improve material management on 

construction sites. It was integrated with an existing Enterprise Resources Planning (ERP) system 

through the Internet. Kasim (2008 and 2015) developed a real-time prototype system in which 

RFID-based materials tracking and resource modeling systems are integrated to improve tracking 

materials and inventory management processes. Kasim (2008) mostly focused on real-time 

identifying and tracking of materials using RFID on various locations, including construction site 

during materials delivery and materials installation and storage area. Jung et al. (2018) proposed a 

multi-method simulation model consisting of Discrete Event Simulation (DES) and Agent-Based 

Modeling (ABM) to model the interrelationships between construction and material supply 

processes and to analyze the complexity of supply chain process in high-rise building construction. 

Their simulation model includes off-site material supply process model, on-site material supply 

process model, and construction work process model.  
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This section of literature indicates that researchers concluded that on-line systems (which can 

control bills of materials, purchase orders, and material deliveries) were extremely cost-effective. 

So they tried to develop computer-based data systems for construction material management 

during the last four decades. But the existing computer-based material management systems focus 

on the following aspects: 

 Integration of the materials management processes or integration of construction and 

materials management processes using various techniques, and 

 Application of ADC technologies to collect materials localization and tracking data, and 

integration of these data with computer-based materials management systems.  

As to the application of ADC technologies in the construction projects and materials management, 

it can be stated that, since the critical decisions have been taken based on erroneous or incomplete 

data, most of the project managers always encounter with project delays and cost overruns. So to 

collect more accurate data, ADC technologies that were used in the manufacturing and retail 

industries have been introduced and applied in the construction industry (Su and Liu, 2007). ADC 

technologies had been utilized for efficiency increase, reduction in data entry errors, which are 

always caused by human transcription, and reduction in labor costs (Nasir, 2008). Davidson and 

Skibniewski (1995) illustrated the performance, speed, and accuracy of ADC against traditional 

manual data collection systems. Their developed Automated Data Collection (ADAC) model was 

used to estimate the time, labor, and equipment which were required to scan the labels of 

equipment in an office building by ADC. 

Moreover, the optimum configuration of ADC technology, labor, and label positioning was picked 

out through simulating various configurations. So, multiple researchers developed different 

approaches along with emerging various automated data acquisition technologies to automate the 

process of data collection required to perform identifying, location sensing, and tracking the 

movements of objects, control, and progress reporting in construction projects. These technologies 

include barcode technology, Radio Frequency Identification (RFID), Global Positioning Systems 

(GPS), Geographic Information Systems (GIS), Ultra-Wideband (UWB), laser scanning, 

Augmented Reality (AR), and digital imaging. 

An overview of these automated data acquisition technologies, along with their applications in the 

construction industry, are presented. 

It is stated that RFID systems and the Global Positioning System (GPS) are the foremost 

technologies for automated tracking and monitoring of construction resources and assets in recent 

decades (Soleimanifar, 2011; Jaselskis and El-Misalami 2003; Goodrum et al., 2006; Song et al., 

2006b; Ergen et al., 2007; Lu et al., 2007; Wang, 2008; Behzadan et al., 2008; Chin et al., 2008; 

Khoury and Kamat 2009). Navon and Goldschmidt (2003) presented computerized algorithms in 

which labor inputs (productivity) were automatically measured by defining workers’ locations at 

regular time intervals. They used Global Positioning Systems (GPS) and ground-based Radio 

Frequency (RF) to measure the position of workers performing outdoor and indoor activities, 

respectively. Sacks et al. (2003) developed a prototype labor control model in which the global 

positioning system (GPS) technology for the measurement of the workers’ locations on-site was 

integrated with a computerized building project model (BPM) to monitor labor productivity. Su 

and Liu (2007) tried to obtain construction operational information through geometrical data 

analysis of resources. In their research, real-time positional data (x, y, z, time) of tracked resources 
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were collected using RFID or GPS and then translated to as-built productivity information such as 

a crew balance chart. In the mentioned researches, through defining the vicinity of a building 

element associated with activities and knowing the workers’ locations, the activity a worker is 

involved in, and the time a worker spends doing an activity can be automatically determined. 

Still, as their limitation, some situations cannot be taken in to account by the model.  Situations in 

which workers are outside the vicinity of an element and still performing a value-adding task 

associated with the activity. Likewise, before mentioned studies, In the research done by Navon 

and Shpatnitsky (2005), productivity and progress were measured automatically by using GPS for 

monitoring and control of road construction projects. Navon et al. (2004) developed an automated 

model to control earthmoving operations. They translated measured locations obtained by GPS to 

real-time control data such as productivity and materials consumption to manage earthmoving 

operations. But applying GPS to identify and track all construction project resources is not logical 

because tagging hundreds of items with GPS receivers would be too expensive, so other 

technologies being less expensive would be required (Song et al., 2006b). Jang (2007) presented a 

new prototype framework and a localization algorithm for automated tracking and monitoring 

system of construction assets. Construction assets consist of equipment, materials, and labor. This 

tracking system is sensor-based, in which wireless sensor network technologies, including 

ultrasound and radio signals, are combined to provide full benefits in communication, labor usage, 

document, and resource management. Soleimanifar (2011) also focused on developing cost-

effective resource tracking and positioning framework for indoor or partially covered site 

environments to improve safety and productivity. The developed positioning architecture entitled 

“IntelliSensorNet” is the integration of the environment of Wireless Sensor Networks (WSN) and 

Artificial Neural Networks (ANN) for positioning and tracking critical construction resources such 

as laborers and equipment. In the year 2014, Soleimanifar et al. investigated the positioning 

accuracy of two RSS-based location tracking techniques entitled “ranging-based method” and the 

“profiling-based method” in challenging and dynamic indoor construction applications. The 

profiling-based method resulted in the positioning error of less than 2.14 m with 95% likelihood, 

so they found it as an effective localization method to be used for real indoor construction 

applications. 

Since the availability of required resources in a project is ensured by materials control systems, So 

Nasir (2008) stated that the improper materials control systems could be considered as the most 

common factor influencing the construction productivity resulting in productivity reduction of 

nearly 40%. The researchers concluded that effective materials tracking and control leads to the 

productivity increase, avoiding delays, reduction in the time needed for materials management, 

and reduction of materials cost due to a decrease in waste. Therefore they focused on tracking the 

location of materials and collecting the materials data in time, with ease and accuracy. The benefits 

of Information Technology (IT) to integrate Construction Supply Chain Management (CSCM) 

processes were investigated in the research done by Irizarry et al. (2013). They developed a BIM-

GIS system to visualize not only the supply chain process but also the actual status of materials. 

In this system, BIM and GIS are used to provide a detailed material takeoff and geographical 

information required for the transportation and logistics of the CSCM, respectively. An optimal 

solution in which the logistics costs (cost of orders, warehousing, and transportation) are 

minimized is generated by the Python language module of ArcGIS.  
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Le (2017) tried to make materials real-time information (including the arrival of materials, the 

amount of materials received, the status of materials either in a storage area or in-production, and 

site stocks) accessible during the construction through developing an automated material inventory 

control and management system. GIS-based decision support system and a “hybrid” tracking 

system (Bluetooth scanner and Bluetooth tracker imbedded into a Near Field Communication 

(NFC) tag) were used to identify the need for materials, order, track, transport, store, and control 

the inventory, circulate on-site, and incorporate into production. Won et al. (2018) claimed that 

construction materials localization in complex or large-scale construction sites using GPS, Ultra-

wide Band (UWB), and RFID were infeasible in terms of time and cost. They proposed a novel 

UAV-RFID integrated localization platform to address the limited recognition range and low 

accuracy of existing methods. They applied a machine learning algorithm (k-nearest neighbors), 

to increase the localization accuracy. 

On top of the mentioned technologies, there are other technologies such as digital cameras, 3D 

range cameras, and laser scanners that have been applied for image-based modeling of the as-built 

status of buildings. These optical-based spatial data acquisition technologies have been used for 

defect and deviation detection, construction job site planning, on-site safety enhancement, and as-

built documentation (Bhatla et al., 2012). But the As-built documentation, including a series of 

records, construction designs, specifications, and equipment location and as-built conditions of 

projects (Bhatla et al., 2012), is the main application of these technologies needed for construction 

progress monitoring purposes. For example in some studies (Bosché 2010; Bosché et al. 2009; 

Gordon et al. 2003; Huertas and Nevatia 2000) laser scanners and wireless embedded sensors have 

been used to achieve some goals including as-built dimension calculation and control, project 3D 

status visualization, performance control, early defect detection, and change detection. In fact, in 

these researches, as-built data are captured using laser scanners to create 3D as-built models. Then 

the 3D design model is comparing with 3D as-built models to achieve the goal. El-Omari (2008) 

investigated various automated data acquisition technologies and their capabilities and limitations 

to find and integrate the most suitable ones in one system to collect data from construction sites 

for tracking and progress measurement. In a holistic view, a cost/schedule control model was 

presented in which various automated data acquisition technologies (RFID, 3D laser scanning, 

photogrammetry, etc.), a software system for planning and scheduling, a relational database, and 

AutoCAD are integrated.  

In the following, technologies which have got the potential to be used, particularly in materials 

identification, tracking, locating, detecting, and progress monitoring are discussed in detail. These 

ADC technologies are (1) Barcode (2) RFID (3) GPS (4) GIS (5) UWB (6) laser scanning (7) AR 

and (8) digital imaging. 

In 1982, since the U.S. Department of Defense (DoD) asked its suppliers to ship their goods with 

attached barcode labels, barcode technology started to evolve and improve (Bernold, 1990a).  

The application of barcoding was introduced to the construction industry in 1987 for materials 

management, plant and tool control (Bell and McCullouch, 1988; Bernold, 1990b; Stukhart, 1995; 

Chen et al., 2002, Nasir 2008). Due to the enormous potential of barcode technology to save cost, 

the Construction Industry Institute (CII) started a research project in 1987 to investigate the 

possible applications, and the achieved cost savings of applying barcodes in the construction 

industry (Bell and McCullouch 1988; Nasir, 2008). As Chen et al. (2002) states, the following 

functions can be provided through applying bar-coding technologies: 
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 Tracking real-time data of construction materials automatically on the site; 

 Recording historical data of consumed construction materials automatically; 

 Monitoring materials consumption of working groups automatically; and 

 Transfer real-time data of materials automatically to head office via Intranet. 

A typical barcoding system consists of three components: tags or labels, a reader or scanner, and 

a printer. Figure 2-4 indicates the barcoding system components (Nasir, 2008). 

   

Figure 2-4: Barcoding Hardware System Components (Nasir, 2008) 

There exist two different types of barcode tags. The first type is a one-dimensional barcode, which 

can be typically used as an identifier code on an object. In contrast, the second type is a two-

dimensional barcode, which can contain a whole file of information about an object (Montaser, 

2013). Another component of the barcoding system is a scanner that can read data coded on a 

barcode label. There are different types of scanners; however, the most useful are the laser scanners 

(Nasir, 2008). The third component of the barcoding system is the printer to produce high-quality 

barcode tags. One limitation of barcode labels is their need to have a line of sight to be read by the 

scanner, so the crew holding scanner has to physically go near the item having an attached barcode 

label to read the barcode and records the information. The recorded data by the scanner is 

downloaded into the office computer to update the related databases.  

Various studies have focused on the application of barcodes in the construction industry for 

different purposes. For example, Vartiainen et al. (2008) experimented readability of the barcode 

and usability of a cellular phone camera for tracking goods in the construction industry. Lin et al. 

(2014) developed a novel 2D Barcode/RFID-based system for effective maintenance management 

in a construction lab. However barcodes are cheap, they have some limitations including the line 

of sight requirement, limited read range (inches or fraction of an inch), tags information cannot be 

modified, a limited amount of entered or stored data, identification of the product instead of the 

unique items, only one barcode can be read at a time, being affected by harsh environments (Nasir, 

2008). 

Another automated data collection (ADC) technology is RFID. The preliminary idea of what we 

now call RFID can be assigned to Mario Cardullo in 1969, but it was patented later in 1973. 

Although during the 1990s to 2000s, MIT automatic identification (Auto-ID) laboratory started to 

focus on the application of RFID in the context of logistics and supply chain (Hedgepeth, 2007), 

the application of RFID in the construction industry was introduced by Jaselskis et al. in 1995 

(Nasir,2008). As Jaselskis and El-Misalami (2003) state, RFID can be considered as a sister 

technology to barcode labels. Instead of light waves, radio waves are used to read a tag, and RFID 
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tags have transponders to communicate with readers through radio frequency waves. Nasir (2008) 

compared RFID with barcodes and stated that RFID does not require line of sight, it has longer 

read range (one inch to 100 feet), more data can be stored on RFID tags, it can identify both the 

product and item and even much more, there are read-write RFID tags, data from multiple tags (up 

to 1000 tags per second) can be read simultaneously, RFID tags are durable, they can perform in 

the harsh construction environment, but RFID tags are more expensive. According to the various 

researches, it can be stated that the RFID system consists of three main components, which are 

shown in Figure 2-5. (1) the tag, which is attached to the item expected to be tracked; (2) the 

reader, which identifies tags, reads tags’ data, and transfers data to the host computer. The RFID 

reader has other responsibilities as well based on the type of used tags, including providing power 

and writing data, and (3) host computer as a data collector which receives data from the reader 

(Nasir, 2008).  

 

Figure 2-5: Typical RFID System Components (Montaser, 2013) 

In an RFID system, a serial number or other required information is stored on RFID tags, which 

have been attached to the items. RFID tag transmits the captured information in forms of emitted 

radio waves to the RFID reader. Finally, the reader converts them into digital information to send 

to the computers for processing the data (Montaser, 2013). “The chip and the antenna together 

encapsulated in a protective shell are called an RFID transponder or an RFID tag.” (RFID Journal 

2016). RFID tags are categorized from different points of view. The microchips in the RFID tag 

can be read-write, read-only, or “write once, read many (WORM).” The required information can 

be appended to the current information of the read-write tags while the tag is in the range of a 

reader. The needed information is stored in the read-only tags at the time of fabrication/production, 

which cannot be changed. This information can be read-only by the reader. 

But regarding the WORM tags, after manufacturing, the user can write the required information 

only once over the current information of tag; after that, it can only be read (Nasir 2008). Moreover, 

RFID tags can be classified as active tags, passive tags, or semi-passive tags. Active RFID tags 

have their own power source (a battery) for running the microchip’s circuit and also for sending a 

signal to a reader. Passive tags are activated by the electromagnetic energy emitted by the reader. 

Semi-passive tags have a battery just to run the microchip’s circuit, but they use the reader’s 

electromagnetic energy to communicate with the reader. Read and write ranges for passive tags 

are generally less than six feet, while active tags can be read or written to from approximately 5 to 

100 feet. Active tags are usually more expensive than their passive counterparts and have a limited 

three to ten years life in contrast with the passive tags which have an unlimited lifetime (Jaselskis 

and El-Misalami, 2003).  
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The RFID reader can be fixed or mobile, as shown in Figure 2-6. Based on the model of RFID 

reader and also based on the types of tags, its read range varies. Typically, a reader can read 

thousands of tags per second. As Jaselskis et al. (1995) have stated, RFID readers can 

simultaneously communicate with different RFID tags. Therefore all the included information of 

an entire shipment as it is loaded into a warehouse or it is received to the construction site can be 

captured by RFID readers. 

 

 

 

 

 

 

Figure 2-6: Different Types of RFID Readers (Atlas RFID Store) 

The application of RFID in the construction industry to improve construction materials 

management have been surveyed in different studies. 

Jaselskis and El-Misalami (2003) tried to illustrate RFID as a promising technology for improving 

construction operations, specifically in the materials receiving process. They indicated the 

potential applications of RFID technology in engineering/design, material management, 

maintenance, and field operations.   

In the research by Song et al. (2006a), off-the-shelf RFID technology was used, and RFID tags 

were attached to all the materials. So the materials could be recognized and tracked automatically 

by field staff using an RFID reader and a GPS receiver. Then they investigated the technical 

feasibility of their proposed approach through developing a mathematical model. Their field 

experiments indicated that by using the proximity localization techniques, the proximate 2D 

locations of materials could be defined with acceptable cost. Song et al. (2006b) automated the 

tracking process of pipe spools in the long supply chain process, including design, fabrication, 

interim processing, delivery, storage, installation, and inspection of industrial projects by applying 

RFID technology. They concluded that if portal gates are equipped with four antennas and if pipe 

spools are driven at a speed less than two mph through portal gates, pipe spools are identified with 

100% accuracy using current active RFID technology. 

Moreover, they suggested that RFID technology should be extended through the construction stage 

for automated piping work progress tracking. The RFID gate sensor system, including passive 

RFID tags and wireless network technology, has been presented by Lee et al. (2008) for an 

intelligent logistics management system. Montaser (2013) developed an automated model in which 

project visualization-information aspects, automated site data acquisition, and earned value 

analysis were integrated to make data collection and project control automated. He applied short-

range RFID for location estimation and material tracking in a cost-effective manner for indoor 

construction operations. RFID was utilized in the knowledge-based precast construction supply 

chain by Wang et al. (2017) to demonstrate that 62.0%  of operational costs could be saved in 100 
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precast wall-panel construction compared with manual-, and barcode-enabled precast construction 

supply chain. As mentioned before, Won et al. (2018) developed a novel UAV-RFID for 

construction materials localization in complex or large-scale construction sites. Despite all the 

possible benefits of applying RFID for automated materials tracking, in a study done by Kasim et 

al. (2019), it is shown that manual materials tracking practices and very basic Information and 

Communication Technologies (ICT) are still used in construction projects in Malaysia.  

In a holistic view, the reviewed researches demonstrate that RFID technology has been applied 

effectively in the construction industry for materials management and control, materials 

identification and tracking, tools tracking, tracking the work of workers on-site (using RFID card), 

identification of arrival dates of materials onsite (using RFID gates) as well as engineering/design, 

field operations, maintenance, and lay down yard management. But to have an effective materials 

management, it is required to know whether the planned amount of materials have been installed 

or consumed in the construction phase or not. Tracking materials and identifying their two-

dimensional location (x, y) is not enough to investigate their consumption or installation, because 

the coordinate (xfinal, yfinal) of a specific material which is in its final zone waiting to be 

consumed/installed is similar to the coordinate (xfinal, yfinal) of another similar material that is 

consumed/installed. So, instead of 2D localization of construction materials, 3D localization is 

needed if their position and location are used to investigate their consumption/installation. In 

addition to the regular application of RFID for automatic identification, data collection, and 

assets/materials tracking and localization in 2-dimensional space, RFID can be used to locate an 

object in 3-dimensional space as well. In contrast with localization in 2-dimensional space 

applying RFID, localizing an object in a 3-dimensional space requires the deployment of a number 

of RFID tags and/or readers with known locations as reference nodes resulting in high hardware 

cost. Moreover, using a large number of RFID tags and readers in construction sites can sometimes 

be impossible. For instance, Wang et al. (2007) proposed two different 3D localization schemes, 

namely, the active scheme and passive scheme, to localize an object in a 3-dimensional space 

through using RFID. System set up for RFID 3D localization for both active scheme, and passive 

scheme is illustrated in Figure 2-7 (see Wang et al. (2007) for more details). It has been shown that 

a large number of tags and readers attached to the floor or ceiling is required.    

 

Figure 2-7: RFID 3D Localization (a) Active Positioning Scheme (b) Passive Positioning 

Scheme (Wang et al., 2007) 
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Regarding GPS, the U.S. Department of Defense positioned 24 satellites into the orbit to create 

GPS, which is a satellite-based navigation system for military applications. Civilian use of the GPS 

on land, at sea and in the air became permissible in the 1980s by the government. So to make GPS 

operational for civil and other users, two different GPS services were provided. The first service 

entitled “Precise Positioning Service (PPS)” assigned primarily to the military of the United States, 

but the second service called “Standard Positioning Service (SPS)” was designed to provide a less 

accurate positioning capability than PPS and assigned to civil and all other users throughout the 

world (Department of Defense - USA, 2008). 

GPS technology also has been widely used to address the requirements of positioning data for the 

construction industry. The GPS consists of three segments: 1) space segment including a minimum 

of 24 satellites arranged in a way that radio signals from at least four of them will be received by 

a GPS receiver at any given time. These radio signals need line of sight, so they cannot pass 

through solid objects. 2) control segment, including five control ground stations located around 

the world. 3) user segments, including the users with their GPS receivers who want to know about 

their three-dimensional positions (latitude, longitude, altitude) (Nasir,2008). Triangulation is used 

for three-dimensional position determination at any given time. The final location and its accuracy 

can be affected by atmospheric conditions and satellites’ locations (Caldas et al., 2006).  

In outdoor environments and on construction job sites, researchers applied GPS technology to 

automatically localize construction labor and equipment for various purposes including 

identification of the two-dimensional location of the objects, productivity and progress 

measurements, control of earthmoving operations, automated data collection for road construction 

control, increasing safety and quality control and  (Peyret and Tasky 2002; Oloufa et al. 2003; 

Navon and Goldschmidt 2003; Sacks et al. 2003; Navon et al. 2004; Navon and Shpatnitsky, 2005; 

Song et al. 2006a; Su and Liu, 2007, and Moselhi and Alshibani 2007). Other benefits, including 

processes improvement, lost items reduction, improved construction performance, automation and 

standardization of localization processes, route sequences, and layout optimization, improved data 

entry, and direct savings of time by using the GPS technology, were reported (Caldas et al., 2006). 

GPS also has the following disadvantages: 

 Low positioning accuracy of around 10 m in open areas (Lu et al. 2007) 

 Lack of reliability for indoor areas due to the poor reception of satellite signals (Song et 

al., 2006b). 

 High cost for automated tracking of individual material items using GPS (Song et al, 

2006b). 

Next technology which is GIS helps maps to be drawn from its database through integrating 

database management systems and computerized visual and geographic analysis in the form of 

maps. The GIS database includes various information such as geographic, environmental, political, 

and social information about objects and their relationship with each other (Bansal and Pal, 2009). 

So all the existing trends and relationships of data that have not been visible and clear enough can 

be visually seen and analyzed. It is worth noting that the maps would be automatically updated 

whenever their related database is updated. As Montaser (2013) indicated, GIS has been applied 

as a decision-making and problem-solving tool, and even it can be integrated with other automated 

data collection technologies and software to be more efficient.  
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The GIS has been utilized in various fields, including civil engineering, transportation, facilities 

management, urban planning, and waste management. GIS has got multiple applications in the 

construction projects, including monitoring project schedule and progress, materials procurement, 

construction waste reduction, automated data acquisition, earthmoving equipment control. For 

example, Cheng and Chen (2002) developed an automated schedule monitoring system entitled 

“ArcSched,” which was an integration of GIS and barcode technologies. Engineers could monitor 

and control the erection process of prefabricated structural components on a real-time basis with 

the help of this system. Li et al. (2005) combined the Incentive Reward Program (IRP)-based 

barcode system with GPS, GIS, and the Wide Area Network (WAN) technology to control and 

reduce construction wastes. Zhang et al. (2018) used Multi-View Stereovision (MVS), Point Cloud 

Co-registration (PCC), and Unmanned Airborne Systems (UAS) technologies to collect 3D 

construction site material information such as volumetric or area change of stockpiled construction 

material. A novel integrated framework was presented applying 4D BIM and a geographical 

information system (GIS) for supplier selection, determination of the number of material 

deliveries, and allocation of consolidation centers (Deng et al., 2019). 

Ultra-Wideband (UWB) is another type of remote sensing technology that has been often applied 

in the construction projects for providing real-time data related to the locations of workers, 

materials, and equipment in outdoor and indoor environments. 

The provenance of UWB technology dates back to the early 1960s. During this decade, researchers 

had focused on the time-domain of electromagnetic-wave propagation. Then in 1978, Bennett and 

Ross outlined the first applications of UWB. It is worthy to note that all the uses of UWB were 

under US government programs. But in 1994, non-governmental related researchers were allowed 

by the Federal Communications Commission (FCC), which resulted in the acceleration of 

developing UWB technology and its application for the precision localization (Teizer et al., 2007). 

UWB is any signal that has a fractional bandwidth equal to or greater than 0.20 or has a UWB 

bandwidth equal to or greater than 500 MHz (Breed, 2005). A large amount of information can be 

transmitted over distances of up to 1,000 m using UWB technology. Commercially existing UWB 

systems consist of  (1) processing computer and hub, including a graphical user interface (2) 

minimum of four UWB receivers at different height levels to record real-time three-dimensional 

signal data in a field of view of 90° (mid gain), 60° (high gain), and omnidirectional (3) CAT-5e 

shielded wires, and (4) Low- and high-powered UWB tags, including one reference tag (Teizer et 

al., 2008). Several lengths of shielded CAT-5e cables connect receivers and antennas to the hub 

either in-line or parallel to power the receiver(s). Tag identification and time readings are 

transmitted back to the hub via shielded CAT-5e cables as well. A reference tag is positioned 

ideally in the center of the space observed and in line of sight of the receivers. It is preferred to 

locate all the hardware components at the boundary of the observation area. 

The three-dimensional position of receivers and reference tag is specified using a total station in 

advance of measuring tag locations. While tags are placed on any running resources and the 

receiver sends out pulses, each tag constantly fires out a packet burst of short UWB pulses, 

including the prerecorded identification number. The receivers receive these pulses through their 

sensitive antenna. The large bandwidth of UWB allows the receivers to measure the times of arrival 

of the signal with high accuracy. After the time-of-flight principle and through synchronizing the 

arrival signal, the location of each tag is calculated. Signals between receiver and tag can generate 

real-time two-dimensional positioning data if there exist only three receivers. The UWB tags exist 
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in a small badge (0.65 × 0.34 × 0.06 m), asset cube (0.29 × 0.29 × 0.25 m), or micro rectangular 

shape (0.13 × 0.25 × 0.06 m) form. The weight for each tag is less than 12 g. The various 

application of UWB technology in the construction projects consist of facilitating on-site 

management, increasing resource usage and productivity, increase in the work zone safety, and 

schedule and cost reduction (Teizer et al., 2008). UWB has got unique advantages comparing other 

remote sensing technologies such as: providing accurate 3D location values in real-time, longer 

range, higher measurement rate, improved measurement accuracy, and immunity to interference 

from rain, fog, or clutter (Cheng et al., 2011; Teizer et al., 2007). The main limitation of UWB is 

a necessary measurement infrastructure (Teizer et al., 2007) 

A typical UWB setup and installation with tags on construction assets, including workers, 

equipment, and materials, are shown in Figure 2-8. 

 

Figure 2-8: A Typical UWB Setup and Installation (Cheng et al., 2011) 

Teizer et al. (2007) introduced UWB for real-time location sensing and resource tracking. They 

illustrated the applicability of UWB for construction and, in particular, to measure accuracies in 

field applications. Cheng et al. (2011) investigated the performance of a commercially-available 

UWB system for tracking mobile resources in the real-world and harsh construction environments. 

They used Robotic Total Station (RTS) to obtain ground truth for calculation of location error rates 

of UWB. Their research indicated the applicability of UWB for the design of construction 

management support tools. In the study done by Cheng and Teizer (2013), UWB has been applied 

for real-time (location) data collection and then is integrated with visualization technology in a 

novel framework for construction safety and monitoring applications. Macoir et al. (2019) 

proposed the use of autonomous indoor drones localized through a designed UWB for inventory 

management. UWB utilized infrastructure anchor nodes that did not require any wired backbone 

and could be battery powered. Despite the high accuracy of UWB in localizing objects and its 

ability to provide accurate 3D location values in real-time, its application has the following 

problems: 

 The requirement of the dense and expensive network of fixed receivers (Solenmanifar, 

2011; Khoury and Kamat, 2009); 

 Difficulty in applying in a crowded construction environment (Soleimanifar, 2011); and 

 Low performance due to harsh weather conditions such as high humidity (Soleimanifar, 

2011). 

https://www.mdpi.com/search?authors=Nicola%20Macoir&orcid=0000-0003-2066-1570
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The laser scanner is a kind of 3D imaging system. According to the ASTM 3D Imaging standards 

committee, a 3D imaging system has been defined as a “non-contact measurement instrument used 

to produce a 3D representation (e.g., a point cloud) of an object or a site (ASTM, 2009; Lytle, 

2011).” Ground-based/Terrestrial Laser Scanning (TLS) as a kind of remote sensing technology 

has been applied as a new generation surveying technique. TLS measures the distance/range to 

each point of an object by analyzing a laser light return on an object’s surface. In this way, large 

amounts of 3D coordinates of objects’ surfaces in the form of a point cloud or three-dimensional 

digital model, with an unprecedented level of precision, are acquired. So a TLS makes it possible 

to remotely survey areas that are complex or inaccessible to traditional surveying techniques and 

analyze a real-world object or environment through collecting data on its shape or appearance 

(Soudarissanane, 2016). Three-dimensional laser scanning is a novel technology in the field of 

surveying and Architecture/Engineering/Construction (AEC) industries (Oliveira Filho et al., 

2005).  The scanning technology was created in the 60ʹs of the 20th century. Due to technological 

difficulties, the accurate scanning of objects was a very laborious process and took a significant 

amount of time and effort to scan objects accurately. Scanners that could use white light, lasers, 

and shadowing to scan a surface came to existence after 1985 (Artescan, 2016). 

Laser scanners consist of three parts: (1) an emitted optical signal (2) a system to point the emitted 

signal, and (3) an optical receiver to detect and process the returned signal (Lytle, 2011). There are 

two common types of laser scanning technologies: phase-based scanners and time-of-flight (pulse-

based) based scanners (Specht et al., 2016). In contrast with a pulse-based laser scanner which 

waits for the return signal before sending the next one signal, a phase-based laser scanner emits a 

continuous wave, which leads to much higher measurement rates. Moreover, using a phase-based 

laser scanner results in obtaining higher accuracy in the order of millimeters due to the modulation 

of such a continuous wave. It should be stated that the pulse scanners have a greater maximum 

scanning range than phase scanners. Therefore, compared with the phase-based approach, the time-

of-flight approach is more suitable for long-range scans. “Various laser scanners are currently 

available with a range of speeds (typically 2,000–120,000 points per second), maximum 

resolutions (typically 1–100 mm at 50 m), and accuracies (typically 3–50 mm at 100 m) (Specht 

et al., 2016). The scanner must be stationary during scanning and requires minutes to tens of 

minutes to perform high-resolution scans of complex environments” (Olsen et al., 2010).  

Gong and Caldas (2007) studied rapid local area modeling obtained from high-frequency laser 

scans for construction resource management applications. They explored the performance of 

various data processing algorithms in both indoor and outdoor environments. They could present 

an integrated range data processing module allowing for quickly experimenting with different 

combinations of data filtering, transformation, and segmentation approaches and could handle 

sensor noise and accurately process high-frequency local area laser scans. In the Ph.D. thesis done 

by Soudarissanane (2016), the significant factors influencing the quality of end product or point 

cloud of Terrestrial Laser Scanners are classified into four main categories: scanner mechanism, 

atmospheric conditions and environment, object properties, and scanning geometry. All the 

mentioned factors are out of the user’s control except the scanning geometry factor, because the 

user can determine the scan location and the view-point of a point cloud. So in his study, the 

influence of scanning geometry on the point cloud quality has been investigated. It was concluded 

that reducing the total error of the measurements was possible by placing the scanner at another 

position in the room, which was not necessarily a distinct position. Therefore, based on this result, 

a new method was developed based on terrestrial laser scanner capabilities to determine near-
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optimal view-points in a scene. According to the reviewed literature, on top of the application of 

3D laser scanning in other areas, including civil engineering, mechanical engineering, medical 

engineering, forensics, remote sensing, film and game industry, and archeology, it has been used 

for several purposes in the construction industry. Laser detection and Ranging (LADAR) is a 3D 

laser scanner that is used primarily for spatial measurement. Other applications of LADAR include 

“surveying, earthmoving operations, monitoring the progress of concrete casting, highway 

alignment, paving operations, and construction quality control” (Lytle, 2011). 

As Golparvar-Fard et al. (2015) has stated, despite the extensive studies about the application of 

laser scanners in automated data collection, they have some shortcomings including limited spatial 

and temporal resolutions (Furukawa and Ponce 2006), need for frequent and manual registrations 

due to discontinuity of spatial information, the mixed-pixel phenomenon (Kiziltas et al. 2008), 

need for regular sensor calibrations, slow warm-up time, creation of noise resulted from moving 

objects, reduction of captured detail due to increase of distance between laser scanner and the 

building components and finally since they are not easily portable, so they are not proper for indoor 

environments. 

AR is a visualization technique in which the real world and the virtual contents are blended in a 

3D space to increase the user’s awareness of the real environment (Behzadan et al. 2015.) So 

through using advanced camera and sensor technology, AR adds a 3D model, which sometimes 

called cyber-information to the real world. To create AR visual simulations, both a software 

application and a hardware platform are required. As Dong and Kamat (2013) have stated, Scalable 

and Modular Augmented Reality Template (SMART) is a software application framework used 

for accurate registration and projection. Augmented Reality Mobile OpeRation platform 

(ARMOR) is a modular mobile hardware platform used for tracking user position and orientation 

and displaying the augmented view. As shown in Figure 2-9, ARMOR consists of orientation and 

position tracking devices such as electronic compass and Real-time Kinematic (RTK) GPS 

respectively, camera, Head-mounted Display (HMD), external power supply, Nintendo Wii 

Remote (Wiimote) which is a user command input and one load-bearing vest which compacts all 

the mentioned components.  

 

Figure 2-9: ARMOR Hardware Architecture (Dong and Kamat, 2013) 
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AR has been applied for different purposes including AR visual excavator-utility collision 

avoidance system (necessary for avoiding from the occurrence of accidental utility strikes through 

visualization of buried utilities), AR post-disaster reconnaissance (evaluation and quantification) 

of building structural damages occurred by earthquakes or blasts and tabletop collaborative AR 

visualization resulting in interactive visual simulations of engineering processes (Behzadan et al. 

2015.) 

AR works through some steps, including capturing real-world aerial images and generating 3D 

reconstruction, registration between digital data and physical world to make sure virtual objects 

are placed and aligned accurately to the real world, visualization, and displaying virtual pictures 

for the user. 

However, in contrast with other industries such as manufacturing, medical operations, military, 

and gaming, application of AR technologies in Architecture, Engineering, Construction, and 

Facility Management (AEC/FM) industry is new (Behzadan et al. 2015), Rankohi and Waugh 

(2013) have expressed that AEC/FM industry can benefit from AR in visualization, information 

retrieval, and interaction. So they have classified the application of AR in the AEC/FM industry 

into the following areas: 

 Visualization/simulation; 

 Communication/collaboration; 

 Information modeling;  

 Information access; 

 Progress monitoring; 

 Education/training; and  

 Safety/inspection. 

Behzadan and Kamat (2013) utilized and integrated videotaping, AR, and UWB to develop a 

pedagogical tool. This tool generates live videos of remote construction job sites, and the students 

can interact with the objects from their classrooms using an intuitive interface. A novel vision-

based mobile augmented reality system named “Hybrid 4-Dimensional Augmented Reality 

(H𝐷4AR)” has been developed by Bae et al. (2013) in which the user’s location and orientation 

can be derived through comparing images (captured by a mobile device from the user’s location) 

to a 3D point cloud (generated from site images). Zollmann et al. (2014) developed a system to 

improve monitoring and documentation of construction site progress. This system includes three 

main components “an aerial client that captures aerial images for 3-D reconstruction on a regular 

basis”, “a reconstruction client that performs aerial reconstructions and remote localization,” and 

“an AR client that visualizes progress information spatially registered to the physical environment 

on site.” Wang et al. (2014), integrated BIM and AR prototypes to improve accessing the 

information and productivity in the concerned rationales. A novel system consisting of an Android 

application named “BIM-U” and a mobile augmented reality (AR) channel called “BIM-Phase” 

was proposed by Zaher et al. (2018) to improve monitoring construction progress using 

smartphones and to track time and cost on construction projects. Construction site activities are 

facilitated by using an augmented reality system developed by Kivrak and Arslan (2019). By using 

this system, information on training materials and construction methods are accessible for 

managers, engineers, and construction workers, and they can follow each step of the construction 
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activities assigned to them. So it can lead to a reduction of risks related to mistakes made in site 

activities and also the quality and productivity improvement of construction site activities. 

Portable and mobile AR systems includes four different types of tracking technologies including 

“Radio-Frequency (RF) based tracking technologies such as GPS, WLAN, indoor GPS,” 

“infrastructure-dependent technologies such as fiducial markers,” “infrastructure-independent 

tracking technologies such as gyroscopes,” and “image-based tracking techniques” (Rankohi and 

Waugh, 2013). As Bae et al. (2013) have expressed, a high degree of dependency on pre-installed 

infrastructure is the major shortcoming of these RF-based location tracking technologies. 

Moreover, attaching markers to different surfaces is required while using fiducial markers and 

makes it infrastructure-dependent and challenging for large-scale implementations. Even if 

location tracking systems are used, which are infrastructure-independent, accumulated drift error 

will be inevitable, and also the error increases with the distance traveled by the users.  

So despite the potential application of AR in the ACE/FM industry, there are still some limitations 

and issues in the employment of AR in the construction industry such as tracking and alignment 

problems, the visual illusion of virtual objects in the real world (i.e., occlusion), speed of 3D 

reconstruction/localization, mobility and ergonomics, power limitations, and adverse weather 

conditions (Bae et al. 2013; Rankohi and Waugh, 2013; Behzadan et al. 2015).  

Digital Imaging is another technology that has been extensively used in construction projects. An 

image is considered as highly accurate information in the construction projects (Kim and Kano, 

2008). Cameras have been applied widely to monitor and record various activities on a 

construction site, especially for construction control and inspection. Images produced by the 

cameras are processed using image processing techniques to help project participants better 

understand the project status (Wu and Kim, 2004). As Gonzalez et al. (2009) have stated “an image 

is specified as a two-dimensional function, 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are spatial coordinates and the 

amplitude of 𝑓 at any pair of coordinates (𝑥, 𝑦) is called the intensity of the image at that point.” 

An image is a digital image when 𝑥, 𝑦, and the amplitude values of 𝑓 are all finite and discrete 

quantities. So a digital image is made up of a finite number of elements; each element has a specific 

location and value. These elements can be called picture elements or pixels. A digital image is 

represented as a matrix of intensity values, so processing and analysis of digital images consist of 

transformations, operations, and manipulations of such image matrixes. Fathi et al. (2015) 

classified imaging systems into active and passive sensing technologies to capture and model 

reality. Based on these technologies’ working principle, any kind of optical energy is not shoot up 

into the scene by passive sensors (such as RGB cameras) against active sensors (such as an RGB-

D, LiDAR). Limited working range (1–3 m) of active sensors, large energy consumption, 

dependency on the resolution of the projector, inability to scan dark surfaces make their application 

improper in the construction and infrastructure sectors. Against RGB-D, RGB cameras are flexible 

for data capturing in the construction industry with lower cost and acceptable working range. In 

contrast with the imaging systems mentioned above in which just a snapshot of a scene is captured, 

and the images are static, there is another type of image called “360-degree image” which can 

visualize the real environment surrounding the point from which the image has been captured. So 

using cameras to take 360-degree images makes it possible to look around the scene to the left, 

right, up, and down.  As Eiris Pereira and Gheisari (2018) have stated, 360-degree images can fully 

immerse the user in real-world spaces. So a realistic and detailed reflection of construction sites 

can be generated using this technology, and the user is in the shoes of a person who is capturing 
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the image and can turn around looking at surroundings. There are various 360° cameras (with 

either traditional or fish-eye lens) that can capture all of our surroundings and produce 360-degree 

images such as Ricoh Theta V, Garmin VIRB 360, Insta360 ONE X, and Samsung Gear 360. The 

application of 360-degree images in the construction domain is classified into three groups, 

including: “interactive learning, reality backdrop to augmented information, and visualize 

safe/unsafe situations.” Some off-the-shelf platforms are using 360-degree panoramic techniques 

in the construction field to make visualizing and traveling job sites remotely possible such as 

HoloBuilder®, in which as-built conditions are visualized through spatially linking the images to 

existing 2D plans. Progress motoring can be another application of using this platform if 360-

degree images of the construction site are taken across time. Low image quality, the inflexibility 

of 360-degree images regarding visual rotation, and parallax issues when objects are near the focal 

point of the camera are the limitations of 360-degree images (Eiris Pereira and Gheisari, 2018). 

It is expressed that there are no clear-cut boundaries between image processing and computer 

vision. The field of computer vision uses computers to emulate human vision, which includes 

learning and the ability to deduce and take actions based on visual inputs. So there are some 

definitions to illustrate these field boundaries. The best paradigm considers three types of 

computerized processes in this continuum: low-, mid-, and high-level processes. Low-level 

processes consist of primitive operations such as image preprocessing to reduce noise, contrast 

enhancement, and image sharpening. In this level, both inputs and outputs are images. Mid-level 

processes include “tasks such as segmentation (partitioning an image into regions or objects), 

description of those objects, and classification (recognition) of individual objects.” In mid-level 

processes, inputs and outputs are images and attributes extracted from the same images (e.g., 

edges, contours, and the identity of individual objects), respectively. Eventually, higher-level 

processing involves "making sense" of recognized objects, and performing the cognitive functions 

normally associated with human vision (Gonzales et al., 2009). So against computer vision in 

which the goal is to understand the image and mimic human vision, image processing alludes to 

the quantitative evaluation techniques, which can be used to images for the quality improvement 

for analysis purposes. These techniques have been introduced to and used in the civil engineering 

discipline not long ago and enable civil engineers to carry out many labor-intensive tasks 

automatically (Shehab-Eldeen, 2001). In general, image processing includes image normalization, 

image enhancement and image warping or registration. The first step is image normalization, in 

which the images are of the same size and focus. In the image registration process (including 

feature extraction, feature matching, determination of a transformation function, and image 

resampling and transformation), images taken from different viewpoints or by different cameras 

are aligned point-to-point correspondence. In the image enhancement process, the features in the 

images are more perceptible for visual pattern recognition algorithms (Guo, 2008). 

On top of the common usage of digital imaging such as the decrease of theft and vandalism of site 

equipment and material, identification of the completion of building sections/components and 

required rework, reduction of inspection time, and quick identification of issues/problems during 

construction, there are other applications of this technology (Brilakis, 2007). Construction images 

taken from one point or various points of view have been used for reconstructing as-built BIM, 

detection, and recognition of different types of construction materials, volume estimation of bulk 

materials, recognizing diverse construction activities, and resources pose estimation. For example, 

Yang et al. (2016) reconstructed an as-built 3D building facade using images taken from various 

points of view. The materials of the building surface were recognized using machine learning 
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techniques then. In another research done by Luo et al. (2018), 22 classes of construction-related 

objects and 17 types of construction activities were automatically detected and recognized 

respectively using still site images and convolutional neural networks. Their developed method 

could result in spending managers’ time to solving problems instead of manual data collection. 

Recent improvements in digital photography and webcams have made them more cost-effective 

and practical methods for project information gathering (Golparvar-Fard et al., 2009). It is stated 

that as-built data acquisition by images and videos has some benefits, including no need for 

specialized knowledge, portability, low cost, short time, and ease of collection (Kropp et al., 2018). 

Since image-based approaches have the advantage of low costs and a simple acquisition process, 

they have been used to record the actual status of the project visually to be compared with the 

expected project status and identify deviations. It can be stated that, instead of manually methods, 

image-based approaches have been widely applied to collect large amounts of spatial data in a 

rapid, accurate, and timely manner for monitoring projects progress. There are various researches 

improving project progress monitoring using digital images (Kim et al., 2013b; Golparvar-Fard et 

al., 2015, and Kropp et al., 2018) 

Regarding 360-degree images, Gheisari et al. (2015) proposed 360-degree interactive panoramas 

(Augmented Panorama) to visualize the whole structure of a building to students. They tried to 

bring physical locations closer to online users and give them experiences similar to the physical 

presence at the job site. So standing in front of a building structure and interacting with various 

structural elements became possible for the students while sitting in their classes. 360-degree 

images were used in another study done by Gheisari et al. (2016) for a construction renovation 

project. They superimpose the BIM models on the captured 360-degree images to visualize and 

communicate the finished work to subcontractors and even to record and document the building 

processes in the job site. Eiris et al. (2017) used augmentations in the 360-degree images to 

generate virtual tour in the construction projects, locate and visualize different building elements, 

and document potential issues in the construction processes. 360-degree images were utilized for 

improving safety education by Pham et al. (2018). A learning platform was developed for the 

student in which students were allowed to look at a digital site and identify hazards. Table 2-1 

presents a concise overview of the capabilities and limitations of ADC technologies. 
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Table 2-1: Capabilities and Limitations of ADC Technologies 

Technology Capabilities Limitations Refs. 

Barcode 

 Reasonable price  

 uncomplicated usage with standard 

protocols for implementation 

 Speedy computer data entry  

 Portability 

 limited reading range 

 Sensitivity to the harsh environment 

 Low capacity for data storage  

 line of sight requirement 

 only one barcode can be read at a time 

(Moselhi et al., 

2020; Nasir, 2008) 

Laser scanning 

 Point clouds generation with High 

accuracy 

 Well-defined and straightforward 

internal coordinate system  

 Homogeneous spatial distribution of 

range points 

 Capable of scanning in darkness and 

shaded areas 

 Capable of measuring textureless areas  

 Capable of scanning a large area  

 Laser scanners are expensive 

 Time-consuming process 

 Requirement of clear line-of-sight 

 Limitations associated with modeling 

of edges and linear features 

 High storage capacity requirement 

 No information on material type, 

texture, and color  

 Eye-safety distance concerns 

 Need for frequent and manual 

registrations due to discontinuity of 

spatial information 

 Need for regular sensor calibrations  

 Slow warm-up time 

 Creation of noise resulted from 

moving objects 

 Reduction of captured detail due to the 

increase of distance between the laser 

scanner and the building components  

 Scanners are not easily portable 

(Moselhi et al., 

2020; Golparvar-

Fard et al., 2015) 
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Technology Capabilities Limitations Refs. 

RFID 

 Longer range compared with barcodes 

(up to 100 m for Ultra-high frequencies) 

 Non-line-of-sight 

 Providing cost-efficient location 

information 

 Light tags  

 RFID tags are durable in the harsh 

construction environments 

 Batch readability of tags for the more 

efficient identification process  

 RFID tags can be the read-write type 

 More data can be stored on RFID tags 

 Lack of accuracy and complexities for 

3D positioning 

 Calibration difficulties  

 Affected by the multipath effect 

 Problems of simultaneous recognition 

of many tags  

 Expensive active tags  

 The requirement of battery 

replacement in active tags 

 Influenced by metal and high humidity 

especially in high frequencies 

(Moselhi et al., 

2020; Nasir, 2008) 

UWB 

 Longer range (up to 1000 m), higher 

measurement rate, and more accurate 

real-time 3D positions (less than 1 m) 

compared with typical RFID systems 

 Suitable for both indoor and outdoor 

environment 

 Not affected easily by other RF systems 

 Relative resistance to multipath fading 

 Immunity to interference from rain, fog, 

or clutter  

 The requirement of the dense and 

expensive network of fixed receivers  

 Violation of line-of-sight can lead to 

performance degradation especially in 

congested areas 

 Limited update rate 

 Multipath and radio noise effect in the 

case of metal occlusion 

 Some calibration difficulties  

 Tagging issues (e.g., battery 

replacement) 

 High cost 

 Excessive missing data 

 Degraded range measurement (in case 

of distance increase) 

(Moselhi et al., 

2020; Cheng et al., 

2011; 

Solenmanifar, 

2011; Khoury and 

Kamat, 2009; 

Teizer et al., 2007) 
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Technology Capabilities Limitations Refs. 

GPS 

 Outdoor environment access 

 Flexible and quick reacting based on the 

construction site requirements 

 Low positioning accuracy of around 

10 m in open areas  

 Lack of reliability for indoor spaces 

due to the poor reception of satellite 

signals  

 High cost for automated tracking of 

individual material items using GPS  

 Multipath errors in the congested 

environment 

(Moselhi et al., 

2020; Lu et al. 

2007; Song et al., 

2006b) 

Digital Imaging 

and 

Photogrammetry 

 Straightforward configuration  

 Cost-effective field data collection 

 Portability 

 Captures material, texture, and color 

information of the target object 

 High update rate 

 Well known internal geometry 

 Good interpretability 

 no need for specific knowledge 

 Low cost  

 Collecting large amounts of spatial data 

in a rapid, accurate, and timely manner 

using image-based approaches  

 Calibration difficulties  

 Mirror effect caused by reflective 

surfaces 

 Less accurate point clouds generating 

compared with laser scanners 

 Limitations of depth calculation in 3D 

modeling 

 Another technology (e.g., RTS) is 

required to provide the geo-referenced 

inputs for photo-based 3D modeling 

(Moselhi et al., 

2020; Kropp et al., 

2018; Golparvar-

Fard et al., 2015; 

Kim et al., 2013b) 
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2.3 Shortcomings and Limitations 

Reviewing the literature in detail indicates that the main subjects of available studies are: (1) 

optimization of material procurement and storage on-site frequently through GA optimization (2) 

integration of the materials management processes (3) integration of materials localization and 

tracking data with the computer-based materials management systems (4) positioning, tracking 

and monitoring critical resources (including material, labor, and equipment) using ADC 

technologies, and (5) investigating the application of ADC technologies for identifying unique 

materials received at the job site. Various ADC technologies, their applications, particularly in 

materials identification, tracking, locating, detecting, and progress monitoring along with their 

advantages and disadvantages, have been discussed in this chapter as well.   

In the studies presenting quantitative methods to address construction materials inventory 

optimization problems, the total cost of inventory at the planning phase of projects has been 

optimized without considering introduced changes in the construction phase. Fixed-ordering-

period was selected for construction materials in every construction stage by several researchers 

which can result in improper material management considering probable changes in the 

construction phase. Although defining the start date of project activities is dependent on various 

factors and the delivery date of materials is as important as the number of deliveries to the project 

cost, most of the researchers have focused on finding the optimal solution of delivery and inventory 

of materials by changing the activities start date and only the total number of material deliveries 

throughout the construction duration (for example 20 times delivery of precast concrete units in a 

project with construction duration equal to 42 days (units are always delivered every two days)). 

Moreover, most often GA as the optimization engine is used for procurement optimization without 

preventing the lack of enough diversification in the generated populations, which is the limitation 

of GA.  

The activities of construction projects are highly interdependent, and engineering, procurement, 

and construction phases overlap to a great extent. The reviewed researches have improved the 

construction materials management process from various perspectives utilizing different methods 

and ADC technologies. However, it seems that the current state of study does not adequately 

consider the complex, unstructured, and dynamic nature of the construction projects in developing 

the materials management systems. Furthermore, one question has not been sufficiently answered 

in both planning and construction phases using an efficient method. The question is: Which 

material and how much of that material must be ordered and bought on which day to result in the 

least cost without material shortage or surplus? 

In a nutshell, it was concluded that (1) efficient material management system requires trade-offs 

and optimized balance among elements of material cost including purchase cost, storage cost, 

opportunity cost, ordering cost and unavailability cost, (2) since the amount of both consumed 

bulk materials and installed tagged materials can be obtained more easily by monitoring the as-

built status of the building elements under construction on each day, so utilization of ADC 

technologies just for 2D/3D localization and tracking project resources is not enough for an 

effective materials management system, (3) without considering the dynamic nature of 

construction projects in terms of updated project status or project progress and using proper 

methods, making materials purchase orders by contractors to procure the right quantity of materials 

with the right quality and the least cost without delay is impossible and (4) materials management 
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related functions must be integrated and updated repeatedly during the project lifecycle in order to 

consider schedule and design changes resulting from actual circumstances. 

So the followings must be considered to achieve a practical materials management framework 

which can perceive the dynamic nature of construction projects:  

 Near real-time progress monitoring using state of the art technologies and techniques is 

required to estimate the quantities of materials installed or consumed at the job site; and  

 There is a critical need to develop an efficient inventory control and management method 

to support contractors in making decisions and taking actions on how much and when to 

order materials that result in inventory at an optimum level with the least cost.  

Thus not only a balance among cost categories has to be achieved, but also the dynamic nature of 

construction projects has to be taken in to account. Such a dynamic framework can result in taking 

more accurate and near real-time corrective actions, avoiding project schedule delays, and cost 

overruns.  

To develop an efficient inventory control and management method, a proper optimization engine 

is developed, which can follow up on the project progress throughout the construction phase. 

Furthermore, to detect installed materials or estimate the quantities of consumed materials at the 

job site, not only the most proper technology is selected to capture the as-built status of buildings 

in both outdoor and indoor environments easily, safely, and at low cost, but also a novel near real-

time progress monitoring method and a framework for automated detection of building 

components are developed to visualize and detect the progress at different time intervals in near 

real-time with acceptable accuracy. However, the developed CMM framework is elaborated in 

detail in the next chapter; the following sections provide the basics and literature of the applied 

techniques and algorithms.  

2.4 Genetic Algorithm Optimization 

AS Kirk (2010) stated, after the introduction of the field of Artificial Intelligence, the first 

Evolutionary Algorithms came to existence and were developed. In 1964, the first formal research 

on Evolutionary Algorithms was done by Lawrence J. Fogel. Then in 1973, Ingro Rechenberg 

focused on evolutionary strategies and could develop the foundation of EAs. Finally, John Holland 

published his book as the first literature on Genetic Algorithms (GAs) in 1975.  

Genetic Algorithms (GAs) as the simulations of natural selection are the earliest, most famous, 

and most widely-used Evolutionary Algorithms (EAs) (Simon, 2013). A great diversity of 

constrained and unconstrained optimization problems can be solved by applying GA as a universal 

method (Holland, 1975). Genetic Algorithms as a type of optimization engine try to find the 

optimal solution(s) of a computational problem in terms of maximizing or minimizing a particular 

function. They are used in various applications, including automatic programming and machine 

learning. They are applied to model phenomena in economics, ecology, the human immune 

system, population genetics, and social systems (Carr, 2014). Genetic algorithms have been used 

in the construction industry as well to solve different issues such as construction site layout 

problems, resource allocation, scheduling problems, shape design of structures problems, and 

manpower scheduling problems. Fitness function for optimization, Initial population of 

chromosomes, and rules to create the next generations are the GA components. An initial 
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population is a group of possible solutions to the given problem. GA will modify the initial 

population in consecutive iteration to obtain a better solution. At each iteration, the GA selects 

chromosomes as parents from the current population randomly. Then, by using some rules, the GA 

generates their children as the next generation. This procedure is repeated for several generations, 

and the GA is trying to move to the best solution during these consecutive iterations. For creating 

the next generation from the current population, the GA applies three following main types of rules 

(Tahmasebi and Hezarkhani, 2012): 

 Selection rules: by applying these rules, parent chromosomes are selected to generate the 

population at the next generation; 

 Crossover rules: by applying these rules the parent chromosomes are combined to produce 

the children for the next generation; 

 Mutation rules: by applying these rules, the values of chromosomes are changed and altered 

to generate new chromosomes for the next generation. 

As Carr (2014) stated, the way of translating candidate solutions into chromosomes and defining 

fitness function are the main elements affecting the performance of a genetic algorithm.  Other 

factors such as the probability of crossover, the probability of mutation, the size of the population, 

and the number of iterations can be modified regarding the algorithm's performance through a few 

trial runs. 

As mentioned in section 2.2.1, among optimization methods, GA has been often selected and 

utilized to enhance management processes due to its advantages. But GA has a limitation, which 

is the lack of enough diversification in the generated populations. Similar to a greedy optimization 

algorithm, in each iteration, GA selects the fittest chromosomes. In other words, without any 

memory, GA makes a locally-optimal choice in each generation with the hope that these choices 

could lead to a globally optimal solution using various operators. So to avoid the major limitation 

of GA, which is getting stuck at local optimal values, MLP is combined with GA to create a 

memory of the fittest solutions previously found and improve the probability of identifying global 

optimal solutions. MLP, as a feed-forward neural network, has not been used in terms of a 

classifier, but it is integrated with GA only to generate memory for GA to follow the trend of data. 

Creating memory means that GA can memorize the properties of its previous generations. Since 

in pure GA, after applying crossover and mutation in the current population, everything else will 

be removed, MLP is integrated to retain the trend of data associated with the previous generation. 

The next section is a brief explanation of MLP as a kind of Artificial Neural Network (ANN). 

2.5 Artificial Neural Network (ANN) and Multi-Layer Perceptron (MLP) 

Neural networks (NN) came to existence unexpectedly in the late 1980s and were fully matured in 

the following decades. Neural networks have been applied in various industries to solve a 

particular problem. Its application areas include but not limited to process control, manufacturing, 

quality control, product design, financial analysis, fraud detection, loan approval, voice and 

handwriting recognition, and data mining (Poulton, 2001). Artificial Neural Networks (ANNs) 

have been used in the construction industry as well to solve different issues such as investigation 

of the relationship between pre-project planning and project success, modeling construction labor 

productivity of construction crafts, predicting height mark deviation of main beams of cable-stayed 

bridges during construction, and construction controlling of cable-stayed bridges. The procedure 

of processing information in ANNs is similar to that of biological neural systems (Morgan et al., 
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1991). Neural networks are made up of many artificial neurons. Neural networks in which the 

neurons in each layer feed the next layer as their output until the final output is obtained are called 

feed-forward networks. As Shirvany et al. (2009) have stated, due to structural flexibility, excellent 

representational capabilities, and availability of a large number of training algorithms of feed-

forward networks, they are the most popular fully connected network architectures. Multi-Layer 

Perceptron (MLP) networks are also a kind of feed-forward neural network in which different 

transfer functions can be applied based on various conditions. It is also stated that the MLP network 

is a universal function approximator, and it can be considered as a powerful architecture of ANN 

for interpolation in multidimensional space. 

MLP networks involve at least three layers entitled “input layer, hidden layer, and output layer.” 

The input layer is an information recipient, and various nonlinear transformer functions can be 

applied for transformation from input space to high dimensional hidden space. An output of a 

three-layer MLP network is defined by Equation 2-1, as shown in Figure 2-10 (Shirvany et al., 

2009): 
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2 = 𝑓2(∑ 𝑤𝑗𝑘

2 𝑓1(∑ 𝑤𝑖𝑗
1𝑅
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𝑗=1 𝑝𝑖 + 𝑏𝑗
1) + 𝑏𝑘

2),     𝑘 = 1 𝑡𝑜 𝑆2   Equation 2-1 

 

 

Figure 2-10: Multi-Layer Perceptron Network (Shirvany et al., 2009) 

Where the hidden layer and output layer are indicated by superscript 1 and superscript 2, 

respectively. The numbers of the input unite are denoted by 𝑅, and the numbers of hidden and 

output units are demonstrated by 𝑆1 and 𝑆2 respectively. Also, 𝑓 indicates activation function, 

𝑊 represents the synaptic weight parameter, and 𝑏 illustrates bias. There are different activation 

functions as follows (Shirvany et al., 2009): 

Linear:    𝑓(𝑥) = 𝑥       Equation 2-2 

Log – sigmoid:  𝑓(𝑥) =
1

1+𝑒−𝑥      Equation 2-3 

Tan – sigmoid:  𝑓(𝑥) =
2

1+𝑒−2𝑥
− 1      Equation 2-4 

Positive linear:  𝑓(𝑥) = 𝑥  𝑖𝑓 𝑥 ≥ 0,   𝑓(𝑥) = 0 𝑖𝑓 𝑥 < 0  Equation 2-5 

Supervised and unsupervised learning are learning strategies that indicate how the network is 

trained. In supervised learning, input and output pairs are required to be provided. The provided 

output patterns are compared with the output calculated by the network, and any difference 

between them has to be minimized through updating parameters in the network. In an unsupervised 
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learning strategy, only input patterns are provided, and the network finds common features in 

groups of those patterns.  

While the application of ANN is expanding in different domains, some researches focus on the 

selection of the ANN architecture and its efficient training procedure. These researches are trying 

to combine ANN and GA to enhance the performance of their proposed networks (Seiffert 2001; 

Nasseri et al. 2008; Divya et al. 2014; Allahkarami et al. 2017). GA is used to train and optimize 

the networks to increase the accuracy and efficiency of classification and prediction done by ANN. 

The backpropagation training algorithm is frequently used in ANN to adjust the weights through 

comparison between the desired and actual network response, and as Allahkarami et al. (2017) 

have stated, it may trap ANN into the local minima and lead to converging slowly. So integrating 

GA with ANN can optimize the initial weights of ANN and improve its performance. 

As mentioned earlier, MLP is integrated with GA in a novel algorithm to prevent the shortcoming 

(local minima and the lack of memory) of GA while generating the optimized material delivery 

schedule. 

2.6 Project Progress Monitoring  

Accurate project progress measurement and periodic updating of the project schedule to track 

actual progress are an integral part of the project control plan. To deliver projects on time and 

within budget, progress monitoring is considered a critical success factor (Iyer and Jha, 2005). So 

effective, real-time, and accurate project progress monitoring continues to be one of the highest 

challenges for project managers (Saidi Kamel et al., 2003; Zhang et al., 2009) and has become a 

significant field of study in recent years.  

In traditional construction progress monitoring, site data acquisition relied heavily on manual 

observation, which renders it subjective, time-consuming, error-prone, and labor-intensive. 

Percentage progress and subsequently, the project schedule had been updated manually based on 

the feedback and reports submitted by superintendents on construction job sites. So the lack of 

accuracy in tracking progress, delays in site data acquisition, time-consuming information 

extraction, and manual updates were reported to be the main hindering issues of efficient progress 

monitoring (Navon, 2007; Yang et al., 2015). Moreover, generating a 3D model of the as-built 

environment with the purpose of progress monitoring includes data acquisition, modeling, and 

analysis, which all are performed manually in current practice (Tang et al., 2010; Dimitrov and 

Golparvar-Fard, 2014). It is shown that due to the improper illustration of discrepancies between 

the as-planned and as-built models, only 12% and 11% of the meetings time are spent on evaluative 

and predictive tasks, respectively. The remained time is assigned to descriptive (35%) and 

explanative tasks (42%) for making project current status understandable (Golparvar-Fard, 2006). 

The advancements made in Information and Communication Technology (ICT), and in sensing 

technologies made it possible for the development of automated site data acquisition and 

automated project progress tracking methods. Proper automated project progress monitoring leads 

to timely identification of deficiencies and supports timely decisions for corrective actions (Maalek 

and Sadeghpour, 2012). Progress made on this front using automation technologies, including 3D 

imaging, GPS, RFID, UWB, hand-held computers, voice recognition, wireless sensor networks, 

and various combinations of such technologies. In view of the speed and accuracy of 3D data 

collection by 3D Imaging-based technologies (Turkan et al., 2012), multiple researchers have used 
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Laser Distance and Ranging (LADAR), Terrestrial Laser Scanning (TLS) and digital 

photogrammetry to collect 3D geometrical data pertinent to as-built 3D modeling to track project 

progress. Recent improvements in digital photography and webcams have made vision-based 

construction performance monitoring methods more cost-effective and practical (Golparvar-Fard 

et al., 2009). It is recognized that the use of images and videos for as-built data acquisition is easy, 

does not need specialized knowledge, is not costly, and not time-consuming (Kropp et al., 2018). 

So this research has focused on RGB cameras as passive sensors for project progress monitoring 

due to the mentioned benefits and the superiority of RGB cameras over RGB-D, as explained 

before. Furthermore, easily captured images and videos being commonly used on construction job 

sites have brought attention to developing and applying computer vision techniques for estimating 

project progress (Yang et al., 2015).  

Vision-based methods for effective project progress monitoring have attracted the attention of 

researchers in recent years. Vision-based construction monitoring methods have been classified 

into two main groups and then are reviewed and elaborated in the research done by Yang et al. 

(2015). Methods in the first group focus on visual monitoring of civil infrastructure and building 

elements in the project level by comparing the as-built status against the as-planned model and 

methods in the second group have been applied for visual monitoring of construction equipment 

and workers in the operational level through detecting, location tracking, and analyzing their 

activities. The focus of this paper is on the first group in which there are three different research 

series to estimate project progress applying vision-based methods. “comparison of time-lapse 

images with 4D Building Information Modeling (BIM)”, “comparison of 3D as-built point clouds 

with 4D BIM”, and “detection of building elements” are the research series in the first group.  

2.6.1 Comparison of Time-lapse Images with 4D BIM 

In the first research series captured time-lapse images from fixed camera viewpoints have been 

compared with one another (Abeid et al., 2003; Ibrahim et al., 2009) or with 4D Building 

Information Modeling (BIM) (Zhang et al., 2009; Golparvar-Fard et al., 2009; Rebolj et al., 2008; 

Kim and Kano, 2008). For instance, in (Golparvar-Fard et al., 2009), through the superimposition 

of 4D BIM on the as-built time-lapse photo and assigning traffic light colors to the 3D components, 

project progress deviations are identified and visualized, respectively. To perform 

superimposition, some steps, including geometric camera calibration, feature selection, and feature 

matching between the photograph and the 3D model, are required. In this research, the 

superimposed 4D as-planned model and the photographs are visually compared, and the 

discrepancies are identified and analyzed manually. In (Ibrahim et al., 2009), a framework for 

automatic generation of work packages is developed, and computer vision algorithms are applied 

to measure the progress of these work packages. Converting to greyscale, partitioning, 

normalizing, using a spatial-temporal derivative filter, and segmentation masks are the steps that 

have to be done for each captured image to calculate the mean change in a particular region of 

interest determined for each component of work packages. In another study done by Pour 

Rahimian et al. (2020), a framework consisting of the Convolutional Neural Network (CNN) 

algorithm as a machine learning (ML) algorithm, image processing, BIM and Virtual Reality was 

proposed for an on-demand automated simulation of construction projects. Computer vision and 

ML techniques have been used to process and compose as-built images (site photographs) with the 

as-planned BIM models by the aid of Virtual Reality (VR) game engines, such as the Unity engine. 

Building elements and unwanted objects were recognized and removed, respectively, using ML 

and image processing. Then the extracted building elements were overlayed on the corresponding 
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as-planned BIM components to effectively compare as-built construction with as-planned BIM 

model for the purpose of deficiency detection. 

2.6.2 Comparison of 3D As-Built Point Clouds with 4D BIM 
Researchers in the second series have focused on generating 3D as-built point clouds or 3D 

reconstruction by applying Structure from Motion (SfM) techniques and comparing it with 4D 

BIM (Golparvar-Fard et al., 2011; Pučko et al., 2018). SfM is a general method to obtain 

information about the geometry of 3D scenes from 2D images using corresponding image points 

in multiple views and estimation of camera pose. So given an image in two or more views, a 3D 

point can be reconstructed by triangulation. The method is summarized as follows (Sakurada, K., 

2015): 

1) Feature points are extracted and matched for two consecutive images using the descriptors 

of feature points. 

2) Essential matrices are calculated, and mismatches of feature points are rejected using the 

Random Sample Consensus (RANSAC). 

3) Camera poses and positions of feature points are calculated using those essential matrices. 

4) Camera poses and positions of 3D points are optimized to minimize re-projection errors of 

feature points. 

In the study done by Golparvar-Fard et al. (2011), after capturing unordered daily site photographs 

to reconstruct 4D as-built point-cloud, progress monitoring and revising work schedule can be 

achieved in two different ways. First, by having as-built visualization system, project managers or 

superintendents can virtually walk on the construction site to perceive the progress easily and 

second through semiautomatic superimposing 4D as-built point cloud over 4D BIMs, progress 

deviations are visualized and interpreted manually. One of the main challenges of their proposed 

method is the high computation time of implementing the algorithm due to the pairwise matching 

step. SfM consists of pairwise feature matching and bundle adjustment, which are the most time-

consuming steps of their process. Moreover, SFM requires images with an overlap, which leads to 

photograph with poor texture creating difficulties for searching corresponding feature points in 

consecutive images (Lei et al., 2019). So Lei et al. (2019) proposed data-driven CNN to improve 

the registration accuracy of multi-scanned point clouds and then to automatically detect spatial 

changes by comparing various point clouds. In another study done by Golparvar-Fard et al. (2015), 

in addition to the automated reconstruction of as-built point clouds and manual registration of the 

BIM and point cloud models using a set of initial control points, occlusions are taken into account 

using voxel coloring algorithm. The monitoring of physical progress is also automated by 

comparing progress measurements with dynamic thresholds learned through a Support Vector 

Machine (SVM) classifier. It is stated that computing progress using their approach takes a few 

hours whenever any observation is received. Bognot et al. (2018) generated and georeferenced as-

planned 3D model by the digitization of CAD models in the ArcScene environment and 

establishing ground control points from the GNSS field survey, respectively. Generating as-built 

3D point cloud by capturing videos of the building with a camera-equipped Unmanned Aerial 

System (UAS) is the next step. Then a sparse point cloud and a densified point cloud are 

reconstructed by Visual SfM and multi-view reconstruction (CMPMVS) software, respectively. In 

the fourth step, the textured meshes are georeferenced using MeshLab. Then construction progress 

is monitored and visualized using Geographic Information System (GIS). Point clouds from the 

as-built 3D model are extracted after aligning the georeferenced as-built and as-planned 3D models 
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using ArcGIS, and then building elements are labeled “built” or “not built” through calculation 

point cloud density, the difference in centroid and threshold. In their study, only four types of 

building elements (beams, columns, slabs, and walls) are considered. Moreover, the interior 

building elements were labeled as “not built” because they cannot be seen or captured by the video 

due to occlusions by other objects or missing illumination.  

It is worth mentioning that another way for monitoring project progress is comapring actual 

performance with planned performance through updating BIM in real-time. General contractors 

and also subcontractors are reluctant to change their paper workflows and generate ‘As Built’ BIM. 

So when construction begins, a BIM which has been developed to detailed design is not anymore 

up-dated. In order to address this issue, BIM 360 as a centralized cloud-based information platform 

during construction can be used. The effectiveness of this platform is due to the fact that it allows 

collected job site information (such as ‘As-Built’ schedule) to be synchronized with the current 

BIM and generates ‘As Built’ BIM in real-time. But the most important limitation with BIM 360 

as cloud-based BIM is related to the real-time site data collection and retreiving information from 

the collected data. In fact a site engineer is resposible to visually select objects in the BIM, 

subjectively estimate their relevant % complete at specific points of time and finally input these 

data into the BIM 360™ Field application using an iPad (Matthews et al., 2015). So there is not 

any algorithm, method or any application embedded in BIM 360 to automatically analyze the 

collected and synchronized data for construction progress monitoring.  

Another possible approach is providing images along with a 3D reconstruction of the scene using 

RGBD devices such as Microsoft HoloLens. For example, Kopsida and  Brilakis (2020) proposed 

a real-time automated progress-monitoring system in which as-built spatial data is captured using 

Microsoft HoloLens (by inspector wearing the wearable device) and then is compared with the 4D 

as-planned BIM. Identification of the visible objects from the camera and comparison as-built 

captured data with 3D as-planned objects are the main two steps of their system. If an object meets 

the following requirements, it is considered as visible: being in camera’s frustum, having a distance 

to the camera less than 4 m, and not being occluded by an object known to be completed. The 

applied their developed system by having two assumptions, including “planned 3D objects do not 

extend into more than one room” and “the 3D as-planned model is always correctly registered to 

the as-built scene.” It is worth mentioning that the applications of RGBD devices like Microsoft 

HoloLens are limited to interior implementations. 

2.6.3 Building Elements Detection 

Third research series has concentrated on building elements detection for project progress 

monitoring (Bosché and Haas, 2008; Bosché et al., 2009; Wu et al., 2010; Son and Kim, 2010; 

Turkan et al., 2012; Kim et al., 2013a, Kim et al., 2013b, Turkan et al., 2013; Bosché et al., 2014). 

As an example, in (Bosché et al., 2009), they developed an automated approach to recognize three-

dimensional (3D) CAD objects from 3D site laser scans for progress tracking. First, they generated 

the Stereolithography (STL) format and a point cloud representation of the available 3D CAD 

model. Then the STL-formatted project 3D model was registered in the scanner’s spherical 

coordinate frame. In the third and fourth steps, they calculated and recognized the as-planned range 

point cloud, respectively. Finally, CAD objects and their current status were identified based on 

the object’s recognized surface (by calculating and comparing the number of actual recognized 

points covering the surface of any particular object with a pre-established threshold, respectively). 

Hamledari et al. (2017) have focused on the application of computer vision techniques for 
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automated detection of components of indoor under construction partitions. They have developed 

a computer vision-based algorithm consisting of four integrated shape and color-based modules to 

automatically detect the interior partition components and identify their current state. The input 

and output of the developed algorithm are 2D digital images of indoor construction sites taken by 

a mobile camera (quadcopter or smartphone) and classified images into one of the five possible 

states (framing, insulation, installed drywall, plastered drywall, and painted partition) respectively. 

Instead of feature-based detection techniques, the object-based approach, including various vision-

based algorithms, has been applied to detect the mentioned building elements in terms of multiple 

modules. For instance, to detect studs, the captured image is first smoothed through applying a 

bilateral filter and then is converted to LAB color space. In the next step, Otsu cluster-based image 

thresholding and L channel are used to differentiate the studs from their closest vicinity. After 

thresholding, the L channel, morphological transformation for noise removing, and Progressive 

Probabilistic Hough Transform (PPHT) for extracting the vertical stud lines are applied. A novel 

automated method for indoor project progress monitoring is proposed in (Kropp et al., 2018). As-

built video data, as-planned BIM data, and computer vision algorithms are used in their method, 

which includes two steps. In the first step, named “registration,” the pose of each image is defined 

based on the coordinate system of the building model. In the second step, entitled “recognition,” 

the activity state is determined through search space reduction, image rectification, object 

recognition, and material recognition. 

On top of the mentioned research series, another group of researchers has tried to automatically 

detect and classify construction materials from captured site images to monitor project progress. 

They believe that generating point clouds which illustrate 3D geometrical information of building 

elements do not include semantic information of the scene. For instance, Dimitrov and Golparvar-

Fard (2014) have proposed a vision-based method to classify materials using images captured 

under unknown viewpoints and site illumination conditions. Their method uses joint probability 

distribution of responses from a filter bank and principal Hue-Saturation-Value color values and 

kernel Support Vector Machine classifier.  

Against a clear majority of researchers who have addressed the progress monitoring of outdoor 

sites, some studies have focused on the indoor environment (Lin and Fang, 2013; Klein et al., 

2012; Hamledari et al., 2017; Kropp et al., 2018). However, the lack of image-based modeling for 

interior construction progress monitoring can be seen in the existing researches (Rankohi and 

Waugh, 2014). The majority of the existing image-based 3D reconstruction solutions augmented 

reality-based methods, and appearance-based techniques have not been advanced enough to be 

applied for indoor construction site progress monitoring. Approaches using fixed cameras are 

inflexible to record all changing structures in construction job sites for project progress monitoring 

(Hamledari et al., 2017). In the majority of the existing progress monitoring approaches, 

registration of either captured images to 4D BIM models or as-planned 3D model formatted as 

stereolithography to laser scan derived point clouds have been done manually. 

Moreover, developed automated registration approaches heavily rely on Iterative Closest Point 

(ICP) algorithm, which needs a good initial guess to converge (Kropp et al., 2018).  Also, most of 

the mentioned researches analyze and visualize the progress manually or semi-automatically 

through automatically generating as-built 3D reconstruction and comparing it with as-planned 

information. Despite all the irrefutable improvements made in construction progress measurement 

during recent decades, there are still significant issues and limitations for construction progress 
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monitoring and control (including progress measurement of limited types of building elements and 

project activities, inflexibility of fixed cameras, changing viewpoints, cluttered scenes, occlusions 

and diverse illumination conditions and complexity and high computational cost of proposed 

computer vision algorithms such as conventional feature matching algorithms, color/texture-based 

or shape-based object detection, object recognition algorithms and material classifiers), which 

have to be appropriately addressed as much as possible using novel concepts and methods.  

To wrap up, according to the findings in the reviewed works and as Pučko et al. (2018) have stated, 

none of the observed methods is yet able to provide reliable monitoring of construction, which 

would cover the whole building (outdoor and indoor) through the entire construction process. 

Therefore the development of an efficient near real-time progress monitoring and visualization 

method to be applied by the industry is of vital importance. Recently, Deep Learning methods 

including Deep Auto-Encoders (DAEs), Deep Belief Networks (DBNs), Convolutional Neural 

Networks (CNNs), Restricted Boltzmann Machines (RBMs), and Generative Adversarial Nets 

(GANs) are widely used in the field of computer vision and have put it on the map in the industry. 

Several challenging tasks, including image classification, object detection and recognition, image 

retrieval, scene parsing, speech recognition, and speech content retrieval, natural language 

processing, human pose recovery and estimation, face alignment, and facial feature tracking, have 

been addressed successfully applying developed DL algorithms. Due to success and effectiveness 

of DL methods in a variety of visual applications, in this research, near real-time progress 

monitoring for both indoor and outdoor environment under different conditions and automated 

detection of building elements are addressed by applying DL algorithms named deep 

Convolutional Auto-Encoder (CAE) and Mask Region-based CNN (Mask R-CNN) respectively. 

2.7 Deep Learning (DL) Algorithms 

As Voulodimos et al. (2018) have stated, simulating the human brain was the initial motivation for 

the development of neural networks. McCulloch and Pitts (1943) defined interconnected basic 

cells entitled “neurons’’ to simulate how the brain could create complex patterns that resulted in 

the inception of artificial neural networks. Figure 2-11 indicates the significant milestones in the 

development of neural networks and machine learning, giving rise to DL in the last decade.  
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Figure 2-11: Significant Steps in the History of Neural Networks and Machine Learning 

Resulted in Deep Learning (Voulodimos et al., 2018) 

To compare DL with traditional machine learning algorithms, Paine (2017) has focused on humans 

as an example object. Besides different genotype characteristics of each human, his/her limbs can 

have too many configurations while being photographed from various viewpoints, and 

illumination. So instead of manually defining a fixed set of rules to consider all these variations 

done by traditional algorithms, in DL algorithms, machines are asked to learn a denser and denser 

representation of input data (exhibiting variability) that can deal with all those variabilities and 

configurations. As a result, during the last decade, DL algorithms have surpassed the existing state-

of-the-art machine learning techniques in computer vision as a field of machine learning 

(Voulodimos et al., 2018).  

Conventional computer vision and image processing feature-learning algorithms such as feature 

descriptor algorithms (SIFT, Speeded-Up Robust Features (SURF), and Binary Robust 

Independent Elementary Features (BRIEF)), classification algorithms (SVM, K-Nearest 

Neighbors), color/texture-based or shape-based object detection algorithms, image segmentation, 

edge detection algorithms, Hough transform, and SfM, learn human-engineered features (edges, 

corners, color) from images to interpret these images (Lee, 2016). The drawback of this feature 

extraction is manual specifying the proper feature vector in each given image, which is exacerbated 

in the presence of considerable visual variation in complex images. Choosing many features results 

in a plethora of parameters that have to be fine-tuned (Zdziarski, 2018). Deep learning brings a 

revolution in computer vision because it has introduced the concept of end-to-end learning where 

the machine is guided to learn the most descriptive and salient features of an image and discover 

the underlying patterns in each given image. Learning a denser and denser representation of given 

information (training images), which can mimic the human brain function to perceive and analyze 

information, is the central concept of the deep architecture of deep neural networks (Zdziarski, 

2018). It has been revealed that due to the universal approximation ability of deep hierarchy 

models, they can capture high-level abstract features (borders, components, and the combination 
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of several components) in addition to low-level characteristics (intermediate features non-

meaningful to the human visual system which neural nets are sensitive to them) (Leng et al. 2015).  

DL is not task-specific, and it is a universal learning method because it has been used in almost all 

domains to address different problems. DL can represent a hierarchy of features or concepts in 

which high-level and low-level concepts are defined from each other. There is no need to design 

features while applying DL. Features and subsequently, the robustness to natural variations in the 

data are automatically learned. Furthermore, through transfer learning, applied DL algorithms to 

solve specific problems can be used for other applications with different data types. This is very 

beneficial to address some problems without adequate data. DL, which is a data-driven technique 

can handle the volume, velocity, variety, and veracity of the big data problems. So advantages 

such as being a universal learning approach,  robustness,  generalization, and scalability of the DL 

approach indicate its superiority over other techniques (Alom, 2018). It is worth noting that, on 

top of the advantages of DL approach, other factors such as the advent of large, high-quality, 

publicly available labeled datasets, empowerment of parallel GPU, the appearance of proper 

activation functions, new regularization techniques, and powerful frameworks like TensorFlow 

have affected the considerable boost of DL during recent years (Voulodimos et al., 2018).  

Similar to machine learning, DL algorithms are classified in supervised (learning techniques that 

use labeled data), semisupervised (learning techniques that are based on partially labeled datasets), 

and unsupervised (learning techniques that try to find unknown patterns, relationships or structure 

in terms of internal representation or important features without any teacher or labeled datasets) 

categories (Alom, 2018). Convolutional Neural Networks (CNNs), Deep Boltzmann Machines 

(DBMs), Deep Belief Networks (DBNs), and Autoencoders are among the most significant DL 

schemes which are often used in computer vision problems.  

As mentioned earlier, the success and effectiveness of DL methods in a variety of visual 

applications are due to the fact that they can represent images through automatically learning the 

features with the superior discriminatory power rather than using hand-crafted image descriptors. 

So in this research, near real-time progress monitoring for both indoor and outdoor environments 

under different conditions is addressed by applying a DL algorithm. In this study, a deep 

Convolutional Auto-Encoder (CAE) algorithm instead of conventional computer vision algorithms 

is utilized to facilitate indoor and outdoor progress monitoring under various illumination 

conditions. 

Dealing with the problem of backpropagation by using input data instead of labeled datasets as a 

teacher resulted in the introduction of Autoencoders by Hinton and the PDP group (Rumelhart et 

al., 1986). So AE is able to extract valuable features from unlabeled data in an unsupervised 

manner, and it has been broadly applied in various applications, including network pre-training, 

feature extraction, dimensionality reduction, and clustering. Autoencoders are classified in classic 

AEs (only one hidden layer), and deep AEs (with many hidden layers in the encoder and decoder 

parts). AEs consist of two parts. The first part is an encoder or a recognition network that maps the 

inputs to an internal representation (a set of feature spaces). The second part is a decoder or a 

generative network that maps the internal representation to the outputs by reconstructing the 

original data shown in Figure 2-12 (Géron, 2017). 
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Figure 2-12: The Architecture of a Simple Auto-Encoder (Géron, 2017) 

Hierarchical features extracted by the hidden layers of a deep AE leads to considerable quality 

improvement in solving any specific task. If the fully-connected layers are replaced by 

convolutional and deconvolution layers in the encoder and decoder parts respectively, a deep 

Convolutional Auto-Encoder (CAE) is generated, which is more proper to address image 

processing problems. This is due to the fact that AE is exploiting CNNs properties to deal with 

noisy, shifted, and corrupted image data more properly within an unsupervised learning paradigm 

(Turchenko et al., 2017). Unsupervised CAE is trained through minimizing the differences between 

original and reconstructed data with distance metrics (Alqahtani et al., 2018).  

In CAE, the latent representation of the 𝑘-th feature map for a mono-channel input 𝑋 is (Masci et 

al., 2011): 

ℎ𝑘 = 𝜎(𝑋 ∗ 𝑊𝑘 + 𝑏𝑘)        Equation 2-6 

Where the bias (𝑏𝑘) is broadcasted to the whole map, 𝜎 is an activation function, and ∗ indicates 

the 2D convolution. A single bias per latent map is used, as we want each filter to specialize in 

features of the whole input. The reconstruction is calculated using (Masci et al., 2011): 

y = σ(∑ hk
kϵH ∗ W̃k + c)        Equation 2-7 

Where there is one bias (c) per input channel, the group of latent feature maps is denoted by H, 

and W̃ indicates the flip operation over both dimensions of the weights. The cost function to 

minimize is the Mean Squared Error (MSE) (Masci et al., 2011): 

E(θ) =
1

2n
∑ (xi − yi)

2n
i=1         Equation 2-8  

The backpropagation algorithm is applied to update the weights by computing the gradient of the 

error function with respect to the parameters using the following Equation (Masci et al., 2011): 

∂E(θ)

∂Wk = x ∗ δhk + h̃k ∗ δy        Equation 2-9 

Where δh is the deltas of hidden states, and δy is the deltas of the reconstruction.  
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Modifications and variations can be considered in CAE network architecture to improve the 

network’s ability for image interpretation. A further superiority of DL methods over conventional 

computer vision has been shown in the field of computer vision (Voulodimos et al., 2018). But on 

the other hand, to learn a good representation of images with large visual variation and fill the gap 

among training examples, a large amount of data is required (Zhang et al. 2014). However large 

datasets are necessary for proper training of deep learning algorithms, and generating these huge 

datasets of actual images for different tasks in computer vision usually encounters various issues 

such as oversampling, variability, scarcity, and unavailability, rendering synthetic images has been 

very attractive to generate needed large datasets in recent years. The rich 3D repositories and 

photo-realistic rendering have been used for training deep learning algorithms such as 

Convolutional Neural Networks (CNNs) because of their high value for visual learning. 

Combining synthetic and real images, or purely synthetic images have been used for training and 

validating deep learning algorithms for various computer vision tasks such as object viewpoint 

estimation, object recognition, indoor scene understanding, and tracking applications (Su et al. 

2015; Papon, and Schoeler, 2015; Ros et al., 2016; Movshovitz-attias et al., 2016; Hinterstoisser 

et al., 2017).  

2.8 Deep Learning-Based Generic Object Detection 

The capability of acquiring and analyzing the information of project status at any particular point 

of time is critical for measuring and monitoring project progress and a set of project-related issues 

such as productivity, safety monitoring, and updating as-built information on a regular basis. 

Construction projects are complex and dynamic, making the assessment of project status difficult 

and time-consuming (Wu et al. 2010).  

Recent significant improvements in digital photography have made it cost-effective and practical 

to record project information through easily captured images and videos on construction job sites. 

This acquired data often become unprofitable due to the adversities associated with grasping their 

contents and analyzing the extracted information (Alavi and Gandomi 2017; Han and Golparvar-

Fard 2017; Hou et al. 2019). So there is a need for an effective method for extracting and 

processing the information included in the captured images. Recent decades witnessed substantial 

efforts to visualize accurate project status using digital images. Advances in big data analytics, 

Graphical Processing Units (GPUs), and deep learning methods resulted in the rapid development 

of computer vision applications (Hou et al. 2019). Object detection based on deep neural networks 

as one of the most fundamental and challenging fields in computer vision has been extensively 

used for intelligent video surveillance, robotics, security, autonomous driving, pedestrian 

detection, anomaly detection, and face detection. Thus applying object detection algorithms for 

automated identification of specific objects of interest in the images captured from construction 

job sites can be a suitable replacement of time-consuming manual information retrieval.  

Despite the efforts being made in object detection using digital data mining and computer vision 

methods, there is no off the shelf open dataset of building structural component images in the 

construction industry (Hou et al. 2020). To the authors’ best knowledge, not only building 

structural component images but also images visualizing other building components have not been 

captured and collected in a ready-made dataset in the construction industry.  

Researchers applied different computer vision techniques for detection of structural components 

(Zhu and Brilakis 2010; Koch et al. 2014; Hou et al. 2020), safety monitoring (Yang et al. 2010; 
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Han et al. 2012; Ding et al. 2018; Mneymneh et al. 2018), detection and tracking of construction 

workers, materials, and equipment (Chi and Caldas 2011; Memarzadeh et al. 2013; Park and 

Brilakis 2016; Ren et al. 2017; Eirini and Ioannis 2018; Kim et al. 2018), defects detection 

(Butcher et al. 2014; Cha and Choi 2017; Kong and Li 2018), and progress monitoring (Golparvar-

Fard and Peña-Mora 2007; Son and Kim 2010; Omar and Nehdi 2016; Kropp et al. 2018). 

Detecting objects of interest as one of the challenging problems in the computer vision field has 

often played an essential role in these applications. Object detection methods can be categorized 

into feature-based and deep learning-based algorithms (Hou et al., 2020). In other words, both 

traditional machine learning and deep learning algorithms can be applied to detect objects of 

interest. Using traditional machine learning algorithms needs the selection and extraction of hand-

crafted features, which best represent the image contents in a specific dataset. This leads to a lack 

of generalization ability of algorithms developed in this manner. Deep learning algorithms 

eliminate manual feature extraction and learn features directly from the input images (self-learn 

features), which leads to significantly better results (Nath and Behzadan 2019). Substantial 

improvement in object detection performance (mean Average Precision (mAP)) has been 

attributed to the inception of deep learning methods in 2012 (Liu et al. 2019). It is worth 

mentioning that large amounts of labeled data are required to make deep learning algorithms 

applicable and practical for robust object detection. To be more precise, deep learning-based object 

detection methods owe their success to their deep networks (consisting of millions of parameters), 

available large datasets (such as ImageNet and MS COCO) for training and substantial 

computational capability of GPUs (Liu et al. 2019). Table 2-1 depicts studies in the construction 

industry in which either traditional machine learning or deep learning algorithms have been used 

to detect objects of interest. According to the source of images and also the type of used datasets 

(including real or synthetic-images) in each study (the last three columns of Table 2-2), it can be 

stated that real images have been regularly captured and used for object detection. Just in the study 

done by Hou et al. (2020), a dataset of synthetic-images was generated to train their developed 

model for the detection of structural components such as columns and beams. Their study, 

however, did not intend to benefit from synthetically generated datasets. They had to train and test 

the developed model on the synthetic-image datasets due to the lack of a ready-made, and open 

dataset of structural component real images available in the construction industry. As a result, they 

evaluated the performance of their model using synthetic-images as well, which means the 

performance was not based on real images. As mentioned before, to make deep learning-based 

algorithms effective for the detection of building components, large training datasets of images are 

required. However, there are no ready-made image datasets of building components in the 

construction industry. Aside from the required large datasets, annotating and labeling these 

datasets are also required, adding non-trivial and resource-intensive operations (Nath and 

Behzadan 2019). 

Surveying the literature shows that different researches have been carried out to investigate the 

benefits of photo-realistic rendering for visual learning. Synthetic-images have been used to train 

deep learning methods (specifically CNNs) for diverse applications such as object viewpoint 

estimation (Movshovitz-Attias et al. 2014; Su et al. 2015; Movshovitz-Attias et al. 2016; Rad et 

al. 2018), and object detection (Vazquez et al. 2014; Sun and Saenko 2014; Hattori et al. 2015; 

Hinterstoisser et al. 2017; Tremblay et al. 2018). Beneficial results have been achieved from each 

of these studies. For example, Tremblay et al. (2018) concluded that non-artistically synthetic-

images could be used to train deep neural networks with a convincing performance. Benefiting 

from datasets of less photorealistic synthetic images results in decreasing the necessity for 
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collecting large amounts of real-images and extensive effort for the generation of photorealistic 

synthetic-images. Rajpura et al. (2017) deduced that generating synthetic-images with a high level 

of photorealism was not fundamental for high detection performance of CNNs, specifically when 

real-image training data is limited or unavailable.  A study done by Movshovitz-Attias et al. (2016) 

indicates the superiority of the deep learning-based networks trained on a combination of synthetic 

and real images over those trained on real images only. Others like Ros et al. (2016) and Jalal et 

al. (2019) generated and made publicly available datasets of synthetic-images entitled 

“SYNTHIA” and “SIDOD,” respectively. SYNTHIA includes more than 213,400 diverse urban 

images used for autonomous driving, and SIDOD consists of 144k stereo image pairs of 10 objects 

from 18 camera viewpoints used for object detection, pose estimation, and tracking applications. 

It was concluded that these datasets were good enough for deep learning-based networks to 

produce robust instance segmentations of test datasets of real-images. In research done by Braun 

and Borrmann (2019), 4D BIM and inverse photogrammetry have been integrated to label 

construction images used as training data for object detection algorithms. Automated labeling can 

be done through projecting building elements of the BIM into images captured from the site for 

point cloud reconstruction along with the utilization of semantic information of the type of the 

elements available in the BIM model related to the respective regions. In the construction industry, 

benefiting from datasets of synthetic-images using deep learning-based algorithms to detect 

building component is in the preliminary stage. 

2.9 Summary 

In summary, the identified limitations and research gaps are as follows: 

1. Optimization of the inventory cost at the planning phase of projects without considering 

introduced changes in the construction phase; 

2. Fixed-ordering-period for construction materials;  

3. Finding the optimal solution of delivery and inventory of materials by changing the 

activities start date and only by changing the total number of material deliveries throughout 

the construction duration; 

4. Using GA without preventing the lack of enough diversification in the generated 

populations; 

5. Lack of considering the complex, unstructured and dynamic nature of the constructions 

projects in developing the materials management systems;  

6. Limitations of construction progress monitoring methods due to changing viewpoints, 

cluttered scenes, occlusions, diverse illumination conditions, various types of building 

elements/project activities, complexity and high computational cost of applied 

conventional computer vision algorithms; 

7. However, using deep learning-based object detection algorithms are an effective method 

for extracting and processing the information included in the images captured from 

construction job sites, large amounts of labeled data are required to make these algorithms 

applicable and practical for robust object detection. As mentioned before, there is no off 

the shelf open dataset of building component images in the construction industry and 

benefiting from datasets of synthetic-images to detect building component is in the 

preliminary stage In the construction industry; and 
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8. Lack of proper answer in both planning and construction phases to this question “which 

material and how much of that material must be ordered and bought on which day to result 

in the least cost without material shortage or surplus?”  

Among mentioned gaps, this study addresses limitations number 2, 4, 5, 7 and 8. So, to achieve an 

effective materials management framework being capable of considering the dynamic nature of 

construction projects, a proper optimization engine (GA-MLP method) was developed, which can 

consider the project progress throughout the construction phase. Furthermore, to detect installed 

materials or estimate the quantities of consumed materials at the job site, not only a technology 

(digital imaging) was selected to capture the as-built status of buildings, both in outdoor and indoor 

environments easily, safely, and at low cost but also a novel near real-time progress monitoring 

method (deep CAE) and an object detection framework were developed to visualize and detect the 

progress at different time intervals in near real-time with acceptable accuracy. The developed 

CMM framework and its models are elaborated in detail in the next chapter.  
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Table 2-2: Studies Used Either Traditional Machine Learning or Deep Learning Algorithms to Detect, Recognize and Classify 

Various Objects of Interest in the Construction Industry 

Traditional Machine Learning Algorithms 

# Author/s Method 
Objects of 

interest 
Source of images Dataset (Synthetic/Real) 

1 
Lu et al. 

(2018) 
Neuro-fuzzy based system 

Walls, Columns, 

Beams, Windows, 

Doors 

600 images taken with a digital 

camera and downloaded from the 

Internet 

Real 

2 
Hamledari et 

al. (2017) 

Four integrated shape and color-

based algorithms 

Drywall, 

Insulation, Studs, 

Electrical Outlets 

900 images captured by UAV, 

450 images captured by 

smartphone, 210 images from 

publically 

Real 

3 
Zou and Kim 

(2007) 

HSV color space, simple 

thresholding methods in conjunction 

with calculation of object centroid 

coordinates 

Excavators 

1080 images from the 

construction of the Natural 

Resources Engineering Facility 

(NREF) of the University of 

Alberta in Edmonton, Canada 

Real 

4 
Brilakis and 

Soibelman 

(2008) 

Flooding-based clustering algorithm 

along with the computing the 

Maximum Cluster Dimension 

(MCD) and the maximum dimension 

along the Perpendicular axis of 

MCD (PMCD) 

Linear (beam and 

column) and 

nonlinear (wall, 

slab) construction 

objects 

103 images                                       Real 

5 
Chi and 

Caldas (2011) 

Morphological image processing, 

Normal Bayes (NB) and Neural 

Network (NN) classifiers 

Backhoes, 

Loaders, Workers 
750 images                                    Real 
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# Author/s Method Objects of interest Source of images Dataset (Synthetic/Real) 

6 

Han and 

Golparvar-

Fard (2015) 

Support Vector Machine (SVM) 

Twenty types of 

construction 

materials 

3740 image patches of various 

types of material from 

construction material library 

(publicly available) containing 

Real 

Deep Learning Algorithms 

# Author/s Method 
Objects of 

interest 
Source of images 

Training 
dataset 

Test 
dataset 

1 
Ying and Lee 

(2019) 
Mask R-CNN Walls, Doors, Lifts 

430 images from interiors of four 

multifunctional buildings in the 

University of Hong Kong 

Real Real 

2 
Nath and 

Behzadan 

(2019) 

You-Only-Look-Once (YOLO) and 

Mask R- CNN 

Buildings, 

Equipment, 

Workers 

1000 images from the internet via 

web mining and 1000 images from 

crowdsourcing (construction 

projects in China) 

Real Real 

3 
Hou et al. 

(2020) 

Deeply Supervised Object Detector 

(DSOD) 

Structural 

components 

(columns and 

beams) 

4,378 images derived from a 1∶20 

building entity scale model 
Synthetic Synthetic 

4 
Siddula et al. 

(2016) 

CNN integrated with the Gaussian 

Mixture Model (GMM) 
Roof objects 

300 images taken from the 

cluttered real construction site 
Real Real 

5 
Ding et al. 

(2018) 

CNN coupled with the Long Short-

Term Memory (LSTM) 

Unsafe behaviors 

of construction 

workers 

200 video recordings (each is 8 s 

in length) of a person climbing 

and dismounting from a ladder in 

a laboratory environment 

Real Real 
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CHAPTER 3: RESEARCH METHODOLOGY AND MODEL 

DEVELOPMENT 

3.1 Introduction 

This study contains the development of a framework consisting of three models to address the 

main objective of the research explained in the first chapter.  

Extensive literature review in the previous section has led to the fact that to develop a Construction 

Materials Management (CMM) Framework being able to address the sub-objectives of the 

research; the following items are considered and included in the framework:  

 Integration of the materials management functions to facilitate intelligent construction 

materials management procedure; 

 Integration CMM with design and project schedule to consider all changes and updates of 

schedule and design data automatically during the project lifecycle (So by using the last 

updated project schedule the developed CMM framework can fully consider design 

changes and change orders); 

 Developing a preliminary material delivery schedule which leads to the least total material 

cost based on the MRP of the project through obtaining a trade-off and optimized balance 

among elements of material cost including purchase cost, storage cost, opportunity cost, 

ordering cost and unavailability cost. This schedule helps materials management 

professionals through defining the optimized dates and amounts of materials which have 

to be bought for the construction phase. The material delivery schedule is developed based 

on the initial estimation of materials consumption and planned project progress in the 

preconstruction phase. After construction initiation and occurrence of changes, this 

schedule and consequently purchase orders have to be updated and optimized frequently 

according to the actual progress; 

 Application of a proper and efficient ADC technology for near real-time site data 

acquisition on a daily/weekly basis by site personnel during the construction phase; 

 Analysis of the acquired near real-time data in the construction site and reporting them to 

monitor project progress and update the estimation of materials consumption/installation 

and materials demand dates. 

Without taking into account the above-mentioned items, developing a CMM framework that can 

prevent low labor productivity, reduce materials surplus, optimize cash flow, reduce inventory and 

finally decrease project delays and cost overruns would not be possible. It is worth mentioning that 

even by developing CMM framework, the human expertise should not be ignored or 

underestimated. In other words the developed CMM framework is a complementary to project 

managers working alongside one another to perform a successful material management and 

optimize delivered materials at the job site on specific dates.   

To consider and cover the mentioned items, the developed CMM framework consists of three main 

models entitled “Preconstruction Model, Construction Model, and Data Analysis and Reporting 

Model” and four databases, including Materials Database, Vendors Database, Inventory Database, 

and Tablet Database as shown in Figure 3-1. It is assumed that the developed system uses required 

data stored in all mentioned databases, and these data are always updated in case of any changes 
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in schedule, design, or any change orders. Figures 3-2 and 3-3 indicate more details related to the 

elements of each model and their application steps, respectively. The preconstruction model is 

executed in the planning phase for the first time, and two other models are implemented in the 

construction phase.  

 

Figure 3-1: Developed CMM Framework  

The objective of the preconstruction model is to obtain a preliminary optimized material delivery 

schedule based on MRP and consequently generate an optimized purchase schedule and purchase 

orders. Furthermore, training, validating, and testing the deep CAE algorithm proposed for 

monitoring project progress is another objective of this model in the planning phase. Thus, before 

construction initiation, on the one hand, the first model defines which material, how much of that 

material must be ordered and bought on which day considering the planned schedule and MRP. It 

assures that material procurement is done with the least cost, without any material shortcomings 

or surplus. 
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 Figure 3-2: Main Components of the Developed CMM Framework 

On the other hand, proposed CAE is trained, validated, and tested using 2D synthetic images 

(extracted from the as-planned 4D model) in the first model to be applied in the construction phase 

for visualizing actual progress using real 2D images from the actual job site. As soon as 

construction begins, changes might take place. To have efficient materials management, it is 

required to consider, measure, and exert the occurred changes in the previous plans and update 

them.  
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Figure 3-3: Application Steps of CMM 

Therefore, the construction model focuses on the collection of near real-time project data through 

ADC technologies. In this research digital imaging, (RGB images and 360-degree images using 

RGB cameras as passive sensors and Ricoh Theta V respectively) is proposed for monitoring the 

progress due to its benefits mentioned in Chapter 2. In the third and last model, the collected data 

(real 2D images, as-planned and as-built images) has to be analyzed using the proposed algorithms 

(CAE, SSIM, and object detection framework) to visualize and detect progress for updating the 

schedule and estimating actual materials consumption. So the project schedule and MRP would be 

updated based on the actual project progress, and all the previous steps would be repeated 

automatically to achieve optimized material delivery and purchase schedule on a regular basis. So 

the steps of the preconstruction model will not be just implemented before the construction, but 

after starting the construction, they will be frequently implemented using the updated schedule and 

MRP to update optimized material delivery and purchase schedule. Each model, their steps, and 

proposed algorithms are explained in detail in the following subsections. 

It is worth noting that the current developed materials management framework can be used and 

customized by materials management professionals in the corporate home office organization who 

are responsible for materials management systems of construction projects. Groups of materials 

management personnel in the home office and the field project organization are the next groups 

who are responsible for implementing the processes, and day-to-day functions of the developed 

and customized materials management framework as CII has recommended. 

3.2 Preconstruction Model 

During design development, a preliminary design is developed with more detail, and key design 

decisions, and all details of major design components of the project are defined and agreed upon. 



65 

 

Thus in the preconstruction phase of a project, all the construction elements (columns, curtain 

panels, doors, walls, etc.) are designed and have their properties, size, materials, and definite ID 

in the design drawings and 3D model. In this phase, the Bill of Material (BoM) resulted from 

materials takeoff function defines the amount and specifications of materials that are required for 

each construction element and also in total. Then, the project schedule defines all the activities 

which have to be performed in the construction phase. Each activity in the project schedule has a 

specific ID and illustrates the construction of a set of particular elements. It includes start date, 

duration, finish date, required materials and resources, and prerequisite activities. In this stage, 

there is a need to have a plan for efficient materials management. As shown in Figure 3-2, 

preliminary MRP, Optimized Material Delivery Schedule, Optimized Purchase Schedule, and 

Purchase Orders are generated in the preconstruction model based on the input data (from 

databases). Finally, in the last step of this model, materials would be delivered to the site according 

to the issued purchase orders. It should be mentioned that all the processes included in this model 

would be repeated during the project construction considering all the occurred changes and 

therefore mentioned documents can be generated on a regular basis. As illustrated in Figure 3-4, 

the first step is developing the MRP. Project schedule and materials information stored in databases 

are used as inputs to automatically calculate daily required quantities of each material throughout 

the construction phase following some steps. The output of each process is utilized as an input for 

the following process automatically. So by knowing the amount of each material required on each 

day, an optimized delivery schedule for each material can be generated using a novel developed 

optimization engine (GA-MLP) in the second step. Then, the purchase schedule is generated based 

on the optimized material delivery schedule obtained from the previous step, and the materials 

information such as materials lead-time, required pre-processed time and administrative time from 

the material database. Lead time for each material is the time between the placement of an order 

and the delivery of that material, which can be calculated by a probabilistic approach. Pre-

processed time is the amount of time required in the shop to make fabricated materials ready for 

transportation, and administrative time demonstrates the time needed to issue a purchase order to 

a vendor. The purchase schedule defines the exact dates for issuing purchase orders for all the 

materials, and finally, purchase orders are issued on the dates predefined in the purchase schedule. 

In the last step, required materials have to be delivered, received, and checked at the job site on 

the specific date. 

All the differences between planned and actual material delivery and all other changes during the 

construction phase are reflected in the project schedule. They are used afterward as an input to 

generate “MRP” and “Optimized Material Delivery Schedule.” Moreover, in the preconstruction 

model, the proposed deep CAE is trained, validated, and tested using synthetic images. As-planned 

4D simulation is generated by integrating project schedule, and 3D model in the first step, and then 

2D synthetic images are extracted from 4D simulation illustrating the project progress to train deep 

CAE. Detail descriptions of each step are demonstrated in the subsequent sections. Section 3.2.1 

and Section 3.2.2 are marginally modified versions of “Optimized material management in 

construction using multi-layer perceptron” published in Canadian Journal of Civil Engineering 

(Golkhoo and Moselhi, 2019) and has been reproduced in these sections. 

In a nutshell, all the steps of this model in the developed CMM framework help materials 

professionals to prevent early, excess, or late purchasing of materials. This model also guides 

material professionals on how to procure materials with the least cost and on time.    
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 Figure 3-4: Preconstruction Model 

3.2.1 Material Requirement Plan (MRP) 

The required steps of the MRP development process are demonstrated in Figure 3-5. Following 

information are used as inputs to this process:  
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 The project schedule, which is integrated with construction elements, and all the required 

materials are assigned to the activities on a daily basis. 

 Construction materials data and their specifications. For instance, job site pre-processed 

time for materials requiring assembly before installation at the construction job site. 

In this developed model, there are various variables as follows: 

 Project duration is shown by 𝐷 (time unit is day). 

 Materials have been shown by 𝑗, and it is assumed that there are 𝑘 materials in a project, 

so 𝑗 = 1,2, … , 𝑘. 

 Activities have been shown by 𝑖, and it is assumed that there are 𝑛 activities in a project, 

so 𝑖 = 1,2, … , 𝑛.  

 Since the developed algorithm has to consider each day of the project, so it needs to know 

the current date, which shows that the project is on which day of its duration. The current 

date in the system is demonstrated by 𝑇𝐶. It is evident that the first day of the project 

schedule has a particular date, but it can be shown by 𝑇𝐶 = 1. So 𝑇𝐶 = 1,2, … , 𝐷. 
 Early Start and Early Finish dates of all the activities are used in this system to avoid 

uncertainties, and they are shown by 𝐸𝑆𝑖 and 𝐸𝐹𝑖 for activity 𝑖, respectively. 

 The pre-processed time for the materials requiring assembly before installation at the 

construction site is shown by 𝑇𝑠𝑝. It can be obtained from the construction materials 

specifications input data. 

 The required amount of material 𝑗 assigned to each activity 𝑖 on specific days is shown 

by 𝑞𝑖𝑗.  

The output of this step is MRP. As Caldas stated, MRP consists of identifying, quantifying, and 

scheduling the acquisition of project materials and equipment (Caldas et al., 2015). As shown in 

Figure 3-5, having input data, the algorithm selects a specific material and considers it as 𝑗 = 1, 

and then it starts to calculate the total required amount of material 𝑗 = 1 on each day of the project. 

So the first day of the project is selected (𝑇𝐶 = 1), and the algorithm compares the Early Start and 

Early Finish dates of all the activities (from 𝑖 = 1 to 𝑖 = 𝑛) with 𝑇𝐶 = 1 (𝐸𝑆𝑖 ≤ 𝑇𝐶  & 𝐸𝐹𝑖 ≥ 𝑇𝐶), 

to identify the ongoing activities which use material 𝑗 = 1 on the first day. 

Afterward the required amount of material 𝑗 = 1 relevant to the identified activities (𝑞𝑖𝑗) are found 

and summed up (∑ 𝑞𝑖𝑗
𝑛
𝑖=1 ). The calculated value ∑ 𝑞𝑖𝑗

𝑛
𝑖=1  must be assigned to 𝑇𝐶 = 1, but if 

material 𝑗 = 1 needs pre-processed (𝑇𝑠𝑝) time at the job site, the calculated value ∑ 𝑞𝑖𝑗
𝑛
𝑖=1  has to 

be assigned to 𝑇𝐶 − 𝑇𝑠𝑝. It indicates that the material 𝑗 = 1 is required on the day 𝑇𝐶 − 𝑇𝑠𝑝 with 

the amount of ∑ 𝑞𝑖𝑗
𝑛
𝑖=1 . 

All these steps are repeated for material 𝑗 = 1  from the first day of the project (𝑇𝐶 = 1) to the last 

day (𝑇𝐶 = 𝐷). The output of this process can be represented in the form of a vector with 𝐷 columns 

for material 𝑗 = 1, as shown in Figure 3-6. The columns demonstrate the days of the project 

duration, and the non-zero elements of this vector indicate the required amount of material 𝑗 = 1 

on those special days. All the mentioned processes would be implemented for all the materials 

from 𝑗 = 1 to 𝑗 = 𝑘. Finally, there would be 𝑘 vectors for 𝑘 materials. 
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Figure 3-5: MRP Development Algorithm (Golkhoo and Moselhi, 2019) 
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Figure 3-6: Material Requirement Vector for Material 𝒋 (Golkhoo and Moselhi, 2019) 

3.2.2 Optimized Material Delivery Schedule 

Efficient materials management requires trade-offs and optimized balance among elements of 

material cost, including purchase cost, storage cost, opportunity cost, ordering cost, and 

unavailability cost. Thus, there is a need to develop an automated method for optimizing the 

delivery and inventory of construction materials not only in the planning phase but also in the 

construction phase to account for introduced changes. As explained in the section “shortcomings 

and limitations,” pure GA is used in the existing researches to solve the problem without obtaining 

enough diversification in the generated populations to escape from getting stuck to local minima. 

Moreover, materials unavailability cost is not considered in the GA objective function to enable 

the proposed method to consider various scenarios. In this step, a novel GA-MLP method is 

developed to generate an optimized material delivery schedule to answer this question: “how 

construction materials can be bought, delivered and stored (considering minimum order quantity 

(minimum shipping), and storage space) in such a way that it leads to the least cost?” This newly 

automated method optimizes the material delivery schedule based on MRP and the least total 

material cost. The developed method utilized GA and MLP. It follows up the progress as reflected 

in the last up-to-date schedule to update MRP and delivery schedules repetitively throughout the 

construction phase, as shown in Figure 3-2 and 3-3. MLP is utilized to improve GA by generating 

memory to overcome local minima encountered in applying GA for optimization. This automated 

method supports contractors to buy construction materials with the least cost and without leading 

to material shortage or surplus. 

To perform encoding of each candidate solution of purchasing a specific construction material 

during the construction phase into chromosomes, chromosomes are employed to indicate the 

various possible amount of material 𝑗 = 1 which can be bought on different days of project 

duration from 𝑇𝐶 = 1 to 𝑇𝐶 = 𝐷, as shown in Figure 3-7. The number of genes represents the total 

number of time units of project duration, and gene values indicate the amount of material that has 

to be ordered and bought at that particular time. Gene values can be zero, which means that there 

is no order or material delivery on that special day of the project. 

Figure 3-7: Material Delivery Chromosome for Material 𝒋 (Golkhoo and Moselhi, 2019) 

The objective function of the GA algorithm is minimizing the total material cost. So it is required 

to calculate the total cost of material 𝑗 which would be delivered based on each material delivery 

chromosome. Each chromosome that leads to the lower cost can be selected as a better solution. If 
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terminating condition is not met, obtained better solutions will be recombined using genetic 

operators to breed new, better solutions among generations. To calculate the total material cost 

using the objective function, two scenarios have been taken into consideration: (1) the shortage of 

material is prohibited and (2) the shortage of material is not forbidden in the second scenario: 

In the first scenario, the encounter with the material shortage is not acceptable even if the cost of 

buying and storing materials in advance results in a higher total material cost comparing the total 

material cost, including material unavailability cost. So in this scenario, the objective function is 

considered as Equation 3-1. According to the study done by Georgy and Basily (2008), total 

material cost includes four major cost categories including purchase cost of material (unit purchase 

price from a vendor including transportation and freight expenses), order cost (the administrative 

expense related to issuing a PO to a vendor), opportunity costs (the losses resulted from tied-up 

funds in the inventory and cannot be invested for other beneficial purposes) and finally storage 

cost (the cost related to the warehousing, handling, store workers, and equipment inside the 

warehouse). So through the following Equations, the total material cost can be calculated by 

considering the time value of money (escalation rate can take zero value for materials with short 

delivery period): 

Minimize Total Material Cost = Minimize (Purchasing Cost + Ordering Cost + Opportunity Cost 

+ Storage Cost)         Equation 3-1 

                     

Purchasing Cost = ∑ ∑ (𝑄𝑑 × 𝑃𝑑)(1 + 𝑖)𝑁−1𝐿𝑁
𝑑=1

𝑁𝑝

𝑁=1      Equation 3-2         

Ordering Cost = ∑ (𝐿𝑁 × 𝐶𝑂)(1 + 𝑖)𝑁−1𝑁𝑝

𝑁=1       Equation 3-3  

Opportunity Cost = ∑ ∑ (𝑆𝑄𝑇𝐶
× 𝐼 × 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒)(1 + 𝑖)𝑁−1365𝑁

𝑇𝐶=365(𝑁−1)+1

𝑁𝑝

𝑁=1  Equation 3-4 

𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒= Purchasing Cost / ∑ ∑ 𝑄𝑑
𝐿𝑁
𝑑=1

𝑁𝑝

𝑁=1       Equation 3-5         

Storage Cost =∑ ∑ (𝑆𝑄𝑇𝐶
× 𝐶𝑠)(1 + 𝑖)𝑁−1365𝑁

𝑇𝐶=365(𝑁−1)+1

𝑁𝑝

𝑁=1    Equation 3-6         

Where, 
𝑁𝑝 is the total project duration in terms of the year;   

𝐿𝑁 is the number of material orders/deliveries made in year 𝑁;  

𝑄𝑑 is the quantity of material for order 𝑑;  

𝑃𝑑 is the unit price of material for order 𝑑;  

𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the average unit price of material;  

𝐶𝑂 is the average administrative cost for making a single order;  

𝑆𝑄𝑇𝐶
is the stock quantity at time 𝑇𝐶 ; 

𝐶𝑠 is the storage cost for an individual unit quantity per unit time;  

𝐼 is the interest rate per unit time; 

𝑖 is the annual escalation rate; 

Some input data, such as purchase cost and delivery cost of materials related to various vendors, 

are available in databases of the whole developed framework. Since each vendor has its own price 

and discounts for bulk purchases, so there is a need to select proper potential vendors to be able to 

calculate the total material cost for each generated chromosome in the objective function. The 
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associated process of the potential vendors’ selection for the materials is shown in Figure 3-8. 

First, the algorithm selects a particular material and consider it as 𝑗 = 1. By considering vendors 

selection criteria (such as the level of criticality of material, required quality and specification, 

various uncertainties, required delivery date, and the abilities and disabilities of vendors based on 

their background information), vendors would be evaluated, and some of them are selected and 

asked for quotations. After evaluation and comparison of received quotes, final potential vendors 

for material 𝑗 would be chosen. Thus, at the end of this process, material purchase cost, material 

delivery cost, and material delivery lead time of each final selected potential vendor for Material 

𝑗 can be obtained using databases. All these steps must be repeated for all the materials from 𝑗 =
1 to 𝑗 = 𝑘. There might be a yearly contract for some types of material with a particular supplier, 

so in this case, the supplier, the price, and other required data are clear for the algorithm from the 

beginning. The main user of this developed construction materials management framework is 

contractor, so a contractor or the employed materials professionals after successfully winning the 

job can use it to perform the materials management processes. This developed framework does not 

include the bidding process in which the contractor selects a vendor or supplier of a specific 

material through bidding processes. 

Computing the stock quantity at time 𝑇𝐶 (𝑆𝑄𝑇𝐶
) is a prerequisite of storage cost and capital cost 

calculation for each generated material delivery chromosome at time 𝑇𝐶. Therefore Equation 3-7 

is used to calculate 𝑆𝑄𝑇𝐶
: 

Stock quantity at time 𝑇𝐶 (𝑆𝑄𝑇𝐶
) = 𝑆𝑄𝑇𝐶−1 + 𝑄𝑇𝐶

− 𝑞𝑇𝐶
     Equation 3-7         

Where, 
𝑆𝑄𝑇𝐶−1 is the stock quantity at time 𝑇𝐶 − 1, 

𝑄𝑇𝐶
 is the material quantities which have to be ordered at time 𝑇𝐶 which equals to 𝑄𝑑 when order 

𝑑 is taken place at time 𝑇𝐶, 

𝑞𝑇𝐶 is the required material quantities at time 𝑇𝐶 (These values can be obtained from the Material 

Requirement Vector for each material (Figure 3-6).  
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Figure 3-8: Vendors Selection and Material Costs (Golkhoo and Moselhi, 2019) 

Contrary to the first scenario, in the second scenario, the material shortage can be acceptable at 

different time points of construction phase if the total material cost, including the cost of material 

unavailability, is less than the total material cost without material shortage. So in this scenario, the 

objective function is considered as Equation 3-8.  

Minimize Total Material Cost = Minimize (Purchasing Cost + Ordering Cost + Opportunity Cost 

+ Storage Cost + Unavailability Cost)      Equation 3-8  

As Said and El-Rayes (2011) have stated, to calculate material unavailability cost, the first step is 

to estimate materials-related project delay. The algorithm to calculate project delay due to material 
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shortage is presented in Figure 3-9. When there is delayed delivery of a particular material at a 

specific time point of the construction phase, two factors have to be defined to calculate the project 

delay. The first factor is identifying the ongoing activities at that specific time point, consuming 

that particular material with their total floats. The second factor is defining the activities which 

cannot be completed due to material shortage after assigning the ordered quantity of that specific 

material to the activities with the minimum total float. Since the delay of each activity and 

consequently the project delay is calculated based on the material consumption rate, so after 

identifying and updating the affected ongoing activities by material shortage at different time 

points (from 𝑇𝐶 = 1 to 𝑇𝐶=D of each chromosome as a candidate solution), the project schedule 

can be updated and the amount of project schedule delay (𝐷𝑝 in Figure 3-9) can be calculated by 

subtracting the planned project duration from the last updated project duration.  

As illustrated in Figure 3-9, since there are 𝑘 materials in a project, so the mentioned process is 

performed for each material from 𝑗 = 1 to 𝑗 = 𝑘 to calculate the total material cost for 

chromosomes as candidate solutions of buying construction materials during the construction 

phase while the material shortage is allowed. 

So, according to the study done by Said and El-Rayes (2011), unavailability cost is calculated 

according to Equation 3-9 considering the time value of money: 

Unavailability Cost = (𝐷𝑝 × 𝐶𝑑)(1 + 𝑖)𝑁𝑝      Equation 3-9  

Where, 
𝐶𝑑 is the cost resulted from project schedule delay due to material shortage. It includes project 

liquidated damage per day and time-depended indirect cost per day; 

𝐷𝑝 is the project schedule overrun in terms of the number of days. 
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Figure 3-9: Calculated project Delay Algorithm (Golkhoo and Moselhi, 2019) 
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It should be noted that some constraints satisfaction has to be performed during the GA 

optimization to check the feasibility of each generated chromosome. The following constraints are 

considered: 

 0≤  𝑆𝑄𝑇𝐶
(Stock Quantity at time 𝑇𝐶) ≤ 𝑄𝑆𝑗

 (Max Storage Capacity for Material 𝑗). This 

means there should not be any shortage of material during the construction phase, and the 

storage space has to be considered as a limitation while ordering materials. This constraint 

is applied in the first scenario. 

  𝑆𝑄𝑇𝐶
(Stock Quantity at time𝑇𝐶) ≤ 𝑄𝑆𝑗

 (Max Storage Capacity for Material𝑗). This 

constraint is applied to the second scenario because the material shortage is not prohibited 

in the second scenario, but the storage space should be considered as a limitation. 

 𝑄𝑇𝐶
 (Material Quantities Ordered at 𝑇𝐶) ≥ 𝑄𝑀𝑆𝑗

 (Minimum Shipping Quantity for 

Material 𝑗) in which 𝑄𝑀𝑆𝑗
 is an integer number showing the minimum quantity of material 

𝑗 which can be shipped to the construction site. This constraint is applied in both scenarios. 

 The last constraint shows that at the end of the project, the total quantity of purchased 

materials must be equal to the total amount of required materials. There should not be a 

surplus quantity of material at the end of the project. So this constraint is applied for both 

scenarios and is shown by ∑ 𝑄𝑇𝐶
− ∑ 𝑞𝑇𝐶

= 0𝐷
𝑇𝐶=1

𝐷
𝑇𝐶=1 . 

As Golkhoo and Moselhi (2019) have stated, similar to a greedy optimization algorithm, GA 

selects the fittest chromosomes in each iteration. In other words, without any memory, GA makes 

a locally-optimal choice in each generation with the hope that these choices could lead to a global 

optimal solution using various operators. So, to avoid the major limitation of GA, which is getting 

stuck at local optimal values, MLP is combined with GA to create a memory of the fittest solutions 

previously found and improve the probability of identifying global optimal solutions. MLP, as a 

feed-forward neural network, has not been used in terms of a classifier, but it is integrated with 

GA only to generate memory for GA to follow the trend of data. Creating memory means that GA 

can memorize the properties of its previous generations. Since in pure GA, after applying crossover 

and mutation in the current population, everything else will be removed, MLP is integrated to 

retain the trend of data associated with the previous generation.  

The architecture of the proposed MLP includes four hidden layers, followed by the Sigmoid 

activation function. Hidden layers are not subjected to any up or down-sampling. Based on several 

experiments, densifying this simple architecture not only does not improve the performance of the 

final model but also is costly in runtime and may lead to delay in the training process. Moreover, 

very simple architecture (i.e., with 1, 2, or three hidden layers) will not result in reliable weight 

vectors. As mentioned earlier, MLP has not been applied as a classifier; it is integrated with GA 

only to generate memory for GA to follow the trend of data. MLP is integrated with GA in a novel 

algorithm to prevent the shortcoming (local minima and the lack of memory) of GA while 

generating the optimized material delivery schedule. Each material should be considered 

separately from the beginning, so after selecting a particular material as material 𝑗, the developed 

GA-MLP algorithm illustrated in Figure 3-10 is performed. 

In the first iteration (𝑖 = 1), an initial population presenting different possible solutions of buying 

a specific construction material during the construction phase is generated randomly. There is no 

official reasoning around initializing the proper values in GA. But based on our experiment, using 
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material requirement vector can help the performance of the developed algorithm in terms of 

convergence, then the MLP network is initialized with random weights (𝑊𝑖), and it is fed with the 

initial population from GA to generate a modified population (Multiplying the initial population 

with the weight vector). In fact the value of each gene of a chromosome is multiplied by the 

corresponding element of generated weight vector and this is applied for all chromosomes in the 

GA population. In other words, MLP functionality is finding a regression between the current 

population and the previous generation. The reason for multiplying MLP weight vector to the GA 

population is biasing the current chromosomes to the proper direction. Since MLP weight vectors 

are being updated by Gradient Descent Scheme and the better MLP training procedure is done, the 

better generation is expected to be produced. The sigmoid function is selected as the activation 

function in MLP to generate the output.  
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Figure 3-10: GA-MLP Algorithm to Generate Optimized Material Delivery Schedule (Golkhoo and Moselhi, 2019) 
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Thus, on the one hand, the modified population (which is the output of the hidden layer) is used 

as an input for sigmoid activation function to generate 𝑓(𝑥𝑖) as the output of the MLP network, 

and on the other hand, the modified population has to be evaluated against the objective function, 

which is minimizing the total material cost. The most fitted chromosome (which leads to the lower 

cost) is selected as 𝑌𝑖 and if stopping criterion is not met, the next iteration is performed. In the 

next iteration (𝑖 = 2), the better individuals of the former population are selected and recombined 

by applying crossover and mutation operators probabilistically to breed better solutions as a new 

population. Generated offspring’s gene values should be checked against the constraints to remove 

infeasible solutions. As GA passes through the second iteration, MLP will get ready to start its 

second epoch. Though based on the MLP concepts, epochs should be a static value to control 

overfitting, in the developed algorithm, the number of epochs is set to be equal to GA's iteration 

as a dynamic hyper-parameter. The second weight factor is generated by MLP randomly (𝑊𝑖) and 

MLP is fed with the newly generated population from GA to form the second modified population 

(multiplying the new population with the second weight vector). Similar to the previous iteration, 

on the one hand, the second modified population is used as an input for sigmoid activation function 

to generate 𝑓(𝑥𝑖) as the output of the MLP network and on the other hand, the modified population 

is evaluated against GA objective function and the most fitted chromosome is selected again as 𝑌𝑖. 

If the population is not converged towards a single solution (stopping criteria is not met), the next 

iteration is performed. 

According to Golkhoo and Moselhi (2019), after first and second iteration or epoch as illustrated 

in Figure 3-10, the weights vectors should be updated for the next iteration with respect to a 

specific policy as the following: 

𝑊𝑖 = 𝑊𝑖−1 − (𝜎𝑖 × 𝜆𝑖 × 𝛼 × 𝑊𝑖−1)       Equation 3-10 

𝜎𝑖 = √(𝑌𝑖−1 − 𝑌𝑖−2)2                Equation 3-11 

𝜆𝑖 = √(𝑓(𝑥𝑖−1) − 𝑓(𝑥𝑖−2))2        Equation 3-12  

Where 𝑊𝑖 is the new weight vector, 𝑊𝑖−1 is the previously obtained weight vector, 𝜎𝑖 is called 

error value which is the difference between two previous most fitted chromosomes (𝑌𝑖−1 & 𝑌𝑖−2). 

The policy for computing the error is calculating the L2-norm between the fitted chromosomes of 

the current and previous generation in GA.  𝜆𝑖 is the difference between two previous MLP 

network outputs (𝑓(𝑥𝑖−1) & 𝑓(𝑥𝑖−2)), and α is the learning rate (0.1 < 𝛼 < 0.3). After calculating 

the new weight vector for each iteration, all the following steps are performed as a loop in 

consecutive iterations till an individual chromosome reaches certain fitness which is obtaining a 

new better solution as a new population using crossover and mutation operators, and removing 

infeasible solutions from the new population by checking offspring’s gene values using 

constraints. In the next step, MLP is fed with this newly generated population to form a new 

modified population (multiplying the new population with the new weight vector). 𝑓(𝑥𝑖) is 

calculated using sigmoid activation function as the output of the MLP network as well as 𝑌𝑖 as the 

most fitted chromosome through evaluating the modified population against GA objective 

function. If the error value is less than its predefined threshold, then the termination condition is 

met, and the fitted chromosome is selected as the optimized material delivery schedule.  Since 

there is 𝐾 material in a construction project, all the steps of the developed algorithm must be 

repeated for each material (𝑗 = 1 𝑡𝑜 𝑘).  
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It is worth noting that in this study, the selected and applied methods for the genetic operators of 

selection, crossover, and mutation are roulette-wheel, stochastic method, and random negate 

method, respectively. Different stopping criteria could be defined, including a specific number of 

iterations, a predetermined threshold of error value, and a predetermined threshold for the 

improvement value in the objective function over many consecutive generations. In this study, the 

algorithm comes to the point of convergence when the error value is less than a specified threshold. 

Finally, there would be 𝑘 optimized delivery schedule chromosomes for 𝑘 materials in which a 

zero value indicates that no delivery takes place at that particular day, and non-zero values show 

that there are deliveries at those specific days. If materials are delivered based on these schedules, 

the total materials procurement cost will stand at the minimum level. 

The developed GA-MLP algorithm is coded in a user-friendly computational platform using 

MATLAB (2017a). It can be used as a stand-alone application or can be integrated with the other 

algorithms in the CMM framework. The developed software is a tool for generating an optimized 

material delivery schedule. Graphical User Interfaces (GUI) in MATLAB (Figure 3-11 and 3-12) 

is also developed to simplify data entry and reporting.   

 
 

Figure 3-11: User Interface for Optimized Material Delivery Schedule (GA-MLP) 

(Golkhoo and Moselhi, 2019) 
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Figure 3-12: User Interface for GA-MLP Constraints and Parameters (Golkhoo and 

Moselhi, 2019) 

3.2.3 Purchase Schedule 

According to Figure 3-13, generating a purchase schedule is the third step of the preconstruction 

model. Up to this step, MRP and optimized material delivery schedule for each material have been 

generated. At this stage, there is a need to know on which dates POs must be issued based on the 

optimized delivery material schedules. Purchasing function in the materials management span the 

identification of a requirement and ordering of goods and services (Caldas et al., 2015). In a 

complex project consisting of hundreds of activities and materials, forgetting to order and start the 

purchasing process for some materials during the construction is a common issue, so automatic 

announcement and generation of POs subsequently can help material professionals to manage 

materials more effectively. The required steps for calculation of issue dates of POs are shown in 

Figure 3-13. As usual, the algorithm selects a particular material and considers it as 𝑗 = 1. The 

optimized delivery schedule of material 𝑗 = 1 is available in which non-zero values show that 

there are deliveries at specific dates. The first delivery is considered 𝑑𝑗 = 1 and it would take place 

on a particular date called 𝑇𝑄𝑑
. In the next step, it should be checked whether material 𝑗 is a 

fabricated material and needs some Pre-processed Time (𝑇𝑚𝑝) in the shop to be ready for 

transportation or not. If material 𝑗 is a fabricated material, the PO issue date of this delivery is 

calculated through the following equations: 

Issue date of PO = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝐷𝑎𝑡𝑒 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 −
 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 −  𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝑇𝑖𝑚𝑒      Equation 3-13 

 → 𝑇𝑃𝑂𝑗
= 𝑇𝑄𝑑

− 𝐸𝑇𝐿𝑗
− 𝑇𝑚𝑝 − 𝑇𝐴𝑗

       Equation 3-14 

Where 𝐸𝑇𝐿𝑗
 is Expected Material Delivery Lead Time for material 𝑗, and 𝑇𝐴𝑗

is Administrative 

Time to issue a PO for material 𝑗 to a vendor.  

If material 𝑗 is not a fabricated material, the PO issue date of this delivery is calculated as follows: 
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Issue date of PO = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝐷𝑎𝑡𝑒 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 −
 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝑇𝑖𝑚𝑒         Equation 3-15  

→ 𝑇𝑃𝑂𝑗
= 𝑇𝑄𝑑

− 𝐸𝑇𝐿𝑗
− 𝑇𝐴𝑗

        Equation 3-16 

As before mentioned, 𝐿𝑁  is the number of material orders/deliveries made in year 𝑁, (from 𝑁 = 1 

to 𝑁 = 𝑁𝑝) for each optimized delivery chromosome of each material, therefore all these steps are 

repeated for each delivery from 𝑑𝑗 = 1 to 𝑑𝑗 =  𝐿𝑁𝑝
. As usual, by changing materials from 𝑗 =

1 to 𝑗 = 𝑘, the process will be run repeatedly and provides a purchase schedule for each material. 

It should be mentioned that the number of issued POs (𝑁𝑃𝑂) for each material is equal to the 

number of material deliveries in each optimized delivery chromosome. 

It is worth noting that the Expected Material Delivery Lead Time for material 𝑗 can be calculated 

as the following: 

𝐸𝑇𝐿𝑗
= ∑ 𝑡[𝑝(𝑡)]𝑏

𝑡=𝑎          Equation 3-17 

𝑎, 𝑏 are the lower and upper bounds of possible Lead time for material 𝑗; 

𝑝(𝑡) is the probability that material 𝑗 will be delivered after 𝑡 days; and 

𝑡 is the various number of days for material 𝑗 Lead time. 



82 

 

Start

   Set Optimized Delivery of Material  

       Set Material

Is Material    a 

Fabricated material 

in the shop? 

Optimized Delivery 

Dates of Material 

Calculate the Issue Date of PO of Optimized 

Delivery

No

Calculate the Issue Date of PO of 

Optimized DeliveryYes

Yes

 SetNo

End

Yes

 Set NO

Material 

Database

Name                           Type of Material

Quantity required         Quantity in storage

Quantity used              Quantity to be delivered

Quantity wasted           Level of crit icality

Standard Lot size         Unit of measurement

Unit load                       Volume of unit load

Taxes                           Vulnerability to weather

Specificat ion                Storage address

Storage duration          Order lead  time

Price                             Number of packs in a unit load

Expected Material Delivery Lead 

Time          of each Final Selected 

Supplier for Material 

1j 

j

j

j

j

j k 1j j 

 

 Figure 3-13: Calculated Issue Date of PO Algorithm 

3.2.4 Purchase Order 

The previous step provided a purchase schedule determining the issue date of POs of each material. 

This step “Purchase Order” as the fourth step of the preconstruction model is done by comparing 

the current date with issue dates of POs of each material retrieved from the purchase schedule. 

This step defines the POs whose issue dates are reached and must be issued and sent to the vendors. 

This is done automatically through some steps demonstrated in Figure 3-14. 

While running the algorithm on each day of the project, the current date is defined. For instance, 

the first day of the project is selected 𝑇𝑐 = 1, then a specific material (𝑗 = 1) is selected. For 

material 𝑗, the number of POs throughout the project duration is 𝐿𝑁𝑝
. So, in the next step the 

corresponding date (𝑇𝑃𝑂𝑗
) to the first PO of material 𝑗 is compared to 𝑇𝑐 = 1. If they are not equal, 

the algorithm ignores that PO, otherwise it means that the date of the first PO of material 𝑗 is 

reached, and it must be issued. In this case, the required optimized amount and stock quantity of 

material 𝑗 are needed to calculate the order quantity for material 𝑗. Required optimized amount 
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(𝑄𝑑)is available in the optimized material delivery schedule and stock quantity at time 𝑇𝐶 (𝑆𝑄𝑇𝐶
) 

is always updated and available in the inventory databases. By subtracting the stock 

quantity/inventory level from the required amount, and by adding a percentage (𝐴%) of required 

optimized amount (𝑄𝑑) as materials wastage, the final quantity which must be ordered is 

determined (Equation 3-18). 

Order Quantity of Material 𝑗 at Time 𝑇𝑐 or 𝑇𝑃𝑂 =  𝑄𝑑 − 𝑆𝑄𝑇𝐶
+ (𝐴%)𝑄𝑑  Equation 3-18 

Finally, the PO is sent to the selected suppliers along with the method of payment and expediting 

dates list for confirmation. If the vendors or suppliers confirm the PO, the final purchase order will 

be issued and sent. The supplier sends an invoice for each PO and receives a partial payment. 

Expediting activities (dates of contacts, shipping details, and corrective actions) is the next step, 

which should be done by material professionals until material delivery.  

All the above steps are iterated for all the POs for material 𝑗 (from 𝑁𝑃𝑂 = 1 to 𝑁𝑃𝑂 = 𝐿𝑁𝑝
), and 

for all the materials from 𝑗 = 1 to 𝑗 = 𝑘 for the current date. This process is a repetitive process 

for all the days of the project from 𝑇𝑐 = 1 to 𝑇𝑐 = 𝐷. 
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Figure 3-14: Final Material Purchase Order Issuance
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3.2.5 Material Delivery 

After issuing the final purchase orders and suppliers' confirmation, the required materials 

have to be delivered in the construction site by suppliers according to the optimized 

material delivery schedule. So the developed framework follows a specific process to 

identify which material is to be delivered on each day and then registers its acceptance or 

rejection and also updates the current information of databases if necessary. The material 

delivery process is illustrated in Figure 3-15. To define whether material 𝑗 is to be delivered 

on any particular day of the project, the corresponding date to that specific day must be 

identified in the optimized delivery schedule of material 𝑗, in which non-zero values show 

that there must be a delivery and vice versa. So for each material (from 𝑗 = 1to 𝑗 = 𝑘) the 

dates of the first day (𝑇𝑐 = 1) to the last day (𝑇𝑐 = 𝐷) of the project are compared with the 

dates of various deliveries (𝑇𝑄𝑑
|𝑄𝑑 ∈ {𝑄1, 𝑄2, … , 𝑄𝐿𝑁𝑝

}) of that material derived from the 

optimized material delivery schedule. If the dates are the same, it means that there must be 

a delivery on that date. For example, we are on the first day of the project (𝑇𝑐 = 1), and the 

first delivery of material 𝑗 (𝑑𝑗 = 1) would take place on a particular date shown 

by 𝑇𝑄𝑑𝑗
𝑜𝑟 𝑇𝑄1

. So if 𝑇𝑄1
= 𝑇𝑐, it indicates that the optimized amount 𝑄1of material 𝑗 must 

be delivered on the first day. Material delivery depends on the supplier’s commitment to 

the schedule, whether material 𝑗 has been transported to the site and is ready to be delivered 

or not. If yes, it is suggested to use ADC technologies to collect data of incoming materials 

instead of manual data collection, which is labor-intensive and error-prone. So RFID gate 

can be used along with the algorithm developed by Jaselskis and El-Misalami (2003). Then, 

collected data, including delivery date, delivered quantity, and specifications of material 𝑗 

are compared with the data included in the final purchase order of material 𝑗. In case of 

conformity, the delivery of material 𝑗 will be accepted, and the payment to the supplier will 

be made complete. Otherwise, the materials professional decides on material acceptance 

or rejection. In the next step, corrective actions for discrepancies must be taken, or new 

orders for material shortages are made, not only in case of rejection of the material but also 

in case of acceptance. It should be mentioned that even in the case of lack of supplier’s 

commitment, which results in non-delivery of the material 𝑗 based on the optimized 

delivery schedule, corrective actions should be taken as well. Finally, the last step is 

updating inventory and supplier databases or the schedule if necessary.  
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Figure 3-15: Material Delivery Process 
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visualized changes are retrieved to define the building elements which have been installed 

or constructed during the time. So Deep CAE is applied for visualizing the changes in the 

images captured on different specific dates and a novel object detection framework is 

developed and applied for identifying constructed or installed building elements from 

changes visualized in the previous step.  As mentioned in section 3.1, training, validating, 

and testing the deep CAE algorithm proposed for monitoring project progress is another 

objective of the preconstruction model. To achieve this objective, two steps, including “As-

Planned 4D Simulation” and “Deep CAE,” are designed. Synthetic images are generated 

and used to train, validate, and test CAE in the planning phase in which real images of 

building under construction are not available. 

As shown in Figure 3-16, the 3D BIM model and the schedule of the project are integrated 

to generate the as-planned 4D BIM model to simulate the construction operations in the 

first step. In the next step, several frames (images) having identical viewpoint and direction 

are extracted from the simulated construction operations in Virtual Reality (VR) space and 

used to train and test CAE in the planning phase.  

 

Figure 3-16: As-planned 4D Simulation and Generating Synthetic 2D Images  

The 3D model of the building is exported from Autodesk Revit as an NWC file to be 

integrated with its corresponding schedule in Autodesk Navisworks Manage. The 

generated as-planned 4D model (saved as NWD file) is used to simulate the construction 

process. To train the proposed CAE algorithm for both indoor and outdoor progress 
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monitoring, various viewpoints (indoor and outdoor) are created and saved in Navisworks. 

Multiple viewpoints can be set and saved using options to control the camera projection, 

position, and orientation in Autodesk Navisworks. So the world coordinates of the camera 

can be predefined in the project 3D model to be used in the construction phase (construction 

model) for capturing real images from the construction job site. 

On the one hand, when a viewpoint is set and saved in Autodesk Navisworks, the camera 

position (local coordinate (x, y, z)) and the distance between camera location and any 

specific points are known. On the other hand, since there is always a site survey drawing 

for any construction projects which has been imported into Autodesk Revit, so the world 

coordinate of project origin point, base point, and all other specific points of the 3D model 

are known. As a result, the world coordinate of the camera can be achieved and saved easily 

for future use knowing the world coordinate of any specific points and the distance between 

the camera location and that particular point. It is worth mentioning that during creating 

viewpoints, there might be some overlap in viewpoints. It does not lead to any problem, 

because as mentioned at the beginning of this section, in the first step, progress is visualized 

by feeding CAE with input images with the same viewpoint and in the second step, installed 

or constructed building elements are detected from each point of view. So existing some 

overlap in viewpoints can only result in detecting one specific elements more than one time 

which will be modified during updating BIM or project schedule (using IFC data format). 

Furthermore, as discussed in advance, to train CAE properly and to make it independent 

from small visual changes, both indoor and outdoor viewpoints with slight rotation are 

saved as new viewpoints in Navisworks. Having generated as-planned simulation model 

with definite indoor and outdoor viewpoints (with and without rotation), frames (image) 

are extracted from the simulation through rendering in the cloud and are saved in datasets. 

It is worth noting that, while extracting frames (images) from 4D model simulated in 

Autodesk Navisworks, factors affecting illumination such as sun, exposure, time zone, 

latitude and longitude, north direction, date and time of image capturing can be simulated 

according to the real project condition as well. 

3.2.7 Deep CAE 

Most of the proposed conventional computer vision algorithms for project progress 

monitoring cannot be easily implemented in the construction industry. So, a novel near 

real-time method for project progress monitoring and visualization is developed in which 

CAE as a deep learning scheme is applied to facilitate vision-based indoor and outdoor 

progress monitoring of construction operations. The method is designed to visualize actual 

progress in terms of built elements in near real-time. As explained in section 2.7, CAE is 

an unsupervised feature-learning algorithm in which its training set is unlabeled, and the 

internal layer is a generic feature extractor of inner image representations. 

Before describing the computational steps of the developed method in detail, it is worth 

noting that CAE behaves like a chess player in the method. It is proved that pattern 

matching results in storing information efficiently. For example, due to noticing chess 

patterns, chess players can memorize the positions of all pieces on the board by looking at 

them for just 5 seconds (Chase and Simon, 1973). So similar to chess players, CAEs look 

at the inputs, converts them to an efficient internal representation, and then generates 

something very similar to the inputs. CAEs can make the desired reconstruction of all or 
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part of their input. Autoencoders are the same as Convolutional Neural Network (CNN) 

with one difference, which is producing uniform samples from the given input. This could 

be interpreted as forcing CNN to learn the mapping from a given source image (“S”) to 

another target image (“T”) in which “S=T” is also allowed. In a case where “S” is an 

incomplete image, the learned CNN model can map it to complete the image “T.” This is 

known as image completion for autoencoders. So we have used CAE to learn a compact 

representation of 2D images of a building under construction from a definite viewpoint 

taken on consecutive days while retaining the most critical information. The developed 

CAE is trained to map an incomplete image to a complete image. The developed method 

can visualize the progress of any type of construction element regardless of its material or 

texture of its surface. 

In this step, CAE is trained and tested by images generated from the as-planned 4D model 

simulated in a VR space, as shown in Figure 3-17.  

 

Figure 3-17: CAE Train and Test Using Synthetic 2D Images  

The proposed architecture of deep CAE is depicted in Figure 3-18. 
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Figure 3-18: CAE Architecture 

Where m and n denote width and height of the input image, respectively, and the first field 

of the parenthesis is the number of filters. Each hidden layer follows by a downsampling 

(max pooling operations) layer with a ratio of two. So the size of each hidden layer is 

reduced to half. The stride size is set to one for the receptive fields of the size 3x3. The 

activation function is the Rectified Linear Unit (ReLU), and there is no residual connection 

in the proposed CAE architecture. 

Considering the input image as Im,n, then each hidden layer will be represented as Equation 

3-19, where x is randomly sampled from the given image. The Python and MATLAB 

bindings have efficiently implemented this random sampling.  

𝑝(𝑥)~𝐼𝑚,𝑛         Equation 3-19  

Glorot initialization technique (also known as Xavier), which is an improved version of the 

normal initialization, is used for initializing weight matrices. To investigate why deep 

multilayer neural networks were not successfully trained, Glorot and Bengio (2010) 

focused on the initialization and training mechanisms. They found that proper weight 

initialization can prevent the layer outputs and loss gradients from exploding or vanishing 

in the forward and backward pass, respectively, and result in faster convergence. Their new 

proposed initialization scheme is called “normalized initialization” or “Glorot 

initialization” in which a layer’s weights are selected from a random uniform distribution 

having the following lower and upper bounds: 

±
√6

√𝑛𝑗+𝑛𝑗+1
         Equation 3-20 

Where nj and nj+1 indicate the number of input (fan-in) and output (fan-out) neurons. 

Hidden layers are convolution networks. The size of the convolution field is static of 3x3. 

We also apply weight normalization in each convolution layer. The reason for this 

operation is balancing the achieved weights because it is common to obtain very large and 
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very small weights. For reducing the effect of unbalanced weights, we use the approach 

proposed by Salimans and Kingma (2016). 

The fourth layer in the proposed CAE architecture, known as the bottleneck, has the gist 

of the fed images to it, which is represented as several filters. Five hundred twelve (512) 

filters in the bottleneck are the posterior probability of the original images and generated 

outputs in the first three hidden layers. There are widely used activation functions in deep 

neural networks, including ReLU, Leaky Rectified Linear Unit (LeakyReLU), Softplus, 

and Exponential Linear Unit (ELU). ReLU (the definition of this function is max (0, x)), 

was first used in Restricted Boltzmann Machines (Nair and Hinton, 2010) and then was 

applied in neural networks as well (Glorot et al., 2011). It can be stated it is the most 

common activation function. The activation function for the bottleneck is no longer ReLU 

but Leaky ReLU, which has a small negative slope when x < 0. Leaky Relu can prevent 

learning block in the negative region of feature information. Thus the reason is to avoid 

both gradient vanishing and dying ReLU problems. Figure 3-19 plots these two activation 

functions. 

 

Figure 3-19: ReLu Function vs. Leaky ReLU Function (Clevert et al., 2015) 

The architectures of the convolution layers from the fifth layer to the seventh layer are 

similar to the first layer to the third layer, respectively, see Figure 3-18. Finally, the output 

of the CAE will be very similar to the input image. If this fact is not realized, then its 

straightforward interpretation should be continued to more epochs (the number of times 

which we feed the entire sample to CAE) in the training process. Having trained CAE, 

progress is visualized in terms of constructed building elements between two consecutive 

time points using test images. 

The main advantage of the autoencoders is that we can use it as a data augmentation module 

to increase both the quality of and quantity of input samples, especially when the given 

training dataset is poor. Another advantage of this algorithm is its schematic prediction of 

images. In other words, autoencoders can predict the appearance of a given input in the 

near future or even estimate and visualize the difference of two given images distributed 

over time. Moreover, conventional algorithms cannot predict the visual appearance of 

images with respect to the given input. So CAE can help project managers to visualize 

projects progress in near real-time.  

For the performance evaluation purpose, the output image visualizing progress is compared 

with the ground truth image using the Structural Similarity (SSIM) index, which can 

measure the similarity between two images. 
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As shown in the research done by Snell et al. (2017), reconstructed outputs with higher 

quality can be obtained if deep networks for image synthesis such as autoencoders are 

trained with loss functions, which are calibrated to human perceptual judgments of image 

quality like SSIM. So SSIM, which can assess the changes in luminance, contrast, and 

structure between the output and the ground truth image, is selected in this study.  

By using SSIM, corresponding pixels and their neighborhoods in two images (x & y) are 

compared through the following comparison functions (Snell et al., 2017): 

𝐼(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2𝜇𝑦

2+𝐶1
     𝐶(𝑥, 𝑦) =

2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
     𝑆(𝑥, 𝑦) =

𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3

  Equation 3-21 

“Where μx, μy, σx and σy  denote mean pixel intensity and the standard deviations of pixel 

intensity in a local image patch centered at either image x or y. σxy denotes the sample 

correlation coefficient between corresponding pixels in the patches centered at x and y and 

for the numerical stability small values are added and shown by C1, C2 and C3.” SSIM is 

calculated by combining the three comparison functions as follows (Snell et al., 2017): 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝐼(𝑥, 𝑦)𝛼𝐶(𝑥, 𝑦)𝛽𝑆(𝑥, 𝑦)𝛾     Equation 3-22 

  

3.2.8 Reports and Warnings 

However, reporting and warning is the last step of the preconstruction model (Figure 3-4); 

it does not mean that reports and warnings by the developed framework are just dedicated 

to the planning phase. The significance of this step is much more related to the construction 

phase in which material professionals can manage materials based on the reports and 

warnings generated by the developed framework. So the developed framework can 

generate MRP, optimized delivery schedule, the list of issue dates of purchase orders, the 

list of POs to be issued and sent to the suppliers on each day of the project, and the list of 

deliveries of materials on each day of the project. On top of the mentioned main reports, 

the developed framework can give warnings to the materials professionals about the 

various due dates to prevent material shortages and, consequently, schedule delay. The 

developed construction material management framework can be a web-based system 

providing multiple reports according to the role and level of responsibility of the users. So 

they can input the required data and have access to different reports to make decisions 

based on the reports.  

3.3 Construction Model 

In the planning phase, the preconstruction model helps material professionals to order and 

purchase a particular quantity of various materials on specific days, which results in the 

least total material cost. But as soon as the construction phase begins, the reality would be 

undoubtedly different from the first estimations. One of these differences relates to actual 

project progress, which directly affects the management of required materials. So to have 

an effective and acceptable materials management, not only the actual project progress 

must be monitored, but also the first estimations must be updated considering the changes. 

Consequently, preconstruction steps are performed repeatedly using near real-time 

acquired data to result in more realistic outputs for future decisions. Therefore construction 
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model has been developed to focus on the collection of near real-time actual data through 

ADC technologies.  

As mentioned in the abstract, project progress is visualized from two different perspectives: 

(1) comparing various as-built status captured on consecutive points of time and (2) 

comparing as-built status with as-planned 3D model. So in the first perspective, during the 

construction phase, near real-time job site data in terms of daily photographs are collected 

using RGB cameras. Job site daily images are captured from the same 3D coordinate of 

viewpoint and direction as the corresponding images in VR space. Taking daily images 

before or after working hours, illustrating the progress is highly recommended. But small 

changes (around 5 degrees) in the viewpoint of real job site images do not affect the output. 

As shown in Figure 3-20, trained CAE (obtained from preconstruction model) is fed with 

images of job site taken on each day/week to visualize the progress in terms of building 

elements in the next model (data analysis and reporting model). 

 

Figure 3-20: Captured Actual Job Site Images Fed into Trained CAE 

As indicated in Figure 3-21, to collect real-time site data through capturing images, it is 

required to know which elements are under construction on each day. Running as-planned 

4D simulation leads to the identification of the building elements under construction on 

each day from various viewpoints (from 𝑉 = 1 to 𝑉 = 𝑀) and, consequently, the world 

coordinate of the camera. Then by knowing the building elements and the camera 

coordinates, real images are frequently captured from the same coordinate to track the 

progress.  
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Figure 3-21: Construction Model (First Perspective) 

Captured images on a daily/weekly basis will be sent and analyzed in the next model. 

Finally, by estimating the actual progress using developed algorithms in the data analysis 

and reporting model, the schedule is updated to be used as an input for the preconstruction 

model.  

Figure 3-22 indicates the required steps to generate a list of viewpoints and their related 

camera coordinates to track the progress of building elements under construction on each 

day. It shows which activities are being carried out on each day of the construction phase 

and must be tracked. As-planned 4D simulation, including specific viewpoints and their 

related camera coordinates, are used as inputs. The first viewpoint is set 𝑉 = 1, and 4D 

simulation is run on the current date shown as 𝑇𝑐 = 1. If there is any new building element 

in this viewpoint on 𝑇𝑐 = 1, this viewpoint is registered in the list along with its camera 

coordinate and the date. But if there is not any new building element, this viewpoint is 

checked for the next days (from 𝑇𝑐 = 1 to 𝑇𝑐 = 𝐷) to define whether there is any new 

building element or not. All the mentioned steps will be performed for all the viewpoints 

saved in as-planned 4D simulation (from𝑉 = 1 to 𝑉 = 𝑀). 



95 

 

Start

     Set View Point  1V 

 As-planned 4D 

Simulation 

 View Points along with 

Camera Locations

Run As-planned 4D 

Simulation

     Set the Date  1cT 

Register Viewpoint in the List 

along with its Camera Location 

and Date

Any New 

Element?
Set 1c cT T  No

Yes

V M Set 1V V No

cT D
No

Yes

End

Yes

Real Images are captured according to the List 

(Camera Location & Date) by Onsite Monitoring 

Personnel During the Construction Phase

 

Figure 3-22: List of Viewpoints, Location, and Dates for Image Capturing 

Thus a list of building elements/activities to be tracked/photographed at the job site on each 

day along with the location of the camera enables onsite monitoring personnel to capture 

real images during the construction phase.  



96 

 

In the second perspective in which progress is visualized through comparing as-built status 

with as-planned 3D model, 360-degree images, and the HoloBuilder platform are used. As 

mentioned in Chapter 2, by using the HoloBuilder platform, as-built conditions are 

visualized through spatially linking the 360-degree images to the existing 2D plans. Figure 

3-23 illustrates an example of using the HoloBuilder platform for a project in which a 360-

degree image is captured and linked to the project 2D plan. In the top left corner, the 2D 

floor plan of the project can be seen. The yellow circles indicate the different locations of 

the 360° camera that has been used to take required 360-degree images in this floor. By 

clicking on each yellow circle, a black point will appear in its center, and a new 360-degree 

image visualizing the real scene surrounding the 360° camera (from which the image has 

been captured) will be displayed.  

 

Figure 3-23: Example of 360-Degree Image in HoloBuilder Platform (©2020 

HoloBuilder, Inc.) 

So, the as-built condition of the project can be capture and visualized using the HoloBuilder 

platform. But, to visualize the progress, the as-built status of the building must be compared 

with the as-planned 3D model. As shown in Figure 3-24, the 3D model can be imported 

and displayed side by side with the 360-degree image (as-built status) by enabling the Split-

Screen feature of the HoloBuilder platform (yellow icon under the 2D plan). On top of the 

ability to rotate each scene (360-degree image or 3D as-planned model) independently in 

the HoloBuilder web player, it is possible to rotate both scenes simultaneously by adjusting 

the viewpoints and using “Lock View” button at the bottom of the screen. In this case, by 

dragging the 360-degree image, the 3D model will be rotated in the same way. It is worth 

mentioning that after rotating the scenes either independently or simultaneously to focus 

on different aspects of the building, various 2D images can be extracted and saved for 

future comparison. 
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Figure 3-24: Example of a 360-Degree Image and an Imported 3D Model to 

HoloBuilder Platform (©2020 HoloBuilder, Inc.) 

So keeping the same focus and point of view for both scenes (as-built status and 3D as-

planned model) is required for comparison and visualizing the progress using the 

HoloBuilder web player. To achieve the same viewpoint in both as-built 360-degree image 

and as-planned 3D model, the following main steps are required to be done during the 

construction model (Marktscheffel, 2020, HoloBuilder Website):  

 Creating Revit 360 rendering views and defining the world coordinate of 360° 

camera; 

 Importing a 360° rendering view of the 3D model from Autodesk Revit into 

Holobuilder; 

 Capturing 360-degree images from actual job site using pre-defined world 

coordinate of 360° camera.  

To implement the first step, HoloBuilder Add-In for Autodesk Revit must be installed 

appropriately. As shown in Figure 3-25, the sheet view (e.g., Floor Plan/Level 1) is selected 

to place the 360 views. Then, on this selected sheet, we have to define the locations where 

the 360-degree images in the 3D model must be captured. As explained in section 3.2.6, 

there is always a site survey drawing for any construction projects which has been imported 

into Autodesk Revit and the world coordinate of project origin point, base point, and all 

other specific points of the 3D model are known. So the locations of 360 renderings in 

terms of world coordinate and through using the “Place HoloBuilder View” button on the 

Add-In tab are defined and saved.  
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Figure 3-25: Creating Revit 360 Rendering Views 

While using “Place HoloBuilder View” button, it is possible to adjust camera height from 

the selected floor in meters, so the 360° camera position in terms of (x, y) is equal to the 

(x, y) of predefined location in Revit and z coordinate of the 360° camera is equal to the z 

coordinate of the project basepoint in the selected floor plus the defined height (e.g., 1.6 

m). 
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The second primary step is uploading all the created 360° views on the 3D model from 

Autodesk Revit into HoloBuilder. As illustrated in Figure 3-26, all the floor plans where 

360° views have been created and saved, and also all the saved 360° views can be exported 

to HoloBuilder using “Upload to HoloBuilder” button on Add-In tab. 

 

Figure 3-26: Importing 360° Views of 3D Model from Autodesk Revit into 

HoloBuilder 

In the last main step and during the construction phase, 360-degree images must be 

captured from the actual job site using locations of 360° camera pre-defined in the previous 

step. In this case, 360-degree images of the 3D Revit model (as-planned) and 360-degree 

images of the actual job site (as-built) have been captured from the same location. They 

are comparable if they are imported and shown side by side in the HoloBuilder platform 

by enabling the Split-Screen feature (Figure 3-27). To visualize the progress, as-planned 

and as-built images can be extracted and used as inputs for an algorithm to be compared in 

the next model (Data Analysis and Reporting Model). According to the report issued by 

HoloBuilder (2019), “Ricoh Theta V” is recommended to capture 360-degree images at 

job sites (Figure 3-28). 
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Figure 3-27: As-Built 360° Image vs. As-Planned 360° Image in HoloBuilder 

Platform (©2020 HoloBuilder, Inc.) 

 

 

Figure 3-28: Ricoh Theta V Specifications (HoloBuilder, 2019) 

3.4 Data Analysis and Reporting Model 

As explained in section 3.3, as soon as the construction phase begins, there are always 

discrepancies between what has been planned in the planning phase and the actual project 
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status. Therefore actual near real-time data collected in the construction model must be 

analyzed and interpreted in this model entitled “Data Analysis and Reporting Model” to 

update the project schedule and MRP. The proposed algorithms, including CAE, SSIM, 

and an object detection framework are utilized in this model to visualize and detect actual 

progress which is needed for updating the schedule and MRP and other related steps in the 

preconstruction model would be repeated consequently to generate optimized material 

delivery and purchase schedule on a regular basis. 

3.4.1 CAE for Project Progress Visualization  

Captured real images on consecutive days during the construction phase are used as inputs 

to feed trained CAE in this model to visualize the changes. Figure 3-29 illustrates the 

developed concept and the procedure of progress visualization applying trained CAE fed 

with real images captured by using a non-stationary RGB camera in the construction 

model. 

 

Figure 3-29: Progress Visualization Using Trained CAE 

CAE, which was trained and tested with synthetic images in the preconstruction model, is 

fed with real images from the job site captured on consecutive days (obtained from the first 

perspective in the construction model) to make progress visually recognizable by mapping 

these captured images to those of planned complete building. As illustrated in Figure 3-29, 

and as explained in section 3.2.7, CAE has been trained to learn the mapping from a given 

incomplete image (image at time 𝑇1or image at time 𝑇2) to another target image (image of 

the completed building). In other words, CAE can produce complete samples for any 

incomplete input samples fed to the algorithm. It is worth mentioning that in this model, 

CAE has already been trained and tested in the preconstruction model. It is ready to receive 

an incomplete image from the job site (which is captured in the construction model) to 

visualize the progress made between two consecutive points of time when the images have 

been captured (Figure 3-30).  
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Figure 3-30: Trained CAE Fed with Job Site 2D Images for Progress Visualization 
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3.4.2 Structural Similarity Index (SSIM) to Compare Images  

On top of applying CAE for progress visualization, as mentioned in the construction model, 

as-built (360-degree images of job site) and as-planned images (360-degree images of 3D 

Revit model), which are extracted from HoloBuilder platform can be compared to make 

the progress visualization possible in this model. Structural Similarity Index (SSIM) is 

proposed to visualize the differences between as-built and as-planned images. 

SSIM was developed by Wang et al. in 2004 for quality assessment by measuring the 

similarity between two images. As Wang et al. (2004) have stated, the integration of 

illumination and reflectance of a surface is called luminance of that surface, and the 

structures of the objects in the images are independent of illumination being observed. 

SSIM is based on the fact that the human visual system extracts structural information from 

the images, so SSIM has been defined without considering the influence of luminance and 

contrast. Similarity measurement 𝑆(𝑋, 𝑌) of two images consists of three comparisons: 

luminance (𝑙(𝑋, 𝑌)), contrast (𝑐(𝑋, 𝑌)) and structure (𝑠(𝑋, 𝑌)) of corresponding pixels and 

their neighborhoods in two images (X & Y) (Wang et al., 2004): 

𝑆(𝑋, 𝑌) = 𝑙(𝑋, 𝑌)𝛼𝑐(𝑋, 𝑌)𝛽𝑠(𝑋, 𝑌)𝛾      Equation 3-23 

Where 𝛼 > 0, 𝛽 > 0, and 𝛾 > 0 are the weights used to control the relative importance of 

the three components. 

Similarity measurement should satisfy the following conditions as well (Wang et al., 2004): 

 Symmetry: 𝑆(𝑋, 𝑌) = 𝑆(𝑌, 𝑋), 

 Boundedness: 𝑆(𝑋, 𝑌) ≤ 1, 

 Unique maximum: 𝑆(𝑋, 𝑌) = 1 if and only if 𝑋 = 𝑌  

SSIM consists of the following comparison functions to compare corresponding pixels and 

their neighborhoods in two images (𝑋 & Y) (Wang et al., 2004): 

𝑙(𝑋, 𝑌) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2𝜇𝑦

2+𝐶1
     𝑐(𝑋, 𝑌) =

2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
     𝑠(𝑋, 𝑌) =

𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3

  Equation 3-24 

“Where μx, μy, σx and σy  denote mean pixel intensity and the standard deviations of pixel 

intensity in a local image patch centered at either image X or Y. σxy denotes the sample 

correlation coefficient between corresponding pixels in the patches centered at 𝑋 and 𝑌 and 

for the numerical stability small values are added and shown by C1, C2 and C3” (Snell et 

al., 2017). SSIM can identify and visualize the perceptual differences between as-built and 

as-planned images, as shown in Figure 3-31. 
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Figure 3-31: Progress Visualization using SSIM  

It is worth mentioning that the index of structural similarity and its closeness to 1 is not 

crucial in this method, because the purpose of using this algorithm is visualizing the 

differences between as-built and as-planned status of the building. In this case, the 

closeness of SSIM to 1 indicates that the project is neither behind nor ahead of schedule; it 

is roughly on schedule.   

3.4.3 Automated Detection of Building Components (Using Deep-Learning and 

Synthetic Images) 

After progress visualization, which is the output of CAE or SSIM, there is a need for an 

effective method for extracting the information and identifying various building 

components included in the images. As illustrated in Figure 3-32, a generalized object 

detection framework for automated identification of building components can provide a 

suitable replacement for the time-consuming manual information retrieval. It is shown that 

after progress visualization, applying the developed object detection framework results in 

detecting various building elements and consequently updating the project schedule based 

on the perceived progress.  

The literature reveals that automated detection of these components using images is still in 

its infancy stage. This is attributed to the dynamic execution environment of construction 

operation and for the fact that automated object detection methods require large training 
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datasets of images, which may prove challenging to have. So a newly developed framework 

is presented for automated detection of building components using a mix of real and 

synthetic-images for training Mask Region-based CNN (Mask R-CNN). The novelty of the 

developed framework lies in its efficient utilization of generated synthetic-images and the 

selection and use of a well-suited object detection algorithm.   

As explained in section 2.8, deep learning-based object detection algorithms require large 

training datasets of images, and there is no available open image dataset of building 

components. According to the studies (Movshovitz-Attias et al. 2016; Rajpura et al. 2017; 

Tremblay et al. 2018), it is believed that synthetically generated datasets of images with 

high variation have the potential in facilitating the detection of building components in the 

construction industry. We envision the framework developed in this study, which consists 

of Mask R-CNN and a suitable mix of real and synthetically generated datasets of images, 

to offer a promising method for the detection of building components. 
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Figure 3-32: Automated Detection of Building Components for Updating Project Schedule 
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The overall schematic diagram of the developed framework is shown in Figure 3-33. The 

developed framework has five major processes: (1) synthetic image generation from 3D 

models (2) defining the optimum training dataset (3) selection of object detection algorithm 

(4) algorithm training and (5) object instance segmentation and evaluation. The framework 

enables the detection of building components benefiting from the generation of synthetic-

images and mixing them with real images. Each of these processes is described 

subsequently. 

In the first process, “synthetic image generation from 3D models”, 3D BIM models are 

used. Objects of interest or building components are defined in the first step of this process. 

All available 3D models (consisting of different components with different materials, 

shapes, and backgrounds) are used to deal with the variability existed in real-world data. 

In the following step, sun-setting and artificial lights (different desired lighting conditions) 

are adjusted and saved for each 3D model in the employed 3D BIM tool. Generating multi-

directional rendering for each 3D model using a virtual reality/real-time rendering engine 

is performed next. Then, the desired views considering occlusions and viewpoints are 

defined and saved for each of these 3D models. Finally, synthetic-images are 

exported/extracted in JPG or PNG format using employed virtual reality rendering engine. 

So a large dataset of synthetic-images is generated illustrating the selected building 

components from various viewpoints, with different levels of occlusion and under diverse 

illumination conditions.  
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Figure 3-33: Developed Framework of Automated Detection of Building 

Components 
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In the second process, which is defining the optimum training dataset, the effect of 

combining real images and synthetic images in the training dataset on the performance of 

the detection model is investigated. The purpose here was to find whether the additional 

use of synthetic images to real images can be used without a negative impact on detection 

accuracy. And, if so, to find the most suitable mix of these two types of images. Various 

training data mix scenarios were tested, and achieved results (in terms of various 

performance metrics) were recorded in search of the most suitable mix. Five different 

training datasets, including only real-images, only synthetic-images, and a mix of both with 

different ratios (real/synthetic ≃1/3, real/synthetic≃1/2, and real/synthetic ≃2/3), were 

used.  

In view of the proven superiority of deep learning-based algorithms over traditional 

algorithms for object detection, the third process, “selection of object detection algorithm,” 

has focused on various deep learning-based object detection algorithms to find the most 

proper one for the detection of building components.  Liu et al. (2019) categorized deep 

learning-based object detection frameworks into region-based frameworks (such as Spatial 

Pyramid Pooling (SPP)-Net, Region-based Convolutional Neural Networks (R-CNN) 

series, Mask R-CNN, and Region-based Fully Convolutional Network (RFCN) and unified 

frameworks (such as DetectorNet, CornerNet, OverFeat, Single Shot multi-box Detector 

(SSD), and You Only Look Once (YOLO)). Region-based frameworks consist of three 

general steps: generating category-independent region proposals from an image, extracting 

CNN features from generated regions, and determining the category labels of the proposals 

applying category-specific classifiers. In contrast, in the unified frameworks, class 

probabilities and bounding box offsets are predicted from images using a single feed-

forward CNN. Since a single network contains all computations and does not need to 

optimize each component of a complex region-based pipeline, so these frameworks 

significantly decrease required complex and expensive computation (Liu et al., 2019). Hou 

et al. (2020) classified available deep learning-based object detection algorithms into two 

distinct groups: algorithms that are based on the region proposals (such as R-CNN family) 

and algorithms that are based on regression (such as YOLO and SSD). These algorithms 

are described in the following sections:  

 R-CNN 

Using a sliding window with pre-defined size to scan an image has been a conventional 

method for object detection. But it had two limitations, including high computational time 

and power and failure of detecting objects with different sizes. So a novel algorithm named 

“R-CNN” was proposed by Girshick et al. in 2014 to address the mentioned issue through 

introducing region proposal concept and selective search process in which adjacent pixels 

were grouped based on their color and texture to form different segments in the image and 

then segmented objects were surrounded by bounding boxes with different sizes as shown 

in Figure 3-34. After extracting region proposals from an input image and using CNN for 

computing proposals’ features, SVM and a linear regression model were used to classifies 

the detected objects and fit the bounding boxes with the objects, respectively. Despite the 

superiority of R-CNN over sliding window detectors, there are still some shortcomings 

applying R-CNN, such as high computational time due to running CNN for each region 
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proposal and complexity resulted from the training process required for CNN, SVM and 

regression model (Panthula, 2018). 

 

Figure 3-34: R-CNN Flow Diagram (Girshick et al., 2014) 

 Fast R-CNN 

In 2015, Girshick proposed Fast R-CNN in which training and testing speed and detection 

accuracy were improved compared with R-CNN. As shown in Figure 3-35, the Region of 

Interest Pooling (RoIPool) technique was used to run CNN once for overlapping regions 

instead of applying CNN on every single region. Moreover, he applied the Softmax layer 

(which does not need to be trained) and the linear regressor layer in parallel instead of 

training CNN, SVM classifier, and bounding box regressor. Despite the achieved 

improvement, Selective Search was still used to generate bounding boxes and resulted in a 

slow process (Panthula, 2018). 

 

Figure 3-35: Fast R-CNN Flow Diagram (Girshick, 2015) 

 Faster R-CNN 

In another research done by Ren et al. (2017), Region Proposal Network (RPN) was 

introduced, and only a single CNN was applied for both region proposal and classification 

to improve Fast R-CNN.  
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As shown in Figure 3-36, Faster R-CNN included RPN in which a CNN was applied to 

generate detection proposals and a detector similar to Fast R-CNN. To implement RPN, 

many anchor boxes were used to generate region proposals using the sliding window 

technique. A set of anchor boxes surrounded each object while each anchor box covered a 

portion of that object, and Intersection Over Union (IOU) algorithm was used to calculate 

the accuracy (through comparing with a pre-defined threshold) of various anchor boxes to 

detect the object. Using anchor boxes could also make the algorithm able to detect various 

objects which were overlapping each other (Panthula, 2018). 

 

Figure 3-36: Faster R-CNN Flow Diagram (Ren et al., 2017) 

 Mask R-CNN 

In the Mask R-CNN algorithm developed by He et al. in 2017, instead of localizing and 

classifying an object using bounding boxes and a classifier respectively, each pixel of each 

object is localized and segmented. As shown in Figure 3-37, Mask R-CNN includes the 

class box, which is an object detector acquired from Faster R-CNN and a fully 

convolutional network for objects semantic segmentation. Moreover, Mask R-CNN uses 

“Bilinear Interpolation” to achieve ROI alignment against other region-based algorithms 

(Panthula, 2018). 
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Figure 3-37: Mask R-CNN Framework (He et al., 2017) 

 SSD 

As mentioned before, the generation of region proposals and using a classifier to classify 

the detected objects from region proposals are the main processes of all the region-based 

algorithms, which results in a complicated and slow detection procedure. These algorithms 

are not proper for real-time object detection. In contrast, in regression-based algorithms 

like SSD, region proposals have been replaced by bounding boxes, which can imbed the 

whole detection procedure in a single forward pass network. Due to the high accuracy of 

the VGG model in object detection, transfer learning is used in SSD by adding the VGG 

model in the first layers as the base model. SSD is trained to generate a class prediction 

related to each anchor box and an offset value (using the IOU algorithm). Non-maximum 

suppression is used to select the anchor box with the highest confidence score among 

multiple boxes generated per object. Since the frame rate of processing images affects SSD 

in detecting objects, so SSD is not the proper algorithm for object detection using videos 

with a high frame rate (Panthula, 2018). Figure 3-38 illustrates the SSD framework. Figure 

3-38(a) indicates the input image with ground truth boxes for all the objects, Figure 3-38(b) 

shows the evaluation of a small set (e.g., 4) of default boxes of various aspect ratios at each 

location in several feature maps (with different scales, e.g., 8 × 8 and 4 × 4), and Figure 3-

38(c) illustrates prediction of both the shape offsets of each default box and the confidences 

for all object categories (𝑐1, 𝑐2, · · · 𝑐𝑝) (Liu et al., 2016). 

 

Figure 3-38: SSD Framework (Liu et al., 2016) 
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 YOLO 

YOLO is also a regression-based object detection algorithm. YOLO was introduced by 

Redmon et al. in 2016, and it has been one of the fastest object detection algorithms with 

frame rates up to 155 FPS, which makes it capable of detecting objects in real-time. Its 

high speed is attributed to its end-to-end framework in which the entire image is used once 

for both training and testing (Figure 3-39). Dividing the input image into a grid, predicting 

various bounding boxes for every grid cell, a confidence score for all the bounding boxes, 

and also class probabilities are the main processes of the YOLO algorithm. However, 

YOLO is really fast and applicable using real-time videos; it has shortcomings as well, 

such as failing to detect more than one class of objects in a single grid cell (Panthula, 2018). 

 

Figure 3-39: YOLO Detection System (Redmon et al., 2016) 

Each object detection algorithm has its pros and cons. For example, “end-to-end multitask 

training” can be achieved by applying Faster R-CNN, but it cannot be used as a real-time 

object detector, or YOLO v3 is “fast and accurate in meeting real-time requirements,” but 

it is not a suitable detector for “medium-sized and larger objects” (Hou et al. 2020). The 

algorithm used in this study is selected based on the published results reported by other 

researchers. Figure 3-40 illustrates the performance (mean Average Precision (mAP) for 

two thresholds of Intersection over Union (IoU)) of various object detectors on Common 

Objects in Context (COCO) dataset. It indicates that Faster R-CNN and Mask R-CNN 

(with a backbone network of ResNet101 and ResNeXt101- Feature Pyramid Network 

(FPN) respectively) achieved the highest performance for object instance segmentation 

(Liu et al. 2019). In another research done by Huang et al. (2017), it was shown that Faster 

R-CNN has higher performance (overall mAP) for detecting medium and large objects 

compared with SSD and R-FCN (Figure 3-41).  
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Figure 3-40: Evolution of Object Detection Performance on COCO from Early 2015 

to Late 2017 (Liu et al., 2019) 

 

Figure 3-41: Detection Accuracy versus Detection Time of Different Algorithms 

(Huang et al., 2016) 

Furthermore, SSD, R-FCN, and Faster R-CNN were evaluated based on their detection 

speed and accuracy. As shown in Figure 3-42, among other algorithms, Faster R-CNN 

possesses a logical trade-off between the accuracy (mAP) and speed (running time per 

image in terms of milliseconds). For instance, Faster R-CNN roughly requires 300 

milliseconds for object detection with around 35% mAP, or in another case, it needs about 

250 milliseconds to approximately detect objects in an image with about 33.5% mAP. So 
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in this process, the most suitable algorithm (SSD, Faster R-CNN, Mask R-CNN, YOLO, 

etc.) is selected based on its performance (mAP) and also the attributes of the building 

components to be detected. 

 

Figure 3-42: Detection accuracy of different algorithms to detect objects with large, 

medium, and small sizes (Huang et al., 2016) 

After generating the training datasets, the next process is training the selected algorithm.  

The first step for training any selected deep learning-based algorithm is labeling the images 

with ground truth annotations using a proper annotation tool. The annotations include the 

location and class of the selected building components. To obtain the optimal weight 

parameters of the model, the annotation file and the generated dataset are used as the inputs 

to train the selected algorithm in which the input images are mapped to their corresponding 

annotations with the minimum loss value (sum of the classification loss, bounding-box 

loss, and mask loss). 

After generating various training datasets and training the algorithm in the previous 

processes, now it is time to test the trained model, which is the last process (object instance 

segmentation and evaluation) of the object detection framework. Thus, a subset of real-

images which were not included in the training datasets are used as inputs to the trained 

model and mask, bounding-box, and the class category for each object of interest are 

predicted in the output image as shown in Figure 3-33 (while Mask R-CNN is selected as 

the detection algorithm). Precision and recall are commonly used metrics for performance 

evaluation of the object detectors. The accurate percentage of the predicted objects is 

measured by precision rate, and the accuracy of the model to find positive cases is evaluated 

by the recall rate (Equations 3-25 & 3-26). 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         Equation 3-25 



116 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        Equation 3-26 

TP, FP, and FN stand for True Positive, False Positive, and False Negative, respectively. 

Precision and recall are always between 0 and 1, and Average Precision (AP) shows the 

area under the precision-recall curve. The higher precision and recall are, the more robust 

the model is with a compelling AP.  

At the end of this process, we have a trained and tested object detection algorithm that is 

ready to be fed with real images to detect various building elements. The input images are 

the image taken from the job site during the construction model and have already been used 

as inputs for CAE or SSIM to visualize the progress. The objective of this developed 

framework is to detect and recognize the building elements included in the images 

visualizing the progress, which results in identifying the installed or constructed elements 

throughout a specific period when the progress has been visualized. The project schedule 

is consequently updated based on actual progress. It will be used as an input for updating 

MRP and optimized material delivery schedule, respectively, during the construction 

phase. 
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CHAPTER 4: TESTING AND VALIDATION 
In this chapter, the algorithms developed and customized in Chapter 3 are tested and 

validated using real data and laboratory experiments. So the first section of this chapter is 

related to the performance evaluation of the newly developed GA-MLP algorithm, and the 

second section includes validation of the developed progress visualization methods. 

Eventually, in the third section, the performance of the developed framework for automated 

detection of building components using a mix of real and synthetic-images for training 

Mask Region-based CNN (Mask R-CNN) is evaluated in the context of a real-world case 

example, and the results are presented. 

4.1 GA-MLP Algorithm  

This section is a marginally modified version of “Optimized material management in 

construction using multi-layer perceptron” published in Canadian Journal of Civil 

Engineering (Golkhoo and Moselhi, 2019) and has been reproduced here.  

The performance of the newly developed automated method is evaluated using a numerical 

example of the construction of two office buildings. The outputs of the GA-MLP algorithm 

are compared with the outputs of the application of pure GA optimization in the same case. 

To simplify the comparison, the first scenario in which material shortage is prohibited 

during the construction phase, and only one material which is reinforcing steel (rebar with 

diameter ≥ 20mm) is selected. The project schedule shows that the buildings have to be 

constructed in 64 weeks. It is worth noting that based on the size and complexity of the 

project, the developed algorithm can generate an optimized material delivery schedule on 

a daily, weekly, or monthly basis. The required data to run GA, and the developed GA-

MLP algorithm is shown in Table 4-1.  

Table 4-1: Input Data for GA and GA-MLP (Golkhoo and Moselhi, 2019) 

Cost Type Symbol Amount Unit 

The average administrative cost for 

a single order 
𝐶𝑂 10 $/Order 

The unit price for order d  𝑝𝑑 
710 if 𝑄𝑑 < 100 

628 if 𝑄𝑑 ≥ 100 
$/Ton 

Storage cost for an individual unit 

quantity (Ton) 
𝐶𝑆 40 $/Week 

Weekly Interest Rate 𝐼 0.0003 NA 

Annual Escalation Rate 𝑖 0.015 NA 

By having the project schedule in which materials are assigned to the activities and by 

following the developed algorithm shown in Figure 3-5, Material Requirement Vector is 

generated and illustrated in Figure 4-1 and Figure 4-2.  
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Figure 4-1: Material Requirement Plan (Golkhoo and Moselhi, 2019) 

 
Figure 4-2: Rebar Requirement Vector (ton/day) (Golkhoo and Moselhi, 2019) 

Using the input data from Table 4-1 and the following parameters (It is worth mentioning 

that sensitivity analysis could be useful to define population size, mutation and crossover 

probabilities) and by applying Equations 3-1 to 3-7, it is possible to run GA and GA-MLP 

algorithm to generate Optimized Material Delivery Schedule for rebar: 

 Population size: 200 

 Number of Generation: 200 

 Number of epoch: 200 

 Crossover probability: 0.85; 

 Mutation probability: 0.06; and 

 Termination condition (applied for GA): no improvement for 20 iterations 

The following constraints have been taken in to account as well: 

 0 ≤ 𝑆𝑄𝑇𝐶
(Stock Quantity at time  𝑇𝐶≤ 200 (Max Storage Capacity (ton)) which 

means there should not be any shortage of material during the construction phase 

 𝑄𝑇𝐶
(Material Quantities per Order) ≥ 10 (Min Shipping Quantity (ton)); and 

 ∑ 𝑄𝑇𝐶
− ∑ 𝑞𝑇𝐶

= 0𝐷
𝑇𝐶=1

𝐷
𝑇𝐶=1 , which shows that there should not be a surplus 

quantity of material at the end of the project. 

The developed GA-MLP algorithm is coded in a user-friendly computational platform 

using MATLB® 2018a. It can be used as a stand-alone application or can be integrated 

with the other algorithms in the CMM framework. The outputs obtained from the GA-MLP 

algorithm run are illustrated in terms of optimized rebar delivery schedule (the near-
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optimum chromosome as the final output of the algorithm) in combination with rebar stock 

level during the construction phase (output of Equation 3-7) in Figure 4-3.  

 

Figure 4-3: Optimized Rebar Delivery Schedule and Rebar Stock Level (Golkhoo 

and Moselhi, 2019) 

Figure 4-3 indicates that in this project, if rebar is bought according to the red columns, it 

will result in the least cost, without leading to rebar shortage or surplus. It is worth noting 

that the numbers in the left vertical axis related to the optimized rebar delivery indicate that 

how much rebar on which week has to be bought if a contractor or a material professional 

tends to procure rebar with the least cost without any shortage during the construction 

phase or without a surplus at the end of the project. The maximum storage space and the 

minimum shipping size are considered in this optimal solution, which results in the 

minimum cost. The right vertical axis specifies rebar quantity in the storage in each week. 

Figure 4-4 illustrates the optimized rebar delivery schedule, including rebar delivery, 

consumption, and stock level. For example, it is shown that a batch of 140 tons of rebar is 

delivered in the first week, but there is not any rebar consumption during this week. So the 

rebar stock level remains constant (140 tons). In the second week, the rebar consumption 

is 39 tons, and because there is no rebar delivery, the rebar stock level is reduced to 101 

tons.  
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Figure 4-4: Rebar Delivery, Consumption and Stock Level (Golkhoo and Moselhi, 

2019) 

The convergence of total rebar cost as the value of the objective function in the given 

generation is shown in Figure 4-5. It can be seen that the total rebar cost that has been 

optimized by the GA-MLP algorithm in 200 generations is 596,128$. As indicated in 

Figure 4-5, some discontinuities are common in learning or heuristic process, which is not 

over-trained and consequently over-fitted. The only thing that matters is the fact that the 

general behavior of the graph should be minimized. The amount of error showing the 

performance of the GA-MLP algorithm is presented in Figure 4-6. To clarify the concept 

of error, which is measured to present the performance of the GA-MLP algorithm, it should 

be mentioned that, GA chromosomes are the coefficients of a polynomial that maximizes 

our gain in the process of optimization. In other words, it should be defined that in each 

step forwarding to reach the objective function, how close it has gotten through this 

function. This process is called minimizing error. Based on this policy, we move toward 

our desired function, the closer we are to the function, the better approximation has been 

computed by chromosomes. Chromosomes are the coefficients of a polynomial; this 

polynomial can lead to the answer close to zero if we substitute it into the objective 

function. Since GA- MLP is the biased version of the pure GA, we should apply mini-batch 

inside of the processing algorithm to be able to minimize the error. So it should be 

mentioned that in Figure 4-6, the mini-batch size instead of epoch or iteration value is 

shown on axis X, and axis Y shows the scaled expected error, which is the log-likelihood 

of the error to visualize the error in a better scale. 
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Figure 4-5: Convergence of Total Material Cost (Golkhoo and Moselhi, 2019) 

 

Figure 4-6: Error in GA-MLP algorithm (Golkhoo and Moselhi, 2019) 

As mentioned before, the same required information used to run GA as well. While running 

GA, there was not any tangible improvements after 200 generations and termination 

condition was met reaching 220 iterations. To indicate the superiority of the developed 

GA-MLP algorithm over GA, first, the fitness value calculated by GA-MLP is compared 

to the fitness value calculated by GA illustrated in Figure 4-7. The total rebar cost that has 

been optimized by the GA algorithm in 200 generations is 688,978$, which is more than 

the 596,128$ (the minimum cost obtained from the GA-MLP algorithm considering 200 

iterations). 
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Figure 4-7: Comparison of the Convergence of Total Material Cost Using GA (Left) 

and GA-MLP algorithm (Right) (Golkhoo and Moselhi, 2019) 

Second, the amount of error in both algorithms are compared and presented in Figure 4-8. 

Comparing the error value, it can be concluded that against the error value in GA, the error 

in GA- MLP algorithm converges toward zero when the mini-batch size is increasing and 

reaching almost to 600. 

 

Figure 4-8: Comparison of Error in GA-MLP (Left) and GA (Right) (Golkhoo and 

Moselhi, 2019) 

In addition to profiting from the capabilities of GA as a greedy optimization engine, 

practicality and the excellence of the presented method is due to creating a memory for GA 

by integrating MLP with GA to avoid getting stuck to the local minima as the main 

weakness of GA. MLP gives a capacity of inference to GA by regularizing the parameters 

using their fluctuation history to be able to jump over the local minima. In summary, the 

automated GA-MLP method represents a promising way forward to optimize the delivery 

and inventory of construction materials not only in the planning phase but also in the 

construction phase.  
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4.2 Progress Visualization Methods 

Different laboratory and field experiments have been conducted to validate the developed 

progress visualization methods, including CAE and SSIM. The following subsections 

present the detailed descriptions of the experiments. 

4.2.1 CAE  

Validation of CAE as the first developed progress visualization method was done through 

three laboratory and one field experiments. The preliminary obtained results were decisive 

for the proof of concept. 

To visualize the progress occurred in both indoor and outdoor construction sites between 

time “𝑇1” and time “𝑇2” under diverse illumination conditions, six scenarios were designed 

(see Table 4-2). 

For example in the 2nd experiment for the outdoor environment, the first input image is 

taken from the southeast elevation of a building under construction at the time “𝑇1”. After 

some progress, the second input image is taken from the southeast elevation of the same 

building at time “𝑇2”. The input images had a small change in their viewpoints to examine 

CAE performance in detecting progress dealing with slight rotation in viewpoints (around 

5 degrees). In these laboratory experiments, the available sample architecture project in 

Autodesk Revit software (i.e., a small residential building with two floors) was selected. 

As mentioned in the previous section, in the first step, the 3D model of the building was 

exported from Autodesk® Revit 2017 as an NWC file to be integrated with its 

corresponding schedule in Autodesk® Navisworks® Manage 2017. The generated 4D as-

planned model (saved as NWD file) was used to simulate the construction process, as 

shown in Figure 4-9. To apply the proposed CAE algorithm for both indoor and outdoor 

progress monitoring, various viewpoints were created and saved in Navisworks. Two 

viewpoints illustrated the living room as an indoor environment and the southeast elevation 

of the building as an outdoor environment, respectively. 
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Table 4-2: Laboratory Experiments Scenarios 

 Indoor Outdoor 

1st Experiment 

Scenario #1 Scenario #2 

1st Input Image 

(incomplete building at time “𝑇1”) 

“Living room.” 

1st Input Image 

(incomplete building at time “𝑇1”) 

“Southeast elevation.” 

2nd Input Image with same 

viewpoint and illumination 

(incomplete building with some 

progress at time “𝑇2”) 

“Living room.” 

2nd Input Image with same 

viewpoint and illumination 

(incomplete building with some 

progress at time “𝑇2”) 

“Southeast elevation.” 

2nd Experiment 

Scenario #3 Scenario #4 

1st Input Image 

(incomplete building at time “𝑇1”) 

“Living room.” 

1st Input Image 

(incomplete building at time “𝑇1”) 

“Southeast elevation.” 

2nd Input Image with a different 

viewpoint and same illumination 

(incomplete building with some 

progress at time “𝑇2”) 

“Living room.” 

2nd Input Image with a different 

viewpoint and same illumination 

(incomplete building with some 

progress at time “𝑇2”) 

“Southeast elevation.” 

3rd Experiment 

Scenario #5 Scenario #6 

1st Input Image 

(incomplete building at time “𝑇1”) 

“Living room.” 

1st Input Image 

(incomplete building at time “𝑇1”) 

“Southeast elevation.” 

2nd Input Image with different 

viewpoint and illumination 

(incomplete building with some 

progress at time “𝑇2”) 

“Living room.” 

2nd Input Image with different 

viewpoint and illumination 

(incomplete building with some 

progress at time “𝑇2”) 

“Southeast elevation.” 
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Figure 4-9: Construction Process Simulation in Autodesk Navisworks: (a) Outdoor, 

and (b) Indoor Environment 

Various viewpoints can be set and saved using options to control the camera projection, 

position, and orientation in Autodesk Navisworks. So the world coordinates of the camera 

can be predefined in the project 3D model to be used in the construction phase for capturing 

real images from the construction job site. On the one hand, when a viewpoint is set and 

saved in Autodesk Navisworks, the camera position (local coordinate (x, y, z)) and the 

distance between camera location and any specific points are known. On the other hand, 

since there is always a site survey drawing for any construction projects which has been 

imported into Autodesk Revit, so the world coordinate of project origin point, base point, 

and all other specific points of the 3D model are known. As a result, the world coordinate 

of the camera can be achieved and saved easily for future use knowing the world coordinate 

of any specific points and the distance between the camera location and that particular 

point. 

Furthermore, as discussed in advance, to train CAE properly to make it independent of 

small visual changes, both indoor and outdoor viewpoints with slight rotation were saved 

as new viewpoints in Navisworks. In the second step, having generated as-planned 

simulation model with definite indoor and outdoor viewpoints (with and without rotation), 

frames (image) were extracted from the simulation through rendering in the cloud and were 

saved in datasets. Experiments were designed in such a way that the performance of the 

method for progress detection and visualization could be assessed in different illumination 

conditions. It is worth noting that, while extracting frames (images) from 4D model 

simulated in Autodesk Navisworks through rendering in the cloud, factors affecting 

illumination such as sun, exposure, time zone, latitude and longitude, north direction, date 

and time of image capturing can be simulated according to the real project condition as 

well. Images were rendered in two different time points (one in the morning and one in the 

evening). 

In the next step, CAE was trained on generated image datasets of the indoor and outdoor 

environment, respectively. Training and test datasets of indoor environment images 

included 152 and 38 images, respectively, from both complete and incomplete buildings. 

Training and test datasets of outdoor environment images also included 328 and 72 images, 

respectively, from both complete and incomplete buildings. The training datasets were 

augmented using 4-DoF affine transformation (similarity transformation) to bootstrap the 
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datasets to improve the performance of the algorithm. It is worth noting that 5 fold cross-

validation was used while training CAE to improve its performance. So the training dataset 

was split into 5 folds, and CAE was trained on 4 folds (80%) of the training dataset. Then 

it was validated to check the performance for the 5th fold (20% of the training dataset). 

However, the larger size of the input images will result in better reconstruction; for memory 

issues, we reduced the size of the input images to 1⁄4 of their original dimensions. So CAE 

was trained, validated, and tested on images with size 400 × 122 pixels using MATLAB 

(R2018a) on a Windows 64-bit platform with 3.40 GHz Core i7 CPU and 8 GB of memory. 

The CAE training procedure during 2000 epochs took about 45 minutes and 105 minutes 

for indoor and outdoor environment images, respectively, on four parallel CPU workers. 

Training time can be reduced to 1⁄4 if the operation is done using GPU.  

Having trained CAE, progress was detected and visualized in terms of constructed building 

elements between two consecutive time points using test images. For the performance 

evaluation purpose, the output image visualizing the progress was compared with the 

ground truth image using the Structural Similarity (SSIM) index, which can measure the 

similarity between two images. 

Each experiment is comprehensively elaborated in the following sections: 

In the first experiment and scenario #1, Figure 4-10a shows the first test image of the 

outdoor environment (southeast elevation) illustrating the incomplete building at time 𝑇1. 

Figure 4-10b shows the second test image of the same incomplete building at time 𝑇2 in 

which a Structural Insulated Panel (SIP) wall is built in place. Both input images have 

identical viewpoints and illumination conditions. Both test images were fed into the trained 

CAE sequentially. As explained before, the trained CAE mapped the first input image of 

an incomplete building to the complete building in the first step. So in the first output image 

(Figure 4-11(a)), all the elements remained to be completed from 𝑇1 to the end of the project 

were reconstructed and visualized in a particular color space. The same process is 

implemented for the second input image, and in the second output image (Figure 4-11(b)) 

all the elements remained to be completed from 𝑇2 to the end of the project were 

reconstructed and visualized in a different color space.  

Then by fusing (correlating color spaces) the output images, the progress was visually 

recognized. As shown in Figure 4-11(c), the constructed SIP wall as the progress made 

between time “𝑇1” and time “𝑇2” was visualized. Final output (Figure 4-11(c)) was 

compared with the ground truth using the SSIM index, which is a decimal value between 

(-1) and (1), and getting closer to value (1) represents perfect structural similarity. The 

obtained SSIM index for the first outdoor experiment is 0.8919, being close to (1) it is 

deemed satisfactory. All the mentioned steps were implemented to visualize the progress 

of the indoor environment as well. Figure 4-12(a) shows the first test image of the indoor 

environment (living room) illustrating the incomplete building at time 𝑇1. Figure 4-12(b) 

shows the second test image of the same unfinished building at time 𝑇2 in which four 

window frames in the eastern side of the living room and curtain wall mullions on the 

southern side of the living room are installed as simple progress. Both input images have 

identical viewpoints and illumination conditions. These test images were fed into the 

trained CAE sequentially and as shown in Figure 4-12(c), the installed window frames and 
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curtain wall mullions as the progress made between time “𝑇1” and time “𝑇2” were 

visualized. The obtained SSIM index for the first indoor experiment is 0.8763, which is 

deemed satisfactory as well. 

 

Figure 4-10: Outdoor Test Images in Scenario #1: (a) at 𝑻𝟏, and (b) at 𝑻𝟐 

 

 Figure 4-11: CAE Output Images: (a) Reconstructed Image at 𝑻𝟏, (b) 

Reconstructed Image at 𝑻𝟐, and (c) Visualized SIP Wall 

 

Figure 4-12: Test Images in scenario #2: (a) at 𝑻𝟏, (b) at 𝑻𝟐, and CAE Output: (c) 

Visualized Window Frames and Curtain Wall Mullions 

In the second experiment and scenario #3, Figure 4-13(a) shows the first test image of the 

outdoor environment (southeast elevation) illustrating the incomplete building at time 𝑇1. 

Figure 4-13(b) shows the second test image of the same unfinished building at time 𝑇2 in 

which a SIP wall is built in place as simple progress. As presented in Table 4-2, the 

viewpoint was rotated around 5 degrees in the second test image to assess the developed 
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algorithm performance facing rotational deviations of the cameras capturing images. But 

both input images have identical illumination conditions in this experiment. Both test 

images were fed into the trained CAE sequentially. As shown in Figure 4-13(c), the 

constructed SIP wall as the progress made between time “ 𝑇1” and time “ 𝑇2” was 

visualized. The obtained SSIM index is 0.8456, and it is acceptable.  

All the mentioned steps were implemented to visualize the progress of the indoor 

environment as well. The first test image of the indoor environment (living room) at time 

 𝑇1 and the second test image of the same incomplete building at time  𝑇2 are shown in 

Figure 4-14(a) and 4-14b, respectively. It is shown in Figure 4-14(b) that four window 

frames in the eastern side of the living room and curtain wall mullions on the southern side 

of the living room are installed as simple progress. Both input images have identical 

illumination conditions, but the viewpoints are different. These test images were fed into 

the trained CAE sequentially and as shown in Figure 4-14(c), the installed window frames 

and curtain wall mullions as the progress made between time “𝑇1” and time “𝑇2” were 

visualized successfully. SSIM index is 0.8400, which shows a high similarity between the 

output and the ground truth images. While conducting the second experiment, visualizing 

more complex progress was a matter of question. Therefore we added more building 

elements as progress in the second test images for both indoor and outdoor environments 

to evaluate the algorithm. 

 

Figure 4-13: Outdoor Test Images in Scenario #3: (a) at 𝑻𝟏, (b) at 𝑻𝟐, and CAE 

Output: (c) Visualized SIP Wall 
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Figure 4-14: Indoor Test Images in Scenario #4: (a) at 𝑻𝟏, (b) at 𝑻𝟐, and CAE 

Output: (c) Visualized Window Frames and Curtain Wall Mullions 

Figure 4-15(a) shows the first test image of the outdoor environment (southeast elevation) 

at time 𝑇1 while Figure 4-15(b) illustrates the second test image of the same incomplete 

building at time 𝑇2 in which two building elements (a SIP wall and an interior partition) 

are built in place as progress made between 𝑇1 and 𝑇2.  

However, the illumination condition of both input images was similar; the viewpoint was 

rotated around 5 degrees in the second test image. Having fed test images into the trained 

CAE, SIP wall, and an interior partition were recognized and visualized in Figure 4-15(c), 

which is the final output of the algorithm. The Achieved SSIM index is 0.8981. The same 

scenario (more than one building element as the progress between two different time 

points) was considered for the indoor environment as well. Figure 4-16(a) and 4-16(b) 

show test images of the living room under construction at time 𝑇1 and 𝑇2 respectively. 

Installed eastern wall and window frames were considered as the progress between these 

time points in Figure 4-16(b). As mentioned before, this experiment examined the 

algorithm performance using input images captured from different viewpoints but under 

the same illumination condition. The algorithm output (Figure 4-16(c)) was generated 

visualizing wall and window frames successfully as the actual progress with the SSIM 

index equals to 0.8389. 
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Figure 4-15: Outdoor Test Images in Scenario #3: (a) at 𝑻𝟏 (b) at 𝑻𝟐, and CAE 

Output: (c) Visualized SIP Wall and Interior Partition 

 

Figure 4-16: Indoor Test Images in Scenario #4: (a) at 𝑻𝟏, (b) at 𝑻𝟐, and CAE 

Output: (c) Visualized Window Frames and SIP Wall 

According to Table 4-2, in the third experiment and scenario #5, test images were captured 

not only from different viewpoints but also under different illumination conditions. Figure 

4-17(a) and 4-17(b) shows the first outdoor test image at time 𝑇1 and the second outdoor 

test image at time 𝑇2 respectively. As illustrated in Figure 4-17(a) and 4-17(b), the 

viewpoints and the illumination conditions were different, and the built SIP wall was 

considered as simple progress. The algorithm correctly recognized and visualized the SIP 

wall, as illustrated in Figure 4-17(c) with the SSIM index equals to 0.8309. The same 

scenario was implemented for the indoor test images indicated in Figure 4-18(a) and 4-

18(b). Four window frames in the eastern side of the living room and curtain wall mullions 
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on the southern side of the living room were successfully visualized in Figure 4-18(c) with 

the SSIM index equals to 0.8477. 

 

Figure 4-17: Outdoor Test Images in Scenario #5: (a) at 𝑻𝟏, (b) at 𝑻𝟐, and CAE 

Output: (c) Visualized SIP Wall 

 

Figure 4-18: Indoor Test Images in Scenario #6: (a) at 𝑻𝟏, (b) at 𝑻𝟐, and CAE 

Output: (c) Visualized Window Frames and Curtain Wall Mullions 

Considering the results of the designed laboratory experiments, it can be stated that the 

developed method can recognize and visualize the progress between different time points 

in terms of building elements. The measured SSIM indices in the laboratory experiments 

for the proof of concept seem to be satisfactory using the developed progress-tracking 

method for the first time. Table 4-3 indicates all the measured SSIM indices for all designed 

scenarios. By comparing the indices, it can be concluded that identical viewpoints and 

illumination conditions of the test images result in more accurate progress detection and 
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visualization. At the same time, the method is still responsive to small changes of 

viewpoints, diverse illumination conditions, and even various viewpoints along with varied 

illumination conditions. 

Table 4-3: SSIM Index of Different Experiments 

Experiment # Environment SSIM Index 

1st Experiment 
Outdoor 0.8919 

Indoor 0.8763 

2nd Experiment 

1st Outdoor 0.8456 

1st Indoor 0.8400 

2nd Outdoor 0.8981 

2nd Indoor 0.8389 

3rd Experiment 
Outdoor 0.8309 

Indoor 0.8477 

Moreover, to come up with the proper CAE architecture, CAE was trained with a different 

number of convolution layers using datasets of outdoor environment images. However, any 

significant difference was not seen among different designed architectures in terms of 

computational time and validation errors, CAE architecture elaborated in section 3.2.7 was 

selected among others due to less cross-validation error (the average of 5 fold recorded 

errors) as shown in Table 4-4.  
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Table 4-4: Cross-Validation Errors of Different Designed CAE Architecture 

Number of 

Convolutional 

Layers 

Designed Architecture 

5 Fold 

Cross 

Validation 

Error 

3 

 

0.0031969 

5 

 

0.003185 

7 

 

0.0031751 

9 

 

0.0031812 

According to the recorded computational efficiency in the previous researches, such as one 

performed by Golparvar-fard et al. (2015), the computation time of progress monitoring 

using their proposed model is a few hours for any received observation.  Moreover, the 

computational time to generate a sparse point cloud for a single column using captured 

images is around 7 hours, which shows that point cloud creation is a time-consuming 
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process (Kopsida et al., 2015). However, to compare automated monitoring models based 

on conventional computer vision algorithms with the developed method which is based on 

deep learning algorithms, specific metrics need to be set using similar construction case 

studies; considering the above two examples of computational time, it can be stated that 

the developed method outperforms their models. Different CAEs related to definite 

viewpoints are trained and tested in the planning phase once, and then progress in near real-

time during the construction phase can be visualized. 

In the field experiment, CAE was trained and tested using a real construction project of a 

hospital in the Montreal area. A field experiment was conducted to capture real images 

from the job site during the construction phase of the project, and it was used to examine 

the performance and the applicability of the developed method.  

In this experiment, one outdoor and one indoor environment have been selected for 

capturing images from the job site. As explained before, the 3D Revit model of the building 

was used to simulate the construction process, as shown in Figure 4-19.  

 

Figure 4-19: Construction Process Simulation  

For the outdoor environment, the first real image was taken from the southeast elevation 

of the hospital under construction at the time “𝑇1”. After some progress, the second real 

image was taken from the same elevation of the same building at time “𝑇2”. For the indoor 

environment, the first real image was taken from a specific viewpoint on the seventh floor 

of the hospital at the time. “𝑇1”, and the second real image was taken from the same scene 

at time “𝑇2”. The input images had a small change in their viewpoints and illumination to 

examine the performance of CAE in visualizing progress dealing with slight rotation in 

viewpoints (around 5 degrees) and different illumination conditions. As discussed in the 

laboratory experiments, datasets of images extracted from the as-planned simulation 

(considering small visual changes and factors affecting illumination) for both selected 

indoor and outdoor viewpoints were used to train and test CAE. Training and test datasets 

of indoor environment included 160 and 40 images, respectively. For the outdoor 

environment, 340 and 80 images were included in the training and test datasets, 

respectively. Similar to the previous experiments, the training datasets were augmented 

using 4-DoF affine transformation (similarity transformation) to bootstrap the datasets to 

improve the performance of the algorithm, and 5 fold cross-validation was used in training 
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CAE. CAE being trained and tested using images extracted from the as-planned simulation 

was fed with real images captured at two consecutive time points to visualize the progress. 

The output image visualizing the progress was compared with the ground truth image using 

the Structural Similarity (SSIM) index, which can measure the similarity between two 

images. Figure 4-20(a) shows the first real input image captured from the southeast 

elevation illustrating the incomplete building at time 𝑇1. Figure 4-20(b) shows the second 

real input image of the same incomplete building at time 𝑇2 in which the southeast facade 

of the last floor has been built in place. As shown in Figure 4-20(c,) the progress made 

between time “𝑇1” and time “𝑇2” of the constructed facade was visualized. The final output 

(Figure 4-20(c)) was compared with the ground truth using the SSIM index, which was 

calculated to be 0.7744, being close to (1), it is deemed satisfactory. 

All the above steps were implemented to visualize the progress of the indoor environment 

as well. Figure 4-21(a) shows the first real input image captured from the seventh floor 

illustrating the incomplete building at time 𝑇1. Figure 4-21(b) shows the second real input 

image of the same unfinished building at time 𝑇2 in which the HVAC duct has been 

installed. As shown in Figure 4-21(c), the installed HVAC duct depicts the progress made 

between time “𝑇1” and time “𝑇2”. The calculated SSIM index for this experiment was 

0.7973, which is deemed satisfactory as well. 

 

 Figure 4-20: Outdoor Real Images in Field Experiment: (a) at 𝑻𝟏, (b) at 𝑻𝟐, 

and CAE Output: (c) Visualized the Constructed Façade of the Last Floor  
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Figure 4-21: Indoor Real Images in Field Experiment: (a) at 𝑻𝟏, (b) at 𝑻𝟐, and CAE 

Output: (c) Visualized the Installed HVAC Duct 

4.2.2 SSIM  

Validation of the proposed SSIM for progress visualization was done through an 

experiment in which 360-degree images and the HoloBuilder platform have been used in a 

real project (Airport project in Montreal area). The preliminary obtained results were 

decisive for the proof of concept. As-build condition of the project has been captured and 

visualized through spatially linking the 360-degree images to existing 2D plans in the 

HoloBuilder platform. Moreover, 360° rendering views of the 3D model has been imported 

from Autodesk Revit into Holobuilder through keeping the same focus and point of view 

for both scenes (as-built status and 3D as-planned model) (see Figure 4-22). 
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Figure 4-22: As-Built 360° Image vs. As-Planned 360° Image in HoloBuilder 

Platform 

As shown in Figure 4-22, 360-degree image of 3D Revit model (as-planned) and 360-

degree images of the actual job site (as-built) have been captured from the same location 

and are comparable, So to visualize the progress, as-planned and as-built images were 

extracted and used as inputs for SSIM. SSIM could successfully identify and visualize the 

perceptual differences between as-built and as-planned images, as shown in Figure 4-23.
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Figure 4-23: Visualized Differences Using SSIM 



139 

 

4.3 Automated Detection of Building Components 

In this section, the performance of the developed automated detection framework is 

evaluated in the context of a real-world case example, and the results are presented. The 

experiments demonstrated that existing 3D BIM models of building projects could be used 

to generate large synthetic datasets for training purposes without the need for high realism 

and high-quality real-images. As such, the use of the developed framework alleviates the 

need for large sets of real-images and offer a viable alternative that circumvents that 

obstacle.  

To illustrate how beneficial synthetically generated image datasets are, the most proper 

detection algorithm was selected and trained on five datasets. As described in section 3.4.3, 

the first step was to define the object of interest. HVAC ducts were determined to be 

detected in this research. As mentioned before, to ensure the generalization of the 

developed framework, the 3D BIM models of two real construction projects (a hospital and 

a university in Montreal area) were used to generate a synthetic-image dataset. Autodesk® 

Revit 2019 was employed as a 3D BIM tool in which sun setting and artificial lights were 

adjusted to simulate different lighting conditions. Multi-directional renderings for each 3D 

model were then generated using Enscape v2.3.  Enscape is a Revit Add-ons and was 

employed as a real-time rendering engine. Various views considering occlusions and 

viewpoints were determined and saved for each 3D model in Autodesk® Revit 2019. 

Figure 4-24 indicates defined views from both 3D models simulating diverse illumination 

conditions, degree of occlusions, and viewpoints. Finally, synthetic-images were exported 

in JPEG format, and a dataset of 604 synthetic images was generated depicting HVAC 

ducts from various viewpoints, with different levels of occlusion and under diverse 

illumination conditions. 

 

Figure 4-24: Synthetic Image Examples Generated from 3D Models of Hospital and 

University Projects  

According to the second process of the developed framework (Figure 3-33), five training 

datasets were generated to investigate the effect of combining real images and synthetic-

images on the performance of building components detection. One dataset consisted of 

only HVAC duct images generated synthetically, the second just included real-images of 

HVAC ducts which were captured from a real project (hospital) in the Montreal areal , and 
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the remaining consisted of a mix of real and synthetic-images with different proportions 

(real/synthetic ≃ 1/3, real/synthetic ≃ 1/2, and real/synthetic ≃ 2/3). So, to carry out the 

designed experiments, a dataset of 622 real-images (captured from the hospital project) 

was created.  

According to Figure 3-34, 3-35, and 3-36, Faster R-CNN was selected to detect HVAC 

ducts as the most suitable detector in the first step. But after implementing Fast R-CNN to 

detect HVAC ducts (using training dataset including only real-images), it was observed 

that the bounding boxes in the output images detecting and localizing HVAC ducts 

included other objects (such as lamps, ceiling, etc.) as well (Figure 4-25).  

 

Figure 4-25: Example Detections of HVAC Ducts Using Faster R-CNN 

Considering the shape of HVAC duct as its attribute (variant parts in different directions), 

and the fact that sometimes more than one bounding box is needed to localize one HVAC 

duct, Faster R-CNN did not seem to be the most proper algorithm for detection of HVAC 

ducts. As a result, pixel-wise methods like Mask-RCNN (which is a human-designed 

features-free algorithm) was selected instead. Mask R-CNN, as a region-based deep 

learning algorithm, is one of state-of-the-art object detection algorithms. Mask RCNN was 

proposed by He et al. (2017) to extend Faster RCNN and address pixel-wise object 

segmentation. Mask RCNN has the same detection framework as Faster RCNN. “The only 

difference is in the second stage, in which a binary mask for each Region of Interest (RoI) 

is generated in parallel to predicting the class and box offset. This binary mask is the output 

of a Fully Convolutional Network (FCN) on top of a CNN feature map” (Liu et al. 2019). 

Figure 4-26 indicates the network architecture of Mask R-CNN. 
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Figure 4-26: Mask R-CNN Architecture with Input and Output Images (He et al., 

2017 & Liu et al., 2019) 

The generated datasets were used to train Mask R-CNN, which is based on the Feature 

Pyramid Network (FPN) and a ResNet101 backbone (Abdulla, 2017). The backbone 

network acts as a feature extractor to generate feature maps through extracting low-level, 

and high-level features in the first and later layers, respectively, and FPN enables the model 

to detect objects in different scales via generated multi-scale feature maps. Mask R-CNN 

was not trained from scratch. Transfer learning (in terms of optimized pre-trained weights) 

was a starting point to initialize training our model. So, the feature extractor network was 

pre-trained on Microsoft’s Common Objects in Context (MS COCO) as a larger dataset 

(which contains object segmentation notation data). Then the initial weights were updated 

using our small dataset, which resulted in learning the relevant features of HVAC ducts. 

An open-source package with Tensorflow backend developed by Abdulla (2017) and 

modified by RomRoc (2018) was employed to detect HVAC ducts. Both datasets (real-

image and synthetic-image datasets) were split into the train (90%) and test (10%) subsets. 

Not only datasets but also annotation files were required to start training Mask R-CNN. 

Thus, the images were labeled with ground truth annotations using a well-designed 

annotator tool. Among various available tools, the VGG Image Annotator (VIA) web tool 

developed by the University of Oxford (Dutta and Zisserman 2019) was selected to specify 

HVAC ducts boundaries and generated masks annotations in pixel level. So images were 

manually annotated through drawing polygonal shapes and adding HVAC duct as the class 

tag. The annotations were saved as JSON files to be used as input for model training. Figure 

4-27 shows a sample of real and synthetic images annotated using VIA.  
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Figure 4-27: Samples of Real and Synthetic-Images Annotated by VIA 

Google Colab notebook (Colab Runtime type: Python3, GPU enabled (Tesla K80 GPU is 

accessible up to 12 hours)) as a free cloud service was used to train Mask R-CNN. Mask 

R-CNN was trained with 50 epochs (various epochs were selected, and the best results 

were achieved for 50 epochs based on the size of training datasets) to map each training 

dataset to their corresponding annotations with the minimum loss value. Test datasets and 

their corresponding annotation files were used as the inputs to test the trained model. Each 

HVAC duct was detected by a mask boundary, a bounding box, and a class name along 

with a confidence score (probability showing that the bounding box contains an HVAC 

duct). In this research, precision and recall were used to evaluate the performance of the 

trained model, and Average Precision (AP) was used to compare its performance in the 

five designed experiments. As explained before, five experiments were designed to find 

the optimum training dataset for benefiting from synthetic-images to make the detection of 

building components applicable and reliable in the construction industry. 

There are two experiments on the extreme ends of the experiment spectrum. The first 

(experiment #1) used only synthetic-images, and the second (experiment #5) used only 

real-images. In experiment #1, 604 synthetic-images generated from 3D BIM models of 

hospital & university projects were used for training Mask R-CNN, and 62 real-images 

from the hospital were used in testing it. In experiment #5, 560 real-images from the 

hospital were used for training Mask R-CNN, and 62 real-images were used for testing the 

model. Across this spectrum, three other experiments were designed. In the second 

experiment (experiment #2), training dataset included 604 synthetic-images combined with 

200 real-images (real/synthetic ≃ 1/3), in the third experiment (experiment #3), training 

dataset consisted of 604 synthetic-images integrated with 300 real-images (real/synthetic 

≃ 1/2), and in the fourth experiment (experiment #4), training dataset included of 604 

synthetic-images integrated with 400 real-images (real/synthetic ≃ 2/3). In the fifth 

experiment, the test dataset included 62 real-images from the hospital. Finally, both 

training and validation datasets comprised only synthetic-images in the sixth experiment 

(experiment #6) to facilitate project progress monitoring (via comparison of as-planned 
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components segmentations with as-built components segmentations.) In this experiment, a 

dataset of 604 synthetic-images was split into a training dataset of 544 images and a test 

dataset of 60 images. Precision and recall were calculated for performance evaluation (IoU 

threshold was set to 0.5 to predict true positive or false positive and confidence threshold 

was set to 0.75) of the HVAC duct detection in each of the designed experiments (Table 4-

5). 

Figure 4-28 illustrates the output images from HVAC duct detection on real-images 

(achieved from experiments # 1, 2, 3, 4, and 5) using Mask R-CNN trained on different 

types of datasets. 
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Table 4-5: Performance Comparison for Different Experiments 

# Training Dataset Test Dataset TP FP FN Precision Recall 

1 604 Synthetic-Images 62 Real-Images 38 45 57 46% 40% 

2 
200 Real-Images + 604 Synthetic 

Images (Real/Synthetic ≃1/3) 
62 Real-Images 73 27 22 73% 77% 

3 
300 Real-Images + 604 Synthetic 

Images (Real/Synthetic ≃1/2) 
62 Real-Images 67 34 28 66% 71% 

4 
400 Real-Images + 604 Synthetic 

Images (Real/Synthetic ≃2/3) 
62 Real-Images 65 33 30 66% 68% 

5 560 Real-Images 62 Real-Images 70 30 25 70% 74% 

6 544 Synthetic-Images 60 Synthetic-Images 102 34 18 75% 85% 
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Figure 4-28: HVAC Duct Detection on Real-Images Using Mask R-CNN (a) 

Experiment #1, (b) Experiment #2, (c) Experiment #3, (d) Experiment #4, and (e) 

Experiment #5 

Figure 4-29 illustrates the output images from HVAC duct detection on synthetic-images 

(achieved from the experiments # 6) using Mask R-CNN trained on a dataset including 

only synthetic-images. 

 

 

 

 

Ground Truth
(a) Synthetic Images

Experiment #1

(c) Synthetic +Real 

Images (R/S ≃ 1/2)

Experiment #3

(b) Synthetic +Real 

Images (R/S ≃ 1/3)

Experiment #2

(e) Real Images

Experiment #5

(d) Synthetic +Real 

Images (R/S ≃ 2/3)

Experiment #4
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Ground Truth Synthetic Images (Experiment #6)

 

Figure 4-29: HVAC Duct Detection on Synthetic-Images (Experiment #6) 

As shown in Table 4-5, Mask R-CNN did not achieve acceptable performance in detecting 

HVAC ducts when trained just on synthetic-images (experiment #1). Only 38 ducts were 

detected accurately, and the least precision and recall (40% and 46% respectively) were 

obtained across the entire spectrum of experiments. At the right of this spectrum, where 

Mask R-CNN was trained only on real-images (experiment #5), it was able to detect 70 

HVAC ducts out of 95 HVAC ducts (in a set of 62 real images of the test dataset). There 

were 30 false detections as well in this experiment, which resulted in 70% and 74% 

precision and recall, respectively. More accurate duct detections (73 HVAC ducts) and less 

false detections (27) were acquired when Mask R-CNN was trained on a training dataset, 
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including 604 synthetic-images combined with 200 real-images (Real/Synthetic ≃ 1/3) in 

experiment #2. In the third experiment in which the training dataset has consisted of 604 

real-images and 300 synthetic-images (Real/Synthetic ≃ 1/2), 67 HVAC ducts were 

detected correctly by Mask R-CNN, and 34 ducts were detected where there was none. 

Finally, in experiment #4, 65 HVAC ducts were detected, and there were 33 false 

detections when Mask R-CNN was trained on a training dataset including 604 synthetic-

images mixed with 400 real-images (Real/Synthetic ≃ 2/3). Therefore, the highest 

precision (73%) and recall (77%) were accomplished in experiment # 2 compared with the 

other experiments across the entire spectrum. In addition to those five experiments, 

experiment #6 was performed considering synthetic-images only for testing. The results of 

that experiment indicated that the Mask R-CNN trained on 544 synthetic-images yielded 

75% and 85% precision and recall, respectively. On top of precision and recall rates (Table 

4-5), AP was used to facilitate performance evaluation of Mask R-CNN detector trained 

on a different mix of synthetic and real images (Figure 4-30).  

Considering the test results of experiments # 2, 3, 4, and 5 shown in Table 4-5 and also the 

output images displayed in Figure 4-28(b), 4-28(c), 4-28(d), and 4-28(e), it can be stated 

that the developed framework is accurate and robust enough to recognize and segment 

HVAC ducts. It has been shown in Table 4-5 and also in Figure 4-28(a) that the 

performance of precision (40%) and recall (46%) is not acceptable when the training 

dataset includes only synthetic-images (experiment #1). But the achieved results 

(experiment # 2, 3, 4 in Table 4-5 and Figure 4-28(b), 4-28(c), and 4-28(d)) show that the 

combination of real and synthetic-images in the training dataset leads to a higher detection 

precision and recall rate. In other words, when synthetic-images form a large part of 

training datasets, detection accuracies are quite comparable to the accuracy of the model 

trained on only real-images (experiment #5).  

 

Figure 4-30: Performance Plot Indicating the Effect of Including Synthetic-Images 

in the Training Dataset 

As shown in Figure 4-30, AP is 27% and 61% when Mask R-CNN was trained on 

synthetic-images only and real-images only, respectively. But an increase of 5% in the AP 

(AP=66%) was gained by adding 200 real-images to 604 images generated synthetically in 

the training dataset, i.e., when using a training dataset of 30% real images. The achieved 

higher AP can be attributed to the fact that the network was exposed to more diversified 
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images in terms of occlusion, viewpoint, and illumination condition during the training 

process. Table 4-5 demonstrates the high performance of the model in terms of precision 

(75%) and recall (85%) to detect ducts in synthetic-images as well. 

This study reveals the successful use of less photorealistic synthetic images augmented by 

a small percentage of real-images in training models for object detection in construction. 

Accordingly, the synthetic-images generated from existing 3D models of building projects 

can be used in training datasets without caring about a high degree of photorealism. Thus 

the problem of the detection of building components can be effectively solved using the 

framework described in this study.  

As illustrated in Figure 3-32, after progress visualization, the developed object detection 

framework is used to detect various building elements (visualized as progress) and 

consequently updating the project schedule based on the perceived progress. Since the 

developed automated detection framework has been applied to detect HVAC ducts in this 

study, so the output image of the progress visualization process related to the HVAC duct 

was used as an input to Mask R-CNN and the result is shown in Figure 4-31. 

 

Figure 4-31: Updating Schedule, MRP and OMDS based on the Detected Building 

Elements (Perceived Progress) 
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CHAPTER 5: RESEARCH CONTRIBUTION AND FUTURE 

WORKS 

5.1 Summary of Research 

This research covered the concepts and the background of construction materials 

management and literature review related to the main aspects, the current research gaps, 

and detailed explanation of the developed framework followed by the experiments and case 

studies to validate and evaluate the applicability of the developed framework and its 

developed models.  

In the developed framework, a novel algorithm was introduced to generate an optimized 

material delivery schedule that can be used as a guide for contractors or material 

professionals in procuring material with the least cost and without early, late, excess, and 

insufficient purchasing. The developed algorithm can make trade-offs and optimize 

balance among elements of material cost. It can also consider the dynamic nature of the 

construction projects by realizing the progress reflected in the last up-to-date schedule. In 

addition to profiting from the capabilities of GA as an optimization engine, practicality and 

the excellence of the presented method is due to creating a memory for GA by integrating 

MLP with GA to avoid getting stuck to the local minima as the main weakness of GA. 

Another method was developed to facilitate and improve vision-based automated progress 

monitoring of construction operations. The method utilized a deep CAE algorithm to 

automate monitoring of indoor and outdoor construction progress in near real-time over 

the entire project duration. Having trained and tested CAE using a set of virtually captured 

2D images in the planning phase, the method was able to visualize actual onsite progress 

using job site images captured on consecutive days. The method was observed to provide 

promising performance in near real-time indoor and outdoor construction progress 

visualization. The developed vision-based project progress monitoring method utilizes a 

deep learning algorithm. Unlike conventional computer vision methods applied for 

progress monitoring, deep learning algorithms can represent images by automatically 

learning the features with the superior discriminatory power rather than using hand-crafted 

image descriptors. Using 360-degree images, the HoloBuilder platform, and the SSIM 

algorithm was proposed as another approach for visualizing progress in this research. 

Moreover, for extracting the information and identifying various building components 

included in the images, an automated object detection framework was developed in which 

the possible use of synthetic-images rendered from 3D BIM models was investigated to 

generate a training dataset large enough for detecting building components. The developed 

framework alleviates the need for large datasets of real images and, accordingly, 

overcoming a critical obstacle in the formation of needed training data sets. It addresses 

the lack of images captured in diverse environmental conditions (e.g., various lighting 

conditions, viewpoints, occlusions, and buildings with multiple usages.). The performance 

of Mask R-CNN trained on five different training datasets was compared using AP, 

precision, and recall metrics. The training datasets in the designed experiments consisted 

of 560 real-images, 604 images synthetically generated, and a mix of real and synthetic-

images with three different ratios, respectively. Mask R-CNN trained on only 604 

synthetic-images (reached 26% AP) underperformed against Mask R-CNN trained on 560 
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real images (reached 61% AP), but when 200 real-images were added to the dataset of 

synthetic-images, it boosted the detection performance by 5% (reached 66% AP). So it was 

concluded that training Mask R-CNN on synthetic datasets combined with an appropriate 

number of real images (real/Synthetic≃1/3 in this research) is a promising approach for the 

detection of building components in the construction industry where there is a dearth of 

large enough datasets of real-images. The combination of progress visualization and 

detection of building elements enables project managers to monitor project progress, 

update project schedule, MRP, and optimized material delivery schedule respectively in 

near real-time.  

5.2 Expected Research Contributions 

The main expected contributions of this research are as follows: 

1) Considering the complex, unstructured, and dynamic nature of the construction 

projects through developing a dynamic Construction Materials Management 

(CMM) framework in which near real-time site data acquisition is used to update 

the project schedule. It guides materials professionals on how to procure materials 

with the least cost and on time, and it can result in taking more accurate and near 

real-time corrective actions, avoiding project schedule delays and cost overruns.  

2) Generating an optimized material delivery schedule to prevent early, excess, or late 

purchasing of materials in the construction projects using a novel developed GA-

MLP algorithm. This method can make trade-offs and optimize balance among 

elements of material cost through creating a memory for GA to avoid from getting 

stuck to the local minima. 

3) Investigating and applying ADC technologies (RGB images, 360-degree images, 

and HoloBuilder platform) for near real-time site data acquisition. 

4) Facilitating construction progress visualization in the indoor and outdoor 

environment under different illumination conditions and with a slight change in 

viewpoints (5 degrees) through utilizing a deep learning algorithm (CAE) algorithm 

instead of previously used conventional computer vision algorithms. 

5) Automated identification of building components through developing a generalized 

object detection framework and deep learning algorithms as a suitable replacement 

for the time-consuming manual information retrieval from the images. 

6) Exploring the benefits of synthetically generated images in training models for the 

detection of building components to alleviate the need for large training datasets of 

real-images required to make deep learning algorithms applicable and practical for 

robust object detection. 

5.3 Limitations and Future Work 

Although this research has successfully achieved its objectives, some limitations have been 

still remained and have to be addressed in the future. The limitations and future works are 

as follows: 

1) One of the practical limitations of the developed CAE method is dealing with highly 

cluttered scenes and occlusions on the construction job sites.  
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2) Another limitation in using CAE relates to the number of viewpoints that have to 

be defined and saved in BIM in the planning phase to cover the main building 

elements for progress monitoring and, subsequently, the number of CAEs that have 

to be trained and tested. Sampling strategy or Pareto Principle is recommended to 

make a cost-benefit tradeoff between the required efforts and the achieved results 

for the project progress estimation. Based on the Pareto Principle, 20% of project 

activities could cause 80% of project delays. So these project activities and their 

related building elements can subsequently be identified by members of the project 

team. Then the CAE is trained and applied for monitoring the selected elements.  

3) Automated updating of the project schedule was not in the scope of this research, 

but developing a method to automatically identify IDs of the building elements 

detected and visualized as the progress is another objective of our future research. 

4) Since CAE is trained on images with certain viewpoints defined in Autodesk 

Navisworks in the design and planning phase, so it is recommended to use UAV 

for continuously capturing images from the same viewpoints (camera position in 

terms of (x, y) is equal to the (x, y) of predefined location in Navisworks and z 

coordinate of the camera is equal to the z coordinate of the project basepoint in the 

same floor plus 1.7 m).  These specific camera coordinates will be used to define 

UAV path planning during the construction phase. Then through a wireless data 

transfer system, captured site images are transferred and saved to the main server. 

Future research may consider the system developed by Freimuth and König (2015) 

to support progress monitoring (using CAE) as well. Their proposed system uses 

UAVs and 4D-BIM-data to generate UAVs’ survey planning with optimal 

waypoints based on 4D-BIM-data. It may be helpful to use their system in planning 

UAVs flight missions on the job site for taking daily/weekly images from defined 

viewpoints.  

5) Investigating the application of deep generative models such as Variational 

Autoencoder (VAE) for project progress monitoring is considered as the future 

objective.  

6) Future research directions related to the automated object detection framework can 

investigate better ways to automatically annotate datasets using 3D CAD models. 

7) Performing more experiments using various datasets to come up with an optimal 

ratio of synthetic and real images to form a training dataset, improving 

diversification of training images generated synthetically, and investigation of the 

generalization ability of the developed framework focusing on other building 

components is another direction of our future research. 
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