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Abstract

Analysis and Removal of Artifacts in Electroencephalographic Recordings

using Microstate Analysis And Randomization Statistics

Jamil Chowdhury

Electroencephalography (EEG) is a popular method to detect brain-neuron activities be-

cause of its high temporal resolution. However, very often, various types of biological

and non-biological signals contaminate EEG recordings. These non-neural signals create

EEG-artifacts, which cause unintentional control in the brain-computer interface related

applications and difficulty in the analysis and interpretation of EEG-data. While these ar-

tifacts corrupt and mask the underlying neural activity in general, the contaminated EEG

data due to the contraction and expansion of the scalp-muscles are called electromyogram

(EMG) artifacts. In particular, the frontalis and temporalis scalp-muscles seriously affect

the EEG-signals ranging from 0-200 Hz frequency band. This thesis studies the most com-

mon EMG artifacts originating from these two brain regions. Its aim is to analyze and

remove the EMG artifacts using microstate analysis and randomization statistics.

The thesis first presents a brief literature review of the EEG-artifacts, followed by the

preprocessing and analysis of the EEG recordings using EEG signal-power analysis. The

purpose of this analysis is to detect the EMG contaminated EEG data-segments or epochs

due to frontalis and temporalis scalp muscles (EMG-artifacts). The preliminary step in this

analysis includes the transformation of the EEG epochs into the frequency domain through

discrete-Fourier transform. Then the signal-powers of the EEG epochs are calculated and

compared to some threshold values. These threshold values are selected based on the mean

signal-power amplitudes of the EEG-epochs of the highly contaminated EEG data channels

representing the frontalis and temporalis brain regions.

Electric potentials from the frontalis and temporalis region of the brain project a set of

spatial patterns on the scalp surface. These spatial patterns can be clustered into a set of

representative maps called microstates. Using microstate analysis, the EMG-contaminated

and non-contaminated EEG epochs, obtained from signal-power analysis are clustered into

an optimal number of microstates. This number best explains the data variance of both
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groups of EEG epochs. The difference between these microstate features can be used to

distinguish artifactual and pure EEG epochs. To find the significant-differences, we have

calculated the feature-differences of these microstates after a random group-wise shuffling

of the EEG epochs many times to generate a distribution of the feature-differences. The

research hypothesis of this distribution is that the differences in features have occurred by

chance. To reject this hypothesis, we compare the probability of this distribution to the

difference in features obtained before group-wise random shuffling of the EEG epochs.

This technique is called multivariate randomization statistics. It has a higher statistical

power compared to classical statistics to find a statistically significant difference.

In this thesis, we analyze the EEG recordings of four subjects to detect the EMG arti-

facts by EEG signal-power analysis. We propose a method to remove EMG artifact from

EEG recordings in two steps. In the first step, we cluster the EMG contaminated and

non-contaminated EEG epochs obtained from signal-power analysis into ten optimal mi-

crostates and calculate three temporal features. In the second step, through randomization-

statistical analysis, we differentiate between the artifactual and pure EEG epochs and re-

construct the EMG-artifact free EEG data. Finally, we validate the proposed method by

comparing it with independent component analysis (ICA), a signal processing technique

for separating the additive sub-components of a multivariate signal. We have found that our

proposed method gives similar results to that of ICA. Our research findings suggest that a

combination of microstate analysis with randomization statistics be an effective-method in

the removal of EMG-artifacts.

iv



Acknowledgments

I want to express my profound gratitude to the Almighty God for helping me towards

finishing the thesis. I am deeply grateful to my supervisors Dr. Wei-Ping Zhu and Dr. Yong

Zeng, for their unconditional support and crucial suggestions and comments. With their

steady support and guidance, my graduate study and research was always a smooth journey.

It would have been impossible to finish this thesis without their meticulous observations,

comments, and inspirations. It is a great fortune for me that I had the chance to work with

them in the field of academic research. I was always on track by their constant enthusiasm

and care. I learned countless things from them that surely would help me in achieving my

future goals.

I would also like to thank all my colleagues in the Design Lab. I was lucky to work

with them in such a research-oriented environment. It was an excellent experience working

with the past and present group members. I want to render special thanks to Wenjun Jia

and Lucas House for their valuable suggestions and directions in the EEG research and

experiment. I want to thank all my friends at Concordia.

Last but not least, I want to thank my beloved mother, Noor Jahan Begum, for support-

ing me from the beginning of my higher education, encouraging, and giving unconditional

love in my life. I want to thank my sisters, Farhana Akter, Farzana Akter, and Dilruba

Akhter, for always believing in my capabilities. I am also very thankful to my brother-

in-law, Saad Quader, for his good wishes and suggestions. I am especially grateful to

KH. Arif Shahriar, Mohammad Shafayet Islam, Sakib Shuvo and Mosabbir Khan Shiblu,

v



who have always encouraged me towards success. I would also like to thank my friends

Md Imtiaz Uddin Johan, S N Saif, Amir Pirhadi, Cesar Ciepelli, Abrar Alvi Chowdhury,

Md Ashikuzzaman, Kazi Mustafizur Rahman, Keyu Pan, Abrar Hussain, Azfar Adib, and

Chisty Bhuyian for their help in different stages of my study.

vi



Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Material 6

2.1 Electroencephalography (EEG) . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Brain lobes and rhythms . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Event related potentials . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 EEG artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Sources of EEG artifacts . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Features of EEG artifacts . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Typical EEG artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Consequences of EMG artifacts . . . . . . . . . . . . . . . . . . . 14

2.3 State of the art of artifact removal . . . . . . . . . . . . . . . . . . . . . . 14

vii



3 Experimental Design and Signal Acquisition 21

3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Experimental procedure: N-back task . . . . . . . . . . . . . . . . . . . . 24

3.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 EMG Artifact Analysis and Removal 27

4.1 EMG artifact analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 EEG data loading and preprocessing . . . . . . . . . . . . . . . . . 30

4.1.2 Selection of data-channels . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 EEG signal-power analysis in frequency Domain . . . . . . . . . . 31

4.2 EMG artifacts removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Microstate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Randomization statistical analysis . . . . . . . . . . . . . . . . . . 46

4.2.3 Fit-back of raw EEG data using microstate-map labels . . . . . . . 50

4.2.4 Interpolation of the EEG data segments . . . . . . . . . . . . . . . 52

4.2.5 Data reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Validation Of the Proposed Method 56

5.1 ICA with multiple artifact rejection algorithm . . . . . . . . . . . . . . . . 57

5.2 Quality metrics of the EMG-artifacts free EEG data . . . . . . . . . . . . . 63

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusion and Future Work 68

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 72

viii



List of Figures

2.1 Brain lobes from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Typical use of adaptive filtering in canceling physiological artifacts with

available artifact source channel as reference . . . . . . . . . . . . . . . . . 15

2.3 Demonstration of the blind source separation method . . . . . . . . . . . . 17

2.4 A block diagram of the BSS-SVM process . . . . . . . . . . . . . . . . . . 20

3.1 Bio Semi 64 channel electrode layout from [2] . . . . . . . . . . . . . . . . 24

4.1 The overview of the frontalis and temporalis muscle artifact analysis . . . . 28

4.2 The overview of the frontalis and temporalis muscle artifact removal . . . . 30

4.3 EMG-contaminated preprocessed EEG data for a duration of 0.2 seconds

obtained from the primary EEG data-channels . . . . . . . . . . . . . . . . 34

4.4 Regular EEG data for a duration of 0.2 seconds obtained from the data-

channels AF7, AF8, FT7, FT8 . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Number of clusters vs number of repetitions for 20 to 350 with an interval

of 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 The 10 Optimal EEG microstate maps or clusters . . . . . . . . . . . . . . 45

4.7 The overview of the process of fit-back in EMG-artifacts removal method . 51

4.8 A sample PSD plot of the raw EEG data with EMG-artifacts . . . . . . . . 53

4.9 A sample PSD plot of the EMG-artifact free EEG data using the proposed

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



List of Tables

2.1 Different types of EEG artifacts, method of removing them and correspond-

ing channel type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 The number of repetitions of the process of determining the optimal num-

ber of microstate clusters from 7 to 20 times with an interval of 1 . . . . . . 43

4.2 The number of repetitions of the process of determining the optimal num-

ber of microstate clusters from 25 to 350 with an interval of 25 . . . . . . . 44

4.3 The null hypothesis probabilities of microstate clusters with respect to the

three microstate quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 The microstate class or map labels with respect to the three microstate

quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 PREP analysis of the EMG free data obtained from the proposed method. . 61

5.2 PREP analysis of the EMG free data obtained from the ICA with MARA

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 The quality metric values obtained from the proposed method . . . . . . . . 65

5.4 The quality metric values obtained from the method ICA with MARA . . . 65

x



Chapter 1

Introduction

1.1 Background and motivation

The existence of electrical activity of the brain was first discovered by Richard Canton

in 1875. It was the foremost attempt in the electrophysiology of the human brain, giving

rise to the concept of electroencephalogram (EEG). This concept depicts brain electrical

activity in human beings. As such, the word electroencephalogram was coined after this

concept [3]. The first recording of human EEG was done by Dr. Hans Berger a German

psychiatrist way back in 1924 [4]. His works made the measurement of EEG from the

human scalp possible. EEG is nowadays widely utilized in the field of neuroscience, cog-

nitive science, cognitive psychology, neurolinguistics, and psychophysiological research.

Apart from its more traditional use in the clinical assessment of consciousness research,

EEG is frequently used for the investigation of different brain conditions like determining

the type and location of epileptic activity or for the analysis of sleep disorders as well as

other neurological dysfunctions like encephalopathies, neurological infections, dementia

etc. [5].

However, obtaining pure EEG signals is very challenging, since it is very difficult to get

the ground truth data due to the unavoidable presence of artifacts. Artifacts are non-neural
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signals originated from different body parts like eyes, scalp muscles, skin, skull contrac-

tions, external environment, and experimental error. No matter whatever the application is

it is essential to get as many clean recordings as possible. Unfortunately, this is always hin-

dered by the presence of artifacts. The artifacts are a constant problem in the research field

of EEG signal processing as they take various forms, mask the underlying neural activity

and distort the signals. Thus, due to the presence of artifacts, the EEG signal processing

becomes faulty and incorrect and often results in wrong interpretation of EEG activity.

The two most dominant artifacts that highly corrupt EEG signals are electrooculogra-

phy (EOG) and electromyography (EMG). By placing the reference eye channels in nearby

eye locations, it is possible to remove the EOG artifacts using linear regression technique

and signal subtraction. Unfortunately for tackling the EMG or muscle artifacts, dedicated

reference channels are not available. As such it is difficult to remove the EMG artifacts that

have high amplitude, broad frequency range, variable distribution of topography.

So, removal of the artifact is necessary to unmask the masked neural signal. There are

many existing methods to handle the artifacts in EEG signal processing. The rudimentary

technique is to remove artifacts by band pass filtering. Also, there are other methods like

independent component analysis (ICA) and blind source separation (BSS).

The theoretical basis in the blind source separation method is that the neural signal

and artefactual signals are not co-activated simultaneously. Besides, the combination of

the BSS and canonical correlation analysis (CCA) is another method for muscle artifact

removal [6]. The underlying assumption is that the contamination of EMG in EEG signals

is not the same for frequencies ranging from 0 Hz to 200 Hz [7]. Moreover, the frequency

dependence varies with active muscle and EEG recordings (EEG signals) from different

parts of the brain. As such, the frequency analysis of the additive sub-components sep-

arated from the multivariate EEG signals can be an approach to detect and remove the

contamination. In signal processing the method to separate the additive sub-components
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of a multivariate signal is called independent component analysis (ICA). This method of

separation is based on the assumption that the sub-components are non-Gaussian signals

and are statistically independent from each other [8].

However, independent component analysis (ICA) requires a large amount of experi-

mental data for the classification of the components into pure EEG and artifactual com-

ponents. This is a bottleneck to this process. Alternative concepts can be used in case of

less amount and short duration of data, particularly in complex cognitive experiments. As

such the main method of this research is the combination of concepts like EEG microstate

analysis and randomization statistics to analyze and remove muscle artifacts from EEG

recordings obtained from complex cognitive experiments.

The main motivation of this thesis is to explore concepts like EEG microstate analysis

and randomization statistics to tackle the EMG contaminations due to frontalis and tempo-

ralis scalp muscles. In EEG microstate analysis [9] the brain activity can be modeled as

a time sequence of non-overlapping microstates with variable duration. These microstates

are sub-second quasi-stable configurations of the scalp-potential field maps. These maps

quickly change to another sub-second quasi-stable configuration. The configuration of

these transient microstates is physiologically significant and carry information on how the

brain processes information [10]. This concept of the microstates is very much different

from waveform analysis.

On the other hand, randomization statistics [11] is a powerful tool for conducting sta-

tistical analysis with high accuracy and reliable results. It needs fewer assumptions than

classical statistics. This method allows the construction of custom-tailored tests for the

specific research question of interest. This method is computationally heavy since at least

1000 random runs are necessary to obtain reliable results [11]. However, this obstacle is

becoming less and less due to the rapid growth of computing power which is affordable

with personal computers [12, see chapter 8].
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This thesis investigates the combinations of the concepts of randomization statistics

and microstate analysis to remove the EMG artifacts by analyzing the signal-power of the

highly EMG prone EEG data segments in the frequency band 45-70 Hz [13].

1.2 Objective of the thesis

The principal objective of this thesis is to analyze and remove muscle or EMG contami-

nations in EEG signal recordings due to the contraction of frontalis and temporalis scalp

muscles. The research focus is on the muscle artifacts analysis and removal from the EEG

recordings. This study targeted the EMG contaminations of EEG signals for the develop-

ment of a new method to remove such contamination or artifacts. First, the EMG artifacts

(contaminated EEG data-segments) are analyzed using EEG signal-power spectrum in the

45-70 Hz frequency band. Next for the removal process, EEG microstate analysis, and

randomization statistics are combined as a new method to remove the EMG-artifacts. The

second objective is to evaluate the performance of EEG microstate analysis and random-

ization statistics in detecting and removing the muscle artifacts from the EEG recordings

of cognitive tasks in comparison to ICA and multiple artifact rejection algorithm.

1.3 Contribution

The contributions of this thesis are as follows:

• A standard preprocessing of raw experimental EEG data is provided for data analysis.

• An analysis of EEG signal-power in the 45-70 Hz frequency band is given for the

extraction of the EMG contaminated EEG segments or epochs due to the contraction

of frontalis and temporalis scalp muscles.

• An analysis of EEG microstates on the preprocessed data is conducted.
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• A noble approach is proposed to remove the EMG contaminated EEG epochs or

segments based on EEG microstate analysis and randomization statistics.

• A comparison of the performance between the proposed method and an independent

component analysis (ICA) combined with multiple artifact rejection algorithm [14]

is shown.

1.4 Thesis organization

The rest of the thesis consists of five chapters. A short overview of each of the chapters is

as follows:

Chapter 2 starts with the primary background of the physiological signal in the human

brain particularly electroencephalography (EEG). The related signals are also described

along with the artefactual signals in the EEG recordings.

Chapter 3 shows a brief explanation of the experimental setup and design for the ac-

quisition of EEG signals.

Chapter 4 analyzes the EMG contaminated EEG epochs or segments which are pro-

duced due to the frontalis and temporalis scalp muscles by calculating the 45-70 Hz fre-

quency band signal-power and subsequently removes the contaminated epochs or segments

using EEG microstate analysis and randomization statistics.

Chapter 5 validates the proposed-method, i.e., the combination of EEG microstate

analysis and randomization-statistics, by comparing it with the ICA using multiple-artifacts

rejection.

Chapter 6 provides the concluding remarks of this study and the results obtained and

gives a future direction for further research.
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Chapter 2

Background Material

2.1 Electroencephalography (EEG)

Electroencephalography (EEG) is a means of measuring the electrical activity of the brain.

The human EEG consists of a complicated set of brain waves or signals [15]. These sig-

nals are detectable from the scalp electrode (small metal discs) because of the fortuitous

architecture of neurons in the human brain. In the neocortex of humans, there are rigidly

packed arrays of columns containing six neurons which are orthogonal to the pia matter

right below the skull [15]. For this certain arrangement in the neocortex, electric potentials

from neurons transmit to the skull where their potential difference can be measured. These

scalp potential differences are extremely faint about one-millionth of a volt only. However,

this measurement is hindered and distorted by the insulated layers (e.g., spine fluid, skin,

skull etc.) between the brain cortex and the electrodes [15].

If all these obstacles are still manageable for interpretation of EEG data, then the nega-

tive and positive brain potentials cancel out each other and the difference in valence is de-

tected. This represents only a part of the electrocellular activity beneath the electrode [15].

While EEG signals record the differences in voltage, how the signal is viewed can be set

up in a variety of ways called montages. For instance, in bipolar montage, each waveform
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in the EEG signal represents the difference in voltages between two adjacent electrodes.

For example, F3-C3 represents the voltage difference between channel F3 and its adjacent

channel C3. The EEG signal acquisition device repeats this process to get the montage of

the whole scalp through the entire array of electrodes.

However, the shape of the brain is volumetric and irregular. As such it is difficult to

interpret EEG data if not impossible. The reliable interpretation of EEG data has been done

in many research fields like epilepsy, sleep, psychology etc. under many conditions and

contexts. Because of its high temporal resolution (in milliseconds range) and non-invasive

nature, EEG is widely used for monitoring neuron communications in the brain [15].

2.1.1 Brain lobes and rhythms

Brain lobes are the anatomic parts of the brain. Among these anatomic part, the cere-

brum is the biggest. According to Terminologia Anatomica (1998) and Terminologia Neu-

roanatomica (2017) the cerebrum is divided into six lobes. They are:

1. Frontal lobe,

2. Parietal lobe,

3. Occipital lobe,

4. Temporal lobe,

5. Limbic lobe,

6. Insular cortex.

The first four brain lobes of the human brain are shown in Figure 2.1 [1]

In this thesis, the focus is on the frontal and temporal lobes of the brain. In these two

lobes, the EMG contamination of EEG data due to the frontalis and temporalis muscle is
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Figure 2.1: Brain lobes from [1]

very high and a proper frequency band to detect is 45-70 Hz [13]. The advantage of choos-

ing this band is that EEG signals in this band have low amplitude and the contaminated

EEG signals will have high amplitudes [13].

Frontal lobe: The part of the brain at the very front of the cerebral hemisphere is called

the frontal lobe. It has delicate neurons containing dopamine. It exercises the attentional

and motivational tasks of the human brain in addition to controlling the significant cog-

nitive skills like problem-solving, emotional expressions, language, judgment, and sexual

behavior.
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Temporal lobe: The temporal lobe is located on two sides of the cerebral hemisphere

below the lateral fissure. This lobe is related to the understanding of a language, memories

with vision, and human emotions. The functions of this lobe are auditory processing and

auditory memory [16].

Brain rhythms: In EEG signal processing there are five major brain waves classified

by different frequency ranges. These waves or rhythms are δ (delta), θ (theta), α (alpha), β

(beta) and γ (gamma). Delta wave reflects the EEG activity at a low frequency of 0.5-4 Hz.

It is primarily linked to EEG synchronized sleep in the human brain. On the other hand,

theta activity is observed in the frequency range of 4-8 Hz. This activity is related to the

active and efficient processing of the brain and is dominant during relaxed state and eye

open [17].

Next comes the alpha wave which is in the frequency range of 8-13 Hz. The beta

wave has frequencies from 13 to 30 Hz and appears when the brain is engaged in visual

or cognitive activities [17]. The gamma wave has a higher frequency, ranging from 30 to

70 Hz. In this research, analysis of the gamma waves is conducted to remove the muscle

contamination from the EEG signals.

2.1.2 Event related potentials

The event-related potential is a class of EEG related to external events. The EEG sig-

nals that are generated due to specific external events like cognitive, motor events [18] are

called event-related potentials (ERPs). The ERPs measure how the brain responds to ex-

ternal events. These are typical electro-physiological responses of the human brain due to

an external stimulus. These are usually locked in time and divided into two groups: En-

dogenous and exogenous ERPs. The ERP-studies being noninvasive help researchers to

evaluate the functions of the brain.
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2.2 EEG artifacts

In clinical neurophysiology, artifacts are any potential difference due to the extra-cerebral

source, recorded in the tracing of EEG. These artifacts obscure the EEG signals and lead

to misinterpretation and false conclusions. The contamination of EEG signals due to these

artifacts is a well-recognized problem in clinical neurophysiology and experimental elec-

troencephalography.

Hence, it is very challenging to handle the artifacts in EEG related studies. The first

challenge is to recognize, identify, and determine the sources of artifacts in EEG signals.

The second step is to remove those. In some EEG and ERP related studies, people detect

and remove the EEG artifacts. However, these artifacts may have the same characteristics:

frequency distribution, rhythmicity, and recurrence that exist in the recorded brain poten-

tials. Therefore, the removal of such-artifacts may also remove the useful EEG signal. It

thus becomes difficult to differentiate between activities that are of artefactual or cerebral

origin. These unwanted artifacts impact the EEG signals found in low amplitudes in the

range of microvolts. Hence it becomes complicated to remove EEG artifacts.

2.2.1 Sources of EEG artifacts

There are three major types of sources of artifacts. They are:

1. Environmental artifacts

2. Experimental error

3. Physiological artifacts
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Environmental artifacts: This type of artifacts originates from power leads that are

present in the surroundings of the body. It can be observed in the form of 50/60Hz noise.

This also arises due to electrical interference for the emission of electromagnetic radiation

from an external source. It is a principal source of interference in bio-electric measure-

ments because of the capacitive coupling of measurement cables and the main cables of the

devices.

Experimental error: This type of artifact occurs due to human error during experi-

mental setup, motion of the subject during data recording, incorrect procedural setup, poor

application of electrodes. However, the motion of the subject creates a large amount of er-

ror and it is highly detrimental for many physiological signal recordings. The motion also

damages the bio-potential measurements in the body, such as ECG and EEG. Subject mo-

tion can cause the position of the electrode on the skin to alter. This movement can cause

a variation in the distance between the recording electrode and the skin, which results in

a corresponding change in the electrical coupling causing signal distortion. Experimental

artifacts, relating to motion, in the recorded signals are more difficult to remove as they

generally do not have a predetermined narrow frequency band and their spectrum often

overlaps with that of the desired signal.

Physiological Artifact: The physiological artifacts are changes in the desired EEG

signal due to other physiological processes in the body. Major artifacts are mostly detected

in the physiological measurements of eye movement-related artifacts, cardiac signals, and

muscle tension signals. Blinking of eyes also causes involuntary movement of the retina as

well as muscle movements of the eyelids. As, the eyes are proximity to the brain, when the

signal propagates over the scalp, it can appear in the EEG signal as an artifact.
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In brief the physiological sources can be one or more of the following:

1. Eye movements, muscle movements (EMG)

2. Muscular artifacts like chewing, swallowing, clenching, sniffing, talking, scalp con-

traction

3. Cardiogenic movements of the heart, heart beats, ECG artifacts that have QRS com-

plex of poor quality

4. Sweat

2.2.2 Features of EEG artifacts

The EEG artifacts have some striking features which can be used efficiently for the purpose

of detection and removal. Some prominent features can be as follows:

1. A relatively large amplitude with respect to that of interested cortical signals like

pure EEG signals

2. High potential-difference values for the blinking of eyes or for the vertical eye move-

ments due to the difference between upper and lower EOG reference channels [19]

3. The noise induced by motion artifacts that sometimes masks the neural signal [20]

2.2.3 Typical EEG artifacts

There are three common types of physiological EEG artifacts [21]. These are:

1. Electroculogram(EOG)

2. Electromyogram (EMG)

3. Electrocardiogram (ECG)
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Electrooculogram (EOG): The electrooculogram (EOG) is the measurement of elec-

trical activity produced by eye movement, which is normally strong enough to be recorded

along with the EEG [5, 22]. This type of signal produces interference. The intensity of

this interference depends on the adjacency of the brain-electrodes to eyes. This intensity

also depends on the locomotion of the eyes. Blinking eyelids is another prominent reason

for the contamination of EEG signals. Moreover, the amplitude of the blinking artifact is

generally much larger than that of the original EEG activity [22]. This amplitude is signif-

icantly larger in the frontal electrodes than that in other electrodes. In literature, the ocular

artifacts are called OAs or EOG-artifacts. In this thesis, we shall adopt the latter for further

references [22].

Electromyogram (EMG): Electromyogram or myogenic activity is the tracing of elec-

trical activity generated due to the contraction of the muscle tissues on the body surface.

These muscular tissues can be skeletal, smooth, and cardiac muscle tissue. The ampli-

tudes of the interference signals depend on the type of muscle-tissue contraction [5]. As

such, it is difficult to stereotype the muscle artifacts in EEG signals. These artifacts are

referred to in the literature as MAs or EMG artifacts. We shall use the latter throughout

this thesis [5]. The cranial EMG artifacts have several properties that adversely affect the

background-EEG signals [23, 24]. EMG artifacts have a wide spectral distribution from 0

to 200+ Hz [7]. It affects all the classic EEG bands like alpha, beta, and delta. Also, the

EMG artifacts exhibit less repetition than other biological artifacts. Thus, it is more chal-

lenging to characterize the EMG artifacts, since these artifacts arise from the activities of

spatially distributed, functionally independent muscle groups, having distinct topographic

and spectral signatures [7].
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Electrocardiogram (ECG): Electrocardiogram (ECG) is the acquisition of electrical

signals arising from the heart. In comparison to the EEG signals of the brain, the amplitude

of this type of signal is relatively low. These signals originate from the natural heartbeats

that have repetitive characteristics and recurring waveform patterns. These two features

greatly help to detect the presence of ECG artifacts in EEG signals. The ECG is routinely

measured along with cerebral activity, making this artifact easier to detect and correct since

a reference heartbeats-waveform is usually available [5]. These types of artifacts are called

cardiac artifacts (CAs) or ECG artifacts in the literature.

2.2.4 Consequences of EMG artifacts

EEG signals become contaminated due to the muscle contraction or expansion, the motion

of the subject, electrode movements. As such, data-analysis become difficult that often

results in misleading conclusions or findings. In addition, the muscle artifacts distort the

original EEG signals and render data analysis more difficult [25]. On top of that, in brain-

computer interface (BCI) applications, these EEG artifacts cause unintentional control and

decrease the classification accuracy [25].

2.3 State of the art of artifact removal

The most common approaches for EEG artifacts removal can be filtering of EEG data

using a band pass filter and subtracting the artifactual signals from the raw signals using

a regression technique. Apart from these two methods, decomposition of EEG data into

independent components of neural and non-neural components and blind separation of the

sources of EEG signals are mostly used in handling the artifacts of EEG data.
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As such, the most common techniques for the removal of EEG artifacts may include:

1. Adaptive Filtering

2. Blind Source Separation (BSS)

3. Independent Component Analysis (ICA)

4. Canonical Correlation Analysis (CCA)

5. Empirical Mode Decomposition (EMD)

Adaptive Filtering: An adaptive filter is a linear filtering system. In this system, variable

parameters control the system’s transfer-function. This type of filter can optimally adjust

those parameters by receiving the feedback from the output of the system. It requires a

reference channel to make a comparison of the desired output with the derived one [26].

Figure 2.2 shows a simple block diagram of adaptive filtering. Let s(n) be the combi-

nation of the original EEG signal x(n) and additive artifact r(n). Now, if the artifact source

v(n) is available from an EOG or ECG channel, then adaptive algorithms like Least Mean

Square (LMS), Recursive Least Square (RLS) can be used for removing artifacts. The

artifact-free signal x’(n) will be an estimate of the original signal x(n). The theoretical

assumption is that the desired EEG signal and artifact signal are independent [26].

Figure 2.2: Typical use of adaptive filtering in canceling physiological artifacts with avail-

able artifact source channel as reference
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For handling ocular interference, we can adopt adaptive filtering. For removal, it will

depend on the specific application and whether it is online/offline or on the availability of

proper reference channels.

Blind Source Separation (BSS): Blind source separation (BSS) technique is one of

the most popular techniques for the detection and removal of EEG artifacts. This method

extracts the individual unknown source signals from their mixtures. It estimates the un-

known mixing channels by using information observed within the mixtures obtained from

each channel’s output, having very little information about the source signals and the mix-

ing channels. Let X be the observed EEG signals from multiple-channel recordings that are

assumed to be a linear mixture of the sources S plus additive noise vector N, that is,

X = AS +N (2.1)

Here the goal is to estimate the linear mixture matrix A. Let W be the estimated matrix

of A. The matrix, W is estimated by an iterative process to determine the estimated version

of the source signals. Therefore, the estimated version of the source signals can be written

as follows:

Ŝ = WX (2.2)

Here, Ŝ is the estimated version of the source signals. Figure 2.3 shows a sample block

diagram of the BSS method.
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Figure 2.3: Demonstration of the blind source separation method

Independent Component Analysis: Independent component analysis (ICA) is a blind

source separation technique based on the assumption that the signal sources are linearly

independent [26]. ICA is a method for finding the underlying factors or components from

multivariate (multi-dimensional) statistical data [27]. ICA generates a weight coefficient

for each factor that measures the linear inter-dependence between the signals and channels.

These factors extracted by the ICA are lower than or equal to the number of channels in

the EEG data [12, see Chapter 5]. What distinguishes ICA from other methods is that it

looks for the components in the EEG data that are both statistically independent, and non-

Gaussian [27]. However, the main problem of ICA based artifact detection and removal

method is the manual selection of artifactual independent components (ICs). The process

can be automatic by labeling the ICs through the calculation of some features. The features

quantify the probability of the IC to be an artifact. This process is the combination of ICA

with another method, for instance, Empirical Mode Decomposition(EMD) or classifiers

like Support Vector Machine(SVM). Even in such cases, the ICs may retain some residual

neural signals.

As a result, while reconstructing the signals by rejecting the artifactual ICs, distortion is

introduced in the neural signals. Moreover, this process can not operate on single-channel

EEG data because the number of recording channels must be at least equal to the number
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of independent sources [26]. ICA is successful in removing EEG muscular-artifacts. How-

ever, the removal of muscle artifacts using the ICA technique is hard. The muscle artifacts

are harder to eliminate as the proper reference channels are not available. Even if the refer-

ence channels are available, it is still difficult to remove the muscle artifacts. The artifactual

signals can generate due to the activation of multiple muscles rather than a single-muscle.

As such, there is a disagreement in the literature on whether the ICA-technique is efficient

or not. Hence, other methods like canonical correlation analysis (CCA) [6] and empirical

mode decomposition(EMD) are also necessary for the efficient removal of EEG muscle

artifacts [28].

Canonical Correlation Analysis(CCA): CCA is another algorithm based on the con-

cept of blind source separation. This method uses second-order statistics(SOS), looks for

uncorrelated components in the data signal [26]. This process uses a weaker condition

than the ICA method. The process seeks statistical independence among the signal com-

ponents. Unlike ICA, CCA addresses the temporal correlations by finding uncorrelated

components. It maps the signal components from maximum to least auto-correlation. The

signal component having the least auto-correlation mostly reflects the artifacts because the

auto-correlations of neural signals is maximum . The main strong point of this method is

being automatic and computationally efficient [26].

Empirical mode decomposition(EMD): This method is a data-driven empirical ap-

proach. It is an algorithm that performs on random/stochastic, non-linear, non-stationary

processes. As a result, this is ideally suitable for EEG signal analysis and processing. In

this approach, the signal s[n] is decomposed into the sum of band-limited components or

functions c[n] called intrinsic mode functions (IMF) with well-defined frequencies. IMFs

have an equal no. of extrema and zero crossings. At any point in the curve of the IMFs the

18



mean value of the maxima and minima must be zero.

Combination of methods for handling multiple artifacts: In the case of two or more

artifacts, ICA is a better choice. Others can be visual inspection, correlation analysis,

frequency spectrum, iso-potential maps. For processing the ocular and muscular artifacts,

ICA can be employed together with wavelet transform (WT). For eliminating the muscle

artifacts ICA or CCA or combination of both or combination with other methods can be

a better choice. Again, ECG or cardiac artifacts have specific dynamics and are easily

separable into different ICs. For this type, we can choose regression with the filtering

process and ICA. Alternatively, ICA and wavelet transform can be combined together for

handling the cardiac artifacts. A combination of ICA and other methods can be a good

option for detecting and removing the eye and muscle artifacts.

Besides, several statistical features are used in machine learning(ML) classifier for

threshold calculation in EMD or ICA based methods to improve the overall artifacts-

removal process. Moreover, to tackle the most common 3 artifacts: EMG, EOG, and ECG,

the following hybrid algorithms can be a good option. These are:

1. Blind source separation (BSS) and Support vector machine (SVM)

2. Adaptive filtering and neural networks

BSS-SVM: This is a hybrid method for removing the EEG artifacts [29]. Here, care-

fully chosen statistical features are extracted from separated source components after the

application of BSS. Next the features are fed into a support vector machine(SVM) classi-

fier to identify and remove the artifactual components. Figure 2.4 shows a sample block

diagram of this hybrid process. In this process the second order blind estimation (SOBI)

technique has been used. The full process is described in [26, 29].
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Figure 2.4: A block diagram of the BSS-SVM process

In summary, different methods for the removal of the three most common EEG artifacts:

EOG, ECG, and EMG have been discussed. These methods can be suitable for both single-

channel and multi-channel EEG data. Table 2.1 shows the types of artifacts, the methods

to remove them, and the corresponding number of data channels.

Type of Artifacts Methods Channel type
Muscular CCA, ICA, combination of ICA and CCA Multi, Single

ECG Adaptive Filtering, ICA Multi

Muscle CCA Multi

EOG (Ocular) ICA, BSS and EMD Multi

Head movement ICA Multi

Table 2.1: Different types of EEG artifacts, method of removing them and corresponding

channel type

While these techniques have been proposed to detect and remove different artifacts,

numerous studies in the literature have used different measures to validate the algorithms.

In general we do not have the optimal choice for the removal of all types of artifacts. On

the contrary, for brain-computer interface (BCI) applications, the artifact removal algorithm

needs to be efficient enough for online or real-time processing with single or multiple data-

channels.

Therefore, this thesis targets BCI applications and investigates the method in [13] for

the detection of the frontalis and temporalis scalp muscles contaminations in EEG record-

ings by conducting the EEG signal-power analysis in the 45-70 Hz frequency range [7,13].

The thesis also proposes a method to remove the EMG contaminations of EEG signals by

using microstate analysis [9] and randomization statistics [30].
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Chapter 3

Experimental Design and Signal

Acquisition

This chapter focuses on experimental setup and design, signal acquisition, and data prepro-

cessing. The experiment consists of a cognitive task that was designed by Lucas House,

a research associate in Design Lab at Concordia University, and approved by the Human

Research Ethics Committee at Concordia University. The motivation of this experiment

was to find out the relationship among cognitive workload, mental effort, and stress. For

estimating the cognitive effort and mental stress, physiological signals like, EEG signals,

skin conductance were collected from the research subjects.

3.1 Experimental setup

The BioSemi is one of the top EEG hardware companies that manufacture the EEG signal

acquisition system. The Bio-semi machine is a commercial machine for the acquisition of

EEG signals ranging from 32 to 256 data channels. With the help of Active II, Bio Semi

machine, the EEG signals were acquired.
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In this experiment, the total number of EEG signal data channels consists of 64 EEG

channels, 8 EOG channels, and one stimulus channel for the trigger. In addition to these

channels, there are two extra channels for the skin conductance. Participation in this ex-

periment was voluntary. Four participants having an age range of 24-32 years took part in

this experiment. Three participants were right-handed, one having regular eyesight without

glasses. One of them had eyeglasses. They belonged to the Faculty of Engineering and

Computer Science at Concordia University. The data collected from this experiment was

used and analyzed with proper consent from the participants.

EEG signal recording: The most traditional and widely accepted method for record-

ing EEG signals is the International 10-20 system [31] in clinical operations. This system

specifies the positions where the EEG electrodes should be placed [16]. It builds a standard

comparison among the subjects. Here, the number 10 shows the actual distance of adjacent

electrodes of the cap is 10% of the total front-back and 20 indicates that to interval distance

is 20% of the right to the left of the skull. Besides, the name of each electrode reflects

essential information. The first letter of the name of an electrode represents the area of the

brain. The number refers to the displacement from the midline and laterality. The central

position electrode in the 10 − 20 system is at the top of the scalp which is named Cz. For

EEG studies in the research laboratories, data are recorded from many channels and pre-

processed for subsequent analysis. In this thesis, we used 64 channels of the standard Bio

semi 10-20 system in addition to 8 Electrooculogram (EOG) channels and one stimulus or

trigger channel. However, today EEG caps with 256 channels are also available for record-

ing processes. The number of channels is selected based on specific research purposes

and questions. We used a 64-channel-cap (Bio semi) as per the 10-20 standard system of

electrode layout for EEG recordings.

In collecting the EEG, signal to amplifier gain of the bio-semi system was fixed [32].
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The Bio semi system comes with the ActiView [33]. The ActiView is an open-source pro-

gram based on the graphical programming language LabVIEW. In this research-experiment,

the LabView run-time engine [33] was necessary to run the ActiView program. The Ac-

tiView program handles data acquisition, displays on-screen the recorded EEG signals dur-

ing the experiment. The program displays ground sensors, EEG-sensors, as well as the

other sensors that are used for collecting the skin conductance, eye movements (EOG) of

the research-participant. In our case, the "ground" electrodes, unlike the conventionally

used ones, are two separate electrodes:

• Common Mode Sense (CMS) active electrode (ideally placed in the center of the

measuring electrodes)

• Driven Right Leg (DRL) passive electrode (ideally placed away from the measuring

electrodes) [34]

These two electrodes form a feedback loop, which drives the average potential of the sub-

ject (the Common Mode voltage) as close as possible to the ADC reference voltage in the

AD-box (the ADC reference can be referred to as the amplifier "zero") [34]. The "Biosemi"

cap [35] was put on to the experimenter’s head in advance to lower the duration of the ex-

periment. There was a small slit for each electrode in the cap where a small amount of

gel was placed when the subject first wore the cap. The gel reduced the scalp or skin

impedances of the EEG electrodes. The subject had to wear this cap during the whole ex-

periment. The layout of the standard Bio Semi 64 electrodes or channels [2] is illustrated

as follows in figure 3.1.
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Figure 3.1: Bio Semi 64 channel electrode layout from [2]

3.2 Experimental procedure: N-back task

The main experimental design is based on a working memory task, as described in [36].

In this experimental paradigm, the stimuli consisted of English capital letters randomly

drawn and shown on the computer screen. In every 4.5 seconds, the participant saw the

stimulus for 200 milliseconds. So, each experimental-trial consisted of 4.5 seconds. In

between the two stimuli, a small cross popped up at the center of the computer screen.

The identity and location of each letter varied randomly from trial to trial. The subjects

performed a continuous English capital letter-matching task. They indicated whether the

24



current stimulus matched with that presented on the previous one, two, or three trials.

The subjects performed two versions of this matching-task with three levels of diffi-

culty: low (1-back), medium (2-back), and high (3-back). The first version of the task

was a verbal, non-spatial task where the participants had to recall the identity of the visual

stimulus (letter) presented regardless of the position of the stimulus. In the second version

of the matching task, the subjects had to recall the identity and the location of the visual

stimulus (letter), shown on the screen. This task is called verbal, spatial-task. In the 1-back

verbal, non spatial-task, the participants compared the current stimulus with the stimulus

presented one trial before. The participants detected a "match" or "non-match" in the tasks.

A "match" between the two stimuli occurred, when the identity of the second stimulus

matched with that of the first one, ignoring its position.

If the identity of the two stimuli was not the same, a "non-match" occurred. For the

1-back verbal, spatial-task, "match" between the two stimuli occurred, when the identity

and location of the second stimulus matched with that of the first one. If the identity and

location of the two stimuli were not similar, a "non-match" occurred. The participants

pressed the key "K" on the keyboard when a match was detected. On the other hand, the

participant pressed the key "L" on the keyboard when a non-match was detected.

During the medium difficulty-level task (2-back task), the participants compared the

current stimulus with that of presented two trials ago. Finally, in the high difficulty level

task (3-back task), they compared the current stimulus with that presented three-trial before.

The subjects performed all three levels of the matching-task in both versions: spatial and

non-spatial. The research-subjects had at most one hour and forty-five minutes for doing

the whole experiment. The trials were 4.5 seconds long. The participants performed 24-

trials for each of the six task conditions [36]. These were: 1-back spatial, 2-back spatial,

3-back spatial, 1-back non spatial, 2-back-non spatial, and 3-back-non spatial.
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3.3 Data preprocessing

The acquisition of the EEG signals was conducted during the completion of the experiment.

Each recording had 73 channels with 64 EEG channels, 8 EOG channels, and one trigger

channel. The signal sampling rate was 512 Hz. In the pre-processing section, the raw

data was imported using the MNE library of Python [37], which was then filtered using a

simple bandpass filter with a frequency range of 0.1 to 100 Hz [36]. Filtering is the most

traditional preprocessing-technique used for handling the raw EEG data, which tackles the

non-neural artifacts like artifacts originating from the equipment and environment. While

conducting experiments, the uncontrolled variation arises because of experimental error.

Hence, it is impossible to eradicate this type of noise. With a proper frequency-selective

filtering approach, the environment-induced noises like the main power leads, white noise

etc., can be eliminated to improve the signal to noise ratio. Thus the raw EEG data were

filtered with a notch filter at 60 Hz for removing the power line noise. After filtering of raw

EEG data, the average EEG-reference was set using the MNE Python package. All these

steps has been completed using the MNE package of Python [37] to obtain the preprocessed

raw EEG data.
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Chapter 4

EMG Artifact Analysis and Removal

The contamination of EEG signals due to frontalis and temporalis scalp muscle spreads

over the entire scalp, which is involved in EEG signal acquisition. It masks the underly-

ing neural activity and distorts the original brain signal; hence it is necessary to get rid

of this contamination. As a result, EEG data segments from these two (frontalis and tem-

poralis) brain regions are of particular interest in EMG artifact analysis as they are the

most common sources of EEG contaminations or artifacts over the frontal and central head

regions [38,39]. The EMG artifact has both spectral and topographic characteristics as dis-

cussed in [7], where it is shown that EMG artifact in the average subject data has a broad

frequency range from 0 to 200 Hz and the artifactual signal amplitude is the greatest at 20-

30 Hz and 40-80 Hz in the frontal and temporal regions of the brain. In the 20 Hz frequency,

the temporal EMG activity shows smaller peaks. Also, the EMG spectra often have beta

peaks like EEG data. So a suitable frequency band for detecting EMG contaminations is

45-70 Hz [13]. In this band, the EEG signal amplitudes are much smaller compared to the

EEG signal amplitudes at 13-38Hz. The underlying assumption is that the signal peaks that

occur between 45-70 Hz will most likely be from EMG activity [13]. According to [40],

to detect EMG contaminated EEG data segments, analysis of frequency in the 51-69 Hz of

EEG data-channel F7 can be done. This band is also called the muscle band.
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However, the EMG contamination is the greatest at the scalp periphery near the active

muscles. Hence, it obscures or mimics the EEG alpha, beta, and mu waves over the entire

scalp. As a result, the researchers acquire EEG signals from the peripheral scalp locations.

To detect the contaminated EEG data-segments (epochs), the researchers have used the

EEG data obtained from the frontalis and temporalis scalp positions, since the EEG data in

these two scalp positions can be analyzed to remove the EMG artifacts for single-subject

data as well as average data of multiple subjects.

In this chapter, we shall discuss the process of analyzing and removing the temporalis

and frontalis muscle EMG-contamination (EMG artifact) from the EEG recordings and

reconstruct the EMG artifact-free EEG data. The analysis (detection) of EMG contamina-

tions consists of three steps:

1. Data loading and pre-processing

2. Selection of data-channels

3. EEG signal-power analysis in the frequency band of 45-70 Hz [13]

Figure 4.1 gives an overview of the process of EMG artifacts analysis.

Figure 4.1: The overview of the frontalis and temporalis muscle artifact analysis
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The removal process is a combination of the following five steps:

1. EEG microstate analysis [9]

2. Randomization statistics [30]

3. Fit back of EEG microstate maps

4. Interpolation of the data points of the EEG data-channels [37]

5. Data reconstruction

Figure 4.2 provides an overview of the method of removal
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Figure 4.2: The overview of the frontalis and temporalis muscle artifact removal

4.1 EMG artifact analysis

4.1.1 EEG data loading and preprocessing

At first, we load the dataset of the four subjects of the N-back experiment, using the MNE-

Python library [37]. In the dataset, there are a total of 73 channels containing 64 EEG

channels, 8 EOG channels, and a stimulus channel. The loaded data are bandpass filtered

from 0.1 to 100 Hz, followed by notch filtering at 60 Hz. Finally, we set the reference of

the EEG-data as "average" EEG-reference using the MNE library of python [37].
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4.1.2 Selection of data-channels

After completing the preprocessing steps, we select the EEG data-channels: AF7, AF8,

FT7, FT8 as primary data-channels. The frontalis and temporalis scalp muscles contam-

inate these four EEG data channels. We chose the EEG data of the five adjacent data-

channels to each of the primary data channels for the detection and removal of EMG-

artifacts. Thus EEG channels Fp1, AF3, F3, F5, F7 are selected for the channel AF7,

channels Fp2, AF4, F4, F6, F8 for AF8, channels F5, F7, FC5, C5, T7 for FT7 and chan-

nels F8, F6, FC6, C6, T8 for FT8. The frequency band of 45-70 Hz is chosen [13], for EEG

signal-power analysis in the frequency domain. One hundred EEG data-segments (epochs),

2 seconds each, are selected for the whole EEG signal power-analysis, in the frequency do-

main. Each EEG epoch has 1024 time samples because the sampling frequency during the

EEG signal acquisition was 512 Hz.

4.1.3 EEG signal-power analysis in frequency Domain

As mentioned above, the 45-70 Hz frequency band is selected to investigate the EMG

contamination of EEG data. The power of the EEG signals in this frequency band is ana-

lyzed for detecting the EMG contaminated EEG segments or epochs in the pre-processed

raw EEG data. The EEG data are scaled into microvolts from volts by dividing each data

sample by 10−6 to calculate the signals’ power in the microvolt range. The equation for

calculating the power of the EEG signals in the frequency-domain [13] is as follows:

Power45−70Hz =
1

N2

70N/fs∑
k=45N/fs

|X(k)|2 + |X(N − k)|2 (4.1)

Where, N is the number of time samples in a time interval of interest, fs is the sampling

frequency and X(k) is the kth discrete Fourier transform coefficient as defined below:
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X(k) =
N−1∑
n=0

x(n)e(−j 2π
N

nk)(0 ≤ k ≤ N − 1) (4.2)

Here, x(n) is a real discrete signal in the time domain. The next step is to determine

the threshold value for detecting the EMG contaminated EEG-epochs. The threshold val-

ues are set as the mean value of the EEG signals’ power obtained from one hundred EEG

epochs for each primary channel. Thus, for each of the four primary channels AF7, AF8,

FT7, FT8, there are one threshold values. Each primary channel epoch-power is calcu-

lated and compared against the corresponding threshold value to detect EMG contaminated

EEG epochs. If the amplitude of the EEG epoch’s power, obtained from any of the four

primary EEG-channel, exceeds the threshold, we also compare the corresponding EEG

epoch-power from the nearby five channels. Thus, for each EEG-epoch, we examine the

EEG data-channels Fp1, AF3, F3, F5, F7 for AF7 channel, Fp2, AF4, F4, F6, F8 for AF8

channel, F5, F7, FC5, C5, T7 for FT7 channel and lastly F8, F6, FC6, C6, T8 for FT8

channel to detect the EMG contaminated EEG-epochs and store the epoch’s data in a data

matrix called artifactual data-matrix. This process is repeated for all the hundred epochs to

generate the artefactual data having the dimension of the number of channels.

In this sample analysis, the artifactual data matrix has 16 EEG data-channels after

removing the duplicate-channels, 100 EEG-epochs, and 1024 data-points for each EEG

epoch. If the signal power-amplitude (equation 4.1) of an EEG epoch exceeds the thresh-

old value, we store the data-points of that epoch in the artifactual data-matrix. We mark

the data-points of the rest epochs as zeros. The stored artifactual data is formatted to get

rid of the zero data-points. This formatting of the artifactual (contaminated) data-matrix

is a tricky task to accomplish. The non-zero data-points are extracted from the artefactual

(contaminated) data-matrix and formatted into row vectors having the number of elements

equal to the number of non-zero data-points. Then the row vectors are reshaped to form

the EMG artifact data matrix having 16 channels and the total time-points. We calculate
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the total time-points by multiplying the number of EMG contaminated EEG-epochs by

1024 as each epoch contained 1024 time-points. In the analysis of the subject-1 of the N-

back dataset, we find 11 EMG-contaminated EEG-epochs. Thus total time-points become

11264. Eventually, the dimension of the EMG artifact data matrix becomes 16 by 11264.

We form the EMG free EEG data matrix from the preprocessed raw EEG data (section 3.3)

by formatting the preprocessed raw EEG data having the size equal to the EMG artifact

data matrix.

Results of EEG signal-power analysis in frequency domain: The first one hundred,

two-second preprocessed raw EEG epochs are selected for the signal-power analysis to de-

tect the EMG-contaminated EEG data-segments. The channel-wise data-points are plotted

against the time, using the MNE library of Python [37]. The plotting shows high am-

plitude peaks in the channels over the duration and demonstrates the contaminated EEG

data-segments due to frontalis and temporalis muscles. Figure 4.3 shows the sample plot

of the EMG-contaminted EEG epochs for a duration of 0.2 seconds.
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Figure 4.3: EMG-contaminated preprocessed EEG data for a duration of 0.2 seconds ob-

tained from the primary EEG data-channels

We observe from figure 4.3 that there are signal-peaks in the EEG data-channels. This

indicates the contamination of the EMG artifacts. In case of the regular EEG data the signal

peaks should be low as shown in figure 4.4.
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Figure 4.4: Regular EEG data for a duration of 0.2 seconds obtained from the data-channels

AF7, AF8, FT7, FT8

We do not observe such low signal-peaks of figure 4.4 in figure 4.3. So figure 4.3 shows

the presence of EMG-artifacts, and Algorithm 1 shows the simplified procedure to detect

the EMG artifacts.

Algorithm 1: The procedure to detect EMG artifacts
1. Input: 250 seconds EEG data with dimension of no. of channels by no. of time points

2. Keep sampling frequency 512 Hz and band pass filter at 0.1 to 100 Hz

3. Remove line noise by 60 Hz notch filtering and set average-reference

4. Segment EEG data into 2 seconds EEG data-segments (epochs) having 1024 time points

5. Selection of primary EEG data channels (AF7, AF8, FT7, FT8)

6. Calculate threshold i.e mean signal-power of 100 EEG-epochs for each primary channel

7. Calculate signal-power of 100 epochs of 5 channels adjacent to each primary channel

8. Compare each epoch-power against each primary-channel threshold value

9. Store the data points exceeding the threshold values to the EMG-contaminated array

10. Format the array into a MNE-Python raw EEG data object
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4.2 EMG artifacts removal

Investigation of the spectral and topographical patterns of the cranial EMG is required to

get rid of EMG-artifact in the EEG signal recordings.In the previous section, signal-power

analysis has been used to detect the contaminations of the EEG recordings due to frontalis

and temporalis scalp-muscles. This analysis can be called the EMG-artifact analysis phase

(detection). Once we have detected the contaminated EEG data-segments (epochs), the

next step is to remove those. We combine microstate analysis and randomization statistics

for the removal of EMG-artifact.

4.2.1 Microstate analysis

Brain microstates are defined as a functional or physiological brain state while the brain per-

forms a neural computation task. These microstates are uniquely characterized by a fixed

spatial distribution of the active neuronal generators in the brain, having a time-varying

intensity [9]. Electroencephalography (EEG) measures the electric potential of these neu-

ronal generators that project a set of spatial patterns on the scalp surface. This set of spatial

patterns can be clustered into a set of representative maps. These maps are called EEG

microstates [41].

The purpose of the analysis of these microstates is to compress the EEG recordings

(data). There are many data reduction techniques for compressing the EEG data. Among

these techniques, the microstate algorithm is very important because of its use in a variety

of experiments [9, 42, 43].

A brief overview of this algorithm is as follows. Let us consider an EEG data set

having ntime sample time samples from nchannel channels, or electrode locations. So each

sample is an array of nchannel real numbers, and each element of the sample represents the

electric potential at a specific brain-location. This whole array gives a discrete sampling of

the continuous electric field. Therefore, we can visualize an EEG dataset as a time series
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of changing spatial patterns called maps. This microstate algorithm looks for a small set

of spatial patterns to best explain the maximum data-variance by these spatial patterns or

maps.

In this study, we have used the commonly employed modified k-means algorithm as

introduced in [9] and implemented in [41] by using the programming language Python [44].

The classical k-means algorithm clusters data so that the sum of the squared distances of

all the data points to their respective cluster centroids i.e., the arithmetic mean of all the

data points assigned to that cluster is minimum. This algorithm progresses in a stochastic

manner i.e., in random fashion by using a fixed number of clusters and set the cluster

centroids randomly with data samples.

For the EEG recordings, a data sample is an array of electrical potential values at a

given time point, having the dimension as the number of EEG data-channels or electrodes.

During each iteration, this algorithm sets each data sample to its nearest cluster-centroid

updates the clusters and their centroids, taking into account the newly assigned samples.

However, modified k-means (microstate algorithm), as described in detail in [9] does

not use this arithmetic mean of data samples for cluster representation. It uses the first

principal component of the samples [41]. Due to this the microstate algorithm can ignore

the EEG-topographic polarity. Thus, the overall symmetry of the topographic potential

remains as the feature to be clustered [9, 43].

We choose this microstate algorithm because of its application to event-related potential

(ERP) data sets for a long time. Moreover, our experimental EEG data set is also an ERP

dataset. This algorithm transforms the ERP-EEG data set into a sequence of microstate

labels with respect to the maximum similarity between the candidate microstates and the

actual EEG topography, that is, the configuration of the electric field at the scalp. An

extensive description of the primary microstate algorithm is provided in [9] and reviewed

in [45]. In this thesis, we have used the EEG topography at the local maxima of the global
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field power (GFP) of the EEG channel data as the input for this microstate algorithm.

Global field power: Global field power (GFP) is a parametric assessment of the related-

strength of the EEG microstate topographic maps [45]. This map strength is defined as the

sum of absolute micro volt values measured at all EEG channels divided by the total num-

ber of the EEG channels [46]. EEG researchers compute the GFP as the standard deviation

of the momentary potential values. Mathematically,

GFPu =

√√√√ 1

n

n∑
i=1

u2
i (4.3)

Here, n is the number of EEG data-channels including the reference channel, ui is the

average-referenced potential of the ith electrode. By average reference we refer to the mean

of all instantaneous electrode or channels’ electric potential values. This average reference

potential is calculated by subtracting the mean value (average-reference) from the electric

potential value at the ith electrode at time point t. More detailed description is provided

in [47–49].

To competitively fit-back the microstate maps into the EEG data set, we calculate both

the global explained variance and cross-validation [9, 41] of the EEG microstate maps for

each run. A concatenated data-set is formed by averaging the instantaneous EEG data

of four subjects obtained from the "N-back experiment" (Chapter 3) across the two main

groups: EMG contaminated and non-contaminated. From the concatenated data-set, n data

points are randomly selected. Here, the data point is the electric brain potential-difference

value obtained from all the scalp electrodes at a given time point (hereafter, template maps)

[45]. The number of data points can be from 1 to all the data points or less. Next, the

spatial correlation between each of the ’n’ template maps and each data point coming for

each time point is measured. The spatial correlation between two different time points of
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the EEG data from the same group, Cu,v is defined as:

Cu,v =

∑n
i=1 ui · vi
‖u‖ · ‖v‖ (4.4)

Where, n is the number of template maps, ‖u‖ =
√∑n

i=1 u
2
i , ‖v‖ =

√∑n
i=1 v

2
i , ui is the

average-referenced [47–49] potential of the ith electrode (for a given group, at a given time

point t) and vi is the average-referenced potential of the ith electrode (for the same group

but at different time point t’) [45].

This process provides a correlation value for each template map as a function of time

[45] and for any given time point, one of these ’n’ template maps has the highest spatial

correlation value. Empirically this process suggests that in the event related potential (ERP)

EEG-data a given template map has highest spatial correlation for a sustained period of

time. After that another template map is generated having the highest correlation value.

This process continues. The global explained variance of the correlation values of these

template maps is then calculated [45].

Global explained variance (GEV): Global explained variance (GEV) is a measure-

ment of how well the template maps explain the whole dataset chosen for analysis [45].

Mathematically,

GEV =

∑tmax
t=1 GFPu(t).C

2
u,Tt∑tmax

t=1 GFP 2
u (t)

(4.5)

Where, GFPu(t) is the GFP of the data for the condition U at time point t. Tt is

the template map assigned by the segmentation for condition U at time point t. The ’t’

represents the given time point within the data [45].

The average of the template maps, from all the time points, is taken to redefine the tem-

plate maps when the ith map had the highest spatial correlation. We calculate the spatial-

correlation between each of the redefined template maps and time points along with the
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resultant GEV. We repeat this sequential process of averaging the time points for the re-

generation of each template map, calculating the spatial correlation until we obtain a stable

global explained variance (GEV) value. The process of repetition stops when a given set

of n template maps do not have a higher GEV value for the given dataset. However, this

process creates the possibility of choosing the neighboring time points that might result in

a low GEV. Thus to make sure the process yields the highest GEV for a given number of

n-template maps, a new set of ’n’ template maps is selected. Then, we repeat all the steps

as described earlier.

An important point here is that the number of repetition of all these steps is user-

dependent. The higher the number is, the higher is the computation time. Now, we retain

the highest GEV for the ’n’ template maps, and then the same steps are completed for the

’n+1’ template maps and can be continued until n equals the total number of data points.

These steps mentioned give information about how good the n, n+1, n+2...etc. template

maps represented the concatenated dataset. A significant factor for this type of analysis is

the determination of the optimal number of template maps. These template maps represent

the scalp electric potential distribution as topographic maps. The topographic maps are

two-dimensional matrices having the dimension of no. of microstate clusters by no. of

EEG data-channels or electrodes. As a result, each topographic map is a row-vector having

the no. of EEG data-channels as the total number of elements [41].

At this point, the analysis identifies a set of template maps to describe the group-

averaged concatenated EEG-data set. However, the issue of how many clusters of the

template maps is optimal remains as a bottleneck for this type of analysis. Unfortunately, a

definite solution of this issue does not exist. It is because the more the clusters, the higher

the value of global explained variance, and the lower the compression of the dataset. If the

number of clusters is low, the GEV value will be small and the EEG-dataset will be highly

compressed. It is because a small number of template maps will represent the dataset. On
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the contrary, with a high number of clusters, the explained variance will be high, but we can

not compress the dataset. Therefore, the main target is to determin an optimal number of

clusters to achieve a middle-position between these two extreme cases. For this, a method

based on the cross-validation criterion is chosen [30].

Determination of optimal number of clusters: After the detection of the contami-

nated EEG data-segments in NumPy [50] array format through EEG signal-power analysis

in the 45-70 Hz band, both the raw non-contaminated and contaminated data are avail-

able for subsequent EEG microstate analysis. The EMG contaminated EEG segments are

transformed from NumPy array into a raw MNE object using the input-output processing

functions of the Python-MNE library [37]. For determining the optimal number of clusters,

the dataset of four subjects is shuffled randomly into training and test datasets, each having

two-subjects’ data .

At first, in the training dataset, the global field power of all the data-points is calcu-

lated. Then the peak values are selected for clustering. The number of clusters ranges

from 3 to 20. We apply the modified k-means algorithm [9] to the training dataset for each

microstate model that is a function of the number of EEG microstate-clusters. The mean

spatial correlation between each microstate model and the test dataset is computed and re-

tained. This process is repeated several times (in our case 350 times) for each microstate

model. We select the model with the highest average mean correlation as the optimal mi-

crostate model [30].

In brief, the entire process can be described as follows:

1. Segmenting the concatenated dataset into the training and test dataset each having

50% of data samples

2. Computing the mean correlation of test data with the microstate clusters generated

from the training dataset. Here we have varied the number of microstate clusters
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from 3 to 20

3. Averaging the mean correlation for each microstate model ranging from 3 to 20 mi-

crostate maps

4. Repeating steps 2 and 3 for a sufficient number of times. For instance, in this case,

350 times

5. Finding the corresponding microstate model giving the maximum average mean-

correlation with the test dataset

Once the optimal number of clusters is determined, we again apply the modified k-

means algorithm [9] to produce the optimal EEG microstate-maps from the contaminated

and non-contaminated EEG data segments.

Results using microstate analysis: It is necessary to find the optimal number of clus-

ters that best explains the EEG dataset of four subjects. So to find the optimal-number of

microstate clusters, the process mentioned in 4.2.1 is repeated at first from 7 to 20 times

with an interval of 1. Table 4.1 shows the number of clusters for each number of repetitions.
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Sr. No. Number of repetitions Number of clusters
1 7 10

2 8 9

3 9 8

4 10 9

5 11 6

6 12 8

7 13 10

8 14 9

9 15 10

10 16 10

11 17 9

12 18 10

13 19 6

14 20 8

Table 4.1: The number of repetitions of the process of determining the optimal number of

microstate clusters from 7 to 20 times with an interval of 1

It is seen from the table 4.1 that the number of clusters varies from 6 to 10 for number

of repetitions less than or equal to 20. So we take the number of repetitions from the range

25 to 350 with an interval of 25. Table 4.2 shows the number of clusters for each number

of repetitions.
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Sr. No. Number of repetitions Number of clusters
1 25 8

2 50 10

3 75 8

4 100 8

5 125 10

6 150 8

7 175 8

8 200 10

9 225 8

10 250 10

11 275 10

11 300 10

12 325 10

13 350 10

Table 4.2: The number of repetitions of the process of determining the optimal number of

microstate clusters from 25 to 350 with an interval of 25

From the table 4.2 we see that with the increase in number of repetitions the number of

clusters varies from 8 to 10. Figure 4.5 shows the of the number of clusters for number of

repetitions in the range of 20 to 350 with an interval of 10.

Figure 4.5: Number of clusters vs number of repetitions for 20 to 350 with an interval of

10

It is seen from the figure 4.5 that for number of repetitions ranging from 20 to 250 there

is a fluctuation in the number of cluster from 8 to 10. However, this fluctuation does not

exist as we increase the number of repetitions from 250 to 350 rather the number of clusters
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becomes stable after 250 times. So we can conclude from this pattern that the maximum

spatial correlation of the microstate model having 10 clusters occurs with the test dataset

of 2 subjects from the "N-back" experiment (Chapter 3). Thus the optimal number of EEG

microstate-clusters is ten. These 10 clusters best explain the dataset of four subjects. Figure

4.6 shows these 10 EEG microstate clusters or maps.

Figure 4.6: The 10 Optimal EEG microstate maps or clusters
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4.2.2 Randomization statistical analysis

Randomization statistics [11] [12, see Chap 8] test the plausibility of the so-called null-

hypothesis which postulates that the variance in the data is unrelated to some assumed

structure in the data. Estimating the probability of this null-hypothesis is the goal of a

statistical test. The null hypothesis is rejected when this probability is sufficiently low and

the alternative hypothesis is taken i.e., accepting that the assumed structure of the data is

probably related to the variance of the data and saying the fact that the assumed structure in

the data has a significant effect in the data. This procedure requires two steps. The first step

is to introduce test-statistics that measure to what extent the variance of the data is related

to an assumed data structure [12, see Chap 8] i.e., the test statistics generate some size

(magnitude) of the effect called effect-size of the assumed structure in the data. The second

step is to estimate how likely, the occurrence of observed-effect size has been noticed due

to chance.

In this step, randomization statistics constructs a distribution of the random effect sizes

under the null hypothesis by destroying the assumed structure in the data. We break this

structure in the data by randomly shuffling the data samples. This randomized data is the

first instance of a set of observations made under the null hypothesis. Then the effect size

is recomputed. This obtained effect size is one instance of the observed effect size obtained

under the null hypothesis. We generate an empirical distribution of the effect sizes that is

compatible with the null hypothesis with the repetition of randomizing the data many times

and recomputing the effect sizes.

The observed effect size, before random shuffling of the data, is compared with the

empirical distribution of the effect sizes formed under the null hypothesis. It provides

how likely the observed effect size has occurred while the null hypothesis is valid. If the

likelihood is sufficiently low, the alternative hypothesis is accepted. Then, the assumed

data structure has a significant effect on data [12].
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In this thesis, we randomly shuffle the data 1000 times and use 3 features of the EEG

microstate clusters. These are Count of time points, Microstate Onset and Microstate Off-

set.

Count of time points: Total number of time points in the subject 1 data when a

particular microstate was active and assigned to the EEG data [30].

Onset of microstate classes: The first time point of the first assignment of the EEG

microstate class or map to the subject 1 EEG data [12, 30].

Offset of microstate classes: The last time point of the assignment of the EEG mi-

crostate map to the subject 1 EEG data [12, 30].

In this research, the statistical analysis is conducted in the following steps:

1. A sample population of EEG data is necessary: Sub-population comes from the

conditions generated from the signal-power analysis, and it belongs to the group of

epochs coming from adjacent channels of the highly EMG prone EEG data-channels

2. We generate the optimal number of EEG microstate maps using the EEG microstate

analysis. (section 4.2.1)

3. We calculate three temporal features of the optimal EEG microstate maps. These are

the count of time points, microstate onset, offset

4. The difference in microstate clusters with respect to all the features are computed

group-wise to find the observed effect sizes

5. We randomly shuffle the data group-wise, and then the effect size is computed again

to get the first instance of the random effect size. We repeat this process at least

1000/5000 times to get a distribution of random effect sizes

47



6. Now, we calculate the probability of how likely the observed effect occurs by chance.

We divide the number of random effect-sizes that are equal to or larger than the

observed effect-size by the total number of randomization runs

7. To obtain reliable results, having a critical p-value of 5%, 1000 randomization runs

are needed. For the results with a p-value of 1%, we need 5000 randomization runs

[12, see Chapter 8]

Purpose of randomization statistics: The purpose of randomization statistics is to

investigate the statistical properties of the sub-population groups. Randomization statis-

tics highlight the within-subject group error and between-subject group error. This method

helps to find out the significant difference between the features of two or more samples

from a population group. The primary requirement of this approach is computationally

expensive. It requires at least 1000 randomization runs to obtain reliable results. However,

this obstacle is becoming less and less due to the rapid growth of computing power. It

is affordable with personal computers [12, see Chapter 8]. It also helps to allow the con-

struction of custom-tailored tests for the specific research question of interest. Moreover,

this approach is powerful because of fewer assumptions and gives improved performance

over classical statistics. Many assumptions in the classical-statistics sometimes bias the

research study. Hence, to remove the effect of bias and to obtain much-improved results,

the randomization statistics approach has been adopted in this thesis [12, see Chapter 8].

Results of randomization statistical analysis:

In this thesis, we statistically analyze the individual subject 1 of the N-back experi-

ment. This data is formed into two groups based on the data-channels (section 4.1.2) and

frequency analysis (section 4.1.3). The two groups are:

1. EMG artifact data matrix
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2. EMG free EEG data matrix

The results of the statistical analysis consist of calculating the null hypothesis probabil-

ity and dividing the EEG microstate clusters into two categories:

1. Significantly different EEG microstate cluster or map

2. Significantly similar EEG microstate cluster or map

Table 4.3 shows the null hypothesis probability for the 10 optimal microstate clusters

and the table 4.4 shows the corresponding EEG microstate clusters or map-labels..

Microstate Features Null-hypothesis probabilities of 10 microstate clusters
Count of time points 0.6, 0.795, 0.573, 0.356, 0.191, 0.886, 0.519, 0.001, 0.718, 0.919

Microstate Onset 0.001, 0.038, 0.0, 0.261, 0.046, 0.006, 0.946, 0.228, 0.018, 0.579

Microstate Offset 0.126, 0.986, 1.0, 1.0, 0.982, 1.0, 1.0, 1.0, 0.99, 1.0

Table 4.3: The null hypothesis probabilities of microstate clusters with respect to the three

microstate quantifiers

Microstate Features Significantly Different Significantly Similar
Count of time points 7 0,1,2,3,4,5,6,8,9

Onset of Microstate classes 0,1,2,4,5,8 3,6,7,9

Offset of Microstate classes null 0,1,2,3,4,5,6,7,8,9

Table 4.4: The microstate class or map labels with respect to the three microstate quantifiers

We have determined the category of the labels in table 4.4 by using the probability val-

ues mentioned in table 4.3. We reject the null hypothesis and label the EEG microstate class

or map as significantly different when the null hypothesis probability of an EEG microstate

cluster or map, is equal to or below 0.05 (since the number of randomization runs is 1000

in this case) [30]. On the contrary, if the null hypothesis probability is more than 0.05,

we accept the null-hypothesis and label the EEG microstate map as significantly similar.

Therefore, the main objective of the statistical analysis is to divide the EEG microstate clus-

ters or maps, into two categories, namely, significantly-different and significantly-similar.
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Moreover, this analysis returns the group-wise optimal EEG microstate maps before ran-

domly shuffling the EEG-data. These maps are utilized to fit-back the preprocessed raw

EEG data.

4.2.3 Fit-back of raw EEG data using microstate-map labels

From the statistical analysis, we determine significantly different map labels. We also ob-

tain the optimal EEG microstate maps before randomly shuffling the two groups of EEG-

data namely, EMG-contaminated and non-contaminated EEG-data (section 4.1.3). In table

4.4, the two categories of map-labels demonstrate the difference between the group-wise

microstate clusters. So the non-contaminated EEG epochs are retained by back-fitting the

preprocessed raw EEG data (section 3.3) with the significantly-different EEG microstate

maps. The purpose of the fit-back is to find the spatial correlation [45](section 4.2.1) be-

tween the microstate clusters (maps) obtained from significantly different maps labels and

the instantaneous EEG topography of the preprocessed raw EEG data.

It looks for the best spatial-correlation between the optimal EEG microstate maps and

the instantaneous EEG data, with at most 3-standard deviations. This process of fit-back

also labels each time point in the instantaneous EEG-data with the microstate cluster-label.

In this thesis, we apply this fit-back technique two times. First, we fit-back the EEG

microstate maps from group 2 (EMG non-contaminated) to the preprocessed-raw EEG data

using the spatial correlation technique. Next, we extract data-segments of the preprocessed

raw EEG data fitted with significantly different microstate maps. We track the time-points

in the data, labeled with significantly different EEG microstate map labels for the data-

extraction process. This process gives us a back-fitted data matrix, that is, the EMG-artifact

free EEG data.

However, we could not fit all the time points in the data with the microstate maps. So

the corresponding data of those time points are kept in a first-level residual data matrix
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called the Rest of back fitted data without the significantly different map labels. Secondly,

we fit-back the EEG microstate maps from group 1 (EMG-contaminated) to this residual

data matrix using the spatial correlation technique. Then we extract data-segments of the

residual data matrix fitted with significantly similar microstate maps to form the EMG-

contaminated EEG data matrix. Figure 4.7 shows the flow chart of the process of fit back.

Figure 4.7: The overview of the process of fit-back in EMG-artifacts removal method

Technically, not all time points in the residual data matrix can be fit with the microstate

maps. So the corresponding EEG data of those time points are separated and kept in a

data matrix called the "residual-error" matrix. This residual-error matrix of EEG data with

EMG-artifacts is left behind for analysis. Those data are the errors in the proposed model

of the removal of EMG artifacts. In brief, the proposed model can be as follows:

RealEEG = Artifacts freeEEG + Artefactual EEG + Error (4.6)
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4.2.4 Interpolation of the EEG data segments

In the randomization statistics analysis, significantly similar map labels are the indicator of

the contaminated data segments or epochs (Artefactual EEG of equation 4.6). One solution

is to reject those segments. However, this will cause the loss of underlying neural informa-

tion in those EEG data-segments or epochs. One alternative approach is to use the spherical

spline method detailed in [51]. This method projects the EEG-sensor (electrode) locations

onto a unit sphere. It then interpolates the EEG-signal at the bad sensor locations based

on the signals at the good locations. The process to interpolate EEG data, using spherical

spline-interpolation consists of the following steps [37]:

1. To project the good and bad electrodes onto a unit sphere

2. To compute a mapping matrix that maps N good-channels (electrodes) to M bad-

channels

3. To use this mapping matrix to compute interpolated data in the bad-channels

In this thesis, the contaminated epochs have a high spatial-correlation with signifi-

cantly similar microstate clusters or maps. So we have used the MNE-Python method

mne.io.raw.interpolate_bads [37] to interpolate those EEG epochs. This method automat-

ically applies the correct-method (spherical splines or field interpolation) to EEG data. In

this way, the interpolation technique preserves the underlying neural activity of the EEG

signal. This technique also constructs the interpolated EMG-artifact free EEG data matrix.

4.2.5 Data reconstruction

To reconstruct the EMG-artifact free EEG data, we join the two data matrices. These are:

1. The back fitted data matrix that is, the EMG artifact-free EEG data (section 4.2.3)

2. The interpolated EMG-artifact free EEG data matrix (section 4.2.4)
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We have used the NumPy library of Python [44,50] to concatenate the two data matrices

and to form the EMG-artifact free EEG data.

4.3 Discussion

We first plot the power spectral density (PSD) of the raw EEG data contaminated with

EMG-artifacts in the 45-70 Hz frequency band to differentiate between raw EEG data with

EMG artifacts and EMG-artifacts free EEG data. The power spectral density (PSD) mea-

sure the content of the signal-power against frequency. The spectral density characterizes

the frequency components of the signal [52]. We have used the mne.io.raw.plot_psd func-

tion of the MNE-Python [37] to plot the PSD of the EEG signals. Figure 4.8 shows a sample

PSD plot of 16-channel raw EEG-data with EMG-artifacts without any preprocessing and

application of the proposed method.

Figure 4.8: A sample PSD plot of the raw EEG data with EMG-artifacts

In figure 4.8, the x-axis represents frequencies from 45 to 70 Hz, and the y-axis is

the power-amplitude of the EEG signals in units of amplitude2/Hz. The round-shaped

object in figure 4.8 represents the top-view of the brain. The 16 color-dots represent the 16

channels that we have used for EMG-artifacts analysis and removal. We observe the high

signal power-amplitude peaks from figure 4.8. The peaks in figure 4.8 show the presence
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of EMG-artifacts. The amplitude-peak values range from 20 (micro volt)2 to almost 100

(micro volt)2 for each frequency in the 45-70 Hz band.

On the contrary, we also plot the PSD of the EMG-artifact free EEG data obtained

with the proposed method to observe the power-amplitude peaks. Figure 4.9 similarly

shows a sample plot of 16-channel EMG-artifact free EEG-data generated from the pro-

posed method with x-axis as the frequency and y-axis as the signal power-amplitude.

Figure 4.9: A sample PSD plot of the EMG-artifact free EEG data using the proposed

method

We observe from figure 4.9 that the power-amplitude peaks are relatively smaller than

those of figure 4.8. The peak values range from 2 (micro volt)2 to almost 14 (micro volt)2

for each frequency in the 45-70 Hz band. Thus the proposed method has removed the EMG

artifacts and reconstructed the EEG data and matches the postulates mentioned in [7, 13].

The algorithm 2 summarizes the whole process of the proposed method of EMG-artifact

removal and reconstruction of EEG-data.
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Algorithm 2: The procedure to remove EMG-artifacts
1. Load raw EEG dataset of n subjects (N-back experimental dataset chapter 3).

2. Complete the steps 1-10 of algorithm 1 to separate the EMG-contaminated

and non contaminated EEG-epoch arrays.

3. Repeat step 2 for n− 1 times to store n-subjects EMG-contaminated and

non contaminated EEG data arrays.

4. For each group-data of n-subjects randomly select n-subjects and split this n-subject

data into half to form test and train dataset.

5. Take mean of the test and train dataset to form mean-test data and mean-train data.

6. Input: Number of clusters, n
Run microstate-algorithm on the mean-train data to cluster the data

into given n microstates.

7. Calculate spatial correlation of the n microstates with the mean-test data.

8. Repeat the steps 6-8 enough times (18 times for say) for each number of clusters

in the range from 3 to 20.

9. For two groups take the average of the two correlation values.

10. Repeat the steps 4-8 for enough times (350 times for say).

11. Calculate mean-average correlation value for each cluster (microstates).

12. Calculate cluster-number having maximum correlation value

to find optimal clusters.

13. Load group EEG-epochs of single subject data.

14. Cluster both groups-data into optimal-microstates to get two sets of microstates.

15. Calculate three temporal-features of each microstates for two groups of data.

16. Calculate difference between three temporal features of each group-microstate

i.e. the observed effect size.

17. Randomly shuffle group EEG-epochs and repeat steps 13-15 to obtain

a random instance of the observed-effect size i.e., rand-effect size.

18. Repeat step 16 many times (1000 times) to form a distribution of

the rand-effect size.

19. Calculate how many rand-effect instances are >= to observed effect-size.

20. Probability of null hypothesis = number of random−instances
total no. of repetitions

21. If probability<= 0.05, microstate-label = significant different

else, microstate-label = significantly-similar.

22. Fit-back the preprocessed raw EEG data of subject 1 (Step 3 of Algorithm 1) with

significantly similar and different microstate-labels.

23. Construct EMG-contaminated EEG data for interpolation and back-fitted EEG data.

24. Interpolate EMG-contaminated EEG data using Legendre Polynomial Expansion

(spherical spline interpolation) to form interpolated EEG data.

25. Output: EMG-artifact free EEG data by joining the pure and interpolated

EEG data.
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Chapter 5

Validation Of the Proposed Method

To validate the method proposed in chapter four, we need to compare the EMG artifacts-

free EEG data obtained by this proposed-method and another standard method of EMG-

artifacts removal. One approach for making comparisons is to use the simulated EEG data

with a controlled amount of noise. Besides, we can compare with real EEG data from

verified EEG databases. Moreover, we can make a basic comparison with the method ICA

combined with multiple artifact rejection algorithm (MARA).

There are many other methods for EEG artifacts removal. However, in this thesis, we

chose the ICA-MARA method for its well-established results. Also, the ICA method is

classical and well recognized in the field of EEG artifacts removal. The ICA with the

MARA method is available as a software package in MATLAB. The software-package

is the MARA toolbox developed from EEGLAB [53]. This toolbox is well known and

accepted in the EEG signal processing domain. Thus it becomes an ideal baseline-candidate

for making a comparison of EEG signals despite having no ground truth data.

This comparison with the baseline demonstrates the relative performance of the pro-

posed method in the detection and removal of frontalis and temporalis scalp muscle con-

taminations (EMG-artifacts) from the EEG recordings. So this chapter validates the pro-

posed method by comparing its performance-results with that of independent component
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analysis ICA combined with MARA [14] in removing muscle artifacts from the N-back

experimental subject 1 data (Chapter 3).

5.1 ICA with multiple artifact rejection algorithm

For the EEG signals, we can model the brain’s electrical activity as a mixture of under-

lying electric potential source components. In the ICA with the MARA method, the EEG

research-experts train classifier using large datasets. The theoretical basis of this method, is

that the EEG signal-sources are statistically independent. As such, one can separate these

sources from the mixture of EEG potentials. This type of problem is often called a blind

source separation (BSS) problem. The researchers separate the source signals statistically

to solve the problem.

In the ICA model, the underlying assumption is that the raw EEG data, X(t) obtained

in the time domain can be expressed as

X(t) = [x1(t), x2(t), ..., xR(t)]
T (t = 1, ..., N), (5.1)

where N is the number of sample points and R is the number of channels. The inherent

independent components are S(t) = [s1(t), s2(t), ..., sR(t)]
T . Thus the mixing model can

be as follows:

X(t) = WS(t) (5.2)

Here, W is the mixing matrix. In general, both the independent components and the

mixing-matrix are unknown. We estimate the independent-components and the mixing-

matrix, from the mixture X(t) with general assumptions. These assumptions are spatial

statistical independence among the independent components and non-Gaussian distribution

of the independent components of the EEG signal mixture matrix X(t).
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Besides, this method always assumes the mixing-matrix to be square. After estimating

the mixing-matrix, its inverse, W−1 is also computed. This can be shown by:

S(t) = W−1X(t) (5.3)

For the removal of EEG artifacts, we can model the EEG data as a summation of neural

and artifactual sources. The surrounding noise sources can be assumed to be independent

of the underlying brain sources.

In this model we transform the input vectors of the mixture signal X(t) into a signal

space where the signals are statistically independent. After this transformation of the mixed

EEG signals, the neural sources (independent components) are selected and reconstructed

without the artifactual components to create the artifacts free data. The selection process of

independent components(ICs) is tedious and not automatic. It differs from expert to expert.

To resolve this user-dependent issue, we selected the automatic-method named Multiple

Artifact Rejection Algorithm (MARA) for comparison with the method proposed in chapter

4. The ICA with the MARA method is described in detail in [14]. It is an efficient and

reliable process for the detection of all classes of artifacts, such as muscle artifacts (EMG-

artifacts). This method constructs six features and incorporates the temporal, spectral, and

spatial domain information of ICA components. MARA [14] is an open-source plug-in for

a vastly used graphic user interface named EEGLAB [53] for automatically hand labeling

the independent-components (ICs) of the EEG signals. However, ICA is sensitive to the

slow-drifts. So we filter the data from 0.1 Hz to 100 Hz offline before segmentation and

artifact removal process.

Moreover, to analyze the data with a stable, effective and robust version of ICA that

avoids over learning the formula for choosing the number of data points in a dataset should

be at least 30 * (no. of channels)2. For example, in our case the EEG data of N-back experi-

mental tasks having 64 data-channels, the number of samples will be 30 ∗ (64)2 = 122, 880
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i.e., 240 seconds of the EEG recordings with a sampling frequency of 512 Hz to reliably

decompose the EEG data with ICA.

Substantial information is necessary for the extraction of features in this method. At

first, the ICA is applied to the data to generate the independent components. Then the

MARA method constructs an initial feature set of 38 features as candidates based on the

characteristics of the independent components obtained from the EEG signals. Among

these features, 13 come from the component’s time series, 9 from the spectrum, and 16

from the component’s pattern. A feature selection process as detailed in [14] chose the

following six features out of these 38 features.

• k1, λ, k2 and fit error

The k1, λ, k2 and fit error are parameters to explain the deviation of a component’s

spectrum from a prototypical 1/frequency curve mentioned in [14], which is:

f ⇒ k1
fλ

− k2 (5.4)

These parameters k1, λ, k2 can be calculated using three points of the log spectrum

of the curve [14]. These are:

1. The log power at 2 Hz i.e., k1

2. Local minimum in the 5-13 Hz i.e., λ

3. Local minimum in the 33-39 Hz i.e.,k2

• Alpha and gamma band feature at 8-13 Hz and 31-45 Hz

These features indicate the average log band power of alpha-band from 8 to 13 Hz

and gamma-band from 31-45 Hz band. The alpha peak of the independent component

having neural origin can be detected using the feature 8-13Hz [14].
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• Range within pattern

ICA with the MARA method defines the range within a pattern in the scalp maps of

the independent components of the EEG signals. This pattern is the logarithm of the

difference between the minimal and maximal activation [14]. A broad range within

this pattern indicates that the loose electrodes or muscle artifacts generate spatially

located scalp maps.

• Current density norm

ICA can not provide information about the locations of the inherent-neural sources.

So it is estimated by the EEG potentials in ICA scalp map.

• Mean local skewness

Mean local skewness is a time series feature of the components. It is calculated by

the mean absolute local skewness of time intervals with a duration of 15 seconds, to

detect outliers in the time domain.

After classifying the artefactual components by MARA, we use the graphical user in-

terface(GUI) of the EEGLAB plugin of MATLAB [53] to visualize all the independent-

components. It also provides a calibration for artefactual component rejection. In this

thesis, we use 64 channels-dataset. Thus, we have 64 independent components for 64

channels. We classify the components by the MARA algorithm to detect and remove the

artifacts using the EEGLAB plugin of MATLAB [53].

Comparison of results using PREP preprocessing pipeline: We have analyzed the

EMG artifacts free EEG-data obtained from both the methods to find bad-channels. We

have used a standardized early-stage preprocessing pipeline (PREP) as detailed in [54].

The bad-channels are EEG data channels having a low signal to noise ratio and very low or

no-signal throughout a considerable time of the EEG recording [55]. We use this pipeline to
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find the bad-channel ratio. The bad channel-ratio is the ratio of bad data-channels identified

in the PREP analysis to the total number of data-channels in the data. This pipeline uses

four complex algorithms [54, 55], and four criteria to identify bad EEG data-channels.

These are:

1. The extreme amplitude of EEG data (the deviation criterion)

2. Lack of correlation of an EEG data-channel with any other channel (the correlation

criterion)

3. Lack of predictability of an EEG data-channel by other channels, that is, the pre-

dictability criterion using RANSAC (random sample consensus) [54]

4. unusual high-frequency noise (the hf noise criterion) [54]

In addition to these criteria the algorithm of the PREP pipeline detects bad channels by

the EEG data-channels having any NaN (not a number) data called the NaN criterion and

significant time periods with constant values or very small values called the flat criterion.

The analysis results obtained from the proposed method and the ICA with MARA method

are shown in table 5.1 and 5.2.

Bad-channel criterion Number of channels Channel name
NaN 0 none

flat 0 none

deviation 0 none

hf noise 0 none

correlation 0 none

RANSAC 0 none

Table 5.1: PREP analysis of the EMG free data obtained from the proposed method.
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Bad-channel criterion Number of channels Channel names
NaN 0 none

flat 4 C5, C6, FC5, FC6
deviation 2 Fp1, Fp2
hf noise 0 none

correlation 0 none

RANSAC 0 none

Table 5.2: PREP analysis of the EMG free data obtained from the ICA with MARA method.

We see the proposed method performed much better than the method ICA with MARA

in the PREP analysis results. The ratio of the bad-channels in the ICA-MARA method is

6/16 = 0.375. Here 16 is the total number of channels used for the overall analysis. On

the contrary, this ratio is 0 for the proposed method. Also, the RANSAC-analysis of [54]

fails in the data obtained from the method ICA with MARA. The PREP-analysis [54] of

this data shows that a few channels are available to perform the RANSAC method reliably.

This analysis also indicates that too many channels failed the quality tests described in [54].

These quality tests determine whether the EEG data-channels are good or bad. In the case

of the proposed method, all the EEG data-channels successfully passed the quality tests

described in [54].
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5.2 Quality metrics of the EMG-artifacts free EEG data

One way of evaluating the quality of the EEG data after the removal of EMG artifacts is to

identify the bad EEG data-channels by measuring some parameters. As such, it is necessary

to define the criteria for the evaluation of the parameters of the bad channels. We can define

the bad channels as those channels that we need to interpolate after the application of the

preprocessing steps. The bad channels can have no variation for longer than 5 seconds.

These have a small signal to noise ratio or even no signal-amplitude for a considerable

time. These are detected based on parameters like deviation, correlation, predictability, and

noisiness to the other channels [55, 56]. The main preprocessing steps for the detection

of bad channels are filtering with 1Hz high pass filter, removal of power line noise, and

application of PREP pipeline [54]. Despite these steps, the EEG data gets affected when

we high-pass filter the EEG signals. So researchers have proposed many metrics to serve

the purpose. However, we can divide the evaluation metrics broadly into two groups:

1. To measure how well the artifact removal method (algorithm) eliminates the artifact-

interference: Degree of artifact removal

2. To quantify how well the algorithm preserved EEG data: Degree of signal preserva-

tion

In this thesis, we consider the second metric that tries to quantify the degree of signal

preservation and signal quality. For measuring the quality of the data, we calculate the

following three metrics [55] from the EMG free data for assessing the performance of the

proposed method in comparison with the ICA-MARA method. These are [55]:

Ratio of data-points with overall high amplitude (OHV): The quality measure of the

overall high amplitude (OHA) is calculated by the ratio of data-points, d (that is, channels c

multiplied by time points t) that have a higher absolute voltage magnitude v of a threshold
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value, x μV [55].

OHA(x) =
1

N

N∑
d

|v|d > |x| (5.5)

Where, d is data points (no. of channels c multiplied by time points t) and |x| reflects a

vector of voltage magnitude thresholds e.g., x = 10 μ V, 20 μ V, 30μ V, 40 μ V, 50 μ V, 60

μ V, 70 μ V, 80μ V, 90 μ V and N reflects the number of data points. Thus, each OHA(x)

threshold results in a quality measure that differs in its sensitivity [55].

Ratio of time points with high variance (THV): Similarly, we identify the ratio be-

tween time-points t and total time points T, in which the standard deviation σ of the voltage

measures v across all channels c exceeds x μV [55].

THV (x) =
1

T

T∑
t

σt (vc) > |x| (5.6)

Where, time point is t, in which the standard deviation σ of the voltage measures v

across all channels c is more than |x| μV, where |x| reflects a vector of standard deviation

thresholds and T is the number of time points.

Ratio of channels with high variance (CHV): The same logic applies to the ratio of

EEG data-channels, for which the standard deviation σ of the voltage v measures across

all time points t exceeds x μV. The channels of high variance (CHV) criterion reflects this

ratio. [55]

CHV (x) =
1

c

C∑
c

σc (vt) > |x| (5.7)

Where, C is total no. of channels, σc(v(t) is the standard deviation of the voltage v

measures of across all time points t greater than |x| μV.
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Comparison results: We compare the results obtained from the ICA with the MARA

method and the method proposed in chapter 4. The threshold values are x = 10 μV, 20

μV, 30 μV, 40 μV, 50 μV, 60 μV, 70 μV, 80μV, 90 μV. Tables 5.3 and 5.4 show the quality

metric values for the data obtained from the proposed method in chapter 4 and the method

ICA with MARA.

Threshold values (μV) OHV THV CHV
10 14.992058 16.974569 26.463448

20 11.198804 11.307124 20.680853

30 8.357876 8.063291 10.906444

40 6.484651 6.166481 8.729885

50 5.244097 4.322459 3.151252

60 4.356705 2.627016 0.0
70 3.654187 1.484150 0.0
80 3.080895 0.932752 0.0
90 2.642685 0.633356 0.0

Table 5.3: The quality metric values obtained from the proposed method

Threshold values (μV) OHV THV CHV
10 0.181556 0.040067 0.0

20 0.049516 0.001875 0.0

30 0.010762 0.0 0.0

40 0.003042 0.0 0.0

50 0.001310 0.0 0.0

60 0.000279 0.0 0.0

70 4.369731e-05 0.0 0.0

80 0.0 0.0 0.0

90 0.0 0.0 0.0

Table 5.4: The quality metric values obtained from the method ICA with MARA
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Decently in terms of data quality, the method ICA with MARA performed very well in

comparison to the proposed method. However, for the more relaxing threshold values like

30 or more than 30 μV, the two-method give almost the same results. We observe from

table 5.3 that for a threshold value of 40 or 50μV, the quality-metric values ranged from

3 to 9. As the threshold value increased, the ratios decreased for the proposed method.

The decreasing-pattern indicates that the error-reduction of the proposed EMG-artifacts

removal method will generate more similar results to that of the method ICA with MARA.

The proposed method is as effective as ICA-MARA method for CHV threshold values in

the range of 60 to 90. Hence, for relaxing threshold [55] values like 40 μV or 50 μV or

higher than that the two-methods render similar results in terms of data quality.

5.3 Discussion

The comparison of the proposed method with ICA combined with multiple-artifact rejec-

tion method is necessary to prove the effectiveness of it. The comparison results demon-

strate the effectiveness of the proposed process. As such, we have validated the proposed

muscle artifact removal method. Besides, to show the effectiveness of the proposed method,

we have done a quantitative assessment of the EEG recordings after the removal of muscle

artifacts. We have evaluated the quality of the EEG recordings after removing the EMG-

artifacts using three data quality-measurement metrics [55]. However, a criterion should

be set to decide whether the EEG recordings after the removal of muscle artifacts can be

acceptable or not. It is necessary to check the recording length to determine such criteria.

On top of that, such decision highly relies on the number of trials, sample size, effect sizes

of interest, and to some extent, on specific research questions. The users or researchers can

classify the data-quality into three categories [55]. The categories are:

1. Good, meaning the EEG-data is very clean
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2. Ok, meaning the EEG-data is relatively clean

3. Bad, meaning the EEG data has residual-noisy channels even after correction of ar-

tifacts [55]

From our comparison, it is clear that the proposed method has performed very well

in terms of the bad-channel ratio. However, the ICA with the MARA method has not

performed well. Moreover, we can classify the performance of the proposed method with

the ICA-MARA into three categories: Good, Ok, and Bad for data quality measures like

THV, OHV, and CHV [55]. The performance of the proposed method is "Bad" for strict

threshold values like 10-30μV. This performance is "Ok" for relaxing threshold values like

40-60μV and is "Good" for more relaxing threshold values like 70-90μV.

It is clear from tables 5.3 and 5.4 that in the case of experiments with stricter threshold

values, our proposed technique will not be optimal. On the other hand, since ICA-MARA

requires a certain number of data-points, for EEG-experiments with limited-data, it may

not be as effective as our technique. For the EEG case-studies, where quick response is

necessary with limited EEG data points, the proposed method can potentially be more

effective over the ICA-MARA method to remove EMG artifacts from EEG recordings.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The muscle artifacts contaminate the EEG signals over a broad range of frequencies. This

contamination distorts the original neural signals. While signal acquisition during any

complex-cognitive experiment, there is the contraction and expansion in the frontalis and

temporalis scalp-muscles of the subject. This contraction and expansion of scalp-muscles

can be with or without intention. As a result, the underlying EEG recordings get contami-

nated with muscle artifacts. Hence, to analyze the EEG signals, it is essential to get rid of

these contaminants. Thus one solution to this problem is to conduct an analysis of the raw

EEG data-segments and to remove the EMG artifacts.

In this research, we have developed a simple graphical user interface to process the raw

EEG data. This raw EEG data can be in the "European Data Format (EDF)" or "Biosemi

Data Format (BDF)" or "Brainvision " data format. After loading the raw EEG-data, we

conduct the analysis (detection) of the EMG contamination on the frontalis and temporalis

brain regions. We use the concept of EEG signal-power analysis in the frequency domain

for this purpose.
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In the preliminary step of this analysis (detection), we calculate the EEG signal-power

in the 45-70 Hz band [13]. We chose this band as EEG signals have low amplitudes in this

band [13]. If the signal-power amplitude is high in this band, it is most likely a muscle

activity [13]. We select a threshold-value of signal-power amplitude to detect the muscle-

artifacts. The threshold-value is the mean of the signal-power amplitudes of one-hundred

EEG data-segments (epochs) obtained from the primary EEG data-channels AF7, AF8,

FT7, FT8 respectively of the real experimental EEG data. Each EEG epoch is two sec-

onds long, having 1024 samples. We examine the signal-power amplitude of each EEG

epoch when the signal power-amplitude of that epoch in any of the primary channels, ex-

ceeds the threshold. If the value exceeds the threshold value, we detect the EEG-epoch

as EMG-artifacts contaminated epochs. In this frequency-domain analysis, high signal-

power amplitudes in the 45-70 Hz band of the EEG signals in our obtained results prove

the existence of the EEG data segments contaminated with muscle artifacts.

For the process of removal of the EMG-artifacts, we have used the EEG microstate

analysis. This analysis determines the optimal number of EEG microstate clusters or maps

in the given EEG dataset. We cluster the two groups of EMG-contaminated and non-

contaminated EEG epochs and calculate three temporal microstate features. Secondly, we

have used the concept of randomization statistics to find the significantly different EEG

microstate-maps between these two groups.

In this analysis, we calculate the null-hypothesis probability of each EEG microstate

map. We determine this probability based on the difference in the temporal features of

the microstates. We reconstruct the EMG artifact-free EEG data back-fitting the prepro-

cessed raw EEG-data with the EEG microstate maps from both the groups "EMG non-

contaminated" and "EMG-contaminated" having the significantly "different" and "similar"

EEG microstate-maps and interpolating the contaminated EEG data, using the Legendre

polynomial expansion (spherical spline interpolation) technique.
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In this study we have tried to detect the EMG-contaminated EEG data by applying

signal-frequency analysis and removed those by extracting the characteristics of the EMG-

free EEG data generated from signal-frequency analysis. We have compared our technique

with ICA combined with multiple artifact rejection (MARA). We find that our proposed

procedure is more effective than ICA with MARA in terms of bad-channel ratio. It is as

effective as ICA with MARA when the data-quality quality measures like THV, OHV, and

CHV for the threshold values in the range of 40 to 90 μV [14].

6.2 Future work

The removal of muscle artifacts from the EEG recordings is a classical research problem

in the field of EEG signal processing. For many years different researchers have adopted

many approaches for the removal of muscle artifacts in EEG signals. Unfortunately, it is

hard to find a single best method that is 100% efficient in removing the muscle artifacts

from EEG data. Apart from the traditional signal processing techniques like filtering, blind

source separation, researchers have combined two or more methods to detect and remove

the muscle artifacts. For example, the merging of independent component analysis and

surface Laplacian [57].

However, research subjects can produce scalp-muscle movements from different parts

of the brain. On top of that, the EEG data varies from person to person. For future research,

one can apply the proposed method to analyze a large EEG-database. The database should

have more research subjects and variable experimental conditions to detect and remove the

frontalis and temporal scalp-muscles contamination of EEG data (EMG-artifacts). More

microstate features can be computed, in addition to the proposed ones in this thesis, to

understand and investigate the characteristics of EMG-artifacts.

In this thesis, the implementation of the proposed method is a prototype, which can

be improved to do an extensive-analysis of average-subject EEG data. Moreover, we have
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analyzed 16 EEG data-channels and set the mean value of the signal-power amplitude of the

EEG data-segments (epochs) as the threshold. Instead of using this threshold-value other

statistical thresholds, for example, the median, the standard-deviation of epoch-powers can

be applied.
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