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Abstract 

 

Cardiac Function, Pupillometry, Subjective Workload and Performance of Commercial Pilots 

During Jet Airplane Handling Manoeuvres 

 

Samuel Clément-Coulson 

 

 Projected demand for commercial pilots is expected to exceed current training 

programs. As such, next-generation training programs are focused on developing competencies 

through practice sessions targeting specific manoeuvres. These sessions are most effective 

when conducted near a trainee’s maximum workload. Thus, measuring and understanding the 

relationship between workload and performance in the cockpit is of prime importance. 

Currently, workload measurement in the cockpit relies on subjective measures. More recently, 

heart rate, heart rate variability and pupillometry have shown promise as objective, continuous 

indicators of workload. We investigated relationships between these psychophysiological 

measures, NASA-TLX subjective workload ratings and aircraft handling performance in 

commercial pilots flying a jet airplane simulator. We found that (1) heart rate and heart rate 

variability patterns were stable between participants, showing clear differences between 

manoeuvre types, but not manoeuvre difficulty, (2) pupil diameter is not an effective measure 

of workload in the simulator cockpit, likely due to the differences in brightness, and (3) 

psychophysiological measures of workload can supplement subjective workload reports to 

better understand performance. 
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 1 

Introduction 

 Since World War II, the increased requirements for competent aviation professionals 

and adequate equipment have led to a new area of applied research: human factors (Waterson, 

2011). Human factors is the branch of science that investigates the “relation between people 

and the machines they operate through the systematic application of human sciences 

integrated within the framework of systems engineering” (Jensen, 1997). In the aviation 

industry, research into human factors aims to improve our understanding of the physiological 

and psychological limitations of human operators, as a critical component in the operation of 

an aircraft. In aviation, human factors researchers have focused on two complementary 

strategies: designing systems to maximize the effectiveness of the human-machine 

combination as a unit, and improving the training delivered to individuals involved in 

operations. In aviation human factors, training refers to selecting and training operators until 

they become experts on the systems they operate (Jensen, 1997). However, the International 

Civil Aviation Organization, the United Nation’s specialized agency, forecasts a demand for 620 

000 new pilots by 2036, most of which will be new pilots yet to be trained (ICAO, 2017). This 

demand for new pilots is expected to impose significant demands on flight training resources. 

Further complicating the situation, recent industry trends show decreasing numbers of flight 

instructor qualification holders and lower experience among qualified instructors as most 

quickly progress to airline positions (Standing Committee on Transport Infrastructure and 

Communities, 2019). Following an investigation into the current and projected states of the 

aviation industry, the Canadian House of Commons proposed 10 recommendations to support 

flight training. Three of these recommendations support the development of technologies and 

their application in training pilots to attain required competency. Specifically, the committee 

recommended that training methods focus on pilot competence development, that the 

Government of Canada support the development of new technologies for flight training (i.e., 

flight simulation equipment), and that regulations be modernized to allow implementation of 

these new technologies (Standing Committee on Transport Infrastructure and Communities, 

2019). In line with these objectives, the present thesis investigates the use of flight simulator 

data, psychophysiological, and self-report measures in assessing pilot workload, which could 
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enable efficient use of training resources by personalizing pilot training to individual pilots’ 

training needs.  

Expert Performance in Aviation 
Researchers in the field of cognitive science have developed a number of theoretical 

frameworks that allow us to study the nature of expertise. For example, the information 

processing model of human problem solving proposes that cognition relies on physical 

structures such as sensory organs and other brain structures; and mental processes developed 

through learning and experience to perceive and process information from one’s environment 

and act upon it (Newell & Simon, 1972). This means that expert performance is the product of 

learning through practice, not innate ability. Hence, experts differ from the general population 

by having superior domain-specific knowledge and mental processes allowing them perform 

better (Ericsson et al., 1993). Specifically, experts distinguish themselves from novice 

performers by having more elaborate understanding of how their environment works, and how 

to function within an environment (Ericsson & Charness, 1994). This is known as an expert’s 

mental models, or mental representations, of systems, tasks and situations. In comparison to 

novices, experts build mental representations of a situation much quicker, require less 

information, and show shorter decision times (Ericsson & Charness, 1994; Kennedy et al., 2019; 

Schriver et al., 2008).  

A defining characteristic of expertise is that it is a highly domain-specific attribute built 

over extensive periods of deliberate practice, conscious behaviour aimed at improving one’s 

skill (Ericsson et al., 1993). For example, skills acquired by an expert airplane pilot do mean the 

pilot is an expert in automobile racing. The pilot would have to conduct deliberate practice 

specific to automobile racing in order to develop expertise in that domain. In order to maximize 

improvement, and qualify as deliberate practice, four conditions must be met: well-defined 

goals, full concentration, immediate feedback, and repetition of exercises with gradual 

refinements of technique (Ericsson, 2008; Ericsson et al., 1993). Through deliberate practice, 

individuals build mental models of the skill, which include characteristics of the objects in their 

environment, understanding of the interactions between objects in environment, and a 

person’s ability to interact with these objects and their environment (Endsley, 2000). Mental 

models allow experts to overcome human perception limitations and limited information 
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processing speed by relying on learned information and processes (Newell et al., 1958). 

Specifically, experts classify and match situations with stored representations and recall an 

appropriate course of action (Orasanu & Fischer, 1997).  This matching reduces cognitive load 

by eliminating the need for conscious processing of all elements (Schriver et al., 2008) . Better 

mental models have been associated with superior flying performance, as defined by increased 

flying accuracy, understanding of aircraft states, better decision-making, and shorter response 

time to abnormal situations (Endsley, 2006). Hence, deliberate practice of exercises, or 

manoeuvres, that develop trainees’ mental models of successful flying practices must be a core 

component of flight training. 

Training for Expertise 
 To develop a mental model in training, early studies of performance have demonstrated 

a link between time spent doing an activity and one’s mental representations of that activity 

(Ericsson et al., 2006). In aviation, total flying experience is traditionally accepted by most 

training programs and pilot certification assessment as a measure of one’s skill. At first glance, 

this make sense and is backed up by accident rate data. For example, as pilots accumulate more 

flying time, they are less likely to enter into an accident caused by human error (Bazargan & 

Guzhva, 2011). This makes sense, as total time spent doing a task is generally linked to one’s 

level of expertise (Ericsson & Charness, 1994). Findings such as these support measurement of 

expertise based on total experience, and appear to support using total flying time as an 

industry-accepted measure of a pilot’s expertise. However, estimates of expertise based on 

total experience are correlational, omitting a causal link between experience and expertise. 

Specifically, is there a specific behaviour that increases one’s expertise?  

 Ericsson’s theory of deliberate practice proposes that simple repetition of a task is not 

enough to improve skill. Instead, one must engage in a rigorous type of practice called 

deliberate practice (Ericsson et al., 1993). Building on the well-known concept of practice, 

involving repetition of a task to improve skill, deliberate practice adds on four criteria that 

differentiate it and make it the most efficient way of improving one’s skill. It requires a clearly 

defined performance objective, full concentration and engagement in the task, refining 

technique through repetition of the exercise and immediate, formative feedback. Flight training 

curriculums and protocols explicitly include these four components of deliberate practice 
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(Transport Canada, 2004). Specifically, lessons are designed to be slightly outside a candidates’ 

existing skill level with progressively complex exercises. Deliberate practice also requires 

feedback from an instructor, where trainees receive feedback to improve performance and 

receive instructions for future exercises. Thus, debriefings immediately after exercises and 

training sessions are conducted as part of flight training. Due to all the components aimed at 

improvement of skill, time spent conducting deliberate practice predicts skill learning much 

more than any other type of activity (Duckworth et al., 2011; Ericsson et al., 1993; Kellogg & 

Whiteford, 2009). An implication of these findings is that task repetition day-to-day operations 

contributes to ones’ total flight time, but contributes little towards improving the pilot’s skills. 

Improving skills occurs when one engages in deliberate practice. One engages in deliberate 

practice during training to obtain or renew qualifications. Thus, pilot expertise is highly related 

to qualification level. For example, while investigating unauthorized entry into active runways 

by pilots, Van Benthem and Herdman (2013) found that pilots with higher qualifications (i.e., 

instrument flying rating, commercial pilot, military qualifications) had reduced tendencies of 

committing mistakes such as runway incursions. The obtention of higher qualifications in 

aviation is linked to spending more time in training, hence more deliberate practice. In 

commercial aviation, pilots generally work in pairs where tasks are shared between crew 

members. Even at the crew-level, deliberate practice was shown to significantly improve flight 

crews’ decision-making during emergencies (McKinney & Davis, 2003).  

Together, the findings of McKinney and Davis (2003) and Van Benthem and Herdman 

(2013) suggest that deliberate practice is part of the curriculum for aviation license upgrades, 

while accumulating “flight hours” conducting regular flights may not lead to an increase in a 

pilot’s skill. Todd & Thomas (2012) found no performance differences in technical skills (e.g., 

meeting approach performance criteria, risk management) between first officers with low total 

flight time (< 1500 hours) and their more experienced counterparts (> 1500 hours). These 

findings further support the idea that lack of opportunities for deliberate practice outside of 

qualification-upgrade courses effectively limits a pilot’s skill progression. Limited opportunities 

for deliberate practice lead to well-trained and well-intentioned workers’ expertise plateau due 

to a lack of opportunities for deliberate practice after entering the workforce. From a 
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longitudinal perspective, published flight training curriculums substantiate this idea. During a 

pilot’s early career, training practices continuously expose pilots to deliberate practice. During 

the obtention of their private pilot’s license, pilots are exposed to a series of exercises with 

gradual increases in difficulty aimed at helping them master technical skills of flying an airplane. 

During their commercial training, the same exercises are repeated, but performance criteria are 

heightened, and feedback remains mandatory. In their early career, they must master these 

exercises on gradually more complex aircraft, and senior pilots are available to provide 

feedback. However, once established in a position, commercial pilots’ recurrent training no 

longer meets the criteria of deliberate practice.  

Commercial pilots in recurrent training are exposed to fixed performance objectives 

(Transport Canada, 2017), and feedback from instructors is limited. For example, feedback on 

workload management from instructors refers only to observable aspects of the performance. 

Instructors in commercial aviation are not required to have the same teaching-oriented training 

as those who teach private and commercial flying. In order to take full advantage of mandated 

recurrent training for commercial pilots, training sessions should be personalized to fulfill the 

criteria of deliberate practice. Additionally, formative feedback would have to be provided 

during training sessions. The nature of piloting tasks poses significant challenges in 

implementing these two requirements of deliberate practice. This occurs because optimal 

performance in aviation is difficult to quantify, and instructors in commercial aviation have 

limited insight into the internal processes of the individuals they are evaluation as they perform 

training routines in flight simulators due to the environment’s physical limitations. 

Quantifying and measuring 
Deliberate practice relies on accurate observations of a trainee’s performance to 

provide formative feedback. Chuck Yeager, the aviator who first broke the sound barrier, once 

said “If you can walk away from a landing, it’s a good landing. If you use the airplane the next 

day, it’s an outstanding landing.” If evaluation of aviation performance was based on repeated 

measures of a categorical outcome, such as a successful landing, this would be an adequate 

definition. However, performance in aviation cannot rely on categorical outcomes because 

errors in flying activities are potentially fatal. One must always have a successful landing in 

order to be able to repeat the exercise and continue practicing. Therefore, assessment of 
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performance in piloting focuses heavily on deviation from ideal techniques and procedures 

(Transport Canada, 2017). Performance on technical skills is relatively easy to quantify because 

it is readily observable and simply defined. Aircraft handling is evaluated by assessing 

deviations from target aircraft parameters and configurations (e.g., Causse, Dehais, & Pastor, 

2011; Transport Canada, 2017). For example, commercial pilots are expected to maintain 

predefined speeds and altitudes during certain phases of flight (Transport Canada, 2017). 

Deviations from target flight paths and aircraft configurations can lead to undesirable aircraft 

states, which increase the risk of incidents (Helmreich, 2000). Due to the reality of aviation 

operations, these deviations can be caused by the crew, or by external factors such as mission 

requirements, weather, or aircraft issues. Therefore, instead of focusing on avoiding deviations, 

flight crew are therefore trained to manage these deviations from ideal and reduce their impact 

on the flight. This decision-making relies on much more than simple manual flying skills. Each 

performance on a basic flying exercise builds on domain-specific knowledge and non-technical 

skills such as workload management and communication (Jensen, 1997). 

Workload 
Extensive research in human performance has investigated the relationship between 

operator states and performance. As pilot’s primary role in flight operations is to perceive, 

process and act upon information from their environment, flight operations rely on the human 

operator’s cognitive resources to accomplish this task (Endsley, 1995; Rolfe & Lindsay, 1973). A 

cognitive resource largely discussed in aviation is workload. Workload is a hypothetical 

construct that arises when a human operator must dedicate physical and psychological 

resources towards performance on a task (Hart & Staveland, 1988; Young et al., 2015). There is 

debate in the definitions of resources and task demands (see Cain, 2007), but most researchers 

acknowledge that workload arises when a human operator must accomplish a task. The 

interactions between an operator and their environment are part of a cycle where the human 

operator makes decisions that affect the task environment, and the task environment affects 

the human operator. This imposes costs on the human operator’s resources, and these costs 

are defined as workload.  In the present thesis, I have chosen to adopt Hart and Staveland’s 

(1988) definition that workload reflects the “cost incurred by a human operator to achieve a 

particular level of performance”. Workload reflects factors from the task, the operator and the 
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interaction between them. Workload causes both a subjective experience within the operator, 

as well as physiological changes (Hart & Staveland, 1988; Lee & Liu, 2003). 

A basic association between operator workload and operator performance is relatively 

well established. It has been demonstrated that operator performance is poor when workload 

is either too low or too high (Young et al., 2015). De Waard (1996) proposed that performance 

errors differ by their origin during periods of extreme low or extreme high workload. During 

extreme low, task demands are so low that operator’s cognitive resources and attention can be 

diverted away from the task at hand. During extreme high workload, task demands are too 

high, and operators are unable to perceive, process or understand all relevant stimuli to 

perform adequately. Importantly, both extreme high and extreme low workload situations 

during flight training do not meet the intensity criteria for deliberate practice, limiting a 

trainee’s learning possibilities (Ericsson, 2008).  

Identifying the right intensity for training is difficult as workload, by nature, cannot be 

perceived by a training pilot in the context of flight training. Instructors therefore observe a 

learner’s flight path and make inferences as to the psychological processes that led to the 

learner’s performance. These inferences about underlying skills or processes can be inaccurate, 

jeopardising the effectiveness of feedback provided to the trainees. For example, Krusmark et 

al. (2004) found low interrater reliability between trained subject matter experts evaluating 

fighter pilots during a combat mission. Additionally, the subject matter experts’ evaluations 

were unable to discriminate between different components of each mission. This jeopardizes 

the usefulness of any feedback provided by the instructors. Identifying differences between 

task components is essential for feedback to be accurate. Hence, increased understanding of a 

pilot’s subjective perception and psychophysiological state during training would enable 

instructors to better understand a trainee’s performance and identify directions for 

improvement. This would enable instructors to provide informed and immediate feedback prior 

to the next repetition of an exercise and target exercises which pilots would benefit most from 

repeating. More broadly, proper use of psychophysiological measures during flight training 

could ensure more time is spent conducting deliberate practice, as opposed to simple 

repetitions. Accomplishing this would require reliable measures of subjective experience and 
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physiological state. For example, including psychophysiological measures of workload during 

flight training would enable instructors to identify points where a trainee’s workload was high, 

thus suggesting the need for further training in that area. Increased attention to areas that 

require more improvement would enable trainees to conduct more deliberate practice during 

training, as opposed to simple repetition of tasks already within their capabilities. 

De Waard proposed a series of properties that a measure must have in order to be 

feasible for an environment like aviation (de Waard, 1996 for details). Flight training requires 

indicators of workload in order to make within-person observations in a naturalistic 

environment. Therefore, four criteria are of particular interest: operator acceptance, sensitivity, 

primary task intrusion, and implementation requirements. First, pilots undergoing training 

should accept the measurement technique as being valid and beneficial. Second, sensitivity 

describes the property of a measure to detect changes in workload. Third, primary task 

intrusion should be kept to a minimum, meaning that the measure should not affect a pilot’s 

primary task of flying the aircraft. Last, the technique must meet practical requirements. 

Equipment must be available, affordable, compatible with the cockpit environment, and 

operators must have the knowledge to interpret the information provided by the measures.  

Generally, psychophysiological state in cognitive science has been quantified with 

subjective measures (e.g., NASA TLX), and physiological measures such as heart rate, eye 

tracking, electroencephalography (EEG) and secondary tasks (e.g., odd ball tasks). However, 

electroencephalography and secondary tasks do not meet the criteria of primary task intrusion 

and implementation requirements. Traditionally, EEG equipment is invasive and susceptible to 

electromagnetic interference from the multiple radio devices and electronics within aircraft 

cockpits. It also requires trained operators to install the electrodes in specific locations (e.g., 

using the 10-20 location system), which may be a time-consuming process and require 

expertise incompatible with commercial flight training. While it has been proposed that EEG 

would provide a useful measurement (e.g., Sterman & Mann, 1995), it has not been adopted as 

a main method for studying cognitive state in aviation. As portable EEG devices are becoming 

less intrusive and have better ambient electrical shielding, this may change.  
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Secondary task performance is a workload estimation technique where a subject is 

asked to perform a secondary task in addition to the primary tasks, such as responding to a 

tone by pressing a button. Performance on the secondary task (i.e., time to respond to the 

tone) is used to estimate the workload imposed by the primary task (Casner & Gore, 2010; de 

Waard, 1996). By design, this technique interferes with the primary task, often leading to dual-

task effects that decrease performance in the primary task. Therefore, the present thesis 

focuses on the application of subjective workload, pupillometry and heart rate in an advanced 

flight training environment. 

Subjective Workload 

 When an operator is accomplishing a task, the induced cognitive workload can be 

perceived by the operator. Humans can subjectively evaluate the workload imposed by a task. 

They are also capable of discussing their experience and assigning numerical values to those 

states (Gopher & Braune, 1984).  Therefore, workload can be discussed or assessed through 

questionnaires (i.e., Hart & Staveland, 1988). These are recognized for being inexpensive, 

simple and having high face validity (Cain, 2007), thus meeting the criteria of implementation 

requirements and acceptance. However, subjective workload questionnaires are intrusive to 

the primary task. In aviation, the NASA Task Load Index (NASA-TLX) accomplishes this by 

collecting perceptions on six dimensions of workload: mental demand, physical demand, 

temporal demand, frustration, performance, and effort (Hart & Staveland, 1988). There is 

extensive literature supporting the implementation of NASA-TLX as a measure of workload in 

pilots (see Hart, 2006 for a review) . To be used in a training context, a measure of subjective 

workload should demonstrate a correlation with observed performance, and be sensitive to 

changes when exercises are repeated during a training session. In a study of fighter pilots 

conducting instrument approaches, where pilots approach to land without visual reference to 

the ground, within-subject differences in NASA TLX scores differentiated between best, medium 

and worst repetitions of the exercise (Mansikka et al., 2019a). Pilots subjectively reported low 

workload during their best performance.  As their subjective workload increased, then their 

flight performance decreased, with reported workload at its highest during the pilots’ worst 

approach (Mansikka et al., 2019a). These findings are similar in commercial airline pilots, where 
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NASA-TLX scores predicted performance evaluations from a pilot examiner (Lehrer et al., 2010). 

From an information processing perspective, these findings are expected, as automation of 

cognitive processes occur with learning and reduce workload on a given task (Newell et al., 

1958). This is of particular importance to flight training, as it suggests that the NASA-TLX can be 

used to identify improvements in skills as during training. Nonetheless, self-report 

questionnaires like the NASA-TLX remains time-consuming (approx. 2 mins to complete) and 

invasive to the primary task. Therefore, research efforts have also investigated whether 

physiological measures can offer similar insight into workload without affecting the primary 

task. 

Physiological Measures 

 By definition, workload occurs when a human operator engages and interacts with their 

environment. This interaction imposes costs on the human operator’s resources, many of which 

occur concurrently with changes within the operator’s physiology. Physiological sensors 

measure these changes, these data are then used to infer operator workload. Proponents of 

this approach highlight that they are not intrusive to the primary task, allowing individuals to 

perform in a naturalistic environment (Cain, 2007; Lehrer et al., 2010). For example, heart rate 

monitors are worn by athletes to monitor and optimize their training through an online 

measure of cardiovascular function. Recent developments in heart rate monitors have enabled 

manufacturers to produce accurate, affordable sensors. For example, many consumer grade 

smart watches include accelerometers, plethysmographs and ECG (e.g., Fitbit, Polar H10, 

Garmin Vivosmart, Apple Watch).  

Cardiac function. There is significant literature demonstrating that cardiac function 

changes according to physical and psychological demands (reviewed in Roscoe, 1992). Many 

consumer heart rate monitors (e.g., Apple Watch 4) use an electrocardiograph (ECG). ECG 

measures electrical activity associated to the contractions of the heart muscle. An example of 

the latter is the Polar H10 (Polar, Kempele, Finland), which measures electrical activity using a 

chest strap. A normal ECG signal, showing voltage across time points, includes a sinus rhythm 

From there, two common measures can be extracted: heart rate and heart rate variability 

(HRV). Using the R peaks as a reference, heart rate is the number of R peaks per minute. HRV 
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refers to the variability in the time interval between R peaks. These have both been 

investigated as indicators of workload (Cain, 2007). 

 This thesis adopts a holistic definition of workload, where workload’s physiological 

responses are affected by both physical and mental demands. It is common knowledge that 

heart rate increases with physical activity. Heart rate also changes with many psychological 

states such as acute stress and fear (Åhs et al., 2009). There is also evidence that heart rate 

increases with cognitive load (Jorna, 1992; Luque-Casado et al., 2016). Therefore, heart rate 

could be considered as an indicator of workload. For example, heart rate was found to be 

higher in phases of flight associated with higher workload in pilots flying a single engine 

airplane (Causse et al., 2012). While there were no statistically significant differences between 

phases of flight, possibly due to the low sample size (n = 3), the data suggests practically 

relevant differences between each phase of flight. Heart rate was highest during take-off and 

landing, followed by climb and cruise, and lowest during cruise flight. This corresponds with 

task requirements from the various phases of flight. In another experiment, heart rate was 

collected for instrument approaches in pilots training for a qualification on the Lockheed P-3 

Orion, a military aircraft similar to an airliner (Jorna, 1993). Heart rate increased progressively 

during the approach, corresponding to the increased task demands caused by increased 

precision required by pilots as they approach a runway. Additionally, heart rate during the 

approach was noticeably lower in pilots once they had completed the course, suggesting that 

the increased expertise lowered the workload experienced by pilots. Similar findings were 

observed in fighter pilots (Mansikka et al., 2015, 2016).  

Another measure extracted from the ECG signal is heart rate variability (HRV), the 

variation in the duration of the R-R interval. As an indicator of the nervous system’s control of 

cardiac function, it has been studied extensively in health research. Transient changes in HRV 

have also been linked to physiological processes, cognition and emotion (Thayer, 2009). Jorna 

(1992) proposed an early review of its validity as a measure of workload across domains, and 

HRV has since become a widely investigated measure (e.g., Cao et al., 2019; Charles & Nixon, 

2019; Durantin et al., 2014; Jorna, 1993; Luque-Casado et al., 2016). It arises from the 

autonomic nervous system’s control over the heart through its two branches: the sympathetic 
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nervous system and the parasympathetic nervous system. The sympathetic nervous system 

increases heart rate, and is commonly associated with “fight, flight and or freeze” responses. 

The parasympathetic nervous system decreases heart rate, and is commonly associated with 

“rest and digest” (Thayer, 2009). Both systems are active concurrently (Quintana, 2019), and 

HRV is the result of their effect on heart rate.  

Analyses of HRV are grouped into two domains: time-domain methods and frequency-

domain methods (Shaffer & Ginsberg, 2017). HRV measures, like heart rate, are known to be 

affected by multiple physical and psychological processes, such as breathing (Jorna, 1992; 

Shaffer & Ginsberg, 2017). More importantly, there is substantial evidence suggesting that HRV 

changes with physical activity, attention, emotion and cognitive processing, all components of 

workload (Backs et al., 1994; Luque-Casado et al., 2016; Porges, 2007; Sandercock & Brodie, 

2006; Thayer & Lane, 2000). In laboratory settings, there is evidence supporting that HRV 

changes in accordance to multiple physiological and psychological processes. Notably, 

successful emotion regulation has been linked to increased HRV (Butler et al., 2006). In both 

laboratory tasks and naturalistic environments, HRV has been linked with mental workload 

(Charles & Nixon, 2019). Of particular interest to training in safety-critical environments, police 

candidates who underwent situational awareness training both displayed increased 

performance and lower decreases in heart rate variability during simulated performance 

scenarios (Saus et al., 2006). 

Considerable research has investigated using heart rate variability in the cockpit. De 

Rivecourt, Kuperus, Post, & Mulder (2008) conducted a study of pilot candidates in an 

instrument flying simulator. They asked participants to fly turns, altitude changes, and 

combinations during simulated instrument flight. Decreases in HRV from baseline and 

decreases in high frequency HRV were observed during manoeuvres with higher subjective and 

objective workload. However, Hankins & Wilson (1998) found few significant differences in HRV 

between flight segments, but did not collect data on pilot performance. In a study where 

performance was measured, interesting trends were found in fighter pilots conducting a series 

of manoeuvres in a simulator-based instrument proficiency check. Comparing pairs of 

manoeuvres, Mansikka et al. (2015) found that all pairwise comparisons with significant 
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performance differences had significant differences in HRV. Required and perceived 

performance is an important component of workload, as it affects HRV through emotional 

processes and cognitive load. Taken together, these studies suggest that HRV may be a relevant 

indicator of pilot workload. However, additional research is required to clarify the relationship 

between these changes, pilot workload, and flying performance from an applied perspective. 

Specifically, emotion regulation, cognitive processing and attention are all involved in aircraft 

operations; but, are within-person changes in HRV during flight training related to operator 

performance? One of the aims of the current thesis is to address this question.  

Pupillometry. Pupillometry has been considered as a measure of workload in cognitive 

science (see Laeng & Alnaes, 2019 for a review). Pupil size is generally measured with the use of 

an eye tracker, which can be fixed or portable. Fixed eye trackers are installed on a surface 

ahead of a pilot, facing the pilot. Portable eye trackers are generally mounted on frames similar 

to eyeglasses. In both cases, these unobtrusive devices use eye-facing cameras which detect 

and measure the pupil’s size and orientation. In fact, both fixed and portable eye trackers have 

been successfully integrated in modern aircraft cockpits for engineering design and training 

purposes (e.g., Thales HuMans).  

It is established that pupil size varies inversely to brightness through the pupillary light 

reflex (e.g., Laeng & Alnaes, 2019). Pupil diameter can also be affected by input from the 

autonomous nervous system. This supports its use as an indicator of workload when 

illumination is controlled for. Similar to HRV, increases in pupil size are associated with 

sympathetic activation, while decreases are associated with parasympathetic activation. 

Specifically, pupil diameter increases with cognitive and emotional processing (Van Der Wel & 

Van Steenbergen, 2018). Kahneman & Beatty (1966) found that pupil diameter increases with 

increased working memory load using a number-recall task. This relationship also seems to 

correlate with performance. Peavler (1974) demonstrated that individual differences in pupil 

diameter corresponded to differences in recall performance. In a complex task, Van Orden, 

Limbert, Makeig, & Jung (2001) collected pupillometry data during simulated anti-air-warfare 

control. Participants had to differentiate friendly from enemy aircraft, and make decisions as to 

whether to let aircraft pass or attack the aircraft. Workload was manipulated by increasing 
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target density, thus requiring participants to process more information, and make more 

decisions. Error rates increased linearly as targets increased. Pupil dimeter followed the same 

linear trend. The pattern of these results provides evidence for an association between pupil 

diameter and workload. 

Pupillometry has been used in several environments similar to flight operations. The 

difficulty in naturalistic environments lies with changes in illumination affecting pupil size 

though the pupillary light reflex (Dehais et al., 2010).  The Index of Cognitive Activity (ICA) has 

been developed in order to compensate for this effect (Marshall, 2002). The ICA attempts to 

differentiate the rapid pupil changes caused by cognitive activity from the slower, more 

consistent changes caused by the pupillary light reflex. There is evidence supporting use of the 

ICA in environments similar to flight operations. In air traffic controllers, ISA and raw pupil 

diameter were related to objective workload, defined as a number of required tasks to 

accomplish (Rodríguez et al., 2015). In the same study, pupillometry was also related to 

subjective workload, except when workload was perceived as low. Schwalm, Keinath, & Zimmer 

(2008) asked drivers to drive a car simulator, making lane changes every 10 seconds under 

various secondary-task conditions. ICA scores were sensitive to the different conditions, but 

were also able to identify the momentary increases in workload during the lane changes. 

Furthermore, changes in ICA between conditions mirrored changes in performance. Similar 

studies in driving simulators observed the same relationship between workload and pupil size 

(ICA) (see Dlugosch, Conti, & Bengler, 2013; Palinko, Kun, Shyrokov, & Heeman, 2010). Taken 

together, these studies suggest that pupillometry can be a useful measure of workload. 

Current Thesis 
Modern flight operations require pilots to be trained as experts on the aircraft they operate, 

expertise which is built through effortful deliberate practice. Providing instructors with insight 

into pilots’ workload could enable them to better tailor their training to candidates’ current 

state, thus maximizing deliberate practice. Research in aviation and similar domains suggest 

that heart rate, heart rate variability, and pupil size can serve as indicators of workload. 

However, no studies have collected cardiac function, pupillometry, subjective workload and 

performance data in commercial pilots, limiting applicability of existing knowledge in training 
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contexts. Therefore, the present thesis examines the relationship between physiological 

indicators of workload, subjective measures of workload, and basic flying performance.  

The present thesis investigates the following hypotheses: 

1. Heart rate, heart rate variability, and pupillometry changes with workload changes from 

manoeuvres of different difficulty. 

2. Heart rate, heart rate variability and pupillometry can predict pilots’ subjective workload 

ratings during aircraft handling exercises. 

3. Workload can predict aircraft handling performance in commercial pilots. 
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Method 

Participants 
Participants (n = 14, males n = 12, Age Range 23-42, Median = 26.5) were recruited from 

the Montreal aviation community through flight operations managers and online pilot groups. 

To participate, pilots were required to hold a commercial (n = 5) or an airline pilot license (n = 

9), with a valid medical certificate, and a current Transport Canada instrument flying rating. 

Pilots were currently employed in air taxi and aerial work (n = 5), commuter (n = 2) or airline 

transport (n = 7) operations. 9 were graduates of an aviation college or university program. 

Most participants were first officers (n = 8), with the remainder being captains.  

Materials 

Concordia Vision Lab Aviation Questionnaire  

Participants were asked to fill out the Concordia Vision Lab Aviation Questionnaire. The 

questionnaire was designed to collect data about the pilots that will be used in future analysis 

of individual differences of results. Data collected includes the participants’ flying qualifications, 

experience, education, and current pilot employment (for full version of the questionnaire, see 

Appendix 1). As this was the first use of the questionnaire, and due to the limited sample size, 

the questionnaire does not have any psychometric properties.  

Flight simulator 

All flying portions of this study were conducted in an Ascent XJ flight training device 

(Mechtronix, Montreal, Canada), which has been certified by Transport Canada for pilot training 

and evaluations. The Ascent XJ is a fixed base simulator with 180 degrees of visual display and a 

full size, two-crew cockpit. For this study, it was configured to represent a transport jet similar 

to the Boeing 737. Avionics included glass cockpit, dual flight management systems, and an 

autopilot controlled through a mode control panel. The simulated aircraft did not have an auto-

throttle. Pilots were not expected to be familiar with specifics of the Ascent XJ’s avionics, so all 

onboard equipment was pre-set for the experiment’s scenario. The aircraft was configured to a 

standard weight of 60,000kg, and the “fuel consumption freeze” option was selected to ensure 

aircraft characteristics remained stable throughout the study.  
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Pilot monitoring 

By design, commercial jets are designed to be operated by two pilots: a pilot flying and a 

pilot monitoring. In the experiments outlined below, an experimenter acted as pilot monitoring. 

An experimenter acting as pilot monitoring held commercial pilot licenses with qualifications 

for the class of airplane being operated. The participant pilot flying is responsible for 

conducting all flying tasks, notably operation of all flight controls. The pilot monitoring is a 

scripted role, where they also performed physical actions at the explicit request of the pilot 

flying and make certain “standard calls”. An example of a physical action included lowering 

landing gear on approach to landing following the “gear down” request. Standard calls are pre-

defined verbalizations of information at certain points during flight, such as “80 knots” once the 

aircraft reaches that speed during take-off. Additionally, the role of the pilot monitoring was to 

advise the pilot flying of any parameter deviation past a limit set out in the Transport Canada 

Flight Test Guide (Transport Canada, 2017). Should there be a deviation, the pilot monitoring 

simply called out the parameter which exceeded the limit. For example, should a pilot be too 

high, the pilot monitoring would call “altitude”. As pilots had slight differences in phraseology 

and technique due to their employer’s operating procedures, the experimenter performed the 

pilot monitoring duties in accordance with the participant’s standard operating procedures. 

Psychophysiological equipment 

 All psychophysiological data were recorded onto a Google OnePlus 6 A6003 running Android 10 

(Google, Mountain View, USA). Eye tracking data were collected with a monocular Pupil Core 

head-mounted eye tracker (Pupil Labs, Berlin, Germany, and the custom Pupil Mobile 

application. The Pupil Core glasses were connected to the OnePlus via USB-C cable. The Pupil 

Core records both the right eye movements (192 x 192 pixel camera at a 200Hz sampling rate), 

and records the participant’s world view using a camera mounted above the eye (1080 x 730 

pixels and a sampling rate of 30Hz).  

Electrocardiogram data were collected using a Polar H10 Bluetooth heart rate monitor 

and the Elite HRV app (Polar Electro, Kempele, Finland; Elite HRV LLC, Asheville, USA) connected 

to the OnePlus via Bluetooth. The Polar H10 is a chest strap electrocardiogram with a sampling 
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rate of 1000Hz. The Elite HRV app export consisted of sequential R-R interval durations in 

milliseconds. Temporal alignment was via an Android smartphone’s internal clock. 

Subjective workload 

Subjective workload was measured through the NASA Task Load Index (NASA-TLX: Hart 

& Staveland, 1988). The NASA-TLX is a multidimensional workload scale, where participants 

answer six questions on a line ranging from 0 to 100. The questions refer to the various 

dimensions of workload: mental demand, physical demand, temporal demand, performance, 

effort, and frustration. Participant’s responses on each dimension and the overall score were 

recorded via the NASA-TLX application on an Apple iPad (NASA, Mountain View, USA; Apple, 

Cupertino, USA). While the NASA-TLX does allow participants to complete a series of pairwise 

comparisons to weigh each dimension, the present study did not include this component. 

Procedure 
 In the 24h period preceding the simulator session, participants completed the consent 

form and flight questionnaire at home. They also viewed a video briefing explaining study 

objectives, procedures, and simulator handling characteristics. Upon participants’ arrival, 

participants were familiarized with the heart rate monitor, eye tracker and flight simulator. 

They were also introduced to an experimenter who was to be their pilot monitoring. Particular 

attention was paid to ensuring participants were comfortable with all flight controls and 

systems of the flight simulator, and the manoeuvres to be executed, as they would in preparing 

a real flight. The participants then put on the heart rate monitor and eye tracker, and took a 

seat in the simulator. All participants flew in the captain’s seat. A second experimenter 

monitored and operated the flight simulator an instructor station outside of the simulator. All 

simulated flights were conducted at Montreal Trudeau International Airport (CYUL) on Runway 

06 Left, using the required navigation procedures (NAV CANADA, Ottawa, Canada). 

Familiarization Flight  

The objective of this flight is to familiarize participants with the simulator’s handling 

characteristics, and ensure harmony of procedures between the participant and pilot 

monitoring. Between each maneuver, the autopilot is engaged while the participant delivers a 
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briefing on how they will conduct the upcoming maneuver. Once ready, the participant 

disengages the autopilot and begins the maneuver. 

The familiarization flight begins at the runway threshold, where participants complete 

their take off briefing, before the take-off checklist is completed. Participants then conduct a 

visual take off and establish cruise flight at 5000 feet, as directed by the experimenter. Once 

participants declare they are comfortable with the handling of the aircraft, they proceeding to a 

series of standardized maneuvers including a medium turn, then an approach to stall in clean 

configuration. Once these maneuver exercises were completed, the simulator was repositioned 

for an instrument landing system (ILS) approach. The familiarization flight ended once the 

aircraft was stopped on the runway. Participants were offered a 10-minute break after that 

flight, during which any remaining questions were answered. 

Experiment Flight 

Prior to the experiment flight, the heart rate monitor and eye tracker were turned on 

and calibrated. To allow for a baseline resting state comparison, we collected a 3-minute ECG 

baseline. In addition, we calibrated the eye tracker with Pupil Labs’ portable calibration target. 

The experiment flight was similar to the practice flight, except for three additions. The air 

exercises included a steep turn, and an approach to stall in landing configuration. These are 

similar exercises to the medium turn and approach to stall in the familiarization flight, but with 

higher difficulty. Pilots are familiar with both these exercises, as are part of Transport Canada’s 

Pilot Proficiency Check Flight Test (Transport Canada, 2017). Second, participants conducted 

the ILS (instrument landing system) approach, where pilots precisely follow vertical and 

horizontal guidance to the ground, twice at the end of the flight. One was uneventful, while the 

other approach included a laser strike prior to crossing the final approach fix. The approaches 

were counterbalanced, and the simulator was repositioned between approaches. Between 

each maneuver, the airplane was put on autopilot while participants completed a NASA-TLX 

subjective workload questionnaire. Participants themselves disengaged the autopilot when 

ready for the next maneuver. The study ended once the airplane was immobilized. Participants 

returned the psychophysiological equipment and were provided an opportunity for questions. 

Durations for each manoeuvre and flight varied based on pilots’ speeds. Overall recording times 



 20 

for the manoeuvres was 995 seconds (SD = 159). Normal turn duration was (M = 225, SD = 24) 

seconds, steep turn duration was (M = 158, SD = 36) seconds, clean approach to stall duration 

was (M = 111, SD = 7) seconds, and landing configuration approach to stall duration was (M = 

110, SD = 30) seconds. 

Data Handling 
 Due to the small participant sample size, missing or unreliable data was excluded as 

interpolation or mean substitution would be unreliable. Heart rate data was missing for one 

participant. When there was presence of >20% unreliable or missing data for pupillometry data, 

pupillometry was excluded on a per-manoeuvre basis. NASA-TLX subjective workload ratings 

were missing for two participants. 

Electrocardiogram  

Interbeat interval data was exported from the EliteHRV application into Kubios HRV 

3.3.1 (Kubios, Kuopio, Finland) for cleaning and frequency analysis. Artifact correction was 

conducted through the built-in algorithm, using a medium threshold. Visual inspection was then 

conducted for quality assurance. Analysis windows were created around each maneuver, from 

the time the autopilot was disengaged to the point it was turned on after completion or the 

aircraft was stopped after landing. Heart rate and the standard deviation of beat-to-beat 

intervals (SDNN) were calculated for each manoeuvre. 

Eye Tracking 

Eye tracking data handling was done in Pupil Player 1.17.6 (Pupil Labs, Berlin, Germany). 

As we used the mobile recorder, post-hoc pupil detection, calibration and gaze mapping were 

conducted with the built-in tools using standard settings. The data was then exported for 

processing through a custom R script. There, samples with a confidence lower than .6, the 

standard Pupil Lab cut-off, and extreme pupil diameters (+/- 3 SD from the mean) were marked 

as missing. This was done because many of these stretches correspond to blinks. Then, missing 

values in stretches shorter than 500ms, where lost pupil diameters can be expected to remain 

relatively constant, were interpolated with a linear interpolation function. Stretches longer than 

500ms were left as missing. From there, means and standard deviations were calculated for 
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each manoeuvre. Manoeuvres where more than 80% of the data was missing were excluded 

from further analysis. 

Simulator Data 

Unlike in a traditional lab environment, we cannot access the simulator data as a direct 

output due to Transport Canada certification. Consequently, the simulator data was extracted 

via video recording of a screen displaying simulator parameters. Values from these videos were 

extracted every second via optical character recognition using a custom R program 

implementing Google’s Tesseract OCR engine (Google, Mountain View, USA). Results from the 

Tesseract OCR interface were manually checked for accuracy by comparing them to the video 

frames. Incorrect values were replaced manually. Time windows were then created around 

each maneuver: from the time the autopilot was disengaged to the point it was turned on after 

completion or the airplane was stopped after landing. For each time window (i.e. manoeuvre), 

airspeed and altitude data was extracted for analysis.  
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Results 

Data analyses were conducted through JASP (Version 0.13) and R (Version 3.6.3). Due to 

a pandemic caused by the SARS-CoV-2 coronavirus, in-person research was halted as a 

preventative measure on March 17th, 2020 in response to government public health measures. 

Therefore, we were unable to attain the planned sample size (> 20 participants) as 

recommended by the power analysis. The present analyses were conducted on the existing 

sample at the time of lab closure (n = 14). When conducting statistical tests on small samples 

that compare an alternate hypothesis to a null hypothesis, the lack of statistical power is an 

issue that can cause decision errors (Kline, 2013). This means that traditional parametric 

statistical tests are less likely to detect the presence of a significant effect, even if one is 

present. Additionally, use of statistical tests with excessively small samples increases the 

chance of falsely rejecting the null hypothesis when it should have been maintained (Kline, 

2013). Therefore, the data analysis below will consist of two sections. Firstly, descriptive 

statistics and qualitative descriptions of data distributions will be discussed. Second, 

exploratory statistical analyses will be presented, with an emphasis on Bayes Factors, effect 

sizes, and confidence intervals. These three types of analysis are less prone to small sample size 

/ low power issues in comparison to traditional parametric analysis (Kline, 2013).  

Descriptive Statistics 
 Descriptive statistics and distributions plots were calculated for flight path deviations, 

heart rate, heart rate variability, pupil size and NASA-TLX ratings (see Table 1 & Figure 1). 

Qualitative observation of these plots highlights similarities within pilots. Within-subject 

patterns are observable in heart rate, SDNN, and mean pupil diameter (see figure 1). These 

statistics and observations are discussed in this section. 

Flight path deviations 

For turns, flight path deviations refer to the total time, in seconds, spent outside 

acceptable speed (240 knots – 260 knots) and altitude (4900 feet – 5100 feet) (Transport 

Canada, 2017). For stalls, flight path deviations refer to the time, in seconds, for participants to 

regain safe airspeed (200 knots) and recover to an acceptable altitude (4800 feet), as time
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Figure 1 Distribution plots for each measure, by manoeuvre 
(A) Heart rate in beats per minute (B) Heart rate variability (SDNN) in milliseconds (C) Mean pupil diameter, in 
arbitrary Pupil Labs units (D) Compound NASA-TLX subjective workload ratings, in percentage (E) Time outside 
ideal flight path, in seconds.  
Each dot represents a participant, and lines connect within-subject observations.  
Note: NT: normal turn, SAS: simple approach to stall, ST: steep turn, CAS: complex approach to stall
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outside these tolerances is associated to increased danger. Sample sizes, mean and standard 

deviations were calculated for flight path deviations for each manoeuvre. Lower flight path 

deviations indicate superior performance.  

Mean flight path deviations were higher during steep turns (M = 13.29, SD = 18.47) than 

during normal turns (M = 6.50, SD = 12.60). Observations of the descriptive plot (Figure 1) 

shows deviations on both manoeuvres to be positively skewed with (n = 8) pilots remaining 

within acceptable tolerances during the entirety of the normal turn, and (n = 4) pilots remaining 

withing acceptable tolerances during steep turn.   

 Mean recovery time for the simple (i.e., clean configuration) approach to stall was (M = 

17.50, SD = 5.37). Mean recovery time for the complex (i.e., landing configuration) approach to 

stall was (M = 43.50, SD = 11.95). Pilots required between 12 and 33 seconds to recover from 

the simple approach to stall, while for complex approach to stall required 32 to 67 seconds to 

recover from the stall. Qualitative observations of the distribution plots (Figure 1) for both 

approach to stall show that there is a larger variance in performance on the complex approach 

to stall (SD=11.95) compared to the simple approach (SD=5.37).  

Objective workload  

Objective workload analyses focused on heart rate (in beats-per-minute), heart rate 

variability (i.e. SDNN) and pupil size (in arbitrary units). Means and standard deviations were 

calculated for each manoeuvre. One participant was missing from heart rate analyses due to an 

equipment malfunction, therefore heart rate and SDNN analyses were conducted on a sample 

size of (n = 13). Participants were excluded from the pupillometry analyses on a per-manoeuvre 

basis; thus, sample size will be reported for each manoeuvre and measure. 

Mean heart rate during the steep turn was 84.47 (SD = 7.36), while during the normal 

turn it was 82.70 (SD = 7.34).  Mean heart rate during the complex approach to stall was 81.21, 

(SD = 7.03), and slightly lower during the clean stall (M = 79.20, SD = 7.52). Qualitative 

observation of the distribution plots (see Figure 1) suggest similar variability in the distributions 

between both difficulties of turns. During approach to stall, the distributions appear slightly 

negatively skewed and slightly lower than heart rate during the turns. However, heart rate 

distributions for both difficulties remain similar.  
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Mean SDNN during was similar between steep turns was 29.98 (SD = 9.04) and normal 

turns (M = 30.62, SD = 10.59). During approaches to stalls, SDNN was slightly higher than during 

turns (complex: M = 40.15, SD = 6.30; simple M = 37.96, SD = 9.69). On the harder approach to 

stall, variance was lower than during other manoeuvres (SD = 6.30). Observations of the 

distribution plots highlight this statistic, with the distribution for the complex approach to stall 

noticeably different from the other manoeuvres (see figure 1).   

For each manoeuvre, mean pupil size were calculated (see table 1). Group means, 

standard deviations, and sample sizes were calculated for manoeuvre mean and median pupil 

sizes (see table 1). Qualitative observation of the distribution plots highlights different 

distributions between approaches to stall and turns (figure 1). There is lower variance in mean 

pupil size during approaches to stall than during turns. Distributions for turns are positively 

skewed, contrary to distributions for approaches to stall, which are negatively skewed. 

Meanwhile, no differences are perceivable between manoeuvre difficulty (i.e. comparing both 

turns and stalls). 

Subjective workload  

Descriptive statistics for subjective workload scores were calculated for each factor of 

the NASA-TLX (table 2). Each factor of the NASA-TLX measures a dimension of workload (i.e. 

mental demand, physical demand, temporal demand, effort, frustration and perceived 

performance). Total NASA-TLX scores, with all factors equally weighted, were also calculated as 

a multidimensional estimate of workload (Hart & Staveland, 1988), see table 1. Distribution 

plots suggest higher subjective workload for the difficult turn and approach to stall when 

compared to the easier manoeuvres, but ratings (i.e. NASA-TLX) were much less consistent 

between maneuvers than were objective measures. Additionally, subjective workload on the 

difficult manoeuvres appears to be negatively skewed, suggesting a larger proportion of 

responses indicating higher perceived workload (see figure 1).   
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Table 2 

Means and standard deviations of NASA-TLX components by manoeuvre. 

 Mental Physical Temporal Performance Effort Frustration 

 M SD M SD M SD M SD M SD M SD 

NT 53.3 18.7 52.1 22.7 27.5 24.9 35.0 18.3 50.4 16.2 25.0 19.2 

SAS 45.0 20.7 41.3 24.5 45.8 25.7 31.3 14.3 43.3 18.4 21.3 14.3 

ST 58.3 18.5 55.0 18.6 37.9 24.6 47.5 21.9 60.4 17.9 38.3 27.5 

CAS 59.6 18.8 50.0 21.4 46.7 25.3 47.5 20.4 59.6 18.8 39.6 21.6 

Note: NT: normal turn, SAS: simple approach to stall, ST: steep turn, CAS: complex approach to 

stall 
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Exploratory analyses 
 Due to the limited sample size, the following statistical tests are considered exploratory 

and should therefore be interpreted with caution. In small samples, p-values used to make 

decisions on hypotheses are unreliable, thus increasing the probability of decision errors (Kline, 

2013). This affects all statistical tests relying on p-values, including tests designed to check 

assumptions (i.e. Shapiro-Wilk test of normality, Mauchly’s test of sphericity). Therefore, we 

assume that assumptions regarding hypothesis testing are violated. Therefore, the present 

exploratory analyses focus on effect sizes, Bayes Factors and confidence intervals. P-values will 

not be reported. Although statistical significance can be inferred from confidence intervals, 

interpretation of statistical significance is avoided in the context of these analyses.  

Interpretations of Bayes Factors follow general guidelines, which are limited in applicability 

until a review of evidence in human factors research provides further guidance in this field 

(Wetzels et al., 2011). 

Between groups 

Five exploratory repeated-measures analyses of variance (ANOVA) were conducted to 

investigate between-manoeuvre differences in performance, objective measures of workload, 

and NASA-TLX subjective workload. Planned post-hoc, uncorrected, dependent samples t-tests 

are reported to compare exercise pairs, contrasting the difficult (i.e. steep turn and complex 

approach to stall) and easier (i.e. normal turn and simple approach to stall) versions of each 

manoeuvre. When observation of the ANOVA plots suggested a difference between exercise 

pairs, post hoc t-tests were conducted to further investigate these differences and calculate an 

effect size.  

First, an ANOVA was conducted to investigate overall performance differences between 

manoeuvres, with manoeuvre (turn, stall) as a within-subject factor, which suggests a large 

effect of manoeuvre on performance, F(3,39) = 29.37, η2 = .69, with decisive evidence for the 

research hypothesis (BFM = 2.44e+8). Two non-directional, dependent sample t-tests were 

conducted to compare means between steep turn (M = 13.29, SD = 18.47) and normal turns (M 

= 6.50, SD = 12.60), and between complex approach to stall (M = 43.50, SD = 11.95) and simple 

approach to stall (M = 17.50, SD = 5.38). For turns, anecdotal evidence was found suggesting no 

difference in performance between normal and steep turns (BF10 = .73), with a medium effect 
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size (d = -.42, 95% CI [-.96, .14]). For approaches to stall, decisive evidence was found 

suggesting a difference in performance between the complex and simple manoeuvres (BF10 = 

10511.67), with a large effect size (d = -2.19, 95% CI [-3.15, -1.19]). 

Second, an ANOVA was conducted to investigate overall heart rate differences between 

manoeuvres, which suggests an effect of manoeuvre on heart rate, F(3,36) = 9.97, η2 = .45, with 

decisive evidence for the research hypothesis (BFM = 324.58). Two non-directional, dependent 

sample t-tests were conducted to compare means between steep turn (M = 84.47, SD = 7.63) 

and normal turns (M = 82.70, SD = 7.52), and between complex approach to stall (M = 81.21, SD 

= 7.03) and simple approach to stall (M = 79.20, SD = 7.52). For turns, anecdotal evidence was 

found suggesting an anecdotal increase in heart rate between normal and steep turns (BF10 = 

1.15), with a medium effect size (d = .53, 95% CI [-.06, 1.11]). For approaches to stall, anecdotal 

evidence was found suggesting an anecdotal increase in heart rate between the simple and 

complex manoeuvres (BF10 = 1.09), with a medium effect size (d = .52, 95% CI [-.07., 1.09]). 

Third, an ANOVA was conducted to investigate overall differences in SDNN between 

manoeuvres, which suggests a moderate effect of manoeuvre on SDNN (F(3,36) = 8.70, η2 = .42) 

with decisive evidence for the research hypothesis (BFM = 164.82). Two non-directional, 

dependent sample t-tests were conducted to compare means between steep turn (M = 29.98, 

SD = 9.04) and normal turns (M = 30.62, SD = 10.59), and between complex approach to stall (M 

= 40.15, SD = 6.30) and simple approach to stall (M = 37.96, SD = 9.59). For turns, anecdotal 

evidence was found suggesting no difference in SDNN between normal and steep turns (BF10 = 

.30), with a negligible effect size (d = -.11, 95% CI [-.44, .65]). For approaches to stall, anecdotal 

evidence was found suggesting no difference in SDNN between the complex and simple 

manoeuvres (BF10 = .38), with a small effect size (d = -.44, 95% CI [-.79., .32]). However, 

qualitative observation of the descriptives plot suggests differences between approach to stall 

exercises and turn exercises (see figure 1). Dependent, non-directional t-tests were therefore 

conducted contrasting the normal turn and simple approach to stall, and the steep turn with 

complex approach to stall. Substantial evidence was found suggesting that the SDNN may be 

lower during the normal turn than the simple approach to stall (BF10 = 9.22) with a large effect 

size (d = -.93, 95% CI [-1.58, .26]). The mean for the complex manoeuvres suggested substantial 
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evidence that SDNN is lower during the steep turn than the approach to stall (BF10 = 9.91), with 

a large effect size (d = -.95, 95% CI [-1.59, -.27]). 

Fourth, an ANOVA was conducted to investigate overall differences in mean pupil 

diameter between manoeuvres, which suggests a no effect of manoeuvre on mean pupil 

diameter (F(3,21) = .93, η2 = .12) with substantial evidence for the null hypothesis (BFM = 3.06). 

These results and qualitative observation of the plot did not warrant further pairwise 

comparisons as no between-manoeuvre differences and patterns were observable (see figure 

1). 

Last, an ANOVA was conducted to investigate overall differences in subjective workload 

between manoeuvres, which found substantial evidence against differences in subjective 

workload across manoeuvres (F(3,33) = 5.24, η2 = .32, BFM = 9.78). Two non-directional, 

dependent sample t-tests were conducted to compare means between steep turn (M = 48.82, 

SD = 16.07) and normal turns (M = 41.88, SD = 15.26), and between complex approach to stall 

(M = 50.49, SD = 16.26) and simple approach to stall (M = 37.99, SD = 13.33). For turns, 

substantial evidence was found suggesting a difference in subjective workload between normal 

and steep turns (BF10 = 4.22), with a large effect size (d = .83, 95% CI [.15, 1.48]). For 

approaches to stall, substantial evidence was found suggesting a difference in subjective 

workload between the complex and simple manoeuvres (BF10 = 9.24), with a moderate effect 

size (d = .99, 95% CI [.27, 1.67]). 

Predicting subjective workload and performance 

Exploratory linear regressions were used to predict subjective workload and 

performance from the objective workload measures. 

First, heart rate, SDNN and mean pupil diameter were regressed onto NASA-TLX 

subjective workload ratings across all manoeuvres combined. Anecdotal evidence was found 

against the overall model (F(3,25) = 1.37, BF10= .35), which had a small effect size (R2 = .14).  

Confidence intervals for all coefficients in this model included zero. Model summary and 

coefficients are available in table 3.  
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Table 3 

Model summary and coefficients for predicting NASA-TLX subjective workload ratings from 

heart rate, SDNN and pupil diameter. 

 
B 

95% CI for B 
BFInclusion F df BF10 R2  LL UL 

Overall Model     1.37 3, 25 .35 .14 

     Intercept 73.68 -64.38 211.75 1.00     

     Heart Rate -.51 -1.67 .64 .80     

     SDNN .43 -.73 .82 .47     

     Pupil Diameter 2.17 -4.97 9.32 .53     
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Next, regressions were conducted to predict flight path deviations from workload 

measures. First, heart rate, SDNN and mean pupil diameter were regressed onto flight path 

deviations across all manoeuvres. Anecdotal evidence was found for the overall model, 

regressing heart rate, SDNN and mean pupil diameter onto performance (F(3,33) = 3.03, BF10 = 

1.48). This model had a small effect size (R2 = .22). Second, NASA-TLX ratings were regressed 

onto flight path deviations. Strong support was found for the overall model (F(1,46) = 9.77, BF10 

= 12.44), which had a small effect size (R2 = .18). Last, subjective and objective workload 

measures were used to predict flight path deviations. Strong evidence was found for the overall 

model (F(4,24) = 5.37, BF10 =15.30), which had a medium effect size (R2 = .47). In the compound 

model, Bayes Factors for all coefficients suggested some evidence for their inclusion in the 

model (all BFInclusion’s > 1). Model summaries and coefficients are in table 4.  
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Table 4 

Model summaries and coefficients for predicting flight path deviations from psychophysiological 

measures (heart rate, SDNN and pupil diameter), subjective reports (NASA-TLX) and a combined 

model with all measures. 

 

 
B 

95% CI 
BFInclusion F df BF10 R2  LL UL 

Psychophysiological     3.03 3,33 1.48 .22 

     Intercept -37.38 -141.98 67.22 1.00     

     Heart Rate .51 -.48 1.50 .79     

     SDNN .96 .26 1.65 3.18     

     Pupil Diameter -3.18 -9.39 3.02 .80     

Subjective Workload     9.77 1,46 12.44 .18 

     Intercept -1.78 -17.22 13.65 1.00     

     NASA-TLX .51 .18 .83 12.44     

Composite Model     5.37 4,24 15.30 .47 

     Intercept -157.54 -309.08 -6.00 1.00     

     Heart Rate 1.45 .20 2.72 5.12     

     SDNN 1.11 .28 1.94 6.64     

     Pupil Diameter -1.50 -9.22 6.22 1.46     

     NASA-TLX .72 .28 1.16 12.95     
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Discussion 

The present thesis aimed to investigate the usability of psychophysiological measures, 

specifically heart rate, heart rate variability, and pupillometry in flight training contexts in 

commercial pilots. To do this, three specific hypotheses were put forward. First, we 

hypothesized that heart rate, heart rate variability and pupil size will vary as a function of the 

change in workload caused by different flight manoeuvres. Second, we hypothesized that heart 

rate, heart rate variability and pupillometry can be used to predict a pilots’ subjective workload 

ratings during aircraft handling exercises. Last, we hypothesized that subjective workload can 

predict aircraft handling performance. Here I will review the evidence regarding these 

hypotheses, discusses limitations for the present study, and provides recommendations for 

future directions.  

Between-Manoeuvre Workload Differences 
 A valid psychophysiological measure of workload should be able to differentiate 

between high and low workload manoeuvres. This was our first hypothesis, for which the data 

suggest partial support. We found differences in the cardiac measures, NASA-TLX ratings and 

flight path deviation patterns when comparing manoeuvre types. However, we did not observe 

a difference in pupillometry across manoeuvre type.  

To check that manoeuvre manipulations were effective at creating a low and high 

workload, we confirmed that the complex variant of each manoeuvre (i.e., turn and approach 

to stall) was more difficult than the simple manoeuvres, indicated by increased deviations from 

the ideal flight path. We found that flight path deviations were higher in the complex 

manoeuvres than the deviations during simple manoeuvres. Transport Canada (2004) classifies 

steep turns and landing configuration approach to stalls as complex variants of the simple 

manoeuvres, requiring increased skill and resources from pilots for acceptable completion of 

the manoeuvre. Our results provide evidence that support this statement, as lower 

performance was observed during the complex manoeuvres, and variance in performance 

across pilots was higher during the complex manoeuvres. Presence of workload differences 

between manoeuvres were also confirmed by examination of subjective workload as assessed 

via the NASA-TLX scores. Steep turns and complex approaches to stall were rated as more 

demanding than the simple variants.  Taken together, the observed performance and subjective 
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workload differences between manoeuvres suggests an effective manipulation of pilots’ 

workload between manoeuvres. However, do the changes in workload caused by the different 

manoeuvres cause a corresponding change in the cardiac function and pupillometry? 

Based on findings from Jorna (1993) and Luque-Casado (2016), increases in heart rate 

and decrease in heart rate variability (measured by SDNN) is associated with increased arousal 

and workload. Therefore, we expected to observe in the complex exercises an increase in heart 

rate, and SDNN to decrease. However, our observations differed from this prediction. We 

observed clear differences between manoeuvre types (i.e., turn vs stall), but little difference 

was found between the complex and simple variant of each manoeuvre. Specifically, pilots’ 

heart rate was higher during the turn manoeuvre than during the approaches to stall. Heart 

rate variability was lower during turns. When contrasting the complex approach to stall to its 

simple variant, and the steep turn to the normal turn, the data shows small increases in heart 

rate with the increase in difficulty. Similar findings were observed with heart rate variability. 

Heart rate variability was highest during stalls than during turns. Given the limited sample size, 

we were unable to conduct traditional parametric statistical tests on these between-condition 

differences. Nevertheless, the general pattern of the results for cardiac measures partially 

supports our hypothesis by differentiating between manoeuvre types (i.e. turns vs. approaches 

to stall), but not between different difficulties of the same manoeuvre.  

While we were unable to conduct statistical testing due to the small sample size, these 

results do replicate the findings reported in similar studies. For example, a study conducted in 

light aircraft found increases in heart rate during high workload conditions, such as take-off and 

landing (Causse et al., 2012). As with our results, the increase in heart rate during more 

demanding manoeuvres were stable between pilots, despite having large between-subject 

variance. Hankins and Wilson (1998) conducted a similar experiment that collected 

psychophysiological data during an entire flight while pilots performed multiple manoeuvre 

types (i.e. turns, cruise flight, holding patterns). They found differences in heart rate (in beats 

per minute) across manoeuvres types, but they did not observe with changes in heart rate 

variability. Taken together with the results of the present experiment, heart rate appears to 

change predictably due to workload induced by different manoeuvre types, but not vary as a 



 36 

function of workload changes due to manoeuvre difficulty. The one caveat to this conclusion is 

that the manipulation of difficulty may not have been sufficient to create a significant change in 

heart rate (see workload and performance limitations later).   

Moving on to the pupillometry data, we aimed to investigate whether changes in pupil 

diameter due to workload were detectable in a flight simulator environment.  In naturalistic 

environments, changes in brightness remains a confound to measuring workload through pupil 

size. However, in a simulated environment, brightness in the environment is expected to be 

consistent between the simple and complex manoeuvres. We therefore hypothesized that 

mean pupil size during a manoeuvre would change between manoeuvres and differences in 

workload. Our data did not support this hypothesis. No differences were present in pupil size 

between manoeuvre types, nor between levels of difficulty. These results contrast those 

reported by Dehais and colleagues (2010), who found differences in pupil size between phases 

of flight during simulated emergencies at night. This is likely due to the fact that the cockpit 

environment was subject to variations in brightness across different areas of the cockpit that 

render pupillometry data without a precise ambient light measurement. Dehais and colleagues 

(2010) tightly controlled brightness by conducting their study at night and only considering 

samples with equal ambient light. Given our results in a controlled, simulated environment, we 

interpret our results to conclude that pupil size as a measure of workload remains 

inappropriate for the cockpit environment, as proper measurement would require 

experimental control beyond those practical for flight training. While overall brightness did not 

change significantly during a simulator session, our pupillometry measures may be affected 

further by factors such as technique and attention. For example, some pilots conducting these 

manoeuvres may have directed their attention towards areas in their environment of varying 

brightness, spending more time looking at elements inside the dark cockpit than time spend 

looking outside the forward windows. However, various transformations of the pupillometry 

signal remain untested in the cockpit environment. These are discussed further in this chapter. 

Taken together, the findings reported here suggest that additional research is required 

to define contexts where psychophysiological measures are most appropriate measurements of 

workload. For example, the changes in cardiac function related to workload imposed by basic 
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processes required to complete a task, regardless of its difficulty level. In other words, one 

could hypothesize that the patterns of between-manoeuvre changes in heart rate and heart 

rate variability are caused by the inherent differences in pilot resources required for completing 

each manoeuvre. Turns require sustained attention, consistently updating a model in working 

memory with multiple parameters (i.e. bank angle, altitude, airspeed, engine thrust) and 

precision. Conversely, stalls require the prompt application of a trained rehearsed recovery 

procedure, with an emphasis placed on quickly and successfully exiting the situation, and not 

on the precision of flying inputs. Changes in psychophysiological measures may be due to these 

different types of task demands. Specifically, heart rate would be lower during stalls because 

these require a simpler, highly rehearsed recovery instead of an extended increase in attention 

and precise movements of the flight controls during turns. Meanwhile, subjective workload 

evaluations are often biased by previous exposure to similar manoeuvre and performance 

(Moore & Picou, 2018). In this case, participants evaluating a given manoeuvre may be 

evaluating this manoeuvre to previous exposure to similar situations, regardless of the basic 

resources required for completing a given manoeuvre type. This may explain subjective 

workload scores’ ability to differentiate between manoeuvre difficulty levels, as flight path 

deviations were generally higher during the difficult manoeuvre, but not manoeuvre type. The 

present results add to the literature supporting the strategic use of cardiac function as an 

objective workload measure to compare aviation situations likely to require different types of 

cognitive and physiological resources on behalf of the pilot. 

Psychophysiological measures, subjective workload and performance 
 The second aim of this thesis was to investigate the association between physiological 

measures as an objective measure of workload, between workload and aircraft handling 

performance. Due to the limited statistical power of the current study, the preliminary 

conclusions regarding these hypotheses are speculative. Two hypotheses were put forward to 

investigate the association between psychophysiological measures, and between workload and 

flying performance.  

First, we hypothesized that heart rate, heart rate variability and pupil diameter could 

predict subjective workload. In general, our data did not support this hypothesis. Differences 

between manoeuvres were present in subjective workload and psychophysiological measures, 
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but did not correlate. Contrarily to the changes in heart rate between manoeuvre types, we 

found that pilots subjectively evaluated the difficult manoeuvres as more demanding than the 

simple ones. Meanwhile, subjective workload did not vary by manoeuvre type, as did heart 

rate. As with the results for our first hypothesis, these findings suggest that subjective workload 

and psychophysiological measures are distinct indications of the mental and physiological 

resources required by a pilot in order to complete an aircraft handling task. 

Moving towards relating workload and performance, we tested whether workload could 

predict aircraft handling performance. At first glance, our results did not support this 

hypothesis. We find that heart rate, heart rate variability and pupil diameter accounted for a 

small proportion of the variance in performance (22%). Similarly, subjective workload ratings 

accounted for a small proportion of the variance in performance (18%). However, when taken 

together, objective and subjective measures of workload accounted for a moderate proportion 

of the variance in flight path deviations (47%). Based on the results from our second hypothesis, 

the present experiment provides evidence supporting the use of psychophysiological measures 

in conjunction to subjective perceptions of workload, in order to better understand pilot 

workload. This dissociation between objective and subjective workload had been highlighted by 

Luque-Casado et al. (2016) during laboratory tasks. They reported that NASA-TLX subjective 

workload ratings suggested a different pattern of changes in workload than suggested by heart 

rate variability during laboratory cognitive tasks (i.e.: n-back task, duration discrimination task, 

psychomotor vigilance task). But a clear understanding of the link between subjective 

workload, objective workload and performance does not yet exist.  

By definition, workload is intertwined with performance, as performance requirements 

will affect the amount of cognitive and physical resources required by an operator to complete 

a task (Endsley, 1995; Hart & Staveland, 1988). Measuring workload generally relies on 

subjective ratings or psychophysiological measures, each with their own caveats. Subjective 

workload ratings are biased by perceived performance in a task (Moore & Picou, 2018). 

Meanwhile, psychophysiological measures often measure associated constructs such as 

arousal, which are believed to be related to performance by an inverse-U curve. This theory is 

often a derivative of the Yerkes-Dodson law (see Cain, 2007; Causse et al., 2012).  Causse et al. 
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(2012) proposed that due to the nature of aviation operations, where significant performance 

degradations are highly unlikely due to extensive flight training and emphasis on safety, most 

aviation research captures only the increasing, first half of the U-curve. Given the small sample 

sizes in aviation research, the association between workload and performance in aviation 

research can easily appear to be a linear, but imperfect, association. However, no studies to 

date have provided conclusive evidence for this proposition. Nevertheless, evidence for the 

inclusion of workload measures in flight training to provide feedback continues to accumulate. 

For example, a series of studies with Finnish fighter pilots has suggested the inclusion of cardiac 

function as an objective workload measurement supplementing traditional feedback, where 

heart rate variability changed across manoeuvre types and between repeated performances of 

a manoeuvre during advanced flight training (Mansikka et al., 2015; 2016; 2019). The present 

thesis adds to this body of evidence, suggesting a link between objective workload, subjective 

workload measures and performance. Furthermore, the present study also suggests that a 

combination of objective and subjective workload measures would increase potential 

usefulness in an aviation training context until further research clarifies the associations 

between each measure and performance.  

Limitations and recommendations 
 First, commercial pilots are a relatively small population, forcing us to minimize data loss 

and exclusions. This was further exacerbated by the COVID-19 pandemic, which unexpectedly 

prevented the completion of data collection in March of 2020. Thus, the observed sample size 

was smaller than planned, collecting data with 14 pilots instead our anticipated sample size of 

25 pilots. To compensate for this, data cleaning in this thesis was aimed at minimizing data 

exclusions. Specifically, exclusions were conducted on a per-manoeuvre basis, and only the 

measures with excessive missing data were excluded. This means that many manoeuvres were 

represented in two measures (i.e., cardiac measures and subjective workload), while the others 

(i.e., pupillometry) was excluded for this manoeuvre. Pupillometry data was particularly 

excluded by this decision, where thresholds for missing data were set considerably lower than 

guidelines for research (Kline, 2013). Nonetheless, our final sample size was not uncommon for 

most published aviation research. Generally, research in aviation using psychophysiological 

measures is conducted with sample sizes between 10 and 30 (e.g., Hankins & Wilson, 1998; 
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Hidalgo-Muñoz et al., 2018; Lee & Liu, 2003; Mansikka et al., 2019). However, results with 

sample sizes of (n = 3) have been published (Causse et al., 2012), as even small sample sizes 

provide guidance for further research.  

A consequence of the small sample sizes and objectives of this research area is that 

statistical power is difficult to achieve. As such, assumptions regarding traditional parametric 

null-hypothesis statistical tests are often violated, and cannot be effectively tested (Kline, 

2013). In psychophysics, this is exacerbated by the large variation in psychophysiological 

measures due to measurement error and extraneous physiological mechanisms. Furthermore, 

different transformations of psychophysiological signals often measure different phenomena. 

For example, different heart rate variability metrics, while all transformations of an 

electrocardiography signal, may produce differing results (Cain, 2007; Roscoe, 1992). Our 

exploratory statistical analyses and associated implications are therefore limited. To 

compensate, the current research focused on effect sizes, Bayes Factors, descriptive statistics 

and qualitative observations of plots. An increased sample size would enable effective 

statistical analysis (Kline, 2013). In the meantime, considering the “case study” nature of how 

workload measure in flight training are used (e.g., Thales Humans), future research could focus 

on reviewing existing studies to identify consistent patterns in psychophysiological responses 

between exercises and studies. An increased understanding of these consistent patterns would 

then have to be related to changes in performance, or learning, to provide tangible benefits.  

Psychophysiological measures. A principle objective of the present experiment was to 

maximise ecological validity. Thus, integration of psychophysiological measures into a cockpit 

environment implies certain challenges, especially in a research environment. The cardiac 

measures and pupillometry used in this study collect data about physiological processes in a 

participant, but causality between those physiological changes and psychophysiological 

measures are always assumed. Confounding factors during the data collection can alter these 

psychophysiological results. For example, heart rate variability is known to follow the circadian 

rhythm, and pupillometry is known to be affected by ambient light – both extraneous factors 

not related to pilot workload. Researchers and practitioners must refrain from inferences about 

causal relationships and relying on multiple measures (i.e. observed performance and 
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subjective measures) in order to better interpret psychophysiological measures. Our 

pupillometry findings serve as a good example of this, where we did not observe meaningful 

changes in pupil size. Given the naturalistic environment, this was expected. However, future 

pupillometry research could investigate derivatives of the pupillometry measures such as the 

Index of Cognitive Activity (Marshall, 2002; Schwalm et al., 2008). Future research, enabled by 

portable eye tracking, could also investigate the use of pupil diameter in concordance with gaze 

mapping to control for brightness of the cockpit area where pilots are looking. With respect to 

cardiac measures, the changes we observed must also be interpreted with caution. Use of 

cardiac function as an indicator of pilot workload does not allow for diagnostic of workload: 

where the source for the workload change is identified. For example, we cannot infer whether 

it was mental workload, stress, or physical workload that caused the observed increases heart 

rate during turns, when compared to stalls.  

Our results were based on the comparisons of physiological measures between different 

manoeuvres, due to the lack of an acceptable baseline. In psychophysiological research, 

contrasting measures during a experimental manipulations to those from baseline is common 

practice (Butler et al., 2006; Shaffer & Ginsberg, 2017). This aims to control for individual 

characteristics not due to experimental manipulations. Some studies elect to contrast cardiac 

function during a manipulation to an individual’s resting state, forming a work-rest ratio 

(Causse et al., 2011). However, one’s level of activation is known to changed based on 

environment, so baselines should be obtained within a representative environment, such as 

straight and level cruising flight (e.g., de Waard, 1996). However, our baseline was taken in the 

cockpit, with the airplane on the runway with engines running and parking brake on. The 

objective was to emulate the condition found in the cockpit, but without any task-related 

workload. Initial investigation of these data highlighted large differences across participants 

baselines. Some participants’ baseline heart rate was higher than all other manoeuvres, 

suggesting that participants felt that measurement period as “pre-takeoff”, and they were 

already conducting mental task-related planning. We therefore elected to analyze the current 

data by only comparing psychophysiological data across manoeuvres. This imposes limitations 

on the comparisons we can make. In the future, the inclusion of multiple baseline 
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measurements could provide several advantages. Accumulation of multiple baselines would 

enable recommendations to be made regarding appropriate conditions for baseline. Also, 

multiple baselines would allow results from a study to be better contrasted to the existing 

literature, where baseline measurements are not identical across studies.   

Workload and Performance. By definition, workload during a task varies according to 

the required performance level. Thus, pilots may have felt that performance in this study was 

not important, as there were no consequences of substandard performance. However, this 

limitation is expected that this translate to training situations, where one’s performance 

expectations may moderate the subjective and physiological response during a manoeuvre. Yet, 

the relationship between workload and performance in aviation remains to be clarified.  

It has been proposed that most aviation research only investigates a limited range of the 

inverse-U shaped association between workload and performance, where performance 

increases with workload (Causse et al., 2012). From an information processing perspective, 

however, one could expect workload in a given task to decrease with expertise. This happens as 

expertise decreases the resources required to complete a task through more effective mental 

models, which automate behaviours and decision-making. This makes sense, as aviation 

research has focuses on normal and trained emergency procedures with highly trained 

personnel, it is therefore difficult to create ecologically valid scenarios to challenge trained 

experts. Little research is devoted to investigating workload and performance at, and beyond, 

the upper limits of a pilot’s competence (Orlandi & Brooks, 2018; Wang et al., 2016; Young et 

al., 2015). Yet, the breakdown of human performance during high workload is of major interest 

for human factors scientists. In fact, it has been dubbed the human “redline” by researchers 

(Young et al., 2015). In the current study, we observed variance in performance to be much 

higher in the complex stall than other manoeuvres, where flight path deviations were kept to a 

minimum. It is possible that our most of our manoeuvres did not induce enough workload to 

increase heart rate significantly, limiting our observations to only a small segment of possible 

workload levels. In order to better understand the association between workload and 

performance, future research efforts could be directed towards identifying patterns in objective 

and subjective workload indicators in situations beyond pilots’ current competence. For 
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example, a continuation of this current project could involve unusual attitudes: where an 

airplane is unexpectedly forced into an aggressive position requiring immediate, and prompt, 

recovery from the pilot to ensure a positive outcome. In sum, investigating the limits of human 

performance in aviation though a combination of subjective and objective measures will help 

scientists understand the measurement of workload, and its relationship to performance in 

complex, naturalistic environments. 

Conclusion 
  We aimed to understand the association between subjective measures of workload, 

heart rate, heart rate variability, pupillometry and pilot performance. The present study 

contributes to the human factors literature by applying subjective and objective measures of 

workload in commercial pilots conducting aircraft handling exercises. Despite the unexpectedly 

low sample size due to a global pandemic, three main findings arose from the present 

experiment. First, heart rate and heart rate variability patterns were stable between 

participants, showing clear differences between manoeuvre types, but not manoeuvre 

difficulty. Second, pupil diameter is not an effective measure of workload in the simulator 

cockpit, likely due to the differences in brightness. Third, psychophysiological measures of 

workload can supplement subjective workload reports to better understand performance. 

Despite this, many questions remain unanswered before indicators of workload can be 

effectively implemented during training scenarios. Of particular interest are the causal 

relationships in these measures, especially during periods of extremely high workload where 

performance begins to decrease. That being said, human factors scientists are eager to better 

understand the role of workload in training and operations safety. Future research and 

replication are required to clarify the associations between psychophysiological measures, 

subjective workload and flying performance. 
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