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Abstract

Logram: Efficient Log Parsing Using n-Gram Dictionaries

Hetong Dai

Software systems usually record important runtime information in their logs. Logs

help practitioners understand system runtime behaviors and diagnose field failures.

As logs are usually very large in size, automated log analysis is needed to assist

practitioners in their software operation and maintenance efforts. Typically, the first

step of automated log analysis is log parsing, i.e., converting unstructured raw logs

into structured data. However, log parsing is challenging, because logs are produced

by static templates in the source code (i.e., logging statements) yet the templates are

usually inaccessible when parsing logs. Prior work proposed automated log parsing

approaches that have achieved high accuracy. However, as the volume of logs grows

rapidly in the era of cloud computing, efficiency becomes a major concern in log

parsing. In this work, we propose an automated log parsing approach, Logram, which

leverages n-gram dictionaries to achieve efficient log parsing. We evaluated Logram

on 16 public log datasets and compared Logram with five state-of-the-art log parsing

approaches. We found that Logram achieves a higher parsing accuracy than the best

existing approaches (i.e., at least 10% higher, on average) and also outperforms these

approaches in efficiency (i.e., 1.8 to 5.1 times faster than the second-fastest approaches

in terms of end-to-end parsing time). Furthermore, we deployed Logram on Spark and

we found that Logram scales out efficiently with the number of Spark nodes (e.g., with

near-linear scalability for some logs) without sacrificing parsing accuracy. In addition,

we demonstrated that Logram can support effective online parsing of logs, achieving

similar parsing results and efficiency to the offline mode.
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Chapter 1

Introduction

Modern software systems usually record valuable runtime information (e.g., impor-

tant events and variable values) in logs. Logs play an important role for practitioners

to understand the runtime behaviors of software systems and to diagnose system

failures [6, 14]. However, since logs are often very large in size (e.g., tens or hun-

dreds of gigabytes) [56, 60], prior research has proposed automated approaches to

analyze logs. These automated approaches help practitioners with various software

maintenance and operation activities, such as anomaly detection [69, 70, 46, 25, 39],

failure diagnosis [24, 2], performance diagnosis and improvement [51, 13], and system

comprehension [24, 62]. Recently, the fast-emerging AIOps (Artificial Intelligence

for IT Operations) solutions also depend heavily on automated analysis of operation

logs [16, 44, 35, 23, 37].

Logs are generated by logging statements in the source code. As shown in Fig-

ure 1, a logging statement is composed of log level (i.e., info), static text (i.e., “Found

block” and “locally”), and dynamic variables (i.e., “$blockId”). During system run-

time, the logging statement would generate raw log messages, which is a line of

unstructured text that contains the static text and the values for the dynamic vari-

ables (e.g., “rdd 42 20”) that are specified in the logging statement. The log message

also contains information such as the timestamp (e.g., “17/06/09 20:11:11”) of when

the event happened. In other words, logging statements define the templates for

the log messages that are generated at runtime. Automated log analysis usually has

difficulties analyzing and processing the unstructured logs due to their dynamic na-

ture [69, 24]. Instead, a log parsing step is needed to convert the unstructured logs

1



17/06/09 20:11:11 INFO storage.BlockManager:
Found block rdd_42_20 locally

Raw log
(Unstructured)

Logging 
statement

logInfo("Found block $blockId locally")
(From: spark/storage/BlockManager.scala)

Timestamp: 17/06/09 20:11:11; Level: INFO
Logger: storage.BlockManager
Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

Parsed log
(Structured)

Figure 1: An illustrative example of parsing an unstructured log message into a

structured format.

into a structured format before the analysis. The goal of log parsing is to extract

the static template, dynamic variables, and the header information (i.e., timestamp,

log level, and logger name) from a raw log message to a structured format. Such

structured information is then used as input for automated log analysis. He et al. [29]

found that the results of log parsing are critical to the success of log analysis tasks.

In practice, practitioners usually write ad hoc log parsing scripts that depend

heavily on specially-designed regular expressions [75, 33, 38] . As modern software

systems usually contain large numbers of log templates which are constantly evolv-

ing [61, 72, 12], practitioners need to invest a significant amount of efforts to develop

and maintain such regular expressions. In order to ease the pain of developing and

maintaining ad hoc log parsing scripts, prior work proposed various approaches for

automated log parsing [75]. For example, Drain [33] uses a fixed-depth tree to parse

logs. Each layer of the tree defines a rule for grouping log messages (e.g., log mes-

sage length, preceding tokens, and token similarity). At the end, log messages with

the same templates are clustered into the same groups. Zhu et al. [75] proposed a

benchmark and thoroughly compared prior approaches for automated log parsing.

Despite the existence of prior log parsers, as the size of logs grows rapidly [40, 14, 6]

and the need for low-latency log analysis increases [41, 37], efficiency becomes an

important concern for log parsing. In this work, we propose Logram, an automated log

parsing approach that leverages n-gram dictionaries to achieve efficient log parsing. In

short, Logram uses dictionaries to store the frequencies of n-grams in logs and leverage

2



the n-gram dictionaries to extract the static templates and dynamic variables in logs.

Our intuition is that frequent n-grams are more likely to represent the static templates

while rare n-grams are more likely to be dynamic variables. The n-gram dictionaries

can be constructed and queried efficiently, i.e., with a complexity of O(n) and O(1),

respectively.

We evaluated Logram on 16 log datasets [75] and compared Logram with five state-

of-the-art log parsing approaches. We found that Logram achieves a higher accuracy

compared with the best existing approaches (i.e., at least 10% higher on average),

and that Logram outperforms these best existing approaches in efficiency, achieving

a parsing speed that is 1.8 to 5.1 times faster than the second-fastest approaches.

Furthermore, as the n-gram dictionaries can be constructed in parallel and aggregated

efficiently, we demonstrated that Logram can achieve high scalability when deployed

on a multi-core environment (e.g., a Spark cluster), without sacrificing any parsing

accuracy. Finally, we demonstrated that Logram can support effective online parsing,

i.e., by updating the n-gram dictionaries continuously when new logs are added in a

streaming manner.

In summary, the main contributions1 of our work include:

• We present the detailed design of an innovative approach, Logram, for auto-

mated log parsing. Logram leverages n-gram dictionaries to achieve accurate

and efficient log parsing.

• We compare the performance of Logram with other state-of-the-art log parsing

approaches, based on an evaluation on 16 log datasets. The results show that

Logram outperforms other state-of-the-art approaches in efficiency and achieves

better accuracy than existing approaches.

• We deployed Logram on Spark and we show that Logram scales out efficiently as

the number of Spark nodes increases (e.g., with near-linear scalability for some

logs), without sacrificing paring accuracy.

• We demonstrate that Logram can effectively support online parsing, achieving

similar parsing results and efficiency compared to the offline mode.

1The source code of our tool and the data used in our study are shared at https://github.com/
BlueLionLogram/Logram
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Our highly accurate, highly efficient, and highly scalable Logram can benefit future

research and practices that rely on automated log parsing for log analysis on large log

data. In addition, practitioners can leverage Logram in a log streaming environment

to enable effective online log parsing for real-time log analysis.

Thesis organization. The thesis is organized as follows. Section 2 introduces the

background of log parsing and n-grams. Section 3 surveys prior work related to log

parsing. Section 4 presents a detailed description of our Logram approach. Section 5

shows the results of evaluating Logram on 16 log datasets. Section 6 discusses the

effectiveness of Logram for online log parsing. Section 7 discusses the threats to the

validity of our findings. Finally, Section 8 concludes the thesis.

4



Chapter 2

Backgroud

In this section, we introduce the background of log parsing and n-grams that are used

in our log parsing approach.

2.1 Log Parsing

In general, the goal of log parsing is to extract the static template, dynamic vari-

ables, and the header information (i.e., timestamp, level, and logger) from a raw log

message. While the header information usually follows a fixed format that is easy to

parse, extracting the templates and the dynamic variables is much more challenging,

because 1) the static templates (i.e., logging statements) that generate logs are usu-

ally inaccessible [75], and 2) logs usually contain a large vocabulary of words [38].

Table 1 shows four simplified log messages with their header information removed.

These four log messages are actually produced from two static templates (i.e., “Found

block <*> locally” and “Dropping block <*> from memory”). These log messages

also contain dynamic variables (i.e., “rdd 42 20” and “rdd 42 22”) that vary across

different log messages produced by the same template. Log parsing aims to separate

the static templates and the dynamic variables from such log messages.

Traditionally, practitioners rely on ad hoc regular expressions to parse the logs that

they are interested in. For example, two regular expressions (e.g., “Found block [a-z0-

9 ]+ locally” and “Dropping block [a-z0-9 ]+ from memory”) could be used to parse

the log messages shown in Table 1. Log processing & management tools (e.g., Splunk 1

1https://www.splunk.com
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Table 1: Simplified log messages for illustration purposes.

1. Found block rdd 42 20 locally

2. Found block rdd 42 22 locally

3. Dropping block rdd 42 20 from memory

4. Dropping block rdd 42 22 from memory

and ELK stack2) also enable users to define their own regular expressions to parse log

data. However, modern software systems usually contain large numbers (e.g., tens of

thousands) of log templates which are constantly evolving [61, 72, 12, 42, 75]. Thus,

practitioners need to invest a significant amount of efforts to develop and maintain

such ad hoc regular expressions. Therefore, recent work perform literature reviews

and study various approaches to automate the log parsing process [75, 22]. In this

work, we propose an automated log parsing approach that is highly accurate, highly

efficient, highly scalable, and supports online parsing.

2.2 n-grams

An n-gram is a subsequence of length n from an item sequence (e.g., text [10],

speech [64], source code [52], or genome sequences [66]). Taking the word sequence in

the sentence: “The cow jumps over the moon” as an example, there are five 2-grams

(i.e., bigrams): “The cow”, “cow jumps”, “jumps over”, “over the”, and “the moon”,

and four 3-grams (i.e., trigrams): “The cow jumps”, “cow jumps over”, “jumps over

the”, and “over the moon”. n-grams have been successfully used to model natural

language [10, 43, 9, 11] and source code [36, 57, 53]. However, there exists no work

that leverages n-grams to model log data. In this work, we propose Logram that

leverages n-grams to parse log data in an efficient manner. Our intuition is that

frequent n-grams are more likely to be static text while rare n-grams are more likely

to be dynamic variables.

Logram extracts n-grams from the log data and store the frequencies of each n-

gram in dictionaries (i.e., n-gram dictionaries). Finding all the n-grams in a sequence

(for a limited n value) can be achieved efficiently by a single pass of the sequence (i.e.,

with a linear complexity) [8]. For example, to get the 2-grams and 3-grams in the

2https://www.elastic.co
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sentence “The cow jumps over the moon”, an algorithm can move one word forward

each time and get a 2-gram and a 3-gram starting from that word each time. Besides,

the nature of the n-gram dictionaries enables one to construct the dictionaries in

parallel (e.g., by building separate dictionaries for different parts of logs in parallel

and then aggregating the dictionaries). Furthermore, the n-gram dictionaries can

be updated online when more logs are added (e.g., in log streaming scenarios). As a

result, as shown in our experimental results, Logram is highly efficient, highly scalable,

and supports online parsing.

7



Chapter 3

Related Work

In this section, we discuss prior work that proposed log parsing techniques and prior

work that leveraged log parsing techniques in various software engineering tasks (e.g.,

anomaly detection).

3.1 Prior Work on Log Parsing

In general, existing log parsing approaches could be grouped under three categories:

rule-based, source code-based, and data mining-based approaches.

Rule-based log parsing. Traditionally, practitioners and researchers hand-craft

heuristic rules (e.g., in the forms of regular expressions) to parse log data [68, 15, 28].

Modern log processing & management tools usually provide support for users to

specify customized rules to parse their log data [58, 7, 19]. Rule-based approaches

require substantial human effort to design the rules and maintain the rules as log

formats evolve [61]. Using standardized logging formats [18, 1, 17] can ease the pain

of manually designing log parsing rules. However, such standardized log formats have

never been widely used in practice [38].

Source code-based log parsing. A log event is uniquely associated with a logging

statement in the source code (see Section 2.1). Thus, prior studies proposed auto-

mated log parsing approaches that rely on the logging statements in the source code

to derive log templates [69, 50]. Such approaches first use static program analysis to

extract the log templates (i.e., from logging statements) in the source code. Based

on the log templates, these approaches automatically compose regular expressions

8



to match log messages that are associated with each of the extracted log templates.

Following studies [71, 59] applied [69] on production logs (e.g., Google’s production

logs) and achieved a very high accuracy. However, source code is often not available

for log parsing tasks, for example, when the log messages are produced by closed-

source software or third-party libraries; not to mention the efforts for performing

static analysis to extract log templates using different logging libraries or different

programming languages.

Data mining-based log parsing. Other automated log parsing approaches do

not require the source code, but instead, leverage various data mining techniques.

SLCT [67], LogCluster [49], and LFA [49] proposed approaches that automatically

parse log messages by mining the frequent tokens in the log messages. These ap-

proaches count token frequencies and use a predefined threshold to identify the static

components of log messages. The intuition is that if a log event occurs many times,

then the static components will occur many times, whereas the unique values of the

dynamic components will occur fewer times. Prior work also formulated log parsing as

a clustering problem and used various approaches to measure the similarity/distance

between two log messages (e.g., LKE [25], LogSig [65], LogMine [27], SHISO [48], and

LenMa [63]). For example, LKE [25] clusters log messages into event groups based

on the edit distance, weighted by token positions, between each pair of log messages.

AEL [38] used heuristics based on domain knowledge to recognize dynamic com-

ponents (e.g., tokens following the “=” symbol) in log messages, then group log

messages into the same event group if they have the same static and dynamic com-

ponents. Spell [20] parses log messages based on a longest common subsequence

algorithm, built on the observation that the longest common subsequence of two log

messages are likely to be the static components. IPLoM [47] iteratively partitions log

messages into finer groups, firstly by the number of tokens, then by the position of to-

kens, and lastly by the association between token pairs. Drain [33] uses a fixed-depth

tree to represent the hierarchical relationship between log messages. Each layer of

the tree defines a rule for grouping log messages (e.g., log message length, preceding

tokens, and token similarity). Zhu et al. [75] evaluated the performance of such data

mining-based parsers and they found that Drain [33] achieved the best performance

in terms of accuracy and efficiency. Our n-gram-based log parser achieves a much

faster parsing speed and a better parsing accuracy compared to Drain.

9



In addition, prior study performed a systematic literature review on automated

log parsing techniques [22]. They investigated the advantages and limitations of

17 log parsing techniques in terms of seven aspects, such as efficiency and required

parameter tuning effort, which can help practitioners choose the right log parsers for

their specific scenarios and provide insights for future research directions.

3.2 Applications of Log Parsing

Log parsing is usually a prerequisite for various log analysis tasks, such as anomaly

detection [69, 70, 46, 25, 39], failure diagnosis [24, 2], performance diagnosis and

improvement [51, 13], and system comprehension [24, 62]. For example, Fu et al. [25]

first parse the raw log messages to extract log events. Based on the extracted event

sequences, they then learn a Finite State Automaton (FSA) to represent the normal

work flow, which is in turn used to detect anomalies in new log files. Prior work [29]

shows that the accuracy of log parsing is critical to the success of log analysis tasks.

Besides, as the size of log files grows fast [40, 14, 6], a highly efficient log parser is

important to ensure that the log analysis tasks can be performed in a timely manner.

In this work, we propose a log parsing approach that is not only accurate but also

efficient, which can benefit future log analysis research and practices.

10



Chapter 4

Approach

In this section, we present our automated log parsing approach that is designed using

n-gram dictionaries.

4.1 Overview of Logram

Our approach consists of two steps: 1) generating n-gram dictionaries and 2) parsing

log messages using n-gram dictionaries. In particular, the first step generates n-grams

from log messages and calculate the number of appearances of each n-gram. In the

second step, each log message is transformed into n-grams. By checking the number

of appearance of each n-gram, we can automatically parse the log message into static

text and dynamic variables. Figure 2 and 3 show the overview of our approach with

a running example.

4.2 Generating an n-gram dictionary

4.2.1 Pre-processing logs

In this step, we extract a list of tokens (i.e., separated words) from each log message.

First of all, we extract the content of a log message by using a pre-defined regular

expression. For example, a log message often starts with the time stamp , the log

level, and the logger name. Since these parts of logs often follow a common format

in the same software system (specified by the configuration of logging libraries), we

can directly parse and obtain these information. For example, a log message from the

11



running example in Figure 2, i.e., “17/06/09 20:11:11 INFO storage.BlockManager:

Found block rdd 42 24 locally”, “17/06/09 20:11:11 ” is automatically identified as

time stamp, “INFO” is identified as the log level and “Storage.BlockManager:” is

identified as the logger name; while the content of the log is “Found block rdd 42 24

locally”. After getting the content of each log message, we split the log message into

tokens. The log message is split with white-space characters (e.g., space and tab).

Finally, there exist common formats for some special dynamic information in logs,

such as IP address and email address.

In order to have a unbiased comparison with other existing log parsers in the

LogPai benchmark (cf. Section 5), we leverage the openly defined regular expressions

that are available from the LogPai benchmark to identify such dynamic information.

4.2.2 Generating an n-gram dictionary

We use the log tokens extracted from each log message to create an n-gram dictionary.

Naively, for a log message with m tokens, one may create an n-gram where n ≤ m.

However, when m has the same value as n, the phrases with n-grams are exactly all

log messages. Such a dictionary is not useful since almost all log messages have tokens

that are generated from dynamic variables. On the other hand, a small value of n

may increase the chance that the text generated by a dynamic variable has multiple

appearances. A prior study [30] finds that the repetitiveness of an n-gram in logs

starts to become stable when n ≤ 3. Therefore, in our approach, we generate the

dictionary using phrases with two or three words (i.e., 2-grams and 3-grams). Naively,

one may generate the dictionary by processing every single log message independently.

However, such a naive approach has two limitations: 1) some log events may span

across multiple lines and 2) the beginning and the ending tokens of a log message

may not reside in the same number of n-grams like other tokens (c.f. our parsing

step “Identifying dynamically and statically generated tokens” in Section 4.3.2). For

example, the first token of each log message cannot be put in a 2-gram nor 3-gram

and the second token of each log line cannot be put in a 3-gram. This limitation

may lead to potential bias of the tokens being considered as dynamic variables. In

order to ensure that all the tokens are considered equally when generating the n-

gram dictionary for Logram, at the beginning and the ending tokens of a log message,

we also include the end of the prior log message and the beginning of the following

12



log message, respectively, to create n-grams. For example, if our highest n in the

n-gram is 3, we would check two more tokens at the end of the prior log message and

the beginning of the following log message. In addition, we calculate the number of

occurrences of each n-gram in our dictionary.

As shown in a running example in Figure 2, a dictionary from the nine lines of

logs is generated consisting of 3-grams and 2-grams. Only one 3-grams, “locally-

>Found->block”, in the example have multiple appearance. Three 2-grams, “Found-

>block”, “Input->split:” and “locally->Found”, have four to five appearances. In

particular, there exists n-grams, such as the 3-gram “locally->Found->block”, that

are generated by combining the end and beginning of two log messages. Without such

combination, tokens like “input”, “Found” and “locally” will have lower appearance

in the dictionary.

4.3 Parsing log messages using an n-gram dictio-

nary

In this step of our approach, we parse log messages using the dictionary that is

generated from the last step.

4.3.1 Identifying n-grams that may contain dynamic vari-

ables

Similar to the last step, each log message is transformed into n-grams. For each

n-gram from the log message, we check its number of appearances in the dictionary.

If the number of occurrence of a n-gram is smaller than a automatically determined

threshold (see Section 4.3.3), we consider that the n-gram may contain a token that

is generated from dynamic variables. In order to scope down to identify the dynami-

cally generated tokens, after collecting all low-appearing n-grams, we transform each

of these n-grams into n−1-grams, and check the number of appearance of each n−1-

gram. We recursively apply this step until we have a list of low-appearing 2-grams,

where each of them may contain one or two tokens generated from dynamic variables.

For our running example shown in Figure 3, we first transform the log message into

two 3-grams, while both only have one appearance in the dictionary. Hence, both

13



3-grams from the running example in Figure 3 may contain dynamic variables. Af-

terwards, we transform the 3-grams into three 2-grams. One of the 2-grams (“Found-

>block”) has four appearances; while the other two 2-grams (“block->rdd 42 20 ” and

“rdd 42 20->locally”) only have one appearance. Therefore, we keep the two 2-grams

to identify the dynamic variables.

4.3.2 Identifying dynamically and statically generated to-

kens

From the last step, we obtain a list of low-appearing 2-grams. However, not all

tokens in the 2-grams are dynamic variables. There may be 2-grams that have only

one dynamically generated token while the other token is static text. In such cases,

the token from the dynamic variable must reside in two consecutive low-appearing

2-grams (i.e., one ends with the dynamic variable and one starts with the dynamic

variable). For all other tokens, including the ones that are now selected in either this

step or the last step, we consider them as generated from static text.

However, a special case of this step is the beginning and ending tokens of each log

message (c.f. the previous step “Generating an n-gram dictionary” in Section 4.2.2).

Each of these tokens would only appear in smaller number of n-grams. For example,

the first token of a log message would only appear in one 2-gram. If these tokens of

the log message are from static text, they may be under-counted to be considered as

potential dynamic variables. If these tokens of the log message are dynamically gen-

erated, they would never appear in two 2-grams to be identified as dynamic variable.

To address this issue, for the beginning and ending tokens of each log message, we

generate additional n-grams by considering the ending tokens from the prior log mes-

sage; and for the ending tokens of each log message, we generate additional n-grams

by considering the beginning tokens from the next log message.

For our running example shown in Figure 3, “rdd 42 20 ” is generated from dy-

namic variable and it reside in two 2-grams (“block->rdd 42 20 ” and “rdd 42 20-

>locally”. Therefore, we can identify token “rdd 42 20 ” as a dynamic variable, while

“block” and “locally” are static text. On the other hand, since “hdfs://hostname/2kSOSP.log

:29168+7292->Found” only appear without overlapping tokens with others, we ig-

nore this 2-gram for identifying dynamic variables.

Another special case happens when a static token appears in between two dynamic
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tokens. For example, if we have three tokens that form a 3-gram dynamic->static-

>dynamic, when transforming the 3-gram, we end up with two 2-grams: dynamic-

>static and static->dynamic. Both 2-grams would be low-appearing 2-grams as both

of them include a dynamic token. As the token static appears in two low-appearing

2-grams, it would be falsely identified as a dynamic token based on our earlier rule.

In order to cope with such special cases, when a token is surrounded by two dynamic

tokens, we create a pseudo bi-gram using a wildcard (e.g., ?->static), and use its

frequency to determine whether the middle token (e.g., static) is static or dynamic.

4.3.3 Automatically determining the threshold of n-gram oc-

currences

The above identification of dynamically and statically generated tokens depends on

a threshold of the occurrences of n-grams. In order to save practitioners’ effort for

manually searching the threshold, we use an automated approach to estimate the

appropriate threshold. Our intuition is that most of the static n-grams would have

more occurrences while the dynamic n-grams would have fewer occurrences. There-

fore, there may exist a gap between the occurrences of the static n-grams and the

occurrences of the dynamic n-grams, i.e., such a gap helps us identify a proper thresh-

old automatically.

In particular, first, we measure the occurrences of each n-gram. Then, for each

occurrence value, we calculate the number of n-grams that have the exact occurrence

value. We use a two-dimensional coordinate to represent the occurrence values (i.e.,

the X values) and the number of n-grams that have the exact occurrence values (i.e.,

the Y values). Then we use the loess function [5] to smooth the Y values and calculate

the derivative of the Y values against the X values. After getting the derivatives, we

use Ckmeans.1d.dp [3], a one-dimensional clustering method, to find a break point to

separate the derivatives into two groups, i.e., a group for static n-grams and a group

for dynamic n-grams. The breaking point would be automatically determined as the

threshold.
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4.3.4 Generating log templates

Finally, we generate log templates based on the tokens that are identified as dynam-

ically or statically generated. We follow the same log template format as the LogPai

benchmark [75], in order to assist in further research. For our running example shown

in Figure 3, our approach parses the log message “Found block rdd 42 20 locally” into

“Found block $1 locally, $1=rdd 42 20 ”.
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Figure 2: A running example of generating n-gram dictionary, which will be later

used for parsing each log messages as shown in Figure 3.
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Figure 3: A running example of parsing one log message using the dictionary built

from Figure 2.
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Chapter 5

Evaluation

In this section, we present the evaluation of our approach. We evaluate our approach

by parsing logs from the LogPai benchmark [75]. We compare Logram with five auto-

mated log parsing approaches, including Drain [33], Spell [20], AEL [38], Lenma [63]

and IPLoM [47] that are from prior research and all have been included in the LogPai

benchmark. We choose these five approaches since a prior study [75] finds that these

approaches have the highest accuracy and efficiency among all of the evaluated log

parsers. In particular, we evaluate our approach on four aspects:

Accuracy. The accuracy of a log parser measures whether it can correctly identify

the static text and dynamic variables in log messages, in order to match log messages

with the correct log events. A prior study [29] demonstrates the importance of high

accuracy of log parsing, and low accuracy of log parsing can cause incorrect results

(such as false positives) in log analysis.

Efficiency. Large software systems often generate a large amount of logs during run

time [54]. Since log parsing is typically the first step of analyzing logs, low efficiency

in log parsing may introduce additional costs to practitioners when doing log analysis

and cause delays to uncover important knowledge from logs.

Ease of stabilisation. Log parsers typically learn knowledge from existing logs in

order to determine the static and dynamic components in a log message. The more

logs seen, the better results a log parser can provide. It is desired for a log parser

to have a stable result with learning knowledge from a small amount of existing logs,

such that parsing the log can be done in a real-time manner without the need of

updating knowledge while parsing logs.
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Scalability. Due to the large amounts of log data, one may consider leveraging

parallel processing frameworks, such as Hadoop and Spark, to support the parsing of

logs [31]. However, if the approach of a log parser is difficult to scale, it may not be

adopted in practice.

5.1 Subject log data

We use the data set from the LogPai benchmark [75]. The data sets and their descrip-

tions are presented in Table 2. The benchmark includes logs produced by both open

source and industrial systems from various domains. These logs are typically used as

subject data for prior log analysis research, such as system anomaly detection [34, 45],

system issue diagnosis [21] and system understanding [55]. To assist in automatically

calculating accuracy on log parsing (c.f., Section 5.2), each data set in the benchmark

includes a subset of 2,000 log messages that are already manually labeled with log

event. Such manually labeled data are used in evaluating the accuracy of our log

parser. For the other three aspects of the evaluation, we use the entire logs of each

log data set.

5.2 Accuracy

In this subsection, we present the evaluation results on the accuracy of Logram.

Prior approach by Zhu et al. [75] defines an accuracy metric as the ratio of correctly

parsed log messages over the total number of log messages. In order to calculate the

parsing accuracy, a log event template is generated for each log message and log

messages with the same template will be grouped together. If all the log messages

that are grouped together indeed belong to the same log template, and all the log

messages that indeed belong to this log template are in this group, the log messages

are considered parsed correctly. However, the grouping accuracy has a limitation that

it only determines whether the logs from the same events are grouped together; while

the static text and dynamic variables in the logs may not be correctly identified.

We discuss the limitation of using the grouping accuracy in detail in the Results

subsection.

On the other hand, correctly identifying the static text and dynamic variables
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Table 2: The subject log data used in our evaluation.

Dataset Description Size

Android Android framework log 183.37MB

Apache Apache server error log 4.90MB

BGL Blue Gene/L supercomputer log 708.76MB

Hadoop Hadoop mapreduce job log 48.61MB

HDFS Hadoop distributed file system log 1.47GB

HealthApp Health app log 22.44MB

HPC High performance cluster log 32.00MB

Linux Linux system log 2.25MB

Mac Mac OS log 16.09MB

OpenSSH OpenSSH server log 70.02MB

OpenStack OpenStack software log 58.61MB

Proxifier Proxifier software log 2.42MB

Spark Spark job log 2.75GB

Thunderbird Thunderbird supercomputer log 29.60GB

Windows Windows event log 26.09GB

Zookeeper ZooKeeper service log 9.95MB

are indeed important for various log analysis. For example, Xu et al. [69] consider

the variation of the dynamic variables to detect run-time anomalies. Therefore, we

manually check the parsing results of each log message and determine whether the

static text and dynamic variables are correctly parsed, i.e., parsing accuracy. In other

words, a log message is considered correctly parsed if and only if all its static text

and dynamic variables are correctly identified.

Results

Logram achieves an over 0.9 accuracy or the best accuracy in parsing 12 out
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Table 3: Accuracy of Logram compared with other log parsers. The results that are

the highest among the parsers are annotaetd with * and the results that are higher

than 0.9 are highlighted in bold.
Dataset Drain AEL Lenma Spell IPLoM Logram

Android 0.933 0.867 0.976* 0.933 0.716 0.848

Apache 0.693 0.693 0.693 0.693 0.693 0.699*

BGL 0.822* 0.818 0.577 0.639 0.792 0.740

Hadoop 0.545 0.539 0.535 0.192 0.373 0.965*

HDFS 0.999* 0.999* 0.998 0.999* 0.998 0.981

HealthApp 0.609 0.615 0.141 0.602 0.651 0.969*

HPC 0.929 0.990* 0.915 0.694 0.979 0.959

Linux 0.250 0.241 0.251 0.131 0.235 0.460*

Mac 0.515 0.579 0.551 0.434 0.503 0.666*

OpenSSH 0.507 0.247 0.522 0.507 0.508 0.847*

Openstack 0.538 0.718 0.759* 0.592 0.697 0.545

Proxifier 0.973* 0.968 0.955 0.785 0.975 0.951

Spark 0.902 0.965* 0.943 0.865 0.883 0.903

Thunderbird 0.803 0.782 0.814* 0.773 0.505 0.761

Windows 0.983* 0.983* 0.277 0.978 0.554 0.957

Zookeeper 0.962 0.922 0.842 0.955 0.967* 0.955

Average 0.748 0.745 0.672 0.669 0.689 0.825*

of the 16 log datasets. Table 3 shows the accuracy on 16 datasets. Following the

prior log-parsing benchmark [75], we highlight the accuracy values that are higher

than 0.9 or that are the highest for each log dataset. Logram achieves an average

parsing accuracy of 0.825, which is at least 10% higher than the average accuracy

achieved by any other log parsers. The second most accurate approach, i.e., Drain,

achieves an average parsing accuracy of 0.748. For eight log datasets, Logram has

an parsing accuracy higher than 0.9; for four other datasets, Logram has the highest

parsing accuracy among all parsers. Since Logram is designed based on processing

every token in a log instead of comparing each line of logs with others, Logram exceeds

other approaches in terms of parsing accuracy.

Even though prior approaches may often correctly group log messages together,

the static text and dynamic variables of these log messages may not be correctly identi-

fied. For example, when parsing the Hadoop logs, the parser Spell achieves a grouping

accuracy of 0.778 [75] but the parsing accuracy is only 0.192. By manually checking
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the results, we find that some groups of logs share the same strings of host names

that are generated from dynamic variables but are parsed as static tokens. For exam-

ple, a log message “Address change detected. Old: msra-sa-41/10.190.173.170:9000

New: msra-sa-41:9000 ” is parsed into a log template “Address change detected. Old

msra-sa-41/<*> <*> New msra-sa-41 <*>”. We can see that the strings “msra-sa”

and “msra-sa-41 ” in the host names are not correctly detected as dynamic variables.

However, since all the log messages in this category have such strings in the host

names, even though Spell cannot identify the dynamic variables, the log messages are

still grouped together. In particular, we manually examined the parsing results of

Logram for all the log lines that are considered to be correctly parsed in terms of the

grouping accuracy [75]. In total, we found that 17.8% (4641 out of 26017) of the log

lines that are considered to be correctly parsed in terms of the grouping accuracy are

actually incorrectly parsed based on our manual examination. For each log file, 0.2%

to 79.2% of the log lines that are considered correctly parsed in terms of the grouping

accuracy are false positives.

Finally, we manually study the incorrectly parsed log messages by Logram. Such

incorrectly parsed log messages can be due to false-dynamic, i.e., a static token that

is mis-identified as a dynamic token, or false-static, i.e., a dynamic token that is mis-

identified as a static token. For all the lines that are incorrectly parsed, 41.1% contain

false-dynamic tokens and 61.8% contain false-static tokens. Through further manual

investigation, we identify the following three reasons of incorrectly parsing some of

the log messages:

1. Mis-split tokens. Some log messages contain special tokens such as + and { to

separate two tokens. In addition, sometimes static text and dynamic variables

are printed into one single token without any separator (like a white space). It

is difficult for a token-based approach to address such cases. This reason may

contribute to both false-static and false-dynamic results.

2. Pre-processing errors. The pre-processing of common log formats may in-

troduce mistakes to the log parsing. For example, text in a common format

(e.g., a date format) may be part of a long dynamic variable (a task id with its

date as part of it). However, the pre-processing step extracts only the text in

the common format, causing the rest of the text in the dynamic variable being

parsed into a wrong format. This reason may contribute to false-static results.
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3. Frequently-appearing dynamic variables. Some dynamic variables contain

contextual information of system environment and can appear frequently in logs.

For example, in Apache logs, the path to a property file often appears in log

messages such as: “workerEnv.init() ok /etc/httpd/conf/workers2.properties”.

Although the path is a dynamic variable, in fact, the value of the dynamic

variable never changes in the logs, preventing Logram from identifying it as

a dynamic variable. On the other hand, such an issue is not challenging to

address in practice. Practitioners can consider such contextual information in

the pre-processing step.

5.3 Efficiency

To measure the efficiency of a log parser, similar to prior research [32, 75], we record

the elapsed time to finish the entire end-to-end parsing process on different log data

with varying log sizes. The elapsed time one of the important metrics included in

the ISO-25010 [4]. Among other metrics that also indicate efficiency, such as resource

utilization, elapsed time is important for a log parser as log parsing is the first step

in automated log analysis, any delay would impact the entire pipeline of log analysis.

We randomly extract data chunks of different sizes, i.e., 300KB, 1MB, 10MB, 100MB,

500MB and 1GB. Specifically, we choose to evaluate the efficiency from the Android,

BGL, HDFS, Windows and Spark datasets, due to their proper sizes for such eval-

uation. From each log dataset, we randomly pick a point in the file and select a

data chunk of the given size (e.g., 1MB or 10MB). We ensure that the size from the

randomly picked point to the end of the file is not smaller than the given data size to

be extracted. We measure the elapsed time for the log parsers on a desktop computer

with Inter Core i5-2400 CPU 3.10GHz CPU, 8GB memory and 7,200rpm SATA

hard drive running Ubuntu 18.04.2. We compare Logram with three other parsers,

i.e., Drain, Spell and AEL, that all have high accuracy in our evaluation and more

importantly, have the highest efficiency on log parsing based on the prior benchmark

study [75].

In addition, we calculate the size of the dictionaries that are generated by Logram

(cf. Section 4.2). These dictionaries are meant to be kept in memory to assist in a

fast parsing of logs. The large size of the dictionaries may become a memory overhead
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to the efficiency of the approach.

Results

Logram outperforms the fastest state-of-the-art log parsers in efficiency by

1.8 to 5.1 times. Figure 4 shows that time needed to parse five different log data

with various sizes using Logram and five other log parsers. We note that for Logram,

the time to construct the dictionaries is already included in our end-to-end elapsed

time, in order to fairly compare log parsing approaches. The dictionary construction

(including pre-processing log messages and generating n-gram dictionaries) accounts

for 77% to 92% of the overall parsing time, while parsing the log messages using the

constructed dictionaries only takes 8% to 23% of the overall parsing time. We find

that Logram drastically outperform all other existing parsers. In particular, Logram

is 1.8 to 5.1 times faster than the second fastest approaches when parsing the five log

datasets along different sizes.

The efficiency of Logram is stable when increasing the sizes of logs. From

our results, the efficiency of Logram is not observed to be negatively impacted when

the size of logs increases. For example, the running time only increases by a factor

of 773 to 1039 when we increase the sizes of logs from 1 MB to 1GB (i.e., by a factor

of 1,000). Logram keeps a dictionary that is built from the n-grams in log messages.

With larger size of logs, the size of dictionary may drastically increasing. However,

our results indicate that up to the size of 1GB of the studied logs, the efficiency keeps

stable. We consider the reason is that when paring a new log message using the

dictionary, the look-up time for an n-gram in our dictionary is consistent, despite the

size of the dictionary. Hence even with larger logs, the size of the dictionary do not

drastically change.

On the other hand, the efficiency of other log parsers may deteriorate with larger

logs. In particular, Lenma has the lowest efficiency among all studied log parsers.

Lenma cannot finish finish parsing any 500MB and 1GB log dataset within hours.

In addition, Spell would crash on Windows and Spark log files with 1G size due

to memory issues. AEL shows a lower efficiency when parsing large Windows and

BGL logs. Finally, Drain, although not as efficient as Logram, does not have a lower

efficiency when parsing larger sizes of logs, which agrees with the finding in prior

research on the log parsing benchmark [75].
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Logram does not generate large size of dictionaries as memory overhead.

Table 4 shows the sizes of both 2-gram and 3-gram dictionaries that are generated by

each log dataset. We found that, a dataset with a large dictionary, e.g, BGL, has less

than 300K keys in total, which only takes 11.2 MB (4.1MB for 2-grams and 7.1MB

for 3-grams) of memory. The largest dataset, i.e., the Thunderbird logs, has a total

of nearly 9 million keys. However, the dictionary only takes 412 MB (150 MB for

2-grams and 262 MB for 3-grams) of memory. On the other hand, we also found that

a large log dataset may not have as large a dictionary. For example, the Windows

logs have almost a similar size as the Thunderbird logs but the generated dictionary

only has 600K keys, which is only 7% of the size of the dictionary generated from the

Thunderbird logs. Our results show that the size of the dictionaries may be influenced

not only by the size of the logs, but also by other characteristics of the logs (e.g., the

number of unique 2-grams and 3-grams).

Table 4: The number of 2-grams and 3-grams in the dictionaries generated by Logram

Dataset 2-gram 3-gram Dataset 2-gram 3-gram

Android 53,719 57,298 Mac 18,460 24,762

Apache 296 281 OpenSSH 5,718 9,257

BGL 110,237 174,336 OpenStack 3,960 7,865

Hadoop 2,363 2,337 Proxifier 75 82

HDFS 494 516 Spark 9,169 10,157

HealthApp 755 624 Zookeeper 9,222 12,933

HPC 1,813 2,711 Windows 230,639 380,682

Linux 2,880 3,016 Thunderbird 3,747,372 5,136,271

5.4 Ease of stabilisation

We evaluate the ease of stabilisation by running Logram based on the dictionary from

a subset of the logs. In other words, we would like to answer the following question:

Can we generate a dictionary from a small size of log data and correctly

parse the rest of the logs without updating the dictionary?

26



If so, in practice, one may choose to generate the dictionary with a small amount

of logs without the need of always updating the dictionary while parsing logs, in

order to achieve even higher efficiency and scalability. In particular, for each subject

log data set, we first build the dictionary based on the first 5% (or 10% only for

large datasets like Thunderbird and Windows) of the entire logs. Then we use the

dictionary to parse the entire log data set. Due to the limitation of grouping accuracy

found from the last subsection and the limitation of the high human effort needed

to manually calculate the parsing accuracy, we do not calculate any accuracy for

the parsing results. Instead, we automatically measure the agreement between the

parsing result using the dictionary generated from the first 5% (or 10%) lines of logs

and the entire logs. For each log message, we only consider that the two parsing

results agree to each other if they are exactly the same. We then gradually increase

the size of logs to build a dictionary by appending another 5% (or 10%) of logs. We

keep calculating the agreement until the agreement is 100%.

Results

Logram achieves stable parsing results using a dictionary generated from

a small portion of log data. Figure 5 shows agreement ratio between parsing

results from using partial log data to generate an n-gram dictionary and using all log

data. The red line in the figures indicates that the agreement ratio is over 90%. In 10

out of 16 studied log data sets, our log parser can generate an n-gram dictionary from

less than 30% of the entire log data, while having over 90% of the log parsing results

the same as using all the logs to generate a dictionary. In particular, one of the large

log datasets (the Spark logs) gains a 95.5% agreement ratio using only the first 5%

of the log data to build the dictionary. Our results show that the log data is indeed

repetitive. Such results demonstrate that practitioners can consider leveraging the

two parts of Logram separately, i.e., generating the n-gram dictionary (i.e., Figure 2)

may not be needed for every log message, while the parsing of each log message (i.e.,

Figure 3) can depend on a dictionary generated from existing logs.

We manually check the other six log datasets and we find three reasons that

that may cause the instability. 1) Some parts of the log datasets have drastically

different log events than others. For example, between the first 30% and 35% of the

log data in Linux, a large number of log messages are associated with new events for
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Bluetooth connections and memory issues. Such events do not exist in the logs in

the beginning of the dataset. The unseen logs cause parsing results using dictionary

from the beginning of the log data to be less agreed with the parsing results using the

the entire logs. However, it is interesting to see that after our dictionary learns the

n-grams in that period, the log parsing results become stable. Therefore, in practice,

developers may need to monitor the parsing results to determine the need of updating

the n-gram dictionary from logs. 2) Log data is too small to reach stabilisation. For

example, Proxifier has a very small dataset of logs (only 2.42MB). By using even

a smaller part of logs (as small as 5%) to generate the dictionary, the dictionary

may have a low coverage of the n-grams in the entire dataset, making it difficult

to reach stabilisation when the size of the logs used to generated the dictionary is

small. 3) The inaccurate parsing results resulted from mis-split tokens may also lead

to instability in our results. When tokens are not split correctly, it may lead to the

gradual increase of new n-grams in the dictionary. For example, for OpenStack, we

observed a steady increase of the number of n-grams when we increase the size of the

dataset to build the dictionaries, which is due to mis-split tokens. In fact, the parsing

accuracy of OpenStack is almost the worst among all the datasets (shown in Table 3).

As using a smaller part of the logs would generate dictionaries that cannot represent

a sufficient coverage of all the n-grams in the dataset, it is difficult to achieve an early

stabilisation.

5.5 Scalability

In order to achieve a high-scalability of log parsing, we migrate Logram to Spark.

Spark [73] is an open-source distributed data processing engine, with high-level API

in several program languages such as Java, Scala, Python, and R. Spark has been

adopted widely in practice for analyzing large-scale data including log analysis. We

migrate each step of Logram, i.e., 1) generating n-gram model based dictionaries and

2) parsing log messages using dictionaries, separately to Spark. In particular, the

first step of generating dictionary is written similar as a typically wordcount example

program, where each item in the dictionary is a n-gram from a log message. In

addition, the second step of parsing log messages is trivial to run in parallel where

28



each log message is parsed independently1.

We evaluate the scalability of Logram on a clustering with one master node and

five worker nodes running Spark 2.43. Each node is deployed on a desktop machine

with the same specifications as used in our efficiency evaluation (cf. Section 5.3).

In total, our cluster has four cores for each worker, leading to a total of 20 cores for

processing logs. We first store the log data into HDFS that are deployed on the cluster

with a default option of three replications. We then run the Spark based Logram on

the Spark cluster with one worker (four cores) to five workers (20 cores) enabled. We

evaluate the scalability on the same log datasets used for evaluating the efficiency,

except for Android due to its relatively small size. We measure the throughput for

parsing each log data to assess scalability. Due to the possible noise in a local network

environment and the indeterministic nature of the parallel processing framework, we

independently repeat each run 10 times when measuring throughput, i.e., number of

log messages parsed per second.

Results

Logram scales out efficiently with the number of Spark nodes without

sacrificing parsing accuracy. Figure 6 uses boxplots to present the throughput

(i.e., number of log messages parsed per second) of Logram when we increase the

number of nodes from one (i.e., four cores) to five (i.e., 20 cores).As shown in Figure 6,

the throughput increases nearly linearly, achieving up to 5.7 times speedup as we

increase the number of nodes by a factor of five. In addition, Figure 6 shows that

the throughput of Logram has low variance when we repeat the parsing of each log

dataset 10 times. We would like to note that the parsing accuracy always keeps the

same as we increase the number of nodes. When the volume of the parsed logs is very

large (e.g., the Windows log data), Logram allows practitioners to increase the speed

of log parsing efficiently by adding more nodes without sacrificing any accuracy.

Logram achieves near-linear scalability for some logs but less scalabiltiy

on other logs. A linear scalability means the throughput increases K times when

we increase the number of nodes by a factor of K, which is usually the best one

usually expects to achieve when scaling an application [26, 74]. The throughput of

1Due to the limited space, the detail of our implementation of the Spark based Logram is available
in our replication package.
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Logram when parsing the HDFS and Windows logs increases by 5.7 to 4.8 times when

we increase the number of nodes from one to five, indicating a near-linear or even

super-linear scalability. However, Logram achieves less scalability when parsing the

BGL and Spark logs. Specifically, the throughput of Logram when parsing the BGL

and Spark logs increases 3.3 and 2.7 times when we increase the number of nodes by

a factor of five. We consider that the less promising scalability on BGL and Spark

logs may be caused by the imbalanced distribution of unique n-grams. Through

examining the BGL and Spark logs, we found that in both logs, some log blocks

have much more unique n-grams than other log blocks. Logram spends 77% to 92%

of its overall parsing time on constructing the n-gram dictionaries (cf. Section 5.3).

When Logram is deployed in the Spark environment, each Spark node constructs a

sub-dictionary for a block of logs, then the sub-dictionaries are merged into a single

dictionary. As the log blocks with more unique n-grams take longer time to build the

dictionaries (i.e., the size of the dictionaries is larger), the imbalanced distribution of

unique n-grams in the BGL and Spark logs may impair the scalability of Logram on

these logs.
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Figure 4: The elapsed time of parsing five different log data with various sizes. The

x and y axes are in log scale.
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Figure 5: The agreement ratio of log parsing results between using a part of log to

generate dictionary and using all logs to generate dictionary. The red vertical lines

indicate that the agreement ratios reach 90%.
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Figure 6: Box plots of running time of Logram with different number of cores.
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Chapter 6

Migrating Logram to an Online

Parser

Logram parses logs in two steps: 1) generating n-gram dictionaries from logs, and

2) using the n-gram dictionaries to parse the logs line by line. Section 4 describes

an offline implementation of Logram, in which the step for generating the n-gram

dictionaries is completely done before the step of parsing logs using the n-gram dic-

tionaries (even when we evaluate the ease of stabilisation in Section 5.4). Therefore,

the offline implementation requires all the log data used to generate the n-gram dic-

tionaries to be available before parsing. On the contrary, an online parser parses logs

line by line, without an offline training step. An online parser is especially helpful in

a log-streaming scenario, i.e., to parse incoming logs in a real-time manner.

Logram naturally supports online parsing, as the n-gram dictionaries can be up-

dated efficiently when more logs are continuously added (e.g., in log streaming sce-

narios). In our online implementation of Logram, we feed logs in a streaming manner

(i.e., feeding one log message each time). When reading the first log message, the

dictionary is empty (i.e., all the n-grams have zero occurrence), so Logram parses all

the tokens as dynamic variables. Logram then creates a dictionary using the n-grams

extracted from the first log message. After that, when reading each log message that

follows, Logram parses the log message using the existing n-gram dictionary. Then,

Logram updates the existing n-gram dictionary on-the-fly using the tokens in the log

message. In this way, Logram updates the n-gram dictionary and parses incoming

logs continuously until all the logs are processed. Similar to Section 5.4, we measure
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the ratio of agreement between the parsing results of the online implementation and

the offline implementation. For each log message, we only consider the two parsing

results agreeing to each other if they are exactly the same. We also measure the

efficiency of Logram when parsing logs in an online manner relative to the offline

mode. Specifically, we measure the efficiency difference ratio, which is calculated as
Tonline−Toffline

Toffline
where Tonline and Toffline are the time taken by the online Logram

and offline Logram to parse the same log data, respectively.

Results

The online mode of Logram achieves nearly the same parsing results as the

offline Logram. Table 5 compares the parsing results of Logram between the online

and offline modes. We considered the same five large log datasets as the ones used for

evaluating the efficiency of Logram (cf. Section 5.3). The agreement ratio between

the online and offline modes of Logram range from 95.0% to 100.0%, indicating that

the parsing results of the online Logram are almost identical to the parsing results of

the offline Logram.

The online mode of Logram reaches a parsing efficiency similar to the

offline Logram. Table 5 also compares the efficiency between the online and of-

flineLogram, for the five considered log datasets with sizes varying from 300KB to

1GB. A positive value of the efficiency difference ratio indicates the online mode is

slower (i.e., taking longer time), while a negative value indicates the online mode is

even faster. Table 5 shows that the efficiency difference ratio ranges from -3.0% to

8.9%.

Table 5: Comparing the parsing results of Logram between the online and offline

modes. Subject Efficiency Difference Ratio Agreement with

log dataset 300k 1M 10M 100M 500M 1G offline results

HDFS 5.9% 0.0% -2.4% -1.5% -3.0% -0.8% 100.0%

Spark 0.0% -0.3% -0.6% 0.3% -3.0% -1.1% 99.9%

Windows 0.0% 0.0% 1.1% -0.0% -0.2% 0.6% 96.8%

BGL 7.1% 6.7% 7.2% 5.9% 7.4% N/A 98.7%

Android 5.9% 8.9% 6.6% 6.5% N/A N/A 95.0%
Note: a positive value means that Logram is slower in online parsing than in offline parsing.

Overall, the online mode of Logram is as efficient as the offline model. In some

35



cases, the online mode is even faster, because the online mode parses logs with smaller

incomplete dictionaries – thus being queried faster – compared to the full dictionaries

used in the offline mode.

In summary, as the online mode of Logram achieves similar parsing results and

efficiency compared to the offline mode, Logram can be effectively used in an online

parsing scenario. For example, Logram can be used to parse stream logs in a real-time

manner.
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Chapter 7

Threats to Validity

As the log blocks with more unique n-grams take longer time to build the dictionaries

(i.e., the size of the dictionaries is larger), we suspect that the imbalanced distribution

of unique n-grams in the BGL and Spark logs causes the less promising scalability

of Logram on these logs. Future work may further improve the scalability of parsing

logs based on our approach.

Internal validity. Logram leverages n-grams to parse log data. n-grams are typically

used to model natural languages or source code that are written by humans. However,

logs are different from natural languages or source code as logs are produced by

machines and logs contain static and dynamic information. Nevertheless, we show

that n-grams can help us effectively distinguish static and dynamic information in

log parsing. Future work may use n-grams to model log messages in other log-related

analysis. We use an automated approach to determine the threshold for identifying

statically and dynamically generated tokens. Such automatically generated thresholds

may not be optimal, i.e., by further optimizing the thresholds, our approach may

achieve even higher accuracy; while our currently reported accuracy may not be the

highest that our approach can achieve.

Construct validity. In the evaluation of this work, we compare Logram with

six other log parsing approaches. There exists other log parsing approaches (e.g.,

LKE [25]) that are not evaluated in this work. We only consider five existing ap-

proaches as we need to manually verify the parsing accuracy of each approach which

takes significant human efforts. Besides, the purpose of the work is not to provide

a benchmark, but rather to propose and evaluate an innovative and promising log
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parsing approach. Nevertheless, we compare Logram with the best-performing log

parsing approaches evaluated in a recent benchmark [75]. Our results show that Lo-

gram achieves better parsing accuracy and much faster parsing speed compared to

existing state-of-the-art approaches.
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Chapter 8

Conclusion and future work

In this work, we propose Logram, an automated log parsing approach that leverages

n-grams dictionaries to parse log data in an efficient manner. The nature of the n-

gram dictionaries also enables one to construct the dictionaries in parallel without

sacrificing any parsing accuracy and update the dictionaries online when more logs

are added (e.g., in log streaming scenarios). Through an evaluation of Logram on

16 public log datasets, we demonstrated that Logram can achieve high accuracy and

efficiency while parsing logs in a stable and scalable manner. In particular, Logram

outperforms the state-of-the-art log parsing approaches in efficiency and achieves bet-

ter parsing accuracy than existing approaches. Finally, we demonstrate that Logram

can effectively support online parsing (i.e., when logs are continuously generated as a

stream) with similar parsing results and efficiency as the offline mode. This is the first

work that uses n-grams in log analysis, which demonstrates the success of leveraging

a mix of the (un)natural characteristics of logs. Logram can benefit future research

and practices that rely on automated log parsing to achieve their log analysis goals.

For future work, we plan to extend n-grams model to other log analysis tasks

for future work. We plan to optimize our approach to defending the threshold for

identifying statically and dynamically generated token. Further more, n-grams can

also be used to calculate the entropy of each token and entropy can also be an identifier

for dynamic information in raw logs.
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