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Abstract

Software Batch Testing to Reduce Build Test Executions

Seyed Mohammad Javad Beheshtian Khabbaz

Testing is expensive and batching tests have the potential to reduce test costs. The continuous

integration strategy of testing each commit or change individually helps to quickly identify faults

but leads to a maximum number of test executions. Large companies that have a large number of

commits, e.g., Google and Facebook, or have expensive test infrastructure, e.g., Ericsson, must batch

changes together to reduce the number of total test runs. For example, if eight builds are batched

together and there is no failure, then we have tested eight builds with one execution saving seven

executions. However, when a failure occurs it is not immediately clear which build is the cause of

the failure. A bisection is run to isolate the failing build, i.e. the culprit build. In our eight builds

example, a failure will require an additional 6 executions, resulting in a saving of one execution.

The goal of this work is to improve the efficiency of the batch testing. We evaluate six ap-

proaches. The first is the baseline approach that tests each build individually. The second, is the

existing bisection approach. The third uses a batch size of four, which we show mathematically

reduces the number of execution without requiring bisection. The fourth combines the two prior

techniques introducing a stopping condition to the bisection. The final two approaches use models

of build change risk to isolate risky changes and test them in smaller batches.

We evaluate the approaches on nine open source projects that use Travis CI. Compared to the

TestAll baseline, on average, the approaches reduce the number of build test executions across

projects by 46%, 48%, 50%, 44%, and 49% for BatchBisect, Batch4, BatchStop4, RiskTopN, and

RiskBatch, respectively. The greatest reduction is BatchStop4 at 50%. However, the simple ap-

proach of Batch4 does not require bisection and achieves a reduction of 48%. We recommend that

all CI pipelines use a batch size of at least four. We release our scripts and data for replication [6].
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Regardless of the approach, on average, we save around half the build test executions com-

pared to testing each change individually. We release the BatchBuilder tool that automatically

batches submitted changes on GitHub for testing on Travis CI [5]. Since the tool reports individual

results for each pull-request or pushed commit, the batching happens in the background and the

development process is unchanged.
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Chapter 1

Introduction

Testing is critical but costly quality assurance practice [35]. Tests are run at multiple levels

including unit, integration, and system tests [16]. The move to Continuous Integration and Delivery

(CI/CD) emphasizes testing individual changes to ensure that problems are found immediately and

before release [23]. Beller et al. [7] describe the costs involved in CI and finds that on most CI

projects the time to run tests takes much longer and consumes more resources than the build and

other aspects. This cost is amplified by the running of tests in different environments, e.g., Python

2.7 and 3.7. Furthermore, the most common cause of CI build failure is a failed test which can

further length the integration and release cycle.

In some development environments testing each change is infeasible and changes must be

batched. For example, at Ericsson, expensive hardware simulation makes testing each change im-

possible [60]. At Google individual integration tests can run for more than 45 minutes requiring

the batching of all recent changes [101]. Even when testing each change is feasible, there are many

redundant test runs because changes often require the same tests, test suites, and test environments

to be run.

In this work, we build upon the batch testing and bisection work of Najafi et al.’s [60] to re-

evaluate their existing approaches: BatchBisect and RiskTopN. Based on the results, we introduce

three novel approaches, Batch4, BatchStop4, and RiskBatch, to improve the efficiency of testing in

CI. We conduct this evaluation on nine large open source projects that use Travis CI [8]. We release

the BatchBuilder [5] tool that batches pull-request on GitHub for testing on Travis CI. Since

1



the batching happens in the background and results are reported for each individual pull-request,

the development process is unchanged. We briefly introduce each of our research approaches (RA)

below.

RA 1. TestAll: Running tests on a single build containing a single pushed change immediately

isolates any failing test to the changed code. This approach is simple allowing developers to test

each push as a single build in modern CI pipelines [22]. We use the TestAll as the baseline approach

because it is in widespread use and does not required builds to be combined and the complexity of

bisection on test failure.

RA 2. BatchBisect: TestAll can be prohibitively expensive for large companies with many tests

or expensive test hardware. For example, Google [101], Ericsson [60], and Shopify [54] combine

commits into a single batch to reduce the total number of test executions. If all the tests pass on

a build of size n, then there will be n − 1 saved build test executions. In the case of test failure,

a bisection is performed until a single build is isolated as the culprit. The execution savings are

dependent on the number of test failures that result in bisection. We run simulations to determine

the best batch size for a project.

Compared to TestAll, we see a BatchBisect saves between 22.35% and 57.55% of the total build

test executions with an average across projects of 46.05%. The best batch size per project ranges

from 4 to 8.

RA 3. Batch4: Tooling exists to batch commits and perform bisection on test failure , for exam-

ple, SandCastle from Facebook [32]. However, bisection adds additional batching and complexity

to the CI process. To avoid bisection, we note that batches of size four have the special property:

on failure a bisection will cost at least 4 additional executions, which is the same as testing each

build individually. We propose the novel Batch4 approach, which groups builds into batches of four

saving n − 1 = 3 executions when all tests pass. On failure, we do not run a bisection, instead we

revert to TestAll which costs 4 additional test executions or n+ 1 = 5 executions in total.

This simple approach is also very effective at execution reduction. Compared to TestAll, we

see that Batch4 saves between 29.51% and 55.84% with an average across projects of 47.63%.

Compared to BatchBisect, Batch4 is not only simpler, requiring no bisections, but also outperforms

BatchBisect with an average improvement of 1.58 percentage points.
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RA 4. BatchStop4: On projects that have few failures, BatchBisect can still be more efficient

than Batch4. For example, on the puppet project, the batch size is 8 and requires 5.09 percentage

points fewer executions than Batch4. As a result, we introduce BatchStop4, which can make large

batches and uses normal bisection until the batch size is four.

Compared to TestAll, we see that BatchStop4 saves between 29.51% and 60.83% with an av-

erage across projects of 50.31%. The majority of the savings are achieved with small batch sizes,

batch 2, 4, and 8, realizing an average of 72%, 93%, and 99% of the total batch savings. Compared

to BatchBisect and Batch4 the average improvement is 4.23 and 2.69 additional percentage points.

RA 5. RiskTopN: When a test fails on a batch, a bisection is required which costs additional

execution. Not all builds are equally likely to fail, i.e. risky. Models of change risk have been

widely used to identify bug introducing changes [25]. Recent work by Najafi et al. [60] used risk

models to identify commits that had likely failing tests at Ericsson. We reproduce Najafi et al.’s [60],

RiskTopN approach on nine OSS projects. When a batch fails, the n builds with the highest risk are

isolated and tested by themselves. The remaining builds that have a lower modelled risk are tested

together in a single batch. The process is repeated until all culprits are found.

Compared to TestAll, RiskTopN reduces executions between 23.23% and 54.80% with an aver-

age across projects of 44.17%. However, Batch4 and BatchStop4 both outperforms RiskTopN by 3

and 6 percentage points and do not require a statistical risk model.

RA 6. RiskBatch: In the previous approaches, the batch size is constant for all batches. We

introduce the RiskBatch approach that uses a statistical model of risk to continue to add builds to

a batch until a risk threshold is reached. Low risk builds will be put into larger batches than high

risk builds, and a single high risk build that is above the threshold will be tested individually. In our

simulations, we vary the risk threshold.

Compared to TestAll, RiskBatch reduces executions by between 25.93% and 57.43% with an

average across projects of 48.50%. RiskBatch outperforms previous risk based approach, RiskTopN

by 4.33 percentage points.

The remainder of this thesis is structured as follows. In Chapter 2, we survey the literature. In

Chapter 3, we provide the background on batching and define each research approach. In Chapter 4,

we discuss our data and outline our evaluation and simulation methodology. In Chapter 5, we

3



present the results for each research approach. In Chapter 5.7, we introduce our developer tool,

BatchBuilder, that allows batch testing using GitHub with Travis CI with no visible change to

the UI or development process. In Chapter 5.8, we discuss threats to validity. In Chapter 6, we

compare our approaches, position the results in the related work, and discuss our contributions.
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Chapter 2

Survey of the Literature

We survey the literature in the following areas beginning with general test and bug prediction

work and ending with specific work on culprit isolation.

• Software Testing and Continuous Integration

• Test Selection and Prioritization

• Statistical Bug Models

• Batching

• Culprit Isolation and Bisection
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2.1 Software Testing and Continuous Integration

Crispin et al. [16] categorize software tests into four types:

• unit and component tests (automated)

• functional tests (automated and manual)

• performance, load, and security tests (automated)

• user acceptance tests (manual)

The first category of tests are written by developers and are performed automatically during

development and integration. Functional tests are higher level tests that verify a feature that can

consist of several components and usually are closer to the business perspective rather than technical

logic. These tests include manual and automated parts. The third group of tests verify the technical

aspects of software but in contrast to unit tests, they check software as a whole. To perform this

group of tests, external tools are often used which are usually automated. The last category is user

tests including beta testing, A/B testing, and usability testing. These tests are often done manually

because of the need for actual users, however, trends in A/B test have lead to a greater degree of

automation [73].

Amannejad et al. [2] measure the cost of test automation in the software industry. They find that

not all automated tests are cost effective because automation requires additional development effort,

can lead to design change, and often increases the number of overall test setups and executions.

They suggest a combination of automated and manual tests on software projects. Hoffman [39] also

stated that software automation costs are often underestimated especially by management.

Automated tests are run at varying times including after each source code change [21, 91, 27],

at a specific time daily [40], or a combination of two previous methods [91].

With the appearance of continuous integration systems, running automated tests has became one

of the main parts of the pipeline. Continuous integration and delivery (CI/CD) systems have become

popular in both industry and open-source projects because the deployment tasks are automated and

developers receive feedback faster, tests are run automatically, and critical updates are delivered to

customers more frequently [53, 81, 36, 69].
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While CI/CD pipelines are designed to quickly integrate new changes and release them to users,

multiple studies [99, 38, 37, 28] show that there are some limitations in automating the integration

process including: test reusability, test coverage, resource costs, and developers expectations [72].

CI pipeline must be carefully designed to ensure that the costs do not outweigh the benefits [83].

We survey the papers that consider the pros and cons of CI pipelines below.

Pinto et al. [68] propose a survey on CI usages and challenges involving 158 developers. Al-

though, automatic testing can increase software quality, developers say they might skip some tests

in CI pipeline because the execution is slow and take a long time. Developers also tend to offload

test execution from their system and use CI instead; however, running tests on CI is three times

slower than local IDE.

Zhao et al. [99] study the impact of continuous integration on software development. They sur-

vey several teams on Github that use Travis CI to understand the impact of code change frequency,

change size, pull requests duration, number of issues, and testing. Based on their survey, they report

that software quality is improved by using test automation and CI. Developers also state that using

Travis CI leads to fewer defects. They report that a CI system leads to more frequent commits and

smaller bug fix changes. However, for new features developers still tend to commit larger changes.

Hilton et al. [38] study the CI benefits and challenges on open source projects. They analyze

34,544 projects and survey 442 developers to understand why and why not software teams use CI

pipelines. They report that the computational cost of build test execution and waiting time to receive

test results are two of the most important drawbacks of CI pipelines.

In another study, Hilton et al. [37] survey over 500 developers from different companies that are

working on proprietary source code. They report 76% of respondents feel more productive using

CI. 85% of the developers say having a CI pipeline increases the tendency of developers to put more

efforts into automated testing.However, 50% of developers have issues with CI troubleshooting and

configurations.

Ghaleb et al. [28] study the pros and cons of CI systems. Detecting errors in early stages with

faster and more frequent releases is a key advantage. However, long CI builds can slow down the

development since the developers have to wait for test results from many small changes. To deal

with this problem, programmers spend more time on optimizing build and test configuration which
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leads to additional work beyond normal development. Using data from 67 Github projects, they

created a model to determine which factors lead to long running builds. They found that project

size, team size, CI configuration, and test density had the greatest impact on the duration of builds.

Yu et al. [97] study CI testing with non-functional requirements (NFR). Testing non-functional

requirements, such as latency or resource utilization, requires additional time and effort to design

and write these complex tests. They identified 47 papers that introduced tools and methods for NFR

testing and found that these tools did not easily integrate into CI pipelines. They proposed a tool

and techniques to facilitate tool integration.

Beller et al. [7] study the CI usage in over 1,200 open source projects on GitHub. Most CI

pipelines have three phases: 1) compilation, 2) static check, and 3) testing. They report that testing

takes longer than the other phases and causes most of the build breaks in a CI pipeline. Most of

the time, running tests takes less than one minute, although there are some cases that can take up to

30 minutes. Another parameter that increase the testing time is having multiple environments e.g.,

Python 2 and Python 3. In this case a set of similar tests are run in all of the environments with

projects testing five different environments on average drastically increasing test load.

Tomassi et al. [87] introduce a tool to extract failures and bug-fixes from Github and Travis

CI. They mine fail-pass pairs in Travis builds and reproduce them in a container. Travis makes a

branch on the fly (phantom branch) which contains the base branch and merges it with a pull request

(or new changes through git push). Then, this new branch is tested against different environments

which are defined in the Travis configuration file. Each of these environments creates a Travis job.

They consider the final build verdict that reflects the result of all the jobs. In our work we also

consider a Travis build as our unit.

2.2 Test Selection and Prioritization

Yoo et al. [95] perform a survey of test selection, minimization, and prioritization to deal with

resource constraints in test execution. Test suite minimization is the process of removing duplicate

test cases. A set of requirements that need to be tested are defined. For each requirement, one test

case among multiple ones is selected. If a requirement needs more than one test case, it has to
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be broken down into sub-requirements. Choosing requirements and level of abstraction influence

the performance and number of failures that slip-through. Test case selection is also performed by

choosing a subset of test cases, but in contrast to test minimization, test cases that verify risky or

recent changes are chosen.

To increase the efficacy of testing tools and consume less computational power, a subset of tests

which are the most relevant could be selected instead of running all the tests in each build [98,

29]. To give feedback to developers about their code as soon as possible, test prioritization is also

suggested [61, 31].

Minimization and selection will have failures that slip-through because not all tests are run [35].

In contrast, prioritization approaches run all the tests but change the run order. With prioritization

the assumption is that tests can be run in an arbitrary order. However, changing the test order can

lead to new flaky failures. Lam et al. [52] found that the source of 50.5% of flaky failures is a

violation of test order dependencies. In contrast, our approach to reducing test executions comes

from grouping builds not from eliminating or selecting a subset of tests. As a result, we guarantee

no slip-throughs because we run all the tests. We do not introduce order dependency flaky failures,

because the entire test suite is run in its original order. Future work is necessary to directly compare

the efficacy of batching with selection and prioritization on the same datasets.

Marijan et al. [56] study continuous software testing optimization. Regression tests are helpful

in a CI pipeline to prevent degradation in new code changes. However, such tests could take a long

time and consume significant resources, especially when the same functionality is tested multiple

times and the same set of tests are run. They propose an approach to reduce this test redundancy

by learning from testing history and code coverage metrics to predict future faults. They report

that testing time can be reduced by 40% on average. They measure three parameters regarding test

cases, time efficiency, size efficiency, and fault detection effectiveness. Their prediction models are

accurate with an F-score between 88% and 93%.

Shi et al. [79] study regression testing and test reduction. They compare test-suite reduction and

regression test selection and also evaluate the combination of these two approaches. Test reduction

completely removes the test case from the flow whereas regression test selection tries to remove the

tests when the test outcome remains the same in different runs. They experiment on 17 open source
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projects. They find that test suite reduction can reduce the number of test executions by 40 percent-

age points. However, in some bugs this reduction comes at the cost of fault slip-throughs. When the

approaches are combine, the savings is 5 percentage point but there are fewer slip-throughs.

Kumar et al. [50] study test selection and classification. They create a framework that uses

fuzzy-ant colony optimization algorithm to optimize test execution. Their approach has three stages.

In the first stage, unfit test cases are removed using fuzzy synthesis-based filtering. In the second

stage, test selection and classification is done using fuzzy entropy-based filtering which reduces the

categorized ambiguous test cases. In the final stage, ant colony optimization is used to search the

space to find the optimum set of test cases. They found the third stage is the most important one

because it can perform most of the optimization by itself.

Marijan et al. [57] propose a test selection approach to prioritize test cases based on configura-

tion coverage analysis at Cisco. They compare this novel approach to the existing process and also

a random test selection algorithm. Their results show that their approach is better than the other two

methods and can increase fault detection while keeping test feedback delay the same. They found

uniformity of configuration increases by 39% and failure detection becomes 15% better.

2.3 Statistical Bug Models

Predicting software defects using machine learning models is a research area which has been

popular in recent years [30, 77, 62]. Memon et al. [59] propose a study on continuous testing at

Google. They report regression testing every single change is not feasible due to the high frequency

of changes and long duration of tests. They introduced a tool to mitigate this problem by limiting

test workloads and also informing developers about their code influence on quality. They report only

a few percentage of tests ever fail and these failing tests are closer to source code that is modified

more frequently. Also, some users and tools are more likely to cause failures. This study shows

certain attributes of code changes can affect the possibility of test failure. We use this finding to

create a learning model using build features to predict future failures.

Chen et al. propose a method to predict software defects using a statistical model. They use

source code metrics such as number of methods, average method complexity, and number of lines
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of code to build their model. The learning model is created using k nearest neighbor (KNN). They

evaluated their approach on ten projects and the result shows that it performs better compared to

previous methods. This model chooses less features and costs less computational power while the

prediction is improved.

Yang et al. [94] study software defect prediction using deep learning at change level. Their

prediction has two stages: 1) feature selection which is done by extracting a set of features from a

broader initial set of feature using Deep Belief Network. 2) building a classifier using the selected

attributes. To evaluate, they use cost effectiveness and F-score. The first metric is important when

testing resources are limited. There is a trade-off between the allocated testing resources to predict

risky changes and the number of suggested lines of code to inspect manually. In our study, we

achieve the same goal i.e. predicting risky changes, but we also propose another evaluation metric

which is based on the number of build test execution.

Hassan [33] studies fault prediction based on complexity of change process which is calculated

by history of code modifications. Pandey et al. [67] propose an approach to detect software defective

modules using deep ensemble learning model. Their approach allocates more testing resources

to modules that are more likely bug-prone based on model prediction. To solve the problem of

learning from imbalanced data, they perform minority class oversampling. Many studies evaluate

the learning algorithm to improve the accuracy of bug prediction models [80, 66, 90, 86]. In our

study, we evaluate several machine learning techniques and tune hyper-parameters to increase the

performance of our models.

2.4 Batching

Batching is an effective technique to deal with resource constraints, whether it is computational

power, development costs, or time. Alexeevich et al. [1] propose a method for batching tests during

execution of a test suite. Batching is not only useful in test cases but also in test data and test results.

Using this approach data connections which are considered as a constraint during testing could be

consumed wisely. They focus on optimizing tests for resource-limited mobile devices. Test suites

can be lengthy and complex and these devices often have limited processing power which leads to
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even longer build and test duration. They find that batching in different phases of testing can reduce

the required resources and speed up the process.

Cho et al. [15] propose a batching scheme for data processing in Internet of Things (IoT). Due

to the limitations in network capacity and processing power of these devices, computational power

must be consumed very carefully. Specially when it comes to data transfer, batching can play a

significant role to reduce the latency. They propose an adaptive approach to utilize the capacity of

devices using a combination of batching and scheduling methods based on previous data.

In medical tests, pool testing i.e. batching is an effective way to reduce the number of required

test kits and thus decreasing costs. Dorfman [20] proposed an approach to detect infected individuals

in a large population during World War II. He suggests pooling test to reduce the cost and the

time. If the test is negative, it means all members of that group are tested negative, otherwise each

individual needs to be tested separately. Gajpal et al. propose an approach to partition people into

groups and test each group with one kit. Only, groups with a positive result need to be divided into

subgroups and tested further [26]. To improve the pooling process, placing one sample in multiple

pools is suggested. Broder et al. propose a study on double pooling tests to reduce the cost of

isolation process [10]. Viehweger et al. also suggest to replicate samples in multiple pools. If a

pool tested positive, the samples that are common among other negative tested pools can be skipped

from further testing [88]. Wolff et al. propose a study on different batching approaches for testing a

large population against COVID-19 with a limited number of test kits in a short period of time. To

calculate the best pool size, they experiment pool sizes of 1 to 30 and realize most of the saving is

achieved with smaller pool sizes. They also found as the infection rate increases, the optimum pool

size decreases because the overhead of bisection becomes larger than the saving from batching [19].

Aragón-Caqueo et al. study the effectiveness of batching in COVID-19 tests and report that batching

gains more saving when the infection rate is lower [3]. In our work, we experiment batch sizes of

1 to 20 to realize the optimum batch size. We evaluate nine projects with various failure rate to

express the relationship between failure rate and optimum batch size.
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2.5 Culprit Isolation and Bisection

When multiple changes are tested together, in case of failure, we need a mechanism to find

the root cause and isolate the culprit change. Git bisection [55] can be used when commits are

ordered [82]. It does a binary search to find the failure [9, 101].

Ziftci et al. [101] propose a study on isolating failures in a group of changes. They suggest

an algorithm to identify the code changes that cause degradation and regression. They experiment

on 140 projects at Google and the result shows that this approach can detect faults 82% of the

times by suggesting top 5 riskiest changes among thousands in every build. In this work they

focus only on test case failures which means they ignore breakage in previous stages such as code

compilation. The Google source code repository does not have multiple branch meaning every

change goes directly into the main branch and creates a new version. Because of this architecture,

it is critical to test each change before merging to the repository as it can break other parts of the

code. They call these tests pre-submit tests which are performed before merging happen and in

the case of failure the changes will be rejected. They also have post-submit tests that happen after

merging on the code base. These tests are often longer and more complex and cannot be done on

each change. The number of changes is also large and testing each single change without batching

can overwhelm the resources. When batching is performed, if a test fails, it is critical to find the

root cause as soon as possible, because it can affect the whole development process. To solve this

problem and find the culprit change faster without manual intervention, they create a dependency

graph, that shows the relation between test cases and file changes. This graph shows the distance

between a file change and test case. Larger changes are more likely to cause the failure as well

as changes that are closer to the failed test case. To evaluate the results they asked developers to

investigate the suggested culprits and give feedback. In this study, flaky failures are considered as

normal failures which means no special processing is done to detect flaky changes/tests. Our study

is directly related to this work with some modifications. Instead of having a test selection process

we run all the tests each time, but batch builds to reduce tests executions. We do not use file changes

to predict failures, instead we use a statistical bug model based on historical build features gathered

from GitHub and Travis CI. Another difference is in the evaluation process which we evaluate our
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batching approaches by calculating the reduction in number of build test execution compared to test

all changes without batching.

Saha et al. [75] propose an approach for selective bisection consisting of test selection and

commit selection. They state that test selection can reduce the number of test executions while

commit selection can reduce the number of compiler invocations. Finally, the combination of the

two, can reduce the total time required for testing. To perform selective bisection, they ignore

commits that are likely having no effect on failing tests. This prediction is based on the test coverage

and done on file level.

Heger et al. [34] propose an automatic approach to find the root cause of software performance

regressions. Their work has two stages. First, performance regressions are detected using the unit

tests that are related to performance. The next stage is finding the root cause of the regression using

bisection. The bisection process is similar to Git bisect. For choosing the optimum split point, a

call tree is used. To correlate changes with performance regressions, they perform a static analysis

that select the related class and methods. They only report the methods that are suspicious to the

developers. In our work we perform bisection in three of our batching approaches. We also propose

a novel approach that use batching without bisection and show that it can be effective to find the

root cause of a failure.

Bendik et al. [9] propose an approach to find regression points in a software version control

system. Git bisection can be used to find the culprit change in a group of commits. However, in

each iteration, it is assumed that there is only one problem exist in a batch. Sometimes, fixing a bug

can take several commits and also it is possible that an incomplete fix causes future test failures. To

address these issues, they propose an algorithm to determine the regression points in a cost effective

manner. They assume that each regression point can be predecessor of the leaves in the version

control graph that has failure. They propagate the regression for all influenced leaves and remove

the middle nodes from the inspection process. As a result they focus on the latest incident causes by

the regression rather than middle changes. In our work, we reduce the cost of bisection that causes

multiple test executions by stopping at batch size four. In other word, we do not bisect batches that

are smaller than four and show mathematically that this can save build test executions.

Najafi et al. [60] study batching, bisection and using bug models to find the root cause of a test
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failure. They experiment on three projects at Ericsson. To find the optimum batch size for a software

project, they experiment with batch sizes from 1 to 20 and find that batches of size four generate the

best result i.e. lowest number of test executions. They also consider flaky failures in their simulation

and show that increasing batch size leads to more flakiness. They propose a risk-based approach

to identify top n riskiest commit in a batch of commits. They only evaluate this approach with

batches of size four. After isolating possible culprits, they are tested individually. We replicate

this approach in our work with a slight modification. Instead of using fixed batch size of four, we

evaluate batches of size 1 to 20. We also, propose a novel risk-base approach that uses dynamic

batch size and outperform this top n batching techniques. To predict the risk of each commit, they

evaluate two methods. The first one is based on test execution history and correlates the previous

test cases’ result with changes to predict culprits. The second method is using a logistic regression

bug model based on 7 features for each change to determine the likelihood of failure. In our work,

we use more sophisticated learning models to predict culprit changes. We experiment with several

machine learning models and find that Random Forest outperforms other techniques.
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Chapter 3

Background on Batching and Definitions

In this section, we introduce the background on batching, bisection, and statistical risk models.

We mathematically show the minimum and maximum number of build test executions required to

find the culprit build on failing tests as well as the savings when builds pass. These definitions are

complimented by examples for each of our six research approaches.

3.1 RA 1. TestAll

TestAll is the simplest and most common form of running tests in a CI flow. Every change will

be tested individually before being merged to the main repository or master branch. The number

of build test executions is equal to the number of changes made to the system, n. The number of

executions is constant regardless of a pass or fail in a build because the on failure there is only one

possible culprit build. Formally, the number of executions for a pass, p, or fail, f , is defined below:

TestAllp(n) = TestAllf (n) = n (1)

3.2 Batching

Instead of testing each build individually, we batch builds together and test them in groups.

When the batches passes, we need only one test execution:
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Figure 3.1: BatchBisect. In this example, a batch of size eight builds is tested. The batch fails.
Bisection is used to isolate the culprits in two batches of size four. The bottom passes and can be
integrated. The top contains two failures that are isolated. In total, we need nine executions to
isolate the culprits.

Figure 3.2: On batch failure, the minimum and maximum number of executions required to isolate
the culprit build(s) for each approach.
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Figure 3.3: Batch4. If TestAll is run on failure the number of executions is constant and equal to
the minimum executions for BatchBisect(4). In this example, the first four builds fail, and each is
then tested individually for a total of five executions. The second batch passes requiring a single
execution. We need a total of six executions, while the same builds required seven executions for
BatchBisect in Figure 3.1

Figure 3.4: BatchStop4. We add a stopping condition for bisection when the batch is size four. For
example, the first batch fails and a bisection is performed. In the second batch, Build 1 and 4 are
culprits but batch size is four, so instead of bisection, all builds are tested individually. Build 5 to
8 have no failures and there is no need for further test executions. In total, we need 7 execution to
find all culprits.
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Figure 3.5: RiskTopN. A risk model is run to determine the likelihood of failure for each build [60].
The riskiest N builds are tested in isolation with the remainder tested as a batch. Using RiskTop1 in
this example, Build 4 is the riskiest and is isolated for testing. When the remaining batch still fails,
Build 1 is now the riskiest. The remaining batch passes. In total, we need five executions to isolate
the culprits.

Batchp(n) = 1 (2)

This savings can be substantial. In an extreme example, imagine a project that does a nightly

test run on 100 builds, if the build passes the savings in execution will be 1− n = −99 or 99 build

test executions.

BatchSavingp(n) = Batchp(n)− n = 1− n = 1− TestAllp(n) (3)

However, on failure the culprit must be identified and the number of executions varies depending

on the approach.

3.3 RA 2. BatchBisect

When a batch passes only one execution is required to merge the builds in the batch. However,

if the batch fails, the build that has failing tests, i.e. the culprit(s), must be found using bisection.

GitBisection uses a binary search and in so doing assumes ordered commits and that there is only

one commit that introduces the failure (i.e. we search for the failing commit). However, if there

are two commits that have failing tests, then GitBisection would only be able to find the oldest

culprit commit. The remaining commits could not be integrated without further testing as a second

culprit may also be present. Instead of a search for a single culprit, we need to traverse a binary
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Figure 3.6: RiskBatch. Builds are added to the batch until a threshold is reached. With a threshold
of 40%, Build 1 is isolated, while Builds 2 and 3 are tested together because their combined risk
is 20%. Adding Build 4 would have a increased the cumulative risk to 75%, so Build 4 is tested
individually. The remaining builds have a combined risk of 35%, so they are tested as a single batch.
In total we need four executions to isolate the culprits.
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tree identifying all the culprits. As a result, in this work we bisect by splitting the builds into equal

batches for testing. Figure 3.1, illustrates the process.

Mathematically, we know that the number of test executions required to find a single culprit is

the minimum cost on failure. The bottom line in Figure 3.2 shows the number of executions required

to find a single culprit for batch sizes between 1 and 10.

min(BatchBisectf (n)) = 2 ∗ log2(n) + 1 (4)

If all builds in a batch contain a failing test, i.e. are culprits, then the number of required exe-

cutions is equal to the number of nodes in a full binary tree, which is the maximum cost on batch

failure. This maximum is shown as the top line in Figure 3.2.

max(BatchBisectf (n)) = 2 ∗ n− 1 (5)

The greater the number of builds that have failing tests, the greater the number of test executions.

For example, Figure 3.1, in a batch of 8 that contains two culprits we need 9 build test executions to

find both culprits. This is actually larger than the TestAll scenario with one build test execution per

build, i.e. eight. In Section 5, we run simulations to determine the optimal batch size and execution

reduction attained by BatchBisect for the Travis projects.

3.4 RA 3. Batch4

When a batch fails, bisection requires test executions to find the culprits. Given that the bi-

section is performed using a binary tree, a batch of size four has a special properties that we will

discuss. The build test execution reduction when a batch of size four passes is constant at 3 build

test executions. For completeness:

Batch4p(4)− n = 1− 4 = −3

= BatchBisectp(4))− n

(6)
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However, one failure with BatchBisect(4) requires between 5 and 7 executions to identify the

culprits. In contrast, the Batch4 approach, that on failure runs the tests on each individual build, i.e.

TestAll, resulting in a constant number of executions described below.

min(Batch4f (4)) = max(Batch4f (4))

= n+ 1 = 4 + 1 = 5

= min(BatchBisectf (4))

< max(BatchBisectf (4) = 7

(7)

Figure 3.3 provides an example of the Batch4 approach. The first batch has two culprits and

BatchBisect would require 9 executions. In contrast, Batch4 requires 6 test executions. The second

batch has no culprits so it requires one build test execution. When there is a single culprit, Batch-

Bisect and Batch4 are the same (see Equation 7), however, when there are two or more culprits the

Batch4 saves up to 2 executions.

Batch4 is a special case of the Dorfman [20] method introduced during World War II to batch

medical tests of, for example, syphilis. The naive Dorfman algorithm combines n soldiers into a sin-

gle batched test, on failure each individual solider is tested individually, i.e. TestAll. In Figure 3.2,

we show that Dorfman requires additional executions beyond the minimum for BatchBisect after

four builds. In our simulations in Section 3.4, we show that the simple Batch4 approach is highly

effective.

3.5 RA 4. BatchStop4

In the previous section, we mathematically showed that bisection with four builds should be

replaced by Batch4. We build upon this idea with BatchStop4, which runs normal bisection until

the batch size is four, in which case it runs Batch4. For example, in Figure 3.4 the batch size is 8

and Builds 1 and 4 contain failures. After a bisection, the first batch contains the failures while the

second batch passes. Since the batch size is four, bisection is no longer performed, instead each

build is tested individually i.e. TestAll. Total number of execution is 7 for BatchStop4, while the
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total for BatchBisect is 9.

With the stopping condition at 4, then the number of executions required to find one culprit is

the modified version of Equation 4:

min(BatchStop4f (n)) = 2 ∗ log2(n) + 1− 4 + 4

= 2 ∗ log2(n) + 1

= min(BatchBisectf (n))

(8)

While the maximum number of executions on failure is

max(BatchStop4f (n)) = 2 ∗ n− 1− (n/2 + n) + n

= 2 ∗ n− 1− n/2

< max(BatchBisectf (n))

= 2 ∗ n− 1

(9)

Since we stop bisection when a batch contains 4 builds, the height of the tree is reduced by two

with an execution reduction of n/2+n. However, we still need to run TestAll on these batches of 4,

so we need n additional executions. With one culprit BatchStop4 is equivalent to BatchBisect, how-

ever, with additional culprits we can save up to n/2 executions. Section 5.3 presents the simulation

results and we find that BatchStop4 has the second highest savings of our approaches.

3.6 RA 5. RiskTopN

When a batch fails, bisection requires expensive additional executions. Commit risk models

have been used to alert developers to bug-introducing changes that may need additional testing or

review [4]. Najafi et al. [60] used risk models to isolate the top n riskiest commits to be tested

individually while batching the remaining low risk commits.

For example RiskTop1 is illustrated in in Figure 3.5. We see the modeled risk probabilities for
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each build with Build 4 has the highest risk, i.e. 55% chance of failure, so it is tested individually.

The remaining builds are tested in a single batch. The process of testing risky builds in isolation is

repeated until all failures are found and passing builds are integrated. Finding the two culprits in

our examples take only five build test executions compared to the 9 and 7 required for BatchBisect

and BatchStop4 respectively.

Najafi et al. [60] created a simple logistic regression model with seven features. In contrast,

as we show in our data and methodology, Section 4, we create more sophisticated models, e.g.,

Random Forest using 19 features. As we discuss in the result, the accuracy of the model dictates

the degree of savings (see Section 5.5).

3.7 RA 6. RiskBatch

Najafi et al. [60] testing risky builds in isolation, in contrast, we introduce the RiskBatch ap-

proach that group builds into a batch up to a cumulative risk threshold. For example in Figure 3.6

we set the risk of failure threshold to 40%. Build 1, with a risk of 45%, is tested individually while

Build 2 and build 3 are tested together because their combined risk is 20%. Build 4 could not be

added to the previous batch because the combined risk of would be 75%, so build 4 is tested indi-

vidually. The process is repeated for the remaining four builds that have a combined risk of 35%. In

this example, we need four executions to isolate the culprits and integrate the passing builds, com-

pared to the 9 and 5 for BatchBisect and RiskTop1, respectively. The savings is dependent on the

accuracy of the risk model, and Section 5.6 presents our results and tuning with various thresholds.
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Chapter 4

Data and Methodology

In this section, we describe the projects and data we study. We then describe our statistical risk

models. Finally we describe our simulation method and define the outcome measures.

4.1 Travis Projects Under Study

Travis CI is a continuous integration system that is freely available for use by open source

projects.1 The data from the builds of 1,200 open source projects was made available by Travis

Torrent [8]. We use the Travis Torrent dataset in this work. In the Travis Torrent dataset, a Travis

build can have the following outcomes:
1Travis: https://travis-ci.com/

Table 4.1: Size of projects under study

Project Failure Rate Tested Builds Years Contributors
ruby 22.21% 15,382 5 192
metasploit 7.93% 8,836 4 703
graylog2 10.51% 5,194 4 98
owncloud 16.13% 4,452 2 71
vagrant 9.59% 4,402 4 914
gradle 8.96% 4,018 2 434
puppet 6.95% 3,223 4 532
opal 9.87% 2,980 4 99
rspec 19.36% 2,856 5 274
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• “passed:” The code has been successfully tested and no failures have occurred.

• “failed:” The code has been successfully tested but some tests have failed.

• “errored:” There was an error while running the tests. For example, there is a bug in test code,

an error in setup test environment, a timeout, or an error returned from git.

• “canceled:” The build has been canceled by the user.

We discard “canceled” builds because a developer manual stopped the test run and we cannot

model the reason for this stoppage. We consider “errored” and “failed” builds as failures because

environmental failures will also result in a bisection [60].

Using this data, we order projects by the number of builds and select the top nine active projects

that have a failure rate below 25%: Ruby, Metasploit, Graylog2, OwnCloud-android, Vagrant, Gra-

dle, Puppet, Opal, and Rspec. We do not consider projects with a failure rate above 25% as batching

is not effective with high failure rates [60]. Table 4.1 provides additional descriptive statistics on the

projects. The projects have between 2.8k and 15k test builds, there is a wide range of failure rates

from 7% to 22%, multiple years of development, and between 67 and 914 contributors per project.

The projects are from diverse software domains and we briefly describe each project. The Ruby

project is a popular object oriented programming language that is often used for web development.

The Metasploit project is a testing framework used for penetration testing having about 900 exploits

for different operating systems. The Graylog2 project is an open source logging system capable

of collecting, storing and analyzing logs in production. The OwnCloud-android project is an An-

droid app to access cloud storage provided by an OwnCloud Server. The Opal project is a source

to source compiler for converting Ruby code to JavaScript. The Rspec project is a testing frame-

work for Ruby projects focusing on test driven development. The Vagrant project helps to build and

manage portable virtual machines and containers such as AWS or Docker containers. The Gradle

project is a build automation and dependency management software that supports many languages

including Java, C++, and Python. The Puppet project is management software that controls dis-

tributed operating systems with a centralized configuration and facilities administrative tasks such

as updating software and managing users.
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4.2 Statistical Risk Models

Two of our approaches require statistical models: RiskTopN (RA 5) and RiskBatch (RA 6). We

develop risk models to identify the builds that are most likely to fail. We use scikit-learn2 library

for this purpose. Change risk modelling has been widely studied to identify faults [25] and bug-

introducing changes [48]. Prior work by Najafi et al. [60] created a simple logistic regression using

seven predictors. In this work, we use more sophisticated models and additional features. The

dataset has 61 features for each Travis build. We exclude all features that are available only after

the tests have been run, including number of failed tests, number of skipped tests, and test duration.

We also exclude unique features including the commit hash, date, and project level features, such as

the team size that would be constant across all project builds. In total we have 19 features in total,

which we describe briefly for completeness.

(1) gh is pr: true if this build is started by a pull request otherwise false.

(2) gh num commits in push: Number of commits in the push that started the build.

(3) git prev commit resolution status: String, ”merge found” if this build is a merge otherwise

”build found”.

(4) git num all built commits: Integer, Number of all commits in this build.

(5) gh num commit comments: Number of comments on all commits in this build on GitHub.

(6) git diff src churn: Number of modified lines of source code.

(7) git diff test churn: Number of modified lines of test code.

(8) gh diff files added: Number of files added.

(9) gh diff files deleted: Number of files deleted.

(10) gh diff files modified: Number of files modified.

(11) gh diff tests added: Number of test cases added.
2https://scikit-learn.org/

27



(12) gh diff tests deleted: Number of test cases deleted.

(13) gh diff src files: Number of source files changed.

(14) gh diff doc files: Number of documentation files changed.

(15) gh diff other files: Number of other files changed (other than source code and documenta-

tion).

(16) gh num commits on files touched: Total number of commits on the files touched in this build

in previous 3 months.

(17) gh sloc: Total number of lines of source codes in the repository.

(18) gh asserts cases per kloc: Number of assertions per 1000 gh sloc.

(19) gh by core team member: True if the triggering commit was by a core team member. (Some-

one who has committed code at least once in previous 3 months)[8]

The outcome of our risk model is the probability that a build will fail one or more tests. We

evaluated five classifiers: random forest, Naive Bayes, MLP, logistic regression, and SGD.

4.3 Simulation and Evaluation

The Travis dataset provides the test verdict for each individual build. Failed builds must be

investigated while passing builds are integrated. To simulate the impact of our batching approaches

on the number of build test executions, we use the verdict of each build, and combine builds based

on the the approaches described in Section 3.

Our simulated batches contain only the builds that have been flagged as ready for integration

with Travis CI. We do not introduce any new conflicts when we create batches because any conflict

would have been dealt with when the developer ensures that the code can be merged in the pull

request prior to submission to Travis CI.

We only combine builds that have the same Travis CI configuration, e.g., that request the same

dependencies and environment. If two builds have different configurations, we cannot combine
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them in a batch. For example, a build that requires postgres cannot be combined with one that

requires MySQL. We only batch builds with identical configuration files.

For risk based approaches, we must train a risk model, and we use the first month of data for

training. As we discuss in threats to validity, we experimented with larger training time periods,

but found that one month was equal or better than longer time periods. To compare with the other

approaches, we also ignore the first month in non-risk approaches.

The goal of this work is to identify failing builds and integrate passing builds with a minimal

number of build test executions. We report the percentage decrease in build test executions for each

research approach, A, relative to the total number of builds that must be tested, i.e. the TestAll

approach, according to the following equation:

ExecutionReduction(A) = 1− Executions(A)
TotalBuilds

= 1− Executions(A)
Executions(TestAll)

(10)

We also report the additional savings for each approach relative to the total number of builds.

This is equivalent to calculating the differences in percentages, i.e. percentage point difference, for

each approach. We use the equation below to calculate the the additional savings for approach, A2,

given approach, A1, and the number of TotalBuilds:

AdditionalReduction(A2 — A1)

= (1− Executions(A1)

TotalBuilds
)− (1− Executions(A2)

TotalBuilds
)

=
Executions(A2)− Executions(A1)

TotalBuilds

= ExecutionReduction(A1)− ExecutionReduction(A2)

= PercentagePointDifference(A2, A1)

(11)
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Chapter 5

Results

In this section, we discuss the simulation results for each of our approaches relative to testing

each batch, i.e. TestAll, in Table 5.1. The approaches are BatchBisect, Batch4, BatchStop4, Risk-

TopN, and RiskBatch. We also discuss the additional savings for between approaches relative to the

total builds, i.e. the change in percentage points between approaches.

5.1 Result: RA 1. BatchBisect

Batching commits is widely used for integration testing and when the tests are long running or

expensive [101]. Najafi et al. [60] empirically showed that batching commits and using a bisecting

process to isolating the failing commit is effective at Ericsson with a savings in build test executions

of 7%, 14%, and 41% depending on the project. We reproduce the result on nine large projects

hosted on Travis CI. We run simulations with batch sizes between 1 and 20 builds and plot the

saving in build test executions in Figure 5.1. From the execution saving curve in the figure, we note

a logarithmic improvement with the majority of the savings coming from small batches sizes. At a

batch size of 8, we see that at a minimum 97% of the total executions savings has been achieved.

On the projects that Najafi et al. [60] studied, the improvements began to decrease with larger batch

sizes. We see a similar trend on the rspec and ruby projects that have the highest failure rates. The

remaining project plateau with larger batch sizes resulting in little to no improvement in execution

savings. As a result, we report the saving results at or below 8 for the remainder of the thesis. The
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Table 5.1: Percentage savings in build test executions relative to TestAll. We see on average the
techniques save slightly less than half the build test executions. The best performing approach is
RiskBatch. Batch4, which does not require bisection or a risk model, performs well and is simple
to implement.

Project Batch Batch4 Batch Risk Risk
Bisect Stop4 Top2 Batch

ruby 22.87% 32.97% 32.97% 29.96% 33.77%
metasploit 52.37% 51.46% 54.64% 50.60% 53.54%
graylog2 52.05% 52.17% 55.69% 49.39% 55.20%
owncloud 53.82% 53.42% 57.98% 54.80% 57.43%
vagrant 57.55% 55.84% 60.83% 50.35% 55.27%
gradle 48.49% 49.21% 50.92% 41.91% 49.29%
puppet 57.16% 54.86% 59.34% 50.85% 56.26%
opal 47.81% 49.19% 50.91% 46.40% 49.84%
rspec 22.35% 29.51% 29.51% 23.23% 25.93%
Minimum 22.35% 29.51% 29.51% 23.23% 25.93%
Average 46.05% 47.63% 50.31% 44.17% 48.50%
Maximum 57.55% 55.84% 60.83% 54.80% 57.43%

Figure 5.1: Savings in number of build test executions for each batch size. We see that much of
the savings is achieved with small batch sizes. Batch4 is represented as a vertical line in the middle
figure. Projects with higher failure rates see a decrease in savings with large batch sizes, while most
projects plateau.

31



best batch sizes are 4, 8, 8, 7, 8, 8, 8, 8, and 4 for each project respectively and the corresponding

execution savings are 22.87%, 52.37%, 52.05%, 53.82%, 57.55%, 48.49%, 57.16%, 47.81%, and

22.35%, respectively, with an average of 46.05%.

Compared to TestAll, we see a BatchBisect saves between 22.35% and 57.55% of the total

build test executions with an average across projects of 46.05%. The best batch size per

project ranges from 4 to 8, with the majority of the savings realized with small batch sizes.

5.2 Result: RA 2. Batch4

In Section 3.4, we mathematically showed that batches of four builds save three executions

when they pass, but can require between five and seven executions on failure. However, if we

simply test all the builds individually on failure, we always need five executions which is the same

as the minimum number of executions for BatchBisect. Furthermore, the Batch4 approach does not

require bisection and the complexity of regrouping commits inherent in this process. In Figure 5.1,

we see the vertical line represents the savings for Batch4 which are 32.97%, 51.46%, 52.17%,

53.42%, 55.84%, 49.21%, 54.86%, 49.19%, and 29.51% per project.

Compared to TestAll, we see that Batch4 saves between 29.51% and 55.84% with an average

across projects of 47.63%. Compared to BatchBisect, Batch4 is not only simpler, requiring

no bisections, but also outperforms BatchBisect with an average improvement of 1.58 per-

centage points.

5.3 Result: BatchStop4

For BatchStop4, we use bisection until there are only four builds in a batch at which point we

revert to Batch4 and TestAll on failure as discussed in Section 3.3. Figure 5.1, shows the simulation

results. The execution saving compared to TestAll are 32.97%, 54.64%, 55.69%, 57.98%, 60.83%,

50.92%, 59.34%, 50.91%, and 29.51% for each project respectively, with an average of 50.31.

These savings are achieved by choosing batch sizes: 4, 7, 8, 8, 8, 6, 8, 8, and 4, respectively.
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Table 5.2: Proportion of total build test execution savings with a given batch size for BatchStop4.
We also include the optimal batch size in the final column. Small batch sizes account for the vast
majority of the savings, with at least 97% of the savings achieved with a batch size of 8.

Project Size = 2 Size = 4 Size = 6 Size = 8 Best Size
ruby 0.83 1.00 1.00 1.00 4
metasploit 0.71 0.93 0.99 0.99 7
graylog2 0.68 0.92 0.98 0.99 12
owncloud 0.62 0.87 0.93 0.97 15
vagrant 0.61 0.87 0.93 0.98 16
gradle 0.75 0.97 1.00 1.00 6
puppet 0.64 0.89 0.94 0.98 16
opal 0.74 0.97 0.99 1.00 8
rspec 0.88 1.00 1.00 1.00 4
Minimum 0.61 0.87 0.93 0.97 4
Average 0.72 0.93 0.97 0.99 9.77
Maximum 0.88 1.00 1.00 1.00 16

Compared to BatchBisect and Batch4, we see a reduction of 4.26 and 2.69 percentage point in

number of build test executions.

Again the figure shows a logarithmic improvement. In Table 5.2 we show the percentage of total

savings for each batch size. With a batch size of 2 we have already realized an average of 72% of

the total savings, by batch 4 we see an average of 93%, and by Batch size 8 the average savings is

99%. It is clear that the largest gain in savings comes with small batch sizes and that larger batch

sizes provide little further advantage and in some cases require extra executions.

Compared to TestAll, we see that BatchStop4 saves between 29.51% and 60.83% with an

average across projects of 50.31%. The majority of the savings are achieved with small

batch sizes, batch 2, 4, and 8, realizing an average of 72%, 93%, and 99% of the total batch

savings. Compared to BatchBisect and Batch4 the average improvement is 4.23 and 2.69

additional percentage points.

5.4 Result: Risk Model for RA 4 and RA 5

The RiskTopN and RiskBatch depend on a risk model of how likely a build is to fail. RiskTopN

then tests the riskiest N builds in isolation, while RiskBatch groups builds into until a cumulative risk
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threshold is reached. We described the 19 features that we included in our risk model in Section 4.2.

Najafi et al. [60] used 7 features and a simple logistic regression. In contrast, we evaluate five

classifiers: Naive Bayes, Random Forest, Multilayer Perceptron (MLP), logistic regression and

Stochastic Gradient Decent (SGD). We did not use decision trees because they are not designed

to provide a probability for the prediction and would not be able to create risk thresholds need to

create batches [92, 17]. Table 5.3 shows the F-score for each model. We see that Random Forest

out performs the other predictors on all projects except gradle where it is 1 percentage point worse

than SGD. As a result, we use Random Forest in the remainder of this thesis. For completeness

we report the precision and recall for Random Forest. The precision is 0.51, 0.29, 0.40, 0.46, 0.30,

0.14, 0.23, 0.23, and 0.30 for each project respectively. The recall is 0.55, 0.18, 0.33, 0.37, 0.25,

0.09, 0.14, 0.16, and 0.27, respectively.

We tuned the parameters for random forest. For number of trees we experimented the values of

10, 50, 100, 200, and 400 and found a differences in F score between 2 and 4 percentage point. For

maximum depth of the trees we evaluated the model with the values of 10, 20, 50, 100, 200 and no

limit. The difference in F score was between 0 and 4 percentage point. For the criterion parameter,

we experimented gini and entropy and found a the default gini function was the best choice in all of

the projects. For minimum samples split we experimented the values of 2, 5, 10, 20, 50, 100. The

default value of 2 had the best result in 8 of the projects. One of the projects had the best result with

the value of 10 although the difference was 1 percentage point in F score. For minimum samples

leaf we evaluated the values of 1, 2, 5, 10, 20, 50, 100 and found the default value of 1 generates

the best result in all of the projects.

An accurate risk model will reduce the number of executions, while an inaccurate model can

even increase the number of executions to find culprits. However, unlike bug prediction that can

result in a developer investigating a commit that does not introduce a bug, i.e. a false positive, our

risk models are used to automatically batch builds. The failing build will always be found and an

inaccurate risk model will simply require more executions but will never change the final outcome,

i.e. it will never add a false positive or negative.
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Table 5.3: Comparison of F-scores for each model and project. Regardless of F-score all failing
builds are found. Low F-scores result in more build test executions. Precision and recall for Random
Forest are in the text.

Project Random Naive MLP Logistic SGD
Forest Bayes Regression

ruby 0.53 0.31 0.35 0.31 0.35
metasploit 0.23 0.03 0.08 0.03 0.08
graylog2 0.36 0.31 0.20 0.33 0.28
owncloud 0.41 0.32 0.28 0.14 0.11
vagrant 0.28 0.17 0.11 0.22 0.17
gradle 0.11 0.05 0.11 0.06 0.12
puppet 0.18 0.05 0.14 0.05 0.06
opal 0.19 0.09 0.03 0.18 0.13
rspec 0.29 0.22 0.19 0.25 0.19

5.5 Result: RA 4. RiskTopN

The RiskTopN approach isolates the riskiest builds to be tested in isolation, while testing the less

risky builds in a batch. We reproduce Najafi et al.’s [60] Ericsson study on Travis CI projects using

more predictors and a random forests (Our models are discussed in Section 5.4.) Najafi et al.’s [60]

RiskTopN used fixed batch size of four and N = 2. We evaluate N = 1, ..., 10. N = 2 produced

the best results for all projects. We also experimented with batch sizes from 1 to 20.

Figure 5.1 shows the execution savings for each batch size. Like the other approaches, we see

that the majority of the savings are at batch 8, so for comparison purposes we report the results

at batch size 8 in the thesis. The improvement over TestAll is 29.96%, 50.60%, 49.39%, 54.80%,

50.35%, 41.91%, 50.85%, 46.40%, and 23.23% respectively. On all projects, the savings in execu-

tions is lower than Batch4 and BatchStop4 which do not require a risk prediction model. Despite

the use of more advanced models and predictors than Najafi et al. [60], the results do not justify the

addition of a risk prediction model in the CI pipeline.

Compared to TestAll, RiskTopN introduced by Najafi et al. [60] reduces executions between

23.23% and 54.80% with an average across projects of 44.17%. However, Batch4 and Batch-

Stop4 both outperforms RiskTopN by 3 and 6 percentage points and do not require a statis-

tical risk model.
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Figure 5.2: Experimenting with the RiskBatch cumulative risk threshold. We see that most projects
have at or above 90%.

5.6 Result: RA 6. RiskBatch

Instead of isolating risky builds, our RiskBatch approach adds builds to a batch until the sum of

the builds added to the batch reaches a threshold. Section 3.7 and Figure 3.6 illustrate the process.

We varied the cumulative risk threshold of failure from 10% to 200% in steps of 10 percentage

point increases. We find that the best thresholds are 90%, 120%, 120%, 170%, 140%, 90%, 110%,

130%, and 80% for each project respectively. The cumulative risk is often over 100% indicating

that although the model predicts a high cumulative risk of failure, the strategy of making large

batches appears to outweigh this risk. However, Figure 5.2 plots the execution improvement for

each threshold and shows that low risk threshold are also reasonably effective.

Compared to TestAll, the reduction in number of executions are 33.77%, 53.54%, 55.20%,
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57.43%, 55.27%, 49.29%, 56.26%, 49.84%, and 25.93% respectively. RiskBatch outperform previ-

ous risk based approach, RiskTopN by 4.33 percentage points.

Compared to TestAll, RiskBatch reduces executions by between 25.93% and 57.43% with

an average across projects of 48.50%. RiskBatch outperforms RiskTopN by 4.33 percentage

points.

5.7 Tool implementation on GitHub: BatchBuilder

We created the BatchBuilder tool to implement the BatchStop4 approach for use by de-

velopers. The tool integrates with GitHub pull requests and runs Travis CI. We release the source

code [5]. After configuring a batch size and a maximum waiting time, the developer will be un-

aware that submitted pull requests or pushed changes are now being tested in batches because each

submitted change will still have its own test verdict. If the ‘batch size’ is set to four the approach

will be the Batch4 strategy. The highlevel pseudocode for BatchBuilder show in Algorithm 1.

Algorithm 1: GitHub App: BatchBuilder
When there are ‘batch size’ changes or the ‘wait’ time has elapses create a batch

branch to combine changes
Function TestBatch(batch):

result = Travis(batch)
if tests result is passed then

set status of each changes to ”successful” on GitHub;
else

if batch length is equal to 1 then
set status of the change to ”failed” on GitHub;

else
if batch length is smaller than or equal to 4 then

foreach change ∈ batch do
TestBatch(change);

end
else

TestBatch(first half of batch);
TestBatch(second half of batch);

end
end

end
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Merge Conflicts. Our approach does not introduce any new merge conflicts. With pre-merge

testing, if two or more changes are combined in a testing batch and have a conflict, this conflict will

also exist when the changes are added to the master or main branch and would need to be resolved

regardless of batch testing. BatchStop4 preserves the testing order of changes, so the conflict can

be assigned to the change that occurred later and the changes without conflict can still be tested and

integrated with master. With post-merge testing, any conflicts related to integration with master will

already have been dealt with before batch testing begins.

Performance. In our implementation, on failure, each batch is implemented as a git branch

containing the changes that need to be tested. In TestAll, each commit must be also be merged

with master and tested. This same merge operation occurs with the branch. An additional branch

operations must occur on failure. However, further optimizations could be performed because each

branch has the same ancestor, i.e. the lastest commit on master, meaning that we already know the

last common ancestor and the branch creations simply involves a simple diff operation. In practice

we see that the new branch operation takes less than one second (about 700 milliseconds) and in

contrast the testing time is on the order of minutes [7].

5.8 Threats to validity

We selected large open source projects with at least 100 contributors from the Travis torrent

dataset [8]. The projects covered a variety of software development contexts, from program-

ming languages to cloud computing. In reproducing, Najafi et al. [60] work at Ericsson on OSS

projects we increase the generalizability of batching and bisection. Our novel approaches will need

to be evaluated in other development contexts. To this end we release our scripts, data, and our

BatchBisect developer tool [6].

On small projects, there may not always be multiple pull-request available for batching. Clearly,

these projects require fewer resources and can either wait until there are enough changes, or run with

a smaller batch size. As we show in Section 5.3, the majority of the savings happen with batch sizes

of 4, i.e. 93%, and even the smallest batch size of two sees substantial savings, i.e. 72%. In our tool

implementation, we provide a workaround that will test commits that have waited for longer than

38



the “wait time” specified in the configuration file.

It is only possible to batch builds that required the same test environment, e.g., pull-requests

that both requested python 2.7 can be combined while these builds could not be combined with a

request for python 3.7. In this work, we use the Travis configuration file to ensure that the combined

builds run the same tests in the same environment. On projects that select a subset of tests to be run,

combining builds might increase the test scope and future studies of are necessary impact of test

scope on batching.

We created build failure risk models using five classifiers: Random Forest, Naive Bayes, MLP,

logistic regression, and SGD. Random Forest was the best classifier, so we tuned five hyper parame-

ters for Random Forest leading to a total of 27 configurations for each project. We found an average

of one percentage point difference and did not find a consistent configurations across projects, so we

reported results with the default parameters. After tuning, the longest training time for the projects

was reduced from 4.25 to 3.5 minutes (on a standard laptop).

We assessed the impact of training period by using builds from previous 30 days, two months,

or six months of data. We found that the 30 day training period had the same or higher F-scores

compared to the longer periods. As other researchers have reported, longer training periods tend to

reduce the accuracy of the model by including stale data [42, 93].
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Chapter 6

Discussion and Future Work

We contrast the approaches and discuss implications of our findings as well as future work.

Table 6.1 shows the important variations for each approach. The first point of variation is the

action to be taken on test failure. The original bisection algorithm continues recursively until the

individual culprits have been identified [60]. In Section 3.4, we showed mathematically that it is

more efficient to stop when the batch is of size four. On failure the Batch4 algorithm tests each

commit individually, TestAll, for a constant of 5 executions on failure. The BatchStop4 algorithm

uses bisection on failure, but stops bisection when the failing batch contains only four builds using

the Batch4 approach. RiskTopN uses a risk model to test the riskiest N builds in isolation and

the remaining builds as a batch [60]. If the batch fails, RiskTopN recursively continues with next

N riskiest builds. RiskBatch uses a risk model to group builds until a cumulative risk threshold

is reached. If the build fails RiskBatch, cannot be repeated because the batch already reaches to

threshold. Instead BatchStop4 is used to isolate culprits.

Ranking of approaches. Compared to the standard practice of testing each change in an in-

dividually build, all approaches provide substantial improvements reducing the test executions by

around half on average. The following is the ranking of approaches by average reduction in sav-

ings across projects from worst to best: 44.17% RiskTopN, 46.05% BatchBisect, 47.63% Batch4,

48.50% RiskBatch, and 50.31% BatchStop4.

Stop at 4 The worst two approaches do not use the stop at four condition. From the algorithmic

analysis, BatchStop4 has requires the same number of executions as BatchBisect when there is
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Table 6.1: Variations in Batching Technique. Stopping at batch size four and using a variable batch
size with a risk model are the most promising techniques.

Technique In Case of Average Stop Use Dynamic Preserve
Failure Improvement At 4 Bug Model Batch Size Order

TestAll - - 5 5 5 X

BatchBisect Repeat 46.05% 5 5 5 X

Batch4 TestAll 47.63% X 5 5 X

BatchStop4 Bisect until Batch4 50.31% X 5 5 X

RiskTopN Repeat 44.17% 5 X 5 5

RiskBatch BatchStop4 48.50% X X X X

one culprit, but when there are more culprits BatchStop4 requires less, see plot in Figure 5.1. In

the empirical evaluation, we see that BatchStop4 is on average 4 percentage points better than

BatchBisect. As we later discuss, most savings occurs with small batch sizes resulting in the simple

Batch4 algorithm performing only 3 percentage points lower than BatchStop4.

Risk Model. RiskTopN and RiskBatch use a risk model. The model is created using tradi-

tional features such as SLOC and number of tests as well as change features, such as the number

of changed files or added lines. The accuracy of the model affects the performance of batching ap-

proaches, however, we guarantee that all culprits are found and isolated in contrast to, for example,

test selection methods that may allow failing tests to ”slip-through” to other QA stages.

Algorithmically, RiskTopN is substantially different from the other algorithms and does not

preserve the test order of builds providing results for the riskiest builds in isolation first. However,

the approach appears to work poorly with the lowest reduction in executions of all techniques. The

approach is highly dependent on the risk model and on projects with highly predictive risk the

approach may be effective. In contrast, RiskBatch, also uses the risk model but allows for variable

batch sizes and uses BatchStop4 on failure. This combination appears to allow for appropriate risk

and batch sizes providing the second best average savings. For the ruby project, the F-score of 0.53

is the highest among the projects and RiskBatch outperform the other approaches. It is possible that

a more accurate risk model may allow RiskBatch to the most effective approach.
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Best Batch Size. In all batching approaches, most of the saving is found early with smaller

batch sizes 5.1. For BatchStop4 the proportion of saving using different batch sizes is reported, see

Figure 5.2. On average across projects, 93% of the saving is achieved with a batch size of 4. The

saving achieved by batch size 8 is at least 97% and does not increase with batch size 10. As a result,

we reported the savings with a maximum batch size of 8. However on projects graylog2, owncloud,

vagrant, and puppet we see that the true best batch size is actually 12, 15, 16, and 16. Table 5.2

shows the projects’ best batch size and the additional percentage of savings for those batch sizes,

1, 3, 2, and 2, respectively. While developers from these projects would need to experiment with

batch sizes, we feel that it is unlikely that these minor improvements would be beneficial given the

additional need for bisection of large batches on failure.

Failure rate vs Savings. Najafi et al. [60], concluded that the failure rate controls the batch

size. On ruby and rspec that have the highest failure rates, 22.51% and 19.36%, we also see that the

best batch size is the lowest at four and the savings are lowest at 32.97% and 29.51%.

However, we see exceptions to the failure rate controlling the savings and batch size. For exam-

ple, owncloud has the third highest failure rate but the second highest, 53.42%, savings and the best

batch size of 15. Examining the owncloud over time we see an uneven distribution of failures with

some periods having multiple consecutive build failures followed by consecutive build passes.

Fixed Batch Size In our work, for BatchBisect, BatchStop4, and RiskTopN we have identified

a single batch size for the entire period of study. Developers, will need to examine their project

history to identify the best batch size. If the failure rate is not constant over time, then projects with

an uneven distribution, would clearly benefit from a variable batch size. This uneven risk of failure,

was the main motivation for introducing RiskBatch that dynamically adjust the batch size based on

a risk model. We believe that dynamic batching strategies is the most promising direction for future

work.

6.1 Related Work

Continuous integration and delivery (CI/CD) systems are beneficial in both industry and open-

source projects because the deployment tasks are automated and developers receive feedback faster,
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tests are run automatically, and critical updates are delivered to customers more frequently [53, 81,

36, 69]. However, the goal of CI/CD is to release changes as quickly as possible which increases the

already high computational requirements involved in regression testing [35]. Running a subset of

tests can reduce the cost of testing. Regression testing research has three streams of research [96].

The first, minimization, involves eliminating tests that are redundant or of low value. Early work

reduced the problem to one of code coverage, for example, tests become redundant as the system

evolves and more than one test covers the same control flow. As a result, much of the work in

this area is algorithmic, such as transforming it into a spanning set problem [58], using divide-and-

conquer strategies [11], and greedy algorithms [85]. More recent approaches include ant colony

optimization in a search space to find the optimum set of test cases [50]. The use genetic algorithm

to optimize selected tests and evaluate by total code coverage has also received substantial attention,

e.g., [45, 49].

The second, selection, uses the same static analysis techniques such as coverage [84] and slicing

[41], but selects tests that cover source files that are at higher risk because they have been changed

recently [74]. Using specifications such as requirements defined by customer is also used in test

selection [13]. A Recent work have focused on using deep learning models to optimize test selection

results. [64]

Test case selection is also performed by choosing a subset of test cases, but in contrast to test

minimization, test cases that verify risky or recent changes are chosen. Noor et al. [65] predict

failed test based on similarity to previous failed tests. Wang et al. [89] first detect fault-prone source

code and then identify related test cases by coverage. Nguyen et al. [63] select test cases based on

change-sensitivity to external services. Laali et al. [51] dynamically identify failed test based on the

location of previous failed tests.

The third, prioritization, orders tests such that expensive, low-value, or long running tests are

run after tests that find faults early. While early prioritization techniques continued to use coverage

measures to gauge priority [31], more recent approaches incorporate the faults found in past test runs

[46, 24, 61] and change relationships among files [78] to identify high value tests. Zhu et al. [100]

examine the tests that historically fail together prioritize test runs. Just et al. [43] propose an ap-

proach based on mutation analysis. Qu et al. [70] suggest to prioritize risky configuration in testing.
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Wang et al. [89] utilizes the quality of source code before finding the relationships between tests

and code based on coverage.

Minimization and selection will have slip-throughs because not all tests are run [35]. With

prioritization the assumption is that tests can be run in an arbitrary order. However, changing the

test order can lead to new flaky failures. Lam et al. [52] found that flaky failures due to order

dependencies account for 50.5% of flaky failures in the projects they examined. In contrast, our

reduction in test executions comes from grouping builds not from eliminate/selecting a subset of

tests. As a result, we guarantee no slip-throughs because we run all the tests. We do not introduce

order dependency flaky failures, because the entire test suite is run in its original order. Future work

is necessary to directly compare the efficacy of batching with selection and prioritization on the

same datasets.

6.2 Risk Models

Predicting software defects using statistical models is a research area which has been popular

in recent years [30, 77, 62, 18]. Different learning models are used and evaluated to perform bug

prediction, such as Support Vector Model (SVM) [47], Logistic Regression [44, 60], KNN [12], and

Deep Learning [94, 67]. Bug prediction can be made on varing units, with early studies focusing on

file level prediction while recent studies perform change level prediction [47, 44]

Radjenović et al.’s [71] survey of bug models categorized the metrics into 1) traditional source

code metrics, such as SLOC, 2) object-oriented metrics, such number of children in a class and depth

of inheritance [14], and 3) development process metrics such as code change frequency which uses

historical data to predict failures. In our work, we use the first and third types of metrics.

Recent works have identified risky changes. Early work focused on regression models [44].

Chen et al. [12] use source code metrics such as number of methods, average method complexity,

and number of lines of code to build their model. Their learning model is created using k nearest

neighbor (KNN). Yang et al. [94] study software defect prediction using deep learning at change

level. Their prediction has two stages: 1) feature selection which is done by extracting a set of

features from a broader initial set of feature using Deep Belief Network. 2) building a logistic
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regression classifier using the selected attributes. Pandey et al. [67] introduce an approach to detect

software defective modules using a deep ensemble learning model. Their approach allocates more

testing resources to modules that are more likely bug-prone based on model prediction. In our work,

we evaluated five classifiers and found that Random Forests performed the best.

A criticism of statistical bug prediction models is that they do not provide actionable out-

comes [44], e.g., what specific action can a developer take if a change is labeled ‘risky’ because

it is in a recently changed file? A further problem is that predictions are often incorrect, which in

practice reduces developer confidence [76]. In contrast, our work uses the risk to batch commits

and requires no action from developers. If the prediction is inaccurate then additional build test

executions are required. However, the saving achieved, even with relatively inaccurate models, is

substantial compared to testing each change individually.

6.3 Batching and Bisection

Batching is an effective technique to deal with resource constraints, whether it is computational

power, development costs, or time [1, 15]. When changes are batched together and there is a failure,

bisection can be used to reduce the number of test execution. When commits are ordered, GitBisec-

tion [55] uses a binary search to identify the culprit in O(log(n)) time. The approach works well

when finding a single regression, but is not designed to find multiple culprits in a batch of changes

for integration. To ensure that all tests pass on all changes in a batch, GitBisect would need to run

multiple searches, in the worst case n searches, O(n∗ log(n)). In contrast, the bisection approaches

discussed in Section 3.5 are designed for integrating multiple commits in O(log(n)) time when

there is a single culprit and in the worst case 0(n) time.

At Google, integration tests can run on the order of hours and can cover thousands of commits,

making GitBisection too computationally expensive. Instead, Google developers use the static build

dependencies to determine which tests must be run when a file is changed. When a group of changes

fails during integration testing, Google developers can immediately eliminate all changes that do not

individually relate to the failing test. Since there can be thousands of changes in an integration test,

Google also scores the remaining commits on the basis of the number of files in a change (more
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files, more likely to be the culprit) and the distance to the root of the build test dependency DAG

(closer to the root, safer as more developers have assessed it by now) [101]. In our work, we do not

have ordered commits and we do not have the static dependencies. As result, we run the entire test

suite on each build. Future work is necessary to determine which of the individual tests can be run

independently. Breaking individual tests out of a test suite is often non-trivial and can lead to flaky,

unexpected test order dependencies [52], but could increase the effectiveness of batching.

6.4 Pooling Medical Tests

In medical tests, pool testing i.e. batching is an effective way to reduce the number of required

test kits and thus decreasing costs. Dorfman [20] proposed an approach to detect infected individuals

in a large population during World War II. He suggests pooling tests to reduce the cost and the

time. If the test is negative, it means all members of that group do not have the disease, otherwise

each individual needs to be tested separately, i.e. TestAll. Gajpal et al. [26] propose an approach

to partition people into groups and test each group with one kit. Only, groups with a positive

result need to be divided into subgroups and tested further. To improve the pooling process, double

and multiple pooling place samples into more than one pool [10, 88]. If a pool tests positive, the

samples that are common among other negative tested pools can be removed from further testing.

Aragón-Caqueo et al. [3] study the effectiveness of batching in COVID-19 tests and report that

batching gains more saving when the infection rate is lower. The interest in pool testing has risen

dramatically with COVID-19, with these works being submitted in early 2020. Medical pool testing

and software batch testing have the same mathematical background and it will be interesting to use

the approaches developed in the medical world, e.g., double pool testing, in and SE context and vice

versa, e.g., BatchStop4 in medical pools.

6.5 Conclusion and Recommendations

In this work, we introduced a mathematical basis for the batching approaches and make the

following research contributions and recommendations for development practices.

Najafi et al. [60] showed that BatchBisect was an effective strategy on three projects at Ericsson
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and could save 7%, 14%, and 41% of build test executions compared to TestAll. We reproduce this

result on the Travis dataset and show that BatchBisect reduces the number of executions by between

22.35% and 57.55% with an average of 46.05%.

We introduce the Batch4 approach in Section 3.4, and we mathematically show that Batch4

requires a constant number of executions on failure, i.e. 5, which is the minimum for BatchBisect

and saves up to two executions when there are multiple culprit builds in a batch. Batch4 reduces

the number of execution required by 29.51% and 55.84% with an average of 47.63%. Batch4 is

simpler and does not require bisection while saving an additional 1.57 percentage points on average

relative to the total number of builds. We recommend that all continuous integration pipelines batch

builds into size four for testing because no additional bisection machinery is required. We also

release our tool that integrates with GitHub and Travis CI tool to allow developers to seamlessly

batch pull-requests [5].

We introduce BatchStop4 which uses bisection until a batch of four is reached in which case

we use Batch4. With this stopping condition, we mathematically that BatchStop4 is equivalent

to BatchBisect when there is one culprit, but requires fewer executions when there is more than

one culprit build. We see that BatchStop4 saves between 29.51% and 60.83% with an average of

50.31%, with an additional savings of 2.17 to 10.10 percentage points relative to BatchBisect. We

recommend that any project already using BatchBisect should modify their algorithm to include

a stopping condition for batches of size four. Our tool BatchBuilder allows developers to

configure the batch size for their project.

We reproduce Najafi et al.’s [60] RiskTopN approach where the riskiest n changes in a batch are

tested individually and the remaining builds in the batch are tested together. On the Travis projects

under study, we find a reduction between 22.04% and 55.77% with an average of 44.04%. However,

the simple Batch4 outperforms RiskTopN by 3.59 percentage points on average, and Batch4 does

not require a risk model, so we do not recommend that developers adopt this approach.

We introduce the RiskBatch approach which adds builds to a batch until a risk threshold is

reached. RiskBatch reduces the number of executions by between 25.93% and 57.43% with an

average of 48.50%. The approach is complex requiring both bisection and a risk model and does

not perform better than BatchStop4 except in the projects that has the highest F-score in risk model.
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Projects that can build a highly accurate risk model may consider using this approach.
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Appendix A

Learning Hyper-Parameters

We evaluated five hyper-parameters for Random Forest. Table A.1 shows that the difference

between the default and the highly tuned random forests is minimal. In the thesis, we reported the

results for the default random forest settings. We discuss the ranges of parameters we evaluated

below.

• Number of estimator: This parameter shows the number of trees in the forest. As this

number grows, the required time to train model will be longer. On the other hand, choosing

a small number gives us less diverse range of probabilities which limits the efficiency of our

risk-based approaches. We vary the number of estimates from 10, 50, 100, 200 400. The

default value of this parameter, is 100 which was the optimum for only one of the projects.

Project Number of Max Depth criterion Min Samples Min Samples
Estimators Split leaf

ruby 10 50 gini 10 1
metasploit-framework 50 50 entropy 2 1
graylog2-server 100 No limit gini 2 1
owncloud-android 10 No Limit gini 2 2
vagrant 10 10 gini 2 1
gradle 400 No Limit entropy 2 1
puppet 50 50 gini 2 1
opal 10 50 entropy 2 1
rspec-core 10 10 gini 2 1

Table A.1: Optimum hyper parameters value for each project
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Project F score F score (default) training time training time (default)
ruby 0.55 0.54 00:00:50 00:04:20
metasploit-framework 0.21 0.21 00:01:35 00:02:58
graylog2-server 0.45 0.45 00:03:16 00:03:16
owncloud-android 0.28 0.26 00:00:19 00:02:01
vagrant 0.21 0.2 00:00:20 00:01:58
gradle 0.18 0.17 00:05:07 00:01:20
puppet 0.2 0.17 00:01:11 00:02:10
opal 0.22 0.2 00:00:22 00:02:34
rspec-core 0.3 0.29 00:00:32 00:03:44

Table A.2: F score and training time before and after hyper parameter tuning

Six projects had the best results with 10 estimators and the improvements were between one

and five percentage points. The optimum value for two projects was 50 and for the last project

was 400 which improved the result by two percentage points.

• Maximum Depth: This parameter shows the maximum depth of trees. We experimented

training with values ranging from 10, 20, 500, 200, and no limit. The default value is None

which means no limitation and was the best choice for four projects. The best value for four

other projects was 50 and improved the F score between 1 and 4 percentage points. The last

two projects had the best results with value of 10 which improved the F score between 3 and

4 percentage points compare to default.

• Gini vs Entorpy: This parameter specifies the function to measure the quality of a split using

either Gini or entropy. The default value is Gini. Six of the projects had better results with

Gini function and for the remaining four projects, entropy results better with between 1 and 3

percentage points.

• Minimum Samples Split: This parameter shows the minimum number of samples to split

nodes. We evaluated F score by changing this value in range of 2, 5, 10, 20, 50, 100. The

default value of two was the best choice for all projects except, ruby and gradle, that have the

best value of 10 which improved the F score by 1 and 3 percentage points over default.

• Min Samples Leaf: This parameter shows the minimum number of samples required to be
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at a leaf node. The default value of one worked best for all of the projects expect owncloud-

android that has the best value of two which improved the F score by 2 percentage points over

the default.
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Appendix B

The BatchBuilder Tool

We implemented BatchBuilder as a free GitHub Application that can be installed on GitHub

repositories [5]. Installation and configuration is simple through a ”.batch.yml” file. BatchBuilder

seamlessly allows developers to test pull requests and pushed changes in GitHub using Travis CI [5].

There is no change to the GitHub and Travis CI workflow or UI as each individual pull request will

have its own build status.

B.1 Configuration

size. An integer which determines the length of the batch to start building and testing. It can

be any positive number greater than or equal to 1.

bisection. Can be true or false. It specifies if bisection should be performed after build

test failure. By setting this to “false” the Dorfman [20] method can be implemented in batching i.e.

batching and TestAll on failure.

stopAt. An integer that specifies when to top bisection and revert to test all. For example by

setting this to 4, BatchStop4 is implemented.

maxWait. An integer that determines maximum waiting time in seconds. If not enough

changes exist in the batch, BatchBuilder waits no longer than maxWait seconds to send the

changes to Travis CI.
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B.2 Batching and Bisection

After receiving a new change which is a pushed commit or an accepted pull request, BatchBuilder

adds it to a waiting list. Based on the predefined batch size in configuration file, if enough changes

exist in the batch, a new branch named “batch” created by merging changes. This branch is sub-

mitted to Travis CI to build and test. After testing, if the verdict is “passed”, all changes status on

GitHub will be set to “successful”. Otherwise, a bisection is performed and the batching process is

repeated. Further details on the algorithm were discussed in Chapter 5.7.
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