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Abstract

Khovanov homology and the unknotting number

Laura Marino

The aim of this thesis is to describe a new lower bound λ for the unknotting number.
The unknotting number u is a classical knot invariant, defined as the minimum number of
crossing changes that are needed in order to turn a knot into the Unknot (where a knot is
the image of a smooth embedding S1 → R3, and the Unknot is the "unknotted" knot). We
have that u is hard to compute, thus one of the goals of knot theory is to find lower bounds
for it.
Among the tools that have recently been used to describe lower bounds for u there is Kho-
vanov homology. It is a link invariant, constructed from algebraic structures called Frobe-
nius systems in the following way: given a link diagram D, we associate a cube of (1+1)-
cobordisms to it. Then every Frobenius system F of rank two generates a functor, called
TQFT, that associates a chain complex CF(D) to this cube. Khovanov homology is the
homology of CF(D).
Thus different Frobenius systems F generate different homology theories HF . Among Frobe-
nius systems, FUniv is particularly interesting because HFUniv

determines every other Kho-
vanov homology HF .
Alishahi and Dowlin (2017) defined two lower bounds λBN and λLee for the unknotting num-
ber using the Khovanov homology theories relative to Frobenius systems FBN and FLee.
Other than giving a bound for u these bounds have several interesting applications related to
the convergence of some spectral sequences and to the Knight Move Conjecture. Using the
structures and tools introduced by Alishahi and Dowlin, in this thesis we find a new bound
that subsumes λBN and λLee, using the Khovanov homology theory relative to FUniv.
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Introduction

The aim of this thesis is to describe a new lower bound for the unknotting number, obtained
using the tools of Khovanov homology. This bound is a generalization of the bounds found
by Alishahi and Dowlin in [Al] and [AD]. All the necessary theory will be developed in order
to achieve this goal.
One of the areas of interest in knot theory revolves around link invariants, and in particular
invariants that detect the Unknot. Khovanov homology is a link invariant with this property.
It will be shown in this thesis, following [BN1], [Kh1] and [Kh2], that every graded Frobenius
system F of rank two generates a homology theory for links, called "Khovanov homology
relative to F".
The unknotting number u is another classical knot invariant that detects the Unknot, but it
is particularly hard to compute. It is thus useful to find lower bounds for u. Among those we
mention Rasmussen’s invariant, described in [Ra], and the slice genus. In 2017 Alishahi and
Dowlin, in [Al] and [AD], developed two lower bounds coming from the Khovanov homology
theory relative to Frobenius systems FBN and FLee respectively. These lower bounds have
several other interesting applications: they determine the page at which the Lee and the
Bar-Natan spectral sequences collapse and give a proof of the Knight Move Conjecture when
u ≤ 2.
Following [Kh1] we will show that all Khovanov chain complexes relative to a rank two
Frobenius system can be obtained from the Khovanov chain complex relative to the Frobenius
system FUniv by tensoring with a ring. This makes FUniv particularly interesting. This thesis
generalizes Alishahi and Dowlin’s construction: using the Khovanov homology theory relative
to Funiv we find a new knot invariant λ. The following theorem is the core of this thesis:

Theorem 3.12. Let K be a knot. Then λ(K) is a lower bound for the unknotting number
of K:

λ(K) ≤ u(K).

We have that λ subsumes Alishahi and Dowlin’s bounds.

The thesis is structured in the following way. In the first chapter the necessary theory will
be provided for the construction of Khovanov homology and the bound λ. We first give an
overview of knot theory containing all the basic definitions used throughout the thesis. Some
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Introduction

other, less generic, definitions and statements will be provided in successive chapters, when
needed. We then introduce the tools necessary to the construction of Khovanov homology:
we define the categories Cob1 of (1+1)-cobordisms and R-mod of graded R-modules (with
R a commutative ring), and describe Frobenius systems in detail. Finally, for each graded
Frobenius system we define a monoidal functor called TQFT from Cob1 to R-mod.
The goal of the second chapter is to construct a bigraded homology theory for each graded
Frobenius system of rank two and show that it is a link invariant, called Khovanov homology.
Given a link diagram D we first construct a cube of resolutions in Cob1, next we associate to
it an algebraic structure via the TQFT functor, in order to get an algebraic cube of spaces
and maps, and finally we see how to obtain a chain complex C(D) from it. We then prove
that this chain complex is a link invariant up to chain homotopy equivalence, and thus its
homology is a link invariant. We call it Khovanov homology.
The third chapter describes a new knot invariant λ, defined as the maximum (2X−h)-torsion
order of an element in H∗, where H∗ is the Khovanov homology relative to the universal
Frobenius system FUniv. We also prove that λ is a lower bound for the unknotting number.
Finally, we define Alishahi and Dowlin’s bounds and show their relation to the Bar-Natan
and Lee spectral sequences and to the Knight Move Conjecture.
The Appendix provides an overview of spectral sequences: these objects appear often in the
context of Khovanov homology and are closely related to it. Moreover, we expect possible de-
velopments of this thesis to link the invariant λ to the convergence of some spectral sequence,
as for Alishahi and Dowlin’s bounds.
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Notations

n+, n− number of positive and negative crossings in a link diagram D

D0, D1 diagrams obtained from a diagram D by 0- and 1-resolving a cross-
ing c respectively

Dv complete resolution of a diagram D corresponding to the vertex v

|v| sum of the entries of the vertex vector v

kv number of connected components of Dv

δ edge map of the cube of resolutions

δδδ bundle of edge maps going from C(D0) to C(D1)

d differential of the chain complex C(D)

{·} quantum shift

[·] homological shift

C̃ chain complex before the global shifts

D,D diagrams related by a crossing change

F = (R,A,∆, ε) Frobenius system with ground ring R, R-module A, multiplication
m, comultiplication ∆, unit ι, counit ε

3



1 Basic concepts

Throughout this work we will use in a fundamental way the notions of cobordism and Frobe-
nius system and we will go back and forth from one to the other using Topological Quantum
Field Theories. We thus provide an overview of these concepts.
We first give a quick review of knot theory, which is the basis of this thesis.

1.1 An overview of knot theory

This section is inspired by lecture notes taken in the Knot Theory course taught by Dr.
Lukas Lewark, during the Winter semester 2019/2020, at the University of Regensburg.

Definition 1.1. A knot K is the image of a smooth embedding ϕ : S1 → R3 together with
an orientation. A link L is a union of finitely many disjoint knots, called the components of L.

We consider links up to equivalence:

Definition 1.2. Two links L,L′ are equivalent if there is an orientation preserving diffeo-
morphism φ : R3 → R3 such that φ(L) = L′ and φ preserves the orientations of the links.

It is often convenient to work with link diagrams, i.e. images of projections of a link on
the plane, rather than with links themselves. Diagrams allow us to treat knot theory using
a combinatorial approach, rather than a topological one. In order to do this we want the
projections to preserve as much information on (the equivalence class of) the link as possible.
This is achieved by perturbing the link in general position before taking the projection.

Definition 1.3. Consider the projection p : R3 → R2 given by p(x, y, z) = (x, y). Let L be
a link with components Ki = ϕi(S1) ⊆ R3. We say that L is in general position if

1. p ◦ ϕi has nowhere vanishing differential for all i,

2. p ◦ ϕi and p ◦ ϕj only intersect transversely for all i, j,

3. #(p−1(x) ∩ L) ≤ 2, for all x ∈ R2.

4



Basic concepts

Remark 1.4. Every link is equivalent to a link in general position.

Definition 1.5. Given a link L in general position, we call D = p(L) ⊆ R2, together with
over-under information at crossings and the orientation induced by L, a link diagram.
A crossing of D is a point x ∈ R2 where #(p−1(x) ∩ L) = 2.

Remark 1.6. Every link diagram D has only finitely many crossings. This follows from the
fact that by transversality the crossings are isolated, and ϕi(S1) is compact.

In Figure 1.1 we give a few examples of links (or rather, of link diagrams). The orientations
are omitted in this figure.
Note that, in general, identical links with different orientations are non-equivalent, but for
example the Unknot and the Trefoils are invertible, i.e. they are equivalent to their reverse
(the reverse of a link L is the link obtained by reversing the orientation on all components
of L). The Hopf link is non-invertible.
In addition, we have that the Right-handed Trefoil is not equivalent to the Left-handed Tre-
foil, but they are the mirror image of each-other (i.e. obtained from each-other by reflecting
along a plane in R3). For more details on these concepts see [Ad].

Unknot

Right-handed
Trefoil

Left-handed
Trefoil

Unlink

...

Hopf link

Figure 1.1

Definition 1.7. Two diagrams D,D′ are equivalent if there is an orientation preserving dif-
feomorphism φ : R2 → R2 such that φ(D) = D′, and such that φ preserves the over-under
information and the orientations of the diagrams.

5



Basic concepts

A diagram D of a link L determines L up to (link) equivalence, and equivalent diagrams
represent equivalent links. However, every (equivalence class of) link has infinitely many non
equivalent diagrams.
The following theorem allows us to overcome this problem:

Theorem 1.8. Two diagrams D,D′ represent equivalent links if and only if they are related
by a finite sequence of diagram equivalences and the moves R1, R2, R3 shown in Figure 1.2,
called Reidemeister moves.

positive R1

D D'

D D'

R2

first R3

D D'

negative R1

D D'

second R3

D D'

Figure 1.2

Remark 1.9. The moves negative R1 and second R3 are redundant, i.e. they follow from
the other Reidemeister moves.

Definition 1.10. A link invariant is a function α : {links} → H (where H ∈ Set) that is
invariant under link equivalence.

One of the goals of knot theory is to find "good" link invariants, that is functions α that dis-
tinguish links well and can be computed easily from diagrams. In particular, one of the goals
is to find link invariants that detect the Unknot, i.e. functions α such that α(Unknot) 6= α(L)
for all links L non equivalent to the Unknot.
In this thesis we will describe several link and knot invariants, such as the unknotting num-
ber, Khovanov homology in Chapter 2 and λ in Chapter 3.

6



Basic concepts

Let us first describe the unknotting number.

Definition 1.11. Two diagrams D,D are related by a crossing change if they are identical
except at one crossing, where they differ by the over-under information, as in Figure 1.3.

DD
Figure 1.3

Two links L,L are related by a crossing change if there are diagrams D,D representing links
equivalent to L,L respectively such that D and D are related by a crossing change.

For example, the Trefoil knot and the Unknot are related by a crossing change, as shown in
Figure 1.4.

=crossing

change

Figure 1.4

Definition 1.12. The unknotting number u(L) of a link L is the minimum n ∈ N such that
there is a sequence L0, . . . , Ln of links (called unknotting sequence) with L0 = L,Ln = Unlink
and Li, Li+1 are related by a crossing change for 0 ≤ i ≤ n− 1.

Remark 1.13. Every link admits a (finite) unknotting sequence, so u(L) is a well-defined
link invariant.

Figure 1.4 shows an unknotting sequence of length 1 for the Trefoil. Since the Trefoil is not
equivalent to the Unknot (or to any Unlink), its unknotting number must be at least 1. Thus
u(Trefoil) = 1.

7



Basic concepts

We observe that Unlinks are the only links that have unknotting number 0, but, as a link
invariant, u doesn’t detect the Unknot, because it cannot distinguish Unlinks with a different
number of components. However, if we only consider u as a knot invariant (i.e. as a function
{knots} → N) then it detects the Unknot (the Unknot is the only knot with a crossingless
diagram).
The unknotting number is a classical link invariant, and very elementary in its definition.
However, it is hard to compute: one can easily find an unknotting sequence for a link, but
it is very difficult to determine whether an unknotting sequence is the most efficient (i.e.
shortest) one. For this reason one of the goals of knot theory is to find lower bounds for the
unknotting number, i.e. link invariants β : {links} → N such that β(L) ≤ u(L) for all links
L.
There are several link invariants that provide lower bounds for the unknotting number, such
as the splitting number, half of the linking number, the Rasmussen invariant and the slice
genus.
In this thesis we use the tools of Khovanov homology to describe several other lower bounds
for the unknotting number (as a knot invariant) and show that for some knots these bounds
are sharper than the Rasmussen invariant.
Moreover, Khovanov homology itself is a good link invariant: it is proved in [KM] that it
detects the Unknot.

1.2 The category of (1+1)-cobordisms

In this section we use definitions and results from [Kh2].

Definition 1.14. A (n+1)-cobordism between two closed n-dimensional manifolds M,N is
a compact, orientable, differentiable (n+1)-dimensional manifold, whose boundary isMtN .

We will only be interested in (1+1)-cobordisms, i.e. compact, orientable, differentiable sur-
faces whose boundaries are disjoint unions of circles (the closed 1-dimensional manifolds).

Let’s define the category Cob1 of (1+1)-cobordisms.
The objects of this category are closed 1-dimensional manifolds, i.e. disjoint unions of circles.
More precisely Ob(Cob1) = {n : n ∈ N}, where n = {cn,1, . . . , cn,n} represents the disjoint
union of n circles in the plane.
A morphism from n to m is a (1+1)-cobordism S between n and m, embedded in R2× [0, 1]
so that S ∩ R2 × {0} = n and S ∩ R2 × {1} = m (so the domain in on the bottom and the
target on the top of the surface S).

8



Basic concepts

Two morphisms S, T : n → m are equal if the surfaces S and T are diffeomorphic and the
diffeomorphism ϕ fixes every circle of the boundary: ϕ(cn,i) = cn,i and ϕ(cm,i) = cm,i ∀i.
The composition of two morphisms is their concatenation, realised by gluing boundary circles.

Cob1 is a monoidal category: the tensor product of two morphisms S, T is defined as the
disjoint union of the surfaces S and T .

Using Morse Theory one can show that every morphism S of Cob1 is the composition of tensor
products of the elementary morphisms shown in Figure 1.5 (i.e. every (1+1)-cobordism is the
concatenation of disjoint unions of elementary (1+1)-cobordisms).

S 11 S 22

S 01S 10

S 21S 12

Figure 1.5

Observe that S1
2 and S2

1 correspond to attaching a 1-handle to two circles and to one circle
respectively, S0

1 corresponds to attaching a 2-handle to a circle and S1
0 is a 0-handle.

We call S1
2 a merge cobordism (it merges two circles in one) and S2

1 a split cobordism, since
it generates two circles from one. The cobordism S1

1 is the identity morphism of Cob1.

1.3 Frobenius systems and the category of R-modules

This section and the following one are mainly based on [Kh1] and [Kh2]. The last part, about
the S, T and 4Tu relations, is inspired by [BN2].

9



Basic concepts

Before talking about Frobenius systems we recall the definition of cocommutative coalgebra
over a ring R. This notion is dual to that of a commutative algebra.
Let us first define a map that permutes two tensor copies of an R-module A:

Perm : A⊗R A→ A⊗R A

a⊗ b 7→ b⊗ a

Definition 1.15. A cocommutative coalgebra over a ring R is an R-module A together with
R-module maps ∆: A→ A⊗R A and ε : A→ R that satisfy the following identities:

• coassociativity:
(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (1.1)

• cocommutativity:
Perm ◦∆ = ∆ (1.2)

• counit identity:
(id⊗ε) ◦∆ = id (1.3)

The maps ∆ and ε are, respectively, the comultiplication and the counit of A.

Definition 1.16. A Frobenius system is a 4-tuple F = (R,A,∆, ε) consisting of a commu-
tative unitary ring R and an R-module A that we endow with a commutative algebra and a
cocommutative coalgebra structures that are related by the following identity:

∆ ◦m = (m⊗ id) ◦ (id⊗∆) (1.4)

where m is the multiplication of the algebra structure of A, ∆ is the comultiplication of the
coalgebra structure, and ε is the counit.
We call equation (1.4) the Frobenius identity.

In this thesis we will always assume that the algebra A is unitary and that, as an R-module,
it is free and of finite rank.
We will often denote the multiplication of two elements x, y ∈ A by x · y instead of m(x⊗ y).
This notation is simpler, and it will come in handy later on (in Chapters 2 and 3), when we
introduce the edge maps of the cube of resolutions: then, to avoid confusions, the multiplica-
tion map of the algebra A will be denoted by "·", while m will be used to indicate the edge
map.

10



Basic concepts

Let {X1, . . . , Xm} be a basis of A as an R-module. The tensor product A ⊗R A is again
a free R-module of finite rank. Let {Y1, . . . , Yn} be a basis, with Yi = Y 1

i ⊗ Y 2
i . Then

the comultiplication ∆: A → A ⊗R A decomposes as ∆ = ∆1 + . . . + ∆n: if ∆(Xj) =
aj1Y1 + . . . + ajnYn, for 1 ≤ j ≤ m and aji ∈ R, then we define ∆i for 1 ≤ i ≤ n as the
R-module map

∆i(Xj) = ajiYi.

The map ∆i, in turn, decomposes as ∆1i ⊗∆2i as follows: ∆i(Xj) = ajiYi = ajiY
1
i ⊗ Y 2

i , so
we define the R-module maps ∆1i,∆2i as

∆1i(Xj) = ajiY
1
i and ∆2i(Xj) = Y 2

i .

Thus ∆ decomposes as ∆ = ∆11 ⊗∆21 + . . .+ ∆1n ⊗∆2n.

We make the following observations:

Remark 1.17. By the cocommutativity property we have that ∆ is symmetric in the fol-
lowing sense: there is a permutation σ of {1, . . . , n} such that ∆1i ⊗ ∆2i = ∆2σ(i) ⊗ ∆1σ(i).
Thus

∆ =
n∑
i=1

∆1i ⊗∆2i =
n∑
i=1

∆2i ⊗∆1i.

Beside the Frobenius identity (1.4) for Frobenius systems we have:

Lemma 1.18. The identity ∆ ◦m = (id⊗m) ◦ (∆⊗ id) also holds.

Proof. Let ∆ =
∑n

i=1 ∆1i⊗∆2i =
∑n

i=1 ∆2i⊗∆1i (by Remark 1.17). Using the commutativity
and cocommutativity properties of m and ∆ respectively we have, given x⊗ y ∈ A⊗ A:

∆ ◦m(x⊗ y) = ∆ ◦m(y ⊗ x) = (m⊗ id) ◦ (id⊗∆)(y ⊗ x) =

= (m⊗ id) ◦

(
y ⊗

n∑
i=1

∆1i(x)⊗∆2i(x)

)
=

= (m⊗ id) ◦

(
y ⊗

n∑
i=1

∆2i(x)⊗∆1i(x)

)
=

=
n∑
i=1

m(y ⊗∆2i(x))⊗∆1i(x) =
n∑
i=1

∆1i(x)⊗m(∆2i(x)⊗ y) =

= (id⊗m) ◦ (∆⊗ id)(x⊗ y).
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Lemma 1.19. Multiplying the left factors or the right factors of ∆(x) by an element y ∈ A
is equivalent, i.e.

n∑
i=1

(y ·∆1i)⊗∆2i =
n∑
i=1

∆1i ⊗ (y ·∆2i) .

Proof. Let ∆i(x) = ai ⊗ bi, for 1 ≤ i ≤ n, then, using the Frobenius identity (1.4) and the
commutativity of m we get:

(y · ai)⊗ bi = (m⊗ id)(id(y)⊗∆i(x)) = (m⊗ id)(id⊗∆i)(y ⊗ x) =

= ∆i ⊗m(y ⊗ x) = ∆i ⊗m(x⊗ y) =

= (id⊗m)(∆i ⊗ id)(x⊗ y) = (id⊗m)(∆i(x)⊗ id(y)) = ai ⊗ (bi · y).

We can then write y ·∆(x) to mean equivalently multiplication by y on the right factors of
∆ or on the left ones.

By the previous lemma we have:

Remark 1.20. ∆(x · y) = x ·∆(y) = y ·∆(x) for any x, y ∈ A.

We now describe an equivalent way of defining Frobenius systems:
Let ι : R→ A be an inclusion of commutative unitary rings, such that ι(1) = 1. The map ι is
a Frobenius extension if there exists an A-bimodule map ∆: A→ A⊗R A and an R-module
map ε : A→ R such that ∆ is coassociative and cocommutative, and (ε⊗ id)∆ = id.
Then a Frobenius system is a Frobenius extension together with a choice of ∆ and ε.

The two definitions are equivalent:

• The inclusion ι corresponds to the unit of the algebra structure of A;

• The condition that ∆ is coassociative and cocommutative corresponds to the coasso-
ciativity and cocommutativity of the coalgebra structure of A;

• The condition that ∆ is an A-bimodule map translates to the Frobenius identity and
lemmas and remarks from 1.17 to 1.20;

• The formula (ε ⊗ id)∆ = id expresses the fact that ε is the counit of the coalgebra
structure of A.

12
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We now describe two operations on Frobenius systems: the base change and the twist.

Base change

Let F = (R,A,∆, ε) be a Frobenius system. Let R′ be a commutative unitary ring and
ϕ : R→ R′ a ring homomorphism such that ϕ(1) = 1.
We define

A′ = A⊗R R′,
∆′ : A′ → A′ ⊗ A′ the map obtained from ∆ by tensoring with the identity on R′,
ε′(a⊗ r′) = ϕ(ε(a))r′, for a ∈ A, r′ ∈ R′.

Then F ′ = (R′, A′,∆′, ε′) is a Frobenius system, obtained by base change from F .

Twisting

Let F be a Frobenius system and y ∈ A an invertible element. We can modify the comulti-
plication and counit of F as follows:

∆′(a) = ∆(y−1a) = y−1∆(a), ε′(a) = ε(ya).

We get a new Frobenius system F ′ = (R,A,∆′, ε′), obtained by twisting from F .

Remark 1.21. Twisting is the only way we can modify the comultiplication and counit of a
Frobenius system, that is, given Frobenius systems F = (R,A,∆, ε),F ′ = (R,A,∆′, ε′) with
the same ground ring R and algebra A, we have that F ′ is obtained by twisting from F .
Thus, up to twisting, a Frobenius system is completely determined by its algebra structure.

Remark 1.22. The twist is an invertible operation: we always twist by an invertible ele-
ment, thus if F ′ is obtained from F by twisting by an element y, then if we twist F ′ by y−1
we obtain again F .
On the other hand the base change operation is not invertible: assume for example that F ′
is a base change of F , and that R = Z, R′ = Q. There are no unital ring homomorphisms
R′ → R, thus F can’t be obtained by base change from F ′.

Remark 1.23. Let β be a base change and τ a twist. Then β ◦ τ = τ ◦ β.
Moreover, given base changes β1, . . . , βn and twists τ1, . . . , τn we have that β1 ◦ . . . ◦ βn is
again a base change and τ1 ◦ . . . ◦ τn is a twist.

13
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In this work we will mostly deal with graded Frobenius systems. A Frobenius system is
graded if A is graded as an R-module and if the structure maps respect this grading.

Definition 1.24. • A ring R is graded if it decomposes as a direct sum R =
⊕∞

i=0Ri of
additive groups such that RiRj ⊆ Ri+j for all i, j.

• An R-module A is graded if R is a graded ring and A decomposes as A =
⊕∞

j=0Aj,
where Aj are abelian groups, so that RiAj ⊆ Ai+j for all i, j.
We define the quantum degree1 of a homogeneous element x in a graded R-module as:

qdeg(x) = i if x ∈ Ai

If A is a graded R-module, the grading on A induces a grading on tensor powers of A:
qdeg(a1 ⊗ . . .⊗ an) = qdeg(a1) + . . .+ qdeg(an) (so A⊗n is again a graded R-module).

• A map ϕ : A→ B of graded R-modules is graded of quantum degree n if ϕ(Ai) ⊆ Bi+n

for all i.

• Finally, a Frobenius system F = (R,A,∆, ε) is graded if A is graded as an R-module
and if the structure maps ι,m, ε and ∆ are graded.

Let R be a graded ring. We denote the category whose objects are graded R-modules and
whose morphisms are graded R-module maps by R-mod.
This category is not abelian. In fact it isn’t even additive: let α, β : A → B be graded R-
module maps of degrees n,m respectively. If n 6= m then α + β is not a graded map.

Let R-mod0 be the category whose objects are graded R-modules and whose morphisms are
grading-preserving, i.e. graded R-module maps of degree 0. This category is now abelian.

We will later use graded Frobenius systems F = (R,A,∆, ε) to construct homology theories;
we will then need m and ∆ to be graded maps of quantum degree 0 (i.e. morphisms of R-
mod0).
If a map ϕ : A → B of graded R-modules is graded of quantum degree k we can make it
grading-preserving (i.e. of degree 0) by shifting the gradings of A or B as follows:

1The name "quantum" comes from the fact that, in the context of Khovanov homology, the quantum degree
is related to the representation theory of the quantum sl2 algebra.

14



Basic concepts

Definition 1.25. The quantum degree shift {k} is an automorphism of R-mod: if A =⊕∞
j=0Aj is a graded R-module, then the graded R-module A{k} is given by

A{k}j = Aj−k.

We also give the following definition:

Definition 1.26. A Frobenius system F is of rank two if there exists X ∈ A such that
A ∼= R1⊕RX.

In this thesis we will encounter several graded Frobenius systems of rank two. We define
them here.
Since ε,∆ are R-module maps, it is enough to define them on the basis 1, X. Note that ∆
is also an A-module map, so it would be enough to define it on 1; for clarity we also include
its action on X.

Let F be a field. We define FBN ′ by:

RBN ′ = F

ABN ′ =
F [X]

(X2)

∆BN ′ : 1 7→ 1⊗X +X ⊗ 1

X 7→ X ⊗X

(1.5)

εBN ′ : 1 7→ 0

X 7→ 1

We introduce a grading on the algebra ABN ′ by setting qdeg(X) = 2 and qdeg(1) = 0.
Then we see that the map ∆BN ′ is graded of degree 2.
We can also define another grading on this Frobenius system by setting qdeg(X) = −1 and
qdeg(1) = 1. In this case ∆BN ′ and mBN ′ have degree −1.
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The second system we introduce is FBN . Let F2 denote Z/2Z. Then:

RBN = F2[h]

ABN =
F2[h,X]

(X2 − hX)

∆BN : 1 7→ 1⊗X +X ⊗ 1− h1⊗ 1

X 7→ X ⊗X

(1.6)

εBN : 1 7→ 0

X 7→ 1

If we set qdeg(h) = qdeg(X) = −2 and qdeg(1) = 0 this becomes a graded Frobenius system.

Next, we define FLee:

RLee = Q[t]

ALee =
Q[t,X]

(X2 − t)

∆Lee : 1 7→ 1⊗X +X ⊗ 1

X 7→ X ⊗X + t1⊗ 1

(1.7)

εLee : 1 7→ 0

X 7→ 1

This system is graded, with qdeg(X) = −2, qdeg(1) = 0 and qdeg(t) = −4.
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Finally, let FUniv be given by:

RUniv = Z[h, t]

AUniv =
Z[h, t,X]

(X2 − hX − t)

∆Univ : 1 7→ 1⊗X +X ⊗ 1− h1⊗ 1

X 7→ X ⊗X + t1⊗ 1

(1.8)

εUniv : 1 7→ 0

X 7→ 1

This system is graded, with qdeg(X) = qdeg(h) = −2, qdeg(1) = 0 and qdeg(t) = −4.

In this work we will mainly use Frobenius system FUniv. This system is particularly inter-
esting because it is "universal" in the following sense:

Proposition 1.27. Every rank two Frobenius system is obtained from FUniv by a composition
of a base change and a twist.

Proof. Consider a rank two Frobenius system F ′ = (R′, A′,∆′, ε′).
The system F ′ has rank two, so 1 and X are a basis for A′ as an R′-module (for some X ∈ A′).
Thus X2 is a linear combination of 1 and X:

X2 = h′X + t′1 (1.9)

for some h′, t′ ∈ R′. Moreover, there are c′, a′ ∈ R′ such that ε′(1) = −c′ and ε′(X) = a′.
A basis for A′ ⊗ A′ as an R′-module is given by 1 ⊗ 1, 1 ⊗X,X ⊗ 1, X ⊗X, thus there are
d′, e′, f ′ ∈ R′ such that

∆′(1) = d′1⊗ 1 + e′X ⊗X + f ′(1⊗X +X ⊗ 1)

(∆′ is cocommutative, so 1⊗X and X ⊗ 1 have the same coefficient, see Remark 1.17).
Note that a′, c′, e′, f ′, h′, t′ are uniquely determined.
Now, since ∆′ is an A′-bimodule map, and using Remark 1.17, we have

(X ⊗ 1)∆′(1) = (1⊗X)∆′(1)
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that is, using equation (1.9):

d′X ⊗ 1 + e′(h′X ⊗X + t′1⊗X) + f ′(X ⊗X + h′X ⊗ 1 + t′1⊗ 1) =

= d′1⊗X + e′(h′X ⊗X + t′X ⊗ 1) + f ′(h′1⊗X + t′1⊗ 1 +X ⊗X).

Looking at the coefficients for 1⊗X (and X ⊗ 1) we get that

d′ = e′t′ − h′f ′. (1.10)

Further, ε′ and ∆′ satisfy the counit identity, so (id⊗ε′) ◦ ∆′(1) = 1. We obtain (using
equation 1.10):

−c′e′t′ + c′h′f ′ + a′e′X ′ + a′f ′ − c′f ′X ′ = 1

thus

a′e′ − c′f ′ = 0,

a′f ′ + c′h′f ′ − c′e′t′ − 1 = 0.

Now consider the Frobenius system F̃ with:

R̃ =
Z[a, c, e, f, h, t]

(ae− cf, af + chf − cet− 1)
,

Ã =
R̃[X]

(X2 − hX − t)
,

∆̃(1) = (et− hf)1⊗ 1 + eX ⊗X + f(1⊗X +X ⊗ 1), (1.11)

∆̃(X) = ft1⊗ 1 + et(1⊗X +X ⊗ 1) + (f + eh)X ⊗X,
ε̃(1) = −c,
ε̃(X) = a.

for some variables a, c, e, f, h, t.
We give this system a grading by setting the degrees of a, c, e, f, h, t,X to be 0,−2,−2, 0, 2, 4, 2
respectively.

We see that every Frobenius system F ′ is obtained from F̃ by a base change sending
a, c, e, f, h, t to a′, c′, e′, f ′, h′, t′ respectively.

If we show that FUniv can be obtained from F̃ by twisting we are done, using Remark 1.22.
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Consider the element f + eX ∈ Ã. It is invertible with inverse a+ ch− cX, so we can twist
F̃ by it. Moreover qdeg(f + eX) = 0, so after twisting the comultiplication and counit maps
will have the same grading as in F̃ . We get:

∆̃
twist−→ ∆Univ

ε̃
twist−→ εUniv.

So after the twist the structure maps only depend on the variables h, t. Thus we can replace
R̃, Ã by RUniv, AUniv respectively.
Now, since the twisting operation is invertible (Remark 1.22) and every Frobenius system is
a base change of F̃ , we proved that every Frobenius system F ′ of rank two is obtained from
FUniv by the composition of a base change and a twist.

1.4 Topological Quantum Field Theories

We described the categories Cob1 of (1+1)-cobordisms and R-mod, with R a unitary ring.
We now want to introduce monoidal functors F : Cob1 → R-mod that relate these two cat-
egories. Such a functor is called a Topological Quantum Field Theory (TQFT). We will see
that each Frobenius system of rank two determines a different TQFT.

Let F = (R,A,∆, ε) be a Frobenius system of rank two.
We define a TQFT F : Cob1 → R-mod relative to F . We send the object n̄ to the R-module
A⊗n, i.e. we assign to each circle of n̄ a copy of A.
The empty object of Cob1, which is the unit of the disjoint union operation, is sent to R, the
unit of ⊗.
We then describe the action of F on the elementary cobordisms of Figure 1.5:

F (S1
2) = m, F (S2

1) = ∆,

F (S1
0) = ι, F (S0

1) = ε, (1.12)
F (S2

2) = Perm, F (S1
1) = id .

Given an arbitrary morphism S of Cob1, i.e. a (1+1)-cobordism, we divide it in elementary
surfaces and apply F to each of them. Thus F is well-defined if and only if for any decom-
position of S in elementary surfaces we obtain equivalent maps of R-modules after applying
F . This follows from the commutative algebra and cocommutative coalgebra structures on
A, and the Frobenius identity, as stated in [Kh2].
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We can translate the properties of Frobenius systems into equivalences of cobordisms as in
Figure 1.6:

commutativity

= =

cocommutativity

= =

associativity coassociativity

= = = =

unit identity counit identity

=

Frobenius identity

Figure 1.6

Throughout this thesis we will very often go back and forth between cobordisms of Cob1 and
morphisms of R-mod using TQFTs.

We end this chapter with three relations between cobordisms in Cob1 and morphisms in R-
mod. The first is true for any Frobenius system of rank two, the others hold for FUniv. These
relations will be useful in Chapter 2, when proving the invariance of Khovanov homology
under the Reidemeister moves.

Lemma 1.28. (The T relation) If F is a rank two Frobenius system, the torus cobordism in
Cob1 corresponds to multiplication by 2 in R-mod.
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ε

m

Δ

ι

}

}
}
}

Figure 1.7

Proof. We observe that a torus is the composition of the four elementary cobordisms in
Figure 1.7. After applying the TQFT relative to F we obtain ε ◦m ◦ ∆ ◦ ι. Now consider
the Frobenius system F̃ , given by equations (1.11). Since every other rank two Frobenius
system is obtained from F̃ by twisting, it is enough to compute ε ◦m ◦∆ ◦ ι for this system.
We have:

∆(1) = (et− hf)1⊗ 1 + eX ⊗X + f(1⊗X +X ⊗ 1)

m(∆(1)) = 2et+ 2fX + ehX − hf
ε(m(∆(1))) = −2cet+ 2af + hea+ hfc = 2(−cet+ af + hfc) = 2 · 1 = 2

(remember that in R̃ we have ea = fc and −cet+ af + hfc = 1).

Lemma 1.29. (The S relation) Consider the Frobenius system FUniv. The sphere cobordism
in Cob1 corresponds to multiplication by 0 in R-mod.

ε

ι

}
}

Figure 1.8
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Proof. A sphere is the composition of the elementary cobordisms S1
0 and S0

1 , as in Figure 1.8.
After applying the TQFT we obtain ε ◦ ι. Now for FUniv we have that ε(ι(1)) = ε(1) = 0.

Lemma 1.30. (The 4Tu relation) Consider a surface S such that the intersection of S with
a ball in R3 looks like the four cylinders of Figure 1.9. Call Cij the cobordism obtained from
S by connecting the circles labeled i and j with a tube and "closing" the remaining circles
with S0

1 or S1
0 . After applying the TQFT relative to FUniv we have that C12 +C34 = C13 +C24

(see Figure 1.10).

1 2

3 4

Figure 1.9

+ = +

Figure 1.10

Proof. We have:

C12
TQFT7−→ ∆ ◦ ι ◦ (ε⊗ ε)

C34
TQFT7−→ (ι⊗ ι) ◦ ε ◦m

C13
TQFT7−→ (id⊗ι) ◦ (id⊗ε)

C24
TQFT7−→ (ι⊗ id) ◦ (ε⊗ id)

Now it is enough to verify that (after applying the TQFT) C12 + C34 = C13 + C24 on
1⊗ 1, 1⊗X,X ⊗ 1, X ⊗X. This is an easy exercise.
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2 Khovanov homology
In this chapter we introduce several link invariants (one for each graded Frobenius system of
rank two). Let F be a graded Frobenius system of rank two. Given a link L we can associate
to it a "cube of resolutions" whose elements are in the category Cob1, then, applying the
TQFT associated to F and shifting the degrees appropriately, we obtain a chain complex.
The homology of this complex is a link invariant called Khovanov homology.
Khovanov homology has several interesting applications, and in particular it can be used to
find a lower bound for the unknotting number, as we will see in Chapter 3.
We will mostly follow [BN1], [BN2], [BN3] and [Tu1]. For the last part, about the relation-
ship between chain complexes relative to different Frobenius systems, we will use [Kh1].

Throughout this chapter, to help understand and visualize the construction of Khovanov
homology we will use figures featuring the example of the Trefoil knot. This knot has the
advantage of only having 3 crossings, and is thus easy to visualize.

2.1 The cube of resolutions

Let L be a link and let us fix a diagram D for L. We denote the n crossings of D by
c1, . . . , cn. For every i we can replace a small tangle (i.e. the intersection of D with a small
disk) containing ci with a 0- or 1-resolution of ci:

0-resolution 1-resolution

Figure 2.1
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Definition 2.1. The 0-resolution and 1-resolution of a crossing ci of D are the tangles shown
in Figure 2.1.

Definition 2.2. A complete resolution of a diagram D is a diagram where every crossing is
replaced by a 0- or 1-resolution.

Let v = (v1, . . . , vn) ∈ {0, 1}n. We denote by Dv the complete resolution of D obtained by
replacing each crossing ci with its vi-resolution (see Figure 2.2).

1 2

3

D

v=(1,0,0)

Dv
Figure 2.2

Remark 2.3. For all v ∈ {0, 1}n we have that Dv is a disjoint union of circles.
This follows immediately from the fact that Dv is a diagram with zero crossings.
We can then see Dv as an object of the category Cob1.

For each v we denote the number of connected components of Dv (i.e. the number of circles)
by kv.
Given v = (v1, . . . , vn) ∈ {0, 1}n we further write |v| = v1 + . . .+ vn, i.e. |v| is the number of
ones appearing in v.
If |u| = |v|+ 1 and Du only differs from Dv at one crossing (i.e. there is a j such that ui = vi
for all i 6= j and uj = 1, vj = 0) we write v < u.

Remark 2.4. If v < u then ku = kv ± 1: suppose we (vi = ui)-resolve the crossings of D
for all i 6= j. Then cj will connect two arcs as in Figure 2.3 a) or b). The 0-resolution at cj
can then either generate one circle (in a)), or two circles (in b)). If the 0-resolution gives two
circles, then 1-resolving cj will give two circles, and vice-versa.

We now construct an n-dimensional cube having at each vertex v ∈ {0, 1}n the complete
resolution Dv. Since all diagrams Dv are disjoint unions of circles, i.e. objects of the category
Cob1, we can consider (1+1)-cobordisms between them. If v < u and they differ at the entry
j we connect Dv and Du by a saddle cobordism S going from the 0- to the 1-resolution of cj,
as in Figure 2.4.

24



Khovanov homology

0-resolution 1-resolution

a)

b)

cj

cj

Figure 2.3

0-resolution

saddle

1-resolution

Figure 2.4

By Remark 2.4, the cobordism S between Dv and Du will either split a circle in two or merge
two circles, and we set it to be the identity on all other circles oof Dv. In the first case S
will be a split cobordism, in the second case a merge cobordism. The edges of the cube will
be then given by merge and split (1+1)-cobordisms.
We call such a cube a cube of resolutions of the diagram D. In Figure 2.5 we see the cube
of resolution of the trefoil diagram: the leftmost edges are merge cobordisms, all the others
are split cobordisms.

Observe that if we reorder the crossings of D we will get a different cube of resolutions.
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1 2

3

000

100

010

001

110

101

011

111

Figure 2.5

Given a cube of resolutions of D our goal is to associate to it an algebraic structure, in order
to obtain a chain complex whose homology is invariant under all Reidemeister moves. This
will be done by applying a TQFT to the cube of resolutions, and we will see that not all
TQFTs (i.e. not all Frobenius systems) generate such a chain complex.

Let us fix a graded rank two Frobenius system F = (R,A,∆, ε). The R-module A decomposes
as A = R1 ⊕ RX for some X ∈ A. Up to a global shift and rescaling we can assume
qdeg(1) = 0 and qdeg(X) = −2.
Using the TQFT relative to F we associate to each Dv the R-module A⊗kv , so we associate
a copy of A to each circle of Dv (we see Dv as an object in Cob1, so the circles are ordered).
Let v < u: the TQFT sends the cobordism S between vertices v and u to a map δ̃ : A⊗kv →
A⊗ku . First assume that S is a merge cobordism. Then δ̃ acts as the identity on all copies
of A except the two corresponding to the circles of Dv that are merged by S. On these two
copies δ̃ will be given by the multiplication map of F : m : A ⊗ A → A. Similarly, if S is a
split cobordism, δ̃ will be the identity on all copies of A except that corresponding to the
circle of Dv that is split by S. On that copy δ̃ acts as the comultiplication ∆: A → A ⊗ A
of F (see Figure 2.6).
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Figure 2.6

2.2 The Chain complex

We now have an algebraic structure on the cube of resolutions. We would like to obtain from
it a chain complex: its groups will be obtained by taking vertical direct sums of the vertices
and its differentials will be vertical sums of the edges. We will get a chain complex if the
differentials d fulfil the two following conditions:

1. d is a graded map of quantum degree 0,

2. d ◦ d = 0.

In order for these conditions to be satisfied we have to slightly modify the algebraic structure
that we gave on the cube of resolutions.
For the first condition to hold we have to make sure that all the edge maps have quantum
degree 0, i.e. thatm,∆ ∈ R-mod0. This is achieved by shifting, at each vertex v, the quantum
grading on A⊗kv by |v| + kv, i.e. we replace A⊗kv by A⊗kv{|v| + kv} (see Definition 1.25 for
the definition of quantum shift). We call these shifts local shifts.
For the second condition it suffices to make sure that all squares in the cube of resolutions
anticommute. We sprinkle signs on the edge maps in the following way: let v < u and δ̃ be
an edge map between these two vertices. Assume the entry at which v = (v1, . . . , vn) and
u = (u1, . . . , un) differ is the j-th one, i.e. vj = 0, uj = 1 and vi = ui for i 6= j. Then we
define

δ = (−1)ξvu δ̃, where ξvu =

j−1∑
i=1

vi. (2.1)
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See Figure 2.9 for a representation of the local shifts and the edge maps δ. The maps with
a negative sign (i.e. the maps where ξvu is odd) are marked with a small white square.

We want to prove the following lemma:

Lemma 2.5. With the new edge maps δ all squares of the cube of resolutions anticommute.

Proof. Let us first show that before sprinkling the signs all squares commute.
Consider a square of the cube of resolutions

uj

v w

uk

α2α1

β1 β2

where v, uj, uk, w are vertices and αi, βi edge maps between them. The vertices v and w differ
at two crossings cj, ck: they are both 0-resolved in v and both 1-resolved in w. Following
the path α2 ◦ α1 we first 1-resolve cj and then ck, while following β2 ◦ β1 we first 1-resolve
ck. Thus the vertices are such that v < uj and they differ at the j-th entry, v < uk and they
differ at the k-th entry, uj, uk < w and they differ from w at entries k and j respectively.
Summing up:

vj = vk = ukj = ujk = 0,

ujj = ukk = wj = wk = 1,

vi = uji = uki = wi for i 6= j, k.

Depending on the position of the crossings cj, ck we have to consider eight cases, shown in
Figure 2.7. In this figure the black circles represent Dv (where both crossings are 0-resolved)
and the red lines show the position of crossings cj, ck, or, more precisely, the 1-handles that
we need to attach to go from the 0- to the 1-resolution of crossings cj, ck.

In cases 1), 2), 5), 6), 8) we clearly have that α2 ◦ α1 = β2 ◦ β1.
In case 3) the fact that the square commutes follows from the associativity of m, since
α2 ◦ α1 = m ◦ (m⊗ id) while β2 ◦ β1 = m ◦ (id⊗m).
In case 4) it follows from the Frobenius identity, as shown in Figure 2.8 , and finally in case
7) it follows from the coassociativity of ∆.
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1)

2)

8)

7)

6)

5)

4)

3)

ckcj

Figure 2.7

ck
cj ��=m ����

ck
cj ��=m   id���id  �

Figure 2.8

Now we show that the squares anticommute after sprinkling the signs.
The square anticommutes if α1α2 = −β1β2. We alreay showed that before sprinkling the
signs the square commutes, so it remains to check that (−1)ξvuj+ξujw = −(−1)ξvuk+ξukw .
Without loss of generality we can assume that j < k. Then:

ξvuj = v1 + . . .+ vj−1, ξujw = v1 + . . .+ vj−1 + ujj + vj+1 + . . .+ vk−1,

ξukw = v1 + . . .+ vj−1, ξvuk = v1 + . . .+ vj−1 + vj + vj+1 + . . .+ vk−1.

Since ujj = 1 and vj = 0, we have that ξujw = ξvuk + 1 and ξvuj = ξukw. This completes the
proof.

We now construct a chain complex C∗,∗ from the cube of resolutions.
Let first

C̃i,∗ =
⊕
|v|=i

A⊗kv{i+ kv}.

(see Figure 2.9)

29



Khovanov homology

110

101

011

111

A

A 2

C0,*

A 2

A 3

{1+1} {2+2}

{3+3}
000

100

010

001

A

A

A 2

A 2

{0+2} {1+1}

{1+1}

{2+2}

{2+2}

C1,* C2,* C3,*

+

+

+

+

+

+

+

d0 d1 d2

�

Figure 2.9

Now let us call n+, n− respectively the number of positive and negative crossings of D. To
obtain C∗,∗ we want to make a homological shift of n− and a quantum shift of n+ − 2n− on
C̃∗,∗. We will refer to these as global shifts, because they act on the entire complex, whereas
the local shifts act on the vertices of the cube of resolutions.
We already saw the definition of quantum shift in Chapter 1, so let us define the homological
shift [r]:

Definition 2.6. Let C∗ be a chain complex. Then a quantum shift of C∗ by [r] gives a chain
complex C∗[r] such that

Cn[r] = Cn−r.

Then the chain groups of C∗,∗ are given by

Ci,∗ = C̃i,∗[−n−]{n+ − 2n−}.

We will later see that these shifts ensure that C∗,∗ is invariant (up to chain homotopy equiv-
alence) under the Reidemeister moves.
The chain groups Ci,j are bigraded: i represents the homological grading, j the quantum
grading.
The differentials d : Ci,∗ → Ci+1,∗ are given by

d =
∑
|v|=i

δvu
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where δvu : A⊗kv → A⊗ku (for some v < u) is an edge map. The differentials are bigraded of
bidegree (1,0).
Throughout this work we will always write d to denote differentials of C∗,∗ and δ to indicate
edge maps of the cube of resolutions.

Remark 2.7. Reordering the crossings of D generates a chain complex isomorphic to C.
This follows from the fact that if we reorder the crossings we will obtain a cube of resolutions
that differs only on the vertical order of the spaces and on the signs of the edge maps: each
column |v| = i will contain the same spaces, but in a different order, and the same happens
for the maps. Moreover, each sprinkling of the signs that makes all squares of the cube of
resolutions anticommute gives chain homotopy equivalent chain complexes.

Then the chain complex associated to a link diagram D is well defined up to chain homotopy
equivalence. We denote it by C(D), and we call its homology H(D). Thus each graded
Frobenius system F of rank two defines a bigraded homology theory, called Khovanov ho-
mology relative to F . We will show that, for every Frobenius system of rank two, H(D) is a
link invariant.

Mapping Cone

Let us fix a crossing c of D, and let us reorder the crossings so that c is the last one (for
simplicity). Denote by D0 and D1 the diagrams obtained from D by 0- and 1-resolving c
respectively. Then C̃(D) is the mapping cone of a chain map δδδ : C̃(D0)→ C̃(D1){1}.

Definition 2.8. Let (A, dA), (B, dB) be chain complexes and f : A → B a chain map between
them.

An−1 An An+1

Bn−1 Bn Bn+1

dn−1
A

fn−1

dnA

fn fn+1

dn−1
B dnB

The mapping cone of f , denoted by Cone(f), is the chain complex C whose groups are
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Cn = An ⊕ Bn−1 (i.e. C = A⊕ B[1]) and whose differentials are given by

dn =

 dnA 0

(−1)nfn dn−1B

 .

Let v = (v1, . . . , vn−1) be a vertex of the cube of resolutions of D0. Observe that v cor-
responds to the vertex v0 = (v1, . . . , vn−1, 0) of the cube of D (i.e. (D0)v = Dv0). We
denote by δδδv the map corresponding to the saddle cobordism going from the 0- to the 1-
resolution of c (as in Figure 2.4), i.e. δδδv : (D0)v → (D1)v. We note that (D1)v = Dv1 , where
v1 = (v1, . . . , . . . , vn−1, 1). So at every vertex v we have either δδδ = m or δδδ = ∆. Let now
δδδ : C̃(D0)→ C̃(D1){1} be the chain map given by δδδi =

∑
|v|=i δδδv. Then C̃(D) is the mapping

cone of δδδ (see Figure 2.10).
We can write

C̃(D) =
(
C̃(D0)

δδδ−→ C̃(D1){1}
)
. (2.2)

1 2

3

000

100

010

001

110

101

011

111

c
D

cube for D0

cube for D1

���

���

���

���

Figure 2.10

We would like to have a similar result for the complex C(D), that is, after the global shifts
[−n−]{n+ − 2n−}. In this case however the situation is slightly more complicated.

Assume c is a positive crossing. Then D0 inherits an orientation from D (see Figure 2.11)
and n0

− = n−, n
0
+ = n+ − 1 (where n0

−, n
0
+ are, respectively, the number of negative and
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positive crossings of D0). The diagram D1 on the other hand doesn’t inherit an orientation,
so we can’t relate n1

−, n
1
+ to n−, n+. We thus assign to D1 an arbitrary orientation and define

γ = n1
− − n−. Then

C(D) = C(D0){1} ⊕ C(D1)[γ + 1]{3γ + 2}.

Let now c be negative. Then D1 inherits an orientation from D (see Figure 2.11) and
n1
− = n− − 1, n1

+ = n+. D0 does not inherit an orientation, so we orient it arbitrarily and
define γ = n0

− − n−. Then

C(D) = C(D) = C(D0)[γ]{3γ + 1} ⊕ C(D1){−1}

Figure 2.11

Throughout this thesis, in particular in Chapter 3, it will often be convenient to work with
C̃(D) rather than C(D), to avoid dealing with the shifts mentioned above.

2.3 Invariance under the Reidemeister moves

Our goal is to prove that the homology of the chain complex C is a link invariant. This will
follow from the fact that if D and D′ are link diagrams related by a Reidemeister move (see
Figure 1.2), then C(D) and C(D′) are chain homotopy equivalent.
We give the proof of this for the universal Frobenius system FUniv defined in (1.8). We will
see later that from this follows that all Khovanov homology theories coming from rank two
Frobenius systems are link invariants. For this section we will use Bar-Natan’s article [BN2].
For more details about chain complexes for tangles look at this source.

Invariance under R1

In this proof we will often implicitly use the TQFT to go back and forth from spaces and
maps in the algebraic cube of resolutions to circles Dv and cobordisms. We make the cate-
gory Cob1 pre-additive by allowing formal sums of cobordisms (details can be found in [BN2]).
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For simplicity we won’t write homological and quantum shifts in the chain complexes, as
they only come into play at the end of the proof.

Let D,D′ be link diagrams related by a positive R1 move as in Figure 1.2.
Let n+, n− and n′+, n′− be the number of positive and negative crossings of D and D′ respec-
tively. Then n′+ = n+ + 1 and n′− = n−.

Let now c be the crossing in D′ corresponding to the R1 move and let D′0, D′1 be the diagrams
obtained from D′ by 0- and 1-resolving c respectively. Thus D′0 and D′1 are identical except
for a tangle, where D′0 = and D′1 = Then the complex C(D′) is the mapping cone
of the chain map δδδ : C(D′0) → C(D′1), where δδδ is the saddle-move, or rather the bundle of
saddle-moves, from the 0- to the 1-resolution at c (so δδδ = m at every vertex of the cube of
resolutions of D′0).

Our aim is to find a chain homotopy equivalence F : C(D) → C(D′) that has bidegree
(0, 0). At each vertex v of the cube of resolutions of D the map F will go from a complete
resolution Dv of D to a complete resolution D′u of D′0. The resolutions Dv and D′u are
identical everywhere except at a tangle (where the R1 move happens), where Dv = and
D′u = . So we define F as the identity everywhere on Dv except at the tangle , where
F acts as the map F 0 defined in Figure 2.12.
We also define a map G : C (D′) → C (D) as follows: G is the zero map on the cube of
resolutions of D′1. At each vertex of the cube of D′0 we define G as the identity everywhere
except at the tangle where G acts as the map G0 of Figure 2.12.

F0= -

=G0

Figure 2.12

We can thus interpret Figure 2.13 as a diagram where each tangle represents a complex:
the tangle in the top left corner stands for the complex C(D), the tangle stands for
C(D′0) and the tangle in the bottom right corner stands for C(D′1). Each map of the
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diagram then represents a bundle of maps between the vertices of the cubes of resolutions of
the complexes C(D), C(D′0), C(D′1).

0

F0G0

�=m

h

0 0

0

Figure 2.13

We have to prove that F is a chain homotopy equivalence with inverse G. For the proof
we will only consider the local tangles where the Reidemeister moves happen (see [BN2] for
details). Instead of C(D) and C(D′), let us then consider the complexes of tangles

C
( )

and

C
( )

=
(

0 −→ m−→ −→ 0
)

Then F consists of two maps: F 0 : C0
( )

→ C0
( )

and F 1 : 0 = C1
( )

→ C1
( )

(that is defined as 0). Similarly, G consists of the maps G0 : C0
( )

→ C0
( )

and
G1 : C1

( )
→ C1

( )
= 0 defined as 0 (see Figure 2.13).

We have:

• F is a chain map: we only need to check that δF = 0, but this follows from an isotopy.

• G is a chain map: this is clear.

• GF = id: This follows from the T relation (see Lemma 1.28) and the counit identity
(see Figure 1.6), as shown in Figure 2.14.
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-= 2 - =G0F0 =

Figure 2.14

• FG ∼ id. We define the map h : C1
( )

→ C0
( )

as in Figure 2.15. We want to show
that FG− id +hδ + δh = 0. By the unit identity (see Figure 1.6) we see that δh = id,
thus F 1G1 − id +δh = 0 − id +δh = 0. It remains to show that F 0G0 − id +hδ = 0,
and this follows from the 4Tu relation (see Lemma 1.30), as shown in Figure 2.16: we
have that F 0G0 = C12 − C13 and − id +hδ = −C24 + C34.

F0

-

G0 - id + h��

- +} }
h=

Figure 2.15

1 2

3 4

Figure 2.16
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Thus, ignoring quantum shifts, the complexes C
( )

and C
( )

, and thus also C(D) and
C(D′), are chain homotopy equivalent.

The only thing it remains to check to prove that C(D) and C(D′) are chain homotopy
equivalent is that the maps F,G have quantum degree 0. We observe the following:

Remark 2.9. Let us consider the cubes of resolutions for D and D′ before the global shifts
(but with the local shifts at each vertex), and let f : Dv → D′u, for some vertices u, v, be a
morphism. We have:

(a) If f is the cap morphism (i.e. the counit ε), it sends X 7→ 1, and decreases the number
of circles by 1, so it has qdeg = 2− 1 + |u| − |v| = 1 + |u| − |v|.

(b) If f is the cup (i.e. the unit ι), it increases the number of circles by 1, and sends 1 7→ 1,
thus it has qdeg = 1 + |u| − |v|.

(c) If f is the identity morphism, it has qdeg = |u| − |v|.

(d) If f is the merge (i.e. m), it has qdeg = −1 + |u| − |v| because it decreases the number
of circles by 1.

(e) If f is the split (i.e. ∆), it sends 1 7→ X ⊗ 1 + 1⊗X −h1⊗ 1 and increases the number
of circles by 1, thus it has qdeg = −2 + 1 + |u| − |v| = −1 + |u| − |v|.

By this remark we have that, before global shifts, qdeg(F 0) = −1 and qdeg(G0) = 1 (since
|u| = |v|).
Let us now see what happens after the global shifts. Let α be a homogeneous element of D′v
for some v and let q + n′+ − 2n′− = qdeg(α). Then after the global shifts

qdeg(G0(α)) = q + 1 + n+ − 2n− = q + 1 + n′+ − 1− 2n′− = qdeg(α).

Let now β be a homogeneous element of Dv and let q + n+ − 2n− = qdeg(β). Then, after
the shifts,

qdeg(F 0(β)) = q − 1 + n′+ − 2n′− = q − 1 + n+ + 1− 2n− = qdeg(β).

Thus F,G have quantum degree 0. They also have homological degreee 0 because n− = n′−.

Remark 2.10. Invariance under a negative R1 move follows from the positive R1 and from
R2 (see Remark 1.9).

We note that the fact that FUniv has rank two is crucial. We have the following:
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Remark 2.11. If F is not of rank two we don’t have invariance under R1.

We give another proof of R1, this time for a generic Frobenius system F of rank two, to
show more explicitly where the rank of F comes into play. Again, we ignore homological and
quantum shifts.

Let us assume that D,D′ are link diagrams related by a positive R1 move. It is enough
to consider the case where D is the Unknot and D′ is a one-crossing diagram. The chain
complex C(D′) is:

0 −→ A⊗ A m−→ A −→ 0,

while the chain complex C(D) is:
0 −→ A −→ 0.

The complex C(D′) splits through the map ι⊗ id as

0 −→ A −→ A −→ 0

and
0 −→ ker(m) −→ 0 −→ 0.

The first complex is contractible, so we only need to show that there is an A-module isomor-
phism between ker(m) and A. We have ker(m) ∼= (A/R)⊗A. Since F is a rank two Frobenius
system, i.e. A ∼= R1⊗RX for some X ∈ A, we have that A/R ∼= R, i.e. ker(m) ∼= R⊗A ∼= A.

Invariance under R2

Assume now that D,D′ are related by a R2 move, as shown in Figure 1.2. We proceed as in
the first proof of R1 invariance and work with tangles rather than full link diagrams.
The complex C(D) is replaced by C

( )
, while C(D′) is replaced by the complex C

( )
shown on the bottom of Figure 2.17

This time we have n′+ = n+ + 1 and n′− = n− + 1. So we have to take into account the fact
that the global shift of [−n−] to obtain C(D) and the global shift of [−n′−] to obtain C(D′)

differ by 1. This means that we have to define the map F from C̃(D) to C̃(D′)[1] (or rather,
from C̃

( )
to C̃

( )
[1]), so that after the global shift it will have homological degree 0.
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C (      ){
Figure 2.17

We define F andG to be 0 everywhere except for F 0 : C̃0
( )

→ C̃1
( )

andG0 : C̃1
( )

→
C̃0
( )

, that are defined in Figure 2.18.

F0=

-=G0 +

( (,

Figure 2.18

We now show that F is a chain homotopy equivalence with inverse G. We have:

• F is a chain map: we only need to check that δF 0 = 0, and this follows from the unit
identity (see Figure 1.6).
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• G is a chain map: we only need to check that G0δ = 0, and this follows from the counit
identity (see Figure 1.6).

• GF = id. This follows from the S relation (see Lemma 1.29), as shown in Figure 2.19

F0=G0 + = 0 +

Figure 2.19

• FG ∼ id. We define a map h : C
( )

→ C
( )

[1] as in Figure 2.20. We want
to prove that FG − id = hδ + δh. This follows from the 4Tu relation (see Lemma
1.30), as shown in Figure 2.21: F 0G0 = −C12, id = C34, hδ = −C13, δh = −C24 (up to
orientation-preserving diffeomorphisms).

h0 = h1 =- -,

- -F0G0

h�����h = 

- id�=

--

Figure 2.20
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1 2

3 4

Figure 2.21

This proves that, ignoring the shifts, C
( )

and C
( )

are chain homotopy equivalent, and
thus, by an argument similar to the one for R1, that C(D) and C(D′) are chain homotopy
equivalent as well. See Figure 2.17 for an overview.
Let us now check that F and G have quantum degree 0. Before the global shifts F 0 goes
from Dv to D′u for some vertices v of the cube of resolutions of D and u of the cube of
D′, with |u| = |v| + 1. Depending on how Dv looks around the tangle , F 0 is either a
split morphism union a cup or a merge morphism union a cup, thus by Remark 2.9 we have
qdeg(F 0) = −1+1+1 = 1 (since |u|−|v| = 1). But n′+−2n′− = n++1−2n−−2 = n+−2n−−1

so after the global shifts on C̃(D) and C̃(D′) by {n+ − 2n−} and {n′+ − 2n′−} respectively,
we have that qdeg(F 0) = 1− 1 = 0.
On the other hand, before global shifts, G0 goes from spacesD′v to spacesDu with |u| = |v|−1.
Depending on the vertex, the map G0 is either a split union a cap or a merge union a cap.
Thus by Remark 2.9 we have qdeg(G0) = −1 + 1− 1 = −1 (since |u| − |v| = −1). We have
that n+ − 2n− = n′+ − 2n′− + 1, thus after the global shifts qdeg(G0) = −1 + 1 = 0.
This completes the proof of invariance under R2.

Invariance under R3

Let D,D′ be diagrams related by the first R3 move, as in Figure 1.2.
We replace C(D) and C(D′) with the complexes C( ) and C( ) respectively. These
complexes are shown in Figure 2.22: we have that C( ) is the mapping cone of the map
δδδ : C( ) → C( ), i.e. the map going from the 0- to the 1-resolution of the crossing c.
Similarly, C( ) is the mapping cone of the map δ′δ′δ′ : C( )→ C( ).
We observe that the bottom layers of these complexes, i.e. C( ) and C( ), are equal. The
top layers are also isomorphic (i.e. chain homotopy equivalent): this follows from the fact
that and are related by two R2 moves:

R2←→ R2←→ .

However, this is not enough to prove that the whole complexes C( ) and C( ) are chain
homotopy equivalent.
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Figure 2.22

We then state the following lemma, which is proved in [BN2]:

Lemma 2.12. Let A′,A,B be complexes and assume that A is a strong deformation retract
of A′, with inclusion map F : A → A′. Then given a chain map ϕ : A′ → B we have that
Cone(ϕ) and Cone(ϕ ◦ F ) are chain homotopy equivalent.

We recall the definition of strong deformation retract of a complex:

Definition 2.13. Let A′,A be complexes. We say that A is a strong deformation retract
of A′ if there exist chain maps F : A → A′ and G : A′ → A and a homotopy h : A′ → A′[1]
such that

• GF = id;

• hF = 0;

• id−FG = hd+ dh.

The map F is called the inclusion and G is the retract.

Remark 2.14. If A is a strong deformation retract of A′ then the two complexes are also
chain homotopy equivalent.
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We observe that the maps F and G defined in Figure 2.18, when proving invariance under R2,
are respectively an inclusion and a retract, thus the complex C( ) is a strong deformation
retract of C( ) (so they are not only chain homotopy equivalent).
Going back to our complexes C( ) and C( ), we have that C( ) and C( ) are strong
deformation retracts of C( ), thus Lemma 2.12 implies that C( ) and C( ) are chain
homotopy equivalent to the complexes in Figure 2.23 obtained by replacing the top layers
with . It is easy to see that these two complexes are chain homotopy equivalent (they are,
in fact, equal).

C (      ) C (      )

0 0
0 0

0 0
�F

0 0
0 0

0 0
�F

Figure 2.23

We conclude that C(D) and C(D′) are chain homotopy equivalent complexes.

Remark 2.15. Invariance under the second R3 move follows from invariance under the R2
and first R3 moves, as stated in Remark 1.9.

We then proved that, given two diagrams D,D′ representing equivalent links L,L′, the chain
complexes C(D) and C(D′) relative to FUniv are chain homotopy equivalent. Thus their
homologies H(D) and H(D′) are equal. Thus Khovanov homology H(L) is a link invariant.
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Homology theories coming from a generic Frobenius system

We saw that the Khovanov homology relative to FUniv is a link invariant. We would like
to say the same about Khovanov homology theories coming from every graded Frobenius
system of rank two. We first state some results about chain complexes associated to different
Frobenius systems.

Lemma 2.16. Let F ,F ′ be Frobenius systems such that F ′ is obtained by base change from
F . Let D be a link diagram and denote by C(D) and C ′(D) the chain complexes associated
to F and F ′ respectively. Then C ′(D) ∼= C(D)⊗R R′.

Proof. This simply follows from the definition of base change, since A′ = A⊗R R′ and each
space of C ′(D) is just a direct sum of tensor powers of A′.

Lemma 2.17. Let F ,F ′ be Frobenius systems such that F ′ is obtained by twisting from F .
Then for every link diagram D we have that C(D) ∼= C ′(D).

For a proof of this lemma see [Kh1].

Let now F ′ be a Frobenius system of rank two. We recall that FUniv is universal, which
means that F ′ is obtained from FUniv by a composition of a base change and a twist. We
proved that the chain complex associated to FUniv is invariant under the Reidemeister moves
(up to homotopy equivalence), thus by the two lemmas above we have that the chain complex
associated to F ′ is invariant too.

Summing up, we found that every graded Frobenius system of rank two generates a homology
theory for links, called Khovanov homology, and each theory is a link invariant.

The following holds:

Theorem 2.18. Khovanov homology detects the Unknot, i.e. given a link L we have:

H(L) = H(Unknot) ⇐⇒ L = Unknot.

A proof of this result can be found in [KM].
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3 Lower bounds for the unknotting
number

3.1 A lower bound coming from FUniv
In 2017 [Al] and [AD] found two lower bounds λBN , λLee for the unknotting number using
the Khovanov homology theories relative to Frobenius systems FBN and FLee respectively.
In this chapter we describe a new lower bound λ coming from Frobenius system FUniv. The
construction of the bound λ, and the proof that it is a lower bound for the unknotting num-
ber, follow very closely the constructions and proofs given in [Al] and [AD] for λBN and λLee.
We will see that λ is a generalization of λBN and λLee and subsumes them.
For simplicity we will work with the complex C̃ rather than with C (we will see that the
invariant λ does not depend on the grading of the complex).

Let us recall the definition of FUniv.

RUniv = Z[h, t] AUniv =
Z[h, t,X]

(X2 − hX − t)

The multiplication and comultiplication are given by:

m : A⊗ A→ A

1⊗ 1 7→ 1

1⊗X 7→ X

X ⊗ 1 7→ X

X ⊗X 7→ hX + t

∆: A→ A⊗ A

1 7→ 1⊗X +X ⊗ 1− h1⊗ 1

X 7→ X ⊗X + t1⊗ 1
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and the unit and counit are respectively:

ι : R→ A

1 7→ 1

ε : A→ R

1 7→ 0

X 7→ 1

To make the computations of this chapter easier we introduce another notation for the alge-
braic structure given by FUniv to the cube of resolutions of a diagram D.
Let K be a knot and let us fix a knot diagram D with crossings c1, . . . , cn (where n = n++n−
is the sum of the positive crossings and the negative ones), and edges e1, . . . , em. Define

R =
Z[X1, . . . , Xm, h, t]

{X2
i − hXi − t = 0 for 1 ≤ i ≤ m}

where, for all i, the variable Xi corresponds to the edge ei.
Each v ∈ {0, 1}n defines an equivalence relation on the set of edges of D: we say that ep ∼v eq
if ep and eq lie on the same connected component of Dv.
We then associate to every vertex v the quotient

Rv = R/{Xp = Xq if ep ∼v eq}.

We have that R and Rv, for all v, are commutative unitary rings, with internal multiplication
"·" given by

R×R→ R

1× 1 7→ 1

Xi × 1 7→ Xi

Xi ×Xj 7→ XiXj

They are also RUniv-modules.
We have that Rv is naturally isomorphic to A⊗kvUniv. The element Xi ∈ Rv corresponds to
multiplying the i-th factor of 1⊗ · · · ⊗ 1 by X in A⊗kvUniv.

For each crossing c of D consider the four edges ei, ej, el, ek around it, as in Figure 3.1.
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c

ei

ej el

ek

Figure 3.1

We want to express the edge maps in terms of Xi, Xj, Xl, Xk.
Each edge map δ : Rv → Ru, with u < v, goes from the 0- to the 1-resolution of a crossing
c. If δ = m it merges two circles (see Figure 3.2), and the equivalence relations on the edges
give:
on the vertex v: Xi = Xk, Xj = Xl;
on the vertex u: Xi = Xk = Xj = Xl.

mei ek

ej el

ei

ej el

ek

Figure 3.2

If δ = ∆ it splits a circle in two (see Figure 3.3), so:
on v: Xi = Xk = Xj = Xl;
on u: Xj = Xi, Xk = Xl.

ei ek

ej el

ei

ej el

ek
�

Figure 3.3
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Remark 3.1. At every vertex we have Xj +Xk = Xi +Xl.

Given vertices v < u we then have:

m : Rv → Ru

1 7→ 1

Xi 7→ Xi

Xj 7→ Xi

XiXj 7→ hXi + t

∆: Rv → Ru

1 7→ Xj +Xk − h

Xi 7→ XjXk + t

We observe that the maps m and ∆ (and thus all edge maps of the cube of resolutions) are
R-module maps.

The advantage of this notation is that we don’t need to keep track of all the tensor factors
of an element, or specify which circles are involved in a multiplication or comultiplication.

Remark 3.2. ∆ is multiplication by Xj +Xk − h.
Moreover, m is just the quotient map of the relation ∼u.

We recall that the system FUniv, and the chain complex relative to it, are graded. Thus
for every v the ring Rv is graded: before the shifts made to obtain the chain complex, the
variables h, t and Xi (for all 1 ≤ i ≤ m) have quantum degrees -2, -4 and -2 respectively,
and 1 has quantum degree 0. We then make the shift {n+ − 2n− + |v| + kv}. So given
r = Xd1

1 · · ·Xdm
m hdm+1tdm+2 ∈ Rv we have:

qdeg(r) = n+ − 2n− + |v|+ kv − 2(d1 + . . .+ dm)− 2dm+1 − 4dm+2.

The homological degree of Rv after the shifts is |v| − n−.

We now want to define a knot invariant λ coming from the Khovanov homology H relative
to FUniv. We first have to state a few results and definitions.
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We start by giving an AUniv-module structure on the Khovanov chain complex C. Let D be
a knot diagram with edges e1, . . . , em. Let us fix an edge ep and consider a small Unknot U
near this edge. Consider the saddle cobordism S obtained by attaching a 1-handle to connect
U and ep, as in Figure 3.4: on every complete resolution Dv of D the cobordism S will merge
U and the circle corresponding to ep. This induces a map

mp : C(D t U) = C(D)⊗ AUniv → C(D)

defined as follows: let v be a vertex of the cube of resolutions of D and a = a1 ⊗ . . .⊗ akv ∈
AkvUniv, and let b ∈ AUniv. Then mp(a⊗ b) = a1⊗ . . .⊗ap−1⊗ (ap · b)⊗ap+1⊗ . . .⊗akv , i.e. it is
given by multiplying the p-th factor of a by b. The map mp gives an AUniv-module structure
on C(D). This structure depends on the chosen edge ep.

U ep

=
mp

1-handle

Figure 3.4

We have:

Lemma 3.3. Let D,D′ be knot diagrams related by a Reidemeister move. Then C(D) and
C(D′) are chain homotopy equivalent as complexes of AUniv-modules (not only as complexes
of RUniv-modules). Thus Khovanov homology is invariant also as an AUniv-module.

For a proof of this statement see [Kh3], Section 3.

Lemma 3.4. Multiplication by Xp +Xq and multiplication by h are chain homotopic for all
p, q such that ep and eq are diagonal to one another at a crossing c.

We will give a proof of this later on.
The following corollary states that in H(K), up to sign, multiplication by 2Xi − h is the
same for all i.

Corollary 3.5. In H(K) we have

2Xp − h = ±(2Xq − h) for any 1 ≤ p, q ≤ m.
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Proof. Let us first consider p, q such that ep, eq are diagonal to one another. Then by Lemma
3.4 we have that Xp = −Xq +h in H(K), and thus 2Xp−h = −2Xq + 2h−h = −(2Xq−h).
Now consider any 1 ≤ p, q ≤ m. Since K is a knot there is a sequence of edges ei0 , . . . , eik
with ei0 = ep, eik = eq, such that eis , eis+1 are diagonal to one another for all 0 ≤ s ≤ k − 1.
Then

2Xp − h = −(2Xi1 − h) = 2Xi2 − h = . . . = ±(2Xq − h).

More precisely, if there are 2k crossings between ep and eq, for k ≥ 0, then 2Xp−h = 2Xq−h;
if there are 2k + 1 crossings then 2Xp − h = −(2Xq − h).
(Notice that there are two possible paths of edges in D that we can follow to connect ep and
eq, but the number of crossings encountered in these paths will have the same parity. This
is because, if we fix a point Q on D, the path along D starting and ending at Q will meet
each crossing of D twice, thus it meets an even number of crossings.)

Let us write X for any of the Xi.

Definition 3.6. An element a ∈ H(K) is (2X−h)-torsion if (2X−h)na = 0 for some n ∈ N.

By Corollary 3.5 this definition doesn’t depend on the Xi that we choose for X, since
(2Xi − h)na = 0 ⇐⇒ (−(2Xi − h))na = 0.

We call T (H(K)) the (2X − h)-torsion classes in H(K), i.e.

T (H(K)) = {a ∈ H(K) : (2X − h)na = 0 for some n ≥ 0}.

The order of a (2X − h)-torsion element a ∈ T (H(K)), denoted by ord(a), is the smallest
n ≥ 0 such that (2X − h)na = 0.

We can now finally define λ:

Definition 3.7. We define λ(K) to be the maximum order of a torsion element in T (H(K)):

λ(K) = max
a∈T (H(K))

ord(a).

We have that λ is a well-defined knot invariant, since the Khovanov homology H(K) is, and
by Lemma 3.3.
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Our next goal is to show that λ is a lower bound for the unknotting number. The core of
the proof consists in showing that if two knots K,K are related by a crossing change, then
|λ(K)− λ(K)| ≤ 1.

Let us then consider two knot diagrams D,D related by a crossing change at a crossing c.
We will denote by ei, ej, el, ek the four edges around c in D (as in Figure 3.1).
We order the crossings of D and D so that c is the last crossing.
Let D0 and D1 be the diagrams obtained from D by 0- and 1-resolving c respectively. The
chain complex C̃(D) can be written as (see (2.2)):

C̃(D) =
(
C̃(D0)

δδδ−→ C̃(D1){1}
)

i.e. C̃(D) = Cone(δδδ), where δδδ is the bundle of edge maps δδδv in C̃(D) going from the 0- to
the 1-resolution of c: δδδv goes from a vertex v = (v1, v2, . . . , vn−1, 0) to (v1, v2, . . . , vn−1, 1).

We define D0, D1 and δδδ analogously, so:

C̃(D) =

(
C̃(D0)

δδδ−→ C̃(D1){1}
)
.

Lemma 3.8. We have that D1 = D0 and D0 = D1.
Moreover, if we let C̃(D)i be the subcomplexes of C̃(D) coming from the i-resolution of c (i.e.
where c is always i-resolved), we have that C̃(D0) = C̃(D)0 and C̃(D1)[1]{1} = C̃(D)1. Thus
C̃(D)0[1]{1} = C̃(D)1 and C̃(D)1 = C̃(D)0[1]{1}.

Proof. The first statement is clear. For the second we observe that, ignoring the grading,
the subcube C(D)i of resolutions (relative to D) where c is always i-resolved is identical to
the cube C(Di) of Di except possibly for the signs of the edge maps. But since c is the
last crossing, we have that to a vertex (v1, v2, . . . , vn−1) of C(Di) corresponds the vertex
(v1, v2, . . . , vn−1, i) of C(D)i, thus the signs of the edge maps are sprinkled in the same way
in both cubes. The degree shifts in C̃(D1)[1]{1} = C̃(D)1 come from the fact that in D1 the
crossing c is replaced by its 1-resolution, so it doesn’t influence the shifts. See Figure 3.5 to
visualize this result.

51



Lower bounds for the unknotting number

1 2

3

000

100

010

001

110

101

011

111

1 2

3
c

c

D

D

000

100

010

001

110

101

011

111

cube for D0

cube for D1

cube for D0

cube for D1

Figure 3.5

We now define a map Φ: C̃(D) → C̃(D) as Φ(a) = (Xj − Xk)a, i.e. as multiplication by
Xj − Xk. Remember that Xj, Xk are the variables associated to the edges ej, ek diagonal
with respect to the crossing c, as in Figure 3.1. Since the edge maps of the cube of resolutions
for D are R-module maps we have that Φ is a chain map.

We observe that Φ is the composition of two maps f : C̃(D) −→ C̃(D) and g : C̃(D) −→ C̃(D)
defined as follows:
Given a ∈ C̃(D) = C̃(D0)⊕

(
C̃(D1)[1]{1}

)
, we can write a = (a0, a1). Then

f(a0, a1) = ((Xj −Xk)a1, a0)
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Similarly, for b = (b0, b1) ∈ C̃(D) we define

g(b0, b1) = ((Xj −Xk)b1, b0)

The maps f and g are R-module maps, and:

Lemma 3.9. For any a ∈ C̃(D) we have (g ◦ f)(a) = (Xj −Xk)a = Φ(a).

Proof. Let a = (a0, a1) ∈ C̃(D). Then

(g ◦ f)(a0, a1) = g((Xj −Xk)a1, a0) = ((Xj −Xk)a1, (Xj −Xk)a0) =

= (Xj −Xk)(a0, a1).

We observe that f = α + β where, given a = (a0, a1) ∈ C̃n(D), we have

α : C̃(D)→ C̃(D)[1] is the map α(a0, a1) = ((Xj −Xk)a1, 0) ∈ C̃n−1(D)

β : C̃(D)→ C̃(D)[−1] is the map β(a0, a1) = (0, a0) ∈ C̃n+1(D).

Similarly, given b = (b0, b1) ∈ C̃n(D) we have

g(b0, b1) = α(b0, b1) + β(b0, b1) = ((Xj −Xk)b1, 0) + (0, b0) ∈ C̃n−1(D)⊕ C̃n+1(D).

We have that α, β, α and β are chain maps, since the differentials of all chain complexes
involved are R-module maps.

We would like to show that Φ is chain homotopic to ±(2X − h), where X represents any of
X1, . . . , Xm. For that we will need Lemma 3.4. We can now give a proof of this lemma.

Proof. (of Lemma 3.4). We give the proof for the edges ej, ek of D, diagonal with respect to
the crossing c. The proof for any other pair of diagonal edges with respect to a crossing ξ is
identical, it suffices to replace D0, D1 with the 0- and 1-resolutions of ξ.
We define a chain homotopy H : C̃(D) → C̃(D). Let a = (a0, a1) ∈ C̃n(D), and remember
that a1 ∈ C̃(D1)[1]{1} = C̃(D0)[1]{1}. Then let

H(a0, a1) = (δδδ(a1), 0) ∈ C̃n−1(D).

Figure 3.6 shows the map H in red, the map δδδ in blue and the edge maps within C̃(D0) and
C̃(D1) in black. The degree shifts are omitted.
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Figure 3.6

Since C̃(D0) = C̃(D1) and C̃(D1) = C̃(D0) and all squares anticommute in C̃(D), we see
that δδδ anticommutes with all edge maps δ within C̃(D0) and C̃(D1), i.e. δδδδ + δδδδ = 0.
So if d is a differential of C̃(D) we have that (dH+Hd)(a0, a1) = (δδδδδδ(a0), δδδδδδ(a1)) = δδδδδδ(a1) +
δδδδδδ(a0) (see Figure 3.6). We want to show that δδδδδδ + δδδδδδ = Xj +Xk − h.
Consider δδδδδδ: δδδ and δδδ are (bundles of) edge maps between the same vertices, but going in
opposite directions. So on the vertices where δδδ is a merge, we have that δδδ is a split, and when
δδδ is a split δδδ is a merge. Assume first that δδδ is a merge and δδδ a split. Then

1
δδδ−→ Xj +Xk − h

δδδ−→ Xi +Xi − h = Xj +Xk − h

because Xi = Xj = Xk after applying δδδ, and

Xi
δδδδδδ−→ (Xj +Xk − h)Xi

because δδδ and δδδ are R-module maps and thus commute with multiplication by Xi.
If δδδ is a split, then δδδ is a merge. Again, since δδδδδδ is an R-module map, it is enough to compute
its action on 1. We have:

1
δδδ−→ 1

δδδ−→ Xj +Xk − h

Similar calculations apply to δδδδδδ.
In the end we obtain (dH+Hd)(a0, a1) = (Xj +Xk − h)a1 + (Xj +Xk − h)a0 = (Xj +Xk −
h)(a0, a1).

From Lemma 3.4 we then get the following
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Corollary 3.10. For any 1 ≤ i ≤ m, the map Φ is chain homotopic to multiplication by
±(2Xi − h). Thus

Φ∗ = ±(2Xi − h).

Proof. By Lemma 3.4 we have that Xk ∼ −Xj + h, thus Φ = Xj −Xk ∼ 2Xj − h.
By Corollary 3.5 we get 2Xp − h ∼ ±(2Xq − h) for all 1 ≤ p, q ≤ m, so Φ ∼ 2Xj − h ∼
±(2Xi − h) for all i.

We then have:

Lemma 3.11. Let K,K be knots related by a crossing change. Then

|λ(K)− λ(K)| ≤ 1.

Proof. In what follows X will denote any of the Xi. Let D,D be diagrams of K,K respec-
tively, related by a crossing change at a crossing c. Let a ∈ T (H(K)). We observe that, if
ord(a) = n and ϕ is an R-module map, then (2X −h)nϕ∗(a) = ϕ∗((2X −h)na) = ϕ∗(0) = 0,
so ord(a) ≥ ord(ϕ∗(a)). Then

ord(a) ≥ ord(Φ∗(a)).

By Corollary 3.10 we have that Φ∗(a) = ±(2X − h)a, so (2X − h)iΦ∗(a) = ±(2X − h)i+1a
for any i. So

ord(Φ∗(a)) = ord(a)− 1 if ord(a) > 0

= 0 if ord(a) = 0.

Now we remember that Φ decomposes as g ◦ f . Let f∗ = α∗ + β∗ and g∗ = α∗ + β∗.
We then have that

ord(a) ≥ ord(f∗(a)) ≥ ord(g∗(f∗(a))) = ord(Φ∗(a)) ≥ ord(a)− 1.

Observe that if a ∈ T (H(K)), then f∗(a) ∈ T (H(K)), so

max
b∈T (H(K))

ord(b) ≥ max
a∈T (H(K))

ord(f∗(a)).

Thus
λ(K) ≥ max

a∈T (H(K))
ord(f∗(a)) ≥ max

a∈T (H(K))
ord(a)− 1 = λ(K)− 1.
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So λ(K)− λ(K) ≤ 1.
The inequality λ(K)− λ(K) ≤ 1 is obtained in the same way, switching K with K.

Theorem 3.12. Let K be a knot. Then λ(K) is a lower bound for the unknotting number
of K:

λ(K) ≤ u(K).

Proof. First let’s compute λ(Unknot). The Unknot has zero crossings and one connected
component, so its cochain complex is given by 0 → AUniv → 0. Thus H(Unknot) = AUniv.
We notice that AUniv is an integral domain, so H(Unknot) is torsion-free: λ(Unknot) = 0.
Let’s now call N = unknotting number of K, and consider an unknotting sequence

K = K0, K1, . . . , KN = Unknot.

For all 0 ≤ i ≤ N − 1 we have that Ki and Ki+1 are related by a crossing change, so, by
Lemma 3.11, |λ(Ki)− λ(Ki+1)| ≤ 1. Thus

|λ(K0)− λ(KN)| ≤ |λ(K0)− λ(K1)|+ |λ(K1)− λ(K2)|+ . . .+ |λ(KN−1)− λ(KN)| ≤ N.

Observing that

|λ(K0)− λ(KN)| = |λ(K)− λ(Unknot)| = λ(K)− 0 = λ(K)

we conclude that λ(K) ≤ N .

3.2 Other bounds and applications

We now define the lower bounds λBN and λLee found by [Al] and [AD] and provide some
applications and relations with other lower bounds for u(K).

Let HBN , HLee be the Khovanov homology theories coming from Frobenius systems FBN and
FLee respectively (see (1.6) and (1.7)).
We observe that FBN and FLee are obtained from FUniv by base change using the following
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ring homomorphisms:

ϕBN : RUniv = Z[h, t]→ F2[h] = RBN

1 7→ 1

h 7→ h

t 7→ 0

ϕLee : RUniv = Z[h, t]→ Q[t] = RBN

1 7→ 1

h 7→ 0

t 7→ t

Then we define

λBN = max
a∈T (HBN (K))

ordBN(a), λLee = max
a∈T (HLee(K))

ordLee(a)

where ordBN(a), is the smallest n ≥ 0 such that hna = 0 and ordLee(a), is the smallest n ≥ 0
such that Xna = 0.

It is shown in [Al] and [AD] that these are also lower bounds for the unknotting number.
The proof is very similar to the one given in the previous section for λ: for λBN we replace
t with 0 and Z with F2, for λLee we replace h with 0, and note that the X-torsion and the
2X-torsion are equivalent, since the ground ring is RLee = Q[t].

These lower bounds have interesting applications related to the convergence of some spectral
sequences and to the Knight Move conjecture. We briefly describe these applications here.
For an overview of spectral sequences see the Appendix.
Consider the Frobenius system FBN . It can be proved that for every knot K the Khovanov
homology HBN(K), as an RBN -module (and ignoring the gradings), decomposes as F2[h] ⊕
F2[h]⊕ T (HBN(K)), where T (HBN(K)) are the torsion elements of HBN(K) (see [Tu2]).
Let us now set h = 1. This collapses the grading of FBN , and generates, for every knot
diagram, a chain complex CBN/(h = 1) that is not graded anymore, but filtered. Thus we
obtain a spectral sequence, called Bar-Natan spectral sequence.

Remark 3.13. The first page of the Bar-Natan spectral sequence is the Khovanov homology
theory HBN ′ relative to FBN ′ , with F = F2 (see (1.5)). This follows from the fact that
the differential d of the chain complex CBN/(h = 1) is now given by the sum of a grading-
preserving map and of a map of degree 2:

∆BN(1) = 1⊗X +X ⊗ 1− h1⊗ 1
h=1−→ 1⊗X +X ⊗ 1−1⊗ 1 (3.1)

mBN(X ⊗X) = X2 − hX h=1−→ X2−X (3.2)
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(since qdeg(h) = −2 the red terms above have now quantum degree 2, while the blue terms
still have degree 0).
Now the differential dn of the n-th page of the Bar-Natan spectral sequence has bidegree
(1, 2n), thus d0, i.e. the differential of the associated graded complex for CBN/(h = 1), is
only given by the grading-preserving part of the differential d, i.e. the blue terms in (3.1) and
(3.2). This is exactly the differential of the chain complex CBN ′ relative to FBN ′ (see (1.5)).
It is easy to see that the chain groups of the associated graded complex for CBN/(h = 1) and
the groups of CBN ′ also coincide. Thus the first page of the Bar-Natan spectral sequence is
the homology of CBN ′ , i.e. HBN ′ .

The Bar-Natan spectral sequence converges to HBN(K)/(h = 1) = F2 ⊕ F2.
We have that:

Lemma 3.14. If the Bar-Natan spectral sequence collapses at page n then λBN(K) = n− 1.

Similarly, HLee(K) decomposes as Q[t]⊕Q[t]⊕ T (HLee(K)). Setting t = 1 in FLee gives rise
to the Lee spectral sequence. The differentials dn of the n-th page of this spectral sequence
have bidegree (1, 4n) (remember that qdeg(t) = −4), thus the first page is again HBN ′ (as
for the Bar-Natan spectral sequence), this time with F = Q.
The Lee spectral sequence converges to HLee(K)/(t = 1) = Q ⊕ Q. More precisely, it
converges to

Q[0]{s(K)− 1} ⊕Q[0]{s(K) + 1},

where s(K) is Rasmussen’s invariant (for a proof see [Ra]).
Let us now define λ′Lee as the maximum order of t-torsion in HLee, i.e.

λ′Lee = dλLee/2e

(since X2 = t). Then:

Lemma 3.15. We have that λ′Lee(K) = n−1 if and only if the Lee spectral sequence collapses
at page n.

It follows that the pages at which the Bar-Natan and Lee spectral sequences collapse also
give a lower bound for the unknotting number.

Using Lemma 3.15 one can prove the Knight Move Conjecture for knots K with unknotting
number at most 2. Let us define this conjecture.

Conjecture 3.16. (Knight Move Conjecture). Let HBN ′ be the Khovanov homology relative
to Frobenius system FBN ′, with F = Q. Then, as an RBN ′-module, HBN ′ decomposes as a
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pair
Q[0]{s− 1} ⊕Q[0]{s+ 1}

called pawn move (for some s ∈ N), together with a set of pairs of the form

Q[i]{j} ⊕Q[i+ 1]{j + 4}

called knight moves (for various i, j ∈ N).

This conjecture has been proved to not hold in general: a counterexample can be found in
[MM], for the knot shown in Figure 3.7. However, since at the n-th page of the Lee spectral
sequence the differentials dn have bidegree (1, 4n), a similar result holds, where "longer"
knight moves are allowed (see [MM]):

Lemma 3.17. Khovanov homology HBN ′ decomposes as a pawn move pair

Q[0]{s− 1} ⊕Q[0]{s+ 1}

together with a set of long knight move pairs of the form

Q[i]{j} ⊕Q[i+ 1]{j + 4n}.

Using the bound λLee we obtain the following:

Lemma 3.18. The Knight Move Conjecture holds for knots K such that u(K) ≤ 2.

Proof. If K = Unknot then HBN ′(K) = Q[0]{−1}⊕Q[0]{1}, i.e. it consists of a pawn move.
Let now K be a knot different from the Unknot, with u(K) ≤ 2.
Since λLee is a lower bound for the unknotting number we also have that λLee(K) ≤ 2, and
thus λ′BN(K) ≤ 1.
We have that HLee(K) = Q[t] ⊕ Q[t] ⊕ T (HLee(K)) and HLee(Unknot) = Q[t] ⊕ Q[t], so
HLee(Unknot) has no X-torsion elements other than 0, and HLee(K) = HLee(Unknot) ⊕
T (HLee(K)). By Theorem 2.18 Khovanov homology detects the Unknot, thus T (HLee(K)) 6=
{0}. So λ′Lee > 0.
It follows that λ′Lee = 1, so, by Lemma 3.15, the Lee spectral sequence collapses at page 2.
Now we recall that the Lee spectral sequence converges to Q[0]{s(K)− 1}⊕Q[0]{s(K) + 1}.
The Knight Move Conjecture then follows from the fact that the first page of the Lee spectral
sequence is HBN ′ , with differential of bidegree (1, 4).
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Examples and further developments

We now give a few examples where λ is a sharp lower bound for the unknotting number.

full
positive
twist

c1

c2 c3

Figure 3.7

Consider the 38-crossing knot K shown in Figure 3.7. It is easy to find an unknotting
sequence for K of length 3, by making crossing changes at the crossings labeled c1, c2, c3 in
Figure 3.7. So u(K) ≤ 3.
We now try to find a lower bound for u(K). It is proved in [MM] that K does not satisfy the
Knight Move Conjecture 3.16 and that the Lee spectral sequence does not collapse at page 2
(the differential d2 is non-vanishing). Thus by Lemma 3.15 we have that λ′Lee(K) > 2−1 = 1,
so

λ(K) ≥ λLee(K) ≥ 2λ′Lee(K)− 1 ≥ 3.

Thus u(K) ≥ 3.
We conclude that u(K) = λ(K) = 3.

Rasmussen’s invariant s, defined in [Ra], gives another lower bound for the unknotting num-
ber: |s(K)|

2
≤ u(K). In [Al] Alishahi found examples of knots where λBN (and thus λ) is a

sharper bound than Rasmussen’s invariant:
For K = 13n689, 13n1166, 13n2504, 13n2807 we have:

|s(K)|
2

= 1 < 2 = λBN(K) ≤ λ(K).

Further developments of this work could aim at finding knots where the invariant λ is strictly
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bigger than λBN and λLee. This is not an easy task, since Khovanov homology HUniv relative
to Frobenius system FUniv is hard to compute.
Another interesting development would be to find a spectral sequence E similar to Bar-
Natan’s and Lee’s sequences, this time coming from the chain complex CUniv relative to
FUniv: the goal would be to obtain a result similar to Lemmas 3.14 and 3.15, using the
invariant λ to determine the convergence of the spectral sequence E.
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Appendix

In Section 3.2 we mention the connection between the lower bounds λBN , λLee and some
spectral sequences. We introduce this concept here briefly.
We follow [Ch] and [MC].

Let us consider a chain complex (C∗(_;R), d) where R is a commutative ring, and the dif-
ferential d is such that dn : Cn → Cn+1.

We assume that C∗ has a decreasing filtration

{0} ⊆ . . . ⊆ Cn,p ⊆ Cn,p−1 ⊆ . . . ⊆ Cn,0 ⊆ Cn,−1 = Cn

(the first index represents the homological degree, the second is the filtration degree). The
differential respects the filtration, i.e. dCn,p ⊆ Cn+1,p.
We call dn,p : Cn,p → Cn+1,p, i.e. dn,p(C∗) = d(Cn,p).

This filtration induces a filtration on homology:

Hn,p(C∗, d) = Hn(im(C∗,p → C∗), d).

We observe that ker dn,p

im dn−1∩Cn,p = Hn(im(C∗,p → C∗), d) 6= Hn(C∗,p, d) = ker dn,p

im dn−1,p , because in
general im dn−1,p ( im dn−1 ∩ Cn,p.

We further assume that the filtration is bounded, that is, for every n there is s = s(n) such
that

{0} ⊆ Cn,s ⊆ . . . ⊆ Cn,0 ⊆ Cn,−1 = Cn.

For ∞ ≥ u ≥ s(n) we let Cn,u = {0}, and for −∞ ≤ v ≤ −1: Cn,v = Cn.

Let’s give the definition of spectral sequence:

Definition. A spectral sequence is a collection of differential bigraded modules {E∗,∗r , dr},
r ≥ 0, such that all differentials have bidegree (1, r), i.e. dr : En,p

r → En+1,p+r
r , and En,p

r+1
∼=

Hn,p(E∗,∗r , dr).
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We now state a theorem on the existence of a spectral sequence that converges to H(C∗, d).

Theorem. The chain complex (C∗, d) determines a spectral sequence {E∗,∗r , dr}, r ≥ 0, where
dr : En,p

r → En+1,p+r
r , such that

En,p
0
∼=

Cn,p

Cn,p+1
and En,p

1
∼= Hn

(
C∗,p

C∗,p+1

)
.

Moreover this spectral sequence converges to H(C∗, d), i.e. En,p
∞
∼= Hn,p(C∗,d)

Hn,p+1(C∗,d)
.

Proof. We define, for −1 ≤ r ≤ ∞,

Zn,p
r := (dn,p)−1(Cn+1,p+r) = d−1(Cn+1,p+r) ∩ Cn,p

and
Bn,p
r := d(Cn−1,p−r) ∩ Cn,p.

So Zn,p
r is the submodule of Cn,p that is mapped to Cn+1,p+r and Bn,p

r is the submodule of
Cn,p that is in the image of Cn−1,p−r.

Let’s make some remarks about these two definitions:

1. Since d respects the filtration we have:
Zn,p
−1 = (dn,p)−1(Cn+1,p−1) = (dn,p)−1(Cn+1,p) = Zn,p

0 = Cn,p

and Bn,p
−1 = d(Cn−1,p+1) ∩ Cn,p = d(Cn−1,p+1).

Cn,p Cn+1,p

Cn+1,p−1

d ⊆

Cn−1,p+1 Cn,p+1

Cn,p

d ⊆

2. The filtration is bounded so there is a t such that Zn,p
u = Zn,p

t and Bn,p
u = Bn,p

t for all
t ≤ u ≤ ∞.

We have that, for u � 0, Zn,p
∞ = Zn,p

u = (dn,p)−1(0) = ker dn,p and Bn,p
∞ = Bn,p

u =
d(Cn−1,p−u) ∩ Cn,p = d(Cn−1) ∩ Cn,p = im d ∩ Cn,p.
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3. Bn,p
−1 ⊆ Bn,p

0 ⊆ · · · ⊆ Bn,p
∞ ⊆ Zn,p

∞ ⊆ · · · ⊆ Zn,p
0 ⊆ Zn,p

−1 .

The fact that Bn,p
r−1 ⊆ Bn,p

r and Zn,p
r+1 ⊆ Zn,p

r is shown by the following diagrams:

Cn,p

Cn−1,p−r+1

Cn−1,p−r

⊆

d

d

Cn+1,p+r+1

Cn+1,p+r

Cn,p

⊆

d

d

The fact that Bn,p
∞ ⊆ Zn,p

∞ follows from im dn−1 ⊆ ker dn and from the definition of Bn,p
∞

and Zn,p
∞ .

4. d(Zn−1,p−r
r ) = Bn,p

r

This is because d(Zn−1,p−r
r ) = d(d−1(Cn,p) ∩ Cn−1,p−r) = Cn,p ∩ d(Cn−1,p−r) = Bn,p

r .

We define, for 0 ≤ r ≤ ∞,

En,p
r :=

Zn,p
r

Zn,p+1
r−1 +Bn,p

r−1

Now we want to define the differential dr : En,p
r → En+1,p+r

r .
Let ηn,pr : Zn,p

r → En,p
r be the projection. We observe that ker ηn,pr = Zn,p+1

r−1 +Bn,p
r−1.

Since d(Zn,p
r ) = Bn+1,p+r

r ⊆ Zn+1,p+r
r (by remarks 3 and 4) and d(Zn,p+1

r−1 +Bn,p
r−1) = d(Zn,p+1

r−1 )+

0 ⊆ Bn+1,p+r
r−1 ⊆ Zn+1,p+r+1

r−1 +Bn+1,p+r
r−1 , we have that d induces a map dr:

Zn,p
r Zn+1,p+r

r

Zn,p
r

Zn,p+1
r−1 +Bn,p

r−1

= En,p
r En+1,p+r

r = Zn+1,p+r
r

Zn+1,p+r+1
r−1 +Bn+1,p+r

r−1

d

ηn,p
r ηn+1,p+r

r

dr

(3.3)
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and the diagram commutes.

We now need to check that (E∗,∗r , dr) is a spectral sequence.

Since d ◦ d = 0, we have dr ◦ dr = 0.

Let’s show that H∗,∗(E∗,∗r , dr) ∼= E∗,∗r+1.
To do that we will find a surjective map γ : Zn,p

r+1 → Hn,p(E∗,∗r , dr) such that ker γ =
Zn,p+1
r +Bn,p

r .

We first show that ηn,pr (Zn,p
r+1) = ker dr.

Let’s see what (ηn,pr )−1(ker dr) is: consider the commutative diagram (3.3), and remember
that Zn,p

r+1 ⊆ Zn,p
r . Given z ∈ Zn,p

r we have:
dr(η

n,p
r z) = 0 ⇐⇒ ηn+1,p+r

r (dz) = 0 ⇐⇒ dz ∈ Zn+1,p+r+1
r−1 + Bn+1,p+r

r−1 ⇐⇒ z ∈
Zn,p
r ∩ (d−1(Zn+1,p+r+1

r−1 ) + d−1(Bn+1,p+r
r−1 )).

But Zn,p
r ∩ (d−1(Zn+1,p+r+1

r−1 ) + d−1(Bn+1,p+r
r−1 ))

(a)
= Zn,p

r ∩ (Cn ∩ d−1(Cn+1,p+r+1) + Cn,p+1 ∩
d−1(Cn+1,p+r))

(b)
= (Zn,p

r ∩ d−1(Cn+1,p+r+1)) + (Zn,p
r ∩ Cn,p+1) = Zn,p

r+1 + Zn,p+1
r−1 .

Step (a) follows from the definition of Zn+1,p+r+1
r−1 andBn+1,p+r

r−1 , and by the fact that d−1d−1(Cn+2,q) =
Cn for all q.
Step (b) follows from the fact that Zn,p

r ∩ (Cn ∩ d−1(Cn+1,p+r+1) +Cn,p+1 ∩ d−1(Cn+1,p+r)) =
Zn,p
r ∩ (d−1(Cn+1,p+r+1) + Cn,p+1) = d−1(Cn+1,p+r) ∩ Cn,p ∩ (d−1(Cn+1,p+r+1) + Cn,p+1) =

d−1(Cn+1,p+r) ∩ (Cn,p ∩ d−1(Cn+1,p+r+1) + Cn,p+1) because Cn,p+1 ⊆ Cn,p. Then notice that
Cn,p ∩ d−1(Cn+1,p+r+1) ⊆ d−1(Cn+1,p+r).
So (ηn,pr )−1(ker dr) = Zn,p

r+1 + Zn,p+1
r−1 .

Since Zn,p+1
r−1 ⊆ ker ηn,pr we have that ker dr = ηn,pr (Zn,p

r+1).

We now show that Zn,p+1
r +Bn,p

r = Zn,p
r+1 ∩ ((ηn,pr )−1(im dr)).

Consider the commutative diagram:

Zn−1,p−r
r Zn,p

r

Zn−1,p−r
r

Zn−1,p−r+1
r−1 +Bn−1,p−r

r−1

= En−1,p−r
r En,p

r = Zn,p
r

Zn,p+1
r−1 +Bn,p

r−1

d

ηn−1,p−r
r ηn,p

r

dr

So im dr = ηn,pr (d(Zn−1,p−r
r )) = ηn,pr (Bn,p

r ).
It follows that (ηn,pr )−1(im dr) = Bn,p

r + ker ηn,pr = Bn,p
r +Zn,p+1

r−1 +Bn,p
r−1 = Bn,p

r +Zn,p+1
r−1 (using
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remark 3).
We observe that Zn,p+1

r−1 ∩ Zn,p
r+1 = (Cn,p+1 ∩ d−1(Cn+1,p+r)) ∩ (Cn,p ∩ d−1(Cn+1,p+r+1)) =

Cn,p+1 ∩ d−1(Cn+1,p+r+1) = Zn,p+1
r (because Cn,p+1 ⊆ Cn,p and Cn+1,p+r+1 ⊆ Cn+1,p+r).

Moreover Bn,p
r ⊆ Zn,p

r+1 by remark 3.
So Zn,p

r+1 ∩ ((ηn,pr )−1(im dr)) = Zn,p+1
r +Bn,p

r .

Now we can define γ : Zn,p
r+1

ηn,p
r−→ ker dr

projection−−−−−→ Hn,p(E∗,∗r , dr).
The map γ is surjective. Let’s find ker γ.
Let z ∈ Zn,p

r+1. γ(z) = 0 ⇐⇒ ηn,pr (z) ∈ im dr. So ker γ = Zn,p
r+1 ∩ (ηn,pr )−1(im dr) =

Zn,p+1
r +Bn,p

r .
So En,p

r+1 =
Zn,p
r+1

ker γ
∼= Hn,p(E∗,∗r , dr), that is, {E∗,∗r , dr} is a spectral sequence.

The next thing to do is find out what En,p
0 and En,p

1 are.

En,p
0 =

Zn,p
0

Zn,p+1
−1 +Bn,p

−1

= Cn,p

Cn,p+1+d(Cn−1,p+1)
= Cn,p

Cn,p+1 since d respects the filtration, and using re-
mark 1.

Since d0 is induced by d we then have En,p
1
∼= Hn,p(E∗,∗0 , d0) = Hn

(
C∗,p

C∗,p+1

)
.

Finally we show that the spectral sequence converges to H(C∗, d).

Let’s construct an isomorphism d∞ : En,p
∞

∼=−→ Hn,p(C∗,d)
Hn,p+1(C∗,d)

.

First consider the projections ηn,p∞ : Zn,p
∞ → En,p

∞ = Zn,p
∞

Zn,p
∞ +Bn,p

∞
and π : ker d→ H(C∗, d) (notice

that Zn,p
∞ ⊆ ker d).

We observe that the filtration on H(C∗, d) is: Hn,p(C∗, d) = Hn(im(C∗,p → C∗), d) =
π(ker dn,p) = π(Zn,p

∞ ).

We have π(ker ηn,p∞ ) = π(Zn,p+1
∞ +Bn,p

∞ ) = π(Zn,p+1
∞ ) + 0 = Hn,p+1(C∗, d), so π induces a map

d∞ : En,p
∞ →

Hn,p(C∗,d)
Hn,p+1(C∗,d)

.

Now we show that ker d∞ = {0}:
ker d∞ = ηn,p∞ (π−1(Hn,p+1(C∗, d)) ∩ Zn,p

∞ ) = ηn,p∞ ((Zn,p+1
∞ + d(C∗)) ∩ Zn,p

∞ ) ⊆ ηn,p∞ (Zn,p+1
∞ +

Bn,p
∞ ) = {0}.

68



Appendix

So d∞ is an isomorphism.

This concludes the proof of the theorem.

Note the filtration on (C∗, d), and thus on H(C∗, d), is finite, so there is a finite sequence of
extension problems going from E∗,∗∞ to H(C∗, d).
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