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Abstract

Heart Rate Variability Feature Selection using Random Forest for Mental
Stress Quantification

Chang Su

Mental stress is considered as an essential element that affects decision making. Apart

from mental stress, cognitive workload, mental effort, attention, and cognitive engagement

are also involved in the decision-making process. Ambiguities of these concepts lead to

confusion in their applications.

One objective of this thesis is to explore the relationship between mental stress and

stress-related concepts. By investigating the mechanisms for decision-making, the differ-

ence and correlation of mental stress and other concepts are disclosed.

Heart rate variability (HRV) is a common method to measure mental stress. By in-

vestigating the correlation between HRV and mental stress, it can be confirmed that HRV

does respond to mental stress changes instead of other concepts. HRV features are used to

assess whether there is a relationship between baseline HRV and mental stress. However,

the extracted features usually contain a large amount of redundancy, which adds compu-

tational complexity to mental stress quantification while not contributing to quantification

accuracy. Recently, researchers have resorted to the random forest as a tool for HRV feature

selection.

Another objective of this thesis is to select significant HRV features to quantify the

mental stresses using the random forest method.

In this thesis, an open-source data set, called the SWELL-KW data set, is used for

mental stress measurement, where three labels are assigned according to different mental
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stress conditions, i.e., neutral, time pressure, and interruption. A set of HRV features are

proposed based on time domain and frequency domain analysis for mental stress measure-

ment. Statistical analysis is performed to select the essential features that reflect mental

stress.

The random forest algorithm of feature selection is then studied, and the accuracy in

measuring mental stress is validated by comparing the extracted features of the training set

and the testing set. In order to evaluate the random forest algorithm’s performance, the

comparisons with other related algorithms, including support vector machine (SVM), de-

cision tree, gradient boosting decision tree (GBDT), k-nearest neighbor algorithm (KNN),

and deep neural networks (DNN), are also conducted in terms of accuracy and time cost.

The optimal HRV feature subset is proposed for mental stress quantification, including

median RR, mean RR, median REL RR, HR, pNN25, SDRR RMSSD, SDRR RMSSD

REL RR, TP, SD2, and SDRR. It is shown that this subset of features gives a high feature

importance score and thus has a significant effect on mental stress quantification.

Performing random forest analysis with a sufficient amount of labeled data shows that

the optimal HRV feature subset yields high mental stress quantification accuracy by using

random forest. Moreover, random forest always makes the best overall performance in

feature selection compared with other algorithms in terms of accuracy and time cost. It

also infers the potential relation between physiological responses and mental activities.
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Chapter 1

Introduction

1.1 Background and motivation

It has been commonly and scientifically known that mental stress plays a significant role

in human decision making. When people engage in activities such as driving, playing

games, or giving a lecture, they must constantly balance the demand for an accurate de-

cision against many parameters, e.g., time pressure. Based on qualitative research and

experiments, the traditional literature generally concludes that mental stress mostly neg-

atively affects the decision-making process [28]. The study by Giora K [38] offers the

effects of stress on a critical phase of the decision-making process and makes individual

consideration of alternative faulty. Another study [95] shows that the relationship between

mental stress and performance is a bell-shaped curve. Nguyen T A and Zeng Y [44, 55, 89]

proposed a theoretical framework to illustrate that the mental stress can be determined by

the mental workload and the mental capacity, while the individual mental capacity can be

defined by knowledge, skills, and affect. Increases in mental workload may trigger more

mental stress and reduce individual performance. Consequently, the study of measuring

and quantifying mental stress is essential if we are to reduce the harmful effect caused by

mental stress and to achieve the best performance.
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For developing mental stress quantification, it is essential to define mental stress. Stokes

and Kite suggested that stress should be viewed as an agent, circumstance, situation, or

variable that disturbs the ’normal’ functioning of the individual, and stress is also seen as an

effect—that is, the disturbing state itself [22]. While later, Contrada contended that stress is

defined as a processing capacity of an organism, resulting in psychological and biological

changes that may place persons at risk for disease [17]. Briefly speaking, the definition of

stress includes internal or external stressors, perception of the organism’s stimulation, and a

physiological response [32, 52]. Since mental stress can generate a physiological response,

several scholars attempt to use these reactions to substitute mental stress. However, some

researchers contend that the measurement of physiological parameters cannot accurately

explain the human stress response and does not necessarily represent mental stress [22].

An opinion is purposed in some biological stress responses that can only represent mental

workload. TA Nguyen et al. [56] concluded that Heart Rate Variability (HRV) can quantify

mental stress while the Electroencephalogram (EEG) energy can quantify mental effort.

However, there is widespread confusion about mental stress (arousal), workload, cog-

nitive workload, mental effort, attention, and cognitive engagement. In the literature, these

different concepts sometimes are used to describe the same phenomenon, while the same

concept may be resorted to referring to different phenomena. For example, Roger Daglius

Dias concluded that HRV analysis is a metric to assess cognitive workload [22]. How-

ever, other researchers asserted that mental stress influences HRV [75, 86]. Meanwhile, the

mental effort can be measured both on NASA-TLX and EEG energy as per the authors of

[13, 59].

Ambiguities of concepts often lead to confusion in their applications. Cognitive work-

load, attention, and cognitive engagement are also referred to in mental stress studies. To

the author’s best knowledge, very few works have addressed the differences between mental
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stress, mental effort, cognitive workload, attention, and cognitive engagement. The clari-

fication of these concepts will facilitate the effective and efficient applications of existing

research to real-world problems.

The majority of current studies investigating mental stress quantification make use of

different triggering methods and criteria, e.g., Color Word Test (CWT). Using this ap-

proach, TA Nguyen et al. indicated that the Low Frequency (LF) / High Frequency (HF)

ratio in the HRV signal and EEG signal could quantify the mental stress [56]. Moreover,

the previous studies classify mental stress measurement into electrophysiological measure-

ment, subjective measurement, and biochemical measurement. Quantifying mental stress

by its physiological feature is a field of research that received special and increasing atten-

tion. For example, HRV and EEG are reliable methods for quantifying mental stress. Since

several measuring methods can be used to quantify mental stress, more and more studies

tried to find out the best quantitative features. There’s a wide spectrum of opinions on this

issue. A challenging problem that arises in this domain is to select the appropriate features.

In this thesis, we will investigate mental stress based on HRV.

The HRV data set used for quantification in this thesis is taken from the SWELL Knowl-

edge Work (SWELL-KW) data set [43], which is provided by Koldijk S, et.al. They re-

searched on stress and user modeling. Participants experienced typical work pressures

in their experiment, such as receiving unexpected email interruptions and completing the

work on time. During their experiment, the data set was collected by researchers, which

is called the SWELL-KW data set [43]. SWELL-KW designed a mental stress experiment

that 25 people participated in collecting and storing real-time R-R interval data, which

were used to obtain HRV data. This thesis uses the HRV data set based on this experi-

ment. Features used to quantify cardiovagal reactivity included time and frequency domain

measures such as high frequency (HF) power, Standard Deviation of Normal-to-Normal

R-R intervals (SDNN), and Root Mean Square of Successive Differences (RMSSD). By
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analyzing HRV data using the random forest algorithm, the relationship between feature

selection, physiological responses, and autonomic nervous system dynamics is verified. In

addition to a longitudinal study method of analyzing data from all individuals at different

stress conditions, feature selection results are validated from 31 features in 3 conditions

(relaxed, stressed, and interrupted) based on their accuracy by using random forest. Five

classification methods viz Support Vector Machine (SVM), Decision Tree, Gradient Boost-

ing Decision Tree (GBDT), K-Nearest Neighbors (KNN), Deep Neural Networks (DNN)

have been selected to compare with Random Forest in this study. The accuracy value is

recorded for analysis.

This thesis is focused on the hypothesis that mental stress can be determined by men-

tal workload and mental capacity, i.e., adjusting to a positive emotion can reduce stress.

Furthermore, we hypothesized that the combination of mental effort, cognitive engage-

ment, attention, and cognitive workload would induce mental stress, which would cause a

positive or negative effect on performance. This performance can generate physiological

response, i.e., decreased HRV and increased blood pressure.

1.2 Objectives

The objective of this thesis is two-fold. The first objective is to clarify mental stress, cog-

nitive workload, mental effort, attention, and cognitive engagement by investigating the

decision-making process’s mechanisms. The second objective is to quantify mental stress

by measuring and analyzing the HRV features using the random forest algorithm.

For the first objective, a mechanism for mental stress to be triggered in decision making

is proposed to clarify stress-related concepts. It reveals the relationship between mental

stress and HRV, which can quantify mental stress by analyzing variables.

Although HRV feature selection is useful in statistical analysis, the extracted features

usually contain considerable redundant. In the second objective, an optimal HRV feature
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subset is selected by using the random forest.

1.3 Contributions

This thesis focuses on finding the relations between mental stress and physiological mea-

sures, and the correlation between mental stress, stress-related concepts, and decision-

making activities. The main contributions of this thesis include the following:

• Based on the literature review on stress-related concepts and phenomena, a mecha-

nism of decision making is proposed to infer the causal relationships between differ-

ent stress-related concepts.

• Critical HRV features to quantify and classify mental stress levels are identified by

applying the random forest algorithm.

• The effectiveness of the random forest algorithm is validated by comparing it with

other related algorithms and models.

1.4 Thesis organization

The remainder of this thesis is organized as follows: chapter 2 reviews relevant research

in mental stress concepts, stress elicitation, and stress measurements. It also proposes a

decision-making mechanism and figures out the connection between mental stress, cogni-

tive workload, cognitive engagement, and mental effort. Chapter 3 describes the theoretical

aspect of HRV and the superiority of HRV measurement. I also show the physiological and

cognitive responses to stress-related phenomena. Chapter 4 presents the theoretical aspect

of random forest and the related models and algorithms (SVM, decision tree, GBDT, KNN,

DNN). Chapter 5 introduces the experimental setup and validation results for SWELL

knowledge work under different stress conditions. It also focuses on the statistical analysis
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of the HRV dataset, including preprocessing, feature extraction, and feature selection. The

algorithm is also validated by carrying out comparative studies on other models. Chapter 6

summarizes the research results of this thesis and suggests some topics for future work.

All the experiment data in this thesis were provided by the SWELL-KW dataset, col-

lected within the SWELL project. The collection of this dataset was supported by re-

searchers at the Institute for Computing and Information Sciences at Radboud University.
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Chapter 2

Mental stress in decision making:

mechanism models and concepts

This chapter reviews relevant research in mental stress concepts, stress elicitation, and

stress measurements. It also proposes mechanisms for mental stress to be triggered in

decision making.

2.1 The concept of mental stress

Mental stress, as a common psychological phenomenon, is often encountered in our daily

lives. Selyes [78] defines stress as ’the nonspecific result of any demand upon the body’.

The definition of stress includes internal or external stressors, perception of the organism’s

stimulation, and a physiological response [32, 52]. It is generally asserted that psycholog-

ical stress includes two traditional modes: stimulus-based and response-based [84]. The

former assumes that certain environmental conditions, situations, or external events are ex-

pected to trigger stressful and considered as stressors (i.e., war, divorce, workload, heat

and cold, et cetera.), ignoring the differences between individuals, circumstances appraisal,

and emotional effects. The latter asserts that stress is a change response pattern of physical
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function under stressors, and the variables are endogenous. Meanwhile, according to the

intensity and duration of stressors, mental stress is generally divided into acute stress and

chronic stress [21]. The effect and challenges arising from a mild stressor are temporary,

often lasting from several minutes to hours.

In contrast, chronic stressor usually lasts for quite a few hours each day, sometimes up

to several weeks or months, whose essential feature is persistent, repetitive, or high inten-

sity. No matter what kind of stress can influence our brain, it affects physical, cognitive,

affective, and behavioral aspects. Therefore, the current techniques and stress measurement

methods and quantification are mostly derived from the response-based stress model.

The Yerkes-Dodson law [95] shows the bell-shaped curve relationship between mental

arousal (stress) and performance, as given in Figure 1.

Figure 1: The relationship between performance and mental stress [58]

As shown in Figure 1, the performance may increase with mental stress, up to a point,

but it will then show a negative correlation with mental stress if it is further increased.

According to the Yerkes-Dodson law, mental stress plays an important role in individual

performance. However, Yerkes-Dodson law didn’t specify the factors influencing mental

stress. Many studies have been carried out on this topic. A paper relevant to this research

was published by Nguyen T A and Zeng Y [58, 60, 61]. They gave a theoretical framework
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for mental stress, which is expressed as:

σ =
Wp

(K + S) ∗ a
(1)

where Wp represents perceived mental workload, K is knowledge, S represents skill, a

means affect, specifically emotion , and σ represents mental stress.

The stress performance model defines the factors influencing mental stress. It can be

seen from Equation (1) that knowledge, skills, and emotion can define the individual mental

capacity. The mental workload and mental capacity can determine mental stress. Therefore,

the stress-performance model can be used to clarify and quantify these concepts.

2.2 The elicitation of mental stress

Before 1993, several researchers had elicited mental stress by using some laboratory tasks,

such as the cold pressor test, the Stroop test, public speaking, etc. Much of the research in

stressor distinguish in recent decades has divided the elicitation of mental stress into five

terms based on stressors.

1 Working memory

Working memory refers to the brain system that provides temporary storage and ma-

nipulation of the necessary information for complex cognitive tasks [5]. Higher working

memory individuals use simpler (and less efficacious) problem-solving strategies under

high-pressure conditions and suffer from performance accuracy. A slice of researchers

used working memory as a stressor for measuring mental stress. By way of illustration, the

CWT is the classic working memory case that is widely used in the elicitation of mental

stress [27, 67].

2 Reaction time
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To a certain extent, reaction time indicates stress. When performing mental tasks at a

satisfactory level of performance, it often encounters some complications, which can be

due to many happenings and mistakes. Therefore, measuring reaction time is vital for

monitoring and evaluating mental stress [7].

An example of this is the study carried out by Wolf Langewitz et al. in which a re-

action time task is used to trigger individual mental stress [44]. By comparing the blood

pressure at rest and under mental stress, they found that decreased parasympathetic nerve

control leads to sympathetic and parasympathetic cardiovascular control disorders during

hypertension.

3 Selective attention

Selective attention is directing our consciousness to relevant stimuli while ignoring ir-

relevant ones in the environment. This phenomenon is that people can focus on the process

of particular aspects while ignoring irrelevant objects in the environment for a certain pe-

riod.

The CWT is a typical case in this area. Vanitha L et al. claimed that HRV parameters

are sensitive to working memory demands during the CWT test, thus sensitive to mental

stress [89].

4 Physical pressure

Physical discomfort has also been used as a stress-inducing protocol. The typical case

of physical pressure is the cold pressor test [90, 93]. The cold pressor test requires the

subject to immerse the hand into an ice water container to trigger changes on blood pres-

sure and heart rate of healthy participants [55]. Cold pressor stress indicated that acute

stress undermines working memory performance, which is Secretory immunoglobulin A

and cardiovascular reactions to mental arithmetic and cold pressor.

5 Social stress
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At last, social stress also plays a principal role in measuring mental stress. It is gener-

ated based on relationships with others and a unique social environment. Public speaking

is a representative case of social stress. Schubert et al. [77] reported that using speech task

to induce stress, Standard Deviation of R-R intervals (SDRR) in HRV showed a discordant

increase due to a slow respiration rate and a relative reduction in ventilation.

2.3 Relations of mental stress with other relevant concepts

Mental stress is associated and very often confused with concepts such as workload, cogni-

tive workload, mental effort, attention, and cognitive engagement. Ambiguities of concepts

will lead to confusion in their applications. Therefore, clarifying these concepts will facil-

itate the effective and efficient applications of existing research to real-world problems.

Several studies led to the definitions of mental stress, mental effort, cognitive engage-

ment, cognitive workload, and attention. Beginning with mental stress, due to its wide

range of applications, scholars in different research fields have given various definitions. In

the aspect of mental effort, Heemstra stated that mental effort could be defined as the total

use of cognitive resources [34]. Sun and Yao found that mental effort is positively related

to design novelty and quantity [85]. Nguyen and Zeng verified that mental effort is the

lowest at a high-stress level, and there is no significant difference in mental effort between

medium-stress level and low-stress level [59]. Unlike mental effort, cognitive engagement

is defined as the degree to which students are willing and able to immerse themselves in

taking on the task at hand [34, 85]. The definition of cognitive workload is the measurable

level of mental effort that an individual presents in response to one or more cognitive tasks,

which is not the task but a property of the individual [68].

In short, mental stress is typically regarded as an essential influence factor leading to

different cognitive degrees of later results (i.e., mental effort, cognitive engagement, and

cognitive workload). Several scholars have attempted to use these results (e.g., cognitive
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workload) to substitute mental stress. However, how mental stress affects cognition and

behaviors of humans is unclear.

In order to better understand the variables that allow measuring the levels of mental

stress, the definitions that are easily confused with psychological stress, such as mental

effort, cognitive engagement, and cognitive workload, are worth distinguishing. They are

interdependent and mutually motivate.

2.4 Mechanisms for decision making

Decision-making performance is related to the decision-makers’ mental stress. Decision

making is a process in which the stressor activates the individual cognitive system and cre-

ates the emotions, behaviors, and stress. Decision making will help to make more deliber-

ate, thoughtful decisions by organizing relevant information and evaluating performances.

Stress-related concepts include mental stress, workload, cognitive workload, mental

effort, attention, and cognitive engagement. Based on the performance-stress model, we

try to draw this diagram to figure out the decision-making process.
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Figure 2: A mechanism for decision making in rational states

Mental stress generation in the mechanism for decision making will create these phe-

nomena via the cognitive system. The mental stress can be determined in either a rational

or the opposite situation. Figure 2 introduces the recursive cognitive process under mental

stress in a rational situation. The white components indicate different cognition stages,

which we consider as a cognitive system, including perception and engagement, under-

standing, analysis, decision making, and action. In the beginning, stressor causes percep-

tion and engagement. From this stage, it creates cognitive workload, as well as mental

stress and behavior. This cognitive workload acts in the next stage. We can see that the

cognitive workload updates and generates a new one in the next stage. In order to distin-

guish them, we marked them as 1 and 2. As the process progresses, we repeatedly update

the cognitive workload, the same as mental stress and behavior. It can be noticed that men-

tal stress and behavior can also affect the individual neural system, which will participate in

the cognitive process by generating a mental effort and can be used when using knowledge
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and skills to figure out the mental workload. The whole process is recursive.

Figure 3: A mechanism for decision making in intuition states

The above cognitive processes are all in a rational situation. We can also encounter such

a situation where people depend on conditional reflection or intuition to act. This cognitive

process under mental stress is shown in Figure 3. After perception and engagement, people

create actions directly. The difference between Figure 2 and Figure 3 is since individual

knowledge and skills are different. In section 2.1, the stress- performance model defines the

factors influencing mental stress. Moreover, mental effort creates mental stress by acting

on the cognitive system.

The stress-performance model factors are related to the concepts, including mental

stress, workload, cognitive workload, mental effort, attention, and cognitive engagement.

Therefore, decision-makers such as skills, knowledge, and affect come from mental ca-

pability. The mechanism for decision making can infer the casual connections between

stress-related concepts.
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Chapter 3

Heart rate variability (HRV)

HRV is the physiological phenomenon in which the time interval between consecutive

heartbeats changes. This chapter describes the theoretical aspect of HRV and the supe-

riority of HRV-based mental stress measurement by comparing it with other measurement

methods.

3.1 The anatomy of the heart

The heart is a muscular pump with its rhythmic contractions and allows a constant flow

of blood through all tissues ensuring a regular exchange of gasses, nutrients, and waste

products. The heart is wrapped with a thin membrane called the pericardium. It is located

in the central part of the chest above the diaphragm (muscle barrier which divides the

abdomen from the chest). The heart’s size is about a closed fist; the weight varies from

300-350 grams for men and 250-300 grams for women. The heart consists of two atria and

two ventricles. The atria (the right atrium and the left atrium) receive blood. Afterward, it

transmits the blood into the two lower chambers called ventricles (the right ventricle and

the left ventricle), as shown in Figure 4.
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Figure 4: The anatomy of heart [4]

The atria and ventricles on two sides of the heart are separated by the wall called the

septum, which prevents the mixing of the blood of the heart’s left and right side. The wall

dividing the right and left atria is called the inter-atrial septum, while the part dividing right

and left ventricular is called the inter-ventricular septum. The right atrium delivers the

deoxygenated blood to the right ventricle, pushing the deoxygenated blood to the lungs.

After releasing the carbon-dioxide and taking on oxygen, the oxygenated blood comes to

the left atrium. The left ventricle takes the oxygenated blood from the left atrium and

pushes it to the rest of the body.

The heart’s pulsation is a product of rhythmic contractions and relaxations of the heart

muscle, which is called the myocardium. During the contraction phase, the wall of the

atrium or ventricle contracts, increasing the pressure within the heart and ejecting blood

out of the closed chamber. Subsequently, the atrial or ventricular wall relaxes and is ready

to receive a new amount of blood.

The Autonomic Nervous System (ANS) controls the heart contractions. ANS is di-

vided into the Sympathetic Nervous System (SNS) and the Parasympathetic Nervous Sys-

tem (PNS). The SNS and PNS work antagonistically. The SNS prepares the human body to

respond to stressful situations. That response is known as the fight or flight response [12].
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Simultaneously, the PNS controls the human body’s free functions in a normal basal con-

dition, popularly called rest and digest system [11, 12]. The ANS’s SNS part is activated in

response to a stressful situation, while challenging physical activity, or when we feel angry

or are frightened. The following [49] are the most common facts related to the SNS:

1) HR can increase from 70 to 150 bpm in 3 seconds.

2) The blood pressure can double in 10 seconds.

The heart can contract without outside innervation. However, the power of the heart

contraction is controlled by the ANS. Under the effect of the SNS part, the HR and the

power of the heart contraction are increased. While under the control of the PNS part of

the ANS, HR and cardiac contractions are decreased.

3.2 The electrical activity of the heart

Since the first human Electrocardiogram (ECG) recording was published in 1887 by Au-

gustus Waller[91], the ECG signal has been used widely in many fields. Researchers detect

and quantify human activities and responses by monitoring the electrical activity of heart

rate.

It is expected that all heart activities have electrical impulses. The electrical impulse

causes the heart muscle contraction. The formation and transmission of electrical impulses

depend on the characteristics of the heart’s cells.

Bio-electricity represents the ability of biological tissues to generate electricity without

external excitation. The first research regarding bio-electricity was published by Luigi

Galvani [30]. He discovered that the muscles of dead frogs’ legs twitched when struck by

an electrical spark.

The electrical charges in the tissue originate from the ions. Therefore, in cells, there are

two kinds of electrical potentials: static potential and action potential.
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The cell membrane changes from the static potential to the action potential. Stimu-

lation can change the cell electrical potential, open the sodium ion (Na+) channel, and

allow many Na+ to enter the cell. This process is called polarization. When the excita-

tion is higher than the threshold, it opens the ionic channel, and the positive Na+ come

into the heart cell, causing the change of the electrical potential. This process is called

depolarization. The repolarization is the descending process towards the static potential. It

represents the change of the difference of the electrical potential inside the cell. Potassium

ions (K+) begin to fall along the electrochemical gradient. With the removal of potas-

sium from the cell, its potential decreases and approaches its resting potential again. The

sodium-potassium pump has been working continuously during this process. At the peak

action potential, K+ channels open, and the cell becomes hyperpolarized. The K+ are

maintained at high concentrations within the cell. At the same time, Na+ are maintained

at high concentrations outside of the cell in neurons.

In general, the repolarization and depolarization represent the foundation of the heart’s

electrical activity, which allows the heart to work. The activity of action potential in the

heart can be recorded to generate an ECG.
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Figure 5: The conduction system of heart [50]

As shown in Figure 5 above, the cardiac conduction system consists of the following

five components:

• The Sinoatrial (SA) node: This cell is found within the right atrium of the heart.

• Atrioventricular node: This cell can be found within the border of the right atrium

and the right ventricle.

• Atrioventricular (AV) bundle: This cell is found within the right atrium of the heart.

• Right and left bundle branches: Both of which are located along the interventricular

septum, the left bundle branch is further divided into the left anterior fascicles and

the left posterior fascicles.

• Purkinje fibers: These fibers can be found in the inner ventricular walls of the heart.

They receive conductive signals originating at the AV node and simultaneously acti-

vate the left and right ventricles by directly stimulating the ventricular myocardium.
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All components show different inherent rates in the cardiac conduction system, as il-

lustrated in Table 1 below.

Table 1: Components’ inherent rates in the cardiac conduction system [37]

Component Inherent rate (BPM)

SA node 60-100

AV node 40-60

Bundle of His 40-60

Right and left bundle branches 20-40

Purkinje fibers 20-40

It is essential to know that the ECG records the heart’s electrical activity, in which

each heartbeat is displayed as repeatedly multiple waveforms characterized by peaks and

valleys.

Generally speaking, the frequency range of the ECG signal is from 0.05Hz to 100Hz,

and the dynamic range is from 1mV to 10mV . The ECG signal is characterized by five

peaks and valleys, Einthoven [26] identified the five deflections, which can be marked with

the letters P, Q, R, S, T, respectively [69]. ECG also includes a U wave; however, the

typical normal ECG may not show it. The normal ECG waveform is shown in Figure 6

below. This figure shows the electrical activity of the heart rate during a heart rate cycle.

An ECG signal is a composite recording of all the action potential produced by myocardial

nodes and cells. Each wave of the ECG corresponds to the cardiac electrical cycle event,

as shown in Figure 6.
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Figure 6: A typical normal ECG waveform [59]

In the ECG system, the P wave, T wave, and the QRS complex should be concerned.

The P wave represents the activation of the upper chamber of the heart and the atrium,

while the QRS complex wave and T wave represent the excitation of the ventricle or the

lower chamber of the heart. The T wave reflects the repolarization of the ventricles. The

QRS complex represents the ventricular contraction. The detection of the QRS complex is

one of the most critical tasks in ECG signal analysis. Once the QRS complex is identified,

more detailed information such as Heart Rate (HR), and HRV can be obtained [54, 76].

The RR interval, which is often used to monitor mental health, is the time between QRS

complexes. The instantaneous heart rate can be calculated from the time between every two

QRS complexes. The RR interval shows the connection between the power of HRV and

the nervous system. It is different from the heart rate, which averages the number of beats

per minute.

21



3.3 The relation between HRV and mental stress

HRV signal is a non-stationary signal, which describes the variations between consecutive

heartbeats. Its changes can be interpreted as a current or upcoming disease and psycholog-

ical activity.

The ANS can generate significant components of the stress responses in the physiologi-

cal model. The ANS will create physiological responses such as HR, HRV, blood pressure,

eye tracking, and skin conductance.

HRV is an objective measurement method that can be used to measure psychological

stress. As shown in Figure 6, HRV is a fluctuation in the heartbeat interval controlled by

the original part of the ANS. It can regulate our heart rate, blood pressure, breathing, and

digestion.

HRV related researches commonly use features to measure. These features are ex-

tracted from the time domain and the frequency domain. HRV analysis for mental stress

measurement is usually classified into two domains: time domain and frequency domain.

Time-domain measurement can measure RR intervals directly or measure from the differ-

ences between RR intervals [25]. Researches about HRV experiments commonly use these

metrics to measure: mean of the interval between successive RRs (RR), SDRR, the mean

and standard deviation of HR.

In comparison, the frequency domain uses Power Spectral Density (PSD) to estimate

the HRV signal. In the frequency domain, features can discriminate between the sympa-

thetic and parasympathetic contents of the HRV signal. Commonly, the HF, LF, and VLF

bands and the ratio of LF and HF bands power spectral density (LF/HF) are used as the

frequency domain features of the RR interval signal [15]. In this thesis, several standard

features of HRV in both time domain and frequency domain are shown in Table 2 and Table

3, respectively.
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Table 2: Time domain features [80]

Parameter Description

SDNN Standard deviation of normal RR intervals

SDRR Standard deviation of RR intervals

pNN50 Percentage of successive RR intervals that differ by more than 50 ms

RMSSD Root mean square of successive RR interval differences

As shown in Table 2 above, SDNN and SDRR can measure RR intervals directly, while

pNN50 and RMSSD measure the differences between RR intervals [25, 62]. These features

can be calculated as

SDNN =

√√√√ 1

N − 1

∑
i

(RRi −RRm)2 (2)

pNN50 =

∑N
i=1(|Ri −Ri+1| > 50ms)

N − 1
(3)

RMSSD =

√√√√ 1

N − 1

N−1∑
i=1

(RRi+1 −RRi)2 (4)

RRi represents the i-th RR interval, where N means the total number of heartbeats, and

RRm represents the mean of the RR intervals. Like SDNN, SDRR can also measure how

these intervals change over time, but it includes fault or abnormal beats [80].
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Table 3: Frequency domain features [80]

Parameter Description

ULF power Absolute power of the ultra-low-frequency band (0.003 Hz)

VLF power Absolute power of the very-low-frequency band (0.0033–0.04 Hz)

LF peak Peak frequency of the low-frequency band (0.04–0.15 Hz)

LF power Absolute power of the low-frequency band (0.04–0.15 Hz)

HF peak Peak frequency of the high-frequency band (0.15–0.4 Hz)

HF power Absolute power of the high-frequency band (0.15–0.4 Hz)

LF/HF Ratio of LF-to-HF power

It is well known that the spectral power in HF of the RR interval reflects the activity

of the cardiac vagus nerve. On the other hand, the LF frequency band is related to both

vagal and sympathetic systems [65]. Some researchers found that heightened mental stress

was associated with lowered HRV, specifically with reduced parasympathetic activation.

Reduced parasympathetic activation was seen as a decrease in RMSSD and HF power and

an increase in the LF/HF ratio. Some previous studies also indicated that the activity di-

aries, in conjunction with HRV data, could analyze and isolate important individual events:

sleep, exam, physical activity, and caffeine [15, 72, 87].

3.4 The physiological and cognitive responses to stress-

related phenomena

This section shows that the physiological phenomena are mapped into the decision-making

process perspicuously. It is widely known that the mental stress reflected on many factors

and various systems of the body. Researches over the past years have clarified that the

entire brain is involved in responding to stressors. Researches over the past years have
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clarified that the entire brain is involved in responding to stressors. With brain imaging

technology development in mammals and the remarkable progress in genetic studies, a

new understanding of stress networks has been gained in recent years. Stress networks are

a set of highly connected brain structures activated when the animals perceive from their

surroundings or are exposed to various stressful life events [30].

The stress-related performances contain mental stress, workload, cognitive workload,

mental effort, attention, and cognitive engagement during decision-making activities. It is

all known that the phycological and cognitive responses will change and reflect the stress-

related phenomena. As mentioned in section 2.2.4, several physiological and cognitive

responses can be used as measurement metrics for mental stress.

The major components of the stress responses in the physiological model can be gener-

ated by the ANS, Hypothalamic–Pituitary–Adrenal (HPA) axis, and brain network. Mean-

while, different stress types, including acute stress and chronic stress, have different effects

on cognition, decision-making, memory, and health [10]. The body and nervous system’s

organization and interactions reflect a high degree of complexity and multidirectional com-

munication.

Mental stress and related phenomena can be monitored and measured from the physio-

logical and cognitive responses. One clear neurobiological indicator of the stress reaction is

the significant activation of two stress response systems, rapidly acting SNS and the slower

HPA axis, which results in a cascade of neuroendocrine changes [19]. Brain network is

also activated by mental stress, as shown in Figure 7 below.
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Figure 7: The physiological and cognitive responses to stress related phenomena

Figure 7 indicates the physiological and cognitive responses to stress-related phenom-

ena. Based on the response systems and organs, these stress-related responses can be cre-

ated from three approaches: the ANS, the HPA axis, and the brain network. As we men-

tioned in section 3.3, ANS includes SNS and PNS. Stressor stimulates SNS and modulates

control on the Adrenal medulla. It creates the synthesis and secretion of norepinephrine

and epinephrine. The blue components show that the ANS will create physiological re-

sponses such as heart rate, heart rate variability, blood pressure, eye tracking, and skin

conductance. HRV analysis has been established as a quantitative measure of ANS activity

related to mental stress [2].

Stress can also cause an increased cortisol output via the HPA axis activation, as shown

in the pink component. When stressor reflects on the HPA axis, the hypothalamus creates

CRF, which will stimulate the pituitary. Then the pituitary secretes ACTH, which will

stimulate on Adrenal. The adrenal cortex is stimulated and secretes Glucocorticoid (GC),

which gives negative feedback on previous parts. Cortisol is the most critical human GC,
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which is known as the stress hormone. It increases blood sugar levels, enhances the brain’s

use of glucose under stress conditions. Besides, the green components show that the brain

network will create EEG and brain region activation under mental stress.

It is well known that mental stress can be quantified from human bio-signals. Figure

7 links physiological and cognitive responses to stress-related phenomena. This figure

validates the reliability of mental stress quantification based on physiological responses.

3.5 Different measuring methods for mental stress

In addition to HRV, many other modalities can be used for mental stress measurements

such as EEG, cortisol, and NASA Task Load Index (NASA-TLX). Several measurement

methods can be listed from subjective, biochemical, and psycho-physiological parameters

separately.

These typical quantitative evaluations and acute mental stress techniques are introduced

below, including the development, calculation methods, characteristics, and applicable

scopes.

• EEG

EEG signals exhibit various characteristics in different brain waves. Some qualitative

studies in the literature described how mental stress could be quantified from EEG signals.

The Electroencephalogram (EEG) signal is a non-stationary signal with different fre-

quency elements at different time intervals. Recent research found that EEG reflects brain

activity, and it is widely used in many fields, especially in mental stress [20, 39, 88]. All

EEG channels are offline-referenced to the average of electrodes [3].

Based on frequency ranges, EEG signals can be classified into four bands: delta (1-4

Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). Each band represents a different

function, as described in Table 4.
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Table 4: Functions of brain waves [57]

Brain waves Characteristics

Delta (1-4Hz) Dominant when sleeping

Theta (4-8Hz) When temporal and occipital lobes are relaxed, awaking state

Alpha (8-3Hz) Mainly occipital and parietal lobes are relaxed, awaking state with eye closed

Beta (13-30Hz) Dominant in frontal region during mental activity

By using the valence models of hemispheric specialization of emotion, Davidson et

al. [20] stated that the left hemisphere is more involved in handling positive emotions and

approaching-related behaviors. In contrast, the right hemisphere is more involved in han-

dling negative emotions and withdrawal behaviors [88]. Recent research showed that EEG

reflects brain activity and is widely used in many fields. R Khosrowabadi et al. [39] pro-

posed a brain-computer interface for classifying EEG correlates of chronic mental stress.

• Cortisol

As a biochemical measurement, cortisol is one of the most common and popular bio-

markers for quantifying stress in both animals and humans over the past several decades.

It is widely believed that activation of the HPA axis during mental stress induces secretion

of hormones, such as corticotrophin-releasing hormone and adrenal steroid hormones [35,

40].

However, there are many challenges and difficulties in measuring and quantified evalu-

ating the level of stress using cortisol. First of all, not all types of acute negative stressors

consistently activate HPA to trigger the cortisol changes [16, 51]. Second, even acute men-

tal stressors trigger the adrenal cortex to release cortisol into the bloodstream by activating

specific cognitive processes and their central nervous system. The cortisol levels can be

influenced by numerous factors, such as gender, age, and caffeine [23, 41, 48].
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• NASA-TLX

Numerous literature studies have confirmed that subjective measurement still plays an

essential role in stress data collection. NASA-TLX, as a kind of subjective measurement,

is widely used in stress measurement.

As a popular multidimensional metric, NASA-TLX is designed to obtain workload

estimates immediately or after a task. Previous research on the subscale selection and

weighted averaging methods has produced a tool that has proven to be reasonably easy to

use and has reliable sensitivity to experimentally significant operations in recent decades

[33].

Based on the principle of measuring self-reported stress, NASA-TLX calculates stress

from six different dimensions: mental demands, physical demands, temporal demands, own

performance, effort, and frustration. Through assessing the weight value of two factors out

of six and evaluating the factor values, NASA-TLX can finally quantify the mental stress

by calculating the total workload. NASA-TLX is more sensitive to low mental workloads

[64].
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Chapter 4

Random forest and other related

algorithms

This chapter introduces the theoretical aspect of random forest and other related algorithms,

including support vector machine (SVM), decision tree, gradient boosting decision tree

(GBDT), k-nearest neighbor algorithm (KNN), and deep neural networks (DNN).

4.1 The principle of random forest

The random forest learning method [10] is presented by Breiman in his article Random

forests. The random forest, as a classification algorithm, is a tree-based classifier. Its

theoretical background rests on the concept of bagging and decision trees. This includes

developing multiple trees from the random sampling subspace of the input features, using

a randomly selected subset of training samples. Then it combines the results by voting or

the maximum posterior rule output. The random forest is an ensemble learning algorithm

that constructs a set of individual classifiers, also referred to as base learners.

Random forest is composed of many independent decision trees. During the classifica-

tion task, each decision tree in the forest will be judged and classified separately when the
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new input sample is entered. Each decision tree will get its classification result. Therefore,

the random forest will choose the result which has the most voted classification as the final

result.
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Figure 8: The conceptual diagram of a random forest model [45]

Figure 8 indicates the conceptual diagram of a random forest model. Samples taken

from the training set can generate different decision trees. Then, all decision trees are used

to form a single prediction. The prediction can be validated using the testing set.

Random forest classifies observations according to most of these learners’ classifica-

tion, which is often referred to as voting because observations are categorized based on

decisions or votes made by most basic learners during classification [47].
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4.2 Random forest algorithm

The construction of a random forest follows four steps:

1. If there areN samples for training, select N times from the N samples randomly with

replacement. The selected N samples are used to train a decision tree as the samples

at the root node of the decision tree.

2. When each sample has M attributes, randomly select m (m << M ) attributes from

these M attributes when each node of the decision tree needs to be split. Then select

an attribute as the split attribute of the node from m attributes using some strategies.

3. During the decision tree generation, each node must be split according to step 2 until

it can no longer be split.

4. Random forest occurs by following steps 1 to 3.

The decision tree is a classic weak model. When it tries to label data, no matter the dis-

tribution of the training data, it will always do better than accidentally [94]. In comparison,

a random forest makes a massive development.

The random forest can judge the feature importance, determine the interaction between

different features. Random forest is flexible and can increase the weak model (the decision

tree) in terms of accuracy to a better extent. However, it may cost more massive computa-

tional resources.

In this section, the construction and the pros and cons of the random forest have been

described. It is one of the supervised learning methods that are being applied and compared

in this thesis. The following section describes the fundamentals of the other supervised

learning methods, the SVM, decision tree, GBDT, KNN, and DNN.
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4.3 Other related algorithms

4.3.1 SVM

SVM is a supervised machine learning algorithm that can be used for classification or

regression. However, it is mainly used for classification problems. In the SVM algorithm,

each data item is drawn as a point in an n-dimensional space, where n is the number of

features we have, and the value of each feature is the value of a specific coordinate [96].

Then, we classify by finding a hyperplane that can distinguish the two categories. SVM

defines the linear classifier with the most considerable interval in the feature space. The

learning strategy of SVM is to maximize the interval, which is shown in Figure 9.

Support vectors
(class -1)

Support vectors
(class 1)

Margin

Hyperplane

Figure 9: The maximal margin hyperplane [6]

In the binary classification case, the training observation can be divided into two differ-

ent classes, usually expressed as -1 and 1. The margin represents the area within the two
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hyperplanes. The support vector represents the support vectors closer to the hyperplane

and influences the position and orientation of the hyperplane.

Using the maximal margin classifier is generally a successful way to classify when it is

possible to find a separating hyperplane, though, there might be problems with overfitting

the data in some cases [31]. It is worth noting that, commonly, there does not exist a

hyperplane that can separate the two classes strictly.

4.3.2 Decision tree

A decision tree is a decision support tool that uses a tree-like model of decisions and pos-

sible consequences, including chance event outcomes, resource costs, and utility. It is one

way to display an algorithm that only contains conditional control statements [74].

A decision tree contains nodes and directed edges, where the nodes can be classified

into the root node, the internal node, and the leaf node [81]. Without a parent node, The

root node represents the beginning node. The internal node represents a feature, while the

leaf node represents a class. For example, the node of ’A > B’ in Figure 10 is the root

node, the node of ’B > C’ in Figure 10 is the internal node, and the node of ’A > B > C’

in Figure 10 is the leaf node.
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Figure 10: Sorting number using decision tree algorithm

A decision tree is a flowchart-like structure. Each internal node represents a judgment

on an attribute in a decision tree, each branch represents an output of the judgment, and each

leaf node represents a class label. The paths from the root to the leaf represent classification

rules.

Figure 10 shows a straightforward application of the decision tree algorithm, which

supposes that we want to sort three values, A, B, and C (A 6= B 6= C). To sort these

values, firstly, this problem should be divided into smaller sub-problems. Then, try to

figure out each sub-problem and repeat the classification step until getting the final result.

The decision tree algorithm is considered one of the best-supervised learning classifica-

tion methods. The generation of the decision tree can be mainly divided into the following

two steps:

1. when the attribute of a node cannot be judged, divide this node into N (N ∈ Z,N ≥

2) child nodes.

2. choose an appropriate threshold to minimize the training error.
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The typical decision trees include Iterative Dichotomiser 3 (ID3), C4.5, and Classifica-

tion and Regression Tree (CART).

ID3 uses the information gain to decide which feature goes into a decision node [70].

The information gain is expressed as:

g(D,A) = H(D)−H(D|A) (5)

where H(D) represents the entropy of set D, the H(D|A) represents the conditional en-

tropy of set D and feature A. The g(D,A) represents the mutual information of set D and

feature A. For a set of data, the smaller the entropy, the larger the information gain, the

higher the impurity, the better the classification result will be. However, ID3 incurs some

problems. As a smaller segmentation causes a smaller classification, ID3 may overfit the

training data [24]. Moreover, the calculation of information gain depends on the size of the

features.

In order to avoid this segmentation problem, C4.5 makes improvement based on ID3.

C4.5 uses gain ratio to overcome the bias [70]. The gain ratio is express as :

GR(D,A) =
g(D,A)

H(A)
(6)

where g(D,A) represents the mutual information of set D and feature A, the H(A) repre-

sents the entropy of feature A.

By dynamically defining discrete attributes, C4.5 reduces the restriction that features

must be categorical [71]. CART is similar to C4.5, but it supports numerical target variables

[9]. CART is a binary tree, which only classifies the parent node into two child nodes. The

Gini impurity is the lost function being used in the CART method [70].

In the analysis, decision trees and closely related influence diagrams are used as visual

and analytical decision support tools, in which the expected value (or expected utility) of
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competitive alternatives can be calculated.

4.3.3 GBDT

Another decision tree learning is GBDT, which has been very successfully applied to many

fields such as smart city [79], and its significant advantage is the ability to find nonlinear

interactions automatically through decision tree learning with the minimum error.

The GBDT using an additive model classifies or regresses the data by reducing the

residuals, which are generated during the training process. Each iteration creates a weak

classifier through multiple iterations, and each classifier is trained based on the residuals of

the previous classifiers. In conclusion, the GBDT algorithm has four steps:

1. Each iteration generates a new decision tree.

2. Before starting each iteration, GBDT calculates the first derivative and second deriva-

tive of the loss function at each training sample point.

3. GBDT generates a new decision tree through the greedy strategy and calculates the

predicted value of each leaf node.

4. Add the new decision tree into the model.

The GBDT is generally regarded as one of the best out-of-the-box classifiers. It can

generalize and can combine weak learners into a single strong learner. The GBDT has

many nonlinear transformations and strong performances. There is no need to do complex

feature engineering and feature transformation. However, the shortcoming of GBDT is still

apparent. Since the boost is a serial process and is difficult to parallelize, GBDT has high

computational complexity, and it is also not suitable for high-dimensional sparse features

[46].
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4.3.4 KNN

The KNN algorithm is one of the simplest classification algorithms and one of the most

commonly used learning algorithms.

KNN is a nonparametric statistics method for classification and regression. The mech-

anism of KNN can be explained as follows: given a test document to be classified, the al-

gorithm searches for the k-nearest neighbors among the pre-classified training documents

based on some similarity measure, and ranks those K neighbors based on their similarity

scores, the categories of the k nearest neighbors are used to predict the category of the test

document by using the ranked scores of each as the weight of the candidate categories, if

more than one neighbor belongs to the same category then the sum of their scores is used

as the weight of that category, the category with the highest score is assigned to the test

document provided that it exceeds a predefined threshold, more than one category can be

assigned to the test document [1, 18].

Figure 11: An example of KNN [83]

Figure 11 indicates an example of KNN. White circles and black circles represent two

38



different classes of sample data. The white square represents data pending for classification.

Suppose K = 3, the white square’s three nearest points are two white circles and one black

circle. Based on statistical methods, this white square belongs to the class of white circles.

However, suppose K= 5, the five points closest to the white square are two white circles

and three black circles. Based on statistical methods, this white square belongs to the class

of the black circles.

4.3.5 DNN

DNN is the basis of deep learning, which is part of a broader family of machine learning

methods based on artificial neural networks with representation learning [92].

To understand DNN, firstly, it is essential to understand the DNN model. Figure 12

shows a general model of DNN with two hidden layers.

Input values Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 12: A general model of DNN with N hidden layers [66]

In Figure 12, DNN can be classified into three types of layers: the input layer, the
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hidden layer, and the output layer. Usually, the first layer is the input layer, the final layer is

the output layer, and the layers in the middle are all hidden layers [14]. A DNN consists of

a succession of convolutional and max-pooling layers; the layers are fully connected. Each

layer only receives connections from its previous layers.

More precisely, deep learning systems have a substantial credit assignment path (CAP)

depth. The CAP is the chain of transformations from input to output. CAPs describe

potentially causal connections between input and output [53].
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Chapter 5

Statistical analysis and results

This chapter reviews the experimental design and setup of the SWELL-KW dataset. It

then quantifies mental stress based on HRV features and selects significant features us-

ing the random forest method. To validate the random forest algorithm’s performance,

comparisons with other related algorithms, including SVM, GBDT, KNN, and DNN, are

conducted. HRV data are imported into a Python-based program (see the source code of

the program can be found in the Appendix).

5.1 SWELL-KW dataset

This section reviews the SWELL-KW related experimental design and setup. All the ex-

periment data are provided by the SWELL-KW data set, which was collected within the

SWELL project [43]. The collection of this data set was supported by researchers at the

Institute for Computing and Information Sciences at Radboud University. It is an empirical

study in the sense that it is based on real-world data.

In their experiment, they recorded many of the details regarding the data set. Therefore,

the results regarding the actual meaning of the variables and classification were presented.
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5.1.1 Participants

The collected data are from 25 subjects (seventeen males and eight females) with an aver-

age age of 25 [43]. All participants wrote their reports and presentations. They received a

standard subject fee for experiment participation. To motivate the participants to do their

best on the reports, they were told that the amount of the fee was dependent on their per-

formance.

5.1.2 Design and tasks

In their experiment, Koldijk et al. [43] manipulated the following conditions under which

the participants worked:

• Neutral ’No stress’: the participants can engage in tasks for an unlimited time. After a

maximum of 45 minutes, the participant was asked to stop and informed that enough

’normal work’ data had been collected.

• Stressor ’Time pressure’: the time to complete all tasks is 2/3 of the time required by

the participant in a neutral state (up to 30 minutes).

• Stressor ’Interruptions’: the participants received eight e-mails during the task. Some

are related to a task, while others are irrelevant. Some e-mails require a reply, while

others do not. For example, "Can you look up when Einstein was born?" or "I found

many beautiful pictures for this website’s demonstration."

Participants are asked to write reports and make presentations on predefined topics. Six

topics are prepared, including three opinion topics and three information topics. In the

opinion topics, participants need to perform Experience and opinion about ’stress at work’,

’healthy living’, or ’privacy on the internet’. At the same time, three information topics

include describing 5 Tourist attractions in Perth (West Australia), planning a coast to coast

road trip in the USA, and writing about the life of Napoleon.
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All participants worked under all three conditions. The neutral condition was always the

first condition in order to collect an uninfluenced baseline of normal working. The order of

the two stressor conditions was counterbalanced, see Figure 13. The within-subject design

included relaxation breaks in starting each condition in a well-rested state.

Figure 13: The design process [43]

In Figure 13, The neutral condition represents no stress situation, which is considered

as the baseline of normal working. 13 participants use order A, while 12 participants use

order B. The orders of two stressor conditions are balanced.

This data set focuses on high task load stress in-terms of mental demand, frustration,

and temporal demand in working professionals [42]. The raw and preprocessed signals are

available in the SWELL-KW data set.

5.1.3 Procedure

In order to record the stress response of the experiment and reduce the influence of other

factors on the experiment, they instructed the participants not to smoke or drink caffeine

3 hours before the experiment. Before the experiment started, the experiment and records

were explained, and all participants signed a consent form to confirm that the recorded

data can be used for research purposes. The experiment used body sensors. When the

experimenter checked the records, the participants read the experiment description and fill

in the questionnaire.
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As shown in Figure 13, the experiment is divided into three different blocks for different

mental stress conditions. Each block lasts approximately 1 hour. Before starting each

block, there exist 8 minutes of relaxation. In each block, participants are provided with two

of the six topics selected randomly from the list. The two topics include one opinion topic

and one information topic. Participants are asked to write two reports for both topics and

choose one topic to make a presentation. Participants are provided with different topics in

each block. In both stress conditions, participants were provided with a countdown clock

to show the remaining time.

After completing the task, the participants are asked to fill out a questionnaire about the

current block. Repeat the relaxation, task execution, and questionnaire process for blocks

2 and 3, as shown in Figure 13. The subjects were given a short rest between these two

conditions, and the entire experiment took about 3 hours. After the experiment, participants

need to report it.

5.2 Preprocessing

In the SWELL-KW data set, HRV features were computed as follows [63]:

1. An Inter-beat Interval (IBI) signal is extracted from the peaks of the ECG of each

subject.

2. Each HRV index is computed on a 5-minute IBI array.

3. A new IBI sample is appended to the IBI array, while the oldest IBI sample is deleted.

The new IBI array is used to compute the next HRV index.

This process is repeated until the end of the entire IBI signal.

The inputs of the SWELL-KW dataset were R-R intervals. In this thesis, the provided

data sets are preprocessed. The SWELL-KW data set provides both processed training data
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and test data, containing 32 features(one feature is deleted) and three different conditions.

The training data has 369289 samples, and the test data has 41033 samples.

Generally, physiological signals used for analysis are often pigeonholed by a Non-

stationary time performance. Hence, the features of time and frequency exemplifications

are desirable. The feature extraction algorithm converts essential information of the orig-

inal signal into a more condensed lower dimension feature vector. The extracted features

explicitly give the stress index of the physiological signals.

This thesis measures mental stress by using the ECG signal. The ECG signal is directly

assessed using a commonly used peak finder algorithm [73] to obtain the R-R interval.

The power spectral density of the HRV features from the ECG signal extracted using the

Welch algorithm dominates the stress detection. The raw ECG is further preprocessed using

the window average method [43]. A total of 31 different features are identified for further

classification of stress levels. All features are listed in Table 5 and Table 6 for classification.

45



Table 5: Feature extraction in time domain

number name Abbreviation

1 Mean RR Mean R-R interval

2 Median RR Median R-R interval

3 SDRR Standard deviation of R-R interval

4 RMSSD Root mean square of successive difference in distance

5 SDSD Standard deviation of all interval of differences between adja-

cent RR intervals

6 SDRR_RMSSD Ratio of SDRR over RMSSD

7 HR Heart rate

8 pNN25 Percentage of number of adjacent RR intervals differing by

more than 25 ms

9 pNN50 The ratio of NN50 to the total number of NNs

10 SD1 Short-term poincare plot descriptor of the heart rate variability

11 SD2 Long-term poincare plot descriptor of the heart rate variability

12 SKEW Skewness of all RR intervals

13 MEAN_REL_RR Mean of the relative RR

14 MEDIAN_REL_RR Median of the relative RR

15 SDRR_REL_RR Standard Deviation of the relative RR

16 RMSSD_REL_RR Root mean square of successive difference in distance of the

relative RR

17 SDSD_REL_RR Short and long-term poincare plot descriptor of the relative RR

18 SDRR_RMSSD_REL_RR Ratio of SDRR over RMSSD of the relative RR

19 KURT_REL_RR Kurtosis of all relative RR intervals

20 SKEW_REL_RR Skewness of all relative RR intervals

46



Table 6: Feature extraction in frequency domain

number name Abbreviation

21 VLF Very low frequency power from 0.003 HZ to 0.04Hz

22 VLF_PCT VLF as a percentage of total

23 LF FLow frequency power from 0.04 HZ to 0.15Hz

24 LF_PCT LF as a percentage of total

25 LF_NU low frequency of HRV in normalized unit

26 HF High frequency power from 0.15 HZ to 0.4 Hz

27 HF_PCT HF as a percentage of total

28 HF_NU high frequency of HRV in normalized unit

29 TP Total HRV power spectrum

30 LF/HF Ratio of LF to HF

31 HF/LF Ratio of HF to LF

Here, we introduce some features defined by math equation. The REL_RRi [63] can

be expressed as

REL_RRi = 2[
RELRRi −RELRRi−1

RELRRi +RELRRi−1

] (7)

The RMSSD is defined as

RMSSD =

√∑N−1
i=1 (RRi+1 −RRi)2

N − 1
(8)

The HF_NU [36] can be expressed as

HF_NU =
HF

HF + LF
(9)
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which is similar to the LF_NU feature,

LF_NU =
LF

HF + LF
(10)

In addition, the average LF/HF ratio is defined by

RA =

∑n
i=1(ti ∗ ri)∑n

i=1 ti
(11)

During data analysis, the random forest algorithm is used for feature selection. The

sklearn module in Python is used for feature selection. This module includes many machine

learning algorithms and models, such as random forest, decision tree, GBDT, SVM, DNN,

and KNN. Before using these models, tuning parameters are determined as an important

part. The goal of tuning is to achieve a great harmony of deviation and variance of the

overall models.

The following description of features gives a detailed overview of the features selected

to predict the mental stress [82].

• HR Statistical Feature: Consider the statistical characteristics of the ECG signal. HR

is the current rate of heartbeats per minute. The ECG signal’s heart rate is calculated

by calculating the duration between RR intervals and dividing it every minute. It

includes HR.

• HRV Statistical Features: HRV is defined as the change in the time between con-

secutive sequences of heartbeat intervals. The RR interval is described as the period

between two adjacent R waves. The HR and RR intervals are considered to be mu-

tual. The unit of measurement for HR is beats per minute (BPM), and the RR interval

in milliseconds (ms). HRV statistical Features include all features in the time domain

except for HR.
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• Frequency Domain Features of HRV: Bands of frequency are assigned to count the

number of RR intervals that match each band. The non-parametric emission PSD

analysis was studied using Welch’s method. The spectral density of power indicates

how power is distributed with frequency, as shown in Table 6.

The spectral analysis is carried using the following procedure [82]:

–The ECG signal is split into data segments, with overlapping segments of length

(L/2).

–The Hamming window is applied to the overlapped segments.

–The task is calculated by Fast Fourier transform, and it is averaged, which results in

an array of frequency and power.

The sklearn.preprocessing.StandardScaler class standardizes features by removing the

mean and scaling to unit variance.

5.3 Tuning

Before making the comparison, it is essential to perform the hyperparameter optimization

of each algorithm. The standard methods in python-sklearn are the GridSearchCV and

the RandomizedSearchCV [8]. The principle of GridSearchCV is to select the best set

by trying each set of hyperparameters one by one. Concerned about the cost of time, the

RandomizedSearchCV is chosen for hyperparameter tuning in this thesis. In this chapter,

50 sets of hyperparameters are chosen randomly and validated by 3-fold cross-validation

for all algorithms. After tuning, the optimal set of hyperparameters is used to train the

training set and get the predictive model.

Considering that the parameter of each model has a great influence on the final results,

the tuning parameter is necessary to do at the beginning. The hyperparameter optimization
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results of the training data set regarding the random forest, SVM, decision tree, GBDT,

KNN, and DNN are presented.

In the random forest case, the optimal number of features tried at each split is 3. The

number of trees used when training the algorithm is 100. The maximum number of random

forest features can try in the individual tree is 4. The selection criterion is the Gini impurity.

In the case of the SVM, it starts with the radial basis function kernel. The receiver op-

erating characteristic is displayed as a function of two tuning parameters, including gamma

and cost. After hyperparameter tuning, the optimal tuning gives a degree of 3, the optimal

gamma value is 0.2575, and the optimal cost is 15.75.

For the decision tree, The optimal selection criterion is the Gini impurity. The two tun-

ing parameters to consider are the depth of the tree and the maximum number of features.

After tuning, the optimal depth of the tree is 50. The optimal maximum number of features

is 31.

In the case of the GBDT, the optimal number of features tried at each split is 4. The

loss function uses deviance loss. The criterion to measure the quality of a split is the mean

squared error with an improvement score by Friedman [29]. The number of trees used

when training the algorithm is 150. The maximum number of random forest features can

try in the individual tree is 4. The depth of each tree is 7.

For the KNN, the optimal number of neighbors is 1. It uses the uniform weighting.

The Manhattan distance calculates the distance between real vectors using the sum of their

absolute difference in the Minkowski metric.

According to the DNN, it has three hidden layers with 25, 20, and 15 hidden units,

respectively. The optimal activation function is relu. The parameter alpha for regularization

is 0.0001.
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5.4 Feature selection

In this section, each HRV data set is divided into a training set and a test set. We compare

random forest predictive performance with five other classification methods (SVM, deci-

sion tree, random forest, GBDT, KNN, and DNN). The comparison with other models is

based on the test accuracy during different label rates. It is necessary to define accuracy.

As well known, the success of the predictive model is calculated based on the degree of the

predictive model on the target variable or label of the test data set. The accuracy represents

the correct predictions on the total, as shown in equation 11 below,

Accuracy =
TP

TP + FP
(12)

where TP indicates true prediction when the predicted values match the actual values of the

test dataset label, and FP represents the false prediction when the predicted values don’t

match the actual values of the test data set labels. The random forest shows better accuracy

in feature selection in model comparisons. Hence, the random forest will be chosen as the

feature selection model in this project, which makes feature selection from all the features

and ranks the selected features based on the accuracy.

The HRV data set includes the training data set and the test data set. The training set has

369289 samples, and the test set has 41033 samples. The data set labels the samples based

on three mental stress conditions in the SWELL-KW experiment. The label distribution for

each condition is shown in Figure 14 below.
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Figure 14: The sample size under three mental stress conditions

This figure shows the number of samples under the 3-label classification. The labels

can be classified into no stress, interruption, and time pressure. The condition of no stress

has 200082 samples, the interruption condition has 105150 samples, and time pressure has

64057 samples. It can be seen that nearly half of the entire data in the training set is labeled

no-stress condition.

While in the test set, the label of no stress has 22158 samples, the interruption label has

11782 samples, and the label of time pressure has 7093 samples.

5.4.1 Comparisons and model choices

In this section, the performances based on the training data set of SVM, decision tree,

random forest, GBDT, KNN, and DNN are compared. Then the reliability of random

forest is validated.

After selecting and calculating 50 sets of hyperparameters randomly, the optimal pa-

rameters are chosen to train the training data set and get the optimal predictive model.
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All algorithms perform high accuracy, which is almost close to 1. Since the high ac-

curacy, the controlling label rate of data can observe the connection between features and

various algorithms. To reduce the variance, we took the mean result of 5 experiments as

the final result. The test accuracy of each model is recorded while increasing the training

data’s label rate, as shown in Table 7 below.

Table 7: Accuracies of 31 features in different algorithms

label rate (%) 0.01 0.1 0.5 1 2 5

SVM 57.6 80.4 95.8 98.5 99.5 99.9

Decision tree 53.1 66.1 86.1 91.7 95.7 98.2

Random forest 56.3 80.7 96.1 98.4 99.5 99.9

GBDT 58.9 80.6 95.3 98.0 99.4 99.9

KNN 56.2 81.8 97.3 99.2 99.8 99.9

DNN 54.0 71.7 91.3 94.9 97.5 99.0

It is seen from table 7, the relation between classification accuracy (percentage of cor-

rect classifications) based on the results on the test set and label rates of training data set,

when the label rate is 0.01%, 0.1%, 0.5%, 1%, 2%, 5%, are found. The top 3 accuracies

in the different label rates are blackened. As seen in Table 7, compared with SVM, deci-

sion tree, GBDT, KNN, and DNN, random forest performance has always been among the

top three compared with other models in any label rate situation. Apart from this, GBDT

has apparent advantages when the label rate is meager. For example, when the label rate

is 0.01%, its accuracy is 58.9 percent, which is 2.3% higher than the SVM. On the other

hand, with the increase in the label rate, KNN performance is getting better. The accuracy

becomes 99.8% when the label rate is 2% using the KNN method. When the label rate

increases to 5%, the decision tree can only achieve an accuracy of 98.2% due to limited

fitting ability, while other algorithms can achieve an accuracy of more than 99%. It’s worth
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noting that random forest always shows great results under different label rates. In order to

observe changes visually, the relation between accuracy and label rate in different models

is illustrated in Figure 15.

0.01 0.51 1.01 1.51
Label rate of the training data(%)

60

70

80

90
Te

st
 a

cc
ur

ac
y(

%
)

Random Forest
SVM
Desicion Tree
GBDT
KNN
DNN

Figure 15: Test accuracy comparisons among different models

In order to see the relationship between the accuracy and algorithms more clearly, in

Figure 15, the label rate of training data is from 0% to 1.51%. The interval is not fixed; the

test accuracy is plotted as a function of the label rate of models. From this figure, random

forest, SVM, decision tree, GBDT, and KNN are significantly better than other algorithms

in terms of accuracy. When the label rate is 0.51%, random forest, SVM, and KNN perform

better than others.

The results show that the GBDT performs well at a low label rate. Compared with

GBDT, the random forest is faster because it can be trained in parallel. What’s more, it can

still reveal that the decision tree performs the worst among all the models. The reason for

its poor effect may be that the model is too simple to describe the data. The DNN has a

stronger fitting ability compared with other models. However, when the label rate is low, it

is easy to overfit the training set, resulting in low generalization ability on the test set.
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Random forest is an ensemble algorithm, and it is more robust than SVM. KNN is

slower in real-time than the random forest as it has to keep track of all training data and

find the neighbor nodes in the prediction process.

In summary, the random forest model is the optimal model to calculate the HRV feature

set and quantify mental stress. Hence, the feature selection model will be based on the

random forest.

5.4.2 Feature importance

Random forest builds multiple decision trees and analyzes them together to obtain a more

accurate prediction. When training a tree, it can be computed how much each feature de-

creases the tree’s weighted impurity. For a random forest, each feature’s impurity decrease

can be averaged, and the features are ranked according to this measure.

The random forest is used to calculate feature importance on the training data based on

the labeled data set. After calculation, we still rank these features according to their feature

importance. The feature importance ranking is plotted in Table 8 below.
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Table 8: Feature importance ranking

Rank Feature number Importance Rank Feature number Importance

1 feature 6 0.068172 17 feature 16 0.029605

2 feature 0 0.063425 18 feature 23 0.029540

3 feature 1 0.057316 19 feature 11 0.028006

4 feature 7 0.053397 20 feature 9 0.027981

5 feature 13 0.046859 21 feature 19 0.026895

6 feature 10 0.037176 22 feature 14 0.026170

7 feature 17 0.036852 23 feature 3 0.025288

8 feature 2 0.036189 24 feature 25 0.024653

9 feature 28 0.035526 25 feature 30 0.024238

10 feature 5 0.033625 26 feature 27 0.022790

11 feature 22 0.032298 27 feature 29 0.021220

12 feature 15 0.032083 28 feature 26 0.020247

13 feature 18 0.031695 29 feature 4 0.019831

14 feature 20 0.030795 30 feature 24 0.016323

15 feature 8 0.030513 31 feature 12 0.001612

16 feature 21 0.029678

The feature number is consistent with the feature number in Table 5 and Table 6. It

corresponds to the latter’s feature name. This table displays the feature ranking, and it

also reveals the importance of each feature. In order to understand the difference more

intuitively and understand the range of each feature, we provide the feature importance

scores in Figure 16.
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Figure 16: Feature importance in 99.98% accuracy

In Figure 16, the horizontal line represents the feature number, which corresponds to

the feature name in Table 5 and Table 6. Each red bar represents the mean importance of

each feature. The black line represents the standard deviation of each feature importance.

It is seen in Figure 16 that HR, mean RR, median RR, pNN25, and median REL RR

perform better than others, while mean REL RR shows the worst feature importance. Based

on the feature importance, this thesis trains the classifier on the training data. The accuracy

of the model is also collected, which is up to 99.98% when the label rate is 5%.

The accuracy illustrates that the predictive model training by the training set performs

well. There are three reasons for its high accuracy:
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1. Data from both the training set and test set is large enough.

2. The quality of the data set is high. No outliers and missing values exist in the acquired

data.

3. The proportion of the training set and the test set is relatively balanced.

Feature importance in Figure 16 is valuable because they show their roles in the whole

features and indicate that each part of the condition is used for the same features.

Considering the effect of label rate on feature importance, we still rank these features

according to their feature importance from 0.1% training data with 80.65%. The feature

importance ranking is plotted in Figure 17 below.

Figure 17: Feature importance in 80.65% accuracy
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It is seen in Figure 17 that median RR, mean RR, HR, median REL RR, and LF per-

form better, while mean REL RR still shows the worst feature importance. In conclusion,

median RR, mean RR, HR, and median REL RR show outstanding performance on feature

importance in different accuracies. On the other hand, mean REL RR always shows the

worst feature importance.

5.4.3 Feature selection and comparison

In this section, the feature importance score of the top 10 features is calculated under the

model with 99.98% accuracy. From this importance, the top 10 features are selected to

retain the model. Therefore, the feature importance of the top 10 features can be predicted.

The performance of the random forest using the top ten features (median RR, mean RR,

median REL RR, HR, pNN25, SDRR RMSSD, SDRR RMSSD REL RR, TP, SD2, SDRR)

from 5% training set is evaluated. In Figure 18, when categorizing observations, the top ten

features are displayed from the perspective of feature importance according to the random

forest algorithm.
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Figure 18: Top 10 features importance

From Figure 18, The feature importance of all ten features adds up to 1. The higher the

important value of a feature, the more important the feature is in mental stress quantification
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correctly on HRV. The difference between any two features in the top 10 features is not

obvious. When using the top ten features only, the random forest still performs very well.

Its accuracy is still up to 99.9%. Furthermore, a comparison is made between the random

forest and other models using all the features shown in Figure 19.
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Figure 19: Top 10 features accuracy in different algorithms

Compared with Figure 15, Figure 19 shows that accuracy has no significant difference

between the 31 features and 10 features. Table 9 shows the test accuracy from the top 10

features compared with all features in different label rates.

Table 9: The test accuracy gap of 31 features and top 10 features in random forest

label rate(%)
test accuracy (%)

31 features 10 features ∆
0.1 80.7 76.6 4.1
0.5 96.1 93.9 2.2
1 98.4 97.1 1.3
2 99.5 99.2 0.3
5 99.9 99.9 0.0

where ∆ represents the accuracy gap between 31 features and 10 features.

In table 9, first, the performance on the training set of the random forest using different
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features is evaluated. Then, compared with using all features, the performance of using the

top 10 essential features is not better when the label rate is low. For example, when the label

rate is 0.1%, the ∆ is 4.1%. However, when the label rate gets to a large enough level, the

top 10 features can perform pretty well. For example, when the label rate is up to 5%, the ∆

of the accuracy is 0. When the label rate is large, there is enough information, no matter the

feature dimension’s size. Otherwise, the feature dimension has a more significant impact

on accuracy when the label rate is low.

The process of the feature dimensionality reduction must lead to information loss. How-

ever, if the amount of data is large, enough original information has been captured. It can

reduce the error rate to a certain extent.

The accuracy of the top ten features using random forest and KNN outperform other

models and algorithms. Table 10 shows the apparent differences between them.

Table 10: The test accuracy from 31 features and top 10 features in different models

label rate(%)
0.05 0.1 0.5

31 features 10 features 31 features 10 features 31 features 10 features
SVM 71.8 72.3 80.4 80.1 95.8 95.7

decision tree 60.2 64.4 66.1 68.7 86.1 84.8
random forest 74.2 71.7 80.7 78.1 96.1 94.6

GBDT 72.8 70.5 80.6 77.8 95.3 93.9
KNN 726 71.9 81.8 81 97.3 95.6
DNN 66.4 66.9 71.7 70.9 91.3 88.3

In Table 10, when the label rate is 0.05%, 0.1%, and 0.5%, the top 3 accuracies in the

different label rates are blackened. The random forest performance has always been among

the top three compared with other models in any label rate situation. When the label rate

is up to 0.05%, The performances of SVM and decision tree in the top 10 features are

better than in 31 features. Because using only ten features is equivalent to making feature

selection, these algorithms can obtain significant features more quickly.

Considering that the time cost has an impact on the algorithms, the training efficiency

is analyzed based on the top-10 features shown in Table 11.

61



Table 11: The training time of each method

models training time (s)

SVM 47.8

Decision tree 0.28

Random forest 1.61

GBDT 30.2

KNN 6.34

DNN 9.8

In Table 11, the time reported here is the training time using sklearn on a CPU with 20

cores. For KNN and Random Forest, we set the parameter ’n_jobs’ to -1, which means we

use all cores to train them in parallel.

As we can see, the decision tree is the fastest method, and it is nearly 170 times faster

than SVM. However, as we analyzed before, the decision tree is too easy to fit the training

data well, and it gets low test accuracy. Among these methods, the random forest is the

second fast, and it can also get high test accuracy. Compared with KNN, the random forest

is hugely faster in the prediction process. Besides, the training time for random forest can

be further reduced if we have more CPU cores. As a result, the random forest can get the

most balanced trade-off between training costs and test accuracy. It validates the reliability

of the random forest for mental stress quantification.

5.5 Summary

Reducing the cost of feature collection can decrease the time cost for model training and

prediction. Another analysis of algorithms comparisons and model choices was conducted

to find the reliability of random forest as an indicator of feature selection under mental
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stress. The performances on the training data set of SVM, decision tree, random forest,

GBDT, KNN, and DNN are compared. The accuracy is collected and analyzed by control-

ling the label rate.

According to the results, it was found that:

• Given different label rates, random forest performs better than decision tree, GBDT,

and DNN in most cases.

• KNN is competitive to the random forest, but it is less used in practical applications

due to long prediction time.

• GBDT performs well when there are few labeled data, but it cannot be trained in

parallel.

• Compared with SVM, random forest is less sensitive to parameters because it is an

ensemble-based method.

It is clear that the random forest model does a better job in HRV feature selection than

other algorithms in mental stress quantification. Therefore, the feature selection is reliable

based on the random forest method.

Concerning the feature importance, the top ten features are also used for feature se-

lection. When using the top ten features, the random forest still performs very well. The

difference between any two features in the top 10 features is not apparent because the top

10 features are all critical to the whole data set.

What still needs to be noted here is that when the data set has two (or more) corre-

lated features, any of these correlated features can be used as the model’s predictor, with

no concrete preference. Nevertheless, once used one of them, others’ importance is signif-

icantly reduced since the first feature already removes the impurity they can remove. As a

consequence, they will have lower reported importance. It is not an issue when we want

to use feature selection to reduce overfitting, since it makes sense to remove features that
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are mostly duplicated by other features. However, when interpreting the data, it can lead

to the incorrect conclusion that one of the features is a strong predictor while the others

in the same group are unimportant, while actually, they are very close in terms of their

relationship with the response label. When we have enough examples or when our accu-

racy requirements are not so high, we can take ten training features. It is also significant in

practical applications because using fewer features can reduce the cost of collecting sample

information, and it can significantly shorten the time for model training and prediction.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, a comprehensive review of mental stress, HRV, and Random forest was con-

ducted. Based on this, an inverse U shape relation between mental stress and performance

was observed. Mechanisms for decision making is proposed to clarify and quantify mental

stress, workload, cognitive workload, mental effort, attention, and cognitive engagement

during decision-making activities.

In the design experiment, the designer’s mental stress generally increases as his/her

mental workload increases. For the correlation between HRV and mental stress, a series of

HRV parameters (HR, mean RR, median RR, pNN25, median REL RR, etc.) were iden-

tified, which may be affected by mental stress. An analysis of identifying the relationship

between mental stress and features is conducted with HRV data from the SWELL-KW pro-

gram using random forest. The data is segmented based on three mental stress conditions.

According to the results, it was found that:

• The relation between mental stress and other related concepts is validated by the

mechanisms for mental stress generation in decision making.
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• When sufficient labels are available, the decreasing of feature dimension doesn’t

affect the accuracy much.

• The feature subset of median RR, mean RR, median REL RR, HR, pNN25, SDRR

RMSSD, SDRR RMSSD REL RR, TP, SD2, and SDRR is the optimal subset for

mental stress quantification.

The study of the difference and correlation of stress-related concepts indicates HRV

does respond to mental stress changes instead of other concepts, which validates the corre-

lation between HRV and mental stress.

The optimal HRV feature subset is proposed for mental stress quantification, which

performs higher feature importance than other features. Moreover, when sufficient labels

are available, the random forest algorithm using the optimal HRV feature subset yields a

higher accuracy in mental stress quantification than other methods.

The decrease of feature dimension can reduce the cost of data collection. Besides, it

can significantly shorten the time of model training and prediction. Feature selection is of

great significance in real-world applications.

6.2 Future work

Throughout this thesis, machine learning depends on massive amounts of data. However,

the collection of massive data costs lots of effort and money. Can we find the critical value

that gives better results while using enough data? This research can facilitate the effective

and efficient applications of existing research to real-world problems.

In order to reduce the cost of large-scale data collection, one conventional method is ac-

tive learning. It allows labeling less data by selecting the most important samples from the

learning process. This method aims to minimize the labeling cost and maximize the per-

formance of the machine learning model. Since the unlabeled data is more comfortable to
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obtain, semi-supervised learning can still be used in feature extraction and selection. When

the label rate is low, the semi-supervised learning can mine a large amount of information

based on unlabeled data. It can also improve accuracy and reduce costs. The research on

improving accuracy under the given label rate is also essential.
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Appendix A

Python code for HRV feature selection

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings(’ignore’)

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn import tree

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.model_selection import RandomizedSearchCV
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1.read data

train = pd.read_excel(’data.xlsx’, sheet_name=’train’)

test = pd.read_excel(’data.xlsx’, sheet_name=’test’)

train_values = train.values

test_values = test.values

full_data = np.concatenate((train_values,test_values),axis=0)

X = full_data[:,:-1]

y = full_data[:,-1]

np.save("X.npz",X)

np.save("y.npz",y)

2. data analysis

One_value_array = []

for i in range(33):

if len(train.iloc[:, i].value_counts()) == 1:

One_value_array.append(str(i))

delete 31 lines

X = np.delete(X, -1, axis=1)

scaler=StandardScaler()

model=scaler.fit(X)

X = model.transform(X)

3.modeling structure

X_train_val = X[:len(train)]

X_test = X[:len(test)]

y_train_val = y[:len(train)]

y_test = y[:len(test)]

print(len(X_train_val))
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print(len(X_test))

4.label rate is 0.005

rate = 0.005

X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val,

test_size=1-rate, random_state=0, shuffle=True, stratify=y_train_val)

4.1 default accuracy

model = RandomForestClassifier(n_jobs=-1,random_state=0)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’RF-test accuracy:’, test_acc)

model = SVC()

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’SVM-test accuracy:’, test_acc)

model = tree.DecisionTreeClassifier()

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)
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print(’DT-test accuracy:’, test_acc)

model = GradientBoostingClassifier(random_state=0)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’GBDT:’, test_acc)

model = KNeighborsClassifier(n_jobs=-1)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’KNN:’, test_acc)

model = MLPClassifier(solver=’lbfgs’, alpha=1e-5,hidden_layer_sizes=(20,10,5), ran-

dom_state=0)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’DNN:’, test_acc)

4.2 tuning parameters

1RF

clf = RandomForestClassifier(n_jobs=-1,random_state=0)
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list or distribution

param_dist = "max_depth": [3, None], list "n_estimators": [50,100,150],

"max_features": range(1, 11), distribution

"min_samples_split": range(1,5), distribution

"bootstrap": [True, False], list

"criterion": ["gini", "entropy"] list

RandomSearch+CV select Hyperparameters

n_iter_search = 50 random_search = RandomizedSearchCV(clf, param_distributions=param_dist,

n_iter=n_iter_search ,cv=3,scoring=’accuracy’, n_jobs = 8, iid=False, verbose=1) ran-

dom_search.fit(X_train, y_train)

best_parameters = random_search.best_estimator_.get_params()

for para, val in list(best_parameters.items()):

print(para, val)

model = RandomForestClassifier(n_jobs=-1,max_depth=best_parameters[’max_depth’],n_estimators=best_parame

ters[’n_estimators’],

max_features=best_parameters[’max_features’],

min_samples_split=best_parameters[’min_samples_split’],

bootstrap=best_parameters[’bootstrap’],

criterion=best_parameters[’criterion’],

random_state=0)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’RF-test accuracy:’, test_acc)
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2)SVM

clf = SVC()

list or distribution

param_dist = ’C’:np.linspace(3,20,5),’gamma’:np.linspace(0.01,1,5)

RandomSearch+CV select Hyperparameters

n_iter_search = 50

random_search = RandomizedSearchCV(clf, param_distributions=param_dist,

n_iter=n_iter_search ,cv=3,scoring=’accuracy’, n_jobs = 8, iid=False, verbose=1) ran-

dom_search.fit(X_train, y_train)

best_parameters = random_search.best_estimator_.get_params()

for para, val in list(best_parameters.items()):

print(para, val)

model = SVC(kernel=’rbf’, C=best_parameters[’C’], gamma=best_parameters[’gamma’],

probability=True)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’SVM-test accuracy:’, test_acc)

3)DT

model = tree.DecisionTreeClassifier()

param_dist = "max_depth":[10,50,100,200,None],"max_features": [1,3,5,7,None]

n_iter_search = 50 random_search = RandomizedSearchCV(model, param_distributions=param_dist,

n_iter=n_iter_search ,cv=3,scoring=’accuracy’, n_jobs = 8, iid=False, verbose=1) ran-

dom_search.fit(X_train, y_train)
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best_parameters = random_search.best_estimator_.get_params() for para, val in list(best_parameters.items()):

print(para, val)

model = tree.DecisionTreeClassifier(max_depth=best_parameters[’max_depth’], max_features=best_parameters[’max_features’],

random_state=0)

model.fit(X_train,y_train)

pred_val = model.predict(X_val) val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test) test_acc = accuracy_score(y_test,pred_test)

print(’DT-test accuracy:’, test_acc)

4)GBDT

model = GradientBoostingClassifier(random_state=0)

list or distribution param_dist = "max_depth": range(5,10), list

"n_estimators": [50,100,150],

"max_features": range(1, 11), distribution

"min_samples_split": range(1,5)

n_iter_search = 50

random_search = RandomizedSearchCV(model, param_distributions=param_dist,

n_iter=n_iter_search ,cv=3,scoring=’accuracy’, n_jobs = 8, iid=False, verbose=1) ran-

dom_search.fit(X_train, y_train)

best_parameters = random_search.best_estimator_.get_params()

for para, val in list(best_parameters.items()):

print(para, val)

model = GradientBoostingClassifier(max_depth=best_parameters[’max_depth’],n_estimators=best_parameters[’n_estimators’],

max_features=best_parameters[’max_features’], min_samples_split=best_parameters[’min_samples_split’],

random_state=0)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)
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val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’GBDT-test accuracy:’, test_acc)

5)KNN

model = KNeighborsClassifier(n_jobs=-1)

list or distribution

param_dist = ’weights’:[’distance’,’uniform’],

’n_neighbors’:[i for i in range(1,11)],

’p’:[i for i in range(1,6)]

n_iter_search = 50

random_search = RandomizedSearchCV(model, param_distributions=param_dist,

n_iter=n_iter_search ,cv=3,scoring=’accuracy’, n_jobs = 8, iid=False, verbose=1) ran-

dom_search.fit(X_train, y_train)

best_parameters = random_search.best_estimator_.get_params()

for para, val in list(best_parameters.items()):

print(para, val)

model = KNeighborsClassifier(n_jobs=-1,weights=best_parameters[’weights’],

n_neighbors=best_parameters[’n_neighbors’],

p=best_parameters[’p’],)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’KNN:’, test_acc)
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6MLP

model = MLPClassifier(hidden_layer_sizes=(25,20,15), random_state=0)

list or distribution

param_dist = ’activation’:[’identity’,’logistic’,’tanh’,’relu’],

’alpha’:[1e-3,1e-4,1e-5]

n_iter_search = 50

random_search = RandomizedSearchCV(model, param_distributions=param_dist,

n_iter=n_iter_search ,cv=3,scoring=’accuracy’, n_jobs = 8, iid=False,

verbose=1) random_search.fit(X_train, y_train)

best_parameters = random_search.best_estimator_.get_params()

for para, val in list(best_parameters.items()):

print(para, val)

model = MLPClassifier(solver=’lbfgs’, activation=best_parameters[’activation’],

alpha=best_parameters[’alpha’],

hidden_layer_sizes=(25,20,15), random_state=0)

model.fit(X_train,y_train)

pred_val = model.predict(X_val)

val_acc = accuracy_score(y_val,pred_val)

pred_test = model.predict(X_test)

test_acc = accuracy_score(y_test,pred_test)

print(’DNN:’, test_acc)
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