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Abstract

Gene Regulatory Network Inference using Machine Learning

Techniques

Stephanie Kamgnia Wonkap, Ph.D.

Concordia University, 2020

Systems Biology is a field that models complex biological systems in order to better

understand the working of cells and organisms. One of the systems modeled is the gene

regulatory network that plays the critical role of controlling an organism’s response

to changes in its environment. Ideally, we would like a model of the complete gene

regulatory network. In recent years, several advances in technology have permitted

the collection of an unprecedented amount and variety of data such as genomes, gene

expression data, time-series data, and perturbation data. This has stimulated research

into computational methods that reconstruct, or infer, models of the gene regulatory

network from the data. Many solutions have been proposed, yet there remain open

challenges in utilising the range of available data as it is inherently noisy, and must be

integrated by the inference techniques. The thesis seeks to contribute to this discourse

by investigating challenges of performance, scale, and data integration.

We propose a new algorithm BENIN that views network inference as feature se-

lection to address issues of scale, that uses elastic net regression for improved per-

formance, and adapts elastic net to integrate different types of biological data. The

BENIN algorithm is benchmarked on a synthetic dataset from the DREAM4 challenge,

and on real expression data for the human HeLa cell cycle. On the DREAM4 dataset

BENIN out-performed all DREAM4 competitors on the size 100 subchallenge, and is

also competitive with more recent state-of-the-art methods. Moreover, on the HeLa

cell cycle data, BENIN could infer known regulatory interactions and propose new

interactions that warrant further experimental investigation.

Keys words: gene regulatory network, network inference, feature selection, elastic

net regression.
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Chapter 1

Introduction

All living organisms on the earth interact with other organisms and are regularly

exposed to environmental factors in their habitats. These factors are varied, encom-

passing temperature, oxygen level, nutrient and water availability, and in some cases,

the presence of toxic elements. In response to variations in these factors, organisms

need to develop features to survive. These features take the form of gene expression

and regulation. The following thesis engages with the complexities of this process.

The thesis will be grounded on three key questions: “What is gene expression?”

“What does it means to regulate the expression of a gene?” and finally, “How do

these processes work?”

System Biology, a discipline that is deeply rooted in biology, physics, chemistry, as

well as in computer science and mathematics, provides a mechanism for modeling

the complex networks of biologically relevant entities (DNA, RNA, proteins, or cells)

and in so doing, provides an avenue for answering questions such as “How does a

biological component interact with other components and its environment?”, “What

regulates its function and in what manner?”, “What kind of properties emerge from

these interactions?” and so one [240]. The gene regulatory network (GRN) is an

example of these complex networks. The GRN offers a path to understand parameters

that contribute to a properly functioning cell. Moreover, GRN helps understanding

interactions between different organisms as well as the interaction with their habi-

tats. Thus, there is a strong need to model such a complex network for scientists

to have abstract reasoning about its dynamics. Even though we now witness high-

throughput experiments that produce a plethora of data, the question of modeling
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and reconstructing a GRN remains largely unsolved and a big challenge in Systems

Biology. The following thesis will contribute to the discourse on the problems of GRN

reconstruction.

1.1 Gene Regulation

1.1.1 Prokaryotic Gene Regulation

A gene is a portion of DNA responsible for the physical and inheritable characteristics

or the phenotype (e.g., the shape, the color, or the size) of all living organisms. It

is the way biological information is transmitted through generations and the basis of

heredity. Each organism has a certain number of genes, e.g E. coli, a bacteria, has

between 4, 000 and 5, 500 known genes. Inside the cells of every living thing, after

receiving a signal triggered by distinct factors, each gene is transcribed into mRNA,

a kind of RNA, by an enzyme called RNA-polymerase through a process known as

transcription. Through another process known as translation, the mRNA is then

transformed into a polypeptide chain, a component of proteins responsible for the

observable characteristics of the organism. Gene expression is the process (transcrip-

tion + translation) in which the biological information contained in a gene is used to

synthesize the gene products, which are principally proteins.

To better present and understand the gene regulation process, we will consider

the prokaryotes’ case, as it is the easiest to comprehend. A eukaryote is an organism

whose cells contain a nucleus and other organelles enclosed within membranes, e.g hu-

man. A prokaryote is a single-celled organism that lacks membrane-bound organelles

such as bacteria. Usually, an organism does not produce all proteins simultaneously

because different proteins are involved in different cellular processes. It is important

to control how much a gene is expressed at any given time and when a gene is needed.

Any disruption to this control can yield serious consequences. For example, it is im-

portant for E. coli to control the levels of tryptophan (Trp), an essential amino acid

for its survival. Hence, if its environment is lacking tryptophan, E. coli needs to syn-

thesize the proteins necessary to produce the tryptophan. One can thus define gene

regulation as the set of mechanisms used by the cell to control (increase or decrease)
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the products of gene expression. Figure 2 shows an example the Trp regulation in E.

coli. In this figure, there are two types of genes. There are transcription factors (TFs)

or regulatory genes, which are genes whose products control other genes’ expression.

When those proteins increase the gene expression, they are called activators. Alter-

natively, when proteins inhibit the expression of genes, we call them repressors. In

Figure 2, there are also target genes (TGs) that are structural genes that encode pro-

teins not involved in regulation. Gene regulation will manifest differently depending

on whether the organism is a prokaryote or a eukaryote, as discussed in Section 1.1.2.

In prokaryotes we identify specific regions of genes: operons, promoter regions

and transcription factor binding sites (TFBS). Genes that produce proteins

involved in the same process and are controlled by the same regulatory genes are

located next to each other in clusters called operons. RNA polymerase will bind to

a promoter region, a sub-region of the non-coding region upstream in an operon. A

transcription factor binding site (TFBS), also known as an operator, is another non-

coding sub-region where TFs will bind to allow gene regulation. Figure 1 summarizes

the structure of a typical operon within prokaryotes.

Figure 1: Organization of an operon in prokaryotes.

Organization of genes in prokaryotes: related structural genes are situated next to each

other, forming a cluster called an operon. The operon is under the control of a single

promoter–where the RNA polymerase binds–and a single operator–where the TF will bind

to control the expression of genes within the operon. This TF comes from the expression

of the regulatory gene. The set formed by the promoter, the operator, and the structural

genes is called operon [189].
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Figure 2: Tryptophan regulation in E. coli

The tryptophan regulation in E. coli. In (a), the tryptophan is absent in the environment

of E. coli. A repressor is made from a regulatory gene. However, as the environment

lacks trp, it is inactive; thus, it does not bind to the operator. The RNA polymerase can

thus transcribe the genes (structural genes) in the operon, and enzymes (here proteins)

for the synthesis of tryptophan will be produced. (b)The environment of E. coli contains

tryptophan, the repressor is active and can thus bind to the operator and block the activity

of the RNA polymerase [189].
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1.1.2 Eukaryotic Gene Regulation

As in prokaryotes, the process of gene regulation is controlled by proteins which at

specific region allow or block the activity of RNA polymerase. However, in eukaryotic

cells, gene regulation is far more complicated than in prokaryotic cells. First of all,

eukaryotes have more genes than prokaryotes. Nearly all the cells of eukaryotes have

the same DNA sequence. However, cell specialization is a result of the difference in

gene regulation in these cells.

Another divergence is the organization of genes within the genome. Unlike prokary-

otic cells, operons are generally not found in eukaryotes. Instead, each gene is as-

sociated with its promoter element where the RNA polymerase and the regulatory

protein will bind. The promoter is almost always situated upstream to the coding

genes. Most of the time, transcription factor binding sites (TFBS) are located within

promoter regions. However, in some cases, TFBS are located far from the promoter,

either upstream or downstream from the coding region; they are called enhancers. It

worth mentioning that in prokaryotic cells, the expression of genes may be controlled

by the action of several TFs [144, 142]. In eukaryotes, gene expression is regulated at

different levels, during transcription, and both before and after translation. It con-

trasts with prokaryotes, where gene regulation happens primarily at the transcription

level. Furthermore, a significant difference between the gene regulation in eukaryotic

and prokaryotic cells is that, in eukaryotic cells, the DNA sequence is compacted

around a protein called a histone, forming the nucleosome. Nucleosomes are assem-

bled into a compact structure called chromatin. The chromatin can either promote

or prevent genes regulation. TFs and RNA polymerase cannot access the target gene

when the DNA is compacted around the histone. Figure 4 summarizes how the DNA

is packed in the eukaryote genome.

1.2 Gene Regulatory Network

A gene regulatory network is a set of all elements (transcription factors, genes, or

RNA) that interact together directly or indirectly to control genes’ expression. In

this thesis, we will only consider the transcriptional level of regulation. Accordingly,
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Figure 3: Eukaryotic gene structure

Organization of a gene within the genome of a eukaryote. The open reading frame contains

the DNA sequence (target gene) transcribed by RNA polymerase. The promoter contains

regions where a variety of TFs may bind, allowing the RNA polymerase to transcribe the

adjacent gene: this is gene expression. Note that the RNA polymerase also binds in

the promoter region, particularly in the core promoter region. Furthermore, the TFs can

also bind in distant regions called enhancer or silencer regions, which also control gene

expression.
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Figure 4: Chromatin in eukaryotic cells

The figure show different scale how a chromosome in a eukaryotic the cell [231].
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the gene regulatory network (GRN) will be the set of target genes (TGs) and tran-

scription factors (TFs) that interact together through relations called regulatory

links. Figure 5 shows a simplifying picture of the gene regulatory network consisting

of a set of target genes and transcription factors and their regulatory interactions.

Figure 5: Gene regulatory network abstraction

The figure presents an abstraction of the gene regulatory network [193]. It consists of a

set of genes, their expression products, and the regulatory interactions that exist between

them.

Several studies [3, 4, 5] have demonstrated that, like many real networks, the

out-degree of genes in the GRN follows a scale-free distribution. Following a scale-

free distribution indicates that most of the TFs are connected to a small number of

genes, while only a few TFs regulate many genes. TFs that regulate a multitude

of genes are called hub genes. This particular organization of the GRN ensures its

connectivity and integrity [4, 5]. The presence of hub TFs in the GRN make it robust

against random disruption [3], as they will generally affect non-hub genes, and, will

consequently not lead to a loss of connectivity. Hubs are essential for the GRN and

are generally the target of diseases like cancer. Given their importance, researchers

have hypothesized that hub genes are subject to strict evolutionary constrains.

Apart from the gene connectivity distribution, the GRN has long been thought

to have a modular organization that is a critical feature for the cell to coordinate

its complex functions (the different tasks are split over the modules which can either

interconnected or be insulated from) [95, 185]. Albert Làszlò et al have defined a

module as a set of physically or functionally linked molecules that work together
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to achieve distinct functions [11]. Given the GRN, a module will refer to a set of

genes involved in a joint elementary function, sharing the same behavior (expression

pattern) and under the control of a set of regulators that controls their expression.

A gene can be part of multiple modules at a time, which implies that the functional

modules overlap each other.

1.3 Problem Statement

Networks are omnipresent in biology and widely used to represent different kinds of

information and most likely interactions. There exist several types of networks. For

example, Protein-Protein networks that model the physical interactions of proteins or

metabolic networks that comprehensively describe all possible biochemical reactions

for an organism.

Gene expression regulation differs between eukaryotes and prokaryotes. In prokary-

ote, the regulation is much simpler and happens at the transcription. However, in

eukaryotes, gene expression regulation is more complex and happen at several levels:

• At the epigenetic level: i.e., when the DNA is unwound and loosened from the

nucleosome to allow the transcriptional machinery to start the transcription

• At the transcriptional level, i.e., when the DNA is transcribed into RNA

• At the post-transcriptional level, i.e., after the transcription but before the RNA

is translated into protein

• At the post-translational level, i.e., after the RNA is translated into proteins.

In this work, we restrict the GRN at the transcriptional level where most of the genes

are regulated [20]: it is the transcriptional gene regulatory network (TRN). The TRN

offers a condensed view of the regulation. In what follows, the TRN represents the

GRN. Restricting the expression to the transcriptional level. Restricting our model

to transcription will ignore other types of regulation.

The GRN is generally represented as a graph. In this graph, the nodes are all

the genes acting in the regulation or even modules of co-expressed genes. The graph

can be directed or not. In this graph, a directed edge communicates the direct causal
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relationship from a transcription factor (the source) to its target gene (the sink). Note

that the edges can be signed, with a positive sign denoting activation and negative

sign repression.

Our research focuses on reverse-engineering the directed unsigned graph of the

interacting genes at the transcription level, forming the GRN. Our problem is a binary

classification problem in which we seek to infer whether or not there is an interaction

between each TF and the TGs. Our model does not report other information about

regulation, such as the interaction type (enhance or repress), the TF’s influence degree

on a TG, or the way TFs associate together.

Given that the GRN graph structure is unknown, the computational problem of

GRN inference amounts to reverse-engineering the graph structure (i.e., the list of the

edges) between all the TFs and genes. One uses as input for this computational prob-

lem the available high-throughput omics data, such as expression data or sequence

data. The output is the graph of the interactions between the TFs and the TGs.

1.4 Motivation

A model is anything that one uses as a substitute for a system we wish to under-

stand [21]. GRN modeling is an iterative process in which available high-throughput

data is used to build and refine a model (the links within the graph), representing a

GRN. Roughly speaking, the goal of GRN modeling is to answer the following four

principal questions:

1. Why do cells in organisms have different properties even though they all have

the same genetic information: the same DNA?

2. How does a cell in an organism know which genes to express at a particular

time?

3. What is the full range of behavior that the system will exhibit if some parts

stop functioning, or if the organism is exposed to different conditions?

4. How robust is the system under extreme conditions?

In a nutshell, modeling and reconstructing a GRN is essential for understanding,

visualizing, exploring, and analyzing the regulatory process [173, 21, 98].
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Understanding. Modeling a GRN provides scientists with a framework and an

abstraction at the genome-scale for understanding the principles behind gene regula-

tion. It allows automatic interpretation and greater scrutiny of a GRN, thus revealing

the hidden properties of the GRN. Furthermore, modeling a GRN is a way to link

cellular processes and states to physical states, thus helping to understand why, given

some conditions, we observe a particular phenotype. The different phenotypes that

an organism adopts originate from complex molecular processes occurring within the

cell, making it challenging to decipher simply through lab experiments. For example,

modeling facilitates an analysis of which cellular states lead to complex diseases such

as cancer. In a sense, modeling will help to underline or define the states associ-

ated with the observed disease. Moreover, modeling the GRN can serve as scaffold

information to extract local or global properties that, once demonstrated to be sta-

tistically different from random networks, can be related to a better understanding

of biological processes.

Analyzing and reasoning. By modeling a GRN, scientists have a mechanism for

examining the actions of many genes simultaneously under different given conditions,

thus enabling them to predict how cells behave under new conditions automatically.

Also, it has the potential to facilitate experiments conducted at a large scale, such as

simulations, that would alternatively need to be conducted in a wet lab experiment at

a much higher cost. Hence, lab scientists will benefit from engaging in modeling as a

part of their work. They will be better able to derive novel biological hypotheses about

how those conditions affect the molecular interactions that can be later investigated

in wet-lab experiments such as gene expression experiments. Moreover, scientists will

have a view of the GRN as a whole rather than a collection of single biological entities,

offering insights on how to optimize and control parts of the network while having

global knowledge of how it will affect the whole network. Finally, modeling and

reconstructing a GRN will facilitate information transfer from well-studied organisms

to unknown organisms.

Visualizing. Modeling a GRN will provide scientists a way to visualize extremely

large-scale complex relationships among elements operating in the GRN, thus serving

as a map or a blueprint of molecular interactions within the cells.
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1.5 Challenge in Gene Regulatory Network Infer-

ence

GRN inference is a daunting problem in Systems Biology. Scientists face several

difficulties. The following list gives an overview of the problems they face:

• The data obtained from high-throughput experiments are noisy. If we consider

microarray data, they contain a noise magnitude of 20−30% [2]. This noise has

several origins, such as measurement errors. The difficulty here lies in dissoci-

ating real gene expression values (real signal) from experimental noise [183]. In

Chapter 2, we present reverse-engineering methods that use various strategies

to infer a GRN from noisy expression data.

• The amount of experimental data available is minimal, as it is mainly the case

for expression data. Data availability restriction seems paradoxical with current

high-throughput facilities. Although it is now possible to experimentally inves-

tigate a considerable number of genes simultaneously, the number of samples

available has not and cannot be expanded in the same way because of limita-

tions such as cost. The results are datasets, where the number of genes is far

higher than the number of samples. It is known as the high dimension, low

sample problem [91]. When the number of dimensions increases, the amount

of data needed to represent the data accurately increases exponentially. This

phenomenon is known as the curse of dimensionality problem [40]. As such,

data obtained from gene expression experiments is sparse, compounding the

problem of the GRN model complexity stemming from the innate complexity

of gene regulation itself. Furthermore, the GRN model is very complex due

to the complexity of gene regulation itself. There is a strong relation between

model complexity, the amount of data required to construct the model, and the

constructed model’s quality. Due to this connection, the development of an ac-

curate and complex genome-scale GRN model is difficult. Some computational

methods break down when data is sparse [98]. In section Chapter 2, we will

discuss some statistical methods and the strategies they use to deal with the

problem of data sparsity. In Chapter 3, a new solution is proposed to cope with
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the data’s limited availability.

• It is challenging to distinguish direct from indirect regulation [82]; gene reg-

ulation is a complex process. For example, at a certain time a gene (name it

genea) within the cell may be activated by a TF (name it TFa) that we know is

a protein which originates from expression from another gene (name it geneb)

which in turn is activated by another TF (name it TFb). Consequently, TFb

will indirectly influence the expression of the former gene. Looking at the ex-

pression profile, it becomes difficult to recognize that the TFb does not directly

interact with the genea.

• High dimension data that is available today represent only a snapshot of a par-

ticular cell state and time interval of the cell’s life. So we miss several cell states.

Thus, data obtained is incomplete, resulting in a limited understanding of how

all functional units are put together in the cell [200]. Moreover, most lab mea-

surements (gene expression, proteins-DNA interactions) are on cell populations.

Even though they have the same genetic information, cells can exhibit a signifi-

cant difference in the amount of gene expression products. These measurements

result in an averaging of the behavior of the cells that may cause a loss of rele-

vant information such as relevant events that may occur in a particular cell but

may not be present at the global view [54].

• It is challenging to identify regulatory sequences because they are short se-

quences in the midst of a lot of noise. Moreover, those sequences are highly

variable, and they are repeated frequently in the genome. Some of those repeti-

tions do not represent regulatory sequence at all [230, 46, 30]. Several algorithms

that try to overcome this problem using different strategies to find TFBS in a

set of sequences have been proposed in the literature. In Chapter 2, we will

present some state of the art solutions.

• Our knowledge of the encoding regulatory elements in genomes remains elemen-

tary [218, 22]. It results in myriads of available sequences, of which only a small

fraction have been functionally annotated [30].

• The limited number of available well-studied organisms remains a significant

problem in the research. Thus, the number of well-reconstructed gold standard
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GRN remains limited. This constraint causes a problem, particularly when

scientists want to assess the inferred networks or assess the performances of the

methods used to infer the network. A solution to this problem is presented in

Section 2.4.3.

1.6 Limitation of State-of-the-Art

Gene regulatory network inference is a long-standing problem in systems biology.

Many solutions have been proposed in the literature, but they still present some

limitations that render the inference an unresolved problem. Among the limitations

we can list:

• The use of only one type of data for the inference of the network. In effect,

the rapid technological advances have led to the production of different types of

biological data that carry on complementary but incomplete knowledge about

the regulation; the GRN inference of networks using only one type of biological

data leads to incomplete and less accurate GRNs.

• Most existing algorithms for GRN inference based on expression profiles as-

sume a linear dependency among genes. However, the dependencies involved in

regulation are too complex to explain using a simple linear model.

• The majority of existing studies that reconstruct the GRN have focused on

inferring individual regulatory links. These algorithms try to elucidate all the

regulatory links between all the candidates’ genes, given the limited availability

of data, leading to many more false positives than true positives.

1.7 Contribution

The contributions of this research project are summarized as below:

• Implementation of a GRN inference method that uses Elastic Net for feature

selection.

• Implementation of a method that integrates several types of omics data with

expression data for GRN inference.
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• Reconstruction of the gene regulatory network that controls the cell cycle in a

model organism: human.

1.7.1 BENIN: Network Inference as Feature Selection using

Elastic Net

Gene regulatory network inference is one of the central problems in computational

biology. Researchers have developed computational methods to reverse-engineer the

GRN using varied mathematical models, ranging from Boolean networks [146], In-

formation theory [272], correlation [248], Bayesian networks [258] and differential

equations [36]. In this thesis, we introduce BENIN: Biologically Enhanced Network

INference. BENIN is a simple and intuitive inference method for integrating any prior

knowledge data with time-series expression data. BENIN states GRN inference as a

feature selection problem: finding the direct regulators of each gene. It assumes that

a target gene’s expression profile is a linear function of its direct regulators’ expres-

sion profiles. BENIN applies a regression technique called Elastic Net, combined with

a resampling technique to perform feature selection.

1.7.2 BENIN: Integration of Prior Knowledge data

The advent of high-throughput technologies such as DNA microarray, RNA-seq, or

ChIP-seq has triggered the production of a large variety of data that is stored in

diverse curated databases. This data drives machine learning challenges, particularly

for systems biology, such as GRN inference. Common problems in GRN inference

include the poor knowledge of cell function, the limited number of samples compared

to the number of genes being studied, and the data’s noisy nature.

Data integration is a common approach to improve inference. Researchers have

proposed several ways to combine expression data with prior knowledge available

in data such as pathways [216], protein-protein interactions [271], gene annotation

data [177], sequence data [80], literature [140] or functional association [223]. Most

use the Bayesian network framework to include prior information into GRN infer-

ence. However, the Bayesian approach has many drawbacks when applied to high-

dimensional data and requires deep knowledge of the prior for good integration. More-

over, many existing methods are designed for a specific type of prior knowledge.
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In this work, we used the Adaptive Elastic Net, a modified version of the Elastic

Net, to include prior knowledge. In this work, we consider different types of prior

knowledge data:

• Knockout (KO) and Knockdown (KD) gene expression data. They are ex-

pression data measured in an organism where a transcription factor is made

inoperative (KO expression data), or its expression is reduced (KD expression

data). This data type is integrated either through the z-score (for KO data) or

the probabilistic framework (for KD data).

• ChIP-seq data. They report regions in the genome where a specific transcrip-

tion factor (TF) will physically bind to the DNA to, for example, control the

expression of proximal genes. They are obtained through in vivo experiments.

These kinds of data are integrated through the computation of a score that

measures potential binding between each TF and all the genes in the genome.

• Functional annotation, which reports the gene ontology (GO) annotation for

a gene’s function. For a specific gene, the annotation is a set of terms that

captures the gene’s current biological knowledge. We consider the functional

similarity between genes by comparing their functional annotations and com-

puting a similarity score, which will be integrated into BENIN.

• TFBS, which are reported in term matrices, which store binding specificity for

a specific TF. We used this data to scan the genome’s region of interest, and the

result of the scanning process is integrated through a probabilistic framework

into BENIN to boost the network inference.

• Genome-wide location data use p-values to report physical interactions between

TFs and genes of the organism of interest. We integrated genome-wide location

into BENIN in a probabilistic manner.

The probabilistic framework is defined through the Bayes formula. BENIN allows

for control of the impact of the prior on the model. BENIN is generic enough to

integrate any type of data.

BENIN allows the integration of regulatory information across species. Compar-

ative studies have demonstrated that GRNs from closely related species may share
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conserved topological properties known as kernel components [64, 100, 227]. GRN

inference in an organism can thus leverage knowledge and findings of regulatory net-

works from other well-known organisms. The key idea behind information transfer

among related species is the conservation of biological function among orthologous

genes. Hence, the assumption is that orthologous transcription factors regulate or-

thologous genes. The challenge here is to define “True” orthologous genes for a reliable

transfer of information. Orthology should be distinguished from paralogy in which the

biological function is not preserved. Many existing algorithms infer the GRN either

based on the expression data alone or through comparative evolution solely. How-

ever, integrating both strategies may help refine GRNs inferred from expression data

and, besides, will enrich the network with new potential regulatory interaction. We

extended BENIN to include orthologous regulatory information from model organisms,

through orthology-based information transfer.

1.7.3 Application of BENIN to Human cell Cycle

The cell cycle is a fundamental biological process that occurs in all living cells and

is essential for their survival. Cell division is a highly regulated process. Proper

regulation of gene activities during the cell cycle is critical for the well functioning

of several cellular processes and accurate transmission of the genetic information.

A disruption to this regulation may lead to complex and irreversible phenotypes.

Therefore, it is crucial to unravel the network of interacting molecules controlling

the cell cycle to get insights into both normal and abnormal cell divisions related to

diverse pathological phenotypes.

We used BENIN to infer the GRN that controls the cell cycle of the HeLa cell cycle.

The HeLa cell line is a cancerous human cell line. We integrate prior knowledge from

diverse sources: ranging from TFBS information, knock-down gene expression data,

functional annotation, and ChIP-seq data. Several studies have suggested conser-

vation of the general mechanism of cell cycle regulation among vertebrates [18, 55].

Hence, we refined the regulatory network inferred from expression data and prior bi-

ological knowledge with regulatory information from orthologous genes in the mouse

model organism through sequence orthology detection.
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1.8 Organization of the Thesis

The thesis is structured as follows:

Chapter 2 details the background notions needed to comprehend this disserta-

tion. It then follows an analysis of the data available to overcome this challenge

and the strategies available to evaluate GRN inference algorithms. Then it explores

the different methods that have been undertaken to reconstruct the gene regulatory

network.

Chapter 3 introduces BENIN, a GRN inference algorithm for multiple data inte-

gration, and details its results on the DREAM4 challenge.

Chapter 4 presents the results of applying BENIN to infer the gene regulatory

network that controls the Human HeLa cell cycle. It also offers an extension of BENIN

to integrate regulatory information from other model organisms through sequence

homology for the gene regulatory network inference.

Chapter 5 concludes this thesis by highlighting our different results, findings, and

points for future work.
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Chapter 2

Background

With the availability of a deluge of genomic data, we now witness many algorithms’

emergence to tackle the GRN modeling. The chapter covers the mathematical back-

ground notions such as Bayesian networks, feature selection, and regression. The

chapter gives an overview state of the art methods for gene regulatory network infer-

ence. Hence, Section 2.1 defines machine learning and statistical notions. Section 2.5

presents the three main methodologies introduced in the literature for regulatory net-

work inference. We give for each methodology some state-of-the-art works proposed

in the literature.

2.1 Background for Network Inference

This section highlights critical aspects of statistics and machine learning relevant to

this thesis: Bayesian networks; the notion of mutual information; Elastic Net and

regression; the vector autoregressive model; the Granger causality; the stationary

bootstrap; a position weight matrix; a consensus sequence and finally a DNA motif.

2.1.1 Bayesian Network

Graphical models are robust and extremely popular tools to model uncertainty[134].

They allow us to deal with uncertainty with the use of probability theory and cope

with complexity through graph theory. The most common type of graphical model

is the Markov network and the Bayesian Network, also known as the causal network.
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In this thesis, we only consider Bayesian Network; the Markov network is out of the

thesis’s scope.

Let consider a set U = {X1, X2, · · · , Xn} of discrete variables, where each Xi may

take values from a finite set. A Bayesian Network is a representation of the joint

probability distribution of a set of random variables U . More formally, a Bayesian

network is defined as a pair N = 〈G,Θ〉. G is a directed acyclic graph whose ver-

tices are the random variables Xi, and the edges represent the direct probabilistic

dependencies between the variables. G encodes an independence assumption, which

states that each variable Xi is independent of the variables in {X1, X2, · · · , Xi−1}
given its parents PaG(Xi) (set of variables connected to Xi in G) in G. The second

component, Θ, describes the conditional distribution for each Xi given PaG(Xi). The

overall model defines an unique joint probability distribution on X1, X2, · · · , Xn such

that:

P (X1, X2, · · · , Xn) = Πn
i=1P (Xi|PaG(Xi)) (1)

Bayesian networks are suitable for modeling and learning causal relationships. An

extension of Bayesian Network was introduced, which allows handling time series or

sequential data: the Dynamic Bayesian Network (DBN) [167, 75]. It allows representing

dynamic processes that evolve through time. It extends the set of random variables

in the model (in the graph). Now, each node in the graph represents a variable at a

specific time point t. In this new graph, a node can only be connected to another node

in subsequent time points. This restriction is to ensure the DAG nature of the graph.

In a DBN, the state of variable at time time T = t + 1 is conditionally dependent

on the values of its parents through the interval T = 1 to T = t. More formally, let

X t+1
i a random variable Xi at time T = t + 1; let PaG(Xi)

[1,t] the set of Xi parent

variables through the time interval [1, t], the new joint distribution is defined as:

P
(
X t+1

1 , X t+1
2 , · · · , X t+1

n

)
= Πn

i=1P (X t+1
i |PaG(Xi)

[1,t] (2)

2.1.2 Mutual information

Mutual information is a positive quantity that measures how much a random variable

X tells us about another Y and vice versa: it measures the information shared by

both variables. It is generally used as a powerful tool to measure the nonlinear

dependency between two variables. Let X with alphabet X a random variable with
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probability distribution p(x) = Pr{X = x}. Let Y with alphabet Y a random

variable with probability distribution p(y) = Pr{Y = y}. The mutual information

I(X;Y ) between X and Y is defined as:

I(X;Y ) =
∑

x∈X,y∈Y

P (x, y) log
P (x, y)

P (x) P (y)
(3)

where P (x, y) the joint distribution of X and Y . The mutual information is a

symmetric measure. We have:

I(X;Y ) = I(Y ;X) (4)

A value of I(X;Y ) = 0 indicates that the two variables are independent, and a high

value indicates a high correlation between the variables.

2.1.3 Regression Technique

Linear regression is a statistical method for modeling the linear relationship between

a dependent variable and a set of predictor variables. This linear relationship takes

the form ~y = X~β + ~ξ, where ~y = (y1, · · · , yN)T , is an N vector representing the

dependent variable with yi ∈ R. X = (~x1, · · · , ~xN)T , ~xi ∈ RM , is the Nx M matrix

of explanatory variables, and, ~β = (β0, β1, · · · , βM)T is the M coefficients vector

and finally, ~ξ is the error vector of size N . For simplicity we will assume that X is

standardized, i.e.
∑N

i=1 xij = 0, 1
N

∑N
i=1 x

2
ij = 1 for j = 1, 2, · · · , N

Usually, an estimation ~βOLS = (XTX)−1XT~y of ~β is obtained by minimizing the

residual sum of square (RSS ) defined in Equation 5

RSS(~β) =
N∑
i=1

(yi − ~xTi ~β)2. (5)

However, when the number of variables M becomes very large compared to the

number of samples N, i.e., M � N (high dimensional problem), many of these

variables may be irrelevant to the output, and a large number of them are highly

correlated (multicollinearity problem). Therefore, the matrix XTX will be singular

(the matrix is not invertible), and the estimated ~βOLS will no longer exist [69]. More-

over, the multicollinearity in the input matrix causes the OLS estimation not to be

robust [160]. In fact, in this setting, the problem becomes ill-posed and small changes
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in the input matrix may lead to big changes in the OLS estimate. Hence, we can no

longer use the vector that minimizes Equation 5 as an estimation of ~β [174, 69]. All

these may suggest a parsimonious coefficient vector ~β, such as keeping the model a

smaller set of the most relevant predictors, leading to a more relevant and meaningful

model.

Several solutions have been proposed in the literature to tackle the problem by

introducing a penalty to the residual sum of square. Thus, instead of minimizing

Equation 5 we minimize Equation 6,

RSSP = RSS(~β) + Pλ(~β) (6)

where Pλ(~β) is a function that penalizes the values of the parameters we are looking

for (here ~β), and λ is a parameter that controls the trade-off between penalization

and likelihood. Different penalties have been introduced in the literature, but we will

only consider three of them. Interested reader can refer to [163, 39, 68] for a detailed

description of other penalization techniques.

2.1.3.1 Ridge Regression

The Ridge regression was introduced by Andrey Tikonov [101]. It minimizes the l2

penalized RSS described in Equation 7.

~βridge = argmin
~β

RSS(~β) + λ||~β||22

= arg min
~β

RSS(~β) + λ
M∑
j=1

β2
j

(7)

The parameter λ ≥ 0 controls the strength of the penalty, which increases with the

values of λ. λ is dependent on the data, and it is generally estimated with data-driven

methods like cross-validation.

The Ridge penalization is ideal when dealing with many predictors variables, each

having a small effect on the dependent variable. It prevents the low prediction of the

regression coefficients when many of the predictors are correlated. The Ridge shrinks

the coefficients of the correlated predictors equally towards zero [72, 169] without

setting them to zero. As a consequence, Ridge regression does not select the most
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informative predictors. Instead, it minimizes their impact on the model, which may

still be uninterpretable.

2.1.3.2 LASSO

The limitation of the Ridge has led to the introduction of the LASSO of Tibshi-

rani [228]. The LASSO uses L1 -norm to penalize the coefficients vector ~β and mini-

mizes the optimization problem describes in Equation 8.

~βLasso = argmin
~β

RSS(~β) + λ||~β||1

= arg min
~β

RSS(~β) + λ
M∑
j=1

|βj|

(8)

The LASSO shrinks many unimportant predictors coefficients exactly to zero, with

only a small subset of nonzero coefficients. Since it selects some variables among the

set of predictors, the LASSO can be regarded as a feature selection method. λ controls

the sparsity of the model. The LASSO regularization allows shrinking unimportant

variables to zero. The obtained model is thus more interpretable. Like with Ridge

regression, LASSO is good at dealing with many input variables. However, it presents

some drawbacks. The LASSO is not efficient when many of the predictors are corre-

lated. In this situation, it will randomly choose one of the predictors amongst the

correlated predictors that will be included in the model. Hence, if all the predictors

are correlated, the LASSO will break down. Furthermore, when M � N , LASSO selects

at most N variables before it saturates.

2.1.3.3 Elastic Net

More recently, a new regularization has been proposed to solve the LASSO’s limitations:

the Elastic Net of Zou and Hasti [274]. It combines the idea of the Ridge and LASSO

regression and solves the optimization problem described in Equation 9.
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~βENet = argmin
~β

RSS(~β) + λ1 ||~β||22 + λ2 ||~β||1

= argmin
~β

RSS(~β) + λ
[
(1− α) ||~β||22 + α ||~β||1

]
= arg min

~β

RSS(~β) + λ

[
(1− α)

M∑
j=1

β2
j + α

M∑
j=1

|βj|

]
, (9)

where α = λ2

λ1+λ2
and λ = λ1 + λ2. As previously, λ controls the degree of regu-

larization while α controls the tradeoff between ridge and lasso regression. Elastic

Net is equivalent to Ridge regression for α = 0 and to LASSO when α = 1. By

combining both regularizations, the Elastic Net integrates the advantages of both

techniques and overcomes the drawbacks of each regularization taken separately. The

l1 part performs the variable selection, while the l2 part favors the grouped selection

and stabilizes the solutions path with respect to random variable selection there-

fore, improving the solution. With the grouping effect, the Elastic Net ensures

that the group of correlated variables will get approximately the same magnitude of

coefficients. When M � N the Elastic Net is capable of selecting more than N

variables[169]. However, the Elastic Net lacks the oracle property. From the work

of Fan and Li [67], a method is said to have the oracle property if it can asymptoti-

cally estimates the zero coefficients of the true parameter vectors as exactly zero with

a probability close to one, as if the true zero coefficients were known beforehand; and

it remains consistent with the estimate of the nonzero coefficients.

2.1.3.4 Adaptive Elastic Net

Several efforts have been made to extend the Elastic Net to remedy the lack of oracle

property. The Adaptive Elastic Net was introduced by Zou e.t Hastie [273, 72]

which solve the optimization problem in Equation 10:

λ

M∑
j=1

νjPα (βj) = λ

M∑
j=1

νj(1− α)β2
j + α

M∑
j=1

|βj| , (10)

where νj (j = 1, 2, · · · , M) are the adaptive data driven weights. These weights allow

applying different levels of shrinkage to the predictors variables regarding the prior
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knowledge or bias over these variables [72]. The idea is to give large weights νj to

unimportant variables, and thus to heavily shrink their corresponding coefficient; on

the other hand give small weights νj to important variables to slightly shrink their

associated coefficients. Therefore, the larger is νj the more penalized will be βj.

2.1.4 The p-order Vector Autoregressive Model

The vector autoregressive model (VAR) is one of the easiest models and the most used

to analyze and capture interdependencies among multiple time series. In a VAR(p)

model, each variable is expressed as a linear combination of a constant c, the p lags

of its own values as well as the p lags of the other variables in the model and finally,

an error term ~ξ. Let ~xt = (~x1,t, ~x2,t, · · · , ~xM,t)
T be an M−dimensional multiple time

series data vector; ~xt is assumed to be generated from a VAR(p) if it can be written

as in Equation 11.
~x1,t

~x2,t

...

~xM,t

 =


c1

c2

...

cM

+


a1

1,1 a1
1,2 · · · a1

1,M

a1
2,1 a1

2,2 · · · a1
2,M

...
...

. . .
...

a1
M,1 a1

M,2 · · · a1
M,M




~x1,t−1

~x2,t−1

...

~xM,t−1

+ · · ·+


ap1,1 ap1,2 · · · ap1,M

ap2,1 ap2,2 · · · ap2,M
...

...
. . .

...

apM,1 apM,2 · · · apM,M




~x1,t−p

~x2,t−p
...

~xM,t−p

+


~ξ1,t

~ξ2,t

...

~ξM,t


(11)

or equivalently

~xt = ~c + A1 ~xt−1 + · · · + Ap ~xt−p + ~ξt, (12)

where p denotes the lag length or the order of the VAR model; Ai is a MxM

matrix of coefficients, M represents the number of variables in the time series; ~ξt is a

M−dimensional white noise vector, i.e E( ~ξt) = 0, E( ~ξt, ~ξ
′
t) = Σ and E(~ξt, ~ξ

′

t−k) = 0.

From the system of equations in Equation 11, each variable in the time series can be

separately written as follows:

~x1,t = c1 + a1
1,1~x1,t−1 + ~x1

1,2x2,t−1 + · · ·+ a1
1,M~xM,t−1 + · · ·+ ap1,1~x1,t−p + ap1,2~x2,t−p + · · ·+ ap1,M~xM,t−p + ~ξ1,t

~x2,t = c2 + a1
2,1~x1,t−1 + a1

2,2~x2,t−1 + · · ·+ a1
2,M~xM,t−1 + · · ·+ ap2,1~x1,t−p + ap2,2~x2,t−p + · · ·+ ap2,M~xM,t−p + ~ξ2,t

...

~xM,t = cM + a1
M,1~x1,t−1 + a1

M,2~x2,t−1 + · · ·+ a1
M,M~xM,t−1 + · · ·+ apM,1~x1,t−p + apM,2~x2,t−p + · · ·+ apM,M~xM,t−p + ~ξM,t

(13)

Equation 12 can be solved by any regression algorithms: either OLS or penalized

regression algorithms.
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2.1.5 Granger Causality

The notion of Granger causality [84] is a widely used concept introduced by the

Nobel prize-winning economist Clive Granger, to analyze the relationship between

time series. It is based on the intuition that a cause always comes before its effects.

Hence, a time series variable ~yt is said to Granger cause another ~xt, if the prediction

of ~xt in term of its own lagged values and the lagged values of ~yt are better than the

prediction of ~xt based only on its own lagged values. This means that, in the general

VAR(p) process described in Equation 12, a variable ~xi,t is called a Granger cause of

another ~xj,t if at least one element of Aτ=1,··· ,p(j, i) is different from zero.

2.1.6 The Stationary Bootstrap

Bootstrapping is a powerful statistical method introduced by Efron [60] for estimating

the distribution of an estimator or statistic test from resampled independently and

identically distributed data (iid). However, the method no longer works when con-

sidering more complex dependent data such as time-series data as the iid assumption

breaks down. The situation is more complicated when considering the time series be-

cause the bootstrap samples should be built in a way that captures the dependencies

in the data. The work of Efron [60] has been extended to account for dependencies

in the data when performing bootstrapping. Several algorithms have been proposed

in the literature. However, in this thesis, we will only consider one of them, which

preserves the stationarity of the original time series: the stationary bootstrap [180].

Interested readers may refer to review papers [137, 102] to have a deeper knowledge

about existing algorithms for bootstrapping time series. Note that a time series is sta-

tionary if it fulfills the following conditions: the mean, variance, and autocorrelation

are constant over time. It is an important property to preserve as it is an assumption

underlying many statistical procedures used in time series analysis.

The general idea of the stationary bootstrap is that a pseudo time series is gen-

erated by resampling with replacement from the original data and blocks of random

size. The blocks sizes follow a certain distribution. In the original version of the

algorithm the authors chose the geometric distribution. The algorithm assumes that

the original time series is stationary and weakly dependent. A time series ~xt is said

to be weakly dependent if we have corr(xt, xt+h) = 0, for h −→ ∞. To better
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explain the algorithm, let ~xt=1,2,··· ,N = (x1, x2, · · · , xN) the original time series and

Bil = {xi, xi+1, · · · , xi+l−1} a block of observations starting from xi. The algorithm

samples with replacement a sequence of blocks of random length Bi1l1 , Bi2l2 , · · · until

the final pseudo time ~x∗t = x∗1, x
∗
2, · · · , x∗N hasN observations. The first l1-observations

are determined using the first block Bi1l1 the next l2-observations by Bi2l2 and so on.

Assuming a geometric distribution for iid random variables l1, l2 · · · lm representing

the blocks lengths, we have Pr(li = m) = (1 − p)m−1p, for m = 1, 2, · · · and p a

fixed number in [0, 1]. The sequence i1, i2, · · · , im is a sequence of iid variables with

uniform distribution over [1, n] representing the starting position for a block. The

following lines summarize the stationary algorithm:

1. Choose p uniformly from [0, 1] .

2. Assign to i a random number from 1 to N and pick the ith element in the

original time series and add it to the pseudo time series.

3. Randomly pick a number from a uniform distribution over [0, 1] and assign it

to j.

(a) if j > p, then pick the next element of the original time series as the next

one in the pseudo time series. Note that the algorithm wraps around the

original time series. Thence, if i = N then we pick the 1st element of the

original time series as our next element.

(b) if j ≤ p then go to step 2.

4. Repeat from step 3 until the pseudo time series has N observations.

2.1.7 Representation of Sites

2.1.7.1 Consensus Sequence

A consensus sequence is a string over the nucleotides alphabet A, C, G, T and an

extended alphabet (generally from the IUPAC alphabet [44]), which shows variable

degenerate or conserved nucleotides at each position of a motif representing the bind-

ing sites of a transcription factor. Note that degenerate base symbols are IUPAC

symbols used to represent the DNA position that can have several alternatives. They
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are used to report positional variation in situations such as DNA sequencing errors,

consensus sequences, or single-nucleotide polymorphisms. Table 22 gives the list of

IUPAC degenerate symbols. An example of consensus is the sequence depicted in

Figure 6a. It describes the consensus sequence for the TrpR transcription factor.

2.1.7.2 Position Weight Matrix

A position weight matrix (PWM) is a model widely used to depict the DNA binding

preferences (motifs) of a transcription factor. The model is a matrix W. In the

matrix, each row corresponds to a letter in an alphabet, e.g., amino acids or nucleic

acids, over the sequences, and each column corresponds to a position in the motif.

This matrix defines the probability of each letter in the alphabet to occur at a specific

position of the motif. The coefficient W[i, j] gives the score of having ith letter of

the alphabet at position j of the motif. This representation of a biological motif was

introduced by American geneticist Gary Stormo and colleagues in 1982 [222] as an

alternative to consensus sequences (to overcome their limitations).Figure 6b shows

an example of the PWM for the TrpR transcription factor that regulates the trp

regulon’s expression.

2.1.7.3 Sequence Logo

The sequence logo is a graphical technique for summarizing the alignment of a set of

sequences. These sequences can be, for example, protein sequences, RNA sequences,

or DNA sequences. The sequence logo is a series of stacks of letters. Each stack shows

how well a letter is conserved at a position. This conservation is computed through a

score based on Shannon entropy [205]. At each position, individual letters’ height is

proportional to its frequency at the specific position of the alignment. Sequence logos

are used to represent TFs DNA binding. Figure 6c shows an example of a sequence

logo representing the binding site of the TrpR TF in E.coli. They are mainly used to

visualize a large number of sequences that share a common conserved pattern.
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(a) Consensus sequences

(b) Position specific probability matrix

(c) Sequence logo

Figure 6: Different representations of binding sites

(a) Alignment of TrpR binding sites in E. coli and the derived consensus sequence: the

nucleotides consensus sequence and the IUPAC consensus sequence obtained with MEME. In

the latter, a letter ’m’ means the presence of ’A’ or ’C’, a letter ’K’ means the presence of

’G’ or ’T’, and finally, a letter ’r’ means the presence of ’G’ or ’A’ at the considered position

in the motif. (b) Sequence logo representation obtained with MEME web tool. The relative

height of the letters indicates their frequency at each position measured in bits. (c) Position

specific probability matrix (PSPM) that is MEME’s motif representation. For each position

in the motif, it gives the observed frequency (“probability”) of each possible letter.
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2.2 Feature Selection

Given data with many variables, feature selection is defined as a method that selects

the maximal subset of most important features to the output, i.e., the subset of vari-

ables that conveys information about the output. The objectives of feature selection

are manifolds:

• Reduce the model’s complexity and improve its quality to make it easier to

interpret by removing redundant and noninformative variables.

• Understand the process underlying the data.

• Reduce overfitting.

• To speed up computation and make a more cost-effective model.

Feature selection methods are split up into four categories depending on how they are

combined with the model learning process [194]: filter methods, wrapper methods,

embedded methods, or ensemble methods.

2.2.1 Filter Methods

Filter methods consider the intrinsic properties and statistical characteristics of the

data to assess their relevance. They are independent of the learning algorithm. In

this category, weights are assigned to each variable based on their dependency on

the problem/ class label. These weights are generally computed using correlation-

based methods or information theory-based methods. Then, generally, the features

are ranked regarding the computed weights, and a threshold is applied to get the

subset of selected features. Otherwise, a cost function is optimized to find the subset

of relevant features. The simplicity of these methods makes them scalable to the data.

Filter methods are divided into two categories: univariate and multivariate methods.

In univariate methods, the relevance of each variable is evaluated separately according

to the selection criterion. There are methods like t-statistics, correlation methods,

fold change ratio, B-statistics. In multivariate methods, the interaction between the

features is considered when evaluating the relevance of features. These methods are
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among others, Analysis of the Variance (ANOVA), mutual information, or Minimum

Redundancy Maximum Relevance (MRMR).

2.2.1.1 Differential Expression Analysis:

Differentially expressed genes (DEG) analysis consists of comparing the expression

profiles of genes among several groups or conditions in designed experiments. This

problem is challenging and important in gene expression analysis. It allows filtering

informative genes, which is valuable for drug discovery, biomarker identification, or

even inference of gene regulatory networks. DEG analysis is performed in two main

steps: ranking and selection. In the ranking, a filter-based feature selection method

(statistic) is defined to capture the variability of the expression per gene (between

the conditions). The statistics are used to compute a score that measures the degree

of differential expression. The higher the score, the more the gene is differentially

expressed. In selection, a methodology needs to be defined (e.g., setting a threshold)

to describe what are “significant” differentially expressed genes. Several feature se-

lection techniques have been proposed for DEG analysis[117], among which we can

list:

• Fold Change: it is the simplest method for DEG analysis, in which we compute

the ratio between the expression mean of the two compared groups. Thus we

have

FC = log2(µT (g))− log2(µC(g)) (14)

where µT (g), respectively µC(g), is the average expression of gene g in condition

T , respectively in condition C.

• t-statistic: which compares the distribution of expression values of genes in

two conditions through the means of expression data in the two conditions/

groups. It is computed as :

µT (g)− µC(g)t√
σT (g)2

N1
+ σC(g)2

N2

(15)

where σT (g) (respectively σC(g) ) is the standard deviation of the expression of

gene g in condition T (respectively in condition C); N1 (respectively N2) is the

number of samples in condition T (respectively in condition C).
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• The Empirical Bayes Statistic [215]: in this method, statistical tests like the

above t-test is defined within a Bayesian framework, and the empirical Bayes is

used to estimate the error in differential expression. This method results in more

stable estimations in case of low samples. This method is used in R-package for

DEG analysis like Limma [188].

• Other statistics tests like the Wilcoxon rank sum test [235], the F-statistic have

also been used for DEG analysis.

2.2.2 Wrapper Methods

Wrapper methods consider the selection of a subset of features as a search problem.

Hence, different subsets of features are built and tested iteratively. Evaluating a

specific subset of features is obtained by training a model with only the subset of

features and testing its performances. The main advantage of these methods is that

they interfere with the model learning. Moreover, they consider interaction with other

variables. However, the computational cost severely impedes these methods as the

number of features increases, so the search space. Wrapper methods are not widely

used for expression analysis as they are prone to overfitting due to the low sample

size of expression data.

2.2.3 Embedded Methods

Embedded methods include the selection of the features while the model is learned.

This category’s advantage is that the selection interacts with the model learning and

takes into account interaction with other features. They offer a good compromise

between filter and wrapper methods. They are far less computationally expensive

than wrapper methods and overcomes the limitation of filter methods. A popular

method in this category is the support vector machine method combined with recur-

sive features elimination (SVM-RFE) [90]. As presented in Section 2.1.3, penalized

regression can be seen as an embedded feature selection method. In effect, some

penalization methods such as Elastic Net allow for shrinking coefficients precisely to

zero, and in this way, features with zero coefficients are removed from the model.
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2.2.4 Other Methods

Recently, researchers have started to combine several types of features selection meth-

ods (embedded, filter, and wrapper methods) using hybrid or ensemble methods.

Hybrid methods sequentially combine several features selection methods that use dif-

ferent concepts. Ensemble methods are based on the principle that combining several

experts’ performances is better than the performance of a single expert taken sepa-

rately. The aim is to combine different feature selection technologies’ strengths, as

they may perform differently on variable datasets.

Feature selection is a crucial task, especially for high dimensional data, i.e., where

the number of variables is very high compared to the number of observations. In fact,

in this situation, it is difficult to look at the variables and say which are relevant and

which are not. On the other hand, it is difficult to build and interpret a model that

will consider all the variables.

2.3 Resources Available for Network Inference

With the advancement of high-throughput experiments, a disparate type of biological

data from diverse sources is now available for GRN inference (modeling).

Gene expression data. In gene expression measurements, one determines the level

at which a particular gene is expressed within the cell or tissue. It can be done at

two main levels:

• mRNA level: at this level, gene expression is determined by the amount of

mRNA. It is the transcript abundance.

• Protein level: the gene expression level, corresponds to the quantity of protein

present in the cell. It is protein abundance.

However, the protein abundance measurement is much more challenging to per-

form than transcript abundance measurements. Thus, gene expression via mRNA

abundance is widely used. The transcript abundance is generally measured with

high-throughput technology such as microarray experiments.
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The microarray experiment is a widely used high-throughput technique for mea-

suring the transcript abundance of a thousand genes simultaneously. Therefore, it

enables researchers to establish expression profiles of the genes of a cell. A microarray

is a collection of spots attached to a solid surface (a chip). Each spot corresponds to

a gene and comprises a million copies of a single-stranded fragment of DNA (gene)

called a probe. Each DNA fragment (probe) is designed to uniquely complement an

mRNA. The mRNAs are extracted from the genome of interest and then labeled with

a fluorescent label and finally spread over the chip. The complementary sequences

bind together (hybridize), and the unbound sequences are washed away. The hy-

bridized probes produce a fluorescent signal whose intensity is proportional to the

number of copies of probes hybridized on the spot. The gene’s expression level can

be determined by its corresponding spot’s fluorescence intensity, with a bright spot

analogous to high expression and a dark spot to low expression. Figure 7 summarizes

the microarray experiment for gene expression measurement.

There exist two main types of expression data depending on when the microarray

experiment is carried out after the cell has been subject to some perturbations. Hence,

we discern:

• The steady-state microarray data that are acquired when the cell reaches the

steady-state.

• The time series data measured at different equally spaced time points after

perturbations are applied to the cell, and before the cell goes back to its steady-

state.

There exist several databases that store gene expression data, but the most im-

portant database is GEO (Gene Expression Omnibus) [59]. It is publicly accessible

and stores different types of gene expression data for many organisms obtained from

different sources.

As microarray analyses are costly, the number of samples in datasets is far smaller

than the number of genes, causing significant difficulties for GRN inference, as dis-

cussed in Section 1.5. This situation has encouraged researchers to adopt some

strategies that generate realistic in silico expression data from a simulated GRN.

The simulated network can either be random graphs models or a part of the right

network. Several methods have been proposed to generate simulated expression data,
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Figure 7: DNA microarray experiment

This figure summarizes the process of measurement of the level of the genes’ expression

within the cell using a DNA microarray experiment. First, the mRNA is isolated from a

sample of interest. The next step consists of labeling the transcripts. To do so, one performs

reverse transcription to produce the complementary DNA (cDNA) fragment of the mRNA.

The cDNA is then labeled with a fluorescent color. In the next step, the labeled cDNAs are

placed onto the microarray, where they will hybridize with their complementary sequences

attached to the microarray. The cDNAs that do not hybridize are washed away. In the

last step, the fluorescence’s intensity (which corresponds to the proportion of cDNAs that

hybridized to the probe) of each probe is measured and reported as genes’ expression level.
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but ordinary differential equations (ODE) are widely used. Many softwares have

been developed exploiting the proposed methodology, among which we can mention

SynTReN [238] or GeneNetWeaver [202].

Nowadays, with the advent of high throughput technologies that have allowed the

sequencing of the genome of many species, new methodologies have emerged that

enable deep and rapid investigation of the transcriptome. One of these methods is

the RNA-seq (RNA sequencing), which uses sequencing to measure the mRNA level

present in biological samples. A typical RNA-seq experiment works as follows: the

mRNAs present in the medium are transformed into cDNA (complementary DNA).

Then Tags are added to these cDNA fragments to allow later sequencing using short-

read sequencing. It results in millions of short sequences (read) that correspond to

each cDNA. The reads are then mapped to the original genome. The expression values

are the normalized count that have been mapped to genes in the genomes. Figure 8

summarizes an RNA-seq experiment. Note that RNA-seq data offers several advan-

tages like measurement of expression in any species, even in non-model organisms,

detecting novel genes.

Protein-DNA interaction sequences data: As presented before, protein-DNA

interactions occur when a protein (TF) binds to a DNA sequence (regulatory se-

quence) located upstream to the gene(s) it controls. Protein-DNA interaction pref-

erences are transcription factors binding sites (TFBSs). They can be determined

either through expensive wet-lab experiments or through computational methods.

In Section 2.5.1 we will present computational methods for identifying the TFBS.

TFBS are generally modeled as matrices. For now, we will focus on experimental

techniques. Several lab techniques exist to identify TFBSs. Chromatin immuno-

precipitation (ChIP) coupled with either microarray (ChIP-chip) or with sequencing

(ChIP-seq) is the most used method. Several databases exist for experimentally re-

ported TFBS sequences and TFBS motifs (see Section 2.5.1 on what has been done to

define the TFBS motifs). Amongst them, there is for example RegTransBase [130],

which is a publicly available database that store TFBS sequences on prokaryotes,

and TRANSFAC [162] a private store of TFBS sequences and motifs about human,

cis-BP [245] which stores information about TFBS for several species (≈ 700 species)

and gather biding information from several other curated database like JASPAR [198].
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Figure 8: RNA-seq experiment

This figure summarizes the process of measurement of the level of the

genes’ expression within the cell using an RNA-seq experiment. This

image is from http://bio.lundberg.gu.se/courses/vt13/rnaseq.htm

l. A typical RNA-seq experiment works as follows. The mRNAs are

collected from the cells. They are then fragmented. Then the mRNAs

fragments are converted into double-stranded DNA. Sequencing adaptors

are added to the sequences. These adaptors will help the sequencing

machine to recognize the fragment. In the next step, the DNA fragments

with sequencing adaptors are amplified. Then the library is verified to

check, for example, for the size of the fragments. The fragments/read are

subsequently sequenced. Finally, the reads are aligned to a genome, and

then one counts the number of aligned reads per genes.
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These databases generally store information about the TFs associated with each bind-

ing information data.

Genomic Data: We choose to divide this type of data into two main categories.

In the first category, we have the nucleotide sequences from the DNA of organisms.

GenBank [15] from NCBI (National Center for Biotechnology Information) is the pub-

licly available reference database for DNA sequences. Other well-curated databases

store information about the genome, such as, UCSC genome browser [131], which is a

web tool for displaying user-defined parts of the genome. It stores information about

several organisms like Human, mouse, yeast. It also allows retrieving diverse data re-

lated to genes such as their sequences, their promoter regions, their symbols. Another

example of such databases is Ensembl [113], which is dedicated to vertebrates. Like

the UCSC genome browser, it allows genome annotation, sequence alignment, regula-

tory function prediction. In the second category, we have protein sequences. UniProt

(Universal Protein resource) [237] is a freely available database and a reference for

proteins sequences. Protein sequences are out of the scope of this thesis

Gene perturbation data. This data can be obtained from different techniques:

• Through gene knockout (KO), which is a technique in which one or more of

an organism’s genes are made inoperative or deleted, and genes expression is

next measured to capture changes in the system. There are several methods to

inactivate a gene, such as mutation. The gene knockout is used to determine

gene function, and genes targets if the gene knocked out is a TF.

• Through gene knockdown, which is a technique in which the expression of one

or more of an organism’s genes is reduced. It is performed through experiments

in which RNA interference (RNAi) is used to reduce a gene’s expression. Like

with gene KO, it allows determining genes function and target of a TF in case

it is knocked down.

Organism specific database: Researchers have put the effort in gathering di-

verse biological information about model organisms such as Escherichia coli, and

Human, Saccharomyces cerevisiae into curated databases. This information can be
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functional annotations, sequences, regulatory associations, and expression datasets.

These databases help scientists in their everyday work. An example of such databases

is SGD (Saccharomyces Genome Database) [99] which is the database for Saccha-

romyces. We also have MGI [29], which is the official resource database for the labo-

ratory mouse, providing information such as genomic data, to facilitate the research

on human health.

Other type of data: Available data for network modeling are interactome data.

An organism’s interactome is formed by the full set of the interactions (physical,

biochemical, or functional) that can occur among all its macromolecules and metabo-

lites such as proteins, RNA molecules, or even gene sequences. Those interactions

include, for example, protein-protein, DNA-protein, RNA-protein interactions. Many

databases exist that gather known or predicted interactions. Some of these databases

provide information about regulatory proteins and their regulated genes (an exam-

ple is YeastTract [166]). Others give information about direct or indirect association

among proteins (PPI) (an example is the STRING database [118]).

Another type of data relevant to the study genes and their regulatory interac-

tions are gene functional annotations. Many projects have been proposed to man-

age concepts/classes used to describe gene and gene products’ properties. A signifi-

cant project is the Gene Ontology (GO) [6]. The functional annotations in the GO

database (GO terms) are hierarchically organized in a way that groups together sub-

sets of genes sharing common biological functions. This type of information alleviates

the functional interpretation of genes participating in a GRN.

This section does not give a complete list of available data but instead introduces

the potential usable for the GRN inference.

2.4 Assesment and Validation of Network Infer-

ence

Many methods have been proposed to further the task of engaging in analysis of

GRN inference. However, the methods need to be reliable to obtain a useful and

accurate model of the GRN. Thus, it becomes vital to have a fair assessment and
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comparison of existing methods. Several measures have been used throughout the

literature to evaluate the accuracy of the GRN inference methods. As in [63], we

categorize the most used methods in two main types: statistical-based measures and

ontology-based measures. The last category, which is instead a challenge to fairly

compare GRN inference methods, is also presented.

2.4.1 Statistical Measures

When we use statistical measures to assess GRN inference algorithms, GRN inference

is considered as a binary classification. In essence, the aim is to classify each inferred

interaction as either a correct regulatory link or not. The inferred network (the model)

is then compared to a gold standard network, and standard evaluation metrics such

as ROC curves and Precision-Recall curves are computed. A confusion matrix is first

built, as described in Figure 9.

In the context of GRN inference, TP, TN,FP, FN are defined in terms of inferred

edges. Therefore:

• TP are edges occurring in the reconstructed network, and that also occur in

the gold standard network.

• FP are edges occurring in the inferred network, but that do not appear in the

gold standard network.

• TN refer to edges that neither belong to the inferred network nor the gold

standard network.

• FN refer to edges in gold-standard network that are missing in the predicted

network.

Here the gold standard network is generally built from wet lab experiments (for

some model organisms). The statistical metrics used to assess algorithms for GRN

inference are the following:

• The positive predictive value that is obtained with the the following formula:

PPV = Precision = P =
TP

TP + FP
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Figure 9: Confusion matrix

The figure represents a confusion matrix. In the case of GRN inference, the Actual is the

gold standard network, and the predicted is the inferred network. The true positives are the

edges that occur both in the reconstructed network and the gold standard network. The

false positives are the edges present in the inferred network but absent in the gold standard

network. True negative refers to edges absent in the gold standard network and the inferred

network. False negatives are edges that are absent in the inferred network but present the

gold standard network.

• The negative predictive value that is computed as follow:

NPV =
FN

FN + TN

• The accuracy (ACC) computed with the following formula:

ACC =
TP + TN

TP + TN + FP + FN

• The sensitivity or recall or true positive rate (TPR) that is obtained as follow :

TPR = Sensitivity = R =
TP

TP + FN

• The specificity (SPC) or true negative rate computed as follow:

SPC =
TN

TN + FP
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• The false discovery rate (FDR), which is obtained with:

FDR =
FP

FP + TP

From the above statistical metrics, three pairwise measures are widely used in the

literature to assess GRN inference algorithms:

1. The area under the receiver operating curve (AUROC). The ROC curve rep-

resents a plot of the sensitivity (y-axis) against the true positive rate (x-axis)

when varying the threshold the algorithm depends on. The AUC is the area

between the ROC curve and the x-axis.

2. The AUC of the precision-recall curve (AUPR), which plots the precision (y-

axis) against the recall (x-axis). The AUC is obtained as previously. Note that,

the AUPR score is mostly adopted as a metric to evaluate GRN [115] as it is

suitable for class imbalance problem: i.e., when the number of positive is much

lower than the number of negatives, which is the case for GRN inference [47].

3. The F-measure that is computed with the following formula

Fβ = (1 + β2)
PR

β2(P +R)

A particular case of this measure that is widely used is the F1 score, obtained

when we set β = 1 so :

F1 = 2
PR

P +R

In the process of evaluating the network inference methods, scientists combine the

above measures with statistical tests in order to assess the statistical significance of

the results obtained when comparing with random networks. The two main statistics

used are:

1. the p-value that is the probability of occurrence of a given finding by chance

alone in comparison with the known distribution of possible findings (the ac-

tual finding) considering the number of observations, the kind of data, and the

technique of analysis [94]; and
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2. The Z-score is a number indicating how many standard deviations an element

is from the mean.

Note that the above statistical metrics are also used to assess the accuracy of

the reconstructed network. For example, in the case where there is no gold standard

network against which we can compare the reconstructed network, the statistical

test (p-value and Z-score) can be used to assess the statistical significance of the

characteristics of the inferred network, like functional annotation.

Evaluation of GRN inference methods using the above metrics is a daunting task

owing to the limited availability of the gold standard networks. Only a few organisms

are well known and have a set of biologically verified regulatory links, due to our

limited current knowledge of the cell. Instead, researchers have put some effort to

generate realistic simulated data based on biochemically plausible interaction models.

These efforts are discussed in Section 2.4.3.

2.4.2 Ontology Measures

To assess the inference algorithms’ performances using ontology-based measures, one

uses biological information to quantify the reconstructed network’s biological rele-

vance. One uses the idea that in a GRN, genes regulated by the same TF are more

likely to be involved in the same biological processes. Thus, one uses the Gene On-

tology [6] (GO), to test that it holds in the reconstructed network [249, 63]. This

methodology is called functional enrichment. The principle is as follows: given the set

of target genes for a particular TF, one maps each gene in the set to its associated bi-

ological annotation and then using statistical methods, including Chi-square, Fisher’s

exact test, Binomial probability, and Hypergeometric distribution, one finds which

GO terms are statistically over-represented (or under-represented) in the set, by com-

paring the distribution of the terms within a target genes set with the background

distribution of these terms (e.g., annotation term of all genes in the network). Many

softwares exist that automate the process, among which we can list DAVID [108, 107],

g:Profiler [184], GO::TermFinder [25], BiNGO [154]. Interested readers may refer to

[107, 229] for details about functional enrichment analysis.
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2.4.3 The DREAM Challenge Measures

More recently, the need of a fair comparison of strengths and weaknesses of the

network inference methods as well as a clear sense of the reliability of the network

models they produce, have to lead to a community effort to catalyze discussion about

the design, application, and assessment of systems biology models through annual

reverse-engineering challenges: the DREAM challenges. DREAM challenges are a

series of projects designed to evaluate model predictions and pathway inference algo-

rithms in systems biology, organized around annual challenges. The challenges data

are widely used as gold standard datasets for a fair comparison of many GRN infer-

ence algorithms’ performances. Each challenge provides the participants with curated

datasets, imposes a specific format for the submissions, and defines standard evalua-

tion metrics. For example, in a network inference challenge from expression profiles,

the challenge’s organizers provide the participants with gold-standard networks, gene

expression profiles, and the evaluation metrics. The output is generally an adjacency

list L, used to assess the method’s performances.

The assessment of the methods works as follow: for each submitted list L, se-

ries of subnetworks of increased size k = 1, 2, · · · , |L| corresponding to the top k

prediction of L is built by sequentially adding on entries of L at a time. Next, for

each subnetwork, a confusion matrix is constructed with regard to the gold standard

network. It gives the number of true positives (TP(k)), true negatives (TN(k)), false

positives (FP(k)), and finally, the number of false negatives (FN(k)). A true positive

is a correct prediction of an edge, while a false positive occurs when the prediction is

not actually in the gold standard network. On the other hand, a true negative repre-

sents an edge that neither belongs to the prediction nor the gold standard. Finally,

a false negative is an edge that belongs to the gold standard, but that is missed by

the prediction. Afterward, as previously described, usual metrics are computed, such

as precision-recall, AUROC, or AUPR. Note that, generally, a challenge is made up

of several networks. Each participant has to infer all the networks to participate in

the challenge. The final evaluation of a method is a combination of the performances

of the method on each network. Hence, if a challenge is made up of n networks, the

usual metrics are computed for the n inferred networks.

Apart from these metrics, p-values are computed for each of the n AUPR and

44



AUROC scores to evaluate their statistical significance. The p-value describes the

probability that a given or larger area under the curve is obtained by a random

ordering of the |L| potential network links. The n p-values are combined into two

unique p-values (one for AUROC and AUPR). They are computed as the geometric

mean of the n individual p-values (c.f. Equation 16).

p = (p1 ∗ p2 ∗ ... ∗ pn)1/n (16)

Finally, a global score SG, that combines AUPR and AUROC scores is computed as

the log-transformed “average” of the two overall AUROC and AUPR p-values, the

formula is presented in Equation 17.

SG = −0.5 log10 (P AUROC ∗ P AUPR) (17)

Larger global score indicates greater statistical significance of the prediction. The

scoring metrics really depend on the challenge. Here we describe the metrics of the

challenge we consider in Chapter 3.

2.5 Computational Methods

Many efforts have been undertaken to unravel the gene regulatory network. For this

purpose, researchers have developed various methods that use different strategies. We

can divide the existing methods into three main categories: methods that infer a GRN

by identifying the binding sites of the transcription factors on the regulatory regions

of genes, methods that infer a GRN from expression data, and finally, methods that

use a template to reconstruct a GRN. In the following section, for each category, we

will present its general idea and some state of the art algorithms that use the specific

strategy.

2.5.1 Methods for Transcription Factor Binding Sites

In general, cis-regulatory (or regulatory) elements are regions of non-coding DNA

that serve as the DNA-binding sites for transcription factors. The prefix cis specifies

that the regulatory elements are situated in the vicinity of the gene(s) they control.

In GRN inference methods via prediction of cis-regulatory elements, one uses experi-

mentally well-characterized data about regulation (if available) such as transcription
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factors (TFs) and TFBSs models (e.g., PWM, motifs) from the genome of interest

(target genome) or a model organism like Escherichia coli, to infer regulatory links in

the target genome. The aim is to identify regions recognized by TFs. Thus, one scans

the regulatory regions of genes in the genome of interest with known specific binding

sites weight matrices of experimentally well-characterized TFs to determine the genes

that have the TFBS in their regulatory regions. These genes are then hypothesized

to be regulated by the corresponding TF. In this category, the inferred regulatory

links are physical TF-TG binding interactions. Note that several genes hypothesized

to be regulated by the same TF are said to be co-regulated genes.

In [191], Rodionov grouped the principles behind motif-based GRN inference meth-

ods in two main axes, which differ by the availability of experimental data about the

regulation of genes. In the first strategy, one has access to known TFs. Hence, the

general procedure of this strategy is as follow:

• Step 1: all available information of TFBSs of the well-characterized TFs in

model genomes are gathered and constitute the training set for the TFBS profile

construction. However, in the case where the TF TFBSs are unknown, one

collects the TF known co-regulated genes from the reference genome and their

orthologs in the analyzed genome. Then, we build the training set to construct

the TFBS’s profile with the upstream regions of the known TF-regulated genes

in the model genome along with the upstream regions of their orthologous genes

in the analyzed genome.

• Step 2: One constructs a TFBS profile with the obtained training set.

• Step 3: The profile is used to scan the whole genome of interest to recruit

additional binding sites.

• Step 4: One checks the predicted binding sites’ consistency using the principle

that co-regulated genes tend to be conserved between genomes that contain or-

thologous TFs. Thus, one scans the regulatory regions upstream of orthologous

genes. If one finds the same TFBSs, then it is considered a true regulatory

site; otherwise, if the TFBSs matches are scattered across the genome, then the

prediction is false.
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The second axis is considered when there is no knowledge about the data of genes

regulation. In this case, one can adopt two possible options. In the first option, the

assumption is that genes on the same biological pathway may be co-regulated by the

same TF. Thus, one gathers genes that belong to the same pathway from closely

phylogenetically related organisms to the genome of interest. The regulatory regions

of co-regulated genes are then used to build the TFBS model, and then one adopts

steps 3 and 4 of the first strategy. Another option is to use phylogenetic footprinting,

in which one identifies highly conserved regions of the upstream regions of orthologous

genes from a set of closely related species. The TFBS profile is built with a set of

conserved regions for orthologous genes. Then one adopts steps 3 and 4 of the first

strategy. Note that the TFBS profile can be either position weight matrices (PWM)

or consensus sequences. Figure 10 summarizes the two strategies used to reconstruct

the GRN via the identification of cis-regulatory elements.

The main difficulty with TFBS data-based methods is that they require high-

quality data. The use of divergent organisms may cause the discovery of many false

positives.

One of the essential steps of GRN reconstruction via prediction of cis-regulatory

elements is identifying TFBSs and the construction of their models. Thus, we choose

to present the state of the art algorithms for the construction of TFBS profiles.

Generally, the user feeds the algorithms with the set of regulatory regions of genes

that are believed to be co-regulated. The algorithm identifies DNA motifs that are

overrepresented in the regulatory regions provided. The difficulty is that motifs are

short signals in the midst of a vast amount of noise [230]. Another difficulty arises

from our poor understanding of the variability in the binding sequences of a given

TF.

The existing algorithms differ in their representation of the motifs, their definition

of motif “statistical over-representation,” and the method for finding the statistically

overrepresented motif. For the motif representation, we observe two main categories

of algorithms: PWM based methods and consensus-based methods. Note that the

mentioned methods can input other sequences data than DNA sequences (e.g., pro-

teins sequences), but we restrict this section’s scope to DNA sequences. We chose

two state-of-the-art algorithms from each category:
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• MEME [9] and AlignACE [112] for the PWM based methods.

• YMF [213] and Weeder [175] for consensus-based methods.

MEME, which stands for Multiple EM (expectation-maximization) for Motif Elicitation,

is a popular tool for motifs discovering in a set of related proteins or DNA sequences.

It uses expectation maximization (EM) for motif finding. EM-based motif finding

methods work as follows: they alternate between an “Expectation step” and a “Max-

imization step.” In the “Expectation step”, the scores of all possible motif positions

in the input sequences are computed using entries in the PWM. In the “Maximization

step,” the high scoring positions are used to refine the PWM. More precisely, MEME

works as follows: it starts with a random motif. It tries to improve the motif with the

EM algorithm until the values in the PWM do not improve, or the algorithm reaches

a maximum number of iterations. The EM alternates between the scoring of motif

matching positions in the sequences and using the k-mers at the matching positions

to refine the PWM (the motif). Note that the algorithm builds the initial PWMs by

choosing a single position in all sequences and extracts all k-mers at that position,

then it performs one iteration of the EM. It does this for all possible k-mers. Only the

best initial motifs are chosen to run EM to convergence. The advantages of MEME are

the following: it allows multiple motifs to be learned; it does not assume that there

is exactly one motif occurrence per sequence, and it is not restricted to short motifs.

However, the main limitation is that computation time depends on the length and

number of input sequences. Furthermore, it does not return gapped motifs. MEME has

been recently improved using suffix trees (STEME [186]) or with an online version of the

EM (EXTREME [226]) that allows handling large datasets. Note that the MEME-suite

is available online and offers a list of different tools for motifs finding.

AlignACE is based on the Gibbs sampling method. More precisely, it uses a Markov

Chain Monte Carlo (MCMC) approach to derive the motifs. Markov Chain because

the result on the current step depends only on the result at the previous step. Monte

Carlo, because the next step is chosen by random sampling. The Gibbs sampling

works as follows:

1. Takes as input N sequences.

2. Randomly initializes the motif position in the N sequences, assuming a one motif
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occurrence per sequence. The background probabilities are computed from the

non-motif position in the N-1 sequences.

3. Compute the probability of all possible motif locations using the previously

obtained PWM and the background probabilities.

4. Find new motif starting position in the excluded sequence from step 3.

5. Iterate steps 2-4 until the values in the PWM do not improve, or the algorithm

reaches a maximum number of iterations.

AlignACE uses an improved version of the Gibbs sampling method. First of all, it

checks both strands of the input sequences. It uses an improved sampling method

and allows for discovering multiple motifs. The main advantage of AlignACE is that it

is not restricted to short motifs. Moreover, it can detect several motifs. Nevertheless,

it is susceptible to the initial parameter setting, and like MEME, the computation time

depends on the number of input sequences.

Weeder is an enumerative-based motif finding method. The general idea of enu-

merative approaches is to generate all possible words up to a given length. Then

determine those occurring with potential substitutions in a significant fraction of the

input sequences. The discovered motifs are then ranked using statistical measures.

Enumerative approaches perform an exhaustive search of the whole search space and

generally find a global optimum. However, they are computationally demanding.

Weeder uses this principle to find motifs. It uses a suffix tree to optimize the search

time. Hence, it preprocesses all the input sequences into a suffix tree. It uses a re-

cursive suffix tree search with pruning to find the pattern that occurs with at most a

certain number of substitutions in at least a certain number of the input sequences.

The advantage of this method is that, compared to other enumerative methods, the

execution time depends on the substitution number rather than the input sequences’

length.

YMF stands for Yeast Motif Finder as the model was derived from the study of

known TFBS in Saccharomyces cerevisae. It is based on an enumerative strategy, as

described previously. It enumerates all motifs in the search space, and it guarantees

to find the motif with the greatest Z-score. The Z-score is the number of standard de-

viations by which the observed number of occurrences in the input sequences exceeds
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the expected number of occurrences if the input sequences were random. YMF detects

short motifs with a small number of degenerate symbols. The main advantage of this

method is that it returns gaped motifs and ensures that it returns the best motif.

However, it is limited to retrieve pretty short and simple motifs that do not vary too

much (a small number of degenerate symbols).

The algorithms listed here are the most popular algorithms for motif finding. Of

course, there exist other algorithms with different strategies. For example, researchers

have proposed combining several motifs finding algorithms (ensemble method) since

they generally exhibit complementary outputs [105, 106]. We refer the reader to

survey papers on motif discovery methods for a more in-depth comparison of the

existing methods [46, 230, 96].

Table 1 presents the selected algorithms in terms of their principle, their output

model, their advantages, and their limitations. Figure 6 presents the different repre-

sentations Tryptophan (Trp) TFBS, which is an E. coli ’s TF that regulates the trp

operon presented in Section 1.2. The PWM in the figure has been obtained using

MEME.
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Figure 10: Procedure to identify regulon

The figure summarizes the strategies used to reconstruct the GRN via the identification of

regulons [191]. Broadly there are two strategies. In the first strategy, one uses information

about experimentally-determined TFs to infer the GRN from position weight matrices that

build either with known binding sites of TFs or with genes’ promoters. The second axis is

considered when there is no knowledge about the data of genes regulation. In this axis, one

uses methods such as phylogenetic footprinting to collect promoter of genes that belong to

the same pathway from closely phylogenetically related organisms to the genome of interest.

A PWM will then be constructed from these promoters.
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Table 1: Motifs Finding Methods

Algorithms Brief description Output Advantages Drawbacks

MEME [9] Uses expectation and max-

imisation for motifs finding.

It starts with a random motif

and tries to improve the motif

with the EM algorithm un-

til the values in the PWM do

not improve, or the algorithm

reaches a maximum number

of iterations. The EM alter-

nates between the scoring of

motif, matching positions in

the sequences, and using the

k-mers at the matching posi-

tions to refine the PWM (the

motif).

Return a set

of motifs as

position weight

matrices.

+ Can deal with sequences

containing reasonable noise.

+ Can find several distinct

motifs in the same set of se-

quences.

+ The assumption made by

other EM-based algorithms

that each sequence contains

exactly one occurrence of the

shared motif is removed.

- Performance decreases sig-

nificantly as the length of se-

quences increases.

- Not suitable for whole-

genome TFBS motifs discov-

ery.
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Table 1 continued from previous page

Algorithms Brief description Output Advantages Drawbacks

The 0-order model consists of

the frequencies of the letters

in the training set.

+ Able to adapt motif length. - No gaps allowed in the mo-

tifs.

- Assumes that the positions

in the motifs are independent,

which is not valid in reality.

- Sensitive to initial parame-

ters.

53



Table 1 continued from previous page

Algorithms Brief description Output Advantages Drawbacks

AlignACE

[112]

Uses Gibbs sampling to find

the motifs and the maximum

a posteriori (MAP) score to

measure the degree to which a

motif is overrepresented. The

MAP score is combined with

another score that measures

how well a given motif tar-

gets the gene whose upstream

regions were used to find the

motif. This score allows the

selection of functional motifs.

Set of motifs

as position

weight matri-

ces.

+ Can find long motifs.

+ Several distinct motifs can

be found in the same set of

sequences.

+ Input sequences may not

exhibit the motif.

- Performance decreases sig-

nificantly as the length of se-

quences increases.

- Assumes that the positions

in the motifs are independent,

which is not valid in reality.

- Has difficulty in modeling

gapped motifs.

-Sensitive to initial parame-

ters.
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Table 1 continued from previous page

Algorithms Brief description Output Advantages Drawbacks

YMF [213] Uses an exhaustive search

approach to discover the over-

represented motifs: i.e., mo-

tifs with the greatest z-score.

Consensus se-

quence motifs.

+ It allows gaps in the mo-

tifs.

+ Allows mismatches within

the motifs.

+ Easy for a human to inter-

pret and visualize the result.

+ Considers both DNA

strands.

- Limited size of motifs.

- Time-consuming.

- Suitable only when all in-

stances of motifs do not vary

too much.

- Only suitable for short mo-

tifs.

Weeder [175] The algorithm uses enumera-

tion to find motifs with lim-

ited size and a maximum

fixed number of mismatches

within the input sequences. It

uses a suffix tree to optimize

the search time. It prepro-

cesses all the input sequences

into a suffix tree.

Consensus se-

quence motifs.

+ Easy for a human to inter-

pret and visualize the results.

+ Allows mismatch within

the motifs.

- Suitable only when all mo-

tifs instances do not vary too

much.

- Time-consuming.

- Only suitable for short mo-

tifs.
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Table 1 continued from previous page

Algorithms Brief description Output Advantages Drawbacks

It uses a recursive suffix tree

search with pruning to find

the pattern that occurs with

at most a certain number of

substitutions in at least a

certain number of the input

sequences.

The table summarizes some state of the art methods that perform motif finding. We consider consensus-based methods and PWM based

methods. We report the most popular algorithm in each category. The 1st column gives the name of the algorithm. The 2nd column

gives a short description of the algorithm. The 3rd column gives the type of output the algorithm produces. The 4th column provides

the advantages of the algorithm. Finally, the 5th column provides the limitations of the algorithm.
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2.5.2 Reverse-Engineering Methods.

In this section, we will present algorithms that reverse-engineer the GRN from gene

expression data.

Reverse engineering is the process of unraveling a system’s design by studying

its structure, function, and operation. The goal of reverse engineering is typically

to understand the target system to the point where it can be rebuilt (copied) or re-

engineered (modified) [156].

In reverse engineering of a GRN, the aim is to infer its graph structure (i.e.,

the interactions between the genes) and parameters (e.g., type/strengths of these

interactions) from the expression of all its genes by developing models and algorithms.

One scan for patterns underlying the data measurement (time-series or steady-state

gene expression data) to learn the interactions and parameters. Expression data is

generally represented as a matrix X (Equation 18), whose rows represent the genes in

the GRN, and the columns are either the set of experimental conditions, time points,

or tissue samples. More precisely an entry xi,j of X is a real value representing

expression level of the ith gene under jth experimental condition, time point or tissue

sample. The regulatory network is represented by a matrix A, where an entry ai,k is

the regulatory interaction between the ith and kth genes. Note that ai,k can either be

discrete (ai,k ∈ { 0, 1 }), signed (“+” for activation and “-” for repression) or a real

value (to determine strength of interaction).

The reverse engineering methods make the following assumption: if a gene G1 is

linked to another gene G2 (respectively other genes G2, G3, · · · , Gk) then the expres-

sion of G1 influences the expression of G2 (respectively those of genes G2, G3, · · · , Gk).

Hence, one has a network of an unknown structure A and its list of genes. One mea-

sures the expression level of the list of genes. We obtain a matrix X of gene expression

profiles of the considered GRN. Finally, one uses the information in the X to infer

connections among genes by quantifying the dependencies among their expression

profiles. Figure 11 presents a summary of the steps towards reverse engineering of a

gene regulatory network.
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XN,M =


x1,1 x1,2 · · · x1,M

x2,1 x2,2 · · · a2,M

...
...

. . .
...

xM,1 xM,2 · · · xN,M

 , AN,M =


a1,1 a1,2 · · · a1,M

a2,1 a2,2 · · · a2,M

...
...

. . .
...

aM,1 aM,2 · · · aM,M

 (18)

Figure 11: Step for regulatory network inference.

This figure summarizes the steps toward reverse-engineering the gene regulatory network

from expression data [156]. (1) Gene network of unknown structure (the so-called target

network). (2) Gene expression levels are measured. (3) A modeling framework (model type)

for the gene network needs to be defined. (4) The inference method predicts one or several

networks that are consistent with the available gene expression data. (5) Depending on the

model type, only the structure or a quantitative model of the network can be inferred. (6)

The predicted gene network is validated with additional experiments.

There exist several methods that exploit this idea to unravel the GRN. These

methods differ in the strategies and the model used to obtain the set of regulatory

links. In this thesis, we will emphasize the models used and give details about them,

but first, it is essential to talk about the strategies adopted to cope with the problem

of GRN inference.

58



In their paper [49], De Smet and Marchal have proposed to organize GRN re-

verse engineering methods regarding different strategies they used. First, we dis-

tinguish supervised learning from unsupervised network inference. Supervised and

semi-supervised methods view the inference problem as a classification problem and

use experimentally verified or literature-based interactions to train a machine learn-

ing classifier. On the other hand, there are unsupervised methods that neither rely

on classification nor assume any a priori knowledge of the network to infer. Further-

more, we have integrative versus non-integrative methods. Non-integrative methods

use expression data alone to infer the GRN. They assume that information about

regulation is entirely given by the expression activity of the genes.

On the other hand, integrative methods complement the information in expression

data with other data such as known TFBS, information on molecular interactions,

PPI, and literature. Finally, we distinguish direct methods from module-based meth-

ods. Direct methods consider each gene individually and infer all its interactions

with other genes. In contrast, modules based methods take advantage of the modular

nature of the GRN, and instead of working at the level of the genes, consider the

network as modular. A module here is a set of genes regulated in concert by the same

regulator(s) under a shared regulatory program, which specifies the behavior of the

genes in a module as a function of the module regulators expression. Module-based

methods consider the GRN as a set of nested modules obtained with any clustering

methods then the regulatory program has to be learned for the modules.

Aside from the strategies used to overcome the problems that arise from GRN,

many models have been used for GRN inference. In this thesis, our categoriza-

tion is based on the different models proposed over the literature for GRN infer-

ence. Therefore, we summarize existing efforts into the following five categories.

Namely: (i)Probabilistic graphical model-based methods (ii)Correlation-based meth-

ods (iii)Partial correlation-based methods, (iv)Information theory-based methods,

(v)Regression-based method and finally (Vi) ODE based methods.

2.5.2.1 Probabilistic Graph Methods

In modeling the GRN, the aim is to capture both the entities involved in (genes)

and their different attributes (e.g., expression data). Probabilistic graphical models
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treat different attributes as random variables [73]. The defined model represents

the description of the joint probability distribution of all random variables, which is a

product of terms involving only a few expressions. A graph is thus used to specify the

structure of the product. It shows dependencies between variables and provides tools

to reason about the properties entailed by the product. The aim of modeling here is

to find the model that closely represents the distribution of the data. It can be done in

two ways. Either by parameter estimation through the maximum likelihood problem

or by selecting among different model structures, the one that best represents the

data, using a scoring measure. The common model of this category is the Bayesian

Network, which is among the first models used to infer the GRN from expression

data, with the work of Friedman et. al [74].

To represent this category, we choose Banjo [260]. Banjo uses a dynamic Bayesian

network to infer the GRN from time-series expression data. The expression data are

first discretized using either quantile or interval discretization. The algorithm uses

the 1st order Markov DBN, which assumes that gene expression at time t is only

dependent on the expression data of its parent genes and the gene itself at time t-1.

Then, the Bayesian Dirichlet equivalence (BDe) scoring metric is applied to evaluate

the goodness of each possible network G in the search space. In the next step, the

algorithm searches the top N networks with the highest score using either a greedy

strategy or simulated annealing. The top N networks are then averaged to obtain a

consensus network. The algorithm outputs a weighted signed directed network. The

advantage of Banjo is that it can infer the directionality of the data. Furthermore, the

algorithm is specially designed to work with data with a limited amount of samples.

However, in the initial version, the algorithm had difficulty inferring combinatorial

links (targeted by many TFs) that are common in GRN.

Other algorithms such as scanBMA [258],G1DBN [141] have also been proposed.

scanBMA is an unsupervised algorithm that uses a Bayesian network and incor-

porates prior knowledge data to improve the accuracy of the inferred GRN from

time-series gene expression data. It poses the GRN inference problem as a series of

feature selection problems for each TG. In each problem, a list of TFs is inferred for

a specific TG. It uses BMA (Bayesian Model Averaging) to account for uncertainty

in the model selection, by averaging different models to derive the posterior density
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on model parameters. It uses a greedy method to explore the search space and elimi-

nates improbable models using the Ocam widow principle [152]. The prior knowledge

data is used to compute prior probabilities of regulatory interactions. These proba-

bilities are used to compute posterior probabilities of regulatory interactions. They

defined Zellner’s g-prior [265] on the prior distribution of the model parameters and

used EM to find g. Furthermore, the method uses a faster implementation of BMA,

which allows an efficient search of the model space. The faster implementation of

BMA permits scanBMA to have a running time comparable to that of LASSO. scanBMA

runs in a couple of minutes for a network of thousands of genes on a regular lap-

top. The method has been tested on simulated data from DREAM4 challenge (with

networks of size 10 and size 100) and experimental data from Saccharomyces cere-

visae [256] that consists of 3556 genes. The authors compared their performance to

a dynamic Bayesian network, LASSO and mutual information-based methods. They

used AUPR and AUROC scores to evaluate their performance and the performance

of the competing methods. For the DREAM4 data, the authors considered only

time-series expression data and did not include any prior knowledge data. On the

simulated data, scanBMA performed comparably to the competing methods. However,

it outperformed the competing methods on the yeast dataset.

G1DBN uses the dynamic Bayesian network as defined in Section 2.1.1. From

Section 2.1.1, when dealing with time-series expression data, the DAG may be huge

and impossible to infer with input data where the data number of variables is larger

than the number of samples. In G1DBN, the authors have proposed approximating

the DAG to infer using the qth order conditional dependency DAG. More precisely,

the authors use the 1st order conditional dependence to approximate the DAG of the

dynamic Bayesian network. Under some conditions demonstrated by the authors, the

1st order conditional dependence graph contains the full DAG to be recovered. The

algorithm proceeds into two steps. In the first step, the algorithm learns the DAG of

1st order conditional dependence assuming linear dependencies. In the second step,

the DBN’s real DAG structure is inferred from the coefficients learned in the previous

step. The authors benchmarked their method on both simulated and real expression

data. As simulated data, they generated 100 random time-series expression data

using a multivariate autoregressive model of order 1. They used two experimental

datasets: one on the yeast cell cycle [217] with 786 genes expressed in the cell cycle

61



and the other on Arabidopsis Thaliana [214] with 800 genes. The method has been

compared to LASSO and the autoregressive model. They used precision-recall curves

to report the performance. G1DBN presents superior results on both simulated and

experimental data. Furthermore, it was able to infer biologically validated regulatory

links as well as new potential regulatory links. The authors have shown that the

performance of G1DBN may depend on the size of the network since they observed

the degradation of their performance on real network data as the size increases. The

main advantage of this method is the fact that it can infer the direction of regulatory

links. However, it assumes linear dependency among genes, and it is computationally

demanding.

2.5.2.2 Correlation Methods

Correlation-based methods are the most straightforward way to investigate a GRN

using gene expression data since regulatory links among genes imply a correlation

between their expression profiles. Thus, in this category, a matrix of gene expression

similarity, S = [sij] is defined using the matrix X (see Equation 18); where sij is the

pairwise correlation coefficient between expression profile Xi,. of gene i and Xj,. of

gene j. The coefficients are computed using a correlation measure, such as the Pear-

son correlation coefficient. From the matrix S, regulation links are inferred using a

threshold τ : a regulation link is established between genes i and j if and only if sij ≥
τ . The threshold τ is generally obtained from randomization of the data allowing

statistical significance assessment. The inferred GRN is an undirected graph since

we cannot infer causality from correlation. To represent this category, we consider

the WGCNA [138] algorithm, which is available as an R package. The WGCNA proposes

several correlation measures, which can be used to construct the correlation similarity

matrix S from expression data matrix X. The correlation similarity matrix is then

used to compute the adjacency matrix by thresholding the entries of S. The package

offers a function in which the scale-free topology of the inferred network criterion [266]

is used to choose the threshold τ . The algorithm can provide either a weighted or

an unweighted network as output, in which weights represent the confidence of the

regulation links. The inferred graph is undirected.
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2.5.2.3 Partial Correlation Methods

Partial correlated based methods (Gaussian graphic model) are also known as the

covariance selection problem. In this approach, the observed data matrix X (see

Equation 18) is assumed to be drawn from a multivariate normal distributionN (~µ,Σ),

with ~µ = (µ1, µ2, · · · , µn) the mean vector, and Σ the covariance matrix. A partial

correlation matrix C = [cij] is computed from the inverse of the covariance matrix. It

is used to describe dependency between any pair of genes conditioned on the rest of

the genes. The normality assumption allows determining conditional independence

between two genes from the zero entries of the inverse of the covariance matrix and

the contrary from non-zero entries. The general step of the algorithms in this category

are :

1. Estimate the covariance matrix from the data X.

2. Invert the covariance matrix and compute the partial correlation matrix C =

[cij].

3. Use a statistical test to determine entries in the partial correlation matrix that

significantly differ from zero.

4. Infer regulatory links from non-zero entries in the partial correlation matrix.

As a representative of the category we choose GeneNet [201]. The major problem faced

in this category is that the number of gene expression samples is much smaller than the

number of genes. It makes the covariance matrix impossible to invert since, in those

conditions, the obtained input data matrix X loses the characteristics of an invertible

matrix. The GeneNet algorithm uses the Moore-Penrose pseudoinverse to compute

the inverse of the covariance matrix and uses bagging (bootstrap aggregation) to

stabilize the estimator. The Moore-Penrose pseudo inverse is a generalization of

the matrix inverse that is based on singular value decomposition. Moreover, they

computed the p-value as well as the posterior probability for each edge. They used

FDR to correct for multiple testing and select the edges to be included in the GGM

based on adjusted p-values. GeneNet was initially tested on both simulated and

experimental data from Human breast cancer [246] the dataset covers 7129 genes.

The authors use statistical measures such as FPR, specificity, or FDR to report their
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performances. This method’s main advantage is that it is particularly designed for

high dimensional data (low samples compared to the number of variables). However,

the method cannot infer combinatorial links, i.e., regulatory links targeted by many

TFs.

2.5.2.4 Information Theoretical Methods

Information theory-based methods use mutual information to infer correlation coeffi-

cients among expression profiles of pairs of genes. Thus, for each pair of genes, mutual

information is computed then compared to a threshold τ . If the mutual information

of the pair of genes is greater or equal to the threshold τ , then a regulation link is

inferred between the pair of genes. Mutual information is an interesting measure of

correlation since a mutual information value of 0 between two variables implies that

the two variables are independent. Furthermore, information theory allows identifying

any correlation that can exist between the two variables: either linear or nonlinear.

As a representative of this category, we choose ARACNE [159]. It infers the GRN from

steady-state expression data. It computes the mutual information between all possi-

ble pairs of genes and uses randomization of the data (e.g., bootstrap) to select the

threshold τ . In a second step, the algorithm considers all gene triplets (pairwise mu-

tual information of the genes in the triplet) and uses DPI (data processing inequality)

to reduce the number of false positives regulatory links. The algorithm may acciden-

tally consider a direct interaction between two genes when, in reality, there is a 3rd

gene involved. DPI will remove such a direct link. DPI states that if two genes g1 and

g3 interact only through a 3rd gene g2 (i.e. there exists no alternative path between

g1 and g3 than through g2) then I(g1, g3) ≤ min(I(g1, g2); I(g2, g3)). I(.) is the mu-

tual information. The algorithm has been tested on both simulated and experimental

data. For simulated data, the authors used different topologies proposed in [164] to

simulate their expression data. The networks were either random or scale-free and

consisted of 100 nodes with 200 interactions. For the experimental data, they used a

dataset from Human B cells. They evaluated their performances against the Bayesian

network and Relevance Network using precision-recall curves. ARACNE showed supe-

rior performance compared to concurrent methods. Furthermore, ARACNE was able to

infer validated targets of some known Human oncogenes. The algorithm also inferred
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other biologically validated regulatory links. The main limitation of ARACNE is that

it cannot infer combinatorial links (i.e., links targeted by several TFs). Moreover, it

cannot infer the edge directionality.

Recently, an extension of ARACNE to time series data has been introduced: Time

delay-ARACNE [272] (TD-ARACNE). TD-ARACNE proceeds in three steps. In the first

step, the algorithm detects for each gene, the time point where its expression will

initially change. It will help in computing the mutual information in the next step.

Secondly, the network is obtained upon the mutual information computed from each

pair TF-TG and for different time shifts regarding the information obtained from

the first step. In the last step, the algorithm uses the same strategy as ARACNE

to prune false positives in the network. TD-ARACNE has been evaluated on both

simulated and experimental expression data. For the simulated dataset, the authors

have tested different data sizes: different number of genes (10 and 20 genes) and

a different number of time points. The point was to evaluate how TD-ARACNE

performance depends on the input data size. They worked on three datasets from

Saccharomyces cerevisae [217] with 11 genes, from Escherichia coli [192] with 8 genes

and from the IRMA dataset [33] made up of 5 genes. The IRMA dataset is obtained

by extracting a subnetwork of 5 genes from the Saccharomyces cerevisae GRN. The

dataset contains both time-series and steady-state gene expression. It includes two

sub-datasets: one switch-on data and one switch off data. The switch-on data covers

five experiments. The switch-off data covers four experiments. The whole dataset

contains 142 measured samples. The performance was compared to dynamic Bayesian

network methods, ODE based method, and the original ARACNE using measures such

as the PPV, the recall, or the F-score. TD-ARACNE outperformed the concurrent

methods. They have demonstrated that Time delay-ARACNE was able to recover

the true structure of the GRN more reliably compared to the concurrent methods.

Furthermore, TD-ARACNE was also able to infer several known interactions. The

main advantage of this method is that it can infer the direction of the edges.

To represent mutual information-based methods in Table 2, we will only consider

ARACNE as it has been proven to be state of the art on many data sets.
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2.5.2.5 Regression Methods

In this category, algorithms use the genome-wide expression profiles of genes to infer

the network of regulation. Here, the expression profile of a target gene is modeled

as a linear/nonlinear combination of its regulator’s expression levels. Hence, the

network inference amounts to finding for each gene, the small subset of transcription

factors whose expression profile is sufficient to predict its expression. The problem

is thus recast as a series of variable selection problem. In each problem, a regression

model is used to rank the variables. However, the high dimensionality low samples

problem of expression data seriously impedes regression techniques. This situation has

caused researchers to employ different strategies to overcome this difficulty. Hence,

some authors have used regression trees for each target gene, using a compact set

of regulators at each node [116, 168, 207]. Others, have adopted a concept which

consist in penalizing the regression model using either LASSO [97, 262] or Elastic

net [210, 147].

Two state of art methods of this category are GENIE3[116] and TIGRESS [97].

GENIE3 uses a set of random trees to model the dependencies between the ex-

pression levels of the TFs and their TGs. The algorithm decomposes the inference

of network of p genes into p different regression problems, in which the steady-state

expression pattern of each gene of interest (TG) is predicted from those of other

genes (TFs) using an ensemble of random trees (Random forest or Extra Tree). The

importance of a potential TF in the inference of the TG gene expression serves as

an indicator of putative regulatory links. The weight of a regulator is the sum of

the mean decrease in the impurity of all the tree nodes where it is used to split.

Note that the mean decrease in impurity computes, at each test node in the tree,

the reduction of the variance of the output due to the split. The algorithm aggre-

gates the putative regulatory links over all genes (the p subproblems) to provide a

final ranking of interactions from which the whole network is reconstructed. The

method has been tested on both simulated multifactorial data from the DREAM4

and experimental data from Escherichia coli. The simulated data set is made up

of 100 genes. On the other hand, Escherichia coli data is made up of 4297 genes.

They used the DREAM4 scoring methodology described in Section 2.4.3 to evalu-

ate their performance on the simulated data. For real data, the performance was
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reported in terms of precision-recall curves. The method was compared to GENIE3

combined with different tree-based methods (random forest, ensemble tree), mutual

information-based methods, and the Gaussian graphical model. It was competitive

with concurrent methods on the E.coli dataset assuming that information about po-

tential TFs is provided to the algorithm. GENIE3 was the best performer of the size

100 multifactorial DREAM4 subchallenge and the best performer of DREAM5. This

method’s main advantage is that it does not make any assumption about the nature

of gene regulation; it can deal with combinatorial and nonlinear interaction; it is fast

and scalable.

Several extension of GENIE3 has been introduced in the literature. One of them,

iRafNet [178], integrates heterogeneous prior knowledge data such as knockout genes

expression, TFBS, or protein-protein interaction to improve the accuracy of the re-

constructed network. The prior knowledge is used to construct weights to sample

potential regulators during the tree construction. The method has been rigorously

tested on simulated data from the DREAM4 and the DREAM5 challenges. They used

knockout and time-series gene expression data as prior knowledge. They used two

measures to evaluate their performances: the AUPR and the AUROC. The method

has demonstrated superior performance compared to original random forest based

GRN inference, GENIE3. Furthermore, the authors have demonstrated that iRafNet

performance on simulated data is comparable to the ensemble learning method, i.e.,

a network obtained by combining results from different models. The authors have

further evaluated their method on in vivo data from the Saccharomyces cerevisae

cell cycle. The method has demonstrated that it provides functional insights to the

inferred regulatory links. This method’s main advantage is that it includes different

types of available biological data for the regulatory network inference. Furthermore,

as GENIE3, it is fast and scalable.

More recently, the authors of GENIE3 have extended their work and introduced the

dynamical version of their algorithm: dynGENIE3 [81]. It extends GENIE3 to handle

both steady-state and time-series expression data. Initially, GENIE3 was designed to

work only on steady-state expression data. dynGENIE3 assumes that the transcription

rate of a gene is a function (potentially nonlinear) of the expression of other genes

and, potentially, itself, plus a parameter specifying its decay rate. The algorithm
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combines time-series and steady-state gene expression data to learn the ordinary dif-

ferential equation defining each gene’s transcription rate. As in GENIE3, the method

uses the mean decrease in impurity to compute the importance of each regulator.

Note that the decay value is computed either with the data assuming an exponential

decay or obtained from the literature. The method was tested against different infer-

ence technologies: dynamic Bayesian network, ordinary differential based methods,

Granger causality based methods, and nonlinear dynamical model. The performance

was tested on simulated data from the DREAM4 challenge (using their evaluation

methodology), and on three real-world datasets: a Saccharomyces cerevisae [172],

Drosophila melanogaster [103] and Escherichia coli [120]. dynGENIE3 consistently

outperforms GENIE3 on simulated dataset. However, the same result is not observed

on experimental data as the datasets and organisms exhibit many differences. These

results show that dynGENIE3 performance is very data-dependent. Apart from the

scalability and speed, this method’s main advantage is that it integrates time-series

data, which allows modeling the network dynamics. Moreover, the authors have ex-

tended the method to allow the user to specify the list of potential TFs, which is

not available in the original work. However, the main drawback is that the method

does not consider the myriads of other data that exist, such as TFBS to supplement

expression data.

TIGRESS combines stability selection with LASSO regression (implemented with

the LARS [61]) to infer the GRN from expression data. Stability selection consists of

running a feature selection method several times on perturbed data and computing

the score of a feature as the number of times it was selected. As with GENIE3, the

problem for p genes network is made up of p regression subproblems fitted on the

bootstrapped randomized expression level of the TFs of the network. A modified

measure of selection frequency for each potential TF is used as evidence of possible

regulatory links. In summary, the weight of each potential TF is based on the fre-

quency with which the TF is selected by the LARS in the top features and the area

under each curve up to a fixed number of LARS steps. The method was mainly com-

pared to mutual information-based methods. The method was benchmarked against

the DREAM4 and DREAM5 challenge datasets for simulated data. They used the

DREAM5 scoring methodology, which is the same as the DREAM4 methodology.

Furthermore, the method was evaluated on experimental data from Saccharomyces
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cerevisae [66]. When tuned optimally, TIGRESS shows similar performances to GENIE3

on simulated data but not as good on experimental data. This method’s main limita-

tions are the linearity assumption and the fact that it considers only expression data

as input.

To represent regression-based methods in Table 2, we will only consider GENIE3

in as it has been proven to be state of the art on many data sets.

2.5.2.6 Differential Equation Methods

Differential equations allow modelling the change in expression level of a gene as a

function of the change in other genes expression plus some external factors. The

function is time dependent. Hence, it is adequate for capturing the dynamic of a

system. More precisely we have:

d~x

dt
= f(~x, p, u) (19)

Where ~x = (x1, x2, · · · , xN) is the expression level of genes g1, g2, · · · , gN ; N is

the total number of genes in the network; p is the model parameter set and u is the

external perturbation factor. Inferring the GRN amounts to identify the function f

and the model parameter set p, using the measured signals ~x and u. There exist many

solutions to Equation 19 when the problem is unconstrained. However, a solution

exists when an assumption is made upon the nature of f(). Many GRN inference

algorithms assume that f() is linear. However, this assumption may be too simplistic

to model the complex nature of regulatory interactions. Other functions exist, such

as piecewise linear, continuously linear, or nonlinear, each of them models different

levels of complexity of the model. The most accurate being the nonlinear function.

However, estimating the parameters of a nonlinear with low sample data may prevent

getting reliable results. A popular method in this category is the Inferelator [23].

It uses regression and variable selection to infer the set of transcriptional influences

on each gene of a GRN based on the integration of genome association and gene

expression data. The algorithm uses ODE to define the expression level of a gene or

the mean expression of a set of functionally related genes as a function of the TFs

transcriptional level plus some external stimuli. The point is then to select, for each

gene or set of genes, the subset of factors that influence its expression level. They

assume that f() in Equation 19 is truncated linearly. f() is then fitted with LASSO
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to strictly enforce parsimony. The model allows fitting time-series and steady-state

gene expression data simultaneously. They also extended the model to account for

pairwise interaction between the predictors (TFs and external stimuli). The method

was tested on an experimental dataset from Halobacterium, which is made up of 2404

genes. The Inferelator was able to infer new interactions that were experimentally

tested and verified. Moreover, the algorithm was able to predict Halobacterium global

expression after perturbing the inferred network.

Having an overview of each category and the algorithms we choose to represent

them, Table 2 presents a comparison of the selected algorithms in terms of their input

data type, their complexity when available, their advantages and limitations. Note

that this is not an exhaustive list of the methods that exist in the literature that use

expression data as the main input to infer the GRN. We refer the reader to reviews

paper [98, 158, 157, 165]
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Table 2: Reverse-Engineering Methods

Algorithms Brief description Input data type Advantages Complexity Limitations

GeneNet

[201]

Uses Moore-Penrose

pseudoinverse to com-

pute the inverse of the

covariance matrix from

which the partial cor-

relation matrix is com-

puted. Edges are added

between pairs of genes if

their common entry in

the partial correlation

matrix is non-zero.

Time series and

steady-state

expression data

+ Can deal with high

dimensional data

+Few number of param-

eters are computed

+ Can infer the putative

direction of regulatory

links

+ Works well to con-

struct a GRN at large

scale

O(m3 +

nm2) [73]

- Can only detect pair-

wise regulation links.

- Assumes linear rela-

tion.
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Table 2 continued from previous page

Algorithms Brief description Input data type Advantages Complexity Limitations

Aracne [159] Works in two steps. In

the first step, the al-

gorithm computes the

mutual information of

all the pairs of genes in

the network. Then only

statistically significant

pairs are considered as

being regulation links in

the output network. In

a second step, the algo-

rithm considers all gene

triplets and uses DPI

to reduce the number of

false positives regulatory

links.

Steady-state

gene expression

data.

+ Works well with high-

dimensional data.

+ Can infer a network

of any dimension size

(scalable).

O(m3 +

n2m2) [73]

- Inability to infer direc-

tion of regulations links.

- Cannot infer combi-

natorial links (links tar-

geted by many TFs).
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Table 2 continued from previous page

Algorithms Brief description Input data type Advantages Complexity Limitations

Banjo [260] Uses dynamic Bayesian

network to infer the

GRN from time-series

expression data. The ex-

pression data are first

discretized. Then the

algorithm evaluates all

possible networks with

a Bayesian-based score.

In the next step, the

algorithm searches the

top N networks with the

highest scores using ei-

ther a greedy strategy

or simulated anneal-

ing. Finally, output a

consensus of the top N

networks.

Time-series

genes expression

data

+ Deals with uncer-

tainty due to the use

of probability.

+ Can infer the type

(inhibition or activation)

of regulation links.

+ Infers direction of the

regulation links between

genes.

– - Requires many samples

for the estimation of the

density distribution.

- Loss of information

due to gene expression

discretizing

- The quality of the re-

sult depends on the gene

expression discretizing.
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Table 2 continued from previous page

Algorithms Brief description Input data type Advantages Complexity Limitations

WGCNA

[138]

Regulatory links be-

tween genes are inferred

using correlation mea-

sures on which a thres-

hold is applied.

Steady-state

gene expression

data

+ Works well to recon-

struct large GRN.

+ Can construct

weighted networks

where each weight shows

the significance of the

regulation links.

[7] - Inability to infer the

direction of regulation

links.

- Assumes linearity

GENIE3

[116]

Uses a set of random-

ized trees to infer the

GRN from expression

data. For a p genes net-

work, the algorithm de-

composes the network

prediction into p differ-

ent regression problems.

Steady-state

expression data

+ No assumption on the

type of regulatory in-

teraction; thus, it can

handles either linear or

combinatorial interac-

tions

+ Simple to interpret

O(TKmnlogn)

T: number of

is the number

of trees

K: number

of selected

variables at

each node of

the trees

- Consider only one type

of data (static data).
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Table 2 continued from previous page

Algorithms Brief description Input data type Advantages Complexity Limitations

In each sub-problem, a

set of randomized trees

(random forest or extra-

trees) is used to predict

the expression pattern

of one gene based on the

expression profiles of all

the other genes. Input

genes importance in the

prediction of the target

gene expression pattern

indicates putative regu-

latory links.

+ Able to predict edges

direction

+ Fast and scalable
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Table 2 continued from previous page

Algorithms Brief description Input data type Advantages Complexity Limitations

Inferelator

[23]

Uses regression and vari-

able selection to infer

the set of transcriptional

influences on each gene

of a GRN based on the

integration of genome

association and gene

expression data. The

algorithm uses ODE to

define the expression

level of a gene or the

mean expression of a set

of functionally related

genes as a function of

the TFs transcriptional

level plus some external

stimuli.

Time-series and

steady-state

gene expression

data

+ Consider both steady-

state and time-series

expression data

+ Allows incorporation

of other regulatory in-

formation

+ Infer edge direction.

–
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Table 2 continued from previous page

Algorithms Brief description Input data type Advantages Complexity Limitations

The algorithm assumes

that f() Equation 19 is

a truncated linear func-

tion. f() is then fitted

with LASSO to strictly

enforces for sparsity

The table summarizes some state of the art methods that reverse engineer the GRN from gene expression data. We consider the

probabilistic graphical-based methods, correlation-based methods, partial correlated based methods, information theory-based methods,

regression-based methods, and ODE based methods. We report one algorithm per category. The 1st column gives the name of the

algorithm. The 2nd column gives a short description of the algorithm. The 3rd column gives the type of input the algorithm is expecting.

The 4th column provides the advantages of the algorithm. The 5th column gives the complexity of the algorithm. In this column, we

used the following notation: m = number of genes in the dataset; n = number of samples in the dataset (typically, n ≫ m). Finally,

the 6th column provides the limitations of the algorithm.
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2.5.3 Template Methods

Template-based methods exploit the idea that orthologous TFs regulate orthologous

genes. Thus, in this category, one starts with the well reconstructed GRN of a well-

known organism (the template) and then transfers information about regulation to

orthologous genes in the genome of interest. This methodology requires the entire

template genome and its GRN i.e the set of its TF-gene interactions. The genome

can either be represented by its nucleotides sequence (DNA sequence) or its proteins

sequences. These sequences are then used to determine their representatives (or-

thologs) in the genome of interest. Orthologs are detected using sequences alignment

tools. To present this category, we consider the works of Babu et.al [8], in which

they used one the most well-characterized bacterial network, E. coli, as a template

to reconstruct networks of 175 prokaryotic genomes. The orthology is detected us-

ing a hybrid method combining sequence alignment and the Bidirectional Best Hit

method(BBH). BBH consists of finding the pairs of genes in two different genomes

that are more similar to each other than either is to any other gene in the other

genome. Research has recently demonstrated that detecting homology with DNA is a

challenging task [176] as they are rapidly evolving. Hence, it will be almost impossible

to identify homology sequences after many years of divergence. Nowadays, homology

is detected using protein sequences.

Even though methods in his category are relatively simple, they present some

drawbacks. In effect, they necessitate a template that should be complete in order for

the reconstructed network to be as well. Nevertheless, most existing template GRNs

are far from complete, and the number of template genomes that exist is very small.

Moreover, the template should be close enough in the phylogenetic tree in order for

the conservation to be significant.

2.6 Conclusion

In this chapter, we mentioned the mathematical background notions necessary to

comprehend the thesis. Furthermore, we summarized the state-of-the-art regulatory

network modeling in the following three categories:
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1. Model-based methods: These methods use the principle of evolutionary con-

servation and exploit the idea that orthologous transcription factors regulate

orthologous target genes. Hence, in this category, one uses a model organism

(i.e., an organism for which the GRN is well known); information about regu-

lation among orthologous genes is transferred from the model network to the

network of interest.

2. Reverse engineering methods using gene expression data: These approaches

use the fact that a target gene’s expression profile is influenced by its direct

regulators’ expression profile. Hence, one chooses an appropriate type of model

architecture that is a mathematical function that describes the general behavior

of a TG depending on the activity (expression profile)of its TFs; then, the

model parameters are learned from data. Several different model architectures

for reverse engineering GRNs from gene expression data have been proposed

ranging from the Boolean network, Bayesian Network, information theory model

to regression models.

3. Network inference by prediction of cis-regulatory elements: These approaches

make use of experimentally well-characterized transcription factor binding sites

(TFBSs) for inferring regulatory links. Hence the promoter regions of all the

genes in the genome are scanned with the known TFBSs. The genes are hypoth-

esized to be regulated by the TF if they possess the TFBS in their regulatory

region.

We also pinpoint the advantages of the proposed solutions as well as their drawbacks.
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Chapter 3

BENIN

GRN inference is a challenging problem due to the task’s combinatorial nature and

the limitation of available data. With technological advances, we are now witness-

ing the accumulation of a large variety of data that carry on an incomplete but

complementary picture of the regulatory process. Hence, taken together, they form

a complete picture of the regulatory circuit. This complementarity created a need

for the development of GRN inference methods that integrate this diversity to cir-

cumvent the use of each data separately. Sophisticated methods integrating diverse

biological knowledge with expression data have thus been proposed. This integration

is generally done in the form of prior knowledge, i.e., a subjective belief of how the

network should resemble. The majority of these methods uses a Bayesian Network

(BN) framework for combining prior knowledge and data as it reflects both causal

and probabilistic semantic. However, due to the complexity of learning BN, these

methods can only be applied to small networks (with a minimal number of nodes). In

this work, we aim to contribute to data integration discourse by proposing an elegant

and easy method to incorporate several biological knowledge to guide the inference

of GRN of any size.

This chapter will present BENIN, a new GRN inference algorithm that incorporates

biological knowledge with time-series expression data. The objective is to infer a di-

rected graph G = (V,E) representing the GRN from gene expression data guided by

prior knowledge of possible edges. In this graph, the nodes set V represents the net-

work genes and, the edges set E, the regulatory links between the TFs (the sources)

and the TGs (the sinks). We formulate the challenge as a features selection problem.
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Details about the formulation of the problem will be given subsequently. The chapter

is organized as follows: Section 3.1 details the methodology of BENIN; Section 3.2

presents the software used to implement BENIN as well as the data employed to eval-

uate its performances; Section 3.4 shows the performances of BENIN on the DREAM

4 challenge data.

3.1 The BENIN Algorithm

This section presents our method BENIN. In what follows, we will use the following no-

tation: ~x for vector, boldface upper case letter X for matrix representation, uppercase

calligraphic font S for sets, and 1 to represent the unit function. TF will designate

the transcription factor, TG the target gene, and finally, GRN will correspond to the

gene regulatory network, and KO stands for Knockout.

3.1.1 Overview

BENIN is a regression-based method that uses feature selection combined with sta-

bility selection to reverse engineer the GRN from expression data. BENIN uses a

simple but efficient method to integrate any prior knowledge data with time-series

expression data to boost the GRN inference. Moreover, BENIN integrates regulatory

interactions from other model organisms into the studied model through orthology

sequence transfer (c.f. Chapter 4).

In this part of the thesis, we will summarize BENIN functioning on a simple ex-

ample from size 10 DREAM4 subchallenge. We will reverse engineer network 1 using

knockout gene expression data as prior knowledge combined with time-series gene

expression data.

BENIN takes as input the prior knowledge which can either be a matrix A of

association strengths or probabilities of interaction between each TF and the TGs;

the matrix of time series expression data X, the set of regulators R, a power γ,

the number of bootstrap R and an optional threshold τ . The following major steps

summarize BENIN. In this example we set τ to 0.5 and R to 1000.

Step 1: If the prior knowledge is not in the form of association strengths or probabil-

ities, it is first transformed into probabilities or association strengths
{
Arj→gi

}
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for i = 1, · · · ,M ; and j = 1, · · · ,M ′ of the likelihood of the regulatory interac-

tions between each TF and the TGs. In our example, M = 10 and M ′ = 8. In

our example the prior knowledge is not in the required form.

Step 2: The association strengths or probabilities are then transformed into weights:{
wrj→gi

}
with i = 1, · · · ,M ; j = 1, · · · ,M ′. These weights are utilized into

BENIN to build the model.

Step 3: For each TG gi, i = 1, · · · ,M , we model its expression profile as a linear

combination of the expression profile of its direct TFs, using Elastic net. The

weights wrj→gi are fed into Elastic net to guide the selection of more plausible

TFs. At this step, we generate R bootstraps and compute a score srj→gi ∈ R for

each edge (gi, rj) ∈ E , which provides the strength of the potential interaction.

The scores srj→gi are such that true interactions get the highest scores. The

whole process is summarized in Figure 24.

Step 4 All the scores
{
srj→gi

}
i=1,··· ,M ;j=1,··· ,M ′ are put together and sorted in decreas-

ing order. A threshold τ can then be applied to this sorted list to obtain the

final network.

Step 4 This step is not part of BENIN, but the final network is evaluated against the

true structure using different statistical measures such as the area under the

precision-recall curve or area under the ROC curve.

Here we give BENIN general overview; we will provide details about each step in

subsequent sections.

3.1.2 Problem Specification

The GRN is a collection of molecules such as genes, non-coding RNAs, proteins, and

metabolites that interact together to control genes’ expression to ensure proper cell

functioning. The gene’s expression involves many steps, and regulation may occur

at each of these steps. We restrict the scope of or research to the transcriptional

level, where most of the genes are regulated [20]. In what follows, the GRN will

refer to the transcriptional regulatory network (TRN) and represents the graph of

direct interactions between the set of transcription factors (TFs) R and their target
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genes (TGs). Figure 12d shows an example of such a graph from the DREAM4

challenge. For illustrative purposes, we changed the original naming of some genes

to discriminate against the set of TFs from all the other genes.

We focus on inferring a weighted directed graph of the GRN using time series gene

expression data coupled with prior evidence of interactions. In this graph, the edges

represent the set of direct regulatory interactions between the set of transcription

factors (TFs) R and their target genes (TGs). We assume that the sources and sinks

of each edge should be different: i.e genes do not directly regulate themselves. In

what follows, let R the set of TFs and G the set of all genes in the network, we

have R ⊆ G . A time series gene expression data matrix XTS
G ,t over a set of genes

G = {g1, g2, · · · , gM} is defined as follow:

XTS
G ,t = [~xg1,t, ~xg2,t, · · · , ~xgM ,t] ∈ RNxM ,

where the ~xgi,t are column vectors of expression values of the i-th gene gi measured

at N discrete time points (cf Figure 12b). The matrix PG ,R of the p-values of binding

interactions among the set transcription factors R and the set of genes G , is defined

as follow:

PG ,R =
[
~pG ,r1 , ~pG ,r2 , · · · , ~pG ,rM′

]
∈ RMxM ′ ,

where M ′ = |R|, and ~pG ,ri is a vector representing ri binding location profile regarding

all the TGs in the network. Figure 12a shows an example of a genome-wide location

data matrix. And finally, the matrix of knockout gene expression data XKO
R,G is defined

as follow:

XKO
R,G =


~xKO∆r1,G

...

~xKO∆rM′ ,G

 ,

where ~xKOgj∆ri is the vector of expression values of all the genes in the strain where

ri has been knocked out.

Our aim here, is to uncover the set of weighted direct links:

E = {(gi, rj) , gi ∈ G , rj ∈ R }
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(a) Simulated location data (b) Simulated expression data

(c) Simulated knockout expression data

(d) An example of size 10 network from the DREAM4 challenge

Figure 12: Example DREAM4 Input for BENIN

The figures shows example of input for BENIN from DREAM4 size 10 subchallenge. (a)

sub-matrix of simulated genome wide location for the network 1 from DREAM4 size 10 sub-

challenge. (b) sub-matrix of time-series expression data for the network 1 from DREAM4

size 10 sub-challenge. (c)Sub-matrix of knockout gene expression data matrix for size 10

network 1 from DREAM4 challenge. (d) The network 1 from the DREAM4 size 10 sub-

challenge.
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3.1.3 Network inference as Feature Selection

The basic idea of our method is to decompose the inference of the GRN into as many

sub-problems as the number of genes in the network. Hence, for a network of M

genes, we decompose the problem into M sub-problems, in which one considers each

gene at a time, and the aim then amounts to finding the set of its direct regulators.

We assume that the expression profile ~xTSgi of a gene gi is a linear function of the

expression values XTS
Rgi

of its direct regulators, plus some noise. For each gi ∈ G we

can then write its expression profile ~xTSgi as in Equation 20.

~xTSgi = f(XTS
Rgi

) + ε (20)

The problem is to find, for each gene gi, the subset of its direct regulators Rgi ⊆ R

whose expression is predictive of its expression profile. This is the well-known problem

of feature selection in machine learning [208].

To model the dynamics from time series expression data, we consider the vec-

tor autoregressive model (VAR) [212, 221]. The p-lag vector autoregressive model

(VAR(p)) captures linear dependencies between variables in a time series. Particu-

larly, each variable is expressed as a linear combination of the p lags of its own values

as well as the p lags of the other variables in the model and, finally, an error term.

More formally, let ~xTSt = (~xTSg1,t
, ~xTSg2,t

, · · · , ~xTSgM ,t) be an M -dimensional multiple time

series expression data vector; ~xt is assumed to be generated from a VAR(p) if it can

be written as in Equation 21.

~xTSt = ~c + B1 ~x
TS
t−1 + · · · + Bp ~x

TS
t−p + ~ξt, (21)

where p denotes the lag length or the order of the VAR model; Bi is an MxM matrix

of coefficients for the i−th lag, M represents the number of genes (variables) in the

time series; ~ξt is an M−dimensional noise vector. We restrain the scope of this work

to the first order of the model, i.e. p = 1.

From Equation 21, setting p = 1, the expression profile of each gene at time t can

be written as follow:

~xTSgi,t = ci + XTS
R′,t−1

~βi,. + ~ξt (22)

Note that ~βi,. is the transpose of a row-vector of B and R ′ = R ∪ gi. To find

the subset of regulators for each gene, the problem amounts to retrieve the vector ~βi,.
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which can be obtained by any regression method.

3.1.4 Feature Selection using Elastic Net

One of the major problems of time series expression data is that they are measured

over a short period; which results in datasets where the number of genes is far greater

than the number of time points (high-dimensionality problem) [255, 239]. Further-

more, many of these variables may be irrelevant to the output and a large num-

ber of them highly correlated (multicollinearity problem). To deal with those prob-

lems, Zhou and Hastie [274] have proposed a regularization method: the Elastic

net. It combines two well-known regularizations techniques: the LASSO [228] and the

Ridge [101]. LASSO uses L1-norm, it tends to produce a sparse model but is limited

by the number of samples in the learning dataset. Ridge uses the L2-norm and is

good at retrieving correlated variables, but does not produce sparse models. By com-

bining both regularization methods, Elastic net integrates the advantages of both

techniques while overcoming the drawbacks of each regularization taken separately.

~βEneti = argmin
~βi

||~xTSgi,t −XTS
R′,t−1

~βi ||+ λEnet

[
(1− α) ||~βi||22 + α ||~βi||1

]
(23)

3.1.5 Bootstrapping the Elastic Net to Score Regulatory Links

One approach to compute the scores of the edges could be to use the absolute values

of the regression coefficients stored in the vector ~βEnet.,. . However, this can be problem-

atic since our data are high-dimensional. In effect, performing feature selection with

this type of data may produce unstable results [180]. To remedy this problem, we

propose combining bootstrap with the Elastic net. The general idea is to generate

several bootstraps of the original time series data. Our resampling algorithm is based

on stationary bootstrap [180], which resamples time series by consecutive blocks of

varying length, ensuring that dependencies between the variables are preserved. Af-

terward, the Elastic net is applied to the bootstraps. The non-zero components of

~βEnet.,. are used to select the potential regulators in each bootstrap. Then, the final

score of each link corresponds to the frequency with which the regulator of the in-

teraction is chosen by the Elastic net within each of the R bootstrap samples, as

reported in Equation 24.
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Different sub-problems yield different possible links in the final network. Those

links are then combined into a single list and ranked according to their scores
{
srj→gi

}
for j = 1, · · · ,M ′ and, i = 1, · · · ,M . Finally, a user-defined threshold τ can be

applied to this list to get the final list of regulatory interactions of the reconstructed

network.

srj→gj =
1

R

R∑
k=1

1~βEnet,ki,j 6=0, where 1~βEnet,ki,j 6=0 =

1, if ~βEnet,ki,j 6= 0

0, otherwise
(24)

3.1.6 Integrating Prior Knowledge

The limited availability of expression data and the quantity of noise they contain, have

made the inference of the GRN from expression data alone, a challenging problem.

One way to overcome the difficulties and improve the reconstructed network is to

supplement the expression data with other data types to take advantage of the wealth

of complementary information about the regulation they offer. This information can

be used to design informative priors, to boost the network inference. In this work,

we use TF binding location data and knockout gene expression data. We consider an

extended version of Elastic net (the adaptive Elastic net [275]), which modifies

the regularization term in Equation 23 by using different degrees of shrinkage on

the regression coefficients ~βi,j depending on which predictors we want to keep in the

model. The new regression problem is defined in Equation 25. Note that the vector ~ν

modifies both the l1 and l2 norm as in the implementation of glmnet R package [72].

For the Elastic net, finding the subset of regulators for gene gi is equivalent to

solving Equation 25 for the variables ~xTSgi,t and XTS
R′,t−1 =

[
~xTSr1,t−1, ~x

TS
r2,t−1 , . . . , ~x

TS
rM′ ,t−1

]
.

~βEneti = argmin
~βi

||~xTSgi,t −XTS
R′,t−1

~βi ||+ ~νλEnet

[
(1− α) ||~βi||22 + α ||~βi||1

]
(25)

3.1.6.1 Prior knowledge from Location Data

Genome-wide location data provide evidence of physical interaction between TFs and

TGs within the genome, through the identification of the region in the upstream region
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of the genes where the TF will bind: the TFBS. This evidence is generally reported as

p-values, which suggests the statistical significance of the binding event. The smaller

the p-value, the more significant is the existence of the physical interaction between

the TF and the considered TG. Integrating gene expression data with location data

allows extracting reliable and useful information about regulation, as they provide

complementary information about regulation. However, genome-wide location data

are very noisy [17, 206]. To tackle the noise inherent in location data, we integrate

such data through a probabilistic framework, as suggested in [17]. The aim is to

match the p-values to the corresponding probabilities of edges being present in the

final GRN.

Let Prj→gi be a random variable over [0, 1] which represents the p-value of the

location data of the regulatory link Erj→gi in the graph G of the GRN. In a previous

study [206], Prj→gi , has been assumed to be exponentially distributed if Erj→gi ∈ G,

and uniformly distributed if Erj→gi /∈ G. More formally, we have:

Pr(Prj→gi = p|Erj→gi ∈ G) = λe−λp/ (1− e−λ), (26)

where λ is the parameter that controls the scale of the truncated exponential distri-

bution. And:

Pr(Prj→gi = p|Erj→gi /∈ G) = 1 (27)

We now define the probability of having the edge Erj→gi in G, knowing the p-value

of the binding event. Let Pr(Erj→gi ∈ G) = β be the probability that an edge Erj→gi

is in the graph without any prior knowledge. Using the Bayes formula we have:

Pr(Erj→gi ∈ G|Prj→gi = p) =
λe−pλ β

λe−pλ β + (1− e−λ) (1− β)
(28)

In [17], using Equation 28, the authors have demonstrated that λ acts as a tunable

parameter indicating the degree of confidence in the evidence provided by the location

data. Therefore, λ models the belief level of noise inherent in location data, and at

the same time, it weights the evidence we are giving to it. A suitable weighting of

the prior could be to choose the appropriate value of λ; instead, as proposed in [17],

we adopt a more robust method and marginalize Equation 28 over λ. We assume λ

is uniformly distributed over the interval [λmin, λmax] and we integrate Equation 28

over that interval. The new equation to compute the conditional probability on an

edge Erj→gi is given in Equation 29.
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Pr(Erj→gi ∈ G|Prj→gi = p) = 1
λmax−λmin

∫ λmax
λmin

λe−pλ β
λe−pλ β + (1−e−λ) (1−β)

dλ (29)

Equation 29 can be easily computed numerically for fixed values of Prj→gi . Using

Equation 29, we precompute the probabilities associated with each p-value and store

them in a matrix A for later use. A is then transformed into weight. The intu-

ition is that the weights are defined so that small probabilities are associated with

high weights and vice versa. We thus compute the weight matrix W as the inverse

component-wise of the elements of the matrix A raise to the power γ. More formally

we have:

Wrj→gi
=

1

(Arj→gi
)γ

(30)

3.1.6.2 Prior knowledge from Knockout Expression Data

Knockout (KO) expression data are expression data measured in an organism where

one of its genes is made inoperative (“knocked out” of the organism). We consider KO

data measured at a steady state. KO data represents valuable prior information to

boost network inference. KO data informs about possible direct interaction between

a TF and a TG. We compute the z-scores of each association rj → gi. The z-

score assumes that knocking out a TF directly affects the expression of its direct

target genes more strongly than the other genes [182]. We calculate the z-score of a

regulatory link rj → gi as in Equation 31 and store it into a matrix Z.

zrj→gi =
~xKO∆rj ,gi

− µgi
σgi

(31)

where ~xKO∆rj ,gi
is the expression value of the gene gi in the strain where rj has been

knocked out, µgi is the mean expression value of the gene gi in all the strains (wild

type and deleted strains) and σgi is its standard deviation in all the strains.

We then transform these z-scores into weights to feed elastic net. Note that

the higher the absolute value of the z-score, the more affected is the expression value

of the target gene by the TF knocked out. Since we aim to penalize the TF with low

a priori binding potential, the intuition is that the weights are defined so that small

absolute z-scores are associated with high weights and vice versa. Thus, we compute
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the weight matrix W as the component-wise inverse of the elements of the matrix Z

raise to the power γ ≥ 0. More formally, we have:

Wrj→gi
=

1

(abs(Zrj→gi))
γ

(32)

The function abs() computes the absolute value.

Algorithm 1 summarizes BENIN.

Algorithm 1 The BENIN algorithm

Input: list of genes G , list of TFs R, time series expression matrix XTS
G ,t, the associ-

ations strengths matrix A, power γ, threshold τ

1: Transform the probabilities
{
Arj→gi

}
i=1,··· ,M ;j=1,··· ,M ′ into weights{

Wrj→gi
}
i=1,··· ,M ;j=1,··· ,M ′ as:

Wrj→gi
=

1

(Arj→gi
)γ

2: for each gene gi, i = 1, · · · ,M do

3: Generate the learning sample:

LS := (~xTSgi,t,X
TS
R,t−1), for t = 0, · · · , T

4: Generate R samples of LS with stationary bootstrap.

5: Compute R elastic net vectors ~βEnet,k, k = 1, · · · , R
6: Compute the scores

{
srj→gi

}
i=1,··· ,M ;j=1,··· ,M ′; i 6=j as

srj→gi =
1

R

R∑
k=1

1~βEnet,ki,j 6=0

where,

1~βEnet,ki,j 6=0 =

1 if ~βEnet,ki,j 6= 0,

0 otherwise.

7: end for

8: Aggregate the srj→gi , i = 1, 2, · · · , |G |, j = 1, 2, · · · , |R|, i 6= j and rank them in

decreasing order.

9: Apply the threshold τ to select links in the inferred network.

Output: Ordered links rj → gi with scores srj→gi .
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3.2 Experimental Validation

3.2.1 Data

3.2.1.1 The DREAM4 Challenge Dataset

The DREAM4 dataset is a widely used benchmark dataset to evaluate network in-

ference methods. We have worked with two datasets: the DREAM4 in silico size 100

and size 10 sub-challenges. Each sub-challenge provide time series expression data as

well as other types of data such as perturbation data (knockdown or knockout data)

for five networks. The networks differ in their structure which mimics either E. coli or

Saccharomyces cerevisiae regulatory network. Table 3 summarizes the characteristics

of the five networks in terms of the numbers of TFs and the number of regulatory

links for both sub-challenges. The topologies were obtained by extracting subnet-

size 10 size 100

Network # TF # Regulatory links # TF # Regulatory links

Net 1 8 15 41 176

Net 2 9 16 36 249

Net 3 9 15 44 195

Net 4 9 13 41 211

Net 5 9 12 34 193

Table 3: Description of DREAM4 size 10 and size 100 networks

The table presents the number of regulators and regulatory links for each of the five net-

works in the 10-nodes and 100-nodes in DREAM4 sub-challenge. The character “#” stands

for “number of”. Columns 2-3 provides the numbers of TFs and regulatory links for the

size 10 networks. Columns 4-5 provides the numbers of TFs and regulatory links for the

size 100 networks

works of either E. coli or Saccharomyces cerevisiae regulatory network, notably part

of the network with cycles. However, self-interactions are omitted. Their dynamics

were obtained by using a kinetic model of gene regulation. The expression data were

generated using GeneNetWeaver version 2.0. Time series for size 100 sub-challenge
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(respectively size 10 sub-challenge) consist of 10 (respectively 5) different experiments

with 21 time points each. Knockout data include wild type expression data as well

as steady state expression data obtained after knocking out each of the M genes in

the network. We considered only the single knockout expression data.

3.2.1.2 Simulated Location Data

Genome-wide location data provide direct evidence of physical interactions amongst

genes within the genome. Different databases exist that gather information about

location data, for example, the Young Lab, which gathers different works on genome-

wide location data for organisms such as Saccharomyces Cerevisiae. Simulated genome-

wide location data are obtained by generating p-values for the TFs of the networks in

both sub-challenges. We use a uniform distribution U [0, 1] for the edges that do not

belong to the gold-standard network. In counterpart, we use exponential distribution

over the interval [0, 1] with scale λ, for edges from each TF that are present in the

gold-standard network [206]. The scale λ controls the level of noise in the generated

generated dataset.

• For each pair (rj, gi) of regulator and target gene:

p−value =


random number in the interval [0, 1] using exponential distribu-

tion with parameterλ , if (rj, gi) ∈ G.

random number over the interval [0, 1], otherwise.

(33)

We generated eleven location datasets for each of the ten networks in both the

sub-challenges. More specifically, location data are generated using the R functions

rexp for the exponential distribution and runif for the uniform distribution. Both

are implemented in the R stats package. The data are generated using the following

R code:

> lambda=20

> i f e l s e ( go ld standard network [ i , 3 ] , rexp (n = 1 , r a t e =lambda ) ,

runif (1 , min = 0 , max = 1))
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3.2.2 Performance Metrics

We use the DREAM4 challenge scoring methodology for a fair evaluation. We com-

pute the AUROC, and AUPR as well as their respective p-values, pAUPR and pAUROC .

The p-values are probabilities that random predictions would have the same or larger

scores. As we inferred five networks for each subchallenge, we combined all the pAUPR

and pAUROC into two global p-values (one for each score), which are used to compute

a global score as in Equation 34:

SG = −0.5 log10 (pAUROC ∗ pAUPR). (34)

The global score is used to rank all the participants in the challenge. The larger

the global score then, the more statistically significant is the prediction. More de-

tails can be found on the DREAM4 page https://www.synapse.org/#!Synapse:

syn3049712/wiki/74628. We computed all these scores with DREAMTools version

1.3.0[41], the standalone application provided by the DREAM challenge team. We

further assess the errors each method is making. We analyze how well each method

predicts network edge motifs. We compute the motifs edges’ prediction confidence,

which is the edges’ median rank in the final ordered edges list. The first edge in the

list has 100% prediction confidence, and the last edge has 0% (we scaled the prediction

confidence to the interval [0, 1]). For each inferred method, we extracted all instances

of the three motifs. We then get the rank of all the edges in each motif. The point is

to see how each edges motif is ranked in the output list from all concurrent methods.

Note that we add missing links at the end of the inferred list if some links are omitted.

We consider 3 types of motif: the Fan-in, the Fan-out and the Cascade motifs.

These motifs are illustrated in Table 4. We use GeneNetWeaver [202] to perform the

network motifs analysis.
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Table 4: Motifs and errors type

Network motif Error types

F
a
n

-o
u

t

Fan-out error: incorrect

prediction of edges between

coregulated genes (2 → 3

and 3→ 2)

F
a
n

-i
n

Fan-in error: low predic-

tion of the edges 2→ 1 and

3→ 1 of the fan-in motif.

C
a
sc

a
d

e

Cascade error: incorrect

prediction of indirect edge

1 → 3 in cascade motifs.

The table presents the three types of motifs we considered (represented in 2nd column) as

well as the three types of error possibly ensued from network inference (represented in 3rd

column). The nodes are the genes in the GRN. An arrow indicates that there is regulatory

interaction between a transcription factor (source) and a target gene (sink). A non-arrow

indicates that the genes are not interacting.
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3.2.3 BENIN Parameters

BENIN is controlled by three main parameters: the number of bootstraps R, the

elastic net mixing parameter α, and the power γ controlling the weight of the prior.

We evaluated the importance of each of these parameters on BENIN’s performance

using one independent 100-node network generated with GeneNetWeaver. We use the

DREAM4 default setting. Note that we used location data as prior knowledge.

We proceed as follows, we fix two parameters, and we vary the third one. Starting

with the default parameters α = 0.3 and R = 1000 and γ = 1 we vary each of the pa-

rameters at a time as follows: R ∈ {5, 55, 105, · · · , 10000}, γ ∈ {0.1, 0.2 · · · , 1.5} and

α ∈ {0.1, 0.2 · · · , 0.9}. Note that, we set the parameter λEnet with cross-validation as

implemented in glmnet package. We chose the λEnet that yields the minimum mean

squared error. We set the number of folds in cross-validation to 10.

3.2.4 BENIN Implementation

We implemented BENIN with R libraries: glmnet [71] version 2.0-13 (https://cran

.r-project.org/web/packages/glmnet/index.html), boot version 1.3-20 [34] (ht

tps://cran.r-project.org/web/packages/boot/index.html). All computations

were performed on server Salus with an Intel(R) Xeon(R) processor, 768GB of RAM

and 56 cores. The execution time (elapsed time) for each network size is depicted in

Table 5. The results reported in Table 5 are obtained setting the number of bootstraps

to 1000 (R = 1000). All the other parameters are set to default.
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Table 5: BENIN execution time on the DREAM4

Network size

Method 10 100

BENIN-non-optimized 602s 7200s

BENIN-parallel 50s 368s

BENIN +all-parallel 51s 899s

The table shows the elapsed time when using BENIN to reconstruct different size networks

from the DREAM4 challenge. BENIN +all represents BENIN considering all potential genes

as TFs. We specified whether or not we use parallel programming to optimize BENIN. The

results reported here are obtained setting the number of bootstraps to 1000 (R = 1000).

All the other parameters are set to default.

3.2.5 Comparison with the State-of-the-Art

First of all, we compared the performance of BENIN with three top-ranked teams of

each DREAM4 sub-challenge. We named the top three methods as follows: DREAM4

Winner for the winner, DREAM4 2nd for the first runner up and DREAM4 3rd for the

third-place finisher. Note that the winner of the size 100 sub-challenge is different

from the winner of the size 10 sub-challenge. However, we do not have informa-

tion about the first and the second runner up teams for both sub-challenges. At

the time of the DREAM4 challenge, only information about the winners of the sub-

challenges was made available. The winner of the size 10 sub-challenge [136] applied

Petri nets to all provided datasets (knockout, time course, steady-state expression

data, and knockdown expression data) to infer the networks. The winner of size

100 network [179] used z-scores combined with graph methodology to infer the net-

works from knockout expression data. We consider their scores as reported on the

official website of the DREAM4 challenge: https://www.synapse.org/#!Synapse:

syn3049712/wiki/74631.

We further rigorously compared BENIN’s performance with the existing state of

art methods, which have claimed to perform well on the DREAM4 challenge. They
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use different methodologies for the GRN inference, and some of them integrate prior

knowledge data. We have ensemble trees based methods (dynGENIE3 [81], iRafNet [178]),

pairwise mutual information (TD-ARACNE [272]), dynamic Bayesian network (G1DBN [141],

scanBMA [258]), linear regression-based method (gelNet [216]). We used existing R

packages for these methods. Whenever the implementation allows it, we specify the

list of TFs (dynGENIE3). For methods that output regression coefficients, we rank

the regulatory links using the absolute values of the coefficients. We use default pa-

rameters for G1DBN, scanBMA and gelNet. For the others, we set their parameters

as specified in their papers. For integrating the KO expression data into the results

of dynGenie3, we take the product of the scores dynGenie3 and the Z-scores as sug-

gested by the authors [81]. For combining the two priors into BENIN, we averaged the

output scores of BENIN +Location (BENIN with location data as a prior) and BENIN

+KO (BENIN using KO expression data as prior).

3.3 Computational Complexity

Investigating the complexity of BENIN amounts to investigate the complexity of the

Elastic Net. As mentioned above, our method was implemented using glmnet. We

particularly used the package function cv.glmnet to build our model. cv.glmnet

uses cyclical coordinate descent to find the optimal ~β. Cyclical coordinate descent

successively optimizes the penalized regression equation over each parameter (~βi)

while keeping others fixed, and cycles repeatedly until convergence. Through a cycle,

two main types of variables update are used depending on the number of covariates.

The naive update requires O(Nd), where N is the number of samples and d the

number of candidates covariates. It is used if the number of covariates is less than

500. The second type of update is the covariance update. When using this type of

update, with m nonzero coefficients (βi) in the model, a complete cycle costs O(md)

operations if no new variables become nonzero, and costs O(Nd) for each new variable

entered. The algorithm builds a grid of closely spaced λ−values {αl}Ll=0. For each

λ−value in the optimization path, the cyclical coordinate descent is repeated until

the algorithm converges, to compute the coefficient vector β. The complexity deeply

depends on the convergence rate of the cyclic coordinate descent. The convergence

rate of coordinate descent minimization for solving linear systems is a classic topic.
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Beck and L. Tetruashvili [12] have studied the cyclic coordinate descent for smooth

function in general and have shown that it achieves a convergence rate of O(1/ε)

under Lipschitz gradient condition and a rate of O(log(1/ε)) under strong convexity;

where ε is a pre-specified accuracy of the target. Tseng et.al [234] have also studied

the convergence of cyclic coordinate descent Note that the general case of smooth and

separable function is not well understood. In summary, the worst-case complexity:

• Assuming a smooth function and Lipschitz gradient condition:

O(
1

ε
Nd) (35)

• Assuming a smooth function and strong convexity condition:

O(log(
1

ε
)Nd) (36)

• More generally let s the number of steps till convergence, we have:

O(sNd) (37)

A detailed analysis of the coordinate descent convergence rate can be found in

[252], and for elastic net in [72].

The package makes use of techniques to fasten the convergence such as warm

start (i.e., the solution β(λl) is a warm start for the solution ~β(λl+1)), and the active-

set convergence (which cause the algorithm to iterate only on variables which have

nonzero coefficient). The algorithm uses k-fold cross-validation to select the best λ.

In our GRN learning, the algorithm is repeated L bootstrap times.

3.4 Results and Discussion

3.4.1 Effect of the Noise in Prior Knowledge

We have investigated the effect of noise inherent in location data on the accuracy

of BENIN. We generated several location datasets with varied level of reliability, by

fluctuating λ. Note that the larger is λ, the more reliable will be the location data

in the sense the p-values of regulatory links will be close to zero. In our experiment
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we chose λ = {1, 10, 20, 100} leading to 4 different location datasets that we name:

completely noisy location data, reasonably noisy location data, fair location data and

perfect location data. Figure 13 shows the result of BENIN when varying the noise

in location. We plot it only for 100-nodes networks and principally for the easiest

network to infer (network 1) and the most difficult to infer (network 5). As expected,

we observe that as the prior becomes perfect, BENIN gets better performance.

(a) Network 5 (b) Network 1

Figure 13: Effect of the noise in location data

The figures show the AUPR when learning 100-nodes DREAM 4 with different types of

location data as prior knowledge. We report data with three different levels of noise: com-

pletely noisy (β = 1), reasonably noisy (β = 10) and fair location data (β = 20) and, perfect

(β = 100) location data. The graph shows that as the level of noise decrease in the data,

the performances of BENIN increase.

3.4.2 Influence of BENIN Parameters

Figure 14 shows that the quality of BENIN prediction is less sensitive to α than to

the two other parameters. In fact, for different values of α, the AUPR score does not

vary much from 0.5. On the other hand, as γ increases, BENIN yields higher AUPR

scores (Figure 14c) but after γ = 1 the performance starts to decrease. Furthermore,

we can also observe that as R increases, there is an improvement in performance that

stabilizes for R ≥ 5000 (Figure 14b). In effect, increasing the number of bootstraps

improves the chance to select the true TFs in the model. From these tables, the most

important parameters are R and γ.
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(a) Effect of α on AUPR. (b) Effect of R on AUPR.

(c) Effect of γ on AUPR.

Figure 14: Influence of BENIN parameters

We consider the AUPR score of BENIN on a 100-node network when varying each of

the parameters: α which controls the penalization strength in the Elastic net, the

number R of bootstrap samples and the parameter γ that weights the influence of

the prior. We used location data as our prior. We vary R ∈ {5, 55, 105, · · · , 10000},
γ ∈ {0.1, 0.2 · · · , 1.5} and α ∈ {0.1, 0.2 · · · , 0.9}.

3.4.3 Effect of Prior Knowledge

The global scores, when considering each prior separately (or combined), are reported

in Table 8 for size 100 network and Table 11 for size 10 networks. The associated

AUPR and AUROC scores are detailed in Table 6 (respectively Table 10) when knock-

out expression data is considered as prior knowledge and in Table 7) (Table 9) when

genome-wide location data is considered as prior knowledge for the GRN inference
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of size 100 (respectively size 10) DREAM4 networks. From Table 8 and Table 11,

we first observe that the inclusion of prior knowledge into BENIN drastically improves

its performances. We further notice in Table 8 and Table 11 that each type of prior

knowledge data yields different performances. Including Location data as prior knowl-

edge yields better results compared to KO expression data on both sub-challenges.

Location data are more informative than KO expression data. In Section 3.4.6, we

dug up into the results on size 100 networks to see the contribution of each data type.

However, not surprisingly, the combination of KO expression data and genome-wide

location yields superior results compared to BENIN’s performance using each prior

separately and BENIN when we do not consider any prior. These results confirm the

benefit of the integration of prior knowledge into a model for GRN inference.

We evaluated BENIN’s performances without restricting the set of potential TFs

on the DREAM4 challenge. From Table 5 and Table 8, we observe that restricting the

input TFs to the list of known TFs improved BENIN’s performance in two directions.

First, we observe from Table 5 that, when we consider all potential genes as TFs, the

execution time increases. On the other hand, from Table 8, we further observe an

increase in the global score on the DREAM4 challenge when we restrict the potential

TFs to known TFs. These two observations confirm the need to use and invest in

methods for identifying TFs using techniques such as sequences annotation, homol-

ogy, identification of DNA binding domain (DBD), and wet-lab experiments. Many

resources help predict TFs from the protein sequences and, several databases store

information about the TFs. We can list AnimalTFDB [104] or JASPAR [198]. There is

a need to integrate this information as prior knowledge into the GRN inference for

scaling up when inferring large network, but also in order to obtain more biologically

meaningful GRN.

3.4.4 Performance on the DREAM4 Challenge

On the first hand, when considering only KO expression as prior knowledge, from

Table 6, we observe that BENIN gets a better score than the winner for the size

100 sub-challenge, which uses knockout gene expression data alone to infer all five

networks in the sub-challenge. We notice that our AUROC score is the highest on

almost all the five networks (except for network 2 and 3). Moreover, our AUPR scores
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are far better than the performances of the size 100 sub-challenge participants. We

principally care about the AUPR score and the final global score. The AUPR score

is more informative than the AUROC score in the case of imbalanced datasets [196].

Regulatory networks are such an imbalanced case, as the number of true links is

far less than the number of non-links (sparse network). Our final global score on

size 100 networks considering KO expression data as prior knowledge indicates that

our performance is more statistically significant than those of all other participants.

However, when considering KO expression data as prior knowledge, BENIN gets the

2nd best score for size 10 sub-challenge. This result is not surprising as the winner

of this challenge integrates all the data that were made available in the challenge,

proving the power of data integration.

On the other hand, when we combine KO expression data and location data with

time-series expression, we notice from Table 8 and Table 11 that BENIN gets a better

score than the winners of both sub-challenges. This result first testifies that location

data are very informative and confirm that the integration of several data with time-

series expression data improves BENIN’s performance.

3.4.5 Comparison with the State-of-the-Art

From Table 7, Table 6, Table 9 and, Table 10 we observe that, for both size 10 and

size 100 networks, BENIN significantly outperforms the state of the art methods, par-

ticularly when considering genome-wide location data as prior knowledge. However,

when we consider KO expression data, we observe in Table 6 that, for size 100 net-

work 2 and 4, dynGENIE3+KO gets better results than BENIN but in average, BENIN’s

performance is superior to dynGENIE3+KO. From Table 8 and Table 11, BENIN over-

all performance when considering both prior knowledge data confirms the statistical

significance of our results.
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Table 6: DREAM4 size 100 performance with KO expression

Algorithm Net 1 Net 2 Net 3 Net 4 Net 5

BENIN +KO 0.611(0.964) 0.455(0.925) 0.442 (0.923) 0.496 (0.932) 0.403 0.927)

BENIN +all+KO 0.516 (0.913) 0.322(0.783) 0.373( 0.835) 0.384(0.831) 0.250(0.765)

gelNet 0.042(0.695) 0.047(0.631) 0.096(0.669) 0.051(0.647) 0.056(0.682)

BENIN-no prior 0.306 (0.904) 0.218 (0.872) 0.275 (0.860) 0.279 (0.880) 0.279 (0.911)

TDARACNE 0.063(0.656) 0.066(0.613) 0.077(0.642) 0.073(0.618) 0.069(0.651)

scanBMA 0.119(0.685) 0.064(0.625 ) 0.146(0.658) 0.116(0.662) 0.099(0.693)

G1DBN 0.058(0.789) 0.064(0.7) 0.057(0.728) 0.051(0.727) 0.064(0.771)

dynGENIE3+KO 0.559(0.964) 0.483(0.933) 0.409(0.933) 0.528(0.938) 0.340(0.922)

dynGENIE3+all+KO 0.481(0.920) 0.352(0.807) 0.350(0.849) 0.458(0.857) 0.283( 0.788)

iRafNet+KO 0.476(0.888) 0.295(0.791) 0.383(0.829) 0.356(0.839) 0.237(0.789)

KO z-score 0.521(0.962) 0.453(0.930) 0.412(0.924) 0.404(0.932) 0.214(0.913)

DREAM4 Winner 0.536(0.914) 0.377(0.801) 0.390(0.833) 0.349(0.842) 0.213(0.759)

DREAM4 2nd 0.512(0.908) 0.396(0.797) 0.380(0.829) 0.372(0.844) 0.178(0.763)

DREAM4 3rd 0.490(0.870) 0.327(0.773) 0.326(0.844) 0.400(0.827) 0.159 (0.758)

The table reports the AUPR and AUROC (in brackets) for each of the five networks of the

size 100-node DREAM4 subchallenge for different algorithms with KO expression data as

prior information. The highest score is shown in bold.
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Table 7: DREAM4 size 100 performance with Location data

Algorithm Net 1 Net 2 Net 3 Net 4 Net 5

BENIN +Location 0.599(0.983) 0.562(0.979) 0.534(0.972) 0.580(0.982) 0.615( 0.985)

BENIN +all+Location 0.356( 0.955) 0.318(0.943) 0.352(0.940) 0.353(0.953) 0.357(0.952)

BENIN-no prior 0.306 (0.904) 0.218( 0.872) 0.275(0.860) 0.279(0.880) 0.279(0.911)

gelNet+Location 0.033(0.648) 0.038(0.601) 0.088(0.636) 0.043(0.642) 0.048(0.677)

TDARACNE 0.063(0.656) 0.066(0.613) 0.077(0.642) 0.073(0.618) 0.069(0.651)

scanBMA+Location 0.149(0.833) 0.093(0.7611) 0.175(0.8276) 0.144(0.787) 0.131(0.829)

G1DBN 0.058(0.789) 0.064(0.7) 0.057(0.728) 0.051(0.727) 0.064(0.771)

iRafNet+Location 0.328(0.943) 0.327(0.941) 0.408(0.953) 0.344(0.946) 0.400(0.956)

dynGENIE3 0.251(0.8918) 0.225(0.889) 0.165(0.883) 0.270(0.888) 0.207(0.903)

dynGENIE3+all 0.196(0.761) 0.111(0.664) 0.106(0.723) 0.194(0.725 ) 0.124(0.730)

The table presents the AUPR and AUROC (in brackets) for each of the five networks in

the 100-nodes DREAM4 subchallenge for different algorithms with location data as prior

information. They are the geometric mean of the scores obtained on the eleven generated

location datasets. The highest score is shown in bold.
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Table 8: Global score on the DREAM4 size 100 subchallenge

Algorithm Methods Global Score Prior

BENIN +Both

Regression

129.563 KO+Location Data

BENIN +Location 122.716 Location Data

BENIN +KO 100.383 KO

BENIN +all+location data 82.200 Location data

BENIN-no prior 61.431 None

gelNet+KO 11.078 KO

gelNet+Location 8.626 Location Data

dynGENIE3+KO

Tree Ensemble

99.917 KO

iRafNet+Location 84.193 Location Data

dynGENIE3+all+KO 73.748 KO

iRafNet+KO 66.071 KO

dynGENIE3 56.695 None

dynGENIE3+all 26.662 None

scanBMA+Location

Dynamic Bayesian Network

33.207 Location Data

scanBMA 17.476 None

G1DBN 16.922 None

TDARACNE Mutual Information 11.084 None

DREAM4 Winner

Other

71.589 None

DREAM4 2nd 71.297 No information

DREAM4 3rd 64.715 No information

KO z-score 90.291 None

The table reports the global scores of different inference methods combined with or without

prior knowledge for inferring the five networks of the DREAM4 size 100 subchallenge. The

Prior column specifies the type of prior information used. See Table 6 and Table 7 for more

details of this table.
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Table 9: DREAM4 size 10 performance with Location data

Algorithm Net1 Net2 Net3 Net4 Net5

BENIN +Location 0.817(0.952) 0.726 (0.910) 0.804(0.949) 0.856(0.957) 0.915(0.975)

BENIN +allgenes+Location 0.805 (0.944) 0.693 (0.897) 0.799 (0.947) 0.840 (0.953) 0.891 (0.974)

BENIN +no prior 0.502 (0.847) 0.465 (0.666) 0.441 (0.722) 0.752 (0.924) 0.205 (0.567)

gelNet+Location 0.363 (0.723) 0.234 (0.606) 0.215 (0.621) 0.324 (0.740) 0.319 (0.737)

TDARACNE 0.379 (0.756) 0.270 (0.684) 0.313 (0.620) 0.308 (0.638) 0.409 (0.687)

scanBMA 0.453 (0.633) 0.433 (0.615) 0.325 (0.567) 0.470 (0.654) 0.483 (0.667)

G1DBN 0.507(0.772) 0.416 (0.664) 0.418 (0.750) 0.499 (0.760 ) 0.652 (0.824)

iRafNet+Location 0.714 (0.935) 0.630 (0.904) 0.711 (0.910) 0.669 (0.911) 0.805 (0.955)

dynGENIE 0.612 (0.876) 0.484 (0.702) 0.765 (0.854) 0.686 (0.922) 0.595 (0.842)

dynGENIE+allgenes 0.483 (0.743) 0.419 (0.636) 0.512 (0.758) 0.484 (0.734) 0.669 (0.834)

The table reports the AUPR and AUROC (in brackets) for each of the five networks of the

size 10-node DREAM4 sub-challenge for different algorithms with Locations data as prior

information. The highest score is shown in bold.

Table 10: DREAM4 size 10 performance with KO expression

Algorithm Net1 Net2 Net3 Net4 Net5

BENIN +KO 0.799 (0.928) 0.572 (0.742) 0.649 (0.919) 0.796 (0.944) 0.709 (0.902)

BENIN +allgenes+KO 0.738 (0.908) 0.533 (0.659) 0.728 (0.936) 0.849 (0.959) 0.626 (0.853)

BENIN +no prior 0.502 (0.847) 0.465 (0.666) 0.441 (0.722) 0.752 (0.924) 0.205 (0.567)

gelNet+KO 0.363 (0.723) 0.234 (0.606) 0.215 (0.621) 0.324 (0.740) 0.319 (0.737)

TDARACNE 0.379 (0.756) 0.270 (0.684) 0.313 (0.620) 0.308 (0.638) 0.409 (0.687)

scanBMA 0.453 (0.633) 0.433 (0.615) 0.325 (0.567) 0.470 (0.654) 0.483 (0.667)

G1DBN 0.507(0.772) 0.416 (0.664) 0.418 (0.750 ) 0.499 (0.760) 0.652 (0.824)

iRafNet+KO 0.646 (0.879) 0.272 (0.708) 0.657 (0.847) 0.563 (0.790) 0.573 (0.873)

dynGENIE+KO 0.612 (0.876) 0.484 (0.702) 0.765 (0.854) 0.686 (0.922) 0.595 (0.842)

dynGENIE+KO+allgenes 0.611 (0.865) 0.475 (0.667) 0.751 (0.834) 0.694 (0.927) 0.593 (0.830)

DREAM4 Winner 0.916(0.972) 0.547(0.841) 0.968(0.990) 0.852(0.954) 0.761(0.928)

DREAM4 2nd 0.881(0.967) 0.382(0.796) 0.682 (0.916) 0.698 (0.902) 0.424 (0.822)

DREAM4 3rd 0.623 (0.864) 0.301 (0.567) 0.646 (0.824) 0.693(0.820) 0.673(0.776)

KO z-score 0.638(0.835) 0.262(0.666) 0.701(0.840) 0.776(0.942) 0.405(0.723)

The table presents the AUPR and AUROC (in brackets) for each of the five networks in

the 10-nodes DREAM4 sub-challenge for different algorithms with location data as prior

information. They are the geometric mean of the scores obtained on the eleven generated

location datasets. The highest score is shown in bold.
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Table 11: Global score on the DREAM4 size 10 subchallenge

Algorithm Method Global score Prior

BENIN +Both

Regression

7.481 Location+KO

BENIN +Location 7.324 Location

BENIN +all+Location 7.139 Location

BENIN +KO 5.802 KO

BENIN +all+KO 5.535 KO

BENIN +no prior 3.272 None

gelNet+Location 1.696 Location

gelNet+KO 1.626 KO

dynGENIE3+KO

Tree Ensemble

4.814 KO

dynGENIE3+all+KO 4.657 KO

iRafNet+Location 4.965 Location

iRafNet+KO 4.140 KO

dynGENIE3 3.222 None

dynGENIE3+all 3.206 None

G1DBN
Dynamic Bayesian Network

3.222 None

scanBMA 2.022 None

TDARACNE Mutual Information 1.859 None

DREAM4 Winner

Other

7.127 KO

DREAM4 2nd 5.290 No information

DREAM4 3rd 3.968 No information

KO z-score 4.120 None

The table reports the global scores of different inference methods combined with or without

prior knowledge for inferring the five networks of the DREAM4 size 10 subchallenge. The

Prior column specifies the type of prior information used. See Table 10 and Table 9 for

more details of this table. If a method uses all the genes as potential TFs we specify it with

“+all”.
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We dug up into the inferred networks and Figure 15 shows an example of a sub-

network from the 4th network of the size 100 sub-challenge. Figure 15 shows how the

subnetwork is inferred by each method. The subnetwork is anchored in a critical/hub

transcription factor “G64”: i.e., a transcription factor linked to many other genes. In

this figure, the gray links are the links missed by the method, the red links are the

false positives, and the green links are the true links. The subnetwork is inferred with

different accuracy by the different methods. Note that we restricted the subnetwork

to the top 20 edges for each method. As expected, methods that do not consider prior

knowledge miss many links and have the highest false positives. Location data are

most informative than KO expression data. We can observe that methods that con-

sider location data as prior knowledge can infer the true edge with fewer false-positive

links. From the network inferred by BENIN, when we combine both KO expression

and location data, we can observe that the prior are complementary. We observe

that BENIN infers less number of false-positive links than when we consider KO. How-

ever, we are still missing some links. We further perform network motif analysis to

highlight the types of error each method is doing.
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(a) True network

(b) BENIN combined with KO and loca-

tion data

(c) BENIN combined with location data (d) scanBMA with location data

(e) iRafNet with location data (f) iRafNet combined with KO

(g) dynGENIE3 combined with KO (h) BENIN and KO

Figure 15: A subnetwork from 100-nodes network 4
The figure reports how each of the methods infers a subnetwork (sub-figure a) from the 4th

network in the size 100 DREAM4 subchallenge. We consider a subnetwork anchored on a

key transcription factor, i.e., a TF linked to many other genes. In the figures, green links

represent the true positives, red links represent the false positives, and finally, gray links

are edges missed by the method.
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(i) gelNet and KO (j) TDARACNE without prior

(k) BENIN without prior (l) dynGENIE3 without prior

(m) scanBMA without prior (n) G1DBN without prior

(o) KO z-score

A subnetwork from 100-nodes network 4
The figure reports how each of the method infers a subnetwork (sub-figure a) from the 4th

network in the size 100 DREAM4 subchallenge. We consider a subnetwork anchored on a

key transcription factor i.e. a TF linked to many other genes. In the figures green links

represent the true positives, red links represent the false positives and finally, gray links are

edges missed by the method.
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3.4.6 Network Motif Analysis

For each method, we only report the motif prediction confidence on the 4th network

from the size 100 DREAM4 subchallenge, as it is the one where we perform less than

the state-of-art (more specifically when combining BENIN with KO expression data).

Furthermore, the difference in the error profiles between all methods is remarkable on

this network. The network motifs analysis will help us pinpoint where the errors are

being made by each method and the influence of each type of prior knowledge data

on BENIN prediction. We extracted 642 fan-out motifs, 250 fan-in motifs, and 187

cascade motifs from these networks. We use GeneNetWeaver to analyze how well the

edges of these motifs are inferred by BENIN, iRafNet, dynGENIE3, gelNet, scanBMA,

TDARACNE, G1DBN and z-score, when they consider or not prior knowledge data (KO

and/or Location data). Table 12 presents the error profile for each method. The first

row stores the true structure. Here, the black edges are those we want to infer. The

intensity of the edge color is proportional to its prediction confidence (median rank).

Different methods, different error profile: From Table 12, we can observe that

each method is affected to a different degree by each error. Therefore each method

has different error profile, demonstrating that various method has different strength

and weakness.

Considering first the Fan-out motif, we observe from Table 12 that almost all

methods except BENIN and G1DBN have the tendency to confuse co-regulation and

regulation, and infer regulatory links between co-regulated genes. The most affected

methods are TDARACNE, and scanBMA+noprior. We observe that the median rank

of the true edges (1 → 2 and 1 → 3) is very close to the median rank of the false

edges (2 → 3 and 3 → 2): these methods rank edges between co-regulated genes on

average as good as the true regulatory links. The other affected methods (dynGENIE3,

iRafNet and gelNet) although affected by the error, rank the true regulatory links

at the top of their inferred list of regulatory links. Moreover we observe that some

of these methods (dynGENIE3, iRafNet, gelNet, scanBMA+Location and TDARACNE)

have difficulty to infer the directionality of the edges. On the other hand, we can

observe that BENIN can clearly distinguish co-regulation and regulation, but also can

distinguish the directionality of the edges.
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Looking up at the Fan-in motif, we observe that dynGENIE+noprior, gelNet+KO,

scanBMA+KO, and scanBMA+noprior have the difficulty to rank edges targeted by

many TFs at the top of the inferred list of regulatory links. We also notice that

methods that do not incorporate prior knowledge with expression data are mostly

affected by this error. It is principally the case for scanBMA, which is the most affected

by this error. The inclusion of prior knowledge data into the network inference helps

the method to rank combinatorial links among the top edges.

Finally, observing the Cascade motif, we can see that methods that integrate KO

expression data as prior knowledge are the most affected by this error: BENIN+KO

is the most affected by this error. They give higher rank to the indirect edge 1 → 3

compared to the true edges (1 → 2 and 2 → 3). It is not surprising since, as if

we look at the prediction confidence of motif edges with KO expression data alone

(KO-zscore-alone), we can see that the median rank of the indirect edge is 0.91. It

is normal since KO expression data helps to infer direct links and indirect interactions

as perturbing a TF will affect not only its direct TGs but also its indirect TGs. On the

other hand, we observe that methods that consider location data (iRafNet+Location

and scanBMA+Location) rank the true edges of the motif on average at the top of

their inferred list of regulatory links, demonstrating that they are not affected by the

cascade error.
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Table 12: Motif prediction confidence (median rank)

Fan-out Fan-in Cascade

Methods

Motifs

BENIN-combined

BENIN +KO
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Table 12 continued from previous page

Fan-out Fan-in Cascade

BENIN +Location

BENIN +noprior

dynGENIE3+KO
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Table 12 continued from previous page

Fan-out Fan-in Cascade

dynGENIE3+noprior

iRafNet+KO

iRafNet+Location
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Table 12 continued from previous page

Fan-out Fan-in Cascade

gelNet+KO

scanBMA+Location

scanBMA+noprior

116



Table 12 continued from previous page

Fan-out Fan-in Cascade

G1DBN

TDARACNE

KO-zscore-alone
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The table shows the median prediction (median rank) of edges motifs on the network 4 from the size 100 DREAM4 subchallenge.

Using GeneNetWeaver, we extracted 642 fan-out motifs, 250 fan-in motifs and 187 cascade motifs from the networks inferred by each

method. The first row stores the true structure of the motifs with regulatory the true links shown in black. The first column is the

Fan-out motif. 2nd column is the Fan-in motif and finally, 3rd column is the Cascade motif. Each row shows the motifs as inferred

by each method. In these motifs, the intensity of the color is proportional to the median prediction confidence (median rank). The

labels of the edges are the median prediction confidence values.
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3.5 Conclusion

In this chapter, we introduced BENIN, a framework that infers regulatory networks

by jointly learning from time-series expression data and prior knowledge. The prior

knowledge serves to derive weights that are then used to penalize non-potential in-

teractions and thus lead toward a more intuitive solution. The proposed method

utilizes a popular algorithm the Elastic net, which permits a direct and simple in-

tegration of prior knowledge while the model is learned. In this chapter, we report

BENIN’s performance on a widely used benchmark dataset for network inference as-

sessment: the DREAM4 challenge dataset. We combined time-series expression data

with simulated KO and genome-wide location data. We compared our performance

to state-of-the-art methods.

A simple but efficient method. Compared with existing integration models,

which mainly rely on the Bayesian network framework, the advantage of BENIN is the

simplicity of the model and its simplicity to integrate the prior knowledge. Bayesian-

based methods are computationally demanding [38, 148]; they generally require many

samples to learn the model. Above all, they require knowledge of the prior data to

choose the right prior distribution that will fit the knowledge we want to integrate.

Our results on simulated data demonstrate that even a simple model with proper

integration of prior knowledge can be competitive with sophisticated methods. Care

should be taken with the quality of the prior knowledge data because very noisy data

may worsen the algorithm’s performance. In our algorithm, this problem is handled

at two levels. The first level is the adoption of a probabilistic model to define the

prior. In that way, we use prior knowledge to guide network inference without making

a strong assumption about their accuracy. The second level is in the model building

itself. Our algorithm offers the possibility to control the feature penalization.

Prior knowledge boosts the network inference In this chapter, we have also

demonstrated that joint learning from expression data and informative prior knowl-

edge is beneficial. Not surprisingly, the inclusion of prior evidence in the network

inference substantially increases our algorithm’s performance. When we compare the

error profile of several state-of-the-art methods and BENIN when they integrate or
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not knockout data and the transcription factor binding location data, we notice a

complementary in their performance. Different methods are robust against different

errors. For example, BENIN is robust for inferring edge targeted by several TFs and

distinguishing co-regulation and regulation. On the other hand, iRafNet is robust

against the cascade error. We further observe that different methods are affected by

different error types depending on the type of prior knowledge data integrated. This

complementarity in the performances was expected because different data sources will

tell different parts of the story about the regulatory network and have different noise

levels.

What is next? Although the results of BENIN are encouraging, a lot still needs to

be done. In In this chapter, we only presented preliminary results on simulated data.

In the next chapter, we will confirm our result on real data on human expression

data and consider other types of prior knowledge, such as ChIP-seq/ChIP-chip data,

functional similarity, or protein-protein interactions. The method presented here for

combining results from different priors is very simplistic. Alternatively, the integration

could be done with ensemble methods. From the motif analysis, we can observe that

BENIN is mostly affected by the cascade error. The reason for this failure needs further

investigation.
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Chapter 4

BENIN: Application to the HeLa

Cell cycle

4.1 Introduction

In Chapter 3, we introduced a method that integrates any type of prior information

with time-series expression data to infer the GRN: BENIN. In Chapter 3, we tested

BENIN on simulated data from the DREAM4 and considered simulated knockout gene

expression data and simulated genome-wide location. In this chapter, we propose

applying BENIN on real data using a variety of real prior knowledge data. More

specifically, we applied BENIN to human data. In particular, we used the HeLa cell

line [203]. The HeLa cell line is an immortal human cancer cell line, which has allowed

several medical research breakthroughs. Because of its immortality, HeLa cells have

become the model cancer cell in cancer research [161].

We consider the human organism for several reasons. First of all, it is among the

multicellular Eukaryotes of interest in nowadays researches. Hence, scientists have

produced a variety of data to understand the complexity of human cell functioning.

Furthermore, it has a complex regulatory network. Our point is to show that BENIN

can infer complex GRN of higher organisms. Our goal is to infer the GRN that

controls the cell cycle of the HeLa cell line. The cell cycle is a series of coordinated

stages that allow cells to grow, replicate, and create new cells, permitting them to stay

alive. It is an essential process by which the genetic material is transmitted through

cells. This transmission should be accurate to prevent the transmission of genetic
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mutations. Because of its importance for every living cells, the cell cycle is a highly

controlled process. Some genes control the passage from one phase of the cycle to

another. Other genes are responsible for holding the cell at specific points of the cell

cycle. Any malfunctioning of this complex regulation may lead to the development of

cancer. The regulation of the cell cycle happens at different levels. However, for our

research, we restrict the regulation at the transcriptional level. Our main goal is to

show that BENIN can infer not only interactions supported in the literature but also

new high scoring interactions. We believe that reconstructing the GRN in cancers

cell may help scientists identifying critical factors that may have led to a cancer state.

In this chapter, we propose integrating several prior knowledge data, ranging

from TFBS, knockdown gene expression data, ChIP-seq data, or even functional

annotation. We describe step by step how we transform the data into prior knowledge

weights that are later integrated into BENIN (described in Chapter 3) to infer a list

of regulatory links. The final GRN is obtained by applying a threshold τ on the

inferred list of interactions. Our results demonstrate that the integration of diverse

prior knowledge may improve BENIN performance, helps BENIN inferring interactions

that are missed when we do not consider any prior knowledge.

We extended BENIN to include regulatory interaction from other closely related

organisms. This integration will enrich the GRN inferred from time-series expression

data with new regulatory links. We use orthology information transfer through se-

quence alignment to transfer known regulatory interactions from closely related model

organisms into the studied model. The orthology mapping is based on the assumption

that ortholog genes preserve their function. In our study, we consider the mouse as

our model organism to study the GRN in human.

Mouse or Mus Musculus has several similarities to human in terms of genetics,

physiology, and anatomy. These similarities make the mouse genomic research par-

ticularly insightful to gain knowledge on how human functions. Furthermore, the

ease with which the mouse genome can be analyzed and manipulated has to lead

to a production of a large variety of data available on different platforms. We use

eggnog-mapper [111] to get the 1:1 orthologous human genes into the mouse. Our

results demonstrate that BENIN can infer several documented regulatory links and

interactions supported by the literature and other potential regulatory interactions

that necessitate further investigations.
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Different strategies have been proposed to infer the human GRN in general and the

GRN controlling the HeLa cell cycle. Ranging from computational methods that use

statistical models to infer the GRN from mainly expression data [211, 247, 197, 77]; in

vivo based methods that use wet-lab experiments to identify binding sites of TFs of

interest [247, 197, 267, 267] and finally, hybrid methods that combine both strategies.

The main limitation of these methods is that most of them use only a specific data

type to infer the GRN. Some methods do not infer the whole GRN but rather a

network anchored at the TF targeted by a specific experiment.

BENIN contributions to the inference of GRN controlling the HeLa cell cycle are

the following:

• We propose integrating ChIP-seq, functional annotation, TFBS, and KD ex-

pression data with time-series expression data to infer the GRN controlling the

HeLa cell cycle.

• We further integrate regulatory information from mouse through orthology in-

formation transfer, to confirm the inferred network from expression data and

enrich the inferred network with potential interaction.

• BENIN can infer not only known interactions but also new potential regulatory

interactions with high confidence that are supported to some extent with the

literature that necessitates further investigation.

The chapter is organized as follows: in Section 4.2.1, we introduce the cell cycle

and the cell cycle regulation paradigm. Section 4.2 gives the list of different strate-

gies that have inferred the GRN controlling the human cell cycle in general and the

HeLa cell cycle in particular. Section 4.3 describes our methodology to build the

gold-standard for evaluating BENIN performances. Section 4.4 provides detail on data

collection. Section 4.5 gives details on reverse-engineering the GRN controlling the

HeLa cell cycle using time series combined with different prior knowledge information.

We provide details on the different steps for transforming the prior knowledge infor-

mation into prior weights. We further detail our methodology to transfer regulatory

information from mouse using sequence similarity and discuss the data collection. In

Section 4.6.1, we present the results of applying BENIN on Whitfield data [247], to
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infer the GRN controlling the HeLa cell cycle. Finally, in Section 4.6.2, we discuss

tour findings.

4.2 Background

4.2.1 The Eukaryotic Cell Cycle

The cell cycle is an important phenomenon that occurs in all organisms to allow them

to survive. It is the story of all living cells. It is an important sequence of stages by

which a cell will go through to replicate its genetic material and divide to produce

new cells. For the rest of this chapter, we will concentrate on the eukaryotic cell cycle.

The eukaryotic cell cycle consists of two main phases:

• The mitosis or M-phase, which is the shortest phase of the cycle. In this phase,

the cell will perform division to produce daughter cells with the same genetic

material.

• The anaphase, which is the longest part of the cycle. It is in this phase where

the cell will undergo most of its processes. The anaphase is divided into three

discrete phases: one synthesis phase or S-phase in which the DNA is replicated.

Two gap phases: the G1-phase (gap 1) that is the gap phase immediately after

the mitosis and finally, the G2-phase (gap 2) in which the cell continues to grow,

and the proteins are synthesized.

In summary, the eukaryotic cell cycle is divided into four phases: the M-phase, the

G1-phase, the S-phase, and the G2-phase. Figure 16 gives an overview of the cell

cycle in a eukaryotic cell.

The regulation of the cell cycle is essential for several reasons. First of all, it is

important to control the cell division; otherwise, cells will undergo division infinitely,

leading to cancer growth. Furthermore, regulation is important to ensure proper

coordination and signal passage through the different cell cycle stages. Through the

cell cycle, the cell considers several factors to decide whether it will progress from

one stage to another. These factors are internal, e.g., DNA damage, or external, e.g.,

nutrient availability or cell size. These cues trigger the activities of keys regulators

at checkpoints. A checkpoint is a stage in the cell cycle where internal and external
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Figure 16: The Eukaryotic cell cycle

cues are checked to decide whether or not progression toward another step in the

cycle should be halted. Hence, a checkpoint’s general purpose is to ensure that all

conditions are met before the cell proceeds to the next stage, hence ensuring that

the complete genome is transmitted to daughter cells. For example, all the genome

must be synthesized before moving to the mitosis phase. Otherwise, it will result

in daughter cells having mutations that will be transmitted to following new cells.

There are three main checkpoints:

• The G1-checkpoint: it happens during the transition from the G1 to the S-

phase. It is at this step that major regulation occurs. At this stage, factors

such as cell size, DNA integrity, nutrient resources are assessed.

• The G2-checkpoint: it happens at the transition from G2 to M-phase. At this

checkpoint, the cell checks if the DNA is completely replicated and not damaged.

• The M-checkpoint or spindle checkpoint: it occurs during the mitosis. Here,

the cell makes sure that sisters chromatid are properly attached to the spindle.
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Figure 17: From nucleus to DNA sequence

The figure shows how the DNA is wrapped inside the cell of eukaryotic cells. The DNA

length is far greater than the size of the nucleus in which it is stored inside the cell. Hence,

the DNA needs to be condensed. The double helix of the DNA sequence is compacted

around a protein called a histone, forming the nucleosome. Several nucleosomes are coiled

together and stacked on top of each other, forming a chromatin fiber. The chromatin fiber is

then looped. The chromatin fiber loops are compressed and folded to produce a fiber tightly

coiled into the chromosome’s chromatid. A chromosome is made up of two chromatids called

sister chromatids.

The cell cycle regulation is controlled by different molecules, such as cyclin-dependent

kinases (CDKs), which are enzymes that phosphorylate (add phosphate group) to

other proteins for activating or repressing their activity. Note that CDKs are only

activated when associated with cyclin. The other regulators are transcriptions factors.

In this work, we focus on TFs. They can either repress or activates the activity

of their target genes. In Table 13, we give a list of some of the TFs in the cell

cycle. We considered almost all the reported TFs in our analysis, except TP53. We

considered some members of the E2F family (E2F2, E2F3, E2F4, E2F6, and E2F7).

126



Furthermore, we consider only two members of the KLF family (KLF6 and KLF9)

and two members of the STAT family (STAT4, STAT5B). The excluded TFs were

not identified as HeLa cell cycle genes in the original work of Whitfield et al [247].

Table 13: Cell cycle Transcription Factors

HGNC symbol DBD Cell cycle

Phase

Function source

E2F-family

(e.g. E2F1,

E2F2, E2F4,

E2F8 etc)

E2F G2/M,

G1/S

cell cycle progres-

sion, proliferation,

DNA replication,

DNA damage check-

point DNA repair,

chromatin assem-

bly/condensation,

Chromosome segrega-

tion, mitotic spindle

checkpoint

[187, 7,

233, 50]

FOXM1 Forkhead G1/S,

G2/M

G1/S transition, mi-

totic progression, cell

proliferation

[37, 45,

242]

TP53 p53 Control cell cycle pro-

gression, apoptosis,

controls G2/M and

G1 checkpoints, DNA

damage response, cell

growth

[128, 1,

263]

BRCA1 unknown G2/M DNA repair [52, 257]

KLF-family (e.g.

KLF9, KLF6,

etc)

C2H2 ZF cell proliferation, dif-

ferentiation, develop-

ment, and apoptosis.

[19]
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Table 13 continued from previous page

HGNC symbol DBD Cell cycle

Phase

Function source

SP1 C2H2 ZF G1 Cell differentiation,

cell growth, apoptosis

[53, 87]

NF-Y family

(e.g.NFYA,

NFYB)

CBF/NF-

Y

Apoptosis [151, 89]

STAT-family

(e.g. STAT1,

STAT5, STAT4

etc)

STAT differentiation, prolif-

eration, cell survival,

apoptosis, and angio-

genesis

[32, 27,

253, 132]

The table shows the description of some important TFs that regulates the cell cycle in

Eukaryotes, particularly in human. The first column is the official gene name or the TF

family name. The second column provides the DNA-binding domain of the TF/family.

The third column gives information about the function of the TF/family, and finally, in

the fourth column, we provide the source for function description. We report in bold the

keys TFs in the human cell cycle. The reported annotations are obtained from in vivo

experiments (the 4thcolumn reports the work related to the annotations). We considered

almost all the reported TFs in our analysis, except TP53. We considered some members

of the E2F family (E2F2, E2F3, E2F4, E2F6, and E2F7). Furthermore, we consider only

two members of the KLF family (KLF6 and KLF9) and two members of the STAT family

(STAT4, STAT5B). The excluded TFs were not identified as HeLa cell cycle genes in the

original work of Whitfield et al [247].

4.2.2 HeLa Cell Line

The inference of the GRN that controls the human cell cycle general and the HeLa

cell cycle, in particular, have been explored in the literature using different strategies.

In this section, we will highlight the different strategies that have been proposed by

the researchers to elucidate the cell cycle GRN. We will split them into three main
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categories: Computationally-based methods, biologically based methods, and hybrid

methods. Different Human cell lines are studied in the literature. For example, we can

list the Fibroblast cell line, the Epstein-Barr virus (EBV) transformed lymphoblastoid

cell line (LCL), or the U2OS cell line. In this study, we will mainly report works on

the Human HeLa cell line.

Computationally-based methods mainly use mathematical models to infer the

GRN controlling the Human cell cycle. In the literature, several models have been

proposed for the GRN inference and tested on the Human cell cycle gene expression

data. The main obstacle of methods in this category is the lacking of a gold-standard

network against which the inferred network could be evaluated. Different methods

have adopted a different strategy to evaluate their performance. Hence, Ali Shojae

et.al. have proposed a lasso-based penalty method to infer causal interaction from

time-series gene expression data [211]. They have tested their method on the HeLa cell

cycle. They considered a subnetwork of nine genes for which the true regulatory net-

work has been extracted from BioGRID. They used the Whitfield HeLa dataset [247],

which original work consists of identifying genes that are periodically expressed in the

HeLa cell cycle. To evaluate the inferred network, they considered the sub-network

extracted from BioGRID by Sambo et al. [197]. They used statistical measures such

as F1, or recall. As the BioGRID network is not complete, they considered edges

that were absent in the gold-standard network as potential edges and compared these

links to the literature to see potentially valid interactions that were not included in

the BioGRID network. Other authors have used a different model to infer the GRN

controlling the HeLa cell cycle. Fujita et.al have used the first order sparse autore-

gressive model to infer the GRN from time-series expression data [77]. They further

evaluated the statistical significance of the inferred interactions and used the FDR

to control for false positives. They used the Whitfield HeLa cell cycle dataset [247]

and consider only a subset of 94 genes based on their association with cell cycle and

tumor development. The inferred network was evaluated using literature. They were

able to identify several interactions confirmed to be part of three pathways related

to cell transformation and tumor progression, namely the P53, STAT3, and NFKB

pathways. Other researchers have proposed an integrative framework that infers the

GRN by incorporating diverse biological data. Zhang et.al. have proposed a modular

network strategy that integrates information from time-series gene expression data,
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protein-protein interactions (PPI), protein-DNA interactions and functional annota-

tion [267]. The functional annotation was used to define the number of modules

obtained with fuzzy clustering. The PPI and PDI data were used to extract network

motifs. The idea is to assign TFs to at least one motif and then assign each module to a

TF motif. The algorithm was tested the Whitfield HeLa cell cycle dataset [247]. They

considered 846 genes that were demonstrated by Whitfield to be expressed in the cell

cycle. They validated their result using functional enrichment and by comparing the

inferred link with the literature. Zhengli et.al. have proposed integrating ODE with

a dynamic Bayesian network to infer GRN from time-series expression data. They

also validated their method on the Whitfield HeLa cell cycle dataset [247]. They con-

sidered 1009 clone IDs that were shown to be expressed during the cell cycle. Note

that several clone IDs can correspond to the same unique gene. To validate their

performance, they particularly focused on evaluating how the subnetwork routed at

BRCA1 was inferred by their method. They evaluated the inferred subnetwork based

on literature and functional coherence of the BRCA1 neighborhood. We provided

above a non-exhaustive list of research works that have mainly considered time-series

gene expression data to infer the GRN controlling the HeLa cell cycle.

In this category, we will also list methods that use statistical tests to infer GRN

from perturbation expression data (KO or KD expression data). Here methods per-

form differential expression analysis as described in Section 2.2.1.1 (c.f. Chapter 2)

to infer the TGs of a specifically screened TF. In [170] Oleaga et.al. have knocked-

down SP1 to determine its TGs and particularly those involved in proliferation and

cancer. The authors determined the TG from differential expression analysis. They

used unpaired t-Test combined with Benjamini–Hochberg FDR correction for mul-

tiple testing. They also computed the fold change as the ratio of the expression

value compared to the control condition. They obtained a large list of SP1 TGs that

were validated using promoter scanning with known SP1 PWMs. Furthermore, they

selected a subset of TGs for further validation using a ChiP experiment and other

independent in vivo experiments.

Computational based methods present the following drawbacks:

• The perturbation experiments generally target one TF in a specific cell cycle.

So on only the sub-network related to the screened TF can be inferred.
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• Although studies have demonstrated the need to integrate diverse data to cope

with noise in expression data, the dimensionality (data insufficiency), and to

obtain more reliable results, most of the methods in this category consider only

one type of data and do not integrate other omics data.

• Finally, generally, the inferred network is very limited.

In vivo based methods generally use chromatin immunoprecipitation (ChiP) ex-

periments. The aim here is to find genomic loci bound by a specific TF of inter-

est: the TFBS. A ChIP experiment can either be combined with DNA microarrays

(ChiP-ChiP) or ultra-high-throughput sequencing (ChIP-seq). Ren et.al [187] have

performed genome-wide location analysis of E2F TFBS using ChiP-ChiP experiment.

The method has allowed us to identify cell cycle-regulated genes in mammalian cell

lines. Hence, they identified previously unknown E2F TGs (target promoters) that

were independently experimentally validated. Chen et.al [37] have used ChIP-seq

experiment to elucidate genome-wide binding sites recognized by the forkhead TF

FOXM1. They identified a group of cell cycle genes bound by FOXM1. Gordon

et.al [190] have used the same strategy for identifying regions within the genome of

the HeLa cell line bound by the STAT1 transcription factor. Nowadays, ChIP-seq

experiments have become an indispensable and preferred in vivo method to detect

DNA interaction between a gene a TF of interest, because of its signal to noise ratio.

ChIP-seq data are deposited in database such as ENCODE or Chip-Atlas. Some of

these databases offer the possibility to predict target genes bound by a given TF.

The main limitation of in vivo methods is that experiments are generally restricted

to one or a few TFs of interest and specific cell lines. Hence only part of the GRN can

be inferred with these methods. Furthermore, they infer only physical interactions.

However, physical binding does not necessarily imply functional association.

Hybrid methods generally combine perturbation experiments (gene knockout or

knockdown) with ChiP experiments. Generally, target genes inferred from ChiP ex-

periments are validated through perturbation experiments targeting the TF screened

in the ChiP experiments.
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4.3 Building a gold-standard

An important step in the GRN is the evaluation of the reconstructed network. Dif-

ferent strategies have been proposed. They are experimentally based or in insilico

based methods. Experimentally-based methods consist, for example, on performing

perturbation experiments to validate the finding. For our research, we are focusing

on an in silico evaluation. The strategy here is to define the GRN inference as a

binary classification problem, which consists in predicting an edge as being present

or absent in the final network. Then one uses statistical methods as defined in Sec-

tion 2.4.1 to evaluate the inferred network. To achieve this, one needs to have a

defined gold-standard network with positive and negative interactions.

One difficulty in evaluating computational methods for the inference the GRN is

the lack of a proper and manually curated list of regulatory interactions that will

serve as the truth. Some efforts have been put together to define databases storing

regulatory links for well-studied organisms such as saccharomyces cerevisae with the

yeasttract database [166]. If we compare the number of existing databases of regu-

latory interactions with existing organisms, we can observe a significant discrepancy.

Another difficulty is the lack of curated nonregulatory links. Thus many existing

curated databases consist only in positive links. It is difficult to define a negative link

as our knowledge of the transcriptional regulation is very limited. The non-existence

of interaction in the literature does not mean that the two genes are not interacting

together.

One challenge of applying BENIN to human data is the construction of our “gold-

standard” network for performance evaluation. Unfortunately, no repository provides

a complete, curated gold-standard list of human regulatory interactions. Nevertheless,

for our study, we use the “gold-standard” networks from Garcia Alonso work [78] that

we combined with interaction from the HumanBase database [86, 135, 269, 270]

We are conscious that the “gold-standard” network is not complete, but it repre-

sents, to the best of our knowledge, the human GRN. As preliminary results, we did

not consider the possibility that the network may differ for each cell type. Instead,

we consider the regulatory network to be the same for all the cell types.
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4.3.1 Material

We collected two gold-standard networks from Garcia’s work [78]. One for cancer cell

line and the other for normal cell lines. The networks are obtained from the supporting

tables S3 and S4 of [78] (GarciaAlonso supplemental table S3 regulons Normal.xlsx

and GarciaAlonso supplemental table S4 regulons Cancer). It gathers signed regula-

tory interactions. However, as we are not interested in the type of regulatory interac-

tion, we ignored the sign of the interactions. Their “gold-standard” network combines

information from diverse curated databases. More precisely it gathers regulatory

interactions from 13 databases: HTRidb [24], Oreganno [143], KEGG[124, 126,

125], Fantom4, TRRUST [93], reviews, TFact [65], IntAct [171], NPIRegu-

lomeDB, TRRD [133], TRED [268], PAZAR [181], TFe [264].

We also collected regulatory interaction networks for 132 cell lines from the Human-

Base database https://hb.flatironinstitute.org/download.

4.3.2 Method

We build our “gold-standard” network by merging the different networks from Garcia

et al and the 132 networks from HumanBase database. Our challenge here is to define

the negative example (i.e., absence interaction). It is a very tricky and challenging

task since our knowledge of the human regulatory network is limited. Furthermore,

as specified above, existing databases that store regulatory interaction provide only

positive links. We define our negative interactions from the 132 HumanBase database

networks do. We follow the idea of Huttenhower et al [114]. They have proposed to

used as negative examples gene pairs not co-annotated to any terms in a set of 433

Gene Ontology (GO) [42] biological processes terms selected by their experts. These

negatives interactions are included in the 132 HumanBase database networks. Note

that we considered all of their set interactions (both positive and negative).

From the two networks collected from Garcia et al paper, we considered only

literature-curated interactions and coexpression based interactions. We made sure

that they do not come from ChIP-seq experiments, and they are not obtained from

TFBS motif analysis. We want to avoid any bias in the performances since we consider

both ChIP-seq and TFBS as prior knowledge to infer the GRN controlling the HeLa

cell cycle. We merge the two networks using a simple merge function. We merged
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based on the TF- TG combination. Note that this merge takes care of the duplicate

edges. The obtained links represent part of our positive interactions.

We concatenate the 132 networks on the command line using the “cat” command.

We then proceed to analyze and remove duplicated edges. Table 34 gives the result of

our analysis of the edges repetition. We consider two cases to remove the duplicates.

• Case 1: An edge is marked absent in a certain cell line but present in at least

one of the other cell lines. In this case, the positive occurrence is kept in the

merged network, and the other occurrences are discarded.

• Case 2: All the occurrences are positive links. In this case, one of the occurrences

is kept in the merged network, and the other occurrences are discarded.

• Case 3: All the occurrences are negative links. In this case, one of the occur-

rences is kept in the merged network, and the other occurrences are discarded.

In the last, we merge the two big networks (from Garcia and from the HumanBase) to

build our final “gold-standard” network. Here, we also need to remove the duplicates

edges. There are different cases to consider:

• Case 1: An edge is marked absent in the HumanBase’s network but present in

Garcia’s network. In this case, the edge is added as a positive link in the final

gold-standard network.

• Case 2: An edge is marked present in the HumanBase’s network and Garcia’s

network. In this case, one occurrence of the edge is added to the final regulatory

network.

In any other case, edges that belong either to HumanBase’s network or to Garcia’s

network are directly added to the final “gold-standard” network.

Algorithm 2 summarizes our methodology to build our “gold-standard” from ex-

isting “gold-standard” networks:

Algorithm 2 Steps for Building the “gold-standard network”

1: Collect the 132 cell line networks available from HumanBase https://hb.flati

roninstitute.org/download.

2: Concatenate the 132 networks on the command line using the cat command
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3: Analyze the network obtained in Step 2 to remove duplicated edges. Table 34

gives the result of our analysis of the edges repetition.

4: Remove duplicated edges. There are different cases to deal with repeated edges:

• Case 1: An edge is marked absent in a cell line but present in at least one

of the other cell lines. In this case, the positive occurrence is kept in the

merged network, and the other occurrences are discarded.

• Case 2: All the occurrences are positive links. One of the occurrences is kept

in the merged network, and the other occurrences are discarded.

• Case 3: All the occurrences are negative links. One of the occurrences is

kept in the merged network, and the other occurrences are discarded.

5: The HumanBase database stores the genes with their Entrez ID. We converted

the Entrez ID to official gene names using the human genome-wide annotation R

package org.Hs.eg.db [35].

6: Collect the two networks from Garcia’s work [78]. The networks are obtained

from the supporting tables S3 and S4 of [78] (GarciaAlonso supplemental ta-

ble S3 regulonsNormal.xlsx and GarciaAlonso supplemental table S4 regulons Can-

cer)

7: For each network, we subset the edges and consider only those that are from

curated databases. We make sure that they do not come from ChIP-seq experi-

ments, and they are not obtained from TFBS motif analysis. We want to avoid

any bias in the performances since we consider both ChIP-seq and TFBS as prior

knowledge to infer the GRN controlling the HeLa cell cycle.

8: We merge the two networks using a simple merge function. We merged based

on the TF- TG combination. Note that this merge takes care of the duplicate

edges. For each edge in the merged network, Table 35 gives the number of times

it appeared before removing the duplicates.

9: We merge the network from Step 4 with the network obtained in Step 7. Here

we need to deal with the repeated edges. Let gs1 the network obtained Step 4

and gs2 the network obtained from Step 7. There are different cases to take into

consideration:

• Case 1: An edge is marked absent in gs1 but present in gs2. In this case,

the edge is added as a positive link in the final gold-standard network.
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• Case 2: An edge is marked present in gs1 and in gs2. One occurrence of the

edge is added to the final regulatory network.

In any other case, edges that belong either to gs1 or gs2 are directly added to the

final “gold-standard” network. The list edges in the final “gold-standard network”

are depicted in Table 36 and Table 37.

4.3.3 Results

Table 35 gives the list of edges that were duplicated after merging the two Garcia

networks. The table also reports the number of times each duplicated edges appeared

before removing the duplicates in the merged network (from the two Garcia’s net-

works). In Table 34, we report the result of our analysis of the edges repetition after

concatenating the 132 networks from the HumanBase database.

We ended up with a gold-standard network whose characteristics are summarized

in Table 14. The detailed list edges in the final “gold-standard network” are depicted

in Table 36 and Table 37. Note that not all of our considered genes are part of our

“gold-standard” GRN. From Table 14, we observe that we are missing information

for 43 genes, among which 3 TFs: ZNF207 GTF2B and BRCA1.

Table 14: Characteristics of our Human “gold-standard” network

# Regulatory links #TFs #Genes # Positive links # Negative links

3333 39 585 1463 1870

The table provides the characteristics of our gold-standard network in term of the number

of regulatory links (see column 1), the number of TFs (see column 2), the total number

of genes (column 3), the number of positive links (column 4) and the number of nonlinks

(column 5).

136



Table 15: Missing transcription factors in our “gold-standard network”

#TF TFs Name

15
MZF1, MNT, DMTF1, CIC, ZNF414, ZNF587, HMG20B, ZNF521

ZNF207, TSC22D1, ZNF281, ZBTB7A, ZNF217, ZBED5, GTF2B

4.4 Material

4.4.1 Data

In this section we will present in details how we collected the diverse data use for

inferring the GRN controlling the HeLa cell cycle.

4.4.1.1 HeLa Time-Series Expression Data

The HeLa cell cycle time-series gene expression data were generated by Whitfield et

al [247]. We downloaded the Whitfield HeLa cell cycle time-series gene expression

from http://genome-www.stanford.edu/Human-CellCycle/HeLa/. It is a well-

known time-series gene expression dataset. It consists of five different time-series ex-

periments with different synchronization methods (double thymine block, Thymidine-

nocodazole block, or mitotic shake-off). These synchronization methods arrest the

cell at either the S-phase or the M-phase (see section Materials and Methods on

http://genome-www.stanford.edu/Human-CellCycle/HeLa/.). We used only a

part of the microarray dataset for our experiments: we considered the third time-

series named “Thy-Thy 3” by Whitfield et al. In the “Thy-Thy 3” experiment, a

double thymine block is used to arrests cells at the G1/S boundary. It is the most

extended time series of the experiment. Gene expression values were measured at

1h intervals from 0 to 46h. Note that there is an extra time point at t=0, where

the expression values are the average of the same measurement obtained from two

biological replicates. In total, we considered 48 times points. In their work, Whitfield

et al [247] identified a list of 1132 IMAGE clones ID that are periodically expressed

during the cell cycle. From the annotated IMAGE clone IDs, 777 out of the 1132

IDs have a Gene IDs. They correspond to 632 different genes: 82.3% mapped to one
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unique clone ID, 14.1% mapped to two clone IDs, and the rest (3.6%) are mapped

to up to six different clone IDs. Out of these 632 different genes, we excluded four

genes because they do not have a GO annotation. We summarized the duplicated

genes (genes represented by several probes IDs) by averaging their expression profile.

In summary, we considered a list of 628 unique genes that are periodically expressed

in the HeLa cell cycle. We imputed the missed values in the dataset using K-nearest

neighbor (KNN). We set the number of neighbors K to 12, as suggested by Whitfield

et al [247].

In summary we proceed as follow to collect our time-series gene expression data

Step 1: We collected the raw time-series expression matrix from http://genome-w

ww.stanford.edu/Human-CellCycle/HeLa/

Step 2: Imput missing value using knn with in the following R code. We set k=12.

Let exprdata the original expression data matrix and exprdataimputed the im-

puted expression data matrix.

exprdataimputed<−knnImputation ( exprdata , k=12)

Step 3: We remove probes that map to the same gene by averaging their expression

profile. See Table 31 for the complete list of considered genes.

Step 4: Save the imputed matrix for later use.

4.4.1.2 ChIP-seq data

We downloaded the peak files on the UCSC Genome Browser website: http://

hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform

/. The peak files report regions on the genome that have been enriched with aligned

reads as a consequence of performing a ChIP-sequencing experiment. These areas are

reported in terms of genomic coordinates. For each region, the file also reports a mea-

surement of the overall enrichment and the statistical significance of this enrichment

(with p-value and q-value). The ENCODE Analysis Working Group (AWG) generated

the files using a uniform processing pipeline. The whole dataset covers 91 cell lines

with various treatments. We restricted the files to those reporting analysis on the

HeLa cell line. We further restricted them to the peak files of the TFs expressed in
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our HeLa cell cycle expression dataset. Out of the 54 TFs expressed in our cell cycle

time-series expression data, we got the peak files for only eight TFs: BRCA1, CTCF,

E2F1, NFYA, NFYB, STAT1, TFAP2A, and ZNF143 (c.f. Table 28).

In summary we proceed as follow for collecting our ChIP-seq data:

Step 1: Collect the peak files from UCSC Genome Browser website: http://hg

download.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUni

form/

Step 2: Subset the collected file to those concerning the HeLa cell line

Step 2: Subset the list of files to those concerning the TF expressed in the cell cycle

(c.f Table 32).

4.4.1.3 Knockdown Gene Expression data

The raw data were downloaded from GEO-NCBI. We also downloaded analyzed

data from knockTF [70] (http://www.licpathway.net/KnockTF/), which gathers

data from GEO-NCBI, ENCODE or others databases. Note that we considered

both RNA-seq and microarray gene expression data. We downloaded data from dif-

ferent cell types because we do not have enough data for the HeLa cell type. We

assume that TFs may bind to the same genes in different cells, depending on the

biological process. We gather KD data for approximately 20 TFs (c.f. Table 29 and

Table 33).

In summary we used Algorithm 3 to collect our KD expression datasets.

4.4.1.4 Transcription Factors and Binding Sites

We get the set of PWM representing the TFBS from CisBP [245] database http:

//cisbp.ccbr.utoronto.ca an online database of the TFs and their PWMs. Note

that we restricted the potential TFs to those which have at least one PMW in the

database. CisBP gathers the matrices from diverse database such as JASPAR. We

ended up with date for 41 unique TFs (c.f. Table 30).

We downloaded the promoters sequences of our genes from UCSC Genome Browser

website, under the table browser https://genome.ucsc.edu/cgi-bin/hgTables.
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Algorithm 3 Steps for collecting the KD gene expression data

1: Query the GEO database accessible from https://www.ncbi.nlm.nih.gov/gds to

get the the list of HeLa knockdown expression dataset. Enter the following query

on the search bar:

• (HeLa knockdown) AND “Homo sapiens”[porgn: txid9606]

• (knock down HeLa) AND “Homo sapiens”[porgn: txid9606]

2: Scan the list of results to collect GEO datasets with at least three biological repli-

cate samples. This minimum number of replicates is necessary for our later dif-

ferential expression analysis. Refer to Table 33 for the list of collected datasets.

3: Collect the whole dataset from knockTF: http://www.licpathway.net/KnockTF

/download.php. We did not restricted the cell line. But rather restricted the

TFs to those expressed in the HeLa cell cycle. Table 29 reports the list of TFs

and their corresponding KD dataset IDs.

Figure 18: Steps for retrieving knockdown data

The figure shows a snapshot of the query we performed to retrieve the KD expres-

sion data.

The nucleotide sequences are 1000bp long as recommended on the FIMO web page. We

considered the version Genome Reference Consortium Human Build 38 (hg38/GRCh38)

Algorithm 4 summarizes the promoter data collection as well the TFBS collection.
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Algorithm 4 Steps for collecting the TFBS and promoter regions

1: Reach the UCSC table browser https://genome.ucsc.edu/cgi-bin/hgTables

2: Set the clade to mammal, the genome to human, the assembly to Dec 2013

(GRch38/hg38).

3: Choose the group Genes and Predictions and set the track to GENCODE

v32.

4: Choose the table knowGene. Set the region to genome. We let the other

parameters to their default values see (https://genome.ucsc.edu/cgi-bin/h

gTables).

5: Paste the list genes identifiers.

6: Choose the output format and choose the output file name if needed.

7: Select genomic as sequence type

8: Select Promoter/Upstream by 1000 bases for the retrieval region options.

9: Set the formatting to all lower case.

10: On the CisBP database, select the bulk download option (http://cisbp.ccbr.u

toronto.ca/bulk.php) to collect the whole database for an organism of interest.

Set the organism to Homo sapiens

4.4.1.5 Proteins Sequences

We downloaded the proteins sequences of the cell cycle genes from UniProt [43]. We

considered only manually annotated sequences from Swiss-Prot. Out of the 628

considered genes, we got sequences for 624 genes. Among the four missing genes,

two mapped to one gene already included (HIST1H4C, HIST1H4B, HIST1H4E), and

the two other (SETD8P1, LINC00339 ) do not have sequences in UniProt and do

not have orthologous genes in EggNOG-DB [111]. As UniProt contains redundant

sequences, we downloaded a total of 636 sequences. To remove redundant sequence,

we used CD-hit [76, 145], which is a fast incremental clustering algorithm that uses

heuristic to cluster similar sequences. Sequences are compared based on k-mers. We

set the similarity threshold to 70% to remove sequences that are 70% similar and

allow a maximum redundancy of 1. It helps to remove ten sequences. We ended up
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Figure 19: Steps for collecting promoter sequences

with 626 sequences. Algorithm 5 summarizes the steps for collecting and cleaning the

proteins sequences(Figure 20).

4.4.1.6 Model Organism Regulatory Links

For our orthology-based regulatory network inference, we consider the mouse (Mus

musculus) as our model organism. We downloaded the set of curated regulatory

interactions from diverse curated databases. Our first database is STRINGDB [224], a

database that stores known and predicted Protein-Protein interactions for more than

5000 organisms. The interactions can be physical or functional. The interactions

are obtained from different sources such as literature, knowledge databases, or High-

throughput lab experiments. The database attributes a score for each interaction.

This score is computed as a combination of the probabilities of interaction from

different evidence. The score is multiplied by 1000. A score of 800 corresponds
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Algorithm 5 Collecting and cleaning proteins sequences

1: On UniProt website, select the “Retrieve/ID Mapping” tool https://www.unip

rot.org/uploadlists/. Upload the list of cell cycles genes that you need to be

converted.

2: We chose the ID we want to map (gene name) to the UniProt ID. Then we chose

the organism, which is human in our case.

3: Filter the results to Swiss-Prot sequences, which are manually curated. Down-

load the selected sequences.

4: Cluster duplicates sequence using cd-hit as follow:

$ . / cd−h i t − i uniprot−human−c e l l c y c l e . f a s t a

−o c lu s t e r p ro t e i n s human seq . c l s t r −c 0 .9

−T 2 −t 1 −s f 1 −sc 1

Where cluster proteins human seq.clstr is the output file containing the sequences

cluster. Note that similar sequences are clustered together. The parameter -

c controls sequence identity threshold; -T controls the number of threads for

parallel computing; -t controls tolerance for sequences redundancy; the parameter

-sf allows to the obtained clusters regarding their size; finally, -sc output the

sequences by decreasing cluster size.

5: Collect the list of nonredundant sequences for next steps analysis.
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Figure 20: Steps for collecting protein sequences
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to 0.8 probability. For each edge, the score is the probability that the interaction

exits. We downloaded the set interactions for each organism. We considered only

binding and expression interactions. We set a threshold to 500 on the scores for

selecting interactions. To further ensure that we extract only regulatory interactions,

we subset binding interactions for which the direction is known.

We then consider two other databases to get our mouse regulatory interactions:

TRRUST [93], RegNetwork [149]. They both store regulatory interactions for human

and mouse. Table 16 summarizes the characteristics of the regulatory networks ob-

tained from all the databases.

Algorithm 6 summarizes our mouse regulatory network construction.

Algorithm 6 Building the mouse Regulatory network

1: On the TRRUST database website, we downloaded the regulatory interactions for

the mouse organism https://www.grnpedia.org/trrust/downloadnetwork.ph

p.

2: On the RegNetwork website http://regnetworkweb.org/download.jsp down-

load the regulatory directions.

3: We concatenated the networks from Step 1 and Step 2. Then proceed to analyze

the duplicated edges (c.f Table 38). It is important to highlight that the edges

downloaded are only positive links.

4: On the STRINGDB website https://string-db.org/ download the mouse pro-

teins actions. Subset the list of proteins links to those for which directionality is

mentioned and that have a score of at least 500(0.5).

5: Let gs1 the network obtained in Step 4 and gs2 the network collected in Step 5.

In this step, the aim is merging gs1 and gs2. We first mapped the genes’ name to

their corresponding ENSEMBL protein IDs. In fact, genes are accessed with their

ENSEMBL protein IDs STRINGDB. We used the R library biomaRt version 2.38

[57, 56]. We then merged gs1 and gs2. Note that a gene can map to several

ENSEMBL protein IDs. The list of replicated edges can be found in Table 39.

6: Remove the duplicated edges by choosing one occurrence per repeated edge.
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Table 16: Mouse gene regulatory network

Databases # TFs # Genes # Interactions

TRRUST 827 2456 7057

RegNetwork 1902 3805 323636

STRINGDB N/A 1136 2636

The table reports details about mouse regulatory information collected from the

TRRUST, the RegNetwork and the STRINGDB. For each data we report the total number

of colected interaction (3rd column), the number of genes covered by the interactions

(2nd column) and finally if applicable the number of TFs (1st column).

4.4.2 Evaluation

As a primary evaluation, we considered AUPR and AUROC scores to evaluate the

performance of BENIN for inferring known interactions in the human cell cycle GRN.

Note that we removed inferred interaction from the TFs that are not part of our “gold-

standard” network for the evaluation. We further removed self-interactions. We also

evaluated the algorithm based on the functional annotation of groups of coregulated

genes. The point is to evaluate the coherence between a transcription factor and the

set of its inferred target genes. We also performed a literature review to assess the

inferred links and potential new interactions.

4.5 Method

4.5.1 Integrating Prior Knowledge

We applied BENIN to infer the GRN controlling the cell cycle of the HeLa human

cancer cell line. It is the oldest and the most extensively used human cell line for

scientific researches. The line is derived from cervical cancer cells. We considered

the gene expression data from Whitfield et al [247] work, which is made up of five

time-series experiments. Their experiment’s objective was to identify genes that are

periodically expressed in the human HeLa cell cycle. Our goal is to consider the
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genes expressed in the cell cycle to decipher the transcriptional regulatory network

controlling the cell cycle. We combined four types of prior knowledge data with time-

series expression data: functional annotation, ChIP-seq data, TFBS, and knockdown

(KD) gene expression. In this section, we will describe in detail how different prior

knowledge data are integrated into BENIN with time-series expression data for the

GRN inference.

4.5.1.1 Integrating Functional Annotation

The first data we considered as prior data is the functional annotation from the Gene

Ontology. We considered the “Biological process” (BP) annotation. Our idea is

that, if a TF rj and gene gi participate in the same BP, then it is most likely that rj

controls the expression of gi. Hence we want to check for each TF-TG pair how similar

is their BP annotation profile. Thus, for each pair (TF-TG), we compute the semantic

similarities of their lists of BP GO terms with the R package GoSemSim [259]. Different

measures are available in the package to compute the semantic similarity among GO

terms, set of GO terms, and among genes. Here we considered the Relevance (Rel)

method to compute the similarity between term. The method was introduced by

Schlicker [204] and defines the similarity as follows:

simRel(t1, t2) =
2IC(MICA)(1− p(MICA))

IC(t1) + IC(t2)
(38)

Where IC stands for information content, MICA stands for most informative common

ancestor. We then chose Best Match Average technique to compute the semantic

similarity between genes. It is defined as following: let gene g1 annotated by GO terms

sets GO1 = {go11, go12 · · · , go1m} and g2 annotated by GO2 = {go21, go22 · · · , go2n},
we have :

simBMA(g1, g2) =

∑m
i=1 max1≤j≤nsim(go1i, go2j) +

∑n
j=1 max1≤i≤msim(go1i, go2j)

m+ n
(39)

After computing the similarity scores from the GO annotation, we stored them

into a matrix Sm = {simBMA(rj, gi)}. Afterwards, we transformed the similarities

into weights Wrj→gi
to feed the elastic net. The weights are computed as follow:

Wrj→gi
=

1

(Smrj ,gi)
γ

(40)
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Algorithm 7 outline the steps for computing the prior weights from functional

association scores.

Algorithm 7 Steps for computing the functional prior weights

1: Let N the total number of genes

2: for each pair (rj, gi),i = 1, · · · Ncli , j = 1, · · ·NTF compute the functional simi-

larity as: do

simBMA(ri, gj) =

∑m
i=1 max1≤j≤nsim(go1i, go2j) +

∑n
j=1 max1≤i≤msim(go1i, go2j)

m+ n

3: end for

4: Store the functional similarity between all pairs of genes into a matrix Sm =

{simBMA(rj, gi)}
5: Transform the similarities into weights Wrj→gi

as:

Wrj→gi
=

1

(Smrj ,gi)
γ

4.5.1.2 Integrating ChIP-seq

We also considered ChIP-seq data as prior information. The ChIP-seq methodology

is very effective at investigating genome-wide protein–DNA interactions; therefore,

identifying regions in the genome where a TF will bind to control the expression of

its target genes.

Our aim here is to compute a score of potential binding between each TF and

all the genes considered. We use the BETA [243] software of the Cistrome database

(http://cistrome.org). Cistrome offers an integrative pipeline to help analyzing

publicly available high-throughput data.

A simple method to get the TF-TG associations from peaks in the ChIP-seq

data is to assign each TF to the proximal gene or the gene containing the TF peaks

in its promoter region. Nevertheless, this will result in unreliable results. In fact,

for most ChIP-seq data, only a small percentage of binding is found at the genes’

promoters [243]. Also, assigning a TF to a gene only based upon the presence of

the peak at a promoter of genes will produce a binary vector that is not the type of
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input BENIN is expecting for the moment. Instead, we decided to consider a metric,

the regulatory potential from BETA software, that is computed as the sum of the

individual contribution of the binding sites.

The regulatory potential reports the likelihood of a gene to be regulated by a TF.

It is computed as in Equation 41

Schrj→gi =
k∑
l=1

e−(0.5+4∆l) (41)

, where k is the number of the binding sites of the TF rj near the transcription start

site (TSS) of the gene gi. Only binding sites within a user-defined region length are

considered. We set region length to the default value on BETA software (100Kb).

∆ is the exact distance between a binding site and the TSS. It is proportional to

100Kb (note that δ = 0.1 is equivalent to 10Kb). We can also restrict the number

of binding sites that will contribute to computing the binding potential. We run the

BETA software on Galaxy http://cistrome.org/ap/ with the default parameters:

the number of peaks considered is 10000, and the distance from gene TSS within

which peaks will be selected is 100Kb.

Finally we integrate the regulatory potential into BENIN as in Equation 42.

Wrj→gi
=

1

(Schrj→gi)
γ

(42)

Algorithm 8 summarizes the steps for getting the BENIN ChIP-seq prior weight

from the the input BED files.

4.5.1.3 Integrating TFBS

We considered data from position weight matrices (PWMs) and promoter sequences

to get an apriori information of potential binding between each TF and the TGs.

These matrices are obtained from different technologies, such as Chip-Chip.

Our aim here is to scan the promoters of the genes for occurrences of each PWM.

We used FIMO [85] which is a tool of the MEME-suite [10]. It scans the promoter region

of each gene for individual matches to each provided input PWM. The only parameter

that we set is the background file, which is the 0-order background model and the q-

value threshold. We set the q-value threshold to 0.05. The 0-order background model

is used to convert a frequency matrix into a log-odds score matrix and estimate the
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Algorithm 8 Steps for transforming ChIP-seq data into association scores

Input: A list of BED files obtained from ChIP-seq experiments.

1: for each BED files obtained in Section 4.4.1.2 do

2: Upload the file into the Cistrome-galaxy server http://cistrome.org/ap/

root, using the import tab. Figure 21a gives an overview of BED file for the

BRCA1 TF.

3: Select the Integrative analysis, then BETA and finally BETA-minus as we want

to infer TF target genes only ChIP-seq data.

4: Set the input parameters of the BETA-minus software. For our experiment, we

use the default parameters.

5: Run the BETA-minus on the uploaded ChIP-seq file (BED) file and collect

your output output. Figure 21b gives an overview of the BETA-minus output file.

The binding potential score for each edge rj → gi is computed as :

Schrj→gi =
k∑
i=1

e−(0.5+4∆i)

6: Transform each score into BENIN weight using:

Wrj→gi
=

1

(Schrj→gi)
γ

7: end for
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p-values of match scores. We build the background file considering all the promoters

sequences. We use the fasta-get-markov tool from MEME-suite. We run the tool

with the default parameters. FIMO outputs a file containing the scores, the p-values,

and the q-value of each motif occurrence. The q-values are adjusted p-values following

the Benjamini and Hochberg method. Note that one PWM can have several matches

at the promoter region of a gene. To assign a score to TF-TG pair, we considered the

occurrence with the lowest q-value.

The challenge here is to transform the q-values into corresponding probabilities

of edges being present in the final network. Let Prj→gi be a random variable over

[0, 1] which represents the q-value of the binding occurrence of the TF rj at the

promoter region of gi (Erj→gi). We assume here that it is exponentially distributed if

Erj→gi ∈ G, and uniformly distributed if Erj→gi /∈ G. More formally we have:

Pr(Prj→gi = p|Erj→gi ∈ G) = λe−λp/ (1− e−λ), (43)

where λ is the parameter controlling the scale of truncated exponential distribution,

and:

Pr(Prj→gi = p|Erj→gi /∈ G) = 1. (44)

We use the Bayes formula to define the probability of the edge Erj→gi in G,

knowing the binding q-value as follow:

Pr(Erj→gi ∈ G|Prj→gi = p) =
λe−pλ β

λe−pλ β + (1− e−λ) (1− β)
, (45)

where β = Pr(Erj→gi ∈ G) is the probability that an edge Erj→gi is in the graph

without any prior knowledge. We further assume that λ is uniformly distributed

over the interval [λmin, λmax] and integrate Equation 45 over that interval. The new

equation for computing the conditional probability on an edge Erj→gi is:

Pr(Erj→gi ∈ G|Prj→gi = p) = 1
λmax−λmin

∫ λmax
λmin

λe−pλ β
λe−pλ β + (1−e−λ) (1−β)

dλ (46)

Equation 46 can be easily computed numerically for fixed values of Prj→gi . We pre-

compute the probabilities associated with each q-value and store them in a matrix

A which is then transformed into weights. We then compute the weight matrix W

as the component-wise inverse of the elements of the matrix A raised to the power

γ > 0:

Wrj→gi
=

1

(Arj→gi)
γ

(47)
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Algorithm 9 summarizes the steps for computing the binding prior weight from

the TFBS and promoter regions.

Algorithm 9 Step to compute prior weight from position weight matrice

1: Transform each Cis-BP PWMs into MEME input format using the R library univer-

salmotif version 1.0.22 [232]

> lapply ( seq (1 , nbmotif ) , wr i temot i f , a l l m o t i f s f i l e n a m e=

a l l m o t i f s f i l e n a m e , mata l lmot i f=sub description moti f )

>c i sb p m ot i f s<−read c i sbp ( a l l m o t i f s f i l e n a m e )

> memecisbpmoti f s f i l ename=” . . /data/data human/ f i n a l data

hum reg network/Hela data/Homo sap i en s 2020 02 24 4−34 pm/

Homo sa

p i ens .meme”

> write meme( c i sbpmot i f s , memecisbpmoti f s f i l ename )

2: create the 0-order background file for motif scanning with the fasta-get-markov

tool from the MEME-suite. We use all the promoter sequences all together to

create our background as with the following command:

$ fa s ta−get−markov −dna −m 0 p r o m o t e r s e q u e n c e a l l f a

backgroundpromoter

The background model gives the frequencies of the four bases (A, C, G, T) since

we are working with DNA sequences.

3: Perform promoter motif scanning with the FIMO from MEME-suite with the fol-

lowing bash command:

f imo −−b f i l e backgroundpromoter −−qv−thresh

−−thresh 0 .05 −−v e r bo s i t y 1 −−oc r e s p romote r

scanning /humanpromoterseq Homo sapiens .meme humanpromo

t e r s e q . f a

4: Collect FIMO output files. Figure 22 gives a snapshot of the FIMO output file after

scanning promoter sequences.

5: Transform the q-values (adjusted p-values) into corresponding probabilities using

Equation 46 and store them in a matrix A
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6: Compute the weight matrix W as the component-wise inverse of the elements of

the matrix A raised to the power γ > 0 as:

Wrj→gi
=

1

(Arj→gi)
γ

Figure 22: Snapshot of FIMO output

The file gives an overview of the FIMO output file after scanning genes promoter sequences.

4.5.1.4 Integrating Knockdown Expression Data

Knockdown gene expression data are expression data measured in an organism where

the expression of one or more of its genes is reduced. KD expression data help to infer

the direct target genes of the perturbed TF. Our idea here is to get the probabilities of

interactions between the perturbed TF and all the genes in the genome (the considered

genes).

We analyzed the raw data with R. We performed differential expression analysis

using either Limma [188] (for microarray expression data) or DESeq2 [150] (for RNA-

seq expression data). Our objective is to get the adjusted p-values from which we

will derive the probabilities of the TF-TG interactions. Note that the p-values of

differential expression analysis are adjusted with the False Discovery Rate approach
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(FDR). Hence the adjusted p-values are q-values. For TFs investigated in several

KD datasets, we combined them using the following idea: if we have several different

q-values for the same edge rj → gi, we considered the minimum q-value. We then

follow the methodology described in Section 4.5.1.3 to get the probabilities that will

then be integrated into BENIN.

In summary, we proceeded as follow to transform KD expression data into BENIN

prior weights:

Step 1 For each file downloaded manually from GEO database perform differential

expression analysis with Limma R library if for microarray experiment or with

the R library Deseq2 for RNA-seq data. The data downloaded from KnockTF

are obtained from differential expression analysis performed by the author of

the database.

Step 2 Combine result in Step1 with data from KnockTF differential expression anal-

ysis. There are two cases:

• In the first situation, the TFs KD data are analyzed twice (our analysis

and the KnockTF analysis). Each edge concerning the TF will appear twice.

In this case, for each edge, we attributed the minimum of all the reported

q-values.

• In the second situation, each TF is analyzed once. In this case, we add

the edges and their reported q-values to the final set of potential prior

interactions from KD gene expression analysis.

Figure 23 shows a snapshot of the data obtained after performing differential

expression analysis and combining our results with the data from knockTF

Step 3 Transform the q-values obtained from differential expression analysis into

probabilities using Equation 46 and store the obtained probabilities into a ma-

trix A.

Step 4 Use Equation 47 to transform A into the prior weight to feed BENIN
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4.5.2 Orthology Information Transfer

Another new functionality of BENIN is the integration of knowledge and discoveries

about regulations from other organisms into the organism of interest. We exploit the

idea that orthologous TFs regulate orthologous genes. Orthologous genes are genes

from different species that evolve from a common ancestral gene and that preserve the

same function. Thus, our idea is to transfer information about regulation from several

well-known organisms into the genome we are currently studying. Using information

from orthologous genes enriches the studied organism from expression data and prior

knowledge data with new TF-TG regulatory links.

We detect orthologous genes in other organisms using sequence similarity at the

protein level [176]. We got the human orthologous genes into other organisms from

eggNOG [111]. More specifically, we run eggNOG-mapper [110], as it offers a quick

and easy way to get the list of orthologs for several genes in parallel. Note that

eggNOG-mapper is mainly a tool for functional sequences annotation based on orthol-

ogy assignments. However, it also allows retrieving the orthologues considered to

perform the functional annotation. In this work, we only consider the mouse as our

model. First of all, because it is a well-studied organism (model organism). Also,

it is the only mammal organism we have access to enough regulatory interactions.

We consider mammal organisms principally as we are working on the uterine cervix.

After collecting the orthologs in mouse, we mapped the interactions from mouse to

human. We ended with a network with 545 regulatory links, 27 TFs, and 341 out of

602 orthologs.

More formally we proceed as described in Algorithm 10

The whole process to infer the HeLa cell cycle data using BENIN is summarized in

Figure 24.
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Algorithm 10 Ortholog Information transfer

1: Collect the proteins sequences of the studied organism from UniProt databses

2: Remove duplicated sequences.

3: Collect different model organism regulatory interactions.

4: Find othologs proteins in the model organisms using eggNOG-mapper with the

following bash command:

> emapper . sh −−d a t a d i r / da ta s e t s − i uniprot−human−c e l l

c y c l e . f a s t a −−p r e d i c t o r t h o −−output d i r

human orth eggnog −−t a r g e t o r t h o l o g s

one2one −o hum−c e l l c y c l e−ouput −m diamond

−−s e e d o r t h o l o g e v a l u e 0 .001

−−s e e d o r t h o l o g s c o r e 60 −−query−cover 30

−−sub ject−cover 30 −−go ev idence

non−e l e c t r o n i c −−o v e r r i d e

5: For each model organism considered: let rmodelj a TF in the current model and rj

it ortholog in the studied organism. Let gmodeli a TG in the current model and gi

it ortholog in the studied organism. For each interaction rmodeli → gmodeli : infer

an interaction ri → gi the studied organism.

6: Combine the new inferred regulatory links with those inferred with expression

data. Either with max or with average
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Figure 24: Inference of GRN controlling HeLa cell cycle through BENIN

The figure summarizes the whole process for inferring the GRN controlling the HeLa cell

cycle. Different prior knowledge data will be integrated independently. We considered

TFBS, ChIP-seq, functional annotation, and KD. Each prior knowledge data is combined

with time-series expression data and will produce a weighted list of regulatory interactions.

The four weighted lists will be combined. Then we get regulatory interactions from mouse

through orthology mapping and combine them with those from expression and other prior

knowledge data.

4.5.3 Experiments

We perform all the computations on the ENCS speed cluster. It has sixteen, 32-core

nodes, each with 512 GB of memory and approximately 1 TB of volatile-scratch disk

space. The results presented in Section 4.6.1 are obtained with the following BENIN

parameters: the elastic net parameter α = 0.9, the exponent γ = 1.5, and the number

of bootstraps R = 5000. We set the parameters to the same values when running
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BENIN with different prior knowledge data. The ensemble network is obtained either

using the average or max score. Note that we ignore missing values when using the

mean to combine results from different prior knowledge data. Some prior knowledge

data have missing information about some TFs and their TGs. We set the threshold

τ = 0.5 on the final regulatory links weights to get the final inferred network. As

we are dealing with imbalanced data (more negative than positive examples), the

AUPR is more representative of the model performance, as it does not account for

true negatives.

An important BENIN parameter is the threshold τ that allows selecting the final

list of edges present in the inferred regulatory network. To select τ , we vary its value

in the [0, 1] interval and we record the AUPR score. We considered the AUPR score

as we are working with imbalanced classes. AUPR is the most informative in this

case of imbalanced classes. The number of true edges is less than the false edges. We

also need to set τ so that we have a good compromise between high-scoring edges

and good AUPR.

4.6 Results and Discussion

4.6.1 Results

BENIN execution time Table 17 reports BENIN execution time. These results are

obtaining setting the number of bootstraps R to 1000. The results are reported for

BENIN with prior and without prior. We requested 25 cores on the cluster server to

measure the computation time. Time is the elapsed time measured in seconds. From

Table 17 we can observe that for the whole network of size 628 edges, BENIN takes

7399s (≈ 2h) when we integrate all the prior knowledge, including the orthology from

mouse data and 5335s (≈ 1h) when we do not integrate prior knowledge.

Integrating Prior knowledge improves BENIN performance Figure 26 (re-

spectively Figure 27) shows the precision-recall (respectively the ROC) curve when

BENIN is combined or not with prior knowledge data. Table 18 reports the AUPR

and AUROC scores when we do not consider prior knowledge data, and we combine

BENIN with different prior knowledge data. Figure 28 (respectively Figure 29) shows
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Table 17: BENIN execution time

Prior All genes (628)

TFBS 1414s

ChIP-seq 1420s

KD 1474s

Functional 2955s

All priors 7399s

None 5335s

BENIN execution time on a 628 genes network when we consider different prior knowl-

edge data separately, integrate all the prior knowledge data and do not consider prior

knowledge data. The time is the elapsed time in seconds.

the BENIN performance when we combine the output network from time-series gene

expression data (and other prior) with the network from orthology mapping. These

scores report how well BENIN performs on what is known about the regulatory inter-

actions in the human. As we are working with imbalanced data, the AUPR is more

informative than the AUROC. From Table 18, we observe that regarding the nested

confidence intervals, it is difficult to distinguish the performances of BENIN when we

integrate the prior knowledge data separately and when we combine them. However,

we observe two groups: the red group and the blue group.
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(a) A snapshot of a BED file

(b) BETA-minus output

Figure 21: BED file and BETA-minus output

Overview of a BED from a ChIP-seq experiment for the BRCA1 TF and a BETA-minus

output file (a)Snapshot of a BED file the BRCA1 transcription. (b) factor Snapshot of

the BETA-minus output file after analyzing the BRCA1 BED file on Cistrome-galaxy

server.
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Figure 23: Differential Expression analysis output

The figures gives a snapshot of the combined data after performing differential expression

analysis and combining our results with data from knockTF.

Figure 25: Effect of τ on BENIN performance.
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Table 18: BENIN performance

Method AUPR AUROC

BENIN+none 0.440 [0.398; 0.483] 0.501 [0.488; 0.514]

BENIN+KD 0.490 [0.446; 0.534] 0.684 [0.670; 0.698]

BENIN+TFBS 0.733 [0.692; 0.771] 0.755 [0.739; 0.779]

BENIN+Chipseq 0.732 [0.693; 0.769] 0.686 [0.672; 0.700]

BENIN+functional 0.479 [0.438; 0.521] 0.527 [0.513; 0.540]

BENIN+combined+max 0.711 [0.682; 0.737] 0.767 [0.751; 0.783]

BENIN+combined+mean 0.547 [0.511; 0.583] 0.580 [0.565; 0.594]

BENIN+combined+max+orth+mean 0.715 [0.687; 0.741] 0.771 [0.756; 0.787]

BENIN+combined+max+orth+max 0.702 [0.673; 0.730] 0.775 [0.759; 0.790]

The table reports AUPR and AUROC scores when we BENIN run with or without prior

knowledge data to infer the GRN that controls the human HeLa cell cycle. We also provide

in bracket the confidence interval of these scores. The highest score is marked in bold. The

results are obtained setting the BENIN parameters as following: R = 5000, α = 0.9 and

γ = 1.5
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(a) BENIN +TFBS (b) BENIN +KD

(c) BENIN +functional (d) BENIN +chipseq

(e) BENIN +combined+max

Figure 26: Precision-recall curves for BENIN

The figure shows the precision-recall curves when using BENIN combined with different

prior knowledge data to infer the GRN controlling the HeLa cell cycle.
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(f) BENIN +noprior (g) BENIN +combined+mean

Precision-recall curves for BENIN

BENIN can infer real regulatory networks We dig up the results to perform

gene annotation analysis of coregulated genes. Firstly, we consider known cell-cycle

transcription factors [62, 18], and analyze the GO annotation of their target genes.

Then we perform a manual literature analysis of some selected inferred interactions.

We considered a total of 62 edges.

We consider annotations that have at least five genes and which have an adjusted

p-value ≤ 5e−2. In Table 19 we report a non exhaustive list of TG annotations. For

each group of coregulated genes, we report the annotations related to the annotation

of its TF. In Table 19, we report the annotation of inferred targets genes of E2F1 (a

main regulator in the cell cycle that binds many important targets genes in the cell

cycle [119]), SP1, NFYA, YY1, FOXM1 and, KLF6. Some of these TFs are members

of a family/complex (i.e., E2F1 member of the E2F or KLF6 member of the KLF

family, NFYA member of NFY) and control (activate or repress) approximately the

same genes and participate approximately in the same biological process. So we chose

to analyze one member of each protein family. Table 19 shows that the annotations

of coregulated genes are consistent with the annotation of their TF. For example, the

literature has reported SP1 as a key transcription factor in regulating cell prolifera-

tion [48, 236]. Out of 613 inferred edges with a score of at least 0.5, 111 genes are

annotated as part of the cell proliferation. Another interesting finding is that several

edges in the vicinity of the FOXM1 transcription factor are annotated as Mitotic

genes (77), and we know from the literature that FOXM1 is an essential transcription
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(a) BENIN +TFBS ROC curve (b) BENIN +KD ROC curve

(c) BENIN +functional (d) BENIN +chipseq

Figure 27: ROC curves for BENIN

The figure shows the ROC curves when using BENIN combined with different prior

knowledge data to infer the GRN controlling the HeLa cell cycle. The results are

obtained setting the BENIN parameters as following: R = 5000, α = 0.9 and γ = 1.5

factor for the progression of through the Mitotic phase of the cell cycle [242], and it

has its peaks expression at the S and G2/M phases. It is a master regulator of genes

that ensure the transition from G2 to M phase and the progression through mitosis.

From our functional annotation, some of the FOXM1 inferred TGs are mitotic cell

cycle genes (77/227). It is coherent with the function of FOXM1 as it a key role in

progression through Mitosis [242, 139].

Moreover, BENIN was able to infer CDC25B as a target of FOXM1. CDC25B is

essential for progression into mitosis [58]. Another interesting finding is that BENIN
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(e) BENIN +combined+max (f) BENIN +combined+mean

(g) BENIN +combined+mean

ROC curves for BENIN

inferred six out the seven interactions between the FOXM1 and its direct target genes

that are involved in regulating G1/S and G2/M progression [242] (AURKB, CENPA,

CKS1B, CDC25B, PLK1, CDC25A, BIRC5). Specifically, we inferred interaction

between FOXM1 and AURKB, CENPA, CKS1B, CDC25B, PLK1, CDC25A, and

BIRC5. Four of these interactions were confirmed with the orthology mapping. It

worth mention that these links are not part of our “gold-standard” network

Another interesting transcription factor is the E2F1 that is a member of the E2F

family of TFs. It plays a crucial role in cell cycle regulation. It targets several proteins

that regulate the transition from the G1 phase to the S phase and controls genes that

play a role in DNA repair and apoptosis [187]. Out the 122 genes that are expressed

in HeLa cell cycle and that have been inferred as E2F1 target gene by Ren et.al [187],

BENIN inferred 33. Out of the 38 genes expressed in the HeLa cell cycle and that
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(a) BENIN +combined+max+orthology+max

(b) BENIN +com-

bined+max+orthology+mean

Figure 28: Precision-recall curves for BENIN +orthology

The figure shows the precision-recall curves when using BENIN combined results from

orthology mapping to infer the GRN controlling the HeLa cell cycle. The results are

obtained setting the BENIN parameters as following: R = 5000, α = 0.9 and γ = 1.5

(a) BENIN +combined+max+orthology+max

(b) BENIN +com-

bined+max+orthology+mean

Figure 29: ROC curves for BENIN +orthology

The figure shows the ROC curves when using BENIN combined results from orthology

mapping to infer the GRN controlling the HeLa cell cycle. The results are obtained

setting the BENIN parameters as following: R = 5000, α = 0.9 and γ = 1.5

Adrien et.al. have demonstrated to be potential E2F1 TG [26], BENIN has inferred

36 TGs. Some studies have demonstrated that E2F1 induces G1/S-phase genes [51],
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which is consistent with the annotation of the E2F1 inferred TGs.

Table 19: Transcription factor and target gene

TFs TF annotation # Targets Biological process cat-

egory

adjPval

SP1

Linked to cell pro-

liferation[19]

GO:0008283: Cell

proliferation(111)

4.0e−7

Regulates apopto-

sis[129]

GO:0008219: Cell

death(102)

5.5e−5

Positive regulation

of transcription by

RNA polymerase

II[254]

613 GO:0034645:

Cellular macro-

molecule biosynthetic

process(229)

2.4e−12

DNA damage re-

sponse pathway

[28, 13]

GO:0006259: DNA

metabolic process

(130)

2.5e−38

Involve in reg-

ulation of tran-

scription, DNA-

templated [48, 236]

GO:0006355: Regula-

tion of transcription,

DNA-templated(182)

6.9e−7

Fundamental

player in the reg-

ulation of cell

proliferation[14]

GO:0008283: Cell

proliferation(111)

4.0e−7

NFYA

Induces Apoptosis

[88]

GO:0012501: Pro-

grammed cell

death(93)

2.2e−4

control the expres-

sion of several key

regulators of the

cell cycle [263, 122]

GO:0051726: Regula-

tion of cell cycle (110)

5.3e−30
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Table 19 continued from previous page

TFs TF annotation # Targets Biological process cat-

egory

adjPval

GO:0000278: Mitotic

cell cycle (142)

5.8e−54

DNA

metabolism [62]

558 GO:0006259:

DNA metabolic

process(116)

3.9e−33

involves in

regulation of

transcription,

DNA-templated

(UniPro-

tKB:P23511)

GO:0006355: Regula-

tion of transcription,

DNA-templated(164)

5.1e−6

positive regulation

of transcription

from RNA poly-

merase II promoter

in response to iron

[79]

GO:0001079: Regula-

tion of transcription

from RNA polymerase

II promoter(81)

2.1e−2

E2F1

positive regulation

of apoptotic pro-

cess [219]

GO:0006915: Apop-

totic process(85)

2.6e−4

Regulation of G1/S

transition of mi-

totic cell cycle [195]

GO:0044843: Cell

cycle G1/S phase

transition(45)

GO:1903047: Mitotic

cell cycle process(143)

9.3e−20

9.0e−62

DNA damage re-

sponse [220]

GO:0006974: Cellu-

lar response to DNA

damage stimulus(92)

3.8e−26
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Table 19 continued from previous page

TFs TF annotation # Targets Biological process cat-

egory

adjPval

regulation of

transcription,

DNA-templated

[220]

536 GO:0006351: tran-

scription, DNA-

templated (161)

2.0e−6

GO:0008283:cell

proliferation(100)

4.9e−7

[187] GO:0006281: DNA

repair(72)

2.3e−24

[187] GO:0006260: DNA

Replication(64)

1.1e−33

[187] GO:0000075: Cell cy-

cle checkpoint(47)

1.1e−22

[187] chromosome

segregation(69)

1.5e−34

DNA damage

response, signal

transduction by

p53 class mediator

resulting in cell cy-

cle arrest (UniPro-

tKB:Q0109)

GO:0006977: DNA

damage response, sig-

nal transduction by

p53 class mediator re-

sulting in cell cycle

arrest(11)

3.5e−4

YY1
Many YY1-

regulated genes

have crucial roles

in cell proliferation,

differentiation,

apoptosis, and

cell cycle regula-

tion[127]

GO:0006915:Apoptotic

process(44)

GO:0010564: regu-

lation of cell cycle

process (39)

GO:0006974: cellular

response to DNA

damage stimulus(54)

1.6e−3

1.2e−13

6.0e−20

170



Table 19 continued from previous page

TFs TF annotation # Targets Biological process cat-

egory

adjPval

YY1 has been

found to acti-

vate DNA re-

pair[83, 209, 225]

231 GO:0006281: DNA

repair(44)

GO:0006260: DNA

replication(33)

GO:0051726: regula-

tion of cell cycle(53)

3.3e−19

6.3e−18

6.1e−16

FOXM1
FOXM1 regulates

genes involved

in transcription

and cell cycle

regulation[251]

GO:0051726: Regula-

tion of cell cycle(64)

4.6e−27

Regulates the

Transcriptional

Network of Genes

Essential for

Mitotic Progres-

sion[242]

Play a key role

chromosomal

segregation main-

tenance [139]

227 GO:0000278: Mitotic

cell cycle(77)

GO:0044772: Mi-

totic cell cycle phase

transition(53)

GO:0044839: Cell

cycle G2/M phase

transition(24)

GO:0007059 :Chromo-

some segregation(36)

5.9e−36

1.4e−28

2.1e−13

2.4e−19

KLF6

KLF6 regulator of

cell apoptosis [109]

GO:0006915: Apop-

totic process(91)

GO:0008219: Cell

death (99)

2.2e−4

2.7e−4
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Table 19 continued from previous page

TFs TF annotation # Targets Biological process cat-

egory

adjPval

KLF expression

was shown to

mediate growth

inhibition[31]

582

KLF6 also directly

interacts with cy-

clin D1 to suppress

cyclin-dependent

kinase 4 and

causes cell cycle

arrest[109, 16]

cell cycle arrest(27)

GO:0006974: Cellu-

lar response to DNA

damage stimulus (93)

2.8e−6

3.6e−24

GO:0033554: cellu-

lar response to stress

(138)

2.0e−20

others GO:0010556: Reg-

ulation of macro-

molecule biosynthetic

process(196)

GO:0016070:

RNA metabolic

process(211)

1.4e−7

1.4e−6
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Table 19 continued from previous page

TFs TF annotation # Targets Biological process cat-

egory

adjPval

The table summarizes the annotation of core TFs and the annotation of their inferred TGs.

The 1st column gives the name of the TFs. The 2ndcolumn provides the TFs functions,

as reported in referee papers. They are from in vivo experiments. The 3rdcolumn gives

the total number of inferred TGs for a specific TF. The 4th column report the functional

annotation of all the TGs for a specific TF (biological process). We performed the func-

tional annotation using DAVID online functional annotation tool. The number in parenthesis

represents the number of TGs associated with the GO term. We filter the GO Biological

Processes terms related to their reported TF functions. We selected annotations that have

at least ten of the TGs and that have the smallest adjusted p-value. In the 5th column, we

provide the adjusted p-values of each GO term. It shows the statistical significance of the

annotation.

Table 20 enumerates the regulatory interactions that are not part of our “gold-

standard” network but are supported to some extent in the literature. We performed

a manual literature analysis of the selected edges. We proceed as follow: for each TF

and TG considered, we scan the PubMed papers, if any, for specific word/sentences

to classify the edges as either:

• Supportive if there is an explicit and direct experimental evidence demonstrat-

ing the presence of such a regulatory relationship. We were looking at words

that explicitly suggest regulation, such as “binding” and “regulates”.

• Predictive if previously documented evidence implies the possibility of the reg-

ulatory interaction between the genes, but remains to be experimentally verified.

We were looking at words like “potential binding” “potentially regulates”.

• Hypothetical if the biological knowledge for the regulation lacks so far. We

were checking if the TF and the TG share the same potential annotation.

From Table 20, we notice that BENIN infers several news interactions that are

missing in our gold-standard network and interactions that need further investigation.
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Table 20: Inference from BENIN +combined+max

Regulations Category Original Description

E2F1→MCM5 (0.9716)

E2F1→ PCNA(1.00)

E2F1→MCM6 (0.999)

E2F1→ TMPO (0.839)

Supportive [187, 26]

E2F1→ NEK2 (0.970)

E2F1→ CKS2 (0.949)
Predictive [187]

E2F1→ BRCA1 (0.996) Supportive [241, 244, 26] “E2F1 transcriptional activity

leads to high expression of several

DNA repair genes, including

BRCA1, RAD51 and RAD52 ”

E2F1→MCM2 (1.00)

E2F1→ BUB3 (0.995)

E2F1→ BARD1 (1.00)

E2F1→ CASP3 (0.999)

E2F1→ BMP2 (0.998)

Supportive [26] see Table 1 of [26, 92]
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Table 20 continued from previous page

Regulations Category Original Description

E2F5→ CDC25A (0.515)

E2F5→ E2F1 (0.672)

E2F5→ PRC1 (0.768)

E2F5→ CDC6 (0.668)

E2F5→ BUB1 (0.565)

E2F5→ BUB1B (0.706)

E2F5→ CENPE (0.756)

E2F5→MAD2L1 (0.659)

Predictive [26] It is not clearly mentioned that

they are targets of E2F5 but E2F

in general see Table 1 of [26]

E2F8→ CCNE2 (0.715)

E2F8→ CDC6 (0.898)

E2F8→MCM5 (0.861)

E2F8→ RFC2 (0.632)

E2F8→ RPA2 (0.854)

E2F8→ CDKN2C (0.874)

E2F8→ BUB3 (0.995)

E2F8→MSH2 (0.918)

E2F8→ RAD51(0.994)

E2F8→ BMP2 (0.658)

Predictive [26] It is not clearly mentioned that

they are targets of E2F8 but E2F

in general see Table 1 of [26]
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Table 20 continued from previous page

Regulations Category Original Description

FOXM1→ CENPA (0.935) Supportive [251] “FOXM1 regulates genes that are

essential for proper chromosome

segregation and mitosis, such as

NEK2, KIF20A, and CENPA”

FOXM1→ CDC25B (0.982) Supportive [242] “FOXM1 target genes include

CDC25B and PLK1, which are

important for activating CDK1

for mitosis”

FOXM1→ CDC25C (0.956) [153] “These results showed that un-

usual expression of FOXM1 in-

creased the expression levels of

the FOXM1 targets PLK and

CDC25C ”
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Table 20 continued from previous page

Regulations Category Original Description

NFY B → CDC25C (0.894)

NFY B → CDC25B (0.900)
Supportive [155] “NF-Y transcription factor plays

a central role in cellular prolifera-

tion by controlling the expression

of genes required for cell-cycle

progression such as cyclin A, cy-

clin B1, cyclin B2, CDC25A,

CDC25C, and CDK1 ”

NFY A → CDC25B (0.884)

NFY A→ CDC25C (0.99)
[155] “NF-Y mediates the transcrip-

tional inhibition of the mitotic cy-

clins and the CDC25C genes dur-

ing p53-dependent G2 arrest in-

duced by DNA damage”

SP1→ Y Y 1 (0.995) Predictive [83] See Table 2 in [83]

CENPA→ BUB1 (1.00) Hypothetical Potential binding from STRINGDB

[224]
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The table reports the list of interactions inferred by BENIN but that are not part of our gold-standard network. These links

are obtained when combining BENIN with TFBS, KD expression data, functional annotation, and ChIP-seq data. We used

the max function to combine the output from different prior knowledge data. The 1st column reports the interactions as well

as their score as inferred by BENIN. The number in parenthesis is the score returned by BENIN +expression. The 2nd reports

the type of evidence about the interaction. It can be supportive if there is an explicit and direct experimental evidence

demonstrating the presence of such a regulatory relationship; predictive if previously documented evidence implies the

possibility of the regulatory interaction between the genes, but remains to be experimentally verified, or hypothetical if

the biological knowledge for the regulation lacks so far. The 3rd column gives reference papers/works that support the

evidence, if any. The 4th column gives more details from the paper that support the evidence of the interaction.
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Orthology mapping confirms interactions and potential links Figure 30

shows the network inferred with orthology mapping from the mouse regulatory net-

work. We compared the inferred network with our gold-standard network and the

network inferred from the time-series expression data combined with all the prior

knowledge data. For the inferred edges from expression data, we consider those whose

weights are ≥ 0.5. The point here is to highlight the extent to which the network

from orthology agrees with the network from time-series. Figure 31 shows the distri-

bution of the inferred edges with BENIN +orthology compared to the gold-standard

and the sub-network from BENIN +expression (we considered only the edges shared

with network from orthology). We are mainly interested in the links shared by both

BENIN +expression and BENIN +orthology but that are missing in the gold-standard

network (345/545) and that are false edge in the gold-standard network (28/545). We

can observe that almost half of the edges in the inferred network with BENIN +orthol-

ogy are new interactions confirmed by expression data. In Table 21 we report some

of these new interactions. Note that in Table 21, we provide the edges that are not

already part of Table 20. Among the new links, some of them have been reported in

the literature. For example, with othorlogy information transfer, we can infer CNA2,

FAN1, GCLM and MEPCE as target genes of CTCF. In [121], CTCF has been found

to bind the promoter of these genes.

However, we are also interested in those not reported in the literature as they may

suggest new interactions that will need further investigation in wet labs. It is the case

of the regulatory link between FOXM1 and NCAPH, which was inferred with a score

of 0.99. However, there is no literature that supports a direct interaction between

FOXM1 and NCAPH. We consider the links that have high confidence (score of at

least 0.80)
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Figure 30: Orthologous Regulatory Network From mouse

The figure represents GRN controlling the HeLa cell cycle network inferred with

BENIN combined with sequence orthology information transfer. We use the mouse as

the model organism. Green edges are edges obtained only from orthology mapping.

Red edges are shared between our gold-standard network, expression-based inferred

network and orthology-based inferred network. Blue edges are those shared among

the expression-based inferred network and the orthology-based inferred network. The

results are obtained setting the BENIN parameters as following: R = 5000, α = 0.9

and γ = 1.5
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Figure 31: Edge Distribution

Distribution of the edges in the inferred Network regulatory network controlling the human

HeLa cell cycle. Here BENIN has been combined with results from orthology mapping using

the mouse as our model organism. We compared the obtained network to the gold-standard

and the network inferred from expression and prior knowledge. “expr” represent the edges

inferred from time series expression data. “orth” are the edges inferred through orthology

mapping. “gs-NA” are the missing link in the gold-standard network and “gs-False” are

the false edges.
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Table 21: Inference from BENIN +orthology

Regulations Category Original Description

CTCF → CCNA2 (1)

CTCF → FAN1 (1)

CTCF → GCLM (0.992)

CTCF →MEPCE (0.986)

CTCF →MBD4 (0.996)

CTCF → GADD45A (0.992)

CTCF → STAG1 (0.992)

CTCF → ANTXR1 (0.996)

Supportive [121] Have found to be bounded

by CTCF

CTCF → RFC2 (0.997)

CTCF → TIPIN (0.955)
Hypothetical RA RAS

FOXM1→ CCNB2 (0.984) Supportive

FOXM1→ NCAPH (0.997)

FOXM1→ DLGAP5 (0.904)
Hypothetical RAS RAS
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Table 21 continued from previous page

Regulations Category Original Description

FOXM1→ UHRF1 (0.946) Supportive [261] “FOXM1 and UHRF1

are highly correlated in

prostate cancer cells and

tissues. FOXM1 regulates

CSCs by regulating UHRF1

gene transcription in an

E2F-independent manner

and FOXM1 protein di-

rectly binds to the FKH

motifs at the UHRF1 gene

promoter” [261]

NFY B → CENPF (0.927)

NFY B → TTK(0.998)
Hypothetical RAS RAS

STAT1→ FY N(0.809) Supportive See Table 3 in

[199]

[199]

STAT1→ LPP (0.999) Hypothetical RAS RAS
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The table reports the list of interactions inferred by BENIN +orthology and confirmed by BENIN +expression, but that

are missing in our gold-standard network. The 1st column reports the interactions. The number in parenthesis is the

score returned by BENIN +expression. The 2nd reports the type of evidence about the interaction. It can be supportive

if there is an explicit and direct experimental evidence demonstrating the presence of such a regulatory relationship;

predictive if previously documented evidence implies the possibility of the regulatory interaction between the genes,

but remains to be experimentally verified, or hypothetical if the biological knowledge for the regulation lacks so far.

The 3rd column gives reference papers/works that support the evidence, if any. The 4th column gives more details

from the paper that support the evidence of the interaction.
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4.6.2 Discussion

BENIN can integrate several types of Prior knowledge Results presented in

Section 4.6.1 demonstrate that BENIN can integrate a diverse type of prior knowledge

to deal with the limitation of the data. We saw that the inclusion of prior knowledge

data might increase BENIN performance. Moreover, we notice that integrating differ-

ent prior data into BENIN may lead to different results. These results confirm the fact

that different prior data may have different potential. A close observation of Table 18

shows that TFBS seems to be the most informative prior data. They store direct

binding information. On the other hand, functional data seems to be less informa-

tive. However, when we average the score from all the prior data, we notice that BENIN

performance may not better than its performance with either TFBS or ChIP-seq data.

This performance may result from the fact that we adopted the same parameters for

all the data types; however, BENIN performance is very data-dependent. Moreover,

integrating all the prior knowledge data through a simple average implies considering

the different prior knowledge data are equally informative. The performance on the

less informative prior will have a big impact on the combined performance. It may

suggest a weighted integration.

The results reported in Section 4.6.1 shows the power of integrating regulatory

interactions from closely related organisms into an organism of interest. In fact,

including regulatory information from the mouse genome has allowed us to add around

300 edges and confirmed around 200 inferred links.

BENIN can infer both known and potential regulatory links In Section 4.6.1,

we demonstrated that BENIN could retrieve links that are part of our gold-standard

network. For example, when setting τ = 0.5, we observe that BENIN infers around 1171

out of the 1463 interactions present in our gold-standard network. We demonstrated

that BENIN was able to enrich the inferred network with new high scoring interactions

that are biologically relevant. Some of these interactions were confirmed by orthology

information transfer. They constitute interesting candidate interactions that will

necessitate further investigation.
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BENIN can scale to realistic problem In this chapter, we have demonstrated that

BENIN can infer a realistic network. From the execution time presented in Section 17,

we observe that BENIN runs in about 2h to infer a size 628 network integrating all the

five different prior knowledge data.

4.7 Conclusion

In this chapter, we presented the result of applying BENIN to infer the GRN that con-

trols the cell cycle of the HeLa cell line. We considered four different prior knowledge

data: ChIP-seq, TFBS, KD expression, and functional annotation. We evaluated

BENIN performances using our “gold-standard network.”

Comparing BENIN results when we integrate prior evidence of regulatory inter-

actions to when we do not, we observe that prior knowledge data integration may

improve BENIN performances. Testifying the importance or prior biological informa-

tion. A close analysis of the returned edges shows that many inferred links were

missing in our gold-standard network. BENIN can infer new interactions. Some of

these interactions get support to some extent with the literature. In contrast, others

that were not supported in literature may suggest potential research to confirm their

existence. We also presented an extension of BENIN that integrates regulatory inter-

action from other organisms into the studied organism, through sequence orthology

transfer. We tested this extension on the HeLa cell cycle using the mouse as our

model organism. We were able to add more than 300 interactions that were or were

not supported by the expression data. Some of these links were absent in our gold-

standard network or marked as non-edges. These links may be subject to further

investigation. Mainly those supported both by the expression and obtained through

orthology transfer.

Even though our results on the HeLa cell line are encouraging, there is still much

work to do. First of all, it will be interesting to consider other organisms for orthol-

ogy mapping. We observed that our genes get orthologues into many other model

organisms, such as the zebrafish, rat, or the saccharomyces cerevisae. Some of these

organisms (zebrafish, rat or frog) do not have an explicit database that stores their

regulatory interactions or existing database lack this information. We need to au-

tomatically or manually scan the literature to get the list of potential regulatory

186



interactions of their GRN. A next extension will be to infer the GRN for several cell

lines in human.
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Chapter 5

Conclusion

5.1 Recap

The gene regulatory network, which designates the set of genes that interact together

within the cell to control specific biological processes, is essential to understand how

the cell functions and how it responds to its environment. The advancement in high-

throughput instruments has allowed the generation of a high volume of a variety of

omics data, that each may provide a complementary part of the picture of regulation.

This thesis had three goals for regulatory network inference:

1. Develop a method that integrates diverse data;

2. Develop a method that scales to handle a real dataset; and

3. Develop a method that can integrate information across organisms.

The thesis was that using Elastic Net regression for feature selection would lead to

a method for network inference that met these goals, and also had a state-of-the-art

performance.

Chapter 3 presented BENIN as a method that viewed network inference as a feature

selection and applied adaptive Elastic Net regression to solve the feature selection

problem. The adaptive Elastic Net allowed data integration. BENIN was evaluated

on synthetic data from the DREAM4 challenge, and with our own synthetic data.

On the DREAM4 dataset BENIN out-performed all DREAM4 competitors on the size

100 subchallenge, and is also competitive with more recent state-of-the-art methods.
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Chapter 4 applied BENIN to real data for the cell cycle of the Human HeLa cell

line to demonstrate scalability and the integration of a range of types of data. We

developed a gold standard network for evaluation purposes, and compared the effect

of each prior and combination of priors on the predictive performance of BENIN.

Furthermore, BENIN proposed new interactions. These were reviewed for support in

the literature, as a preliminary validation of BENIN’s practicality, and whether the

proposed new regulatory links might warrant further experimental investigation.

5.2 Contributions

This thesis addresses open challenges in computational reconstruction, or inference,

of gene regulatory networks of performance, scale, and data integration.

The thesis presents a new algorithm BENIN that views network inference as feature

selection to address issues of scale, that uses Elastic Net regression for improved

performance, and adapts Elastic Net to integrate different types of biological data.

The BENIN algorithm is benchmarked on a synthetic dataset from the DREAM4

challenge, and on real expression data for the Human HeLa cell cycle. On the

DREAM4 dataset BENIN out-performed all DREAM4 competitors on the size 100 sub-

challenge, and is also competitive with more recent state-of-the-art methods. More-

over, on the HeLa cell cycle data, BENIN could infer known regulatory interactions

and propose new interactions that warrant further experimental investigation.

The three contributions of the thesis are

1. The BENIN algorithm, addressing scale and performance issues, by viewing Net-

work inference as the feature selection problem, and solving feature selection

using Elastic Net regression;

2. BENIN addressing the integration of prior knowledge by adapting the Elastic

Net regression technique; and

3. The application of BENIN to real data for the cell cycle of the Human HeLa cell

line.
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5.2.1 BENIN: Network Inference as Feature Selection using

Elastic Net

In this thesis, we introduce BENIN: Biologically Enhanced Network INference. BENIN is

a simple and intuitive inference method for integrating any prior knowledge with time-

series expression data. BENIN states GRN inference as a feature selection problem:

finding the direct regulators of each gene. It assumes that a target gene’s expression

profile is a linear function of its direct regulators’ expression profiles. BENIN applies

a regression technique called Elastic Net combined with a resampling technique to

perform feature selection.

5.2.2 BENIN: Integration of Prior Knowledge

Data integration is a common technique to improve inference in computational biol-

ogy. Yet the successful integration of a variety of types of data remains a challenge.

In this work, we used a modified version of the Elastic Net: the adaptive Elastic

Net to include prior knowledge. We developed ways to incorporate each prior into

the mathematical formulation of the adaptive Elastic Net for each type of data:

• Knockout (KO) expression data;

• Knock-down (KD) expression data;

• ChIP-seq data;

• Functional annotations;

• Transcription factor binding sites; and

• Genome-wide location data.

The probabilistic framework for the integration is defined by the Bayes formula. This

allows BENIN the possibility to control the impact of the prior on the model.

We have demonstrated that BENIN can integrate many types of data.

Moreover, BENIN allows the integration of regulatory information across species

through the use of orthology.
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Knockout(KO) and knock-down(KD) gene expression data are expression data

measured in an organism where a transcription factor is made inoperative (KO ex-

pression data), or its expression is reduced (KD expression data). The data is inte-

grated either through the z-score (for KO data) or a probabilistic framework (for KD

data).

ChIP-seq data reports the regions in the genome where a specific transcription

factor (TF) will physically bind to the DNA. We integrate ChIP-seq by a score mea-

suring potential binding between each TF and each gene in the genome.

Functional annotation is given as a set of terms in the Gene Ontology (GO). We

use a similarity measure of sets of terms to integrate functional annotation into BENIN.

Transcription factor binding sites are given as matrices storing binding specificities

for a specific TF. We used this data to scan the region of interest in the genome. The

result of the scanning process is integrated through a probabilistic framework into

BENIN.

Genome-wide location data is given as p-values of physical interactions between

a TF and a gene. The p-values are integrated into BENIN using a probabilistic frame-

work.

5.2.3 Application of BENIN to Human Cell Cycle

To study BENIN on real data, where there was a range of data types available for

integration, we applied BENIN to the cell cycle of theHuman HeLa cell line.

This showed the effect on the performance of each prior and each combination of

priors, and demonstrated BENIN at a realistic scale of the problem.

We integrate prior knowledge from transcription factor binding sites, knock-down

gene expression data, functional annotation, and ChIP-seq data.

Data integration across organisms was demonstrated using orthology between

genes of mouse and human to transfer information about regulatory links in mouse

to the network inferred for the cell cycle of the Human HeLa cell line.
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5.3 Limitations

One of the key limitations to BENIN, as with most regulatory network inference ap-

proaches, is the difficulty of distinguishing between direct and indirect regulatory

links. This shows up clearly in the analysis of network motifs.

BENIN may be too simplistic in how it weighs each regulatory link. BENIN weighs

the link by the number of bootstraps in which the link is selected during the feature

selection by the adaptive Elastic Net. We notice that many links have the same

weight, so the final rank does not show a clear preference between the links.

Our gold standard network in Chapter 5 did not distinguish cell lines, so it was

not specific to the cell cycle of the Human HeLa cell line. We integrated information

from different cell lines. The impact of this is unknown. It may be minor, as the data

used for the network inference was for the Human HeLa cell line.

The use of orthology information was restricted to mouse in our case study. How-

ever, each of the model vertebrate organisms is a good candidate as a source of

information, as indeed may be all the model organisms.

5.4 Future Work

Future work should definitely address the limitations above. Besides, our techniques

should be made part of a widely-used suite of tools for the complete systems biology

workflow, that works not simply with one organism at a time, but fully exploits orthol-

ogy with model organisms, and accommodates recent needs for single-cell genomics,

and microbial communities.

Our work takes a simple binary view of the regulatory link between transcription

factors and target genes: it is either on or off. Even then, the algorithms have difficulty

distinguishing direct regulation from indirect regulation. A model that considers

positive (enhancement) and negative (repression) the behavior of regulation is the

first step towards a more realistic model. Furthermore, transcription factors work

in combinations, or as complexes, in the regulatory regions of a gene. This thesis

did not consider the task of determining these so-called regulatory program of the

transcription factors working together.

This thesis has considered only transcriptional regulation. This is but one of
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the regulatory mechanisms in a cell. Systems biology, in the long term, will require

dynamic models including all the regulatory mechanisms,
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tins, Nuno Bourbon, and et al. YEASTRACT+: a portal for cross-species

comparative genomics of transcription regulation in yeasts. Nucleic Acids Re-

search, 48(D1):D642 – D649, Oct 2019. doi:10.1093/nar/gkz859.

[167] Kevin Patrick Murphy. Dynamic Bayesian Networks: Representation, Inference

and Learning. PhD thesis, University of California, Berkeley, 2002.

[168] Isabel Nepomuceno-Chamorro, Jesus Aguilar-Ruiz, and Jose Riquelme. Infer-

ring gene regression networks with model trees. BMC Bioinformatics, 11(1):517,

2010.

[169] Joseph O Ogutu, Torben Schulz-Streeck, and Hans-Peter Piepho. Genomic

selection using regularized linear regression models: ridge regression, lasso,

elastic net and their extensions. BMC Proceedings, 6(S2), May 2012. doi:

10.1186/1753-6561-6-s2-s10.

213

https://doi.org/10.1093/nar/gkz859
https://doi.org/10.1186/1753-6561-6-s2-s10
https://doi.org/10.1186/1753-6561-6-s2-s10


[170] Carlota Oleaga, Sabine Welten, Audrey Belloc, Anna Solé, Laura Rodriguez,
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Appendix A

Background

A.1 IUPAC degenerate base symbols

The table shows the list of degenerate symbols used in biochemistry to represent

position in the DNA sequence where there is variation.

Table 22: List of Degenerate IUPAC base symbols

Description Symbol
Bases represented Complementary

bases# A C G T

Adenine A

1

A T

Cytosine C C G

Guanine G G C

Thymine T T A

Uracil U U A

Weak W

2

A T W

Strong S C G S

Amino M A C K

Keto K G T M

Purine R A G Y

Pyrimidine Y C T R

Not A B

3

C G T V

Not C D A G T H
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Table 22 continued from previous page

Description Symbol
Bases represented Complementary

bases# A C G T

Not G H A C T D

Not T V A C G B

Any one base N 4 A C G T N

Zero Z 0 Z

The table reports the list of IUPAC base symbols used to report positional variation

in DNA sequence. # stands for number of. The first column gives the description of

the symbol. The second column gives the actual degenerate symbol. The 4th column

gives the the number of nucleotides it represents. 5th − 8th columns gives the actual

nucleotides it replaces. 9th column the complementary base.
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Appendix B

BENIN

B.1 BENIN parameters setting

This section gives more details on the parameters setting used for running BENIN on

the DREAM4 dataset. We divided the parameters into two sets. First, the general

parameters: that we set to same values for both sub-challenge size. Second, the main

parameters, which are the parameters that influence BENIN performance.

• Table 23 gives the values of BENIN general parameters when inferring size 10

and size 100 DREAM4 subchallenges.

• Table 24 (respectively Table 26) gives BENIN main parameters setting for recon-

structing networks in the size 100 (respectively size 10) DREAM4 subchallenge,

combining time-series and KO expression data.

• Table 25 (respectively Table 27) gives BENIN main parameters setting for recon-

structing networks in the size 100 (respectively size 10) DREAM4 subchallenge,

combining location data with time-series expression data.

B.2 BENIN results

In this section, we report the distribution of BENIN results when combining time series

with the 11 generated location data for size 10 (Table 33) and size 100 (Table 32)

DREAM4 subchallenge.
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Table 23: BENIN General Parameter setting

Parameters Values

λ (exponential distribution) 20

λmin (integral lower limit) 1

λmax (integral upper limit) 1000

β 0.5

λEnet lambda.min

nbfolds (CV) 15

R (number of bootstrap) 1000

l (mean block length) 10

τ 0.5

The table summarizes the values assigned to each of BENIN general parameter when apply-

ing BENIN DREAM4 challenge.

Table 24: BENIN +KO parameters on size 100 subchallenge

Parameters Net 1 Net 2 Net 3 Net 4 Net 5

γ 1.6 1.6 1.4 1.5 1.4

R 3000 4000 3000 3000 3000

α 0.9 0.99 0.9 0.9 0.9

BENIN parameters values when combining time series expression data and KO expres-

sion data for the inference of the five networks in the DREAM4 size 100 subchallenge.
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Table 25: BENIN +Location parameters setting on size 100 subchallenge

Parameters Net 1 Net 2 Net 3 Net 4 Net 5

γ 1 1 1 1 1

R 10000 10000 10000 10000 10000

α 0.7 0.7 0.7 0.8 0.9

BENIN parameter values when combining time-series expression data and location

data for the inference of the five networks in the DREAM4 size 100 subchallenge.

Table 26: BENIN +KO parameters on size 10 subchallenge

Parameters Net 1 Net 2 Net 3 Net 4 Net 5

γ 0.7 1.5 1.3 1.1 1.5

R 1000 2000 1000 1000 1000

α 0.9 0.99 0.9 0.9 0.9

BENIN parameters values when combining time series expression data and KO expres-

sion data for the inference of the five networks in the DREAM4 size 10 subchallenge.
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Table 27: BENIN +Location data parameters on size 10 subchallenge

Parameters Net 1 Net 2 Net 3 Net 4 Net 5

γ 1 1 1 1 1

R 1000 1000 1000 1000 1000

α 0.9 0.9 0.9 0.3 0.7

BENIN parameter values when combining time-series expression data and location

data for the inference of the five networks in the DREAM4 size 10 subchallenge.
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Figure 32: Global score Distribution for the DREAM4 size 100 subchallenge.

Distribution of the global scores for the methods that combine the 11 generated

location datasets with time series gene expression data to infer the five networks in

size 100 DREAM4 subchallenge.
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Figure 33: Global score Distribution for the DREAM4 size 10 subchallenge.

Distribution of the global scores for the methods that combine the 11 generated

location datasets with time series gene expression data to infer the five networks in

size 10 DREAM4 subchallenge.
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Appendix C

BENIN: Application to Human HeLa

Cell Cycle GRN

C.1 Data

This section gives more details on the data used for the inference the HeLa cell cycle

GRN.

• Table 28 presents list of the peak files downloaded from the UCSC web page

that contains the peak regions of the TFBS. It gives details on the cell line

considered, the TFs considered in each experiment, the lab that performed the

experiment, and finally, the URLs for downloading the file.

• Table 29 gives the list of KD gene expression datasets. It provides details about

the list of considered TFs. For each TF, the table gives datasets source as well

as the list of their IDs. Our datasets are from GEO (Gene Expression Omnibus)

and the ENCODE project.

• Table 30 gives details about the motifs downloaded from CisBP. It associates

each motif to the TF information: the official name, its ID from external

databases. It further provides information on the experiment that produces

the motif.

• Table 31 provides the list of all the 628 genes that are considered from Whitfield

time-series expression dataset [247].
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• Table 32 gives the list the TFs considered in our experiments and their gene

ontology annotation.

• Table 33 lists the datasets that we manually downloaded from the GEO database.

If the dataset is already included in dataTable 29 from KnockTF, it is re-

analyzed.

• To build our “gold standard” network, we downloaded a list of 132 gold standard

networks from the HumanBase database https://hb.flatironinstitute.org

/download. Then we concatenated all the 132 networks into a single network.

We used a row concatenation. We then restricted the network to genes that are

expressed in the cell cycle. Table 34 gives for each edge, how many time it is

repeated in the concatenated network.

• To build our “gold standard” network, we collected two networks from Garcia

Alonso et.al work [78]. The authors generated one network for cancer cells and

one for normal cells. We combine the two networks row per row. In Table 35, we

give the number of repetitions for each edge after combining the two networks.

• Table 36 and Table 37 give the list of edges in our gold standard network.

Table 36 gives the list of positive links and Table 37 the list of negative links.

In each table, the 1st column represents the TF. The 2nd column the TG. The

3rd column informs for each edge if it is present in the network (value of 1)

or if it is absent (value of 0). The present edges are the positive links, and

the absent edges are the negative links. For each edge, the number in the

4th column provides the number of times it was repeated before removing the

duplicate edges from the network obtained by combining Alonso networks and

HumanBase networks.

• To perform the ortholog information transfer, we first need to build our model

organism regulatory network. We first collected regulatory interactions from

TRRUST and RegNetwork databases. Table 38 gives the list of repeated regula-

tory interactions after merging the regulatory network downloaded from TRRUST

and RegNetwork databases.
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• Table 39 gives the list of repeated edges the mouse regulatory network obtained

after merging networks from TRRUST, RegNetwork and STRINGDB databases.
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Table 28: List of HeLa Peak Files

Cell TFs Lab URL

HeLa-S3 BRCA1 Stanford http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode

DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3B

rca1a300IggrabUniPk.narrowPeak.gz

HeLa-S3 CTCF Broad http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode

DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsBroadHelas

3CtcfUniPk.narrowPeak.gz

HeLa-S3 E2F1 USC http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode

DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3E

2f1UniPk.narrowPeak.gz

HeLa-S3 NFYA Harvard http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode

DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3N

fyaIggrabUniPk.narrowPeak.gz

HeLa-S3 NFYB Harvard http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode

DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3N

fybIggrabUniPk.narrowPeak.gz

HeLa-S3 STAT1 Yale http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode

DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3S

tat1Ifng30UniPk.narrowPeak.gz

HeLa-S3 TFAP2A USC http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode

DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3A

p2alphaUniPk.narrowPeak.gz

HeLa-S3 ZNF143 Stanford http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode

DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Z

nf143IggrabUniPk.narrowPeak.gz

The table gives details about the list of peak files downloaded from the UCSC webpage. The 1st column gives the cell line used

for the Chip-seq experiment. The 2nd column gives the TF concerned in the experiment. The 3rd column provides the lab names

that generate the dataset, and finally, 4th column provides the URLs to access the file used.
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http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Brca1a300IggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Brca1a300IggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Brca1a300IggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsBroadHelas3CtcfUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsBroadHelas3CtcfUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsBroadHelas3CtcfUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3E2f1UniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3E2f1UniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3E2f1UniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3NfyaIggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3NfyaIggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3NfyaIggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3NfybIggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3NfybIggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3NfybIggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Stat1Ifng30UniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Stat1Ifng30UniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Stat1Ifng30UniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Ap2alphaUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Ap2alphaUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Ap2alphaUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Znf143IggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Znf143IggrabUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Znf143IggrabUniPk.narrowPeak.gz


Table 29: List of knockdown datasets

TF Source Profile ID

STAT1 GEO GSE35551

SRF GEO GSE22606

SP1 GEO GSE37935

NFYA GEO GSE40215

NFE2L2 GEO GSE38332

MITF GEO GSE16249

ZNF521 GEO GSE79110

MBD4 GEO GSE52567

BRCA1 GEO GSE54265

YY1 GEO GSE14964

RUNX1 GEO GSE94835, GSE79598, GSE62140,GSE45743, GSE34594, GSE24778, GSE16238, GSE16238

FOXM1
GEO GSE55204, GSE40051, GSE31534

ENCODE ENCSR701TVL

HSF2 GEO GSE48672, GSE31534

HF1A GEO GSE76581, GSE56989, GSE55212, GSE54360, GSE44943,GSE3188,GSE3188

NR3C1 GEO GSE42538

KLF9 GEO GSE54699

NFYB
ENCODE ENCSR171KMM

GEO GSE61272

ZNF143 ENCODE ENCSR781XJD

HOXB4 ENCODE ENCSR359VJC

CTCF GEO GSE108869

The table gives the list of KD gene expression datasets. The 1st columns provies the list of considered

TFs. The 2nd column gives the original source of the datasets. The 3rd column provides the list of

dataset IDs.
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Table 30: Information Motif and Transcription Factor

TF ID Motif ID
MSource

ID
DBID TF Name DBDs

MSource Iden-

tifier
PMID

T010824 2.00 M02762 2.00 MS33 2.00 ENSG00000137203 TFAP2A TF AP-2 Jolma2013 23332764

T010824 2.00 M02763 2.00 MS33 2.00 ENSG00000137203 TFAP2A TF AP-2 Jolma2013 23332764

T010824 2.00 M02764 2.00 MS33 2.00 ENSG00000137203 TFAP2A TF AP-2 Jolma2013 23332764

T010824 2.00 M02765 2.00 MS33 2.00 ENSG00000137203 TFAP2A TF AP-2 Jolma2013 23332764

T010824 2.00 M02766 2.00 MS33 2.00 ENSG00000137203 TFAP2A TF AP-2 Jolma2013 23332764

T010824 2.00 M02767 2.00 MS33 2.00 ENSG00000137203 TFAP2A TF AP-2 Jolma2013 23332764

T010824 2.00 M04054 2.00 MS62 2.00 ENSG00000137203 TFAP2A TF AP-2 Yin2017 28473536

T010824 2.00 M04055 2.00 MS62 2.00 ENSG00000137203 TFAP2A TF AP-2 Yin2017 28473536

T010824 2.00 M07784 2.00 MS18 2.00 ENSG00000137203 TFAP2A TF AP-2 ENCODE 22955619

T010824 2.00 M08703 2.00 MS27 2.00 ENSG00000137203 TFAP2A TF AP-2 HocoMoco 23175603

T010824 2.00 M09755 2.00 MS59 2.00 ENSG00000137203 TFAP2A TF AP-2 Transfac 16381825

T010824 2.00 M09756 2.00 MS59 2.00 ENSG00000137203 TFAP2A TF AP-2 Transfac 16381825

T010824 2.00 M09757 2.00 MS59 2.00 ENSG00000137203 TFAP2A TF AP-2 Transfac 16381825

T010824 2.00 M09758 2.00 MS59 2.00 ENSG00000137203 TFAP2A TF AP-2 Transfac 16381825

T010824 2.00 M09759 2.00 MS59 2.00 ENSG00000137203 TFAP2A TF AP-2 Transfac 16381825

T010824 2.00 M09760 2.00 MS59 2.00 ENSG00000137203 TFAP2A TF AP-2 Transfac 16381825

T034249 2.00 M02774 2.00 MS33 2.00 ENSG00000070444 MNT HLH Jolma2013 23332764

T034254 2.00 M08049 2.00 MS31 2.00 ENSG00000100644 HIF1A HLH JASPAR 24194598

T034254 2.00 M08713 2.00 MS27 2.00 ENSG00000100644 HIF1A HLH HocoMoco 23175603

T034254 2.00 M09454 2.00 MS28 2.00 ENSG00000100644 HIF1A HLH HOMER 20513432

T034254 2.00 M09807 2.00 MS59 2.00 ENSG00000100644 HIF1A HLH Transfac 16381825

T034254 2.00 M09808 2.00 MS59 2.00 ENSG00000100644 HIF1A HLH Transfac 16381825

T034254 2.00 M09809 2.00 MS59 2.00 ENSG00000100644 HIF1A HLH Transfac 16381825

T034254 2.00 M09810 2.00 MS59 2.00 ENSG00000100644 HIF1A HLH Transfac 16381825

T034254 2.00 M09811 2.00 MS59 2.00 ENSG00000100644 HIF1A HLH Transfac 16381825

T034335 2.00 M08058 2.00 MS31 2.00 ENSG00000187098 MITF HLH JASPAR 24194598

T034335 2.00 M08740 2.00 MS27 2.00 ENSG00000187098 MITF HLH HocoMoco 23175603

T034335 2.00 M09880 2.00 MS59 2.00 ENSG00000187098 MITF HLH Transfac 16381825

T034335 2.00 M09881 2.00 MS59 2.00 ENSG00000187098 MITF HLH Transfac 16381825

T059732 2.00 M08789 2.00 MS27 2.00 ENSG00000116044 NFE2L2 bZIP 1 HocoMoco 23175603

T059732 2.00 M09943 2.00 MS59 2.00 ENSG00000116044 NFE2L2 bZIP 1 Transfac 16381825

T059732 2.00 M09944 2.00 MS59 2.00 ENSG00000116044 NFE2L2 bZIP 1 Transfac 16381825

T059732 2.00 M09945 2.00 MS59 2.00 ENSG00000116044 NFE2L2 bZIP 1 Transfac 16381825

T059732 2.00 M09946 2.00 MS59 2.00 ENSG00000116044 NFE2L2 bZIP 1 Transfac 16381825

T059742 2.00 M01813 2.00 MS64 2.00 ENSG00000137504 CREBZF bZIP 1 Zoo 01 25215497

T094796 2.00 M04400 2.00 MS62 2.00 ENSG00000067082 KLF6 zf-C2H2 Yin2017 28473536

T094796 2.00 M04401 2.00 MS62 2.00 ENSG00000067082 KLF6 zf-C2H2 Yin2017 28473536

T094796 2.00 M08857 2.00 MS27 2.00 ENSG00000067082 KLF6 zf-C2H2 HocoMoco 23175603

T094796 2.00 M10113 2.00 MS59 2.00 ENSG00000067082 KLF6 zf-C2H2 Transfac 16381825

T094821 2.00 M02663 2.00 MS31 2.00 ENSG00000099326 MZF1 zf-C2H2 JASPAR 24194598

T094821 2.00 M02664 2.00 MS31 2.00 ENSG00000099326 MZF1 zf-C2H2 JASPAR 24194598
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Table 30 continued from previous page

TF ID Motif ID
MSource

ID
DBID TF Name DBDs

MSource Iden-

tifier
PMID

T094821 2.00 M08236 2.00 MS43 2.00 ENSG00000099326 MZF1 zf-C2H2 Najafabadi2015b 25690854

T094821 2.00 M08286 2.00 MS52 2.00 ENSG00000099326 MZF1 zf-C2H2 Schmitges2016 27852650

T094821 2.00 M08863 2.00 MS27 2.00 ENSG00000099326 MZF1 zf-C2H2 HocoMoco 23175603

T094821 2.00 M10133 2.00 MS59 2.00 ENSG00000099326 MZF1 zf-C2H2 Transfac 16381825

T094821 2.00 M10134 2.00 MS59 2.00 ENSG00000099326 MZF1 zf-C2H2 Transfac 16381825

T094821 2.00 M10135 2.00 MS59 2.00 ENSG00000099326 MZF1 zf-C2H2 Transfac 16381825

T094821 2.00 M10136 2.00 MS59 2.00 ENSG00000099326 MZF1 zf-C2H2 Transfac 16381825

T094823 2.00 M02877 2.00 MS33 2.00 ENSG00000100811 YY1 zf-C2H2 Jolma2013 23332764

T094823 2.00 M04406 2.00 MS62 2.00 ENSG00000100811 YY1 zf-C2H2 Yin2017 28473536

T094823 2.00 M04407 2.00 MS62 2.00 ENSG00000100811 YY1 zf-C2H2 Yin2017 28473536

T094823 2.00 M04408 2.00 MS62 2.00 ENSG00000100811 YY1 zf-C2H2 Yin2017 28473536

T094823 2.00 M04409 2.00 MS62 2.00 ENSG00000100811 YY1 zf-C2H2 Yin2017 28473536

T094823 2.00 M05845 2.00 MS30 2.00 ENSG00000100811 YY1 zf-C2H2 Isakova2017 28092692

T094823 2.00 M07855 2.00 MS18 2.00 ENSG00000100811 YY1 zf-C2H2 ENCODE 22955619

T094823 2.00 M07856 2.00 MS18 2.00 ENSG00000100811 YY1 zf-C2H2 ENCODE 22955619

T094823 2.00 M07857 2.00 MS18 2.00 ENSG00000100811 YY1 zf-C2H2 ENCODE 22955619

T094823 2.00 M07858 2.00 MS18 2.00 ENSG00000100811 YY1 zf-C2H2 ENCODE 22955619

T094823 2.00 M07859 2.00 MS18 2.00 ENSG00000100811 YY1 zf-C2H2 ENCODE 22955619

T094823 2.00 M07860 2.00 MS18 2.00 ENSG00000100811 YY1 zf-C2H2 ENCODE 22955619

T094823 2.00 M07861 2.00 MS18 2.00 ENSG00000100811 YY1 zf-C2H2 ENCODE 22955619

T094823 2.00 M08085 2.00 MS31 2.00 ENSG00000100811 YY1 zf-C2H2 JASPAR 24194598

T094823 2.00 M08237 2.00 MS43 2.00 ENSG00000100811 YY1 zf-C2H2 Najafabadi2015b 25690854

T094823 2.00 M08288 2.00 MS52 2.00 ENSG00000100811 YY1 zf-C2H2 Schmitges2016 27852650

T094823 2.00 M08865 2.00 MS27 2.00 ENSG00000100811 YY1 zf-C2H2 HocoMoco 23175603

T094823 2.00 M10138 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094823 2.00 M10139 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094823 2.00 M10140 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094823 2.00 M10141 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094823 2.00 M10142 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094823 2.00 M10143 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094823 2.00 M10144 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094823 2.00 M10145 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094823 2.00 M10146 2.00 MS59 2.00 ENSG00000100811 YY1 zf-C2H2 Transfac 16381825

T094831 2.00 M02878 2.00 MS33 2.00 ENSG00000102974 CTCF zf-C2H2 Jolma2013 23332764

T094831 2.00 M05846 2.00 MS30 2.00 ENSG00000102974 CTCF zf-C2H2 Isakova2017 28092692

T094831 2.00 M07550 2.00 MS49 2.00 ENSG00000102974 CTCF zf-C2H2 Rhee2011 22153082

T094831 2.00 M07551 2.00 MS49 2.00 ENSG00000102974 CTCF zf-C2H2 Rhee2011 22153082

T094831 2.00 M07552 2.00 MS49 2.00 ENSG00000102974 CTCF zf-C2H2 Rhee2011 22153082

T094831 2.00 M07862 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07863 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07864 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07865 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619
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Table 30 continued from previous page

TF ID Motif ID
MSource

ID
DBID TF Name DBDs

MSource Iden-

tifier
PMID

T094831 2.00 M07866 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07867 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07868 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07869 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07870 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07871 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07872 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07873 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07874 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07875 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07876 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07877 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07878 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07879 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07880 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07881 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07882 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07883 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07884 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07885 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07886 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07887 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07888 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07889 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07890 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07891 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07892 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07893 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07894 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07895 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07896 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07897 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07898 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07899 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07900 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07901 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07902 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07903 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07904 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07905 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07906 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07907 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619
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T094831 2.00 M07908 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07909 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07910 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07911 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07912 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07913 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07914 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07915 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07916 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07917 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07918 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07919 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07920 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07921 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07922 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07923 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07924 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M07925 2.00 MS18 2.00 ENSG00000102974 CTCF zf-C2H2 ENCODE 22955619

T094831 2.00 M08087 2.00 MS31 2.00 ENSG00000102974 CTCF zf-C2H2 JASPAR 24194598

T094831 2.00 M08238 2.00 MS43 2.00 ENSG00000102974 CTCF zf-C2H2 Najafabadi2015b 25690854

T094831 2.00 M08289 2.00 MS52 2.00 ENSG00000102974 CTCF zf-C2H2 Schmitges2016 27852650

T094831 2.00 M08869 2.00 MS27 2.00 ENSG00000102974 CTCF zf-C2H2 HocoMoco 23175603

T094831 2.00 M09503 2.00 MS28 2.00 ENSG00000102974 CTCF zf-C2H2 HOMER 20513432

T094831 2.00 M09504 2.00 MS28 2.00 ENSG00000102974 CTCF zf-C2H2 HOMER 20513432

T094831 2.00 M10152 2.00 MS59 2.00 ENSG00000102974 CTCF zf-C2H2 Transfac 16381825

T094831 2.00 M10153 2.00 MS59 2.00 ENSG00000102974 CTCF zf-C2H2 Transfac 16381825

T094831 2.00 M10154 2.00 MS59 2.00 ENSG00000102974 CTCF zf-C2H2 Transfac 16381825

T094831 2.00 M10155 2.00 MS59 2.00 ENSG00000102974 CTCF zf-C2H2 Transfac 16381825

T094831 2.00 M10156 2.00 MS59 2.00 ENSG00000102974 CTCF zf-C2H2 Transfac 16381825

T094831 2.00 M10157 2.00 MS59 2.00 ENSG00000102974 CTCF zf-C2H2 Transfac 16381825

T094831 2.00 M10158 2.00 MS59 2.00 ENSG00000102974 CTCF zf-C2H2 Transfac 16381825

T094831 2.00 M10159 2.00 MS59 2.00 ENSG00000102974 CTCF zf-C2H2 Transfac 16381825

T094868 2.00 M08088 2.00 MS31 2.00 ENSG00000119138 KLF9 zf-C2H2 JASPAR 24194598

T094868 2.00 M08880 2.00 MS27 2.00 ENSG00000119138 KLF9 zf-C2H2 HocoMoco 23175603

T095017 2.00 M04509 2.00 MS62 2.00 ENSG00000162702 ZNF281 zf-C2H2 Yin2017 28473536

T095017 2.00 M04510 2.00 MS62 2.00 ENSG00000162702 ZNF281 zf-C2H2 Yin2017 28473536

T095017 2.00 M08321 2.00 MS52 2.00 ENSG00000162702 ZNF281 zf-C2H2 Schmitges2016 27852650

T095017 2.00 M08906 2.00 MS27 2.00 ENSG00000162702 ZNF281 zf-C2H2 HocoMoco 23175603

T095017 2.00 M10237 2.00 MS59 2.00 ENSG00000162702 ZNF281 zf-C2H2 Transfac 16381825

T095041 2.00 M02899 2.00 MS33 2.00 ENSG00000166478 ZNF143 zf-C2H2 Jolma2013 23332764

T095041 2.00 M07931 2.00 MS18 2.00 ENSG00000166478 ZNF143 zf-C2H2 ENCODE 22955619

T095041 2.00 M08910 2.00 MS27 2.00 ENSG00000166478 ZNF143 zf-C2H2 HocoMoco 23175603
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T095041 2.00 M09510 2.00 MS28 2.00 ENSG00000166478 ZNF143 zf-C2H2 HOMER 20513432

T095041 2.00 M10247 2.00 MS59 2.00 ENSG00000166478 ZNF143 zf-C2H2 Transfac 16381825

T095041 2.00 M10248 2.00 MS59 2.00 ENSG00000166478 ZNF143 zf-C2H2 Transfac 16381825

T095041 2.00 M10249 2.00 MS59 2.00 ENSG00000166478 ZNF143 zf-C2H2 Transfac 16381825

T095112 2.00 M10260 2.00 MS59 2.00 ENSG00000171940 ZNF217 zf-C2H2 Transfac 16381825

T095129 2.00 M08445 2.00 MS31 2.00 ENSG00000173404 INSM1 zf-C2H2 JASPAR 24194598

T095129 2.00 M08923 2.00 MS27 2.00 ENSG00000173404 INSM1 zf-C2H2 HocoMoco 23175603

T095173 2.00 M02914 2.00 MS33 2.00 ENSG00000178951 ZBTB7A zf-C2H2 Jolma2013 23332764

T095173 2.00 M04579 2.00 MS62 2.00 ENSG00000178951 ZBTB7A zf-C2H2 Yin2017 28473536

T095173 2.00 M04580 2.00 MS62 2.00 ENSG00000178951 ZBTB7A zf-C2H2 Yin2017 28473536

T095173 2.00 M07937 2.00 MS18 2.00 ENSG00000178951 ZBTB7A zf-C2H2 ENCODE 22955619

T095173 2.00 M08095 2.00 MS31 2.00 ENSG00000178951 ZBTB7A zf-C2H2 JASPAR 24194598

T095173 2.00 M08926 2.00 MS27 2.00 ENSG00000178951 ZBTB7A zf-C2H2 HocoMoco 23175603

T095173 2.00 M10273 2.00 MS59 2.00 ENSG00000178951 ZBTB7A zf-C2H2 Transfac 16381825

T095173 2.00 M10274 2.00 MS59 2.00 ENSG00000178951 ZBTB7A zf-C2H2 Transfac 16381825

T095173 2.00 M10275 2.00 MS59 2.00 ENSG00000178951 ZBTB7A zf-C2H2 Transfac 16381825

T095173 2.00 M10276 2.00 MS59 2.00 ENSG00000178951 ZBTB7A zf-C2H2 Transfac 16381825

T095173 2.00 M10277 2.00 MS59 2.00 ENSG00000178951 ZBTB7A zf-C2H2 Transfac 16381825

T095233 2.00 M02921 2.00 MS33 2.00 ENSG00000185591 SP1 zf-C2H2 Jolma2013 23332764

T095233 2.00 M04605 2.00 MS62 2.00 ENSG00000185591 SP1 zf-C2H2 Yin2017 28473536

T095233 2.00 M04606 2.00 MS62 2.00 ENSG00000185591 SP1 zf-C2H2 Yin2017 28473536

T095233 2.00 M08096 2.00 MS31 2.00 ENSG00000185591 SP1 zf-C2H2 JASPAR 24194598

T095233 2.00 M08363 2.00 MS52 2.00 ENSG00000185591 SP1 zf-C2H2 Schmitges2016 27852650

T095233 2.00 M08938 2.00 MS27 2.00 ENSG00000185591 SP1 zf-C2H2 HocoMoco 23175603

T095233 2.00 M10294 2.00 MS59 2.00 ENSG00000185591 SP1 zf-C2H2 Transfac 16381825

T095233 2.00 M10295 2.00 MS59 2.00 ENSG00000185591 SP1 zf-C2H2 Transfac 16381825

T095233 2.00 M10296 2.00 MS59 2.00 ENSG00000185591 SP1 zf-C2H2 Transfac 16381825

T095233 2.00 M10297 2.00 MS59 2.00 ENSG00000185591 SP1 zf-C2H2 Transfac 16381825

T095233 2.00 M10298 2.00 MS59 2.00 ENSG00000185591 SP1 zf-C2H2 Transfac 16381825

T095233 2.00 M10299 2.00 MS59 2.00 ENSG00000185591 SP1 zf-C2H2 Transfac 16381825

T095233 2.00 M10300 2.00 MS59 2.00 ENSG00000185591 SP1 zf-C2H2 Transfac 16381825

T095392 2.00 M07746 2.00 MS03 2.00 ENSG00000198466 ZNF587 zf-C2H2 Barazandeh2018 29146583

T095403 2.00 M10318 2.00 MS59 2.00 ENSG00000198795 ZNF521 zf-C2H2 Transfac 16381825

T159918 2.00 M08104 2.00 MS31 2.00 ENSG00000001167 NFYA CBFB NFYA JASPAR 24194598

T159918 2.00 M09018 2.00 MS27 2.00 ENSG00000001167 NFYA CBFB NFYA HocoMoco 23175603

T159918 2.00 M10403 2.00 MS59 2.00 ENSG00000001167 NFYA CBFB NFYA Transfac 16381825

T159918 2.00 M10404 2.00 MS59 2.00 ENSG00000001167 NFYA CBFB NFYA Transfac 16381825

T159918 2.00 M10405 2.00 MS59 2.00 ENSG00000001167 NFYA CBFB NFYA Transfac 16381825

T172616 2.00 M02952 2.00 MS33 2.00 ENSG00000101412 E2F1 E2F TDP Jolma2013 23332764

T172616 2.00 M02953 2.00 MS33 2.00 ENSG00000101412 E2F1 E2F TDP Jolma2013 23332764

T172616 2.00 M02954 2.00 MS33 2.00 ENSG00000101412 E2F1 E2F TDP Jolma2013 23332764

T172616 2.00 M02955 2.00 MS33 2.00 ENSG00000101412 E2F1 E2F TDP Jolma2013 23332764
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T172616 2.00 M04700 2.00 MS62 2.00 ENSG00000101412 E2F1 E2F TDP Yin2017 28473536

T172616 2.00 M07938 2.00 MS18 2.00 ENSG00000101412 E2F1 E2F TDP ENCODE 22955619

T172616 2.00 M09030 2.00 MS27 2.00 ENSG00000101412 E2F1 E2F TDP HocoMoco 23175603

T172616 2.00 M09521 2.00 MS28 2.00 ENSG00000101412 E2F1 E2F TDP HOMER 20513432

T172616 2.00 M10444 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10445 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10446 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10447 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10448 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10449 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10450 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10451 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10452 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172616 2.00 M10453 2.00 MS59 2.00 ENSG00000101412 E2F1 E2F TDP Transfac 16381825

T172619 2.00 M02959 2.00 MS33 2.00 ENSG00000129173 E2F8 E2F TDP Jolma2013 23332764

T172619 2.00 M04703 2.00 MS62 2.00 ENSG00000129173 E2F8 E2F TDP Yin2017 28473536

T172619 2.00 M04704 2.00 MS62 2.00 ENSG00000129173 E2F8 E2F TDP Yin2017 28473536

T172620 2.00 M09032 2.00 MS27 2.00 ENSG00000133740 E2F5 E2F TDP HocoMoco 23175603

T185765 2.00 M09085 2.00 MS27 2.00 ENSG00000111206 FOXM1 Forkhead HocoMoco 23175603

T185765 2.00 M10532 2.00 MS59 2.00 ENSG00000111206 FOXM1 Forkhead Transfac 16381825

T185765 2.00 M10533 2.00 MS59 2.00 ENSG00000111206 FOXM1 Forkhead Transfac 16381825

T185765 2.00 M10534 2.00 MS59 2.00 ENSG00000111206 FOXM1 Forkhead Transfac 16381825

T185765 2.00 M10535 2.00 MS59 2.00 ENSG00000111206 FOXM1 Forkhead Transfac 16381825

T209837 2.00 M03143 2.00 MS33 2.00 ENSG00000130675 MNX1 Homeobox Jolma2013 23332764

T209837 2.00 M05126 2.00 MS62 2.00 ENSG00000130675 MNX1 Homeobox Yin2017 28473536

T209837 2.00 M05127 2.00 MS62 2.00 ENSG00000130675 MNX1 Homeobox Yin2017 28473536

T209837 2.00 M05128 2.00 MS62 2.00 ENSG00000130675 MNX1 Homeobox Yin2017 28473536

T209869 2.00 M03178 2.00 MS33 2.00 ENSG00000160199 PKNOX1 Homeobox Jolma2013 23332764

T209869 2.00 M05206 2.00 MS62 2.00 ENSG00000160199 PKNOX1 Homeobox Yin2017 28473536

T209869 2.00 M05207 2.00 MS62 2.00 ENSG00000160199 PKNOX1 Homeobox Yin2017 28473536

T209869 2.00 M05208 2.00 MS62 2.00 ENSG00000160199 PKNOX1 Homeobox Yin2017 28473536

T209869 2.00 M05209 2.00 MS62 2.00 ENSG00000160199 PKNOX1 Homeobox Yin2017 28473536

T209869 2.00 M09150 2.00 MS27 2.00 ENSG00000160199 PKNOX1 Homeobox HocoMoco 23175603

T209869 2.00 M10712 2.00 MS59 2.00 ENSG00000160199 PKNOX1 Homeobox Transfac 16381825

T209914 2.00 M03223 2.00 MS33 2.00 ENSG00000177426 TGIF1 Homeobox Jolma2013 23332764

T209914 2.00 M05317 2.00 MS62 2.00 ENSG00000177426 TGIF1 Homeobox Yin2017 28473536

T209914 2.00 M05318 2.00 MS62 2.00 ENSG00000177426 TGIF1 Homeobox Yin2017 28473536

T209914 2.00 M09159 2.00 MS27 2.00 ENSG00000177426 TGIF1 Homeobox HocoMoco 23175603

T209914 2.00 M10740 2.00 MS59 2.00 ENSG00000177426 TGIF1 Homeobox Transfac 16381825

T209924 2.00 M05343 2.00 MS62 2.00 ENSG00000182742 HOXB4 Homeobox Yin2017 28473536

T209924 2.00 M05344 2.00 MS62 2.00 ENSG00000182742 HOXB4 Homeobox Yin2017 28473536

T209924 2.00 M05345 2.00 MS62 2.00 ENSG00000182742 HOXB4 Homeobox Yin2017 28473536
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T209924 2.00 M09162 2.00 MS27 2.00 ENSG00000182742 HOXB4 Homeobox HocoMoco 23175603

T240222 2.00 M02744 2.00 MS32 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Jolma2010 20378718

T240222 2.00 M03324 2.00 MS33 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Jolma2013 23332764

T240222 2.00 M05505 2.00 MS62 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Yin2017 28473536

T240222 2.00 M05506 2.00 MS62 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Yin2017 28473536

T240222 2.00 M05507 2.00 MS62 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Yin2017 28473536

T240222 2.00 M05508 2.00 MS62 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Yin2017 28473536

T240222 2.00 M09229 2.00 MS27 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
HocoMoco 23175603

T240222 2.00 M10859 2.00 MS59 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Transfac 16381825

T240222 2.00 M10860 2.00 MS59 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Transfac 16381825

T240222 2.00 M10861 2.00 MS59 2.00 ENSG00000025156 HSF2
HSF DNA-

bind
Transfac 16381825

T253657 2.00 M03341 2.00 MS33 2.00 ENSG00000112658 SRF SRF-TF Jolma2013 23332764

T253657 2.00 M03342 2.00 MS33 2.00 ENSG00000112658 SRF SRF-TF Jolma2013 23332764

T253657 2.00 M05553 2.00 MS62 2.00 ENSG00000112658 SRF SRF-TF Yin2017 28473536

T253657 2.00 M05554 2.00 MS62 2.00 ENSG00000112658 SRF SRF-TF Yin2017 28473536

T253657 2.00 M07981 2.00 MS18 2.00 ENSG00000112658 SRF SRF-TF ENCODE 22955619

T253657 2.00 M07982 2.00 MS18 2.00 ENSG00000112658 SRF SRF-TF ENCODE 22955619

T253657 2.00 M07983 2.00 MS18 2.00 ENSG00000112658 SRF SRF-TF ENCODE 22955619

T253657 2.00 M07984 2.00 MS18 2.00 ENSG00000112658 SRF SRF-TF ENCODE 22955619

T253657 2.00 M09249 2.00 MS27 2.00 ENSG00000112658 SRF SRF-TF HocoMoco 23175603

T253657 2.00 M10947 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10948 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10949 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10950 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10951 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10952 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10953 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10954 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10955 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T253657 2.00 M10956 2.00 MS59 2.00 ENSG00000112658 SRF SRF-TF Transfac 16381825

T260164 2.00 M09256 2.00 MS27 2.00 ENSG00000134046 MBD2 MBD HocoMoco 23175603

T303216 2.00 M03366 2.00 MS33 2.00 ENSG00000113580 NR3C1 zf-C4 Jolma2013 23332764
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T303216 2.00 M05587 2.00 MS62 2.00 ENSG00000113580 NR3C1 zf-C4 Yin2017 28473536

T303216 2.00 M05588 2.00 MS62 2.00 ENSG00000113580 NR3C1 zf-C4 Yin2017 28473536

T303216 2.00 M07986 2.00 MS18 2.00 ENSG00000113580 NR3C1 zf-C4 ENCODE 22955619

T303216 2.00 M07987 2.00 MS18 2.00 ENSG00000113580 NR3C1 zf-C4 ENCODE 22955619

T303216 2.00 M09270 2.00 MS27 2.00 ENSG00000113580 NR3C1 zf-C4 HocoMoco 23175603

T303216 2.00 M09607 2.00 MS28 2.00 ENSG00000113580 NR3C1 zf-C4 HOMER 20513432

T303216 2.00 M11119 2.00 MS59 2.00 ENSG00000113580 NR3C1 zf-C4 Transfac 16381825

T303216 2.00 M11120 2.00 MS59 2.00 ENSG00000113580 NR3C1 zf-C4 Transfac 16381825

T303216 2.00 M11121 2.00 MS59 2.00 ENSG00000113580 NR3C1 zf-C4 Transfac 16381825

T303216 2.00 M11122 2.00 MS59 2.00 ENSG00000113580 NR3C1 zf-C4 Transfac 16381825

T303216 2.00 M11123 2.00 MS59 2.00 ENSG00000113580 NR3C1 zf-C4 Transfac 16381825

T303216 2.00 M11124 2.00 MS59 2.00 ENSG00000113580 NR3C1 zf-C4 Transfac 16381825

T303216 2.00 M11125 2.00 MS59 2.00 ENSG00000113580 NR3C1 zf-C4 Transfac 16381825

T319384 2.00 M09371 2.00 MS27 2.00 ENSG00000159216 RUNX1 Runt HocoMoco 23175603

T319384 2.00 M09631 2.00 MS28 2.00 ENSG00000159216 RUNX1 Runt HOMER 20513432

T319384 2.00 M09632 2.00 MS28 2.00 ENSG00000159216 RUNX1 Runt HOMER 20513432

T319384 2.00 M11258 2.00 MS59 2.00 ENSG00000159216 RUNX1 Runt Transfac 16381825

T319384 2.00 M11259 2.00 MS59 2.00 ENSG00000159216 RUNX1 Runt Transfac 16381825

T319384 2.00 M11260 2.00 MS59 2.00 ENSG00000159216 RUNX1 Runt Transfac 16381825

T319384 2.00 M11261 2.00 MS59 2.00 ENSG00000159216 RUNX1 Runt Transfac 16381825

T319384 2.00 M11262 2.00 MS59 2.00 ENSG00000159216 RUNX1 Runt Transfac 16381825

T319384 2.00 M11263 2.00 MS59 2.00 ENSG00000159216 RUNX1 Runt Transfac 16381825

T324626 2.00 M05745 2.00 MS62 2.00 ENSG00000141905 NFIC MH1 Yin2017 28473536

T324626 2.00 M05746 2.00 MS62 2.00 ENSG00000141905 NFIC MH1 Yin2017 28473536

T324626 2.00 M08164 2.00 MS31 2.00 ENSG00000141905 NFIC MH1 JASPAR 24194598

T324626 2.00 M09378 2.00 MS27 2.00 ENSG00000141905 NFIC MH1 HocoMoco 23175603

T324626 2.00 M09635 2.00 MS28 2.00 ENSG00000141905 NFIC MH1 HOMER 20513432

T324626 2.00 M09636 2.00 MS28 2.00 ENSG00000141905 NFIC MH1 HOMER 20513432

T324626 2.00 M11278 2.00 MS59 2.00 ENSG00000141905 NFIC MH1 Transfac 16381825

T324626 2.00 M11279 2.00 MS59 2.00 ENSG00000141905 NFIC MH1 Transfac 16381825

T324628 2.00 M03480 2.00 MS33 2.00 ENSG00000162599 NFIA MH1 Jolma2013 23332764

T324628 2.00 M03481 2.00 MS33 2.00 ENSG00000162599 NFIA MH1 Jolma2013 23332764

T324628 2.00 M09379 2.00 MS27 2.00 ENSG00000162599 NFIA MH1 HocoMoco 23175603

T324628 2.00 M11282 2.00 MS59 2.00 ENSG00000162599 NFIA MH1 Transfac 16381825

T328056 2.00 M02487 2.00 MS64 2.00 ENSG00000064961 HMG20B HMG box Zoo 01 25215497

T328057 2.00 M00195 2.00 MS02 2.00 ENSG00000079432 CIC HMG box Badis09 19443739

T337444 2.00 M08013 2.00 MS18 2.00 ENSG00000115415 STAT1 STAT bind ENCODE 22955619

T337444 2.00 M08014 2.00 MS18 2.00 ENSG00000115415 STAT1 STAT bind ENCODE 22955619

T337444 2.00 M08171 2.00 MS31 2.00 ENSG00000115415 STAT1 STAT bind JASPAR 24194598

T337444 2.00 M08229 2.00 MS42 2.00 ENSG00000115415 STAT1 STAT bind modENCODE 22080565

T337444 2.00 M08230 2.00 MS42 2.00 ENSG00000115415 STAT1 STAT bind modENCODE 22080565

T337444 2.00 M09411 2.00 MS27 2.00 ENSG00000115415 STAT1 STAT bind HocoMoco 23175603
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T337444 2.00 M09642 2.00 MS28 2.00 ENSG00000115415 STAT1 STAT bind HOMER 20513432

T337444 2.00 M11348 2.00 MS59 2.00 ENSG00000115415 STAT1 STAT bind Transfac 16381825

T337444 2.00 M11349 2.00 MS59 2.00 ENSG00000115415 STAT1 STAT bind Transfac 16381825

T337444 2.00 M11350 2.00 MS59 2.00 ENSG00000115415 STAT1 STAT bind Transfac 16381825

T337444 2.00 M11351 2.00 MS59 2.00 ENSG00000115415 STAT1 STAT bind Transfac 16381825

T337444 2.00 M11352 2.00 MS59 2.00 ENSG00000115415 STAT1 STAT bind Transfac 16381825

T337444 2.00 M11353 2.00 MS59 2.00 ENSG00000115415 STAT1 STAT bind Transfac 16381825

T337444 2.00 M11354 2.00 MS59 2.00 ENSG00000115415 STAT1 STAT bind Transfac 16381825

T337450 2.00 M09417 2.00 MS27 2.00 ENSG00000173757 STAT5B STAT bind HocoMoco 23175603

T337450 2.00 M11371 2.00 MS59 2.00 ENSG00000173757 STAT5B STAT bind Transfac 16381825

T350252 2.00 M08178 2.00 MS31 2.00 ENSG00000120837 NFYB UNKNOWN JASPAR 24194598

T350252 2.00 M09444 2.00 MS27 2.00 ENSG00000120837 NFYB UNKNOWN HocoMoco 23175603

T350264 2.00 M11430 2.00 MS59 2.00 ENSG00000137947 GTF2B UNKNOWN Transfac 16381825

T350264 2.00 M11431 2.00 MS59 2.00 ENSG00000137947 GTF2B UNKNOWN Transfac 16381825

The table gives details about the motifs downloaded from CisBP and used for inferring the Hela cell cycle GRN. The

1st column is the internal unique CisBP ID for the TF. The 2nd column is the internal CisBP ID for the associated

motif. The 3rd column is the internal CisBP ID for the database or study the motif originates. The 4th column is

the external ID of the TF. The 5th column gives the name of the TF. The 6th column gives the unique set of DBDs

present in the TF. The 7th column is the ID for the source project of the motif. The 8th column is the Pubmed ID

of the motif.
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Table 31: Cell cycle genes

List of Considered Cell Cycle Genes

GOLGA8A PTP4A1 GINS3 GCSH SHTN1 TTF2

FBXL20 INSR DLGAP5 TMEM138 CEP55 GSE1

ZNF587 INADL CKS2 CDKN2D ODF2 POLQ

ZNHIT2 ADH4 MBD4 ITPR3 CDK20 HIST1H2AM

DCAF7 COQ6 MLLT4 DIS3 NCS1 PRR11

AHI1 IL18BP KLF6 HIST1H4C HSPA1L TTC31

BARD1 PCNA GCLM ZBED5 SRD5A1 ARL4A

KATNA1 CENPF HMGB2 UBE2C DKC1 CBX3

KIAA1586 PDGFA CCNB1 TUBA1A MKI67 BCLAF1

HELLS ANKRD10 CTNND1 ZNF414 ERN2 MDM2

FZR1 EXO1 PRIM1 TAF2N GTF2B CSGALNACT1

MASTL HLA-DOA GAS1 CAPS ARL6IP1 NDE1

CDC27 HIST1H4H CDR2 CLSPN GOT1 ABCA7

HP1BP3 TOMM70A MATN2 ROCK1 RBBP8 RAD51AP1

KNSTRN BIRC2 KDM4A RAD51 SDC1 ASIP

PPP1R10 CHAF1A KIAA1147 ZNF217 MCM5 HIST1H4B

ZC3HC1 VEGFC TOP2A AMD1 IFIT1 HIST1H4E

DONSON POLA1 CSH2 TUBB4B STAT1 KIAA1524

RCCD1 ZWINT PLCXD1 KATNBL1 DNAJB4 CCDC14

FAM105A STIL SHC1 KIAA0586 TIPIN CCDC90B

SPAG5 CDC45 SV2B MELK KPNB1 ZSCAN5A

RPS25 CCNF NEK2 NFYB FOXM1 PCED1A

FAM110A MAP2K6 CDC25C FAM60A NUP160 BAG3

DHFR NEIL3 GPSM2 HLA-DRA PSMD11 ARHGAP19

ZBTB7A NSUN3 ACYP1 HOXB4 CTR9 HIST3H2A

DTL OLR1 THRAP3 CDH24 RNF113A FKBP1A

CDC25A FABP1 PNN NCOA5 RUNX1 BUB3

TNPO2 POC1A RAD18 USB1 ADCY6 C5orf42

PTMS STAG3L1 BAIAP2 TPX2 MAPK13 GMNN

ANLN ZNF593 PRIM2 HJURP GADD45A CASP8AP2

HMMR HN1 RRM2 NUCKS1 MRPS18B TGIF1

KIFC1 ITPR1 ASPHD2 USP13 CREBZF ORC1

MCM4 ADAMTS1 HMGB3 UHRF1 SLF2 NUP37

CDK7 FAM189B TSG101 HSF2 TRAIP PKNOX1

MCAM UBR7 B2M CXCL14 PSMG3 CHML

MAN1A2 CDC25B SPDL1 HDAC3 FANCI MYCBP2

DNAJC3 AOC3 MORF4L2 TAB2 SYNCRIP RPL13A

ARMC1 KMO NFE2L2 ZNF143 EIF4E NUF2

SLC38A2 INSIG2 RCAN1 MZF1 CFD ABCC2

WSB1 DR1 SLBP USP1 NPM1 HERPUD2

G2E3 DNAJB9 ME3 MND1 CCNE1 NCOA3

SGK1 TRIM45 HMGCR MCM6 RSRC2 TOPBP1

BIVM KIF5B LMNA LMNB1 CDKN3 TRMT2A

DNA2 HMG20B SLC4A1AP UBE2T NPAT FAM83D

TMEM132A LPP RNPS1 GINS2 NKTR RGS3

STAG1 LBR COL7A1 OSGIN2 TACC3 CENPA
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Table 31 continued from previous page

List of Considered Cell Cycle Genes

TFAP2A DMTF1 HIF1A HORMAD1 USP6NL RRP1

LRIF1 NUP98 MID1 RANGAP1 PIK3CD PTTG1

MCM8 VCAM1 CKAP5 LMO4 STAT5B GTSE1

DSCC1 UNG CDC20 PBK UACA CEP44

RNPC3 SAP30 KAT7 RAB3A SMC4 GRPEL1

PRR16 VPS37C SRSF5 POLD3 CNN2 CDKN2AIP

ESPL1 FAN1 SRSF3 MBD3 CKAP2 CDC6

AFAP1 RAB23 PPP2CA ANP32E ARHGEF39 ATAD2

GRK6 ANTXR1 PAK1IP1 CNIH4 BRD8 CDKL5

MIS18BP1 RAD54L OXR1 DMXL2 DEXI CASP3

SERPINB3 HSPB8 HRAS SH3GL2 USP16 DET1

PSEN1 H1F0 INPP5K OSER1 AKIRIN2 KLF9

CENPE TTK SMTN LINC00339 YY1 KRAS

DNAJB1 SLC25A27 PRC1 NFIC BORA VTA1

SETD8P1 SLC17A2 CDC42EP4 TOP3A KPNA2 ZCCHC10

PLIN3 HSPA8 KIF23 RPA2 ANP32B RFC4

NFYA MDC1 STAG3 FYN KIF11 CFLAR

QRICH1 HIST1H2BC G3BP1 PRKAR1A CCNE2 ARHGAP8

PKMYT1 CDC42EP1 DCTN6 RAD51C MRPL19 TUBD1

KIF14 MNX1 GDF15 CENPL SAP30BP USP53

IDO1 TOP1 SEC62 TSKU KDM5B PANK2

DDX11 ATL2 TXNRD1 NR3C1 CADM1 IDI2

ZPBP MSH2 HCP5 SP1 CRYBA1 SEPN1

KIF2C HSPA13 UBL3 FANCD2 RERE ZMYM1

PDXP FRZB SSR3 FAM214A MGAT2 HAUS5

CDCA3 INSM1 SLC22A3 ARHGAP11A KANK2 CWC15

PLK1 UBQLN2 CENPU ENOSF1 GNB1 PRPSAP1

CYTH3 CRK PLK2 MITF SRF MTCL1

TUBA3C NMB TSN NIPBL MUC1 PPP3CA

C14orf142 TUBB2A GAS6 CAPN7 SEPHS1 KIAA0101

FLAD1 CHEK2 CENPQ OGT TOB2 MEGF9

SLC25A36 ADGRE5 BIRC5 ZNF281 VCL CIT

SLC39A10 APEX2 ZNF521 AOC2 BBS2 PCF11

MET NUSAP1 TMPO CKS1B IVNS1ABP ZNFX1

CDC16 NFIA MCM2 PPP1R2 ARHGDIB NDC80

RHEB TULP4 SLC44A2 HIST1H2AC CDCA7L KCTD2

DUSP4 ACD MNT CDC7 PYM1 RHOBTB3

CHAF1B MEPCE JADE2 AP3M2 BUB1B CCNA2

VPS72 POM121 ELP3 SS18 PWP1 RECQL4

SHCBP1 CTCF E2F5 FXR1 HAUS8 FEN1

LRRC17 TIMP1 DZIP3 LARP7 BRD7 HMG1

LYAR DSP CYTH2 CIC NAB1 RAD21

SRSF7 AURKB TOMM34 CDKN2C NBPF14 NCAPD2

SFPQ BRCA1 ARGLU1 RHNO1 MED31 TYMS

E2F1 SMARCD1 MRI1 CNOT10 AGFG1 DYNLL1

EBI3 TROAP UBE2S RMI1 BMP2 CDKN1B

NUDT4 ILF2 RNF126 INTS7 NASP CCNB2
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Table 31 continued from previous page

List of Considered Cell Cycle Genes

KIF22 KBTBD2 MRPS2 CDCA8 FANCA TRIP13

NCAPD3 KDELC1 TTC38 KIF20B KAT2B AP3D1

FANCG CDCA7 CTSD YWHAH DCAF16 RRM1

PASK NCAPH BTBD3 ABHD10 E2F8 NNMT

PTPN9 C6 RAN CENPM TFF3 ITGB3

CYB5R2 NLRP2 HIST2H2BE PPP6R3 HSD17B11 CDC42

FAM64A ZNF207 DNAJC6 ZRANB2 TXNDC9 RFC2

FADD FEM1B SNUPN ASF1B DHX8 TSC22D1

SMARCB1 KCTD9 ATF7IP HRSP12 SUCLG2 C4B

BUB1 VPS25 DEPDC1B REEP1 AP4B1 UBE2D3

RBM8A H2AFX ADGRG6 MBD2 MAD2L1

DNAJB6 CEP70 ORC3 MAP3K2 TRA2A

The table gives the gene names of the 628 HeLa cell cycle genes from the Whitfield [247] HeLa dataset,

which were considered in our analysis.

Table 32: Cell Cycle Transcription factor

Gene Symbol Ensembl Gene ID GO - Molecular Function

CENPA ENSG00000115163 GO:0051382 :kinetochore assembly

GO:0071459 :protein localization to chromosome, centromeric region

GO:0016032 :viral process

GO:0000281 :mitotic cytokinesis

GO:0000132 :establishment of mitotic spindle orientation

GO:0034080 :CENP-A containing nucleosome assembly

GO:0070345 :negative regulation of fat cell proliferation

GO:0060252 :positive regulation of glial cell proliferation

GO:0072332 :intrinsic apoptotic signaling pathway by p53 class media-

tor

GO:1900740 :positive regulation of protein insertion into mitochondrial

membrane involved in apoptotic signaling pathway

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0071466 :cellular response to xenobiotic stimulus

E2F1

ENSG00000101412 GO:0006977 :DNA damage response, signal transduction by p53 class

mediator resulting in cell cycle arrest

GO:0048255 :mRNA stabilization

GO:0030900 :forebrain development

GO:0006351 :transcription, DNA-templated

GO:0010628 :positive regulation of gene expression

GO:0071398 :cellular response to fatty acid

GO:0043276 :anoikis

GO:0048146 :positive regulation of fibroblast proliferation

GO:2000045 :regulation of G1/S transition of mitotic cell cycle

GO:0000077 :DNA damage checkpoint

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0016032 :viral process
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Table 32 continued from previous page

Gene Symbol Ensembl Gene ID GO - Molecular Function

GO:0043392 :negative regulation of DNA binding

GO:0008630 :intrinsic apoptotic signaling pathway in response to DNA

damage

GO:1990086 :lens fiber cell apoptotic process

GO:0006355 :regulation of transcription, DNA-templated

GO:1990090 :cellular response to nerve growth factor stimulus

GO:0000083 :regulation of transcription involved in G1/S transition of

mitotic cell cycle

GO:0071456 :cellular response to hypoxia

GO:0070317 :negative regulation of G0 to G1 transition

GO:0045599 :negative regulation of fat cell differentiation

GO:0051726 :regulation of cell cycle

GO:0043065 :positive regulation of apoptotic process

GO:0007283 :spermatogenesis

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0071930 :negative regulation of transcription involved in G1/S tran-

sition of mitotic cell cycle

FOXM1
ENSG00000111206 GO:0045892 :negative regulation of transcription, DNA-templated

GO:0071156 :regulation of cell cycle arrest

GO:2000377 :regulation of reactive oxygen species metabolic process

GO:0006281 :DNA repair

GO:0008284 :positive regulation of cell proliferation

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0006978 :DNA damage response, signal transduction by p53 class

mediator resulting in transcription of p21 class mediator

GO:0001570 :vasculogenesis

GO:0000086 :G2/M transition of mitotic cell cycle

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:2000781 :positive regulation of double-strand break repair

GO:0032873 :negative regulation of stress-activated MAPK cascade

GO:0090344 :negative regulation of cell aging

GO:0042127 :regulation of cell proliferation

GO:0051726 :regulation of cell cycle

GO:0046578 :regulation of Ras protein signal transduction

MBD4 ENSG00000129071 GO:0032355 :response to estradiol

GO:0045008 :depyrimidination

GO:0006281 :DNA repair

CTCF
ENSG00000102974 GO:0035065 :regulation of histone acetylation

GO:0010628 :positive regulation of gene expression

GO:0031060 :regulation of histone methylation

GO:0070602 :regulation of centromeric sister chromatid cohesion

GO:0006306 :DNA methylation

GO:0006349 :regulation of gene expression by genetic imprinting

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0040029 :regulation of gene expression, epigenetic

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0016584 :nucleosome positioning

GO:0071459 :protein localization to chromosome, centromeric region

GO:0010216 :maintenance of DNA methylation

GO:0008285 :negative regulation of cell proliferation

GO:0007059 :chromosome segregation

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0040030 :regulation of molecular function, epigenetic
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Table 32 continued from previous page

Gene Symbol Ensembl Gene ID GO - Molecular Function

E2F8 ENSG00000129173 GO:0070365 :hepatocyte differentiation

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0060718 :chorionic trophoblast cell differentiation

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0008283 :cell proliferation

GO:0002040 :sprouting angiogenesis

GO:0006977 :DNA damage response, signal transduction by p53 class

mediator resulting in cell cycle arrest

GO:0032466 :negative regulation of cytokinesis

GO:0032877 :positive regulation of DNA endoreduplication

GO:0060707 :trophoblast giant cell differentiation

GO:0001890 :placenta development

GO:0033301 :cell cycle comprising mitosis without cytokinesis

GO:0051726 :regulation of cell cycle

MZF1 ENSG00000099326 GO:0006355 :regulation of transcription, DNA-templated

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

RUNX1
ENSG00000159216 GO:0001503 :ossification

GO:0032743 :positive regulation of interleukin-2 production

GO:0045637 :regulation of myeloid cell differentiation

GO:0045652 :regulation of megakaryocyte differentiation

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0048935 :peripheral nervous system neuron development

GO:0045589 :regulation of regulatory T cell differentiation

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0001959 :regulation of cytokine-mediated signaling pathway

GO:0030182 :neuron differentiation

GO:0043378 :positive regulation of CD8-positive, alpha-beta T cell dif-

ferentiation

GO:0030111 :regulation of Wnt signaling pathway

GO:0050855 :regulation of B cell receptor signaling pathway

GO:0043371 :negative regulation of CD4-positive, alpha-beta T cell dif-

ferentiation

GO:0045766 :positive regulation of angiogenesis

GO:1902036 :regulation of hematopoietic stem cell differentiation

GO:2000810 :regulation of bicellular tight junction assembly

GO:0002062 :chondrocyte differentiation

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0010629 :negative regulation of gene expression

GO:0071425 :hematopoietic stem cell proliferation

GO:0030097 :hemopoiesis

GO:0030854 :positive regulation of granulocyte differentiation

GO:0045595 :regulation of cell differentiation

GO:0033146 :regulation of intracellular estrogen receptor signaling

pathway

GO:0045616 :regulation of keratinocyte differentiation

MNT ENSG00000070444 GO:0006366 :transcription from RNA polymerase II promoter

GO:0007275 :multicellular organism development

GO:0051726 :regulation of cell cycle

GO:2001234 :negative regulation of apoptotic signaling pathway

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:1903508 :positive regulation of nucleic acid-templated transcription

GO:0007569 :cell aging

GO:0008285 :negative regulation of cell proliferation
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Table 32 continued from previous page

Gene Symbol Ensembl Gene ID GO - Molecular Function

HSF2 ENSG00000025156 GO:0061408 :positive regulation of transcription from RNA polymerase

II promoter in response to heat stress

GO:0006366 :transcription from RNA polymerase II promoter

GO:0034605 :cellular response to heat

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0007283 :spermatogenesis

GO:0043618 :regulation of transcription from RNA polymerase II pro-

moter in response to stress

MNX1 ENSG00000130675 GO:0007417 :central nervous system development

GO:0031018 :endocrine pancreas development

GO:0048812 :neuron projection morphogenesis

GO:0009653 :anatomical structure morphogenesis

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0006959 :humoral immune response

GO:0021520 :spinal cord motor neuron cell fate specification

DMTF1 ENSG00000135164 GO:0007049 :cell cycle

GO:0006355 :regulation of transcription, DNA-templated

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

HOXB4 ENSG00000182742 GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0048704 :embryonic skeletal system morphogenesis

GO:0009952 :anterior/posterior pattern specification

GO:0008283 :cell proliferation

GO:0048539 :bone marrow development

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0060216 :definitive hemopoiesis

GO:0060218 :hematopoietic stem cell differentiation

GO:0048103 :somatic stem cell division

GO:0002011 :morphogenesis of an epithelial sheet

GO:2000738 :positive regulation of stem cell differentiation

GO:0001501 :skeletal system development

GO:0048536 :spleen development

CIC ENSG00000079432 GO:0007420 :brain development

GO:0048286 :lung alveolus development

GO:0007613 :memory

GO:0007612 :learning

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0035176 :social behavior

ZNF414 ENSG00000133250 GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

CREBZF ENSG00000137504 GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0009615 :response to virus

GO:0051090 :regulation of sequence-specific DNA binding transcription

factor activity

GO:0006351 :transcription, DNA-templated

GO:0045814 :negative regulation of gene expression, epigenetic

GO:0045892 :negative regulation of transcription, DNA-templated
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Gene Symbol Ensembl Gene ID GO - Molecular Function

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0007259 :JAK-STAT cascade

GO:0032870 :cellular response to hormone stimulus

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0033077 :T cell differentiation in thymus

GO:0040014 :regulation of multicellular organism growth

GO:0042127 :regulation of cell proliferation

GO:0045647 :negative regulation of erythrocyte differentiation

GO:0045648 :positive regulation of erythrocyte differentiation

GO:0038110 :interleukin-2-mediated signaling pathway

GO:0070670 :response to interleukin-4

GO:0007595 :lactation

GO:0019915 :lipid storage

GO:0030856 :regulation of epithelial cell differentiation

GO:0045588 :positive regulation of gamma-delta T cell differentiation

GO:0045954 :positive regulation of natural killer cell mediated cytotox-

icity

GO:0048541 :Peyer’s patch development

STAT5B

ENSG00000173757 GO:0071363 :cellular response to growth factor stimulus

GO:0050729 :positive regulation of inflammatory response

GO:0001779 :natural killer cell differentiation

GO:0006952 :defense response

GO:0007565 :female pregnancy

GO:0042448 :progesterone metabolic process

GO:0043029 :T cell homeostasis

GO:0097531 :mast cell migration

GO:0032355 :response to estradiol

GO:0042104 :positive regulation of activated T cell proliferation

GO:0071364 :cellular response to epidermal growth factor stimulus

GO:0019218 :regulation of steroid metabolic process

GO:0038111 :interleukin-7-mediated signaling pathway

GO:0001553 :luteinization

GO:0032819 :positive regulation of natural killer cell proliferation

GO:0040018 :positive regulation of multicellular organism growth

GO:0043434 :response to peptide hormone

GO:0045579 :positive regulation of B cell differentiation

GO:0045931 :positive regulation of mitotic cell cycle

GO:0019221 :cytokine-mediated signaling pathway

GO:0038113 :interleukin-9-mediated signaling pathway

GO:0035723 :interleukin-15-mediated signaling pathway

GO:0019530 :taurine metabolic process

GO:0032825 :positive regulation of natural killer cell differentiation

GO:0043066 :negative regulation of apoptotic process

GO:0045086 :positive regulation of interleukin-2 biosynthetic process

GO:0060397 :JAK-STAT cascade involved in growth hormone signaling

pathway

GO:0046543 :development of secondary female sexual characteristics

GO:0046544 :development of secondary male sexual characteristics

GO:0006952 :defense response

GO:0009612 :response to mechanical stimulus

GO:0043124 :negative regulation of I-kappaB kinase/NF-kappaB signal-

ing

GO:0043434 :response to peptide hormone

GO:0045648 :positive regulation of erythrocyte differentiation

GO:0072136 :metanephric mesenchymal cell proliferation involved in

metanephros development

GO:0001937 :negative regulation of endothelial cell proliferation

GO:0008015 :blood circulation

GO:0060337 :type I interferon signaling pathway

GO:0071407 :cellular response to organic cyclic compound
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STAT1

ENSG00000115415

GO:0019221 :cytokine-mediated signaling pathway

GO:0042981 :regulation of apoptotic process

GO:0048661 :positive regulation of smooth muscle cell proliferation

GO:0060334 :regulation of interferon-gamma-mediated signaling path-

way

GO:0072162 :metanephric mesenchymal cell differentiation

GO:0035456 :response to interferon-beta

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0007259 :JAK-STAT cascade

GO:0016525 :negative regulation of angiogenesis

GO:0042542 :response to hydrogen peroxide

GO:0046725 :negative regulation by virus of viral protein levels in host

cell

GO:0060333 :interferon-gamma-mediated signaling pathway

GO:0038113 :interleukin-9-mediated signaling pathway

GO:0035458 :cellular response to interferon-beta

GO:0010742 :macrophage derived foam cell differentiation

GO:0072308 :negative regulation of metanephric nephron tubule epithe-

lial cell differentiation

GO:0070757 :interleukin-35-mediated signaling pathway

GO:0032727 :positive regulation of interferon-alpha production

GO:0032869 :cellular response to insulin stimulus

GO:0034097 :response to cytokine

GO:0042127 :regulation of cell proliferation

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0070102 :interleukin-6-mediated signaling pathway

GO:0071346 :cellular response to interferon-gamma

GO:0061326 :renal tubule development

GO:0007221 :positive regulation of transcription of Notch receptor tar-

get

GO:0016032 :viral process

GO:0033209 :tumor necrosis factor-mediated signaling pathway

GO:0043542 :endothelial cell migration

GO:0038114 :interleukin-21-mediated signaling pathway

GO:0051770 :positive regulation of nitric-oxide synthase biosynthetic

process

GO:0003340 :negative regulation of mesenchymal to epithelial transi-

tion involved in metanephros morphogenesis

GO:0007584 :response to nutrient

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0051591 :response to cAMP

GO:0051607 :defense response to virus

GO:0070106 :interleukin-27-mediated signaling pathway

GO:0002053 :positive regulation of mesenchymal cell proliferation

GO:0002230 :positive regulation of defense response to virus by host
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NR3C1 ENSG00000113580 GO:0006355 :regulation of transcription, DNA-templated

GO:0071385 :cellular response to glucocorticoid stimulus

GO:0045892 :negative regulation of transcription, DNA-templated

GO:1902895 :positive regulation of pri-miRNA transcription from RNA

polymerase II promoter

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0006366 :transcription from RNA polymerase II promoter

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0042921 :glucocorticoid receptor signaling pathway

GO:0006325 :chromatin organization

GO:0071383 :cellular response to steroid hormone stimulus

GO:0071549 :cellular response to dexamethasone stimulus

GO:0007165 :signal transduction

GO:0071560 :cellular response to transforming growth factor beta stim-

ulus

NR3C1
GO:0043402 :glucocorticoid mediated signaling pathway

GO:0006367 :transcription initiation from RNA polymerase II promoter

GO:0007049 :cell cycle

GO:0007059 :chromosome segregation

GO:0006351 :transcription, DNA-templated

GO:0006915 :apoptotic process

GO:0051301 :cell division

ENSG00000137203 GO:0003404 :optic vesicle morphogenesis

GO:0010628 :positive regulation of gene expression

GO:0042127 :regulation of cell proliferation

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0003409 :optic cup structural organization

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0035115 :embryonic forelimb morphogenesis

GO:0070172 :positive regulation of tooth mineralization

GO:2000378 :negative regulation of reactive oxygen species metabolic

process

GO:0010842 :retina layer formation

GO:0010944 :negative regulation of transcription by competitive pro-

moter binding

GO:0060021 :palate development

TFAP2A GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0021559 :trigeminal nerve development

GO:0001822 :kidney development

GO:0008285 :negative regulation of cell proliferation

GO:0043525 :positive regulation of neuron apoptotic process

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0060349 :bone morphogenesis

GO:0042472 :inner ear morphogenesis

GO:0045595 :regulation of cell differentiation

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0048701 :embryonic cranial skeleton morphogenesis

GO:0048856 :anatomical structure development

GO:0061029 :eyelid development in camera-type eye

GO:0071281 :cellular response to iron ion

GO:0021623 :oculomotor nerve formation

GO:0007605 :sensory perception of sound

GO:0043066 :negative regulation of apoptotic process

GO:0030501 :positive regulation of bone mineralization

KLF6 ENSG00000067082 GO:0030183 :B cell differentiation

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0045893 :positive regulation of transcription, DNA-templated
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PKNOX1 ENSG00000160199 GO:0001525 :angiogenesis

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0030218 :erythrocyte differentiation

GO:0043010 :camera-type eye development

GO:0006366 :transcription from RNA polymerase II promoter

GO:0030217 :T cell differentiation

ZNF587 ENSG00000198466 GO:0006355 :regulation of transcription, DNA-templated

E2F5 ENSG00000133740 GO:0030030 :cell projection organization

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0009887 :animal organ morphogenesis

GO:0051726 :regulation of cell cycle

KLF9 ENSG00000119138 GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0071387 :cellular response to cortisol stimulus

GO:0097067 :cellular response to thyroid hormone stimulus

GO:0007623 :circadian rhythm

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0010839 :negative regulation of keratinocyte proliferation

DR1 ENSG00000117505 GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0006338 :chromatin remodeling

GO:0045898 :regulation of RNA polymerase II transcriptional preiniti-

ation complex assembly

GO:0043966 :histone H3 acetylation

ENSG00000112658 GO:0030220 :platelet formation

GO:0046716 :muscle cell cellular homeostasis

GO:0051150 :regulation of smooth muscle cell differentiation

GO:0060055 :angiogenesis involved in wound healing

GO:1902894 :negative regulation of pri-miRNA transcription from RNA

polymerase II promoter

GO:0030168 :platelet activation

GO:0031175 :neuron projection development

GO:0060947 :cardiac vascular smooth muscle cell differentiation

GO:0001829 :trophectodermal cell differentiation

GO:0007616 :long-term memory

GO:0008285 :negative regulation of cell proliferation

GO:0035855 :megakaryocyte development

GO:0035912 :dorsal aorta morphogenesis

GO:0045597 :positive regulation of cell differentiation

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0046016 :positive regulation of transcription by glucose

GO:0048538 :thymus development

GO:0070830 :bicellular tight junction assembly

GO:0071333 :cellular response to glucose stimulus

GO:0090398 :cellular senescence

GO:1902895 :positive regulation of pri-miRNA transcription from RNA

polymerase II promoter

GO:0021766 :hippocampus development

GO:0033561 :regulation of water loss via skin

GO:0060425 :lung morphogenesis
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SRF

GO:0001569 :branching involved in blood vessel morphogenesis

GO:0007507 :heart development

GO:0008306 :associative learning

GO:0034097 :response to cytokine

GO:0045987 :positive regulation of smooth muscle contraction

GO:0030155 :regulation of cell adhesion

GO:0051491 :positive regulation of filopodium assembly

GO:0001707 :mesoderm formation

GO:0001764 :neuron migration

GO:0002011 :morphogenesis of an epithelial sheet

GO:0048666 :neuron development

GO:0060532 :bronchus cartilage development

GO:0060534 :trachea cartilage development

GO:0009725 :response to hormone

GO:0001666 :response to hypoxia

GO:0010669 :epithelial structure maintenance

GO:0010735 :positive regulation of transcription via serum response

element binding

GO:0030878 :thyroid gland development

GO:0043149 :stress fiber assembly

GO:0045773 :positive regulation of axon extension

GO:0060347 :heart trabecula formation

GO:0061029 :eyelid development in camera-type eye

GO:0045059 :positive thymic T cell selection

GO:0090009 :primitive streak formation

GO:0030036 :actin cytoskeleton organization

GO:0060292 :long term synaptic depression

GO:0061145 :lung smooth muscle development

GO:0030336 :negative regulation of cell migration

GO:0007160 :cell-matrix adhesion

GO:1900222 :negative regulation of beta-amyloid clearance

GO:0002042 :cell migration involved in sprouting angiogenesis

GO:0051091 :positive regulation of sequence-specific DNA binding tran-

scription factor activity

GO:0060218 :hematopoietic stem cell differentiation

GO:0060324 :face development

GO:0003257 :positive regulation of transcription from RNA polymerase

II promoter involved in myocardial precursor cell differentiation

GO:0042789 :mRNA transcription from RNA polymerase II promoter

GO:0045214 :sarcomere organization

GO:0001947 :heart looping

GO:0009636 :response to toxic substance

GO:0043589 :skin morphogenesis

GO:0048589 :developmental growth

GO:0048821 :erythrocyte development

GO:0060261 :positive regulation of transcription initiation from RNA

polymerase II promoter

GO:0022028 :tangential migration from the subventricular zone to the

olfactory bulb

GO:0090136 :epithelial cell-cell adhesion

GO:0055003 :cardiac myofibril assembly

HMG20B ENSG00000064961 GO:0010468 :regulation of gene expression

GO:0045666 :positive regulation of neuron differentiation

GO:0035914 :skeletal muscle cell differentiation

GO:0006325 :chromatin organization

GO:0007049 :cell cycle

GO:0033234 :negative regulation of protein sumoylation

GO:0007596 :blood coagulation

TGIF1 ENSG00000177426 GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0042493 :response to drug

GO:0071363 :cellular response to growth factor stimulus

GO:0007275 :multicellular organism development
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INSM1

ENSG00000173404 GO:0060290 :transdifferentiation

GO:0061549 :sympathetic ganglion development

GO:0003323 :type B pancreatic cell development

GO:2000179 :positive regulation of neural precursor cell proliferation

GO:0008285 :negative regulation of cell proliferation

GO:0030182 :neuron differentiation

GO:0045597 :positive regulation of cell differentiation

GO:0043254 :regulation of protein complex assembly

GO:0071158 :positive regulation of cell cycle arrest

GO:0003358 :noradrenergic neuron development

GO:0031018 :endocrine pancreas development

GO:0042421 :norepinephrine biosynthetic process

GO:0007049 :cell cycle

GO:0010468 :regulation of gene expression

GO:0061104 :adrenal chromaffin cell differentiation

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0003309 :type B pancreatic cell differentiation

GO:0001933 :negative regulation of protein phosphorylation

GO:0030335 :positive regulation of cell migration

GO:0010564 :regulation of cell cycle process

GO:0003310 :pancreatic A cell differentiation

ZNF521 ENSG00000198795 GO:0048663 :neuron fate commitment

GO:0006355 :regulation of transcription, DNA-templated

ZNF207 ENSG00000010244 GO:0050821 :protein stabilization

GO:0006355 :regulation of transcription, DNA-templated

GO:0007094 :mitotic spindle assembly checkpoint

GO:0051301 :cell division

GO:0008608 :attachment of spindle microtubules to kinetochore

GO:0000070 :mitotic sister chromatid segregation

GO:0090307 :mitotic spindle assembly

GO:0001578 :microtubule bundle formation

GO:0046785 :microtubule polymerization

GO:0051983 :regulation of chromosome segregation

KDM5B
ENSG00000117139 GO:0006338 :chromatin remodeling

GO:0009791 :post-embryonic development

GO:0060444 :branching involved in mammary gland duct morphogene-

sis

GO:0060763 :mammary duct terminal end bud growth

GO:0060992 :response to fungicide

GO:0010628 :positive regulation of gene expression

GO:0034720 :histone H3-K4 demethylation

GO:0055114 :oxidation-reduction process

GO:2000864 :regulation of estradiol secretion

GO:1990830 :cellular response to leukemia inhibitory factor

GO:0007338 :single fertilization

GO:0048511 :rhythmic process

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0033601 :positive regulation of mammary gland epithelial cell pro-

liferation

GO:0044344 :cellular response to fibroblast growth factor stimulus

GO:0061038 :uterus morphogenesis

GO:0070306 :lens fiber cell differentiation

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0034721 :histone H3-K4 demethylation, trimethyl-H3-K4-specific

NFIC ENSG00000141905 GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0006260 :DNA replication

GO:0006366 :transcription from RNA polymerase II promoter

GO:0042475 :odontogenesis of dentin-containing tooth

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter
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TSC22D1 ENSG00000102804 GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0006366 :transcription from RNA polymerase II promoter

ZNF281 ENSG00000162702 GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0006355 :regulation of transcription, DNA-templated

GO:0048863 :stem cell differentiation

GO:0010172 :embryonic body morphogenesis

GO:0010629 :negative regulation of gene expression

GO:0045893 :positive regulation of transcription, DNA-templated

HIF1A ENSG00000100644 GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0006366 :transcription from RNA polymerase II promoter

GO:0035162 :embryonic hemopoiesis

GO:0045926 :negative regulation of growth

GO:0071456 :cellular response to hypoxia

GO:2000378 :negative regulation of reactive oxygen species metabolic

process

GO:0035774 :positive regulation of insulin secretion involved in cellular

response to glucose stimulus

GO:0043687 :post-translational protein modification

GO:0070244 :negative regulation of thymocyte apoptotic process

GO:0032364 :oxygen homeostasis

GO:0001755 :neural crest cell migration

GO:0006089 :lactate metabolic process

GO:1902895 :positive regulation of pri-miRNA transcription from RNA

polymerase II promoter

GO:0014850 :response to muscle activity

GO:0032963 :collagen metabolic process

GO:0021987 :cerebral cortex development

GO:0006355 :regulation of transcription, DNA-templated

GO:0010629 :negative regulation of gene expression

GO:0010575 :positive regulation of vascular endothelial growth factor

production

GO:0060574 :intestinal epithelial cell maturation

GO:1903377 :negative regulation of oxidative stress-induced neuron in-

trinsic apoptotic signaling pathway

GO:0019221 :cytokine-mediated signaling pathway

GO:0001666 :response to hypoxia

GO:0007165 :signal transduction

GO:0016567 :protein ubiquitination

GO:0010039 :response to iron ion

GO:0051541 :elastin metabolic process

GO:0070101 :positive regulation of chemokine-mediated signaling path-

way

GO:0010870 :positive regulation of receptor biosynthetic process

GO:0021502 :neural fold elevation formation

GO:0051000 :positive regulation of nitric-oxide synthase activity

GO:0061418 :regulation of transcription from RNA polymerase II pro-

moter in response to hypoxia

GO:2001054 :negative regulation of mesenchymal cell apoptotic process

GO:0016239 :positive regulation of macroautophagy

GO:0032722 :positive regulation of chemokine production

GO:0043536 :positive regulation of blood vessel endothelial cell migra-

tion

GO:0071347 :cellular response to interleukin-1

GO:0071542 :dopaminergic neuron differentiation

GO:0001837 :epithelial to mesenchymal transition

GO:0001922 :B-1 B cell homeostasis

GO:0003208 :cardiac ventricle morphogenesis
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GO:0097411 :hypoxia-inducible factor-1alpha signaling pathway

GO:1903715 :regulation of aerobic respiration

GO:0010468 :regulation of gene expression

GO:0010634 :positive regulation of epithelial cell migration

GO:0016579 :protein deubiquitination

GO:0002248 :connective tissue replacement involved in inflammatory

response wound healing

GO:0042593 :glucose homeostasis

GO:0043619 :regulation of transcription from RNA polymerase II pro-

moter in response to oxidative stress

GO:0046716 :muscle cell cellular homeostasis

GO:1903599 :positive regulation of mitophagy

GO:0001892 :embryonic placenta development

GO:0001947 :heart looping

GO:0002052 :positive regulation of neuroblast proliferation

GO:0003151 :outflow tract morphogenesis

GO:0061419 :positive regulation of transcription from RNA polymerase

II promoter in response to hypoxia

GO:0007595 :lactation

GO:0010628 :positive regulation of gene expression

GO:0045648 :positive regulation of erythrocyte differentiation

GO:0045821 :positive regulation of glycolytic process

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0046886 :positive regulation of hormone biosynthetic process

GO:0051216 :cartilage development

GO:0061072 :iris morphogenesis

GO:0001938 :positive regulation of endothelial cell proliferation

GO:0030502 :negative regulation of bone mineralization

GO:0001525 :angiogenesis

GO:0045766 :positive regulation of angiogenesis

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0061030 :epithelial cell differentiation involved in mammary gland

alveolus development

GO:0019896 :axonal transport of mitochondrion

GO:0010573 :vascular endothelial growth factor production

GO:0008542 :visual learning

GO:0030949 :positive regulation of vascular endothelial growth factor

receptor signaling pathway

GO:0032909 :regulation of transforming growth factor beta2 production

GO:0042541 :hemoglobin biosynthetic process

GO:0048546 :digestive tract morphogenesis

GO:0006879 :cellular iron ion homeostasis

GO:0032007 :negative regulation of TOR signaling

GO:0061298 :retina vasculature development in camera-type eye

NCOA3 ENSG00000124151 GO:0045893 :positive regulation of transcription, DNA-templated

GO:0030521 :androgen receptor signaling pathway

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0035624 :receptor transactivation

GO:0045618 :positive regulation of keratinocyte differentiation

GO:1902459 :positive regulation of stem cell population maintenance

GO:0071392 :cellular response to estradiol stimulus

GO:0010628 :positive regulation of gene expression

GO:0032870 :cellular response to hormone stimulus

GO:2000035 :regulation of stem cell division

GO:0016573 :histone acetylation

GO:2001141 :regulation of RNA biosynthetic process

GO:0043697 :cell dedifferentiation
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ZBTB7A ENSG00000178951 GO:2000677 :regulation of transcription regulatory region DNA bind-

ing

GO:0097680 :double-strand break repair via classical nonhomologous

end joining

GO:0045444 :fat cell differentiation

GO:0006355 :regulation of transcription, DNA-templated

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0006110 :regulation of glycolytic process

GO:0006338 :chromatin remodeling

GO:0006974 :cellular response to DNA damage stimulus

GO:0060766 :negative regulation of androgen receptor signaling path-

way

GO:0034504 :protein localization to nucleus

GO:0043249 :erythrocyte maturation

GO:0000381 :regulation of alternative mRNA splicing, via spliceosome

GO:0006325 :chromatin organization

GO:0006351 :transcription, DNA-templated

GO:0045746 :negative regulation of Notch signaling pathway

GO:0051090 :regulation of sequence-specific DNA binding transcription

factor activity

GO:0051092 :positive regulation of NF-kappaB transcription factor ac-

tivity

GO:0030183 :B cell differentiation

GO:0042981 :regulation of apoptotic process

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0030512 :negative regulation of transforming growth factor beta re-

ceptor signaling pathway

NFIA ENSG00000162599 GO:0006260 :DNA replication

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0060074 :synapse maturation

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0006355 :regulation of transcription, DNA-templated

GO:0072189 :ureter development

GO:0019079 :viral genome replication

NFE2L2 ENSG00000116044 GO:0070301 :cellular response to hydrogen peroxide

GO:0071498 :cellular response to fluid shear stress

GO:1902176 :negative regulation of oxidative stress-induced intrinsic

apoptotic signaling pathway

GO:0046326 :positive regulation of glucose import

GO:0034599 :cellular response to oxidative stress

GO:0045995 :regulation of embryonic development

GO:2000352 :negative regulation of endothelial cell apoptotic process

GO:0007568 :aging

GO:0010499 :proteasomal ubiquitin-independent protein catabolic pro-

cess

GO:0071499 :cellular response to laminar fluid shear stress

GO:2000379 :positive regulation of reactive oxygen species metabolic

process

GO:0030968 :endoplasmic reticulum unfolded protein response

GO:0045454 :cell redox homeostasis

GO:0010976 :positive regulation of neuron projection development

GO:0061419 :positive regulation of transcription from RNA polymerase

II promoter in response to hypoxia
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GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0016032 :viral process

GO:0043536 :positive regulation of blood vessel endothelial cell migra-

tion

GO:0045766 :positive regulation of angiogenesis

GO:0042149 :cellular response to glucose starvation

GO:0006366 :transcription from RNA polymerase II promoter

GO:0010628 :positive regulation of gene expression

GO:0045893 :positive regulation of transcription, DNA-templated

GO:1904753 :negative regulation of vascular associated smooth muscle

cell migration

GO:1903206 :negative regulation of hydrogen peroxide-induced cell

death

GO:2000121 :regulation of removal of superoxide radicals

GO:0046223 :aflatoxin catabolic process

GO:1903071 :positive regulation of ER-associated ubiquitin-dependent

protein catabolic process

GO:1904385 :cellular response to angiotensin

GO:0006954 :inflammatory response

GO:0030194 :positive regulation of blood coagulation

GO:0071356 :cellular response to tumor necrosis factor

GO:1902037 :negative regulation of hematopoietic stem cell differenti-

ation

GO:0036003 :positive regulation of transcription from RNA polymerase

II promoter in response to stress

GO:0036091 :positive regulation of transcription from RNA polymerase

II promoter in response to oxidative stress

GO:0010667 :negative regulation of cardiac muscle cell apoptotic pro-

cess

GO:0016567 :protein ubiquitination

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0036499 :PERK-mediated unfolded protein response

GO:0043161 :proteasome-mediated ubiquitin-dependent protein

catabolic process

GO:0071280 :cellular response to copper ion

GO:1903788 :positive regulation of glutathione biosynthetic process

ZNF217 ENSG00000171940 GO:0006351 :transcription, DNA-templated

GO:0006355 :regulation of transcription, DNA-templated

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

ZBED5 ENSG00000236287 GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

MITF ENSG00000187098 GO:0006351 :transcription, DNA-templated

GO:0044336 :canonical Wnt signaling pathway involved in negative reg-

ulation of apoptotic process

GO:0042127 :regulation of cell proliferation

GO:0030316 :osteoclast differentiation

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0006355 :regulation of transcription, DNA-templated

GO:0010628 :positive regulation of gene expression

GO:0045670 :regulation of osteoclast differentiation

GO:2000144 :positive regulation of DNA-templated transcription, ini-

tiation

GO:0030336 :negative regulation of cell migration

GO:0045165 :cell fate commitment
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GO:0046849 :bone remodeling

GO:0030318 :melanocyte differentiation

GO:2001141 :regulation of RNA biosynthetic process

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0043010 :camera-type eye development

GO:0065003 :macromolecular complex assembly

GTF2B ENSG00000137947 GO:0001174 :transcriptional start site selection at RNA polymerase II

promoter

GO:0042795 :snRNA transcription from RNA polymerase II promoter

GO:0043923 :positive regulation by host of viral transcription

GO:0006367 :transcription initiation from RNA polymerase II promoter

GO:0006473 :protein acetylation

GO:0050434 :positive regulation of viral transcription

GO:0006352 :DNA-templated transcription, initiation

GO:0016573 :histone acetylation

GO:0060261 :positive regulation of transcription initiation from RNA

polymerase II promoter

GO:1904798 :positive regulation of core promoter binding

GO:0006366 :transcription from RNA polymerase II promoter

GO:0016032 :viral process

GO:0051123 :RNA polymerase II transcriptional preinitiation complex

assembly

GO:1990114 :RNA Polymerase II core complex assembly

YY1 ENSG00000100811 GO:0000724 :double-strand break repair via homologous recombination

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0034644 :cellular response to UV

GO:0034696 :response to prostaglandin F

GO:0051276 :chromosome organization

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0006403 :RNA localization

GO:0010629 :negative regulation of gene expression

GO:0061052 :negative regulation of cell growth involved in cardiac mus-

cle cell development

GO:0007283 :spermatogenesis

GO:0010225 :response to UV-C

GO:0006974 :cellular response to DNA damage stimulus

GO:0010467 :gene expression

GO:0016579 :protein deubiquitination

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0030154 :cell differentiation

GO:0032688 :negative regulation of interferon-beta production

GO:0009952 :anterior/posterior pattern specification

GO:0048593 :camera-type eye morphogenesis

GO:1902894 :negative regulation of pri-miRNA transcription from RNA

polymerase II promoter

GO:0071347 :cellular response to interleukin-1

KAT7 ENSG00000136504 GO:0006281 :DNA repair

GO:0006260 :DNA replication

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0072708 :response to sorbitol

GO:0072739 :response to anisomycin

GO:0090240 :positive regulation of histone H4 acetylation

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0043966 :histone H3 acetylation

GO:1902035 :positive regulation of hematopoietic stem cell proliferation

GO:0072720 :response to dithiothreitol

GO:2000819 :regulation of nucleotide-excision repair
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GO:0031098 :stress-activated protein kinase signaling cascade

GO:0045740 :positive regulation of DNA replication

GO:0001779 :natural killer cell differentiation

GO:0018393 :internal peptidyl-lysine acetylation

GO:0043982 :histone H4-K8 acetylation

GO:0043984 :histone H4-K16 acetylation

GO:1900182 :positive regulation of protein localization to nucleus

GO:0043967 :histone H4 acetylation

GO:0072710 :response to hydroxyurea

GO:0072716 :response to actinomycin D

GO:0006355 :regulation of transcription, DNA-templated

GO:0044154 :histone H3-K14 acetylation

GO:0030174 :regulation of DNA-dependent DNA replication initiation

GO:0043981 :histone H4-K5 acetylation

GO:0045648 :positive regulation of erythrocyte differentiation

GO:0032786 :positive regulation of DNA-templated transcription, elon-

gation

GO:0043983 :histone H4-K12 acetylation

MBD3 ENSG00000071655 GO:0031667 :response to nutrient levels

GO:0048568 :embryonic organ development

GO:0007568 :aging

GO:0044030 :regulation of DNA methylation

GO:0001701 :in utero embryonic development

GO:0016573 :histone acetylation

GO:0007420 :brain development

GO:0043044 :ATP-dependent chromatin remodeling

GO:0007507 :heart development

GO:0009888 :tissue development

GO:1901796 :regulation of signal transduction by p53 class mediator

GO:0032355 :response to estradiol

SP1 ENSG00000185591 GO:0010628 :positive regulation of gene expression

GO:0043923 :positive regulation by host of viral transcription

GO:0048511 :rhythmic process

GO:1904828 :positive regulation of hydrogen sulfide biosynthetic pro-

cess

GO:0016032 :viral process

GO:0006355 :regulation of transcription, DNA-templated

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0033194 :response to hydroperoxide

GO:1905564 :positive regulation of vascular endothelial cell prolifera-

tion

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0043536 :positive regulation of blood vessel endothelial cell migra-

tion

GO:0042795 :snRNA transcription from RNA polymerase II promoter

GO:0045766 :positive regulation of angiogenesis

GO:0045540 :regulation of cholesterol biosynthetic process

GO:1902004 :positive regulation of beta-amyloid formation

GO:0032869 :cellular response to insulin stimulus

NFYB ENSG00000120837 GO:0006355 :regulation of transcription, DNA-templated

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0045540 :regulation of cholesterol biosynthetic process

GO:1990830 :cellular response to leukemia inhibitory factor

GO:0045893 :positive regulation of transcription, DNA-templated

NFYA ENSG00000001167 GO:0006355 :regulation of transcription, DNA-templated

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0010723 :positive regulation of transcription from RNA polymerase

II promoter in response to iron

GO:0045540 :regulation of cholesterol biosynthetic process

GO:0006366 :transcription from RNA polymerase II promoter

GO:0048511 :rhythmic process
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MBD2 ENSG00000134046 GO:0042711 :maternal behavior

GO:0000122 :negative regulation of transcription from RNA polymerase

II promoter

GO:0000183 :chromatin silencing at rDNA

GO:0031667 :response to nutrient levels

GO:0043044 :ATP-dependent chromatin remodeling

GO:0042127 :regulation of cell proliferation

GO:0009612 :response to mechanical stimulus

GO:0034622 :cellular macromolecular complex assembly

GO:0048568 :embryonic organ development

GO:0007507 :heart development

GO:0071407 :cellular response to organic cyclic compound

GO:0035563 :positive regulation of chromatin binding

GO:0006346 :methylation-dependent chromatin silencing

GO:0007568 :aging

GO:0030177 :positive regulation of Wnt signaling pathway

GO:0044030 :regulation of DNA methylation

GO:0032355 :response to estradiol

GO:0045892 :negative regulation of transcription, DNA-templated

ZNF143 ENSG00000166478 GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0042795 :snRNA transcription from RNA polymerase II promoter

GO:0006355 :regulation of transcription, DNA-templated

GO:0006383 :transcription from RNA polymerase III promoter

GO:0006366 :transcription from RNA polymerase II promoter

GO:0006359 :regulation of transcription from RNA polymerase III pro-

moter

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

BRCA1 ENSG00000012048 GO:0006974 :cellular response to DNA damage stimulus

GO:0006978 :DNA damage response, signal transduction by p53 class

mediator resulting in transcription of p21 class mediator

GO:0042127 :regulation of cell proliferation

GO:0045892 :negative regulation of transcription, DNA-templated

GO:0006633 :fatty acid biosynthetic process

GO:0051865 :protein autoubiquitination

GO:0006301 :postreplication repair

GO:0000729 :DNA double-strand break processing

GO:0035066 :positive regulation of histone acetylation

GO:0042981 :regulation of apoptotic process

GO:0070317 :negative regulation of G0 to G1 transition

GO:0006260 :DNA replication

GO:0006349 :regulation of gene expression by genetic imprinting

GO:0010212 :response to ionizing radiation

GO:0016579 :protein deubiquitination

GO:0045893 :positive regulation of transcription, DNA-templated

GO:0046600 :negative regulation of centriole replication

GO:0071158 :positive regulation of cell cycle arrest

GO:0006357 :regulation of transcription from RNA polymerase II pro-

moter

GO:0007098 :centrosome cycle

GO:0010575 :positive regulation of vascular endothelial growth factor

production

GO:0000724 :double-strand break repair via homologous recombination

GO:0051571 :positive regulation of histone H3-K4 methylation

GO:0051572 :negative regulation of histone H3-K4 methylation

GO:0071356 :cellular response to tumor necrosis factor

GO:1902042 :negative regulation of extrinsic apoptotic signaling path-

way via death domain receptors
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Gene Symbol Ensembl Gene ID GO - Molecular Function

GO:2000617 :positive regulation of histone H3-K9 acetylation

GO:0006359 :regulation of transcription from RNA polymerase III pro-

moter

GO:0016567 :protein ubiquitination

GO:0008630 :intrinsic apoptotic signaling pathway in response to DNA

damage

GO:0031398 :positive regulation of protein ubiquitination

GO:0033147 :negative regulation of intracellular estrogen receptor sig-

naling pathway

GO:0043009 :chordate embryonic development

GO:0051573 :negative regulation of histone H3-K9 methylation

GO:0051574 :positive regulation of histone H3-K9 methylation

GO:0071681 :cellular response to indole-3-methanol

GO:0085020 :protein K6-linked ubiquitination

GO:0006302 :double-strand break repair

GO:0006303 :double-strand break repair via nonhomologous end joining

GO:0006915 :apoptotic process

GO:0010628 :positive regulation of gene expression

GO:0045944 :positive regulation of transcription from RNA polymerase

II promoter

GO:0070512 :positive regulation of histone H4-K20 methylation

GO:0009048 :dosage compensation by inactivation of X chromosome

GO:0044818 :mitotic G2/M transition checkpoint

GO:0035067 :negative regulation of histone acetylation

GO:0044030 :regulation of DNA methylation

GO:0045717 :negative regulation of fatty acid biosynthetic process

GO:0045739 :positive regulation of DNA repair

GO:0045766 :positive regulation of angiogenesis

GO:2000378 :negative regulation of reactive oxygen species metabolic

process

GO:0007059 :chromosome segregation

GO:0043627 :response to estrogen

GO:0030521 :androgen receptor signaling pathway

GO:1901796 :regulation of signal transduction by p53 class mediator

GO:0072425 :signal transduction involved in G2 DNA damage check-

point

GO:2000620 :positive regulation of histone H4-K16 acetylation

The table reports the list of TFs that are considered in our analysis. The 1st column

reports the TF official name. The 2nd column report the TF Ensemble ID and, finally,

the 3rd column gives the TF gene ontology annotation. More specifically, we report the

biological process.

Table 33: Knockdown Data from Gene Expression Omnibus

Transcription Factor GEO dataset ID

NFYA GSE40215

NFE2L2 GSE38332

MITF GSE16249

KAT7 GSE33220

ZNF521 GSE79110

MBD4 GSE52567

BRCA1 GSE54265

CTCF GSE108869
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Table 33 continued from previous page

Transcription Factor GEO dataset ID

SP1 GSE37935

ZNF217 GSE35511

SRF GSE22606

The table provides the list of KD expression datasets manually downloaded from Gene

Expression Omnibus (GEO) database. The 1st column gives the name of the TF targeted

by the KD experiment. The 2nd column provides the ID of the dataset.

269



Table 34: Edges repe-

tition in networks from

HumanBase

TF TG # dup

3091 55655 77

672 63967 77

672 51514 76

6777 3111 76

861 4233 76

2305 890 75

3091 729 75

5316 729 75

861 729 75

2305 23779 74

2305 4233 74

6722 729 74

861 10234 74

3091 7424 73

6667 4233 73

672 10595 73

672 580 73

5316 3111 71

672 4751 71

861 4286 71

3091 6491 70

672 3070 70

6777 10595 70

8202 3070 70

5316 2619 69

672 11065 69

672 5347 69

7050 1869 69

7528 9319 68

3091 4233 67

672 22909 67

672 55632 67

672 9319 67

6722 6491 67

6777 55655 67

8930 10595 67

7528 2619 66

8932 6382 66

6667 4286 65

Table 34 continued

TF TG # dup

672 5888 64

6722 3214 64

6777 332 64

6777 3690 64

7050 4286 64

10664 55723 63

58487 3434 63

7050 6491 63

7528 22909 63

7528 5888 63

2908 332 62

5316 4286 62

6777 3070 62

7050 2619 62

7528 993 62

8932 4286 62

6772 3434 61

7050 3110 61

6722 3690 60

7528 4286 60

3091 2487 59

6667 2619 59

6667 29899 59

672 2177 59

672 23354 59

6777 7412 59

6667 7020 58

672 9666 57

672 9682 57

3091 7412 56

7528 51514 56

8932 898 56

7528 650 55

10765 3070 54

3091 650 54

6667 3214 54

672 11200 54

1869 10492 53

6667 5864 53

1810 3070 52

8202 9682 52

10664 3070 51

6667 7412 51

861 2487 51

8930 11200 51

Table 34 continued

TF TG # dup

11143 3070 50

6667 2487 50

6722 650 49

2305 2487 48

53615 3070 48

7528 3214 48

2305 4281 46

6777 9510 46

7020 3214 45

8932 650 45

6777 11200 42

4286 2487 41

10765 9682 40

1810 9682 40

10664 9682 37

53615 9682 37

7528 56852 37

8932 2487 37

6667 55632 36

11143 9682 34

7020 3710 34

6722 55632 33

7020 2619 33

7020 2487 31

3214 7020 25

7020 650 23

4286 8932 20

4286 10766 18

5316 55790 18

7050 55790 17

10664 55632 16

2908 51170 16

6777 5293 16

7020 51141 16

1810 55632 15

3091 51170 15

6777 51170 15

6777 55790 15

7528 51170 15

8932 55790 15

10765 55632 14

5316 51170 14

8202 55632 14

3110 51715 13

3214 650 13
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Table 34 continued

TF TG # dup

4286 10036 13

5316 5293 13

7020 7251 13

7050 51170 13

861 51170 13

1869 1977 12

1869 5422 12

3110 54820 12

4286 2782 12

4286 3337 12

4286 51343 12

4286 7050 12

5316 4863 12

6722 51170 12

6772 51170 12

1810 55790 11

2908 55790 11

3091 5293 11

3214 6667 11

4286 10347 11

4286 6667 11

4286 7296 11

4286 8473 11

5316 7412 11

7020 1832 11

7020 3337 11

7528 55632 11

861 5293 11

8930 51170 11

2908 699 10

3091 127 10

3110 1058 10

4286 2189 10

4286 687 10

4286 7528 10

4286 994 10

5316 3434 10

53615 55632 10

6667 23397 10

7020 1509 10

8932 51170 10

8932 65055 10

11143 55632 9

2305 3110 9

2305 3111 9

Table 34 continued

TF TG # dup

2908 898 9

3091 65055 9

3110 11104 9

3214 6118 9

3214 7528 9

4286 10051 9

4286 10905 9

4286 1500 9

4286 1810 9

4286 53615 9

4286 6944 9

4286 7374 9

4286 9134 9

4286 9531 9

4286 9646 9

4286 9793 9

5316 10068 9

5316 5347 9

53615 51514 9

6667 701 9

672 701 9

6722 5293 9

6722 65055 9

6772 55723 9

7050 55655 9

7528 701 9

8202 29899 9

8202 51170 9

8202 9212 9

8932 5293 9

8932 699 9

10664 6382 8

1810 10234 8

1869 10036 8

1869 29117 8

1869 3337 8

2305 51170 8

2305 5293 8

2908 65055 8

3091 3070 8

3110 55729 8

3110 7050 8

3214 10492 8

4286 10460 8

4286 11073 8

Table 34 continued

TF TG # dup

4286 1509 8

4286 1832 8

4286 23310 8

4286 3156 8

4286 3832 8

4286 3837 8

4286 4664 8

4286 4678 8

4286 473 8

4286 51715 8

4286 51763 8

4286 5316 8

4286 54407 8

4286 54820 8

4286 5530 8

4286 5573 8

4286 5608 8

4286 5663 8

4286 5780 8

4286 6241 8

4286 7251 8

4286 7298 8

4286 861 8

4286 996 8

4286 998 8

4780 10595 8

53615 55790 8

53615 7424 8

58487 9212 8

6667 10068 8

6667 51170 8

672 10234 8

6722 10234 8

6772 3070 8

6777 4233 8

6777 6491 8

6777 898 8

7020 1058 8

7020 4247 8

7050 11200 8

7050 23118 8

7050 23354 8

7050 23779 8

7050 4863 8

7528 6491 8
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Table 34 continued

TF TG # dup

8202 55247 8

861 3642 8

8930 9212 8

8932 10234 8

8932 10873 8

10664 10234 7

10664 9212 7

10765 10234 7

10765 127 7

10765 29899 7

10765 9212 7

11143 10234 7

11143 6382 7

1810 2487 7

1810 51170 7

1810 890 7

1810 9319 7

1869 1031 7

1869 2177 7

1869 993 7

2305 10873 7

2305 65055 7

2908 23397 7

2908 5293 7

2908 55247 7

3091 9212 7

3110 23077 7

3110 3337 7

3110 6421 7

3110 9939 7

3214 10347 7

3214 10765 7

3214 11004 7

3214 1509 7

3214 22894 7

3214 23279 7

3214 25836 7

3214 5515 7

3214 5573 7

3214 5889 7

3214 6760 7

3214 6944 7

3214 7296 7

3214 84305 7

3642 55729 7

Table 34 continued

TF TG # dup

4286 10902 7

4286 23077 7

4286 23279 7

4286 23338 7

4286 2908 7

4286 3708 7

4286 3838 7

4286 4247 7

4286 54806 7

4286 55075 7

4286 6491 7

4286 6792 7

4286 729 7

4286 7323 7

4286 7414 7

4286 8930 7

4286 9133 7

4286 9918 7

4286 993 7

4780 51170 7

5316 1063 7

5316 23312 7

5316 3110 7

5316 332 7

5316 4281 7

5316 699 7

5316 701 7

5316 993 7

53615 23397 7

53615 23779 7

53615 3434 7

53615 3642 7

53615 51170 7

53615 701 7

6667 5293 7

672 5293 7

672 6581 7

6722 23397 7

6722 4233 7

6777 127 7

6777 3110 7

687 9212 7

7020 10036 7

7020 10116 7

7020 10347 7

Table 34 continued

TF TG # dup

7020 127 7

7020 1500 7

7020 8932 7

7050 1058 7

7050 4281 7

7050 7020 7

7050 9585 7

7528 23354 7

7528 23397 7

7528 29899 7

7528 3070 7

7528 3110 7

7528 5293 7

7528 6382 7

8202 10234 7

8202 3110 7

8202 5293 7

8930 11065 7

8930 3110 7

8930 580 7

8930 7153 7

8930 9319 7

8932 10595 7

10664 55247 6

10664 65055 6

11143 10068 6

11143 2487 6

11143 29899 6

11143 3642 6

11143 5293 6

11143 55723 6

11143 65055 6

11143 9212 6

1810 23354 6

1810 3214 6

1810 55247 6

1810 6491 6

1810 7424 6

1869 11104 6

1869 1509 6

1869 23279 6

1869 5573 6

1869 56852 6

1869 6456 6

1869 7050 6
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Table 34 continued

TF TG # dup

1869 9133 6

2305 898 6

2305 9212 6

2908 10234 6

2908 1058 6

2908 11065 6

2908 4863 6

2908 6456 6

2908 701 6

2908 729 6

3091 10234 6

3091 3110 6

3091 55247 6

3091 898 6

3110 10036 6

3110 10234 6

3110 10492 6

3110 11200 6

3110 23354 6

3110 5422 6

3110 5573 6

3110 699 6

3110 9212 6

3214 10068 6

3214 10460 6

3214 10921 6

3214 2189 6

3214 22836 6

3214 23338 6

3214 29896 6

3214 3337 6

3214 3832 6

3214 3837 6

3214 3838 6

3214 3845 6

3214 4171 6

3214 4173 6

3214 4175 6

3214 4247 6

3214 473 6

3214 54407 6

3214 5780 6

3214 58487 6

3214 6421 6

3214 65055 6

Table 34 continued

TF TG # dup

3214 6722 6

3214 6792 6

3214 699 6

3214 7374 6

3642 9585 6

4286 1827 6

4286 4189 6

4286 4780 6

4286 5293 6

4286 567 6

4286 6093 6

4286 6240 6

4286 9994 6

4780 23354 6

4780 4286 6

4780 6491 6

4780 9212 6

4780 9319 6

5316 11065 6

5316 127 6

5316 580 6

5316 6456 6

5316 7424 6

5316 79866 6

5316 9212 6

53615 1063 6

53615 127 6

53615 4281 6

53615 63967 6

58487 701 6

58487 9319 6

6667 64403 6

672 55247 6

6722 10873 6

6722 127 6

6722 3110 6

6722 6382 6

6722 64403 6

6772 1058 6

6772 23354 6

6772 9212 6

6777 10234 6

6777 65055 6

6777 701 6

6777 9585 6

Table 34 continued

TF TG # dup

687 4281 6

687 6456 6

687 890 6

7020 1827 6

7020 23077 6

7020 23279 6

7020 3111 6

7020 3837 6

7020 51715 6

7020 65055 6

7020 898 6

7020 9793 6

7050 10595 6

7050 127 6

7050 29899 6

7050 3710 6

7050 7412 6

7050 7424 6

7050 9212 6

7050 9401 6

7050 993 6

7528 10234 6

7528 10873 6

7528 4233 6

861 3070 6

861 55247 6

861 6382 6

861 65055 6

861 701 6

861 9212 6

8930 10234 6

8930 3642 6

8930 4751 6

8930 51514 6

8930 5347 6

8930 8564 6

8932 23118 6

8932 5864 6

8932 6491 6

8932 701 6

8932 729 6

8932 9212 6

8932 993 6

1058 3337 5

1058 5889 5
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Table 34 continued

TF TG # dup

10664 10068 5

10664 10873 5

10664 127 5

10664 29899 5

10664 51170 5

10664 64403 5

10765 10068 5

10765 2177 5

10765 51170 5

10765 5293 5

10765 55723 5

11143 890 5

1810 10068 5

1810 2619 5

1810 29899 5

1810 3642 5

1810 3710 5

1810 5293 5

1810 6382 5

1810 7412 5

1810 8564 5

1869 1032 5

1869 10460 5

1869 2189 5

1869 55723 5

1869 5932 5

1869 687 5

1869 9510 5

2305 10234 5

2305 3070 5

2305 6382 5

2305 701 5

2908 1063 5

2908 1869 5

2908 2619 5

2908 3642 5

2908 4233 5

2908 55723 5

2908 580 5

2908 6432 5

2908 79866 5

2908 9212 5

2908 9319 5

3091 10873 5

3091 6456 5

Table 34 continued

TF TG # dup

3091 9510 5

3091 9666 5

3110 1063 5

3110 10873 5

3110 10921 5

3110 22894 5

3110 2534 5

3110 25896 5

3110 3643 5

3110 4175 5

3110 473 5

3110 4869 5

3110 54806 5

3110 6009 5

3110 65055 5

3110 687 5

3110 701 5

3110 7323 5

3110 7424 5

3110 79866 5

3110 8365 5

3110 8564 5

3110 993 5

3110 9967 5

3214 10036 5

3214 10051 5

3214 1031 5

3214 1032 5

3214 10458 5

3214 10600 5

3214 10714 5

3214 10769 5

3214 11104 5

3214 11135 5

3214 1647 5

3214 1827 5

3214 1977 5

3214 25896 5

3214 2730 5

3214 29117 5

3214 3091 5

3214 3146 5

3214 3156 5

3214 3312 5

3214 3642 5

Table 34 continued

TF TG # dup

3214 3643 5

3214 4664 5

3214 4780 5

3214 5111 5

3214 51141 5

3214 51763 5

3214 5316 5

3214 5422 5

3214 54806 5

3214 54962 5

3214 55075 5

3214 55729 5

3214 5663 5

3214 57153 5

3214 5932 5

3214 6009 5

3214 6093 5

3214 6240 5

3214 6241 5

3214 6464 5

3214 6491 5

3214 7050 5

3214 7251 5

3214 7298 5

3214 7884 5

3214 8364 5

3214 8365 5

3214 8366 5

3214 8473 5

3214 861 5

3214 8837 5

3214 891 5

3214 8932 5

3214 9793 5

3214 9939 5

3214 994 5

3214 996 5

3214 9967 5

3642 10036 5

3642 10492 5

3642 23279 5

3642 5573 5

4286 10873 5

4286 23354 5

4286 3111 5
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Table 34 continued

TF TG # dup

4286 3267 5

4286 3845 5

4286 55723 5

4286 65055 5

4286 9212 5

4780 1063 5

4780 11065 5

4780 29899 5

4780 55247 5

4780 55632 5

4780 580 5

4780 6432 5

4780 64403 5

4780 65055 5

4780 7153 5

4780 79866 5

4780 9682 5

5316 10234 5

5316 10873 5

5316 23118 5

5316 51514 5

5316 55247 5

5316 55655 5

5316 7153 5

53615 10234 5

53615 10721 5

53615 23354 5

53615 5293 5

53615 9319 5

58487 1058 5

58487 23397 5

58487 3070 5

58487 4233 5

58487 55247 5

58487 56852 5

58487 729 5

6667 1058 5

6667 55247 5

6667 55723 5

6667 6491 5

6667 729 5

6667 9212 5

6667 9510 5

672 29899 5

672 3111 5

Table 34 continued

TF TG # dup

672 3642 5

672 56852 5

672 64403 5

6722 23354 5

6722 3111 5

6722 56852 5

6722 9212 5

6772 10234 5

6772 127 5

6772 3111 5

6772 55247 5

6772 898 5

6777 23354 5

6777 64403 5

6777 9319 5

687 1869 5

687 6432 5

687 898 5

7020 10766 5

7020 10905 5

7020 2189 5

7020 23397 5

7020 3838 5

7020 51170 5

7020 5154 5

7020 6240 5

7020 6792 5

7020 687 5

7020 7296 5

7050 1663 5

7050 23397 5

7050 3111 5

7050 3642 5

7050 3690 5

7050 5347 5

7050 55247 5

7050 580 5

7050 6382 5

7050 63967 5

7050 650 5

7050 699 5

7050 701 5

7050 7153 5

7528 1058 5

7528 3642 5

Table 34 continued

TF TG # dup

7528 4751 5

7528 6456 5

7528 9212 5

7528 9510 5

7528 9666 5

8202 10873 5

8202 127 5

8202 2177 5

8202 3111 5

8202 3214 5

8202 6382 5

8202 701 5

861 29899 5

861 3110 5

861 4751 5

861 64403 5

8930 1058 5

8930 1063 5

8930 1663 5

8930 1869 5

8930 23312 5

8930 23397 5

8930 3070 5

8930 3111 5

8930 332 5

8930 3710 5

8930 4281 5

8930 55247 5

8930 55632 5

8930 55655 5

8930 6432 5

8930 650 5

8930 9401 5

8930 9666 5

8932 10068 5

8932 1058 5

8932 23397 5

8932 332 5

8932 3434 5

8932 55247 5

8932 580 5

8932 5888 5

8932 63967 5

8932 7412 5

8932 9682 5
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Table 34 continued

TF TG # dup

1058 127 4

1058 51170 4

10664 23354 4

10664 3642 4

10664 5293 4

10664 701 4

10664 898 4

10664 9666 4

10765 3642 4

10765 4233 4

10765 56852 4

10765 65055 4

10765 9510 4

11143 127 4

11143 2619 4

11143 332 4

11143 3710 4

11143 4233 4

11143 4281 4

11143 55247 4

11143 701 4

1810 3111 4

1810 332 4

1810 4233 4

1810 4281 4

1810 55723 4

1810 5888 4

1810 6581 4

1810 9401 4

1810 9585 4

1869 10902 4

1869 11073 4

1869 127 4

1869 1810 4

1869 3642 4

1869 4664 4

1869 4678 4

1869 4780 4

1869 51763 4

1869 53615 4

1869 54820 4

1869 64403 4

1869 7296 4

1869 7298 4

1869 7374 4

Table 34 continued

TF TG # dup

1869 9134 4

1869 9319 4

1869 9531 4

1869 994 4

2305 3214 4

2305 6491 4

2908 10595 4

2908 10873 4

2908 3070 4

2908 3111 4

2908 3690 4

2908 5864 4

2908 6491 4

3091 23397 4

3091 3111 4

3091 3642 4

3091 55723 4

3091 6382 4

3091 6581 4

3110 10068 4

3110 10116 4

3110 10595 4

3110 10902 4

3110 11004 4

3110 11073 4

3110 11130 4

3110 11135 4

3110 127 4

3110 1509 4

3110 2237 4

3110 2730 4

3110 3146 4

3110 3708 4

3110 3838 4

3110 4085 4

3110 5111 4

3110 51170 4

3110 5293 4

3110 54407 4

3110 55655 4

3110 6432 4

3110 64403 4

3110 6456 4

3110 6491 4

3110 6602 4

Table 34 continued

TF TG # dup

3110 7153 4

3110 7296 4

3110 7298 4

3110 8366 4

3110 8367 4

3110 84305 4

3110 890 4

3110 9319 4

3110 9510 4

3110 9646 4

3110 994 4

3214 10049 4

3214 10116 4

3214 1027 4

3214 1062 4

3214 10664 4

3214 10902 4

3214 10905 4

3214 11073 4

3214 11130 4

3214 11143 4

3214 1500 4

3214 1663 4

3214 1810 4

3214 1832 4

3214 2177 4

3214 2305 4

3214 23077 4

3214 23310 4

3214 23580 4

3214 23705 4

3214 2621 4

3214 27338 4

3214 2782 4

3214 2805 4

3214 2908 4

3214 29115 4

3214 3014 4

3214 3110 4

3214 3111 4

3214 3265 4

3214 3267 4

3214 329 4

3214 3708 4

3214 4286 4
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Table 34 continued

TF TG # dup

3214 4869 4

3214 51715 4

3214 5293 4

3214 53615 4

3214 55140 4

3214 55247 4

3214 55723 4

3214 5608 4

3214 57026 4

3214 65057 4

3214 6598 4

3214 6772 4

3214 6777 4

3214 7323 4

3214 7398 4

3214 7533 4

3214 8202 4

3214 836 4

3214 8367 4

3214 8930 4

3214 8943 4

3214 898 4

3214 9133 4

3214 9134 4

3214 9156 4

3214 9184 4

3214 9646 4

3214 9918 4

3214 998 4

3214 9994 4

3642 10347 4

3642 10873 4

3642 127 4

3642 4751 4

3642 55140 4

4286 127 4

4286 2177 4

4286 23397 4

4286 3642 4

4286 4751 4

4286 51170 4

4286 6456 4

4286 8881 4

4780 10068 4

4780 10234 4

Table 34 continued

TF TG # dup

4780 1058 4

4780 127 4

4780 23312 4

4780 23397 4

4780 3434 4

4780 51514 4

4780 5888 4

4780 650 4

4780 699 4

4780 7020 4

4780 8564 4

5316 1869 4

5316 23397 4

5316 29899 4

5316 6432 4

5316 650 4

5316 9666 4

53615 10873 4

53615 11200 4

53615 2619 4

53615 29899 4

53615 5347 4

53615 55655 4

53615 580 4

53615 6382 4

58487 10234 4

58487 3110 4

58487 55723 4

58487 6456 4

58487 898 4

6667 10234 4

6667 127 4

6667 3110 4

6667 3642 4

6667 65055 4

6667 9319 4

6667 993 4

672 3110 4

672 3214 4

672 55723 4

672 6382 4

672 6456 4

672 65055 4

672 898 4

672 9212 4

Table 34 continued

TF TG # dup

672 9510 4

6722 3642 4

6722 4751 4

6772 3642 4

6772 4751 4

6772 6456 4

6772 729 4

6777 1058 4

6777 23397 4

6777 3642 4

6777 4751 4

6777 55632 4

6777 5864 4

6777 729 4

687 23354 4

687 3111 4

687 699 4

687 9682 4

687 993 4

7020 1027 4

7020 10460 4

7020 1810 4

7020 29899 4

7020 3070 4

7020 4189 4

7020 4664 4

7020 51763 4

7020 54806 4

7020 54820 4

7020 55632 4

7020 5608 4

7020 567 4

7020 6241 4

7020 6491 4

7020 6667 4

7020 729 4

7020 836 4

7020 9133 4

7050 10068 4

7050 1063 4

7050 10873 4

7050 11065 4

7050 3070 4

7050 3434 4

7050 51514 4
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Table 34 continued

TF TG # dup

7050 6432 4

7050 64403 4

7050 8564 4

7528 3111 4

7528 55247 4

7528 55723 4

8202 10068 4

8202 65055 4

8202 729 4

8202 9319 4

8202 993 4

861 10068 4

861 23354 4

861 6456 4

861 6491 4

861 898 4

861 9666 4

8930 2487 4

8930 3690 4

8930 4286 4

8930 5888 4

8930 6382 4

8930 6456 4

8930 65055 4

8930 7020 4

8930 729 4

8930 79866 4

8930 9682 4

8932 11200 4

8932 2177 4

8932 3642 4

8932 3710 4

8932 4233 4

8932 51514 4

8932 5347 4

8932 55723 4

8932 7153 4

8932 7424 4

8932 79866 4

8932 8564 4

8932 890 4

8932 9585 4

1058 10873 3

1058 10921 3

1058 11073 3

Table 34 continued

TF TG # dup

1058 7298 3

1058 9133 3

10664 3110 3

10664 3111 3

10664 4233 3

10664 4751 3

10664 6456 3

10664 6491 3

10765 3110 3

10765 3111 3

10765 55247 3

10765 64403 3

10765 6491 3

10765 729 3

10765 993 3

11143 11200 3

11143 3434 3

11143 6581 3

11143 729 3

11143 9510 3

11143 993 3

1810 10721 3

1810 1869 3

1810 55655 3

1810 65055 3

1810 701 3

1810 7020 3

1810 9212 3

1810 9510 3

1869 10068 3

1869 1027 3

1869 10347 3

1869 1827 3

1869 23077 3

1869 2534 3

1869 2621 3

1869 3111 3

1869 3156 3

1869 3265 3

1869 3267 3

1869 3708 3

1869 3837 3

1869 3845 3

1869 4189 3

1869 4193 3

Table 34 continued

TF TG # dup

1869 4247 3

1869 473 3

1869 5154 3

1869 51715 3

1869 5293 3

1869 54407 3

1869 54806 3

1869 55075 3

1869 5530 3

1869 5608 3

1869 5663 3

1869 5780 3

1869 6240 3

1869 65055 3

1869 6792 3

1869 6944 3

1869 8881 3

1869 8930 3

1869 8932 3

1869 898 3

1869 9212 3

1869 9994 3

2305 3642 3

2305 55247 3

2305 55723 3

2305 64403 3

2305 6456 3

2305 9319 3

2908 10721 3

2908 127 3

2908 1663 3

2908 23312 3

2908 29899 3

2908 4286 3

2908 55632 3

2908 56852 3

2908 64403 3

2908 9510 3

2908 9666 3

3091 1058 3

3091 3214 3

3091 4751 3

3091 55632 3

3091 64403 3

3091 9319 3
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Table 34 continued

TF TG # dup

3110 10051 3

3110 1022 3

3110 1027 3

3110 1031 3

3110 1032 3

3110 10600 3

3110 1062 3

3110 10714 3

3110 11143 3

3110 1647 3

3110 1810 3

3110 2177 3

3110 2189 3

3110 22836 3

3110 23279 3

3110 23338 3

3110 27338 3

3110 29896 3

3110 3111 3

3110 3214 3

3110 3832 3

3110 3837 3

3110 4171 3

3110 4189 3

3110 4233 3

3110 4247 3

3110 4780 3

3110 51141 3

3110 51763 3

3110 5316 3

3110 53615 3

3110 5515 3

3110 55632 3

3110 5603 3

3110 5780 3

3110 5889 3

3110 6093 3

3110 6118 3

3110 6240 3

3110 6241 3

3110 65057 3

3110 6760 3

3110 6772 3

3110 6944 3

3110 7374 3

Table 34 continued

TF TG # dup

3110 7528 3

3110 7884 3

3110 8202 3

3110 836 3

3110 8364 3

3110 8837 3

3110 8850 3

3110 8932 3

3110 899 3

3110 9133 3

3110 9156 3

3110 9531 3

3110 9585 3

3110 9682 3

3110 9793 3

3110 9918 3

3110 996 3

3110 9994 3

3214 1022 3

3214 10234 3

3214 10595 3

3214 10766 3

3214 2237 3

3214 2280 3

3214 23397 3

3214 2534 3

3214 3434 3

3214 3690 3

3214 4000 3

3214 4189 3

3214 4436 3

3214 4678 3

3214 5154 3

3214 54820 3

3214 5530 3

3214 5603 3

3214 567 3

3214 580 3

3214 6382 3

3214 6432 3

3214 6602 3

3214 672 3

3214 687 3

3214 729 3

3214 7414 3

Table 34 continued

TF TG # dup

3214 83695 3

3214 84168 3

3214 8772 3

3214 8841 3

3214 8850 3

3214 8881 3

3214 899 3

3214 9212 3

3214 9531 3

3214 9585 3

3642 10068 3

3642 10714 3

3642 2177 3

3642 4171 3

3642 51170 3

3642 56852 3

3642 5889 3

3642 6432 3

3642 64403 3

3642 6491 3

3642 699 3

3642 994 3

4286 10068 3

4286 3110 3

4286 64403 3

4286 9319 3

4286 9510 3

4780 23779 3

4780 2619 3

4780 3070 3

4780 3111 3

4780 4233 3

4780 5347 3

4780 56852 3

4780 5864 3

4780 63967 3

4780 6581 3

4780 701 3

4780 890 3

4780 898 3

4780 9585 3

5316 1058 3

5316 10595 3

5316 1663 3

5316 2177 3
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Table 34 continued

TF TG # dup

5316 3214 3

5316 3642 3

5316 3710 3

5316 4233 3

5316 5888 3

5316 6382 3

5316 65055 3

5316 6581 3

5316 890 3

5316 898 3

5316 9510 3

5316 9585 3

53615 10068 3

53615 1058 3

53615 11065 3

53615 1663 3

53615 1869 3

53615 2177 3

53615 23118 3

53615 3111 3

53615 3690 3

53615 3710 3

53615 4286 3

53615 55247 3

53615 55723 3

53615 5888 3

53615 64403 3

53615 650 3

53615 65055 3

53615 6581 3

53615 699 3

53615 729 3

53615 8564 3

53615 890 3

53615 898 3

53615 9401 3

53615 9510 3

53615 9666 3

58487 29899 3

58487 3111 3

58487 51170 3

58487 55632 3

58487 6491 3

58487 65055 3

6667 10873 3

Table 34 continued

TF TG # dup

6667 2177 3

6667 3070 3

6667 3111 3

6667 56852 3

6667 6581 3

672 4233 3

672 6491 3

6722 29899 3

6722 55247 3

6722 55723 3

6722 6456 3

6772 10873 3

6772 23397 3

6772 29899 3

6772 3110 3

6772 6491 3

6772 9319 3

6777 10873 3

6777 3214 3

6777 6382 3

6777 9401 3

6777 9666 3

687 10068 3

687 10721 3

687 11065 3

687 11200 3

687 127 3

687 1663 3

687 332 3

687 3642 3

687 3690 3

687 51514 3

687 5347 3

687 55655 3

687 580 3

687 6382 3

687 63967 3

687 6491 3

687 650 3

687 65055 3

687 7020 3

687 729 3

687 7412 3

687 79866 3

687 8564 3

Table 34 continued

TF TG # dup

687 9510 3

687 9666 3

7020 10873 3

7020 23310 3

7020 25836 3

7020 3156 3

7020 3267 3

7020 4780 3

7020 5316 3

7020 55075 3

7020 55247 3

7020 55723 3

7020 5573 3

7020 5780 3

7020 6093 3

7020 64403 3

7020 6456 3

7020 7414 3

7020 8930 3

7020 9319 3

7020 9918 3

7020 994 3

7020 996 3

7050 10234 3

7050 22909 3

7050 23312 3

7050 3214 3

7050 332 3

7050 4751 3

7050 5888 3

7050 65055 3

7050 79866 3

7050 9319 3

7050 9682 3

7528 127 3

7528 64403 3

7528 65055 3

7528 6581 3

7528 898 3

8202 56852 3

8202 64403 3

8202 6456 3

8202 6491 3

861 1058 3

861 10873 3
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Table 34 continued

TF TG # dup

861 127 3

861 2177 3

861 23397 3

861 55632 3

861 9319 3

861 9510 3

8930 10068 3

8930 2177 3

8930 23118 3

8930 23354 3

8930 23779 3

8930 4863 3

8930 55723 3

8930 6491 3

8930 701 3

8930 890 3

8930 993 3

8932 10721 3

8932 127 3

8932 2619 3

8932 3070 3

8932 3110 3

8932 3690 3

8932 6432 3

8932 64403 3

8932 7020 3

8932 9319 3

1058 10068 2

1058 2237 2

1058 23279 2

1058 3642 2

1058 4247 2

1058 55140 2

1058 55790 2

1058 5780 2

1058 6421 2

1058 6456 2

1058 729 2

1058 7374 2

1058 84305 2

1058 8564 2

1058 9666 2

1058 9939 2

1058 994 2

10664 2177 2

Table 34 continued

TF TG # dup

10664 56852 2

10664 729 2

10664 9319 2

10664 9510 2

10765 3214 2

10765 898 2

11143 10873 2

11143 2177 2

11143 3111 2

11143 3214 2

11143 51170 2

11143 55655 2

11143 56852 2

11143 64403 2

11143 6456 2

11143 6491 2

11143 898 2

11143 9319 2

1810 1063 2

1810 11200 2

1810 127 2

1810 22909 2

1810 23312 2

1810 23779 2

1810 5864 2

1810 6432 2

1810 64403 2

1810 6456 2

1810 79866 2

1810 993 2

1869 10234 2

1869 10766 2

1869 10873 2

1869 10905 2

1869 1832 2

1869 23338 2

1869 2908 2

1869 3214 2

1869 3838 2

1869 51170 2

1869 5316 2

1869 567 2

1869 6093 2

1869 6241 2

1869 6382 2

Table 34 continued

TF TG # dup

1869 7251 2

1869 7323 2

1869 7414 2

1869 9646 2

2305 29899 2

2305 55632 2

2305 56852 2

2305 6581 2

2305 729 2

2305 9666 2

2908 23354 2

2908 3110 2

2908 4751 2

2908 55655 2

2908 6382 2

3091 23354 2

3091 29899 2

3091 701 2

3110 10460 2

3110 10664 2

3110 10765 2

3110 10766 2

3110 10769 2

3110 11065 2

3110 1832 2

3110 1977 2

3110 23312 2

3110 23580 2

3110 23705 2

3110 23779 2

3110 2621 2

3110 2782 2

3110 2805 2

3110 2908 2

3110 29117 2

3110 3014 2

3110 3148 2

3110 3156 2

3110 3265 2

3110 3267 2

3110 3312 2

3110 332 2

3110 3434 2

3110 3845 2

3110 4436 2
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Table 34 continued

TF TG # dup

3110 51514 2

3110 5347 2

3110 54962 2

3110 55723 2

3110 55790 2

3110 5608 2

3110 5888 2

3110 650 2

3110 6792 2

3110 7533 2

3110 8473 2

3110 8930 2

3110 8943 2

3110 898 2

3110 9184 2

3110 9666 2

3214 1063 2

3214 10873 2

3214 127 2

3214 22909 2

3214 23312 2

3214 2487 2

3214 3070 2

3214 3148 2

3214 4085 2

3214 4193 2

3214 4281 2

3214 4751 2

3214 4863 2

3214 51170 2

3214 51343 2

3214 55655 2

3214 63967 2

3214 6456 2

3214 701 2

3214 7412 2

3214 7424 2

3214 79866 2

3214 890 2

3214 9319 2

3214 9510 2

3642 10234 2

3642 1063 2

3642 10721 2

3642 10921 2

Table 34 continued

TF TG # dup

3642 11004 2

3642 11065 2

3642 1509 2

3642 2237 2

3642 3070 2

3642 3214 2

3642 3337 2

3642 3690 2

3642 4247 2

3642 5111 2

3642 5293 2

3642 54806 2

3642 5515 2

3642 55247 2

3642 55790 2

3642 580 2

3642 6382 2

3642 63967 2

3642 6760 2

3642 687 2

3642 7153 2

3642 729 2

3642 7296 2

3642 7374 2

3642 7424 2

3642 7884 2

3642 8366 2

3642 84305 2

3642 9134 2

3642 9212 2

3642 9319 2

3642 9666 2

3642 9682 2

3642 9793 2

3642 9967 2

4286 3070 2

4286 4233 2

4286 55247 2

4286 56852 2

4286 701 2

4780 10721 2

4780 11200 2

4780 2177 2

4780 22909 2

4780 23118 2

Table 34 continued

TF TG # dup

4780 2487 2

4780 3214 2

4780 4281 2

4780 5293 2

4780 55655 2

4780 55723 2

4780 6382 2

4780 6456 2

4780 729 2

4780 993 2

5316 10721 2

5316 22909 2

5316 23354 2

5316 23779 2

5316 2487 2

5316 3690 2

5316 5864 2

5316 64403 2

5316 6491 2

5316 7020 2

5316 9401 2

5316 9682 2

53615 10595 2

53615 22909 2

53615 23312 2

53615 2487 2

53615 3110 2

53615 3214 2

53615 4751 2

53615 56852 2

53615 6432 2

53615 6491 2

53615 7153 2

53615 7412 2

53615 9585 2

58487 127 2

58487 3214 2

58487 3642 2

58487 4751 2

58487 5293 2

6667 23354 2

6667 4751 2

6667 6382 2

6667 9666 2

6722 3070 2
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Table 34 continued

TF TG # dup

6722 701 2

6722 898 2

6722 9319 2

6722 9666 2

6772 5293 2

6772 64403 2

6772 65055 2

6772 9510 2

6777 10721 2

6777 1663 2

6777 55247 2

6777 55723 2

6777 6581 2

6777 9212 2

687 10234 2

687 10595 2

687 23118 2

687 23312 2

687 29899 2

687 3434 2

687 3710 2

687 4233 2

687 4863 2

687 55723 2

687 5864 2

687 64403 2

687 701 2

687 7153 2

687 9401 2

687 9585 2

7020 10051 2

7020 10902 2

7020 23338 2

7020 23354 2

7020 3110 2

7020 3642 2

7020 3832 2

7020 3845 2

7020 4233 2

7020 4678 2

7020 473 2

7020 5293 2

7020 53615 2

7020 54407 2

7020 5530 2

Table 34 continued

TF TG # dup

7020 5663 2

7020 6382 2

7020 6581 2

7020 6944 2

7020 701 2

7020 7050 2

7020 7323 2

7020 7374 2

7020 9134 2

7020 9212 2

7020 9510 2

7020 9646 2

7020 998 2

7050 10721 2

7050 5293 2

7050 55632 2

7050 55723 2

7050 5864 2

7050 6456 2

7050 898 2

7050 9510 2

7528 729 2

8202 23354 2

8202 4233 2

8202 898 2

861 3111 2

861 55723 2

8930 10721 2

8930 10873 2

8930 2619 2

8930 29899 2

8930 3214 2

8930 4233 2

8930 5293 2

8930 5864 2

8930 63967 2

8930 64403 2

8930 6581 2

8930 7424 2

8930 898 2

8930 9510 2

8930 9585 2

8932 1063 2

8932 11065 2

8932 1869 2

Table 34 continued

TF TG # dup

8932 23312 2

8932 23354 2

8932 23779 2

8932 29899 2

8932 3214 2

8932 4281 2

8932 4863 2

8932 55632 2

8932 6581 2

8932 9510 2

8932 9666 2

1058 1022 1

1058 10492 1

1058 1062 1

1058 10714 1

1058 1509 1

1058 2189 1

1058 22909 1

1058 23312 1

1058 2487 1

1058 2805 1

1058 29896 1

1058 3111 1

1058 3710 1

1058 4171 1

1058 4175 1

1058 473 1

1058 5111 1

1058 5293 1

1058 54820 1

1058 55247 1

1058 55632 1

1058 55723 1

1058 5573 1

1058 56852 1

1058 6009 1

1058 64403 1

1058 6581 1

1058 6760 1

1058 7412 1

1058 7424 1

1058 8365 1

1058 8366 1

1058 8367 1

1058 8930 1

283



Table 34 continued

TF TG # dup

1058 9134 1

1058 9510 1

1058 9585 1

10664 3214 1

10664 6581 1

10664 993 1

10765 10873 1

10765 23354 1

10765 6382 1

10765 6581 1

10765 9319 1

11143 23354 1

11143 7412 1

11143 7424 1

11143 79866 1

1810 10873 1

1810 2177 1

1810 3110 1

1810 3434 1

1810 4286 1

1810 4863 1

1810 729 1

1810 898 1

1869 29899 1

1869 3070 1

1869 3110 1

1869 4233 1

1869 55247 1

1869 55632 1

1869 6581 1

1869 9666 1

2305 127 1

2908 3214 1

2908 9682 1

3091 56852 1

3110 10049 1

3110 10347 1

3110 10458 1

3110 10721 1

3110 10905 1

3110 1500 1

3110 1663 1

3110 2280 1

3110 22909 1

3110 23118 1

Table 34 continued

TF TG # dup

3110 23310 1

3110 23397 1

3110 2487 1

3110 29115 1

3110 29899 1

3110 329 1

3110 3690 1

3110 3710 1

3110 4173 1

3110 4193 1

3110 4281 1

3110 4664 1

3110 4678 1

3110 4751 1

3110 4863 1

3110 51343 1

3110 55075 1

3110 55140 1

3110 55247 1

3110 5663 1

3110 567 1

3110 56852 1

3110 57026 1

3110 57153 1

3110 580 1

3110 58487 1

3110 63967 1

3110 6581 1

3110 6667 1

3110 6777 1

3110 7020 1

3110 7398 1

3110 7414 1

3110 83695 1

3110 84168 1

3110 8772 1

3110 8841 1

3110 891 1

3110 9134 1

3110 9401 1

3110 998 1

3214 1058 1

3214 11065 1

3214 1869 1

3214 23118 1

Table 34 continued

TF TG # dup

3214 29899 1

3214 332 1

3214 3710 1

3214 51514 1

3214 5347 1

3214 55632 1

3214 55790 1

3214 56852 1

3214 5864 1

3214 64403 1

3214 7153 1

3214 8564 1

3214 9401 1

3214 9666 1

3214 993 1

3642 1058 1

3642 11130 1

3642 1977 1

3642 22909 1

3642 23118 1

3642 23338 1

3642 2487 1

3642 25896 1

3642 2730 1

3642 29115 1

3642 29899 1

3642 3434 1

3642 3832 1

3642 3838 1

3642 4000 1

3642 4175 1

3642 4281 1

3642 51141 1

3642 5347 1

3642 55632 1

3642 55655 1

3642 55723 1

3642 5932 1

3642 6241 1

3642 6421 1

3642 6456 1

3642 65057 1

3642 6667 1

3642 701 1

3642 7020 1
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Table 34 continued

TF TG # dup

3642 7298 1

3642 7398 1

3642 79866 1

3642 8364 1

3642 8365 1

3642 8367 1

3642 83695 1

3642 8850 1

3642 890 1

3642 891 1

3642 898 1

3642 9133 1

3642 9531 1

3642 993 1

3642 9939 1

4286 29899 1

4286 3214 1

4286 6581 1

4286 9666 1

4780 10873 1

4780 1869 1

4780 3110 1

4780 332 1

4780 3642 1

4780 3690 1

4780 3710 1

4780 4863 1

4780 7412 1

4780 7424 1

4780 9401 1

4780 9510 1

4780 9666 1

5316 11200 1

5316 4751 1

5316 55632 1

5316 56852 1

5316 63967 1

53615 332 1

53615 4863 1

53615 5864 1

53615 6456 1

53615 7020 1

53615 79866 1

53615 9212 1

53615 993 1

Table 34 continued

TF TG # dup

58487 10873 1

58487 6382 1

58487 64403 1

58487 9510 1

672 729 1

6772 3214 1

6772 4233 1

6772 55632 1

6772 56852 1

6772 6382 1

6772 6581 1

6772 701 1

6772 9666 1

6777 29899 1

6777 56852 1

6777 6456 1

687 1058 1

687 10873 1

687 2177 1

687 23397 1

687 23779 1

687 3070 1

687 3214 1

687 5293 1

687 55790 1

687 56852 1

687 5888 1

687 6581 1

687 7424 1

687 9319 1

7020 10234 1

7020 56852 1

7020 8881 1

7020 9531 1

7050 2177 1

7050 2487 1

7050 56852 1

7050 6581 1

7050 729 1

7050 890 1

7050 9666 1

8202 6581 1

8202 9510 1

861 56852 1

861 6581 1

Table 34 continued

TF TG # dup

861 993 1

8930 3434 1

8930 55790 1

8930 56852 1

8930 699 1

8930 7412 1

8932 1663 1

8932 3111 1

8932 4751 1

8932 55655 1

8932 56852 1

8932 6456 1

8932 9401 1

The table gives for each edge the

number of time it is repeated after

concatenating all the 132 cell line net-

works collected from the HumanBase

database https://hb.flatironinsti

tute.org/download. The 1st column

represents the TF entrez ID. The 2nd

column the TG entrez ID. The 3rd

column represent the of times the link

is repeated in the final network.
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Table 35: Edges repetition in Garcia net-

works

TF TG # dup

CTCF ABCA7 2

CTCF ABCC2 2

CTCF ABHD10 2

CTCF ADCY6 2

CTCF ADH4 2

CTCF AHI1 2

CTCF AMD1 2

CTCF ANLN 2

CTCF ANP32B 2

CTCF ANP32E 2

CTCF AOC2 2

CTCF AOC3 2

CTCF AP3D1 2

CTCF AP3M2 2

CTCF AP4B1 2

CTCF ARHGAP11A 2

CTCF ARHGAP19 2

CTCF ARHGAP8 2

CTCF ARHGEF39 2

CTCF ARL4A 2

CTCF ARL6IP1 2

CTCF ASF1B 2

CTCF ASIP 2

CTCF ASPHD2 2

CTCF ATAD2 2

CTCF ATF7IP 2

CTCF ATL2 2

CTCF AURKB 2

CTCF B2M 2

CTCF BAG3 2

CTCF BAIAP2 2

CTCF BBS2 2

CTCF BCLAF1 2

CTCF BIRC2 2

CTCF BIVM 2

CTCF BMP2 2

CTCF BRCA1 2

CTCF BRD7 2

CTCF BTBD3 2

CTCF BUB3 2

Table 35 continued

TF TG # dup

CTCF C6 2

CTCF CADM1 2

CTCF CAPN7 2

CTCF CASP3 2

CTCF CCDC90B 2

CTCF CCNE1 2

CTCF CCNF 2

CTCF CDC16 2

CTCF CDC20 2

CTCF CDC25A 2

CTCF CDC25B 2

CTCF CDC25C 2

CTCF CDC42 2

CTCF CDC42EP1 2

CTCF CDC42EP4 2

CTCF CDC45 2

CTCF CDC6 2

CTCF CDC7 2

CTCF CDCA7 2

CTCF CDCA7L 2

CTCF CDK20 2

CTCF CDK7 2

CTCF CDKN1B 2

CTCF CDKN2AIP 2

CTCF CDKN2C 2

CTCF CDKN3 2

CTCF CENPA 2

CTCF CENPE 2

CTCF CENPF 2

CTCF CENPM 2

CTCF CEP44 2

CTCF CEP55 2

CTCF CEP70 2

CTCF CFD 2

CTCF CFLAR 2

CTCF CHAF1B 2

CTCF CHEK2 2

CTCF CIC 2

CTCF CIT 2

CTCF CKAP5 2

CTCF CKS2 2

CTCF CLSPN 2

CTCF CNN2 2

CTCF CNOT10 2

CTCF COQ6 2
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Table 35 continued

TF TG # dup

CTCF CREBZF 2

CTCF CRK 2

CTCF CRYBA1 2

CTCF CSH2 2

CTCF CTCF 2

CTCF CTNND1 2

CTCF CTR9 2

CTCF CTSD 2

CTCF CWC15 2

CTCF CXCL14 2

CTCF CYB5R2 2

CTCF CYTH3 2

CTCF DCAF16 2

CTCF DCAF7 2

CTCF DCTN6 2

CTCF DDX11 2

CTCF DEPDC1B 2

CTCF DET1 2

CTCF DHX8 2

CTCF DLGAP5 2

CTCF DMTF1 2

CTCF DMXL2 2

CTCF DNAJB1 2

CTCF DNAJB4 2

CTCF DNAJB6 2

CTCF DNAJB9 2

CTCF DNAJC3 2

CTCF DNAJC6 2

CTCF DTL 2

CTCF DUSP4 2

CTCF DYNLL1 2

CTCF DZIP3 2

CTCF E2F1 2

CTCF E2F5 2

CTCF E2F8 2

CTCF EBI3 2

CTCF EIF4E 2

CTCF ELP3 2

CTCF ENOSF1 2

CTCF ERN2 2

CTCF ESPL1 2

CTCF EXO1 2

CTCF FABP1 2

CTCF FADD 2

CTCF FAM105A 2

Table 35 continued

TF TG # dup

CTCF FAM110A 2

CTCF FAM189B 2

CTCF FAM214A 2

CTCF FAM60A 2

CTCF FANCA 2

CTCF FANCI 2

CTCF FBXL20 2

CTCF FEM1B 2

CTCF FEN1 2

CTCF FKBP1A 2

CTCF FLAD1 2

CTCF FXR1 2

CTCF G2E3 2

CTCF G3BP1 2

CTCF GAS1 2

CTCF GAS6 2

CTCF GDF15 2

CTCF GINS2 2

CTCF GINS3 2

CTCF GMNN 2

CTCF GNB1 2

CTCF GOLGA8A 2

CTCF GOT1 2

CTCF GPSM2 2

CTCF GRK6 2

CTCF GRPEL1 2

CTCF GTF2B 2

CTCF GTSE1 2

CTCF H2AFX 2

CTCF HAUS5 2

CTCF HAUS8 2

CTCF HCP5 2

CTCF HELLS 2

CTCF HERPUD2 2

CTCF HIF1A 2

CTCF HIST1H4C 2

CTCF HIST1H4E 2

CTCF HIST1H4H 2

CTCF HJURP 2

CTCF HLA-DOA 2

CTCF HLA-DRA 2

CTCF HMG20B 2

CTCF HMGCR 2

CTCF HMMR 2

CTCF HRAS 2
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Table 35 continued

TF TG # dup

CTCF HSD17B11 2

CTCF HSF2 2

CTCF HSPA13 2

CTCF HSPB8 2

CTCF IDO1 2

CTCF ILF2 2

CTCF INADL 2

CTCF INPP5K 2

CTCF INSIG2 2

CTCF INSM1 2

CTCF INSR 2

CTCF INTS7 2

CTCF ITPR3 2

CTCF IVNS1ABP 2

CTCF KANK2 2

CTCF KAT2B 2

CTCF KCTD2 2

CTCF KDM4A 2

CTCF KDM5B 2

CTCF KIAA0586 2

CTCF KIAA1147 2

CTCF KIAA1524 2

CTCF KIF11 2

CTCF KIF14 2

CTCF KIF20B 2

CTCF KIF22 2

CTCF KIF5B 2

CTCF KIFC1 2

CTCF KLF6 2

CTCF KLF9 2

CTCF KMO 2

CTCF KPNA2 2

CTCF KPNB1 2

CTCF KRAS 2

CTCF LARP7 2

CTCF LMNB1 2

CTCF LMO4 2

CTCF LPP 2

CTCF LRIF1 2

CTCF LYAR 2

CTCF MAD2L1 2

CTCF MAN1A2 2

CTCF MAP2K6 2

CTCF MAP3K2 2

CTCF MAPK13 2

Table 35 continued

TF TG # dup

CTCF MATN2 2

CTCF MBD2 2

CTCF MBD3 2

CTCF MCAM 2

CTCF MCM5 2

CTCF MCM8 2

CTCF MDC1 2

CTCF MDM2 2

CTCF ME3 2

CTCF MED31 2

CTCF MEGF9 2

CTCF MELK 2

CTCF MET 2

CTCF MGAT2 2

CTCF MID1 2

CTCF MIS18BP1 2

CTCF MITF 2

CTCF MKI67 2

CTCF MLLT4 2

CTCF MND1 2

CTCF MNT 2

CTCF MNX1 2

CTCF MORF4L2 2

CTCF MRPL19 2

CTCF MRPS2 2

CTCF MSH2 2

CTCF MTCL1 2

CTCF MYCBP2 2

CTCF MZF1 2

CTCF NAB1 2

CTCF NCAPD2 2

CTCF NCAPD3 2

CTCF NCAPH 2

CTCF NCOA3 2

CTCF NCOA5 2

CTCF NCS1 2

CTCF NDE1 2

CTCF NEIL3 2

CTCF NEK2 2

CTCF NFIC 2

CTCF NFYA 2

CTCF NFYB 2

CTCF NIPBL 2

CTCF NKTR 2

CTCF NMB 2
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Table 35 continued

TF TG # dup

CTCF NNMT 2

CTCF NPAT 2

CTCF NPM1 2

CTCF NR3C1 2

CTCF NSUN3 2

CTCF NUCKS1 2

CTCF NUDT4 2

CTCF NUF2 2

CTCF NUP160 2

CTCF NUP37 2

CTCF ODF2 2

CTCF OGT 2

CTCF OLR1 2

CTCF ORC3 2

CTCF OSER1 2

CTCF PANK2 2

CTCF PCNA 2

CTCF PDGFA 2

CTCF PDXP 2

CTCF PIK3CD 2

CTCF PKMYT1 2

CTCF PLIN3 2

CTCF PLK1 2

CTCF PLK2 2

CTCF POC1A 2

CTCF POLA1 2

CTCF POLD3 2

CTCF POLQ 2

CTCF POM121 2

CTCF PPP1R2 2

CTCF PPP3CA 1

CTCF PPP6R3 1

CTCF PRIM1 1

CTCF PRIM2 1

CTCF PRKAR1A 1

CTCF PRPSAP1 1

CTCF PRR11 1

CTCF PRR16 1

CTCF PSEN1 1

CTCF PSMD11 1

CTCF PSMG3 1

CTCF PTMS 1

CTCF PTP4A1 1

CTCF PTPN9 1

CTCF PTTG1 1

Table 35 continued

TF TG # dup

CTCF PWP1 1

CTCF QRICH1 1

CTCF RAB23 1

CTCF RAB3A 1

CTCF RAD18 1

CTCF RAD21 1

CTCF RAD51 1

CTCF RAD51C 1

CTCF RAD54L 1

CTCF RAN 1

CTCF RANGAP1 1

CTCF RBBP8 1

CTCF RBM8A 1

CTCF RCAN1 1

CTCF REEP1 1

CTCF RFC4 1

CTCF RGS3 1

CTCF RHEB 1

CTCF RHOBTB3 1

CTCF RNF126 1

CTCF ROCK1 1

CTCF RPL13A 1

CTCF RRM1 1

CTCF RRM2 1

CTCF RRP1 1

CTCF SAP30 1

CTCF SAP30BP 1

CTCF SDC1 1

CTCF SEC62 1

CTCF SEPHS1 1

CTCF SEPN1 1

CTCF SGK1 1

CTCF SH3GL2 1

CTCF SHCBP1 1

CTCF SLBP 1

CTCF SLC17A2 1

CTCF SLC22A3 1

CTCF SLC25A27 1

CTCF SLC25A36 1

CTCF SLC38A2 1

CTCF SLC39A10 1

CTCF SLC44A2 1

CTCF SLC4A1AP 1

CTCF SMARCB1 1

CTCF SMARCD1 1
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Table 35 continued

TF TG # dup

CTCF SMC4 1

CTCF SMTN 1

CTCF SNUPN 1

CTCF SP1 1

CTCF SPDL1 1

CTCF SRF 1

CTCF SS18 1

CTCF SSR3 1

CTCF STAG3 1

CTCF STAT1 1

CTCF STAT5B 1

CTCF STIL 1

CTCF SUCLG2 1

CTCF TAB2 1

CTCF TFAP2A 1

CTCF TGIF1 1

CTCF THRAP3 1

CTCF TMPO 1

CTCF TNPO2 1

CTCF TOMM34 1

CTCF TOP1 1

CTCF TOP2A 1

CTCF TPX2 1

CTCF TRA2A 1

CTCF TRAIP 1

CTCF TRIM45 1

CTCF TRIP13 1

CTCF TROAP 1

CTCF TSC22D1 1

CTCF TSKU 1

CTCF TSN 1

CTCF TTC31 1

CTCF TTF2 1

CTCF TTK 1

CTCF TUBB2A 1

CTCF TUBB4B 1

CTCF TUBD1 1

CTCF TULP4 1

CTCF TXNRD1 1

CTCF TYMS 1

CTCF UACA 1

CTCF UBE2D3 1

CTCF UBE2S 1

CTCF UBL3 1

CTCF UBR7 1

Table 35 continued

TF TG # dup

CTCF UHRF1 1

CTCF UNG 1

CTCF USP1 1

CTCF USP13 1

CTCF USP53 1

CTCF USP6NL 1

CTCF VCAM1 1

CTCF VCL 1

CTCF VEGFC 1

CTCF VPS37C 1

CTCF VPS72 1

CTCF VTA1 1

CTCF WSB1 1

CTCF YWHAH 1

CTCF YY1 1

CTCF ZBED5 1

CTCF ZBTB7A 1

CTCF ZC3HC1 1

CTCF ZMYM1 1

CTCF ZNF143 1

CTCF ZNF217 1

CTCF ZNF281 1

CTCF ZNF414 1

CTCF ZNF521 1

CTCF ZNF593 1

CTCF ZNFX1 1

CTCF ZNHIT2 1

CTCF ZPBP 1

CTCF ZRANB2 1

CTCF ZSCAN5A 1

E2F1 ABCC2 1

E2F1 ADAMTS1 1

E2F1 ADH4 1

E2F1 AHI1 1

E2F1 AMD1 1

E2F1 ANTXR1 1

E2F1 AP3D1 1

E2F1 AP3M2 1

E2F1 ARHGAP19 1

E2F1 ARHGAP8 1

E2F1 ASF1B 1

E2F1 ATF7IP 1

E2F1 ATL2 1

E2F1 AURKB 1

E2F1 BAG3 1
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Table 35 continued

TF TG # dup

E2F1 BIRC5 1

E2F1 BORA 1

E2F1 CADM1 1

E2F1 CAPS 1

E2F1 CCNA2 1

E2F1 CCNB1 1

E2F1 CCNE1 1

E2F1 CCNF 1

E2F1 CDC27 1

E2F1 CDC45 1

E2F1 CDC6 1

E2F1 CDCA3 1

E2F1 CDCA7 1

E2F1 CDK7 1

E2F1 CDKL5 1

E2F1 CDKN3 1

E2F1 CENPE 1

E2F1 CENPF 1

E2F1 CHAF1A 1

E2F1 CHEK2 1

E2F1 CIT 1

E2F1 CKAP5 1

E2F1 CNIH4 1

E2F1 CNOT10 1

E2F1 COL7A1 1

E2F1 COQ6 1

E2F1 CTSD 1

E2F1 CYTH2 1

E2F1 DET1 1

E2F1 DHFR 1

E2F1 DTL 1

E2F1 E2F1 1

E2F1 E2F8 1

E2F1 FABP1 1

E2F1 FAM60A 1

E2F1 FANCA 1

E2F1 FANCD2 1

E2F1 FEN1 1

E2F1 FLAD1 1

E2F1 FOXM1 1

E2F1 FXR1 1

E2F1 FYN 1

E2F1 G2E3 1

E2F1 GCLM 1

E2F1 GDF15 1

Table 35 continued

TF TG # dup

E2F1 GINS3 1

E2F1 GMNN 1

E2F1 GOT1 1

E2F1 GPSM2 1

E2F1 HELLS 1

E2F1 HERPUD2 1

E2F1 HIST1H2AC 1

E2F1 HIST1H4E 1

E2F1 HLA-DOA 1

E2F1 HRAS 1

E2F1 HRSP12 1

E2F1 HSPB8 1

E2F1 INSR 1

E2F1 ITPR1 1

E2F1 KDM5B 1

E2F1 KIAA0586 1

E2F1 KIF14 1

E2F1 KIF20B 1

E2F1 KIF23 1

E2F1 KIF2C 1

E2F1 KIFC1 1

E2F1 KRAS 1

E2F1 LBR 1

E2F1 LPP 1

E2F1 LRIF1 1

E2F1 LRRC17 1

E2F1 MAD2L1 1

E2F1 MAN1A2 1

E2F1 MAP2K6 1

E2F1 MAPK13 1

E2F1 MCM8 1

E2F1 ME3 1

E2F1 MEGF9 1

E2F1 MELK 1

E2F1 MET 1

E2F1 MKI67 1

E2F1 MND1 1

E2F1 MNX1 1

E2F1 MRI1 1

E2F1 MRPS18B 1

E2F1 MSH2 1

E2F1 MZF1 1

E2F1 NCOA3 1

E2F1 NCS1 1

E2F1 NPAT 1
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Table 35 continued

TF TG # dup

E2F1 NUDT4 1

E2F1 NUP160 1

E2F1 NUP37 1

E2F1 ODF2 1

E2F1 ORC3 1

E2F1 OSER1 1

E2F1 PBK 1

E2F1 PKNOX1 1

E2F1 PLIN3 1

E2F1 PLK1 1

E2F1 POC1A 1

E2F1 POM121 1

E2F1 PPP1R2 1

E2F1 PRIM2 1

E2F1 PRKAR1A 1

E2F1 PSEN1 1

E2F1 PTTG1 1

E2F1 PWP1 1

E2F1 QRICH1 1

E2F1 RAD18 1

E2F1 RAD51 1

E2F1 RAD54L 1

E2F1 REEP1 1

E2F1 RFC2 1

E2F1 RFC4 1

E2F1 RGS3 1

E2F1 RPA2 1

E2F1 RRM1 1

E2F1 RRM2 1

E2F1 RUNX1 1

E2F1 SAP30BP 1

E2F1 SEPHS1 1

E2F1 SGK1 1

E2F1 SLBP 1

E2F1 SLC44A2 1

E2F1 SP1 1

E2F1 SRD5A1 1

E2F1 SRSF5 1

E2F1 STAT5B 1

E2F1 STIL 1

E2F1 SUCLG2 1

E2F1 THRAP3 1

E2F1 TIMP1 1

E2F1 TMEM132A 1

E2F1 TOMM70A 1

Table 35 continued

TF TG # dup

E2F1 TOP1 1

E2F1 TOP2A 1

E2F1 TOP3A 1

E2F1 TOPBP1 1

E2F1 TRA2A 1

E2F1 TRIM45 1

E2F1 TRIP13 1

E2F1 TROAP 1

E2F1 TSG101 1

E2F1 TUBB2A 1

E2F1 TULP4 1

E2F1 TYMS 1

E2F1 UACA 1

E2F1 UBE2S 1

E2F1 UBE2T 1

E2F1 UBL3 1

E2F1 UBQLN2 1

E2F1 UHRF1 1

E2F1 USP1 1

E2F1 VCAM1 1

E2F1 VEGFC 1

E2F1 VPS37C 1

E2F1 WSB1 1

E2F1 YY1 1

E2F1 ZBED5 1

E2F1 ZBTB7A 1

E2F1 ZC3HC1 1

E2F1 ZMYM1 1

E2F1 ZNF143 1

E2F1 ZNF521 1

E2F1 ZSCAN5A 1

E2F1 ZWINT 1

E2F5 ASF1B 1

E2F5 BRCA1 1

E2F8 E2F1 1

FOXM1 AURKB 1

FOXM1 BIRC5 1

FOXM1 CCNB1 1

FOXM1 CDC25A 1

FOXM1 CDC6 1

FOXM1 CDKN1B 1

FOXM1 CKS1B 1

FOXM1 PDGFA 1

FOXM1 PLK1 1

HIF1A ADAMTS1 1
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Table 35 continued

TF TG # dup

HIF1A ARL4A 1

HIF1A CDK7 1

HIF1A CDKN1B 1

HIF1A DNAJB9 1

HIF1A DYNLL1 1

HIF1A FANCD2 1

HIF1A FOXM1 1

HIF1A GRPEL1 1

HIF1A HERPUD2 1

HIF1A HIF1A 1

HIF1A HMMR 1

HIF1A INSIG2 1

HIF1A KDM5B 1

HIF1A MET 1

HIF1A MUC1 1

HIF1A NR3C1 1

HIF1A PCF11 1

HIF1A PDXP 1

HIF1A PLIN3 1

HIF1A POM121 1

HIF1A PPP6R3 1

HIF1A PRPSAP1 1

HIF1A RBM8A 1

HIF1A RHOBTB3 1

HIF1A RRM2 1

HIF1A SAP30 1

HIF1A TFF3 1

HIF1A TIMP1 1

HIF1A TOMM34 1

HIF1A TOP3A 1

HIF1A TYMS 1

HIF1A VEGFC 1

HIF1A WSB1 1

HIF1A ZNF217 1

HSF2 HIF1A 1

INSM1 INSM1 1

KDM5B BRCA1 1

KLF6 PTTG1 1

KLF9 TFAP2A 1

MITF ABCC2 1

MITF ACD 1

MITF AFAP1 1

MITF AHI1 1

MITF AMD1 1

MITF ANKRD10 1

Table 35 continued

TF TG # dup

MITF ANP32B 1

MITF ANTXR1 1

MITF AP3D1 1

MITF AP3M2 1

MITF ARHGEF39 1

MITF ARL4A 1

MITF ASF1B 1

MITF ASIP 1

MITF ATF7IP 1

MITF ATL2 1

MITF BAG3 1

MITF BMP2 1

MITF BRCA1 1

MITF BTBD3 1

MITF BUB3 1

MITF C6 1

MITF CADM1 1

MITF CBX3 1

MITF CCNB1 1

MITF CCNE1 1

MITF CDC16 1

MITF CDC25B 1

MITF CDC7 1

MITF CDKN1B 1

MITF CDKN2AIP 1

MITF CDKN2C 1

MITF CENPA 1

MITF CENPM 1

MITF CFLAR 1

MITF CHEK2 1

MITF CIC 1

MITF CIT 1

MITF CKS2 1

MITF CNOT10 1

MITF CSGALNACT1 1

MITF CTNND1 1

MITF CYB5R2 1

MITF DDX11 1

MITF DEXI 1

MITF DKC1 1

MITF DMXL2 1

MITF DNAJB1 1

MITF DNAJB4 1

MITF DNAJB6 1

MITF DNAJB9 1
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Table 35 continued

TF TG # dup

MITF DR1 1

MITF DSP 1

MITF DUSP4 1

MITF DYNLL1 1

MITF E2F5 1

MITF E2F8 1

MITF FADD 1

MITF FAM189B 1

MITF FAM60A 1

MITF FAM64A 1

MITF FANCA 1

MITF FEM1B 1

MITF FEN1 1

MITF FKBP1A 1

MITF FZR1 1

MITF GAS1 1

MITF GAS6 1

MITF GNB1 1

MITF GTF2B 1

MITF HAUS5 1

MITF HAUS8 1

MITF HERPUD2 1

MITF HIF1A 1

MITF HIST2H2BE 1

MITF HOXB4 1

MITF HP1BP3 1

MITF HRAS 1

MITF HSF2 1

MITF HSPA8 1

MITF IDI2 1

MITF INADL 1

MITF ITPR3 1

MITF IVNS1ABP 1

MITF JADE2 1

MITF KANK2 1

MITF KAT2B 1

MITF KBTBD2 1

MITF KDELC1 1

MITF KDM4A 1

MITF KDM5B 1

MITF KIFC1 1

MITF KLF6 1

MITF KLF9 1

MITF KPNA2 1

MITF LBR 1

Table 35 continued

TF TG # dup

MITF MAN1A2 1

MITF MAPK13 1

MITF MBD3 1

MITF MCAM 1

MITF MCM8 1

MITF ME3 1

MITF MIS18BP1 1

MITF MNT 1

MITF MNX1 1

MITF MORF4L2 1

MITF MSH2 1

MITF MTCL1 1

MITF MZF1 1

MITF NAB1 1

MITF NCAPH 1

MITF NCOA3 1

MITF NCOA5 1

MITF NDE1 1

MITF NFE2L2 1

MITF NFIC 1

MITF NPM1 1

MITF NSUN3 1

MITF OSER1 1

MITF PAK1IP1 1

MITF PANK2 1

MITF PCF11 1

MITF PDGFA 1

MITF PDXP 1

MITF PIK3CD 1

MITF PLIN3 1

MITF PLK1 1

MITF POC1A 1

MITF POLA1 1

MITF PPP1R10 1

MITF PRIM2 1

MITF PRKAR1A 1

MITF PRR16 1

MITF PTP4A1 1

MITF PTTG1 1

MITF PWP1 1

MITF QRICH1 1

MITF RAB3A 1

MITF RAN 1

MITF RCCD1 1

MITF RHEB 1
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Table 35 continued

TF TG # dup

MITF RMI1 1

MITF RRM2 1

MITF RRP1 1

MITF SAP30 1

MITF SAP30BP 1

MITF SGK1 1

MITF SLC25A36 1

MITF SLC38A2 1

MITF SMARCB1 1

MITF SMTN 1

MITF SP1 1

MITF SRSF3 1

MITF SS18 1

MITF SSR3 1

MITF STAG1 1

MITF STAT1 1

MITF SV2B 1

MITF SYNCRIP 1

MITF TAB2 1

MITF TACC3 1

MITF TFAP2A 1

MITF TGIF1 1

MITF TOB2 1

MITF TOMM34 1

MITF TOP1 1

MITF TOP3A 1

MITF TRAIP 1

MITF TRIP13 1

MITF TSC22D1 1

MITF TSG101 1

MITF TSKU 1

MITF TSN 1

MITF TTC38 1

MITF TUBB2A 1

MITF TUBB4B 1

MITF TULP4 1

MITF TXNRD1 1

MITF UACA 1

MITF UBE2D3 1

MITF UBL3 1

MITF UHRF1 1

MITF UNG 1

MITF USP1 1

MITF USP13 1

MITF VEGFC 1

Table 35 continued

TF TG # dup

MITF VPS37C 1

MITF WSB1 1

MITF YWHAH 1

MITF YY1 1

MITF ZBED5 1

MITF ZC3HC1 1

MITF ZCCHC10 1

MITF ZNF217 1

MITF ZNFX1 1

MITF ZNHIT2 1

NCOA3 BRCA1 1

NFE2L2 BRCA1 1

NFIA NR3C1 1

NFIC HRAS 1

NFIC INSR 1

NFIC NR3C1 1

NFIC TFAP2A 1

NFYA CDC25A 1

NFYA CDCA8 1

NFYA CDKN1B 1

NFYA E2F1 1

NFYA GADD45A 1

NFYA HOXB4 1

NFYA MCM8 1

NFYA PTTG1 1

NFYB CDKN1B 1

NFYB HLA-DOA 1

NFYB HLA-DRA 1

NFYB HSPA13 1

NR3C1 BRCA1 1

NR3C1 NR3C1 1

NR3C1 SRF 1

NR3C1 STAT1 1

RUNX1 ADAMTS1 1

RUNX1 BBS2 1

RUNX1 BCLAF1 1

RUNX1 BIRC2 1

RUNX1 C5orf42 1

RUNX1 CDC25B 1

RUNX1 CENPF 1

RUNX1 CENPL 1

RUNX1 CEP70 1

RUNX1 CKAP2 1

RUNX1 CKS2 1

RUNX1 CTR9 1
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Table 35 continued

TF TG # dup

RUNX1 CXCL14 1

RUNX1 DEPDC1B 1

RUNX1 DNA2 1

RUNX1 DNAJC3 1

RUNX1 EIF4E 1

RUNX1 FAM105A 1

RUNX1 FXR1 1

RUNX1 GPSM2 1

RUNX1 HIST1H2BC 1

RUNX1 HSF2 1

RUNX1 INADL 1

RUNX1 IVNS1ABP 1

RUNX1 KLF6 1

RUNX1 KPNA2 1

RUNX1 LARP7 1

RUNX1 MAD2L1 1

RUNX1 MAN1A2 1

RUNX1 MAP2K6 1

RUNX1 ME3 1

RUNX1 MKI67 1

RUNX1 MND1 1

RUNX1 MTCL1 1

RUNX1 NCOA3 1

RUNX1 NEIL3 1

RUNX1 NSUN3 1

RUNX1 NUP98 1

RUNX1 ORC3 1

RUNX1 PIK3CD 1

RUNX1 PPP6R3 1

RUNX1 PRIM2 1

RUNX1 PTP4A1 1

RUNX1 ROCK1 1

RUNX1 SGK1 1

RUNX1 SLC25A27 1

RUNX1 SLC25A36 1

RUNX1 SLC38A2 1

RUNX1 SLC39A10 1

RUNX1 SPAG5 1

RUNX1 STAG1 1

RUNX1 SUCLG2 1

RUNX1 TRIP13 1

RUNX1 TSKU 1

RUNX1 UACA 1

RUNX1 VCL 1

RUNX1 WSB1 1

Table 35 continued

TF TG # dup

RUNX1 ZPBP 1

RUNX1 ZRANB2 1

SP1 BIRC5 1

SP1 BRCA1 1

SP1 BUB1B 1

SP1 C4B 1

SP1 CASP3 1

SP1 CCNA2 1

SP1 CCNB1 1

SP1 CDC25A 1

SP1 CDC25C 1

SP1 CDKN1B 1

SP1 CDKN2C 1

SP1 CDKN2D 1

SP1 COL7A1 1

SP1 CTSD 1

SP1 CXCL14 1

SP1 DHFR 1

SP1 DKC1 1

SP1 E2F1 1

SP1 EXO1 1

SP1 FOXM1 1

SP1 HIF1A 1

SP1 HSD17B11 1

SP1 HSPA8 1

SP1 ITGB3 1

SP1 KIF2C 1

SP1 LMO4 1

SP1 MCAM 1

SP1 MDM2 1

SP1 NR3C1 1

SP1 PDGFA 1

SP1 POLA1 1

SP1 PSEN1 1

SP1 PTTG1 1

SP1 RECQL4 1

SP1 SP1 1

SP1 TIMP1 1

SP1 TMPO 1

SP1 TYMS 1

SP1 UNG 1

SRF KPNB1 1

SRF UBE2S 1

STAT1 ABCA7 1

STAT1 ABCC2 1
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Table 35 continued

TF TG # dup

STAT1 ADAMTS1 1

STAT1 ADCY6 1

STAT1 AFAP1 1

STAT1 AGFG1 1

STAT1 AHI1 1

STAT1 AKIRIN2 1

STAT1 ANKRD10 1

STAT1 ANP32B 1

STAT1 ANP32E 1

STAT1 ANTXR1 1

STAT1 AP3M2 1

STAT1 ARHGAP11A 1

STAT1 ARHGAP19 1

STAT1 ARHGDIB 1

STAT1 ARHGEF39 1

STAT1 ARL6IP1 1

STAT1 ARMC1 1

STAT1 ASF1B 1

STAT1 ATAD2 1

STAT1 ATF7IP 1

STAT1 B2M 1

STAT1 BAG3 1

STAT1 BARD1 1

STAT1 BCLAF1 1

STAT1 BIRC2 1

STAT1 BMP2 1

STAT1 BRCA1 1

STAT1 BRD7 1

STAT1 BTBD3 1

STAT1 BUB3 1

STAT1 C5orf42 1

STAT1 C6 1

STAT1 CADM1 1

STAT1 CASP3 1

STAT1 CBX3 1

STAT1 CCDC90B 1

STAT1 CCNA2 1

STAT1 CCNE1 1

STAT1 CDC16 1

STAT1 CDC20 1

STAT1 CDC25B 1

STAT1 CDC25C 1

STAT1 CDC27 1

STAT1 CDC42EP1 1

STAT1 CDC42EP4 1

Table 35 continued

TF TG # dup

STAT1 CDC45 1

STAT1 CDCA7 1

STAT1 CDCA7L 1

STAT1 CDKN1B 1

STAT1 CDKN2AIP 1

STAT1 CDKN2C 1

STAT1 CDR2 1

STAT1 CENPA 1

STAT1 CENPE 1

STAT1 CENPM 1

STAT1 CEP44 1

STAT1 CFD 1

STAT1 CHAF1A 1

STAT1 CHEK2 1

STAT1 CIC 1

STAT1 CIT 1

STAT1 CKS2 1

STAT1 CLSPN 1

STAT1 CNIH4 1

STAT1 CNOT10 1

STAT1 CREBZF 1

STAT1 CRK 1

STAT1 CRYBA1 1

STAT1 CSGALNACT1 1

STAT1 CSH2 1

STAT1 CTCF 1

STAT1 CTNND1 1

STAT1 CTR9 1

STAT1 CTSD 1

STAT1 CYTH2 1

STAT1 CYTH3 1

STAT1 DCTN6 1

STAT1 DEPDC1B 1

STAT1 DHFR 1

STAT1 DHX8 1

STAT1 DIS3 1

STAT1 DLGAP5 1

STAT1 DNAJB1 1

STAT1 DNAJB6 1

STAT1 DNAJB9 1

STAT1 DNAJC3 1

STAT1 DNAJC6 1

STAT1 DR1 1

STAT1 DSCC1 1

STAT1 DTL 1
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Table 35 continued

TF TG # dup

STAT1 DUSP4 1

STAT1 DYNLL1 1

STAT1 DZIP3 1

STAT1 E2F1 1

STAT1 E2F8 1

STAT1 ELP3 1

STAT1 ERN2 1

STAT1 ESPL1 1

STAT1 FADD 1

STAT1 FAM105A 1

STAT1 FAM110A 1

STAT1 FAM214A 1

STAT1 FAM60A 1

STAT1 FAM83D 1

STAT1 FANCA 1

STAT1 FANCG 1

STAT1 FANCI 1

STAT1 FEM1B 1

STAT1 FEN1 1

STAT1 FKBP1A 1

STAT1 FLAD1 1

STAT1 G2E3 1

STAT1 G3BP1 1

STAT1 GADD45A 1

STAT1 GCSH 1

STAT1 GINS3 1

STAT1 GMNN 1

STAT1 GOT1 1

STAT1 GRK6 1

STAT1 GTF2B 1

STAT1 H1F0 1

STAT1 HCP5 1

STAT1 HERPUD2 1

STAT1 HIF1A 1

STAT1 HIST1H2AC 1

STAT1 HIST1H4H 1

STAT1 HIST2H2BE 1

STAT1 HMGCR 1

STAT1 HMMR 1

STAT1 HN1 1

STAT1 HP1BP3 1

STAT1 HRAS 1

STAT1 HSD17B11 1

STAT1 HSF2 1

STAT1 HSPA1L 1

Table 35 continued

TF TG # dup

STAT1 HSPA8 1

STAT1 HSPB8 1

STAT1 IDO1 1

STAT1 IFIT1 1

STAT1 IL18BP 1

STAT1 ILF2 1

STAT1 INADL 1

STAT1 INPP5K 1

STAT1 INSIG2 1

STAT1 INSR 1

STAT1 INTS7 1

STAT1 ITPR3 1

STAT1 IVNS1ABP 1

STAT1 KAT2B 1

STAT1 KATNBL1 1

STAT1 KBTBD2 1

STAT1 KCTD2 1

STAT1 KDM4A 1

STAT1 KDM5B 1

STAT1 KIAA0101 1

STAT1 KIAA1524 1

STAT1 KIF11 1

STAT1 KIF14 1

STAT1 KIF20B 1

STAT1 KIF22 1

STAT1 KIF5B 1

STAT1 KPNA2 1

STAT1 KRAS 1

STAT1 LBR 1

STAT1 LMNB1 1

STAT1 LMO4 1

STAT1 LRIF1 1

STAT1 LRRC17 1

STAT1 MAN1A2 1

STAT1 MAP2K6 1

STAT1 MATN2 1

STAT1 MBD2 1

STAT1 MCM2 1

STAT1 MCM4 1

STAT1 MDC1 1

STAT1 MDM2 1

STAT1 ME3 1

STAT1 MED31 1

STAT1 MEGF9 1

STAT1 MELK 1
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Table 35 continued

TF TG # dup

STAT1 MET 1

STAT1 MID1 1

STAT1 MKI67 1

STAT1 MND1 1

STAT1 MNX1 1

STAT1 MORF4L2 1

STAT1 MTCL1 1

STAT1 MZF1 1

STAT1 NAB1 1

STAT1 NASP 1

STAT1 NCAPH 1

STAT1 NCOA3 1

STAT1 NCOA5 1

STAT1 NCS1 1

STAT1 NDC80 1

STAT1 NDE1 1

STAT1 NEIL3 1

STAT1 NEK2 1

STAT1 NFIC 1

STAT1 NFYB 1

STAT1 NIPBL 1

STAT1 NKTR 1

STAT1 NNMT 1

STAT1 NSUN3 1

STAT1 NUCKS1 1

STAT1 NUF2 1

STAT1 NUP160 1

STAT1 NUP98 1

STAT1 OGT 1

STAT1 OLR1 1

STAT1 OSER1 1

STAT1 OSGIN2 1

STAT1 OXR1 1

STAT1 PAK1IP1 1

STAT1 PBK 1

STAT1 PDGFA 1

STAT1 PIK3CD 1

STAT1 PKNOX1 1

STAT1 PLIN3 1

STAT1 PLK2 1

STAT1 POC1A 1

STAT1 POLD3 1

STAT1 POLQ 1

STAT1 POM121 1

STAT1 PPP1R2 1

Table 35 continued

TF TG # dup

STAT1 PPP3CA 1

STAT1 PPP6R3 1

STAT1 PRC1 1

STAT1 PRIM2 1

STAT1 PRPSAP1 1

STAT1 PRR11 1

STAT1 PRR16 1

STAT1 PSEN1 1

STAT1 PSMG3 1

STAT1 PTP4A1 1

STAT1 PTTG1 1

STAT1 RAB23 1

STAT1 RAD18 1

STAT1 RAD21 1

STAT1 RAD51 1

STAT1 RAD51AP1 1

STAT1 RAD51C 1

STAT1 RAD54L 1

STAT1 RANGAP1 1

STAT1 RBBP8 1

STAT1 RCAN1 1

STAT1 RCCD1 1

STAT1 REEP1 1

STAT1 RFC2 1

STAT1 RFC4 1

STAT1 RGS3 1

STAT1 RHEB 1

STAT1 RHNO1 1

STAT1 RHOBTB3 1

STAT1 RMI1 1

STAT1 RNPC3 1

STAT1 RNPS1 1

STAT1 RRM2 1

STAT1 RRP1 1

STAT1 RSRC2 1

STAT1 SAP30 1

STAT1 SAP30BP 1

STAT1 SDC1 1

STAT1 SEPHS1 1

STAT1 SERPINB3 1

STAT1 SFPQ 1

STAT1 SH3GL2 1

STAT1 SHC1 1

STAT1 SLC22A3 1

STAT1 SLC25A36 1
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Table 35 continued

TF TG # dup

STAT1 SLC38A2 1

STAT1 SLC39A10 1

STAT1 SLC4A1AP 1

STAT1 SMARCB1 1

STAT1 SMARCD1 1

STAT1 SNUPN 1

STAT1 SP1 1

STAT1 SPAG5 1

STAT1 SRD5A1 1

STAT1 SRF 1

STAT1 SRSF3 1

STAT1 SS18 1

STAT1 STAG3 1

STAT1 STAT5B 1

STAT1 STIL 1

STAT1 SUCLG2 1

STAT1 SV2B 1

STAT1 SYNCRIP 1

STAT1 TAB2 1

STAT1 TACC3 1

STAT1 TFAP2A 1

STAT1 TFF3 1

STAT1 TGIF1 1

STAT1 THRAP3 1

STAT1 TIMP1 1

STAT1 TIPIN 1

STAT1 TMPO 1

STAT1 TOB2 1

STAT1 TOMM34 1

STAT1 TOP1 1

STAT1 TOP2A 1

STAT1 TOP3A 1

STAT1 TPX2 1

STAT1 TRA2A 1

STAT1 TRIP13 1

STAT1 TSG101 1

STAT1 TSKU 1

STAT1 TSN 1

STAT1 TTC31 1

STAT1 TTF2 1

STAT1 TUBA1A 1

STAT1 TUBB2A 1

STAT1 TULP4 1

STAT1 TXNRD1 1

STAT1 UACA 1

Table 35 continued

TF TG # dup

STAT1 UBE2D3 1

STAT1 UBL3 1

STAT1 UBQLN2 1

STAT1 UHRF1 1

STAT1 USP1 1

STAT1 USP6NL 1

STAT1 VCAM1 1

STAT1 VEGFC 1

STAT1 VPS25 1

STAT1 VPS72 1

STAT1 VTA1 1

STAT1 WSB1 1

STAT1 YY1 1

STAT1 ZBTB7A 1

STAT1 ZC3HC1 1

STAT1 ZCCHC10 1

STAT1 ZNF143 1

STAT1 ZNF207 1

STAT1 ZNF217 1

STAT1 ZNF281 1

STAT1 ZNF414 1

STAT1 ZNF521 1

STAT1 ZNFX1 1

STAT1 ZNHIT2 1

STAT1 ZPBP 1

STAT1 ZRANB2 1

STAT1 ZSCAN5A 1

STAT1 ZWINT 1

STAT5B MET 1

STAT5B MUC1 1

STAT5B RAD51 1

TFAP2A CCNB1 1

TFAP2A CTSD 1

TFAP2A DHX8 1

TFAP2A HSPA8 1

TFAP2A MCAM 1

TFAP2A NR3C1 1

TFAP2A RECQL4 1

TFAP2A TFAP2A 1

TFAP2A TIMP1 1

TFAP2A TOP1 1

TFAP2A VEGFC 1

YY1 BRCA1 1

YY1 CDC6 1

YY1 DKC1 1
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Table 35 continued

TF TG # dup

YY1 DNAJB4 1

YY1 HDAC3 1

YY1 HIF1A 1

YY1 HLA-DRA 1

YY1 MCM5 1

YY1 NUP160 1

YY1 PCNA 1

YY1 SAP30 1

YY1 TFAP2A 1

ZNF143 BUB1B 1

The table presents for each edge the number of time it ap-

pears in the network obtained after concatenating the two

networks collected from the work of Alonso et.al [78]. The

authors generated one gold standard network for cancer

cells and one for normal cells. The 1st column represents

the TF official name. The 2nd column the TG official

name. The 3rd column represents the of times the link

is repeated after a per row concatenation of the two net-

works.
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Table 36: HeLa “gold-standard” network

- Positive links

TF TG W # dup

BRCA1 BARD1 1 1

BRCA1 CHEK2 1 1

BRCA1 DTL 1 1

BRCA1 DZIP3 1 1

BRCA1 ERN2 1 1

BRCA1 FAN1 1 1

BRCA1 FANCD2 1 1

BRCA1 G2E3 1 1

BRCA1 HAUS5 1 1

BRCA1 HELLS 1 1

BRCA1 KDM4A 1 1

BRCA1 NEK2 1 1

BRCA1 PLK1 1 1

BRCA1 RAD51 1 1

BRCA1 TRIP13 1 1

CENPA NDE1 1 1

CTCF ABCA7 1 2

CTCF ABCC2 1 2

CTCF ABHD10 1 2

CTCF ADCY6 1 2

CTCF ADH4 1 3

CTCF AHI1 1 2

CTCF AMD1 1 2

CTCF ANLN 1 2

CTCF ANP32B 1 2

CTCF ANP32E 1 2

CTCF AOC2 1 2

CTCF AOC3 1 2

CTCF AP3D1 1 2

CTCF AP3M2 1 2

CTCF AP4B1 1 2

CTCF ARHGAP11A 1 2

CTCF ARHGAP19 1 2

CTCF ARHGAP8 1 2

CTCF ARHGEF39 1 2

CTCF ARL4A 1 2

CTCF ARL6IP1 1 2

CTCF ASF1B 1 3

CTCF ASIP 1 2

CTCF ASPHD2 1 2

Table 36 continued

TF TG W # dup

CTCF ATAD2 1 2

CTCF ATF7IP 1 2

CTCF ATL2 1 2

CTCF AURKB 1 3

CTCF B2M 1 2

CTCF BAG3 1 2

CTCF BAIAP2 1 2

CTCF BBS2 1 2

CTCF BCLAF1 1 2

CTCF BIRC2 1 2

CTCF BIVM 1 2

CTCF BMP2 1 2

CTCF BRCA1 1 2

CTCF BRD7 1 2

CTCF BTBD3 1 2

CTCF BUB3 1 2

CTCF C6 1 3

CTCF CADM1 1 2

CTCF CAPN7 1 2

CTCF CASP3 1 2

CTCF CCDC90B 1 2

CTCF CCNE1 1 3

CTCF CCNF 1 2

CTCF CDC16 1 2

CTCF CDC20 1 2

CTCF CDC25A 1 3

CTCF CDC25B 1 2

CTCF CDC25C 1 2

CTCF CDC42 1 2

CTCF CDC42EP1 1 2

CTCF CDC42EP4 1 2

CTCF CDC45 1 2

CTCF CDC6 1 2

CTCF CDC7 1 2

CTCF CDCA7 1 2

CTCF CDCA7L 1 2

CTCF CDK20 1 2

CTCF CDK7 1 2

CTCF CDKN1B 1 2

CTCF CDKN2AIP 1 2

CTCF CDKN2C 1 2

CTCF CDKN3 1 2

CTCF CENPA 1 2

CTCF CENPE 1 2

CTCF CENPF 1 2

302



Table 36 continued

TF TG W # dup

CTCF CENPM 1 2

CTCF CEP44 1 2

CTCF CEP55 1 2

CTCF CEP70 1 2

CTCF CFD 1 2

CTCF CFLAR 1 2

CTCF CHAF1B 1 2

CTCF CHEK2 1 2

CTCF CIC 1 2

CTCF CIT 1 2

CTCF CKAP5 1 2

CTCF CKS2 1 2

CTCF CLSPN 1 2

CTCF CNN2 1 2

CTCF CNOT10 1 2

CTCF COQ6 1 2

CTCF CREBZF 1 2

CTCF CRK 1 2

CTCF CRYBA1 1 2

CTCF CSH2 1 2

CTCF CTCF 1 2

CTCF CTNND1 1 2

CTCF CTR9 1 2

CTCF CTSD 1 2

CTCF CWC15 1 2

CTCF CXCL14 1 2

CTCF CYB5R2 1 2

CTCF CYTH3 1 2

CTCF DCAF16 1 2

CTCF DCAF7 1 2

CTCF DCTN6 1 2

CTCF DDX11 1 2

CTCF DEPDC1B 1 2

CTCF DET1 1 2

CTCF DHX8 1 2

CTCF DLGAP5 1 2

CTCF DMTF1 1 2

CTCF DMXL2 1 2

CTCF DNAJB1 1 2

CTCF DNAJB4 1 2

CTCF DNAJB6 1 2

CTCF DNAJB9 1 2

CTCF DNAJC3 1 2

CTCF DNAJC6 1 2

CTCF DTL 1 2

Table 36 continued

TF TG W # dup

CTCF DUSP4 1 2

CTCF DYNLL1 1 2

CTCF DZIP3 1 3

CTCF E2F1 1 2

CTCF E2F5 1 2

CTCF E2F8 1 2

CTCF EBI3 1 2

CTCF EIF4E 1 2

CTCF ELP3 1 2

CTCF ENOSF1 1 2

CTCF ERN2 1 2

CTCF ESPL1 1 2

CTCF EXO1 1 2

CTCF FABP1 1 2

CTCF FADD 1 2

CTCF FAM105A 1 2

CTCF FAM110A 1 2

CTCF FAM189B 1 2

CTCF FAM214A 1 2

CTCF FAM60A 1 2

CTCF FANCA 1 2

CTCF FANCI 1 2

CTCF FBXL20 1 2

CTCF FEM1B 1 2

CTCF FEN1 1 2

CTCF FKBP1A 1 2

CTCF FLAD1 1 2

CTCF FXR1 1 2

CTCF G2E3 1 3

CTCF G3BP1 1 2

CTCF GAS1 1 2

CTCF GAS6 1 2

CTCF GDF15 1 2

CTCF GINS2 1 2

CTCF GINS3 1 2

CTCF GMNN 1 2

CTCF GNB1 1 2

CTCF GOLGA8A 1 2

CTCF GOT1 1 2

CTCF GPSM2 1 3

CTCF GRK6 1 2

CTCF GRPEL1 1 2

CTCF GTF2B 1 2

CTCF GTSE1 1 2

CTCF H2AFX 1 2
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Table 36 continued

TF TG W # dup

CTCF HAUS5 1 3

CTCF HAUS8 1 2

CTCF HCP5 1 2

CTCF HELLS 1 3

CTCF HERPUD2 1 2

CTCF HIF1A 1 2

CTCF HIST1H4C 1 2

CTCF HIST1H4E 1 2

CTCF HIST1H4H 1 2

CTCF HJURP 1 2

CTCF HLA-DOA 1 3

CTCF HLA-DRA 1 2

CTCF HMG20B 1 2

CTCF HMGCR 1 2

CTCF HMMR 1 2

CTCF HRAS 1 2

CTCF HSD17B11 1 3

CTCF HSF2 1 2

CTCF HSPA13 1 2

CTCF HSPB8 1 2

CTCF IDO1 1 2

CTCF ILF2 1 2

CTCF INADL 1 2

CTCF INPP5K 1 2

CTCF INSIG2 1 2

CTCF INSM1 1 3

CTCF INSR 1 2

CTCF INTS7 1 2

CTCF ITPR3 1 2

CTCF IVNS1ABP 1 2

CTCF KANK2 1 2

CTCF KAT2B 1 2

CTCF KCTD2 1 2

CTCF KDM4A 1 3

CTCF KDM5B 1 2

CTCF KIAA0586 1 2

CTCF KIAA1147 1 2

CTCF KIAA1524 1 2

CTCF KIF11 1 2

CTCF KIF14 1 2

CTCF KIF20B 1 2

CTCF KIF22 1 2

CTCF KIF5B 1 2

CTCF KIFC1 1 2

CTCF KLF6 1 2

Table 36 continued

TF TG W # dup

CTCF KLF9 1 2

CTCF KMO 1 2

CTCF KPNA2 1 2

CTCF KPNB1 1 2

CTCF KRAS 1 2

CTCF LARP7 1 2

CTCF LMNB1 1 2

CTCF LMO4 1 2

CTCF LPP 1 2

CTCF LRIF1 1 2

CTCF LYAR 1 2

CTCF MAD2L1 1 2

CTCF MAN1A2 1 2

CTCF MAP2K6 1 2

CTCF MAP3K2 1 2

CTCF MAPK13 1 2

CTCF MATN2 1 2

CTCF MBD2 1 2

CTCF MBD3 1 2

CTCF MCAM 1 2

CTCF MCM5 1 2

CTCF MCM8 1 2

CTCF MDC1 1 2

CTCF MDM2 1 2

CTCF ME3 1 3

CTCF MED31 1 2

CTCF MEGF9 1 2

CTCF MELK 1 2

CTCF MET 1 3

CTCF MGAT2 1 2

CTCF MID1 1 2

CTCF MIS18BP1 1 2

CTCF MITF 1 2

CTCF MKI67 1 2

CTCF MLLT4 1 2

CTCF MND1 1 2

CTCF MNT 1 2

CTCF MNX1 1 3

CTCF MORF4L2 1 2

CTCF MRPL19 1 2

CTCF MRPS2 1 2

CTCF MSH2 1 2

CTCF MTCL1 1 2

CTCF MYCBP2 1 2

CTCF MZF1 1 2
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Table 36 continued

TF TG W # dup

CTCF NAB1 1 2

CTCF NCAPD2 1 2

CTCF NCAPD3 1 2

CTCF NCAPH 1 2

CTCF NCOA3 1 2

CTCF NCOA5 1 2

CTCF NCS1 1 2

CTCF NDE1 1 2

CTCF NEIL3 1 3

CTCF NEK2 1 3

CTCF NFIC 1 2

CTCF NFYA 1 2

CTCF NFYB 1 2

CTCF NIPBL 1 2

CTCF NKTR 1 2

CTCF NMB 1 2

CTCF NNMT 1 2

CTCF NPAT 1 2

CTCF NPM1 1 2

CTCF NR3C1 1 2

CTCF NSUN3 1 2

CTCF NUCKS1 1 2

CTCF NUDT4 1 2

CTCF NUF2 1 2

CTCF NUP160 1 2

CTCF NUP37 1 2

CTCF ODF2 1 2

CTCF OGT 1 2

CTCF OLR1 1 2

CTCF ORC3 1 2

CTCF OSER1 1 2

CTCF PANK2 1 2

CTCF PCNA 1 2

CTCF PDGFA 1 2

CTCF PDXP 1 2

CTCF PIK3CD 1 3

CTCF PKMYT1 1 2

CTCF PLIN3 1 2

CTCF PLK1 1 2

CTCF PLK2 1 2

CTCF POC1A 1 2

CTCF POLA1 1 2

CTCF POLD3 1 2

CTCF POLQ 1 2

CTCF POM121 1 2

Table 36 continued

TF TG W # dup

CTCF PPP1R2 1 2

CTCF PPP3CA 1 1

CTCF PPP6R3 1 1

CTCF PRIM1 1 1

CTCF PRIM2 1 1

CTCF PRKAR1A 1 1

CTCF PRPSAP1 1 1

CTCF PRR11 1 1

CTCF PRR16 1 1

CTCF PSEN1 1 1

CTCF PSMD11 1 1

CTCF PSMG3 1 1

CTCF PTMS 1 1

CTCF PTP4A1 1 1

CTCF PTPN9 1 1

CTCF PTTG1 1 1

CTCF PWP1 1 1

CTCF QRICH1 1 1

CTCF RAB23 1 1

CTCF RAB3A 1 1

CTCF RAD18 1 2

CTCF RAD21 1 1

CTCF RAD51 1 1

CTCF RAD51C 1 1

CTCF RAD54L 1 1

CTCF RAN 1 1

CTCF RANGAP1 1 1

CTCF RBBP8 1 1

CTCF RBM8A 1 1

CTCF RCAN1 1 1

CTCF REEP1 1 2

CTCF RFC4 1 1

CTCF RGS3 1 1

CTCF RHEB 1 1

CTCF RHOBTB3 1 1

CTCF RNF126 1 1

CTCF ROCK1 1 1

CTCF RPL13A 1 1

CTCF RRM1 1 1

CTCF RRM2 1 1

CTCF RRP1 1 1

CTCF SAP30 1 1

CTCF SAP30BP 1 1

CTCF SDC1 1 2

CTCF SEC62 1 1
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Table 36 continued

TF TG W # dup

CTCF SEPHS1 1 1

CTCF SEPN1 1 1

CTCF SGK1 1 1

CTCF SH3GL2 1 2

CTCF SHCBP1 1 1

CTCF SLBP 1 1

CTCF SLC17A2 1 1

CTCF SLC22A3 1 2

CTCF SLC25A27 1 1

CTCF SLC25A36 1 1

CTCF SLC38A2 1 1

CTCF SLC39A10 1 1

CTCF SLC44A2 1 1

CTCF SLC4A1AP 1 1

CTCF SMARCB1 1 1

CTCF SMARCD1 1 1

CTCF SMC4 1 1

CTCF SMTN 1 1

CTCF SNUPN 1 1

CTCF SP1 1 1

CTCF SPDL1 1 1

CTCF SRF 1 1

CTCF SS18 1 1

CTCF SSR3 1 1

CTCF STAG3 1 1

CTCF STAT1 1 1

CTCF STAT5B 1 1

CTCF STIL 1 2

CTCF SUCLG2 1 1

CTCF TAB2 1 1

CTCF TFAP2A 1 1

CTCF TGIF1 1 1

CTCF THRAP3 1 1

CTCF TMPO 1 1

CTCF TNPO2 1 1

CTCF TOMM34 1 1

CTCF TOP1 1 1

CTCF TOP2A 1 1

CTCF TPX2 1 1

CTCF TRA2A 1 1

CTCF TRAIP 1 1

CTCF TRIM45 1 1

CTCF TRIP13 1 2

CTCF TROAP 1 1

CTCF TSC22D1 1 1

Table 36 continued

TF TG W # dup

CTCF TSKU 1 1

CTCF TSN 1 1

CTCF TTC31 1 1

CTCF TTF2 1 1

CTCF TTK 1 1

CTCF TUBB2A 1 1

CTCF TUBB4B 1 1

CTCF TUBD1 1 1

CTCF TULP4 1 1

CTCF TXNRD1 1 1

CTCF TYMS 1 1

CTCF UACA 1 1

CTCF UBE2D3 1 1

CTCF UBE2S 1 1

CTCF UBL3 1 1

CTCF UBR7 1 1

CTCF UHRF1 1 1

CTCF UNG 1 1

CTCF USP1 1 1

CTCF USP13 1 1

CTCF USP53 1 1

CTCF USP6NL 1 1

CTCF VCAM1 1 1

CTCF VCL 1 1

CTCF VEGFC 1 1

CTCF VPS37C 1 1

CTCF VPS72 1 1

CTCF VTA1 1 1

CTCF WSB1 1 1

CTCF YWHAH 1 1

CTCF YY1 1 1

CTCF ZBED5 1 1

CTCF ZBTB7A 1 1

CTCF ZC3HC1 1 1

CTCF ZMYM1 1 1

CTCF ZNF143 1 1

CTCF ZNF217 1 1

CTCF ZNF281 1 1

CTCF ZNF414 1 1

CTCF ZNF521 1 1

CTCF ZNF593 1 1

CTCF ZNFX1 1 1

CTCF ZNHIT2 1 1

CTCF ZPBP 1 1

CTCF ZRANB2 1 1
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Table 36 continued

TF TG W # dup

CTCF ZSCAN5A 1 1

E2F1 ABCC2 1 1

E2F1 ADAMTS1 1 2

E2F1 ADH4 1 2

E2F1 AHI1 1 2

E2F1 AMD1 1 1

E2F1 ANTXR1 1 1

E2F1 AP3D1 1 1

E2F1 AP3M2 1 1

E2F1 ARHGAP19 1 1

E2F1 ARHGAP8 1 1

E2F1 ASF1B 1 2

E2F1 ATF7IP 1 1

E2F1 ATL2 1 1

E2F1 AURKB 1 2

E2F1 BAG3 1 2

E2F1 BIRC5 1 1

E2F1 BORA 1 1

E2F1 BRD7 1 1

E2F1 CADM1 1 1

E2F1 CAPS 1 1

E2F1 CCNA2 1 1

E2F1 CCNB1 1 1

E2F1 CCNE1 1 2

E2F1 CCNF 1 1

E2F1 CDC27 1 1

E2F1 CDC45 1 1

E2F1 CDC6 1 1

E2F1 CDCA3 1 1

E2F1 CDCA7 1 1

E2F1 CDK7 1 1

E2F1 CDKL5 1 2

E2F1 CDKN1B 1 1

E2F1 CDKN2C 1 1

E2F1 CDKN2D 1 1

E2F1 CDKN3 1 1

E2F1 CENPE 1 1

E2F1 CENPF 1 1

E2F1 CHAF1A 1 2

E2F1 CHEK2 1 1

E2F1 CIT 1 1

E2F1 CKAP5 1 1

E2F1 CNIH4 1 1

E2F1 CNOT10 1 1

E2F1 COL7A1 1 1

Table 36 continued

TF TG W # dup

E2F1 COQ6 1 1

E2F1 CTSD 1 2

E2F1 CYTH2 1 1

E2F1 DET1 1 1

E2F1 DHFR 1 1

E2F1 DTL 1 1

E2F1 E2F1 1 1

E2F1 E2F8 1 1

E2F1 EIF4E 1 1

E2F1 FABP1 1 1

E2F1 FAM60A 1 1

E2F1 FANCA 1 1

E2F1 FANCD2 1 2

E2F1 FEN1 1 1

E2F1 FLAD1 1 1

E2F1 FOXM1 1 1

E2F1 FXR1 1 1

E2F1 FYN 1 2

E2F1 G2E3 1 2

E2F1 GAS6 1 1

E2F1 GCLM 1 1

E2F1 GDF15 1 1

E2F1 GINS3 1 1

E2F1 GMNN 1 1

E2F1 GOT1 1 1

E2F1 GPSM2 1 2

E2F1 HELLS 1 2

E2F1 HERPUD2 1 1

E2F1 HIST1H2AC 1 1

E2F1 HIST1H4E 1 1

E2F1 HLA-DOA 1 2

E2F1 HRAS 1 2

E2F1 HRSP12 1 1

E2F1 HSPB8 1 1

E2F1 INSR 1 1

E2F1 ITPR1 1 2

E2F1 KATNA1 1 1

E2F1 KDM5B 1 1

E2F1 KIAA0586 1 1

E2F1 KIF14 1 1

E2F1 KIF20B 1 1

E2F1 KIF23 1 1

E2F1 KIF2C 1 1

E2F1 KIFC1 1 1

E2F1 KRAS 1 2
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Table 36 continued

TF TG W # dup

E2F1 LBR 1 1

E2F1 LPP 1 1

E2F1 LRIF1 1 1

E2F1 LRRC17 1 2

E2F1 MAD2L1 1 1

E2F1 MAN1A2 1 2

E2F1 MAP2K6 1 2

E2F1 MAPK13 1 1

E2F1 MCM8 1 1

E2F1 MDM2 1 1

E2F1 ME3 1 2

E2F1 MEGF9 1 1

E2F1 MELK 1 1

E2F1 MET 1 2

E2F1 MKI67 1 1

E2F1 MND1 1 1

E2F1 MNX1 1 2

E2F1 MRI1 1 1

E2F1 MRPS18B 1 1

E2F1 MSH2 1 1

E2F1 MZF1 1 1

E2F1 NCOA3 1 1

E2F1 NCS1 1 1

E2F1 NDE1 1 1

E2F1 NPAT 1 1

E2F1 NUDT4 1 1

E2F1 NUP160 1 2

E2F1 NUP37 1 1

E2F1 ODF2 1 1

E2F1 ORC3 1 1

E2F1 OSER1 1 1

E2F1 PBK 1 1

E2F1 PDGFA 1 1

E2F1 PKNOX1 1 2

E2F1 PLIN3 1 1

E2F1 PLK1 1 1

E2F1 POC1A 1 1

E2F1 POLA1 1 1

E2F1 POM121 1 1

E2F1 PPP1R2 1 1

E2F1 PPP3CA 1 1

E2F1 PRIM2 1 1

E2F1 PRKAR1A 1 2

E2F1 PSEN1 1 2

E2F1 PTTG1 1 1

Table 36 continued

TF TG W # dup

E2F1 PWP1 1 1

E2F1 QRICH1 1 1

E2F1 RAD18 1 2

E2F1 RAD51 1 1

E2F1 RAD54L 1 1

E2F1 RBBP8 1 1

E2F1 REEP1 1 2

E2F1 RFC2 1 1

E2F1 RFC4 1 1

E2F1 RGS3 1 1

E2F1 RPA2 1 1

E2F1 RRM1 1 2

E2F1 RRM2 1 2

E2F1 RUNX1 1 1

E2F1 SAP30BP 1 1

E2F1 SEPHS1 1 1

E2F1 SGK1 1 1

E2F1 SLBP 1 1

E2F1 SLC44A2 1 1

E2F1 SP1 1 1

E2F1 SRD5A1 1 1

E2F1 SRSF5 1 1

E2F1 STAT5B 1 1

E2F1 STIL 1 1

E2F1 SUCLG2 1 1

E2F1 SYNCRIP 1 1

E2F1 TACC3 1 1

E2F1 TGIF1 1 1

E2F1 THRAP3 1 1

E2F1 TIMP1 1 1

E2F1 TMEM132A 1 1

E2F1 TOMM70A 1 1

E2F1 TOP1 1 1

E2F1 TOP2A 1 1

E2F1 TOP3A 1 1

E2F1 TOPBP1 1 2

E2F1 TRA2A 1 1

E2F1 TRIM45 1 1

E2F1 TRIP13 1 2

E2F1 TROAP 1 1

E2F1 TSG101 1 2

E2F1 TUBB2A 1 1

E2F1 TULP4 1 1

E2F1 TYMS 1 2

E2F1 UACA 1 2
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Table 36 continued

TF TG W # dup

E2F1 UBE2S 1 1

E2F1 UBE2T 1 1

E2F1 UBL3 1 1

E2F1 UBQLN2 1 1

E2F1 UHRF1 1 1

E2F1 USP1 1 1

E2F1 VCAM1 1 1

E2F1 VEGFC 1 1

E2F1 VPS37C 1 1

E2F1 WSB1 1 1

E2F1 YY1 1 1

E2F1 ZBED5 1 1

E2F1 ZBTB7A 1 1

E2F1 ZC3HC1 1 1

E2F1 ZMYM1 1 1

E2F1 ZNF143 1 1

E2F1 ZNF521 1 1

E2F1 ZSCAN5A 1 1

E2F1 ZWINT 1 1

E2F5 ASF1B 1 1

E2F5 BRCA1 1 1

E2F8 E2F1 1 1

FOXM1 ARHGAP8 1 1

FOXM1 AURKB 1 2

FOXM1 BIRC5 1 1

FOXM1 CCNA2 1 1

FOXM1 CCNB1 1 1

FOXM1 CDC25A 1 1

FOXM1 CDC6 1 1

FOXM1 CDKN1B 1 1

FOXM1 CKS1B 1 1

FOXM1 MID1 1 1

FOXM1 PDGFA 1 1

FOXM1 PLK1 1 1

HIF1A ADAMTS1 1 2

HIF1A ARL4A 1 1

HIF1A C6 1 1

HIF1A CDK7 1 1

HIF1A CDKN1B 1 1

HIF1A DNAJB9 1 1

HIF1A DYNLL1 1 1

HIF1A FANCD2 1 1

HIF1A FOXM1 1 1

HIF1A FRZB 1 1

HIF1A GRPEL1 1 1

Table 36 continued

TF TG W # dup

HIF1A HERPUD2 1 1

HIF1A HIF1A 1 1

HIF1A HMMR 1 1

HIF1A INSIG2 1 1

HIF1A KDM5B 1 1

HIF1A MET 1 2

HIF1A MUC1 1 1

HIF1A NLRP2 1 1

HIF1A NR3C1 1 1

HIF1A PCF11 1 1

HIF1A PDXP 1 1

HIF1A PLIN3 1 1

HIF1A POM121 1 1

HIF1A PPP6R3 1 1

HIF1A PRPSAP1 1 1

HIF1A RBM8A 1 1

HIF1A RHOBTB3 1 1

HIF1A RRM2 1 1

HIF1A SAP30 1 1

HIF1A STIL 1 1

HIF1A TFF3 1 1

HIF1A TIMP1 1 1

HIF1A TOMM34 1 1

HIF1A TOP3A 1 1

HIF1A TYMS 1 1

HIF1A VCAM1 1 1

HIF1A VEGFC 1 2

HIF1A WSB1 1 1

HIF1A ZNF217 1 1

HOXB4 NIPBL 1 1

HOXB4 PSEN1 1 1

HOXB4 SP1 1 1

HOXB4 SRF 1 1

HOXB4 TFAP2A 1 1

HOXB4 YY1 1 1

HSF2 HIF1A 1 1

INSM1 INSM1 1 1

KDM5B BRCA1 1 1

KLF6 PTTG1 1 1

KLF9 TFAP2A 1 2

MITF ABCC2 1 1

MITF ACD 1 1

MITF AFAP1 1 1

MITF AHI1 1 2

MITF AMD1 1 1
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Table 36 continued

TF TG W # dup

MITF ANKRD10 1 1

MITF ANP32B 1 1

MITF ANTXR1 1 1

MITF AP3D1 1 1

MITF AP3M2 1 1

MITF ARHGEF39 1 1

MITF ARL4A 1 1

MITF ASF1B 1 2

MITF ASIP 1 1

MITF ATF7IP 1 1

MITF ATL2 1 1

MITF BAG3 1 2

MITF BMP2 1 1

MITF BRCA1 1 1

MITF BTBD3 1 1

MITF BUB3 1 1

MITF C6 1 2

MITF CADM1 1 1

MITF CBX3 1 1

MITF CCNB1 1 1

MITF CCNE1 1 1

MITF CDC16 1 2

MITF CDC25B 1 2

MITF CDC42 1 1

MITF CDC7 1 1

MITF CDKN1B 1 1

MITF CDKN2AIP 1 1

MITF CDKN2C 1 1

MITF CENPA 1 1

MITF CENPM 1 1

MITF CFLAR 1 1

MITF CHEK2 1 1

MITF CIC 1 1

MITF CIT 1 1

MITF CKS2 1 1

MITF CNOT10 1 1

MITF CSGALNACT1 1 1

MITF CTNND1 1 2

MITF CYB5R2 1 1

MITF DDX11 1 1

MITF DEXI 1 1

MITF DKC1 1 1

MITF DMXL2 1 1

MITF DNAJB1 1 2

MITF DNAJB4 1 1

Table 36 continued

TF TG W # dup

MITF DNAJB6 1 1

MITF DNAJB9 1 2

MITF DR1 1 2

MITF DSP 1 2

MITF DUSP4 1 1

MITF DYNLL1 1 1

MITF E2F5 1 1

MITF E2F8 1 1

MITF FADD 1 1

MITF FAM189B 1 1

MITF FAM60A 1 1

MITF FAM64A 1 1

MITF FANCA 1 1

MITF FEM1B 1 1

MITF FEN1 1 1

MITF FKBP1A 1 1

MITF FRZB 1 1

MITF FZR1 1 2

MITF GAS1 1 1

MITF GAS6 1 1

MITF GNB1 1 2

MITF GTF2B 1 1

MITF HAUS5 1 2

MITF HAUS8 1 1

MITF HERPUD2 1 1

MITF HIF1A 1 1

MITF HIST2H2BE 1 1

MITF HOXB4 1 2

MITF HP1BP3 1 1

MITF HRAS 1 1

MITF HSF2 1 1

MITF HSPA8 1 1

MITF IDI2 1 1

MITF INADL 1 1

MITF ITPR3 1 1

MITF IVNS1ABP 1 1

MITF JADE2 1 2

MITF KANK2 1 1

MITF KAT2B 1 1

MITF KBTBD2 1 1

MITF KDELC1 1 1

MITF KDM4A 1 1

MITF KDM5B 1 1

MITF KIFC1 1 1

MITF KLF6 1 1
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Table 36 continued

TF TG W # dup

MITF KLF9 1 2

MITF KPNA2 1 2

MITF LBR 1 1

MITF MAN1A2 1 2

MITF MAPK13 1 1

MITF MBD2 1 1

MITF MBD3 1 2

MITF MCAM 1 1

MITF MCM8 1 1

MITF ME3 1 2

MITF MIS18BP1 1 1

MITF MNT 1 1

MITF MNX1 1 2

MITF MORF4L2 1 1

MITF MSH2 1 1

MITF MTCL1 1 1

MITF MZF1 1 1

MITF NAB1 1 2

MITF NCAPH 1 2

MITF NCOA3 1 1

MITF NCOA5 1 1

MITF NDE1 1 2

MITF NFE2L2 1 2

MITF NFIC 1 1

MITF NPM1 1 1

MITF NSUN3 1 1

MITF OGT 1 1

MITF OSER1 1 1

MITF PAK1IP1 1 1

MITF PANK2 1 1

MITF PCF11 1 1

MITF PDGFA 1 1

MITF PDXP 1 1

MITF PIK3CD 1 2

MITF PKNOX1 1 1

MITF PLIN3 1 1

MITF PLK1 1 1

MITF POC1A 1 1

MITF POLA1 1 1

MITF PPP1R10 1 1

MITF PRIM2 1 1

MITF PRKAR1A 1 2

MITF PRR16 1 1

MITF PSEN1 1 1

MITF PTP4A1 1 1

Table 36 continued

TF TG W # dup

MITF PTTG1 1 1

MITF PWP1 1 1

MITF QRICH1 1 1

MITF RAB3A 1 1

MITF RAN 1 1

MITF RCCD1 1 1

MITF RHEB 1 1

MITF RMI1 1 1

MITF RRM2 1 2

MITF RRP1 1 1

MITF RUNX1 1 1

MITF SAP30 1 1

MITF SAP30BP 1 1

MITF SGK1 1 1

MITF SLC25A36 1 1

MITF SLC38A2 1 2

MITF SMARCB1 1 1

MITF SMTN 1 1

MITF SP1 1 2

MITF SRSF3 1 1

MITF SS18 1 1

MITF SSR3 1 1

MITF STAG1 1 1

MITF STAT1 1 1

MITF SV2B 1 1

MITF SYNCRIP 1 1

MITF TAB2 1 1

MITF TACC3 1 2

MITF TFAP2A 1 1

MITF TGIF1 1 2

MITF TOB2 1 2

MITF TOMM34 1 1

MITF TOP1 1 1

MITF TOP3A 1 1

MITF TRAIP 1 1

MITF TRIP13 1 2

MITF TSC22D1 1 1

MITF TSG101 1 2

MITF TSKU 1 1

MITF TSN 1 1

MITF TTC38 1 1

MITF TUBB2A 1 1

MITF TUBB4B 1 1

MITF TULP4 1 1

MITF TXNRD1 1 2
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Table 36 continued

TF TG W # dup

MITF UACA 1 2

MITF UBE2D3 1 2

MITF UBL3 1 1

MITF UHRF1 1 1

MITF UNG 1 2

MITF USP1 1 1

MITF USP13 1 1

MITF VEGFC 1 1

MITF VPS37C 1 1

MITF WSB1 1 1

MITF YWHAH 1 1

MITF YY1 1 2

MITF ZBED5 1 1

MITF ZC3HC1 1 1

MITF ZCCHC10 1 1

MITF ZNF217 1 1

MITF ZNFX1 1 1

MITF ZNHIT2 1 1

MNX1 CDC42 1 1

MNX1 FYN 1 1

MNX1 GAS6 1 1

MNX1 INSR 1 1

MNX1 KATNA1 1 1

MNX1 MYCBP2 1 1

MNX1 NDE1 1 1

MNX1 PSEN1 1 1

MNX1 RAB23 1 1

MNX1 TGIF1 1 1

NCOA3 BRCA1 1 1

NFE2L2 BRCA1 1 1

NFIA NR3C1 1 1

NFIC HRAS 1 1

NFIC INSR 1 1

NFIC NR3C1 1 1

NFIC TFAP2A 1 1

NFYA CDC25A 1 1

NFYA CDCA8 1 1

NFYA CDKN1B 1 1

NFYA E2F1 1 1

NFYA GADD45A 1 1

NFYA HOXB4 1 1

NFYA MCM8 1 1

NFYA PTTG1 1 1

NFYB CDKN1B 1 1

NFYB HLA-DOA 1 1

Table 36 continued

TF TG W # dup

NFYB HLA-DRA 1 1

NFYB HSPA13 1 1

NR3C1 BRCA1 1 1

NR3C1 NR3C1 1 1

NR3C1 SRF 1 1

NR3C1 STAT1 1 1

PKNOX1 C6 1 1

PKNOX1 GAS1 1 1

PKNOX1 HLA-DOA 1 1

PKNOX1 MITF 1 1

RUNX1 ADAMTS1 1 2

RUNX1 BBS2 1 1

RUNX1 BCLAF1 1 1

RUNX1 BIRC2 1 1

RUNX1 C5orf42 1 1

RUNX1 CDC25B 1 1

RUNX1 CENPF 1 1

RUNX1 CENPL 1 1

RUNX1 CEP70 1 1

RUNX1 CKAP2 1 1

RUNX1 CKS2 1 1

RUNX1 CTR9 1 1

RUNX1 CXCL14 1 1

RUNX1 DEPDC1B 1 1

RUNX1 DNA2 1 1

RUNX1 DNAJC3 1 1

RUNX1 EIF4E 1 1

RUNX1 FAM105A 1 1

RUNX1 FRZB 1 1

RUNX1 FXR1 1 1

RUNX1 GPSM2 1 2

RUNX1 HIST1H2BC 1 1

RUNX1 HSF2 1 1

RUNX1 INADL 1 1

RUNX1 IVNS1ABP 1 1

RUNX1 KLF6 1 1

RUNX1 KPNA2 1 1

RUNX1 LARP7 1 1

RUNX1 LRRC17 1 1

RUNX1 MAD2L1 1 1

RUNX1 MAN1A2 1 1

RUNX1 MAP2K6 1 1

RUNX1 ME3 1 2

RUNX1 MET 1 1

RUNX1 MITF 1 1
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Table 36 continued

TF TG W # dup

RUNX1 MKI67 1 1

RUNX1 MND1 1 1

RUNX1 MTCL1 1 1

RUNX1 NCOA3 1 1

RUNX1 NEIL3 1 2

RUNX1 NSUN3 1 1

RUNX1 NUP98 1 1

RUNX1 ORC3 1 1

RUNX1 PIK3CD 1 2

RUNX1 PPP6R3 1 1

RUNX1 PRIM2 1 1

RUNX1 PTP4A1 1 1

RUNX1 ROCK1 1 1

RUNX1 SGK1 1 1

RUNX1 SLC25A27 1 1

RUNX1 SLC38A2 1 1

RUNX1 SLC39A10 1 1

RUNX1 SPAG5 1 1

RUNX1 STAG1 1 1

RUNX1 SUCLG2 1 1

RUNX1 TRIP13 1 2

RUNX1 TSKU 1 1

RUNX1 UACA 1 1

RUNX1 VCL 1 1

RUNX1 WSB1 1 1

RUNX1 ZPBP 1 1

RUNX1 ZRANB2 1 1

SP1 BIRC5 1 1

SP1 BRCA1 1 1

SP1 BUB1B 1 2

SP1 C4B 1 1

SP1 CASP3 1 1

SP1 CCNA2 1 1

SP1 CCNB1 1 1

SP1 CDC25A 1 2

SP1 CDC25C 1 1

SP1 CDKN1B 1 1

SP1 CDKN2C 1 1

SP1 CDKN2D 1 1

SP1 COL7A1 1 1

SP1 CTSD 1 1

SP1 CXCL14 1 1

SP1 DHFR 1 1

SP1 DKC1 1 1

SP1 E2F1 1 1

Table 36 continued

TF TG W # dup

SP1 EXO1 1 1

SP1 FOXM1 1 1

SP1 FRZB 1 1

SP1 G2E3 1 1

SP1 GAS1 1 1

SP1 GPSM2 1 1

SP1 HIF1A 1 1

SP1 HSD17B11 1 2

SP1 HSPA8 1 1

SP1 ITGB3 1 1

SP1 KIF2C 1 1

SP1 LMO4 1 1

SP1 MCAM 1 1

SP1 MDM2 1 1

SP1 MET 1 1

SP1 NR3C1 1 1

SP1 PDGFA 1 1

SP1 POLA1 1 1

SP1 PSEN1 1 1

SP1 PTTG1 1 1

SP1 RECQL4 1 1

SP1 SP1 1 1

SP1 TFAP2A 1 1

SP1 TIMP1 1 1

SP1 TMPO 1 1

SP1 TYMS 1 1

SP1 UNG 1 1

SP1 VCAM1 1 1

SRF HOXB4 1 1

SRF KPNB1 1 1

SRF STIL 1 1

SRF UBE2S 1 1

STAT1 ABCA7 1 1

STAT1 ABCC2 1 1

STAT1 ADAMTS1 1 2

STAT1 ADCY6 1 1

STAT1 AFAP1 1 1

STAT1 AGFG1 1 1

STAT1 AHI1 1 1

STAT1 AKIRIN2 1 1

STAT1 ANKRD10 1 1

STAT1 ANP32B 1 1

STAT1 ANP32E 1 1

STAT1 ANTXR1 1 1

STAT1 AP3M2 1 1
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Table 36 continued

TF TG W # dup

STAT1 ARHGAP11A 1 1

STAT1 ARHGAP19 1 1

STAT1 ARHGDIB 1 1

STAT1 ARHGEF39 1 1

STAT1 ARL4A 1 1

STAT1 ARL6IP1 1 1

STAT1 ARMC1 1 1

STAT1 ASF1B 1 2

STAT1 ATAD2 1 1

STAT1 ATF7IP 1 1

STAT1 B2M 1 1

STAT1 BAG3 1 1

STAT1 BARD1 1 1

STAT1 BCLAF1 1 1

STAT1 BIRC2 1 1

STAT1 BMP2 1 1

STAT1 BRCA1 1 1

STAT1 BRD7 1 1

STAT1 BTBD3 1 1

STAT1 BUB3 1 1

STAT1 C5orf42 1 1

STAT1 C6 1 2

STAT1 CADM1 1 1

STAT1 CASP3 1 1

STAT1 CBX3 1 1

STAT1 CCDC90B 1 1

STAT1 CCNA2 1 1

STAT1 CCNE1 1 2

STAT1 CDC16 1 1

STAT1 CDC20 1 1

STAT1 CDC25B 1 1

STAT1 CDC25C 1 1

STAT1 CDC27 1 1

STAT1 CDC42EP1 1 1

STAT1 CDC42EP4 1 1

STAT1 CDC45 1 1

STAT1 CDCA7 1 1

STAT1 CDCA7L 1 1

STAT1 CDKN1B 1 1

STAT1 CDKN2AIP 1 1

STAT1 CDKN2C 1 1

STAT1 CDR2 1 1

STAT1 CENPA 1 2

STAT1 CENPE 1 1

STAT1 CENPM 1 1

Table 36 continued

TF TG W # dup

STAT1 CEP44 1 1

STAT1 CFD 1 1

STAT1 CHAF1A 1 1

STAT1 CHEK2 1 1

STAT1 CIC 1 1

STAT1 CIT 1 1

STAT1 CKS2 1 1

STAT1 CLSPN 1 1

STAT1 CNIH4 1 1

STAT1 CNOT10 1 1

STAT1 CREBZF 1 1

STAT1 CRK 1 1

STAT1 CRYBA1 1 1

STAT1 CSGALNACT1 1 1

STAT1 CSH2 1 1

STAT1 CTCF 1 1

STAT1 CTNND1 1 1

STAT1 CTR9 1 1

STAT1 CTSD 1 1

STAT1 CYTH2 1 1

STAT1 CYTH3 1 1

STAT1 DCTN6 1 1

STAT1 DEPDC1B 1 1

STAT1 DHFR 1 1

STAT1 DHX8 1 1

STAT1 DIS3 1 1

STAT1 DLGAP5 1 1

STAT1 DNAJB1 1 1

STAT1 DNAJB6 1 1

STAT1 DNAJB9 1 1

STAT1 DNAJC3 1 1

STAT1 DNAJC6 1 1

STAT1 DR1 1 1

STAT1 DSCC1 1 1

STAT1 DTL 1 1

STAT1 DUSP4 1 1

STAT1 DYNLL1 1 1

STAT1 DZIP3 1 2

STAT1 E2F1 1 1

STAT1 E2F8 1 1

STAT1 ELP3 1 1

STAT1 ERN2 1 1

STAT1 ESPL1 1 1

STAT1 FADD 1 1

STAT1 FAM105A 1 1
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Table 36 continued

TF TG W # dup

STAT1 FAM110A 1 1

STAT1 FAM214A 1 1

STAT1 FAM60A 1 1

STAT1 FAM83D 1 1

STAT1 FANCA 1 1

STAT1 FANCG 1 1

STAT1 FANCI 1 1

STAT1 FEM1B 1 1

STAT1 FEN1 1 1

STAT1 FKBP1A 1 1

STAT1 FLAD1 1 1

STAT1 G2E3 1 2

STAT1 G3BP1 1 1

STAT1 GADD45A 1 1

STAT1 GCSH 1 1

STAT1 GINS3 1 1

STAT1 GMNN 1 1

STAT1 GOT1 1 1

STAT1 GRK6 1 1

STAT1 GTF2B 1 1

STAT1 H1F0 1 1

STAT1 HCP5 1 1

STAT1 HERPUD2 1 1

STAT1 HIF1A 1 1

STAT1 HIST1H2AC 1 1

STAT1 HIST1H4H 1 1

STAT1 HIST2H2BE 1 1

STAT1 HMGCR 1 1

STAT1 HMMR 1 1

STAT1 HN1 1 1

STAT1 HP1BP3 1 1

STAT1 HRAS 1 1

STAT1 HSD17B11 1 2

STAT1 HSF2 1 1

STAT1 HSPA1L 1 1

STAT1 HSPA8 1 1

STAT1 HSPB8 1 1

STAT1 IDO1 1 1

STAT1 IFIT1 1 2

STAT1 IL18BP 1 1

STAT1 ILF2 1 1

STAT1 INADL 1 1

STAT1 INPP5K 1 1

STAT1 INSIG2 1 1

STAT1 INSR 1 1

Table 36 continued

TF TG W # dup

STAT1 INTS7 1 1

STAT1 ITPR3 1 1

STAT1 IVNS1ABP 1 1

STAT1 KAT2B 1 1

STAT1 KATNBL1 1 1

STAT1 KBTBD2 1 1

STAT1 KCTD2 1 1

STAT1 KDM4A 1 1

STAT1 KDM5B 1 1

STAT1 KIAA0101 1 1

STAT1 KIAA1524 1 1

STAT1 KIF11 1 1

STAT1 KIF14 1 1

STAT1 KIF20B 1 1

STAT1 KIF22 1 1

STAT1 KIF5B 1 1

STAT1 KPNA2 1 1

STAT1 KRAS 1 1

STAT1 LBR 1 1

STAT1 LMNB1 1 1

STAT1 LMO4 1 1

STAT1 LRIF1 1 1

STAT1 LRRC17 1 2

STAT1 MAN1A2 1 1

STAT1 MAP2K6 1 1

STAT1 MATN2 1 1

STAT1 MBD2 1 1

STAT1 MCM2 1 1

STAT1 MCM4 1 1

STAT1 MDC1 1 1

STAT1 MDM2 1 1

STAT1 ME3 1 2

STAT1 MED31 1 1

STAT1 MEGF9 1 1

STAT1 MELK 1 1

STAT1 MET 1 2

STAT1 MID1 1 1

STAT1 MKI67 1 1

STAT1 MND1 1 1

STAT1 MNX1 1 2

STAT1 MORF4L2 1 1

STAT1 MTCL1 1 1

STAT1 MZF1 1 1

STAT1 NAB1 1 1

STAT1 NASP 1 1
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Table 36 continued

TF TG W # dup

STAT1 NCAPH 1 2

STAT1 NCOA3 1 1

STAT1 NCOA5 1 1

STAT1 NCS1 1 1

STAT1 NDC80 1 1

STAT1 NDE1 1 1

STAT1 NEIL3 1 2

STAT1 NEK2 1 2

STAT1 NFIC 1 1

STAT1 NFYB 1 1

STAT1 NIPBL 1 1

STAT1 NKTR 1 1

STAT1 NNMT 1 1

STAT1 NSUN3 1 1

STAT1 NUCKS1 1 1

STAT1 NUF2 1 1

STAT1 NUP160 1 1

STAT1 NUP98 1 1

STAT1 OGT 1 1

STAT1 OLR1 1 1

STAT1 OSER1 1 1

STAT1 OSGIN2 1 1

STAT1 OXR1 1 1

STAT1 PAK1IP1 1 1

STAT1 PBK 1 1

STAT1 PDGFA 1 1

STAT1 PIK3CD 1 2

STAT1 PKNOX1 1 1

STAT1 PLIN3 1 1

STAT1 PLK2 1 1

STAT1 POC1A 1 1

STAT1 POLD3 1 1

STAT1 POLQ 1 1

STAT1 POM121 1 1

STAT1 PPP1R2 1 1

STAT1 PPP3CA 1 1

STAT1 PPP6R3 1 1

STAT1 PRC1 1 1

STAT1 PRIM2 1 1

STAT1 PRPSAP1 1 1

STAT1 PRR11 1 1

STAT1 PRR16 1 1

STAT1 PSEN1 1 1

STAT1 PSMG3 1 1

STAT1 PTP4A1 1 1

Table 36 continued

TF TG W # dup

STAT1 PTTG1 1 1

STAT1 RAB23 1 1

STAT1 RAD18 1 2

STAT1 RAD21 1 1

STAT1 RAD51 1 1

STAT1 RAD51AP1 1 1

STAT1 RAD51C 1 1

STAT1 RAD54L 1 1

STAT1 RANGAP1 1 1

STAT1 RBBP8 1 1

STAT1 RCAN1 1 1

STAT1 RCCD1 1 1

STAT1 REEP1 1 2

STAT1 RFC2 1 1

STAT1 RFC4 1 1

STAT1 RGS3 1 1

STAT1 RHEB 1 1

STAT1 RHNO1 1 1

STAT1 RHOBTB3 1 1

STAT1 RMI1 1 1

STAT1 RNPC3 1 1

STAT1 RNPS1 1 1

STAT1 RRM2 1 1

STAT1 RRP1 1 1

STAT1 RSRC2 1 1

STAT1 SAP30 1 1

STAT1 SAP30BP 1 1

STAT1 SDC1 1 2

STAT1 SEPHS1 1 1

STAT1 SERPINB3 1 1

STAT1 SFPQ 1 1

STAT1 SH3GL2 1 2

STAT1 SHC1 1 1

STAT1 SLC22A3 1 2

STAT1 SLC25A36 1 1

STAT1 SLC38A2 1 1

STAT1 SLC39A10 1 1

STAT1 SLC4A1AP 1 1

STAT1 SMARCB1 1 1

STAT1 SMARCD1 1 1

STAT1 SNUPN 1 1

STAT1 SP1 1 1

STAT1 SPAG5 1 1

STAT1 SRD5A1 1 1

STAT1 SRF 1 1
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Table 36 continued

TF TG W # dup

STAT1 SRSF3 1 1

STAT1 SS18 1 1

STAT1 STAG3 1 1

STAT1 STAT5B 1 1

STAT1 STIL 1 2

STAT1 SUCLG2 1 1

STAT1 SV2B 1 1

STAT1 SYNCRIP 1 1

STAT1 TAB2 1 1

STAT1 TACC3 1 1

STAT1 TFAP2A 1 1

STAT1 TFF3 1 1

STAT1 TGIF1 1 1

STAT1 THRAP3 1 1

STAT1 TIMP1 1 1

STAT1 TIPIN 1 1

STAT1 TMPO 1 1

STAT1 TOB2 1 1

STAT1 TOMM34 1 1

STAT1 TOP1 1 1

STAT1 TOP2A 1 1

STAT1 TOP3A 1 1

STAT1 TPX2 1 1

STAT1 TRA2A 1 1

STAT1 TRIP13 1 2

STAT1 TSG101 1 1

STAT1 TSKU 1 1

STAT1 TSN 1 1

STAT1 TTC31 1 1

STAT1 TTF2 1 1

STAT1 TUBA1A 1 1

STAT1 TUBB2A 1 1

STAT1 TULP4 1 1

STAT1 TXNRD1 1 1

STAT1 UACA 1 1

STAT1 UBE2D3 1 1

STAT1 UBL3 1 1

STAT1 UBQLN2 1 1

STAT1 UHRF1 1 1

STAT1 USP1 1 1

STAT1 USP6NL 1 1

STAT1 VCAM1 1 1

STAT1 VEGFC 1 1

STAT1 VPS25 1 1

STAT1 VPS72 1 1

Table 36 continued

TF TG W # dup

STAT1 VTA1 1 1

STAT1 WSB1 1 1

STAT1 YY1 1 1

STAT1 ZBTB7A 1 1

STAT1 ZC3HC1 1 1

STAT1 ZCCHC10 1 1

STAT1 ZNF143 1 1

STAT1 ZNF207 1 1

STAT1 ZNF217 1 1

STAT1 ZNF281 1 1

STAT1 ZNF414 1 1

STAT1 ZNF521 1 1

STAT1 ZNFX1 1 1

STAT1 ZNHIT2 1 1

STAT1 ZPBP 1 1

STAT1 ZRANB2 1 1

STAT1 ZSCAN5A 1 1

STAT1 ZWINT 1 1

STAT5B ADAMTS1 1 1

STAT5B ERN2 1 1

STAT5B HLA-DOA 1 1

STAT5B ITGB3 1 1

STAT5B MET 1 2

STAT5B MUC1 1 1

STAT5B NLRP2 1 1

STAT5B RAD51 1 1

STAT5B VCAM1 1 1

TFAP2A CASP3 1 1

TFAP2A CCNB1 1 1

TFAP2A CDC42 1 1

TFAP2A CDKN1B 1 1

TFAP2A CTNND1 1 1

TFAP2A CTSD 1 2

TFAP2A DHX8 1 1

TFAP2A DSP 1 1

TFAP2A FEM1B 1 1

TFAP2A FRZB 1 1

TFAP2A HSPA8 1 1

TFAP2A INSIG2 1 1

TFAP2A MCAM 1 1

TFAP2A NIPBL 1 1

TFAP2A NR3C1 1 1

TFAP2A PDGFA 1 1

TFAP2A PSEN1 1 1

TFAP2A RECQL4 1 1
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Table 36 continued

TF TG W # dup

TFAP2A SP1 1 1

TFAP2A TFAP2A 1 1

TFAP2A TIMP1 1 1

TFAP2A TOP1 1 1

TFAP2A TSG101 1 1

TFAP2A VEGFC 1 1

TGIF1 MNX1 1 1

YY1 BMP2 1 1

YY1 BRCA1 1 1

YY1 CDC25A 1 1

YY1 CDC6 1 1

YY1 DKC1 1 1

YY1 DNAJB4 1 1

YY1 DTL 1 1

YY1 FAN1 1 1

YY1 GAS1 1 1

YY1 HDAC3 1 1

YY1 HIF1A 1 1

YY1 HLA-DRA 1 1

YY1 HOXB4 1 1

YY1 MCM5 1 1

YY1 NUP160 1 1

YY1 PCNA 1 1

YY1 RAD51 1 1

YY1 SAP30 1 1

YY1 TFAP2A 1 1

ZNF143 BUB1B 1 1

The table gives the list of positive edges in our gold-

standard network. The 1st column represents the TF.

The 2nd column the TG. The 3rd column informs for

each edge if it is present in the network (value of 1) or

if it is absent (value of 0). The present edges are the pos-

itive links, and the absent edges are the negative links.

For each edge, the number in the 4th column provides

the number of times it was repeated before removing the

duplicate edges from the network obtained by combining

Alonso networks and HumanBase networks.
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Table 37: HeLa “gold-standard” network-

Negative links

TF TG W # dup

BRCA1 ADAMTS1 0 1

BRCA1 ASF1B 0 1

BRCA1 AURKB 0 1

BRCA1 BUB1B 0 1

BRCA1 C6 0 1

BRCA1 CCNE1 0 1

BRCA1 CDH24 0 1

BRCA1 CLSPN 0 1

BRCA1 GPSM2 0 1

BRCA1 HLA-DOA 0 1

BRCA1 HOXB4 0 1

BRCA1 INSM1 0 1

BRCA1 LRRC17 0 1

BRCA1 MET 0 1

BRCA1 MNX1 0 1

BRCA1 NEIL3 0 1

BRCA1 PIK3CD 0 1

BRCA1 RAD18 0 1

BRCA1 REEP1 0 1

BRCA1 SDC1 0 1

BRCA1 SH3GL2 0 1

BRCA1 SLC22A3 0 1

BRCA1 STIL 0 1

BRCA1 UBE2C 0 1

CENPA ADAMTS1 0 1

CENPA ADH4 0 1

CENPA ASF1B 0 1

CENPA C6 0 1

CENPA CCNB2 0 1

CENPA CCNE2 0 1

CENPA CDC25B 0 1

CENPA CDH24 0 1

CENPA CDK7 0 1

CENPA CENPE 0 1

CENPA CSGALNACT1 0 1

CENPA CTSD 0 1

CENPA DMXL2 0 1

CENPA DNAJB1 0 1

CENPA DZIP3 0 1

CENPA ELP3 0 1

Table 37 continued

TF TG W # dup

CENPA FAN1 0 1

CENPA FANCG 0 1

CENPA FEN1 0 1

CENPA FRZB 0 1

CENPA G2E3 0 1

CENPA GOT1 0 1

CENPA HIST1H4B 0 1

CENPA HIST1H4E 0 1

CENPA HIST1H4H 0 1

CENPA HLA-DOA 0 1

CENPA HSD17B11 0 1

CENPA IL18BP 0 1

CENPA INSM1 0 1

CENPA ITPR3 0 1

CENPA KIF20B 0 1

CENPA KMO 0 1

CENPA MBD4 0 1

CENPA MCM2 0 1

CENPA MCM6 0 1

CENPA ME3 0 1

CENPA MGAT2 0 1

CENPA NEIL3 0 1

CENPA NUP160 0 1

CENPA PCNA 0 1

CENPA PIK3CD 0 1

CENPA POLD3 0 1

CENPA PRKAR1A 0 1

CENPA PTPN9 0 1

CENPA PYM1 0 1

CENPA RAD18 0 1

CENPA RAD51C 0 1

CENPA RBM8A 0 1

CENPA RERE 0 1

CENPA RHEB 0 1

CENPA RNPS1 0 1

CENPA SFPQ 0 1

CENPA SH3GL2 0 1

CENPA SLC22A3 0 1

CENPA SS18 0 1

CENPA SYNCRIP 0 1

CENPA TOPBP1 0 1

CENPA TRA2A 0 1

CENPA TYMS 0 1

CENPA UNG 0 1

CENPA VCAM1 0 1
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Table 37 continued

TF TG W # dup

CENPA VEGFC 0 1

CREBZF ADAMTS1 0 1

CREBZF ADH4 0 1

CREBZF ASF1B 0 1

CREBZF AURKB 0 1

CREBZF BUB1B 0 1

CREBZF C6 0 1

CREBZF CCNE1 0 1

CREBZF CDH24 0 1

CREBZF CENPA 0 1

CREBZF G2E3 0 1

CREBZF GPSM2 0 1

CREBZF HELLS 0 1

CREBZF HLA-DOA 0 1

CREBZF HOXB4 0 1

CREBZF HSD17B11 0 1

CREBZF IFIT1 0 1

CREBZF INSM1 0 1

CREBZF LRRC17 0 1

CREBZF ME3 0 1

CREBZF MET 0 1

CREBZF MNX1 0 1

CREBZF NCAPH 0 1

CREBZF NEIL3 0 1

CREBZF NEK2 0 1

CREBZF PIK3CD 0 1

CREBZF RAD18 0 1

CREBZF REEP1 0 1

CREBZF SDC1 0 1

CREBZF SH3GL2 0 1

CREBZF STIL 0 1

CREBZF TRIP13 0 1

CTCF ADAMTS1 0 1

CTCF BUB1B 0 1

CTCF CDH24 0 1

CTCF FANCD2 0 1

CTCF HOXB4 0 1

CTCF IL18BP 0 1

CTCF LRRC17 0 1

DR1 ADAMTS1 0 1

DR1 ADH4 0 1

DR1 ARHGAP8 0 1

DR1 ASF1B 0 1

DR1 AURKB 0 1

DR1 BIRC5 0 1

Table 37 continued

TF TG W # dup

DR1 BORA 0 1

DR1 BUB1B 0 1

DR1 C6 0 1

DR1 CCNA2 0 1

DR1 CCNE1 0 1

DR1 CDC25A 0 1

DR1 CDH24 0 1

DR1 CENPF 0 1

DR1 CHEK2 0 1

DR1 CSGALNACT1 0 1

DR1 DMXL2 0 1

DR1 E2F1 0 1

DR1 FAN1 0 1

DR1 FANCD2 0 1

DR1 FRZB 0 1

DR1 G2E3 0 1

DR1 GAS1 0 1

DR1 GPSM2 0 1

DR1 HAUS5 0 1

DR1 HELLS 0 1

DR1 HLA-DOA 0 1

DR1 HOXB4 0 1

DR1 HSD17B11 0 1

DR1 IFIT1 0 1

DR1 IL18BP 0 1

DR1 INSM1 0 1

DR1 ITPR3 0 1

DR1 KDM4A 0 1

DR1 KIF20B 0 1

DR1 KMO 0 1

DR1 LRRC17 0 1

DR1 ME3 0 1

DR1 MET 0 1

DR1 MID1 0 1

DR1 MITF 0 1

DR1 MNX1 0 1

DR1 NEIL3 0 1

DR1 NLRP2 0 1

DR1 NPAT 0 1

DR1 PIK3CD 0 1

DR1 POLQ 0 1

DR1 RAB3A 0 1

DR1 RAD51 0 1

DR1 RECQL4 0 1

DR1 REEP1 0 1
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Table 37 continued

TF TG W # dup

DR1 SDC1 0 1

DR1 SH3GL2 0 1

DR1 SLC22A3 0 1

DR1 SRSF7 0 1

DR1 STIL 0 1

DR1 TFAP2A 0 1

DR1 TRIP13 0 1

DR1 VCAM1 0 1

DR1 VEGFC 0 1

E2F1 ABCA7 0 1

E2F1 AGFG1 0 1

E2F1 B2M 0 1

E2F1 BRD8 0 1

E2F1 CASP8AP2 0 1

E2F1 CCNB2 0 1

E2F1 CCNE2 0 1

E2F1 CDC16 0 1

E2F1 CDC25A 0 1

E2F1 CDC25B 0 1

E2F1 CDH24 0 1

E2F1 CTR9 0 1

E2F1 DNAJB1 0 1

E2F1 DNAJB9 0 1

E2F1 DR1 0 1

E2F1 DSP 0 1

E2F1 DZIP3 0 1

E2F1 FANCG 0 1

E2F1 HMGCR 0 1

E2F1 HOXB4 0 1

E2F1 HSD17B11 0 1

E2F1 IL18BP 0 1

E2F1 INPP5K 0 1

E2F1 INSM1 0 1

E2F1 JADE2 0 1

E2F1 KLF9 0 1

E2F1 KPNA2 0 1

E2F1 KPNB1 0 1

E2F1 MBD2 0 1

E2F1 MBD3 0 1

E2F1 MBD4 0 1

E2F1 MGAT2 0 1

E2F1 MYCBP2 0 1

E2F1 NAB1 0 1

E2F1 NASP 0 1

E2F1 NEIL3 0 1

Table 37 continued

TF TG W # dup

E2F1 NFE2L2 0 1

E2F1 NR3C1 0 1

E2F1 PIK3CD 0 1

E2F1 PTPN9 0 1

E2F1 RAB23 0 1

E2F1 RCAN1 0 1

E2F1 RERE 0 1

E2F1 ROCK1 0 1

E2F1 SDC1 0 1

E2F1 SH3GL2 0 1

E2F1 SLC22A3 0 1

E2F1 SLC38A2 0 1

E2F1 TOB2 0 1

E2F1 TXNRD1 0 1

E2F1 UBE2D3 0 1

E2F1 UNG 0 1

E2F1 VCL 0 1

E2F1 VPS72 0 1

FOXM1 ADH4 0 1

FOXM1 ASF1B 0 1

FOXM1 BUB1B 0 1

FOXM1 C6 0 1

FOXM1 CCNE1 0 1

FOXM1 CDH24 0 1

FOXM1 DZIP3 0 1

FOXM1 FRZB 0 1

FOXM1 G2E3 0 1

FOXM1 GPSM2 0 1

FOXM1 HELLS 0 1

FOXM1 HLA-DOA 0 1

FOXM1 HOXB4 0 1

FOXM1 HSD17B11 0 1

FOXM1 INSM1 0 1

FOXM1 LRRC17 0 1

FOXM1 ME3 0 1

FOXM1 MET 0 1

FOXM1 MNX1 0 1

FOXM1 NEIL3 0 1

FOXM1 PIK3CD 0 1

FOXM1 RAD18 0 1

FOXM1 REEP1 0 1

FOXM1 SDC1 0 1

FOXM1 SH3GL2 0 1

FOXM1 SLC22A3 0 1

FOXM1 STIL 0 1
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Table 37 continued

TF TG W # dup

FOXM1 TRIP13 0 1

HIF1A ADH4 0 1

HIF1A ASF1B 0 1

HIF1A AURKB 0 1

HIF1A BMP2 0 1

HIF1A BUB1B 0 1

HIF1A CCNE1 0 1

HIF1A CDH24 0 1

HIF1A CENPA 0 1

HIF1A DZIP3 0 1

HIF1A G2E3 0 1

HIF1A GPSM2 0 1

HIF1A HAUS5 0 1

HIF1A HELLS 0 1

HIF1A HLA-DOA 0 1

HIF1A HOXB4 0 1

HIF1A HSD17B11 0 1

HIF1A INSM1 0 1

HIF1A LRRC17 0 1

HIF1A ME3 0 1

HIF1A MNX1 0 1

HIF1A NCAPH 0 1

HIF1A NEIL3 0 1

HIF1A NEK2 0 1

HIF1A PIK3CD 0 1

HIF1A RAD18 0 1

HIF1A REEP1 0 1

HIF1A SDC1 0 1

HIF1A SH3GL2 0 1

HIF1A SLC22A3 0 1

HIF1A TRIP13 0 1

HOXB4 ABCA7 0 1

HOXB4 ACD 0 1

HOXB4 ADAMTS1 0 1

HOXB4 ADH4 0 1

HOXB4 AGFG1 0 1

HOXB4 AHI1 0 1

HOXB4 ANTXR1 0 1

HOXB4 AP3D1 0 1

HOXB4 ASF1B 0 1

HOXB4 ATF7IP 0 1

HOXB4 AURKB 0 1

HOXB4 B2M 0 1

HOXB4 BAG3 0 1

HOXB4 BAIAP2 0 1

Table 37 continued

TF TG W # dup

HOXB4 BARD1 0 1

HOXB4 BIRC2 0 1

HOXB4 BIRC5 0 1

HOXB4 BMP2 0 1

HOXB4 BORA 0 1

HOXB4 BRCA1 0 1

HOXB4 BRD7 0 1

HOXB4 BRD8 0 1

HOXB4 BUB1 0 1

HOXB4 BUB1B 0 1

HOXB4 BUB3 0 1

HOXB4 C6 0 1

HOXB4 CADM1 0 1

HOXB4 CASP3 0 1

HOXB4 CASP8AP2 0 1

HOXB4 CCNA2 0 1

HOXB4 CCNB1 0 1

HOXB4 CCNB2 0 1

HOXB4 CCNE1 0 1

HOXB4 CCNE2 0 1

HOXB4 CCNF 0 1

HOXB4 CDC16 0 1

HOXB4 CDC25A 0 1

HOXB4 CDC25B 0 1

HOXB4 CDC27 0 1

HOXB4 CDC42 0 1

HOXB4 CDC42EP1 0 1

HOXB4 CDC42EP4 0 1

HOXB4 CDH24 0 1

HOXB4 CDK7 0 1

HOXB4 CDKL5 0 1

HOXB4 CDKN1B 0 1

HOXB4 CDKN2C 0 1

HOXB4 CDKN2D 0 1

HOXB4 CENPA 0 1

HOXB4 CENPE 0 1

HOXB4 CENPF 0 1

HOXB4 CFLAR 0 1

HOXB4 CHAF1A 0 1

HOXB4 CKAP5 0 1

HOXB4 CLSPN 0 1

HOXB4 CREBZF 0 1

HOXB4 CSGALNACT1 0 1

HOXB4 CTCF 0 1

HOXB4 CTNND1 0 1
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Table 37 continued

TF TG W # dup

HOXB4 CTR9 0 1

HOXB4 CTSD 0 1

HOXB4 DDX11 0 1

HOXB4 DIS3 0 1

HOXB4 DMXL2 0 1

HOXB4 DNAJB1 0 1

HOXB4 DNAJB6 0 1

HOXB4 DNAJB9 0 1

HOXB4 DR1 0 1

HOXB4 DSP 0 1

HOXB4 DTL 0 1

HOXB4 DZIP3 0 1

HOXB4 E2F1 0 1

HOXB4 EIF4E 0 1

HOXB4 ELP3 0 1

HOXB4 ERN2 0 1

HOXB4 EXO1 0 1

HOXB4 FADD 0 1

HOXB4 FAN1 0 1

HOXB4 FANCD2 0 1

HOXB4 FANCG 0 1

HOXB4 FEM1B 0 1

HOXB4 FEN1 0 1

HOXB4 FKBP1A 0 1

HOXB4 FOXM1 0 1

HOXB4 FRZB 0 1

HOXB4 FYN 0 1

HOXB4 FZR1 0 1

HOXB4 G2E3 0 1

HOXB4 GADD45A 0 1

HOXB4 GAS6 0 1

HOXB4 GCLM 0 1

HOXB4 GNB1 0 1

HOXB4 GOT1 0 1

HOXB4 GPSM2 0 1

HOXB4 H2AFX 0 1

HOXB4 HDAC3 0 1

HOXB4 HELLS 0 1

HOXB4 HIF1A 0 1

HOXB4 HIST1H4B 0 1

HOXB4 HIST1H4C 0 1

HOXB4 HIST1H4E 0 1

HOXB4 HIST1H4H 0 1

HOXB4 HLA-DOA 0 1

HOXB4 HMG1 0 1

Table 37 continued

TF TG W # dup

HOXB4 HMGB2 0 1

HOXB4 HMGCR 0 1

HOXB4 HRAS 0 1

HOXB4 HSD17B11 0 1

HOXB4 HSPA8 0 1

HOXB4 IFIT1 0 1

HOXB4 IL18BP 0 1

HOXB4 INPP5K 0 1

HOXB4 INSIG2 0 1

HOXB4 INSM1 0 1

HOXB4 INSR 0 1

HOXB4 INTS7 0 1

HOXB4 ITGB3 0 1

HOXB4 ITPR1 0 1

HOXB4 ITPR3 0 1

HOXB4 JADE2 0 1

HOXB4 KAT2B 0 1

HOXB4 KAT7 0 1

HOXB4 KATNA1 0 1

HOXB4 KDM5B 0 1

HOXB4 KIF11 0 1

HOXB4 KIF20B 0 1

HOXB4 KIF2C 0 1

HOXB4 KLF9 0 1

HOXB4 KMO 0 1

HOXB4 KPNA2 0 1

HOXB4 KPNB1 0 1

HOXB4 KRAS 0 1

HOXB4 LMNA 0 1

HOXB4 LRRC17 0 1

HOXB4 MAD2L1 0 1

HOXB4 MAN1A2 0 1

HOXB4 MAP2K6 0 1

HOXB4 MAPK13 0 1

HOXB4 MBD2 0 1

HOXB4 MBD3 0 1

HOXB4 MBD4 0 1

HOXB4 MCM2 0 1

HOXB4 MCM4 0 1

HOXB4 MCM6 0 1

HOXB4 MDM2 0 1

HOXB4 ME3 0 1

HOXB4 MGAT2 0 1

HOXB4 MID1 0 1

HOXB4 MITF 0 1

323



Table 37 continued

TF TG W # dup

HOXB4 MNX1 0 1

HOXB4 MSH2 0 1

HOXB4 MYCBP2 0 1

HOXB4 NAB1 0 1

HOXB4 NASP 0 1

HOXB4 NCAPD2 0 1

HOXB4 NCAPD3 0 1

HOXB4 NCAPH 0 1

HOXB4 NCOA3 0 1

HOXB4 NDE1 0 1

HOXB4 NEIL3 0 1

HOXB4 NEK2 0 1

HOXB4 NFE2L2 0 1

HOXB4 NLRP2 0 1

HOXB4 NPAT 0 1

HOXB4 NPM1 0 1

HOXB4 NR3C1 0 1

HOXB4 NUP160 0 1

HOXB4 OGT 0 1

HOXB4 PCNA 0 1

HOXB4 PDGFA 0 1

HOXB4 PDXP 0 1

HOXB4 PIK3CD 0 1

HOXB4 PKNOX1 0 1

HOXB4 PLK1 0 1

HOXB4 PLK2 0 1

HOXB4 POLA1 0 1

HOXB4 POLD3 0 1

HOXB4 PPP2CA 0 1

HOXB4 PPP3CA 0 1

HOXB4 PRKAR1A 0 1

HOXB4 PTPN9 0 1

HOXB4 PYM1 0 1

HOXB4 RAB23 0 1

HOXB4 RAB3A 0 1

HOXB4 RAD18 0 1

HOXB4 RAD51C 0 1

HOXB4 RBBP8 0 1

HOXB4 RBM8A 0 1

HOXB4 RCAN1 0 1

HOXB4 RECQL4 0 1

HOXB4 REEP1 0 1

HOXB4 RERE 0 1

HOXB4 RHEB 0 1

HOXB4 RHNO1 0 1

Table 37 continued

TF TG W # dup

HOXB4 RHOBTB3 0 1

HOXB4 RNPS1 0 1

HOXB4 ROCK1 0 1

HOXB4 RPA2 0 1

HOXB4 RRM1 0 1

HOXB4 RRM2 0 1

HOXB4 RUNX1 0 1

HOXB4 SAP30BP 0 1

HOXB4 SDC1 0 1

HOXB4 SFPQ 0 1

HOXB4 SH3GL2 0 1

HOXB4 SHC1 0 1

HOXB4 SLBP 0 1

HOXB4 SLC38A2 0 1

HOXB4 SLC44A2 0 1

HOXB4 SMARCB1 0 1

HOXB4 SMARCD1 0 1

HOXB4 SMC4 0 1

HOXB4 SRSF7 0 1

HOXB4 SS18 0 1

HOXB4 STAT1 0 1

HOXB4 STAT5B 0 1

HOXB4 STIL 0 1

HOXB4 SYNCRIP 0 1

HOXB4 TAB2 0 1

HOXB4 TACC3 0 1

HOXB4 TGIF1 0 1

HOXB4 THRAP3 0 1

HOXB4 TIPIN 0 1

HOXB4 TOB2 0 1

HOXB4 TOP2A 0 1

HOXB4 TOPBP1 0 1

HOXB4 TRA2A 0 1

HOXB4 TRIP13 0 1

HOXB4 TSG101 0 1

HOXB4 TXNRD1 0 1

HOXB4 TYMS 0 1

HOXB4 UACA 0 1

HOXB4 UBE2C 0 1

HOXB4 UBE2D3 0 1

HOXB4 UBE2S 0 1

HOXB4 UNG 0 1

HOXB4 USP1 0 1

HOXB4 USP16 0 1

HOXB4 VCAM1 0 1
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Table 37 continued

TF TG W # dup

HOXB4 VCL 0 1

HOXB4 VPS72 0 1

HOXB4 YWHAH 0 1

HOXB4 ZWINT 0 1

INSM1 ABCA7 0 1

INSM1 ACD 0 1

INSM1 ADH4 0 1

INSM1 AGFG1 0 1

INSM1 AHI1 0 1

INSM1 ASF1B 0 1

INSM1 ATF7IP 0 1

INSM1 AURKB 0 1

INSM1 BAG3 0 1

INSM1 BARD1 0 1

INSM1 BORA 0 1

INSM1 BUB1 0 1

INSM1 BUB1B 0 1

INSM1 C6 0 1

INSM1 CCNA2 0 1

INSM1 CCNB1 0 1

INSM1 CCNB2 0 1

INSM1 CCNE1 0 1

INSM1 CCNE2 0 1

INSM1 CDC25A 0 1

INSM1 CDC25B 0 1

INSM1 CDH24 0 1

INSM1 CENPA 0 1

INSM1 CENPF 0 1

INSM1 CHAF1A 0 1

INSM1 CKAP5 0 1

INSM1 CLSPN 0 1

INSM1 CSGALNACT1 0 1

INSM1 CTSD 0 1

INSM1 DNAJB1 0 1

INSM1 DZIP3 0 1

INSM1 EIF4E 0 1

INSM1 ELP3 0 1

INSM1 FAN1 0 1

INSM1 FANCD2 0 1

INSM1 FEN1 0 1

INSM1 FRZB 0 1

INSM1 G2E3 0 1

INSM1 GCLM 0 1

INSM1 GPSM2 0 1

INSM1 HELLS 0 1

Table 37 continued

TF TG W # dup

INSM1 HIST1H4B 0 1

INSM1 HIST1H4C 0 1

INSM1 HIST1H4E 0 1

INSM1 HIST1H4H 0 1

INSM1 HOXB4 0 1

INSM1 HSD17B11 0 1

INSM1 IFIT1 0 1

INSM1 IL18BP 0 1

INSM1 INSIG2 0 1

INSM1 INTS7 0 1

INSM1 ITGB3 0 1

INSM1 JADE2 0 1

INSM1 KAT2B 0 1

INSM1 KDM4A 0 1

INSM1 KIF11 0 1

INSM1 KIF20B 0 1

INSM1 KIF2C 0 1

INSM1 KLF9 0 1

INSM1 KPNA2 0 1

INSM1 LMNA 0 1

INSM1 LRRC17 0 1

INSM1 MCM2 0 1

INSM1 MCM6 0 1

INSM1 ME3 0 1

INSM1 MGAT2 0 1

INSM1 MID1 0 1

INSM1 NEIL3 0 1

INSM1 NEK2 0 1

INSM1 NLRP2 0 1

INSM1 NUP160 0 1

INSM1 PCNA 0 1

INSM1 PIK3CD 0 1

INSM1 PLK1 0 1

INSM1 POLD3 0 1

INSM1 POLQ 0 1

INSM1 PPP2CA 0 1

INSM1 PRKAR1A 0 1

INSM1 PYM1 0 1

INSM1 RAD18 0 1

INSM1 RAD51C 0 1

INSM1 RBBP8 0 1

INSM1 RBM8A 0 1

INSM1 RHNO1 0 1

INSM1 RNPS1 0 1

INSM1 RRM2 0 1
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Table 37 continued

TF TG W # dup

INSM1 SAP30BP 0 1

INSM1 SDC1 0 1

INSM1 SFPQ 0 1

INSM1 SH3GL2 0 1

INSM1 SLBP 0 1

INSM1 SP1 0 1

INSM1 SRSF7 0 1

INSM1 SS18 0 1

INSM1 STIL 0 1

INSM1 SYNCRIP 0 1

INSM1 TAB2 0 1

INSM1 TFAP2A 0 1

INSM1 THRAP3 0 1

INSM1 TOP2A 0 1

INSM1 TRIP13 0 1

INSM1 TXNRD1 0 1

INSM1 TYMS 0 1

INSM1 UBE2C 0 1

INSM1 UNG 0 1

INSM1 USP1 0 1

INSM1 VEGFC 0 1

INSM1 ZWINT 0 1

KAT7 ADAMTS1 0 1

KAT7 ADH4 0 1

KAT7 ASF1B 0 1

KAT7 AURKB 0 1

KAT7 BIRC5 0 1

KAT7 BORA 0 1

KAT7 BUB1B 0 1

KAT7 C6 0 1

KAT7 CCNA2 0 1

KAT7 CCNE1 0 1

KAT7 CDC25A 0 1

KAT7 CDH24 0 1

KAT7 CHEK2 0 1

KAT7 FANCD2 0 1

KAT7 FRZB 0 1

KAT7 G2E3 0 1

KAT7 GAS1 0 1

KAT7 GPSM2 0 1

KAT7 HAUS5 0 1

KAT7 HELLS 0 1

KAT7 HLA-DOA 0 1

KAT7 HOXB4 0 1

KAT7 HSD17B11 0 1

Table 37 continued

TF TG W # dup

KAT7 IFIT1 0 1

KAT7 IL18BP 0 1

KAT7 INSM1 0 1

KAT7 ITPR3 0 1

KAT7 KDM4A 0 1

KAT7 LRRC17 0 1

KAT7 ME3 0 1

KAT7 MET 0 1

KAT7 MID1 0 1

KAT7 NEIL3 0 1

KAT7 NLRP2 0 1

KAT7 PIK3CD 0 1

KAT7 RAD18 0 1

KAT7 REEP1 0 1

KAT7 SDC1 0 1

KAT7 SH3GL2 0 1

KAT7 SLC22A3 0 1

KAT7 STIL 0 1

KAT7 TRIP13 0 1

KAT7 VCAM1 0 1

KAT7 VEGFC 0 1

KDM5B ADAMTS1 0 1

KDM5B ADH4 0 1

KDM5B ASF1B 0 1

KDM5B AURKB 0 1

KDM5B C6 0 1

KDM5B CCNE1 0 1

KDM5B CDC25A 0 1

KDM5B CDH24 0 1

KDM5B FANCD2 0 1

KDM5B G2E3 0 1

KDM5B GPSM2 0 1

KDM5B HAUS5 0 1

KDM5B HELLS 0 1

KDM5B HLA-DOA 0 1

KDM5B HOXB4 0 1

KDM5B HSD17B11 0 1

KDM5B IL18BP 0 1

KDM5B INSM1 0 1

KDM5B KDM4A 0 1

KDM5B LRRC17 0 1

KDM5B ME3 0 1

KDM5B MET 0 1

KDM5B MNX1 0 1

KDM5B NEIL3 0 1
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Table 37 continued

TF TG W # dup

KDM5B PIK3CD 0 1

KDM5B RAD18 0 1

KDM5B REEP1 0 1

KDM5B SDC1 0 1

KDM5B SLC22A3 0 1

KDM5B STIL 0 1

KDM5B TRIP13 0 1

KLF9 ADAMTS1 0 1

KLF9 ADH4 0 1

KLF9 ARHGAP8 0 1

KLF9 ASF1B 0 1

KLF9 AURKB 0 1

KLF9 BARD1 0 1

KLF9 BIRC5 0 1

KLF9 BMP2 0 1

KLF9 BORA 0 1

KLF9 BUB1 0 1

KLF9 BUB1B 0 1

KLF9 C6 0 1

KLF9 CCNA2 0 1

KLF9 CCNE1 0 1

KLF9 CDC25A 0 1

KLF9 CDH24 0 1

KLF9 CENPA 0 1

KLF9 CHEK2 0 1

KLF9 CLSPN 0 1

KLF9 CSGALNACT1 0 1

KLF9 DDX11 0 1

KLF9 DMXL2 0 1

KLF9 DTL 0 1

KLF9 DZIP3 0 1

KLF9 E2F1 0 1

KLF9 ERN2 0 1

KLF9 FANCD2 0 1

KLF9 GPSM2 0 1

KLF9 HAUS5 0 1

KLF9 HELLS 0 1

KLF9 HLA-DOA 0 1

KLF9 HOXB4 0 1

KLF9 IFIT1 0 1

KLF9 IL18BP 0 1

KLF9 INSM1 0 1

KLF9 ITGB3 0 1

KLF9 ITPR3 0 1

KLF9 KDM4A 0 1

Table 37 continued

TF TG W # dup

KLF9 KIF20B 0 1

KLF9 KMO 0 1

KLF9 LRRC17 0 1

KLF9 ME3 0 1

KLF9 MET 0 1

KLF9 MID1 0 1

KLF9 NCAPH 0 1

KLF9 NLRP2 0 1

KLF9 NPAT 0 1

KLF9 PIK3CD 0 1

KLF9 PLK1 0 1

KLF9 POLQ 0 1

KLF9 RAB3A 0 1

KLF9 RAD18 0 1

KLF9 RAD51 0 1

KLF9 RECQL4 0 1

KLF9 REEP1 0 1

KLF9 SDC1 0 1

KLF9 SH3GL2 0 1

KLF9 SLC22A3 0 1

KLF9 SRSF7 0 1

KLF9 STIL 0 1

KLF9 TAB2 0 1

KLF9 TOP2A 0 1

KLF9 TRIP13 0 1

KLF9 UBE2C 0 1

KLF9 VCAM1 0 1

KLF9 VEGFC 0 1

MBD2 ADAMTS1 0 1

MBD2 ADH4 0 1

MBD2 ARHGAP8 0 1

MBD2 ASF1B 0 1

MBD2 AURKB 0 1

MBD2 BARD1 0 1

MBD2 BIRC5 0 1

MBD2 BMP2 0 1

MBD2 BORA 0 1

MBD2 BUB1 0 1

MBD2 BUB1B 0 1

MBD2 C6 0 1

MBD2 CCNA2 0 1

MBD2 CCNE1 0 1

MBD2 CDC25A 0 1

MBD2 CDH24 0 1

MBD2 CENPA 0 1
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Table 37 continued

TF TG W # dup

MBD2 CENPF 0 1

MBD2 CHEK2 0 1

MBD2 CLSPN 0 1

MBD2 CSGALNACT1 0 1

MBD2 DDX11 0 1

MBD2 DMXL2 0 1

MBD2 DTL 0 1

MBD2 DZIP3 0 1

MBD2 E2F1 0 1

MBD2 ERN2 0 1

MBD2 FANCD2 0 1

MBD2 FRZB 0 1

MBD2 G2E3 0 1

MBD2 GAS1 0 1

MBD2 GPSM2 0 1

MBD2 HAUS5 0 1

MBD2 HELLS 0 1

MBD2 HLA-DOA 0 1

MBD2 HOXB4 0 1

MBD2 HSD17B11 0 1

MBD2 IFIT1 0 1

MBD2 IL18BP 0 1

MBD2 INSM1 0 1

MBD2 ITGB3 0 1

MBD2 ITPR3 0 1

MBD2 KDM4A 0 1

MBD2 KIF20B 0 1

MBD2 KMO 0 1

MBD2 LRRC17 0 1

MBD2 ME3 0 1

MBD2 MET 0 1

MBD2 MID1 0 1

MBD2 MITF 0 1

MBD2 MNX1 0 1

MBD2 NCAPH 0 1

MBD2 NEIL3 0 1

MBD2 NEK2 0 1

MBD2 NLRP2 0 1

MBD2 NPAT 0 1

MBD2 PIK3CD 0 1

MBD2 PLK1 0 1

MBD2 POLQ 0 1

MBD2 RAB3A 0 1

MBD2 RAD18 0 1

MBD2 RAD51 0 1

Table 37 continued

TF TG W # dup

MBD2 RECQL4 0 1

MBD2 REEP1 0 1

MBD2 SDC1 0 1

MBD2 SH3GL2 0 1

MBD2 SLC22A3 0 1

MBD2 SRSF7 0 1

MBD2 STIL 0 1

MBD2 TAB2 0 1

MBD2 TFAP2A 0 1

MBD2 TOP2A 0 1

MBD2 TRIP13 0 1

MBD2 UBE2C 0 1

MBD2 VCAM1 0 1

MBD2 VEGFC 0 1

MBD3 ADAMTS1 0 1

MBD3 ADH4 0 1

MBD3 ARHGAP8 0 1

MBD3 ASF1B 0 1

MBD3 AURKB 0 1

MBD3 BARD1 0 1

MBD3 BIRC5 0 1

MBD3 BMP2 0 1

MBD3 BORA 0 1

MBD3 BUB1 0 1

MBD3 BUB1B 0 1

MBD3 C6 0 1

MBD3 CCNA2 0 1

MBD3 CCNE1 0 1

MBD3 CDC25A 0 1

MBD3 CDH24 0 1

MBD3 CENPA 0 1

MBD3 CENPF 0 1

MBD3 CHEK2 0 1

MBD3 CLSPN 0 1

MBD3 CSGALNACT1 0 1

MBD3 DDX11 0 1

MBD3 DMXL2 0 1

MBD3 DTL 0 1

MBD3 DZIP3 0 1

MBD3 E2F1 0 1

MBD3 ERN2 0 1

MBD3 FAN1 0 1

MBD3 FANCD2 0 1

MBD3 FRZB 0 1

MBD3 G2E3 0 1

328



Table 37 continued

TF TG W # dup

MBD3 GAS1 0 1

MBD3 GPSM2 0 1

MBD3 HAUS5 0 1

MBD3 HELLS 0 1

MBD3 HLA-DOA 0 1

MBD3 HOXB4 0 1

MBD3 HSD17B11 0 1

MBD3 IFIT1 0 1

MBD3 IL18BP 0 1

MBD3 INSM1 0 1

MBD3 ITGB3 0 1

MBD3 ITPR3 0 1

MBD3 KDM4A 0 1

MBD3 KIF20B 0 1

MBD3 KMO 0 1

MBD3 LRRC17 0 1

MBD3 ME3 0 1

MBD3 MID1 0 1

MBD3 MITF 0 1

MBD3 MNX1 0 1

MBD3 NCAPH 0 1

MBD3 NEIL3 0 1

MBD3 NEK2 0 1

MBD3 NLRP2 0 1

MBD3 NPAT 0 1

MBD3 PIK3CD 0 1

MBD3 PLK1 0 1

MBD3 POLQ 0 1

MBD3 RAB3A 0 1

MBD3 RAD18 0 1

MBD3 RAD51 0 1

MBD3 RECQL4 0 1

MBD3 REEP1 0 1

MBD3 SDC1 0 1

MBD3 SH3GL2 0 1

MBD3 SLC22A3 0 1

MBD3 SRSF7 0 1

MBD3 STIL 0 1

MBD3 TAB2 0 1

MBD3 TFAP2A 0 1

MBD3 TOP2A 0 1

MBD3 TRIP13 0 1

MBD3 UBE2C 0 1

MBD3 VCAM1 0 1

MBD3 VEGFC 0 1

Table 37 continued

TF TG W # dup

MBD4 ADAMTS1 0 1

MBD4 ARHGAP8 0 1

MBD4 ASF1B 0 1

MBD4 AURKB 0 1

MBD4 BARD1 0 1

MBD4 BIRC5 0 1

MBD4 BMP2 0 1

MBD4 BORA 0 1

MBD4 BUB1 0 1

MBD4 BUB1B 0 1

MBD4 C6 0 1

MBD4 CCNA2 0 1

MBD4 CCNE1 0 1

MBD4 CDC25A 0 1

MBD4 CDH24 0 1

MBD4 CENPA 0 1

MBD4 CENPF 0 1

MBD4 CHEK2 0 1

MBD4 CLSPN 0 1

MBD4 CSGALNACT1 0 1

MBD4 DDX11 0 1

MBD4 DMXL2 0 1

MBD4 DTL 0 1

MBD4 DZIP3 0 1

MBD4 E2F1 0 1

MBD4 ERN2 0 1

MBD4 FANCD2 0 1

MBD4 FRZB 0 1

MBD4 G2E3 0 1

MBD4 GAS1 0 1

MBD4 GPSM2 0 1

MBD4 HAUS5 0 1

MBD4 HELLS 0 1

MBD4 HLA-DOA 0 1

MBD4 HOXB4 0 1

MBD4 HSD17B11 0 1

MBD4 IFIT1 0 1

MBD4 IL18BP 0 1

MBD4 INSM1 0 1

MBD4 ITGB3 0 1

MBD4 ITPR3 0 1

MBD4 KDM4A 0 1

MBD4 KIF20B 0 1

MBD4 KMO 0 1

MBD4 LRRC17 0 1
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Table 37 continued

TF TG W # dup

MBD4 ME3 0 1

MBD4 MET 0 1

MBD4 MID1 0 1

MBD4 MITF 0 1

MBD4 MNX1 0 1

MBD4 NCAPH 0 1

MBD4 NEIL3 0 1

MBD4 NEK2 0 1

MBD4 NLRP2 0 1

MBD4 NPAT 0 1

MBD4 PIK3CD 0 1

MBD4 PLK1 0 1

MBD4 POLQ 0 1

MBD4 RAB3A 0 1

MBD4 RAD18 0 1

MBD4 RAD51 0 1

MBD4 RECQL4 0 1

MBD4 REEP1 0 1

MBD4 SDC1 0 1

MBD4 SH3GL2 0 1

MBD4 SLC22A3 0 1

MBD4 SRSF7 0 1

MBD4 STIL 0 1

MBD4 TAB2 0 1

MBD4 TFAP2A 0 1

MBD4 TOP2A 0 1

MBD4 TRIP13 0 1

MBD4 UBE2C 0 1

MBD4 VCAM1 0 1

MBD4 VEGFC 0 1

MITF ABCA7 0 1

MITF ADAMTS1 0 1

MITF ADH4 0 1

MITF AGFG1 0 1

MITF AURKB 0 1

MITF B2M 0 1

MITF BRD8 0 1

MITF BUB1B 0 1

MITF CASP8AP2 0 1

MITF CCNB2 0 1

MITF CCNE2 0 1

MITF CDC25A 0 1

MITF CDC27 0 1

MITF CDH24 0 1

MITF CDKL5 0 1

Table 37 continued

TF TG W # dup

MITF CHAF1A 0 1

MITF CKAP5 0 1

MITF CTR9 0 1

MITF CTSD 0 1

MITF DZIP3 0 1

MITF FANCD2 0 1

MITF FANCG 0 1

MITF GPSM2 0 1

MITF HELLS 0 1

MITF HLA-DOA 0 1

MITF HMGCR 0 1

MITF HSD17B11 0 1

MITF IL18BP 0 1

MITF INPP5K 0 1

MITF INSM1 0 1

MITF ITPR1 0 1

MITF KIF11 0 1

MITF KPNB1 0 1

MITF KRAS 0 1

MITF MAP2K6 0 1

MITF MBD4 0 1

MITF MET 0 1

MITF MGAT2 0 1

MITF MYCBP2 0 1

MITF NASP 0 1

MITF NCAPD2 0 1

MITF NCAPD3 0 1

MITF NEIL3 0 1

MITF NEK2 0 1

MITF NR3C1 0 1

MITF NUP160 0 1

MITF PPP3CA 0 1

MITF PTPN9 0 1

MITF RAB23 0 1

MITF RAD18 0 1

MITF RCAN1 0 1

MITF REEP1 0 1

MITF RERE 0 1

MITF ROCK1 0 1

MITF RRM1 0 1

MITF SH3GL2 0 1

MITF SLC22A3 0 1

MITF SMC4 0 1

MITF STIL 0 1

MITF TOPBP1 0 1
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Table 37 continued

TF TG W # dup

MITF TYMS 0 1

MITF VCL 0 1

MITF VPS72 0 1

MNX1 ABCA7 0 1

MNX1 ACD 0 1

MNX1 ADAMTS1 0 1

MNX1 ADH4 0 1

MNX1 AGFG1 0 1

MNX1 AHI1 0 1

MNX1 ANTXR1 0 1

MNX1 AP3D1 0 1

MNX1 ARHGAP8 0 1

MNX1 ASF1B 0 1

MNX1 ATF7IP 0 1

MNX1 AURKB 0 1

MNX1 B2M 0 1

MNX1 BAG3 0 1

MNX1 BAIAP2 0 1

MNX1 BARD1 0 1

MNX1 BIRC2 0 1

MNX1 BIRC5 0 1

MNX1 BMP2 0 1

MNX1 BORA 0 1

MNX1 BRD7 0 1

MNX1 BRD8 0 1

MNX1 BUB1 0 1

MNX1 BUB1B 0 1

MNX1 BUB3 0 1

MNX1 CADM1 0 1

MNX1 CASP3 0 1

MNX1 CASP8AP2 0 1

MNX1 CCNA2 0 1

MNX1 CCNB1 0 1

MNX1 CCNB2 0 1

MNX1 CCNE1 0 1

MNX1 CCNE2 0 1

MNX1 CCNF 0 1

MNX1 CDC25A 0 1

MNX1 CDC25B 0 1

MNX1 CDC27 0 1

MNX1 CDC42EP1 0 1

MNX1 CDC42EP4 0 1

MNX1 CDH24 0 1

MNX1 CDK7 0 1

MNX1 CDKL5 0 1

Table 37 continued

TF TG W # dup

MNX1 CDKN1B 0 1

MNX1 CDKN2C 0 1

MNX1 CDKN2D 0 1

MNX1 CENPA 0 1

MNX1 CENPE 0 1

MNX1 CENPF 0 1

MNX1 CFLAR 0 1

MNX1 CHAF1A 0 1

MNX1 CHEK2 0 1

MNX1 CKAP5 0 1

MNX1 CLSPN 0 1

MNX1 CREBZF 0 1

MNX1 CSGALNACT1 0 1

MNX1 CTCF 0 1

MNX1 CTNND1 0 1

MNX1 CTR9 0 1

MNX1 CTSD 0 1

MNX1 DDX11 0 1

MNX1 DIS3 0 1

MNX1 DMXL2 0 1

MNX1 DNAJB1 0 1

MNX1 DNAJB6 0 1

MNX1 DNAJB9 0 1

MNX1 DR1 0 1

MNX1 DSP 0 1

MNX1 DTL 0 1

MNX1 DZIP3 0 1

MNX1 EIF4E 0 1

MNX1 ELP3 0 1

MNX1 ERN2 0 1

MNX1 EXO1 0 1

MNX1 FADD 0 1

MNX1 FAN1 0 1

MNX1 FANCD2 0 1

MNX1 FANCG 0 1

MNX1 FEM1B 0 1

MNX1 FEN1 0 1

MNX1 FKBP1A 0 1

MNX1 FRZB 0 1

MNX1 FZR1 0 1

MNX1 G2E3 0 1

MNX1 GADD45A 0 1

MNX1 GCLM 0 1

MNX1 GNB1 0 1

MNX1 GOT1 0 1

331



Table 37 continued

TF TG W # dup

MNX1 GPSM2 0 1

MNX1 H2AFX 0 1

MNX1 HAUS5 0 1

MNX1 HDAC3 0 1

MNX1 HIST1H4B 0 1

MNX1 HIST1H4C 0 1

MNX1 HIST1H4E 0 1

MNX1 HIST1H4H 0 1

MNX1 HLA-DOA 0 1

MNX1 HMG1 0 1

MNX1 HMGB2 0 1

MNX1 HMGCR 0 1

MNX1 HOXB4 0 1

MNX1 HRAS 0 1

MNX1 HSD17B11 0 1

MNX1 HSPA8 0 1

MNX1 IFIT1 0 1

MNX1 IL18BP 0 1

MNX1 INPP5K 0 1

MNX1 INSIG2 0 1

MNX1 INTS7 0 1

MNX1 ITGB3 0 1

MNX1 ITPR1 0 1

MNX1 ITPR3 0 1

MNX1 JADE2 0 1

MNX1 KAT2B 0 1

MNX1 KAT7 0 1

MNX1 KDM4A 0 1

MNX1 KDM5B 0 1

MNX1 KIF11 0 1

MNX1 KIF20B 0 1

MNX1 KIF2C 0 1

MNX1 KLF9 0 1

MNX1 KMO 0 1

MNX1 KPNA2 0 1

MNX1 KPNB1 0 1

MNX1 KRAS 0 1

MNX1 LRRC17 0 1

MNX1 MAD2L1 0 1

MNX1 MAN1A2 0 1

MNX1 MAP2K6 0 1

MNX1 MAPK13 0 1

MNX1 MBD2 0 1

MNX1 MBD3 0 1

MNX1 MBD4 0 1

Table 37 continued

TF TG W # dup

MNX1 MCM2 0 1

MNX1 MCM4 0 1

MNX1 MCM6 0 1

MNX1 MDM2 0 1

MNX1 ME3 0 1

MNX1 MET 0 1

MNX1 MGAT2 0 1

MNX1 MID1 0 1

MNX1 MSH2 0 1

MNX1 NAB1 0 1

MNX1 NASP 0 1

MNX1 NCAPD2 0 1

MNX1 NCAPD3 0 1

MNX1 NCAPH 0 1

MNX1 NCOA3 0 1

MNX1 NEIL3 0 1

MNX1 NEK2 0 1

MNX1 NFE2L2 0 1

MNX1 NLRP2 0 1

MNX1 NPAT 0 1

MNX1 NPM1 0 1

MNX1 NR3C1 0 1

MNX1 NUP160 0 1

MNX1 OGT 0 1

MNX1 PCNA 0 1

MNX1 PDXP 0 1

MNX1 PIK3CD 0 1

MNX1 PKNOX1 0 1

MNX1 PLK1 0 1

MNX1 PLK2 0 1

MNX1 POLA1 0 1

MNX1 POLD3 0 1

MNX1 POLQ 0 1

MNX1 PPP2CA 0 1

MNX1 PRKAR1A 0 1

MNX1 PTPN9 0 1

MNX1 PYM1 0 1

MNX1 RAD18 0 1

MNX1 RAD51 0 1

MNX1 RAD51C 0 1

MNX1 RBM8A 0 1

MNX1 RECQL4 0 1

MNX1 REEP1 0 1

MNX1 RERE 0 1

MNX1 RHEB 0 1
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Table 37 continued

TF TG W # dup

MNX1 RHNO1 0 1

MNX1 RHOBTB3 0 1

MNX1 RNPS1 0 1

MNX1 ROCK1 0 1

MNX1 RPA2 0 1

MNX1 RRM1 0 1

MNX1 RRM2 0 1

MNX1 SAP30BP 0 1

MNX1 SFPQ 0 1

MNX1 SH3GL2 0 1

MNX1 SLBP 0 1

MNX1 SLC22A3 0 1

MNX1 SLC38A2 0 1

MNX1 SLC44A2 0 1

MNX1 SMARCD1 0 1

MNX1 SMC4 0 1

MNX1 SP1 0 1

MNX1 SRSF7 0 1

MNX1 SS18 0 1

MNX1 STAT1 0 1

MNX1 STAT5B 0 1

MNX1 STIL 0 1

MNX1 SYNCRIP 0 1

MNX1 TAB2 0 1

MNX1 TACC3 0 1

MNX1 TFAP2A 0 1

MNX1 THRAP3 0 1

MNX1 TIPIN 0 1

MNX1 TOB2 0 1

MNX1 TOP2A 0 1

MNX1 TOPBP1 0 1

MNX1 TRA2A 0 1

MNX1 TRIP13 0 1

MNX1 TXNRD1 0 1

MNX1 TYMS 0 1

MNX1 UACA 0 1

MNX1 UBE2C 0 1

MNX1 UBE2D3 0 1

MNX1 UBE2S 0 1

MNX1 UNG 0 1

MNX1 USP1 0 1

MNX1 USP16 0 1

MNX1 VCL 0 1

MNX1 VEGFC 0 1

MNX1 VPS72 0 1

Table 37 continued

TF TG W # dup

MNX1 YWHAH 0 1

MNX1 YY1 0 1

MNX1 ZWINT 0 1

NCOA3 ADAMTS1 0 1

NCOA3 ADH4 0 1

NCOA3 AURKB 0 1

NCOA3 BUB1B 0 1

NCOA3 C6 0 1

NCOA3 CCNE1 0 1

NCOA3 CDC25A 0 1

NCOA3 CDH24 0 1

NCOA3 FANCD2 0 1

NCOA3 G2E3 0 1

NCOA3 GPSM2 0 1

NCOA3 HAUS5 0 1

NCOA3 HELLS 0 1

NCOA3 HLA-DOA 0 1

NCOA3 HOXB4 0 1

NCOA3 HSD17B11 0 1

NCOA3 IL18BP 0 1

NCOA3 KDM4A 0 1

NCOA3 LRRC17 0 1

NCOA3 ME3 0 1

NCOA3 MET 0 1

NCOA3 MNX1 0 1

NCOA3 NEIL3 0 1

NCOA3 PIK3CD 0 1

NCOA3 RAD18 0 1

NCOA3 REEP1 0 1

NCOA3 SDC1 0 1

NCOA3 SH3GL2 0 1

NCOA3 SLC22A3 0 1

NCOA3 STIL 0 1

NCOA3 TRIP13 0 1

NFE2L2 ADAMTS1 0 1

NFE2L2 ADH4 0 1

NFE2L2 ARHGAP8 0 1

NFE2L2 ASF1B 0 1

NFE2L2 AURKB 0 1

NFE2L2 BARD1 0 1

NFE2L2 BIRC5 0 1

NFE2L2 BMP2 0 1

NFE2L2 BORA 0 1

NFE2L2 BUB1 0 1

NFE2L2 BUB1B 0 1
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Table 37 continued

TF TG W # dup

NFE2L2 C6 0 1

NFE2L2 CCNA2 0 1

NFE2L2 CCNE1 0 1

NFE2L2 CDC25A 0 1

NFE2L2 CDH24 0 1

NFE2L2 CENPA 0 1

NFE2L2 CENPF 0 1

NFE2L2 CHEK2 0 1

NFE2L2 CLSPN 0 1

NFE2L2 DMXL2 0 1

NFE2L2 DTL 0 1

NFE2L2 DZIP3 0 1

NFE2L2 E2F1 0 1

NFE2L2 ERN2 0 1

NFE2L2 FAN1 0 1

NFE2L2 FANCD2 0 1

NFE2L2 FRZB 0 1

NFE2L2 G2E3 0 1

NFE2L2 GAS1 0 1

NFE2L2 GPSM2 0 1

NFE2L2 HAUS5 0 1

NFE2L2 HELLS 0 1

NFE2L2 HLA-DOA 0 1

NFE2L2 HOXB4 0 1

NFE2L2 HSD17B11 0 1

NFE2L2 IFIT1 0 1

NFE2L2 IL18BP 0 1

NFE2L2 INSM1 0 1

NFE2L2 ITGB3 0 1

NFE2L2 ITPR3 0 1

NFE2L2 KDM4A 0 1

NFE2L2 KIF20B 0 1

NFE2L2 KMO 0 1

NFE2L2 LRRC17 0 1

NFE2L2 ME3 0 1

NFE2L2 MET 0 1

NFE2L2 MID1 0 1

NFE2L2 MITF 0 1

NFE2L2 MNX1 0 1

NFE2L2 NCAPH 0 1

NFE2L2 NEIL3 0 1

NFE2L2 NLRP2 0 1

NFE2L2 NPAT 0 1

NFE2L2 PIK3CD 0 1

NFE2L2 PLK1 0 1

Table 37 continued

TF TG W # dup

NFE2L2 POLQ 0 1

NFE2L2 RAB3A 0 1

NFE2L2 RAD18 0 1

NFE2L2 RAD51 0 1

NFE2L2 RECQL4 0 1

NFE2L2 REEP1 0 1

NFE2L2 SDC1 0 1

NFE2L2 SH3GL2 0 1

NFE2L2 SLC22A3 0 1

NFE2L2 SRSF7 0 1

NFE2L2 STIL 0 1

NFE2L2 TAB2 0 1

NFE2L2 TFAP2A 0 1

NFE2L2 TOP2A 0 1

NFE2L2 TRIP13 0 1

NFE2L2 UBE2C 0 1

NFE2L2 VCAM1 0 1

NFE2L2 VEGFC 0 1

NR3C1 ADAMTS1 0 1

NR3C1 ADH4 0 1

NR3C1 ASF1B 0 1

NR3C1 AURKB 0 1

NR3C1 BARD1 0 1

NR3C1 BIRC5 0 1

NR3C1 BORA 0 1

NR3C1 BUB1 0 1

NR3C1 BUB1B 0 1

NR3C1 C6 0 1

NR3C1 CCNE1 0 1

NR3C1 CDH24 0 1

NR3C1 CENPA 0 1

NR3C1 CENPF 0 1

NR3C1 CSGALNACT1 0 1

NR3C1 DDX11 0 1

NR3C1 DMXL2 0 1

NR3C1 DZIP3 0 1

NR3C1 E2F1 0 1

NR3C1 ERN2 0 1

NR3C1 G2E3 0 1

NR3C1 GAS1 0 1

NR3C1 GPSM2 0 1

NR3C1 HAUS5 0 1

NR3C1 HELLS 0 1

NR3C1 HLA-DOA 0 1

NR3C1 HOXB4 0 1
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Table 37 continued

TF TG W # dup

NR3C1 HSD17B11 0 1

NR3C1 INSM1 0 1

NR3C1 ITGB3 0 1

NR3C1 KDM4A 0 1

NR3C1 LRRC17 0 1

NR3C1 ME3 0 1

NR3C1 MET 0 1

NR3C1 MITF 0 1

NR3C1 MNX1 0 1

NR3C1 NCAPH 0 1

NR3C1 NEIL3 0 1

NR3C1 NEK2 0 1

NR3C1 NLRP2 0 1

NR3C1 NPAT 0 1

NR3C1 PIK3CD 0 1

NR3C1 POLQ 0 1

NR3C1 RAB3A 0 1

NR3C1 RAD18 0 1

NR3C1 REEP1 0 1

NR3C1 SDC1 0 1

NR3C1 SH3GL2 0 1

NR3C1 SRSF7 0 1

NR3C1 STIL 0 1

NR3C1 TRIP13 0 1

NR3C1 UBE2C 0 1

PKNOX1 ADAMTS1 0 1

PKNOX1 ADH4 0 1

PKNOX1 ARHGAP8 0 1

PKNOX1 AURKB 0 1

PKNOX1 BARD1 0 1

PKNOX1 BIRC5 0 1

PKNOX1 BMP2 0 1

PKNOX1 BORA 0 1

PKNOX1 BUB1 0 1

PKNOX1 BUB1B 0 1

PKNOX1 CCNA2 0 1

PKNOX1 CCNE1 0 1

PKNOX1 CDC25A 0 1

PKNOX1 CDH24 0 1

PKNOX1 CENPA 0 1

PKNOX1 CENPF 0 1

PKNOX1 CHEK2 0 1

PKNOX1 CLSPN 0 1

PKNOX1 CSGALNACT1 0 1

PKNOX1 DDX11 0 1

Table 37 continued

TF TG W # dup

PKNOX1 DMXL2 0 1

PKNOX1 DTL 0 1

PKNOX1 DZIP3 0 1

PKNOX1 E2F1 0 1

PKNOX1 ERN2 0 1

PKNOX1 FAN1 0 1

PKNOX1 FANCD2 0 1

PKNOX1 FRZB 0 1

PKNOX1 G2E3 0 1

PKNOX1 GPSM2 0 1

PKNOX1 HAUS5 0 1

PKNOX1 HOXB4 0 1

PKNOX1 HSD17B11 0 1

PKNOX1 IFIT1 0 1

PKNOX1 IL18BP 0 1

PKNOX1 INSM1 0 1

PKNOX1 ITGB3 0 1

PKNOX1 ITPR3 0 1

PKNOX1 KDM4A 0 1

PKNOX1 KIF20B 0 1

PKNOX1 LRRC17 0 1

PKNOX1 ME3 0 1

PKNOX1 MET 0 1

PKNOX1 MID1 0 1

PKNOX1 MNX1 0 1

PKNOX1 NCAPH 0 1

PKNOX1 NEIL3 0 1

PKNOX1 NEK2 0 1

PKNOX1 NLRP2 0 1

PKNOX1 NPAT 0 1

PKNOX1 PIK3CD 0 1

PKNOX1 PLK1 0 1

PKNOX1 POLQ 0 1

PKNOX1 RAB3A 0 1

PKNOX1 RAD18 0 1

PKNOX1 RAD51 0 1

PKNOX1 RECQL4 0 1

PKNOX1 REEP1 0 1

PKNOX1 SDC1 0 1

PKNOX1 SH3GL2 0 1

PKNOX1 SLC22A3 0 1

PKNOX1 SRSF7 0 1

PKNOX1 STIL 0 1

PKNOX1 TAB2 0 1

PKNOX1 TFAP2A 0 1
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Table 37 continued

TF TG W # dup

PKNOX1 TOP2A 0 1

PKNOX1 TRIP13 0 1

PKNOX1 UBE2C 0 1

PKNOX1 VCAM1 0 1

PKNOX1 VEGFC 0 1

RUNX1 ADH4 0 1

RUNX1 ASF1B 0 1

RUNX1 AURKB 0 1

RUNX1 BUB1B 0 1

RUNX1 C6 0 1

RUNX1 CCNE1 0 1

RUNX1 CDC25A 0 1

RUNX1 CDH24 0 1

RUNX1 CENPA 0 1

RUNX1 DZIP3 0 1

RUNX1 FANCD2 0 1

RUNX1 G2E3 0 1

RUNX1 HAUS5 0 1

RUNX1 HELLS 0 1

RUNX1 HLA-DOA 0 1

RUNX1 HSD17B11 0 1

RUNX1 IL18BP 0 1

RUNX1 INSM1 0 1

RUNX1 MNX1 0 1

RUNX1 NCAPH 0 1

RUNX1 NEK2 0 1

RUNX1 RAD18 0 1

RUNX1 REEP1 0 1

RUNX1 SDC1 0 1

RUNX1 SH3GL2 0 1

RUNX1 SLC22A3 0 1

RUNX1 STIL 0 1

SP1 ADAMTS1 0 1

SP1 ADH4 0 1

SP1 ASF1B 0 1

SP1 AURKB 0 1

SP1 C6 0 1

SP1 CDH24 0 1

SP1 CENPA 0 1

SP1 DZIP3 0 1

SP1 FANCD2 0 1

SP1 HAUS5 0 1

SP1 HELLS 0 1

SP1 HLA-DOA 0 1

SP1 HOXB4 0 1

Table 37 continued

TF TG W # dup

SP1 IL18BP 0 1

SP1 INSM1 0 1

SP1 LRRC17 0 1

SP1 ME3 0 1

SP1 MITF 0 1

SP1 MNX1 0 1

SP1 NCAPH 0 1

SP1 NEIL3 0 1

SP1 NEK2 0 1

SP1 PIK3CD 0 1

SP1 RAB3A 0 1

SP1 RAD18 0 1

SP1 REEP1 0 1

SP1 SDC1 0 1

SP1 SLC22A3 0 1

SP1 STIL 0 1

SP1 TRIP13 0 1

SRF ADH4 0 1

SRF ASF1B 0 1

SRF AURKB 0 1

SRF BMP2 0 1

SRF BUB1B 0 1

SRF C6 0 1

SRF CCNE1 0 1

SRF CDH24 0 1

SRF DZIP3 0 1

SRF G2E3 0 1

SRF GPSM2 0 1

SRF HAUS5 0 1

SRF HELLS 0 1

SRF HLA-DOA 0 1

SRF HSD17B11 0 1

SRF INSM1 0 1

SRF ITGB3 0 1

SRF LRRC17 0 1

SRF ME3 0 1

SRF MET 0 1

SRF MNX1 0 1

SRF NCAPH 0 1

SRF NEIL3 0 1

SRF NEK2 0 1

SRF PIK3CD 0 1

SRF RAD18 0 1

SRF REEP1 0 1

SRF SDC1 0 1
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Table 37 continued

TF TG W # dup

SRF SH3GL2 0 1

SRF TRIP13 0 1

STAT1 ADH4 0 1

STAT1 AURKB 0 1

STAT1 BUB1B 0 1

STAT1 CDH24 0 1

STAT1 GPSM2 0 1

STAT1 HAUS5 0 1

STAT1 HELLS 0 1

STAT1 HLA-DOA 0 1

STAT1 HOXB4 0 1

STAT1 INSM1 0 1

STAT5B ADH4 0 1

STAT5B ASF1B 0 1

STAT5B AURKB 0 1

STAT5B BIRC5 0 1

STAT5B BUB1B 0 1

STAT5B C6 0 1

STAT5B CCNE1 0 1

STAT5B CDH24 0 1

STAT5B CENPA 0 1

STAT5B CHEK2 0 1

STAT5B CSGALNACT1 0 1

STAT5B DDX11 0 1

STAT5B DZIP3 0 1

STAT5B G2E3 0 1

STAT5B GPSM2 0 1

STAT5B HAUS5 0 1

STAT5B HELLS 0 1

STAT5B HOXB4 0 1

STAT5B HSD17B11 0 1

STAT5B INSM1 0 1

STAT5B KIF20B 0 1

STAT5B LRRC17 0 1

STAT5B ME3 0 1

STAT5B MNX1 0 1

STAT5B NCAPH 0 1

STAT5B NEIL3 0 1

STAT5B NEK2 0 1

STAT5B PIK3CD 0 1

STAT5B POLQ 0 1

STAT5B RAB3A 0 1

STAT5B RAD18 0 1

STAT5B RECQL4 0 1

STAT5B REEP1 0 1

Table 37 continued

TF TG W # dup

STAT5B SDC1 0 1

STAT5B SH3GL2 0 1

STAT5B SLC22A3 0 1

STAT5B STIL 0 1

STAT5B TRIP13 0 1

TFAP2A ABCA7 0 1

TFAP2A ADAMTS1 0 1

TFAP2A ADH4 0 1

TFAP2A AGFG1 0 1

TFAP2A AHI1 0 1

TFAP2A ASF1B 0 1

TFAP2A AURKB 0 1

TFAP2A B2M 0 1

TFAP2A BAG3 0 1

TFAP2A BMP2 0 1

TFAP2A BRD8 0 1

TFAP2A BUB1B 0 1

TFAP2A C6 0 1

TFAP2A CCNB2 0 1

TFAP2A CCNE1 0 1

TFAP2A CCNE2 0 1

TFAP2A CDC16 0 1

TFAP2A CDC25B 0 1

TFAP2A CDC27 0 1

TFAP2A CDH24 0 1

TFAP2A CDKL5 0 1

TFAP2A CENPA 0 1

TFAP2A CHAF1A 0 1

TFAP2A CKAP5 0 1

TFAP2A CTR9 0 1

TFAP2A DNAJB1 0 1

TFAP2A DNAJB9 0 1

TFAP2A DR1 0 1

TFAP2A FANCG 0 1

TFAP2A G2E3 0 1

TFAP2A GAS1 0 1

TFAP2A GPSM2 0 1

TFAP2A HAUS5 0 1

TFAP2A HELLS 0 1

TFAP2A HLA-DOA 0 1

TFAP2A HMGCR 0 1

TFAP2A HOXB4 0 1

TFAP2A HSD17B11 0 1

TFAP2A INPP5K 0 1

TFAP2A INSM1 0 1
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Table 37 continued

TF TG W # dup

TFAP2A ITPR3 0 1

TFAP2A JADE2 0 1

TFAP2A KIF11 0 1

TFAP2A KLF9 0 1

TFAP2A KPNA2 0 1

TFAP2A KPNB1 0 1

TFAP2A KRAS 0 1

TFAP2A LRRC17 0 1

TFAP2A MAN1A2 0 1

TFAP2A MAP2K6 0 1

TFAP2A MBD2 0 1

TFAP2A MBD3 0 1

TFAP2A MBD4 0 1

TFAP2A ME3 0 1

TFAP2A MET 0 1

TFAP2A MGAT2 0 1

TFAP2A MNX1 0 1

TFAP2A MYCBP2 0 1

TFAP2A NAB1 0 1

TFAP2A NASP 0 1

TFAP2A NCAPD2 0 1

TFAP2A NCAPD3 0 1

TFAP2A NCAPH 0 1

TFAP2A NDE1 0 1

TFAP2A NEIL3 0 1

TFAP2A NFE2L2 0 1

TFAP2A NUP160 0 1

TFAP2A PIK3CD 0 1

TFAP2A PKNOX1 0 1

TFAP2A PPP3CA 0 1

TFAP2A PRKAR1A 0 1

TFAP2A PTPN9 0 1

TFAP2A RAB23 0 1

TFAP2A RAD18 0 1

TFAP2A RCAN1 0 1

TFAP2A REEP1 0 1

TFAP2A RERE 0 1

TFAP2A ROCK1 0 1

TFAP2A RRM1 0 1

TFAP2A RRM2 0 1

TFAP2A SDC1 0 1

TFAP2A SH3GL2 0 1

TFAP2A SLC22A3 0 1

TFAP2A SLC38A2 0 1

TFAP2A SMC4 0 1

Table 37 continued

TF TG W # dup

TFAP2A STIL 0 1

TFAP2A TACC3 0 1

TFAP2A TGIF1 0 1

TFAP2A TOB2 0 1

TFAP2A TRIP13 0 1

TFAP2A TXNRD1 0 1

TFAP2A UACA 0 1

TFAP2A UBE2D3 0 1

TFAP2A UNG 0 1

TFAP2A VCL 0 1

TFAP2A VPS72 0 1

TGIF1 ADAMTS1 0 1

TGIF1 ADH4 0 1

TGIF1 ARHGAP8 0 1

TGIF1 ASF1B 0 1

TGIF1 AURKB 0 1

TGIF1 BARD1 0 1

TGIF1 BIRC5 0 1

TGIF1 BMP2 0 1

TGIF1 BORA 0 1

TGIF1 BUB1 0 1

TGIF1 BUB1B 0 1

TGIF1 C6 0 1

TGIF1 CCNA2 0 1

TGIF1 CCNE1 0 1

TGIF1 CDC25A 0 1

TGIF1 CDH24 0 1

TGIF1 CENPA 0 1

TGIF1 CENPF 0 1

TGIF1 CHEK2 0 1

TGIF1 CLSPN 0 1

TGIF1 CSGALNACT1 0 1

TGIF1 DDX11 0 1

TGIF1 DMXL2 0 1

TGIF1 DTL 0 1

TGIF1 DZIP3 0 1

TGIF1 E2F1 0 1

TGIF1 ERN2 0 1

TGIF1 FAN1 0 1

TGIF1 FANCD2 0 1

TGIF1 FRZB 0 1

TGIF1 G2E3 0 1

TGIF1 GAS1 0 1

TGIF1 GPSM2 0 1

TGIF1 HAUS5 0 1
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Table 37 continued

TF TG W # dup

TGIF1 HELLS 0 1

TGIF1 HLA-DOA 0 1

TGIF1 HOXB4 0 1

TGIF1 HSD17B11 0 1

TGIF1 IFIT1 0 1

TGIF1 IL18BP 0 1

TGIF1 INSM1 0 1

TGIF1 ITGB3 0 1

TGIF1 ITPR3 0 1

TGIF1 KDM4A 0 1

TGIF1 KIF20B 0 1

TGIF1 KMO 0 1

TGIF1 LRRC17 0 1

TGIF1 ME3 0 1

TGIF1 MID1 0 1

TGIF1 MITF 0 1

TGIF1 NCAPH 0 1

TGIF1 NEIL3 0 1

TGIF1 NEK2 0 1

TGIF1 NLRP2 0 1

TGIF1 NPAT 0 1

TGIF1 PIK3CD 0 1

TGIF1 PLK1 0 1

TGIF1 POLQ 0 1

TGIF1 RAB3A 0 1

TGIF1 RAD18 0 1

TGIF1 RAD51 0 1

TGIF1 RECQL4 0 1

TGIF1 REEP1 0 1

TGIF1 SDC1 0 1

TGIF1 SH3GL2 0 1

TGIF1 SLC22A3 0 1

TGIF1 SRSF7 0 1

TGIF1 STIL 0 1

TGIF1 TAB2 0 1

TGIF1 TFAP2A 0 1

TGIF1 TOP2A 0 1

TGIF1 TRIP13 0 1

TGIF1 UBE2C 0 1

TGIF1 VCAM1 0 1

TGIF1 VEGFC 0 1

YY1 ADAMTS1 0 1

YY1 ADH4 0 1

YY1 ASF1B 0 1

YY1 AURKB 0 1

Table 37 continued

TF TG W # dup

YY1 BUB1B 0 1

YY1 C6 0 1

YY1 CCNE1 0 1

YY1 CDH24 0 1

YY1 CENPA 0 1

YY1 DZIP3 0 1

YY1 G2E3 0 1

YY1 GPSM2 0 1

YY1 HAUS5 0 1

YY1 HELLS 0 1

YY1 HLA-DOA 0 1

YY1 HSD17B11 0 1

YY1 INSM1 0 1

YY1 LRRC17 0 1

YY1 ME3 0 1

YY1 MET 0 1

YY1 MITF 0 1

YY1 MNX1 0 1

YY1 NCAPH 0 1

YY1 NEIL3 0 1

YY1 NEK2 0 1

YY1 PIK3CD 0 1

YY1 RAD18 0 1

YY1 REEP1 0 1

YY1 SDC1 0 1

YY1 SH3GL2 0 1

YY1 SLC22A3 0 1

YY1 STIL 0 1

YY1 TRIP13 0 1

The table gives the list of negative edges in our gold stan-

dard network. The 1st column represents the TF. The 2nd

column the TG. The 3rd column informs for each edge, if

it is present in the network (value of 1) or if it is absent

(value of 0). The present edges are the positive links and

the absent edges are the negative links. For each edge, the

number in the 4th column provides the number of times

it was repeated before removing the duplicate edges from

the network obtained by combining Alonso networks and

HumanBase networks.
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Table 38: Duplicate regulatory interaction from TRRUST and RegNetwork

TF TG Number duplicate

SP1 MET 4

E2F1 CCNA2 3

E2F1 CCNE1 2

E2F1 CCNE2 2

E2F1 DHFR 2

E2F1 NPAT 2

E2F1 POLA1 2

HIF1A CDKN1B 2

HIF1A PDGFA 2

HIF1A TIMP1 2

HIF1A VEGFC 2

NFE2L2 TXNRD1 2

SP1 TYMS 2

STAT1 VEGFC 2

TFAP2A ITPR1 2

YY1 TOP3A 2

The table gives the edges that are repeated in the network obtained after merging the network from

TRRUST and RegNetwork databases. The 1st column represents the TF. The 2nd column the TG.

The 3rd column informs for each edge, its number of repetitions.

Table 39: Edges duplicated in our mouse regulatory network

TF TG # dup

ENSMUSP00000001326 ENSMUSP00000079324 4

ENSMUSP00000001326 ENSMUSP00000111102 4

ENSMUSP00000001326 ENSMUSP00000111103 4

ENSMUSP00000001326 ENSMUSP00000117856 4

ENSMUSP00000001326 ENSMUSP00000118755 4

ENSMUSP00000001326 ENSMUSP00000121923 4

ENSMUSP00000126143 ENSMUSP00000079324 4

ENSMUSP00000126143 ENSMUSP00000111102 4

ENSMUSP00000126143 ENSMUSP00000111103 4

ENSMUSP00000126143 ENSMUSP00000117856 4

ENSMUSP00000126143 ENSMUSP00000118755 4

ENSMUSP00000126143 ENSMUSP00000121923 4

ENSMUSP00000127445 ENSMUSP00000079324 4

ENSMUSP00000127445 ENSMUSP00000111102 4

ENSMUSP00000127445 ENSMUSP00000111103 4

ENSMUSP00000127445 ENSMUSP00000117856 4

ENSMUSP00000127445 ENSMUSP00000118755 4

ENSMUSP00000127445 ENSMUSP00000121923 4

ENSMUSP00000127714 ENSMUSP00000079324 4

ENSMUSP00000127714 ENSMUSP00000111102 4
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Table 39 continued from previous page

TF TG # dup

ENSMUSP00000127714 ENSMUSP00000111103 4

ENSMUSP00000127714 ENSMUSP00000117856 4

ENSMUSP00000127714 ENSMUSP00000118755 4

ENSMUSP00000127714 ENSMUSP00000121923 4

ENSMUSP00000129638 ENSMUSP00000079324 4

ENSMUSP00000129638 ENSMUSP00000111102 4

ENSMUSP00000129638 ENSMUSP00000111103 4

ENSMUSP00000129638 ENSMUSP00000117856 4

ENSMUSP00000129638 ENSMUSP00000118755 4

ENSMUSP00000129638 ENSMUSP00000121923 4

ENSMUSP00000130747 ENSMUSP00000079324 4

ENSMUSP00000130747 ENSMUSP00000111102 4

ENSMUSP00000130747 ENSMUSP00000111103 4

ENSMUSP00000130747 ENSMUSP00000117856 4

ENSMUSP00000130747 ENSMUSP00000118755 4

ENSMUSP00000130747 ENSMUSP00000121923 4

ENSMUSP00000000894 ENSMUSP00000029270 3

ENSMUSP00000000894 ENSMUSP00000118239 3

ENSMUSP00000000894 ENSMUSP00000142946 3

ENSMUSP00000099434 ENSMUSP00000029270 3

ENSMUSP00000099434 ENSMUSP00000118239 3

ENSMUSP00000099434 ENSMUSP00000142946 3

ENSMUSP00000000894 ENSMUSP00000006856 2

ENSMUSP00000000894 ENSMUSP00000022218 2

ENSMUSP00000000894 ENSMUSP00000029866 2

ENSMUSP00000000894 ENSMUSP00000048709 2

ENSMUSP00000000894 ENSMUSP00000103658 2

ENSMUSP00000000894 ENSMUSP00000103960 2

ENSMUSP00000000894 ENSMUSP00000117662 2

ENSMUSP00000000894 ENSMUSP00000130693 2

ENSMUSP00000000894 ENSMUSP00000145532 2

ENSMUSP00000001326 ENSMUSP00000026846 2

ENSMUSP00000001326 ENSMUSP00000123377 2

ENSMUSP00000001326 ENSMUSP00000142970 2

ENSMUSP00000001326 ENSMUSP00000143001 2

ENSMUSP00000001326 ENSMUSP00000143540 2

ENSMUSP00000001326 ENSMUSP00000143552 2

ENSMUSP00000021530 ENSMUSP00000003115 2

ENSMUSP00000021530 ENSMUSP00000009530 2

ENSMUSP00000021530 ENSMUSP00000033919 2

ENSMUSP00000021530 ENSMUSP00000038870 2

ENSMUSP00000021530 ENSMUSP00000065832 2

ENSMUSP00000021530 ENSMUSP00000075463 2

ENSMUSP00000021530 ENSMUSP00000106521 2

ENSMUSP00000021530 ENSMUSP00000106522 2

ENSMUSP00000021530 ENSMUSP00000110999 2

ENSMUSP00000021530 ENSMUSP00000145056 2
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Table 39 continued from previous page

TF TG # dup

ENSMUSP00000021530 ENSMUSP00000148210 2

ENSMUSP00000021692 ENSMUSP00000002891 2

ENSMUSP00000021692 ENSMUSP00000099729 2

ENSMUSP00000021692 ENSMUSP00000113057 2

ENSMUSP00000021692 ENSMUSP00000113653 2

ENSMUSP00000021692 ENSMUSP00000115727 2

ENSMUSP00000021787 ENSMUSP00000032192 2

ENSMUSP00000021787 ENSMUSP00000144880 2

ENSMUSP00000021787 ENSMUSP00000145177 2

ENSMUSP00000021787 ENSMUSP00000145339 2

ENSMUSP00000021787 ENSMUSP00000145522 2

ENSMUSP00000021787 ENSMUSP00000145526 2

ENSMUSP00000021787 ENSMUSP00000148284 2

ENSMUSP00000066743 ENSMUSP00000033919 2

ENSMUSP00000066743 ENSMUSP00000148210 2

ENSMUSP00000073041 ENSMUSP00000085581 2

ENSMUSP00000099434 ENSMUSP00000006856 2

ENSMUSP00000099434 ENSMUSP00000022218 2

ENSMUSP00000099434 ENSMUSP00000029866 2

ENSMUSP00000099434 ENSMUSP00000048709 2

ENSMUSP00000099434 ENSMUSP00000103658 2

ENSMUSP00000099434 ENSMUSP00000103960 2

ENSMUSP00000099434 ENSMUSP00000117662 2

ENSMUSP00000099434 ENSMUSP00000130693 2

ENSMUSP00000099434 ENSMUSP00000145532 2

ENSMUSP00000099733 ENSMUSP00000020484 2

ENSMUSP00000099733 ENSMUSP00000151409 2

ENSMUSP00000099733 ENSMUSP00000151629 2

ENSMUSP00000099733 ENSMUSP00000151825 2

ENSMUSP00000099733 ENSMUSP00000152046 2

ENSMUSP00000105822 ENSMUSP00000032192 2

ENSMUSP00000105822 ENSMUSP00000144880 2

ENSMUSP00000105822 ENSMUSP00000145177 2

ENSMUSP00000105822 ENSMUSP00000145339 2

ENSMUSP00000105822 ENSMUSP00000145522 2

ENSMUSP00000105822 ENSMUSP00000145526 2

ENSMUSP00000105822 ENSMUSP00000148284 2

ENSMUSP00000106088 ENSMUSP00000003115 2

ENSMUSP00000106088 ENSMUSP00000009530 2

ENSMUSP00000106088 ENSMUSP00000033919 2

ENSMUSP00000106088 ENSMUSP00000038870 2

ENSMUSP00000106088 ENSMUSP00000065832 2

ENSMUSP00000106088 ENSMUSP00000075463 2

ENSMUSP00000106088 ENSMUSP00000106521 2

ENSMUSP00000106088 ENSMUSP00000106522 2

ENSMUSP00000106088 ENSMUSP00000110999 2

ENSMUSP00000106088 ENSMUSP00000145056 2

342



Table 39 continued from previous page

TF TG # dup

ENSMUSP00000106088 ENSMUSP00000148210 2

ENSMUSP00000106091 ENSMUSP00000003115 2

ENSMUSP00000106091 ENSMUSP00000009530 2

ENSMUSP00000106091 ENSMUSP00000033919 2

ENSMUSP00000106091 ENSMUSP00000038870 2

ENSMUSP00000106091 ENSMUSP00000065832 2

ENSMUSP00000106091 ENSMUSP00000075463 2

ENSMUSP00000106091 ENSMUSP00000106521 2

ENSMUSP00000106091 ENSMUSP00000106522 2

ENSMUSP00000106091 ENSMUSP00000110999 2

ENSMUSP00000106091 ENSMUSP00000145056 2

ENSMUSP00000106091 ENSMUSP00000148210 2

ENSMUSP00000122403 ENSMUSP00000043909 2

ENSMUSP00000126143 ENSMUSP00000026846 2

ENSMUSP00000126143 ENSMUSP00000123377 2

ENSMUSP00000126143 ENSMUSP00000142970 2

ENSMUSP00000126143 ENSMUSP00000143001 2

ENSMUSP00000126143 ENSMUSP00000143540 2

ENSMUSP00000126143 ENSMUSP00000143552 2

ENSMUSP00000127445 ENSMUSP00000026846 2

ENSMUSP00000127445 ENSMUSP00000123377 2

ENSMUSP00000127445 ENSMUSP00000142970 2

ENSMUSP00000127445 ENSMUSP00000143001 2

ENSMUSP00000127445 ENSMUSP00000143540 2

ENSMUSP00000127445 ENSMUSP00000143552 2

ENSMUSP00000127714 ENSMUSP00000026846 2

ENSMUSP00000127714 ENSMUSP00000123377 2

ENSMUSP00000127714 ENSMUSP00000142970 2

ENSMUSP00000127714 ENSMUSP00000143001 2

ENSMUSP00000127714 ENSMUSP00000143540 2

ENSMUSP00000127714 ENSMUSP00000143552 2

ENSMUSP00000129638 ENSMUSP00000026846 2

ENSMUSP00000129638 ENSMUSP00000123377 2

ENSMUSP00000129638 ENSMUSP00000142970 2

ENSMUSP00000129638 ENSMUSP00000143001 2

ENSMUSP00000129638 ENSMUSP00000143540 2

ENSMUSP00000129638 ENSMUSP00000143552 2

ENSMUSP00000130747 ENSMUSP00000026846 2

ENSMUSP00000130747 ENSMUSP00000123377 2

ENSMUSP00000130747 ENSMUSP00000142970 2

ENSMUSP00000130747 ENSMUSP00000143001 2

ENSMUSP00000130747 ENSMUSP00000143540 2

ENSMUSP00000130747 ENSMUSP00000143552 2

ENSMUSP00000139746 ENSMUSP00000033919 2

ENSMUSP00000139746 ENSMUSP00000148210 2

ENSMUSP00000140482 ENSMUSP00000033919 2

ENSMUSP00000140482 ENSMUSP00000148210 2
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Table 39 continued from previous page

TF TG # dup

ENSMUSP00000140518 ENSMUSP00000033919 2

ENSMUSP00000140518 ENSMUSP00000148210 2

ENSMUSP00000140643 ENSMUSP00000033919 2

ENSMUSP00000140643 ENSMUSP00000148210 2

ENSMUSP00000140875 ENSMUSP00000033919 2

ENSMUSP00000140875 ENSMUSP00000148210 2

ENSMUSP00000141125 ENSMUSP00000033919 2

ENSMUSP00000141125 ENSMUSP00000148210 2

ENSMUSP00000141132 ENSMUSP00000033919 2

ENSMUSP00000141132 ENSMUSP00000148210 2

ENSMUSP00000141144 ENSMUSP00000033919 2

ENSMUSP00000141144 ENSMUSP00000148210 2

ENSMUSP00000153149 ENSMUSP00000032192 2

ENSMUSP00000153149 ENSMUSP00000144880 2

ENSMUSP00000153149 ENSMUSP00000145177 2

ENSMUSP00000153149 ENSMUSP00000145339 2

ENSMUSP00000153149 ENSMUSP00000145522 2

ENSMUSP00000153149 ENSMUSP00000145526 2

ENSMUSP00000153149 ENSMUSP00000148284 2

ENSMUSP00000153271 ENSMUSP00000032192 2

ENSMUSP00000153271 ENSMUSP00000144880 2

ENSMUSP00000153271 ENSMUSP00000145177 2

ENSMUSP00000153271 ENSMUSP00000145339 2

ENSMUSP00000153271 ENSMUSP00000145522 2

ENSMUSP00000153271 ENSMUSP00000145526 2

ENSMUSP00000153271 ENSMUSP00000148284 2

ENSMUSP00000153522 ENSMUSP00000032192 2

ENSMUSP00000153522 ENSMUSP00000144880 2

ENSMUSP00000153522 ENSMUSP00000145177 2

ENSMUSP00000153522 ENSMUSP00000145339 2

ENSMUSP00000153522 ENSMUSP00000145522 2

ENSMUSP00000153522 ENSMUSP00000145526 2

ENSMUSP00000153522 ENSMUSP00000148284 2

ENSMUSP00000153667 ENSMUSP00000032192 2

ENSMUSP00000153667 ENSMUSP00000144880 2

ENSMUSP00000153667 ENSMUSP00000145177 2

ENSMUSP00000153667 ENSMUSP00000145339 2

ENSMUSP00000153667 ENSMUSP00000145522 2

ENSMUSP00000153667 ENSMUSP00000145526 2

ENSMUSP00000153667 ENSMUSP00000148284 2

ENSMUSP00000153667 ENSMUSP00000145522 2

ENSMUSP00000153667 ENSMUSP00000145526 2

ENSMUSP00000153667 ENSMUSP00000148284 2

The table gives the edges that are repeated in the Mouse regulatory network after merging networks

from TRRUST, RegNetwork and STRINGDB databases. The 1st column represents the TF. The 2nd

column the TG. The 3rd column informs for each edge, its number of repetitions.
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C.2 Other

This section gives more details on BENIN’s execution time on the ENCS speed clus-

ter. Table 40 gives BENIN’s execution time on different network sizes, and without

integrating any prior knowledge data. We performed all the computations on the

ENCS speed cluster. It has sixteen, 32-core nodes, each with 512 GB of memory

and approximately 1 TB of volatile-scratch disk space. We requested 25 cores for

all computations. Note that size 10 and 100 networks are obtained from DREAM4

challenge data, and the size 628 network is the human network data.

Table 40: BENIN execution time on different network sizes

# Genes # TFs # Time points Execution time

10 8 105 125s

100 41 210 931s

628 54 48 5335s

The table reports BENIN’s execution time on a ENCS speed cluster, for different network sizes and different expression

datasets. The speed cluster has sixteen, 32-core nodes, each with 512 GB of memory and approximately 1 TB of

volatile-scratch disk space. We requested 25 cores for all computations. Note that size 10 and 100 networks are

obtained from DREAM4 challenge data, and the size 628 network is the human network data. The 1st column gives

the number of genes in the network/dataset. The 2nd column gives the number of TFs in the network/dataset.

The 3rd column gives the number of time points in the time-series expression dataset. The 4th column gives BENIN

execution time without considering any prior knowledge data.
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