GENE REGULATORY NETWORK INFERENCE USING MACHINE LEARNING TECHNIQUES

Stephanie Kamgnia Wonkap

A Thesis
IN
THE DEPARTMENT
OF
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy(Computer Science) Concordia University

Montréal, Québec, Canada

August 262020
© Stephanie Kamgnia Wonkap, 2020

Concordia University
 School of Graduate Studies

This is to certify that the thesis prepared
By: Miss. Stephanie Kamgnia Wonkap
Entitled: Gene Regulatory Network Inference using Machine Learning Techniques
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to originality and quality.

Signed by the final examining committee:

Dr. Liangzhu Wang	Chair
Dr. Mathieu Blanchette	External Examiner

Dr. Mathieu Blanchette
Examiner

Dr. Leila Kosseim

Examiner
Dr. Malcolm Whiteway

Examiner
Dr. Volker Haarslev

Drervisor
Dr. Gregory Butler

Approved
Dr. Leila Kosseim,
Graduate Program Director

August 26th, 2020
Dr. Amir Asif, Dean
Date of Defence
Faculty of Engineering and Computer Science

Abstract

Gene Regulatory Network Inference using Machine Learning Techniques

Stephanie Kamgnia Wonkap, Ph.D.
Concordia University, 2020

Systems Biology is a field that models complex biological systems in order to better understand the working of cells and organisms. One of the systems modeled is the gene regulatory network that plays the critical role of controlling an organism's response to changes in its environment. Ideally, we would like a model of the complete gene regulatory network. In recent years, several advances in technology have permitted the collection of an unprecedented amount and variety of data such as genomes, gene expression data, time-series data, and perturbation data. This has stimulated research into computational methods that reconstruct, or infer, models of the gene regulatory network from the data. Many solutions have been proposed, yet there remain open challenges in utilising the range of available data as it is inherently noisy, and must be integrated by the inference techniques. The thesis seeks to contribute to this discourse by investigating challenges of performance, scale, and data integration.

We propose a new algorithm BENIN that views network inference as feature selection to address issues of scale, that uses elastic net regression for improved performance, and adapts elastic net to integrate different types of biological data. The BENIN algorithm is benchmarked on a synthetic dataset from the DREAM4 challenge, and on real expression data for the human HeLa cell cycle. On the DREAM4 dataset BENIN out-performed all DREAM4 competitors on the size 100 subchallenge, and is also competitive with more recent state-of-the-art methods. Moreover, on the HeLa cell cycle data, BENIN could infer known regulatory interactions and propose new interactions that warrant further experimental investigation.

Keys words: gene regulatory network, network inference, feature selection, elastic net regression.

Acknowledgments

First of all, I would like to thank my academic supervisor, Dr. Gregory Butler, for his precious advice that helped me accomplish this project and become a better researcher. Moreover, I would like to thank him for providing me with financial support.

I would like to thank my mother, Bernadette, and my father, Emmanuel, for showing the path through my Ph.D. Your prayer, love, and support helped go through these tough times. Thank you for your education that made me the strong woman I am today.

I would like to thank my sister Nathalie who is my model since our childhood. I made it I am a doctor like you. Thank you to my sister Helene who was always there, our phone calls, and our discussion helped during all these years. I will not forget my sister Diana, my nephews, my older brother Armand and two little brothers Joan and Gracien. Every one of you plays an essential role in this journey.

To you my beloved husband Samir, you were my rock through this journey. Thank you for holding my back, for being such a good confident and my motivation. I think that if you were not there, I would not be able to accomplish this. I thank God for having you in my life.

Last but not the less, my colleagues from office 11.411. I will never forget all these good times: the sushi time, our potluck dinner, our late discussions and all our fun time. I will miss these times and I wish you all the best in your life.

Contents

List of Figures vii
List of Tables ix
List of Terms and Abbreviations 1
1 Introduction 1
1.1 Gene Regulation 2
1.2 Gene Regulatory Network 5
1.3 Problem Statement 9
1.4 Motivation 10
1.5 Challenge in Gene Regulatory Network Inference 12
1.6 Limitation of State-of-the-Art 14
1.7 Contribution 14
1.8 Organization of the Thesis 18
2 Background 19
2.1 Background for Network Inference 19
2.2 Feature Selection 30
2.3 Resources Available for Network Inference 33
2.4 Assesment and Validation of Network Inference 39
2.5 Computational Methods 45
2.6 Conclusion 78
3 BENIN 80
3.1 The BENIN Algorithm 81
3.2 Experimental Validation 91
3.3 Computational Complexity 97
3.4 Results and Discussion 98
3.5 Conclusion 119
4 BENIN: Application to the HeLa Cell cycle 121
4.1 Introduction 121
4.2 Background 124
4.3 Building a gold-standard 132
4.4 Material 137
4.5 Method 146
4.6 Results and Discussion 158
4.7 Conclusion 186
5 Conclusion 188
5.1 Recap 188
5.2 Contributions 189
5.3 Limitations 192
5.4 Future Work 192
Bibliography 193
A Background 227
A. 1 IUPAC degenerate base symbols 227
B BENIN 229
B. 1 BENIN parameters setting 229
B. 2 BENIN results 229
C BENIN: Application to Human HeLa Cell Cycle GRN 235
C. 1 Data 235
C. 2 Other 345

List of Figures

1 Organization of an operon in prokaryotes. 3
2 Tryptophan regulation in E. coli 4
3 Eukaryotic gene structure 6
4 Chromatin in eukaryotic cells 7
5 Gene regulatory network abstraction 8
6 Different representations of binding sites 29
7 DNA microarray experiment 35
8 RNA-seq experiment 37
9 Confusion matrix 41
10 Procedure to identify regulon 51
11 Step for regulatory network inference. 58
12 Example DREAM4 Input for BENIN 84
13 Effect of the noise in location data 99
14 Influence of BENIN parameters 100
15 A subnetwork from 100-nodes network 4 109
16 The Eukaryotic cell cycle 125
17 From nucleus to DNA sequence 126
18 Steps for retrieving knockdown data 140
19 Steps for collecting promoter sequences 142
20 Steps for collecting protein sequences 144
22 Snapshot of FIMO output 153
24 Inference of GRN controlling HeLa cell cycle through BENIN 157
21 BED file and BETA-minus output 160
23 Differential Expression analysis output 161
25 Effect of τ on BENIN performance. 161
26 Precision-recall curves for BENIN 163
27 ROC curves for BENIN 165
28 Precision-recall curves for BENIN +orthology 167
29 ROC curves for BENIN +orthology 167
30 Orthologous Regulatory Network From mouse 180
31 Edge Distribution 181
32 Global score Distribution for the DREAM4 size 100 subchallenge. 233
33 Global score Distribution for the DREAM4 size 10 subchallenge. 234

List of Tables

1 Motifs Finding Methods 52
2 Reverse-Engineering Methods 71
3 Description of DREAM4 size 10 and size 100 networks 91
4 Motifs and errors type 94
5 BENIN execution time on the DREAM4 96
6 DREAM4 size 100 performance with KO expression 103
7 DREAM4 size 100 performance with Location data 104
8 Global score on the DREAM4 size 100 subchallenge 105
9 DREAM4 size 10 performance with Location data 106
10 DREAM4 size 10 performance with KO expression 106
11 Global score on the DREAM4 size 10 subchallenge 107
12 Motif prediction confidence (median rank) 113
13 Cell cycle Transcription Factors 127
14 Characteristics of our Human "gold-standard" network 136
15 Missing transcription factors in our "gold-standard network" 137
16 Mouse gene regulatory network 146
17 BENIN execution time 159
18 BENIN performance 162
19 Transcription factor and target gene 168
20 Inference from BENIN + combined+max 174
21 Inference from BENIN +orthology 182
22 List of Degenerate IUPAC base symbols 227
23 BENIN General Parameter setting 230
24 BENIN + KO parameters on size 100 subchallenge 230
25 BENIN + Location parameters setting on size 100 subchallenge 231
26 BENIN + KO parameters on size 10 subchallenge 231
27 BENIN + Location data parameters on size 10 subchallenge 232
28 List of HeLa Peak Files 238
29 List of knockdown datasets 239
30 Information Motif and Transcription Factor 240
Cell cycle genes 249
32 Cell Cycle Transcription factor 251
33 Knockdown Data from Gene Expression Omnibus 268
34
Edges repetition in networks from HumanBase 270
35 Edges repetition in Garcia networks 286
36
HeLa "gold-standard" network - Positive links 302
37 HeLa "gold-standard" network- Negative links 319
38 Duplicate regulatory interaction from TRRUST and RegNetwork 340
39 Edges duplicated in our mouse regulatory network 340
40 BENIN execution time on different network sizes 345

List of Terms and Abbreviations

ACC Accurary.
AUPR Area Under the Precision Recall curve.

AUROC Area under Receiver Operating Characteristic.

Biological pathway series of actions among molecules in a cell that leads to a certain product or a change in a cell

BLAST Basic Local Alignment Search Tool. It is a sequence database searching program which compares a nucleotide or protein query sequence against all sequences in a database.

ChIP Chromatin ImmunoPrecipitation

DNA DeoxyriboNucleic Acid. It is a long double stranded molecule made of nucleotides A, C, G and T that contains the genetic information necessary for the development, functioning and the reproduction of all known living thing.

DREAM Dialogue for Reverse Engineering Assessments and Methods.

EM Expectation Maximisation.

ENet Elastic Net.

Enzyme Macro molecule that accelerates, or catalyzes, chemical reactions.
E-value Expected value, is the number of different alignments with scores equivalent to or better than threshold that are expected to occur by chance in a database search. The lower the E-value, the more significant the score.

FASTA Text-based format for representing either nucleotide sequences or amino acid, in which base pairs or amino acids are represented using single-letter codes.

FDR False Discovery Rate.
FFL Feed Forward Loop.
FN False Negative.
FP False Positive.

Gap Refer to substitution or indel in a sequence, where indel can be insertion or deletion in the sequence.

Gene expression profile Describes the expression levels of a gene across a set of samples obtained for a particular array experiment design.

GENIE3 GEne Network Inference with Ensemble of trees.

GO Gene Ontology. It is a major bioinformatics initiative to unify the representation of gene and gene product attributes across all species.

GRN Gene Regulatory Network.
IUPAC International Union of Pure and Applied Chemistry. It is the universallyrecognized authority on chemical nomenclature and terminology.

LASSO Least Absolute Shrinkage and Selection Operator.

MEME Multiple EM for Motif Elicitation.
NPV Negative Predictive Value.

Non-coding DNA Components of DNA that do not encode protein sequences or RNA.

ODE Ordinary Differential Equation.
OLS Ordinary Least Square.

Ontology Formal naming and definition of the types, properties, and interrelationships of the entities that really or fundamentally exist for a particular domain of interest.

Operon Set of genes situated next to each other and under the control of the same promoter and operator.

Organelle Specialized subunit within the cell that has a specific function.
Ortholog Orthologous sequences are sequences occurring in different species that diverge from a common ancestral sequence after speciation, the evolutionary process in which new species arise.

Paralogy Sequences are paralogous if they were created by a duplication event within the genome.

Phenotype Observable characteristics of the organism such as eye's color/shape, the hair's color and so on.

Phylogenetic tree Diagram that depicts the lines of evolutionary descent of different species, organisms, or genes from a common ancestor.

PK Prior Knowledge.
PPI Proteins Proteins Interaction.
PPV Positive Predictive Value.
PWM Position Weight Matrix.

Regulatory sequence Segment of non-coding DNA that is capable to control the increase or decrease of the expression of specific genes within an organism.

Regulon Set of genes or operons regulated by the same transcription factor.
RNA Ribonucleic acid, is a single stranded molecule made of nucleotides A, C, G and U . It plays a major role in protein synthesis as it is involved in the transcription, decoding, and translation of the genetic code to produce proteins.

SPC Specificity.

System Biology Computational and mathematical modeling of complex biological network.

TG Target Gene. It is a gene that is regulated by a transcription factor is called targeted gene of this transcription factor.

TF Transcription Factor.
TFBS Transcription Factor Binding Site.
TIGRESS Trustful Inference of Gene REgulation using Stability Selection.
TN True Negative.
TP True Positive.
TPR True Positive Rate.
TFBS Transciption Factor Binding Site.
VAR Vector AutoRegressive.
Enhancer TO DO
Silencer TO DO

Histone TO DO
Chromatin TO DO
ANOVA Analysis Of Variance

MRMR Minimum Redundancy Maximum Relevance
LASSO Least Absolute Shrinkage and Selection Operator
DEG Differentially Expressed Gene
ChiP-seq Chromatin immunoprecipitation followed by sequencing
DBN Dynamic Bayesian Network
DAG Directed Acyclic Graph

DBD DNA Binding Domain
CDK Cyclin Dependent Kinase
Sister Chromatid copies of a chromosome held at the centromere
Spindle fibers aggregate of microtubules that are formed during the cell cycle and that move the chromosomes.

Microtubule protein filament that ressembles hollow tube.
KO Knockout
KD Knock down
KNN K nearest neighbor

Peak calling computational method used to identify areas in a genome that have been enriched with aligned reads after performing ChIP-sequencing experiment

AWG ENCODE Analysis Working Group
IC Information Content
MICA Most Informative Common Ancestor
TSS Transcription Start Site
FDR False Discovery Rate
EM Expectation Maximization
k -mer sequence of length k
MCMC Markov Chain Monte Carlo
BMA Bayesian Model Averaging
GGM Graphical Gaussian Model
FPR False Positive Rate
DPI data processing inequality
GEO Gene Expression Omnibus

Chapter 1

Introduction

All living organisms on the earth interact with other organisms and are regularly exposed to environmental factors in their habitats. These factors are varied, encompassing temperature, oxygen level, nutrient and water availability, and in some cases, the presence of toxic elements. In response to variations in these factors, organisms need to develop features to survive. These features take the form of gene expression and regulation. The following thesis engages with the complexities of this process. The thesis will be grounded on three key questions: "What is gene expression?" "What does it means to regulate the expression of a gene?" and finally, "How do these processes work?"
System Biology, a discipline that is deeply rooted in biology, physics, chemistry, as well as in computer science and mathematics, provides a mechanism for modeling the complex networks of biologically relevant entities (DNA, RNA, proteins, or cells) and in so doing, provides an avenue for answering questions such as "How does a biological component interact with other components and its environment?", "What regulates its function and in what manner?", "What kind of properties emerge from these interactions?" and so one [240]. The gene regulatory network (GRN) is an example of these complex networks. The GRN offers a path to understand parameters that contribute to a properly functioning cell. Moreover, GRN helps understanding interactions between different organisms as well as the interaction with their habitats. Thus, there is a strong need to model such a complex network for scientists to have abstract reasoning about its dynamics. Even though we now witness highthroughput experiments that produce a plethora of data, the question of modeling
and reconstructing a GRN remains largely unsolved and a big challenge in Systems Biology. The following thesis will contribute to the discourse on the problems of GRN reconstruction.

1.1 Gene Regulation

1.1.1 Prokaryotic Gene Regulation

A gene is a portion of DNA responsible for the physical and inheritable characteristics or the phenotype (e.g., the shape, the color, or the size) of all living organisms. It is the way biological information is transmitted through generations and the basis of heredity. Each organism has a certain number of genes, e.g E. coli, a bacteria, has between 4,000 and 5,500 known genes. Inside the cells of every living thing, after receiving a signal triggered by distinct factors, each gene is transcribed into mRNA, a kind of RNA, by an enzyme called RNA-polymerase through a process known as transcription. Through another process known as translation, the mRNA is then transformed into a polypeptide chain, a component of proteins responsible for the observable characteristics of the organism. Gene expression is the process (transcription + translation) in which the biological information contained in a gene is used to synthesize the gene products, which are principally proteins.

To better present and understand the gene regulation process, we will consider the prokaryotes' case, as it is the easiest to comprehend. A eukaryote is an organism whose cells contain a nucleus and other organelles enclosed within membranes, e.g human. A prokaryote is a single-celled organism that lacks membrane-bound organelles such as bacteria. Usually, an organism does not produce all proteins simultaneously because different proteins are involved in different cellular processes. It is important to control how much a gene is expressed at any given time and when a gene is needed. Any disruption to this control can yield serious consequences. For example, it is important for E. coli to control the levels of tryptophan (Trp), an essential amino acid for its survival. Hence, if its environment is lacking tryptophan, E. coli needs to synthesize the proteins necessary to produce the tryptophan. One can thus define gene regulation as the set of mechanisms used by the cell to control (increase or decrease)
the products of gene expression. Figure 2 shows an example the Trp regulation in E. coli. In this figure, there are two types of genes. There are transcription factors (TFs) or regulatory genes, which are genes whose products control other genes' expression. When those proteins increase the gene expression, they are called activators. Alternatively, when proteins inhibit the expression of genes, we call them repressors. In Figure 2, there are also target genes (TGs) that are structural genes that encode proteins not involved in regulation. Gene regulation will manifest differently depending on whether the organism is a prokaryote or a eukaryote, as discussed in Section 1.1.2.

In prokaryotes we identify specific regions of genes: operons, promoter regions and transcription factor binding sites (TFBS). Genes that produce proteins involved in the same process and are controlled by the same regulatory genes are located next to each other in clusters called operons. RNA polymerase will bind to a promoter region, a sub-region of the non-coding region upstream in an operon. A transcription factor binding site (TFBS), also known as an operator, is another noncoding sub-region where TFs will bind to allow gene regulation. Figure 1 summarizes the structure of a typical operon within prokaryotes.

Figure 1: Organization of an operon in prokaryotes.
Organization of genes in prokaryotes: related structural genes are situated next to each other, forming a cluster called an operon. The operon is under the control of a single promoter-where the RNA polymerase binds-and a single operator-where the TF will bind to control the expression of genes within the operon. This TF comes from the expression of the regulatory gene. The set formed by the promoter, the operator, and the structural genes is called operon [189].

Figure 2: Tryptophan regulation in E. coli
The tryptophan regulation in E. coli. In (a), the tryptophan is absent in the environment of E. coli. A repressor is made from a regulatory gene. However, as the environment lacks trp, it is inactive; thus, it does not bind to the operator. The RNA polymerase can thus transcribe the genes (structural genes) in the operon, and enzymes (here proteins) for the synthesis of tryptophan will be produced. (b)The environment of E. coli contains tryptophan, the repressor is active and can thus bind to the operator and block the activity of the RNA polymerase [189].

1.1.2 Eukaryotic Gene Regulation

As in prokaryotes, the process of gene regulation is controlled by proteins which at specific region allow or block the activity of RNA polymerase. However, in eukaryotic cells, gene regulation is far more complicated than in prokaryotic cells. First of all, eukaryotes have more genes than prokaryotes. Nearly all the cells of eukaryotes have the same DNA sequence. However, cell specialization is a result of the difference in gene regulation in these cells.

Another divergence is the organization of genes within the genome. Unlike prokaryotic cells, operons are generally not found in eukaryotes. Instead, each gene is associated with its promoter element where the RNA polymerase and the regulatory protein will bind. The promoter is almost always situated upstream to the coding genes. Most of the time, transcription factor binding sites (TFBS) are located within promoter regions. However, in some cases, TFBS are located far from the promoter, either upstream or downstream from the coding region; they are called enhancers. It worth mentioning that in prokaryotic cells, the expression of genes may be controlled by the action of several TFs [144, 142]. In eukaryotes, gene expression is regulated at different levels, during transcription, and both before and after translation. It contrasts with prokaryotes, where gene regulation happens primarily at the transcription level. Furthermore, a significant difference between the gene regulation in eukaryotic and prokaryotic cells is that, in eukaryotic cells, the DNA sequence is compacted around a protein called a histone, forming the nucleosome. Nucleosomes are assembled into a compact structure called chromatin. The chromatin can either promote or prevent genes regulation. TFs and RNA polymerase cannot access the target gene when the DNA is compacted around the histone. Figure 4 summarizes how the DNA is packed in the eukaryote genome.

1.2 Gene Regulatory Network

A gene regulatory network is a set of all elements (transcription factors, genes, or RNA) that interact together directly or indirectly to control genes' expression. In this thesis, we will only consider the transcriptional level of regulation. Accordingly,

Figure 3: Eukaryotic gene structure
Organization of a gene within the genome of a eukaryote. The open reading frame contains the DNA sequence (target gene) transcribed by RNA polymerase. The promoter contains regions where a variety of TFs may bind, allowing the RNA polymerase to transcribe the adjacent gene: this is gene expression. Note that the RNA polymerase also binds in the promoter region, particularly in the core promoter region. Furthermore, the TFs can also bind in distant regions called enhancer or silencer regions, which also control gene expression.

Figure 3-23 Principles of Anatomy and Physiology, 11/e © 2006 John Wiley \& Sons

Figure 4: Chromatin in eukaryotic cells
The figure show different scale how a chromosome in a eukaryotic the cell [231].
the gene regulatory network (GRN) will be the set of target genes (TGs) and transcription factors (TFs) that interact together through relations called regulatory links. Figure 5 shows a simplifying picture of the gene regulatory network consisting of a set of target genes and transcription factors and their regulatory interactions.

Figure 5: Gene regulatory network abstraction
The figure presents an abstraction of the gene regulatory network [193]. It consists of a set of genes, their expression products, and the regulatory interactions that exist between them.

Several studies [3, 4, 5] have demonstrated that, like many real networks, the out-degree of genes in the GRN follows a scale-free distribution. Following a scalefree distribution indicates that most of the TFs are connected to a small number of genes, while only a few TFs regulate many genes. TFs that regulate a multitude of genes are called hub genes. This particular organization of the GRN ensures its connectivity and integrity $[4,5]$. The presence of hub TFs in the GRN make it robust against random disruption [3], as they will generally affect non-hub genes, and, will consequently not lead to a loss of connectivity. Hubs are essential for the GRN and are generally the target of diseases like cancer. Given their importance, researchers have hypothesized that hub genes are subject to strict evolutionary constrains.

Apart from the gene connectivity distribution, the GRN has long been thought to have a modular organization that is a critical feature for the cell to coordinate its complex functions (the different tasks are split over the modules which can either interconnected or be insulated from) [95, 185]. Albert Làszlò et al have defined a module as a set of physically or functionally linked molecules that work together
to achieve distinct functions [11]. Given the GRN, a module will refer to a set of genes involved in a joint elementary function, sharing the same behavior (expression pattern) and under the control of a set of regulators that controls their expression. A gene can be part of multiple modules at a time, which implies that the functional modules overlap each other.

1.3 Problem Statement

Networks are omnipresent in biology and widely used to represent different kinds of information and most likely interactions. There exist several types of networks. For example, Protein-Protein networks that model the physical interactions of proteins or metabolic networks that comprehensively describe all possible biochemical reactions for an organism.

Gene expression regulation differs between eukaryotes and prokaryotes. In prokaryote, the regulation is much simpler and happens at the transcription. However, in eukaryotes, gene expression regulation is more complex and happen at several levels:

- At the epigenetic level: i.e., when the DNA is unwound and loosened from the nucleosome to allow the transcriptional machinery to start the transcription
- At the transcriptional level, i.e., when the DNA is transcribed into RNA
- At the post-transcriptional level, i.e., after the transcription but before the RNA is translated into protein
- At the post-translational level, i.e., after the RNA is translated into proteins.

In this work, we restrict the GRN at the transcriptional level where most of the genes are regulated [20]: it is the transcriptional gene regulatory network (TRN). The TRN offers a condensed view of the regulation. In what follows, the TRN represents the GRN. Restricting the expression to the transcriptional level. Restricting our model to transcription will ignore other types of regulation.

The GRN is generally represented as a graph. In this graph, the nodes are all the genes acting in the regulation or even modules of co-expressed genes. The graph can be directed or not. In this graph, a directed edge communicates the direct causal
relationship from a transcription factor (the source) to its target gene (the sink). Note that the edges can be signed, with a positive sign denoting activation and negative sign repression.

Our research focuses on reverse-engineering the directed unsigned graph of the interacting genes at the transcription level, forming the GRN. Our problem is a binary classification problem in which we seek to infer whether or not there is an interaction between each TF and the TGs. Our model does not report other information about regulation, such as the interaction type (enhance or repress), the TF's influence degree on a TG, or the way TFs associate together.

Given that the GRN graph structure is unknown, the computational problem of GRN inference amounts to reverse-engineering the graph structure (i.e., the list of the edges) between all the TFs and genes. One uses as input for this computational problem the available high-throughput omics data, such as expression data or sequence data. The output is the graph of the interactions between the TFs and the TGs.

1.4 Motivation

A model is anything that one uses as a substitute for a system we wish to understand [21]. GRN modeling is an iterative process in which available high-throughput data is used to build and refine a model (the links within the graph), representing a GRN. Roughly speaking, the goal of GRN modeling is to answer the following four principal questions:

1. Why do cells in organisms have different properties even though they all have the same genetic information: the same DNA?
2. How does a cell in an organism know which genes to express at a particular time?
3. What is the full range of behavior that the system will exhibit if some parts stop functioning, or if the organism is exposed to different conditions?
4. How robust is the system under extreme conditions?

In a nutshell, modeling and reconstructing a GRN is essential for understanding, visualizing, exploring, and analyzing the regulatory process [173, 21, 98].

Understanding. Modeling a GRN provides scientists with a framework and an abstraction at the genome-scale for understanding the principles behind gene regulation. It allows automatic interpretation and greater scrutiny of a GRN, thus revealing the hidden properties of the GRN. Furthermore, modeling a GRN is a way to link cellular processes and states to physical states, thus helping to understand why, given some conditions, we observe a particular phenotype. The different phenotypes that an organism adopts originate from complex molecular processes occurring within the cell, making it challenging to decipher simply through lab experiments. For example, modeling facilitates an analysis of which cellular states lead to complex diseases such as cancer. In a sense, modeling will help to underline or define the states associated with the observed disease. Moreover, modeling the GRN can serve as scaffold information to extract local or global properties that, once demonstrated to be statistically different from random networks, can be related to a better understanding of biological processes.

Analyzing and reasoning. By modeling a GRN, scientists have a mechanism for examining the actions of many genes simultaneously under different given conditions, thus enabling them to predict how cells behave under new conditions automatically. Also, it has the potential to facilitate experiments conducted at a large scale, such as simulations, that would alternatively need to be conducted in a wet lab experiment at a much higher cost. Hence, lab scientists will benefit from engaging in modeling as a part of their work. They will be better able to derive novel biological hypotheses about how those conditions affect the molecular interactions that can be later investigated in wet-lab experiments such as gene expression experiments. Moreover, scientists will have a view of the GRN as a whole rather than a collection of single biological entities, offering insights on how to optimize and control parts of the network while having global knowledge of how it will affect the whole network. Finally, modeling and reconstructing a GRN will facilitate information transfer from well-studied organisms to unknown organisms.

Visualizing. Modeling a GRN will provide scientists a way to visualize extremely large-scale complex relationships among elements operating in the GRN, thus serving as a map or a blueprint of molecular interactions within the cells.

1.5 Challenge in Gene Regulatory Network Inference

GRN inference is a daunting problem in Systems Biology. Scientists face several difficulties. The following list gives an overview of the problems they face:

- The data obtained from high-throughput experiments are noisy. If we consider microarray data, they contain a noise magnitude of $20-30 \%$ [2]. This noise has several origins, such as measurement errors. The difficulty here lies in dissociating real gene expression values (real signal) from experimental noise [183]. In Chapter 2, we present reverse-engineering methods that use various strategies to infer a GRN from noisy expression data.
- The amount of experimental data available is minimal, as it is mainly the case for expression data. Data availability restriction seems paradoxical with current high-throughput facilities. Although it is now possible to experimentally investigate a considerable number of genes simultaneously, the number of samples available has not and cannot be expanded in the same way because of limitations such as cost. The results are datasets, where the number of genes is far higher than the number of samples. It is known as the high dimension, low sample problem [91]. When the number of dimensions increases, the amount of data needed to represent the data accurately increases exponentially. This phenomenon is known as the curse of dimensionality problem [40]. As such, data obtained from gene expression experiments is sparse, compounding the problem of the GRN model complexity stemming from the innate complexity of gene regulation itself. Furthermore, the GRN model is very complex due to the complexity of gene regulation itself. There is a strong relation between model complexity, the amount of data required to construct the model, and the constructed model's quality. Due to this connection, the development of an accurate and complex genome-scale GRN model is difficult. Some computational methods break down when data is sparse [98]. In section Chapter 2, we will discuss some statistical methods and the strategies they use to deal with the problem of data sparsity. In Chapter 3, a new solution is proposed to cope with
the data's limited availability.
- It is challenging to distinguish direct from indirect regulation [82]; gene regulation is a complex process. For example, at a certain time a gene (name it genea) within the cell may be activated by a TF (name it TFa) that we know is a protein which originates from expression from another gene (name it geneb) which in turn is activated by another TF (name it TFb). Consequently, TFb will indirectly influence the expression of the former gene. Looking at the expression profile, it becomes difficult to recognize that the TFb does not directly interact with the genea.
- High dimension data that is available today represent only a snapshot of a particular cell state and time interval of the cell's life. So we miss several cell states. Thus, data obtained is incomplete, resulting in a limited understanding of how all functional units are put together in the cell [200]. Moreover, most lab measurements (gene expression, proteins-DNA interactions) are on cell populations. Even though they have the same genetic information, cells can exhibit a significant difference in the amount of gene expression products. These measurements result in an averaging of the behavior of the cells that may cause a loss of relevant information such as relevant events that may occur in a particular cell but may not be present at the global view [54].
- It is challenging to identify regulatory sequences because they are short sequences in the midst of a lot of noise. Moreover, those sequences are highly variable, and they are repeated frequently in the genome. Some of those repetitions do not represent regulatory sequence at all [230, 46, 30]. Several algorithms that try to overcome this problem using different strategies to find TFBS in a set of sequences have been proposed in the literature. In Chapter 2, we will present some state of the art solutions.
- Our knowledge of the encoding regulatory elements in genomes remains elementary [218, 22]. It results in myriads of available sequences, of which only a small fraction have been functionally annotated [30].
- The limited number of available well-studied organisms remains a significant problem in the research. Thus, the number of well-reconstructed gold standard

GRN remains limited. This constraint causes a problem, particularly when scientists want to assess the inferred networks or assess the performances of the methods used to infer the network. A solution to this problem is presented in Section 2.4.3.

1.6 Limitation of State-of-the-Art

Gene regulatory network inference is a long-standing problem in systems biology. Many solutions have been proposed in the literature, but they still present some limitations that render the inference an unresolved problem. Among the limitations we can list:

- The use of only one type of data for the inference of the network. In effect, the rapid technological advances have led to the production of different types of biological data that carry on complementary but incomplete knowledge about the regulation; the GRN inference of networks using only one type of biological data leads to incomplete and less accurate GRNs.
- Most existing algorithms for GRN inference based on expression profiles assume a linear dependency among genes. However, the dependencies involved in regulation are too complex to explain using a simple linear model.
- The majority of existing studies that reconstruct the GRN have focused on inferring individual regulatory links. These algorithms try to elucidate all the regulatory links between all the candidates' genes, given the limited availability of data, leading to many more false positives than true positives.

1.7 Contribution

The contributions of this research project are summarized as below:

- Implementation of a GRN inference method that uses Elastic Net for feature selection.
- Implementation of a method that integrates several types of omics data with expression data for GRN inference.
- Reconstruction of the gene regulatory network that controls the cell cycle in a model organism: human.

1.7.1 BENIN: Network Inference as Feature Selection using Elastic Net

Gene regulatory network inference is one of the central problems in computational biology. Researchers have developed computational methods to reverse-engineer the GRN using varied mathematical models, ranging from Boolean networks [146], Information theory [272], correlation [248], Bayesian networks [258] and differential equations [36]. In this thesis, we introduce BENIN: Biologically Enhanced Network INference. BENIN is a simple and intuitive inference method for integrating any prior knowledge data with time-series expression data. BENIN states GRN inference as a feature selection problem: finding the direct regulators of each gene. It assumes that a target gene's expression profile is a linear function of its direct regulators' expression profiles. BENIN applies a regression technique called Elastic Net, combined with a resampling technique to perform feature selection.

1.7.2 BENIN: Integration of Prior Knowledge data

The advent of high-throughput technologies such as DNA microarray, RNA-seq, or ChIP-seq has triggered the production of a large variety of data that is stored in diverse curated databases. This data drives machine learning challenges, particularly for systems biology, such as GRN inference. Common problems in GRN inference include the poor knowledge of cell function, the limited number of samples compared to the number of genes being studied, and the data's noisy nature.

Data integration is a common approach to improve inference. Researchers have proposed several ways to combine expression data with prior knowledge available in data such as pathways [216], protein-protein interactions [271], gene annotation data [177], sequence data [80], literature [140] or functional association [223]. Most use the Bayesian network framework to include prior information into GRN inference. However, the Bayesian approach has many drawbacks when applied to highdimensional data and requires deep knowledge of the prior for good integration. Moreover, many existing methods are designed for a specific type of prior knowledge.

In this work, we used the Adaptive Elastic Net, a modified version of the Elastic Net, to include prior knowledge. In this work, we consider different types of prior knowledge data:

- Knockout (KO) and Knockdown (KD) gene expression data. They are expression data measured in an organism where a transcription factor is made inoperative (KO expression data), or its expression is reduced (KD expression data). This data type is integrated either through the z-score (for KO data) or the probabilistic framework (for KD data).
- ChIP-seq data. They report regions in the genome where a specific transcription factor (TF) will physically bind to the DNA to, for example, control the expression of proximal genes. They are obtained through in vivo experiments. These kinds of data are integrated through the computation of a score that measures potential binding between each TF and all the genes in the genome.
- Functional annotation, which reports the gene ontology (GO) annotation for a gene's function. For a specific gene, the annotation is a set of terms that captures the gene's current biological knowledge. We consider the functional similarity between genes by comparing their functional annotations and computing a similarity score, which will be integrated into BENIN.
- TFBS, which are reported in term matrices, which store binding specificity for a specific TF. We used this data to scan the genome's region of interest, and the result of the scanning process is integrated through a probabilistic framework into BENIN to boost the network inference.
- Genome-wide location data use p-values to report physical interactions between TFs and genes of the organism of interest. We integrated genome-wide location into BENIN in a probabilistic manner.

The probabilistic framework is defined through the Bayes formula. BENIN allows for control of the impact of the prior on the model. BENIN is generic enough to integrate any type of data.

BENIN allows the integration of regulatory information across species. Comparative studies have demonstrated that GRNs from closely related species may share
conserved topological properties known as kernel components [64, 100, 227]. GRN inference in an organism can thus leverage knowledge and findings of regulatory networks from other well-known organisms. The key idea behind information transfer among related species is the conservation of biological function among orthologous genes. Hence, the assumption is that orthologous transcription factors regulate orthologous genes. The challenge here is to define "True" orthologous genes for a reliable transfer of information. Orthology should be distinguished from paralogy in which the biological function is not preserved. Many existing algorithms infer the GRN either based on the expression data alone or through comparative evolution solely. However, integrating both strategies may help refine GRNs inferred from expression data and, besides, will enrich the network with new potential regulatory interaction. We extended BENIN to include orthologous regulatory information from model organisms, through orthology-based information transfer.

1.7.3 Application of BENIN to Human cell Cycle

The cell cycle is a fundamental biological process that occurs in all living cells and is essential for their survival. Cell division is a highly regulated process. Proper regulation of gene activities during the cell cycle is critical for the well functioning of several cellular processes and accurate transmission of the genetic information. A disruption to this regulation may lead to complex and irreversible phenotypes. Therefore, it is crucial to unravel the network of interacting molecules controlling the cell cycle to get insights into both normal and abnormal cell divisions related to diverse pathological phenotypes.

We used BENIN to infer the GRN that controls the cell cycle of the HeLa cell cycle. The HeLa cell line is a cancerous human cell line. We integrate prior knowledge from diverse sources: ranging from TFBS information, knock-down gene expression data, functional annotation, and ChIP-seq data. Several studies have suggested conservation of the general mechanism of cell cycle regulation among vertebrates [18, 55]. Hence, we refined the regulatory network inferred from expression data and prior biological knowledge with regulatory information from orthologous genes in the mouse model organism through sequence orthology detection.

1.7.4 List of publications

- Kamgnia, S., \& Butler, G. (2019, December). BENIN: combining knockout data with time-series gene expression data for the gene regulatory network inference. In Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics (pp. 1-9). [123].
- Wonkap, S. K., \& Butler, G. (2020). BENIN: Biologically enhanced network inference. Journal of Bioinformatics and Computational Biology, 18(03), 2040007 [250]

1.8 Organization of the Thesis

The thesis is structured as follows:
Chapter 2 details the background notions needed to comprehend this dissertation. It then follows an analysis of the data available to overcome this challenge and the strategies available to evaluate GRN inference algorithms. Then it explores the different methods that have been undertaken to reconstruct the gene regulatory network.

Chapter 3 introduces BENIN, a GRN inference algorithm for multiple data integration, and details its results on the DREAM4 challenge.

Chapter 4 presents the results of applying BENIN to infer the gene regulatory network that controls the Human HeLa cell cycle. It also offers an extension of BENIN to integrate regulatory information from other model organisms through sequence homology for the gene regulatory network inference.

Chapter 5 concludes this thesis by highlighting our different results, findings, and points for future work.

Chapter 2

Background

With the availability of a deluge of genomic data, we now witness many algorithms' emergence to tackle the GRN modeling. The chapter covers the mathematical background notions such as Bayesian networks, feature selection, and regression. The chapter gives an overview state of the art methods for gene regulatory network inference. Hence, Section 2.1 defines machine learning and statistical notions. Section 2.5 presents the three main methodologies introduced in the literature for regulatory network inference. We give for each methodology some state-of-the-art works proposed in the literature.

2.1 Background for Network Inference

This section highlights critical aspects of statistics and machine learning relevant to this thesis: Bayesian networks; the notion of mutual information; Elastic Net and regression; the vector autoregressive model; the Granger causality; the stationary bootstrap; a position weight matrix; a consensus sequence and finally a DNA motif.

2.1.1 Bayesian Network

Graphical models are robust and extremely popular tools to model uncertainty[134]. They allow us to deal with uncertainty with the use of probability theory and cope with complexity through graph theory. The most common type of graphical model is the Markov network and the Bayesian Network, also known as the causal network.

In this thesis, we only consider Bayesian Network; the Markov network is out of the thesis's scope.

Let consider a set $U=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ of discrete variables, where each X_{i} may take values from a finite set. A Bayesian Network is a representation of the joint probability distribution of a set of random variables U. More formally, a Bayesian network is defined as a pair $N=\langle G, \Theta\rangle . G$ is a directed acyclic graph whose vertices are the random variables X_{i}, and the edges represent the direct probabilistic dependencies between the variables. G encodes an independence assumption, which states that each variable X_{i} is independent of the variables in $\left\{X_{1}, X_{2}, \cdots, X_{i-1}\right\}$ given its parents $P a^{G}\left(X_{i}\right)$ (set of variables connected to X_{i} in G) in G. The second component, Θ, describes the conditional distribution for each X_{i} given $P a^{G}\left(X_{i}\right)$. The overall model defines an unique joint probability distribution on $X_{1}, X_{2}, \cdots, X_{n}$ such that:

$$
\begin{equation*}
P\left(X_{1}, X_{2}, \cdots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a^{G}\left(X_{i}\right)\right) \tag{1}
\end{equation*}
$$

Bayesian networks are suitable for modeling and learning causal relationships. An extension of Bayesian Network was introduced, which allows handling time series or sequential data: the Dynamic Bayesian Network (DBN) [167, 75]. It allows representing dynamic processes that evolve through time. It extends the set of random variables in the model (in the graph). Now, each node in the graph represents a variable at a specific time point t. In this new graph, a node can only be connected to another node in subsequent time points. This restriction is to ensure the DAG nature of the graph. In a DBN, the state of variable at time time $T=t+1$ is conditionally dependent on the values of its parents through the interval $T=1$ to $T=t$. More formally, let X_{i}^{t+1} a random variable X_{i} at time $T=t+1$; let $P a^{G}\left(X_{i}\right)^{[1, t]}$ the set of X_{i} parent variables through the time interval $[1, t]$, the new joint distribution is defined as:

$$
\begin{equation*}
P\left(X_{1}^{t+1}, X_{2}^{t+1}, \cdots, X_{n}^{t+1}\right)=\Pi_{i=1}^{n} P\left(X_{i}^{t+1} \mid P a^{G}\left(X_{i}\right)^{[1, t]}\right. \tag{2}
\end{equation*}
$$

2.1.2 Mutual information

Mutual information is a positive quantity that measures how much a random variable X tells us about another Y and vice versa: it measures the information shared by both variables. It is generally used as a powerful tool to measure the nonlinear dependency between two variables. Let X with alphabet \mathcal{X} a random variable with
probability distribution $p(x)=\operatorname{Pr}\{\mathcal{X}=x\}$. Let Y with alphabet \mathcal{Y} a random variable with probability distribution $p(y)=\operatorname{Pr}\{\mathcal{Y}=y\}$. The mutual information $I(X ; Y)$ between X and Y is defined as:

$$
\begin{equation*}
I(X ; Y)=\sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x, y)}{P(x) P(y)} \tag{3}
\end{equation*}
$$

where $P(x, y)$ the joint distribution of X and Y. The mutual information is a symmetric measure. We have:

$$
\begin{equation*}
I(X ; Y)=I(Y ; X) \tag{4}
\end{equation*}
$$

A value of $I(X ; Y)=0$ indicates that the two variables are independent, and a high value indicates a high correlation between the variables.

2.1.3 Regression Technique

Linear regression is a statistical method for modeling the linear relationship between a dependent variable and a set of predictor variables. This linear relationship takes the form $\vec{y}=\mathbf{X} \vec{\beta}+\vec{\xi}$, where $\vec{y}=\left(y_{1}, \cdots, y_{N}\right)^{T}$, is an N vector representing the dependent variable with $y_{i} \in \mathbb{R}$. $\mathbf{X}=\left(\vec{x}_{1}, \cdots, \vec{x}_{N}\right)^{T}, \vec{x}_{i} \in \mathbb{R}^{M}$, is the $N \mathrm{x} M$ matrix of explanatory variables, and, $\vec{\beta}=\left(\beta_{0}, \beta_{1}, \cdots, \beta_{M}\right)^{T}$ is the M coefficients vector and finally, $\vec{\xi}$ is the error vector of size N. For simplicity we will assume that \mathbf{X} is standardized, i.e. $\sum_{i=1}^{N} x_{i j}=0, \frac{1}{N} \sum_{i=1}^{N} x_{i j}^{2}=1$ for $j=1,2, \cdots, N$

Usually, an estimation $\vec{\beta}_{O L S}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \vec{y}$ of $\vec{\beta}$ is obtained by minimizing the residual sum of square ($R S S$) defined in Equation 5

$$
\begin{equation*}
R S S(\vec{\beta})=\sum_{i=1}^{N}\left(y_{i}-\vec{x}_{i}^{T} \vec{\beta}\right)^{2} . \tag{5}
\end{equation*}
$$

However, when the number of variables M becomes very large compared to the number of samples N , i.e., $M \gg N$ (high dimensional problem), many of these variables may be irrelevant to the output, and a large number of them are highly correlated (multicollinearity problem). Therefore, the matrix $\mathbf{X}^{T} \mathbf{X}$ will be singular (the matrix is not invertible), and the estimated $\vec{\beta}_{O L S}$ will no longer exist [69]. Moreover, the multicollinearity in the input matrix causes the OLS estimation not to be robust [160]. In fact, in this setting, the problem becomes ill-posed and small changes
in the input matrix may lead to big changes in the OLS estimate. Hence, we can no longer use the vector that minimizes Equation 5 as an estimation of $\vec{\beta}$ [174, 69]. All these may suggest a parsimonious coefficient vector $\vec{\beta}$, such as keeping the model a smaller set of the most relevant predictors, leading to a more relevant and meaningful model.

Several solutions have been proposed in the literature to tackle the problem by introducing a penalty to the residual sum of square. Thus, instead of minimizing Equation 5 we minimize Equation 6,

$$
\begin{equation*}
R S S_{P}=R S S(\vec{\beta})+P_{\lambda}(\vec{\beta}) \tag{6}
\end{equation*}
$$

where $P_{\lambda}(\vec{\beta})$ is a function that penalizes the values of the parameters we are looking for (here $\vec{\beta}$), and λ is a parameter that controls the trade-off between penalization and likelihood. Different penalties have been introduced in the literature, but we will only consider three of them. Interested reader can refer to [163, 39, 68] for a detailed description of other penalization techniques.

2.1.3.1 Ridge Regression

The Ridge regression was introduced by Andrey Tikonov [101]. It minimizes the l2 penalized RSS described in Equation 7.

$$
\begin{align*}
\vec{\beta}_{\text {ridge }} & =\underset{\vec{\beta}}{\operatorname{argmin}} \quad R S S(\vec{\beta})+\lambda\|\vec{\beta}\|_{2}^{2} \\
& =\underset{\vec{\beta}}{\arg \min } R S S(\vec{\beta})+\lambda \sum_{j=1}^{M} \beta_{j}^{2} \tag{7}
\end{align*}
$$

The parameter $\lambda \geq 0$ controls the strength of the penalty, which increases with the values of λ. λ is dependent on the data, and it is generally estimated with data-driven methods like cross-validation.

The Ridge penalization is ideal when dealing with many predictors variables, each having a small effect on the dependent variable. It prevents the low prediction of the regression coefficients when many of the predictors are correlated. The Ridge shrinks the coefficients of the correlated predictors equally towards zero [72, 169] without setting them to zero. As a consequence, Ridge regression does not select the most
informative predictors. Instead, it minimizes their impact on the model, which may still be uninterpretable.

2.1.3.2 LASSO

The limitation of the Ridge has led to the introduction of the LASSO of Tibshirani [228]. The LASSO uses L1-norm to penalize the coefficients vector $\vec{\beta}$ and minimizes the optimization problem describes in Equation 8.

$$
\begin{align*}
\vec{\beta}_{\text {Lasso }} & =\underset{\vec{\beta}}{\operatorname{argmin}} R S S(\vec{\beta})+\lambda\|\vec{\beta}\|_{1} \\
& =\underset{\vec{\beta}}{\arg \min } R S S(\vec{\beta})+\lambda \sum_{j=1}^{M}\left|\beta_{j}\right| \tag{8}
\end{align*}
$$

The LASSO shrinks many unimportant predictors coefficients exactly to zero, with only a small subset of nonzero coefficients. Since it selects some variables among the set of predictors, the LASSO can be regarded as a feature selection method. λ controls the sparsity of the model. The LASSO regularization allows shrinking unimportant variables to zero. The obtained model is thus more interpretable. Like with Ridge regression, LASSO is good at dealing with many input variables. However, it presents some drawbacks. The LASSO is not efficient when many of the predictors are correlated. In this situation, it will randomly choose one of the predictors amongst the correlated predictors that will be included in the model. Hence, if all the predictors are correlated, the LASSO will break down. Furthermore, when $M \gg N$, LASSO selects at most N variables before it saturates.

2.1.3.3 Elastic Net

More recently, a new regularization has been proposed to solve the LASSO's limitations: the Elastic Net of Zou and Hasti [274]. It combines the idea of the Ridge and LASSO regression and solves the optimization problem described in Equation 9.

$$
\begin{align*}
& \vec{\beta}_{\text {ENet }}=\underset{\vec{\beta}}{\operatorname{argmin}} \\
& R S S(\vec{\beta})+\lambda_{1}\|\vec{\beta}\|_{2}^{2}+\lambda_{2}\|\vec{\beta}\|_{1} \\
& \underset{\vec{\beta}}{\operatorname{argmin}} \tag{9}\\
& R S S(\vec{\beta})+\lambda\left[(1-\alpha)\|\vec{\beta}\|_{2}^{2}+\alpha\|\vec{\beta}\|_{1}\right] \\
&=\underset{\vec{\beta}}{\arg \min } \\
& R S S(\vec{\beta})+\lambda\left[(1-\alpha) \sum_{j=1}^{M} \beta_{j}^{2}+\alpha \sum_{j=1}^{M}\left|\beta_{j}\right|\right]
\end{align*}
$$

where $\alpha=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}$ and $\lambda=\lambda_{1}+\lambda_{2}$. As previously, λ controls the degree of regularization while α controls the tradeoff between ridge and lasso regression. Elastic Net is equivalent to Ridge regression for $\alpha=0$ and to LASSO when $\alpha=1$. By combining both regularizations, the Elastic Net integrates the advantages of both techniques and overcomes the drawbacks of each regularization taken separately. The $l 1$ part performs the variable selection, while the $l 2$ part favors the grouped selection and stabilizes the solutions path with respect to random variable selection therefore, improving the solution. With the grouping effect, the Elastic Net ensures that the group of correlated variables will get approximately the same magnitude of coefficients. When $M \gg N$ the Elastic Net is capable of selecting more than N variables[169]. However, the Elastic Net lacks the oracle property. From the work of Fan and Li [67], a method is said to have the oracle property if it can asymptotically estimates the zero coefficients of the true parameter vectors as exactly zero with a probability close to one, as if the true zero coefficients were known beforehand; and it remains consistent with the estimate of the nonzero coefficients.

2.1.3.4 Adaptive Elastic Net

Several efforts have been made to extend the Elastic Net to remedy the lack of oracle property. The Adaptive Elastic Net was introduced by Zou e.t Hastie [273, 72] which solve the optimization problem in Equation 10:

$$
\begin{equation*}
\lambda \sum_{j=1}^{M} \nu_{j} P_{\alpha}\left(\beta_{j}\right)=\lambda \sum_{j=1}^{M} \nu_{j}(1-\alpha) \beta_{j}^{2}+\alpha \sum_{j=1}^{M}\left|\beta_{j}\right| \tag{10}
\end{equation*}
$$

where $\nu_{j}(j=1,2, \cdots, M)$ are the adaptive data driven weights. These weights allow applying different levels of shrinkage to the predictors variables regarding the prior
knowledge or bias over these variables [72]. The idea is to give large weights ν_{j} to unimportant variables, and thus to heavily shrink their corresponding coefficient; on the other hand give small weights ν_{j} to important variables to slightly shrink their associated coefficients. Therefore, the larger is ν_{j} the more penalized will be β_{j}.

2.1.4 The p-order Vector Autoregressive Model

The vector autoregressive model (VAR) is one of the easiest models and the most used to analyze and capture interdependencies among multiple time series. In a $\operatorname{VAR}(p)$ model, each variable is expressed as a linear combination of a constant c, the p lags of its own values as well as the p lags of the other variables in the model and finally, an error term $\vec{\xi}$. Let $\vec{x}_{t}=\left(\vec{x}_{1, t}, \vec{x}_{2, t}, \cdots, \vec{x}_{M, t}\right)^{T}$ be an M-dimensional multiple time series data vector; \vec{x}_{t} is assumed to be generated from a $\operatorname{VAR}(p)$ if it can be written as in Equation 11.

$$
\left[\begin{array}{c}
\vec{x}_{1, t} \tag{11}\\
\vec{x}_{2, t} \\
\vdots \\
\vec{x}_{M, t}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{M}
\end{array}\right]+\left[\begin{array}{cccc}
a_{1,1}^{1} & a_{1,2}^{1} & \cdots & a_{1, M}^{1} \\
a_{2,1}^{1} & a_{2,2}^{1} & \cdots & a_{2, M}^{1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{M, 1}^{1} & a_{M, 2}^{1} & \cdots & a_{M, M}^{1}
\end{array}\right]\left[\begin{array}{c}
\vec{x}_{1, t-1} \\
\vec{x}_{2, t-1} \\
\vdots \\
\vec{x}_{M, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{cccc}
a_{1,1}^{p} & a_{1,2}^{p} & \cdots & a_{1, M}^{p} \\
a_{2,1}^{p} & a_{2,2}^{p} & \cdots & a_{2, M}^{p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{M, 1}^{p} & a_{M, 2}^{p} & \cdots & a_{M, M}^{p}
\end{array}\right]\left[\begin{array}{c}
\vec{x}_{1, t-p} \\
\vec{x}_{2, t-p} \\
\vdots \\
\vec{x}_{M, t-p}
\end{array}\right]+\left[\begin{array}{c}
\vec{k}_{1, t} \\
\vec{\xi}_{2, t} \\
\vdots \\
\vec{\xi}_{M, t}
\end{array}\right]
$$

or equivalently

$$
\begin{equation*}
\vec{x}_{t}=\vec{c}+\mathbf{A}_{1} \vec{x}_{t-1}+\cdots+\mathbf{A}_{p} \vec{x}_{t-p}+\vec{\xi}_{t} \tag{12}
\end{equation*}
$$

where p denotes the lag length or the order of the VAR model; \mathbf{A}_{i} is a $M x M$ matrix of coefficients, M represents the number of variables in the time series; $\vec{\xi}_{t}$ is a M-dimensional white noise vector, i.e $E\left(\vec{\xi}_{t}\right)=0, E\left(\vec{\xi}_{t}, \vec{\xi}_{t}\right)=\Sigma$ and $E\left(\vec{\xi}_{t}, \vec{\xi}_{t-k}\right)=0$. From the system of equations in Equation 11, each variable in the time series can be separately written as follows:

$$
\begin{array}{cc}
\vec{x}_{1, t}= & c_{1}+a_{1,1}^{1} \vec{x}_{1, t-1}+\vec{x}_{1,2}^{1} x_{2, t-1}+\cdots+a_{1, M}^{1} \vec{x}_{M, t-1}+\cdots+a_{1,1}^{p} \vec{x}_{1, t-p}+a_{1,2}^{p} \vec{x}_{2, t-p}+\cdots+a_{1, M}^{p} \vec{x}_{M, t-p}+\vec{k}_{1, t} \\
\vec{x}_{2, t}= & c_{2}+a_{2,1, x_{1, t-1}}=a_{2,2} \vec{x}_{2, t-1}+\cdots+a_{2, M}^{1} \vec{x}_{M, t-1}+\cdots+a_{2,1}^{p} \vec{x}_{1, t-p}+a_{2,2}^{p} \vec{x}_{2, t-p}+\cdots+a_{2, M}^{p} \vec{x}_{M, t-p}+\vec{\xi}_{2, t} \\
& \vdots \tag{13}\\
\vec{x}_{M, t}= & c_{M}+a_{M, 1}^{1} \vec{x}_{1, t-1}+a_{M, 2}^{1} \vec{x}_{2, t-1}+\cdots+a_{M, M}^{1} \vec{x}_{M, t-1}+\cdots+a_{M, 1}^{p} \vec{x}_{1, t-p}+a_{M, 2}^{p} \vec{x}_{2, t-p}+\cdots+a_{M, M}^{p} \vec{x}_{M, t-p}+\vec{\xi}_{M, t}
\end{array}
$$

Equation 12 can be solved by any regression algorithms: either $O L S$ or penalized regression algorithms.

2.1.5 Granger Causality

The notion of Granger causality [84] is a widely used concept introduced by the Nobel prize-winning economist Clive Granger, to analyze the relationship between time series. It is based on the intuition that a cause always comes before its effects. Hence, a time series variable \vec{y}_{t} is said to Granger cause another \vec{x}_{t}, if the prediction of \vec{x}_{t} in term of its own lagged values and the lagged values of \vec{y}_{t} are better than the prediction of \vec{x}_{t} based only on its own lagged values. This means that, in the general $\operatorname{VAR}(p)$ process described in Equation 12, a variable $\vec{x}_{i, t}$ is called a Granger cause of another $\vec{x}_{j, t}$ if at least one element of $\mathbf{A}_{\tau=1, \cdots, p}(j, i)$ is different from zero.

2.1.6 The Stationary Bootstrap

Bootstrapping is a powerful statistical method introduced by Efron [60] for estimating the distribution of an estimator or statistic test from resampled independently and identically distributed data (iid). However, the method no longer works when considering more complex dependent data such as time-series data as the iid assumption breaks down. The situation is more complicated when considering the time series because the bootstrap samples should be built in a way that captures the dependencies in the data. The work of Efron [60] has been extended to account for dependencies in the data when performing bootstrapping. Several algorithms have been proposed in the literature. However, in this thesis, we will only consider one of them, which preserves the stationarity of the original time series: the stationary bootstrap [180]. Interested readers may refer to review papers $[137,102]$ to have a deeper knowledge about existing algorithms for bootstrapping time series. Note that a time series is stationary if it fulfills the following conditions: the mean, variance, and autocorrelation are constant over time. It is an important property to preserve as it is an assumption underlying many statistical procedures used in time series analysis.

The general idea of the stationary bootstrap is that a pseudo time series is generated by resampling with replacement from the original data and blocks of random size. The blocks sizes follow a certain distribution. In the original version of the algorithm the authors chose the geometric distribution. The algorithm assumes that the original time series is stationary and weakly dependent. A time series \vec{x}_{t} is said to be weakly dependent if we have $\operatorname{corr}\left(x_{t}, x_{t+h}\right)=0$, for $h \longrightarrow \infty$. To better
explain the algorithm, let $\vec{x}_{t=1,2, \cdots, N}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ the original time series and $B_{i l}=\left\{x_{i}, x_{i+1}, \cdots, x_{i+l-1}\right\}$ a block of observations starting from x_{i}. The algorithm samples with replacement a sequence of blocks of random length $B_{i_{1} l_{1}}, B_{i_{2} l_{2}}, \cdots$ until the final pseudo time $\vec{x}_{t}^{*}=x_{1}^{*}, x_{2}^{*}, \cdots, x_{N}^{*}$ has N observations. The first l_{1}-observations are determined using the first block $B_{i_{1} l_{1}}$ the next l_{2}-observations by $B_{i_{2} l_{2}}$ and so on. Assuming a geometric distribution for iid random variables $l_{1}, l_{2} \cdots l_{m}$ representing the blocks lengths, we have $\operatorname{Pr}\left(l_{i}=m\right)=(1-p)^{m-1} p$, for $m=1,2, \cdots$ and p a fixed number in $[0,1]$. The sequence $i_{1}, i_{2}, \cdots, i_{m}$ is a sequence of iid variables with uniform distribution over $[1, n]$ representing the starting position for a block. The following lines summarize the stationary algorithm:

1. Choose p uniformly from $[0,1]$.
2. Assign to i a random number from 1 to N and pick the i th element in the original time series and add it to the pseudo time series.
3. Randomly pick a number from a uniform distribution over $[0,1]$ and assign it to j.
(a) if $j>p$, then pick the next element of the original time series as the next one in the pseudo time series. Note that the algorithm wraps around the original time series. Thence, if $i=N$ then we pick the 1 st element of the original time series as our next element.
(b) if $j \leq p$ then go to step 2 .
4. Repeat from step 3 until the pseudo time series has N observations.

2.1.7 Representation of Sites

2.1.7.1 Consensus Sequence

A consensus sequence is a string over the nucleotides alphabet A, C, G, T and an extended alphabet (generally from the IUPAC alphabet [44]), which shows variable degenerate or conserved nucleotides at each position of a motif representing the binding sites of a transcription factor. Note that degenerate base symbols are IUPAC symbols used to represent the DNA position that can have several alternatives. They
are used to report positional variation in situations such as DNA sequencing errors, consensus sequences, or single-nucleotide polymorphisms. Table 22 gives the list of IUPAC degenerate symbols. An example of consensus is the sequence depicted in Figure 6a. It describes the consensus sequence for the TrpR transcription factor.

2.1.7.2 Position Weight Matrix

A position weight matrix (PWM) is a model widely used to depict the DNA binding preferences (motifs) of a transcription factor. The model is a matrix \mathbf{W}. In the matrix, each row corresponds to a letter in an alphabet, e.g., amino acids or nucleic acids, over the sequences, and each column corresponds to a position in the motif. This matrix defines the probability of each letter in the alphabet to occur at a specific position of the motif. The coefficient $\mathbf{W}[i, j]$ gives the score of having i th letter of the alphabet at position j of the motif. This representation of a biological motif was introduced by American geneticist Gary Stormo and colleagues in 1982 [222] as an alternative to consensus sequences (to overcome their limitations).Figure 6b shows an example of the PWM for the TrpR transcription factor that regulates the trp regulon's expression.

2.1.7.3 Sequence Logo

The sequence logo is a graphical technique for summarizing the alignment of a set of sequences. These sequences can be, for example, protein sequences, RNA sequences, or DNA sequences. The sequence logo is a series of stacks of letters. Each stack shows how well a letter is conserved at a position. This conservation is computed through a score based on Shannon entropy [205]. At each position, individual letters' height is proportional to its frequency at the specific position of the alignment. Sequence logos are used to represent TFs DNA binding. Figure 6c shows an example of a sequence logo representing the binding site of the TrpR TF in E.coli. They are mainly used to visualize a large number of sequences that share a common conserved pattern.

		a	c	g	t
		0.000000	1.000000	0.000000	0.000000
>site_0	CTAGTTAACTAGTACG	0.000000	0.166667	0.000000	0.833333
>site_1	CTAGTTAACTAGTTCG	0.666667	0.333333	0.000000	0.000000
>site_2	CTAGTTCTCTAGTACA	0.000000	0.000000	0.666667	0.333333
$>$ site_3	CTCTTTAGCGAGTACA	0.000000	0.166667	0.000000	0.833333
>site_4	CTCGTGTACTGGTACA	0.166667	0.000000	0.166667	0.666667
>site_5	CCATCAAACTAGTACA	0.666667	0.166667	0.000000	0.166667
		0.000000	1.000000	0.000000	0.000000
Consensus	CtaGttaaCtaGTaCa	0.000000	0.000000	0.166667	0.833333
IUPAC consensus CtmKttaaCtaGTaCr	0.833333	0.000000	0.166667	0.000000	
		0.000000	0.000000	1.000000	0.000000
		0.000000	0.000000	0.000000	1.000000
		0.000000	1.000000	0.000000	0.000000
		0.666667	0.000000	0.333333	0.000000

(a) Consensus sequences
(b) Position specific probability matrix

(c) Sequence logo

Figure 6: Different representations of binding sites
(a) Alignment of TrpR binding sites in E. coli and the derived consensus sequence: the nucleotides consensus sequence and the IUPAC consensus sequence obtained with MEME. In the latter, a letter ' m ' means the presence of ' A ' or ' C ', a letter ' K ' means the presence of ' G ' or ' T ', and finally, a letter 'r' means the presence of ' G ' or ' A ' at the considered position in the motif. (b) Sequence logo representation obtained with MEME web tool. The relative height of the letters indicates their frequency at each position measured in bits. (c) Position specific probability matrix (PSPM) that is MEME's motif representation. For each position in the motif, it gives the observed frequency ("probability") of each possible letter.

2.2 Feature Selection

Given data with many variables, feature selection is defined as a method that selects the maximal subset of most important features to the output, i.e., the subset of variables that conveys information about the output. The objectives of feature selection are manifolds:

- Reduce the model's complexity and improve its quality to make it easier to interpret by removing redundant and noninformative variables.
- Understand the process underlying the data.
- Reduce overfitting.
- To speed up computation and make a more cost-effective model.

Feature selection methods are split up into four categories depending on how they are combined with the model learning process [194]: filter methods, wrapper methods, embedded methods, or ensemble methods.

2.2.1 Filter Methods

Filter methods consider the intrinsic properties and statistical characteristics of the data to assess their relevance. They are independent of the learning algorithm. In this category, weights are assigned to each variable based on their dependency on the problem/ class label. These weights are generally computed using correlationbased methods or information theory-based methods. Then, generally, the features are ranked regarding the computed weights, and a threshold is applied to get the subset of selected features. Otherwise, a cost function is optimized to find the subset of relevant features. The simplicity of these methods makes them scalable to the data. Filter methods are divided into two categories: univariate and multivariate methods. In univariate methods, the relevance of each variable is evaluated separately according to the selection criterion. There are methods like t-statistics, correlation methods, fold change ratio, B-statistics. In multivariate methods, the interaction between the features is considered when evaluating the relevance of features. These methods are
among others, Analysis of the Variance (ANOVA), mutual information, or Minimum Redundancy Maximum Relevance ($M R M R$).

2.2.1.1 Differential Expression Analysis:

Differentially expressed genes (DEG) analysis consists of comparing the expression profiles of genes among several groups or conditions in designed experiments. This problem is challenging and important in gene expression analysis. It allows filtering informative genes, which is valuable for drug discovery, biomarker identification, or even inference of gene regulatory networks. DEG analysis is performed in two main steps: ranking and selection. In the ranking, a filter-based feature selection method (statistic) is defined to capture the variability of the expression per gene (between the conditions). The statistics are used to compute a score that measures the degree of differential expression. The higher the score, the more the gene is differentially expressed. In selection, a methodology needs to be defined (e.g., setting a threshold) to describe what are "significant" differentially expressed genes. Several feature selection techniques have been proposed for DEG analysis[117], among which we can list:

- Fold Change: it is the simplest method for DEG analysis, in which we compute the ratio between the expression mean of the two compared groups. Thus we have

$$
\begin{equation*}
F C=\log 2\left(\mu_{T}(g)\right)-\log 2\left(\mu_{C}(g)\right) \tag{14}
\end{equation*}
$$

where $\mu_{T}(g)$, respectively $\mu_{C}(g)$, is the average expression of gene g in condition T, respectively in condition C.

- t-statistic: which compares the distribution of expression values of genes in two conditions through the means of expression data in the two conditions/ groups. It is computed as :

$$
\begin{equation*}
\frac{\mu_{T}(g)-\mu_{C}(g) t}{\sqrt{\frac{\sigma_{T}(g)^{2}}{N_{1}}+\frac{\sigma_{C}(g)^{2}}{N_{2}}}} \tag{15}
\end{equation*}
$$

where $\sigma_{T}(g)$ (respectively $\left.\sigma_{C}(g)\right)$ is the standard deviation of the expression of gene g in condition T (respectively in condition C); N_{1} (respectively N_{2}) is the number of samples in condition T (respectively in condition C).

- The Empirical Bayes Statistic [215]: in this method, statistical tests like the above t-test is defined within a Bayesian framework, and the empirical Bayes is used to estimate the error in differential expression. This method results in more stable estimations in case of low samples. This method is used in R-package for DEG analysis like Limma [188].
- Other statistics tests like the Wilcoxon rank sum test [235], the F-statistic have also been used for DEG analysis.

2.2.2 Wrapper Methods

Wrapper methods consider the selection of a subset of features as a search problem. Hence, different subsets of features are built and tested iteratively. Evaluating a specific subset of features is obtained by training a model with only the subset of features and testing its performances. The main advantage of these methods is that they interfere with the model learning. Moreover, they consider interaction with other variables. However, the computational cost severely impedes these methods as the number of features increases, so the search space. Wrapper methods are not widely used for expression analysis as they are prone to overfitting due to the low sample size of expression data.

2.2.3 Embedded Methods

Embedded methods include the selection of the features while the model is learned. This category's advantage is that the selection interacts with the model learning and takes into account interaction with other features. They offer a good compromise between filter and wrapper methods. They are far less computationally expensive than wrapper methods and overcomes the limitation of filter methods. A popular method in this category is the support vector machine method combined with recursive features elimination (SVM-RFE) [90]. As presented in Section 2.1.3, penalized regression can be seen as an embedded feature selection method. In effect, some penalization methods such as Elastic Net allow for shrinking coefficients precisely to zero, and in this way, features with zero coefficients are removed from the model.

2.2.4 Other Methods

Recently, researchers have started to combine several types of features selection methods (embedded, filter, and wrapper methods) using hybrid or ensemble methods. Hybrid methods sequentially combine several features selection methods that use different concepts. Ensemble methods are based on the principle that combining several experts' performances is better than the performance of a single expert taken separately. The aim is to combine different feature selection technologies' strengths, as they may perform differently on variable datasets.

Feature selection is a crucial task, especially for high dimensional data, i.e., where the number of variables is very high compared to the number of observations. In fact, in this situation, it is difficult to look at the variables and say which are relevant and which are not. On the other hand, it is difficult to build and interpret a model that will consider all the variables.

2.3 Resources Available for Network Inference

With the advancement of high-throughput experiments, a disparate type of biological data from diverse sources is now available for GRN inference (modeling).

Gene expression data. In gene expression measurements, one determines the level at which a particular gene is expressed within the cell or tissue. It can be done at two main levels:

- mRNA level: at this level, gene expression is determined by the amount of mRNA. It is the transcript abundance.
- Protein level: the gene expression level, corresponds to the quantity of protein present in the cell. It is protein abundance.

However, the protein abundance measurement is much more challenging to perform than transcript abundance measurements. Thus, gene expression via mRNA abundance is widely used. The transcript abundance is generally measured with high-throughput technology such as microarray experiments.

The microarray experiment is a widely used high-throughput technique for measuring the transcript abundance of a thousand genes simultaneously. Therefore, it enables researchers to establish expression profiles of the genes of a cell. A microarray is a collection of spots attached to a solid surface (a chip). Each spot corresponds to a gene and comprises a million copies of a single-stranded fragment of DNA (gene) called a probe. Each DNA fragment (probe) is designed to uniquely complement an $m R N A$. The mRNAs are extracted from the genome of interest and then labeled with a fluorescent label and finally spread over the chip. The complementary sequences bind together (hybridize), and the unbound sequences are washed away. The hybridized probes produce a fluorescent signal whose intensity is proportional to the number of copies of probes hybridized on the spot. The gene's expression level can be determined by its corresponding spot's fluorescence intensity, with a bright spot analogous to high expression and a dark spot to low expression. Figure 7 summarizes the microarray experiment for gene expression measurement.

There exist two main types of expression data depending on when the microarray experiment is carried out after the cell has been subject to some perturbations. Hence, we discern:

- The steady-state microarray data that are acquired when the cell reaches the steady-state.
- The time series data measured at different equally spaced time points after perturbations are applied to the cell, and before the cell goes back to its steadystate.

There exist several databases that store gene expression data, but the most important database is GEO (Gene Expression Omnibus) [59]. It is publicly accessible and stores different types of gene expression data for many organisms obtained from different sources.

As microarray analyses are costly, the number of samples in datasets is far smaller than the number of genes, causing significant difficulties for GRN inference, as discussed in Section 1.5. This situation has encouraged researchers to adopt some strategies that generate realistic in silico expression data from a simulated GRN. The simulated network can either be random graphs models or a part of the right network. Several methods have been proposed to generate simulated expression data,

Figure 7: DNA microarray experiment
This figure summarizes the process of measurement of the level of the genes' expression within the cell using a DNA microarray experiment. First, the mRNA is isolated from a sample of interest. The next step consists of labeling the transcripts. To do so, one performs reverse transcription to produce the complementary DNA (cDNA) fragment of the mRNA. The cDNA is then labeled with a fluorescent color. In the next step, the labeled cDNAs are placed onto the microarray, where they will hybridize with their complementary sequences attached to the microarray. The cDNAs that do not hybridize are washed away. In the last step, the fluorescence's intensity (which corresponds to the proportion of cDNAs that hybridized to the probe) of each probe is measured and reported as genes' expression level.
but ordinary differential equations (ODE) are widely used. Many softwares have been developed exploiting the proposed methodology, among which we can mention SynTReN [238] or GeneNetWeaver [202].

Nowadays, with the advent of high throughput technologies that have allowed the sequencing of the genome of many species, new methodologies have emerged that enable deep and rapid investigation of the transcriptome. One of these methods is the RNA-seq (RNA sequencing), which uses sequencing to measure the mRNA level present in biological samples. A typical RNA-seq experiment works as follows: the mRNAs present in the medium are transformed into cDNA (complementary DNA). Then Tags are added to these cDNA fragments to allow later sequencing using shortread sequencing. It results in millions of short sequences (read) that correspond to each cDNA. The reads are then mapped to the original genome. The expression values are the normalized count that have been mapped to genes in the genomes. Figure 8 summarizes an RNA-seq experiment. Note that RNA-seq data offers several advantages like measurement of expression in any species, even in non-model organisms, detecting novel genes.

Protein-DNA interaction sequences data: As presented before, protein-DNA interactions occur when a protein (TF) binds to a DNA sequence (regulatory sequence) located upstream to the gene(s) it controls. Protein-DNA interaction preferences are transcription factors binding sites (TFBSs). They can be determined either through expensive wet-lab experiments or through computational methods. In Section 2.5.1 we will present computational methods for identifying the TFBS. TFBS are generally modeled as matrices. For now, we will focus on experimental techniques. Several lab techniques exist to identify TFBSs. Chromatin immunoprecipitation (ChIP) coupled with either microarray (ChIP-chip) or with sequencing (ChIP-seq) is the most used method. Several databases exist for experimentally reported TFBS sequences and TFBS motifs (see Section 2.5.1 on what has been done to define the TFBS motifs). Amongst them, there is for example RegTransBase [130], which is a publicly available database that store TFBS sequences on prokaryotes, and TRANSFAC [162] a private store of TFBS sequences and motifs about human, cis-BP [245] which stores information about TFBS for several species (≈ 700 species) and gather biding information from several other curated database like JASPAR [198].

Figure 8: RNA-seq experiment
This figure summarizes the process of measurement of the level of the genes' expression within the cell using an RNA-seq experiment. This image is from http://bio.lundberg.gu.se/courses/vt13/rnaseq.htm 1. A typical RNA-seq experiment works as follows. The mRNAs are collected from the cells. They are then fragmented. Then the mRNAs fragments are converted into double-stranded DNA. Sequencing adaptors are added to the sequences. These adaptors will help the sequencing machine to recognize the fragment. In the next step, the DNA fragments with sequencing adaptors are amplified. Then the library is verified to check, for example, for the size of the fragments. The fragments/read are subsequently sequenced. Finally, the reads are aligned to a genome, and then one counts the number of aligned reads per genes.

These databases generally store information about the TFs associated with each binding information data.

Genomic Data: We choose to divide this type of data into two main categories. In the first category, we have the nucleotide sequences from the DNA of organisms. GenBank [15] from NCBI (National Center for Biotechnology Information) is the publicly available reference database for DNA sequences. Other well-curated databases store information about the genome, such as, UCSC genome browser [131], which is a web tool for displaying user-defined parts of the genome. It stores information about several organisms like Human, mouse, yeast. It also allows retrieving diverse data related to genes such as their sequences, their promoter regions, their symbols. Another example of such databases is Ensembl [113], which is dedicated to vertebrates. Like the UCSC genome browser, it allows genome annotation, sequence alignment, regulatory function prediction. In the second category, we have protein sequences. UniProt (Universal Protein resource) [237] is a freely available database and a reference for proteins sequences. Protein sequences are out of the scope of this thesis

Gene perturbation data. This data can be obtained from different techniques:

- Through gene knockout (KO), which is a technique in which one or more of an organism's genes are made inoperative or deleted, and genes expression is next measured to capture changes in the system. There are several methods to inactivate a gene, such as mutation. The gene knockout is used to determine gene function, and genes targets if the gene knocked out is a TF.
- Through gene knockdown, which is a technique in which the expression of one or more of an organism's genes is reduced. It is performed through experiments in which RNA interference (RNAi) is used to reduce a gene's expression. Like with gene KO, it allows determining genes function and target of a TF in case it is knocked down.

Organism specific database: Researchers have put the effort in gathering diverse biological information about model organisms such as Escherichia coli, and Human, Saccharomyces cerevisiae into curated databases. This information can be
functional annotations, sequences, regulatory associations, and expression datasets. These databases help scientists in their everyday work. An example of such databases is SGD (Saccharomyces Genome Database) [99] which is the database for Saccharomyces. We also have MGI [29], which is the official resource database for the laboratory mouse, providing information such as genomic data, to facilitate the research on human health.

Other type of data: Available data for network modeling are interactome data. An organism's interactome is formed by the full set of the interactions (physical, biochemical, or functional) that can occur among all its macromolecules and metabolites such as proteins, RNA molecules, or even gene sequences. Those interactions include, for example, protein-protein, DNA-protein, RNA-protein interactions. Many databases exist that gather known or predicted interactions. Some of these databases provide information about regulatory proteins and their regulated genes (an example is YeastTract [166]). Others give information about direct or indirect association among proteins (PPI) (an example is the STRING database [118]).

Another type of data relevant to the study genes and their regulatory interactions are gene functional annotations. Many projects have been proposed to manage concepts/classes used to describe gene and gene products' properties. A significant project is the Gene Ontology (GO) [6]. The functional annotations in the GO database (GO terms) are hierarchically organized in a way that groups together subsets of genes sharing common biological functions. This type of information alleviates the functional interpretation of genes participating in a GRN.

This section does not give a complete list of available data but instead introduces the potential usable for the GRN inference.

2.4 Assesment and Validation of Network Inference

Many methods have been proposed to further the task of engaging in analysis of GRN inference. However, the methods need to be reliable to obtain a useful and accurate model of the GRN. Thus, it becomes vital to have a fair assessment and
comparison of existing methods. Several measures have been used throughout the literature to evaluate the accuracy of the GRN inference methods. As in [63], we categorize the most used methods in two main types: statistical-based measures and ontology-based measures. The last category, which is instead a challenge to fairly compare GRN inference methods, is also presented.

2.4.1 Statistical Measures

When we use statistical measures to assess GRN inference algorithms, GRN inference is considered as a binary classification. In essence, the aim is to classify each inferred interaction as either a correct regulatory link or not. The inferred network (the model) is then compared to a gold standard network, and standard evaluation metrics such as ROC curves and Precision-Recall curves are computed. A confusion matrix is first built, as described in Figure 9.

In the context of GRN inference, TP, TN,FP, FN are defined in terms of inferred edges. Therefore:

- TP are edges occurring in the reconstructed network, and that also occur in the gold standard network.
- FP are edges occurring in the inferred network, but that do not appear in the gold standard network.
- TN refer to edges that neither belong to the inferred network nor the gold standard network.
- FN refer to edges in gold-standard network that are missing in the predicted network.

Here the gold standard network is generally built from wet lab experiments (for some model organisms). The statistical metrics used to assess algorithms for GRN inference are the following:

- The positive predictive value that is obtained with the the following formula:

$$
P P V=\text { Precision }=P=\frac{T P}{T P+F P}
$$

Actual(Gold

standard)

Figure 9: Confusion matrix
The figure represents a confusion matrix. In the case of GRN inference, the Actual is the gold standard network, and the predicted is the inferred network. The true positives are the edges that occur both in the reconstructed network and the gold standard network. The false positives are the edges present in the inferred network but absent in the gold standard network. True negative refers to edges absent in the gold standard network and the inferred network. False negatives are edges that are absent in the inferred network but present the gold standard network.

- The negative predictive value that is computed as follow:

$$
N P V=\frac{F N}{F N+T N}
$$

- The accuracy (ACC) computed with the following formula:

$$
A C C=\frac{T P+T N}{T P+T N+F P+F N}
$$

- The sensitivity or recall or true positive rate (TPR) that is obtained as follow :

$$
T P R=\text { Sensitivity }=R=\frac{T P}{T P+F N}
$$

- The specificity (SPC) or true negative rate computed as follow:

$$
S P C=\frac{T N}{T N+F P}
$$

- The false discovery rate (FDR), which is obtained with:

$$
F D R=\frac{F P}{F P+T P}
$$

From the above statistical metrics, three pairwise measures are widely used in the literature to assess GRN inference algorithms:

1. The area under the receiver operating curve (AUROC). The ROC curve represents a plot of the sensitivity (y-axis) against the true positive rate (x-axis) when varying the threshold the algorithm depends on. The AUC is the area between the ROC curve and the x -axis.
2. The AUC of the precision-recall curve (AUPR), which plots the precision (yaxis) against the recall (x-axis). The AUC is obtained as previously. Note that, the AUPR score is mostly adopted as a metric to evaluate GRN [115] as it is suitable for class imbalance problem: i.e., when the number of positive is much lower than the number of negatives, which is the case for GRN inference [47].
3. The F-measure that is computed with the following formula

$$
F_{\beta}=\left(1+\beta^{2}\right) \frac{P R}{\beta^{2}(P+R)}
$$

A particular case of this measure that is widely used is the F_{1} score, obtained when we set $\beta=1$ so :

$$
F_{1}=2 \frac{P R}{P+R}
$$

In the process of evaluating the network inference methods, scientists combine the above measures with statistical tests in order to assess the statistical significance of the results obtained when comparing with random networks. The two main statistics used are:

1. the \mathbf{p}-value that is the probability of occurrence of a given finding by chance alone in comparison with the known distribution of possible findings (the actual finding) considering the number of observations, the kind of data, and the technique of analysis [94]; and
2. The Z-score is a number indicating how many standard deviations an element is from the mean.

Note that the above statistical metrics are also used to assess the accuracy of the reconstructed network. For example, in the case where there is no gold standard network against which we can compare the reconstructed network, the statistical test (p-value and Z-score) can be used to assess the statistical significance of the characteristics of the inferred network, like functional annotation.

Evaluation of GRN inference methods using the above metrics is a daunting task owing to the limited availability of the gold standard networks. Only a few organisms are well known and have a set of biologically verified regulatory links, due to our limited current knowledge of the cell. Instead, researchers have put some effort to generate realistic simulated data based on biochemically plausible interaction models. These efforts are discussed in Section 2.4.3.

2.4.2 Ontology Measures

To assess the inference algorithms' performances using ontology-based measures, one uses biological information to quantify the reconstructed network's biological relevance. One uses the idea that in a GRN, genes regulated by the same TF are more likely to be involved in the same biological processes. Thus, one uses the Gene Ontology [6] (GO), to test that it holds in the reconstructed network [249, 63]. This methodology is called functional enrichment. The principle is as follows: given the set of target genes for a particular TF, one maps each gene in the set to its associated biological annotation and then using statistical methods, including Chi-square, Fisher's exact test, Binomial probability, and Hypergeometric distribution, one finds which GO terms are statistically over-represented (or under-represented) in the set, by comparing the distribution of the terms within a target genes set with the background distribution of these terms (e.g., annotation term of all genes in the network). Many softwares exist that automate the process, among which we can list DAVID [108, 107], g:Profiler [184], GO: :TermFinder [25], BiNGO [154]. Interested readers may refer to [107, 229] for details about functional enrichment analysis.

2.4.3 The DREAM Challenge Measures

More recently, the need of a fair comparison of strengths and weaknesses of the network inference methods as well as a clear sense of the reliability of the network models they produce, have to lead to a community effort to catalyze discussion about the design, application, and assessment of systems biology models through annual reverse-engineering challenges: the DREAM challenges. DREAM challenges are a series of projects designed to evaluate model predictions and pathway inference algorithms in systems biology, organized around annual challenges. The challenges data are widely used as gold standard datasets for a fair comparison of many GRN inference algorithms' performances. Each challenge provides the participants with curated datasets, imposes a specific format for the submissions, and defines standard evaluation metrics. For example, in a network inference challenge from expression profiles, the challenge's organizers provide the participants with gold-standard networks, gene expression profiles, and the evaluation metrics. The output is generally an adjacency list L, used to assess the method's performances.

The assessment of the methods works as follow: for each submitted list L, series of subnetworks of increased size $k=1,2, \cdots,|L|$ corresponding to the top k prediction of L is built by sequentially adding on entries of L at a time. Next, for each subnetwork, a confusion matrix is constructed with regard to the gold standard network. It gives the number of true positives $(\mathrm{TP}(\mathrm{k})$), true negatives $(\mathrm{TN}(\mathrm{k}))$, false positives $(\mathrm{FP}(\mathrm{k}))$, and finally, the number of false negatives $(\mathrm{FN}(\mathrm{k}))$. A true positive is a correct prediction of an edge, while a false positive occurs when the prediction is not actually in the gold standard network. On the other hand, a true negative represents an edge that neither belongs to the prediction nor the gold standard. Finally, a false negative is an edge that belongs to the gold standard, but that is missed by the prediction. Afterward, as previously described, usual metrics are computed, such as precision-recall, AUROC, or AUPR. Note that, generally, a challenge is made up of several networks. Each participant has to infer all the networks to participate in the challenge. The final evaluation of a method is a combination of the performances of the method on each network. Hence, if a challenge is made up of n networks, the usual metrics are computed for the n inferred networks.

Apart from these metrics, p-values are computed for each of the $n A U P R$ and
$A U R O C$ scores to evaluate their statistical significance. The p-value describes the probability that a given or larger area under the curve is obtained by a random ordering of the $|L|$ potential network links. The $n \mathrm{p}$-values are combined into two unique p-values (one for AUROC and AUPR). They are computed as the geometric mean of the n individual p-values (c.f. Equation 16).

$$
\begin{equation*}
p=\left(p_{1} * p_{2} * \ldots * p_{n}\right)^{1 / n} \tag{16}
\end{equation*}
$$

Finally, a global score S_{G}, that combines $A U P R$ and $A U R O C$ scores is computed as the log-transformed "average" of the two overall AUROC and AUPR p-values, the formula is presented in Equation 17.

$$
\begin{equation*}
S_{G}=-0.5 \log _{10}\left(P_{-} A U R O C * P_{-} A U P R\right) \tag{17}
\end{equation*}
$$

Larger global score indicates greater statistical significance of the prediction. The scoring metrics really depend on the challenge. Here we describe the metrics of the challenge we consider in Chapter 3.

2.5 Computational Methods

Many efforts have been undertaken to unravel the gene regulatory network. For this purpose, researchers have developed various methods that use different strategies. We can divide the existing methods into three main categories: methods that infer a GRN by identifying the binding sites of the transcription factors on the regulatory regions of genes, methods that infer a GRN from expression data, and finally, methods that use a template to reconstruct a GRN. In the following section, for each category, we will present its general idea and some state of the art algorithms that use the specific strategy.

2.5.1 Methods for Transcription Factor Binding Sites

In general, cis-regulatory (or regulatory) elements are regions of non-coding DNA that serve as the DNA-binding sites for transcription factors. The prefix cis specifies that the regulatory elements are situated in the vicinity of the gene(s) they control. In GRN inference methods via prediction of cis-regulatory elements, one uses experimentally well-characterized data about regulation (if available) such as transcription
factors (TFs) and TFBSs models (e.g., PWM, motifs) from the genome of interest (target genome) or a model organism like Escherichia coli, to infer regulatory links in the target genome. The aim is to identify regions recognized by TFs. Thus, one scans the regulatory regions of genes in the genome of interest with known specific binding sites weight matrices of experimentally well-characterized TFs to determine the genes that have the TFBS in their regulatory regions. These genes are then hypothesized to be regulated by the corresponding TF. In this category, the inferred regulatory links are physical TF-TG binding interactions. Note that several genes hypothesized to be regulated by the same TF are said to be co-regulated genes.
In [191], Rodionov grouped the principles behind motif-based GRN inference methods in two main axes, which differ by the availability of experimental data about the regulation of genes. In the first strategy, one has access to known TFs. Hence, the general procedure of this strategy is as follow:

- Step 1: all available information of TFBSs of the well-characterized TFs in model genomes are gathered and constitute the training set for the TFBS profile construction. However, in the case where the TF TFBSs are unknown, one collects the TF known co-regulated genes from the reference genome and their orthologs in the analyzed genome. Then, we build the training set to construct the TFBS's profile with the upstream regions of the known TF-regulated genes in the model genome along with the upstream regions of their orthologous genes in the analyzed genome.
- Step 2: One constructs a TFBS profile with the obtained training set.
- Step 3: The profile is used to scan the whole genome of interest to recruit additional binding sites.
- Step 4: One checks the predicted binding sites' consistency using the principle that co-regulated genes tend to be conserved between genomes that contain orthologous TFs. Thus, one scans the regulatory regions upstream of orthologous genes. If one finds the same TFBSs, then it is considered a true regulatory site; otherwise, if the TFBSs matches are scattered across the genome, then the prediction is false.

The second axis is considered when there is no knowledge about the data of genes regulation. In this case, one can adopt two possible options. In the first option, the assumption is that genes on the same biological pathway may be co-regulated by the same TF. Thus, one gathers genes that belong to the same pathway from closely phylogenetically related organisms to the genome of interest. The regulatory regions of co-regulated genes are then used to build the TFBS model, and then one adopts steps 3 and 4 of the first strategy. Another option is to use phylogenetic footprinting, in which one identifies highly conserved regions of the upstream regions of orthologous genes from a set of closely related species. The TFBS profile is built with a set of conserved regions for orthologous genes. Then one adopts steps 3 and 4 of the first strategy. Note that the TFBS profile can be either position weight matrices (PWM) or consensus sequences. Figure 10 summarizes the two strategies used to reconstruct the GRN via the identification of cis-regulatory elements.

The main difficulty with TFBS data-based methods is that they require highquality data. The use of divergent organisms may cause the discovery of many false positives.

One of the essential steps of GRN reconstruction via prediction of cis-regulatory elements is identifying TFBSs and the construction of their models. Thus, we choose to present the state of the art algorithms for the construction of TFBS profiles. Generally, the user feeds the algorithms with the set of regulatory regions of genes that are believed to be co-regulated. The algorithm identifies DNA motifs that are overrepresented in the regulatory regions provided. The difficulty is that motifs are short signals in the midst of a vast amount of noise [230]. Another difficulty arises from our poor understanding of the variability in the binding sequences of a given TF.

The existing algorithms differ in their representation of the motifs, their definition of motif "statistical over-representation," and the method for finding the statistically overrepresented motif. For the motif representation, we observe two main categories of algorithms: PWM based methods and consensus-based methods. Note that the mentioned methods can input other sequences data than DNA sequences (e.g., proteins sequences), but we restrict this section's scope to DNA sequences. We chose two state-of-the-art algorithms from each category:

- MEME [9] and AlignACE [112] for the PWM based methods.
- YMF [213] and Weeder [175] for consensus-based methods.

MEME, which stands for Multiple EM (expectation-maximization) for Motif Elicitation, is a popular tool for motifs discovering in a set of related proteins or DNA sequences. It uses expectation maximization (EM) for motif finding. EM-based motif finding methods work as follows: they alternate between an "Expectation step" and a "Maximization step." In the "Expectation step", the scores of all possible motif positions in the input sequences are computed using entries in the PWM. In the "Maximization step," the high scoring positions are used to refine the PWM. More precisely, MEME works as follows: it starts with a random motif. It tries to improve the motif with the EM algorithm until the values in the PWM do not improve, or the algorithm reaches a maximum number of iterations. The EM alternates between the scoring of motif matching positions in the sequences and using the k-mers at the matching positions to refine the PWM (the motif). Note that the algorithm builds the initial PWMs by choosing a single position in all sequences and extracts all k-mers at that position, then it performs one iteration of the EM. It does this for all possible k-mers. Only the best initial motifs are chosen to run EM to convergence. The advantages of MEME are the following: it allows multiple motifs to be learned; it does not assume that there is exactly one motif occurrence per sequence, and it is not restricted to short motifs. However, the main limitation is that computation time depends on the length and number of input sequences. Furthermore, it does not return gapped motifs. MEME has been recently improved using suffix trees (STEME [186]) or with an online version of the EM (EXTREME [226]) that allows handling large datasets. Note that the MEME-suite is available online and offers a list of different tools for motifs finding.

AlignACE is based on the Gibbs sampling method. More precisely, it uses a Markov Chain Monte Carlo (MCMC) approach to derive the motifs. Markov Chain because the result on the current step depends only on the result at the previous step. Monte Carlo, because the next step is chosen by random sampling. The Gibbs sampling works as follows:

1. Takes as input N sequences.
2. Randomly initializes the motif position in the N sequences, assuming a one motif
occurrence per sequence. The background probabilities are computed from the non-motif position in the $\mathrm{N}-1$ sequences.
3. Compute the probability of all possible motif locations using the previously obtained PWM and the background probabilities.
4. Find new motif starting position in the excluded sequence from step 3.
5. Iterate steps 2-4 until the values in the PWM do not improve, or the algorithm reaches a maximum number of iterations.

AlignACE uses an improved version of the Gibbs sampling method. First of all, it checks both strands of the input sequences. It uses an improved sampling method and allows for discovering multiple motifs. The main advantage of AlignACE is that it is not restricted to short motifs. Moreover, it can detect several motifs. Nevertheless, it is susceptible to the initial parameter setting, and like MEME, the computation time depends on the number of input sequences.

Weeder is an enumerative-based motif finding method. The general idea of enumerative approaches is to generate all possible words up to a given length. Then determine those occurring with potential substitutions in a significant fraction of the input sequences. The discovered motifs are then ranked using statistical measures. Enumerative approaches perform an exhaustive search of the whole search space and generally find a global optimum. However, they are computationally demanding. Weeder uses this principle to find motifs. It uses a suffix tree to optimize the search time. Hence, it preprocesses all the input sequences into a suffix tree. It uses a recursive suffix tree search with pruning to find the pattern that occurs with at most a certain number of substitutions in at least a certain number of the input sequences. The advantage of this method is that, compared to other enumerative methods, the execution time depends on the substitution number rather than the input sequences' length.

YMF stands for Yeast Motif Finder as the model was derived from the study of known TFBS in Saccharomyces cerevisae. It is based on an enumerative strategy, as described previously. It enumerates all motifs in the search space, and it guarantees to find the motif with the greatest Z-score. The Z-score is the number of standard deviations by which the observed number of occurrences in the input sequences exceeds
the expected number of occurrences if the input sequences were random. YMF detects short motifs with a small number of degenerate symbols. The main advantage of this method is that it returns gaped motifs and ensures that it returns the best motif. However, it is limited to retrieve pretty short and simple motifs that do not vary too much (a small number of degenerate symbols).

The algorithms listed here are the most popular algorithms for motif finding. Of course, there exist other algorithms with different strategies. For example, researchers have proposed combining several motifs finding algorithms (ensemble method) since they generally exhibit complementary outputs $[105,106]$. We refer the reader to survey papers on motif discovery methods for a more in-depth comparison of the existing methods [46, 230, 96].

Table 1 presents the selected algorithms in terms of their principle, their output model, their advantages, and their limitations. Figure 6 presents the different representations Tryptophan (Trp) TFBS, which is an E. coli's TF that regulates the trp operon presented in Section 1.2. The PWM in the figure has been obtained using MEME.

A. Strategy I: Known TFs

Ia. Known TFBS model

B. Strategy II: Putative TFs

Figure 10: Procedure to identify regulon
The figure summarizes the strategies used to reconstruct the GRN via the identification of regulons [191]. Broadly there are two strategies. In the first strategy, one uses information about experimentally-determined TFs to infer the GRN from position weight matrices that build either with known binding sites of TFs or with genes' promoters. The second axis is considered when there is no knowledge about the data of genes regulation. In this axis, one uses methods such as phylogenetic footprinting to collect promoter of genes that belong to the same pathway from closely phylogenetically related organisms to the genome of interest. A PWM will then be constructed from these promoters.

Table 1: Motifs Finding Methods

Algorithms	Brief description	Output	Advantages	Drawbacks
MEME [9]	Uses expectation and maximisation for motifs finding. It starts with a random motif and tries to improve the motif with the EM algorithm until the values in the PWM do not improve, or the algorithm reaches a maximum number of iterations. The EM alternates between the scoring of motif, matching positions in the sequences, and using the k -mers at the matching positions to refine the PWM (the motif).	Return a set of motifs as position weight matrices.	+ Can deal with sequences containing reasonable noise. + Can find several distinct motifs in the same set of sequences. + The assumption made by other EM-based algorithms that each sequence contains exactly one occurrence of the shared motif is removed.	- Performance decreases significantly as the length of sequences increases. - Not suitable for wholegenome TFBS motifs discovery.

Table 1 continued from previous page

Algorithms	Brief description	Output	Advantages	Drawbacks
	The 0 -order model consists of the frequencies of the letters in the training set.		+ Able to adapt motif length.	- No gaps allowed in the motifs. - Assumes that the positions in the motifs are independent, which is not valid in reality. - Sensitive to initial parameters.

Table 1 continued from previous page

Algorithms	Brief description	Output	Advantages	Drawbacks
$\begin{aligned} & \text { AlignACE } \\ & {[112]} \end{aligned}$	Uses Gibbs sampling to find the motifs and the maximum a posteriori (MAP) score to measure the degree to which a motif is overrepresented. The MAP score is combined with another score that measures how well a given motif targets the gene whose upstream regions were used to find the motif. This score allows the selection of functional motifs.	Set of motifs as position weight matrices.	+ Can find long motifs. + Several distinct motifs can be found in the same set of sequences. + Input sequences may not exhibit the motif.	- Performance decreases significantly as the length of sequences increases. - Assumes that the positions in the motifs are independent, which is not valid in reality. - Has difficulty in modeling gapped motifs. -Sensitive to initial parameters.

Table 1 continued from previous page

Algorithms	Brief description	Output	Advantages	Drawbacks
YMF [213]	Uses an exhaustive search approach to discover the overrepresented motifs: i.e., motifs with the greatest z-score.	Consensus sequence motifs.	+ It allows gaps in the motifs. + Allows mismatches within the motifs. + Easy for a human to interpret and visualize the result. + Considers both DNA strands.	- Limited size of motifs. - Time-consuming. - Suitable only when all instances of motifs do not vary too much. - Only suitable for short motifs.
Weeder [175]	The algorithm uses enumeration to find motifs with limited size and a maximum fixed number of mismatches within the input sequences. It uses a suffix tree to optimize the search time. It preprocesses all the input sequences into a suffix tree.	Consensus sequence motifs.	+ Easy for a human to interpret and visualize the results. + Allows mismatch within the motifs.	- Suitable only when all motifs instances do not vary too much. - Time-consuming. - Only suitable for short motifs.

Table 1 continued from previous page

Algorithms	Brief description	Output	Advantages	Drawbacks
	It uses a recursive suffix tree			
	search with pruning to find			
	the pattern that occurs with			
	at most a certain number of			
	substitutions in at least a			
	certain number of the input			
	sequences.			

The table summarizes some state of the art methods that perform motif finding. We consider consensus-based methods and PWM based methods. We report the most popular algorithm in each category. The $1^{\text {st }}$ column gives the name of the algorithm. The $2^{\text {nd }}$ column gives a short description of the algorithm. The $3^{\text {rd }}$ column gives the type of output the algorithm produces. The $4^{\text {th }}$ column provides the advantages of the algorithm. Finally, the $5^{\text {th }}$ column provides the limitations of the algorithm.

2.5.2 Reverse-Engineering Methods.

In this section, we will present algorithms that reverse-engineer the GRN from gene expression data.

Reverse engineering is the process of unraveling a system's design by studying its structure, function, and operation. The goal of reverse engineering is typically to understand the target system to the point where it can be rebuilt (copied) or reengineered (modified) [156].

In reverse engineering of a GRN, the aim is to infer its graph structure (i.e., the interactions between the genes) and parameters (e.g., type/strengths of these interactions) from the expression of all its genes by developing models and algorithms. One scan for patterns underlying the data measurement (time-series or steady-state gene expression data) to learn the interactions and parameters. Expression data is generally represented as a matrix \mathbf{X} (Equation 18), whose rows represent the genes in the GRN, and the columns are either the set of experimental conditions, time points, or tissue samples. More precisely an entry $x_{i, j}$ of \mathbf{X} is a real value representing expression level of the $i^{t h}$ gene under $j^{\text {th }}$ experimental condition, time point or tissue sample. The regulatory network is represented by a matrix \mathbf{A}, where an entry $a_{i, k}$ is the regulatory interaction between the $i^{\text {th }}$ and $k^{t h}$ genes. Note that $a_{i, k}$ can either be discrete $\left(a_{i, k} \in\{0,1\}\right)$, signed ("+" for activation and "-" for repression) or a real value (to determine strength of interaction).

The reverse engineering methods make the following assumption: if a gene G_{1} is linked to another gene G_{2} (respectively other genes $G_{2}, G_{3}, \cdots, G_{k}$) then the expression of G_{1} influences the expression of G_{2} (respectively those of genes $G_{2}, G_{3}, \cdots, G_{k}$). Hence, one has a network of an unknown structure \mathbf{A} and its list of genes. One measures the expression level of the list of genes. We obtain a matrix \mathbf{X} of gene expression profiles of the considered GRN. Finally, one uses the information in the \mathbf{X} to infer connections among genes by quantifying the dependencies among their expression profiles. Figure 11 presents a summary of the steps towards reverse engineering of a gene regulatory network.

$$
\mathbf{X}_{N, M}=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, M} \tag{18}\\
x_{2,1} & x_{2,2} & \cdots & a_{2, M} \\
\vdots & \vdots & \ddots & \vdots \\
x_{M, 1} & x_{M, 2} & \cdots & x_{N, M}
\end{array}\right), \quad \mathbf{A}_{N, M}=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, M} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, M} \\
\vdots & \vdots & \ddots & \vdots \\
a_{M, 1} & a_{M, 2} & \cdots & a_{M, M}
\end{array}\right)
$$

Figure 11: Step for regulatory network inference.
This figure summarizes the steps toward reverse-engineering the gene regulatory network from expression data [156]. (1) Gene network of unknown structure (the so-called target network). (2) Gene expression levels are measured. (3) A modeling framework (model type) for the gene network needs to be defined. (4) The inference method predicts one or several networks that are consistent with the available gene expression data. (5) Depending on the model type, only the structure or a quantitative model of the network can be inferred. (6) The predicted gene network is validated with additional experiments.

There exist several methods that exploit this idea to unravel the GRN. These methods differ in the strategies and the model used to obtain the set of regulatory links. In this thesis, we will emphasize the models used and give details about them, but first, it is essential to talk about the strategies adopted to cope with the problem of GRN inference.

In their paper [49], De Smet and Marchal have proposed to organize GRN reverse engineering methods regarding different strategies they used. First, we distinguish supervised learning from unsupervised network inference. Supervised and semi-supervised methods view the inference problem as a classification problem and use experimentally verified or literature-based interactions to train a machine learning classifier. On the other hand, there are unsupervised methods that neither rely on classification nor assume any a priori knowledge of the network to infer. Furthermore, we have integrative versus non-integrative methods. Non-integrative methods use expression data alone to infer the GRN. They assume that information about regulation is entirely given by the expression activity of the genes.

On the other hand, integrative methods complement the information in expression data with other data such as known TFBS, information on molecular interactions, PPI, and literature. Finally, we distinguish direct methods from module-based methods. Direct methods consider each gene individually and infer all its interactions with other genes. In contrast, modules based methods take advantage of the modular nature of the GRN, and instead of working at the level of the genes, consider the network as modular. A module here is a set of genes regulated in concert by the same regulator(s) under a shared regulatory program, which specifies the behavior of the genes in a module as a function of the module regulators expression. Module-based methods consider the GRN as a set of nested modules obtained with any clustering methods then the regulatory program has to be learned for the modules.

Aside from the strategies used to overcome the problems that arise from GRN, many models have been used for GRN inference. In this thesis, our categorization is based on the different models proposed over the literature for GRN inference. Therefore, we summarize existing efforts into the following five categories. Namely: (i)Probabilistic graphical model-based methods (ii)Correlation-based methods (iii)Partial correlation-based methods, (iv)Information theory-based methods, (v)Regression-based method and finally (Vi) ODE based methods.

2.5.2.1 Probabilistic Graph Methods

In modeling the GRN, the aim is to capture both the entities involved in (genes) and their different attributes (e.g., expression data). Probabilistic graphical models
treat different attributes as random variables [73]. The defined model represents the description of the joint probability distribution of all random variables, which is a product of terms involving only a few expressions. A graph is thus used to specify the structure of the product. It shows dependencies between variables and provides tools to reason about the properties entailed by the product. The aim of modeling here is to find the model that closely represents the distribution of the data. It can be done in two ways. Either by parameter estimation through the maximum likelihood problem or by selecting among different model structures, the one that best represents the data, using a scoring measure. The common model of this category is the Bayesian Network, which is among the first models used to infer the GRN from expression data, with the work of Friedman et. al [74].

To represent this category, we choose Banjo [260]. Banjo uses a dynamic Bayesian network to infer the GRN from time-series expression data. The expression data are first discretized using either quantile or interval discretization. The algorithm uses the $1^{\text {st }}$ order Markov DBN, which assumes that gene expression at time t is only dependent on the expression data of its parent genes and the gene itself at time $\mathrm{t}-1$. Then, the Bayesian Dirichlet equivalence (BDe) scoring metric is applied to evaluate the goodness of each possible network G in the search space. In the next step, the algorithm searches the top N networks with the highest score using either a greedy strategy or simulated annealing. The top N networks are then averaged to obtain a consensus network. The algorithm outputs a weighted signed directed network. The advantage of Banjo is that it can infer the directionality of the data. Furthermore, the algorithm is specially designed to work with data with a limited amount of samples. However, in the initial version, the algorithm had difficulty inferring combinatorial links (targeted by many TFs) that are common in GRN.

Other algorithms such as scanBMA [258],G1DBN [141] have also been proposed.
scanBMA is an unsupervised algorithm that uses a Bayesian network and incorporates prior knowledge data to improve the accuracy of the inferred GRN from time-series gene expression data. It poses the GRN inference problem as a series of feature selection problems for each TG. In each problem, a list of TFs is inferred for a specific TG. It uses BMA (Bayesian Model Averaging) to account for uncertainty in the model selection, by averaging different models to derive the posterior density
on model parameters. It uses a greedy method to explore the search space and eliminates improbable models using the Ocam widow principle [152]. The prior knowledge data is used to compute prior probabilities of regulatory interactions. These probabilities are used to compute posterior probabilities of regulatory interactions. They defined Zellner's g-prior [265] on the prior distribution of the model parameters and used EM to find g. Furthermore, the method uses a faster implementation of BMA, which allows an efficient search of the model space. The faster implementation of BMA permits scanBMA to have a running time comparable to that of LASSO. scanBMA runs in a couple of minutes for a network of thousands of genes on a regular laptop. The method has been tested on simulated data from DREAM4 challenge (with networks of size 10 and size 100) and experimental data from Saccharomyces cerevisae [256] that consists of 3556 genes. The authors compared their performance to a dynamic Bayesian network, LASSO and mutual information-based methods. They used AUPR and AUROC scores to evaluate their performance and the performance of the competing methods. For the DREAM4 data, the authors considered only time-series expression data and did not include any prior knowledge data. On the simulated data, scanBMA performed comparably to the competing methods. However, it outperformed the competing methods on the yeast dataset.

G1DBN uses the dynamic Bayesian network as defined in Section 2.1.1. From Section 2.1.1, when dealing with time-series expression data, the DAG may be huge and impossible to infer with input data where the data number of variables is larger than the number of samples. In G1DBN, the authors have proposed approximating the DAG to infer using the $q^{\text {th }}$ order conditional dependency DAG. More precisely, the authors use the $1^{\text {st }}$ order conditional dependence to approximate the DAG of the dynamic Bayesian network. Under some conditions demonstrated by the authors, the $1^{\text {st }}$ order conditional dependence graph contains the full DAG to be recovered. The algorithm proceeds into two steps. In the first step, the algorithm learns the DAG of $1^{\text {st }}$ order conditional dependence assuming linear dependencies. In the second step, the DBN's real DAG structure is inferred from the coefficients learned in the previous step. The authors benchmarked their method on both simulated and real expression data. As simulated data, they generated 100 random time-series expression data using a multivariate autoregressive model of order 1. They used two experimental datasets: one on the yeast cell cycle [217] with 786 genes expressed in the cell cycle
and the other on Arabidopsis Thaliana [214] with 800 genes. The method has been compared to LASSO and the autoregressive model. They used precision-recall curves to report the performance. G1DBN presents superior results on both simulated and experimental data. Furthermore, it was able to infer biologically validated regulatory links as well as new potential regulatory links. The authors have shown that the performance of G1DBN may depend on the size of the network since they observed the degradation of their performance on real network data as the size increases. The main advantage of this method is the fact that it can infer the direction of regulatory links. However, it assumes linear dependency among genes, and it is computationally demanding.

2.5.2.2 Correlation Methods

Correlation-based methods are the most straightforward way to investigate a GRN using gene expression data since regulatory links among genes imply a correlation between their expression profiles. Thus, in this category, a matrix of gene expression similarity, $\mathbf{S}=\left[s_{i j}\right]$ is defined using the matrix \mathbf{X} (see Equation 18); where $s_{i j}$ is the pairwise correlation coefficient between expression profile $\mathbf{X}_{i, \text {. of }}$ gene i and $\mathbf{X}_{j, \text {. of }}$ gene j. The coefficients are computed using a correlation measure, such as the Pearson correlation coefficient. From the matrix \mathbf{S}, regulation links are inferred using a threshold τ : a regulation link is established between genes i and j if and only if $s_{i j} \geq$ τ. The threshold τ is generally obtained from randomization of the data allowing statistical significance assessment. The inferred GRN is an undirected graph since we cannot infer causality from correlation. To represent this category, we consider the WGCNA [138] algorithm, which is available as an R package. The WGCNA proposes several correlation measures, which can be used to construct the correlation similarity matrix \mathbf{S} from expression data matrix \mathbf{X}. The correlation similarity matrix is then used to compute the adjacency matrix by thresholding the entries of \mathbf{S}. The package offers a function in which the scale-free topology of the inferred network criterion [266] is used to choose the threshold τ. The algorithm can provide either a weighted or an unweighted network as output, in which weights represent the confidence of the regulation links. The inferred graph is undirected.

2.5.2.3 Partial Correlation Methods

Partial correlated based methods (Gaussian graphic model) are also known as the covariance selection problem. In this approach, the observed data matrix \mathbf{X} (see Equation 18) is assumed to be drawn from a multivariate normal distribution $\mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})$, with $\vec{\mu}=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)$ the mean vector, and $\boldsymbol{\Sigma}$ the covariance matrix. A partial correlation matrix $\mathbf{C}=\left[c_{i j}\right]$ is computed from the inverse of the covariance matrix. It is used to describe dependency between any pair of genes conditioned on the rest of the genes. The normality assumption allows determining conditional independence between two genes from the zero entries of the inverse of the covariance matrix and the contrary from non-zero entries. The general step of the algorithms in this category are :

1. Estimate the covariance matrix from the data \mathbf{X}.
2. Invert the covariance matrix and compute the partial correlation matrix $\mathbf{C}=$ $\left[c_{i j}\right]$.
3. Use a statistical test to determine entries in the partial correlation matrix that significantly differ from zero.
4. Infer regulatory links from non-zero entries in the partial correlation matrix.

As a representative of the category we choose GeneNet [201]. The major problem faced in this category is that the number of gene expression samples is much smaller than the number of genes. It makes the covariance matrix impossible to invert since, in those conditions, the obtained input data matrix \mathbf{X} loses the characteristics of an invertible matrix. The GeneNet algorithm uses the Moore-Penrose pseudoinverse to compute the inverse of the covariance matrix and uses bagging (bootstrap aggregation) to stabilize the estimator. The Moore-Penrose pseudo inverse is a generalization of the matrix inverse that is based on singular value decomposition. Moreover, they computed the p-value as well as the posterior probability for each edge. They used FDR to correct for multiple testing and select the edges to be included in the GGM based on adjusted p-values. GeneNet was initially tested on both simulated and experimental data from Human breast cancer [246] the dataset covers 7129 genes. The authors use statistical measures such as FPR, specificity, or FDR to report their
performances. This method's main advantage is that it is particularly designed for high dimensional data (low samples compared to the number of variables). However, the method cannot infer combinatorial links, i.e., regulatory links targeted by many TFs.

2.5.2.4 Information Theoretical Methods

Information theory-based methods use mutual information to infer correlation coefficients among expression profiles of pairs of genes. Thus, for each pair of genes, mutual information is computed then compared to a threshold τ. If the mutual information of the pair of genes is greater or equal to the threshold τ, then a regulation link is inferred between the pair of genes. Mutual information is an interesting measure of correlation since a mutual information value of 0 between two variables implies that the two variables are independent. Furthermore, information theory allows identifying any correlation that can exist between the two variables: either linear or nonlinear. As a representative of this category, we choose ARACNE [159]. It infers the GRN from steady-state expression data. It computes the mutual information between all possible pairs of genes and uses randomization of the data (e.g., bootstrap) to select the threshold τ. In a second step, the algorithm considers all gene triplets (pairwise mutual information of the genes in the triplet) and uses DPI (data processing inequality) to reduce the number of false positives regulatory links. The algorithm may accidentally consider a direct interaction between two genes when, in reality, there is a $3^{\text {rd }}$ gene involved. DPI will remove such a direct link. DPI states that if two genes g_{1} and g_{3} interact only through a $3^{r d}$ gene g_{2} (i.e. there exists no alternative path between g_{1} and g_{3} than through $\left.g_{2}\right)$ then $I\left(g_{1}, g_{3}\right) \leq \min \left(I\left(g_{1}, g_{2}\right) ; I\left(g_{2}, g_{3}\right)\right) . I($.$) is the mu-$ tual information. The algorithm has been tested on both simulated and experimental data. For simulated data, the authors used different topologies proposed in [164] to simulate their expression data. The networks were either random or scale-free and consisted of 100 nodes with 200 interactions. For the experimental data, they used a dataset from Human B cells. They evaluated their performances against the Bayesian network and Relevance Network using precision-recall curves. ARACNE showed superior performance compared to concurrent methods. Furthermore, ARACNE was able to infer validated targets of some known Human oncogenes. The algorithm also inferred
other biologically validated regulatory links. The main limitation of ARACNE is that it cannot infer combinatorial links (i.e., links targeted by several TFs). Moreover, it cannot infer the edge directionality.

Recently, an extension of ARACNE to time series data has been introduced: Time delay-ARACNE [272] (TD-ARACNE). TD-ARACNE proceeds in three steps. In the first step, the algorithm detects for each gene, the time point where its expression will initially change. It will help in computing the mutual information in the next step. Secondly, the network is obtained upon the mutual information computed from each pair TF-TG and for different time shifts regarding the information obtained from the first step. In the last step, the algorithm uses the same strategy as ARACNE to prune false positives in the network. TD-ARACNE has been evaluated on both simulated and experimental expression data. For the simulated dataset, the authors have tested different data sizes: different number of genes (10 and 20 genes) and a different number of time points. The point was to evaluate how TD-ARACNE performance depends on the input data size. They worked on three datasets from Saccharomyces cerevisae [217] with 11 genes, from Escherichia coli [192] with 8 genes and from the IRMA dataset [33] made up of 5 genes. The IRMA dataset is obtained by extracting a subnetwork of 5 genes from the Saccharomyces cerevisae GRN. The dataset contains both time-series and steady-state gene expression. It includes two sub-datasets: one switch-on data and one switch off data. The switch-on data covers five experiments. The switch-off data covers four experiments. The whole dataset contains 142 measured samples. The performance was compared to dynamic Bayesian network methods, ODE based method, and the original ARACNE using measures such as the PPV, the recall, or the F-score. TD-ARACNE outperformed the concurrent methods. They have demonstrated that Time delay-ARACNE was able to recover the true structure of the GRN more reliably compared to the concurrent methods. Furthermore, TD-ARACNE was also able to infer several known interactions. The main advantage of this method is that it can infer the direction of the edges.

To represent mutual information-based methods in Table 2, we will only consider $A R A C N E$ as it has been proven to be state of the art on many data sets.

2.5.2.5 Regression Methods

In this category, algorithms use the genome-wide expression profiles of genes to infer the network of regulation. Here, the expression profile of a target gene is modeled as a linear/nonlinear combination of its regulator's expression levels. Hence, the network inference amounts to finding for each gene, the small subset of transcription factors whose expression profile is sufficient to predict its expression. The problem is thus recast as a series of variable selection problem. In each problem, a regression model is used to rank the variables. However, the high dimensionality low samples problem of expression data seriously impedes regression techniques. This situation has caused researchers to employ different strategies to overcome this difficulty. Hence, some authors have used regression trees for each target gene, using a compact set of regulators at each node $[116,168,207]$. Others, have adopted a concept which consist in penalizing the regression model using either LASSO [97, 262] or Elastic net $[210,147]$.

Two state of art methods of this category are GENIE3[116] and TIGRESS [97].
GENIE3 uses a set of random trees to model the dependencies between the expression levels of the TFs and their TGs. The algorithm decomposes the inference of network of p genes into p different regression problems, in which the steady-state expression pattern of each gene of interest (TG) is predicted from those of other genes (TFs) using an ensemble of random trees (Random forest or Extra Tree). The importance of a potential TF in the inference of the TG gene expression serves as an indicator of putative regulatory links. The weight of a regulator is the sum of the mean decrease in the impurity of all the tree nodes where it is used to split. Note that the mean decrease in impurity computes, at each test node in the tree, the reduction of the variance of the output due to the split. The algorithm aggregates the putative regulatory links over all genes (the p subproblems) to provide a final ranking of interactions from which the whole network is reconstructed. The method has been tested on both simulated multifactorial data from the DREAM4 and experimental data from Escherichia coli. The simulated data set is made up of 100 genes. On the other hand, Escherichia coli data is made up of 4297 genes. They used the DREAM4 scoring methodology described in Section 2.4.3 to evaluate their performance on the simulated data. For real data, the performance was
reported in terms of precision-recall curves. The method was compared to GENIE3 combined with different tree-based methods (random forest, ensemble tree), mutual information-based methods, and the Gaussian graphical model. It was competitive with concurrent methods on the E.coli dataset assuming that information about potential TFs is provided to the algorithm. GENIE3 was the best performer of the size 100 multifactorial DREAM4 subchallenge and the best performer of DREAM5. This method's main advantage is that it does not make any assumption about the nature of gene regulation; it can deal with combinatorial and nonlinear interaction; it is fast and scalable.

Several extension of GENIE3 has been introduced in the literature. One of them, iRafNet [178], integrates heterogeneous prior knowledge data such as knockout genes expression, TFBS, or protein-protein interaction to improve the accuracy of the reconstructed network. The prior knowledge is used to construct weights to sample potential regulators during the tree construction. The method has been rigorously tested on simulated data from the DREAM4 and the DREAM5 challenges. They used knockout and time-series gene expression data as prior knowledge. They used two measures to evaluate their performances: the AUPR and the AUROC. The method has demonstrated superior performance compared to original random forest based GRN inference, GENIE3. Furthermore, the authors have demonstrated that iRafNet performance on simulated data is comparable to the ensemble learning method, i.e., a network obtained by combining results from different models. The authors have further evaluated their method on in vivo data from the Saccharomyces cerevisae cell cycle. The method has demonstrated that it provides functional insights to the inferred regulatory links. This method's main advantage is that it includes different types of available biological data for the regulatory network inference. Furthermore, as GENIE3, it is fast and scalable.

More recently, the authors of GENIE3 have extended their work and introduced the dynamical version of their algorithm: dynGENIE3 [81]. It extends GENIE3 to handle both steady-state and time-series expression data. Initially, GENIE3 was designed to work only on steady-state expression data. dynGENIE3 assumes that the transcription rate of a gene is a function (potentially nonlinear) of the expression of other genes and, potentially, itself, plus a parameter specifying its decay rate. The algorithm
combines time-series and steady-state gene expression data to learn the ordinary differential equation defining each gene's transcription rate. As in GENIE3, the method uses the mean decrease in impurity to compute the importance of each regulator. Note that the decay value is computed either with the data assuming an exponential decay or obtained from the literature. The method was tested against different inference technologies: dynamic Bayesian network, ordinary differential based methods, Granger causality based methods, and nonlinear dynamical model. The performance was tested on simulated data from the DREAM4 challenge (using their evaluation methodology), and on three real-world datasets: a Saccharomyces cerevisae [172], Drosophila melanogaster [103] and Escherichia coli [120]. dynGENIE3 consistently outperforms GENIE3 on simulated dataset. However, the same result is not observed on experimental data as the datasets and organisms exhibit many differences. These results show that dynGENIE3 performance is very data-dependent. Apart from the scalability and speed, this method's main advantage is that it integrates time-series data, which allows modeling the network dynamics. Moreover, the authors have extended the method to allow the user to specify the list of potential TFs, which is not available in the original work. However, the main drawback is that the method does not consider the myriads of other data that exist, such as TFBS to supplement expression data.

TIGRESS combines stability selection with $L A S S O$ regression (implemented with the LARS [61]) to infer the GRN from expression data. Stability selection consists of running a feature selection method several times on perturbed data and computing the score of a feature as the number of times it was selected. As with GENIE3, the problem for p genes network is made up of p regression subproblems fitted on the bootstrapped randomized expression level of the TFs of the network. A modified measure of selection frequency for each potential TF is used as evidence of possible regulatory links. In summary, the weight of each potential TF is based on the frequency with which the TF is selected by the LARS in the top features and the area under each curve up to a fixed number of LARS steps. The method was mainly compared to mutual information-based methods. The method was benchmarked against the DREAM4 and DREAM5 challenge datasets for simulated data. They used the DREAM5 scoring methodology, which is the same as the DREAM4 methodology. Furthermore, the method was evaluated on experimental data from Saccharomyces
cerevisae [66]. When tuned optimally, TIGRESS shows similar performances to GENIE3 on simulated data but not as good on experimental data. This method's main limitations are the linearity assumption and the fact that it considers only expression data as input.

To represent regression-based methods in Table 2, we will only consider GENIE3 in as it has been proven to be state of the art on many data sets.

2.5.2.6 Differential Equation Methods

Differential equations allow modelling the change in expression level of a gene as a function of the change in other genes expression plus some external factors. The function is time dependent. Hence, it is adequate for capturing the dynamic of a system. More precisely we have:

$$
\begin{equation*}
\frac{d \vec{x}}{d t}=f(\vec{x}, p, u) \tag{19}
\end{equation*}
$$

Where $\vec{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ is the expression level of genes $g_{1}, g_{2}, \cdots, g_{N} ; N$ is the total number of genes in the network; p is the model parameter set and u is the external perturbation factor. Inferring the GRN amounts to identify the function f and the model parameter set p , using the measured signals \vec{x} and u. There exist many solutions to Equation 19 when the problem is unconstrained. However, a solution exists when an assumption is made upon the nature of $f()$. Many GRN inference algorithms assume that $f()$ is linear. However, this assumption may be too simplistic to model the complex nature of regulatory interactions. Other functions exist, such as piecewise linear, continuously linear, or nonlinear, each of them models different levels of complexity of the model. The most accurate being the nonlinear function. However, estimating the parameters of a nonlinear with low sample data may prevent getting reliable results. A popular method in this category is the Inferelator [23]. It uses regression and variable selection to infer the set of transcriptional influences on each gene of a GRN based on the integration of genome association and gene expression data. The algorithm uses ODE to define the expression level of a gene or the mean expression of a set of functionally related genes as a function of the TFs transcriptional level plus some external stimuli. The point is then to select, for each gene or set of genes, the subset of factors that influence its expression level. They assume that $f()$ in Equation 19 is truncated linearly. $f()$ is then fitted with LASSO
to strictly enforce parsimony. The model allows fitting time-series and steady-state gene expression data simultaneously. They also extended the model to account for pairwise interaction between the predictors (TFs and external stimuli). The method was tested on an experimental dataset from Halobacterium, which is made up of 2404 genes. The Inferelator was able to infer new interactions that were experimentally tested and verified. Moreover, the algorithm was able to predict Halobacterium global expression after perturbing the inferred network.

Having an overview of each category and the algorithms we choose to represent them, Table 2 presents a comparison of the selected algorithms in terms of their input data type, their complexity when available, their advantages and limitations. Note that this is not an exhaustive list of the methods that exist in the literature that use expression data as the main input to infer the GRN. We refer the reader to reviews paper $[98,158,157,165]$

Table 2: Reverse-Engineering Methods

Algorithms	Brief description	Input data type	Advantages	Complexity	Limitations
GeneNet [201]	Uses Moore-Penrose pseudoinverse to compute the inverse of the covariance matrix from which the partial correlation matrix is computed. Edges are added between pairs of genes if their common entry in the partial correlation matrix is non-zero.	Time series and steady-state expression data	+ Can deal with high dimensional data + Few number of parameters are computed + Can infer the putative direction of regulatory links + Works well to construct a GRN at large scale	$\begin{aligned} & O\left(m^{3}+\right. \\ & \left.n m^{2}\right)[73] \end{aligned}$	- Can only detect pairwise regulation links. - Assumes linear relation.

Table 2 continued from previous page

Algorithms	Brief description	Input data type	Advantages	Complexity	Limitations
Aracne [159]	Works in two steps. In the first step, the algorithm computes the mutual information of all the pairs of genes in the network. Then only statistically significant pairs are considered as being regulation links in the output network. In a second step, the algorithm considers all gene triplets and uses DPI to reduce the number of false positives regulatory links.	Steady-state gene expression data.	+ Works well with highdimensional data. + Can infer a network of any dimension size (scalable).	$\begin{aligned} & O\left(m^{3}+\right. \\ & \left.n^{2} m^{2}\right) \end{aligned}$	- Inability to infer direction of regulations links. - Cannot infer combinatorial links (links targeted by many TFs).

Table 2 continued from previous page

Algorithms	Brief description	Input data type	Advantages	Complexity	Limitations
Banjo [260]	Uses dynamic Bayesian network to infer the GRN from time-series expression data. The expression data are first discretized. Then the algorithm evaluates all possible networks with a Bayesian-based score. In the next step, the algorithm searches the top N networks with the highest scores using either a greedy strategy or simulated annealing. Finally, output a consensus of the top N networks.	Time-series genes expression data	+ Deals with uncertainty due to the use of probability. + Can infer the type (inhibition or activation) of regulation links. + Infers direction of the regulation links between genes.		- Requires many samples for the estimation of the density distribution. - Loss of information due to gene expression discretizing - The quality of the result depends on the gene expression discretizing.

Table 2 continued from previous page

Algorithms	Brief description	Input data type	Advantages	Complexity	Limitations
WGCNA [138]	Regulatory links between genes are inferred using correlation measures on which a threshold is applied.	Steady-state gene expression data	+ Works well to reconstruct large GRN. + Can construct weighted networks where each weight shows the significance of the regulation links.	[7]	- Inability to infer the direction of regulation links. - Assumes linearity
$\begin{aligned} & \text { GENIE3 } \\ & {[116]} \end{aligned}$	Uses a set of randomized trees to infer the GRN from expression data. For a p genes network, the algorithm decomposes the network prediction into p different regression problems.	Steady-state expression data	+ No assumption on the type of regulatory interaction; thus, it can handles either linear or combinatorial interactions + Simple to interpret	$\mathrm{O}($ TKmnlogn $)$ T : number of is the number of trees K: number of selected variables at each node of the trees	- Consider only one type of data (static data).

Table 2 continued from previous page

Algorithms	Brief description	Input data type	Advantages	Complexity	Limitations
	In each sub-problem, a		+ Able to predict edges		
	set of randomized trees		direction		
	(random forest or extra-		+ Fast and scalable		
	trees) is used to predict				
	the expression pattern				
	of one gene based on the				
	expression profiles of all				
	the other genes. Input				
	genes importance in the				
	prediction of the target				
	gene expression pattern				
	indicates putative regu-				
	latory links.				

Table 2 continued from previous page

Algorithms	Brief description	Input data type	Advantages	Complexity	Limitations
Inferelator [23]	Uses regression and variable selection to infer the set of transcriptional influences on each gene of a GRN based on the integration of genome association and gene expression data. The algorithm uses ODE to define the expression level of a gene or the mean expression of a set of functionally related genes as a function of the TFs transcriptional level plus some external stimuli.	Time-series and steady-state gene expression data	+ Consider both steadystate and time-series expression data + Allows incorporation of other regulatory information + Infer edge direction.	-	

Table 2 continued from previous page

Algorithms	Brief description	Input data type	Advantages	Complexity	Limitations
	The algorithm assumes				
	that $f()$ Equation 19 is				
	a truncated linear func-				
	tion. $f()$ is then fitted				
	with LASSO to strictly				
	enforces for sparsity				

The table summarizes some state of the art methods that reverse engineer the GRN from gene expression data. We consider the probabilistic graphical-based methods, correlation-based methods, partial correlated based methods, information theory-based methods, regression-based methods, and ODE based methods. We report one algorithm per category. The $1^{\text {st }}$ column gives the name of the algorithm. The $2^{\text {nd }}$ column gives a short description of the algorithm. The $3^{r d}$ column gives the type of input the algorithm is expecting. The $4^{\text {th }}$ column provides the advantages of the algorithm. The $5^{t h}$ column gives the complexity of the algorithm. In this column, we used the following notation: $\mathrm{m}=$ number of genes in the dataset; $\mathrm{n}=$ number of samples in the dataset (typically, $n \gg m$). Finally, the $6^{\text {th }}$ column provides the limitations of the algorithm.

2.5.3 Template Methods

Template-based methods exploit the idea that orthologous TFs regulate orthologous genes. Thus, in this category, one starts with the well reconstructed GRN of a wellknown organism (the template) and then transfers information about regulation to orthologous genes in the genome of interest. This methodology requires the entire template genome and its GRN i.e the set of its TF-gene interactions. The genome can either be represented by its nucleotides sequence (DNA sequence) or its proteins sequences. These sequences are then used to determine their representatives (orthologs) in the genome of interest. Orthologs are detected using sequences alignment tools. To present this category, we consider the works of Babu et.al [8], in which they used one the most well-characterized bacterial network, E. coli, as a template to reconstruct networks of 175 prokaryotic genomes. The orthology is detected using a hybrid method combining sequence alignment and the Bidirectional Best Hit method (BBH). BBH consists of finding the pairs of genes in two different genomes that are more similar to each other than either is to any other gene in the other genome. Research has recently demonstrated that detecting homology with DNA is a challenging task [176] as they are rapidly evolving. Hence, it will be almost impossible to identify homology sequences after many years of divergence. Nowadays, homology is detected using protein sequences.

Even though methods in his category are relatively simple, they present some drawbacks. In effect, they necessitate a template that should be complete in order for the reconstructed network to be as well. Nevertheless, most existing template GRNs are far from complete, and the number of template genomes that exist is very small. Moreover, the template should be close enough in the phylogenetic tree in order for the conservation to be significant.

2.6 Conclusion

In this chapter, we mentioned the mathematical background notions necessary to comprehend the thesis. Furthermore, we summarized the state-of-the-art regulatory network modeling in the following three categories:

1. Model-based methods: These methods use the principle of evolutionary conservation and exploit the idea that orthologous transcription factors regulate orthologous target genes. Hence, in this category, one uses a model organism (i.e., an organism for which the GRN is well known); information about regulation among orthologous genes is transferred from the model network to the network of interest.
2. Reverse engineering methods using gene expression data: These approaches use the fact that a target gene's expression profile is influenced by its direct regulators' expression profile. Hence, one chooses an appropriate type of model architecture that is a mathematical function that describes the general behavior of a TG depending on the activity (expression profile)of its TFs; then, the model parameters are learned from data. Several different model architectures for reverse engineering GRNs from gene expression data have been proposed ranging from the Boolean network, Bayesian Network, information theory model to regression models.
3. Network inference by prediction of cis-regulatory elements: These approaches make use of experimentally well-characterized transcription factor binding sites (TFBSs) for inferring regulatory links. Hence the promoter regions of all the genes in the genome are scanned with the known TFBSs. The genes are hypothesized to be regulated by the TF if they possess the TFBS in their regulatory region.

We also pinpoint the advantages of the proposed solutions as well as their drawbacks.

Chapter 3

BENIN

GRN inference is a challenging problem due to the task's combinatorial nature and the limitation of available data. With technological advances, we are now witnessing the accumulation of a large variety of data that carry on an incomplete but complementary picture of the regulatory process. Hence, taken together, they form a complete picture of the regulatory circuit. This complementarity created a need for the development of GRN inference methods that integrate this diversity to circumvent the use of each data separately. Sophisticated methods integrating diverse biological knowledge with expression data have thus been proposed. This integration is generally done in the form of prior knowledge, i.e., a subjective belief of how the network should resemble. The majority of these methods uses a Bayesian Network (BN) framework for combining prior knowledge and data as it reflects both causal and probabilistic semantic. However, due to the complexity of learning BN, these methods can only be applied to small networks (with a minimal number of nodes). In this work, we aim to contribute to data integration discourse by proposing an elegant and easy method to incorporate several biological knowledge to guide the inference of GRN of any size.

This chapter will present BENIN, a new GRN inference algorithm that incorporates biological knowledge with time-series expression data. The objective is to infer a directed graph $G=(V, E)$ representing the GRN from gene expression data guided by prior knowledge of possible edges. In this graph, the nodes set V represents the network genes and, the edges set E, the regulatory links between the TFs (the sources) and the TGs (the sinks). We formulate the challenge as a features selection problem.

Details about the formulation of the problem will be given subsequently. The chapter is organized as follows: Section 3.1 details the methodology of BENIN; Section 3.2 presents the software used to implement BENIN as well as the data employed to evaluate its performances; Section 3.4 shows the performances of BENIN on the DREAM 4 challenge data.

3.1 The BENIN Algorithm

This section presents our method BENIN. In what follows, we will use the following notation: \vec{x} for vector, boldface upper case letter \mathbf{X} for matrix representation, uppercase calligraphic font \mathscr{S} for sets, and $\mathbb{1}$ to represent the unit function. TF will designate the transcription factor, TG the target gene, and finally, GRN will correspond to the gene regulatory network, and KO stands for Knockout.

3.1.1 Overview

BENIN is a regression-based method that uses feature selection combined with stability selection to reverse engineer the GRN from expression data. BENIN uses a simple but efficient method to integrate any prior knowledge data with time-series expression data to boost the GRN inference. Moreover, BENIN integrates regulatory interactions from other model organisms into the studied model through orthology sequence transfer (c.f. Chapter 4).

In this part of the thesis, we will summarize BENIN functioning on a simple example from size 10 DREAM4 subchallenge. We will reverse engineer network 1 using knockout gene expression data as prior knowledge combined with time-series gene expression data.

BENIN takes as input the prior knowledge which can either be a matrix \mathbf{A} of association strengths or probabilities of interaction between each TF and the TGs; the matrix of time series expression data \mathbf{X}, the set of regulators \mathscr{R}, a power γ, the number of bootstrap R and an optional threshold τ. The following major steps summarize BENIN. In this example we set τ to 0.5 and R to 1000 .

Step 1: If the prior knowledge is not in the form of association strengths or probabilities, it is first transformed into probabilities or association strengths $\left\{\mathbf{A}_{r_{j} \rightarrow g_{i}}\right\}$
for $i=1, \cdots, M$; and $j=1, \cdots, M^{\prime}$ of the likelihood of the regulatory interactions between each TF and the TGs. In our example, $M=10$ and $M^{\prime}=8$. In our example the prior knowledge is not in the required form.

Step 2: The association strengths or probabilities are then transformed into weights: $\left\{w_{r_{j} \rightarrow g_{i}}\right\}$ with $i=1, \cdots, M ; j=1, \cdots, M^{\prime}$. These weights are utilized into BENIN to build the model.

Step 3: For each TG $g_{i}, i=1, \cdots, M$, we model its expression profile as a linear combination of the expression profile of its direct TFs, using Elastic net. The weights $w_{r_{j} \rightarrow g_{i}}$ are fed into Elastic net to guide the selection of more plausible TFs. At this step, we generate R bootstraps and compute a score $s_{r_{j} \rightarrow g_{i}} \in \mathbb{R}$ for each edge $\left(g_{i}, r_{j}\right) \in \mathscr{E}$, which provides the strength of the potential interaction. The scores $s_{r_{j} \rightarrow g_{i}}$ are such that true interactions get the highest scores. The whole process is summarized in Figure 24.

Step 4 All the scores $\left\{s_{r_{j} \rightarrow g_{i}}\right\}_{i=1, \cdots, M ; j=1, \cdots, M^{\prime}}$ are put together and sorted in decreasing order. A threshold τ can then be applied to this sorted list to obtain the final network.

Step 4 This step is not part of BENIN, but the final network is evaluated against the true structure using different statistical measures such as the area under the precision-recall curve or area under the ROC curve.

Here we give BENIN general overview; we will provide details about each step in subsequent sections.

3.1.2 Problem Specification

The GRN is a collection of molecules such as genes, non-coding RNAs, proteins, and metabolites that interact together to control genes' expression to ensure proper cell functioning. The gene's expression involves many steps, and regulation may occur at each of these steps. We restrict the scope of or research to the transcriptional level, where most of the genes are regulated [20]. In what follows, the GRN will refer to the transcriptional regulatory network (TRN) and represents the graph of direct interactions between the set of transcription factors (TFs) \mathscr{R} and their target
genes (TGs). Figure 12d shows an example of such a graph from the DREAM4 challenge. For illustrative purposes, we changed the original naming of some genes to discriminate against the set of TFs from all the other genes.

We focus on inferring a weighted directed graph of the GRN using time series gene expression data coupled with prior evidence of interactions. In this graph, the edges represent the set of direct regulatory interactions between the set of transcription factors (TFs) \mathscr{R} and their target genes (TGs). We assume that the sources and sinks of each edge should be different: i.e genes do not directly regulate themselves. In what follows, let \mathscr{R} the set of TFs and \mathscr{G} the set of all genes in the network, we have $\mathscr{R} \subseteq \mathscr{G}$. A time series gene expression data matrix $\mathbf{X}_{\mathscr{G}, t}^{T S}$ over a set of genes $\mathscr{G}=\left\{g_{1}, g_{2}, \cdots, g_{M}\right\}$ is defined as follow:

$$
\mathbf{X}_{\mathscr{G}, t}^{T S}=\left[\vec{x}_{g_{1}, t}, \vec{x}_{g_{2}, t}, \cdots, \vec{x}_{g_{M}, t}\right] \in \mathbb{R}^{N x M}
$$

where the $\vec{x}_{g_{i}, t}$ are column vectors of expression values of the i-th gene g_{i} measured at N discrete time points (cf Figure 12b). The matrix $\mathbf{P}_{\mathscr{G}, \mathscr{R}}$ of the p-values of binding interactions among the set transcription factors \mathscr{R} and the set of genes \mathscr{G}, is defined as follow:

$$
\mathbf{P}_{\mathscr{G}, \mathscr{R}}=\left[\vec{p}_{\mathscr{G}, r_{1}}, \vec{p}_{\mathscr{G}, r_{2}}, \cdots, \vec{p}_{\mathscr{G}, r_{M^{\prime}}}\right] \in \mathbb{R}^{M x M^{\prime}}
$$

where $M^{\prime}=|\mathscr{R}|$, and $\vec{p}_{\mathscr{G}, r_{i}}$ is a vector representing r_{i} binding location profile regarding all the TGs in the network. Figure 12a shows an example of a genome-wide location data matrix. And finally, the matrix of knockout gene expression data $\mathbf{X}_{\mathscr{R}, \mathscr{G}}^{K O}$ is defined as follow:

$$
\mathbf{X}_{\mathscr{R}, \mathscr{G}}^{K O}=\left[\begin{array}{c}
\vec{x}_{\Delta r_{1}, \mathscr{G}}^{K O} \\
\vdots \\
\vec{x}_{\Delta r_{M^{\prime}}, \mathscr{G}}^{K O}
\end{array}\right],
$$

where $\vec{x}_{g_{j} \Delta r_{i}}^{K O}$ is the vector of expression values of all the genes in the strain where r_{i} has been knocked out.

Our aim here, is to uncover the set of weighted direct links:

$$
\mathscr{E}=\left\{\left(g_{i}, r_{j}\right), g_{i} \in \mathscr{G}, r_{j} \in \mathscr{R}\right\}
$$

	G1		G3		G4	G6	
G1	0.000	0.530	0.861		0.084	0.864	
G3	0.059	0.000	0.061		0.875	0.048	
G4	0.007	0.022	0.000	0.339	0.007		
G6	0.482	0.477	0.071	0.000	0.961		
G7	0.600	0.145	0.099	0.347	0.000		
G8	0.494	0.732	0.316	0.334	0.435		
G9	0.186	0.693	0.519	0.476	0.713		
G10	0.827	0.478	0.662	0.892	0.400		
G2	0.038	0.789	0.438	0.027	0.390		
G5	0.007	0.023	0.245	0.839	0.777		

(a) Simulated location data

G1	G2	G3		G4		G5		G6
0.00	0.37	0.26	0.36	0.80	0.38	0.83		
0.73	0.00	0.38	0.60	0.15	0.34	0.52		
0.71	0.14	0.00	0.37	0.08	0.40	0.66		
0.85	0.11	0.62	0.00	0.15	0.28	0.11		
0.88	0.14	0.43	0.56	0.00	0.33	0.54		
0.62	0.40	0.46	0.63	0.09	0.00	0.46		
0.69	0.09	0.32	0.27	0.08	0.30	0.00		
0.80	0.28	0.38	0.66	0.12	0.63	0.55		
0.79	0.12	0.24	0.40	0.14	0.30	0.69		
0.79	0.14	0.42	0.36	0.12	0.34	0.62		

(c) Simulated knockout expression data

Time	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
$\mathbf{0}$	0.67	0.13	0.36	0.78	0.1	0.28	0.61	0.74	0.67	0.7
50	0.33	0.12	0.35	0.72	0.19	0.31	0.61	0.76	0.56	0.73
100	0.18	0.04	0.57	0.59	0.23	0.36	0.47	0.67	0.72	0.67
150	0.18	0.06	0.49	0.63	0.41	0.34	0.42	0.73	0.64	0.7
200	0.09	0.14	0.34	0.54	0.56	0.3	0.42	0.68	0.55	0.75
250	0.07	0.09	0.31	0.53	0.64	0.37	0.58	0.8	0.6	0.61
300	0.15	0.1	0.41	0.46	0.54	0.3	0.6	0.62	0.73	0.67
350	0.09	0.09	0.38	0.42	0.56	0.34	0.68	0.52	0.77	0.74
400	0.14	0.12	0.52	0.5	0.67	0.23	0.51	0.61	0.68	0.84
450	0.17	0.08	0.38	0.48	0.67	0.38	0.5	0.6	0.75	0.72
500	0.12	0.08	0.43	0.54	0.74	0.33	0.51	0.72	0.67	0.63

(b) Simulated expression data

(d) An example of size 10 network from the DREAM4 challenge

Figure 12: Example DREAM4 Input for BENIN

The figures shows example of input for BENIN from DREAM4 size 10 subchallenge. (a) sub-matrix of simulated genome wide location for the network 1 from DREAM4 size 10 subchallenge. (b) sub-matrix of time-series expression data for the network 1 from DREAM4 size 10 sub-challenge. (c)Sub-matrix of knockout gene expression data matrix for size 10 network 1 from DREAM4 challenge. (d) The network 1 from the DREAM4 size 10 subchallenge.

3.1.3 Network inference as Feature Selection

The basic idea of our method is to decompose the inference of the GRN into as many sub-problems as the number of genes in the network. Hence, for a network of M genes, we decompose the problem into M sub-problems, in which one considers each gene at a time, and the aim then amounts to finding the set of its direct regulators. We assume that the expression profile $\vec{x}_{g_{i}}^{T S}$ of a gene g_{i} is a linear function of the expression values $\mathbf{X}_{\mathscr{R}_{i}}^{T S}$ of its direct regulators, plus some noise. For each $g_{i} \in \mathscr{G}$ we can then write its expression profile $\vec{x}_{g_{i}}^{T S}$ as in Equation 20.

$$
\begin{equation*}
\vec{x}_{g_{i}}^{T S}=f\left(\mathbf{X}_{\mathscr{R}_{g_{i}}}^{T S}\right)+\epsilon \tag{20}
\end{equation*}
$$

The problem is to find, for each gene g_{i}, the subset of its direct regulators $\mathscr{R}_{g_{i}} \subseteq \mathscr{R}$ whose expression is predictive of its expression profile. This is the well-known problem of feature selection in machine learning [208].

To model the dynamics from time series expression data, we consider the vector autoregressive model (VAR) [212, 221]. The p-lag vector autoregressive model (VAR $(\mathrm{p}))$ captures linear dependencies between variables in a time series. Particularly, each variable is expressed as a linear combination of the p lags of its own values as well as the p lags of the other variables in the model and, finally, an error term. More formally, let $\vec{x}_{t}^{T S}=\left(\vec{x}_{g_{1}, t}^{T S}, \vec{g}_{g_{2}, t}^{T S}, \cdots, \vec{x}_{g_{M}, t}^{T S}\right)$ be an M-dimensional multiple time series expression data vector; \vec{x}_{t} is assumed to be generated from a $\operatorname{VAR}(p)$ if it can be written as in Equation 21.

$$
\begin{equation*}
\vec{x}_{t}^{T S}=\vec{c}+\mathbf{B}_{1} \vec{x}_{t-1}^{T S}+\cdots+\mathbf{B}_{p} \vec{x}_{t-p}^{T S}+\vec{\xi}_{t} \tag{21}
\end{equation*}
$$

where p denotes the lag length or the order of the VAR model; \mathbf{B}_{i} is an $M \mathrm{x} M$ matrix of coefficients for the $i-$ th lag, M represents the number of genes (variables) in the time series; $\vec{\xi}_{t}$ is an M-dimensional noise vector. We restrain the scope of this work to the first order of the model, i.e. $p=1$.

From Equation 21, setting $p=1$, the expression profile of each gene at time t can be written as follow:

$$
\begin{equation*}
\vec{x}_{g_{i}, t}^{T S}=c_{i}+\mathbf{X}_{\mathscr{K}^{\prime}, t-1}^{T S} \vec{\beta}_{i, .}+\vec{\xi}_{t} \tag{22}
\end{equation*}
$$

Note that $\vec{\beta}_{i, \text {, }}$ is the transpose of a row-vector of \mathbf{B} and $\mathscr{R}^{\prime}=\mathscr{R} \cup g_{i}$. To find the subset of regulators for each gene, the problem amounts to retrieve the vector $\vec{\beta}_{i \text {, }}$.
which can be obtained by any regression method.

3.1.4 Feature Selection using Elastic Net

One of the major problems of time series expression data is that they are measured over a short period; which results in datasets where the number of genes is far greater than the number of time points (high-dimensionality problem) [255, 239]. Furthermore, many of these variables may be irrelevant to the output and a large number of them highly correlated (multicollinearity problem). To deal with those problems, Zhou and Hastie [274] have proposed a regularization method: the Elastic net. It combines two well-known regularizations techniques: the LASSO [228] and the Ridge [101]. LASSO uses L1-norm, it tends to produce a sparse model but is limited by the number of samples in the learning dataset. Ridge uses the L2-norm and is good at retrieving correlated variables, but does not produce sparse models. By combining both regularization methods, Elastic net integrates the advantages of both techniques while overcoming the drawbacks of each regularization taken separately.

$$
\begin{equation*}
\vec{\beta}_{i}^{\text {Enet }}=\underset{\vec{\beta}_{i}}{\operatorname{argmin}}\left\|\vec{x}_{g_{i}, t}^{T S}-\mathbf{X}_{\mathscr{R}^{\prime}, t-1}^{T S} \vec{\beta}_{i}\right\|+\lambda_{\text {Enet }}\left[(1-\alpha)\left\|\vec{\beta}_{i}\right\|_{2}^{2}+\alpha\left\|\vec{\beta}_{i}\right\|_{1}\right] \tag{23}
\end{equation*}
$$

3.1.5 Bootstrapping the Elastic Net to Score Regulatory Links

One approach to compute the scores of the edges could be to use the absolute values of the regression coefficients stored in the vector $\vec{\beta}_{. . .}^{\text {Enet }}$. However, this can be problematic since our data are high-dimensional. In effect, performing feature selection with this type of data may produce unstable results [180]. To remedy this problem, we propose combining bootstrap with the Elastic net. The general idea is to generate several bootstraps of the original time series data. Our resampling algorithm is based on stationary bootstrap [180], which resamples time series by consecutive blocks of varying length, ensuring that dependencies between the variables are preserved. Afterward, the Elastic net is applied to the bootstraps. The non-zero components of $\vec{\beta}_{\text {... }}{ }^{\text {net }}$ are used to select the potential regulators in each bootstrap. Then, the final score of each link corresponds to the frequency with which the regulator of the interaction is chosen by the Elastic net within each of the R bootstrap samples, as reported in Equation 24.

Different sub-problems yield different possible links in the final network. Those links are then combined into a single list and ranked according to their scores $\left\{s_{r_{j} \rightarrow g_{i}}\right\}$ for $j=1, \cdots, M^{\prime}$ and, $i=1, \cdots, M$. Finally, a user-defined threshold τ can be applied to this list to get the final list of regulatory interactions of the reconstructed network.

$$
s_{r_{j} \rightarrow g_{j}}=\frac{1}{R} \sum_{k=1}^{R} \mathbb{1}_{\vec{\beta}_{i, j}^{\text {Enet }, k} \neq 0}, \text { where } \quad \mathbb{1}_{\vec{\beta}_{i, j}^{\text {Enet,k}} \neq 0}= \begin{cases}1, & \text { if } \vec{\beta}_{i, j}^{\text {Enet }, k} \neq 0 \tag{24}\\ 0, & \text { otherwise }\end{cases}
$$

3.1.6 Integrating Prior Knowledge

The limited availability of expression data and the quantity of noise they contain, have made the inference of the GRN from expression data alone, a challenging problem. One way to overcome the difficulties and improve the reconstructed network is to supplement the expression data with other data types to take advantage of the wealth of complementary information about the regulation they offer. This information can be used to design informative priors, to boost the network inference. In this work, we use TF binding location data and knockout gene expression data. We consider an extended version of Elastic net (the adaptive Elastic net [275]), which modifies the regularization term in Equation 23 by using different degrees of shrinkage on the regression coefficients $\vec{\beta}_{i, j}$ depending on which predictors we want to keep in the model. The new regression problem is defined in Equation 25. Note that the vector $\vec{\nu}$ modifies both the 11 and 12 norm as in the implementation of glmnet R package [72]. For the Elastic net, finding the subset of regulators for gene g_{i} is equivalent to solving Equation 25 for the variables $\vec{x}_{g_{i}, t}^{T S}$ and $\mathbf{X}_{\mathscr{R}^{\prime}, t-1}^{T S}=\left[\vec{x}_{r_{1}, t-1}^{T S}, \vec{x}_{r_{2}, t-1}^{T S}, \ldots, \vec{x}_{r_{M^{\prime}}, t-1}^{T S}\right]$.

$$
\begin{equation*}
\vec{\beta}_{i}^{\text {Enet }}=\underset{\vec{\beta}_{i}}{\operatorname{argmin}}\left\|\vec{x}_{g_{i}, t}^{T S}-\mathbf{X}_{\mathscr{R}^{\prime}, t-1}^{T S} \vec{\beta}_{i}\right\|+\vec{\nu} \lambda_{\text {Enet }}\left[(1-\alpha)\left\|\vec{\beta}_{i}\right\|_{2}^{2}+\alpha\left\|\vec{\beta}_{i}\right\|_{1}\right] \tag{25}
\end{equation*}
$$

3.1.6.1 Prior knowledge from Location Data

Genome-wide location data provide evidence of physical interaction between TFs and TGs within the genome, through the identification of the region in the upstream region
of the genes where the TF will bind: the TFBS. This evidence is generally reported as p-values, which suggests the statistical significance of the binding event. The smaller the p-value, the more significant is the existence of the physical interaction between the TF and the considered TG. Integrating gene expression data with location data allows extracting reliable and useful information about regulation, as they provide complementary information about regulation. However, genome-wide location data are very noisy $[17,206]$. To tackle the noise inherent in location data, we integrate such data through a probabilistic framework, as suggested in [17]. The aim is to match the p-values to the corresponding probabilities of edges being present in the final GRN.

Let $P_{r_{j} \rightarrow g_{i}}$ be a random variable over $[0,1]$ which represents the p -value of the location data of the regulatory link $E_{r_{j} \rightarrow g_{i}}$ in the graph G of the GRN. In a previous study [206], $P_{r_{j} \rightarrow g_{i}}$, has been assumed to be exponentially distributed if $E_{r_{j} \rightarrow g_{i}} \in G$, and uniformly distributed if $E_{r_{j} \rightarrow g_{i}} \notin G$. More formally, we have:

$$
\begin{equation*}
\operatorname{Pr}\left(P_{r_{j} \rightarrow g_{i}}=p \mid E_{r_{j} \rightarrow g_{i}} \in G\right)=\lambda e^{-\lambda p} /\left(1-e^{-\lambda}\right), \tag{26}
\end{equation*}
$$

where λ is the parameter that controls the scale of the truncated exponential distribution. And:

$$
\begin{equation*}
\operatorname{Pr}\left(P_{r_{j} \rightarrow g_{i}}=p \mid E_{r_{j} \rightarrow g_{i}} \notin G\right)=1 \tag{27}
\end{equation*}
$$

We now define the probability of having the edge $E_{r_{j} \rightarrow g_{i}}$ in G, knowing the p-value of the binding event. Let $\operatorname{Pr}\left(E_{r_{j} \rightarrow g_{i}} \in G\right)=\beta$ be the probability that an edge $E_{r_{j} \rightarrow g_{i}}$ is in the graph without any prior knowledge. Using the Bayes formula we have:

$$
\begin{equation*}
\operatorname{Pr}\left(E_{r_{j} \rightarrow g_{i}} \in G \mid P_{r_{j} \rightarrow g_{i}}=p\right)=\frac{\lambda e^{-p \lambda} \beta}{\lambda e^{-p \lambda} \beta+\left(1-e^{-\lambda}\right)(1-\beta)} \tag{28}
\end{equation*}
$$

In [17], using Equation 28, the authors have demonstrated that λ acts as a tunable parameter indicating the degree of confidence in the evidence provided by the location data. Therefore, λ models the belief level of noise inherent in location data, and at the same time, it weights the evidence we are giving to it. A suitable weighting of the prior could be to choose the appropriate value of λ; instead, as proposed in [17], we adopt a more robust method and marginalize Equation 28 over λ. We assume λ is uniformly distributed over the interval $\left[\lambda_{\min }, \lambda_{\max }\right]$ and we integrate Equation 28 over that interval. The new equation to compute the conditional probability on an edge $E_{r_{j} \rightarrow g_{i}}$ is given in Equation 29.

$$
\begin{equation*}
\operatorname{Pr}\left(E_{r_{j} \rightarrow g_{i}} \in G \mid P_{r_{j} \rightarrow g_{i}}=p\right)=\frac{1}{\lambda_{\max }-\lambda_{\min }} \int_{\lambda_{\min }}^{\lambda_{\max }} \frac{\lambda e^{-p \lambda} \beta}{\lambda e^{-p \lambda} \beta+\left(1-e^{-\lambda}\right)(1-\beta)} d \lambda \tag{29}
\end{equation*}
$$

Equation 29 can be easily computed numerically for fixed values of $P_{r_{j} \rightarrow g_{i}}$. Using Equation 29, we precompute the probabilities associated with each p-value and store them in a matrix \mathbf{A} for later use. A is then transformed into weight. The intuition is that the weights are defined so that small probabilities are associated with high weights and vice versa. We thus compute the weight matrix \mathbf{W} as the inverse component-wise of the elements of the matrix \mathbf{A} raise to the power γ. More formally we have:

$$
\begin{equation*}
\mathbf{W}_{\mathbf{r}_{\mathrm{j}} \rightarrow \mathrm{~g}_{\mathrm{i}}}=\frac{1}{\left(\mathbf{A}_{\mathbf{r}_{\mathrm{j}} \rightarrow \mathrm{~g}_{\mathrm{i}}}\right)^{\gamma}} \tag{30}
\end{equation*}
$$

3.1.6.2 Prior knowledge from Knockout Expression Data

Knockout (KO) expression data are expression data measured in an organism where one of its genes is made inoperative ("knocked out" of the organism). We consider KO data measured at a steady state. KO data represents valuable prior information to boost network inference. KO data informs about possible direct interaction between a TF and a TG. We compute the z-scores of each association $r_{j} \rightarrow g_{i}$. The zscore assumes that knocking out a TF directly affects the expression of its direct target genes more strongly than the other genes [182]. We calculate the z-score of a regulatory link $r_{j} \rightarrow g_{i}$ as in Equation 31 and store it into a matrix \mathbf{Z}.

$$
\begin{equation*}
z_{r_{j} \rightarrow g_{i}}=\frac{\vec{x}_{\Delta r_{j}, g_{i}}^{K O}-\mu_{g_{i}}}{\sigma_{g_{i}}} \tag{31}
\end{equation*}
$$

where $\vec{x}_{\Delta r_{j}, g_{i}}^{K O}$ is the expression value of the gene g_{i} in the strain where r_{j} has been knocked out, $\mu_{g_{i}}$ is the mean expression value of the gene g_{i} in all the strains (wild type and deleted strains) and $\sigma_{g_{i}}$ is its standard deviation in all the strains.

We then transform these z-scores into weights to feed elastic net. Note that the higher the absolute value of the z-score, the more affected is the expression value of the target gene by the TF knocked out. Since we aim to penalize the TF with low a priori binding potential, the intuition is that the weights are defined so that small absolute z-scores are associated with high weights and vice versa. Thus, we compute
the weight matrix \mathbf{W} as the component-wise inverse of the elements of the matrix \mathbf{Z} raise to the power $\gamma \geq 0$. More formally, we have:

$$
\begin{equation*}
\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathbf{g}_{\mathbf{i}}}=\frac{1}{\left(a b s\left(\mathbf{Z}_{r_{j} \rightarrow g_{i}}\right)\right)^{\gamma}} \tag{32}
\end{equation*}
$$

The function $a b s()$ computes the absolute value.
Algorithm 1 summarizes BENIN.
Algorithm 1 The BENIN algorithm
Input: list of genes \mathscr{G}, list of TFs \mathscr{R}, time series expression matrix $\mathbf{X}_{\mathscr{G}, t}^{T S}$, the associations strengths matrix \mathbf{A}, power γ, threshold τ
1: Transform the probabilities $\left\{\mathbf{A}_{r_{j} \rightarrow g_{i}}\right\}_{i=1, \cdots, M ; j=1, \cdots, M^{\prime}}$ into weights
$\left\{\mathbf{W}_{r_{j} \rightarrow g_{i}}\right\}_{i=1, \cdots, M ; j=1, \cdots, M^{\prime}}$ as:

$$
\mathbf{W}_{\mathbf{r}_{\mathrm{j}} \rightarrow \mathrm{~g}_{\mathrm{i}}}=\frac{1}{\left(\mathbf{A}_{\mathbf{r}_{\mathrm{j}} \rightarrow \mathrm{~g}_{\mathrm{i}}}\right)^{\gamma}}
$$

for each gene $g_{i}, i=1, \cdots, M$ do
Generate the learning sample:

$$
L S:=\left(\vec{x}_{g_{i}, t}^{T S}, \mathbf{X}_{\mathscr{R}, t-1}^{T S}\right), \text { for } t=0, \cdots, T
$$

Generate R samples of $L S$ with stationary bootstrap.
Compute R elastic net vectors $\vec{\beta}^{\text {Enet }, k}, k=1, \cdots, R$
Compute the scores $\left\{s_{r_{j} \rightarrow g_{i}}\right\}_{i=1, \cdots, M ; j=1, \cdots, M^{\prime} ; i \neq j}$ as

$$
s_{r_{j} \rightarrow g_{i}}=\frac{1}{R} \sum_{k=1}^{R} \mathbb{1}_{\vec{\beta}_{i, j}^{\text {Enet }, k} \neq 0}
$$

where,

$$
\mathbb{1}_{\vec{\beta}_{i, j}^{\text {Enet,k}} \neq 0}= \begin{cases}1 & \text { if } \vec{\beta}_{i, j}^{\text {Enet }, k} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

end for

Aggregate the $s_{r_{j} \rightarrow g_{i}}, i=1,2, \cdots,|\mathscr{G}|, j=1,2, \cdots,|\mathscr{R}|, i \neq j$ and rank them in decreasing order.
9: Apply the threshold τ to select links in the inferred network.
Output: Ordered links $r_{j} \rightarrow g_{i}$ with scores $s_{r_{j} \rightarrow g_{i}}$.

3.2 Experimental Validation

3.2.1 Data

3.2.1.1 The DREAM4 Challenge Dataset

The DREAM4 dataset is a widely used benchmark dataset to evaluate network inference methods. We have worked with two datasets: the DREAM4 in silico size 100 and size 10 sub-challenges. Each sub-challenge provide time series expression data as well as other types of data such as perturbation data (knockdown or knockout data) for five networks. The networks differ in their structure which mimics either E. coli or Saccharomyces cerevisiae regulatory network. Table 3 summarizes the characteristics of the five networks in terms of the numbers of TFs and the number of regulatory links for both sub-challenges. The topologies were obtained by extracting subnet-

	size 10		size 100	
Network	\# TF	\# Regulatory links	\# TF	\# Regulatory links
Net 1	8	15	41	176
Net 2	9	16	36	249
Net 3	9	15	44	195
Net 4	9	13	41	211
Net 5	9	12	34	193

Table 3: Description of DREAM4 size 10 and size 100 networks
The table presents the number of regulators and regulatory links for each of the five networks in the 10-nodes and 100-nodes in DREAM4 sub-challenge. The character "\#" stands for "number of". Columns 2-3 provides the numbers of TFs and regulatory links for the size 10 networks. Columns $4-5$ provides the numbers of TFs and regulatory links for the size 100 networks
works of either E. coli or Saccharomyces cerevisiae regulatory network, notably part of the network with cycles. However, self-interactions are omitted. Their dynamics were obtained by using a kinetic model of gene regulation. The expression data were generated using GeneNetWeaver version 2.0. Time series for size 100 sub-challenge
(respectively size 10 sub-challenge) consist of 10 (respectively 5) different experiments with 21 time points each. Knockout data include wild type expression data as well as steady state expression data obtained after knocking out each of the M genes in the network. We considered only the single knockout expression data.

3.2.1.2 Simulated Location Data

Genome-wide location data provide direct evidence of physical interactions amongst genes within the genome. Different databases exist that gather information about location data, for example, the Young Lab, which gathers different works on genomewide location data for organisms such as Saccharomyces Cerevisiae. Simulated genomewide location data are obtained by generating p-values for the TFs of the networks in both sub-challenges. We use a uniform distribution $\mathcal{U}[0,1]$ for the edges that do not belong to the gold-standard network. In counterpart, we use exponential distribution over the interval $[0,1]$ with scale λ, for edges from each TF that are present in the gold-standard network [206]. The scale λ controls the level of noise in the generated generated dataset.

- For each pair $\left(r_{j}, g_{i}\right)$ of regulator and target gene:

$$
p-\text { value }=\left\{\begin{array}{l}
\text { random number in the interval }[0,1] \text { using exponential distribu- } \tag{33}\\
\text { tion with parameter } \lambda, \text { if }\left(r_{j}, g_{i}\right) \in G . \\
\text { random number over the interval }[0,1], \text { otherwise }
\end{array}\right.
$$

We generated eleven location datasets for each of the ten networks in both the sub-challenges. More specifically, location data are generated using the R functions rexp for the exponential distribution and runif for the uniform distribution. Both are implemented in the R stats package. The data are generated using the following R code:
$>$ lambda=20
$>$ ifelse (gold_standard_network[i,3], $\boldsymbol{r e x p}(\mathrm{n}=1$, rate =lambda), runif $(1, \min =0, \max =1)$)

3.2.2 Performance Metrics

We use the DREAM4 challenge scoring methodology for a fair evaluation. We compute the AUROC, and AUPR as well as their respective p-values, $p_{A U P R}$ and $p_{A U R O C}$. The p-values are probabilities that random predictions would have the same or larger scores. As we inferred five networks for each subchallenge, we combined all the $p_{A U P R}$ and $p_{A U R O C}$ into two global p-values (one for each score), which are used to compute a global score as in Equation 34:

$$
\begin{equation*}
S_{G}=-0.5 \log _{10}\left(p_{A U R O C} * p_{A U P R}\right) \tag{34}
\end{equation*}
$$

The global score is used to rank all the participants in the challenge. The larger the global score then, the more statistically significant is the prediction. More details can be found on the DREAM4 page https://www.synapse.org/\#!Synapse: syn3049712/wiki/74628. We computed all these scores with DREAMTools version 1.3.0[41], the standalone application provided by the DREAM challenge team. We further assess the errors each method is making. We analyze how well each method predicts network edge motifs. We compute the motifs edges' prediction confidence, which is the edges' median rank in the final ordered edges list. The first edge in the list has 100% prediction confidence, and the last edge has 0% (we scaled the prediction confidence to the interval $[0,1])$. For each inferred method, we extracted all instances of the three motifs. We then get the rank of all the edges in each motif. The point is to see how each edges motif is ranked in the output list from all concurrent methods. Note that we add missing links at the end of the inferred list if some links are omitted. We consider 3 types of motif: the Fan-in, the Fan-out and the Cascade motifs. These motifs are illustrated in Table 4. We use GeneNetWeaver [202] to perform the network motifs analysis.

Table 4: Motifs and errors type
Network motif
Error types
Fan-out error: incorrect
prediction of edges between
coregulated genes $(2 \rightarrow 3$
and $3 \rightarrow 2)$

The table presents the three types of motifs we considered (represented in $2^{\text {nd }}$ column) as well as the three types of error possibly ensued from network inference (represented in $3^{r d}$ column). The nodes are the genes in the GRN. An arrow indicates that there is regulatory interaction between a transcription factor (source) and a target gene (sink). A non-arrow indicates that the genes are not interacting.

3.2.3 BENIN Parameters

BENIN is controlled by three main parameters: the number of bootstraps R, the elastic net mixing parameter α, and the power γ controlling the weight of the prior. We evaluated the importance of each of these parameters on BENIN's performance using one independent 100-node network generated with GeneNetWeaver. We use the DREAM4 default setting. Note that we used location data as prior knowledge.

We proceed as follows, we fix two parameters, and we vary the third one. Starting with the default parameters $\alpha=0.3$ and $R=1000$ and $\gamma=1$ we vary each of the parameters at a time as follows: $R \in\{5,55,105, \cdots, 10000\}, \gamma \in\{0.1,0.2 \cdots, 1.5\}$ and $\alpha \in\{0.1,0.2 \cdots, 0.9\}$. Note that, we set the parameter $\lambda_{\text {Enet }}$ with cross-validation as implemented in glmnet package. We chose the $\lambda_{\text {Enet }}$ that yields the minimum mean squared error. We set the number of folds in cross-validation to 10 .

3.2.4 BENIN Implementation

We implemented BENIN with R libraries: glmnet [71] version 2.0-13 (https://cran .r-project.org/web/packages/glmnet/index.html), boot version 1.3-20 [34] (ht tps://cran.r-project.org/web/packages/boot/index.html). All computations were performed on server Salus with an $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R})$ processor, 768 GB of RAM and 56 cores. The execution time (elapsed time) for each network size is depicted in Table 5. The results reported in Table 5 are obtained setting the number of bootstraps to $1000(R=1000)$. All the other parameters are set to default.

Table 5: BENIN execution time on the DREAM4

	Network size	
Method	10	100
BENIN-non-optimized	602 s	7200 s
BENIN-parallel	50 s	368 s
BENIN +all-parallel	51 s	899 s

The table shows the elapsed time when using BENIN to reconstruct different size networks from the DREAM4 challenge. BENIN +all represents BENIN considering all potential genes as TFs. We specified whether or not we use parallel programming to optimize BENIN. The results reported here are obtained setting the number of bootstraps to $1000(R=1000)$. All the other parameters are set to default.

3.2.5 Comparison with the State-of-the-Art

First of all, we compared the performance of BENIN with three top-ranked teams of each DREAM4 sub-challenge. We named the top three methods as follows: DREAM4 Winner for the winner, DREAM4 $2^{\text {nd }}$ for the first runner up and DREAM4 $3^{\text {rd }}$ for the third-place finisher. Note that the winner of the size 100 sub-challenge is different from the winner of the size 10 sub-challenge. However, we do not have information about the first and the second runner up teams for both sub-challenges. At the time of the DREAM4 challenge, only information about the winners of the subchallenges was made available. The winner of the size 10 sub-challenge [136] applied Petri nets to all provided datasets (knockout, time course, steady-state expression data, and knockdown expression data) to infer the networks. The winner of size 100 network [179] used z-scores combined with graph methodology to infer the networks from knockout expression data. We consider their scores as reported on the official website of the DREAM4 challenge: https://www. synapse.org/\#!Synapse: syn3049712/wiki/74631.

We further rigorously compared BENIN's performance with the existing state of art methods, which have claimed to perform well on the DREAM4 challenge. They
use different methodologies for the GRN inference, and some of them integrate prior knowledge data. We have ensemble trees based methods (dynGENIE3 [81], iRafNet [178]), pairwise mutual information (TD-ARACNE [272]), dynamic Bayesian network (G1DBN [141], scanBMA [258]), linear regression-based method (gelNet [216]). We used existing R packages for these methods. Whenever the implementation allows it, we specify the list of TFs (dynGENIE3). For methods that output regression coefficients, we rank the regulatory links using the absolute values of the coefficients. We use default parameters for G1DBN, scanBMA and gelNet. For the others, we set their parameters as specified in their papers. For integrating the KO expression data into the results of dynGenie3, we take the product of the scores dynGenie3 and the Z-scores as suggested by the authors [81]. For combining the two priors into BENIN, we averaged the output scores of BENIN + Location (BENIN with location data as a prior) and BENIN +KO (BENIN using KO expression data as prior).

3.3 Computational Complexity

Investigating the complexity of BENIN amounts to investigate the complexity of the Elastic Net. As mentioned above, our method was implemented using glmnet. We particularly used the package function cv.glmnet to build our model. cv.glmnet uses cyclical coordinate descent to find the optimal $\vec{\beta}$. Cyclical coordinate descent successively optimizes the penalized regression equation over each parameter $\left(\vec{\beta}_{i}\right)$ while keeping others fixed, and cycles repeatedly until convergence. Through a cycle, two main types of variables update are used depending on the number of covariates. The naive update requires $O(N d)$, where N is the number of samples and d the number of candidates covariates. It is used if the number of covariates is less than 500. The second type of update is the covariance update. When using this type of update, with m nonzero coefficients $\left(\beta_{i}\right)$ in the model, a complete cycle costs $O(m d)$ operations if no new variables become nonzero, and costs $O(N d)$ for each new variable entered. The algorithm builds a grid of closely spaced λ-values $\left\{\alpha_{l}\right\}_{l=0}^{L}$. For each λ-value in the optimization path, the cyclical coordinate descent is repeated until the algorithm converges, to compute the coefficient vector β. The complexity deeply depends on the convergence rate of the cyclic coordinate descent. The convergence rate of coordinate descent minimization for solving linear systems is a classic topic.

Beck and L. Tetruashvili [12] have studied the cyclic coordinate descent for smooth function in general and have shown that it achieves a convergence rate of $O(1 / \epsilon)$ under Lipschitz gradient condition and a rate of $O(\log (1 / \epsilon))$ under strong convexity; where ϵ is a pre-specified accuracy of the target. Tseng et.al [234] have also studied the convergence of cyclic coordinate descent Note that the general case of smooth and separable function is not well understood. In summary, the worst-case complexity:

- Assuming a smooth function and Lipschitz gradient condition:

$$
\begin{equation*}
O\left(\frac{1}{\epsilon} N d\right) \tag{35}
\end{equation*}
$$

- Assuming a smooth function and strong convexity condition:

$$
\begin{equation*}
O\left(\log \left(\frac{1}{\epsilon}\right) N d\right) \tag{36}
\end{equation*}
$$

- More generally let s the number of steps till convergence, we have:

$$
\begin{equation*}
O(s N d) \tag{37}
\end{equation*}
$$

A detailed analysis of the coordinate descent convergence rate can be found in [252], and for elastic net in [72].

The package makes use of techniques to fasten the convergence such as warm start (i.e., the solution $\beta\left(\lambda_{l}\right)$ is a warm start for the solution $\vec{\beta}\left(\lambda_{l+1}\right)$), and the activeset convergence (which cause the algorithm to iterate only on variables which have nonzero coefficient). The algorithm uses k-fold cross-validation to select the best λ. In our GRN learning, the algorithm is repeated L bootstrap times.

3.4 Results and Discussion

3.4.1 Effect of the Noise in Prior Knowledge

We have investigated the effect of noise inherent in location data on the accuracy of BENIN. We generated several location datasets with varied level of reliability, by fluctuating λ. Note that the larger is λ, the more reliable will be the location data in the sense the p-values of regulatory links will be close to zero. In our experiment
we chose $\lambda=\{1,10,20,100\}$ leading to 4 different location datasets that we name: completely noisy location data, reasonably noisy location data, fair location data and perfect location data. Figure 13 shows the result of BENIN when varying the noise in location. We plot it only for 100 -nodes networks and principally for the easiest network to infer (network 1) and the most difficult to infer (network 5). As expected, we observe that as the prior becomes perfect, BENIN gets better performance.

Figure 13: Effect of the noise in location data
The figures show the AUPR when learning 100-nodes DREAM 4 with different types of location data as prior knowledge. We report data with three different levels of noise: completely noisy $(\beta=1)$, reasonably noisy $(\beta=10)$ and fair location data $(\beta=20)$ and, perfect $(\beta=100)$ location data. The graph shows that as the level of noise decrease in the data, the performances of BENIN increase.

3.4.2 Influence of BENIN Parameters

Figure 14 shows that the quality of BENIN prediction is less sensitive to α than to the two other parameters. In fact, for different values of α, the AUPR score does not vary much from 0.5 . On the other hand, as γ increases, BENIN yields higher AUPR scores (Figure 14c) but after $\gamma=1$ the performance starts to decrease. Furthermore, we can also observe that as R increases, there is an improvement in performance that stabilizes for $R \geq 5000$ (Figure 14b). In effect, increasing the number of bootstraps improves the chance to select the true TFs in the model. From these tables, the most important parameters are R and γ.

Figure 14: Influence of BENIN parameters
We consider the AUPR score of BENIN on a 100-node network when varying each of the parameters: α which controls the penalization strength in the Elastic net, the number R of bootstrap samples and the parameter γ that weights the influence of the prior. We used location data as our prior. We vary $R \in\{5,55,105, \cdots, 10000\}$, $\gamma \in\{0.1,0.2 \cdots, 1.5\}$ and $\alpha \in\{0.1,0.2 \cdots, 0.9\}$.

3.4.3 Effect of Prior Knowledge

The global scores, when considering each prior separately (or combined), are reported in Table 8 for size 100 network and Table 11 for size 10 networks. The associated AUPR and AUROC scores are detailed in Table 6 (respectively Table 10) when knockout expression data is considered as prior knowledge and in Table 7) (Table 9) when genome-wide location data is considered as prior knowledge for the GRN inference
of size 100 (respectively size 10) DREAM4 networks. From Table 8 and Table 11, we first observe that the inclusion of prior knowledge into BENIN drastically improves its performances. We further notice in Table 8 and Table 11 that each type of prior knowledge data yields different performances. Including Location data as prior knowledge yields better results compared to KO expression data on both sub-challenges. Location data are more informative than KO expression data. In Section 3.4.6, we dug up into the results on size 100 networks to see the contribution of each data type. However, not surprisingly, the combination of KO expression data and genome-wide location yields superior results compared to BENIN's performance using each prior separately and BENIN when we do not consider any prior. These results confirm the benefit of the integration of prior knowledge into a model for GRN inference.

We evaluated BENIN's performances without restricting the set of potential TFs on the DREAM4 challenge. From Table 5 and Table 8, we observe that restricting the input TFs to the list of known TFs improved BENIN's performance in two directions. First, we observe from Table 5 that, when we consider all potential genes as TFs, the execution time increases. On the other hand, from Table 8, we further observe an increase in the global score on the DREAM4 challenge when we restrict the potential TFs to known TFs. These two observations confirm the need to use and invest in methods for identifying TFs using techniques such as sequences annotation, homology, identification of DNA binding domain (DBD), and wet-lab experiments. Many resources help predict TFs from the protein sequences and, several databases store information about the TFs. We can list AnimalTFDB [104] or JASPAR [198]. There is a need to integrate this information as prior knowledge into the GRN inference for scaling up when inferring large network, but also in order to obtain more biologically meaningful GRN.

3.4.4 Performance on the DREAM4 Challenge

On the first hand, when considering only KO expression as prior knowledge, from Table 6, we observe that BENIN gets a better score than the winner for the size 100 sub-challenge, which uses knockout gene expression data alone to infer all five networks in the sub-challenge. We notice that our AUROC score is the highest on almost all the five networks (except for network 2 and 3). Moreover, our AUPR scores
are far better than the performances of the size 100 sub-challenge participants. We principally care about the AUPR score and the final global score. The AUPR score is more informative than the AUROC score in the case of imbalanced datasets [196]. Regulatory networks are such an imbalanced case, as the number of true links is far less than the number of non-links (sparse network). Our final global score on size 100 networks considering KO expression data as prior knowledge indicates that our performance is more statistically significant than those of all other participants. However, when considering KO expression data as prior knowledge, BENIN gets the $2^{\text {nd }}$ best score for size 10 sub-challenge. This result is not surprising as the winner of this challenge integrates all the data that were made available in the challenge, proving the power of data integration.

On the other hand, when we combine KO expression data and location data with time-series expression, we notice from Table 8 and Table 11 that BENIN gets a better score than the winners of both sub-challenges. This result first testifies that location data are very informative and confirm that the integration of several data with timeseries expression data improves BENIN's performance.

3.4.5 Comparison with the State-of-the-Art

From Table 7, Table 6, Table 9 and, Table 10 we observe that, for both size 10 and size 100 networks, BENIN significantly outperforms the state of the art methods, particularly when considering genome-wide location data as prior knowledge. However, when we consider KO expression data, we observe in Table 6 that, for size 100 network 2 and 4, dynGENIE3+KO gets better results than BENIN but in average, BENIN's performance is superior to dynGENIE3+KO. From Table 8 and Table 11, BENIN overall performance when considering both prior knowledge data confirms the statistical significance of our results.

Table 6: DREAM4 size 100 performance with KO expression

Algorithm	Net 1	Net 2	Net 3	Net 4	Net 5
BENIN + KO	0.611(0.964)	$0.455(0.925)$	0.442 (0.923)	0.496 (0.932)	$0.4030 .927)$
BENIN $+\mathrm{all}+\mathrm{KO}$	0.516 (0.913)	0.322(0.783)	$0.373(0.835)$	$0.384(0.831)$	$0.250(0.765)$
gelNet	0.042(0.695)	0.047(0.631)	0.096(0.669)	0.051(0.647)	0.056(0.682)
BENIN-no prior	0.306 (0.904)	0.218 (0.872)	0.275 (0.860)	0.279 (0.880)	0.279 (0.911)
TDARACNE	0.063(0.656)	0.066(0.613)	0.077(0.642)	0.073(0.618)	$0.069(0.651)$
scanBMA	$0.119(0.685)$	$0.064(0.625)$	0.146(0.658)	0.116(0.662)	0.099(0.693)
G1DBN	0.058(0.789)	0.064(0.7)	$0.057(0.728)$	0.051(0.727)	0.064(0.771)
dynGENIE3+K0	0.559(0.964)	0.483(0.933)	$0.409(\mathbf{0 . 9 3 3})$	0.528(0.938)	0.340 (0.922)
dynGENIE3+all+KO	0.481(0.920)	0.352(0.807)	0.350(0.849)	0.458(0.857)	0.283(0.788)
iRafNet+KO	$0.476(0.888)$	0.295(0.791)	0.383(0.829)	0.356(0.839)	0.237(0.789)
KO z-score	0.521(0.962)	0.453(0.930)	$0.412(0.924)$	0.404(0.932)	$0.214(0.913)$
DREAM4 Winner	$0.536(0.914)$	$0.377(0.801)$	0.390(0.833)	0.349(0.842)	$0.213(0.759)$
DREAM4 $2^{\text {nd }}$	$0.512(0.908)$	0.396(0.797)	0.380(0.829)	0.372(0.844)	$0.178(0.763)$
DREAM4 $3^{\text {rd }}$	0.490(0.870)	0.327(0.773)	0.326(0.844)	0.400(0.827)	0.159 (0.758)

The table reports the AUPR and AUROC (in brackets) for each of the five networks of the size 100-node DREAM4 subchallenge for different algorithms with KO expression data as prior information. The highest score is shown in bold.

Table 7: DREAM4 size 100 performance with Location data

Algorithm	Net 1	Net 2	Net 3	Net 4	Net 5
BENIN + Location	$\mathbf{0 . 5 9 9}(\mathbf{0 . 9 8 3})$	$\mathbf{0 . 5 6 2 (0 . 9 7 9})$	$\mathbf{0 . 5 3 4 (0 . 9 7 2)}$	$\mathbf{0 . 5 8 0}(\mathbf{0 . 9 8 2})$	$\mathbf{0 . 6 1 5 (\mathbf { 0 . 9 8 5 })}$
BENIN + all+Location	$0.356(0.955)$	$0.318(0.943)$	$0.352(0.940)$	$0.353(0.953)$	$0.357(0.952)$
BENIN-no prior	$0.306(0.904)$	$0.218(0.872)$	$0.275(0.860)$	$0.279(0.880)$	$0.279(0.911)$
gelNet+Location	$0.033(0.648)$	$0.038(0.601)$	$0.088(0.636)$	$0.043(0.642)$	$0.048(0.677)$
TDARACNE					
	$0.063(0.656)$	$0.066(0.613)$	$0.077(0.642)$	$0.073(0.618)$	$0.069(0.651)$
ScanBMA+Location	$0.149(0.833)$	$0.093(0.7611)$	$0.175(0.8276)$	$0.144(0.787)$	$0.131(0.829)$
G1DBN	$0.058(0.789)$	$0.064(0.7)$	$0.057(0.728)$	$0.051(0.727)$	$0.064(0.771)$
iRafNet+Location	$0.328(0.943)$	$0.327(0.941)$	$0.408(0.953)$	$0.344(0.946)$	$0.400(0.956)$
dynGENIE3	$0.251(0.8918)$	$0.225(0.889)$	$0.165(0.883)$	$0.270(0.888)$	$0.207(0.903)$
dynGENIE3+all	$0.196(0.761)$	$0.111(0.664)$	$0.106(0.723)$	$0.194(0.725)$	$0.124(0.730)$

The table presents the AUPR and AUROC (in brackets) for each of the five networks in the 100 -nodes DREAM4 subchallenge for different algorithms with location data as prior information. They are the geometric mean of the scores obtained on the eleven generated location datasets. The highest score is shown in bold.

Table 8: Global score on the DREAM4 size 100 subchallenge

Algorithm	Methods	Global Score	Prior
BENIN + Both		129.563	KO+Location Data
BENIN + Location		122.716	Location Data
BENIN + KO	Regression	100.383	KO
BENIN + all+location data		82.200	Location data
BENIN-no prior		61.431	None
gelNet+KO		11.078	KO
gelNet+Location		8.626	Location Data
dynGENIE3 + KO		99.917	KO
iRafNet+Location	ee Ensemble	84.193	Location Data
dynGENIE3 + all + KO	Ensemble	73.748	KO
iRafNet+KO		66.071	KO
dynGENIE3		56.695	None
dynGENIE3+all		26.662	None
scanBMA+Location		33.207	Location Data
scanBMA	Dynamic Bayesian Network	17.476	None
G1DBN		16.922	None
TDARACNE	Mutual Information	11.084	None
DREAM4 Winner	Other	71.589	None
DREAM4 $2^{\text {nd }}$		71.297	No information
DREAM4 $3^{\text {rd }}$		64.715	No information
KO z-score		90.291	None

The table reports the global scores of different inference methods combined with or without prior knowledge for inferring the five networks of the DREAM4 size 100 subchallenge. The Prior column specifies the type of prior information used. See Table 6 and Table 7 for more details of this table.

Table 9: DREAM4 size 10 performance with Location data

Algorithm	Net1	Net2	Net3	Net4	Net5
BENIN +Location	$\mathbf{0 . 8 1 7 (0 . 9 5 2)}$	$\mathbf{0 . 7 2 6}(\mathbf{0 . 9 1 0})$	$\mathbf{0 . 8 0 4 (0 . 9 4 9)}$	$\mathbf{0 . 8 5 6 (0 . 9 5 7)}$	$\mathbf{0 . 9 1 5 (\mathbf { 0 . 9 7 5 })}$
BENIN +allgenes+Location	$0.805(0.944)$	$0.693(0.897)$	$0.799(0.947)$	$0.840(0.953)$	$0.891(0.974)$
BENIN + no prior	$0.502(0.847)$	$0.465(0.666)$	$0.441(0.722)$	$0.752(0.924)$	$0.205(0.567)$
gelNet+Location	$0.363(0.723)$	$0.234(0.606)$	$0.215(0.621)$	$0.324(0.740)$	$0.319(0.737)$
TDARACNE	$0.379(0.756)$	$0.270(0.684)$	$0.313(0.620)$	$0.308(0.638)$	$0.409(0.687)$
scanBMA	$0.453(0.633)$	$0.433(0.615)$	$0.325(0.567)$	$0.470(0.654)$	$0.483(0.667)$
G1DBN	$0.507(0.772)$	$0.416(0.664)$	$0.418(0.750)$	$0.499(0.760)$	$0.652(0.824)$
iRafNet+Location	$0.714(0.935)$	$0.630(0.904)$	$0.711(0.910)$	$0.669(0.911)$	$0.805(0.955)$
dynGENIE	$0.612(0.876)$	$0.484(0.702)$	$0.765(0.854)$	$0.686(0.922)$	$0.595(0.842)$
dynGENIE+allgenes	$0.483(0.743)$	$0.419(0.636)$	$0.512(0.758)$	$0.484(0.734)$	$0.669(0.834)$

The table reports the AUPR and AUROC (in brackets) for each of the five networks of the size 10-node DREAM4 sub-challenge for different algorithms with Locations data as prior information. The highest score is shown in bold.

Table 10: DREAM4 size 10 performance with KO expression

Algorithm	Net1	Net2	Net3	Net4	Net5
BENIN +KO	$0.799(0.928)$	$\mathbf{0 . 5 7 2}(0.742)$	$0.649(0.919)$	$0.796(0.944)$	$0.709(0.902)$
BENIN +allgenes+KO	$0.738(0.908)$	$0.533(0.659)$	$0.728(0.936)$	$0.849(0.959)$	$0.626(0.853)$
BENIN + no prior	$0.502(0.847)$	$0.465(0.666)$	$0.441(0.722)$	$0.752(0.924)$	$0.205(0.567)$
gelNet+KO	$0.363(0.723)$	$0.234(0.606)$	$0.215(0.621)$	$0.324(0.740)$	$0.319(0.737)$
TDARACNE	$0.379(0.756)$	$0.270(0.684)$	$0.313(0.620)$	$0.308(0.638)$	$0.409(0.687)$
scanBMA	$0.453(0.633)$	$0.433(0.615)$	$0.325(0.567)$	$0.470(0.654)$	$0.483(0.667)$
G1DBN	$0.507(0.772)$	$0.416(0.664)$	$0.418(0.750)$	$0.499(0.760)$	$0.652(0.824)$
iRafNet+KO	$0.646(0.879)$	$0.272(0.708)$	$0.657(0.847)$	$0.563(0.790)$	$0.573(0.873)$
dynGENIE+KO	$0.612(0.876)$	$0.484(0.702)$	$0.765(0.854)$	$0.686(0.922)$	$0.595(0.842)$
dynGENIE+KO+allgenes	$0.611(0.865)$	$0.475(0.667)$	$0.751(0.834)$	$0.694(0.927)$	$0.593(0.830)$
DREAM4 Winner	$\mathbf{0 . 9 1 6 (\mathbf { 0 . 9 7 2 })}$	$0.547(0.841)$	$\mathbf{0 . 9 6 8 (0 . 9 9 0)}$	$\mathbf{0 . 8 5 2 (0 . 9 5 4)}$	$\mathbf{0 . 7 6 1 (0 . 9 2 8)}$
DREAM4 $2^{\text {nd }}$	$0.881(0.967)$	$0.382(0.796)$	$0.682(0.916)$	$0.698(0.902)$	$0.424(0.822)$
DREAM4 $3^{\text {rd }}$	$0.623(0.864)$	$0.301(0.567)$	$0.646(0.824)$	$0.693(0.820)$	$0.673(0.776)$
$\boldsymbol{K O} \boldsymbol{z}$-score	$0.638(0.835)$	$0.262(0.666)$	$0.701(0.840)$	$0.776(0.942)$	$0.405(0.723)$

The table presents the AUPR and AUROC (in brackets) for each of the five networks in the 10-nodes DREAM4 sub-challenge for different algorithms with location data as prior information. They are the geometric mean of the scores obtained on the eleven generated location datasets. The highest score is shown in bold.

Table 11: Global score on the DREAM4 size 10 subchallenge

Algorithm	Method	Global score	Prior
BENIN + Both	Regression	7.481	Location+KO
BENIN + Location		7.324	Location
BENIN + all+Location		7.139	Location
BENIN + KO		5.802	KO
BENIN + all + KO		5.535	KO
BENIN + no prior		3.272	None
gelNet+Location		1.696	Location
gelNet+KO		1.626	KO
dynGENIE3 +KO	Tree Ensemble	4.814	KO
dynGENIE3+all+KO		4.657	KO
iRafNet+Location		4.965	Location
iRafNet+KO		4.140	KO
dynGENIE3		3.222	None
dynGENIE3+all		3.206	None
G1DBN	Dynamic Bayesian Network	3.222	None
scanBMA		2.022	None
TDARACNE	Mutual Information	1.859	None
DREAM4 Winner	Other	7.127	KO
DREAM4 $2^{\text {nd }}$		5.290	No information
DREAM4 $3^{\text {rd }}$		3.968	No information
KO z-score		4.120	None

The table reports the global scores of different inference methods combined with or without prior knowledge for inferring the five networks of the DREAM4 size 10 subchallenge. The Prior column specifies the type of prior information used. See Table 10 and Table 9 for more details of this table. If a method uses all the genes as potential TFs we specify it with "+all".

We dug up into the inferred networks and Figure 15 shows an example of a subnetwork from the 4 th network of the size 100 sub-challenge. Figure 15 shows how the subnetwork is inferred by each method. The subnetwork is anchored in a critical/hub transcription factor "G64": i.e., a transcription factor linked to many other genes. In this figure, the gray links are the links missed by the method, the red links are the false positives, and the green links are the true links. The subnetwork is inferred with different accuracy by the different methods. Note that we restricted the subnetwork to the top 20 edges for each method. As expected, methods that do not consider prior knowledge miss many links and have the highest false positives. Location data are most informative than KO expression data. We can observe that methods that consider location data as prior knowledge can infer the true edge with fewer false-positive links. From the network inferred by BENIN, when we combine both KO expression and location data, we can observe that the prior are complementary. We observe that BENIN infers less number of false-positive links than when we consider KO. However, we are still missing some links. We further perform network motif analysis to highlight the types of error each method is doing.

Figure 15: A subnetwork from 100-nodes network 4
The figure reports how each of the methods infers a subnetwork (sub-figure a) from the 4th network in the size 100 DREAM4 subchallenge. We consider a subnetwork anchored on a key transcription factor, i.e., a TF linked to many other genes. In the figures, green links represent the true positives, red links represent the false positives, and finally, gray links are edges missed by the method.

A subnetwork from 100-nodes network 4
The figure reports how each of the method infers a subnetwork (sub-figure a) from the 4th network in the size 100 DREAM4 subchallenge. We consider a subnetwork anchored on a key transcription factor i.e. a TF linked to many other genes. In the figures green links represent the true positives, red links represent the false positives and finally, gray links are edges missed by the method.

3.4.6 Network Motif Analysis

For each method, we only report the motif prediction confidence on the $4^{\text {th }}$ network from the size 100 DREAM4 subchallenge, as it is the one where we perform less than the state-of-art (more specifically when combining BENIN with KO expression data). Furthermore, the difference in the error profiles between all methods is remarkable on this network. The network motifs analysis will help us pinpoint where the errors are being made by each method and the influence of each type of prior knowledge data on BENIN prediction. We extracted 642 fan-out motifs, 250 fan-in motifs, and 187 cascade motifs from these networks. We use GeneNetWeaver to analyze how well the edges of these motifs are inferred by BENIN, iRafNet, dynGENIE3, gelNet, scanBMA, TDARACNE, G1DBN and z-score, when they consider or not prior knowledge data (KO and/or Location data). Table 12 presents the error profile for each method. The first row stores the true structure. Here, the black edges are those we want to infer. The intensity of the edge color is proportional to its prediction confidence (median rank).

Different methods, different error profile: From Table 12, we can observe that each method is affected to a different degree by each error. Therefore each method has different error profile, demonstrating that various method has different strength and weakness.

Considering first the Fan-out motif, we observe from Table 12 that almost all methods except BENIN and G1DBN have the tendency to confuse co-regulation and regulation, and infer regulatory links between co-regulated genes. The most affected methods are TDARACNE, and scanBMA+noprior. We observe that the median rank of the true edges $(1 \rightarrow 2$ and $1 \rightarrow 3)$ is very close to the median rank of the false edges $(2 \rightarrow 3$ and $3 \rightarrow 2)$: these methods rank edges between co-regulated genes on average as good as the true regulatory links. The other affected methods (dynGENIE3, iRafNet and gelNet) although affected by the error, rank the true regulatory links at the top of their inferred list of regulatory links. Moreover we observe that some of these methods (dynGENIE3, iRafNet, gelNet, scanBMA+Location and TDARACNE) have difficulty to infer the directionality of the edges. On the other hand, we can observe that BENIN can clearly distinguish co-regulation and regulation, but also can distinguish the directionality of the edges.

Looking up at the Fan-in motif, we observe that dynGENIE+noprior, gelNet+KO, scanBMA +KO , and scanBMA+noprior have the difficulty to rank edges targeted by many TFs at the top of the inferred list of regulatory links. We also notice that methods that do not incorporate prior knowledge with expression data are mostly affected by this error. It is principally the case for scanBMA, which is the most affected by this error. The inclusion of prior knowledge data into the network inference helps the method to rank combinatorial links among the top edges.

Finally, observing the Cascade motif, we can see that methods that integrate KO expression data as prior knowledge are the most affected by this error: BENIN +KO is the most affected by this error. They give higher rank to the indirect edge $1 \rightarrow 3$ compared to the true edges $(1 \rightarrow 2$ and $2 \rightarrow 3)$. It is not surprising since, as if we look at the prediction confidence of motif edges with KO expression data alone (KO-zscore-alone), we can see that the median rank of the indirect edge is 0.91 . It is normal since KO expression data helps to infer direct links and indirect interactions as perturbing a TF will affect not only its direct TGs but also its indirect TGs. On the other hand, we observe that methods that consider location data (iRafNet+Location and scanBMA+Location) rank the true edges of the motif on average at the top of their inferred list of regulatory links, demonstrating that they are not affected by the cascade error.

Table 12: Motif prediction confidence (median rank)

Fan-out	Fan-in	Cascade

113
BENIN-combined

BENIN +KO

Table 12 continued from previous page

Fan-out	Fan-in	Cascade

BENIN + Location

dynGENIE3+KO

Table 12 continued from previous page

Fan-out	Fan-in	Cascade

dynGENIE3+noprior

115

iRafNet+Location

Table 12 continued from previous page

Table 12 continued from previous page

Fan-out	Fan-in	Cascade

G1DBN

117

KO-zscore-alone

The table shows the median prediction (median rank) of edges motifs on the network 4 from the size 100 DREAM4 subchallenge. Using GeneNetWeaver, we extracted 642 fan-out motifs, 250 fan-in motifs and 187 cascade motifs from the networks inferred by each method. The first row stores the true structure of the motifs with regulatory the true links shown in black. The first column is the Fan-out motif. $2^{\text {nd }}$ column is the Fan-in motif and finally, $3^{r d}$ column is the Cascade motif. Each row shows the motifs as inferred by each method. In these motifs, the intensity of the color is proportional to the median prediction confidence (median rank). The labels of the edges are the median prediction confidence values.

3.5 Conclusion

In this chapter, we introduced BENIN, a framework that infers regulatory networks by jointly learning from time-series expression data and prior knowledge. The prior knowledge serves to derive weights that are then used to penalize non-potential interactions and thus lead toward a more intuitive solution. The proposed method utilizes a popular algorithm the Elastic net, which permits a direct and simple integration of prior knowledge while the model is learned. In this chapter, we report BENIN's performance on a widely used benchmark dataset for network inference assessment: the DREAM4 challenge dataset. We combined time-series expression data with simulated KO and genome-wide location data. We compared our performance to state-of-the-art methods.

A simple but efficient method. Compared with existing integration models, which mainly rely on the Bayesian network framework, the advantage of BENIN is the simplicity of the model and its simplicity to integrate the prior knowledge. Bayesianbased methods are computationally demanding [38, 148]; they generally require many samples to learn the model. Above all, they require knowledge of the prior data to choose the right prior distribution that will fit the knowledge we want to integrate. Our results on simulated data demonstrate that even a simple model with proper integration of prior knowledge can be competitive with sophisticated methods. Care should be taken with the quality of the prior knowledge data because very noisy data may worsen the algorithm's performance. In our algorithm, this problem is handled at two levels. The first level is the adoption of a probabilistic model to define the prior. In that way, we use prior knowledge to guide network inference without making a strong assumption about their accuracy. The second level is in the model building itself. Our algorithm offers the possibility to control the feature penalization.

Prior knowledge boosts the network inference In this chapter, we have also demonstrated that joint learning from expression data and informative prior knowledge is beneficial. Not surprisingly, the inclusion of prior evidence in the network inference substantially increases our algorithm's performance. When we compare the error profile of several state-of-the-art methods and BENIN when they integrate or
not knockout data and the transcription factor binding location data, we notice a complementary in their performance. Different methods are robust against different errors. For example, BENIN is robust for inferring edge targeted by several TFs and distinguishing co-regulation and regulation. On the other hand, iRafNet is robust against the cascade error. We further observe that different methods are affected by different error types depending on the type of prior knowledge data integrated. This complementarity in the performances was expected because different data sources will tell different parts of the story about the regulatory network and have different noise levels.

What is next? Although the results of BENIN are encouraging, a lot still needs to be done. In In this chapter, we only presented preliminary results on simulated data. In the next chapter, we will confirm our result on real data on human expression data and consider other types of prior knowledge, such as ChIP-seq/ChIP-chip data, functional similarity, or protein-protein interactions. The method presented here for combining results from different priors is very simplistic. Alternatively, the integration could be done with ensemble methods. From the motif analysis, we can observe that BENIN is mostly affected by the cascade error. The reason for this failure needs further investigation.

Chapter 4

BENIN: Application to the HeLa Cell cycle

4.1 Introduction

In Chapter 3, we introduced a method that integrates any type of prior information with time-series expression data to infer the GRN: BENIN. In Chapter 3, we tested BENIN on simulated data from the DREAM4 and considered simulated knockout gene expression data and simulated genome-wide location. In this chapter, we propose applying BENIN on real data using a variety of real prior knowledge data. More specifically, we applied BENIN to human data. In particular, we used the HeLa cell line [203]. The HeLa cell line is an immortal human cancer cell line, which has allowed several medical research breakthroughs. Because of its immortality, HeLa cells have become the model cancer cell in cancer research [161].

We consider the human organism for several reasons. First of all, it is among the multicellular Eukaryotes of interest in nowadays researches. Hence, scientists have produced a variety of data to understand the complexity of human cell functioning. Furthermore, it has a complex regulatory network. Our point is to show that BENIN can infer complex GRN of higher organisms. Our goal is to infer the GRN that controls the cell cycle of the HeLa cell line. The cell cycle is a series of coordinated stages that allow cells to grow, replicate, and create new cells, permitting them to stay alive. It is an essential process by which the genetic material is transmitted through cells. This transmission should be accurate to prevent the transmission of genetic
mutations. Because of its importance for every living cells, the cell cycle is a highly controlled process. Some genes control the passage from one phase of the cycle to another. Other genes are responsible for holding the cell at specific points of the cell cycle. Any malfunctioning of this complex regulation may lead to the development of cancer. The regulation of the cell cycle happens at different levels. However, for our research, we restrict the regulation at the transcriptional level. Our main goal is to show that BENIN can infer not only interactions supported in the literature but also new high scoring interactions. We believe that reconstructing the GRN in cancers cell may help scientists identifying critical factors that may have led to a cancer state.

In this chapter, we propose integrating several prior knowledge data, ranging from TFBS, knockdown gene expression data, ChIP-seq data, or even functional annotation. We describe step by step how we transform the data into prior knowledge weights that are later integrated into BENIN (described in Chapter 3) to infer a list of regulatory links. The final GRN is obtained by applying a threshold τ on the inferred list of interactions. Our results demonstrate that the integration of diverse prior knowledge may improve BENIN performance, helps BENIN inferring interactions that are missed when we do not consider any prior knowledge.

We extended BENIN to include regulatory interaction from other closely related organisms. This integration will enrich the GRN inferred from time-series expression data with new regulatory links. We use orthology information transfer through sequence alignment to transfer known regulatory interactions from closely related model organisms into the studied model. The orthology mapping is based on the assumption that ortholog genes preserve their function. In our study, we consider the mouse as our model organism to study the GRN in human.

Mouse or Mus Musculus has several similarities to human in terms of genetics, physiology, and anatomy. These similarities make the mouse genomic research particularly insightful to gain knowledge on how human functions. Furthermore, the ease with which the mouse genome can be analyzed and manipulated has to lead to a production of a large variety of data available on different platforms. We use eggnog-mapper [111] to get the 1:1 orthologous human genes into the mouse. Our results demonstrate that BENIN can infer several documented regulatory links and interactions supported by the literature and other potential regulatory interactions that necessitate further investigations.

Different strategies have been proposed to infer the human GRN in general and the GRN controlling the HeLa cell cycle. Ranging from computational methods that use statistical models to infer the GRN from mainly expression data [211, 247, 197, 77]; in vivo based methods that use wet-lab experiments to identify binding sites of TFs of interest $[247,197,267,267]$ and finally, hybrid methods that combine both strategies. The main limitation of these methods is that most of them use only a specific data type to infer the GRN. Some methods do not infer the whole GRN but rather a network anchored at the TF targeted by a specific experiment.

BENIN contributions to the inference of GRN controlling the HeLa cell cycle are the following:

- We propose integrating ChIP-seq, functional annotation, TFBS, and KD expression data with time-series expression data to infer the GRN controlling the HeLa cell cycle.
- We further integrate regulatory information from mouse through orthology information transfer, to confirm the inferred network from expression data and enrich the inferred network with potential interaction.
- BENIN can infer not only known interactions but also new potential regulatory interactions with high confidence that are supported to some extent with the literature that necessitates further investigation.

The chapter is organized as follows: in Section 4.2.1, we introduce the cell cycle and the cell cycle regulation paradigm. Section 4.2 gives the list of different strategies that have inferred the GRN controlling the human cell cycle in general and the HeLa cell cycle in particular. Section 4.3 describes our methodology to build the gold-standard for evaluating BENIN performances. Section 4.4 provides detail on data collection. Section 4.5 gives details on reverse-engineering the GRN controlling the HeLa cell cycle using time series combined with different prior knowledge information. We provide details on the different steps for transforming the prior knowledge information into prior weights. We further detail our methodology to transfer regulatory information from mouse using sequence similarity and discuss the data collection. In Section 4.6.1, we present the results of applying BENIN on Whitfield data [247], to
infer the GRN controlling the HeLa cell cycle. Finally, in Section 4.6.2, we discuss tour findings.

4.2 Background

4.2.1 The Eukaryotic Cell Cycle

The cell cycle is an important phenomenon that occurs in all organisms to allow them to survive. It is the story of all living cells. It is an important sequence of stages by which a cell will go through to replicate its genetic material and divide to produce new cells. For the rest of this chapter, we will concentrate on the eukaryotic cell cycle. The eukaryotic cell cycle consists of two main phases:

- The mitosis or M-phase, which is the shortest phase of the cycle. In this phase, the cell will perform division to produce daughter cells with the same genetic material.
- The anaphase, which is the longest part of the cycle. It is in this phase where the cell will undergo most of its processes. The anaphase is divided into three discrete phases: one synthesis phase or S-phase in which the DNA is replicated. Two gap phases: the G1-phase (gap 1) that is the gap phase immediately after the mitosis and finally, the G2-phase (gap 2) in which the cell continues to grow, and the proteins are synthesized.

In summary, the eukaryotic cell cycle is divided into four phases: the M-phase, the G1-phase, the S-phase, and the G2-phase. Figure 16 gives an overview of the cell cycle in a eukaryotic cell.

The regulation of the cell cycle is essential for several reasons. First of all, it is important to control the cell division; otherwise, cells will undergo division infinitely, leading to cancer growth. Furthermore, regulation is important to ensure proper coordination and signal passage through the different cell cycle stages. Through the cell cycle, the cell considers several factors to decide whether it will progress from one stage to another. These factors are internal, e.g., DNA damage, or external, e.g., nutrient availability or cell size. These cues trigger the activities of keys regulators at checkpoints. A checkpoint is a stage in the cell cycle where internal and external

Figure 16: The Eukaryotic cell cycle
cues are checked to decide whether or not progression toward another step in the cycle should be halted. Hence, a checkpoint's general purpose is to ensure that all conditions are met before the cell proceeds to the next stage, hence ensuring that the complete genome is transmitted to daughter cells. For example, all the genome must be synthesized before moving to the mitosis phase. Otherwise, it will result in daughter cells having mutations that will be transmitted to following new cells. There are three main checkpoints:

- The G1-checkpoint: it happens during the transition from the G1 to the Sphase. It is at this step that major regulation occurs. At this stage, factors such as cell size, DNA integrity, nutrient resources are assessed.
- The G2-checkpoint: it happens at the transition from G2 to M-phase. At this checkpoint, the cell checks if the DNA is completely replicated and not damaged.
- The M-checkpoint or spindle checkpoint: it occurs during the mitosis. Here, the cell makes sure that sisters chromatid are properly attached to the spindle.

Figure 17: From nucleus to DNA sequence
The figure shows how the DNA is wrapped inside the cell of eukaryotic cells. The DNA length is far greater than the size of the nucleus in which it is stored inside the cell. Hence, the DNA needs to be condensed. The double helix of the DNA sequence is compacted around a protein called a histone, forming the nucleosome. Several nucleosomes are coiled together and stacked on top of each other, forming a chromatin fiber. The chromatin fiber is then looped. The chromatin fiber loops are compressed and folded to produce a fiber tightly coiled into the chromosome's chromatid. A chromosome is made up of two chromatids called sister chromatids.

The cell cycle regulation is controlled by different molecules, such as cyclin-dependent kinases (CDKs), which are enzymes that phosphorylate (add phosphate group) to other proteins for activating or repressing their activity. Note that CDKs are only activated when associated with cyclin. The other regulators are transcriptions factors. In this work, we focus on TFs. They can either repress or activates the activity of their target genes. In Table 13, we give a list of some of the TFs in the cell cycle. We considered almost all the reported TFs in our analysis, except TP53. We considered some members of the E2F family (E2F2, E2F3, E2F4, E2F6, and E2F7).

Furthermore, we consider only two members of the KLF family (KLF6 and KLF9) and two members of the STAT family (STAT4, STAT5B). The excluded TFs were not identified as HeLa cell cycle genes in the original work of Whitfield et al [247].

Table 13: Cell cycle Transcription Factors

HGNC symbol	DBD	Cell cycle Phase	Function	source
E2F-family				
(e.g. E2F1, E2F2, E2F4, E2F8 etc)	E2F	$\begin{aligned} & \mathrm{G} 2 / \mathrm{M}, \\ & \mathrm{G} 1 / \mathrm{S} \end{aligned}$	cell cycle progression, proliferation, DNA replication, DNA damage checkpoint DNA repair, chromatin assembly/condensation, Chromosome segregation, mitotic spindle checkpoint	$\begin{aligned} & {[187, \quad 7,} \\ & 233,50] \end{aligned}$
FOXM1	Forkhead	$\begin{aligned} & \mathrm{G} 1 / \mathrm{S}, \\ & \mathrm{G} 2 / \mathrm{M} \end{aligned}$	G1/S transition, mitotic progression, cell proliferation	$\begin{aligned} & {[37,} \\ & 242] \end{aligned}$
TP53	p53		Control cell cycle progression, apoptosis, controls G2/M and G1 checkpoints, DNA damage response, cell growth	$\begin{array}{ll} {[128,} & 1, \\ 263] & \end{array}$
BRCA1	unknown	G2/M	DNA repair	[52, 257]
KLF-family (e.g.				
KLF9, KLF6, etc)	C2H2 ZF		cell proliferation, differentiation, development, and apoptosis.	[19]

HGNC symbol	DBD	Cell cycle Phase	Function	source
SP1	C2H2 ZF	G1	Cell differentiation, cell growth, apoptosis	$[53,87]$
NF-Y family (e.g.NFYA, NFYB)	$\begin{aligned} & \mathrm{CBF} / \mathrm{NF}- \\ & \mathrm{Y} \end{aligned}$		Apoptosis	[151, 89]
STAT-family (e.g. STAT1, STAT5, STAT4 etc)	STAT		differentiation, proliferation, cell survival, apoptosis, and angiogenesis	$\begin{aligned} & {[32, \quad 27,} \\ & 253,132] \end{aligned}$

The table shows the description of some important TFs that regulates the cell cycle in Eukaryotes, particularly in human. The first column is the official gene name or the TF family name. The second column provides the DNA-binding domain of the TF/family. The third column gives information about the function of the TF/family, and finally, in the fourth column, we provide the source for function description. We report in bold the keys TFs in the human cell cycle. The reported annotations are obtained from in vivo experiments (the $4^{\text {th }}$ column reports the work related to the annotations). We considered almost all the reported TFs in our analysis, except TP53. We considered some members of the E2F family (E2F2, E2F3, E2F4, E2F6, and E2F7). Furthermore, we consider only two members of the KLF family (KLF6 and KLF9) and two members of the STAT family (STAT4, STAT5B). The excluded TFs were not identified as HeLa cell cycle genes in the original work of Whitfield et al [247].

4.2.2 HeLa Cell Line

The inference of the GRN that controls the human cell cycle general and the HeLa cell cycle, in particular, have been explored in the literature using different strategies. In this section, we will highlight the different strategies that have been proposed by the researchers to elucidate the cell cycle GRN. We will split them into three main
categories: Computationally-based methods, biologically based methods, and hybrid methods. Different Human cell lines are studied in the literature. For example, we can list the Fibroblast cell line, the Epstein-Barr virus (EBV) transformed lymphoblastoid cell line (LCL), or the U2OS cell line. In this study, we will mainly report works on the Human HeLa cell line.

Computationally-based methods mainly use mathematical models to infer the GRN controlling the Human cell cycle. In the literature, several models have been proposed for the GRN inference and tested on the Human cell cycle gene expression data. The main obstacle of methods in this category is the lacking of a gold-standard network against which the inferred network could be evaluated. Different methods have adopted a different strategy to evaluate their performance. Hence, Ali Shojae et.al. have proposed a lasso-based penalty method to infer causal interaction from time-series gene expression data [211]. They have tested their method on the HeLa cell cycle. They considered a subnetwork of nine genes for which the true regulatory network has been extracted from BioGRID. They used the Whitfield HeLa dataset [247], which original work consists of identifying genes that are periodically expressed in the HeLa cell cycle. To evaluate the inferred network, they considered the sub-network extracted from BioGRID by Sambo et al. [197]. They used statistical measures such as F1, or recall. As the BioGRID network is not complete, they considered edges that were absent in the gold-standard network as potential edges and compared these links to the literature to see potentially valid interactions that were not included in the BioGRID network. Other authors have used a different model to infer the GRN controlling the HeLa cell cycle. Fujita et.al have used the first order sparse autoregressive model to infer the GRN from time-series expression data [77]. They further evaluated the statistical significance of the inferred interactions and used the FDR to control for false positives. They used the Whitfield HeLa cell cycle dataset [247] and consider only a subset of 94 genes based on their association with cell cycle and tumor development. The inferred network was evaluated using literature. They were able to identify several interactions confirmed to be part of three pathways related to cell transformation and tumor progression, namely the P53, STAT3, and NFKB pathways. Other researchers have proposed an integrative framework that infers the GRN by incorporating diverse biological data. Zhang et.al. have proposed a modular network strategy that integrates information from time-series gene expression data,
protein-protein interactions (PPI), protein-DNA interactions and functional annotation [267]. The functional annotation was used to define the number of modules obtained with fuzzy clustering. The PPI and PDI data were used to extract network motifs. The idea is to assign TFs to at least one motif and then assign each module to a TF motif. The algorithm was tested the Whitfield HeLa cell cycle dataset [247]. They considered 846 genes that were demonstrated by Whitfield to be expressed in the cell cycle. They validated their result using functional enrichment and by comparing the inferred link with the literature. Zhengli et.al. have proposed integrating ODE with a dynamic Bayesian network to infer GRN from time-series expression data. They also validated their method on the Whitfield HeLa cell cycle dataset [247]. They considered 1009 clone IDs that were shown to be expressed during the cell cycle. Note that several clone IDs can correspond to the same unique gene. To validate their performance, they particularly focused on evaluating how the subnetwork routed at BRCA1 was inferred by their method. They evaluated the inferred subnetwork based on literature and functional coherence of the BRCA1 neighborhood. We provided above a non-exhaustive list of research works that have mainly considered time-series gene expression data to infer the GRN controlling the HeLa cell cycle.

In this category, we will also list methods that use statistical tests to infer GRN from perturbation expression data (KO or KD expression data). Here methods perform differential expression analysis as described in Section 2.2.1.1 (c.f. Chapter 2) to infer the TGs of a specifically screened TF. In [170] Oleaga et.al. have knockeddown SP1 to determine its TGs and particularly those involved in proliferation and cancer. The authors determined the TG from differential expression analysis. They used unpaired t-Test combined with Benjamini-Hochberg FDR correction for multiple testing. They also computed the fold change as the ratio of the expression value compared to the control condition. They obtained a large list of SP1 TGs that were validated using promoter scanning with known SP1 PWMs. Furthermore, they selected a subset of TGs for further validation using a ChiP experiment and other independent in vivo experiments.

Computational based methods present the following drawbacks:

- The perturbation experiments generally target one TF in a specific cell cycle. So on only the sub-network related to the screened TF can be inferred.
- Although studies have demonstrated the need to integrate diverse data to cope with noise in expression data, the dimensionality (data insufficiency), and to obtain more reliable results, most of the methods in this category consider only one type of data and do not integrate other omics data.
- Finally, generally, the inferred network is very limited.

In vivo based methods generally use chromatin immunoprecipitation (ChiP) experiments. The aim here is to find genomic loci bound by a specific TF of interest: the TFBS. A ChIP experiment can either be combined with DNA microarrays (ChiP-ChiP) or ultra-high-throughput sequencing (ChIP-seq). Ren et.al [187] have performed genome-wide location analysis of E2F TFBS using ChiP-ChiP experiment. The method has allowed us to identify cell cycle-regulated genes in mammalian cell lines. Hence, they identified previously unknown E2F TGs (target promoters) that were independently experimentally validated. Chen et.al [37] have used ChIP-seq experiment to elucidate genome-wide binding sites recognized by the forkhead TF FOXM1. They identified a group of cell cycle genes bound by FOXM1. Gordon et.al [190] have used the same strategy for identifying regions within the genome of the HeLa cell line bound by the STAT1 transcription factor. Nowadays, ChIP-seq experiments have become an indispensable and preferred in vivo method to detect DNA interaction between a gene a TF of interest, because of its signal to noise ratio. ChIP-seq data are deposited in database such as ENCODE or Chip-Atlas. Some of these databases offer the possibility to predict target genes bound by a given TF. The main limitation of in vivo methods is that experiments are generally restricted to one or a few TFs of interest and specific cell lines. Hence only part of the GRN can be inferred with these methods. Furthermore, they infer only physical interactions. However, physical binding does not necessarily imply functional association.

Hybrid methods generally combine perturbation experiments (gene knockout or knockdown) with ChiP experiments. Generally, target genes inferred from ChiP experiments are validated through perturbation experiments targeting the TF screened in the ChiP experiments.

4.3 Building a gold-standard

An important step in the GRN is the evaluation of the reconstructed network. Different strategies have been proposed. They are experimentally based or in insilico based methods. Experimentally-based methods consist, for example, on performing perturbation experiments to validate the finding. For our research, we are focusing on an in silico evaluation. The strategy here is to define the GRN inference as a binary classification problem, which consists in predicting an edge as being present or absent in the final network. Then one uses statistical methods as defined in Section 2.4.1 to evaluate the inferred network. To achieve this, one needs to have a defined gold-standard network with positive and negative interactions.

One difficulty in evaluating computational methods for the inference the GRN is the lack of a proper and manually curated list of regulatory interactions that will serve as the truth. Some efforts have been put together to define databases storing regulatory links for well-studied organisms such as saccharomyces cerevisae with the yeasttract database [166]. If we compare the number of existing databases of regulatory interactions with existing organisms, we can observe a significant discrepancy. Another difficulty is the lack of curated nonregulatory links. Thus many existing curated databases consist only in positive links. It is difficult to define a negative link as our knowledge of the transcriptional regulation is very limited. The non-existence of interaction in the literature does not mean that the two genes are not interacting together.

One challenge of applying BENIN to human data is the construction of our "goldstandard" network for performance evaluation. Unfortunately, no repository provides a complete, curated gold-standard list of human regulatory interactions. Nevertheless, for our study, we use the "gold-standard" networks from Garcia Alonso work [78] that we combined with interaction from the HumanBase database [86, 135, 269, 270]

We are conscious that the "gold-standard" network is not complete, but it represents, to the best of our knowledge, the human GRN. As preliminary results, we did not consider the possibility that the network may differ for each cell type. Instead, we consider the regulatory network to be the same for all the cell types.

4.3.1 Material

We collected two gold-standard networks from Garcia's work [78]. One for cancer cell line and the other for normal cell lines. The networks are obtained from the supporting tables S3 and S4 of [78] (GarciaAlonso_supplemental_ table_S3_regulons Normal.xlsx and GarciaAlonso_supplemental_table_S4_regulons Cancer). It gathers signed regulatory interactions. However, as we are not interested in the type of regulatory interaction, we ignored the sign of the interactions. Their "gold-standard" network combines information from diverse curated databases. More precisely it gathers regulatory interactions from 13 databases: HTRidb [24], Oreganno [143], KEGG[124, 126, 125], Fantom4, TRRUST [93], reviews, TFact [65], IntAct [171], NPIRegulomeDB, TRRD [133], TRED [268], PAZAR [181], TFe [264].

We also collected regulatory interaction networks for 132 cell lines from the HumanBase database https://hb.flatironinstitute.org/download.

4.3.2 Method

We build our "gold-standard" network by merging the different networks from Garcia et al and the 132 networks from HumanBase database. Our challenge here is to define the negative example (i.e., absence interaction). It is a very tricky and challenging task since our knowledge of the human regulatory network is limited. Furthermore, as specified above, existing databases that store regulatory interaction provide only positive links. We define our negative interactions from the 132 HumanBase database networks do. We follow the idea of Huttenhower et al [114]. They have proposed to used as negative examples gene pairs not co-annotated to any terms in a set of 433 Gene Ontology (GO) [42] biological processes terms selected by their experts. These negatives interactions are included in the 132 HumanBase database networks. Note that we considered all of their set interactions (both positive and negative).

From the two networks collected from Garcia et al paper, we considered only literature-curated interactions and coexpression based interactions. We made sure that they do not come from ChIP-seq experiments, and they are not obtained from TFBS motif analysis. We want to avoid any bias in the performances since we consider both ChIP-seq and TFBS as prior knowledge to infer the GRN controlling the HeLa cell cycle. We merge the two networks using a simple merge function. We merged
based on the TF- TG combination. Note that this merge takes care of the duplicate edges. The obtained links represent part of our positive interactions.

We concatenate the 132 networks on the command line using the "cat" command. We then proceed to analyze and remove duplicated edges. Table 34 gives the result of our analysis of the edges repetition. We consider two cases to remove the duplicates.

- Case 1: An edge is marked absent in a certain cell line but present in at least one of the other cell lines. In this case, the positive occurrence is kept in the merged network, and the other occurrences are discarded.
- Case 2: All the occurrences are positive links. In this case, one of the occurrences is kept in the merged network, and the other occurrences are discarded.
- Case 3: All the occurrences are negative links. In this case, one of the occurrences is kept in the merged network, and the other occurrences are discarded.

In the last, we merge the two big networks (from Garcia and from the HumanBase) to build our final "gold-standard" network. Here, we also need to remove the duplicates edges. There are different cases to consider:

- Case 1: An edge is marked absent in the HumanBase's network but present in Garcia's network. In this case, the edge is added as a positive link in the final gold-standard network.
- Case 2: An edge is marked present in the HumanBase's network and Garcia's network. In this case, one occurrence of the edge is added to the final regulatory network.

In any other case, edges that belong either to HumanBase's network or to Garcia's network are directly added to the final "gold-standard" network.

Algorithm 2 summarizes our methodology to build our "gold-standard" from existing "gold-standard" networks:

```
Algorithm 2 Steps for Building the "gold-standard network"
    1: Collect the 132 cell line networks available from HumanBase https://hb.flati
    roninstitute.org/download.
    2: Concatenate the 132 networks on the command line using the cat command
```

3: Analyze the network obtained in Step 2 to remove duplicated edges. Table 34 gives the result of our analysis of the edges repetition.

4: Remove duplicated edges. There are different cases to deal with repeated edges:

- Case 1: An edge is marked absent in a cell line but present in at least one of the other cell lines. In this case, the positive occurrence is kept in the merged network, and the other occurrences are discarded.
- Case 2: All the occurrences are positive links. One of the occurrences is kept in the merged network, and the other occurrences are discarded.
- Case 3: All the occurrences are negative links. One of the occurrences is kept in the merged network, and the other occurrences are discarded.

5: The HumanBase database stores the genes with their Entrez ID. We converted the Entrez ID to official gene names using the human genome-wide annotation R package org.Hs.eg.db [35].
6: Collect the two networks from Garcia's work [78]. The networks are obtained from the supporting tables S3 and S4 of [78] (GarciaAlonso_supplemental_ table_S3_regulonsNormal.xlsx and GarciaAlonso_supplemental_table_S4_regulons Cancer)
7: For each network, we subset the edges and consider only those that are from curated databases. We make sure that they do not come from ChIP-seq experiments, and they are not obtained from TFBS motif analysis. We want to avoid any bias in the performances since we consider both ChIP-seq and TFBS as prior knowledge to infer the GRN controlling the HeLa cell cycle.
8: We merge the two networks using a simple merge function. We merged based on the TF- TG combination. Note that this merge takes care of the duplicate edges. For each edge in the merged network, Table 35 gives the number of times it appeared before removing the duplicates.
9: We merge the network from Step 4 with the network obtained in Step 7. Here we need to deal with the repeated edges. Let $g s 1$ the network obtained Step 4 and $g s 2$ the network obtained from Step 7. There are different cases to take into consideration:

- Case 1: An edge is marked absent in $g s 1$ but present in $g s 2$. In this case, the edge is added as a positive link in the final gold-standard network.
- Case 2: An edge is marked present in $g s 1$ and in $g s 2$. One occurrence of the edge is added to the final regulatory network.

In any other case, edges that belong either to $g s 1$ or $g s 2$ are directly added to the final "gold-standard" network. The list edges in the final "gold-standard network" are depicted in Table 36 and Table 37.

4.3.3 Results

Table 35 gives the list of edges that were duplicated after merging the two Garcia networks. The table also reports the number of times each duplicated edges appeared before removing the duplicates in the merged network (from the two Garcia's networks). In Table 34, we report the result of our analysis of the edges repetition after concatenating the 132 networks from the HumanBase database.

We ended up with a gold-standard network whose characteristics are summarized in Table 14. The detailed list edges in the final "gold-standard network" are depicted in Table 36 and Table 37. Note that not all of our considered genes are part of our "gold-standard" GRN. From Table 14, we observe that we are missing information for 43 genes, among which 3 TFs: ZNF207 GTF2B and BRCA1.

Table 14: Characteristics of our Human "gold-standard" network

\# Regulatory links	\#TFs	\#Genes	\# Positive links	\# Negative links
3333	39	585	1463	1870

The table provides the characteristics of our gold-standard network in term of the number of regulatory links (see column 1), the number of TFs (see column 2), the total number of genes (column 3), the number of positive links (column 4) and the number of nonlinks (column 5).

Table 15: Missing transcription factors in our "gold-standard network"

\#TF	TFs Name
15	MZF1, MNT, DMTF1, CIC, ZNF414, ZNF587, HMG20B, ZNF521
	ZNF207, TSC22D1, ZNF281, ZBTB7A, ZNF217, ZBED5, GTF2B

4.4 Material

4.4.1 Data

In this section we will present in details how we collected the diverse data use for inferring the GRN controlling the HeLa cell cycle.

4.4.1.1 HeLa Time-Series Expression Data

The HeLa cell cycle time-series gene expression data were generated by Whitfield et al [247]. We downloaded the Whitfield HeLa cell cycle time-series gene expression from http://genome-www.stanford.edu/Human-CellCycle/HeLa/. It is a wellknown time-series gene expression dataset. It consists of five different time-series experiments with different synchronization methods (double thymine block, Thymidinenocodazole block, or mitotic shake-off). These synchronization methods arrest the cell at either the S-phase or the M-phase (see section Materials and Methods on http://genome-www.stanford.edu/Human-CellCycle/HeLa/.). We used only a part of the microarray dataset for our experiments: we considered the third timeseries named "Thy-Thy 3 " by Whitfield et al. In the "Thy-Thy 3" experiment, a double thymine block is used to arrests cells at the G1/S boundary. It is the most extended time series of the experiment. Gene expression values were measured at 1 h intervals from 0 to 46 h . Note that there is an extra time point at $\mathrm{t}=0$, where the expression values are the average of the same measurement obtained from two biological replicates. In total, we considered 48 times points. In their work, Whitfield et al [247] identified a list of 1132 IMAGE clones ID that are periodically expressed during the cell cycle. From the annotated IMAGE clone IDs, 777 out of the 1132 IDs have a Gene IDs. They correspond to 632 different genes: 82.3% mapped to one
unique clone ID, 14.1% mapped to two clone IDs, and the rest (3.6\%) are mapped to up to six different clone IDs. Out of these 632 different genes, we excluded four genes because they do not have a GO annotation. We summarized the duplicated genes (genes represented by several probes IDs) by averaging their expression profile. In summary, we considered a list of 628 unique genes that are periodically expressed in the HeLa cell cycle. We imputed the missed values in the dataset using K-nearest neighbor (KNN). We set the number of neighbors K to 12, as suggested by Whitfield et al [247].

In summary we proceed as follow to collect our time-series gene expression data
Step 1: We collected the raw time-series expression matrix from http://genome-w ww.stanford.edu/Human-CellCycle/HeLa/

Step 2: Imput missing value using knn with in the following R code. We set $\mathrm{k}=12$. Let exprdata the original expression data matrix and exprdataimputed the imputed expression data matrix.
exprdataimputed $<-$ knnImputation (exprdata, $\mathrm{k}=12$)

Step 3: We remove probes that map to the same gene by averaging their expression profile. See Table 31 for the complete list of considered genes.

Step 4: Save the imputed matrix for later use.

4.4.1.2 ChIP-seq data

We downloaded the peak files on the UCSC Genome Browser website: http:// hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform /. The peak files report regions on the genome that have been enriched with aligned reads as a consequence of performing a ChIP-sequencing experiment. These areas are reported in terms of genomic coordinates. For each region, the file also reports a measurement of the overall enrichment and the statistical significance of this enrichment (with p-value and q-value). The ENCODE Analysis Working Group (AWG) generated the files using a uniform processing pipeline. The whole dataset covers 91 cell lines with various treatments. We restricted the files to those reporting analysis on the HeLa cell line. We further restricted them to the peak files of the TFs expressed in
our HeLa cell cycle expression dataset. Out of the 54 TFs expressed in our cell cycle time-series expression data, we got the peak files for only eight TFs: BRCA1, CTCF, E2F1, NFYA, NFYB, STAT1, TFAP2A, and ZNF143 (c.f. Table 28).

In summary we proceed as follow for collecting our ChIP-seq data:
Step 1: Collect the peak files from UCSC Genome Browser website: http://hg download.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUni form/

Step 2: Subset the collected file to those concerning the HeLa cell line
Step 2: Subset the list of files to those concerning the TF expressed in the cell cycle (c.f Table 32).

4.4.1.3 Knockdown Gene Expression data

The raw data were downloaded from GEO-NCBI. We also downloaded analyzed data from knockTF [70] (http://www.licpathway.net/KnockTF/), which gathers data from GEO-NCBI, ENCODE or others databases. Note that we considered both RNA-seq and microarray gene expression data. We downloaded data from different cell types because we do not have enough data for the HeLa cell type. We assume that TFs may bind to the same genes in different cells, depending on the biological process. We gather KD data for approximately 20 TFs (c.f. Table 29 and Table 33).

In summary we used Algorithm 3 to collect our KD expression datasets.

4.4.1.4 Transcription Factors and Binding Sites

We get the set of PWM representing the TFBS from CisBP [245] database http: //cisbp.ccbr.utoronto.ca an online database of the TFs and their PWMs. Note that we restricted the potential TFs to those which have at least one PMW in the database. CisBP gathers the matrices from diverse database such as JASPAR. We ended up with date for 41 unique TFs (c.f. Table 30).

We downloaded the promoters sequences of our genes from UCSC Genome Browser website, under the table browser https://genome.ucsc.edu/cgi-bin/hgTables.

```
Algorithm 3 Steps for collecting the KD gene expression data
    : Query the GEO database accessible from https://www.ncbi.nlm.nih.gov/gds to get the the list of HeLa knockdown expression dataset. Enter the following query
``` on the search bar:
- (HeLa knockdown) AND "Homo sapiens"[porgn:_-txid9606]
- (knock down HeLa) AND "Homo sapiens"[porgn:_-txid9606]

2: Scan the list of results to collect GEO datasets with at least three biological replicate samples. This minimum number of replicates is necessary for our later differential expression analysis. Refer to Table 33 for the list of collected datasets.
3: Collect the whole dataset from knockTF: http://www.licpathway.net/KnockTF /download.php. We did not restricted the cell line. But rather restricted the TFs to those expressed in the HeLa cell cycle. Table 29 reports the list of TFs and their corresponding KD dataset IDs.

Figure 18: Steps for retrieving knockdown data
The figure shows a snapshot of the query we performed to retrieve the KD expression data.

The nucleotide sequences are 1000bp long as recommended on the FIMO web page. We considered the version Genome Reference Consortium Human Build 38 (hg38/GRCh38)

Algorithm 4 summarizes the promoter data collection as well the TFBS collection.

Algorithm 4 Steps for collecting the TFBS and promoter regions
1: Reach the UCSC table browser https://genome.ucsc.edu/cgi-bin/hgTables
2: Set the clade to mammal, the genome to human, the assembly to Dec 2013 (GRch38/hg38).
3: Choose the group Genes and Predictions and set the track to GENCODE v32.

4: Choose the table knowGene. Set the region to genome. We let the other parameters to their default values see (https://genome.ucsc.edu/cgi-bin/h gTables).
5: Paste the list genes identifiers.
6: Choose the output format and choose the output file name if needed.
7: Select genomic as sequence type
8: Select Promoter/Upstream by 1000 bases for the retrieval region options.
9: Set the formatting to all lower case.
10: On the CisBP database, select the bulk download option (http://cisbp.ccbr.u toronto.ca/bulk.php) to collect the whole database for an organism of interest. Set the organism to Homo sapiens

\subsection*{4.4.1.5 Proteins Sequences}

We downloaded the proteins sequences of the cell cycle genes from UniProt [43]. We considered only manually annotated sequences from Swiss-Prot. Out of the 628 considered genes, we got sequences for 624 genes. Among the four missing genes, two mapped to one gene already included (HIST1H4C, HIST1H4B, HIST1H4E), and the two other (SETD8P1, LINC00339) do not have sequences in UniProt and do not have orthologous genes in EggNOG-DB [111]. As UniProt contains redundant sequences, we downloaded a total of 636 sequences. To remove redundant sequence, we used CD-hit [76, 145], which is a fast incremental clustering algorithm that uses heuristic to cluster similar sequences. Sequences are compared based on k-mers. We set the similarity threshold to \(70 \%\) to remove sequences that are \(70 \%\) similar and allow a maximum redundancy of 1 . It helps to remove ten sequences. We ended up

Figure 19: Steps for collecting promoter sequences
with 626 sequences. Algorithm 5 summarizes the steps for collecting and cleaning the proteins sequences(Figure 20).

\subsection*{4.4.1.6 Model Organism Regulatory Links}

For our orthology-based regulatory network inference, we consider the mouse (Mus musculus) as our model organism. We downloaded the set of curated regulatory interactions from diverse curated databases. Our first database is STRINGDB [224], a database that stores known and predicted Protein-Protein interactions for more than 5000 organisms. The interactions can be physical or functional. The interactions are obtained from different sources such as literature, knowledge databases, or Highthroughput lab experiments. The database attributes a score for each interaction. This score is computed as a combination of the probabilities of interaction from different evidence. The score is multiplied by 1000. A score of 800 corresponds

Algorithm 5 Collecting and cleaning proteins sequences
1: On UniProt website, select the "Retrieve/ID Mapping" tool https://www.unip rot.org/uploadlists/. Upload the list of cell cycles genes that you need to be converted.
2: We chose the ID we want to map (gene name) to the UniProt ID. Then we chose the organism, which is human in our case.
3: Filter the results to Swiss-Prot sequences, which are manually curated. Download the selected sequences.
4: Cluster duplicates sequence using cd-hit as follow:
\[
\begin{aligned}
& \$. / \text { cd-hit }-\mathrm{i} \text { uniprot-human-cellcycle.fasta } \\
& -\mathrm{o} \text { cluster_proteins_human_seq.clstr -c } 0.9 \\
& -\mathrm{T} 2-\mathrm{t} 1-\text { sf } 1-\text { sc } 1
\end{aligned}
\]

Where cluster_proteins_human_seq.clstr is the output file containing the sequences cluster. Note that similar sequences are clustered together. The parameter c controls sequence identity threshold; -T controls the number of threads for parallel computing; -t controls tolerance for sequences redundancy; the parameter -sf allows to the obtained clusters regarding their size; finally, -sc output the sequences by decreasing cluster size.
5: Collect the list of nonredundant sequences for next steps analysis.

Figure 20: Steps for collecting protein sequences
to 0.8 probability. For each edge, the score is the probability that the interaction exits. We downloaded the set interactions for each organism. We considered only binding and expression interactions. We set a threshold to 500 on the scores for selecting interactions. To further ensure that we extract only regulatory interactions, we subset binding interactions for which the direction is known.

We then consider two other databases to get our mouse regulatory interactions: TRRUST [93], RegNetwork [149]. They both store regulatory interactions for human and mouse. Table 16 summarizes the characteristics of the regulatory networks obtained from all the databases.

Algorithm 6 summarizes our mouse regulatory network construction.
```

Algorithm 6 Building the mouse Regulatory network
1: On the TRRUST database website, we downloaded the regulatory interactions for the mouse organism https://www.grnpedia.org/trrust/downloadnetwork.ph

``` p.

2: On the RegNetwork website http://regnetworkweb.org/download.jsp download the regulatory directions.
3: We concatenated the networks from Step 1 and Step 2. Then proceed to analyze the duplicated edges (c.f Table 38). It is important to highlight that the edges downloaded are only positive links.
4: On the STRINGDB website https://string-db.org/ download the mouse proteins actions. Subset the list of proteins links to those for which directionality is mentioned and that have a score of at least 500 (0.5).
5: Let \(g s 1\) the network obtained in Step 4 and \(g s 2\) the network collected in Step 5. In this step, the aim is merging \(g s 1\) and \(g s 2\). We first mapped the genes' name to their corresponding ENSEMBL protein IDs. In fact, genes are accessed with their ENSEMBL protein IDs STRINGDB. We used the R library biomaRt version 2.38 \([57,56]\). We then merged \(g s 1\) and \(g s 2\). Note that a gene can map to several ENSEMBL protein IDs. The list of replicated edges can be found in Table 39.

6: Remove the duplicated edges by choosing one occurrence per repeated edge.

Table 16: Mouse gene regulatory network
\begin{tabular}{llll}
\hline Databases & \# TFs & \# Genes & \# Interactions \\
\hline TRRUST & 827 & 2456 & 7057 \\
RegNetwork & 1902 & 3805 & 323636 \\
STRINGDB & N/A & 1136 & 2636 \\
\hline
\end{tabular}

The table reports details about mouse regulatory information collected from the TRRUST, the RegNetwork and the STRINGDB. For each data we report the total number of colected interaction (\(3^{\text {rd }}\) column), the number of genes covered by the interactions (\(2^{\text {nd }}\) column) and finally if applicable the number of TFs (\(1^{\text {st }}\) column).

\subsection*{4.4.2 Evaluation}

As a primary evaluation, we considered AUPR and AUROC scores to evaluate the performance of BENIN for inferring known interactions in the human cell cycle GRN. Note that we removed inferred interaction from the TFs that are not part of our "goldstandard" network for the evaluation. We further removed self-interactions. We also evaluated the algorithm based on the functional annotation of groups of coregulated genes. The point is to evaluate the coherence between a transcription factor and the set of its inferred target genes. We also performed a literature review to assess the inferred links and potential new interactions.

\subsection*{4.5 Method}

\subsection*{4.5.1 Integrating Prior Knowledge}

We applied BENIN to infer the GRN controlling the cell cycle of the HeLa human cancer cell line. It is the oldest and the most extensively used human cell line for scientific researches. The line is derived from cervical cancer cells. We considered the gene expression data from Whitfield et al [247] work, which is made up of five time-series experiments. Their experiment's objective was to identify genes that are periodically expressed in the human HeLa cell cycle. Our goal is to consider the
genes expressed in the cell cycle to decipher the transcriptional regulatory network controlling the cell cycle. We combined four types of prior knowledge data with timeseries expression data: functional annotation, ChIP-seq data, TFBS, and knockdown (KD) gene expression. In this section, we will describe in detail how different prior knowledge data are integrated into BENIN with time-series expression data for the GRN inference.

\subsection*{4.5.1.1 Integrating Functional Annotation}

The first data we considered as prior data is the functional annotation from the Gene Ontology. We considered the "Biological process" (BP) annotation. Our idea is that, if a TF \(r_{j}\) and gene \(g_{i}\) participate in the same BP, then it is most likely that \(r_{j}\) controls the expression of \(g_{i}\). Hence we want to check for each TF-TG pair how similar is their BP annotation profile. Thus, for each pair (TF-TG), we compute the semantic similarities of their lists of BP GO terms with the R package GoSemSim [259]. Different measures are available in the package to compute the semantic similarity among GO terms, set of GO terms, and among genes. Here we considered the Relevance (Rel) method to compute the similarity between term. The method was introduced by Schlicker [204] and defines the similarity as follows:
\[
\begin{equation*}
\operatorname{sim}_{R e l}(t 1, t 2)=\frac{2 I C(M I C A)(1-p(M I C A))}{I C(t 1)+I C(t 2)} \tag{38}
\end{equation*}
\]

Where IC stands for information content, MICA stands for most informative common ancestor. We then chose Best Match Average technique to compute the semantic similarity between genes. It is defined as following: let gene \(g_{1}\) annotated by GO terms sets \(G O 1=\left\{g o_{11}, g o_{12} \cdots, g o_{1 m}\right\}\) and \(g_{2}\) annotated by \(G O 2=\left\{g o_{21}, g o_{22} \cdots, g o_{2 n}\right\}\), we have :
\[
\begin{equation*}
\operatorname{sim}_{B M A}\left(g_{1}, g_{2}\right)=\frac{\sum_{i=1}^{m} \max _{1 \leq j \leq n} \operatorname{sim}\left(g o_{1 i}, g o_{2 j}\right)+\sum_{j=1}^{n} \max _{1 \leq i \leq m} \operatorname{sim}\left(g o_{1 i}, g o_{2 j}\right)}{m+n} \tag{39}
\end{equation*}
\]

After computing the similarity scores from the GO annotation, we stored them into a matrix \(\mathbf{S m}=\left\{\operatorname{sim}_{B M A}\left(r_{j}, g_{i}\right)\right\}\). Afterwards, we transformed the similarities into weights \(\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathrm{g}_{\mathbf{i}}}\) to feed the elastic net. The weights are computed as follow:
\[
\begin{equation*}
\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathbf{g}_{\mathbf{i}}}=\frac{1}{\left(\mathbf{S m}_{r_{j}, g_{i}}\right)^{\gamma}} \tag{40}
\end{equation*}
\]

Algorithm 7 outline the steps for computing the prior weights from functional association scores.

Algorithm 7 Steps for computing the functional prior weights
1: Let \(N\) the total number of genes
for each pair \(\left(r_{j}, g_{i}\right), i=1, \cdots N_{c l_{i}}, j=1, \cdots N_{T F}\) compute the functional similarity as: do
\(\operatorname{sim}_{B M A}\left(r_{i}, g_{j}\right)=\frac{\sum_{i=1}^{m} \max _{1 \leq j \leq n} \operatorname{sim}\left(g o_{1 i}, g o_{2 j}\right)+\sum_{j=1}^{n} \max _{1 \leq i \leq m} \operatorname{sim}\left(g o_{1 i}, g o_{2 j}\right)}{m+n}\)

\section*{end for}

4: Store the functional similarity between all pairs of genes into a matrix \(\mathbf{S m}=\) \(\left\{\operatorname{sim}_{B M A}\left(r_{j}, g_{i}\right)\right\}\)

5: Transform the similarities into weights \(\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathrm{g}_{\mathbf{i}}}\) as:
\[
\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathbf{g}_{\mathbf{i}}}=\frac{1}{\left(\mathbf{S m}_{r_{j}, g_{i}}\right)^{\gamma}}
\]

\subsection*{4.5.1.2 Integrating ChIP-seq}

We also considered ChIP-seq data as prior information. The ChIP-seq methodology is very effective at investigating genome-wide protein-DNA interactions; therefore, identifying regions in the genome where a TF will bind to control the expression of its target genes.

Our aim here is to compute a score of potential binding between each TF and all the genes considered. We use the BETA [243] software of the Cistrome database (http://cistrome.org). Cistrome offers an integrative pipeline to help analyzing publicly available high-throughput data.

A simple method to get the TF-TG associations from peaks in the ChIP-seq data is to assign each TF to the proximal gene or the gene containing the TF peaks in its promoter region. Nevertheless, this will result in unreliable results. In fact, for most ChIP-seq data, only a small percentage of binding is found at the genes' promoters [243]. Also, assigning a TF to a gene only based upon the presence of the peak at a promoter of genes will produce a binary vector that is not the type of
input BENIN is expecting for the moment. Instead, we decided to consider a metric, the regulatory potential from BETA software, that is computed as the sum of the individual contribution of the binding sites.

The regulatory potential reports the likelihood of a gene to be regulated by a TF. It is computed as in Equation 41
\[
\begin{equation*}
\mathbf{S c h}_{r_{j} \rightarrow g_{i}}=\sum_{l=1}^{k} e^{-\left(0.5+4 \Delta_{l}\right)} \tag{41}
\end{equation*}
\]
, where \(k\) is the number of the binding sites of the \(\mathrm{TF} r_{j}\) near the transcription start site (TSS) of the gene \(g_{i}\). Only binding sites within a user-defined region length are considered. We set region length to the default value on BETA software (100 Kb). \(\Delta\) is the exact distance between a binding site and the TSS. It is proportional to 100 Kb (note that \(\delta=0.1\) is equivalent to 10 Kb). We can also restrict the number of binding sites that will contribute to computing the binding potential. We run the BETA software on Galaxy http://cistrome.org/ap/ with the default parameters: the number of peaks considered is 10000 , and the distance from gene TSS within which peaks will be selected is 100 Kb .

Finally we integrate the regulatory potential into BENIN as in Equation 42.
\[
\begin{equation*}
\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathbf{g}_{\mathbf{i}}}=\frac{1}{\left(\mathbf{S c h}_{r_{j} \rightarrow g_{i}}\right)^{\gamma}} \tag{42}
\end{equation*}
\]

Algorithm 8 summarizes the steps for getting the BENIN ChIP-seq prior weight from the the input BED files.

\subsection*{4.5.1.3 Integrating TFBS}

We considered data from position weight matrices (PWMs) and promoter sequences to get an apriori information of potential binding between each TF and the TGs. These matrices are obtained from different technologies, such as Chip-Chip.

Our aim here is to scan the promoters of the genes for occurrences of each PWM. We used FIMO [85] which is a tool of the MEME-suite [10]. It scans the promoter region of each gene for individual matches to each provided input PWM. The only parameter that we set is the background file, which is the 0 -order background model and the q value threshold. We set the q -value threshold to 0.05 . The 0 -order background model is used to convert a frequency matrix into a log-odds score matrix and estimate the

Algorithm 8 Steps for transforming ChIP-seq data into association scores
Input: A list of BED files obtained from ChIP-seq experiments.
for each BED files obtained in Section 4.4.1.2 do
Upload the file into the Cistrome-galaxy server http://cistrome.org/ap/ root, using the import tab. Figure 21a gives an overview of BED file for the BRCA1 TF.

Select the Integrative analysis, then BETA and finally BETA-minus as we want to infer TF target genes only ChIP-seq data.

4: \(\quad\) Set the input parameters of the BETA-minus software. For our experiment, we use the default parameters.

Run the BETA-minus on the uploaded ChIP-seq file (BED) file and collect your output output. Figure 21b gives an overview of the BETA-minus output file. The binding potential score for each edge \(r_{j} \rightarrow g_{i}\) is computed as :
\[
\mathbf{S c h}_{r_{j} \rightarrow g_{i}}=\sum_{i=1}^{k} e^{-\left(0.5+4 \Delta_{i}\right)}
\]

6: Transform each score into BENIN weight using:
\[
\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathbf{g}_{\mathbf{i}}}=\frac{1}{\left(\mathbf{S c h}_{r_{j} \rightarrow g_{i}}\right)^{\gamma}}
\]
end for
p-values of match scores. We build the background file considering all the promoters sequences. We use the fasta-get-markov tool from MEME-suite. We run the tool with the default parameters. FIMO outputs a file containing the scores, the p-values, and the q-value of each motif occurrence. The q-values are adjusted p -values following the Benjamini and Hochberg method. Note that one PWM can have several matches at the promoter region of a gene. To assign a score to TF-TG pair, we considered the occurrence with the lowest q-value.

The challenge here is to transform the q-values into corresponding probabilities of edges being present in the final network. Let \(P_{r_{j} \rightarrow g_{i}}\) be a random variable over \([0,1]\) which represents the q -value of the binding occurrence of the \(\mathrm{TF} r_{j}\) at the promoter region of \(g_{i}\left(E_{r_{j} \rightarrow g_{i}}\right)\). We assume here that it is exponentially distributed if \(E_{r_{j} \rightarrow g_{i}} \in G\), and uniformly distributed if \(E_{r_{j} \rightarrow g_{i}} \notin G\). More formally we have:
\[
\begin{equation*}
\operatorname{Pr}\left(P_{r_{j} \rightarrow g_{i}}=p \mid E_{r_{j} \rightarrow g_{i}} \in G\right)=\lambda e^{-\lambda p} /\left(1-e^{-\lambda}\right) \tag{43}
\end{equation*}
\]
where \(\lambda\) is the parameter controlling the scale of truncated exponential distribution, and:
\[
\begin{equation*}
\operatorname{Pr}\left(P_{r_{j} \rightarrow g_{i}}=p \mid E_{r_{j} \rightarrow g_{i}} \notin G\right)=1 . \tag{44}
\end{equation*}
\]

We use the Bayes formula to define the probability of the edge \(E_{r_{j} \rightarrow g_{i}}\) in \(G\), knowing the binding \(q\)-value as follow:
\[
\begin{equation*}
\operatorname{Pr}\left(E_{r_{j} \rightarrow g_{i}} \in G \mid P_{r_{j} \rightarrow g_{i}}=p\right)=\frac{\lambda e^{-p \lambda} \beta}{\lambda e^{-p \lambda} \beta+\left(1-e^{-\lambda}\right)(1-\beta)}, \tag{45}
\end{equation*}
\]
where \(\beta=\operatorname{Pr}\left(E_{r_{j} \rightarrow g_{i}} \in G\right)\) is the probability that an edge \(E_{r_{j} \rightarrow g_{i}}\) is in the graph without any prior knowledge. We further assume that \(\lambda\) is uniformly distributed over the interval [\(\lambda_{\min }, \lambda_{\max }\)] and integrate Equation 45 over that interval. The new equation for computing the conditional probability on an edge \(E_{r_{j} \rightarrow g_{i}}\) is:
\[
\begin{equation*}
\operatorname{Pr}\left(E_{r_{j} \rightarrow g_{i}} \in G \mid P_{r_{j} \rightarrow g_{i}}=p\right)=\frac{1}{\lambda_{\max }-\lambda_{\min }} \int_{\lambda_{\min }}^{\lambda_{\max }} \frac{\lambda e^{-p \lambda} \beta}{\lambda e^{-p \lambda} \beta+\left(1-e^{-\lambda}\right)(1-\beta)} d \lambda \tag{46}
\end{equation*}
\]

Equation 46 can be easily computed numerically for fixed values of \(P_{r_{j} \rightarrow g_{i}}\). We precompute the probabilities associated with each \(q\)-value and store them in a matrix \(\mathbf{A}\) which is then transformed into weights. We then compute the weight matrix \(\mathbf{W}\) as the component-wise inverse of the elements of the matrix \(\mathbf{A}\) raised to the power \(\gamma>0\) :
\[
\begin{equation*}
\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathbf{g}_{\mathbf{i}}}=\frac{1}{\left(\mathbf{A}_{r_{j} \rightarrow g_{i}}\right)^{\gamma}} \tag{47}
\end{equation*}
\]

Algorithm 9 summarizes the steps for computing the binding prior weight from the TFBS and promoter regions.
```

Algorithm 9 Step to compute prior weight from position weight matrice
1: Transform each Cis-BP PWMs into MEME input format using the R library univer-
salmotif version 1.0.22 [232]
$>$ lapply $($ seq $(1$, nbmotif $)$, writemotif, allmotifsfilename=
allmotifsfilename, matallmotif=sub_description_motif)
$>$ cisbpmotifs<-read_cisbp (allmotifsfilename)
$>$ memecisbpmotifsfilename="../data/data_human/final_data_
hum_ıreg_network/Hela_data/Homo_sapiens_2020_02_24_4-34_pm/
Homo_sa
piens.meme"
$>$ write_meme(cisbpmotifs, memecisbpmotifsfilename)

```
 2: create the 0-order background file for motif scanning with the fasta-get-markov
 tool from the MEME-suite. We use all the promoter sequences all together to create our background as with the following command:
```

        $ fasta-get-markov -dna -m 0 promoter_sequence_all_fa
    ```
 backgroundpromoter

The background model gives the frequencies of the four bases (A, C, G, T) since we are working with DNA sequences.
3: Perform promoter motif scanning with the FIMO from MEME-suite with the following bash command:
fimo - bfile backgroundpromoter - qv-thresh ——thresh 0.05 --verbosity 1 -ooc res_promoter_ scanning/humanpromoterseq Homo_sapiens.meme humanpromo terseq.fa

4: Collect FIMO output files. Figure 22 gives a snapshot of the FIMO output file after scanning promoter sequences.

5: Transform the q-values (adjusted p-values) into corresponding probabilities using Equation 46 and store them in a matrix \(\mathbf{A}\)

6: Compute the weight matrix \(\mathbf{W}\) as the component-wise inverse of the elements of the matrix \(\mathbf{A}\) raised to the power \(\gamma>0\) as:
\[
\mathbf{W}_{\mathbf{r}_{\mathbf{j}} \rightarrow \mathrm{g}_{\mathbf{i}}}=\frac{1}{\left(\mathbf{A}_{r_{j} \rightarrow g_{i}}\right)^{\gamma}}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline motif_id motif_alt_id & sequence_na sta & & stop & strand & score & p -value & q -value & matched_sequence & \\
\hline T095041_2.00 & ENST000006 & 646 & 667 & - & 28.5055 & 6.94E-11 & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000006 & 668 & 689 & - & 28.5055 & 6.94E-11 & 1.02E-05 & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000005 & 679 & 700 & - & 28.5055 & 6.94E-11 & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000004 & 693 & 714 & - & 28.5055 & 6.94E-11 & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000006 & 775 & 796 & - & 28.5055 & 6.94E-11 & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000004 & 777 & 798 & - & 28.5055 & 6.94E-11 & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000003 & 859 & 880 & - & 28.5055 & 6.94E-11 & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000004 & 879 & 900 & - & 28.5055 & 6.94E-11 & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000003 & 881 & 902 & - & 28.5055 & \(6.94 \mathrm{E}-11\) & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{Ggactacala tcccagaltccc} \\
\hline T095041_2.00 & ENST000006 & 884 & 905 & - & 28.5055 & \(6.94 \mathrm{E}-11\) & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000003 & 884 & 905 & - & 28.5055 & 6.94E-11 & \(1.02 \mathrm{E}-05\) & \multicolumn{2}{|l|}{GGACTACAAGTCCCAGAATCCC} \\
\hline T095041_2.00 & ENST000004 & 23 & 44 & + & 28.2088 & 9.83E-11 & \(1.32 \mathrm{E}-05\) & aaactacaaatcccagaatct & \\
\hline T095233_2.00 & ENST000004 & 458 & 479 & - & 26.8193 & \(4.09 \mathrm{E}-10\) & 6.25E-05 & \multicolumn{2}{|l|}{CCCGCCTCGGGCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000004 & 459 & 480 & - & 26.8193 & \(4.09 \mathrm{E}-10\) & \(6.25 \mathrm{E}-05\) & \multicolumn{2}{|l|}{CCCGCCTCGG GCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000004 & 460 & 481 & - & 26.8193 & \(4.09 \mathrm{E}-10\) & \(6.25 \mathrm{E}-05\) & \multicolumn{2}{|l|}{CCCGCCTCGGGCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000004 & 466 & 487 & - & 26.8193 & \(4.09 \mathrm{E}-10\) & \(6.25 \mathrm{E}-05\) & \multicolumn{2}{|l|}{CCCGCCTCGGGCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000003 & 479 & 500 & - & 26.8193 & 4.09E-10 & 6.25E-05 & \multicolumn{2}{|l|}{CCCGCCTCGGGCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000004 & 529 & 550 & - & 26.8193 & 4.09E-10 & 6.25E-05 & \multicolumn{2}{|l|}{CCCGCCTCGGGCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000006 & 652 & 673 & - & 26.8193 & \(4.09 \mathrm{E}-10\) & \(6.25 \mathrm{E}-05\) & \multicolumn{2}{|l|}{CCCGCCTCGGGCCCCGECCCCT} \\
\hline T095233_2.00 & ENST000003 & 652 & 673 & - & 26.8193 & \(4.09 \mathrm{E}-10\) & 6.25E-05 & \multicolumn{2}{|l|}{CCCGCCTCG GGCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000006 & 652 & 673 & - & 26.8193 & \(4.09 \mathrm{E}-10\) & 6.25E-05 & \multicolumn{2}{|l|}{CCCGCCTCGGGCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000004 & 832 & 853 & - & 26.8193 & 4.09E-10 & 6.25E-05 & \multicolumn{2}{|l|}{CCCGCCTCGGGCCCCGCCCCCT} \\
\hline T095233_2.00 & ENST000004 & 737 & 758 & - & 26.494 & 5.68E-10 & 7.89E-05 & \multicolumn{2}{|l|}{CCCGGCCTCGGCCCCGCCCCCG} \\
\hline T094868_2.00 & ENST000005 & 827 & 841 & - & 23.0723 & \(1.27 \mathrm{E}-09\) & 0.000671 & \multicolumn{2}{|l|}{GGCCACGCCCCCTCC} \\
\hline T094868_2.00 & ENST000003 & 857 & 871 & - & 23.0723 & \(1.27 \mathrm{E}-09\) & 0.000671 & \multicolumn{2}{|l|}{GGCCACGCCCCCTCC} \\
\hline T094868_2.00 & ENST000002 & 879 & 893 & - & 23.0723 & \(1.27 \mathrm{E}-09\) & 0.000671 & \multicolumn{2}{|l|}{GGCCACGCCCCCTCC} \\
\hline T095233_2.00 & ENST000004 & 46 & 60 & + & 20.494 & \(1.43 \mathrm{E}-09\) & 0.000105 & \multicolumn{2}{|l|}{ccccgcccccgcccc} \\
\hline T095233_2.00 & ENST000004 & 47 & 61 & + & 20.494 & \(1.43 \mathrm{E}-09\) & 0.000105 & \multicolumn{2}{|l|}{ссссgссссяgсссе} \\
\hline T095233_2.00 & ENST000004 & 48 & 62 & + & 20.494 & \(1.43 \mathrm{E}-09\) & 0.000105 & cccogcceccgecce & \\
\hline
\end{tabular}

Figure 22: Snapshot of FIMO output
The file gives an overview of the FIMO output file after scanning genes promoter sequences.

\subsection*{4.5.1.4 Integrating Knockdown Expression Data}

Knockdown gene expression data are expression data measured in an organism where the expression of one or more of its genes is reduced. KD expression data help to infer the direct target genes of the perturbed TF. Our idea here is to get the probabilities of interactions between the perturbed TF and all the genes in the genome (the considered genes).

We analyzed the raw data with R. We performed differential expression analysis using either Limma [188] (for microarray expression data) or DESeq2 [150] (for RNAseq expression data). Our objective is to get the adjusted p-values from which we will derive the probabilities of the TF-TG interactions. Note that the p-values of differential expression analysis are adjusted with the False Discovery Rate approach
(FDR). Hence the adjusted p-values are q-values. For TFs investigated in several KD datasets, we combined them using the following idea: if we have several different q-values for the same edge \(r_{j} \rightarrow g_{i}\), we considered the minimum q-value. We then follow the methodology described in Section 4.5.1.3 to get the probabilities that will then be integrated into BENIN.

In summary, we proceeded as follow to transform KD expression data into BENIN prior weights:

Step 1 For each file downloaded manually from GEO database perform differential expression analysis with Limma R library if for microarray experiment or with the R library Deseq2 for RNA-seq data. The data downloaded from KnockTF are obtained from differential expression analysis performed by the author of the database.

Step 2 Combine result in Step1 with data from KnockTF differential expression analysis. There are two cases:
- In the first situation, the TFs KD data are analyzed twice (our analysis and the KnockTF analysis). Each edge concerning the TF will appear twice. In this case, for each edge, we attributed the minimum of all the reported \(q\)-values.
- In the second situation, each TF is analyzed once. In this case, we add the edges and their reported \(q\)-values to the final set of potential prior interactions from KD gene expression analysis.

Figure 23 shows a snapshot of the data obtained after performing differential expression analysis and combining our results with the data from knockTF

Step 3 Transform the \(q\)-values obtained from differential expression analysis into probabilities using Equation 46 and store the obtained probabilities into a matrix A.

Step 4 Use Equation 47 to transform A into the prior weight to feed BENIN

\subsection*{4.5.2 Orthology Information Transfer}

Another new functionality of BENIN is the integration of knowledge and discoveries about regulations from other organisms into the organism of interest. We exploit the idea that orthologous TFs regulate orthologous genes. Orthologous genes are genes from different species that evolve from a common ancestral gene and that preserve the same function. Thus, our idea is to transfer information about regulation from several well-known organisms into the genome we are currently studying. Using information from orthologous genes enriches the studied organism from expression data and prior knowledge data with new TF-TG regulatory links.

We detect orthologous genes in other organisms using sequence similarity at the protein level [176]. We got the human orthologous genes into other organisms from eggNOG [111]. More specifically, we run eggNOG-mapper [110], as it offers a quick and easy way to get the list of orthologs for several genes in parallel. Note that eggNOG-mapper is mainly a tool for functional sequences annotation based on orthology assignments. However, it also allows retrieving the orthologues considered to perform the functional annotation. In this work, we only consider the mouse as our model. First of all, because it is a well-studied organism (model organism). Also, it is the only mammal organism we have access to enough regulatory interactions. We consider mammal organisms principally as we are working on the uterine cervix. After collecting the orthologs in mouse, we mapped the interactions from mouse to human. We ended with a network with 545 regulatory links, 27 TFs, and 341 out of 602 orthologs.

More formally we proceed as described in Algorithm 10
The whole process to infer the HeLa cell cycle data using BENIN is summarized in Figure 24.
```

Algorithm 10 Ortholog Information transfer
1: Collect the proteins sequences of the studied organism from UniProt databses
2: Remove duplicated sequences.
3: Collect different model organism regulatory interactions.
4: Find othologs proteins in the model organisms using eggNOG-mapper with the
following bash command:
$>$ emapper.sh --data_dir /datasets -i uniprot-human-cell
cycle.fasta --predict_ortho --output_dir
human_orth_eggnog --target_orthologs
one2one -o hum-cellcycle-ouput -m diamond
--seed_ortholog_evalue 0.001
——seed_ortholog_score 60 --query-cover 30
--subject-cover 30 - go_evidence
non-electronic --override

```

5: For each model organism considered: let \(r_{j}^{\text {model }}\) a TF in the current model and \(r_{j}\) it ortholog in the studied organism. Let \(g_{i}^{\text {model }}\) a TG in the current model and \(g_{i}\) it ortholog in the studied organism. For each interaction \(r_{i}^{\text {model }} \rightarrow g_{i}^{\text {model }}\) : infer an interaction \(r_{i} \rightarrow g_{i}\) the studied organism.

6: Combine the new inferred regulatory links with those inferred with expression data. Either with max or with average

Figure 24: Inference of GRN controlling HeLa cell cycle through BENIN
The figure summarizes the whole process for inferring the GRN controlling the HeLa cell cycle. Different prior knowledge data will be integrated independently. We considered TFBS, ChIP-seq, functional annotation, and KD. Each prior knowledge data is combined with time-series expression data and will produce a weighted list of regulatory interactions. The four weighted lists will be combined. Then we get regulatory interactions from mouse through orthology mapping and combine them with those from expression and other prior knowledge data.

\subsection*{4.5.3 Experiments}

We perform all the computations on the ENCS speed cluster. It has sixteen, 32-core nodes, each with 512 GB of memory and approximately 1 TB of volatile-scratch disk space. The results presented in Section 4.6.1 are obtained with the following BENIN parameters: the elastic net parameter \(\alpha=0.9\), the exponent \(\gamma=1.5\), and the number of bootstraps \(R=5000\). We set the parameters to the same values when running

BENIN with different prior knowledge data. The ensemble network is obtained either using the average or max score. Note that we ignore missing values when using the mean to combine results from different prior knowledge data. Some prior knowledge data have missing information about some TFs and their TGs. We set the threshold \(\tau=0.5\) on the final regulatory links weights to get the final inferred network. As we are dealing with imbalanced data (more negative than positive examples), the AUPR is more representative of the model performance, as it does not account for true negatives.

An important BENIN parameter is the threshold \(\tau\) that allows selecting the final list of edges present in the inferred regulatory network. To select \(\tau\), we vary its value in the \([0,1]\) interval and we record the AUPR score. We considered the AUPR score as we are working with imbalanced classes. AUPR is the most informative in this case of imbalanced classes. The number of true edges is less than the false edges. We also need to set \(\tau\) so that we have a good compromise between high-scoring edges and good AUPR.

\subsection*{4.6 Results and Discussion}

\subsection*{4.6.1 Results}

BENIN execution time Table 17 reports BENIN execution time. These results are obtaining setting the number of bootstraps \(R\) to 1000 . The results are reported for BENIN with prior and without prior. We requested 25 cores on the cluster server to measure the computation time. Time is the elapsed time measured in seconds. From Table 17 we can observe that for the whole network of size 628 edges, BENIN takes 7399 s (\(\approx 2 h\)) when we integrate all the prior knowledge, including the orthology from mouse data and \(5335 \mathrm{~s}(\approx 1 h)\) when we do not integrate prior knowledge.

Integrating Prior knowledge improves BENIN performance Figure 26 (respectively Figure 27) shows the precision-recall (respectively the ROC) curve when BENIN is combined or not with prior knowledge data. Table 18 reports the AUPR and AUROC scores when we do not consider prior knowledge data, and we combine BENIN with different prior knowledge data. Figure 28 (respectively Figure 29) shows

Table 17: BENIN execution time
\begin{tabular}{ll}
\hline Prior & All genes (628) \\
\hline TFBS & 1414 s \\
ChIP-seq & 1420 s \\
KD & 1474 s \\
Functional & 2955 s \\
All priors & 7399 s \\
None & 5335 s \\
\hline
\end{tabular}

BENIN execution time on a 628 genes network when we consider different prior knowledge data separately, integrate all the prior knowledge data and do not consider prior knowledge data. The time is the elapsed time in seconds.
the BENIN performance when we combine the output network from time-series gene expression data (and other prior) with the network from orthology mapping. These scores report how well BENIN performs on what is known about the regulatory interactions in the human. As we are working with imbalanced data, the AUPR is more informative than the AUROC. From Table 18, we observe that regarding the nested confidence intervals, it is difficult to distinguish the performances of BENIN when we integrate the prior knowledge data separately and when we combine them. However, we observe two groups: the red group and the blue group.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline chr19 & 49999221 & 49999664 & & 1000. & 565.801079 & -1 & 3.10071509 & 243 \\
\hline chr14 & 102414332 & 102414670 & & 1000. & 562.279321 & -1 & 3.10071509 & 169 \\
\hline chr12 & 123237192 & 123237501 & & 1000 & 541.320919 & -1 & 3.10071509 & 151 \\
\hline chr17 & 4843383 & 4843762 & & 1000 & 525.270115 & -1 & 3.10071509 & 197 \\
\hline chr3 & 49131395 & 49131698 & & 1000 & 524.808057 & -1 & 3.10071509 & 150 \\
\hline chr12 & 49351180 & 49351491 & & 1000 & 513.533546 & -1 & 3.10071509 & 155 \\
\hline chr17 & 37617417 & 37617831 & & 1000 & 510.331406 & -1 & 3.10071509 & 205 \\
\hline chr9 & 123605108 & 123605466 & & 1000 & 506.823221 & -1 & 3.10071509 & 178 \\
\hline chr9 & 98637701 & 98638053 & & 1000 & 506.241484 & -1 & 3.10071509 & 179 \\
\hline chr11 & 13484708 & 13484993 & & 1000 & 501.150918 & -1 & 3.10071509 & 146 \\
\hline chr20 & 34330089 & 34330557 & & 1000 & 494.440202 & -1 & 3.10071509 & 242 \\
\hline chr17 & 53045936 & 53046217 & & 1000 & 494.050645 & -1 & 3.10071509 & 144 \\
\hline chr10 & 70091603 & 70091871 & & 1000 & 493.172988 & -1 & 3.10071509 & 139 \\
\hline chr6 & 35995280 & 35995658 & & 1000 & 493.16754 & -1 & 3.10071509 & 178 \\
\hline chr9 & 6413014 & 6413290 & & 1000 & 491.231375 & -1 & 3.10071509 & 138 \\
\hline chr15 & 22833255 & 22833574 & & 1000 & 487.991004 & -1 & 3.10071509 & 165 \\
\hline chr9 & 88555786 & 88556082 & & 1000 & 481.500613 & -1 & 3.10071509 & 147 \\
\hline chr12 & 29534022 & 29534324 & & 1000 & 480.66344 & -1 & 3.10071509 & 153 \\
\hline chr16 & 90088879 & 90089153 & & 1000 & 478.981445 & -1 & 3.10071509 & 141 \\
\hline chr6 & 44355100 & 44355495 & & 1000 & 476.895956 & -1 & 3.10071509 & 172 \\
\hline chr1 & 156252514 & 156252855 & & 1000 & 476.170969 & -1 & 3.10071509 & 166 \\
\hline chrX & 77154735 & 77155025 & & 1000 & 475.730522 & -1 & 3.10071509 & 154 \\
\hline chr17 & 4167132 & 4167453 & & 1000 & 474.314332 & -1 & 3.10071509 & 169 \\
\hline chr10 & 51565011 & 51565317 & & 1000 & 473.985442 & -1 & 3.10071509 & 155 \\
\hline chr1 & 207226192 & 207226488 & & 1000 & 473.89962 & -1 & 3.10071509 & 142 \\
\hline chr1 & 45987463 & 45987756 & & 1000 & 473.589863 & -1 & 3.10071509 & 146 \\
\hline chr1 & 110576991 & 110577320 & & 1000 & 473.122573 & -1 & 3.10071509 & 165 \\
\hline chr7 & 75677203 & 75677502 & & 1000 & 472.766147 & -1 & 3.10071509 & 155 \\
\hline chr7 & 129845194 & 129845478 & & 1000 & 471.6041 & -1 & 3.10071509 & 142 \\
\hline chr18 & 47018763 & 47019043 & & 1000. & 466.855044 & -1 & 3.10071509 & 145 \\
\hline & \multicolumn{3}{|l|}{wgEncodeAwgTfbsSydhHelas3Brca1a} & + & & & & \\
\hline
\end{tabular}
(a) A snapshot of a BED file
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\# Argument List:} \\
\hline \multicolumn{8}{|l|}{\# Name = BRCA1_chipseq_bindingscore} \\
\hline \multicolumn{8}{|l|}{\# peak file = /project/Cistrome/CistromeAP/galaxy_database/files/001/633/dataset_1633721.dat} \\
\hline \multicolumn{2}{|l|}{\# distance \(=100000 \mathrm{bp}\)} & & & & & & \\
\hline Chromsome & TSS & TTS & RefseqID & Score & Strand & GeneSymbol & \\
\hline chr11 & 65190268 & 65194003 & NR_028272 & 4.723 & + & NEAT1 & \\
\hline chr17 & 8090262 & 8090322 & NR_039746 & 4.219 & + & MIR4521 & \\
\hline chr17 & 8076296 & 8079714 & NM_032354 & 4.083 & - & TMEM107 & \\
\hline chr17 & 8076296 & 8079714 & NM_183065 & 4.083 & - & TMEM107 & \\
\hline chr17 & 8023907 & 8027410 & NM_032580 & 4.064 & - & HES7 & \\
\hline chr17 & 8023907 & 8027410 & NM_001165! & 4.064 & - & HES7 & \\
\hline chr17 & 8091650 & 8093564 & NM_017622 & 3.976 & - & C17orf59 & \\
\hline chr12 & 125400092 & 125400205 & NR_049820 & 3.923 & + & MIR5188 & \\
\hline chr17 & 7999217 & 8022234 & NM_001165: & 3.923 & - & ALOXE3 & \\
\hline chr12 & 125396190 & 125399587 & NM_021009 & 3.911 & & UBC & \\
\hline chr17 & 7999217 & 8021860 & NM_021628 & 3.866 & - & ALOXE3 & \\
\hline chr17 & 8043787 & 8055753 & NM_002616 & 3.852 & - & PER1 & \\
\hline chr17 & 8048311 & 8048389 & NR_106943 & 3.802 & - & MIR6883 & \\
\hline chr17 & 8123947 & 8127361 & NR_026951 & 3.78 & - & LINCOO324 & \\
\hline chr17 & 8062464 & 8066293 & NM_014232 & 3.745 & - & VAMP2 & \\
\hline chr17 & 8108048 & 8113944 & NM_004217 & 3.718 & - & AURKB & \\
\hline chr17 & 8108048 & 8113944 & NM_001284! & 3.718 & & AURKB & \\
\hline chr17 & 8108048 & 8113944 & NM_0012561 & 3.718 & - & AURKB & \\
\hline chr5 & 180618045 & 180618908 & NR_108031 & 3.59 & - & LOC10257742 & \\
\hline chr5 & 180620923 & 180632293 & NM_203293 & 3.587 & - & TRIM7 & \\
\hline chr5 & 180630121 & 180632293 & NM_033342 & 3.587 & - & TRIM7 & \\
\hline chr5 & 180620923 & 180631340 & NM_203295 & 3.554 & - & TRIM7 & \\
\hline chr5 & 180620923 & 180631340 & NM_203294 & 3.554 & - & TRIM7 & \\
\hline chr5 & 180620923 & 180631340 & NM_203296 & 3.554 & & TRIM7 & \\
\hline chr5 & 180620923 & 180627930 & NM_203297 & 3.478 & - & TRIM7 & \\
\hline chr5 & 180649565 & 180649633 & NR_039781 & 3.391 & - & MIR4638 & \\
\hline -hre & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{BRCA1_Chipseq_bindingscore}} & ? 50 & & toinas & \\
\hline > B & & & & + & & & \\
\hline
\end{tabular}
(b) BETA-minus output

Figure 21: BED file and BETA-minus output

Overview of a BED from a ChIP-seq experiment for the BRCA1 TF and a BETA-minus output file (a)Snapshot of a BED file the BRCA1 transcription. (b) factor Snapshot of the BETA-minus output file after analyzing the BRCA1 BED file on Cistrome-galaxy server.
\begin{tabular}{|c|c|c|c|c|}
\hline TF & Gene & P.value & adj.P.Val & Log 2FC \\
\hline YY1 & IFI44L & 0.02191 & 0.34464119 & -5.28455 \\
\hline YY1 & C7orf57 & 0.0846 & 0.45850327 & 4.43378 \\
\hline YY1 & KLHL32 & 0.06895 & 0.43188269 & 3.93168 \\
\hline YY1 & TREM2 & 0.01334 & 0.31852849 & 3.3117 \\
\hline YY1 & EPHX2 & \(2.96 \mathrm{E}-06\) & 0.04907872 & -3.28387 \\
\hline YY1 & LRRC25 & 0.028 & 0.35490052 & 3.15417 \\
\hline YY1 & IGJ & 0.047 & 0.39789132 & 3.08196 \\
\hline YY1 & PXDNL & 0.00437 & 0.30728877 & 3.06759 \\
\hline YY1 & TECRL & 0.00691 & 0.30922751 & 3.05896 \\
\hline YY1 & TTC29 & 0.00296 & 0.29330698 & 3.05737 \\
\hline YY1 & CNN1 & 0.00057 & 0.29330698 & 3.04694 \\
\hline YY1 & RAB25 & 0.00062 & 0.29330698 & 3.01797 \\
\hline YY1 & MSTN & 0.05825 & 0.4166842 & 3.00867 \\
\hline YY1 & MYH1 & 0.00041 & 0.29330698 & 2.93958 \\
\hline YY1 & FL16779 & 0.01816 & 0.33224645 & 2.91672 \\
\hline YY1 & DEFB129 & 0.00059 & 0.29330698 & 2.87318 \\
\hline YY1 & YJEFN3 & 0.0042 & 0.30436245 & -2.85574 \\
\hline YY1 & OLFM4 & 0.01947 & 0.33309758 & -2.83596 \\
\hline YY1 & FAM196A & 0.08703 & 0.46084373 & 2.8087 \\
\hline YY1 & DEFB114 & 0.00025 & 0.29330698 & 2.78306 \\
\hline YY1 & ZNF404 & 0.05061 & 0.40456308 & 2.75973 \\
\hline YY1 & GIMAP7 & 0.00906 & 0.30922751 & 2.74925 \\
\hline YY1 & IGSF11 & 0.06296 & 0.42482662 & 2.70465 \\
\hline YY1 & NCKAP5 & 0.18218 & 0.57464601 & 2.68144 \\
\hline YY1 & KAAG1 & \(1.12 \mathrm{E}-05\) & 0.06170298 & 2.67766 \\
\hline YY1 & C11orf96 & 0.03124 & 0.363653 & 2.66136 \\
\hline YY1 & GPR22 & 0.01785 & 0.33224645 & 2.63021 \\
\hline YY1 & LOC253573 & 0.00599 & 0.30922751 & 2.60181 \\
\hline YY1 & TNNC1 & 0.00039 & 0.29330698 & -2.59059 \\
\hline YY1 & ID2B & 0.00031 & 0.29330698 & 2.57819 \\
\hline YY1 & LOC286083 & 0.00012 & 0.27658333 & 2.57361 \\
\hline YY1 & MYBPC2 & 0.12176 & 0.50768778 & 2.55998 \\
\hline
\end{tabular}

Figure 23: Differential Expression analysis output
The figures gives a snapshot of the combined data after performing differential expression analysis and combining our results with data from knockTF.

Figure 25: Effect of \(\tau\) on BENIN performance.

Table 18: BENIN performance
\begin{tabular}{lll}
\hline Method & AUPR & AUROC \\
\hline BENIN+none & \(0.440[0.398 ; 0.483]\) & \(0.501[0.488 ; 0.514]\) \\
BENIN+KD & \(0.490[0.446 ; 0.534]\) & \(0.684[0.670 ; 0.698]\) \\
BENIN+TFBS & \(0.733[0.692 ; 0.771]\) & \(0.755[0.739 ; 0.779]\) \\
BENIN+Chipseq & \(0.732[0.693 ; 0.769]\) & \(0.686[0.672 ; 0.700]\) \\
BENIN+functional & \(0.479[0.438 ; 0.521]\) & \(0.527[0.513 ; 0.540]\) \\
BENIN+combined+max & \(0.711[0.682 ; 0.737]\) & \(0.767[0.751 ; 0.783]\) \\
BENIN+combined+mean & \(0.547[0.511 ; 0.583]\) & \(0.580[0.565 ; 0.594]\) \\
BENIN+combined+max+orth+mean & \(0.715[0.687 ; 0.741]\) & \(0.771[0.756 ; 0.787]\) \\
BENIN+combined+max+orth+max & \(0.702[0.673 ; 0.730]\) & \(0.775[0.759 ; 0.790]\) \\
\hline
\end{tabular}

The table reports AUPR and AUROC scores when we BENIN run with or without prior knowledge data to infer the GRN that controls the human HeLa cell cycle. We also provide in bracket the confidence interval of these scores. The highest score is marked in bold. The results are obtained setting the BENIN parameters as following: \(R=5000, \alpha=0.9\) and \(\gamma=1.5\)

Figure 26: Precision-recall curves for BENIN
The figure shows the precision-recall curves when using BENIN combined with different prior knowledge data to infer the GRN controlling the HeLa cell cycle.

Precision-recall curves for BENIN

BENIN can infer real regulatory networks We dig up the results to perform gene annotation analysis of coregulated genes. Firstly, we consider known cell-cycle transcription factors [62, 18], and analyze the GO annotation of their target genes. Then we perform a manual literature analysis of some selected inferred interactions. We considered a total of 62 edges.

We consider annotations that have at least five genes and which have an adjusted p-value \(\leq 5 e^{-2}\). In Table 19 we report a non exhaustive list of TG annotations. For each group of coregulated genes, we report the annotations related to the annotation of its TF. In Table 19, we report the annotation of inferred targets genes of E2F1 (a main regulator in the cell cycle that binds many important targets genes in the cell cycle [119]), SP1, NFYA, YY1, FOXM1 and, KLF6. Some of these TFs are members of a family/complex (i.e., E2F1 member of the E2F or KLF6 member of the KLF family, NFYA member of NFY) and control (activate or repress) approximately the same genes and participate approximately in the same biological process. So we chose to analyze one member of each protein family. Table 19 shows that the annotations of coregulated genes are consistent with the annotation of their TF. For example, the literature has reported SP1 as a key transcription factor in regulating cell proliferation \([48,236]\). Out of 613 inferred edges with a score of at least \(0.5,111\) genes are annotated as part of the cell proliferation. Another interesting finding is that several edges in the vicinity of the FOXM1 transcription factor are annotated as Mitotic genes (77), and we know from the literature that FOXM1 is an essential transcription

Figure 27: ROC curves for BENIN
The figure shows the ROC curves when using BENIN combined with different prior knowledge data to infer the GRN controlling the HeLa cell cycle. The results are obtained setting the BENIN parameters as following: \(R=5000, \alpha=0.9\) and \(\gamma=1.5\)
factor for the progression of through the Mitotic phase of the cell cycle [242], and it has its peaks expression at the S and G2/M phases. It is a master regulator of genes that ensure the transition from G2 to M phase and the progression through mitosis. From our functional annotation, some of the FOXM1 inferred TGs are mitotic cell cycle genes \((77 / 227)\). It is coherent with the function of FOXM1 as it a key role in progression through Mitosis [242, 139].

Moreover, BENIN was able to infer CDC25B as a target of FOXM1. CDC25B is essential for progression into mitosis [58]. Another interesting finding is that BENIN

ROC curves for BENIN
inferred six out the seven interactions between the FOXM1 and its direct target genes that are involved in regulating G1/S and G2/M progression [242] (AURKB, CENPA, CKS1B, CDC25B, PLK1, CDC25A, BIRC5). Specifically, we inferred interaction between FOXM1 and AURKB, CENPA, CKS1B, CDC25B, PLK1, CDC25A, and BIRC5. Four of these interactions were confirmed with the orthology mapping. It worth mention that these links are not part of our "gold-standard" network

Another interesting transcription factor is the E2F1 that is a member of the E2F family of TFs. It plays a crucial role in cell cycle regulation. It targets several proteins that regulate the transition from the G1 phase to the \(S\) phase and controls genes that play a role in DNA repair and apoptosis [187]. Out the 122 genes that are expressed in HeLa cell cycle and that have been inferred as E2F1 target gene by Ren et.al [187], BENIN inferred 33. Out of the 38 genes expressed in the HeLa cell cycle and that

Figure 28: Precision-recall curves for BENIN +orthology
The figure shows the precision-recall curves when using BENIN combined results from orthology mapping to infer the GRN controlling the HeLa cell cycle. The results are obtained setting the BENIN parameters as following: \(R=5000, \alpha=0.9\) and \(\gamma=1.5\)

ROCR for expression data + orthology + mean
(a) BENIN + combined+max+orthology+max bined+max+orthology+mean

Figure 29: ROC curves for BENIN + orthology
The figure shows the ROC curves when using BENIN combined results from orthology mapping to infer the GRN controlling the HeLa cell cycle. The results are obtained setting the BENIN parameters as following: \(R=5000, \alpha=0.9\) and \(\gamma=1.5\)

Adrien et.al. have demonstrated to be potential E2F1 TG [26], BENIN has inferred 36 TGs. Some studies have demonstrated that E2F1 induces G1/S-phase genes [51],
which is consistent with the annotation of the E2F1 inferred TGs.

Table 19: Transcription factor and target gene
\begin{tabular}{|c|c|c|c|c|}
\hline TFs & TF annotation & \# Targets & Biological process category & adjPval \\
\hline \multirow{10}{*}{SP1} & Linked to cell proliferation[19] & & GO:0008283: Cell proliferation(111) & \(4.0 e^{-7}\) \\
\hline & Regulates apoptosis[129] & & GO:0008219: Cell death(102) & \(5.5 e^{-5}\) \\
\hline & Positive regulation & 613 & GO:0034645: & \(2.4 e^{-12}\) \\
\hline & of transcription by & & Cellular macro- & \\
\hline & RNA polymerase & & molecule biosynthetic & \\
\hline & II[254] & & process(229) & \\
\hline & DNA damage response pathway & & \[
\begin{array}{lr}
\text { GO:0006259: } & \text { DNA } \\
\text { metabolic } & \text { process }
\end{array}
\] & \(2.5 e^{-38}\) \\
\hline & [28, 13] & & (130) & \\
\hline & Involve in regulation of transcription, DNAtemplated [48, 236] & & GO:0006355: Regulation of transcription, DNA-templated(182) & \(6.9 e^{-7}\) \\
\hline & \begin{tabular}{l}
Fundamental \\
player in the regulation of cell proliferation[14]
\end{tabular} & & \[
\begin{aligned}
& \text { GO:0008283: Cell } \\
& \text { proliferation(111) }
\end{aligned}
\] & \(4.0 e^{-7}\) \\
\hline \multirow{3}{*}{NFYA} & Induces Apoptosis
[88] & & \[
\begin{array}{lr}
\hline \text { GO:0012501: } & \text { Pro- } \\
\text { grammed } & \text { cell }
\end{array}
\] & \(2.2 e^{-4}\) \\
\hline & & & death(93) & \\
\hline & control the expression of several key regulators of the cell cycle \([263,122]\) & & GO:0051726: Regulation of cell cycle (110) & \(5.3 e^{-30}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Table 19 continued from previous page} \\
\hline TFs & TF annotation & \# Targets & Biological process category & adjPval \\
\hline & \begin{tabular}{l}
DNA \\
metabolism [62] \\
involves in \\
regulation of \\
transcription, \\
DNA-templated \\
(UniPro- \\
tKB:P23511) \\
positive regulation of transcription from RNA polymerase II promoter in response to iron [79]
\end{tabular} & 558 & \begin{tabular}{l}
GO:0000278: Mitotic cell cycle (142) GO:0006259: DNA metabolic process(116) GO:0006355: Regulation of transcription, DNA-templated(164) \\
GO:0001079: Regulation of transcription from RNA polymerase II promoter(81)
\end{tabular} & \[
\begin{aligned}
& 5.8 e^{-54} \\
& 3.9 e^{-33} \\
& 5.1 e^{-6} \\
& \\
& 2.1 e^{-2}
\end{aligned}
\] \\
\hline E2F1 & \begin{tabular}{l}
positive regulation of apoptotic process [219] \\
Regulation of G1/S transition of mitotic cell cycle [195]
\end{tabular} & & GO:0006915: Apop-
totic process(85)
GO:0044843: Cell
cycle G1/S phase
transition(45)
GO:1903047: Mitotic
cell cycle process(143) & \[
\begin{aligned}
& 2.6 e^{-4} \\
& 9.3 e^{-20} \\
& 9.0 e^{-62}
\end{aligned}
\] \\
\hline & DNA damage response [220] & & \begin{tabular}{l}
GO:0006974: Cellu- \\
lar response to DNA damage stimulus(92)
\end{tabular} & \(3.8 e^{-26}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Table 19 continued from previous page} \\
\hline TFs & TF annotation & \# Targets & Biological process category & adjPval \\
\hline & regulation of transcription, DNA-templated [220] & \[
536
\] & \[
\begin{aligned}
& \text { GO:0006351: tran- } \\
& \text { scription, } \quad \text { DNA- } \\
& \text { templated (161) }
\end{aligned}
\] & \[
2.0 e^{-6}
\] \\
\hline & & & \begin{tabular}{l}
GO:0008283:cell \\
proliferation(100)
\end{tabular} & \(4.9 e^{-7}\) \\
\hline & [187] & & \[
\begin{aligned}
& \text { GO:0006281: DNA } \\
& \text { repair }(72)
\end{aligned}
\] & \(2.3 e^{-24}\) \\
\hline & [187] & & \[
\begin{aligned}
& \text { GO:0006260: DNA } \\
& \text { Replication(64) }
\end{aligned}
\] & \(1.1 e^{-33}\) \\
\hline & [187] & & GO:0000075: Cell cycle checkpoint(47) & \(1.1 e^{-22}\) \\
\hline & [187] & & chromosome segregation(69) & \(1.5 e^{-34}\) \\
\hline & \begin{tabular}{lr}
DNA \(\quad\) damage \\
response, & signal \\
transduction by \\
p53 class mediator \\
resulting in cell cy- \\
cle arrest (UniPro- \\
tKB:Q0109)
\end{tabular} & & GO:0006977: DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest(11) & \(3.5 e^{-4}\) \\
\hline \multirow[t]{2}{*}{YY1} & \[
\begin{array}{ll}
\text { Many } & \text { YY1- } \\
\text { regulated } & \text { genes }
\end{array}
\] & & GO:0006915:Apoptotic process(44) & \[
\begin{aligned}
& 1.6 e^{-3} \\
& 1.2 e^{-13}
\end{aligned}
\] \\
\hline & have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation[127] & & \begin{tabular}{l}
GO:0010564: regulation of cell cycle process (39) \\
GO:0006974: cellular response to DNA damage stimulus(54)
\end{tabular} & \(6.0 e^{-20}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Table 19 continued from previous page} \\
\hline TFs & TF annotation & \# Targets & Biological process category & adjPval \\
\hline & YY1 has been
found to acti-
vate DNA re-
pair[83, 209, 225\(]\) & \[
231
\] & \[
\begin{aligned}
& \text { GO:0006281: DNA } \\
& \text { repair(44) } \\
& \text { GO:0006260: DNA } \\
& \text { replication(33) } \\
& \text { GO:0051726: regula- } \\
& \text { tion of cell cycle(53) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 e^{-19} \\
& 6.3 e^{-18} \\
& 6.1 e-16
\end{aligned}
\] \\
\hline FOXM1 & \begin{tabular}{lrr}
FOXM1 & regulates \\
genes & involved \\
in & transcription \\
and & cell & cycle \\
regulation[251] & \\
Regulates & the \\
Transcriptional
\end{tabular} & 227 & \begin{tabular}{l}
GO:0051726: Regulation of cell cycle(64) \\
GO:0000278: Mitotic cell cycle(77) \\
GO:0044772: Mi- \\
totic cell cycle phase transition(53) \\
GO:0044839: Cell \\
cycle G2/M phase \\
transition(24) \\
GO:0007059 :Chromo- \\
some segregation(36)
\end{tabular} & \[
\begin{aligned}
& 4.6 e^{-27} \\
& \\
& 5.9 e^{-36} \\
& 1.4 e^{-28} \\
& 2.1 e^{-13} \\
& 2.4 e^{-19}
\end{aligned}
\] \\
\hline KLF6 & KLF6 regulator of cell apoptosis [109] & & GO:0006915: Apoptotic process(91) GO:0008219: Cell death (99) & \[
\begin{aligned}
& 2.2 e^{-4} \\
& 2.7 e^{-4}
\end{aligned}
\] \\
\hline
\end{tabular}

\title{
Table 19 continued from previous page
}
\begin{tabular}{|c|c|c|c|c|}
\hline TFs & TF annotation & \# Targets & Biological process category & adjPval \\
\hline \multirow[t]{7}{*}{} & KLF expression was shown to mediate growth inhibition[31] & \multirow[t]{7}{*}{582} & & \\
\hline & KLF6 also directly interacts with cyclin D1 to suppress cyclin-dependent & & \begin{tabular}{l}
cell cycle arrest(27) \\
GO:0006974: Cellu- \\
lar response to DNA \\
damage stimulus (93)
\end{tabular} & \[
\begin{aligned}
& 2.8 e^{-6} \\
& 3.6 e^{-24}
\end{aligned}
\] \\
\hline & kinase 4 and causes cell cycle arrest \([109,16]\) & & & \\
\hline & & & GO:0033554: cellular response to stress (138) & \(2.0 e^{-20}\) \\
\hline & others & & GO:0010556: Regulation of macromolecule biosynthetic process(196) & \[
\begin{aligned}
& 1.4 e^{-7} \\
& 1.4 e^{-6}
\end{aligned}
\] \\
\hline & & & GO:0016070: & \\
\hline & & & RNA metabolic process(211) & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline \multicolumn{4}{c}{ Table 19 continued from previous page } \\
\hline TFs & TF annotation & \# Targets & \begin{tabular}{l}
Biological process cat- \\
egory
\end{tabular} \\
\hline
\end{tabular}

The table summarizes the annotation of core TFs and the annotation of their inferred TGs. The \(1^{\text {st }}\) column gives the name of the TFs. The \(2^{\text {nd }}\) column provides the TFs functions, as reported in referee papers. They are from in vivo experiments. The \(3^{r d}\) column gives the total number of inferred TGs for a specific TF. The \(4^{\text {th }}\) column report the functional annotation of all the TGs for a specific TF (biological process). We performed the functional annotation using DAVID online functional annotation tool. The number in parenthesis represents the number of TGs associated with the GO term. We filter the GO Biological Processes terms related to their reported TF functions. We selected annotations that have at least ten of the TGs and that have the smallest adjusted p-value. In the \(5^{\text {th }}\) column, we provide the adjusted p-values of each GO term. It shows the statistical significance of the annotation.

Table 20 enumerates the regulatory interactions that are not part of our "goldstandard" network but are supported to some extent in the literature. We performed a manual literature analysis of the selected edges. We proceed as follow: for each TF and TG considered, we scan the PubMed papers, if any, for specific word/sentences to classify the edges as either:
- Supportive if there is an explicit and direct experimental evidence demonstrating the presence of such a regulatory relationship. We were looking at words that explicitly suggest regulation, such as "binding" and "regulates".
- Predictive if previously documented evidence implies the possibility of the regulatory interaction between the genes, but remains to be experimentally verified. We were looking at words like "potential binding" "potentially regulates".
- Hypothetical if the biological knowledge for the regulation lacks so far. We were checking if the TF and the TG share the same potential annotation.

From Table 20, we notice that BENIN infers several news interactions that are missing in our gold-standard network and interactions that need further investigation.

Table 20: Inference from BENIN + combined+max
\begin{tabular}{llll}
\hline Regulations & Category & Original & Description \\
\hline\(E 2 F 1 \rightarrow M C M 5(0.9716)\) & & & \\
\(E 2 F 1 \rightarrow P C N A(1.00)\) & Supportive & {\([187,26]\)} & \\
\(E 2 F 1 \rightarrow M C M 6(0.999)\) & & & \\
\(E 2 F 1 \rightarrow T M P O(0.839)\) & Predictive & {\([187]\)} & \\
\hline\(E 2 F 1 \rightarrow N E K 2(0.970)\) & Supportive & {\([241,244,26]\)} & "E2F1 transcriptional activity \\
\(E 2 F 1 \rightarrow C K S 2(0.949)\) & & leads to high expression of several \\
\hline\(E 2 F 1 \rightarrow B R C A 1(0.996)\) & & DNA repair genes, including \\
& & & \\
\hline\(E 2 F 1 \rightarrow M C M 2(1.00)\) & & & \\
\(E 2 F 1 \rightarrow B U B 3(0.995)\) & & & \\
\(E 2 F 1 \rightarrow B A R D 1(1.00)\) & & & \\
\(E 2 F 1 \rightarrow C A S P 3(0.999)\) & & & \\
\(E 2 F 1 \rightarrow B M P 2(0.998)\) & & & \\
\hline
\end{tabular}

Table 20 continued from previous page
\begin{tabular}{|c|c|c|c|}
\hline Regulations & Category & Original & Description \\
\hline \(E 2 F 5 \rightarrow C D C 25 A(0.515)\) & \multirow{8}{*}{Predictive} & \multirow{8}{*}{[26]} & \multirow{8}{*}{It is not clearly mentioned that they are targets of E2F5 but E2F in general see Table 1 of [26]} \\
\hline \(E 2 F 5 \rightarrow E 2 F 1\) (0.672) & & & \\
\hline \(E 2 F 5 \rightarrow P R C 1\) (0.768) & & & \\
\hline \(E 2 F 5 \rightarrow C D C 6\) (0.668) & & & \\
\hline \(E 2 F 5 \rightarrow B U B 1\) (0.565) & & & \\
\hline \(E 2 F 5 \rightarrow B U B 1 B(0.706)\) & & & \\
\hline E2F5 \(\rightarrow\) CENPE (0.756) & & & \\
\hline E2F5 \(\rightarrow\) MAD2L1 (0.659) & & & \\
\hline E2F8 \(\rightarrow\) CCNE2 (0.715) & & & \\
\hline \(E 2 F 8 \rightarrow C D C 6\) (0.898) & & & \\
\hline \(E 2 F 8 \rightarrow M C M 5\) (0.861) & & & \\
\hline \(E 2 F 8 \rightarrow R F C 2\) (0.632) & & & \\
\hline \(E 2 F 8 \rightarrow R P A 2(0.854)\) & Predictive & [26] & It is not clearly mentioned that \\
\hline \(E 2 F 8 \rightarrow C D K N 2 C ~(0.874)\) & Predictive & [26] & they are targets of E2F8 but E2F \\
\hline \(E 2 F 8 \rightarrow B U B 3\) (0.995) & & & \\
\hline E2F8 \(\rightarrow\) MSH2 (0.918) & & & 1 of [26] \\
\hline E2F8 \(\rightarrow\) RAD51(0.994) & & & \\
\hline E2F8 \(\rightarrow\) BMP2 (0.658) & & & \\
\hline
\end{tabular}

Table 20 continued from previous page
\begin{tabular}{|c|c|c|c|}
\hline Regulations & Category & Original & Description \\
\hline FOXM1 \(\rightarrow\) CENPA (0.935) & Supportive & [251] & "FOXM1 regulates genes that are essential for proper chromosome segregation and mitosis, such as NEK2, KIF20A, and CENPA" \\
\hline \(F O X M 1 \rightarrow C D C 25 B(0.982)\) & Supportive & [242] & "FOXM1 target genes include CDC25B and PLK1, which are important for activating CDK1 for mitosis" \\
\hline \(F O X M 1 \rightarrow C D C 25 C(0.956)\) & & [153] & "These results showed that unusual expression of FOXM1 increased the expression levels of the FOXM1 targets PLK and CDC25C" \\
\hline
\end{tabular}

Table 20 continued from previous page
\begin{tabular}{|c|c|c|c|}
\hline Regulations & Category & Original & Description \\
\hline \[
\begin{aligned}
& \hline \text { NFYB } \quad \rightarrow \quad C D C 25 C(0.894) \\
& \text { NFYB } \rightarrow C D C 25 B(0.900)
\end{aligned}
\] & Supportive & [155] & "NF-Y transcription factor plays a central role in cellular proliferation by controlling the expression of genes required for cell-cycle progression such as cyclin \(A\), cyclin B1, cyclin B2, CDC25A, CDC25C, and CDK1" \\
\hline \[
\begin{aligned}
& \text { NFYA } \quad \rightarrow \quad C D C 25 B(0.884) \\
& \text { NFYA } \rightarrow C D C 25 C(0.99)
\end{aligned}
\] & & [155] & "NF-Y mediates the transcriptional inhibition of the mitotic cyclins and the CDC25C genes during p53-dependent G2 arrest induced by DNA damage" \\
\hline \(S P 1 \rightarrow Y Y 1\) (0.995) & Predictive & [83] & See Table 2 in [83] \\
\hline \(C E N P A \rightarrow B U B 1\) (1.00) & Hypothetical & & Potential binding from STRINGDB [224] \\
\hline
\end{tabular}

The table reports the list of interactions inferred by BENIN but that are not part of our gold-standard network. These links are obtained when combining BENIN with TFBS, KD expression data, functional annotation, and ChIP-seq data. We used the max function to combine the output from different prior knowledge data. The \(1^{s t}\) column reports the interactions as well as their score as inferred by BENIN. The number in parenthesis is the score returned by BENIN + expression. The \(2^{\text {nd }}\) reports the type of evidence about the interaction. It can be supportive if there is an explicit and direct experimental evidence demonstrating the presence of such a regulatory relationship; predictive if previously documented evidence implies the possibility of the regulatory interaction between the genes, but remains to be experimentally verified, or hypothetical if the biological knowledge for the regulation lacks so far. The \(3^{r d}\) column gives reference papers/works that support the evidence, if any. The \(4^{\text {th }}\) column gives more details from the paper that support the evidence of the interaction.

Orthology mapping confirms interactions and potential links Figure 30 shows the network inferred with orthology mapping from the mouse regulatory network. We compared the inferred network with our gold-standard network and the network inferred from the time-series expression data combined with all the prior knowledge data. For the inferred edges from expression data, we consider those whose weights are \(\geq 0.5\). The point here is to highlight the extent to which the network from orthology agrees with the network from time-series. Figure 31 shows the distribution of the inferred edges with BENIN +orthology compared to the gold-standard and the sub-network from BENIN +expression (we considered only the edges shared with network from orthology). We are mainly interested in the links shared by both BENIN + expression and BENIN +orthology but that are missing in the gold-standard network (345/545) and that are false edge in the gold-standard network (28/545). We can observe that almost half of the edges in the inferred network with BENIN + orthology are new interactions confirmed by expression data. In Table 21 we report some of these new interactions. Note that in Table 21, we provide the edges that are not already part of Table 20. Among the new links, some of them have been reported in the literature. For example, with othorlogy information transfer, we can infer CNA2, FAN1, GCLM and MEPCE as target genes of CTCF. In [121], CTCF has been found to bind the promoter of these genes.

However, we are also interested in those not reported in the literature as they may suggest new interactions that will need further investigation in wet labs. It is the case of the regulatory link between FOXM1 and NCAPH, which was inferred with a score of 0.99 . However, there is no literature that supports a direct interaction between FOXM1 and NCAPH. We consider the links that have high confidence (score of at least 0.80)

Figure 30: Orthologous Regulatory Network From mouse
The figure represents GRN controlling the HeLa cell cycle network inferred with BENIN combined with sequence orthology information transfer. We use the mouse as the model organism. Green edges are edges obtained only from orthology mapping. Red edges are shared between our gold-standard network, expression-based inferred network and orthology-based inferred network. Blue edges are those shared among the expression-based inferred network and the orthology-based inferred network. The results are obtained setting the BENIN parameters as following: \(R=5000, \alpha=0.9\) and \(\gamma=1.5\)

Figure 31: Edge Distribution
Distribution of the edges in the inferred Network regulatory network controlling the human HeLa cell cycle. Here BENIN has been combined with results from orthology mapping using the mouse as our model organism. We compared the obtained network to the gold-standard and the network inferred from expression and prior knowledge. "expr" represent the edges inferred from time series expression data. "orth" are the edges inferred through orthology mapping. "gs-NA" are the missing link in the gold-standard network and "gs-False" are the false edges.

Table 21: Inference from BENIN +orthology
\begin{tabular}{llll}
\hline Regulations & Category & Original & Description \\
\hline\(C T C F \rightarrow C C N A 2(1)\) & & \\
\(C T C F \rightarrow F A N 1(1)\) & & \\
\(C T C F \rightarrow G C L M(0.992)\) & & \\
\(C T C F \rightarrow M E P C E(0.986)\) & Supportive & {\([121]\)} & Have found to be bounded \\
\(C T C F \rightarrow M B D 4(0.996)\) & & by CTCF \\
\(C T C F \rightarrow G A D D 45 A(0.992)\) & & \\
\(C T C F \rightarrow S T A G 1(0.992)\) & & \\
\(C T C F \rightarrow A N T X R 1(0.996)\) & & RAS \\
\(C T C F \rightarrow R F C 2(0.997)\) & Hypothetical & RA & \\
\(C T C F \rightarrow T I P I N(0.955)\) & & \\
\hline\(F O X M 1 \rightarrow C C N B 2(0.984)\) & Supportive & & \\
\(F O X M 1 \rightarrow N C A P H(0.997)\) & Hypothetical & RAS & \\
\(F O X M 1 \rightarrow D L G A P 5(0.904)\) & & &
\end{tabular}

Table 21 continued from previous page
\begin{tabular}{|c|c|c|c|}
\hline Regulations & Category & Original & Description \\
\hline FOXM \(1 \rightarrow\) UHRF1 (0.946) & Supportive & [261] & "FOXM1 and UHRF1 are highly correlated in prostate cancer cells and tissues. FOXM1 regulates CSCs by regulating UHRF1 gene transcription in an E2F-independent manner and FOXM1 protein directly binds to the FKH motifs at the UHRF1 gene promoter" [261] \\
\hline \[
\begin{aligned}
& N F Y B \quad \rightarrow \quad C E N P F(0.927) \\
& N F Y B \rightarrow \operatorname{TTK}(0.998)
\end{aligned}
\] & Hypothetical & RAS & RAS \\
\hline \(S T A T 1 \rightarrow F Y N(0.809)\) & Supportive & See Table 3 in [199] & \\
\hline \(S T A T 1 \rightarrow L P P(0.999)\) & Hypothetical & RAS & RAS \\
\hline
\end{tabular}

The table reports the list of interactions inferred by BENIN +orthology and confirmed by BENIN + expression, but that are missing in our gold-standard network. The \(1^{s t}\) column reports the interactions. The number in parenthesis is the score returned by BENIN + expression. The \(2^{\text {nd }}\) reports the type of evidence about the interaction. It can be supportive if there is an explicit and direct experimental evidence demonstrating the presence of such a regulatory relationship; predictive if previously documented evidence implies the possibility of the regulatory interaction between the genes, but remains to be experimentally verified, or hypothetical if the biological knowledge for the regulation lacks so far. The \(3^{\text {rd }}\) column gives reference papers/works that support the evidence, if any. The \(4^{\text {th }}\) column gives more details from the paper that support the evidence of the interaction.

\subsection*{4.6.2 Discussion}

BENIN can integrate several types of Prior knowledge Results presented in Section 4.6.1 demonstrate that BENIN can integrate a diverse type of prior knowledge to deal with the limitation of the data. We saw that the inclusion of prior knowledge data might increase BENIN performance. Moreover, we notice that integrating different prior data into BENIN may lead to different results. These results confirm the fact that different prior data may have different potential. A close observation of Table 18 shows that TFBS seems to be the most informative prior data. They store direct binding information. On the other hand, functional data seems to be less informative. However, when we average the score from all the prior data, we notice that BENIN performance may not better than its performance with either TFBS or ChIP-seq data. This performance may result from the fact that we adopted the same parameters for all the data types; however, BENIN performance is very data-dependent. Moreover, integrating all the prior knowledge data through a simple average implies considering the different prior knowledge data are equally informative. The performance on the less informative prior will have a big impact on the combined performance. It may suggest a weighted integration.

The results reported in Section 4.6.1 shows the power of integrating regulatory interactions from closely related organisms into an organism of interest. In fact, including regulatory information from the mouse genome has allowed us to add around 300 edges and confirmed around 200 inferred links.

BENIN can infer both known and potential regulatory links In Section 4.6.1, we demonstrated that BENIN could retrieve links that are part of our gold-standard network. For example, when setting \(\tau=0.5\), we observe that BENIN infers around 1171 out of the 1463 interactions present in our gold-standard network. We demonstrated that BENIN was able to enrich the inferred network with new high scoring interactions that are biologically relevant. Some of these interactions were confirmed by orthology information transfer. They constitute interesting candidate interactions that will necessitate further investigation.

BENIN can scale to realistic problem In this chapter, we have demonstrated that BENIN can infer a realistic network. From the execution time presented in Section 17, we observe that BENIN runs in about 2 h to infer a size 628 network integrating all the five different prior knowledge data.

\subsection*{4.7 Conclusion}

In this chapter, we presented the result of applying BENIN to infer the GRN that controls the cell cycle of the HeLa cell line. We considered four different prior knowledge data: ChIP-seq, TFBS, KD expression, and functional annotation. We evaluated BENIN performances using our "gold-standard network."

Comparing BENIN results when we integrate prior evidence of regulatory interactions to when we do not, we observe that prior knowledge data integration may improve BENIN performances. Testifying the importance or prior biological information. A close analysis of the returned edges shows that many inferred links were missing in our gold-standard network. BENIN can infer new interactions. Some of these interactions get support to some extent with the literature. In contrast, others that were not supported in literature may suggest potential research to confirm their existence. We also presented an extension of BENIN that integrates regulatory interaction from other organisms into the studied organism, through sequence orthology transfer. We tested this extension on the HeLa cell cycle using the mouse as our model organism. We were able to add more than 300 interactions that were or were not supported by the expression data. Some of these links were absent in our goldstandard network or marked as non-edges. These links may be subject to further investigation. Mainly those supported both by the expression and obtained through orthology transfer.

Even though our results on the HeLa cell line are encouraging, there is still much work to do. First of all, it will be interesting to consider other organisms for orthology mapping. We observed that our genes get orthologues into many other model organisms, such as the zebrafish, rat, or the saccharomyces cerevisae. Some of these organisms (zebrafish, rat or frog) do not have an explicit database that stores their regulatory interactions or existing database lack this information. We need to automatically or manually scan the literature to get the list of potential regulatory
interactions of their GRN. A next extension will be to infer the GRN for several cell lines in human.

\section*{Chapter 5}

\section*{Conclusion}

\subsection*{5.1 Recap}

The gene regulatory network, which designates the set of genes that interact together within the cell to control specific biological processes, is essential to understand how the cell functions and how it responds to its environment. The advancement in highthroughput instruments has allowed the generation of a high volume of a variety of omics data, that each may provide a complementary part of the picture of regulation. This thesis had three goals for regulatory network inference:
1. Develop a method that integrates diverse data;
2. Develop a method that scales to handle a real dataset; and
3. Develop a method that can integrate information across organisms.

The thesis was that using Elastic Net regression for feature selection would lead to a method for network inference that met these goals, and also had a state-of-the-art performance.

Chapter 3 presented BENIN as a method that viewed network inference as a feature selection and applied adaptive Elastic Net regression to solve the feature selection problem. The adaptive Elastic Net allowed data integration. BENIN was evaluated on synthetic data from the DREAM4 challenge, and with our own synthetic data. On the DREAM4 dataset BENIN out-performed all DREAM4 competitors on the size 100 subchallenge, and is also competitive with more recent state-of-the-art methods.

Chapter 4 applied BENIN to real data for the cell cycle of the Human HeLa cell line to demonstrate scalability and the integration of a range of types of data. We developed a gold standard network for evaluation purposes, and compared the effect of each prior and combination of priors on the predictive performance of BENIN. Furthermore, BENIN proposed new interactions. These were reviewed for support in the literature, as a preliminary validation of BENIN's practicality, and whether the proposed new regulatory links might warrant further experimental investigation.

\subsection*{5.2 Contributions}

This thesis addresses open challenges in computational reconstruction, or inference, of gene regulatory networks of performance, scale, and data integration.

The thesis presents a new algorithm BENIN that views network inference as feature selection to address issues of scale, that uses Elastic Net regression for improved performance, and adapts Elastic Net to integrate different types of biological data.

The BENIN algorithm is benchmarked on a synthetic dataset from the DREAM4 challenge, and on real expression data for the Human HeLa cell cycle. On the DREAM4 dataset BENIN out-performed all DREAM4 competitors on the size 100 subchallenge, and is also competitive with more recent state-of-the-art methods. Moreover, on the HeLa cell cycle data, BENIN could infer known regulatory interactions and propose new interactions that warrant further experimental investigation.

The three contributions of the thesis are
1. The BENIN algorithm, addressing scale and performance issues, by viewing Network inference as the feature selection problem, and solving feature selection using Elastic Net regression;
2. BENIN addressing the integration of prior knowledge by adapting the Elastic Net regression technique; and
3. The application of BENIN to real data for the cell cycle of the Human HeLa cell line.

\subsection*{5.2.1 BENIN: Network Inference as Feature Selection using Elastic Net}

In this thesis, we introduce BENIN: Biologically Enhanced Network INference. BENIN is a simple and intuitive inference method for integrating any prior knowledge with timeseries expression data. BENIN states GRN inference as a feature selection problem: finding the direct regulators of each gene. It assumes that a target gene's expression profile is a linear function of its direct regulators' expression profiles. BENIN applies a regression technique called Elastic Net combined with a resampling technique to perform feature selection.

\subsection*{5.2.2 BENIN: Integration of Prior Knowledge}

Data integration is a common technique to improve inference in computational biology. Yet the successful integration of a variety of types of data remains a challenge. In this work, we used a modified version of the Elastic Net: the adaptive Elastic Net to include prior knowledge. We developed ways to incorporate each prior into the mathematical formulation of the adaptive Elastic Net for each type of data:
- Knockout (KO) expression data;
- Knock-down (KD) expression data;
- ChIP-seq data;
- Functional annotations;
- Transcription factor binding sites; and
- Genome-wide location data.

The probabilistic framework for the integration is defined by the Bayes formula. This allows BENIN the possibility to control the impact of the prior on the model.

We have demonstrated that BENIN can integrate many types of data.
Moreover, BENIN allows the integration of regulatory information across species through the use of orthology.

Knockout(KO) and knock-down(KD) gene expression data are expression data measured in an organism where a transcription factor is made inoperative (KO expression data), or its expression is reduced (KD expression data). The data is integrated either through the z-score (for KO data) or a probabilistic framework (for KD data).

ChIP-seq data reports the regions in the genome where a specific transcription factor (TF) will physically bind to the DNA. We integrate ChIP-seq by a score measuring potential binding between each TF and each gene in the genome.

Functional annotation is given as a set of terms in the Gene Ontology (GO). We use a similarity measure of sets of terms to integrate functional annotation into BENIN.

Transcription factor binding sites are given as matrices storing binding specificities for a specific TF. We used this data to scan the region of interest in the genome. The result of the scanning process is integrated through a probabilistic framework into BENIN.

Genome-wide location data is given as p-values of physical interactions between a TF and a gene. The p-values are integrated into BENIN using a probabilistic framework.

\subsection*{5.2.3 Application of BENIN to Human Cell Cycle}

To study BENIN on real data, where there was a range of data types available for integration, we applied BENIN to the cell cycle of theHuman HeLa cell line.

This showed the effect on the performance of each prior and each combination of priors, and demonstrated BENIN at a realistic scale of the problem.

We integrate prior knowledge from transcription factor binding sites, knock-down gene expression data, functional annotation, and ChIP-seq data.

Data integration across organisms was demonstrated using orthology between genes of mouse and human to transfer information about regulatory links in mouse to the network inferred for the cell cycle of the Human HeLa cell line.

\subsection*{5.3 Limitations}

One of the key limitations to BENIN, as with most regulatory network inference approaches, is the difficulty of distinguishing between direct and indirect regulatory links. This shows up clearly in the analysis of network motifs.

BENIN may be too simplistic in how it weighs each regulatory link. BENIN weighs the link by the number of bootstraps in which the link is selected during the feature selection by the adaptive Elastic Net. We notice that many links have the same weight, so the final rank does not show a clear preference between the links.

Our gold standard network in Chapter 5 did not distinguish cell lines, so it was not specific to the cell cycle of the Human HeLa cell line. We integrated information from different cell lines. The impact of this is unknown. It may be minor, as the data used for the network inference was for the Human HeLa cell line.

The use of orthology information was restricted to mouse in our case study. However, each of the model vertebrate organisms is a good candidate as a source of information, as indeed may be all the model organisms.

\subsection*{5.4 Future Work}

Future work should definitely address the limitations above. Besides, our techniques should be made part of a widely-used suite of tools for the complete systems biology workflow, that works not simply with one organism at a time, but fully exploits orthology with model organisms, and accommodates recent needs for single-cell genomics, and microbial communities.

Our work takes a simple binary view of the regulatory link between transcription factors and target genes: it is either on or off. Even then, the algorithms have difficulty distinguishing direct regulation from indirect regulation. A model that considers positive (enhancement) and negative (repression) the behavior of regulation is the first step towards a more realistic model. Furthermore, transcription factors work in combinations, or as complexes, in the regulatory regions of a gene. This thesis did not consider the task of determining these so-called regulatory program of the transcription factors working together.

This thesis has considered only transcriptional regulation. This is but one of
the regulatory mechanisms in a cell. Systems biology, in the long term, will require dynamic models including all the regulatory mechanisms,

\section*{Bibliography}
[1] Munna L Agarwal, Archana Agarwal, William R Taylor, and George R Stark. P53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proceedings of the National Academy of Sciences, 92(18):8493-8497, 1995.
[2] Fadhl M Alakwaa. Modeling of gene regulatory networks: a literature review. Journal of Computational Systems Biology, 1(1):1, 2014.
[3] Réka Albert. Scale-free networks in cell biology. Journal of Cell Science, 118(21):4947-4957, 2005.
[4] Réka Albert and Albert-László Barabási. Error and attack tolerance of complex networks. Nature, 406(6794):378-382, Jul 2000. doi:10.1038/35019019.
[5] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1):47-97, 2002. doi:10.1103/RevMod Phys.74.47.
[6] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1):25-29, 2000.
[7] Claire Attwooll, Eros Lazzerini Denchi, and Kristian Helin. The E2F family: specific functions and overlapping interests. The EMBO Journal, 23(24):4709 - 4716, Nov 2004. doi:10.1038/sj.emboj.7600481.
[8] M Madan Babu, Benjamin Lang, and L Aravind. Methods to reconstruct and compare transcriptional regulatory networks. In Computational Systems Biology, pages 163 - 180. Springer, 2009.
[9] Timothy Bailey, Charles Elkan, et al. Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Proceedings International Conference on Intelligent Systems for Molecular Biology, pages 28-36, 1994.
[10] Timothy L. Bailey, James Johnson, Charles E. Grant, and William S. Noble. The MEME Suite. Nucleic Acids Research, 43(W1):W39 - W49, May 2015. doi:10.1093/nar/gkv416.
[11] Albert-Laszlo Barabasi and Zoltan Oltvai. Network Biology: understanding the cell's functional organization. Nature Reviews Genetics, 5(2):101-113, 2004.
[12] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type methods. SIAM Journal on Optimization, 23(4):2037 - 2060, 2013.
[13] K. Beishline, C. M. Kelly, B. A. Olofsson, S. Koduri, J. Emrich, R. A. Greenberg, and J. Azizkhan-Clifford. Sp1 facilitates DNA Double-Strand Break Repair through a Nontranscriptional Mechanism. Molecular and Cellular Biology, 32(18):3790-3799, Jul 2012. doi:10.1128/mcb.00049-12.
[14] Paolo Benatti, Diletta Dolfini, Alessandra Viganò, Maria Ravo, Alessandro Weisz, and Carol Imbriano. Specific inhibition of NF-Y subunits triggers different cell proliferation defects. Nucleic Acids Research, 39(13):5356 - 5368, Mar 2011. doi:10.1093/nar/gkr128.
[15] Dennis A Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J Lipman, James Ostell, and Eric W Sayers. GenBank. Nucleic Acids Research, 41(D1):D36 - D42, 2013.
[16] Sharon Benzeno, Goutham Narla, Jorge Allina, George Z. Cheng, Helen L. Reeves, Michaela S. Banck, Joseph A. Odin, J. Alan Diehl, Doris Germain,
and Scott L. Friedman. Cyclin-Dependent Kinase Inhibition by the KLF6 Tumor Suppressor Protein through Interaction with Cyclin D1. Cancer Research, 64(11):3885-3891, Jun 2004. doi:10.1158/0008-5472.can-03-2818.
[17] A Bernard and AJ Hartemink. Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. In Pacific Symposium on Biocomputing, page 459, 2005.
[18] Cosetta Bertoli, Jan M. Skotheim, and Robertus A. M. de Bruin. Control of cell cycle transcription during G1 and S phases. Nature Reviews Molecular Cell Biology, 14(8):518-528, Jul 2013. doi:10.1038/nrm3629.
[19] Adrian R. Black, Jennifer D. Black, and Jane Azizkhan-Clifford. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. Journal of Cellular Physiology, 188(2):143 - 160, Jun 2001. doi:10.1002/jcp. 1111.
[20] Alexandre Blais and Brian David Dynlacht. Constructing transcriptional regulatory networks. Genes \(\mathfrak{G}\) Development, 19(13):1499-1511, 2005.
[21] Hamid Bolouri. Computational modeling of gene regulatory networks: a primer. World Scientific, 2008.
[22] Hamid Bolouri. Modeling genomic regulatory networks with big data. Trends in Genetics, 30(5):182-191, 2014.
[23] Richard Bonneau, David J Reiss, Paul Shannon, Marc Facciotti, Leroy Hood, Nitin S Baliga, and Vesteinn Thorsson. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems biology data sets de novo. Genome Biology, 7(5):R36, 2006.
[24] Luiz A Bovolenta, Marcio L Acencio, and Ney Lemke. HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics, 13(1):405, 2012. doi:10.1186/1471-2164-13-405.
[25] Elizabeth I Boyle, Shuai Weng, Jeremy Gollub, Heng Jin, David Botstein, J Michael Cherry, and Gavin Sherlock. GO::TermFinder - open source software
for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 20(18):3710 3715, 2004.
[26] Adrian P. Bracken, Marco Ciro, Andrea Cocito, and Kristian Helin. E2F target genes: unraveling the biology. Trends in Biochemical Sciences, 29(8):409 - 417, Aug 2004. doi:10.1016/j.tibs.2004.06.006.
[27] Jacqueline Bromberg and James E Darnell. The role of STATs in transcriptional control and their impact on cellular function. Oncogene, 19(21):2468-2473, May 2000. doi:10.1038/sj.onc. 1203476.
[28] Youquan Bu, Yusuke Suenaga, Sayaka Ono, Tadayuki Koda, Fangzhou Song, Akira Nakagawara, and Toshinori Ozaki. Sp1-mediated transcriptional regulation of NFBD1/MDC1 plays a critical role in DNA damage response pathway. Genes to Cells, 13(1):53-66, Dec 2007. doi:10.1111/j.1365-2443. 2007. 01144.x.
[29] Carol J Bult, Judith A Blake, Cynthia L Smith, James A Kadin, Joel E Richardson, A Anagnostopoulos, R Asabor, R M Baldarelli, J S Beal, S M Bello, and et al. Mouse Genome Database (MGD) 2019. Nucleic Acids Research, 47(D1):D801 - D806, Nov 2018. doi:10.1093/nar/gky1056.
[30] Martha L Bulyk. Computational prediction of transcription factor binding site locations. Genome Biology, 5(1):1-11, 2003.
[31] Christophe Bureau, Naima Hanoun, Jerome Torrisani, Jean-Pierre Vinel, Louis Buscail, and Pierre Cordelier. Expression and Function of Kruppel Like-Factors (KLF) in Carcinogenesis. Current Genomics, 10(5):353 - 360, Aug 2009. doi: 10.2174/138920209788921010.
[32] Valentina Calò, Manuela Migliavacca, Viviana Bazan, Marcella Macaluso, Maria Buscemi, Nicola Gebbia, and Antonio Russo. STAT proteins: From normal control of cellular events to tumorigenesis. Journal of Cellular Physiology, 197(2):157-168, Jul 2003. doi:10.1002/jcp. 10364.
[33] Irene Cantone, Lucia Marucci, Francesco Iorio, Maria Aurelia Ricci, Vincenzo Belcastro, Mukesh Bansal, Stefania Santini, Mario Di Bernardo, Diego Di Bernardo, and Maria Pia Cosma. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell, 137(1):172 181, 2009.
[34] Angelo Canty and B. D. Ripley. boot: Bootstrap R (S-Plus) Functions. https://cran.r-project.org/web/packages/boot/, 2017. R package version 1.320.
[35] Marc Carlson. org.Hs.eg.db: Genome wide annotation for Human. https://bioconductor.org/packages/org.Hs.eg.db/, 2018. R package version 3.7.0.
[36] T Chen, HL He, and GM Church. Modeling gene expression with differential equations. In Pacific Symposium on Biocomputing, pages 29 - 40, 1999.
[37] Xi Chen, Gerd A Müller, Marianne Quaas, Martin Fischer, Namshik Han, Benjamin Stutchbury, Andrew D Sharrocks, and Kurt Engeland. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Molecular and Cellular Biology, 33(2):227-236, 2013.
[38] David Maxwell Chickering, David Heckerman, and Christopher Meek. Largesample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research, 5(Oct):1287-1330, 2004.
[39] Il-Gyo Chong and Chi-Hyuck Jun. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1):103-112, 2005.
[40] Robert Clarke, Habtom Ressom, Antai Wang, Jianhua Xuan, Minetta Liu, Edmund Gehan, and Yue Wang. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nature Reviews Cancer, 8(1):37-49, 2008.
[41] Thomas Cokelaer, Mukesh Bansal, Christopher Bare, Erhan Bilal, Brian M Bot, Elias Chaibub Neto, Federica Eduati, Alberto de la Fuente, Mehmet Gönen, Steven M Hill, et al. DREAMTools: a Python package for scoring collaborative challenges. F1000Research, 4, 2015.
[42] Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research, 32(90001):258D - 261, Jan 2004. doi:10. 1093/nar/gkh036.
[43] UniProt Consortium et al. UniProt: the universal protein knowledgebase. \(N u\) cleic Acids Research, 45(D1):D158 - D169, 2017.
[44] Athel Cornish-Bowden. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Research, 13(9):3021, 1985.
[45] Robert H. Costa. FoxM1 dances with mitosis. Nature Cell Biology, 7(2):108110, Feb 2005. doi:10.1038/ncb0205-108.
[46] Modan K Das and Ho-Kwok Dai. A survey of DNA motif finding algorithms. In BMC Bioinformatics, volume 8, page S21. Springer, 2007.
[47] Jesse Davis and Mark Goadrich. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, pages 233 - 240, 2006.
[48] W. Davis. Reciprocal regulation of expression of the human adenosine 5'triphosphate binding cassette, sub-family A, transporter 2 (ABCA2) promoter by the early growth response-1 (EGR-1) and Sp-family transcription factors. Nucleic Acids Research, 31(3):1097 - 1107, Feb 2003. doi:10.1093/nar/gk g192.
[49] Riet De Smet and Kathleen Marchal. Advantages and limitations of current network inference methods. Nature Reviews Microbiology, 8(10):717-729, 2010.
[50] James DeGregori. The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochimica et Biophysica Acta (BBA) -

Reviews on Cancer, 1602(2):131-150, 2002. doi:https://doi.org/10.1016/ S0304-419X (02) 00051-3.
[51] James DeGregori, Timothy Kowalik, and Joseph R Nevins. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis - and G1/S - regulatory genes. Molecular and Cellular Biology, 15(8):4215-4224, 1995.
[52] Chu-Xia Deng. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Research, 34(5):1416-1426, 2006.
[53] Emmanuelle Deniaud, Joël Baguet, Roxane Chalard, Bariza Blanquier, Lilia Brinza, Julien Meunier, Marie-Cécile Michallet, Aurélie Laugraud, Claudette Ah-Soon, Anne Wierinckx, and et al. Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition. PLoS ONE, 4(9):e7035, Sep 2009. doi:10.1371/journal.pone. 0007035.
[54] Edward R Dougherty and Ilya Shmulevich. On the limitations of biological knowledge. Current Genomics, 13(7):574, 2012.
[55] Kevin T Duffy, Mary Frances McAleer, William R Davidson, Laszlo Kari, Csaba Kari, Chang-Gong Liu, Steven A Farber, Keith C Cheng, Jason R Mest, Eric Wickstrom, et al. Coordinate control of cell cycle regulatory genes in zebrafish development tested by cyclin D1 knockdown with morpholino phosphorodiamidates and hydroxyprolyl-phosphono peptide nucleic acids. Nucleic Acids Research, 33(15):4914-4921, 2005.
[56] Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis Brazma, and Wolfgang Huber. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 21:3439-3440, 2005.
[57] Steffen Durinck, Paul T. Spellman, Ewan Birney, and Wolfgang Huber. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols, 4:1184 - 1191, 2009. URL: https://bioconductor.org/packages/biomaRt/.
[58] Stéphanie Dutertre, Martine Cazales, Muriel Quaranta, Carine Froment, Valerie Trabut, Christine Dozier, Gladys Mirey, Jean-Pierre Bouché, Nathalie TheisFebvre, Estelle Schmitt, et al. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2 - M transition. Journal of Cell Science, 117(12):2523-2531, 2004.
[59] Ron Edgar, Michael Domrachev, and Alex Lash. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1):207-210, 2002.
[60] Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in Statistics, pages 569 - 593. Springer, 1992.
[61] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression. The Annals of Statistics, 32(2):407-499, 2004.
[62] R. Elkon. Genome-Wide In Silico Identification of Transcriptional Regulators Controlling the Cell Cycle in Human Cells. Genome Research, 13(5):773-780, May 2003. doi:10.1101/gr. 947203.
[63] Frank Emmert-Streib, Galina Glazko, Ricardo De Matos Simoes, et al. Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Frontiers in Genetics, 3:8, 2012.
[64] Douglas H Erwin and Eric H Davidson. The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 10(2):141-148, 2009.
[65] Ahmed Essaghir and Jean-Baptiste Demoulin. A minimal connected network of transcription factors regulated in human tumors and its application to the quest for universal cancer biomarkers. PloS One, 7(6), 2012.
[66] Jeremiah J Faith, Boris Hayete, Joshua T Thaden, Ilaria Mogno, Jamey Wierzbowski, Guillaume Cottarel, Simon Kasif, James J Collins, and Timothy S Gardner. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 5(1):e8, 2007.
[67] Jianqing Fan and Runze Li. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. Journal of the American Statistical Association, 96(456):1348 - 1360, Dec 2001. doi:10.1198/016214501753382273.
[68] Jianqing Fan, Richard Samworth, and Yichao Wu. Ultrahigh dimensional feature selection: beyond the linear model. Journal of Machine Learning Research, 10(Sept):2013-2038, 2009.
[69] Donald Farrar and Robert Glauber. Multicollinearity in regression analysis: the problem revisited. The Review of Economic and Statistics, pages \(92-107\), 1967.
[70] Chenchen Feng, Chao Song, Yuejuan Liu, Fengcui Qian, Yu Gao, Ziyu Ning, Qiuyu Wang, Yong Jiang, Yanyu Li, Meng Li, et al. KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors. Nucleic Acids Research, 48(D1):D93 - D100, 2020.
[71] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. glmnet: Lasso and Elastic Net regularized generalized linear models. e version, 1(4), 2009. URL: https: //glmnet.stanford.edu.
[72] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1):1-22, 2010.
[73] Nir Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303(5659):799-805, 2004.
[74] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe'er. Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7(34): \(601-620,2000\).
[75] Nir Friedman, Kevin Murphy, and Stuart Russell. Learning the structure of dynamic probabilistic networks. ArXiv Preprint ArXiv:1301.7374, 2013.
[76] Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23):3150-3152, 2012.
[77] André Fujita, Joao R Sato, Humberto M Garay-Malpartida, Rui Yamaguchi, Satoru Miyano, Mari C Sogayar, and Carlos E Ferreira. Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology, 1(1):1-11, 2007.
[78] Luz Garcia-Alonso, Christian H. Holland, Mahmoud M. Ibrahim, Denes Turei, and Julio Saez-Rodriguez. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Research, 29(8):1363 - 1375, Jul 2019. doi:10.1101/gr.240663.118.
[79] Pascale Gaudet, Michael S Livstone, Suzanna E Lewis, and Paul D Thomas. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Briefings in Bioinformatics, 12(5):449-462, 2011.
[80] Florian Geier, Jens Timmer, and Christian Fleck. Reconstructing generegulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology, 1(1):11, 2007.
[81] Pierre Geurts et al. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Scientific Reports, 8(1):1-12, 2018.
[82] Raluca Gordân, Alexander J Hartemink, and Martha L Bulyk. Distinguishing direct versus indirect transcription factor - DNA interactions. Genome Research, 19(11):2090-2100, 2009.
[83] S Gordon, G Akopyan, H Garban, and B Bonavida. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene, 25(8):1125-1142, Nov 2005. doi:10.1038/sj.onc. 1209080.
[84] Clive WJ Granger. Testing for causality: a personal viewpoint. Journal of Economic Dynamics and Control, 2:329-352, 1980.
[85] Charles E. Grant, Timothy L. Bailey, and William Stafford Noble. FIMO: scanning for occurrences of a given motif. Bioinformatics, 27(7):1017-1018, Feb 2011. doi:10.1093/bioinformatics/btr064.
[86] Casey S Greene, Arjun Krishnan, Aaron K Wong, Emanuela Ricciotti, Rene A Zelaya, Daniel S Himmelstein, Ran Zhang, Boris M Hartmann, Elena Zaslavsky,

Stuart C Sealfon, et al. Understanding multicellular function and disease with human tissue-specific networks. Nature Genetics, 47(6):569 - 576, 2015.
[87] Edgar Grinstein, Franziska Jundt, Inge Weinert, Peter Wernet, and Hans-Dieter Royer. Sp1 as G1 cell cycle phase specific transcription factor in epithelial cells. Oncogene, 21(10):1485-1492, Feb 2002. doi:10.1038/sj.onc. 1205211.
[88] A. Gurtner, P. Fuschi, F. Martelli, I. Manni, S. Artuso, G. Simonte, V. Ambrosino, A. Antonini, V. Folgiero, R. Falcioni, and et al. Transcription Factor NF-Y Induces Apoptosis in Cells Expressing Wild-Type p53 through E2F1 Upregulation and p53 Activation. Cancer Research, 70(23):9711 - 9720, Oct 2010. doi:10.1158/0008-5472.can-10-0721.
[89] Aymone Gurtner, Paola Fuschi, Fabio Martelli, Isabella Manni, Simona Artuso, Giacoma Simonte, Valeria Ambrosino, Annalisa Antonini, Valentina Folgiero, Rita Falcioni, et al. Transcription factor NF-Y induces apoptosis in cells expressing wild-type p53 through E2F1 upregulation and p53 activation. Cancer Research, 70(23):9711-9720, 2010.
[90] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46(1/3):389 - 422, 2002. doi:10.1023/a:1012487302797.
[91] Peter Hall, James Stephen Marron, and Amnon Neeman. Geometric representation of high dimension, low sample size data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3):427-444, 2005.
[92] Timothy C Hallstrom, Seiichi Mori, and Joseph R Nevins. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell, 13(1):11-22, 2008.
[93] Heonjong Han, Jae-Won Cho, Sangyoung Lee, Ayoung Yun, Hyojin Kim, Dasom Bae, Sunmo Yang, Chan Yeong Kim, Muyoung Lee, Eunbeen Kim, and et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Research, 46(D1):D380 D386, Oct 2017. doi:10.1093/nar/gkx1013.
[94] Peter Harris, Sue Nagy, Nicholas Vardaxis, and Nick Vardaxis. Mosby's dictionary of medicine, nursing and health professions. Elsevier Australia, 2009.
[95] Leland H Hartwell, John J Hopfield, Stanislas Leibler, and Andrew W Murray. From molecular to modular cell biology. Nature, 402:C47 - C52, 1999.
[96] Fatma A Hashim, Mai S Mabrouk, and Walid Al-Atabany. Review of different sequence motif finding algorithms. Avicenna Journal of Medical Biotechnology, 11(2):130, 2019.
[97] Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona, and Jean-Philippe Vert. TIGRESS: trustful inference of gene regulation using stability selection. BMC Systems Biology, 6(1):145, 2012.
[98] Michael Hecker, Sandro Lambeck, Susanne Toepfer, Eugene Van Someren, and Reinhard Guthke. Gene regulatory network inference: data integration in dynamic models - a review. Biosystems, 96(1):86-103, 2009.
[99] J Michael Herry, Caroline Adler, Catherine Ball, Stephen A Chervitz, Selina S Dwight, Erich T Hester, Yankai Jia, Gail Juvik, TaiYun Roe, Mark Schroeder, et al. SGD: Saccharomyces genome database. Nucleic Acids Research, 26(1):73 - 79, 1998.
[100] Veronica F Hinman, Kristen A Yankura, and Brenna S McCauley. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1789(4):326-332, 2009.
[101] Arthur Hoerl and Robert Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67, 1970.
[102] GS Hongyi Li and Maddala. Bootstrapping time series models. Econometric Reviews, 15(2):115-158, 1996.
[103] Sean D Hooper, Stephanie Boué, Roland Krause, Lars J Jensen, Christopher E Mason, Murad Ghanim, Kevin P White, Eileen EM Furlong, and Peer Bork. Identification of tightly regulated groups of genes during Drosophila melanogaster embryogenesis. Molecular Systems Biology, 3(1):72, 2007.
[104] Hui Hu, Ya-Ru Miao, Long-Hao Jia, Qing-Yang Yu, Qiong Zhang, and AnYuan Guo. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Research, 47(D1):D33 - D38, Sep 2018. doi:10.1093/nar/gky822.
[105] Jianjun Hu, Bin Li, and Daisuke Kihara. Limitations and potentials of current motif discovery algorithms. Nucleic Acids Research, 33(15):4899-4913, 2005.
[106] Jianjun Hu, Yifeng D Yang, and Daisuke Kihara. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences. BMC Bioinformatics, 7(1):342, 2006.
[107] Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1):1-13, 2008.
[108] Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1):44-57, 2009.
[109] Xiangwei Huang, Xia Li, and Bin Guo. KLF6 Induces Apoptosis in Prostate Cancer Cells through Up-regulation of ATF3. Journal of Biological Chemistry, 283(44):29795-29801, Aug 2008. doi:10.1074/jbc.m802515200.
[110] Jaime Huerta-Cepas, Kristoffer Forslund, Luis Pedro Coelho, Damian Szklarczyk, Lars Juhl Jensen, Christian Von Mering, and Peer Bork. Fast genomewide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution, 34(8):2115-2122, 2017.
[111] Jaime Huerta-Cepas, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, Sofia K Forslund, Helen Cook, Daniel R Mende, Ivica Letunic, Thomas Rattei, Lars J Jensen, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1):D309 - D314, 2019.
[112] Jason Hughes, Preston Estep, Saeed Tavazoie, and George Church. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. Journal of Molecular Biology, 296(5):1205-1214, 2000.
[113] Sarah E Hunt, William McLaren, Laurent Gil, Anja Thormann, Helen Schuilenburg, Dan Sheppard, Andrew Parton, Irina M Armean, Stephen J Trevanion, Paul Flicek, and et al. Ensembl variation resources. Database, 2018, Jan 2018. doi:10.1093/database/bay119.
[114] C. Huttenhower, E. M. Haley, M. A. Hibbs, V. Dumeaux, D. R. Barrett, H. A. Coller, and O. G. Troyanskaya. Exploring the human genome with functional maps. Genome Research, 19(6):1093 - 1106, Feb 2009. doi: 10.1101/gr.082214.108.
[115] Vân Anh Huynh-Thu and Guido Sanguinetti. Gene Regulatory Network Inference: An Introductory Survey. Gene Regulatory Networks, pages 1 - 23, Dec 2018. doi:10.1007/978-1-4939-8882-2_1.
[116] Alexandre Irrthum, Louis Wehenkel, Pierre Geurts, et al. Inferring regulatory networks from expression data using tree-based methods. PloS One, 5(9):e12776, 2010.
[117] Ian B Jeffery, Desmond G Higgins, and Aedín C Culhane. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics, 7(1), Jul 2006. doi:10.1186/ 1471-2105-7-359.
[118] Lars J Jensen, Michael Kuhn, Manuel Stark, Samuel Chaffron, Chris Creevey, Jean Muller, Tobias Doerks, Philippe Julien, Alexander Roth, Milan Simonovic, et al. STRING 8 - a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37(suppl_1):D412 - D416, 2008.
[119] David G Johnson. Role of E2F in cell cycle control and cancer. Frontiers in Bioscience, 3(4):d447-458, 1998. doi:10.2741/a291.
[120] Szymon Jozefczuk, Sebastian Klie, Gareth Catchpole, Jedrzej Szymanski, Alvaro Cuadros-Inostroza, Dirk Steinhauser, Joachim Selbig, and Lothar Willmitzer. Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology, 6(1):364, 2010.
[121] LM Julian, Y Liu, CA Pakenham, D Dugal-Tessier, V Ruzhynsky, S Bae, SY Tsai, G Leone, RS Slack, and A Blais. Tissue-specific targeting of cell fate regulatory genes by E2F factors. Cell Death \(\mathcal{E}\) Differentiation, 23(4):565 575, 2016.
[122] Mun-Su Jung, Jeanho Yun, Hee-Don Chae, Jeong-Min Kim, Sun-Chang Kim, Tae-Saeng Choi, and Deug Y Shin. p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene, 20(41):5818-5825, Sep 2001. doi:10.1038/sj.onc. 1204748.
[123] Stephanie Kamgnia and Gregory Butler. BENIN: Combining Knockout Data with Time Series Gene Expression Data for the Gene Regulatory Network Inference. In Proceedings of the Tenth International Conference on Computational Systems Biology and Bioinformatics, CSBio '19. ACM, 2019. doi: 10.1145/3365953.3365955.
[124] M. Kanehisa. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1):27-30, Jan 2000. doi:10.1093/nar/28.1.27.
[125] Minoru Kanehisa. Toward understanding the origin and evolution of cellular organisms. Protein Science, 28(11):1947-1951, Sep 2019. doi:10.1002/pro. 3715.
[126] Minoru Kanehisa, Yoko Sato, Miho Furumichi, Kanae Morishima, and Mao Tanabe. New approach for understanding genome variations in KEGG. Nucleic Acids Research, 47(D1):D590 - D595, Oct 2018. doi:10.1093/nar/gky962.
[127] Ari Kassardjian, Raed Rizkallah, Sarah Riman, Samuel H. Renfro, Karen E. Alexander, and Myra M. Hurt. The Transcription Factor YY1 Is a Novel Substrate for Aurora B Kinase at G2/M Transition of the Cell Cycle. PLoS ONE, 7(11):e50645, Nov 2012. doi:10.1371/journal. pone. 0050645.
[128] Michael B. Kastan, Christine E. Canman, and Christopher J. Leonard. P53, cell cycle control and apoptosis: Implications for cancer. Cancer and Metastasis Reviews, 14(1):3-15, Mar 1995. doi:10.1007/bf00690207.
[129] Mary M. Kavurma, Fernando S. Santiago, Emanuela Bonfoco, and Levon M. Khachigian. Sp1 Phosphorylation Regulates Apoptosis via Extracellular FasLFas Engagement. Journal of Biological Chemistry, 276(7):4964 - 4971, Oct 2000. doi:10.1074/jbc.m009251200.
[130] Alexei E Kazakov, Michael J Cipriano, Pavel S Novichkov, Simon Minovitsky, Dmitry V Vinogradov, Adam Arkin, Andrey A Mironov, Mikhail S Gelfand, and Inna Dubchak. RegTransBase - a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucleic Acids Research, 35(suppl 1):D407 - D412, 2007.
[131] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and a. D. Haussler. The Human Genome Browser at UCSC. Genome Research, 12(6):996 - 1006, May 2002. doi:10.1101/gr. 229102.
[132] Hun Sik Kim and Myung-Shik Lee. STAT1 as a key modulator of cell death. Cellular Signalling, 19(3):454-465, 2007.
[133] Nikolay A. Kolchanov, Olga A. Podkolodnaya, Elena A. Ananko, Elena V. Ignatieva, Irina L. Stepanenko, Olga V. Kel-Margoulis, Alexander E. Kel, Tatyana I. Merkulova, TN Goryachkovskaya, TV Busygina, et al. Transcription regulatory regions database (TRRD): its status in 2000. Nucleic Acids Research, 28(1):298-301, 2000.
[134] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
[135] Arjun Krishnan, Ran Zhang, Victoria Yao, Chandra L Theesfeld, Aaron K Wong, Alicja Tadych, Natalia Volfovsky, Alan Packer, Alex Lash, and Olga G Troyanskaya. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nature Neuroscience, 19(11):1454 1462, 2016.
[136] Robert Küffner, Tobias Petri, Lukas Windhager, and Ralf Zimmer. Petri nets with fuzzy logic (PNFL): reverse engineering and parametrization. PLoS One, 5(9):e12807, 2010.
[137] Soumendra Nath Lahiri. Resampling methods for dependent data. Springer Science \& Business Media, 2013.
[138] Peter Langfelder and Steve Horvath. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9(1):559, 2008. URL: http: //bioconductor.org/biocLite.R.
[139] Jamila Laoukili, Matthijs RH Kooistra, Alexandra Brás, Jos Kauw, Ron M Kerkhoven, Ashby Morrison, Hans Clevers, and René H Medema. FOXM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biology, 7(2):126-136, 2005.
[140] Ritwik K Layek, Aniruddha Datta, and Edward R Dougherty. From biological pathways to regulatory networks. Molecular BioSystems, 7(3):843-851, 2011.
[141] Sophie Lèbre. Inferring dynamic genetic networks with low order independencies. Statistical Applications in Genetics and Molecular Biology, 8(1), 2009.
[142] B. Lemon. Orchestrated response: a symphony of transcription factors for gene control. Genes and Development, 14(20):2551 - 2569, Oct 2000. doi: \(10.1101 / \mathrm{gad} .831000\).
[143] Robert Lesurf, Kelsy C Cotto, Grace Wang, Malachi Griffith, Katayoon Kasaian, Steven JM Jones, Stephen B Montgomery, Obi L Griffith, and Open Regulatory Annotation Consortium. ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Research, 44(D1):D126-D132, 2016.
[144] Michael Levine and Robert Tjian. Transcription regulation and animal diversity. Nature, 424(6945):147-151, Jul 2003. doi:10.1038/nature01763.
[145] Weizhong Li and Adam Godzik. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658 - 1659, 2006.
[146] Shoudan Liang, Stefanie Fuhrman, Roland Somogyi, et al. Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In Pacific Symposium on Biocomputing, volume 3, pages 18 - 29, 1998.
[147] Néhémy Lim, Yasin Şenbabaoğlu, George Michailidis, and Florence d'Alché Buc. OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks. Bioinformatics, 29(11):1416 1423, 2013.
[148] Fei Liu, Shao-Wu Zhang, Wei-Feng Guo, Ze-Gang Wei, and Luonan Chen. Inference of gene regulatory network based on local bayesian networks. PLoS Computational Biology, 12(8):e1005024, 2016.
[149] Zhi-Ping Liu, Canglin Wu, Hongyu Miao, and Hulin Wu. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database, 2015, 2015.
[150] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), Dec 2014. doi:10.1186/s13059-014-0550-8.
[151] Luong Linh Ly, Hideki Yoshida, and Masamitsu Yamaguchi. Nuclear transcription factor Y and its roles in cellular processes related to human disease. American Journal of Cancer Research, 3(4):339, 2013.
[152] David Madigan and Adrian E Raftery. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistical Association, 89(428):1535-1546, 1994.
[153] Patricia A. Madureira, Rana Varshochi, Demetra Constantinidou, Richard E. Francis, R. Charles Coombes, Kwok-Ming Yao, and Eric W.-F. Lam. The Forkhead Box M1 Protein Regulates the Transcription of the Estrogen Receptor \(\alpha\) in Breast Cancer Cells. Journal of Biological Chemistry, 281(35):25167 25176, Jun 2006. doi:10.1074/jbc.m603906200.
[154] Steven Maere, Karel Heymans, and Martin Kuiper. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21(16):3448-3449, 2005.
[155] Isabella Manni, Giuseppina Mazzaro, Aymone Gurtner, Roberto Mantovani, Ulrike Haugwitz, Karen Krause, Kurt Engeland, Ada Sacchi, Silvia Soddu, and Giulia Piaggio. NF-Y Mediates the Transcriptional Inhibition of the cyclin B1, cyclin B2, and cdc25C Promoters upon Induced G2 Arrest. Journal of Biological Chemistry, 276(8):5570-5576, Nov 2000. doi:10.1074/jbc.m006052200.
[156] Daniel Marbach. Evolutionary reverse engineering of gene networks. PhD thesis, École Polytechnique Fédérale de Lausanne, 2009.
[157] Daniel Marbach, James C Costello, Robert Küffner, Nicole M Vega, Robert J Prill, Diogo M Camacho, Kyle R Allison, Manolis Kellis, James J Collins, and Gustavo Stolovitzky. Wisdom of crowds for robust gene network inference. Nature Methods, 9(8):796-804, 2012.
[158] Daniel Marbach, Robert Prill, Thomas Schaffter, Claudio Mattiussi, Dario Floreano, and Gustavo Stolovitzky. Revealing strengths and weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences, 107(14):6286-6291, 2010.
[159] Adam Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo Favera, and Andrea Califano. ARACNE : an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7(Suppl 1):S7, 2006.
[160] Donald W Marquardt and Ronald D Snee. Ridge regression in practice. The American Statistician, 29(1):3-20, 1975.
[161] John R Masters. HeLa cells 50 years on: the good, the bad and the ugly. Nature Reviews Cancer, 2(4):315-319, 2002.
[162] Vea Matys, Ellen Fricke, R Geffers, Ellen Gößling, Martin Haubrock, R Hehl, Klaus Hornischer, Dagmar Karas, Alexander E. Kel, Olga V. Kel-Margoulis,
et al. TRANSFAC : transcriptional regulation, from patterns to profiles. Nucleic Acids Research, 31(1):374-378, 2003.
[163] Tahir Mehmood, Kristian Hovde Liland, Lars Snipen, and Solve Sæb \(\varnothing\). A review of variable selection methods in partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 118:62-69, 2012.
[164] Pedro Mendes, Wei Sha, and Keying Ye. Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics, 19(suppl_2):ii122 - ii129, 2003.
[165] Daniele Mercatelli, Laura Scalambra, Luca Triboli, Forest Ray, and Federico M Giorgi. Gene regulatory network inference resources: A practical overview. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1863(6):194430, 2020.
[166] Pedro T Monteiro, Jorge Oliveira, Pedro Pais, Miguel Antunes, Margarida Palma, Mafalda Cavalheiro, Mónica Galocha, Cláudia P Godinho, Luís C Martins, Nuno Bourbon, and et al. YEASTRACT+: a portal for cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids Research, 48(D1):D642 - D649, Oct 2019. doi:10.1093/nar/gkz859.
[167] Kevin Patrick Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, University of California, Berkeley, 2002.
[168] Isabel Nepomuceno-Chamorro, Jesus Aguilar-Ruiz, and Jose Riquelme. Inferring gene regression networks with model trees. BMC Bioinformatics, 11(1):517, 2010.
[169] Joseph O Ogutu, Torben Schulz-Streeck, and Hans-Peter Piepho. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proceedings, 6(S2), May 2012. doi: 10.1186/1753-6561-6-s2-s10.
[170] Carlota Oleaga, Sabine Welten, Audrey Belloc, Anna Solé, Laura Rodriguez, Núria Mencia, Elisabet Selga, Alicia Tapias, Veronique Noé, and Carlos J Ciudad. Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics. Biochemical Pharmacology, 84(12):1581-1591, 2012.
[171] Sandra Orchard, Mais Ammari, Bruno Aranda, Lionel Breuza, Leonardo Briganti, Fiona Broackes-Carter, Nancy H Campbell, Gayatri Chavali, Carol Chen, Noemi Del-Toro, et al. The MIntAct project - IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 42(D1):D358 - D363, 2014.
[172] David A Orlando, Charles Y Lin, Allister Bernard, Jean Y Wang, Joshua ES Socolar, Edwin S Iversen, Alexander J Hartemink, and Steven B Haase. Global control of cell-cycle transcription by coupled CDK and network oscillators. Na ture, 453(7197):944-947, 2008.
[173] Bernhard Ø Palsson. Systems Biology: simulation of dynamic network states. Cambridge University Press, 2011.
[174] Ranjit Kumar Paul. Multicollinearity: Causes, Effects and Remedies. IASRI, New Delhi, 2006.
[175] Giulio Pavesi, Paolo Mereghetti, Giancarlo Mauri, and Graziano Pesole. Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Research, 32(suppl 2):W199 - W203, 2004.
[176] William R. Pearson. An Introduction to Sequence Similarity ("Homology") Searching. Current Protocols in Bioinformatics, 42(1):3.1.1-3.1.8, Jun 2013. doi:10.1002/0471250953.bi0301s42.
[177] Baikang Pei and Dong-Guk Shin. Reconstruction of biological networks by incorporating prior knowledge into Bayesian network models. Journal of Computational Biology, 19(12):1324-1334, 2012.
[178] Francesca Petralia, Pei Wang, Jialiang Yang, and Zhidong Tu. Integrative random forest for gene regulatory network inference. Bioinformatics, 31(12):i197 - i205, 2015.
[179] Andrea Pinna, Nicola Soranzo, and Alberto De La Fuente. From knockouts to networks: establishing direct cause-effect relationships through graph analysis. PloS One, 5(10):e12912, 2010.
[180] Dimitris N Politis and Joseph P Romano. The stationary bootstrap. Journal of the American Statistical Association, 89(428):1303-1313, 1994.
[181] Elodie Portales-Casamar, David Arenillas, Jonathan Lim, Magdalena I Swanson, Steven Jiang, Anthony McCallum, Stefan Kirov, and Wyeth W Wasserman. The PAZAR database of gene regulatory information coupled to the ORCA toolkit for the study of regulatory sequences. Nucleic Acids Research, 37(suppl_1):D54 - D60, 2009.
[182] Robert J Prill, Daniel Marbach, Julio Saez-Rodriguez, Peter K Sorger, Leonidas G Alexopoulos, Xiaowei Xue, Neil D Clarke, Gregoire Altan-Bonnet, and Gustavo Stolovitzky. Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PloS One, 5(2):e9202, 2010.
[183] Jonathan M Raser and Erin K O'Shea. Noise in gene expression: origins, consequences, and control. Science, 309(5743):2010-2013, 2005.
[184] Uku Raudvere, Liis Kolberg, Ivan Kuzmin, Tambet Arak, Priit Adler, Hedi Peterson, and Jaak Vilo. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research, 47(W1):W191 - W198, May 2019. doi:10.1093/nar/gkz369.
[185] Erzsébet Ravasz, Anna Lisa Somera, Dale A Mongru, Zoltán N Oltvai, and A-L Barabási. Hierarchical organization of modularity in metabolic networks. Science, 297(5586):1551-1555, 2002.
[186] John E Reid and Lorenz Wernisch. STEME: efficient EM to find motifs in large data sets. Nucleic Acids Research, 39(18):e126 - e126, 2011.
[187] Bing Ren, Hieu Cam, Yasuhiko Takahashi, Thomas Volkert, Jolyon Terragni, Richard A Young, and Brian David Dynlacht. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes \(\mathfrak{E}\) Development, 16(2):245-256, 2002.
[188] Matthew E. Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and Gordon K. Smyth. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7):e47e47, Jan 2015. doi:10.1093/nar/gkv007.
[189] Karl J. Roberts. Index of kroberts Lecture. http://academic.pgcc.edu/ kroberts/Lecture/Chapter\%207/regulation.html, Sept 2006.
[190] Gordon Robertson, Martin Hirst, Matthew Bainbridge, Misha Bilenky, Yongjun Zhao, Thomas Zeng, Ghia Euskirchen, Bridget Bernier, Richard Varhol, Allen Delaney, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods, 4(8):651-657, 2007.
[191] Dmitry A Rodionov. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chemical Reviews, 107(8):3467-3497, 2007.
[192] Michal Ronen, Revital Rosenberg, Boris I Shraiman, and Uri Alon. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proceedings of the National Academy of Sciences, 99(16):10555-10560, 2002.
[193] Delphine Ropers, Hidde De Jong, and Hans Geiselmann. Mathematical modeling of genetic regulatory networks: Stress responses in it Escherichia coli. In P. Fu, M. Letterich, and S. Panke, editors, Systems Biology and Synthetic Biology, pages 235-271. John Wiley \& Sons, 2009.
[194] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):2507-2517, 2007.
[195] Fikret Sahin and Todd L. Sladek. E2F-1 has dual roles depending on the cell cycle. International Journal of Biological Sciences, pages 116 - 128, 2010. doi:10.7150/ijbs.6.116.
[196] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One, 10(3):e0118432, 2015.
[197] Francesco Sambo, Barbara Di Camillo, and Gianna Toffolo. CNET: an algorithm for reverse engineering of causal gene networks. NETTAB2008, Varenna, Italy, 2008.
[198] Albin Sandelin, Wynand Alkema, Pär Engström, Wyeth W Wasserman, and Boris Lenhard. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Research, 32(90001):91D - 94, Jan 2004. doi:10.1093/nar/gkh012.
[199] Jun-ichi Satoh and Hiroko Tabunoki. A comprehensive profile of ChIP-Seqbased STAT1 target genes suggests the complexity of STAT1-mediated gene regulatory mechanisms. Gene Regulation and Systems Biology, 7:GRSB - S11433, 2013.
[200] Eric Schadt. Molecular networks as sensors and drivers of common human diseases. Nature, 461(7261):218-223, 2009.
[201] Juliane Schäfer and Korbinian Strimmer. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21(6):754-764, 2005.
[202] Thomas Schaffter, Daniel Marbach, and Dario Floreano. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics, 27(16):2263-2270, 2011.
[203] William F Scherer, Jerome T Syverton, and George O Gey. Studies on the propagation in vitro of poliomyelitis viruses: IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. The Journal of Experimental Medicine, 97(5):695-710, 1953.
[204] Andreas Schlicker, Francisco S Domingues, Jörg Rahnenführer, and Thomas Lengauer. A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics, 7(1), Jun 2006. doi:10.1186/ 1471-2105-7-302.
[205] Thomas D Schneider and R Michael Stephens. Sequence logos: a new way to display consensus sequences. Nucleic Acids Research, 18(20):6097-6100, 1990.
[206] Eran Segal, Yoseph Barash, Itamar Simon, Nir Friedman, and Daphne Koller. From promoter sequence to expression: a probabilistic framework. In Proceedings of the Sixth Annual International Conference on Computational Biology, pages 263 - 272. ACM, 2002.
[207] Eran Segal, Michael Shapira, Aviv Regev, Dana Pe'er, David Botstein, Daphne Koller, and Nir Friedman. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34(2):166, 2003.
[208] Eran Segal, R Yelensky, and Daphne Koller. Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics, 19(suppl_1):i273 - i282, 2003.
[209] Yang Shi, Jeng-Shin Lee, and Katherine M. Galvin. Everything you have ever wanted to know about Yin Yang 1...... Biochimica et Biophysica Acta (BBA) Reviews on Cancer, 1332(2):F49 - F66, Apr 1997. doi:10.1016/s0304-419x (96)00044-3.
[210] Teppei Shimamura, Seiya Imoto, Rui Yamaguchi, André Fujita, Masao Nagasaki, and Satoru Miyano. Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology, 3(1):41, 2009.
[211] Ali Shojaie and George Michailidis. Discovering graphical Granger causality using the truncating LASSO penalty. Bioinformatics, 26(18):i517-i523, 2010.
[212] Christopher A Sims. Macroeconomics and reality. Econometrica: Journal of the Econometric Society, pages 1 - 48, 1980.
[213] Saurabh Sinha and Martin Tompa. YMF : a program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Research, 31(13):3586-3588, 2003.
[214] Steven M Smith, Daniel C Fulton, Tansy Chia, David Thorneycroft, Andrew Chapple, Hannah Dunstan, Christopher Hylton, Samuel C Zeeman, and Alison \(M\) Smith. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiology, 136(1):2687-2699, 2004.
[215] Gordon K Smyth. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Statistical Applications in Genetics and Molecular Biology, 3(1):1 - 25, Jan 2004. doi: 10.2202/1544-6115. 1027.
[216] Artem Sokolov, Daniel E Carlin, Evan O Paull, Robert Baertsch, and Joshua M Stuart. Pathway-based genomics prediction using generalized elastic net. PLoS Computational Biology, 12(3), 2016.
[217] Paul T Spellman, Gavin Sherlock, Michael Q Zhang, Vishwanath R Iyer, Kirk Anders, Michael B Eisen, Patrick O Brown, David Botstein, and Bruce Futcher. Comprehensive identification of cell cycle - regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12):3273-3297, 1998.
[218] François Spitz and Eileen EM Furlong. Transcription factors: from enhancer binding to developmental control. Nature Reviews Genetics, 13(9):613-626, 2012.
[219] J Stanelle, H Tu-Rapp, and B M Pützer. A novel mitochondrial protein DIP mediates E2F1-induced apoptosis independently of p53. Cell Death and Differentiation, 12(4):347-357, Nov 2004. doi:10.1038/sj.cdd. 4401532.
[220] Craig Stevens, Linda Smith, and Nicholas B. La Thangue. Chk2 activates E2F1 in response to DNA damage. Nature Cell Biology, 5(5):401 - 409, Apr 2003. doi:10.1038/ncb974.
[221] James H Stock and Mark W Watson. Vector autoregressions. Journal of Economic Perspectives, 15(4):101-115, 2001.
[222] Gary D Stormo, Thomas D Schneider, Larry Gold, and Andrzej Ehrenfeucht. Use of the "Perceptron" algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research, 10(9):2997-3011, 1982.
[223] Matthew E Studham, Andreas Tjärnberg, Torbjörn EM Nordling, Sven Nelander, and Erik LL Sonnhammer. Functional association networks as priors for gene regulatory network inference. Bioinformatics, 30(12):i130 - i138, 2014.
[224] Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. STRING v11: protein - protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607 - D613, 2019.
[225] Matthew J. Thomas and Edward Seto. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene, 236(2):197 - 208, Aug 1999. doi:10.1016/s0378-1119(99)00261-9.
[226] Morgane Thomas-Chollier, Carl Herrmann, Matthieu Defrance, Olivier Sand, Denis Thieffry, and Jacques van Helden. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Research, 40(4):e31-e31, 2012.
[227] Dawn Thompson, Aviv Regev, and Sushmita Roy. Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annual Review of Cell and Developmental Biology, 31:399 - 428, 2015.
[228] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), pages \(267-288,1996\).
[229] Hannah Tipney and Lawrence Hunter. An introduction to effective use of enrichment analysis software. Human Genomics, 4(3):202, 2010.
[230] Martin Tompa, Nan Li, Timothy L Bailey, George M Church, Bart De Moor, Eleazar Eskin, Alexander V Favorov, Martin C Frith, Yutao Fu, W James Kent, et al. Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology, 23(1):137-144, 2005.
[231] Geradrd J Tortora and SR Grabowski. Principles of anatomy and physiology, 2000. Wiley; 9th edition (2000), 2011.
[232] Benjamin Jean-Marie Tremblay. universalmotif: Import, Modify, and Export Motifs with \(R\), 2019. R package version 1.0.22. URL: https://github.com/b jmt/universalmotif.
[233] Jeffrey M Trimarchi and Jacqueline A Lees. Sibling rivalry in the E2F family. Nature Reviews Molecular Cell Biology, 3(1):11-20, 2002.
[234] Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109(3):475-494, 2001.
[235] V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9):5116 - 5121, Apr 2001. doi:10.1073/pnas. 091062498.
[236] Chiharu Uchida, Toshiaki Oda, Tsuyoshi Sugiyama, Sunao Otani, Masatoshi Kitagawa, and Arata Ichiyama. The Role of Sp1 and AP-2 in Basal and Protein Kinase A-induced Expression of Mitochondrial Serine:Pyruvate Aminotransferase in Hepatocytes. Journal of Biological Chemistry, 277(42):39082-39092, Aug 2002. doi:10.1074/jbc.m201380200.
[237] UniProt Consortium et al. The universal protein resource (UniProt). Nucleic Acids Research, 36(suppl 1):D190 - D195, 2008.
[238] Tim Van den Bulcke, Koenraad Van Leemput, Bart Naudts, Piet van Remortel, Hongwu Ma, Alain Verschoren, Bart De Moor, and Kathleen Marchal. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics, 7(1):43, 2006.
[239] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer science \& business media, 2013.
[240] Eberhard O Voit. A first course in Systems Biology. Garland Science, 2012.
[241] Aijin Wang, Robin Schneider-Broussard, Addanki P. Kumar, Michael C. MacLeod, and David G. Johnson. Regulation of BRCA1 Expression by the Rb-E2F Pathway. Journal of Biological Chemistry, 275(6):4532-4536, Feb 2000. doi:10.1074/jbc.275.6.4532.
[242] I-C. Wang, Y.-J. Chen, D. Hughes, V. Petrovic, M. L. Major, H. J. Park, Y. Tan, T. Ackerson, and R. H. Costa. Forkhead Box M1 Regulates the Transcriptional Network of Genes Essential for Mitotic Progression and Genes Encoding the SCF Skp2-Cks1) Ubiquitin Ligase. Molecular and Cellular Biology, 25(24):10875-10894, Nov 2005. doi:10.1128/mcb.25.24.10875-10894.2005.
[243] Su Wang, Hanfei Sun, Jian Ma, Chongzhi Zang, Chenfei Wang, Juan Wang, Qianzi Tang, Clifford A Meyer, Yong Zhang, and X Shirley Liu. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nature Protocols, 8(12):2502-2515, Nov 2013. doi:10.1038/nprot.2013.150.
[244] Y Wang, O Deng, Z Feng, Z Du, X Xiong, J Lai, X Yang, M Xu, H Wang, D Taylor, and et al. RNF126 promotes homologous recombination via regulation of E2F1-mediated BRCA1 expression. Oncogene, 35(11):1363-1372, Aug 2015. doi:10.1038/onc.2015.198.
[245] Matthew T. Weirauch, Ally Yang, Mihai Albu, Atina G. Cote, Alejandro Montenegro-Montero, Philipp Drewe, Hamed S. Najafabadi, Samuel A. Lambert, Ishminder Mann, Kate Cook, and et al. Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell, 158(6):1431 - 1443, Sep 2014. doi:10.1016/j.cell.2014.08.009.
[246] Mike West, Carrie Blanchette, Holly Dressman, Erich Huang, Seiichi Ishida, Rainer Spang, Harry Zuzan, John A Olson, Jeffrey R Marks, and Joseph R Nevins. Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of the National Academy of Sciences, 98(20):11462 - 11467, 2001.
[247] Michael L. Whitfield, Gavin Sherlock, Alok J. Saldanha, John I. Murray, Catherine A. Ball, Karen E. Alexander, John C. Matese, Charles M. Perou,

Myra M. Hurt, Patrick O. Brown, and et al. Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors. Molecular Biology of the Cell, 13(6):1977 - 2000, Jun 2002. doi: \(10.1091 / \mathrm{mbc} .02-02-0030\).
[248] Anja Wille, Philip Zimmermann, Eva Vranová, Andreas Fürholz, Oliver Laule, Stefan Bleuler, Lars Hennig, Amela Prelić, Peter von Rohr, Lothar Thiele, et al. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biology, 5(11):R92, 2004.
[249] Cecily J Wolfe, Isaac S Kohane, and Atul J Butte. Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks. BMC Bioinformatics, 6(1):227, 2005.
[250] Stephanie Kamgnia Wonkap and Gregory Butler. BENIN: Biologically enhanced network inference. Journal of Bioinformatics and Computational Biology, 18(03):2040007, 2020.
[251] Diane R. Wonsey and Maximillian T. Follettie. Loss of the Forkhead Transcription Factor FoxM1 Causes Centrosome Amplification and Mitotic Catastrophe. Cancer Research, 65(12):5181 - 5189, Jun 2005. doi:10.1158/0008-5472.ca n-04-4059.
[252] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3-34, 2015.
[253] Hua Xiong, Wen-Yu Su, Qin-Chuan Liang, Zhi-Gang Zhang, Hui-Min Chen, Wan Du, Ying-Xuan Chen, and Jing-Yuan Fang. Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells. Laboratory Investigation, 89(6):717-725, Mar 2009. doi:10.1038/labi nvest. 2009.11.
[254] Zheng Xu, Shao-Bo Xiao, Peng Xu, Qian Xie, Lu Cao, Dang Wang, Rui Luo, Yao Zhong, Huan-Chun Chen, and Liu-Rong Fang. miR-365, a Novel Negative Regulator of Interleukin-6 Gene Expression, Is Cooperatively Regulated by Sp1 and NF-KB. Journal of Biological Chemistry, 286(24):21401 - 21412, Apr 2011. doi:10.1074/jbc.m110.198630.
[255] Rul Yamaguchi, Ryo Yoshida, Seiya Imoto, Tomoyuki Higuchi, and Satoru Miyano. Finding module-based gene networks with state-space models-Mining high-dimensional and short time-course gene expression data. IEEE Signal Processing Magazine, 24(1):37-46, 2007.
[256] Ka Yee Yeung, Kenneth M Dombek, Kenneth Lo, John E Mittler, Jun Zhu, Eric E Schadt, Roger E Bumgarner, and Adrian E Raftery. Construction of regulatory networks using expression time-series data of a genotyped population. Proceedings of the National Academy of Sciences, 108(48):19436 - 19441, 2011.
[257] Kiyotsugu Yoshida and Yoshio Miki. Role of BRCA1 and BRCA2 as regulators of dna repair, transcription, and cell cycle in response to dna damage. Cancer Science, 95(11):866-8711, 2004.
[258] William Chad Young, Adrian E Raftery, and Ka Yee Yeung. Fast Bayesian inference for gene regulatory networks using ScanBMA. BMC Systems Biology, 8(1):47, 2014.
[259] G. Yu, F. Li, Y. Qin, X. Bo, Y. Wu, and S. Wang. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics, 26(7):976 - 978, Feb 2010. URL: http://dx.doi.org/10.1093/bi oinformatics/btq064, doi:10.1093/bioinformatics/btq064.
[260] Jing Yu, Anne Smith, Paul Wang, Alexander Hartemink, and Erich Jarvis. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20(18):3594-3603, 2004.
[261] Bowen Yuan, Youhong Liu, Xiaohui Yu, Linglong Yin, Yuchong Peng, Yingxue Gao, Qianling Zhu, Tuoyu Cao, Yinke Yang, Xuegong Fan, et al. FOXM1 contributes to taxane resistance by regulating UHRF1-controlled cancer cell stemness. Cell Death \(\mathcal{F}\) Disease, 9(5):1-11, 2018.
[262] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49 - 67, 2006.
[263] Jeanho Yun, Hee-Don Chae, Hyon E. Choy, Jongkyeong Chung, HyangSook Yoo, Moon-Hi Han, and Deug Y. Shin. p53 Negatively Regulatescdc2Transcription via the CCAAT-binding NF-Y Transcription Factor. Journal of Biological Chemistry, 274(42):29677 - 29682, Oct 1999. doi: 10.1074/jbc.274.42.29677.
[264] Dimas Yusuf, Stefanie L Butland, Magdalena I Swanson, Eugene Bolotin, Amy Ticoll, Warren A Cheung, Xiao Yu Cindy Zhang, Christopher TD Dickman, Debra L Fulton, Jonathan S Lim, et al. The transcription factor encyclopedia. Genome Biology, 13(3):R24, 2012.
[265] Arnold Zellner. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. Bayesian Inference and Decision Techniques, 1986.
[266] Bin Zhang and Steve Horvath. A general framework for weighted gene coexpression network analysis. Statistical Applications in Genetics and Molecular Biology, 4(1), 2005.
[267] Yuji Zhang, Jianhua Xuan, G Benildo, Robert Clarke, and Habtom W Ressom. Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration. PloS One, 5(4):e10268, 2010.
[268] Fang Zhao, Zhenyu Xuan, Lihua Liu, and Michael Q Zhang. TRED: a Transcriptional Regulatory Element Database and a platform for in silico gene regulation studies. Nucleic Acids Research, 33(suppl_1):D103 - D107, 2005.
[269] Jian Zhou, Chandra L Theesfeld, Kevin Yao, Kathleen M Chen, Aaron K Wong, and Olga G Troyanskaya. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nature Genetics, 50(8):1171 1179, 2018.
[270] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning - based sequence model. Nature Methods, 12(10):931 - 934, 2015.
[271] Jun Zhu, Bin Zhang, Erin N Smith, Becky Drees, Rachel B Brem, Leonid Kruglyak, Roger E Bumgarner, and Eric E Schadt. Integrating large-scale
functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics, 40(7):854, 2008.
[272] Pietro Zoppoli, Sandro Morganella, and Michele Ceccarelli. TimeDelayARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics, 11(1):154, 2010.
[273] Hui Zou. The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, 101(476):1418 - 1429, Dec 2006. doi:10.1198/ 016214506000000735.
[274] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301-320, 2005.
[275] Hui Zou and Hao Helen Zhang. On the adaptive elastic-net with a diverging number of parameters. Annals of Statistics, 37(4):1733, 2009.

\section*{Appendix A}

\section*{Background}

\section*{A. 1 IUPAC degenerate base symbols}

The table shows the list of degenerate symbols used in biochemistry to represent position in the DNA sequence where there is variation.

Table 22: List of Degenerate IUPAC base symbols
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Description} & \multirow{2}{*}{Symbol} & \multicolumn{5}{|l|}{Bases represented} & \multirow[t]{2}{*}{Complementary bases} \\
\hline & & \# & A & C & G & T & \\
\hline Adenine & A & & A & & & & T \\
\hline Cytosine & C & & & C & & & G \\
\hline Guanine & G & 1 & & & G & & C \\
\hline Thymine & T & & & & & T & A \\
\hline Uracil & U & & & & & U & A \\
\hline Weak & W & & A & & & T & W \\
\hline Strong & S & & & C & G & & S \\
\hline Amino & M & 2 & A & C & & & K \\
\hline Keto & K & & & & G & T & M \\
\hline Purine & R & & A & & G & & Y \\
\hline Pyrimidine & Y & & & C & & T & R \\
\hline Not A & B & & & C & G & T & V \\
\hline Not C & D & 3 & A & & G & T & H \\
\hline
\end{tabular}

Table 22 continued from previous page
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Description} & \multirow{2}{*}{Symbol} & \multicolumn{5}{|l|}{Bases represented} & \multirow[t]{2}{*}{Complementary bases} \\
\hline & & & A & C & G & T & \\
\hline Not G & H & & A & C & & T & D \\
\hline Not T & V & & A & C & G & & B \\
\hline Any one base & N & 4 & A & C & G & T & N \\
\hline Zero & Z & 0 & & & & & Z \\
\hline
\end{tabular}

The table reports the list of IUPAC base symbols used to report positional variation in DNA sequence. \# stands for number of. The first column gives the description of the symbol. The second column gives the actual degenerate symbol. The \(4^{\text {th }}\) column gives the the number of nucleotides it represents. \(5^{\text {th }}-8^{\text {th }}\) columns gives the actual nucleotides it replaces. \(9^{\text {th }}\) column the complementary base.

\section*{Appendix B}

\section*{BENIN}

\section*{B. 1 BENIN parameters setting}

This section gives more details on the parameters setting used for running BENIN on the DREAM4 dataset. We divided the parameters into two sets. First, the general parameters: that we set to same values for both sub-challenge size. Second, the main parameters, which are the parameters that influence BENIN performance.
- Table 23 gives the values of BENIN general parameters when inferring size 10 and size 100 DREAM4 subchallenges.
- Table 24 (respectively Table 26) gives BENIN main parameters setting for reconstructing networks in the size 100 (respectively size 10) DREAM4 subchallenge, combining time-series and KO expression data.
- Table 25 (respectively Table 27) gives BENIN main parameters setting for reconstructing networks in the size 100 (respectively size 10) DREAM4 subchallenge, combining location data with time-series expression data.

\section*{B. 2 BENIN results}

In this section, we report the distribution of BENIN results when combining time series with the 11 generated location data for size 10 (Table 33) and size 100 (Table 32) DREAM4 subchallenge.

Table 23: BENIN General Parameter setting
\begin{tabular}{lc}
\hline Parameters & Values \\
\hline\(\lambda\) (exponential distribution) & 20 \\
\(\lambda_{\text {min }}\) (integral lower limit) & 1 \\
\(\lambda_{\max }\) (integral upper limit) & 1000 \\
\(\beta\) & 0.5 \\
\(\lambda_{\text {Enet }}\) & lambda.min \\
nbfolds (CV) & 15 \\
\(R\) (number of bootstrap) & 1000 \\
\(l\) (mean block length) & 10 \\
\(\tau\) & 0.5 \\
\hline
\end{tabular}

The table summarizes the values assigned to each of BENIN general parameter when applying BENIN DREAM4 challenge.

Table 24: BENIN + KO parameters on size 100 subchallenge
\begin{tabular}{lccccc}
\hline Parameters & Net 1 & Net 2 & Net 3 & Net 4 & Net 5 \\
\hline\(\gamma\) & 1.6 & 1.6 & 1.4 & 1.5 & 1.4 \\
\(R\) & 3000 & 4000 & 3000 & 3000 & 3000 \\
\(\alpha\) & 0.9 & 0.99 & 0.9 & 0.9 & 0.9 \\
\hline
\end{tabular}

BENIN parameters values when combining time series expression data and KO expression data for the inference of the five networks in the DREAM4 size 100 subchallenge.

Table 25: BENIN + Location parameters setting on size 100 subchallenge
\begin{tabular}{lccccc}
\hline Parameters & Net 1 & Net 2 & Net 3 & Net 4 & Net 5 \\
\hline\(\gamma\) & 1 & 1 & 1 & 1 & 1 \\
\(R\) & 10000 & 10000 & 10000 & 10000 & 10000 \\
\(\alpha\) & 0.7 & 0.7 & 0.7 & 0.8 & 0.9 \\
\hline
\end{tabular}

BENIN parameter values when combining time-series expression data and location data for the inference of the five networks in the DREAM4 size 100 subchallenge.

Table 26: BENIN + KO parameters on size 10 subchallenge
\begin{tabular}{lccccc}
\hline Parameters & Net 1 & Net 2 & Net 3 & Net 4 & Net 5 \\
\hline\(\gamma\) & 0.7 & 1.5 & 1.3 & 1.1 & 1.5 \\
\(R\) & 1000 & 2000 & 1000 & 1000 & 1000 \\
\(\alpha\) & 0.9 & 0.99 & 0.9 & 0.9 & 0.9 \\
\hline
\end{tabular}

BENIN parameters values when combining time series expression data and KO expression data for the inference of the five networks in the DREAM4 size 10 subchallenge.

Table 27: BENIN + Location data parameters on size 10 subchallenge
\begin{tabular}{lccccc}
\hline Parameters & Net 1 & Net 2 & Net 3 & Net 4 & Net 5 \\
\hline\(\gamma\) & 1 & 1 & 1 & 1 & 1 \\
\(R\) & 1000 & 1000 & 1000 & 1000 & 1000 \\
\(\alpha\) & 0.9 & 0.9 & 0.9 & 0.3 & 0.7 \\
\hline
\end{tabular}

BENIN parameter values when combining time-series expression data and location data for the inference of the five networks in the DREAM4 size 10 subchallenge.

Figure 32: Global score Distribution for the DREAM4 size 100 subchallenge. Distribution of the global scores for the methods that combine the 11 generated location datasets with time series gene expression data to infer the five networks in size 100 DREAM4 subchallenge.

Figure 33: Global score Distribution for the DREAM4 size 10 subchallenge.
Distribution of the global scores for the methods that combine the 11 generated location datasets with time series gene expression data to infer the five networks in size 10 DREAM4 subchallenge.

\section*{Appendix C}

\section*{BENIN: Application to Human HeLa Cell Cycle GRN}

\section*{C. 1 Data}

This section gives more details on the data used for the inference the HeLa cell cycle GRN.
- Table 28 presents list of the peak files downloaded from the UCSC web page that contains the peak regions of the TFBS. It gives details on the cell line considered, the TFs considered in each experiment, the lab that performed the experiment, and finally, the URLs for downloading the file.
- Table 29 gives the list of KD gene expression datasets. It provides details about the list of considered TFs. For each TF, the table gives datasets source as well as the list of their IDs. Our datasets are from GEO (Gene Expression Omnibus) and the ENCODE project.
- Table 30 gives details about the motifs downloaded from CisBP. It associates each motif to the TF information: the official name, its ID from external databases. It further provides information on the experiment that produces the motif.
- Table 31 provides the list of all the 628 genes that are considered from Whitfield time-series expression dataset [247].
- Table 32 gives the list the TFs considered in our experiments and their gene ontology annotation.
- Table 33 lists the datasets that we manually downloaded from the GEO database. If the dataset is already included in dataTable 29 from KnockTF, it is reanalyzed.
- To build our "gold standard" network, we downloaded a list of 132 gold standard networks from the HumanBase database https://hb.flatironinstitute.org /download. Then we concatenated all the 132 networks into a single network. We used a row concatenation. We then restricted the network to genes that are expressed in the cell cycle. Table 34 gives for each edge, how many time it is repeated in the concatenated network.
- To build our "gold standard" network, we collected two networks from Garcia Alonso et.al work [78]. The authors generated one network for cancer cells and one for normal cells. We combine the two networks row per row. In Table 35, we give the number of repetitions for each edge after combining the two networks.
- Table 36 and Table 37 give the list of edges in our gold standard network. Table 36 gives the list of positive links and Table 37 the list of negative links. In each table, the \(1^{\text {st }}\) column represents the TF. The \(2^{\text {nd }}\) column the TG. The \(3^{\text {rd }}\) column informs for each edge if it is present in the network (value of 1) or if it is absent (value of 0). The present edges are the positive links, and the absent edges are the negative links. For each edge, the number in the \(4^{\text {th }}\) column provides the number of times it was repeated before removing the duplicate edges from the network obtained by combining Alonso networks and HumanBase networks.
- To perform the ortholog information transfer, we first need to build our model organism regulatory network. We first collected regulatory interactions from TRRUST and RegNetwork databases. Table 38 gives the list of repeated regulatory interactions after merging the regulatory network downloaded from TRRUST and RegNetwork databases.
- Table 39 gives the list of repeated edges the mouse regulatory network obtained after merging networks from TRRUST, RegNetwork and STRINGDB databases.

Table 28: List of HeLa Peak Files
\begin{tabular}{|c|c|c|c|}
\hline Cell & TFs & Lab & URL \\
\hline HeLa-S3 & BRCA1 & Stanford & http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3B rca1a300IggrabUniPk.narrowPeak.gz \\
\hline HeLa-S3 & CTCF & Broad & http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsBroadHelas 3CtcfUniPk.narrowPeak.gz \\
\hline HeLa-S3 & E2F1 & USC & http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3E 2f1UniPk.narrowPeak.gz \\
\hline HeLa-S3 & NFYA & Harvard & http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3N fyaIggrabUniPk.narrowPeak.gz \\
\hline HeLa-S3 & NFYB & Harvard & http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3N fybIggrabUniPk.narrowPeak.gz \\
\hline HeLa-S3 & STAT1 & Yale & http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3S tat1Ifng30UniPk.narrowPeak.gz \\
\hline HeLa-S3 & TFAP2A & USC & http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3A p2alphaUniPk.narrowPeak.gz \\
\hline HeLa-S3 & ZNF143 & Stanford & http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode DCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHelas3Z nf143IggrabUniPk.narrowPeak.gz \\
\hline
\end{tabular}

The table gives details about the list of peak files downloaded from the UCSC webpage. The \(1^{\text {st }}\) column gives the cell line used for the Chip-seq experiment. The \(2^{\text {nd }}\) column gives the TF concerned in the experiment. The \(3^{r d}\) column provides the lab names that generate the dataset, and finally, \(4^{\text {th }}\) column provides the URLs to access the file used.

Table 29: List of knockdown datasets
\begin{tabular}{lll}
\hline TF & Source & Profile ID \\
\hline STAT1 & GEO & GSE35551 \\
SRF & GEO & GSE22606 \\
SP1 & GEO & GSE37935 \\
NFYA & GEO & GSE40215 \\
NFE2L2 & GEO & GSE38332 \\
MITF & GEO & GSE16249 \\
ZNF521 & GEO & GSE79110 \\
MBD4 & GEO & GSE52567 \\
BRCA1 & GEO & GSE54265 \\
YY1 & GEO & GSE14964 \\
RUNX1 & GEO & GSE94835, GSE79598, GSE62140,GSE45743, GSE34594, GSE24778, GSE16238, GSE16238 \\
FOXM1 & GEO & GSE55204, GSE40051, GSE31534 \\
HSF2 & GEO & GSE48672, GSE31534 \\
HF1A & GEO & GSE76581, GSE56989, GSE55212, GSE54360, GSE44943,GSE3188,GSE3188 \\
NR3C1 & GEO & GSE42538 \\
KLF9 & GEO & GSE54699 \\
NFYB & ENCODE & ENCSR171KMM \\
GEO & GSE61272 \\
ZNF143 & ENCODE & ENCSR781XJD \\
HOXB4 & ENCODE & ENCSR359VJC \\
CTCF & GEO & GSE108869 \\
\hline
\end{tabular}

The table gives the list of KD gene expression datasets. The \(1^{\text {st }}\) columns provies the list of considered TFs. The \(2^{\text {nd }}\) column gives the original source of the datasets. The \(3^{\text {rd }}\) column provides the list of dataset IDs.

Table 30: Information Motif and Transcription Factor
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TF ID & Motif ID & \begin{tabular}{l}
MSource \\
ID
\end{tabular} & DBID & TF Name & DBDs & MSource Identifier & PMID \\
\hline T010824_2.00 & M02762_2.00 & MS33_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Jolma2013 & 23332764 \\
\hline T010824_2.00 & M02763_2.00 & MS33_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Jolma2013 & 23332764 \\
\hline T010824_2.00 & M02764_2.00 & MS33_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Jolma2013 & 23332764 \\
\hline T010824_2.00 & M02765_2.00 & MS33_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Jolma2013 & 23332764 \\
\hline T010824_2.00 & M02766_2.00 & MS33_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Jolma2013 & 23332764 \\
\hline T010824_2.00 & M02767_2.00 & MS33_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Jolma2013 & 23332764 \\
\hline T010824_2.00 & M04054_2.00 & MS62_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Yin2017 & 28473536 \\
\hline T010824_2.00 & M04055_2.00 & MS62_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Yin2017 & 28473536 \\
\hline T010824_2.00 & M07784_2.00 & MS18_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & ENCODE & 22955619 \\
\hline T010824_2.00 & M08703_2.00 & MS27_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & HocoMoco & 23175603 \\
\hline T010824_2.00 & M09755_2.00 & MS59_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Transfac & 16381825 \\
\hline T010824_2.00 & M09756_2.00 & MS59_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Transfac & 16381825 \\
\hline T010824_2.00 & M09757_2.00 & MS59_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Transfac & 16381825 \\
\hline T010824_2.00 & M09758_2.00 & MS59_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Transfac & 16381825 \\
\hline T010824_2.00 & M09759_2.00 & MS59_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Transfac & 16381825 \\
\hline T010824_2.00 & M09760_2.00 & MS59_2.00 & ENSG00000137203 & TFAP2A & TF_AP-2 & Transfac & 16381825 \\
\hline T034249_2.00 & M02774_2.00 & MS33_2.00 & ENSG00000070444 & MNT & HLH & Jolma2013 & 23332764 \\
\hline T034254_2.00 & M08049_2.00 & MS31_2.00 & ENSG00000100644 & HIF 1A & HLH & JASPAR & 24194598 \\
\hline T034254_2.00 & M08713_2.00 & MS27_2.00 & ENSG00000100644 & HIF1A & HLH & HocoMoco & 23175603 \\
\hline T034254_2.00 & M09454_2.00 & MS28_2.00 & ENSG00000100644 & HIF1A & HLH & HOMER & 20513432 \\
\hline T034254_2.00 & M09807_2.00 & MS59_2.00 & ENSG00000100644 & HIF1A & HLH & Transfac & 16381825 \\
\hline T034254_2.00 & M09808_2.00 & MS59_2.00 & ENSG00000100644 & HIF1A & HLH & Transfac & 16381825 \\
\hline T034254_2.00 & M09809_2.00 & MS59_2.00 & ENSG00000100644 & HIF1A & HLH & Transfac & 16381825 \\
\hline T034254_2.00 & M09810_2.00 & MS59_2.00 & ENSG00000100644 & HIF1A & HLH & Transfac & 16381825 \\
\hline T034254_2.00 & M09811_2.00 & MS59_2.00 & ENSG00000100644 & HIF 1A & HLH & Transfac & 16381825 \\
\hline T034335_2.00 & M08058_2.00 & MS31_2.00 & ENSG00000187098 & MITF & HLH & JASPAR & 24194598 \\
\hline T034335_2.00 & M08740_2.00 & MS27_2.00 & ENSG00000187098 & MITF & HLH & HocoMoco & 23175603 \\
\hline T034335_2.00 & M09880_2.00 & MS59_2.00 & ENSG00000187098 & MITF & HLH & Transfac & 16381825 \\
\hline T034335_2.00 & M09881_2.00 & MS59_2.00 & ENSG00000187098 & MITF & HLH & Transfac & 16381825 \\
\hline T059732_2.00 & M08789_2.00 & MS27_2.00 & ENSG00000116044 & NFE2L2 & bZIP_1 & HocoMoco & 23175603 \\
\hline T059732_2.00 & M09943_2.00 & MS59_2.00 & ENSG00000116044 & NFE2L2 & bZIP_1 & Transfac & 16381825 \\
\hline T059732_2.00 & M09944_2.00 & MS59_2.00 & ENSG00000116044 & NFE2L2 & bZIP_1 & Transfac & 16381825 \\
\hline T059732_2.00 & M09945_2.00 & MS59_2.00 & ENSG00000116044 & NFE2L2 & bZIP_1 & Transfac & 16381825 \\
\hline T059732_2.00 & M09946_2.00 & MS59_2.00 & ENSG00000116044 & NFE2L2 & bZIP_1 & Transfac & 16381825 \\
\hline T059742_2.00 & M01813_2.00 & MS64_2.00 & ENSG00000137504 & CREBZF & bZIP_1 & Zoo_01 & 25215497 \\
\hline T094796_2.00 & M04400_2.00 & MS62_2.00 & ENSG00000067082 & KLF6 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T094796_2.00 & M04401_2.00 & MS62_2.00 & ENSG00000067082 & KLF6 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T094796_2.00 & M08857_2.00 & MS27_2.00 & ENSG00000067082 & KLF6 & \({ }_{\text {zf-C2 }}\) H2 & HocoMoco & 23175603 \\
\hline T094796_2.00 & M10113_2.00 & MS59_2.00 & ENSG00000067082 & KLF6 & zf-C2H2 & Transfac & 16381825 \\
\hline T094821_2.00 & M02663_2.00 & MS31_2.00 & ENSG00000099326 & MZF1 & zf-C2H2 & JASPAR & 24194598 \\
\hline T094821_2.00 & M02664_2.00 & MS31_2.00 & ENSG00000099326 & MZF1 & \({ }_{\text {zf- }-\mathrm{C} 2 \mathrm{H} 2}\) & JASPAR & 24194598 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TF ID & Motif ID & MSource ID & DBID & TF Name & DBDs & MSource Identifier & PMID \\
\hline T094821_2.00 & M08236_2.00 & MS43_2.00 & ENSG00000099326 & MZF1 & zf-C2H2 & Najafabadi2015b & 25690854 \\
\hline T094821_2.00 & M08286_2.00 & MS52_2.00 & ENSG00000099326 & MZF1 & zf-C2H2 & Schmitges2016 & 27852650 \\
\hline T094821_2.00 & M08863_2.00 & MS27_2.00 & ENSG00000099326 & MZF1 & zf-C2H2 & HocoMoco & 23175603 \\
\hline T094821_2.00 & M10133_2.00 & MS59_2.00 & ENSG00000099326 & MZF1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094821_2.00 & M10134_2.00 & MS59_2.00 & ENSG00000099326 & MZF1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094821_2.00 & M10135_2.00 & MS59_2.00 & ENSG00000099326 & MZF1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094821_2.00 & M10136_2.00 & MS59_2.00 & ENSG00000099326 & MZF1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M02877_2.00 & MS33_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Jolma2013 & 23332764 \\
\hline T094823_2.00 & M04406_2.00 & MS62_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T094823_2.00 & M04407_2.00 & MS62_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T094823_2.00 & M04408_2.00 & MS62_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T094823_2.00 & M04409_2.00 & MS62_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T094823_2.00 & M05845_2.00 & MS30_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Isakova2017 & 28092692 \\
\hline T094823_2.00 & M07855_2.00 & MS18_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & ENCODE & 22955619 \\
\hline T094823_2.00 & M07856_2.00 & MS18_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & ENCODE & 22955619 \\
\hline T094823_2.00 & M07857_2.00 & MS18_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & ENCODE & 22955619 \\
\hline T094823_2.00 & M07858_2.00 & MS18_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & ENCODE & 22955619 \\
\hline T094823_2.00 & M07859_2.00 & MS18_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & ENCODE & 22955619 \\
\hline T094823_2.00 & M07860_2.00 & MS18_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & ENCODE & 22955619 \\
\hline T094823_2.00 & M07861_2.00 & MS18_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & ENCODE & 22955619 \\
\hline T094823_2.00 & M08085_2.00 & MS31_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & JASPAR & 24194598 \\
\hline T094823_2.00 & M08237_2.00 & MS43_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Najafabadi2015b & 25690854 \\
\hline T094823_2.00 & M08288_2.00 & MS52_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Schmitges2016 & 27852650 \\
\hline T094823_2.00 & M08865_2.00 & MS27_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & HocoMoco & 23175603 \\
\hline T094823_2.00 & M10138_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M10139_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M10140_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M10141_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M10142_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M10143_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M10144_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M10145_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094823_2.00 & M10146_2.00 & MS59_2.00 & ENSG00000100811 & YY1 & zf-C2H2 & Transfac & 16381825 \\
\hline T094831_2.00 & M02878_2.00 & MS33_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Jolma2013 & 23332764 \\
\hline T094831_2.00 & M05846_2.00 & MS30_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Isakova2017 & 28092692 \\
\hline T094831_2.00 & M07550_2.00 & MS49_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Rhee2011 & 22153082 \\
\hline T094831_2.00 & M07551_2.00 & MS49_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Rhee2011 & 22153082 \\
\hline T094831_2.00 & M07552_2.00 & MS49_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Rhee2011 & 22153082 \\
\hline T094831_2.00 & M07862_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07863_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Encode & 22955619 \\
\hline T094831_2.00 & M07864_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07865_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TF ID & Motif ID & \[
\begin{aligned}
& \text { MSource } \\
& \text { ID }
\end{aligned}
\] & DBID & TF Name & DBDs & MSource Identifier & PMID \\
\hline T094831_2.00 & M07866_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07867_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07868_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07869_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Encode & 22955619 \\
\hline T094831_2.00 & M07870_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07871_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07872_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Encode & 22955619 \\
\hline T094831_2.00 & M07873_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07874_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07875_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07876_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07877_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07878_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07879_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07880_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07881_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07882_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07883_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07884_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07885_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07886_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07887_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07888_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07889_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07890_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07891_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07892_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07893_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07894_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07895_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07896_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07897_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07898_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07899_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07900_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07901_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07902_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07903_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07904_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07905_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07906_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07907_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TF ID & Motif ID & \begin{tabular}{l}
MSource \\
ID
\end{tabular} & DBID & TF Name & DBDs & MSource Identifier & PMID \\
\hline T094831_2.00 & M07908_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07909_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07910_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07911_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Encode & 22955619 \\
\hline T094831_2.00 & M07912_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07913_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07914_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Encode & 22955619 \\
\hline T094831_2.00 & M07915_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07916_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07917_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07918_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07919_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07920_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Encode & 22955619 \\
\hline T094831_2.00 & M07921_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07922_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07923_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07924_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M07925_2.00 & MS18_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & ENCODE & 22955619 \\
\hline T094831_2.00 & M08087_2.00 & MS31_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & JASPAR & 24194598 \\
\hline T094831_2.00 & M08238_2.00 & MS43_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Najafabadi2015b & 25690854 \\
\hline T094831_2.00 & M08289_2.00 & MS52_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Schmitges2016 & 27852650 \\
\hline T094831_2.00 & M08869_2.00 & MS27_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & HocoMoco & 23175603 \\
\hline T094831_2.00 & M09503_2.00 & MS28_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & HOMER & 20513432 \\
\hline T094831_2.00 & M09504_2.00 & MS28_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & HOMER & 20513432 \\
\hline T094831_2.00 & M10152_2.00 & MS59_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Transfac & 16381825 \\
\hline T094831_2.00 & M10153_2.00 & MS59_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Transfac & 16381825 \\
\hline T094831_2.00 & M10154_2.00 & MS59_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Transfac & 16381825 \\
\hline T094831_2.00 & M10155_2.00 & MS59_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Transfac & 16381825 \\
\hline T094831_2.00 & M10156_2.00 & MS59_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Transfac & 16381825 \\
\hline T094831_2.00 & M10157_2.00 & MS59_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Transfac & 16381825 \\
\hline T094831_2.00 & M10158_2.00 & MS59_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Transfac & 16381825 \\
\hline T094831_2.00 & M10159_2.00 & MS59_2.00 & ENSG00000102974 & CTCF & zf-C2H2 & Transfac & 16381825 \\
\hline T094868_2.00 & M08088_2.00 & MS31_2.00 & ENSG00000119138 & KLF9 & zf-C2H2 & JASPAR & 24194598 \\
\hline T094868_2.00 & M08880_2.00 & MS27_2.00 & ENSG00000119138 & KLF9 & zf-C2H2 & HocoMoco & 23175603 \\
\hline T095017_2.00 & M04509_2.00 & MS62_2.00 & ENSG00000162702 & ZNF281 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T095017_2.00 & M04510_2.00 & MS62_2.00 & ENSG00000162702 & ZNF281 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T095017_2.00 & M08321_2.00 & MS52_2.00 & ENSG00000162702 & ZNF281 & zf-C2H2 & Schmitges2016 & 27852650 \\
\hline T095017_2.00 & M08906_2.00 & MS27_2.00 & ENSG00000162702 & ZNF281 & zf-C2H2 & HocoMoco & 23175603 \\
\hline T095017_2.00 & M10237_2.00 & MS59_2.00 & ENSG00000162702 & ZNF281 & zf-C2H2 & Transfac & 16381825 \\
\hline T095041_2.00 & M02899_2.00 & MS33_2.00 & ENSG00000166478 & ZNF143 & zf-C2H2 & Jolma2013 & 23332764 \\
\hline T095041_2.00 & M07931_2.00 & MS18_2.00 & ENSG00000166478 & ZNF143 & zf-C2H2 & ENCODE & 22955619 \\
\hline T095041_2.00 & M08910_2.00 & MS27_2.00 & ENSG00000166478 & ZNF143 & zf-C2H2 & HocoMoco & 23175603 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TF ID & Motif ID & MSource ID & DBID & TF Name & DBDs & MSource Identifier & PMID \\
\hline T095041_2.00 & M09510_2.00 & MS28_2.00 & ENSG00000166478 & ZNF143 & zf-C2H2 & HOMER & 20513432 \\
\hline T095041_2.00 & M10247_2.00 & MS59_2.00 & ENSG00000166478 & ZNF143 & zf-C2H2 & Transfac & 16381825 \\
\hline T095041_2.00 & M10248_2.00 & MS59_2.00 & ENSG00000166478 & ZNF143 & zf-C2H2 & Transfac & 16381825 \\
\hline T095041_2.00 & M10249_2.00 & MS59_2.00 & ENSG00000166478 & ZNF143 & zf-C2H2 & Transfac & 16381825 \\
\hline T095112_2.00 & M10260_2.00 & MS59_2.00 & ENSG00000171940 & ZNF217 & zf-C2H2 & Transfac & 16381825 \\
\hline T095129_2.00 & M08445_2.00 & MS31_2.00 & ENSG00000173404 & INSM1 & zf-C2H2 & JASPAR & 24194598 \\
\hline T095129_2.00 & M08923_2.00 & MS27_2.00 & ENSG00000173404 & INSM1 & zf-C2H2 & HocoMoco & 23175603 \\
\hline T095173_2.00 & M02914_2.00 & MS33_2.00 & ENSG00000178951 & ZBTB7A & zf-C2H2 & Jolma2013 & 23332764 \\
\hline T095173_2.00 & M04579_2.00 & MS62_2.00 & ENSG00000178951 & zBTB7A & zf-C2H2 & Yin2017 & 28473536 \\
\hline T095173_2.00 & M04580_2.00 & MS62_2.00 & ENSG00000178951 & ZBTB7A & zf-C2H2 & Yin2017 & 28473536 \\
\hline T095173_2.00 & M07937_2.00 & MS18_2.00 & ENSG00000178951 & ZBTB7A & zf-C2H2 & ENCODE & 22955619 \\
\hline T095173_2.00 & M08095_2.00 & MS31_2.00 & ENSG00000178951 & zBTB7A & \({ }_{\text {zf-C2 }}\) H2 & JASPAR & 24194598 \\
\hline T095173_2.00 & M08926_2.00 & MS27_2.00 & ENSG00000178951 & ZBTB7A & zf-C2H2 & HocoMoco & 23175603 \\
\hline T095173_2.00 & M10273_2.00 & MS59_2.00 & ENSG00000178951 & zBTB7A & zf-C2H2 & Transfac & 16381825 \\
\hline T095173_2.00 & M10274_2.00 & MS59_2.00 & ENSG00000178951 & ZBTB7A & zf-C2H2 & Transfac & 16381825 \\
\hline T095173_2.00 & M10275_2.00 & MS59_2.00 & ENSG00000178951 & zBTB7A & zf-C2H2 & Transfac & 16381825 \\
\hline T095173_2.00 & M10276_2.00 & MS59_2.00 & ENSG00000178951 & ZBTB7A & zf-C2H2 & Transfac & 16381825 \\
\hline T095173_2.00 & M10277_2.00 & MS59_2.00 & ENSG00000178951 & zBTB7A & zf-C2H2 & Transfac & 16381825 \\
\hline T095233_2.00 & M02921_2.00 & MS33_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Jolma2013 & 23332764 \\
\hline T095233_2.00 & M04605_2.00 & MS62_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T095233_2.00 & M04606_2.00 & MS62_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Yin2017 & 28473536 \\
\hline T095233_2.00 & M08096_2.00 & MS31_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & JASPAR & 24194598 \\
\hline T095233_2.00 & M08363_2.00 & MS52_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Schmitges2016 & 27852650 \\
\hline T095233_2.00 & M08938_2.00 & MS27_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & HocoMoco & 23175603 \\
\hline T095233_2.00 & M10294_2.00 & MS59_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Transfac & 16381825 \\
\hline T095233_2.00 & M10295_2.00 & MS59_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Transfac & 16381825 \\
\hline T095233_2.00 & M10296_2.00 & MS59_2.00 & ENSG00000185591 & SP1 & \(z_{\text {f-C }}\) 2H2 & Transfac & 16381825 \\
\hline T095233_2.00 & M10297_2.00 & MS59_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Transfac & 16381825 \\
\hline T095233_2.00 & M10298_2.00 & MS59_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Transfac & 16381825 \\
\hline T095233_2.00 & M10299_2.00 & MS59_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Transfac & 16381825 \\
\hline T095233_2.00 & M10300_2.00 & MS59_2.00 & ENSG00000185591 & SP1 & zf-C2H2 & Transfac & 16381825 \\
\hline T095392_2.00 & M07746_2.00 & MS03_2.00 & ENSG00000198466 & ZNF587 & zf-C2H2 & Barazandeh2018 & 29146583 \\
\hline T095403_2.00 & M10318_2.00 & MS59_2.00 & ENSG00000198795 & ZNF521 & zf-C2H2 & Transfac & 16381825 \\
\hline T159918_2.00 & M08104_2.00 & MS31_2.00 & ENSG00000001167 & NFYA & CBFB_NFYA & JASPAR & 24194598 \\
\hline T159918_2.00 & M09018_2.00 & MS27_2.00 & ENSG00000001167 & NFYA & CBFB_NFYA & HocoMoco & 23175603 \\
\hline T159918_2.00 & M10403_2.00 & MS59_2.00 & ENSG00000001167 & NFYA & CBFB_NFYA & Transfac & 16381825 \\
\hline T159918_2.00 & M10404_2.00 & MS59_2.00 & ENSG00000001167 & NFYA & CBFB_NFYA & Transfac & 16381825 \\
\hline T159918_2.00 & M10405_2.00 & MS59_2.00 & ENSG00000001167 & NFYA & CBFB_NFYA & Transfac & 16381825 \\
\hline T172616_2.00 & M02952_2.00 & MS33_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Jolma2013 & 23332764 \\
\hline T172616_2.00 & M02953_2.00 & MS33_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Jolma2013 & 23332764 \\
\hline T172616_2.00 & M02954_2.00 & MS33_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Jolma2013 & 23332764 \\
\hline T172616_2.00 & M02955_2.00 & MS33_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Jolma2013 & 23332764 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TF ID & Motif ID & MSource
ID & DBID & TF Name & DBDs & MSource Identifier & PMID \\
\hline T172616_2.00 & M04700_2.00 & MS62_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Yin2017 & 28473536 \\
\hline T172616_2.00 & M07938_2.00 & MS18_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & ENCODE & 22955619 \\
\hline T172616_2.00 & M09030_2.00 & MS27_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & HocoMoco & 23175603 \\
\hline T172616_2.00 & M09521_2.00 & MS28_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & HOMER & 20513432 \\
\hline T172616_2.00 & M10444_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10445_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10446_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10447_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10448_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10449_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10450_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10451_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10452_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172616_2.00 & M10453_2.00 & MS59_2.00 & ENSG00000101412 & E2F1 & E2F_TDP & Transfac & 16381825 \\
\hline T172619_2.00 & M02959_2.00 & MS33_2.00 & ENSG00000129173 & E2F8 & E2F_TDP & Jolma2013 & 23332764 \\
\hline T172619_2.00 & M04703_2.00 & MS62_2.00 & ENSG00000129173 & E2F8 & E2F_TDP & Yin2017 & 28473536 \\
\hline T172619_2.00 & M04704_2.00 & MS62_2.00 & ENSG00000129173 & E2F8 & E2F_TDP & Yin2017 & 28473536 \\
\hline T172620_2.00 & M09032_2.00 & MS27_2.00 & ENSG00000133740 & E2F5 & E2F_TDP & HocoMoco & 23175603 \\
\hline T185765_2.00 & M09085_2.00 & MS27_2.00 & ENSG00000111206 & FOXM1 & Forkhead & HocoMoco & 23175603 \\
\hline T185765_2.00 & M10532_2.00 & MS59_2.00 & ENSG00000111206 & FOXM1 & Forkhead & Transfac & 16381825 \\
\hline T185765_2.00 & M10533_2.00 & MS59_2.00 & ENSG00000111206 & FOXM1 & Forkhead & Transfac & 16381825 \\
\hline T185765_2.00 & M10534_2.00 & MS59_2.00 & ENSG00000111206 & FOXM1 & Forkhead & Transfac & 16381825 \\
\hline T185765_2.00 & M10535_2.00 & MS59_2.00 & ENSG00000111206 & FOXM1 & Forkhead & Transfac & 16381825 \\
\hline T209837_2.00 & M03143_2.00 & MS33_2.00 & ENSG00000130675 & MNX1 & Homeobox & Jolma2013 & 23332764 \\
\hline T209837_2.00 & M05126_2.00 & MS62_2.00 & ENSG00000130675 & MNX1 & Homeobox & Yin2017 & 28473536 \\
\hline T209837_2.00 & M05127_2.00 & MS62_2.00 & ENSG00000130675 & MNX1 & Homeobox & Yin2017 & 28473536 \\
\hline T209837_2.00 & M05128_2.00 & MS62_2.00 & ENSG00000130675 & MNX1 & Homeobox & Yin2017 & 28473536 \\
\hline T209869_2.00 & M03178_2.00 & MS33_2.00 & ENSG00000160199 & PKNOX1 & Homeobox & Jolma2013 & 23332764 \\
\hline T209869_2.00 & M05206_2.00 & MS62_2.00 & ENSG00000160199 & PKNOX1 & Homeobox & Yin2017 & 28473536 \\
\hline T209869_2.00 & M05207_2.00 & MS62_2.00 & ENSG00000160199 & PKNOX1 & Homeobox & Yin2017 & 28473536 \\
\hline T209869_2.00 & M05208_2.00 & MS62_2.00 & ENSG00000160199 & PKNOX1 & Homeobox & Yin2017 & 28473536 \\
\hline T209869_2.00 & M05209_2.00 & MS62_2.00 & ENSG00000160199 & PKNOX1 & Homeobox & Yin2017 & 28473536 \\
\hline T209869_2.00 & M09150_2.00 & MS27_2.00 & ENSG00000160199 & PKNOX1 & Homeobox & HocoMoco & 23175603 \\
\hline T209869_2.00 & M10712_2.00 & MS59_2.00 & ENSG00000160199 & PKNOX1 & Homeobox & Transfac & 16381825 \\
\hline T209914_2.00 & M03223_2.00 & MS33_2.00 & ENSG00000177426 & TGIF1 & Homeobox & Jolma2013 & 23332764 \\
\hline T209914_2.00 & M05317_2.00 & MS62_2.00 & ENSG00000177426 & TGIF1 & Homeobox & Yin2017 & 28473536 \\
\hline T209914_2.00 & M05318_2.00 & MS62_2.00 & ENSG00000177426 & TGIF1 & Homeobox & Yin2017 & 28473536 \\
\hline T209914_2.00 & M09159_2.00 & MS27_2.00 & ENSG00000177426 & TGIF1 & Homeobox & HocoMoco & 23175603 \\
\hline T209914_2.00 & M10740_2.00 & MS59_2.00 & ENSG00000177426 & TGIF1 & Homeobox & Transfac & 16381825 \\
\hline T209924_2.00 & M05343_2.00 & MS62_2.00 & ENSG00000182742 & HOXB4 & Homeobox & Yin2017 & 28473536 \\
\hline T209924_2.00 & M05344_2.00 & MS62_2.00 & ENSG00000182742 & HOXB4 & Homeobox & Yin2017 & 28473536 \\
\hline T209924_2.00 & M05345_2.00 & MS62_2.00 & ENSG00000182742 & нохВ4 & Homeobox & Yin2017 & 28473536 \\
\hline
\end{tabular}

Table 30 continued from previous page
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TF ID & Motif ID & \begin{tabular}{l}
MSource \\
ID
\end{tabular} & DBID & TF Name & DBDs & MSource Identifier & PMID \\
\hline T209924_2.00 & M09162_2.00 & MS27_2.00 & ENSG00000182742 & Hoxb4 & Homeobox & HocoMoco & 23175603 \\
\hline T240222_2.00 & M02744_2.00 & MS32_2.00 & ENSG00000025156 & HSF2 & HSF_DNA-
bind & Jolma2010 & 20378718 \\
\hline T240222_2.00 & M03324_2.00 & MS33_2.00 & ENSG00000025156 & HSF2 & HSF_DNAbind & Jolma2013 & 23332764 \\
\hline T240222_2.00 & M05505_2.00 & MS62_2.00 & ENSG00000025156 & HSF2 & \begin{tabular}{l}
HSF_DNA- \\
bind
\end{tabular} & Yin2017 & 28473536 \\
\hline T240222_2.00 & M05506_2.00 & MS62_2.00 & ENSG00000025156 & HSF2 & HSF_DNAbind & Yin2017 & 28473536 \\
\hline T240222_2.00 & M05507_2.00 & MS62_2.00 & ENSG00000025156 & HSF2 & HSF_DNAbind & Yin2017 & 28473536 \\
\hline T240222_2.00 & M05508_2.00 & MS62_2.00 & ENSG00000025156 & HSF2 & \begin{tabular}{l}
HSF_DNA- \\
bind
\end{tabular} & Yin2017 & 28473536 \\
\hline T240222_2.00 & M09229_2.00 & MS27_2.00 & ENSG00000025156 & HSF2 & \begin{tabular}{l}
HSF_DNA- \\
bind
\end{tabular} & HocoMoco & 23175603 \\
\hline T240222_2.00 & M10859_2.00 & MS59_2.00 & ENSG00000025156 & HSF2 & HSF_DNAbind & Transfac & 16381825 \\
\hline T240222_2.00 & M10860_2.00 & MS59_2.00 & ENSG00000025156 & HSF2 & \begin{tabular}{l}
HSF_DNA- \\
bind
\end{tabular} & Transfac & 16381825 \\
\hline T240222_2.00 & M10861_2.00 & MS59_2.00 & ENSG00000025156 & HSF2 & \begin{tabular}{l}
HSF_DNA- \\
bind
\end{tabular} & Transfac & 16381825 \\
\hline T253657_2.00 & M03341_2.00 & MS33_2.00 & ENSG00000112658 & SRF & SRF-TF & Jolma2013 & 23332764 \\
\hline T253657_2.00 & M03342_2.00 & MS33_2.00 & ENSG00000112658 & SRF & SRF-TF & Jolma2013 & 23332764 \\
\hline T253657_2.00 & M05553_2.00 & MS62_2.00 & ENSG00000112658 & SRF & SRF-TF & Yin2017 & 28473536 \\
\hline T253657_2.00 & M05554_2.00 & MS62_2.00 & ENSG00000112658 & SRF & SRF-TF & Yin2017 & 28473536 \\
\hline T253657_2.00 & M07981_2.00 & MS18_2.00 & ENSG00000112658 & SRF & SRF-TF & ENCODE & 22955619 \\
\hline T253657_2.00 & M07982_2.00 & MS18_2.00 & ENSG00000112658 & SRF & SRF-TF & ENCODE & 22955619 \\
\hline T253657_2.00 & M07983_2.00 & MS18_2.00 & ENSG00000112658 & SRF & SRF-TF & ENCODE & 22955619 \\
\hline T253657_2.00 & M07984_2.00 & MS18_2.00 & ENSG00000112658 & SRF & SRF-TF & ENCODE & 22955619 \\
\hline T253657_2.00 & M09249_2.00 & MS27_2.00 & ENSG00000112658 & SRF & SRF-TF & HocoMoco & 23175603 \\
\hline T253657_2.00 & M10947_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657_2.00 & M10948_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657_2.00 & M10949_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657_2.00 & M10950_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657_2.00 & M10951_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657_2.00 & M10952_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657_2.00 & M10953_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657_2.00 & M10954_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657_2.00 & M10955_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T253657-2.00 & M10956_2.00 & MS59_2.00 & ENSG00000112658 & SRF & SRF-TF & Transfac & 16381825 \\
\hline T260164_2.00 & M09256_2.00 & MS27_2.00 & ENSG00000134046 & MBD2 & MBD & HocoMoco & 23175603 \\
\hline T303216_2.00 & M03366_2.00 & MS33_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Jolma2013 & 23332764 \\
\hline
\end{tabular}

Table 30 continued from previous page
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TF ID & Motif ID & \begin{tabular}{l}
MSource \\
ID
\end{tabular} & DBID & TF Name & DBDs & MSource Identifier & PMID \\
\hline T303216_2.00 & M05587_2.00 & MS62_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Yin2017 & 28473536 \\
\hline T303216_2.00 & M05588_2.00 & MS62_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Yin2017 & 28473536 \\
\hline T303216_2.00 & M07986_2.00 & MS18_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & ENCODE & 22955619 \\
\hline T303216_2.00 & M07987_2.00 & MS18_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & ENCODE & 22955619 \\
\hline T303216_2.00 & M09270_2.00 & MS27_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & HocoMoco & 23175603 \\
\hline T303216_2.00 & M09607_2.00 & MS28_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & HOMER & 20513432 \\
\hline T303216_2.00 & M11119_2.00 & MS59_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Transfac & 16381825 \\
\hline T303216_2.00 & M11120_2.00 & MS59_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Transfac & 16381825 \\
\hline T303216_2.00 & M11121_2.00 & MS59_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Transfac & 16381825 \\
\hline T303216_2.00 & M11122_2.00 & MS59_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Transfac & 16381825 \\
\hline T303216_2.00 & M11123_2.00 & MS59_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Transfac & 16381825 \\
\hline T303216_2.00 & M11124_2.00 & MS59_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Transfac & 16381825 \\
\hline T303216_2.00 & M11125_2.00 & MS59_2.00 & ENSG00000113580 & NR3C1 & zf-C4 & Transfac & 16381825 \\
\hline T319384_2.00 & M09371_2.00 & MS27_2.00 & ENSG00000159216 & RUNX1 & Runt & HocoMoco & 23175603 \\
\hline T319384_2.00 & M09631_2.00 & MS28_2.00 & ENSG00000159216 & RUNX1 & Runt & HOMER & 20513432 \\
\hline T319384_2.00 & M09632_2.00 & MS28_2.00 & ENSG00000159216 & RUNX1 & Runt & HOMER & 20513432 \\
\hline T319384_2.00 & M11258_2.00 & MS59_2.00 & ENSG00000159216 & RUNX1 & Runt & Transfac & 16381825 \\
\hline T319384_2.00 & M11259_2.00 & MS59_2.00 & ENSG00000159216 & RUNX1 & Runt & Transfac & 16381825 \\
\hline T319384_2.00 & M11260_2.00 & MS59_2.00 & ENSG00000159216 & RUNX1 & Runt & Transfac & 16381825 \\
\hline T319384_2.00 & M11261_2.00 & MS59_2.00 & ENSG00000159216 & RUNX1 & Runt & Transfac & 16381825 \\
\hline T319384_2.00 & M11262_2.00 & MS59_2.00 & ENSG00000159216 & RUNX1 & Runt & Transfac & 16381825 \\
\hline T319384_2.00 & M11263_2.00 & MS59_2.00 & ENSG00000159216 & RUNX1 & Runt & Transfac & 16381825 \\
\hline T324626_2.00 & M05745_2.00 & MS62_2.00 & ENSG00000141905 & NFIC & MH1 & Yin2017 & 28473536 \\
\hline T324626_2.00 & M05746_2.00 & MS62_2.00 & ENSG00000141905 & NFIC & MH1 & Yin2017 & 28473536 \\
\hline T324626_2.00 & M08164_2.00 & MS31_2.00 & ENSG00000141905 & NFIC & MH1 & JASPAR & 24194598 \\
\hline T324626_2.00 & M09378_2.00 & MS27_2.00 & ENSG00000141905 & NFIC & MH1 & HocoMoco & 23175603 \\
\hline T324626_2.00 & M09635_2.00 & MS28_2.00 & ENSG00000141905 & NFIC & MH1 & HOMER & 20513432 \\
\hline T324626_2.00 & M09636_2.00 & MS28_2.00 & ENSG00000141905 & NFIC & MH1 & HOMER & 20513432 \\
\hline T324626_2.00 & M11278_2.00 & MS59_2.00 & ENSG00000141905 & NFIC & MH1 & Transfac & 16381825 \\
\hline T324626_2.00 & M11279_2.00 & MS59_2.00 & ENSG00000141905 & NFIC & MH1 & Transfac & 16381825 \\
\hline T324628_2.00 & M03480_2.00 & MS33_2.00 & ENSG00000162599 & NFIA & MH1 & Jolma2013 & 23332764 \\
\hline T324628_2.00 & M03481_2.00 & MS33_2.00 & ENSG00000162599 & NFIA & MH1 & Jolma2013 & 23332764 \\
\hline T324628_2.00 & M09379_2.00 & MS27_2.00 & ENSG00000162599 & NFIA & MH1 & HocoMoco & 23175603 \\
\hline T324628_2.00 & M11282_2.00 & MS59_2.00 & ENSG00000162599 & NFIA & MH1 & Transfac & 16381825 \\
\hline T328056_2.00 & M02487_2.00 & MS64_2.00 & ENSG00000064961 & HMG20B & HMG_box & Zoo_01 & 25215497 \\
\hline T328057_2.00 & M00195_2.00 & MS02_2.00 & ENSG00000079432 & CIC & HMG_box & Badis09 & 19443739 \\
\hline T337444_2.00 & M08013_2.00 & MS18_2.00 & ENSG00000115415 & STAT1 & STAT_bind & ENCODE & 22955619 \\
\hline T337444_2.00 & M08014_2.00 & MS18_2.00 & ENSG00000115415 & STAT1 & STAT_bind & ENCODE & 22955619 \\
\hline T337444_2.00 & M08171_2.00 & MS31_2.00 & ENSG00000115415 & STAT1 & STAT_bind & JASPAR & 24194598 \\
\hline T337444_2.00 & M08229_2.00 & MS42_2.00 & ENSG00000115415 & StAT1 & STAT_bind & modEncode & 22080565 \\
\hline T337444_2.00 & M08230_2.00 & MS42_2.00 & ENSG00000115415 & STAT1 & STAT_bind & modEncode & 22080565 \\
\hline T337444_2.00 & M09411_2.00 & MS27_2.00 & ENSG00000115415 & STAT1 & STAT_bind & HocoMoco & 23175603 \\
\hline
\end{tabular}

Table 30 continued from previous page
\begin{tabular}{lllllllll}
\hline \multicolumn{8}{c}{ Table 30 continued from previous page } \\
TF ID & Motif ID & \begin{tabular}{l}
MSource \\
ID
\end{tabular} & DBID & TF Name & DBDs & \begin{tabular}{l}
MSource \\
tifier
\end{tabular} & Iden- & PMID \\
\hline T337444_2.00 & M09642_2.00 & MS28_2.00 & ENSG00000115415 & STAT1 & STAT_bind & HOMER & 20513432 \\
T33744_2.00 & M11348_2.00 & MS59_2.00 & ENSG00000115415 & STAT1 & STAT_bind & Transfac & 16381825 \\
T337444_2.00 & M11349_2.00 & MS59_2.00 & ENSG00000115415 & STAT1 & STAT_bind & Transfac & 16381825 \\
T337444_2.00 & M11350_2.00 & MS59_2.00 & ENSG00000115415 & STAT1 & STAT_bind & Transfac & 16381825 \\
T337444_2.00 & M11351_2.00 & MS59_2.00 & ENSG00000115415 & STAT1 & STAT_bind & Transfac & 16381825 \\
T337444_2.00 & M11352_2.00 & MS59_2.00 & ENSG00000115415 & STAT1 & STAT_bind & Transfac & 16381825 \\
T337444_2.00 & M11353_2.00 & MS59_2.00 & ENSG00000115415 & STAT1 & STAT_bind & Transfac & 16381825 \\
T337444_2.00 & M11354_2.00 & MS59_2.00 & ENSG00000115415 & STAT1 & STAT_bind & Transfac & 16381825 \\
T337450_2.00 & M09417_2.00 & MS27_2.00 & ENSG00000173757 & STAT5B & STAT_bind & HocoMoco & 23175603 \\
T337450_2.00 & M11371_2.00 & MS59_2.00 & ENSG00000173757 & STAT5B & STAT_bind & Transfac & 16381825 \\
T350252_2.00 & M08178_2.00 & MS31_2.00 & ENSG00000120837 & NFYB & UNKNOWN & JASPAR & 24194598 \\
T350252_2.00 & M09444_2.00 & MS27_2.00 & ENSG00000120837 & NFYB & UNKNOWN & HocoMoco & 23175603 \\
T350264_2.00 & M11430_2.00 & MS59_2.00 & ENSG00000137947 & GTF2B & UNKNOWN & Transfac & 16381825 \\
T350264-2.00 & M11431_2.00 & MS59_2.00 & ENSG00000137947 & GTF2B & UNKNOWN & Transfac & 16381825 \\
\hline
\end{tabular}

The table gives details about the motifs downloaded from CisBP and used for inferring the Hela cell cycle GRN. The \(1^{s t}\) column is the internal unique CisBP ID for the TF. The \(2^{n d}\) column is the internal CisBP ID for the associated motif. The \(3^{r d}\) column is the internal CisBP ID for the database or study the motif originates. The \(4^{t h}\) column is the external ID of the TF. The \(5^{t h}\) column gives the name of the TF. The \(6^{t h}\) column gives the unique set of DBDs present in the TF. The \(7^{t h}\) column is the ID for the source project of the motif. The \(8^{t h}\) column is the Pubmed ID of the motif.

Table 31: Cell cycle genes
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{List of Considered Cell Cycle Genes} \\
\hline GOLGA8A & PTP4A1 & GINS3 & GCSH & SHTN1 & TTF2 \\
\hline FBXL20 & INSR & DLGAP5 & TMEM138 & CEP55 & GSE1 \\
\hline ZNF587 & INADL & CKS2 & CDKN2D & ODF2 & POLQ \\
\hline ZNHIT2 & ADH4 & MBD4 & ITPR3 & CDK20 & HIST1H2AM \\
\hline DCAF7 & COQ6 & MLLT4 & DIS3 & NCS1 & PRR11 \\
\hline AHI1 & IL18BP & KLF6 & HIST1H4C & HSPA1L & TTC31 \\
\hline BARD1 & PCNA & GCLM & ZBED5 & SRD5A1 & ARL4A \\
\hline KATNA1 & CENPF & HMGB2 & UBE2C & DKC1 & CBX3 \\
\hline KIAA1586 & PDGFA & CCNB1 & TUBA1A & MKI67 & BCLAF1 \\
\hline HELLS & ANKRD10 & CTNND1 & ZNF414 & ERN2 & MDM2 \\
\hline FZR1 & EXO1 & PRIM1 & TAF2N & GTF2B & CSGALNACT1 \\
\hline MASTL & HLA-DOA & GAS1 & CAPS & ARL6IP1 & NDE1 \\
\hline CDC27 & HIST1H4H & CDR2 & CLSPN & GOT1 & ABCA7 \\
\hline HP1BP3 & TOMM70A & MATN2 & ROCK1 & RBBP8 & RAD51AP1 \\
\hline KNSTRN & BIRC2 & KDM4A & RAD51 & SDC1 & ASIP \\
\hline PPP1R10 & CHAF1A & KIAA1147 & ZNF217 & MCM5 & HIST1H4B \\
\hline ZC3HC1 & VEGFC & TOP2A & AMD1 & IFIT1 & HIST1H4E \\
\hline DONSON & POLA1 & CSH2 & TUBB4B & STAT1 & KIAA1524 \\
\hline RCCD1 & ZWINT & PLCXD1 & KATNBL1 & DNAJB4 & CCDC14 \\
\hline FAM105A & STIL & SHC1 & KIAA0586 & TIPIN & CCDC90B \\
\hline SPAG5 & CDC45 & SV2B & MELK & KPNB1 & ZSCAN5A \\
\hline RPS25 & CCNF & NEK2 & NFYB & FOXM1 & PCED1A \\
\hline FAM110A & MAP2K6 & CDC25C & FAM60A & NUP160 & BAG3 \\
\hline DHFR & NEIL3 & GPSM2 & HLA-DRA & PSMD11 & ARHGAP19 \\
\hline ZBTB7A & NSUN3 & ACYP1 & HOXB4 & CTR9 & HIST3H2A \\
\hline DTL & OLR1 & THRAP3 & CDH24 & RNF113A & FKBP1A \\
\hline CDC25A & FABP1 & PNN & NCOA5 & RUNX1 & BUB3 \\
\hline TNPO2 & POC1A & RAD18 & USB1 & ADCY6 & C5orf42 \\
\hline PTMS & STAG3L1 & BAIAP2 & TPX2 & MAPK13 & GMNN \\
\hline ANLN & ZNF593 & PRIM2 & HJURP & GADD45A & CASP8AP2 \\
\hline HMMR & HN1 & RRM2 & NUCKS1 & MRPS18B & TGIF1 \\
\hline KIFC1 & ITPR1 & ASPHD2 & USP13 & CREBZF & ORC1 \\
\hline MCM4 & ADAMTS1 & HMGB3 & UHRF1 & SLF2 & NUP37 \\
\hline CDK7 & FAM189B & TSG101 & HSF2 & TRAIP & PKNOX1 \\
\hline MCAM & UBR7 & B2M & CXCL14 & PSMG3 & CHML \\
\hline MAN1A2 & CDC25B & SPDL1 & HDAC3 & FANCI & MYCBP2 \\
\hline DNAJC3 & AOC3 & MORF4L2 & TAB2 & SYNCRIP & RPL13A \\
\hline ARMC1 & KMO & NFE2L2 & ZNF143 & EIF4E & NUF2 \\
\hline SLC38A2 & INSIG2 & RCAN1 & MZF1 & CFD & ABCC2 \\
\hline WSB1 & DR1 & SLBP & USP1 & NPM1 & HERPUD2 \\
\hline G2E3 & DNAJB9 & ME3 & MND1 & CCNE1 & NCOA3 \\
\hline SGK1 & TRIM45 & HMGCR & MCM6 & RSRC2 & TOPBP1 \\
\hline BIVM & KIF5B & LMNA & LMNB1 & CDKN3 & TRMT2A \\
\hline DNA2 & HMG20B & SLC4A1AP & UBE2T & NPAT & FAM83D \\
\hline TMEM132A & LPP & RNPS1 & GINS2 & NKTR & RGS3 \\
\hline STAG1 & LBR & COL7A1 & OSGIN2 & TACC3 & CENPA \\
\hline
\end{tabular}

Table 31 continued from previous page
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{List of Considered Cell Cycle Genes} \\
\hline TFAP2A & DMTF1 & HIF1A & HORMAD1 & USP6NL & RRP1 \\
\hline LRIF1 & NUP98 & MID1 & RANGAP1 & PIK3CD & PTTG1 \\
\hline MCM8 & VCAM1 & CKAP5 & LMO4 & STAT5B & GTSE1 \\
\hline DSCC1 & UNG & CDC20 & PBK & UACA & CEP44 \\
\hline RNPC3 & SAP30 & KAT7 & RAB3A & SMC4 & GRPEL1 \\
\hline PRR16 & VPS37C & SRSF5 & POLD3 & CNN2 & CDKN2AIP \\
\hline ESPL1 & FAN1 & SRSF3 & MBD3 & CKAP2 & CDC6 \\
\hline AFAP1 & RAB23 & PPP2CA & ANP32E & ARHGEF39 & ATAD2 \\
\hline GRK6 & ANTXR1 & PAK1IP1 & CNIH4 & BRD8 & CDKL5 \\
\hline MIS18BP1 & RAD54L & OXR1 & DMXL2 & DEXI & CASP3 \\
\hline SERPINB3 & HSPB8 & HRAS & SH3GL2 & USP16 & DET1 \\
\hline PSEN1 & H1F0 & INPP5K & OSER1 & AKIRIN2 & KLF9 \\
\hline CENPE & TTK & SMTN & LINC00339 & YY1 & KRAS \\
\hline DNAJB1 & SLC25A27 & PRC1 & NFIC & BORA & VTA1 \\
\hline SETD8P1 & SLC17A2 & CDC42EP4 & TOP3A & KPNA2 & ZCCHC10 \\
\hline PLIN3 & HSPA8 & KIF23 & RPA2 & ANP32B & RFC4 \\
\hline NFYA & MDC1 & STAG3 & FYN & KIF11 & CFLAR \\
\hline QRICH1 & HIST1H2BC & G3BP1 & PRKAR1A & CCNE2 & ARHGAP8 \\
\hline PKMYT1 & CDC42EP1 & DCTN6 & RAD51C & MRPL19 & TUBD1 \\
\hline KIF14 & MNX1 & GDF15 & CENPL & SAP30BP & USP53 \\
\hline IDO1 & TOP1 & SEC62 & TSKU & KDM5B & PANK2 \\
\hline DDX11 & ATL2 & TXNRD1 & NR3C1 & CADM1 & IDI2 \\
\hline ZPBP & MSH2 & HCP5 & SP1 & CRYBA1 & SEPN1 \\
\hline KIF2C & HSPA13 & UBL3 & FANCD2 & RERE & ZMYM1 \\
\hline PDXP & FRZB & SSR3 & FAM214A & MGAT2 & HAUS5 \\
\hline CDCA3 & INSM1 & SLC22A3 & ARHGAP11A & KANK2 & CWC15 \\
\hline PLK1 & UBQLN2 & CENPU & ENOSF1 & GNB1 & PRPSAP1 \\
\hline CYTH3 & CRK & PLK2 & MITF & SRF & MTCL1 \\
\hline TUBA3C & NMB & TSN & NIPBL & MUC1 & PPP3CA \\
\hline C14orf142 & TUBB2A & GAS6 & CAPN7 & SEPHS1 & KIAA0101 \\
\hline FLAD1 & CHEK2 & CENPQ & OGT & TOB2 & MEGF9 \\
\hline SLC25A36 & ADGRE5 & BIRC5 & ZNF281 & VCL & CIT \\
\hline SLC39A10 & APEX2 & ZNF521 & AOC2 & BBS2 & PCF11 \\
\hline MET & NUSAP1 & TMPO & CKS1B & IVNS1ABP & ZNFX1 \\
\hline CDC16 & NFIA & MCM2 & PPP1R2 & ARHGDIB & NDC80 \\
\hline RHEB & TULP4 & SLC44A2 & HIST1H2AC & CDCA7L & KCTD2 \\
\hline DUSP4 & ACD & MNT & CDC7 & PYM1 & RHOBTB3 \\
\hline CHAF1B & MEPCE & JADE2 & AP3M2 & BUB1B & CCNA2 \\
\hline VPS72 & POM121 & ELP3 & SS18 & PWP1 & RECQL4 \\
\hline SHCBP1 & CTCF & E2F5 & FXR1 & HAUS8 & FEN1 \\
\hline LRRC17 & TIMP1 & DZIP3 & LARP7 & BRD7 & HMG1 \\
\hline LYAR & DSP & CYTH2 & CIC & NAB1 & RAD21 \\
\hline SRSF7 & AURKB & TOMM34 & CDKN2C & NBPF14 & NCAPD2 \\
\hline SFPQ & BRCA1 & ARGLU1 & RHNO1 & MED31 & TYMS \\
\hline E2F1 & SMARCD1 & MRI1 & CNOT10 & AGFG1 & DYNLL1 \\
\hline EBI3 & TROAP & UBE2S & RMI1 & BMP2 & CDKN1B \\
\hline NUDT4 & ILF2 & RNF126 & INTS7 & NASP & CCNB2 \\
\hline
\end{tabular}

Table 31 continued from previous page
\begin{tabular}{llllll}
\hline \multicolumn{6}{c}{ List of Considered Cell Cycle Genes } \\
\hline KIF22 & KBTBD2 & MRPS2 & CDCA8 & FANCA & TRIP13 \\
NCAPD3 & KDELC1 & TTC38 & KIF20B & KAT2B & AP3D1 \\
FANCG & CDCA7 & CTSD & YWHAH & DCAF16 & RRM1 \\
PASK & NCAPH & BTBD3 & ABHD10 & E2F8 & NNMT \\
PTPN9 & C6 & RAN & CENPM & TFF3 & ITGB3 \\
CYB5R2 & NLRP2 & HIST2H2BE & PPP6R3 & HSD17B11 & CDC42 \\
FAM64A & ZNF207 & DNAJC6 & ZRANB2 & TXNDC9 & RFC2 \\
FADD & FEM1B & SNUPN & ASF1B & DHX8 & TSC22D1 \\
SMARCB1 & KCTD9 & ATF7IP & HRSP12 & SUCLG2 & C4B \\
BUB1 & VPS25 & DEPDC1B & REEP1 & AP4B1 & UBE2D3 \\
RBM8A & H2AFX & ADGRG6 & MBD2 & MAD2L1 & \\
DNAJB6 & CEP70 & ORC3 & MAP3K2 & TRA2A & \\
\hline
\end{tabular}

The table gives the gene names of the 628 HeLa cell cycle genes from the Whitfield [247] HeLa dataset, which were considered in our analysis.

Table 32: Cell Cycle Transcription factor
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow[t]{14}{*}{CENPA} & \multirow[t]{14}{*}{ENSG00000115163} & GO:0051382 :kinetochore assembly \\
\hline & & GO:0071459 :protein localization to chromosome, centromeric region \\
\hline & & GO:0016032 :viral process \\
\hline & & GO:0000281 :mitotic cytokinesis \\
\hline & & GO:0000132 :establishment of mitotic spindle orientation \\
\hline & & GO:0034080 : CENP-A containing nucleosome assembly \\
\hline & & GO:0070345 :negative regulation of fat cell proliferation \\
\hline & & GO:0060252 :positive regulation of glial cell proliferation \\
\hline & & GO:0072332 :intrinsic apoptotic signaling pathway by p53 class mediator \\
\hline & & GO:1900740 :positive regulation of protein insertion into mitochondrial \\
\hline & & membrane involved in apoptotic signaling pathway \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0071466 :cellular response to xenobiotic stimulus \\
\hline \multirow[t]{13}{*}{E2F1} & \multirow[t]{13}{*}{ENSG00000101412} & GO:0006977 :DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest \\
\hline & & GO:0048255 :mRNA stabilization \\
\hline & & GO:0030900 :forebrain development \\
\hline & & GO:0006351 :transcription, DNA-templated \\
\hline & & GO:0010628 : positive regulation of gene expression \\
\hline & & GO:0071398 :cellular response to fatty acid \\
\hline & & GO:0043276 : anoikis \\
\hline & & GO:0048146 :positive regulation of fibroblast proliferation \\
\hline & & GO:2000045 :regulation of G1/S transition of mitotic cell cycle \\
\hline & & GO:0000077 :DNA damage checkpoint \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0016032 :viral process \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow{34}{*}{FOXM1} & \multirow{33}{*}{ENSG00000111206} & GO:0043392 :negative regulation of DNA binding \\
\hline & & GO:0008630 :intrinsic apoptotic signaling pathway in response to DNA damage \\
\hline & & GO:1990086 :lens fiber cell apoptotic process \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:1990090 :cellular response to nerve growth factor stimulus \\
\hline & & GO:0000083 :regulation of transcription involved in G1/S transition of mitotic cell cycle \\
\hline & & GO:0071456 :cellular response to hypoxia \\
\hline & & GO:0070317 :negative regulation of G0 to G1 transition \\
\hline & & GO:0045599 :negative regulation of fat cell differentiation \\
\hline & & GO:0051726 :regulation of cell cycle \\
\hline & & GO:0043065 :positive regulation of apoptotic process \\
\hline & & GO:0007283 :spermatogenesis \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0071930 :negative regulation of transcription involved in G1/S transition of mitotic cell cycle \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:0071156 :regulation of cell cycle arrest \\
\hline & & GO:2000377 :regulation of reactive oxygen species metabolic process \\
\hline & & GO:0006281 :DNA repair \\
\hline & & GO:0008284 :positive regulation of cell proliferation \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0006978 :DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator \\
\hline & & GO:0001570 :vasculogenesis \\
\hline & & GO:0000086 :G2/M transition of mitotic cell cycle \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:2000781 :positive regulation of double-strand break repair \\
\hline & & GO:0032873 :negative regulation of stress-activated MAPK cascade \\
\hline & & GO:0090344 :negative regulation of cell aging \\
\hline & & GO:0042127 :regulation of cell proliferation \\
\hline & & GO:0051726 :regulation of cell cycle \\
\hline & & GO:0046578 :regulation of Ras protein signal transduction \\
\hline \multirow[t]{3}{*}{MBD4} & \multirow[t]{3}{*}{ENSG00000129071} & GO:0032355 :response to estradiol \\
\hline & & GO:0045008 : depyrimidination \\
\hline & & GO:0006281 :DNA repair \\
\hline \multirow[t]{19}{*}{CTCF} & \multirow[t]{19}{*}{ENSG00000102974} & GO:0035065 :regulation of histone acetylation \\
\hline & & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0031060 :regulation of histone methylation \\
\hline & & GO:0070602 :regulation of centromeric sister chromatid cohesion \\
\hline & & GO:0006306 :DNA methylation \\
\hline & & GO:0006349 :regulation of gene expression by genetic imprinting \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0040029 :regulation of gene expression, epigenetic \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0016584 :nucleosome positioning \\
\hline & & GO:0071459 :protein localization to chromosome, centromeric region \\
\hline & & GO:0010216 :maintenance of DNA methylation \\
\hline & & GO:0008285 :negative regulation of cell proliferation \\
\hline & & GO:0007059 :chromosome segregation \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0040030 :regulation of molecular function, epigenetic \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow[t]{15}{*}{E2F8} & \multirow[t]{15}{*}{ENSG00000129173} & GO:0070365 :hepatocyte differentiation \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0060718 :chorionic trophoblast cell differentiation \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0008283 :cell proliferation \\
\hline & & GO:0002040 :sprouting angiogenesis \\
\hline & & GO:0006977 :DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest \\
\hline & & GO:0032466 :negative regulation of cytokinesis \\
\hline & & GO:0032877 :positive regulation of DNA endoreduplication \\
\hline & & GO:0060707 :trophoblast giant cell differentiation \\
\hline & & GO:0001890 :placenta development \\
\hline & & GO:0033301 :cell cycle comprising mitosis without cytokinesis \\
\hline & & GO:0051726 :regulation of cell cycle \\
\hline \multirow[t]{6}{*}{MZF1} & \multirow[t]{5}{*}{ENSG00000099326} & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & \multirow[t]{29}{*}{ENSG00000159216} & GO:0001503 :ossification \\
\hline \multirow[t]{28}{*}{RUNX1} & & GO:0032743 :positive regulation of interleukin-2 production \\
\hline & & GO:0045637 :regulation of myeloid cell differentiation \\
\hline & & GO:0045652 :regulation of megakaryocyte differentiation \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0048935 :peripheral nervous system neuron development \\
\hline & & GO:0045589 :regulation of regulatory T cell differentiation \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0001959 :regulation of cytokine-mediated signaling pathway \\
\hline & & GO:0030182 :neuron differentiation \\
\hline & & GO:0043378 :positive regulation of CD8-positive, alpha-beta T cell differentiation \\
\hline & & GO:0030111 :regulation of Wnt signaling pathway \\
\hline & & GO:0050855 :regulation of B cell receptor signaling pathway \\
\hline & & GO:0043371 :negative regulation of CD4-positive, alpha-beta T cell differentiation \\
\hline & & GO:0045766 :positive regulation of angiogenesis \\
\hline & & GO:1902036 :regulation of hematopoietic stem cell differentiation \\
\hline & & GO:2000810 :regulation of bicellular tight junction assembly \\
\hline & & GO:0002062 :chondrocyte differentiation \\
\hline & & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline & & GO:0010629 :negative regulation of gene expression \\
\hline & & GO:0071425 :hematopoietic stem cell proliferation \\
\hline & & GO:0030097 :hemopoiesis \\
\hline & & GO:0030854 :positive regulation of granulocyte differentiation \\
\hline & & GO:0045595 :regulation of cell differentiation \\
\hline & & GO:0033146 :regulation of intracellular estrogen receptor signaling pathway \\
\hline & & GO:0045616 :regulation of keratinocyte differentiation \\
\hline \multirow[t]{9}{*}{MNT} & \multirow[t]{9}{*}{ENSG00000070444} & GO:0006366 :transcription from RNA polymerase II promoter \\
\hline & & GO:0007275 :multicellular organism development \\
\hline & & GO:0051726 :regulation of cell cycle \\
\hline & & GO:2001234 :negative regulation of apoptotic signaling pathway \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & \\
\hline & & GO:0007569 :cell aging \\
\hline & & GO:0008285 :negative regulation of cell proliferation \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline HSF2 & ENSG00000025156 & \begin{tabular}{l}
GO:0061408 :positive regulation of transcription from RNA polymerase \\
II promoter in response to heat stress \\
GO:0006366 :transcription from RNA polymerase II promoter \\
GO:0034605 :cellular response to heat \\
GO:0045944 :positive regulation of transcription from RNA polymerase \\
II promoter \\
GO:0007283 :spermatogenesis \\
GO:0043618 :regulation of transcription from RNA polymerase II promoter in response to stress
\end{tabular} \\
\hline MNX1 & ENSG00000130675 & \begin{tabular}{l}
GO:0007417 :central nervous system development \\
GO:0031018 :endocrine pancreas development \\
GO:0048812 :neuron projection morphogenesis \\
GO:0009653 :anatomical structure morphogenesis \\
GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
GO:0006959 :humoral immune response \\
GO:0021520 :spinal cord motor neuron cell fate specification
\end{tabular} \\
\hline DMTF1 & ENSG00000135164 & \begin{tabular}{l}
GO:0007049 :cell cycle \\
GO:0006355 :regulation of transcription, DNA-templated \\
GO:0006357 :regulation of transcription from RNA polymerase II promoter
\end{tabular} \\
\hline HOXB4 & ENSG00000182742 & \begin{tabular}{l}
GO:0045944 :positive regulation of transcription from RNA polymerase \\
II promoter \\
GO:0048704 :embryonic skeletal system morphogenesis \\
GO:0009952 :anterior/posterior pattern specification \\
GO:0008283 :cell proliferation \\
GO:0048539 :bone marrow development \\
GO:0000122 :negative regulation of transcription from RNA polymerase \\
II promoter \\
GO:0060216 :definitive hemopoiesis \\
GO:0060218 :hematopoietic stem cell differentiation \\
GO:0048103 :somatic stem cell division \\
GO:0002011 :morphogenesis of an epithelial sheet \\
GO:2000738 :positive regulation of stem cell differentiation \\
GO:0001501 :skeletal system development \\
GO:0048536 :spleen development
\end{tabular} \\
\hline CIC & ENSG00000079432 & \begin{tabular}{l}
GO:0007420 :brain development \\
GO:0048286 :lung alveolus development \\
GO:0007613 :memory \\
GO:0007612 :learning \\
GO:0000122 :negative regulation of transcription from RNA polymerase \\
II promoter \\
GO:0045892 :negative regulation of transcription, DNA-templated GO:0035176 :social behavior
\end{tabular} \\
\hline ZNF414 & ENSG00000133250 & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline CREBZF & ENSG00000137504 & \begin{tabular}{l}
GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
GO:0009615 :response to virus \\
GO:0051090 :regulation of sequence-specific DNA binding transcription factor activity \\
GO:0006351 :transcription, DNA-templated \\
GO:0045814 :negative regulation of gene expression, epigenetic \\
GO:0045892 :negative regulation of transcription, DNA-templated
\end{tabular} \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline & & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline & & GO:0007259 :JAK-STAT cascade \\
\hline & & GO:0032870 :cellular response to hormone stimulus \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0033077 : T cell differentiation in thymus \\
\hline & & GO:0040014 :regulation of multicellular organism growth \\
\hline & & GO:0042127 :regulation of cell proliferation \\
\hline & & GO:0045647 :negative regulation of erythrocyte differentiation \\
\hline & & GO:0045648 :positive regulation of erythrocyte differentiation \\
\hline & & GO:0038110 :interleukin-2-mediated signaling pathway \\
\hline & & GO:0070670 :response to interleukin-4 \\
\hline & & GO:0007595 :lactation \\
\hline & & GO:0019915 :lipid storage \\
\hline & & GO:0030856 :regulation of epithelial cell differentiation \\
\hline & & GO:0045588 :positive regulation of gamma-delta T cell differentiation \\
\hline & & GO:0045954 :positive regulation of natural killer cell mediated cytotoxicity \\
\hline & & GO:0048541 :Peyer's patch development \\
\hline & ENSG00000173757 & GO:0071363 :cellular response to growth factor stimulus \\
\hline \multirow[t]{38}{*}{STAT5B} & & GO:0050729 :positive regulation of inflammatory response \\
\hline & & GO:0001779 :natural killer cell differentiation \\
\hline & & GO:0006952 :defense response \\
\hline & & GO:0007565 :female pregnancy \\
\hline & & GO:0042448 :progesterone metabolic process \\
\hline & & GO:0043029 :T cell homeostasis \\
\hline & & GO:0097531 :mast cell migration \\
\hline & & GO:0032355 :response to estradiol \\
\hline & & GO:0042104 :positive regulation of activated T cell proliferation \\
\hline & & GO:0071364 :cellular response to epidermal growth factor stimulus \\
\hline & & GO:0019218 : regulation of steroid metabolic process \\
\hline & & GO:0038111 :interleukin-7-mediated signaling pathway \\
\hline & & GO:0001553 :luteinization \\
\hline & & GO:0032819 :positive regulation of natural killer cell proliferation \\
\hline & & GO:0040018 :positive regulation of multicellular organism growth \\
\hline & & GO:0043434 :response to peptide hormone \\
\hline & & GO:0045579 :positive regulation of B cell differentiation \\
\hline & & GO:0045931 :positive regulation of mitotic cell cycle \\
\hline & & GO:0019221 :cytokine-mediated signaling pathway \\
\hline & & GO:0038113 :interleukin-9-mediated signaling pathway \\
\hline & & GO:0035723 :interleukin-15-mediated signaling pathway \\
\hline & & GO:0019530 :taurine metabolic process \\
\hline & & GO:0032825 :positive regulation of natural killer cell differentiation \\
\hline & & GO:0043066 :negative regulation of apoptotic process \\
\hline & & GO:0045086 :positive regulation of interleukin-2 biosynthetic process \\
\hline & & GO:0060397 :JAK-STAT cascade involved in growth hormone signaling pathway \\
\hline & & GO:0046543 :development of secondary female sexual characteristics \\
\hline & & GO:0046544 :development of secondary male sexual characteristics \\
\hline & & GO:0006952 :defense response \\
\hline & & GO:0009612 :response to mechanical stimulus \\
\hline & & GO:0043124 :negative regulation of I-kappaB kinase/NF-kappaB signal- \\
\hline & & GO:0043434 :response to peptide hormone \\
\hline & & GO:0045648 :positive regulation of erythrocyte differentiation \\
\hline & & GO:0072136 :metanephric mesenchymal cell proliferation involved in metanephros development \\
\hline & & GO:0001937 :negative regulation of endothelial cell proliferation \\
\hline & & GO:0008015 : blood circulation \\
\hline & & GO:0060337 :type I interferon signaling pathway \\
\hline & & GO:0071407 :cellular response to organic cyclic compound \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow{29}{*}{STAT1} & \multicolumn{2}{|l|}{ENSG00000115415} \\
\hline & & GO:0019221 :cytokine-mediated signaling pathway \\
\hline & & GO:0042981 :regulation of apoptotic process \\
\hline & & GO:0048661 :positive regulation of smooth muscle cell proliferation \\
\hline & & GO:0060334 :regulation of interferon-gamma-mediated signaling pathway \\
\hline & & GO:0072162 :metanephric mesenchymal cell differentiation \\
\hline & & GO:0035456 :response to interferon-beta \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0007259 :JAK-STAT cascade \\
\hline & & GO:0016525 :negative regulation of angiogenesis \\
\hline & & GO:0042542 :response to hydrogen peroxide \\
\hline & & GO:0046725 :negative regulation by virus of viral protein levels in host \\
\hline & & cell \\
\hline & & GO:0060333 : interferon-gamma-mediated signaling pathway \\
\hline & & GO:0038113 : interleukin-9-mediated signaling pathway \\
\hline & & GO:0035458 :cellular response to interferon-beta \\
\hline & & GO:0010742 :macrophage derived foam cell differentiation \\
\hline & & GO:0072308 :negative regulation of metanephric nephron tubule epithe- \\
\hline & & lial cell differentiation \\
\hline & & GO:0070757 :interleukin-35-mediated signaling pathway \\
\hline & & GO:0032727 :positive regulation of interferon-alpha production \\
\hline & & GO:0032869 :cellular response to insulin stimulus \\
\hline & & GO:0034097 :response to cytokine \\
\hline & & GO:0042127 :regulation of cell proliferation \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0070102 : interleukin-6-mediated signaling pathway \\
\hline & & GO:0071346 :cellular response to interferon-gamma \\
\hline & & GO:0061326 :renal tubule development \\
\hline & & GO:0007221 :positive regulation of transcription of Notch receptor target \\
\hline & & GO:0016032 :viral process \\
\hline & & GO:0033209 :tumor necrosis factor-mediated signaling pathway \\
\hline & & GO:0043542 :endothelial cell migration \\
\hline & & GO:0038114 :interleukin-21-mediated signaling pathway \\
\hline & & GO:0051770 :positive regulation of nitric-oxide synthase biosynthetic process \\
\hline & & GO:0003340 :negative regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis \\
\hline & & GO:0007584 :response to nutrient \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0051591 :response to cAMP \\
\hline & & GO:0051607 :defense response to virus \\
\hline & & GO:0070106 : interleukin-27-mediated signaling pathway \\
\hline & & GO:0002053 :positive regulation of mesenchymal cell proliferation \\
\hline & & GO:0002230 :positive regulation of defense response to virus by host \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow[t]{15}{*}{NR3C1} & \multirow[t]{16}{*}{ENSG00000113580} & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0071385 :cellular response to glucocorticoid stimulus \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:1902895 :positive regulation of pri-miRNA transcription from RNA polymerase II promoter \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0006366 :transcription from RNA polymerase II promoter \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0042921 :glucocorticoid receptor signaling pathway \\
\hline & & GO:0006325 :chromatin organization \\
\hline & & GO:0071383 :cellular response to steroid hormone stimulus \\
\hline & & GO:0071549 :cellular response to dexamethasone stimulus \\
\hline & & GO:0007165 :signal transduction \\
\hline & & GO:0071560 :cellular response to transforming growth factor beta stimulus \\
\hline \multirow[t]{20}{*}{NR3C1} & & GO:0043402 :glucocorticoid mediated signaling pathway \\
\hline & & GO:0006367 : transcription initiation from RNA polymerase II promoter \\
\hline & & GO:0007049 :cell cycle \\
\hline & & GO:0007059 :chromosome segregation \\
\hline & & GO:0006351 :transcription, DNA-templated \\
\hline & & GO:0006915 :apoptotic process \\
\hline & & GO:0051301 :cell division \\
\hline & \multirow[t]{13}{*}{ENSG00000137203} & GO:0003404 :optic vesicle morphogenesis \\
\hline & & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0042127 :regulation of cell proliferation \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0003409 :optic cup structural organization \\
\hline & & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline & & GO:0035115 :embryonic forelimb morphogenesis \\
\hline & & GO:0070172 :positive regulation of tooth mineralization \\
\hline & & GO:2000378 :negative regulation of reactive oxygen species metabolic process \\
\hline & & GO:0010842 :retina layer formation \\
\hline & & GO:0010944 :negative regulation of transcription by competitive promoter binding \\
\hline & & GO:0060021 :palate development \\
\hline \multirow[t]{19}{*}{TFAP2A} & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0021559 :trigeminal nerve development \\
\hline & & GO:0001822 :kidney development \\
\hline & & GO:0008285 :negative regulation of cell proliferation \\
\hline & & GO:0043525 :positive regulation of neuron apoptotic process \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0060349 :bone morphogenesis \\
\hline & & GO:0042472 :inner ear morphogenesis \\
\hline & & GO:0045595 :regulation of cell differentiation \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:0048701 :embryonic cranial skeleton morphogenesis \\
\hline & & GO:0048856 :anatomical structure development \\
\hline & & GO:0061029 :eyelid development in camera-type eye \\
\hline & & GO:0071281 :cellular response to iron ion \\
\hline & & GO:0021623 :oculomotor nerve formation \\
\hline & & GO:0007605 :sensory perception of sound \\
\hline & & GO:0043066 :negative regulation of apoptotic process \\
\hline & & GO:0030501 :positive regulation of bone mineralization \\
\hline \multirow[t]{4}{*}{KLF6} & \multirow[t]{4}{*}{ENSG00000067082} & GO:0030183 : B cell differentiation \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline
\end{tabular}

Table 32 continued from previous page

\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow{17}{*}{SRF} & & GO:0001569 :branching involved in blood vessel morphogenesis \\
\hline & & GO:0007507 :heart development \\
\hline & & GO:0008306 :associative learning \\
\hline & & GO:0034097 :response to cytokine \\
\hline & & GO:0045987 :positive regulation of smooth muscle contraction \\
\hline & & GO:0030155 :regulation of cell adhesion \\
\hline & & GO:0051491 :positive regulation of filopodium assembly \\
\hline & & GO:0001707 :mesoderm formation \\
\hline & & GO:0001764 :neuron migration \\
\hline & & GO:0002011 :morphogenesis of an epithelial sheet \\
\hline & & GO:0048666 :neuron development \\
\hline & & GO:0060532 :bronchus cartilage development \\
\hline & & GO:0060534 : trachea cartilage development \\
\hline & & GO:0009725 :response to hormone \\
\hline & & GO:0001666 :response to hypoxia \\
\hline & & GO:0010669 :epithelial structure maintenance \\
\hline & & GO:0010735 :positive regulation of transcription via serum response element binding \\
\hline & & GO:0030878 :thyroid gland development \\
\hline & & GO:0043149 :stress fiber assembly \\
\hline & & GO:0045773 :positive regulation of axon extension \\
\hline & & GO:0060347 : heart trabecula formation \\
\hline & & GO:0061029 :eyelid development in camera-type eye \\
\hline & & GO:0045059 :positive thymic T cell selection \\
\hline & & GO:0090009 :primitive streak formation \\
\hline & & GO:0030036 : actin cytoskeleton organization \\
\hline & & GO:0060292 :long term synaptic depression \\
\hline & & GO:0061145 :lung smooth muscle development \\
\hline & & GO:0030336 :negative regulation of cell migration \\
\hline & & GO:0007160 :cell-matrix adhesion \\
\hline & & GO:1900222 :negative regulation of beta-amyloid clearance \\
\hline & & GO:0002042 :cell migration involved in sprouting angiogenesis \\
\hline & & GO:0051091 :positive regulation of sequence-specific DNA binding transcription factor activity \\
\hline & & GO:0060218 :hematopoietic stem cell differentiation \\
\hline & & GO:0060324 :face development \\
\hline & & GO:0003257 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter involved in myocardial precursor cell differentiation \\
\hline & & GO:0042789 :mRNA transcription from RNA polymerase II promoter \\
\hline & & GO:0045214 :sarcomere organization \\
\hline & & GO:0001947 :heart looping \\
\hline & & GO:0009636 :response to toxic substance \\
\hline & & GO:0043589 :skin morphogenesis \\
\hline & & GO:0048589 :developmental growth \\
\hline & & GO:0048821 :erythrocyte development \\
\hline & & GO:0060261 :positive regulation of transcription initiation from RNA polymerase II promoter \\
\hline & & GO:0022028 :tangential migration from the subventricular zone to the olfactory bulb \\
\hline & & GO:0090136 :epithelial cell-cell adhesion \\
\hline & & GO:0055003 :cardiac myofibril assembly \\
\hline \multirow[t]{7}{*}{HMG20B} & ENSG00000064961 & GO:0010468 :regulation of gene expression \\
\hline & & GO:0045666 :positive regulation of neuron differentiation \\
\hline & & GO:0035914 :skeletal muscle cell differentiation \\
\hline & & GO:0006325 :chromatin organization \\
\hline & & GO:0007049 :cell cycle \\
\hline & & GO:0033234 : negative regulation of protein sumoylation \\
\hline & & GO:0007596 :blood coagulation \\
\hline \multirow[t]{5}{*}{TGIF1} & ENSG00000177426 & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0042493 :response to drug \\
\hline & & GO:0071363 :cellular response to growth factor stimulus \\
\hline & & GO:0007275 :multicellular organism development \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow{22}{*}{INSM1} & \multirow[t]{22}{*}{ENSG00000173404} & GO:0060290 :transdifferentiation \\
\hline & & GO:0061549 :sympathetic ganglion development \\
\hline & & GO:0003323 :type B pancreatic cell development \\
\hline & & GO:2000179 :positive regulation of neural precursor cell proliferation \\
\hline & & GO:0008285 :negative regulation of cell proliferation \\
\hline & & GO:0030182 :neuron differentiation \\
\hline & & GO:0045597 :positive regulation of cell differentiation \\
\hline & & GO:0043254 :regulation of protein complex assembly \\
\hline & & GO:0071158 :positive regulation of cell cycle arrest \\
\hline & & GO:0003358 :noradrenergic neuron development \\
\hline & & GO:0031018 :endocrine pancreas development \\
\hline & & GO:0042421 :norepinephrine biosynthetic process \\
\hline & & GO:0007049 :cell cycle \\
\hline & & GO:0010468 :regulation of gene expression \\
\hline & & GO:0061104 :adrenal chromaffin cell differentiation \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0003309 :type B pancreatic cell differentiation \\
\hline & & GO:0001933 :negative regulation of protein phosphorylation \\
\hline & & GO:0030335 :positive regulation of cell migration \\
\hline & & GO:0010564 :regulation of cell cycle process \\
\hline & & GO:0003310 :pancreatic A cell differentiation \\
\hline \multirow[t]{2}{*}{ZNF521} & \multirow[t]{2}{*}{ENSG00000198795} & GO:0048663 :neuron fate commitment \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline \multirow[t]{10}{*}{ZNF207} & \multirow[t]{10}{*}{ENSG00000010244} & GO:0050821 :protein stabilization \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0007094 :mitotic spindle assembly checkpoint \\
\hline & & GO:0051301 :cell division \\
\hline & & GO:0008608 :attachment of spindle microtubules to kinetochore \\
\hline & & GO:0000070 :mitotic sister chromatid segregation \\
\hline & & GO:0090307 :mitotic spindle assembly \\
\hline & & GO:0001578 :microtubule bundle formation \\
\hline & & GO:0046785 :microtubule polymerization \\
\hline & & GO:0051983 :regulation of chromosome segregation \\
\hline \multirow{20}{*}{KDM5B} & \multirow[t]{20}{*}{ENSG00000117139} & GO:0006338 :chromatin remodeling \\
\hline & & GO:0009791 :post-embryonic development \\
\hline & & GO:0060444 :branching involved in mammary gland duct morphogenesis \\
\hline & & GO:0060763 :mammary duct terminal end bud growth \\
\hline & & GO:0060992 :response to fungicide \\
\hline & & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0034720 :histone H3-K4 demethylation \\
\hline & & GO:0055114 :oxidation-reduction process \\
\hline & & GO:2000864 :regulation of estradiol secretion \\
\hline & & GO:1990830 :cellular response to leukemia inhibitory factor \\
\hline & & GO:0007338 : single fertilization \\
\hline & & GO:0048511 :rhythmic process \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:0033601 :positive regulation of mammary gland epithelial cell pro- \\
\hline & & liferation \\
\hline & & GO:0044344 :cellular response to fibroblast growth factor stimulus \\
\hline & & GO:0061038 :uterus morphogenesis \\
\hline & & GO:0070306 :lens fiber cell differentiation \\
\hline & & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline & & GO:0034721 :histone H3-K4 demethylation, trimethyl-H3-K4-specific \\
\hline \multirow[t]{7}{*}{NFIC} & \multirow[t]{7}{*}{ENSG00000141905} & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0006260 :DNA replication \\
\hline & & GO:0006366 :transcription from RNA polymerase II promoter \\
\hline & & GO:0042475 :odontogenesis of dentin-containing tooth \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline
\end{tabular}

Table 32 continued from previous page

\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline & & GO:0097411 :hypoxia-inducible factor-1alpha signaling pathway \\
\hline & & GO:1903715 :regulation of aerobic respiration \\
\hline & & GO:0010468 :regulation of gene expression \\
\hline & & GO:0010634 :positive regulation of epithelial cell migration \\
\hline & & GO:0016579 :protein deubiquitination \\
\hline & & GO:0002248 :connective tissue replacement involved in inflammatory response wound healing \\
\hline & & GO:0042593 :glucose homeostasis \\
\hline & & GO:0043619 :regulation of transcription from RNA polymerase II promoter in response to oxidative stress \\
\hline & & GO:0046716 :muscle cell cellular homeostasis \\
\hline & & GO:1903599 :positive regulation of mitophagy \\
\hline & & GO:0001892 :embryonic placenta development \\
\hline & & GO:0001947 :heart looping \\
\hline & & GO:0002052 :positive regulation of neuroblast proliferation \\
\hline & & GO:0003151 :outflow tract morphogenesis \\
\hline & & GO:0061419 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter in response to hypoxia \\
\hline & & GO:0007595 :lactation \\
\hline & & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0045648 :positive regulation of erythrocyte differentiation \\
\hline & & GO:0045821 :positive regulation of glycolytic process \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0046886 :positive regulation of hormone biosynthetic process \\
\hline & & GO:0051216 :cartilage development \\
\hline & & GO:0061072 :iris morphogenesis \\
\hline & & GO:0001938 :positive regulation of endothelial cell proliferation \\
\hline & & GO:0030502 :negative regulation of bone mineralization \\
\hline & & GO:0001525 :angiogenesis \\
\hline & & GO:0045766 :positive regulation of angiogenesis \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0061030 :epithelial cell differentiation involved in mammary gland alveolus development \\
\hline & & GO:0019896 :axonal transport of mitochondrion \\
\hline & & GO:0010573 :vascular endothelial growth factor production \\
\hline & & GO:0008542 :visual learning \\
\hline & & GO:0030949 :positive regulation of vascular endothelial growth factor receptor signaling pathway \\
\hline & & GO:0032909 :regulation of transforming growth factor beta2 production \\
\hline & & GO:0042541 :hemoglobin biosynthetic process \\
\hline & & GO:0048546 : digestive tract morphogenesis \\
\hline & & GO:0006879 :cellular iron ion homeostasis \\
\hline & & GO:0032007 :negative regulation of TOR signaling \\
\hline & & GO:0061298 :retina vasculature development in camera-type eye \\
\hline \multirow[t]{14}{*}{NCOA3} & \multirow[t]{14}{*}{ENSG00000124151} & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0030521 : androgen receptor signaling pathway \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0035624 :receptor transactivation \\
\hline & & GO:0045618 :positive regulation of keratinocyte differentiation \\
\hline & & GO:1902459 :positive regulation of stem cell population maintenance \\
\hline & & GO:0071392 :cellular response to estradiol stimulus \\
\hline & & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0032870 :cellular response to hormone stimulus \\
\hline & & GO:2000035 :regulation of stem cell division \\
\hline & & GO:0016573 :histone acetylation \\
\hline & & GO:2001141 :regulation of RNA biosynthetic process \\
\hline & & GO:0043697 :cell dedifferentiation \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow[t]{23}{*}{ZBTB7A} & \multirow[t]{23}{*}{ENSG00000178951} & GO:2000677 :regulation of transcription regulatory region DNA binding \\
\hline & & GO:0097680 :double-strand break repair via classical nonhomologous end joining \\
\hline & & GO:0045444 :fat cell differentiation \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:0006110 :regulation of glycolytic process \\
\hline & & GO:0006338 :chromatin remodeling \\
\hline & & GO:0006974 :cellular response to DNA damage stimulus \\
\hline & & GO:0060766 :negative regulation of androgen receptor signaling pathway \\
\hline & & GO:0034504 :protein localization to nucleus \\
\hline & & GO:0043249 :erythrocyte maturation \\
\hline & & GO:0000381 :regulation of alternative mRNA splicing, via spliceosome \\
\hline & & GO:0006325 :chromatin organization \\
\hline & & GO:0006351 :transcription, DNA-templated \\
\hline & & GO:0045746 :negative regulation of Notch signaling pathway \\
\hline & & GO:0051090 :regulation of sequence-specific DNA binding transcription \\
\hline & & factor activity \\
\hline & & GO:0051092 :positive regulation of NF-kappaB transcription factor activity \\
\hline & & GO:0030183 : B cell differentiation \\
\hline & & GO:0042981 :regulation of apoptotic process \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0030512 :negative regulation of transforming growth factor beta receptor signaling pathway \\
\hline \multirow[t]{9}{*}{NFIA} & \multirow[t]{9}{*}{ENSG00000162599} & GO:0006260 :DNA replication \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0060074 :synapse maturation \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0072189 :ureter development \\
\hline & & GO:0019079 :viral genome replication \\
\hline \multirow[t]{16}{*}{NFE2L2} & \multirow[t]{16}{*}{ENSG00000116044} & GO:0070301 :cellular response to hydrogen peroxide \\
\hline & & GO:0071498 :cellular response to fluid shear stress \\
\hline & & GO:1902176 :negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway \\
\hline & & GO:0046326 :positive regulation of glucose import \\
\hline & & GO:0034599 :cellular response to oxidative stress \\
\hline & & GO:0045995 :regulation of embryonic development \\
\hline & & GO:2000352 :negative regulation of endothelial cell apoptotic process \\
\hline & & GO:0007568 :aging \\
\hline & & GO:0010499 :proteasomal ubiquitin-independent protein catabolic process \\
\hline & & GO:0071499 :cellular response to laminar fluid shear stress \\
\hline & & GO:2000379 :positive regulation of reactive oxygen species metabolic process \\
\hline & & GO:0030968 :endoplasmic reticulum unfolded protein response \\
\hline & & GO:0045454 :cell redox homeostasis \\
\hline & & GO:0010976 :positive regulation of neuron projection development \\
\hline & & GO:0061419 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter in response to hypoxia \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline & & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline & & GO:0016032 :viral process \\
\hline & & GO:0043536 :positive regulation of blood vessel endothelial cell migration \\
\hline & & GO:0045766 :positive regulation of angiogenesis \\
\hline & & GO:0042149 :cellular response to glucose starvation \\
\hline & & GO:0006366 :transcription from RNA polymerase II promoter \\
\hline & & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:1904753 :negative regulation of vascular associated smooth muscle cell migration \\
\hline & & GO:1903206 :negative regulation of hydrogen peroxide-induced cell death \\
\hline & & GO:2000121 :regulation of removal of superoxide radicals \\
\hline & & GO:0046223 :aflatoxin catabolic process \\
\hline & & GO:1903071 :positive regulation of ER-associated ubiquitin-dependent protein catabolic process \\
\hline & & GO:1904385 :cellular response to angiotensin \\
\hline & & GO:0006954 :inflammatory response \\
\hline & & GO:0030194 :positive regulation of blood coagulation \\
\hline & & GO:0071356 :cellular response to tumor necrosis factor \\
\hline & & GO:1902037 :negative regulation of hematopoietic stem cell differentiation \\
\hline & & GO:0036003 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter in response to stress \\
\hline & & GO:0036091 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter in response to oxidative stress \\
\hline & & GO:0010667 :negative regulation of cardiac muscle cell apoptotic process \\
\hline & & GO:0016567 :protein ubiquitination \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0036499 :PERK-mediated unfolded protein response \\
\hline & & GO:0043161 :proteasome-mediated ubiquitin-dependent protein catabolic process \\
\hline & & GO:0071280 :cellular response to copper ion \\
\hline & & GO:1903788 :positive regulation of glutathione biosynthetic process \\
\hline \multirow[t]{5}{*}{ZNF217} & \multirow[t]{5}{*}{ENSG00000171940} & GO:0006351 :transcription, DNA-templated \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline ZBED5 & ENSG00000236287 & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline \multirow[t]{12}{*}{MITF} & \multirow[t]{12}{*}{ENSG00000187098} & GO:0006351 :transcription, DNA-templated \\
\hline & & GO:0044336 :canonical Wnt signaling pathway involved in negative regulation of apoptotic process \\
\hline & & GO:0042127 :regulation of cell proliferation \\
\hline & & GO:0030316 :osteoclast differentiation \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0045670 :regulation of osteoclast differentiation \\
\hline & & GO:2000144 :positive regulation of DNA-templated transcription, initiation \\
\hline & & GO:0030336 :negative regulation of cell migration \\
\hline & & GO:0045165 :cell fate commitment \\
\hline
\end{tabular}

Table 32 continued from previous page

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline & & GO:0031098 :stress-activated protein kinase signaling cascade \\
\hline & & GO:0045740 :positive regulation of DNA replication \\
\hline & & GO:0001779 :natural killer cell differentiation \\
\hline & & GO:0018393 :internal peptidyl-lysine acetylation \\
\hline & & GO:0043982 :histone H4-K8 acetylation \\
\hline & & GO:0043984 :histone H4-K16 acetylation \\
\hline & & GO:1900182 :positive regulation of protein localization to nucleus \\
\hline & & GO:0043967 :histone H4 acetylation \\
\hline & & GO:0072710 :response to hydroxyurea \\
\hline & & GO:0072716 :response to actinomycin D \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0044154 :histone H3-K14 acetylation \\
\hline & & GO:0030174 :regulation of DNA-dependent DNA replication initiation \\
\hline & & GO:0043981 :histone H4-K5 acetylation \\
\hline & & GO:0045648 :positive regulation of erythrocyte differentiation \\
\hline & & GO:0032786 :positive regulation of DNA-templated transcription, elongation \\
\hline & & GO:0043983 :histone H4-K12 acetylation \\
\hline \multirow[t]{12}{*}{MBD3} & \multirow[t]{12}{*}{ENSG00000071655} & GO:0031667 :response to nutrient levels \\
\hline & & GO:0048568 :embryonic organ development \\
\hline & & GO:0007568 :aging \\
\hline & & GO:0044030 :regulation of DNA methylation \\
\hline & & GO:0001701 :in utero embryonic development \\
\hline & & GO:0016573 :histone acetylation \\
\hline & & GO:0007420 :brain development \\
\hline & & GO:0043044 :ATP-dependent chromatin remodeling \\
\hline & & GO:0007507 :heart development \\
\hline & & GO:0009888 :tissue development \\
\hline & & GO:1901796 :regulation of signal transduction by p53 class mediator \\
\hline & & GO:0032355 :response to estradiol \\
\hline \multirow[t]{17}{*}{SP1} & \multirow[t]{17}{*}{ENSG00000185591} & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0043923 :positive regulation by host of viral transcription \\
\hline & & GO:0048511 :rhythmic process \\
\hline & & GO:1904828 :positive regulation of hydrogen sulfide biosynthetic process \\
\hline & & GO:0016032 :viral process \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0033194 :response to hydroperoxide \\
\hline & & GO:1905564 :positive regulation of vascular endothelial cell proliferation \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0043536 :positive regulation of blood vessel endothelial cell migration \\
\hline & & GO:0042795 :snRNA transcription from RNA polymerase II promoter \\
\hline & & GO:0045766 :positive regulation of angiogenesis \\
\hline & & GO:0045540 :regulation of cholesterol biosynthetic process \\
\hline & & GO:1902004 :positive regulation of beta-amyloid formation \\
\hline & & GO:0032869 :cellular response to insulin stimulus \\
\hline \multirow[t]{5}{*}{NFYB} & \multirow[t]{5}{*}{ENSG00000120837} & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline & & GO:0045540 :regulation of cholesterol biosynthetic process \\
\hline & & GO:1990830 :cellular response to leukemia inhibitory factor \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline \multirow[t]{7}{*}{NFYA} & \multirow[t]{7}{*}{ENSG00000001167} & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0010723 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter in response to iron \\
\hline & & GO:0045540 :regulation of cholesterol biosynthetic process \\
\hline & & GO:0006366 :transcription from RNA polymerase II promoter \\
\hline & & GO:0048511 :rhythmic process \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multirow[t]{19}{*}{MBD2} & \multirow[t]{19}{*}{ENSG00000134046} & GO:0042711 :maternal behavior \\
\hline & & GO:0000122 :negative regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0000183 :chromatin silencing at rDNA \\
\hline & & GO:0031667 :response to nutrient levels \\
\hline & & GO:0043044 :ATP-dependent chromatin remodeling \\
\hline & & GO:0042127 :regulation of cell proliferation \\
\hline & & GO:0009612 :response to mechanical stimulus \\
\hline & & GO:0034622 :cellular macromolecular complex assembly \\
\hline & & GO:0048568 :embryonic organ development \\
\hline & & GO:0007507 :heart development \\
\hline & & GO:0071407 : cellular response to organic cyclic compound \\
\hline & & GO:0035563 :positive regulation of chromatin binding \\
\hline & & GO:0006346 :methylation-dependent chromatin silencing \\
\hline & & GO:0007568 :aging \\
\hline & & GO:0030177 :positive regulation of Wht signaling pathway \\
\hline & & GO:0044030 :regulation of DNA methylation \\
\hline & & GO:0032355 :response to estradiol \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline \multirow[t]{8}{*}{ZNF143} & \multirow[t]{8}{*}{ENSG00000166478} & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline & & GO:0042795 :snRNA transcription from RNA polymerase II promoter \\
\hline & & GO:0006355 :regulation of transcription, DNA-templated \\
\hline & & GO:0006383 :transcription from RNA polymerase III promoter \\
\hline & & GO:0006366 :transcription from RNA polymerase II promoter \\
\hline & & GO:0006359 :regulation of transcription from RNA polymerase III promoter \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline \multirow[t]{26}{*}{BRCA1} & \multirow[t]{26}{*}{ENSG00000012048} & GO:0006974 :cellular response to DNA damage stimulus \\
\hline & & GO:0006978 :DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator \\
\hline & & GO:0042127 :regulation of cell proliferation \\
\hline & & GO:0045892 :negative regulation of transcription, DNA-templated \\
\hline & & GO:0006633 :fatty acid biosynthetic process \\
\hline & & GO:0051865 :protein autoubiquitination \\
\hline & & GO:0006301 :postreplication repair \\
\hline & & GO:0000729 :DNA double-strand break processing \\
\hline & & GO:0035066 :positive regulation of histone acetylation \\
\hline & & GO:0042981 :regulation of apoptotic process \\
\hline & & GO:0070317 :negative regulation of G0 to G1 transition \\
\hline & & GO:0006260 :DNA replication \\
\hline & & GO:0006349 :regulation of gene expression by genetic imprinting \\
\hline & & GO:0010212 :response to ionizing radiation \\
\hline & & GO:0016579 :protein deubiquitination \\
\hline & & GO:0045893 :positive regulation of transcription, DNA-templated \\
\hline & & GO:0046600 :negative regulation of centriole replication \\
\hline & & GO:0071158 :positive regulation of cell cycle arrest \\
\hline & & GO:0006357 :regulation of transcription from RNA polymerase II promoter \\
\hline & & GO:0007098 :centrosome cycle \\
\hline & & GO:0010575 :positive regulation of vascular endothelial growth factor production \\
\hline & & GO:0000724 : double-strand break repair via homologous recombination \\
\hline & & GO:0051571 :positive regulation of histone H3-K4 methylation \\
\hline & & GO:0051572 :negative regulation of histone H3-K4 methylation \\
\hline & & GO:0071356 :cellular response to tumor necrosis factor \\
\hline & & GO:1902042 :negative regulation of extrinsic apoptotic signaling pathway via death domain receptors \\
\hline
\end{tabular}

Table 32 continued from previous page
\begin{tabular}{|c|c|c|}
\hline Gene Symbol & Ensembl Gene ID & GO - Molecular Function \\
\hline \multicolumn{2}{|l|}{\multirow[t]{32}{*}{}} & GO:2000617 :positive regulation of histone H3-K9 acetylation \\
\hline & & GO:0006359 :regulation of transcription from RNA polymerase III promoter \\
\hline & & GO:0016567 :protein ubiquitination \\
\hline & & GO:0008630 :intrinsic apoptotic signaling pathway in response to DNA damage \\
\hline & & GO:0031398 :positive regulation of protein ubiquitination \\
\hline & & GO:0033147 :negative regulation of intracellular estrogen receptor signaling pathway \\
\hline & & GO:0043009 :chordate embryonic development \\
\hline & & GO:0051573 :negative regulation of histone H3-K9 methylation \\
\hline & & GO:0051574 :positive regulation of histone H3-K9 methylation \\
\hline & & GO:0071681 :cellular response to indole-3-methanol \\
\hline & & GO:0085020 :protein K6-linked ubiquitination \\
\hline & & GO:0006302 :double-strand break repair \\
\hline & & GO:0006303 :double-strand break repair via nonhomologous end joining \\
\hline & & GO:0006915 :apoptotic process \\
\hline & & GO:0010628 :positive regulation of gene expression \\
\hline & & GO:0045944 :positive regulation of transcription from RNA polymerase \\
\hline & & II promoter \\
\hline & & GO:0070512 :positive regulation of histone H4-K20 methylation \\
\hline & & GO:0009048 : dosage compensation by inactivation of X chromosome \\
\hline & & GO:0044818 :mitotic G2/M transition checkpoint \\
\hline & & GO:0035067 :negative regulation of histone acetylation \\
\hline & & GO:0044030 :regulation of DNA methylation \\
\hline & & GO:0045717 :negative regulation of fatty acid biosynthetic process \\
\hline & & GO:0045739 :positive regulation of DNA repair \\
\hline & & GO:0045766 :positive regulation of angiogenesis \\
\hline & & GO:2000378 :negative regulation of reactive oxygen species metabolic process \\
\hline & & GO:0007059 :chromosome segregation \\
\hline & & GO:0043627 :response to estrogen \\
\hline & & GO:0030521 :androgen receptor signaling pathway \\
\hline & & GO:1901796 :regulation of signal transduction by p53 class mediator \\
\hline & & GO:0072425 :signal transduction involved in G2 DNA damage checkpoint \\
\hline & & GO:2000620 :positive regulation of histone H4-K16 acetylation \\
\hline
\end{tabular}

The table reports the list of TFs that are considered in our analysis. The \(1^{\text {st }}\) column reports the TF official name. The \(2^{\text {nd }}\) column report the TF Ensemble ID and, finally, the \(3^{r d}\) column gives the TF gene ontology annotation. More specifically, we report the biological process.

Table 33: Knockdown Data from Gene Expression Omnibus
\begin{tabular}{ll}
\hline Transcription Factor & GEO dataset ID \\
\hline NFYA & GSE40215 \\
NFE2L2 & GSE38332 \\
MITF & GSE16249 \\
KAT7 & GSE33220 \\
ZNF521 & GSE79110 \\
MBD4 & GSE52567 \\
BRCA1 & GSE54265 \\
CTCF & GSE108869 \\
\hline
\end{tabular}

Table 33 continued from previous page
\begin{tabular}{ll}
\hline Transcription Factor & GEO dataset ID \\
\hline SP1 & GSE37935 \\
ZNF217 & GSE35511 \\
SRF & GSE22606 \\
\hline
\end{tabular}

The table provides the list of KD expression datasets manually downloaded from Gene Expression Omnibus (GEO) database. The \(1^{\text {st }}\) column gives the name of the TF targeted by the KD experiment. The \(2^{n d}\) column provides the ID of the dataset.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 34: Edges r tition in networks} \\
\hline \multicolumn{3}{|l|}{HumanBase} \\
\hline TF & TG & \# dup \\
\hline 3091 & 55655 & 77 \\
\hline 672 & 63967 & 77 \\
\hline 672 & 51514 & 76 \\
\hline 6777 & 3111 & 76 \\
\hline 861 & 4233 & 76 \\
\hline 2305 & 890 & 75 \\
\hline 3091 & 729 & 75 \\
\hline 5316 & 729 & 75 \\
\hline 861 & 729 & 75 \\
\hline 2305 & 23779 & 74 \\
\hline 2305 & 4233 & 74 \\
\hline 6722 & 729 & 74 \\
\hline 861 & 10234 & 74 \\
\hline 3091 & 7424 & 73 \\
\hline 6667 & 4233 & 73 \\
\hline 672 & 10595 & 73 \\
\hline 672 & 580 & 73 \\
\hline 5316 & 3111 & 71 \\
\hline 672 & 4751 & 71 \\
\hline 861 & 4286 & 71 \\
\hline 3091 & 6491 & 70 \\
\hline 672 & 3070 & 70 \\
\hline 6777 & 10595 & 70 \\
\hline 8202 & 3070 & 70 \\
\hline 5316 & 2619 & 69 \\
\hline 672 & 11065 & 69 \\
\hline 672 & 5347 & 69 \\
\hline 7050 & 1869 & 69 \\
\hline 7528 & 9319 & 68 \\
\hline 3091 & 4233 & 67 \\
\hline 672 & 22909 & 67 \\
\hline 672 & 55632 & 67 \\
\hline 672 & 9319 & 67 \\
\hline 6722 & 6491 & 67 \\
\hline 6777 & 55655 & 67 \\
\hline 8930 & 10595 & 67 \\
\hline 7528 & 2619 & 66 \\
\hline 8932 & 6382 & 66 \\
\hline 6667 & 4286 & 65 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 672 & 5888 & 64 \\
6722 & 3214 & 64 \\
6777 & 332 & 64 \\
6777 & 3690 & 64 \\
7050 & 4286 & 64 \\
10664 & 55723 & 63 \\
58487 & 3434 & 63 \\
7050 & 6491 & 63 \\
7528 & 22909 & 63 \\
7528 & 5888 & 63 \\
2908 & 332 & 62 \\
5316 & 4286 & 62 \\
6777 & 3070 & 62 \\
7050 & 2619 & 62 \\
7528 & 993 & 62 \\
8932 & 4286 & 62 \\
6772 & 3434 & 61 \\
7050 & 3110 & 61 \\
6722 & 3690 & 60 \\
7528 & 4286 & 60 \\
3091 & 2487 & 59 \\
6667 & 2619 & 59 \\
6667 & 29899 & 59 \\
672 & 2177 & 59 \\
672 & 23354 & 59 \\
6777 & 7412 & 59 \\
6667 & 7020 & 58 \\
672 & 9666 & 57 \\
672 & 9682 & 57 \\
3091 & 7412 & 56 \\
7528 & 51514 & 56 \\
8932 & 898 & 56 \\
7528 & 650 & 55 \\
10765 & 3070 & 54 \\
3091 & 650 & 54 \\
6667 & 3214 & 54 \\
672 & 11200 & 54 \\
1869 & 10492 & 53 \\
6667 & 5864 & 53 \\
1810 & 3070 & 52 \\
8202 & 9682 & 52 \\
10664 & 3070 & 51 \\
6667 & 7412 & 51 \\
861 & 2487 & 51 \\
\hline & 11200 & 51 \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 11143 & 3070 & 50 \\
6667 & 2487 & 50 \\
6722 & 650 & 49 \\
2305 & 2487 & 48 \\
53615 & 3070 & 48 \\
7528 & 3214 & 48 \\
2305 & 4281 & 46 \\
6777 & 9510 & 46 \\
7020 & 3214 & 45 \\
8932 & 650 & 45 \\
6777 & 11200 & 42 \\
4286 & 2487 & 41 \\
10765 & 9682 & 40 \\
1810 & 9682 & 40 \\
10664 & 9682 & 37 \\
53615 & 9682 & 37 \\
7528 & 56852 & 37 \\
8932 & 2487 & 37 \\
6667 & 55632 & 36 \\
11143 & 9682 & 34 \\
7020 & 3710 & 34 \\
6722 & 55632 & 33 \\
7020 & 2619 & 33 \\
7020 & 2487 & 31 \\
3214 & 7020 & 25 \\
7020 & 650 & 23 \\
4286 & 8932 & 20 \\
4286 & 10766 & 18 \\
5316 & 55790 & 18 \\
7050 & 55790 & 17 \\
10664 & 55632 & 16 \\
2908 & 51170 & 16 \\
6777 & 5293 & 16 \\
7020 & 51141 & 16 \\
1810 & 55632 & 15 \\
3091 & 51170 & 15 \\
6777 & 51170 & 15 \\
6777 & 55790 & 15 \\
7528 & 51170 & 15 \\
8932 & 55790 & 15 \\
10765 & 55632 & 14 \\
5316 & 51170 & 14 \\
8202 & 55632 & 14 \\
3110 & 51715 & 13 \\
3214 & 650 & 13 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 4286 & 10036 & 13 \\
\hline 5316 & 5293 & 13 \\
\hline 7020 & 7251 & 13 \\
\hline 7050 & 51170 & 13 \\
\hline 861 & 51170 & 13 \\
\hline 1869 & 1977 & 12 \\
\hline 1869 & 5422 & 12 \\
\hline 3110 & 54820 & 12 \\
\hline 4286 & 2782 & 12 \\
\hline 4286 & 3337 & 12 \\
\hline 4286 & 51343 & 12 \\
\hline 4286 & 7050 & 12 \\
\hline 5316 & 4863 & 12 \\
\hline 6722 & 51170 & 12 \\
\hline 6772 & 51170 & 12 \\
\hline 1810 & 55790 & 11 \\
\hline 2908 & 55790 & 11 \\
\hline 3091 & 5293 & 11 \\
\hline 3214 & 6667 & 11 \\
\hline 4286 & 10347 & 11 \\
\hline 4286 & 6667 & 11 \\
\hline 4286 & 7296 & 11 \\
\hline 4286 & 8473 & 11 \\
\hline 5316 & 7412 & 11 \\
\hline 7020 & 1832 & 11 \\
\hline 7020 & 3337 & 11 \\
\hline 7528 & 55632 & 11 \\
\hline 861 & 5293 & 11 \\
\hline 8930 & 51170 & 11 \\
\hline 2908 & 699 & 10 \\
\hline 3091 & 127 & 10 \\
\hline 3110 & 1058 & 10 \\
\hline 4286 & 2189 & 10 \\
\hline 4286 & 687 & 10 \\
\hline 4286 & 7528 & 10 \\
\hline 4286 & 994 & 10 \\
\hline 5316 & 3434 & 10 \\
\hline 53615 & 55632 & 10 \\
\hline 6667 & 23397 & 10 \\
\hline 7020 & 1509 & 10 \\
\hline 8932 & 51170 & 10 \\
\hline 8932 & 65055 & 10 \\
\hline 11143 & 55632 & 9 \\
\hline 2305 & 3110 & 9 \\
\hline 2305 & 3111 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 34 continued} & \multicolumn{3}{|l|}{Table 34 continued} \\
\hline TF & TG & \# dup & TF & TG & \# dup \\
\hline 2908 & 898 & 9 & 4286 & 1509 & 8 \\
\hline 3091 & 65055 & 9 & 4286 & 1832 & 8 \\
\hline 3110 & 11104 & 9 & 4286 & 23310 & 8 \\
\hline 3214 & 6118 & 9 & 4286 & 3156 & 8 \\
\hline 3214 & 7528 & 9 & 4286 & 3832 & 8 \\
\hline 4286 & 10051 & 9 & 4286 & 3837 & 8 \\
\hline 4286 & 10905 & 9 & 4286 & 4664 & 8 \\
\hline 4286 & 1500 & 9 & 4286 & 4678 & 8 \\
\hline 4286 & 1810 & 9 & 4286 & 473 & 8 \\
\hline 4286 & 53615 & 9 & 4286 & 51715 & 8 \\
\hline 4286 & 6944 & 9 & 4286 & 51763 & 8 \\
\hline 4286 & 7374 & 9 & 4286 & 5316 & 8 \\
\hline 4286 & 9134 & 9 & 4286 & 54407 & 8 \\
\hline 4286 & 9531 & 9 & 4286 & 54820 & 8 \\
\hline 4286 & 9646 & 9 & 4286 & 5530 & 8 \\
\hline 4286 & 9793 & 9 & 4286 & 5573 & 8 \\
\hline 5316 & 10068 & 9 & 4286 & 5608 & 8 \\
\hline 5316 & 5347 & 9 & 4286 & 5663 & 8 \\
\hline 53615 & 51514 & 9 & 4286 & 5780 & 8 \\
\hline 6667 & 701 & 9 & 4286 & 6241 & 8 \\
\hline 672 & 701 & 9 & 4286 & 7251 & 8 \\
\hline 6722 & 5293 & 9 & 4286 & 7298 & 8 \\
\hline 6722 & 65055 & 9 & 4286 & 861 & 8 \\
\hline 6772 & 55723 & 9 & 4286 & 996 & 8 \\
\hline 7050 & 55655 & 9 & 4286 & 998 & 8 \\
\hline 7528 & 701 & 9 & 4780 & 10595 & 8 \\
\hline 8202 & 29899 & 9 & 53615 & 55790 & 8 \\
\hline 8202 & 51170 & 9 & 53615 & 7424 & 8 \\
\hline 8202 & 9212 & 9 & 58487 & 9212 & 8 \\
\hline 8932 & 5293 & 9 & 6667 & 10068 & 8 \\
\hline 8932 & 699 & 9 & 6667 & 51170 & 8 \\
\hline 10664 & 6382 & 8 & 672 & 10234 & 8 \\
\hline 1810 & 10234 & 8 & 6722 & 10234 & 8 \\
\hline 1869 & 10036 & 8 & 6772 & 3070 & 8 \\
\hline 1869 & 29117 & 8 & 6777 & 4233 & 8 \\
\hline 1869 & 3337 & 8 & 6777 & 6491 & 8 \\
\hline 2305 & 51170 & 8 & 6777 & 898 & 8 \\
\hline 2305 & 5293 & 8 & 7020 & 1058 & 8 \\
\hline 2908 & 65055 & 8 & 7020 & 4247 & 8 \\
\hline 3091 & 3070 & 8 & 7050 & 11200 & 8 \\
\hline 3110 & 55729 & 8 & 7050 & 23118 & 8 \\
\hline 3110 & 7050 & 8 & 7050 & 23354 & 8 \\
\hline 3214 & 10492 & 8 & 7050 & 23779 & 8 \\
\hline 4286 & 10460 & 8 & 7050 & 4863 & 8 \\
\hline 4286 & 11073 & 8 & 7528 & 6491 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 8202 & 55247 & 8 \\
\hline 861 & 3642 & 8 \\
\hline 8930 & 9212 & 8 \\
\hline 8932 & 10234 & 8 \\
\hline 8932 & 10873 & 8 \\
\hline 10664 & 10234 & 7 \\
\hline 10664 & 9212 & 7 \\
\hline 10765 & 10234 & 7 \\
\hline 10765 & 127 & 7 \\
\hline 10765 & 29899 & 7 \\
\hline 10765 & 9212 & 7 \\
\hline 11143 & 10234 & 7 \\
\hline 11143 & 6382 & 7 \\
\hline 1810 & 2487 & 7 \\
\hline 1810 & 51170 & 7 \\
\hline 1810 & 890 & 7 \\
\hline 1810 & 9319 & 7 \\
\hline 1869 & 1031 & 7 \\
\hline 1869 & 2177 & 7 \\
\hline 1869 & 993 & 7 \\
\hline 2305 & 10873 & 7 \\
\hline 2305 & 65055 & 7 \\
\hline 2908 & 23397 & 7 \\
\hline 2908 & 5293 & 7 \\
\hline 2908 & 55247 & 7 \\
\hline 3091 & 9212 & 7 \\
\hline 3110 & 23077 & 7 \\
\hline 3110 & 3337 & 7 \\
\hline 3110 & 6421 & 7 \\
\hline 3110 & 9939 & 7 \\
\hline 3214 & 10347 & 7 \\
\hline 3214 & 10765 & 7 \\
\hline 3214 & 11004 & 7 \\
\hline 3214 & 1509 & 7 \\
\hline 3214 & 22894 & 7 \\
\hline 3214 & 23279 & 7 \\
\hline 3214 & 25836 & 7 \\
\hline 3214 & 5515 & 7 \\
\hline 3214 & 5573 & 7 \\
\hline 3214 & 5889 & 7 \\
\hline 3214 & 6760 & 7 \\
\hline 3214 & 6944 & 7 \\
\hline 3214 & 7296 & 7 \\
\hline 3214 & 84305 & 7 \\
\hline 3642 & 55729 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 4286 & 10902 & 7 \\
\hline 4286 & 23077 & 7 \\
\hline 4286 & 23279 & 7 \\
\hline 4286 & 23338 & 7 \\
\hline 4286 & 2908 & 7 \\
\hline 4286 & 3708 & 7 \\
\hline 4286 & 3838 & 7 \\
\hline 4286 & 4247 & 7 \\
\hline 4286 & 54806 & 7 \\
\hline 4286 & 55075 & 7 \\
\hline 4286 & 6491 & 7 \\
\hline 4286 & 6792 & 7 \\
\hline 4286 & 729 & 7 \\
\hline 4286 & 7323 & 7 \\
\hline 4286 & 7414 & 7 \\
\hline 4286 & 8930 & 7 \\
\hline 4286 & 9133 & 7 \\
\hline 4286 & 9918 & 7 \\
\hline 4286 & 993 & 7 \\
\hline 4780 & 51170 & 7 \\
\hline 5316 & 1063 & 7 \\
\hline 5316 & 23312 & 7 \\
\hline 5316 & 3110 & 7 \\
\hline 5316 & 332 & 7 \\
\hline 5316 & 4281 & 7 \\
\hline 5316 & 699 & 7 \\
\hline 5316 & 701 & 7 \\
\hline 5316 & 993 & 7 \\
\hline 53615 & 23397 & 7 \\
\hline 53615 & 23779 & 7 \\
\hline 53615 & 3434 & 7 \\
\hline 53615 & 3642 & 7 \\
\hline 53615 & 51170 & 7 \\
\hline 53615 & 701 & 7 \\
\hline 6667 & 5293 & 7 \\
\hline 672 & 5293 & 7 \\
\hline 672 & 6581 & 7 \\
\hline 6722 & 23397 & 7 \\
\hline 6722 & 4233 & 7 \\
\hline 6777 & 127 & 7 \\
\hline 6777 & 3110 & 7 \\
\hline 687 & 9212 & 7 \\
\hline 7020 & 10036 & 7 \\
\hline 7020 & 10116 & 7 \\
\hline 7020 & 10347 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 7020 & 127 & 7 \\
\hline 7020 & 1500 & 7 \\
\hline 7020 & 8932 & 7 \\
\hline 7050 & 1058 & 7 \\
\hline 7050 & 4281 & 7 \\
\hline 7050 & 7020 & 7 \\
\hline 7050 & 9585 & 7 \\
\hline 7528 & 23354 & 7 \\
\hline 7528 & 23397 & 7 \\
\hline 7528 & 29899 & 7 \\
\hline 7528 & 3070 & 7 \\
\hline 7528 & 3110 & 7 \\
\hline 7528 & 5293 & 7 \\
\hline 7528 & 6382 & 7 \\
\hline 8202 & 10234 & 7 \\
\hline 8202 & 3110 & 7 \\
\hline 8202 & 5293 & 7 \\
\hline 8930 & 11065 & 7 \\
\hline 8930 & 3110 & 7 \\
\hline 8930 & 580 & 7 \\
\hline 8930 & 7153 & 7 \\
\hline 8930 & 9319 & 7 \\
\hline 8932 & 10595 & 7 \\
\hline 10664 & 55247 & 6 \\
\hline 10664 & 65055 & 6 \\
\hline 11143 & 10068 & 6 \\
\hline 11143 & 2487 & 6 \\
\hline 11143 & 29899 & 6 \\
\hline 11143 & 3642 & 6 \\
\hline 11143 & 5293 & 6 \\
\hline 11143 & 55723 & 6 \\
\hline 11143 & 65055 & 6 \\
\hline 11143 & 9212 & 6 \\
\hline 1810 & 23354 & 6 \\
\hline 1810 & 3214 & 6 \\
\hline 1810 & 55247 & 6 \\
\hline 1810 & 6491 & 6 \\
\hline 1810 & 7424 & 6 \\
\hline 1869 & 11104 & 6 \\
\hline 1869 & 1509 & 6 \\
\hline 1869 & 23279 & 6 \\
\hline 1869 & 5573 & 6 \\
\hline 1869 & 56852 & 6 \\
\hline 1869 & 6456 & 6 \\
\hline 1869 & 7050 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 1869 & 9133 & 6 \\
\hline 2305 & 898 & 6 \\
\hline 2305 & 9212 & 6 \\
\hline 2908 & 10234 & 6 \\
\hline 2908 & 1058 & 6 \\
\hline 2908 & 11065 & 6 \\
\hline 2908 & 4863 & 6 \\
\hline 2908 & 6456 & 6 \\
\hline 2908 & 701 & 6 \\
\hline 2908 & 729 & 6 \\
\hline 3091 & 10234 & 6 \\
\hline 3091 & 3110 & 6 \\
\hline 3091 & 55247 & 6 \\
\hline 3091 & 898 & 6 \\
\hline 3110 & 10036 & 6 \\
\hline 3110 & 10234 & 6 \\
\hline 3110 & 10492 & 6 \\
\hline 3110 & 11200 & 6 \\
\hline 3110 & 23354 & 6 \\
\hline 3110 & 5422 & 6 \\
\hline 3110 & 5573 & 6 \\
\hline 3110 & 699 & 6 \\
\hline 3110 & 9212 & 6 \\
\hline 3214 & 10068 & 6 \\
\hline 3214 & 10460 & 6 \\
\hline 3214 & 10921 & 6 \\
\hline 3214 & 2189 & 6 \\
\hline 3214 & 22836 & 6 \\
\hline 3214 & 23338 & 6 \\
\hline 3214 & 29896 & 6 \\
\hline 3214 & 3337 & 6 \\
\hline 3214 & 3832 & 6 \\
\hline 3214 & 3837 & 6 \\
\hline 3214 & 3838 & 6 \\
\hline 3214 & 3845 & 6 \\
\hline 3214 & 4171 & 6 \\
\hline 3214 & 4173 & 6 \\
\hline 3214 & 4175 & 6 \\
\hline 3214 & 4247 & 6 \\
\hline 3214 & 473 & 6 \\
\hline 3214 & 54407 & 6 \\
\hline 3214 & 5780 & 6 \\
\hline 3214 & 58487 & 6 \\
\hline 3214 & 6421 & 6 \\
\hline 3214 & 65055 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 3214 & 6722 & 6 \\
\hline 3214 & 6792 & 6 \\
\hline 3214 & 699 & 6 \\
\hline 3214 & 7374 & 6 \\
\hline 3642 & 9585 & 6 \\
\hline 4286 & 1827 & 6 \\
\hline 4286 & 4189 & 6 \\
\hline 4286 & 4780 & 6 \\
\hline 4286 & 5293 & 6 \\
\hline 4286 & 567 & 6 \\
\hline 4286 & 6093 & 6 \\
\hline 4286 & 6240 & 6 \\
\hline 4286 & 9994 & 6 \\
\hline 4780 & 23354 & 6 \\
\hline 4780 & 4286 & 6 \\
\hline 4780 & 6491 & 6 \\
\hline 4780 & 9212 & 6 \\
\hline 4780 & 9319 & 6 \\
\hline 5316 & 11065 & 6 \\
\hline 5316 & 127 & 6 \\
\hline 5316 & 580 & 6 \\
\hline 5316 & 6456 & 6 \\
\hline 5316 & 7424 & 6 \\
\hline 5316 & 79866 & 6 \\
\hline 5316 & 9212 & 6 \\
\hline 53615 & 1063 & 6 \\
\hline 53615 & 127 & 6 \\
\hline 53615 & 4281 & 6 \\
\hline 53615 & 63967 & 6 \\
\hline 58487 & 701 & 6 \\
\hline 58487 & 9319 & 6 \\
\hline 6667 & 64403 & 6 \\
\hline 672 & 55247 & 6 \\
\hline 6722 & 10873 & 6 \\
\hline 6722 & 127 & 6 \\
\hline 6722 & 3110 & 6 \\
\hline 6722 & 6382 & 6 \\
\hline 6722 & 64403 & 6 \\
\hline 6772 & 1058 & 6 \\
\hline 6772 & 23354 & 6 \\
\hline 6772 & 9212 & 6 \\
\hline 6777 & 10234 & 6 \\
\hline 6777 & 65055 & 6 \\
\hline 6777 & 701 & 6 \\
\hline 6777 & 9585 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 687 & 4281 & 6 \\
\hline 687 & 6456 & 6 \\
\hline 687 & 890 & 6 \\
\hline 7020 & 1827 & 6 \\
\hline 7020 & 23077 & 6 \\
\hline 7020 & 23279 & 6 \\
\hline 7020 & 3111 & 6 \\
\hline 7020 & 3837 & 6 \\
\hline 7020 & 51715 & 6 \\
\hline 7020 & 65055 & 6 \\
\hline 7020 & 898 & 6 \\
\hline 7020 & 9793 & 6 \\
\hline 7050 & 10595 & 6 \\
\hline 7050 & 127 & 6 \\
\hline 7050 & 29899 & 6 \\
\hline 7050 & 3710 & 6 \\
\hline 7050 & 7412 & 6 \\
\hline 7050 & 7424 & 6 \\
\hline 7050 & 9212 & 6 \\
\hline 7050 & 9401 & 6 \\
\hline 7050 & 993 & 6 \\
\hline 7528 & 10234 & 6 \\
\hline 7528 & 10873 & 6 \\
\hline 7528 & 4233 & 6 \\
\hline 861 & 3070 & 6 \\
\hline 861 & 55247 & 6 \\
\hline 861 & 6382 & 6 \\
\hline 861 & 65055 & 6 \\
\hline 861 & 701 & 6 \\
\hline 861 & 9212 & 6 \\
\hline 8930 & 10234 & 6 \\
\hline 8930 & 3642 & 6 \\
\hline 8930 & 4751 & 6 \\
\hline 8930 & 51514 & 6 \\
\hline 8930 & 5347 & 6 \\
\hline 8930 & 8564 & 6 \\
\hline 8932 & 23118 & 6 \\
\hline 8932 & 5864 & 6 \\
\hline 8932 & 6491 & 6 \\
\hline 8932 & 701 & 6 \\
\hline 8932 & 729 & 6 \\
\hline 8932 & 9212 & 6 \\
\hline 8932 & 993 & 6 \\
\hline 1058 & 3337 & 5 \\
\hline 1058 & 5889 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 10664 & 10068 & 5 \\
\hline 10664 & 10873 & 5 \\
\hline 10664 & 127 & 5 \\
\hline 10664 & 29899 & 5 \\
\hline 10664 & 51170 & 5 \\
\hline 10664 & 64403 & 5 \\
\hline 10765 & 10068 & 5 \\
\hline 10765 & 2177 & 5 \\
\hline 10765 & 51170 & 5 \\
\hline 10765 & 5293 & 5 \\
\hline 10765 & 55723 & 5 \\
\hline 11143 & 890 & 5 \\
\hline 1810 & 10068 & 5 \\
\hline 1810 & 2619 & 5 \\
\hline 1810 & 29899 & 5 \\
\hline 1810 & 3642 & 5 \\
\hline 1810 & 3710 & 5 \\
\hline 1810 & 5293 & 5 \\
\hline 1810 & 6382 & 5 \\
\hline 1810 & 7412 & 5 \\
\hline 1810 & 8564 & 5 \\
\hline 1869 & 1032 & 5 \\
\hline 1869 & 10460 & 5 \\
\hline 1869 & 2189 & 5 \\
\hline 1869 & 55723 & 5 \\
\hline 1869 & 5932 & 5 \\
\hline 1869 & 687 & 5 \\
\hline 1869 & 9510 & 5 \\
\hline 2305 & 10234 & 5 \\
\hline 2305 & 3070 & 5 \\
\hline 2305 & 6382 & 5 \\
\hline 2305 & 701 & 5 \\
\hline 2908 & 1063 & 5 \\
\hline 2908 & 1869 & 5 \\
\hline 2908 & 2619 & 5 \\
\hline 2908 & 3642 & 5 \\
\hline 2908 & 4233 & 5 \\
\hline 2908 & 55723 & 5 \\
\hline 2908 & 580 & 5 \\
\hline 2908 & 6432 & 5 \\
\hline 2908 & 79866 & 5 \\
\hline 2908 & 9212 & 5 \\
\hline 2908 & 9319 & 5 \\
\hline 3091 & 10873 & 5 \\
\hline 3091 & 6456 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 3091 & 9510 & 5 \\
\hline 3091 & 9666 & 5 \\
\hline 3110 & 1063 & 5 \\
\hline 3110 & 10873 & 5 \\
\hline 3110 & 10921 & 5 \\
\hline 3110 & 22894 & 5 \\
\hline 3110 & 2534 & 5 \\
\hline 3110 & 25896 & 5 \\
\hline 3110 & 3643 & 5 \\
\hline 3110 & 4175 & 5 \\
\hline 3110 & 473 & 5 \\
\hline 3110 & 4869 & 5 \\
\hline 3110 & 54806 & 5 \\
\hline 3110 & 6009 & 5 \\
\hline 3110 & 65055 & 5 \\
\hline 3110 & 687 & 5 \\
\hline 3110 & 701 & 5 \\
\hline 3110 & 7323 & 5 \\
\hline 3110 & 7424 & 5 \\
\hline 3110 & 79866 & 5 \\
\hline 3110 & 8365 & 5 \\
\hline 3110 & 8564 & 5 \\
\hline 3110 & 993 & 5 \\
\hline 3110 & 9967 & 5 \\
\hline 3214 & 10036 & 5 \\
\hline 3214 & 10051 & 5 \\
\hline 3214 & 1031 & 5 \\
\hline 3214 & 1032 & 5 \\
\hline 3214 & 10458 & 5 \\
\hline 3214 & 10600 & 5 \\
\hline 3214 & 10714 & 5 \\
\hline 3214 & 10769 & 5 \\
\hline 3214 & 11104 & 5 \\
\hline 3214 & 11135 & 5 \\
\hline 3214 & 1647 & 5 \\
\hline 3214 & 1827 & 5 \\
\hline 3214 & 1977 & 5 \\
\hline 3214 & 25896 & 5 \\
\hline 3214 & 2730 & 5 \\
\hline 3214 & 29117 & 5 \\
\hline 3214 & 3091 & 5 \\
\hline 3214 & 3146 & 5 \\
\hline 3214 & 3156 & 5 \\
\hline 3214 & 3312 & 5 \\
\hline 3214 & 3642 & 5 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 3214 & 3643 & 5 \\
3214 & 4664 & 5 \\
3214 & 4780 & 5 \\
3214 & 5111 & 5 \\
3214 & 51141 & 5 \\
3214 & 51763 & 5 \\
3214 & 5316 & 5 \\
3214 & 5422 & 5 \\
3214 & 54806 & 5 \\
3214 & 54962 & 5 \\
3214 & 55075 & 5 \\
3214 & 55729 & 5 \\
3214 & 5663 & 5 \\
3214 & 57153 & 5 \\
3214 & 5932 & 5 \\
3214 & 6009 & 5 \\
3214 & 6093 & 5 \\
3214 & 6240 & 5 \\
3214 & 6241 & 5 \\
3214 & 6464 & 5 \\
3642 & 5573 & 5 \\
3286 & 10873 & 5 \\
3286 & 23354 & 5 \\
4286 & 3111 & 5 \\
\hline 3214 & 6491 & 5 \\
3214 & 7050 & 5 \\
3214 & 9967 & 10036
\end{tabular} 5
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 4286 & 3267 & 5 \\
\hline 4286 & 3845 & 5 \\
\hline 4286 & 55723 & 5 \\
\hline 4286 & 65055 & 5 \\
\hline 4286 & 9212 & 5 \\
\hline 4780 & 1063 & 5 \\
\hline 4780 & 11065 & 5 \\
\hline 4780 & 29899 & 5 \\
\hline 4780 & 55247 & 5 \\
\hline 4780 & 55632 & 5 \\
\hline 4780 & 580 & 5 \\
\hline 4780 & 6432 & 5 \\
\hline 4780 & 64403 & 5 \\
\hline 4780 & 65055 & 5 \\
\hline 4780 & 7153 & 5 \\
\hline 4780 & 79866 & 5 \\
\hline 4780 & 9682 & 5 \\
\hline 5316 & 10234 & 5 \\
\hline 5316 & 10873 & 5 \\
\hline 5316 & 23118 & 5 \\
\hline 5316 & 51514 & 5 \\
\hline 5316 & 55247 & 5 \\
\hline 5316 & 55655 & 5 \\
\hline 5316 & 7153 & 5 \\
\hline 53615 & 10234 & 5 \\
\hline 53615 & 10721 & 5 \\
\hline 53615 & 23354 & 5 \\
\hline 53615 & 5293 & 5 \\
\hline 53615 & 9319 & 5 \\
\hline 58487 & 1058 & 5 \\
\hline 58487 & 23397 & 5 \\
\hline 58487 & 3070 & 5 \\
\hline 58487 & 4233 & 5 \\
\hline 58487 & 55247 & 5 \\
\hline 58487 & 56852 & 5 \\
\hline 58487 & 729 & 5 \\
\hline 6667 & 1058 & 5 \\
\hline 6667 & 55247 & 5 \\
\hline 6667 & 55723 & 5 \\
\hline 6667 & 6491 & 5 \\
\hline 6667 & 729 & 5 \\
\hline 6667 & 9212 & 5 \\
\hline 6667 & 9510 & 5 \\
\hline 672 & 29899 & 5 \\
\hline 672 & 3111 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 672 & 3642 & 5 \\
\hline 672 & 56852 & 5 \\
\hline 672 & 64403 & 5 \\
\hline 6722 & 23354 & 5 \\
\hline 6722 & 3111 & 5 \\
\hline 6722 & 56852 & 5 \\
\hline 6722 & 9212 & 5 \\
\hline 6772 & 10234 & 5 \\
\hline 6772 & 127 & 5 \\
\hline 6772 & 3111 & 5 \\
\hline 6772 & 55247 & 5 \\
\hline 6772 & 898 & 5 \\
\hline 6777 & 23354 & 5 \\
\hline 6777 & 64403 & 5 \\
\hline 6777 & 9319 & 5 \\
\hline 687 & 1869 & 5 \\
\hline 687 & 6432 & 5 \\
\hline 687 & 898 & 5 \\
\hline 7020 & 10766 & 5 \\
\hline 7020 & 10905 & 5 \\
\hline 7020 & 2189 & 5 \\
\hline 7020 & 23397 & 5 \\
\hline 7020 & 3838 & 5 \\
\hline 7020 & 51170 & 5 \\
\hline 7020 & 5154 & 5 \\
\hline 7020 & 6240 & 5 \\
\hline 7020 & 6792 & 5 \\
\hline 7020 & 687 & 5 \\
\hline 7020 & 7296 & 5 \\
\hline 7050 & 1663 & 5 \\
\hline 7050 & 23397 & 5 \\
\hline 7050 & 3111 & 5 \\
\hline 7050 & 3642 & 5 \\
\hline 7050 & 3690 & 5 \\
\hline 7050 & 5347 & 5 \\
\hline 7050 & 55247 & 5 \\
\hline 7050 & 580 & 5 \\
\hline 7050 & 6382 & 5 \\
\hline 7050 & 63967 & 5 \\
\hline 7050 & 650 & 5 \\
\hline 7050 & 699 & 5 \\
\hline 7050 & 701 & 5 \\
\hline 7050 & 7153 & 5 \\
\hline 7528 & 1058 & 5 \\
\hline 7528 & 3642 & 5 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 7528 & 4751 & 5 \\
7528 & 6456 & 5 \\
7528 & 9212 & 5 \\
7528 & 9510 & 5 \\
7528 & 9666 & 5 \\
8202 & 10873 & 5 \\
8202 & 127 & 5 \\
8202 & 2177 & 5 \\
8202 & 3111 & 5 \\
8202 & 3214 & 5 \\
8202 & 6382 & 5 \\
8202 & 701 & 5 \\
861 & 29899 & 5 \\
861 & 3110 & 5 \\
861 & 4751 & 5 \\
861 & 64403 & 5 \\
8930 & 1058 & 5 \\
8930 & 1063 & 5 \\
8930 & 1663 & 5 \\
8932 & 5888 & 5 \\
8932 & 63967 & 5 \\
8932 & 7412 & 5 \\
8932 & 9682 & 5 \\
\hline 8932 & 1869 & 5 \\
8932 & 332 & 3434
\end{tabular} 5
\begin{tabular}{lll}
\multicolumn{2}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 1058 & 127 & 4 \\
1058 & 51170 & 4 \\
10664 & 23354 & 4 \\
10664 & 3642 & 4 \\
10664 & 5293 & 4 \\
10664 & 701 & 4 \\
10664 & 898 & 4 \\
10664 & 9666 & 4 \\
10765 & 3642 & 4 \\
10765 & 4233 & 4 \\
10765 & 56852 & 4 \\
10765 & 65055 & 4 \\
10765 & 9510 & 4 \\
11143 & 127 & 4 \\
11143 & 2619 & 4 \\
11143 & 332 & 4 \\
11143 & 3710 & 4 \\
11143 & 4233 & 4 \\
11143 & 4281 & 4 \\
1869 & 64403 & 4 \\
1869 & 7296 & 4 \\
1893 & 55247 & 4 \\
1869 & 7374 & 4 \\
1869 & 5389 \\
1899 & 489 & 701
\end{tabular} 4
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 34 continued} & \multicolumn{3}{|l|}{Table 34 continued} \\
\hline TF & TG & \# dup & TF & TG & \# dup \\
\hline 1869 & 9134 & 4 & 3110 & 7153 & 4 \\
\hline 1869 & 9319 & 4 & 3110 & 7296 & 4 \\
\hline 1869 & 9531 & 4 & 3110 & 7298 & 4 \\
\hline 1869 & 994 & 4 & 3110 & 8366 & 4 \\
\hline 2305 & 3214 & 4 & 3110 & 8367 & 4 \\
\hline 2305 & 6491 & 4 & 3110 & 84305 & 4 \\
\hline 2908 & 10595 & 4 & 3110 & 890 & 4 \\
\hline 2908 & 10873 & 4 & 3110 & 9319 & 4 \\
\hline 2908 & 3070 & 4 & 3110 & 9510 & 4 \\
\hline 2908 & 3111 & 4 & 3110 & 9646 & 4 \\
\hline 2908 & 3690 & 4 & 3110 & 994 & 4 \\
\hline 2908 & 5864 & 4 & 3214 & 10049 & 4 \\
\hline 2908 & 6491 & 4 & 3214 & 10116 & 4 \\
\hline 3091 & 23397 & 4 & 3214 & 1027 & 4 \\
\hline 3091 & 3111 & 4 & 3214 & 1062 & 4 \\
\hline 3091 & 3642 & 4 & 3214 & 10664 & 4 \\
\hline 3091 & 55723 & 4 & 3214 & 10902 & 4 \\
\hline 3091 & 6382 & 4 & 3214 & 10905 & 4 \\
\hline 3091 & 6581 & 4 & 3214 & 11073 & 4 \\
\hline 3110 & 10068 & 4 & 3214 & 11130 & 4 \\
\hline 3110 & 10116 & 4 & 3214 & 11143 & 4 \\
\hline 3110 & 10595 & 4 & 3214 & 1500 & 4 \\
\hline 3110 & 10902 & 4 & 3214 & 1663 & 4 \\
\hline 3110 & 11004 & 4 & 3214 & 1810 & 4 \\
\hline 3110 & 11073 & 4 & 3214 & 1832 & 4 \\
\hline 3110 & 11130 & 4 & 3214 & 2177 & 4 \\
\hline 3110 & 11135 & 4 & 3214 & 2305 & 4 \\
\hline 3110 & 127 & 4 & 3214 & 23077 & 4 \\
\hline 3110 & 1509 & 4 & 3214 & 23310 & 4 \\
\hline 3110 & 2237 & 4 & 3214 & 23580 & 4 \\
\hline 3110 & 2730 & 4 & 3214 & 23705 & 4 \\
\hline 3110 & 3146 & 4 & 3214 & 2621 & 4 \\
\hline 3110 & 3708 & 4 & 3214 & 27338 & 4 \\
\hline 3110 & 3838 & 4 & 3214 & 2782 & 4 \\
\hline 3110 & 4085 & 4 & 3214 & 2805 & 4 \\
\hline 3110 & 5111 & 4 & 3214 & 2908 & 4 \\
\hline 3110 & 51170 & 4 & 3214 & 29115 & 4 \\
\hline 3110 & 5293 & 4 & 3214 & 3014 & 4 \\
\hline 3110 & 54407 & 4 & 3214 & 3110 & 4 \\
\hline 3110 & 55655 & 4 & 3214 & 3111 & 4 \\
\hline 3110 & 6432 & 4 & 3214 & 3265 & 4 \\
\hline 3110 & 64403 & 4 & 3214 & 3267 & 4 \\
\hline 3110 & 6456 & 4 & 3214 & 329 & 4 \\
\hline 3110 & 6491 & 4 & 3214 & 3708 & 4 \\
\hline 3110 & 6602 & 4 & 3214 & 4286 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 3214 & 4869 & 4 \\
\hline 3214 & 51715 & 4 \\
\hline 3214 & 5293 & 4 \\
\hline 3214 & 53615 & 4 \\
\hline 3214 & 55140 & 4 \\
\hline 3214 & 55247 & 4 \\
\hline 3214 & 55723 & 4 \\
\hline 3214 & 5608 & 4 \\
\hline 3214 & 57026 & 4 \\
\hline 3214 & 65057 & 4 \\
\hline 3214 & 6598 & 4 \\
\hline 3214 & 6772 & 4 \\
\hline 3214 & 6777 & 4 \\
\hline 3214 & 7323 & 4 \\
\hline 3214 & 7398 & 4 \\
\hline 3214 & 7533 & 4 \\
\hline 3214 & 8202 & 4 \\
\hline 3214 & 836 & 4 \\
\hline 3214 & 8367 & 4 \\
\hline 3214 & 8930 & 4 \\
\hline 3214 & 8943 & 4 \\
\hline 3214 & 898 & 4 \\
\hline 3214 & 9133 & 4 \\
\hline 3214 & 9134 & 4 \\
\hline 3214 & 9156 & 4 \\
\hline 3214 & 9184 & 4 \\
\hline 3214 & 9646 & 4 \\
\hline 3214 & 9918 & 4 \\
\hline 3214 & 998 & 4 \\
\hline 3214 & 9994 & 4 \\
\hline 3642 & 10347 & 4 \\
\hline 3642 & 10873 & 4 \\
\hline 3642 & 127 & 4 \\
\hline 3642 & 4751 & 4 \\
\hline 3642 & 55140 & 4 \\
\hline 4286 & 127 & 4 \\
\hline 4286 & 2177 & 4 \\
\hline 4286 & 23397 & 4 \\
\hline 4286 & 3642 & 4 \\
\hline 4286 & 4751 & 4 \\
\hline 4286 & 51170 & 4 \\
\hline 4286 & 6456 & 4 \\
\hline 4286 & 8881 & 4 \\
\hline 4780 & 10068 & 4 \\
\hline 4780 & 10234 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 4780 & 1058 & 4 \\
\hline 4780 & 127 & 4 \\
\hline 4780 & 23312 & 4 \\
\hline 4780 & 23397 & 4 \\
\hline 4780 & 3434 & 4 \\
\hline 4780 & 51514 & 4 \\
\hline 4780 & 5888 & 4 \\
\hline 4780 & 650 & 4 \\
\hline 4780 & 699 & 4 \\
\hline 4780 & 7020 & 4 \\
\hline 4780 & 8564 & 4 \\
\hline 5316 & 1869 & 4 \\
\hline 5316 & 23397 & 4 \\
\hline 5316 & 29899 & 4 \\
\hline 5316 & 6432 & 4 \\
\hline 5316 & 650 & 4 \\
\hline 5316 & 9666 & 4 \\
\hline 53615 & 10873 & 4 \\
\hline 53615 & 11200 & 4 \\
\hline 53615 & 2619 & 4 \\
\hline 53615 & 29899 & 4 \\
\hline 53615 & 5347 & 4 \\
\hline 53615 & 55655 & 4 \\
\hline 53615 & 580 & 4 \\
\hline 53615 & 6382 & 4 \\
\hline 58487 & 10234 & 4 \\
\hline 58487 & 3110 & 4 \\
\hline 58487 & 55723 & 4 \\
\hline 58487 & 6456 & 4 \\
\hline 58487 & 898 & 4 \\
\hline 6667 & 10234 & 4 \\
\hline 6667 & 127 & 4 \\
\hline 6667 & 3110 & 4 \\
\hline 6667 & 3642 & 4 \\
\hline 6667 & 65055 & 4 \\
\hline 6667 & 9319 & 4 \\
\hline 6667 & 993 & 4 \\
\hline 672 & 3110 & 4 \\
\hline 672 & 3214 & 4 \\
\hline 672 & 55723 & 4 \\
\hline 672 & 6382 & 4 \\
\hline 672 & 6456 & 4 \\
\hline 672 & 65055 & 4 \\
\hline 672 & 898 & 4 \\
\hline 672 & 9212 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 672 & 9510 & 4 \\
\hline 6722 & 3642 & 4 \\
\hline 6722 & 4751 & 4 \\
\hline 6772 & 3642 & 4 \\
\hline 6772 & 4751 & 4 \\
\hline 6772 & 6456 & 4 \\
\hline 6772 & 729 & 4 \\
\hline 6777 & 1058 & 4 \\
\hline 6777 & 23397 & 4 \\
\hline 6777 & 3642 & 4 \\
\hline 6777 & 4751 & 4 \\
\hline 6777 & 55632 & 4 \\
\hline 6777 & 5864 & 4 \\
\hline 6777 & 729 & 4 \\
\hline 687 & 23354 & 4 \\
\hline 687 & 3111 & 4 \\
\hline 687 & 699 & 4 \\
\hline 687 & 9682 & 4 \\
\hline 687 & 993 & 4 \\
\hline 7020 & 1027 & 4 \\
\hline 7020 & 10460 & 4 \\
\hline 7020 & 1810 & 4 \\
\hline 7020 & 29899 & 4 \\
\hline 7020 & 3070 & 4 \\
\hline 7020 & 4189 & 4 \\
\hline 7020 & 4664 & 4 \\
\hline 7020 & 51763 & 4 \\
\hline 7020 & 54806 & 4 \\
\hline 7020 & 54820 & 4 \\
\hline 7020 & 55632 & 4 \\
\hline 7020 & 5608 & 4 \\
\hline 7020 & 567 & 4 \\
\hline 7020 & 6241 & 4 \\
\hline 7020 & 6491 & 4 \\
\hline 7020 & 6667 & 4 \\
\hline 7020 & 729 & 4 \\
\hline 7020 & 836 & 4 \\
\hline 7020 & 9133 & 4 \\
\hline 7050 & 10068 & 4 \\
\hline 7050 & 1063 & 4 \\
\hline 7050 & 10873 & 4 \\
\hline 7050 & 11065 & 4 \\
\hline 7050 & 3070 & 4 \\
\hline 7050 & 3434 & 4 \\
\hline 7050 & 51514 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 7050 & 6432 & 4 \\
\hline 7050 & 64403 & 4 \\
\hline 7050 & 8564 & 4 \\
\hline 7528 & 3111 & 4 \\
\hline 7528 & 55247 & 4 \\
\hline 7528 & 55723 & 4 \\
\hline 8202 & 10068 & 4 \\
\hline 8202 & 65055 & 4 \\
\hline 8202 & 729 & 4 \\
\hline 8202 & 9319 & 4 \\
\hline 8202 & 993 & 4 \\
\hline 861 & 10068 & 4 \\
\hline 861 & 23354 & 4 \\
\hline 861 & 6456 & 4 \\
\hline 861 & 6491 & 4 \\
\hline 861 & 898 & 4 \\
\hline 861 & 9666 & 4 \\
\hline 8930 & 2487 & 4 \\
\hline 8930 & 3690 & 4 \\
\hline 8930 & 4286 & 4 \\
\hline 8930 & 5888 & 4 \\
\hline 8930 & 6382 & 4 \\
\hline 8930 & 6456 & 4 \\
\hline 8930 & 65055 & 4 \\
\hline 8930 & 7020 & 4 \\
\hline 8930 & 729 & 4 \\
\hline 8930 & 79866 & 4 \\
\hline 8930 & 9682 & 4 \\
\hline 8932 & 11200 & 4 \\
\hline 8932 & 2177 & 4 \\
\hline 8932 & 3642 & 4 \\
\hline 8932 & 3710 & 4 \\
\hline 8932 & 4233 & 4 \\
\hline 8932 & 51514 & 4 \\
\hline 8932 & 5347 & 4 \\
\hline 8932 & 55723 & 4 \\
\hline 8932 & 7153 & 4 \\
\hline 8932 & 7424 & 4 \\
\hline 8932 & 79866 & 4 \\
\hline 8932 & 8564 & 4 \\
\hline 8932 & 890 & 4 \\
\hline 8932 & 9585 & 4 \\
\hline 1058 & 10873 & 3 \\
\hline 1058 & 10921 & 3 \\
\hline 1058 & 11073 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 1058 & 7298 & 3 \\
\hline 1058 & 9133 & 3 \\
\hline 10664 & 3110 & 3 \\
\hline 10664 & 3111 & 3 \\
\hline 10664 & 4233 & 3 \\
\hline 10664 & 4751 & 3 \\
\hline 10664 & 6456 & 3 \\
\hline 10664 & 6491 & 3 \\
\hline 10765 & 3110 & 3 \\
\hline 10765 & 3111 & 3 \\
\hline 10765 & 55247 & 3 \\
\hline 10765 & 64403 & 3 \\
\hline 10765 & 6491 & 3 \\
\hline 10765 & 729 & 3 \\
\hline 10765 & 993 & 3 \\
\hline 11143 & 11200 & 3 \\
\hline 11143 & 3434 & 3 \\
\hline 11143 & 6581 & 3 \\
\hline 11143 & 729 & 3 \\
\hline 11143 & 9510 & 3 \\
\hline 11143 & 993 & 3 \\
\hline 1810 & 10721 & 3 \\
\hline 1810 & 1869 & 3 \\
\hline 1810 & 55655 & 3 \\
\hline 1810 & 65055 & 3 \\
\hline 1810 & 701 & 3 \\
\hline 1810 & 7020 & 3 \\
\hline 1810 & 9212 & 3 \\
\hline 1810 & 9510 & 3 \\
\hline 1869 & 10068 & 3 \\
\hline 1869 & 1027 & 3 \\
\hline 1869 & 10347 & 3 \\
\hline 1869 & 1827 & 3 \\
\hline 1869 & 23077 & 3 \\
\hline 1869 & 2534 & 3 \\
\hline 1869 & 2621 & 3 \\
\hline 1869 & 3111 & 3 \\
\hline 1869 & 3156 & 3 \\
\hline 1869 & 3265 & 3 \\
\hline 1869 & 3267 & 3 \\
\hline 1869 & 3708 & 3 \\
\hline 1869 & 3837 & 3 \\
\hline 1869 & 3845 & 3 \\
\hline 1869 & 4189 & 3 \\
\hline 1869 & 4193 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 1869 & 4247 & 3 \\
\hline 1869 & 473 & 3 \\
\hline 1869 & 5154 & 3 \\
\hline 1869 & 51715 & 3 \\
\hline 1869 & 5293 & 3 \\
\hline 1869 & 54407 & 3 \\
\hline 1869 & 54806 & 3 \\
\hline 1869 & 55075 & 3 \\
\hline 1869 & 5530 & 3 \\
\hline 1869 & 5608 & 3 \\
\hline 1869 & 5663 & 3 \\
\hline 1869 & 5780 & 3 \\
\hline 1869 & 6240 & 3 \\
\hline 1869 & 65055 & 3 \\
\hline 1869 & 6792 & 3 \\
\hline 1869 & 6944 & 3 \\
\hline 1869 & 8881 & 3 \\
\hline 1869 & 8930 & 3 \\
\hline 1869 & 8932 & 3 \\
\hline 1869 & 898 & 3 \\
\hline 1869 & 9212 & 3 \\
\hline 1869 & 9994 & 3 \\
\hline 2305 & 3642 & 3 \\
\hline 2305 & 55247 & 3 \\
\hline 2305 & 55723 & 3 \\
\hline 2305 & 64403 & 3 \\
\hline 2305 & 6456 & 3 \\
\hline 2305 & 9319 & 3 \\
\hline 2908 & 10721 & 3 \\
\hline 2908 & 127 & 3 \\
\hline 2908 & 1663 & 3 \\
\hline 2908 & 23312 & 3 \\
\hline 2908 & 29899 & 3 \\
\hline 2908 & 4286 & 3 \\
\hline 2908 & 55632 & 3 \\
\hline 2908 & 56852 & 3 \\
\hline 2908 & 64403 & 3 \\
\hline 2908 & 9510 & 3 \\
\hline 2908 & 9666 & 3 \\
\hline 3091 & 1058 & 3 \\
\hline 3091 & 3214 & 3 \\
\hline 3091 & 4751 & 3 \\
\hline 3091 & 55632 & 3 \\
\hline 3091 & 64403 & 3 \\
\hline 3091 & 9319 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 3110 & 10051 & 3 \\
\hline 3110 & 1022 & 3 \\
\hline 3110 & 1027 & 3 \\
\hline 3110 & 1031 & 3 \\
\hline 3110 & 1032 & 3 \\
\hline 3110 & 10600 & 3 \\
\hline 3110 & 1062 & 3 \\
\hline 3110 & 10714 & 3 \\
\hline 3110 & 11143 & 3 \\
\hline 3110 & 1647 & 3 \\
\hline 3110 & 1810 & 3 \\
\hline 3110 & 2177 & 3 \\
\hline 3110 & 2189 & 3 \\
\hline 3110 & 22836 & 3 \\
\hline 3110 & 23279 & 3 \\
\hline 3110 & 23338 & 3 \\
\hline 3110 & 27338 & 3 \\
\hline 3110 & 29896 & 3 \\
\hline 3110 & 3111 & 3 \\
\hline 3110 & 3214 & 3 \\
\hline 3110 & 3832 & 3 \\
\hline 3110 & 3837 & 3 \\
\hline 3110 & 4171 & 3 \\
\hline 3110 & 4189 & 3 \\
\hline 3110 & 4233 & 3 \\
\hline 3110 & 4247 & 3 \\
\hline 3110 & 4780 & 3 \\
\hline 3110 & 51141 & 3 \\
\hline 3110 & 51763 & 3 \\
\hline 3110 & 5316 & 3 \\
\hline 3110 & 53615 & 3 \\
\hline 3110 & 5515 & 3 \\
\hline 3110 & 55632 & 3 \\
\hline 3110 & 5603 & 3 \\
\hline 3110 & 5780 & 3 \\
\hline 3110 & 5889 & 3 \\
\hline 3110 & 6093 & 3 \\
\hline 3110 & 6118 & 3 \\
\hline 3110 & 6240 & 3 \\
\hline 3110 & 6241 & 3 \\
\hline 3110 & 65057 & 3 \\
\hline 3110 & 6760 & 3 \\
\hline 3110 & 6772 & 3 \\
\hline 3110 & 6944 & 3 \\
\hline 3110 & 7374 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 34 continued} & \multicolumn{3}{|l|}{Table 34 continued} \\
\hline TF & TG & \# dup & TF & TG & \# dup \\
\hline 3110 & 7528 & 3 & 3214 & 83695 & 3 \\
\hline 3110 & 7884 & 3 & 3214 & 84168 & 3 \\
\hline 3110 & 8202 & 3 & 3214 & 8772 & 3 \\
\hline 3110 & 836 & 3 & 3214 & 8841 & 3 \\
\hline 3110 & 8364 & 3 & 3214 & 8850 & 3 \\
\hline 3110 & 8837 & 3 & 3214 & 8881 & 3 \\
\hline 3110 & 8850 & 3 & 3214 & 899 & 3 \\
\hline 3110 & 8932 & 3 & 3214 & 9212 & 3 \\
\hline 3110 & 899 & 3 & 3214 & 9531 & 3 \\
\hline 3110 & 9133 & 3 & 3214 & 9585 & 3 \\
\hline 3110 & 9156 & 3 & 3642 & 10068 & 3 \\
\hline 3110 & 9531 & 3 & 3642 & 10714 & 3 \\
\hline 3110 & 9585 & 3 & 3642 & 2177 & 3 \\
\hline 3110 & 9682 & 3 & 3642 & 4171 & 3 \\
\hline 3110 & 9793 & 3 & 3642 & 51170 & 3 \\
\hline 3110 & 9918 & 3 & 3642 & 56852 & 3 \\
\hline 3110 & 996 & 3 & 3642 & 5889 & 3 \\
\hline 3110 & 9994 & 3 & 3642 & 6432 & 3 \\
\hline 3214 & 1022 & 3 & 3642 & 64403 & 3 \\
\hline 3214 & 10234 & 3 & 3642 & 6491 & 3 \\
\hline 3214 & 10595 & 3 & 3642 & 699 & 3 \\
\hline 3214 & 10766 & 3 & 3642 & 994 & 3 \\
\hline 3214 & 2237 & 3 & 4286 & 10068 & 3 \\
\hline 3214 & 2280 & 3 & 4286 & 3110 & 3 \\
\hline 3214 & 23397 & 3 & 4286 & 64403 & 3 \\
\hline 3214 & 2534 & 3 & 4286 & 9319 & 3 \\
\hline 3214 & 3434 & 3 & 4286 & 9510 & 3 \\
\hline 3214 & 3690 & 3 & 4780 & 23779 & 3 \\
\hline 3214 & 4000 & 3 & 4780 & 2619 & 3 \\
\hline 3214 & 4189 & 3 & 4780 & 3070 & 3 \\
\hline 3214 & 4436 & 3 & 4780 & 3111 & 3 \\
\hline 3214 & 4678 & 3 & 4780 & 4233 & 3 \\
\hline 3214 & 5154 & 3 & 4780 & 5347 & 3 \\
\hline 3214 & 54820 & 3 & 4780 & 56852 & 3 \\
\hline 3214 & 5530 & 3 & 4780 & 5864 & 3 \\
\hline 3214 & 5603 & 3 & 4780 & 63967 & 3 \\
\hline 3214 & 567 & 3 & 4780 & 6581 & 3 \\
\hline 3214 & 580 & 3 & 4780 & 701 & 3 \\
\hline 3214 & 6382 & 3 & 4780 & 890 & 3 \\
\hline 3214 & 6432 & 3 & 4780 & 898 & 3 \\
\hline 3214 & 6602 & 3 & 4780 & 9585 & 3 \\
\hline 3214 & 672 & 3 & 5316 & 1058 & 3 \\
\hline 3214 & 687 & 3 & 5316 & 10595 & 3 \\
\hline 3214 & 729 & 3 & 5316 & 1663 & 3 \\
\hline 3214 & 7414 & 3 & 5316 & 2177 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 5316 & 3214 & 3 \\
\hline 5316 & 3642 & 3 \\
\hline 5316 & 3710 & 3 \\
\hline 5316 & 4233 & 3 \\
\hline 5316 & 5888 & 3 \\
\hline 5316 & 6382 & 3 \\
\hline 5316 & 65055 & 3 \\
\hline 5316 & 6581 & 3 \\
\hline 5316 & 890 & 3 \\
\hline 5316 & 898 & 3 \\
\hline 5316 & 9510 & 3 \\
\hline 5316 & 9585 & 3 \\
\hline 53615 & 10068 & 3 \\
\hline 53615 & 1058 & 3 \\
\hline 53615 & 11065 & 3 \\
\hline 53615 & 1663 & 3 \\
\hline 53615 & 1869 & 3 \\
\hline 53615 & 2177 & 3 \\
\hline 53615 & 23118 & 3 \\
\hline 53615 & 3111 & 3 \\
\hline 53615 & 3690 & 3 \\
\hline 53615 & 3710 & 3 \\
\hline 53615 & 4286 & 3 \\
\hline 53615 & 55247 & 3 \\
\hline 53615 & 55723 & 3 \\
\hline 53615 & 5888 & 3 \\
\hline 53615 & 64403 & 3 \\
\hline 53615 & 650 & 3 \\
\hline 53615 & 65055 & 3 \\
\hline 53615 & 6581 & 3 \\
\hline 53615 & 699 & 3 \\
\hline 53615 & 729 & 3 \\
\hline 53615 & 8564 & 3 \\
\hline 53615 & 890 & 3 \\
\hline 53615 & 898 & 3 \\
\hline 53615 & 9401 & 3 \\
\hline 53615 & 9510 & 3 \\
\hline 53615 & 9666 & 3 \\
\hline 58487 & 29899 & 3 \\
\hline 58487 & 3111 & 3 \\
\hline 58487 & 51170 & 3 \\
\hline 58487 & 55632 & 3 \\
\hline 58487 & 6491 & 3 \\
\hline 58487 & 65055 & 3 \\
\hline 6667 & 10873 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 34 continued} & \multicolumn{3}{|l|}{Table 34 continued} \\
\hline TF & TG & \# dup & TF & TG & \# dup \\
\hline 6667 & 2177 & 3 & 687 & 9510 & 3 \\
\hline 6667 & 3070 & 3 & 687 & 9666 & 3 \\
\hline 6667 & 3111 & 3 & 7020 & 10873 & 3 \\
\hline 6667 & 56852 & 3 & 7020 & 23310 & 3 \\
\hline 6667 & 6581 & 3 & 7020 & 25836 & 3 \\
\hline 672 & 4233 & 3 & 7020 & 3156 & 3 \\
\hline 672 & 6491 & 3 & 7020 & 3267 & 3 \\
\hline 6722 & 29899 & 3 & 7020 & 4780 & 3 \\
\hline 6722 & 55247 & 3 & 7020 & 5316 & 3 \\
\hline 6722 & 55723 & 3 & 7020 & 55075 & 3 \\
\hline 6722 & 6456 & 3 & 7020 & 55247 & 3 \\
\hline 6772 & 10873 & 3 & 7020 & 55723 & 3 \\
\hline 6772 & 23397 & 3 & 7020 & 5573 & 3 \\
\hline 6772 & 29899 & 3 & 7020 & 5780 & 3 \\
\hline 6772 & 3110 & 3 & 7020 & 6093 & 3 \\
\hline 6772 & 6491 & 3 & 7020 & 64403 & 3 \\
\hline 6772 & 9319 & 3 & 7020 & 6456 & 3 \\
\hline 6777 & 10873 & 3 & 7020 & 7414 & 3 \\
\hline 6777 & 3214 & 3 & 7020 & 8930 & 3 \\
\hline 6777 & 6382 & 3 & 7020 & 9319 & 3 \\
\hline 6777 & 9401 & 3 & 7020 & 9918 & 3 \\
\hline 6777 & 9666 & 3 & 7020 & 994 & 3 \\
\hline 687 & 10068 & 3 & 7020 & 996 & 3 \\
\hline 687 & 10721 & 3 & 7050 & 10234 & 3 \\
\hline 687 & 11065 & 3 & 7050 & 22909 & 3 \\
\hline 687 & 11200 & 3 & 7050 & 23312 & 3 \\
\hline 687 & 127 & 3 & 7050 & 3214 & 3 \\
\hline 687 & 1663 & 3 & 7050 & 332 & 3 \\
\hline 687 & 332 & 3 & 7050 & 4751 & 3 \\
\hline 687 & 3642 & 3 & 7050 & 5888 & 3 \\
\hline 687 & 3690 & 3 & 7050 & 65055 & 3 \\
\hline 687 & 51514 & 3 & 7050 & 79866 & 3 \\
\hline 687 & 5347 & 3 & 7050 & 9319 & 3 \\
\hline 687 & 55655 & 3 & 7050 & 9682 & 3 \\
\hline 687 & 580 & 3 & 7528 & 127 & 3 \\
\hline 687 & 6382 & 3 & 7528 & 64403 & 3 \\
\hline 687 & 63967 & 3 & 7528 & 65055 & 3 \\
\hline 687 & 6491 & 3 & 7528 & 6581 & 3 \\
\hline 687 & 650 & 3 & 7528 & 898 & 3 \\
\hline 687 & 65055 & 3 & 8202 & 56852 & 3 \\
\hline 687 & 7020 & 3 & 8202 & 64403 & 3 \\
\hline 687 & 729 & 3 & 8202 & 6456 & 3 \\
\hline 687 & 7412 & 3 & 8202 & 6491 & 3 \\
\hline 687 & 79866 & 3 & 861 & 1058 & 3 \\
\hline 687 & 8564 & 3 & 861 & 10873 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 861 & 127 & 3 \\
\hline 861 & 2177 & 3 \\
\hline 861 & 23397 & 3 \\
\hline 861 & 55632 & 3 \\
\hline 861 & 9319 & 3 \\
\hline 861 & 9510 & 3 \\
\hline 8930 & 10068 & 3 \\
\hline 8930 & 2177 & 3 \\
\hline 8930 & 23118 & 3 \\
\hline 8930 & 23354 & 3 \\
\hline 8930 & 23779 & 3 \\
\hline 8930 & 4863 & 3 \\
\hline 8930 & 55723 & 3 \\
\hline 8930 & 6491 & 3 \\
\hline 8930 & 701 & 3 \\
\hline 8930 & 890 & 3 \\
\hline 8930 & 993 & 3 \\
\hline 8932 & 10721 & 3 \\
\hline 8932 & 127 & 3 \\
\hline 8932 & 2619 & 3 \\
\hline 8932 & 3070 & 3 \\
\hline 8932 & 3110 & 3 \\
\hline 8932 & 3690 & 3 \\
\hline 8932 & 6432 & 3 \\
\hline 8932 & 64403 & 3 \\
\hline 8932 & 7020 & 3 \\
\hline 8932 & 9319 & 3 \\
\hline 1058 & 10068 & 2 \\
\hline 1058 & 2237 & 2 \\
\hline 1058 & 23279 & 2 \\
\hline 1058 & 3642 & 2 \\
\hline 1058 & 4247 & 2 \\
\hline 1058 & 55140 & 2 \\
\hline 1058 & 55790 & 2 \\
\hline 1058 & 5780 & 2 \\
\hline 1058 & 6421 & 2 \\
\hline 1058 & 6456 & 2 \\
\hline 1058 & 729 & 2 \\
\hline 1058 & 7374 & 2 \\
\hline 1058 & 84305 & 2 \\
\hline 1058 & 8564 & 2 \\
\hline 1058 & 9666 & 2 \\
\hline 1058 & 9939 & 2 \\
\hline 1058 & 994 & 2 \\
\hline 10664 & 2177 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 10664 & 56852 & 2 \\
\hline 10664 & 729 & 2 \\
\hline 10664 & 9319 & 2 \\
\hline 10664 & 9510 & 2 \\
\hline 10765 & 3214 & 2 \\
\hline 10765 & 898 & 2 \\
\hline 11143 & 10873 & 2 \\
\hline 11143 & 2177 & 2 \\
\hline 11143 & 3111 & 2 \\
\hline 11143 & 3214 & 2 \\
\hline 11143 & 51170 & 2 \\
\hline 11143 & 55655 & 2 \\
\hline 11143 & 56852 & 2 \\
\hline 11143 & 64403 & 2 \\
\hline 11143 & 6456 & 2 \\
\hline 11143 & 6491 & 2 \\
\hline 11143 & 898 & 2 \\
\hline 11143 & 9319 & 2 \\
\hline 1810 & 1063 & 2 \\
\hline 1810 & 11200 & 2 \\
\hline 1810 & 127 & 2 \\
\hline 1810 & 22909 & 2 \\
\hline 1810 & 23312 & 2 \\
\hline 1810 & 23779 & 2 \\
\hline 1810 & 5864 & 2 \\
\hline 1810 & 6432 & 2 \\
\hline 1810 & 64403 & 2 \\
\hline 1810 & 6456 & 2 \\
\hline 1810 & 79866 & 2 \\
\hline 1810 & 993 & 2 \\
\hline 1869 & 10234 & 2 \\
\hline 1869 & 10766 & 2 \\
\hline 1869 & 10873 & 2 \\
\hline 1869 & 10905 & 2 \\
\hline 1869 & 1832 & 2 \\
\hline 1869 & 23338 & 2 \\
\hline 1869 & 2908 & 2 \\
\hline 1869 & 3214 & 2 \\
\hline 1869 & 3838 & 2 \\
\hline 1869 & 51170 & 2 \\
\hline 1869 & 5316 & 2 \\
\hline 1869 & 567 & 2 \\
\hline 1869 & 6093 & 2 \\
\hline 1869 & 6241 & 2 \\
\hline 1869 & 6382 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline 1869 & 7251 & 2 \\
\hline 1869 & 7323 & 2 \\
\hline 1869 & 7414 & 2 \\
\hline 1869 & 9646 & 2 \\
\hline 2305 & 29899 & 2 \\
\hline 2305 & 55632 & 2 \\
\hline 2305 & 56852 & 2 \\
\hline 2305 & 6581 & 2 \\
\hline 2305 & 729 & 2 \\
\hline 2305 & 9666 & 2 \\
\hline 2908 & 23354 & 2 \\
\hline 2908 & 3110 & 2 \\
\hline 2908 & 4751 & 2 \\
\hline 2908 & 55655 & 2 \\
\hline 2908 & 6382 & 2 \\
\hline 3091 & 23354 & 2 \\
\hline 3091 & 29899 & 2 \\
\hline 3091 & 701 & 2 \\
\hline 3110 & 10460 & 2 \\
\hline 3110 & 10664 & 2 \\
\hline 3110 & 10765 & 2 \\
\hline 3110 & 10766 & 2 \\
\hline 3110 & 10769 & 2 \\
\hline 3110 & 11065 & 2 \\
\hline 3110 & 1832 & 2 \\
\hline 3110 & 1977 & 2 \\
\hline 3110 & 23312 & 2 \\
\hline 3110 & 23580 & 2 \\
\hline 3110 & 23705 & 2 \\
\hline 3110 & 23779 & 2 \\
\hline 3110 & 2621 & 2 \\
\hline 3110 & 2782 & 2 \\
\hline 3110 & 2805 & 2 \\
\hline 3110 & 2908 & 2 \\
\hline 3110 & 29117 & 2 \\
\hline 3110 & 3014 & 2 \\
\hline 3110 & 3148 & 2 \\
\hline 3110 & 3156 & 2 \\
\hline 3110 & 3265 & 2 \\
\hline 3110 & 3267 & 2 \\
\hline 3110 & 3312 & 2 \\
\hline 3110 & 332 & 2 \\
\hline 3110 & 3434 & 2 \\
\hline 3110 & 3845 & 2 \\
\hline 3110 & 4436 & 2 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 3110 & 51514 & 2 \\
3110 & 5347 & 2 \\
3110 & 54962 & 2 \\
3110 & 55723 & 2 \\
3110 & 55790 & 2 \\
3110 & 5608 & 2 \\
3110 & 5888 & 2 \\
3110 & 650 & 2 \\
3110 & 6792 & 2 \\
3110 & 7533 & 2 \\
3110 & 8473 & 2 \\
3110 & 8930 & 2 \\
3110 & 8943 & 2 \\
3110 & 898 & 2 \\
3110 & 9184 & 2 \\
3110 & 9666 & 2 \\
3214 & 1063 & 2 \\
3214 & 10873 & 2 \\
3214 & 127 & 2 \\
3214 & 22909 & 2 \\
3214 & 23312 & 2 \\
3214 & 2487 & 2 \\
3214 & 3070 & 2 \\
3214 & 3148 & 2 \\
3214 & 4085 & 2 \\
3214 & 4193 & 2 \\
3214 & 4281 & 2 \\
3214 & 4751 & 2 \\
3214 & 4863 & 2 \\
3214 & 51170 & 2 \\
3214 & 51343 & 2 \\
3214 & 55655 & 2 \\
3214 & 63967 & 2 \\
3214 & 6456 & 2 \\
3214 & 701 & 2 \\
3214 & 7412 & 2 \\
3214 & 7424 & 2 \\
3214 & 79866 & 2 \\
3214 & 890 & 2 \\
3214 & 9319 & 2 \\
3214 & 9510 & 2 \\
3642 & 10234 & 2 \\
3642 & 1063 & 2 \\
3642 & 10721 & 2 \\
3642 & 10921 & 2 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 3642 & 11004 & 2 \\
3642 & 11065 & 2 \\
3642 & 1509 & 2 \\
3642 & 2237 & 2 \\
3642 & 3070 & 2 \\
3642 & 3214 & 2 \\
3642 & 3337 & 2 \\
3642 & 3690 & 2 \\
3642 & 4247 & 2 \\
3642 & 5111 & 2 \\
3642 & 5293 & 2 \\
3642 & 54806 & 2 \\
3642 & 5515 & 2 \\
3642 & 55247 & 2 \\
3642 & 55790 & 2 \\
3642 & 580 & 2 \\
3642 & 6382 & 2 \\
3642 & 63967 & 2 \\
3642 & 6760 & 2 \\
3642 & 687 & 2 \\
3642 & 7153 & 2 \\
3642 & 729 & 2 \\
3642 & 7296 & 2 \\
3642 & 7374 & 2 \\
3642 & 7424 & 2 \\
3642 & 7884 & 2 \\
3642 & 8366 & 2 \\
3642 & 84305 & 2 \\
3642 & 9134 & 2 \\
3642 & 9212 & 2 \\
3642 & 9319 & 2 \\
3642 & 9666 & 2 \\
3642 & 9682 & 2 \\
3642 & 9793 & 2 \\
3642 & 9967 & 2 \\
4286 & 3070 & 2 \\
4286 & 4233 & 2 \\
4286 & 55247 & 2 \\
4286 & 56852 & 2 \\
4286 & 701 & 2 \\
4780 & 10721 & 2 \\
4780 & 11200 & 2 \\
4780 & 2177 & 2 \\
4780 & 22909 & 2 \\
4780 & 23118 & 2 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 4780 & 2487 & 2 \\
4780 & 3214 & 2 \\
4780 & 4281 & 2 \\
4780 & 5293 & 2 \\
4780 & 55655 & 2 \\
4780 & 55723 & 2 \\
4780 & 6382 & 2 \\
4780 & 6456 & 2 \\
4780 & 729 & 2 \\
4780 & 993 & 2 \\
5316 & 10721 & 2 \\
5316 & 22909 & 2 \\
5316 & 23354 & 2 \\
5316 & 23779 & 2 \\
5316 & 2487 & 2 \\
5316 & 3690 & 2 \\
5316 & 5864 & 2 \\
5316 & 64403 & 2 \\
5316 & 6491 & 2 \\
5316 & 7020 & 2 \\
5316 & 9401 & 2 \\
5316 & 9682 & 2 \\
53615 & 10595 & 2 \\
53615 & 22909 & 2 \\
53615 & 23312 & 2 \\
53615 & 2487 & 2 \\
53615 & 3110 & 2 \\
53615 & 3214 & 2 \\
53615 & 4751 & 2 \\
53615 & 56852 & 2 \\
53615 & 6432 & 2 \\
53615 & 6491 & 2 \\
53615 & 7153 & 2 \\
53615 & 7412 & 2 \\
53615 & 9585 & 2 \\
58487 & 127 & 2 \\
58487 & 3214 & 2 \\
58487 & 3642 & 2 \\
58487 & 4751 & 2 \\
58487 & 5293 & 2 \\
6667 & 23354 & 2 \\
6667 & 4751 & 2 \\
6667 & 6382 & 2 \\
6667 & 9666 & 2 \\
6722 & 3070 & 2 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 6722 & 701 & 2 \\
6722 & 898 & 2 \\
6722 & 9319 & 2 \\
6722 & 9666 & 2 \\
6772 & 5293 & 2 \\
6772 & 64403 & 2 \\
6772 & 65055 & 2 \\
6772 & 9510 & 2 \\
6777 & 10721 & 2 \\
6777 & 1663 & 2 \\
6777 & 55247 & 2 \\
6777 & 55723 & 2 \\
6777 & 6581 & 2 \\
6777 & 9212 & 2 \\
687 & 10234 & 2 \\
687 & 10595 & 2 \\
687 & 23118 & 2 \\
687 & 23312 & 2 \\
687 & 29899 & 2 \\
687 & 3434 & 2 \\
687 & 3710 & 2 \\
687 & 4233 & 2 \\
687 & 4863 & 2 \\
687 & 55723 & 2 \\
687 & 5864 & 2 \\
687 & 64403 & 2 \\
687 & 701 & 2 \\
687 & 7153 & 2 \\
687 & 9401 & 2 \\
687 & 9585 & 2 \\
7020 & 10051 & 2 \\
7020 & 10902 & 2 \\
7020 & 23338 & 2 \\
7020 & 23354 & 2 \\
7020 & 3110 & 2 \\
7020 & 3642 & 2 \\
7020 & 3832 & 2 \\
7020 & 3845 & 2 \\
7020 & 4233 & 2 \\
7020 & 4678 & 2 \\
7020 & 473 & 2 \\
7020 & 5293 & 2 \\
7020 & 53615 & 2 \\
7020 & 54407 & 2 \\
7020 & 5530 & 2 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 34 continued} & \multicolumn{3}{|l|}{Table 34 continued} \\
\hline TF & TG & \# dup & TF & TG & \# dup \\
\hline 7020 & 5663 & 2 & 8932 & 23312 & 2 \\
\hline 7020 & 6382 & 2 & 8932 & 23354 & 2 \\
\hline 7020 & 6581 & 2 & 8932 & 23779 & 2 \\
\hline 7020 & 6944 & 2 & 8932 & 29899 & 2 \\
\hline 7020 & 701 & 2 & 8932 & 3214 & 2 \\
\hline 7020 & 7050 & 2 & 8932 & 4281 & 2 \\
\hline 7020 & 7323 & 2 & 8932 & 4863 & 2 \\
\hline 7020 & 7374 & 2 & 8932 & 55632 & 2 \\
\hline 7020 & 9134 & 2 & 8932 & 6581 & 2 \\
\hline 7020 & 9212 & 2 & 8932 & 9510 & 2 \\
\hline 7020 & 9510 & 2 & 8932 & 9666 & 2 \\
\hline 7020 & 9646 & 2 & 1058 & 1022 & 1 \\
\hline 7020 & 998 & 2 & 1058 & 10492 & 1 \\
\hline 7050 & 10721 & 2 & 1058 & 1062 & 1 \\
\hline 7050 & 5293 & 2 & 1058 & 10714 & 1 \\
\hline 7050 & 55632 & 2 & 1058 & 1509 & 1 \\
\hline 7050 & 55723 & 2 & 1058 & 2189 & 1 \\
\hline 7050 & 5864 & 2 & 1058 & 22909 & 1 \\
\hline 7050 & 6456 & 2 & 1058 & 23312 & 1 \\
\hline 7050 & 898 & 2 & 1058 & 2487 & 1 \\
\hline 7050 & 9510 & 2 & 1058 & 2805 & 1 \\
\hline 7528 & 729 & 2 & 1058 & 29896 & 1 \\
\hline 8202 & 23354 & 2 & 1058 & 3111 & 1 \\
\hline 8202 & 4233 & 2 & 1058 & 3710 & 1 \\
\hline 8202 & 898 & 2 & 1058 & 4171 & 1 \\
\hline 861 & 3111 & 2 & 1058 & 4175 & 1 \\
\hline 861 & 55723 & 2 & 1058 & 473 & 1 \\
\hline 8930 & 10721 & 2 & 1058 & 5111 & 1 \\
\hline 8930 & 10873 & 2 & 1058 & 5293 & 1 \\
\hline 8930 & 2619 & 2 & 1058 & 54820 & 1 \\
\hline 8930 & 29899 & 2 & 1058 & 55247 & 1 \\
\hline 8930 & 3214 & 2 & 1058 & 55632 & 1 \\
\hline 8930 & 4233 & 2 & 1058 & 55723 & 1 \\
\hline 8930 & 5293 & 2 & 1058 & 5573 & 1 \\
\hline 8930 & 5864 & 2 & 1058 & 56852 & 1 \\
\hline 8930 & 63967 & 2 & 1058 & 6009 & 1 \\
\hline 8930 & 64403 & 2 & 1058 & 64403 & 1 \\
\hline 8930 & 6581 & 2 & 1058 & 6581 & 1 \\
\hline 8930 & 7424 & 2 & 1058 & 6760 & 1 \\
\hline 8930 & 898 & 2 & 1058 & 7412 & 1 \\
\hline 8930 & 9510 & 2 & 1058 & 7424 & 1 \\
\hline 8930 & 9585 & 2 & 1058 & 8365 & 1 \\
\hline 8932 & 1063 & 2 & 1058 & 8366 & 1 \\
\hline 8932 & 11065 & 2 & 1058 & 8367 & 1 \\
\hline 8932 & 1869 & 2 & 1058 & 8930 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 1058 & 9134 & 1 \\
1058 & 9510 & 1 \\
1058 & 9585 & 1 \\
10664 & 3214 & 1 \\
10664 & 6581 & 1 \\
10664 & 993 & 1 \\
10765 & 10873 & 1 \\
10765 & 23354 & 1 \\
10765 & 6382 & 1 \\
10765 & 6581 & 1 \\
10765 & 9319 & 1 \\
11143 & 23354 & 1 \\
11143 & 7412 & 1 \\
11143 & 7424 & 1 \\
11143 & 79866 & 1 \\
1810 & 10873 & 1 \\
1810 & 2177 & 1 \\
1810 & 3110 & 1 \\
1810 & 3434 & 1 \\
1810 & 4286 & 1 \\
1810 & 4863 & 1 \\
1810 & 729 & 1 \\
1810 & 898 & 1 \\
1869 & 29899 & 1 \\
1869 & 3070 & 1 \\
1869 & 3110 & 1 \\
1869 & 4233 & 1 \\
1869 & 55247 & 1 \\
1869 & 55632 & 1 \\
1869 & 6581 & 1 \\
1869 & 9666 & 1 \\
2305 & 127 & 1 \\
2908 & 3214 & 1 \\
2908 & 9682 & 1 \\
3091 & 56852 & 1 \\
3110 & 10049 & 1 \\
3110 & 10347 & 1 \\
3110 & 10458 & 1 \\
3110 & 10721 & 1 \\
3110 & 10905 & 1 \\
3110 & 1500 & 1 \\
3110 & 1663 & 1 \\
3110 & 2280 & 1 \\
3110 & 22909 & 1 \\
3110 & 23118 & 1 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 34 continued} & \multicolumn{3}{|l|}{Table 34 continued} \\
\hline TF & TG & \# dup & TF & TG & \# dup \\
\hline 3110 & 23310 & 1 & 3214 & 29899 & 1 \\
\hline 3110 & 23397 & 1 & 3214 & 332 & 1 \\
\hline 3110 & 2487 & 1 & 3214 & 3710 & 1 \\
\hline 3110 & 29115 & 1 & 3214 & 51514 & 1 \\
\hline 3110 & 29899 & 1 & 3214 & 5347 & 1 \\
\hline 3110 & 329 & 1 & 3214 & 55632 & 1 \\
\hline 3110 & 3690 & 1 & 3214 & 55790 & 1 \\
\hline 3110 & 3710 & 1 & 3214 & 56852 & 1 \\
\hline 3110 & 4173 & 1 & 3214 & 5864 & 1 \\
\hline 3110 & 4193 & 1 & 3214 & 64403 & 1 \\
\hline 3110 & 4281 & 1 & 3214 & 7153 & 1 \\
\hline 3110 & 4664 & 1 & 3214 & 8564 & 1 \\
\hline 3110 & 4678 & 1 & 3214 & 9401 & 1 \\
\hline 3110 & 4751 & 1 & 3214 & 9666 & 1 \\
\hline 3110 & 4863 & 1 & 3214 & 993 & 1 \\
\hline 3110 & 51343 & 1 & 3642 & 1058 & 1 \\
\hline 3110 & 55075 & 1 & 3642 & 11130 & 1 \\
\hline 3110 & 55140 & 1 & 3642 & 1977 & 1 \\
\hline 3110 & 55247 & 1 & 3642 & 22909 & 1 \\
\hline 3110 & 5663 & 1 & 3642 & 23118 & 1 \\
\hline 3110 & 567 & 1 & 3642 & 23338 & 1 \\
\hline 3110 & 56852 & 1 & 3642 & 2487 & 1 \\
\hline 3110 & 57026 & 1 & 3642 & 25896 & 1 \\
\hline 3110 & 57153 & 1 & 3642 & 2730 & 1 \\
\hline 3110 & 580 & 1 & 3642 & 29115 & 1 \\
\hline 3110 & 58487 & 1 & 3642 & 29899 & 1 \\
\hline 3110 & 63967 & 1 & 3642 & 3434 & 1 \\
\hline 3110 & 6581 & 1 & 3642 & 3832 & 1 \\
\hline 3110 & 6667 & 1 & 3642 & 3838 & 1 \\
\hline 3110 & 6777 & 1 & 3642 & 4000 & 1 \\
\hline 3110 & 7020 & 1 & 3642 & 4175 & 1 \\
\hline 3110 & 7398 & 1 & 3642 & 4281 & 1 \\
\hline 3110 & 7414 & 1 & 3642 & 51141 & 1 \\
\hline 3110 & 83695 & 1 & 3642 & 5347 & 1 \\
\hline 3110 & 84168 & 1 & 3642 & 55632 & 1 \\
\hline 3110 & 8772 & 1 & 3642 & 55655 & 1 \\
\hline 3110 & 8841 & 1 & 3642 & 55723 & 1 \\
\hline 3110 & 891 & 1 & 3642 & 5932 & 1 \\
\hline 3110 & 9134 & 1 & 3642 & 6241 & 1 \\
\hline 3110 & 9401 & 1 & 3642 & 6421 & 1 \\
\hline 3110 & 998 & 1 & 3642 & 6456 & 1 \\
\hline 3214 & 1058 & 1 & 3642 & 65057 & 1 \\
\hline 3214 & 11065 & 1 & 3642 & 6667 & 1 \\
\hline 3214 & 1869 & 1 & 3642 & 701 & 1 \\
\hline 3214 & 23118 & 1 & 3642 & 7020 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table 34 continued } \\
\hline TF & TG & \# dup \\
\hline 3642 & 7298 & 1 \\
3642 & 7398 & 1 \\
3642 & 79866 & 1 \\
3642 & 8364 & 1 \\
3642 & 8365 & 1 \\
3642 & 8367 & 1 \\
3642 & 83695 & 1 \\
3642 & 8850 & 1 \\
3642 & 890 & 1 \\
3642 & 891 & 1 \\
3642 & 898 & 1 \\
3642 & 9133 & 1 \\
3642 & 9531 & 1 \\
3642 & 993 & 1 \\
3642 & 9939 & 1 \\
4286 & 29899 & 1 \\
4286 & 3214 & 1 \\
4286 & 6581 & 1 \\
4286 & 9666 & 1 \\
4780 & 10873 & 1 \\
4780 & 1869 & 1 \\
4780 & 3110 & 1 \\
4780 & 332 & 1 \\
4780 & 3642 & 1 \\
4780 & 3690 & 1 \\
4780 & 3710 & 1 \\
4780 & 4863 & 1 \\
4780 & 7412 & 1 \\
4780 & 7424 & 1 \\
4780 & 9401 & 1 \\
4780 & 9510 & 1 \\
4780 & 9666 & 1 \\
5316 & 11200 & 1 \\
5316 & 4751 & 1 \\
5316 & 55632 & 1 \\
5316 & 56852 & 1 \\
5316 & 63967 & 1 \\
53615 & 332 & 1 \\
53615 & 4863 & 1 \\
53615 & 5864 & 1 \\
53615 & 6456 & 1 \\
53615 & 7020 & 1 \\
53615 & 79866 & 1 \\
53615 & 9212 & 1 \\
53615 & 993 & 1 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table \(\mathbf{3 4}\) continued } \\
\hline TF & TG & \# dup \\
\hline 58487 & 10873 & 1 \\
58487 & 6382 & 1 \\
58487 & 64403 & 1 \\
58487 & 9510 & 1 \\
672 & 729 & 1 \\
6772 & 3214 & 1 \\
6772 & 4233 & 1 \\
6772 & 55632 & 1 \\
6772 & 56852 & 1 \\
6772 & 6382 & 1 \\
6772 & 6581 & 1 \\
6772 & 701 & 1 \\
6772 & 9666 & 1 \\
6777 & 29899 & 1 \\
6777 & 56852 & 1 \\
6777 & 6456 & 1 \\
687 & 1058 & 1 \\
687 & 10873 & 1 \\
687 & 2177 & 1 \\
687 & 23397 & 1 \\
687 & 23779 & 1 \\
687 & 3070 & 1 \\
687 & 3214 & 1 \\
687 & 5293 & 1 \\
687 & 55790 & 1 \\
687 & 56852 & 1 \\
687 & 5888 & 1 \\
687 & 6581 & 1 \\
687 & 7424 & 1 \\
687 & 9319 & 1 \\
7020 & 10234 & 1 \\
7020 & 56852 & 1 \\
7020 & 8881 & 1 \\
7020 & 9531 & 1 \\
7050 & 2177 & 1 \\
7050 & 2487 & 1 \\
7050 & 56852 & 1 \\
7050 & 6581 & 1 \\
7050 & 729 & 1 \\
7050 & 890 & 1 \\
7050 & 9666 & 1 \\
8202 & 6581 & 1 \\
\hline & 9510 & 1 \\
\hline 66852 & 1 \\
\hline & & \\
\hline
\end{tabular}

Table 34 continued
\begin{tabular}{lll}
\hline TF & TG & \# dup \\
\hline 861 & 993 & 1 \\
8930 & 3434 & 1 \\
8930 & 55790 & 1 \\
8930 & 56852 & 1 \\
8930 & 699 & 1 \\
8930 & 7412 & 1 \\
8932 & 1663 & 1 \\
8932 & 3111 & 1 \\
8932 & 4751 & 1 \\
8932 & 55655 & 1 \\
8932 & 56852 & 1 \\
8932 & 6456 & 1 \\
8932 & 9401 & 1 \\
\hline
\end{tabular}

The table gives for each edge the number of time it is repeated after concatenating all the 132 cell line networks collected from the HumanBase database https://hb.flatironinsti tute.org/download. The \(1^{\text {st }}\) column represents the TF entrez ID. The \(2^{\text {nd }}\) column the TG entrez ID. The \(3^{\text {rd }}\) column represent the of times the link is repeated in the final network.

Table 35: Edges repetition in Garcia networks
\begin{tabular}{lll}
\hline TF & TG & \# dup \\
\hline CTCF & ABCA7 & 2 \\
CTCF & ABCC2 & 2 \\
CTCF & ABHD10 & 2 \\
CTCF & ADCY6 & 2 \\
CTCF & ADH4 & 2 \\
CTCF & AHI1 & 2 \\
CTCF & AMD1 & 2 \\
CTCF & ANLN & 2 \\
CTCF & ANP32B & 2 \\
CTCF & ANP32E & 2 \\
CTCF & AOC2 & 2 \\
CTCF & AOC3 & 2 \\
CTCF & AP3D1 & 2 \\
CTCF & AP3M2 & 2 \\
CTCF & AP4B1 & 2 \\
CTCF & ARHGAP11A & 2 \\
CTCF & ARHGAP19 & 2 \\
CTCF & ARHGAP8 & 2 \\
CTCF & ARHGEF39 & 2 \\
CTCF & ARL4A & 2 \\
CTCF & ARL6IP1 & 2 \\
CTCF & ASF1B & 2 \\
CTCF & ASIP & 2 \\
CTCF & ASPHD2 & 2 \\
CTCF & ATAD2 & 2 \\
CTCF & ATF7IP & 2 \\
CTCF & ATL2 & 2 \\
CTCF & AURKB & 2 \\
CTCF & B2M & 2 \\
CTCF & BAG3 & 2 \\
CTCF & BAIAP2 & 2 \\
CTCF & BBS2 & 2 \\
CTCF & BCLAF1 & 2 \\
CTCF & BIRC2 & 2 \\
CTCF & BIVM & 2 \\
CTCF & BMP2 & 2 \\
CTCF & BRCA1 & 2 \\
CTCF & BRD7 & 2 \\
CTCF & BTBD3 & 2 \\
CTCF & BUB3 & 2 \\
\hline & & \\
\hline
\end{tabular}

Table 35 continued
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline CTCF & C6 & 2 \\
\hline CTCF & CADM1 & 2 \\
\hline CTCF & CAPN7 & 2 \\
\hline CTCF & CASP3 & 2 \\
\hline CTCF & CCDC90B & 2 \\
\hline CTCF & CCNE1 & 2 \\
\hline CTCF & CCNF & 2 \\
\hline CTCF & CDC16 & 2 \\
\hline CTCF & CDC20 & 2 \\
\hline CTCF & CDC25A & 2 \\
\hline CTCF & CDC25B & 2 \\
\hline CTCF & CDC25C & 2 \\
\hline CTCF & CDC42 & 2 \\
\hline CTCF & CDC42EP1 & 2 \\
\hline CTCF & CDC42EP4 & 2 \\
\hline CTCF & CDC45 & 2 \\
\hline CTCF & CDC6 & 2 \\
\hline CTCF & CDC7 & 2 \\
\hline CTCF & CDCA7 & 2 \\
\hline CTCF & CDCA7L & 2 \\
\hline CTCF & CDK20 & 2 \\
\hline CTCF & CDK7 & 2 \\
\hline CTCF & CDKN1B & 2 \\
\hline CTCF & CDKN2AIP & 2 \\
\hline CTCF & CDKN2C & 2 \\
\hline CTCF & CDKN3 & 2 \\
\hline CTCF & CENPA & 2 \\
\hline CTCF & CENPE & 2 \\
\hline CTCF & CENPF & 2 \\
\hline CTCF & CENPM & 2 \\
\hline CTCF & CEP44 & 2 \\
\hline CTCF & CEP55 & 2 \\
\hline CTCF & CEP70 & 2 \\
\hline CTCF & CFD & 2 \\
\hline CTCF & CFLAR & 2 \\
\hline CTCF & CHAF1B & 2 \\
\hline CTCF & CHEK2 & 2 \\
\hline CTCF & CIC & 2 \\
\hline CTCF & CIT & 2 \\
\hline CTCF & CKAP5 & 2 \\
\hline CTCF & CKS2 & 2 \\
\hline CTCF & CLSPN & 2 \\
\hline CTCF & CNN2 & 2 \\
\hline CTCF & CNOT10 & 2 \\
\hline CTCF & COQ6 & 2 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{2}{r}{ Table 35 continued } \\
\hline TF & TG & \# dup \\
\hline CTCF & CREBZF & 2 \\
CTCF & CRK & 2 \\
CTCF & CRYBA1 & 2 \\
CTCF & CSH2 & 2 \\
CTCF & CTCF & 2 \\
CTCF & CTNND1 & 2 \\
CTCF & CTR9 & 2 \\
CTCF & CTSD & 2 \\
CTCF & CWC15 & 2 \\
CTCF & CXCL14 & 2 \\
CTCF & CYB5R2 & 2 \\
CTCF & CYTH3 & 2 \\
CTCF & DCAF16 & 2 \\
CTCF & DCAF7 & 2 \\
CTCF & DCTN6 & 2 \\
CTCF & DDX11 & 2 \\
CTCF & DEPDC1B & 2 \\
CTCF & DET1 & 2 \\
CTCF & DHX8 & 2 \\
CTCF & DLGAP5 & 2 \\
CTCF & DMTF1 & 2 \\
CTCF & DMXL2 & 2 \\
CTCF & DNAJB1 & 2 \\
CTCF & DNAJB4 & 2 \\
CTCF & DNAJB6 & 2 \\
CTCF & DNAJB9 & 2 \\
CTCF & DNAJC3 & 2 \\
CTCF & DNAJC6 & 2 \\
CTCF & DTL & 2 \\
CTCF & DUSP4 & 2 \\
CTCF & DYNLL1 & 2 \\
CTCF & FAM105A & 2 \\
\hline & & \\
CTCF & DZIP3 & 2 \\
CTCF & E2F1 & 2 \\
CTCF & E2F5 & 2 \\
CTCF & E2F8 & 2 \\
CTCF & EBI3 & 2 \\
CTCF & EIF4E & 2 \\
CTCF & ELP3 & 2 \\
CTCF & ENOSF1 & 2 \\
CTCF & ERN2 & 2 \\
CTCF & EXPL1 & 2 \\
& 2 \\
CABP1 & 2 \\
CTCD & 2 \\
CTC
\end{tabular}

Table 35 continued
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline CTCF & FAM110A & 2 \\
\hline CTCF & FAM189B & 2 \\
\hline CTCF & FAM214A & 2 \\
\hline CTCF & FAM60A & 2 \\
\hline CTCF & FANCA & 2 \\
\hline CTCF & FANCI & 2 \\
\hline CTCF & FBXL20 & 2 \\
\hline CTCF & FEM1B & 2 \\
\hline CTCF & FEN1 & 2 \\
\hline CTCF & FKBP1A & 2 \\
\hline CTCF & FLAD1 & 2 \\
\hline CTCF & FXR1 & 2 \\
\hline CTCF & G2E3 & 2 \\
\hline CTCF & G3BP1 & 2 \\
\hline CTCF & GAS1 & 2 \\
\hline CTCF & GAS6 & 2 \\
\hline CTCF & GDF15 & 2 \\
\hline CTCF & GINS2 & 2 \\
\hline CTCF & GINS3 & 2 \\
\hline CTCF & GMNN & 2 \\
\hline CTCF & GNB1 & 2 \\
\hline CTCF & GOLGA8A & 2 \\
\hline CTCF & GOT1 & 2 \\
\hline CTCF & GPSM2 & 2 \\
\hline CTCF & GRK6 & 2 \\
\hline CTCF & GRPEL1 & 2 \\
\hline CTCF & GTF2B & 2 \\
\hline CTCF & GTSE1 & 2 \\
\hline CTCF & H2AFX & 2 \\
\hline CTCF & HAUS5 & 2 \\
\hline CTCF & HAUS8 & 2 \\
\hline CTCF & HCP5 & 2 \\
\hline CTCF & HELLS & 2 \\
\hline CTCF & HERPUD2 & 2 \\
\hline CTCF & HIF1A & 2 \\
\hline CTCF & HIST1H4C & 2 \\
\hline CTCF & HIST1H4E & 2 \\
\hline CTCF & HIST1H4H & 2 \\
\hline CTCF & HJURP & 2 \\
\hline CTCF & HLA-DOA & 2 \\
\hline CTCF & HLA-DRA & 2 \\
\hline CTCF & HMG20B & 2 \\
\hline CTCF & HMGCR & 2 \\
\hline CTCF & HMMR & 2 \\
\hline CTCF & HRAS & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline CTCF & HSD17B11 & 2 \\
\hline CTCF & HSF2 & 2 \\
\hline CTCF & HSPA13 & 2 \\
\hline CTCF & HSPB8 & 2 \\
\hline CTCF & IDO1 & 2 \\
\hline CTCF & ILF2 & 2 \\
\hline CTCF & INADL & 2 \\
\hline CTCF & INPP5K & 2 \\
\hline CTCF & INSIG2 & 2 \\
\hline CTCF & INSM1 & 2 \\
\hline CTCF & INSR & 2 \\
\hline CTCF & INTS7 & 2 \\
\hline CTCF & ITPR3 & 2 \\
\hline CTCF & IVNS1ABP & 2 \\
\hline CTCF & KANK2 & 2 \\
\hline CTCF & KAT2B & 2 \\
\hline CTCF & KCTD2 & 2 \\
\hline CTCF & KDM4A & 2 \\
\hline CTCF & KDM5B & 2 \\
\hline CTCF & KIAA0586 & 2 \\
\hline CTCF & KIAA1147 & 2 \\
\hline CTCF & KIAA1524 & 2 \\
\hline CTCF & KIF11 & 2 \\
\hline CTCF & KIF14 & 2 \\
\hline CTCF & KIF20B & 2 \\
\hline CTCF & KIF22 & 2 \\
\hline CTCF & KIF5B & 2 \\
\hline CTCF & KIFC1 & 2 \\
\hline CTCF & KLF6 & 2 \\
\hline CTCF & KLF9 & 2 \\
\hline CTCF & KMO & 2 \\
\hline CTCF & KPNA2 & 2 \\
\hline CTCF & KPNB1 & 2 \\
\hline CTCF & KRAS & 2 \\
\hline CTCF & LARP7 & 2 \\
\hline CTCF & LMNB1 & 2 \\
\hline CTCF & LMO4 & 2 \\
\hline CTCF & LPP & 2 \\
\hline CTCF & LRIF1 & 2 \\
\hline CTCF & LYAR & 2 \\
\hline CTCF & MAD2L1 & 2 \\
\hline CTCF & MAN1A2 & 2 \\
\hline CTCF & MAP2K6 & 2 \\
\hline CTCF & MAP3K2 & 2 \\
\hline CTCF & MAPK13 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline CTCF & MATN2 & 2 \\
\hline CTCF & MBD2 & 2 \\
\hline CTCF & MBD3 & 2 \\
\hline CTCF & MCAM & 2 \\
\hline CTCF & MCM5 & 2 \\
\hline CTCF & MCM8 & 2 \\
\hline CTCF & MDC1 & 2 \\
\hline CTCF & MDM2 & 2 \\
\hline CTCF & ME3 & 2 \\
\hline CTCF & MED31 & 2 \\
\hline CTCF & MEGF9 & 2 \\
\hline CTCF & MELK & 2 \\
\hline CTCF & MET & 2 \\
\hline CTCF & MGAT2 & 2 \\
\hline CTCF & MID1 & 2 \\
\hline CTCF & MIS18BP1 & 2 \\
\hline CTCF & MITF & 2 \\
\hline CTCF & MKI67 & 2 \\
\hline CTCF & MLLT4 & 2 \\
\hline CTCF & MND1 & 2 \\
\hline CTCF & MNT & 2 \\
\hline CTCF & MNX1 & 2 \\
\hline CTCF & MORF4L2 & 2 \\
\hline CTCF & MRPL19 & 2 \\
\hline CTCF & MRPS2 & 2 \\
\hline CTCF & MSH2 & 2 \\
\hline CTCF & MTCL1 & 2 \\
\hline CTCF & MYCBP2 & 2 \\
\hline CTCF & MZF1 & 2 \\
\hline CTCF & NAB1 & 2 \\
\hline CTCF & NCAPD2 & 2 \\
\hline CTCF & NCAPD3 & 2 \\
\hline CTCF & NCAPH & 2 \\
\hline CTCF & NCOA3 & 2 \\
\hline CTCF & NCOA5 & 2 \\
\hline CTCF & NCS1 & 2 \\
\hline CTCF & NDE1 & 2 \\
\hline CTCF & NEIL3 & 2 \\
\hline CTCF & NEK2 & 2 \\
\hline CTCF & NFIC & 2 \\
\hline CTCF & NFYA & 2 \\
\hline CTCF & NFYB & 2 \\
\hline CTCF & NIPBL & 2 \\
\hline CTCF & NKTR & 2 \\
\hline CTCF & NMB & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline CTCF & NNMT & 2 \\
\hline CTCF & NPAT & 2 \\
\hline CTCF & NPM1 & 2 \\
\hline CTCF & NR3C1 & 2 \\
\hline CTCF & NSUN3 & 2 \\
\hline CTCF & NUCKS1 & 2 \\
\hline CTCF & NUDT4 & 2 \\
\hline CTCF & NUF2 & 2 \\
\hline CTCF & NUP160 & 2 \\
\hline CTCF & NUP37 & 2 \\
\hline CTCF & ODF2 & 2 \\
\hline CTCF & OGT & 2 \\
\hline CTCF & OLR1 & 2 \\
\hline CTCF & ORC3 & 2 \\
\hline CTCF & OSER1 & 2 \\
\hline CTCF & PANK2 & 2 \\
\hline CTCF & PCNA & 2 \\
\hline CTCF & PDGFA & 2 \\
\hline CTCF & PDXP & 2 \\
\hline CTCF & PIK3CD & 2 \\
\hline CTCF & PKMYT1 & 2 \\
\hline CTCF & PLIN3 & 2 \\
\hline CTCF & PLK1 & 2 \\
\hline CTCF & PLK2 & 2 \\
\hline CTCF & POC1A & 2 \\
\hline CTCF & POLA1 & 2 \\
\hline CTCF & POLD3 & 2 \\
\hline CTCF & POLQ & 2 \\
\hline CTCF & POM121 & 2 \\
\hline CTCF & PPP1R2 & 2 \\
\hline CTCF & PPP3CA & 1 \\
\hline CTCF & PPP6R3 & 1 \\
\hline CTCF & PRIM1 & 1 \\
\hline CTCF & PRIM2 & 1 \\
\hline CTCF & PRKAR1A & 1 \\
\hline CTCF & PRPSAP1 & 1 \\
\hline CTCF & PRR11 & 1 \\
\hline CTCF & PRR16 & 1 \\
\hline CTCF & PSEN1 & 1 \\
\hline CTCF & PSMD11 & 1 \\
\hline CTCF & PSMG3 & 1 \\
\hline CTCF & PTMS & 1 \\
\hline CTCF & PTP4A1 & 1 \\
\hline CTCF & PTPN9 & 1 \\
\hline CTCF & PTTG1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline CTCF & PWP1 & 1 \\
\hline CTCF & QRICH1 & 1 \\
\hline CTCF & RAB23 & 1 \\
\hline CTCF & RAB3A & 1 \\
\hline CTCF & RAD18 & 1 \\
\hline CTCF & RAD21 & 1 \\
\hline CTCF & RAD51 & 1 \\
\hline CTCF & RAD51C & 1 \\
\hline CTCF & RAD54L & 1 \\
\hline CTCF & RAN & 1 \\
\hline CTCF & RANGAP1 & 1 \\
\hline CTCF & RBBP8 & 1 \\
\hline CTCF & RBM8A & 1 \\
\hline CTCF & RCAN1 & 1 \\
\hline CTCF & REEP1 & 1 \\
\hline CTCF & RFC4 & 1 \\
\hline CTCF & RGS3 & 1 \\
\hline CTCF & RHEB & 1 \\
\hline CTCF & RHOBTB3 & 1 \\
\hline CTCF & RNF126 & 1 \\
\hline CTCF & ROCK1 & 1 \\
\hline CTCF & RPL13A & 1 \\
\hline CTCF & RRM1 & 1 \\
\hline CTCF & RRM2 & 1 \\
\hline CTCF & RRP1 & 1 \\
\hline CTCF & SAP30 & 1 \\
\hline CTCF & SAP30BP & 1 \\
\hline CTCF & SDC1 & 1 \\
\hline CTCF & SEC62 & 1 \\
\hline CTCF & SEPHS1 & 1 \\
\hline CTCF & SEPN1 & 1 \\
\hline CTCF & SGK1 & 1 \\
\hline CTCF & SH3GL2 & 1 \\
\hline CTCF & SHCBP1 & 1 \\
\hline CTCF & SLBP & 1 \\
\hline CTCF & SLC17A2 & 1 \\
\hline CTCF & SLC22A3 & 1 \\
\hline CTCF & SLC25A27 & 1 \\
\hline CTCF & SLC25A36 & 1 \\
\hline CTCF & SLC38A2 & 1 \\
\hline CTCF & SLC39A10 & 1 \\
\hline CTCF & SLC44A2 & 1 \\
\hline CTCF & SLC4A1AP & 1 \\
\hline CTCF & SmARCB1 & 1 \\
\hline CTCF & SMARCD1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline CTCF & SMC4 & 1 \\
\hline CTCF & SMTN & 1 \\
\hline CTCF & SNUPN & 1 \\
\hline CTCF & SP1 & 1 \\
\hline CTCF & SPDL1 & 1 \\
\hline CTCF & SRF & 1 \\
\hline CTCF & SS18 & 1 \\
\hline CTCF & SSR3 & 1 \\
\hline CTCF & STAG3 & 1 \\
\hline CTCF & STAT1 & 1 \\
\hline CTCF & STAT5B & 1 \\
\hline CTCF & STIL & 1 \\
\hline CTCF & SUCLG2 & 1 \\
\hline CTCF & TAB2 & 1 \\
\hline CTCF & TFAP2A & 1 \\
\hline CTCF & TGIF1 & 1 \\
\hline CTCF & THRAP3 & 1 \\
\hline CTCF & TMPO & 1 \\
\hline CTCF & TNPO2 & 1 \\
\hline CTCF & TOMM34 & 1 \\
\hline CTCF & TOP1 & 1 \\
\hline CTCF & TOP2A & 1 \\
\hline CTCF & TPX2 & 1 \\
\hline CTCF & TRA2A & 1 \\
\hline CTCF & TRAIP & 1 \\
\hline CTCF & TRIM45 & 1 \\
\hline CTCF & TRIP13 & 1 \\
\hline CTCF & TROAP & 1 \\
\hline CTCF & TSC22D1 & 1 \\
\hline CTCF & TSKU & 1 \\
\hline CTCF & TSN & 1 \\
\hline CTCF & TTC31 & 1 \\
\hline CTCF & TTF2 & 1 \\
\hline CTCF & TTK & 1 \\
\hline CTCF & TUBB2A & 1 \\
\hline CTCF & TUBB4B & 1 \\
\hline CTCF & TUBD1 & 1 \\
\hline CTCF & TULP4 & 1 \\
\hline CTCF & TXNRD1 & 1 \\
\hline CTCF & TYMS & 1 \\
\hline CTCF & UACA & 1 \\
\hline CTCF & UBE2D3 & 1 \\
\hline CTCF & UBE2S & 1 \\
\hline CTCF & UBL3 & 1 \\
\hline CTCF & UBR7 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline CTCF & UHRF1 & 1 \\
\hline CTCF & UNG & 1 \\
\hline CTCF & USP1 & 1 \\
\hline CTCF & USP13 & 1 \\
\hline CTCF & USP53 & 1 \\
\hline CTCF & USP6NL & 1 \\
\hline CTCF & VCAM1 & 1 \\
\hline CTCF & VCL & 1 \\
\hline CTCF & VEGFC & 1 \\
\hline CTCF & VPS37C & 1 \\
\hline CTCF & VPS72 & 1 \\
\hline CTCF & VTA1 & 1 \\
\hline CTCF & WSB1 & 1 \\
\hline CTCF & YWHAH & 1 \\
\hline CTCF & YY1 & 1 \\
\hline CTCF & ZBED5 & 1 \\
\hline CTCF & ZBTB7A & 1 \\
\hline CTCF & ZC3HC1 & 1 \\
\hline CTCF & ZMYM1 & 1 \\
\hline CTCF & ZNF143 & 1 \\
\hline CTCF & ZNF217 & 1 \\
\hline CTCF & ZNF281 & 1 \\
\hline CTCF & ZNF414 & 1 \\
\hline CTCF & ZNF521 & 1 \\
\hline CTCF & ZNF593 & 1 \\
\hline CTCF & ZNFX1 & 1 \\
\hline CTCF & ZNHIT2 & 1 \\
\hline CTCF & ZPBP & 1 \\
\hline CTCF & ZRANB2 & 1 \\
\hline CTCF & ZSCAN5A & 1 \\
\hline E2F1 & ABCC2 & 1 \\
\hline E2F1 & ADAMTS1 & 1 \\
\hline E2F1 & ADH4 & 1 \\
\hline E2F1 & AHI1 & 1 \\
\hline E2F1 & AMD1 & 1 \\
\hline E2F1 & ANTXR1 & 1 \\
\hline E2F1 & AP3D1 & 1 \\
\hline E2F1 & AP3M2 & 1 \\
\hline E2F1 & ARHGAP19 & 1 \\
\hline E2F1 & ARHGAP8 & 1 \\
\hline E2F1 & ASF1B & 1 \\
\hline E2F1 & ATF7IP & 1 \\
\hline E2F1 & ATL2 & 1 \\
\hline E2F1 & AURKB & 1 \\
\hline E2F1 & BAG3 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline E2F1 & BIRC5 & 1 \\
\hline E2F1 & BORA & 1 \\
\hline E2F1 & CADM1 & 1 \\
\hline E2F1 & CAPS & 1 \\
\hline E2F1 & CCNA2 & 1 \\
\hline E2F1 & CCNB1 & 1 \\
\hline E2F1 & CCNE1 & 1 \\
\hline E2F1 & CCNF & 1 \\
\hline E2F1 & CDC27 & 1 \\
\hline E2F1 & CDC45 & 1 \\
\hline E2F1 & CDC6 & 1 \\
\hline E2F1 & CDCA3 & 1 \\
\hline E2F1 & CDCA7 & 1 \\
\hline E2F1 & CDK7 & 1 \\
\hline E2F1 & CDKL5 & 1 \\
\hline E2F1 & CDKN3 & 1 \\
\hline E2F1 & CENPE & 1 \\
\hline E2F1 & CENPF & 1 \\
\hline E2F1 & CHAF1A & 1 \\
\hline E2F1 & CHEK2 & 1 \\
\hline E2F1 & CIT & 1 \\
\hline E2F1 & CKAP5 & 1 \\
\hline E2F1 & CNIH4 & 1 \\
\hline E2F1 & CNOT10 & 1 \\
\hline E2F1 & COL7A1 & 1 \\
\hline E2F1 & COQ6 & 1 \\
\hline E2F1 & CTSD & 1 \\
\hline E2F1 & CYTH2 & 1 \\
\hline E2F1 & DET1 & 1 \\
\hline E2F1 & DHFR & 1 \\
\hline E2F1 & DTL & 1 \\
\hline E2F1 & E2F1 & 1 \\
\hline E2F1 & E2F8 & 1 \\
\hline E2F1 & FABP1 & 1 \\
\hline E2F1 & FAM60A & 1 \\
\hline E2F1 & FANCA & 1 \\
\hline E2F1 & FANCD2 & 1 \\
\hline E2F1 & FEN1 & 1 \\
\hline E2F1 & FLAD1 & 1 \\
\hline E2F1 & FOXM1 & 1 \\
\hline E2F1 & FXR1 & 1 \\
\hline E2F1 & FYN & 1 \\
\hline E2F1 & G2E3 & 1 \\
\hline E2F1 & GCLM & 1 \\
\hline E2F1 & GDF15 & 1 \\
\hline
\end{tabular}

Table 35 continued
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline E2F1 & GINS3 & 1 \\
\hline E2F1 & GMNN & 1 \\
\hline E2F1 & GOT1 & 1 \\
\hline E2F1 & GPSM2 & 1 \\
\hline E2F1 & HELLS & 1 \\
\hline E2F1 & HERPUD2 & 1 \\
\hline E2F1 & HIST1H2AC & 1 \\
\hline E2F1 & HIST1H4E & 1 \\
\hline E2F1 & HLA-DOA & 1 \\
\hline E2F1 & HRAS & 1 \\
\hline E2F1 & HRSP12 & 1 \\
\hline E2F1 & HSPB8 & 1 \\
\hline E2F1 & INSR & 1 \\
\hline E2F1 & ITPR1 & 1 \\
\hline E2F1 & KDM5B & 1 \\
\hline E2F1 & KIAA0586 & 1 \\
\hline E2F1 & KIF14 & 1 \\
\hline E2F1 & KIF 20 B & 1 \\
\hline E2F1 & KIF 23 & 1 \\
\hline E2F1 & KIF2C & 1 \\
\hline E2F1 & KIFC1 & 1 \\
\hline E2F1 & KRAS & 1 \\
\hline E2F1 & LBR & 1 \\
\hline E2F1 & LPP & 1 \\
\hline E2F1 & LRIF1 & 1 \\
\hline E2F1 & LRRC17 & 1 \\
\hline E2F1 & MAD2L1 & 1 \\
\hline E2F1 & MAN1A2 & 1 \\
\hline E2F1 & MAP2K6 & 1 \\
\hline E2F1 & MAPK13 & 1 \\
\hline E2F1 & MCM8 & 1 \\
\hline E2F1 & ME3 & 1 \\
\hline E2F1 & MEGF9 & 1 \\
\hline E2F1 & MELK & 1 \\
\hline E2F1 & MET & 1 \\
\hline E2F1 & MKI67 & 1 \\
\hline E2F1 & MND1 & 1 \\
\hline E2F1 & MNX1 & 1 \\
\hline E2F1 & MRI1 & 1 \\
\hline E2F1 & MRPS18B & 1 \\
\hline E2F1 & MSH2 & 1 \\
\hline E2F1 & MZF1 & 1 \\
\hline E2F1 & NCOA3 & 1 \\
\hline E2F1 & NCS1 & 1 \\
\hline E2F1 & NPAT & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline E2F1 & NUDT4 & 1 \\
\hline E2F1 & NUP160 & 1 \\
\hline E2F1 & NUP37 & 1 \\
\hline E2F1 & ODF2 & 1 \\
\hline E2F1 & ORC3 & 1 \\
\hline E2F1 & OSER1 & 1 \\
\hline E2F1 & PBK & 1 \\
\hline E2F1 & PKNOX1 & 1 \\
\hline E2F1 & PLIN3 & 1 \\
\hline E2F1 & PLK1 & 1 \\
\hline E2F1 & POC1A & 1 \\
\hline E2F1 & POM121 & 1 \\
\hline E2F1 & PPP1R2 & 1 \\
\hline E2F1 & PRIM2 & 1 \\
\hline E2F1 & PRKAR1A & 1 \\
\hline E2F1 & PSEN1 & 1 \\
\hline E2F1 & PTTG1 & 1 \\
\hline E2F1 & PWP1 & 1 \\
\hline E2F1 & QRICH1 & 1 \\
\hline E2F1 & RAD18 & 1 \\
\hline E2F1 & RAD51 & 1 \\
\hline E2F1 & RAD54L & 1 \\
\hline E2F1 & REEP1 & 1 \\
\hline E2F1 & RFC2 & 1 \\
\hline E2F1 & RFC4 & 1 \\
\hline E2F1 & RGS3 & 1 \\
\hline E2F1 & RPA2 & 1 \\
\hline E2F1 & RRM1 & 1 \\
\hline E2F1 & RRM2 & 1 \\
\hline E2F1 & RUNX1 & 1 \\
\hline E2F1 & SAP30BP & 1 \\
\hline E2F1 & SEPHS1 & 1 \\
\hline E2F1 & SGK1 & 1 \\
\hline E2F1 & SLBP & 1 \\
\hline E2F1 & SLC44A2 & 1 \\
\hline E2F1 & SP1 & 1 \\
\hline E2F1 & SRD5A1 & 1 \\
\hline E2F1 & SRSF5 & 1 \\
\hline E2F1 & STAT5B & 1 \\
\hline E2F1 & STIL & 1 \\
\hline E2F1 & SUCLG2 & 1 \\
\hline E2F1 & THRAP3 & 1 \\
\hline E2F1 & TIMP1 & 1 \\
\hline E2F1 & TMEM132A & 1 \\
\hline E2F1 & TOMM70A & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline E2F1 & TOP1 & 1 \\
\hline E2F1 & TOP2A & 1 \\
\hline E2F1 & TOP3A & 1 \\
\hline E2F1 & TOPBP1 & 1 \\
\hline E2F1 & TRA2A & 1 \\
\hline E2F1 & TRIM45 & 1 \\
\hline E2F1 & TRIP13 & 1 \\
\hline E2F1 & TROAP & 1 \\
\hline E2F1 & TSG101 & 1 \\
\hline E2F1 & TUBB2A & 1 \\
\hline E2F1 & TULP4 & 1 \\
\hline E2F1 & TYMS & 1 \\
\hline E2F1 & UACA & 1 \\
\hline E2F1 & UBE2S & 1 \\
\hline E2F1 & UBE2T & 1 \\
\hline E2F1 & UBL3 & 1 \\
\hline E2F1 & UBQLN2 & 1 \\
\hline E2F1 & UHRF1 & 1 \\
\hline E2F1 & USP1 & 1 \\
\hline E2F1 & VCAM1 & 1 \\
\hline E2F1 & VEGFC & 1 \\
\hline E2F1 & VPS37C & 1 \\
\hline E2F1 & WSB1 & 1 \\
\hline E2F1 & YY1 & 1 \\
\hline E2F1 & ZBED5 & 1 \\
\hline E2F1 & ZBTB7A & 1 \\
\hline E2F1 & ZC3HC1 & 1 \\
\hline E2F1 & ZMYM1 & 1 \\
\hline E2F1 & ZNF143 & 1 \\
\hline E2F1 & ZNF521 & 1 \\
\hline E2F1 & ZSCAN5A & 1 \\
\hline E2F1 & ZWINT & 1 \\
\hline E2F5 & ASF1B & 1 \\
\hline E2F5 & BRCA1 & 1 \\
\hline E2F8 & E2F1 & 1 \\
\hline FOXM1 & AURKB & 1 \\
\hline FOXM1 & BIRC5 & 1 \\
\hline FOXM1 & CCNB1 & 1 \\
\hline FOXM1 & CDC25A & 1 \\
\hline FOXM1 & CDC6 & 1 \\
\hline FOXM1 & CDKN1B & 1 \\
\hline FOXM1 & CKS1B & 1 \\
\hline FOXM1 & PDGFA & 1 \\
\hline FOXM1 & PLK1 & 1 \\
\hline HIF1A & ADAMTS1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline HIF1A & ARL4A & 1 \\
\hline HIF1A & CDK7 & 1 \\
\hline HIF1A & CDKN1B & 1 \\
\hline HIF1A & DNAJB9 & 1 \\
\hline HIF1A & DYNLL1 & 1 \\
\hline HIF1A & FANCD2 & 1 \\
\hline HIF1A & FOXM1 & 1 \\
\hline HIF1A & GRPEL1 & 1 \\
\hline HIF1A & HERPUD2 & 1 \\
\hline HIF1A & HIF1A & 1 \\
\hline HIF1A & HMMR & 1 \\
\hline HIF1A & INSIG2 & 1 \\
\hline HIF1A & KDM5B & 1 \\
\hline HIF1A & MET & 1 \\
\hline HIF1A & MUC1 & 1 \\
\hline HIF1A & NR3C1 & 1 \\
\hline HIF1A & PCF11 & 1 \\
\hline HIF1A & PDXP & 1 \\
\hline HIF1A & PLIN3 & 1 \\
\hline HIF1A & POM121 & 1 \\
\hline HIF1A & PPP6R3 & 1 \\
\hline HIF1A & PRPSAP1 & 1 \\
\hline HIF1A & RBM8A & 1 \\
\hline HIF1A & RHOBTB3 & 1 \\
\hline HIF1A & RRM2 & 1 \\
\hline HIF1A & SAP30 & 1 \\
\hline HIF1A & TFF3 & 1 \\
\hline HIF1A & TIMP1 & 1 \\
\hline HIF1A & TOMM34 & 1 \\
\hline HIF1A & TOP3A & 1 \\
\hline HIF1A & TYMS & 1 \\
\hline HIF1A & VEGFC & 1 \\
\hline HIF1A & WSB1 & 1 \\
\hline HIF1A & ZNF217 & 1 \\
\hline HSF2 & HIF1A & 1 \\
\hline INSM1 & INSM1 & 1 \\
\hline KDM5B & BRCA1 & 1 \\
\hline KLF6 & PTTG1 & 1 \\
\hline KLF9 & TFAP2A & 1 \\
\hline MITF & ABCC2 & 1 \\
\hline MITF & ACD & 1 \\
\hline MITF & AFAP1 & 1 \\
\hline MITF & AHI1 & 1 \\
\hline MITF & AMD1 & 1 \\
\hline MITF & ANKRD10 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline MITF & ANP32B & 1 \\
\hline MITF & ANTXR1 & 1 \\
\hline MITF & AP3D1 & 1 \\
\hline MITF & AP3M2 & 1 \\
\hline MITF & ARHGEF39 & 1 \\
\hline MITF & ARL4A & 1 \\
\hline MITF & ASF1B & 1 \\
\hline MITF & ASIP & 1 \\
\hline MITF & ATF7IP & 1 \\
\hline MITF & ATL2 & 1 \\
\hline MITF & BAG3 & 1 \\
\hline MITF & BMP2 & 1 \\
\hline MITF & BRCA1 & 1 \\
\hline MITF & BTBD3 & 1 \\
\hline MITF & BUB3 & 1 \\
\hline MITF & C6 & 1 \\
\hline MITF & CADM1 & 1 \\
\hline MITF & CBX3 & 1 \\
\hline MITF & CCNB1 & 1 \\
\hline MITF & CCNE1 & 1 \\
\hline MITF & CDC16 & 1 \\
\hline MITF & CDC25B & 1 \\
\hline MITF & CDC7 & 1 \\
\hline MITF & CDKN1B & 1 \\
\hline MITF & CDKN2AIP & 1 \\
\hline MITF & CDKN2C & 1 \\
\hline MITF & CENPA & 1 \\
\hline MITF & CENPM & 1 \\
\hline MITF & CFLAR & 1 \\
\hline MITF & CHEK2 & 1 \\
\hline MITF & CIC & 1 \\
\hline MITF & CIT & 1 \\
\hline MITF & CKS2 & 1 \\
\hline MITF & CNOT10 & 1 \\
\hline MITF & CSGALNACT1 & 1 \\
\hline MITF & CTNND1 & 1 \\
\hline MITF & CYB5R2 & 1 \\
\hline MITF & DDX11 & 1 \\
\hline MITF & DEXI & 1 \\
\hline MITF & DKC1 & 1 \\
\hline MITF & DMXL2 & 1 \\
\hline MITF & DNAJB1 & 1 \\
\hline MITF & DNAJB4 & 1 \\
\hline MITF & DNAJB6 & 1 \\
\hline MITF & DNAJB9 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline MITF & DR1 & 1 \\
\hline MITF & DSP & 1 \\
\hline MITF & DUSP4 & 1 \\
\hline MITF & DYNLL1 & 1 \\
\hline MITF & E2F5 & 1 \\
\hline MITF & E2F8 & 1 \\
\hline MITF & FADD & 1 \\
\hline MITF & FAM189B & 1 \\
\hline MITF & FAM60A & 1 \\
\hline MITF & FAM64A & 1 \\
\hline MITF & FANCA & 1 \\
\hline MITF & FEM1B & 1 \\
\hline MITF & FEN1 & 1 \\
\hline MITF & FKBP1A & 1 \\
\hline MITF & FZR1 & 1 \\
\hline MITF & GAS1 & 1 \\
\hline MITF & GAS6 & 1 \\
\hline MITF & GNB1 & 1 \\
\hline MITF & GTF2B & 1 \\
\hline MITF & HAUS5 & 1 \\
\hline MITF & HAUS8 & 1 \\
\hline MITF & HERPUD2 & 1 \\
\hline MITF & HIF1A & 1 \\
\hline MITF & HIST2H2BE & 1 \\
\hline MITF & HOXB4 & 1 \\
\hline MITF & HP1BP3 & 1 \\
\hline MITF & HRAS & 1 \\
\hline MITF & HSF2 & 1 \\
\hline MITF & HSPA8 & 1 \\
\hline MITF & IDI2 & 1 \\
\hline MITF & INADL & 1 \\
\hline MITF & ITPR3 & 1 \\
\hline MITF & IVNS1ABP & 1 \\
\hline MITF & JADE2 & 1 \\
\hline MITF & KANK2 & 1 \\
\hline MITF & KAT2B & 1 \\
\hline MITF & KBTBD2 & 1 \\
\hline MITF & KDELC1 & 1 \\
\hline MITF & KDM4A & 1 \\
\hline MITF & KDM5B & 1 \\
\hline MITF & KIFC1 & 1 \\
\hline MITF & KLF6 & 1 \\
\hline MITF & KLF9 & 1 \\
\hline MITF & KPNA2 & 1 \\
\hline MITF & LBR & 1 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ Table 35 continued } \\
\hline TF & TG & \# dup \\
\hline MITF & MAN1A2 & 1 \\
MITF & MAPK13 & 1 \\
MITF & MBD3 & 1 \\
MITF & MCAM & 1 \\
MITF & MCM8 & 1 \\
MITF & ME3 & 1 \\
MITF & MIS18BP1 & 1 \\
MITF & MNT & 1 \\
MITF & MNX1 & 1 \\
MITF & MORF4L2 & 1 \\
MITF & MSH2 & 1 \\
MITF & MTCL1 & 1 \\
MITF & MZF1 & 1 \\
MITF & NAB1 & 1 \\
MITF & NCAPH & 1 \\
MITF & NCOA3 & 1 \\
MITF & NCOA5 & 1 \\
MITF & NDE1 & 1 \\
MITF & NFE2L2 & 1 \\
MITF & NFIC & 1 \\
MITF & NPM1 & 1 \\
MITF & NSUN3 & 1 \\
MITF & OSER1 & 1 \\
MITF & PAK1IP1 & 1 \\
MITF & PANK2 & 1 \\
MITF & PCF11 & 1 \\
MITF & PDGFA & 1 \\
MITF & PDXP & 1 \\
MITF & PIK3CD & 1 \\
MITF & PLIN3 & 1 \\
MITF & PLK1 & 1 \\
MITF & RHEB & 1 \\
\hline MITF & ROC1A & 1 \\
MITF & POLA1 & 1 \\
MITF & PPP1R10 & 1 \\
MITF & PRIM2 & 1 \\
MITF & PRKAR1A & 1 \\
MITF & PRR16 & 1 \\
MITF & PTP4A1 & 1 \\
MITF & PTTG1 & 1 \\
PWP1 & 1 \\
QRICH1 & 1 \\
MAB3A & 1 \\
MITF1 & 1 \\
MITF & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline MITF & RMI1 & 1 \\
\hline MITF & RRM2 & 1 \\
\hline MITF & RRP1 & 1 \\
\hline MITF & SAP30 & 1 \\
\hline MITF & SAP30BP & 1 \\
\hline MITF & SGK1 & 1 \\
\hline MITF & SLC25A36 & 1 \\
\hline MITF & SLC38A2 & 1 \\
\hline MITF & SmARCB1 & 1 \\
\hline MITF & SMTN & 1 \\
\hline MITF & SP1 & 1 \\
\hline MITF & SRSF3 & 1 \\
\hline MITF & SS18 & 1 \\
\hline MITF & SSR3 & 1 \\
\hline MITF & STAG1 & 1 \\
\hline MITF & STAT1 & 1 \\
\hline MITF & SV2B & 1 \\
\hline MITF & SYNCRIP & 1 \\
\hline MITF & TAB2 & 1 \\
\hline MITF & TACC3 & 1 \\
\hline MITF & TFAP2A & 1 \\
\hline MITF & TGIF1 & 1 \\
\hline MITF & TOB2 & 1 \\
\hline MITF & TOMM34 & 1 \\
\hline MITF & TOP1 & 1 \\
\hline MITF & TOP3A & 1 \\
\hline MITF & TRAIP & 1 \\
\hline MITF & TRIP13 & 1 \\
\hline MITF & TSC22D1 & 1 \\
\hline MITF & TSG101 & 1 \\
\hline MITF & TSKU & 1 \\
\hline MITF & TSN & 1 \\
\hline MITF & TTC38 & 1 \\
\hline MITF & TUBB2A & 1 \\
\hline MITF & TUBB4B & 1 \\
\hline MITF & TULP4 & 1 \\
\hline MITF & TXNRD1 & 1 \\
\hline MITF & UACA & 1 \\
\hline MITF & UBE2D3 & 1 \\
\hline MITF & UBL3 & 1 \\
\hline MITF & UHRF1 & 1 \\
\hline MITF & UNG & 1 \\
\hline MITF & USP1 & 1 \\
\hline MITF & USP13 & 1 \\
\hline MITF & VEGFC & 1 \\
\hline
\end{tabular}

Table 35 continued
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline MITF & VPS37C & 1 \\
\hline MITF & WSB1 & 1 \\
\hline MITF & YWHAH & 1 \\
\hline MITF & YY1 & 1 \\
\hline MITF & ZBED5 & 1 \\
\hline MITF & ZC3HC1 & 1 \\
\hline MITF & ZCCHC10 & 1 \\
\hline MITF & ZNF217 & 1 \\
\hline MITF & ZNFX1 & 1 \\
\hline MITF & ZNHIT2 & 1 \\
\hline NCOA3 & BRCA1 & 1 \\
\hline NFE2L2 & BRCA1 & 1 \\
\hline NFIA & NR3C1 & 1 \\
\hline NFIC & HRAS & 1 \\
\hline NFIC & INSR & 1 \\
\hline NFIC & NR3C1 & 1 \\
\hline NFIC & TFAP2A & 1 \\
\hline NFYA & CDC25A & 1 \\
\hline NFYA & CDCA8 & 1 \\
\hline NFYA & CDKN1B & 1 \\
\hline NFYA & E2F1 & 1 \\
\hline NFYA & GADD45A & 1 \\
\hline NFYA & HOXB4 & 1 \\
\hline NFYA & MCM8 & 1 \\
\hline NFYA & PTTG1 & 1 \\
\hline NFYB & CDKN1B & 1 \\
\hline NFYB & HLA-DOA & 1 \\
\hline NFYB & HLA-DRA & 1 \\
\hline NFYB & HSPA13 & 1 \\
\hline NR3C1 & BRCA1 & 1 \\
\hline NR3C1 & NR3C1 & 1 \\
\hline NR3C1 & SRF & 1 \\
\hline NR3C1 & STAT1 & 1 \\
\hline RUNX1 & ADAMTS1 & 1 \\
\hline RUNX1 & BBS2 & 1 \\
\hline RUNX1 & BCLAF1 & 1 \\
\hline RUNX1 & BIRC2 & 1 \\
\hline RUNX1 & C5orf42 & 1 \\
\hline RUNX1 & CDC25B & 1 \\
\hline RUNX1 & CENPF & 1 \\
\hline RUNX1 & CENPL & 1 \\
\hline RUNX1 & CEP70 & 1 \\
\hline RUNX1 & CKAP2 & 1 \\
\hline RUNX1 & CKS2 & 1 \\
\hline RUNX1 & CTR9 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline RUNX1 & CXCL14 & 1 \\
\hline RUNX1 & DEPDC1B & 1 \\
\hline RUNX1 & DNA2 & 1 \\
\hline RUNX1 & DNAJC3 & 1 \\
\hline RUNX1 & EIF4E & 1 \\
\hline RUNX1 & FAM105A & 1 \\
\hline RUNX1 & FXR1 & 1 \\
\hline RUNX1 & GPSM2 & 1 \\
\hline RUNX1 & HIST1H2BC & 1 \\
\hline RUNX1 & HSF2 & 1 \\
\hline RUNX1 & INADL & 1 \\
\hline RUNX1 & IVNS1ABP & 1 \\
\hline RUNX1 & KLF6 & 1 \\
\hline RUNX1 & KPNA2 & 1 \\
\hline RUNX1 & LARP7 & 1 \\
\hline RUNX1 & MAD2L1 & 1 \\
\hline RUNX1 & MAN1A2 & 1 \\
\hline RUNX1 & MAP2K6 & 1 \\
\hline RUNX1 & ME3 & 1 \\
\hline RUNX1 & MKI67 & 1 \\
\hline RUNX1 & MND1 & 1 \\
\hline RUNX1 & MTCL1 & 1 \\
\hline RUNX1 & NCOA3 & 1 \\
\hline RUNX1 & NEIL3 & 1 \\
\hline RUNX1 & NSUN3 & 1 \\
\hline RUNX1 & NUP98 & 1 \\
\hline RUNX1 & ORC3 & 1 \\
\hline RUNX1 & PIK3CD & 1 \\
\hline RUNX1 & PPP6R3 & 1 \\
\hline RUNX1 & PRIM2 & 1 \\
\hline RUNX1 & PTP4A1 & 1 \\
\hline RUNX1 & ROCK1 & 1 \\
\hline RUNX1 & SGK1 & 1 \\
\hline RUNX1 & SLC25A27 & 1 \\
\hline RUNX1 & SLC25A36 & 1 \\
\hline RUNX1 & SLC38A2 & 1 \\
\hline RUNX1 & SLC39A10 & 1 \\
\hline RUNX1 & SPAG5 & 1 \\
\hline RUNX1 & STAG1 & 1 \\
\hline RUNX1 & SUCLG2 & 1 \\
\hline RUNX1 & TRIP13 & 1 \\
\hline RUNX1 & TSKU & 1 \\
\hline RUNX1 & UACA & 1 \\
\hline RUNX1 & VCL & 1 \\
\hline RUNX1 & WSB1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline RUNX1 & ZPBP & 1 \\
\hline RUNX1 & ZRANB2 & 1 \\
\hline SP1 & BIRC5 & 1 \\
\hline SP1 & BRCA1 & 1 \\
\hline SP1 & BUB1B & 1 \\
\hline SP1 & C4B & 1 \\
\hline SP1 & CASP3 & 1 \\
\hline SP1 & CCNA2 & 1 \\
\hline SP1 & CCNB1 & 1 \\
\hline SP1 & CDC25A & 1 \\
\hline SP1 & CDC25C & 1 \\
\hline SP1 & CDKN1B & 1 \\
\hline SP1 & CDKN2C & 1 \\
\hline SP1 & CDKN2D & 1 \\
\hline SP1 & COL7A1 & 1 \\
\hline SP1 & CTSD & 1 \\
\hline SP1 & CXCL14 & 1 \\
\hline SP1 & DHFR & 1 \\
\hline SP1 & DKC1 & 1 \\
\hline SP1 & E2F1 & 1 \\
\hline SP1 & EXO1 & 1 \\
\hline SP1 & FOXM1 & 1 \\
\hline SP1 & HIF1A & 1 \\
\hline SP1 & HSD17B11 & 1 \\
\hline SP1 & HSPA8 & 1 \\
\hline SP1 & ITGB3 & 1 \\
\hline SP1 & KIF2C & 1 \\
\hline SP1 & LMO4 & 1 \\
\hline SP1 & MCAM & 1 \\
\hline SP1 & MDM2 & 1 \\
\hline SP1 & NR3C1 & 1 \\
\hline SP1 & PDGFA & 1 \\
\hline SP1 & POLA1 & 1 \\
\hline SP1 & PSEN1 & 1 \\
\hline SP1 & PTTG1 & 1 \\
\hline SP1 & RECQL4 & 1 \\
\hline SP1 & SP1 & 1 \\
\hline SP1 & TIMP1 & 1 \\
\hline SP1 & TMPO & 1 \\
\hline SP1 & TYMS & 1 \\
\hline SP1 & UNG & 1 \\
\hline SRF & KPNB1 & 1 \\
\hline SRF & UBE2S & 1 \\
\hline STAT1 & ABCA7 & 1 \\
\hline STAT1 & ABCC2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline STAT1 & ADAMTS1 & 1 \\
\hline STAT1 & ADCY6 & 1 \\
\hline STAT1 & AFAP1 & 1 \\
\hline STAT1 & AGFG1 & 1 \\
\hline STAT1 & AHI1 & 1 \\
\hline STAT1 & AKIRIN2 & 1 \\
\hline STAT1 & ANKRD10 & 1 \\
\hline STAT1 & ANP32B & 1 \\
\hline STAT1 & ANP32E & 1 \\
\hline STAT1 & ANTXR1 & 1 \\
\hline STAT1 & AP3M2 & 1 \\
\hline STAT1 & ARHGAP11A & 1 \\
\hline STAT1 & ARHGAP19 & 1 \\
\hline STAT1 & ARHGDIB & 1 \\
\hline STAT1 & ARHGEF39 & 1 \\
\hline STAT1 & ARL6IP1 & 1 \\
\hline STAT1 & ARMC1 & 1 \\
\hline STAT1 & ASF1B & 1 \\
\hline STAT1 & ATAD2 & 1 \\
\hline STAT1 & ATF7IP & 1 \\
\hline STAT1 & B2M & 1 \\
\hline STAT1 & BAG3 & 1 \\
\hline STAT1 & BARD1 & 1 \\
\hline STAT1 & BCLAF1 & 1 \\
\hline STAT1 & BIRC2 & 1 \\
\hline STAT1 & BMP2 & 1 \\
\hline STAT1 & BRCA1 & 1 \\
\hline STAT1 & BRD7 & 1 \\
\hline STAT1 & BTBD3 & 1 \\
\hline STAT1 & BUB3 & 1 \\
\hline STAT1 & C5orf42 & 1 \\
\hline STAT1 & C6 & 1 \\
\hline STAT1 & CADM1 & 1 \\
\hline STAT1 & CASP3 & 1 \\
\hline STAT1 & CBX3 & 1 \\
\hline STAT1 & CCDC90B & 1 \\
\hline STAT1 & CCNA2 & 1 \\
\hline STAT1 & CCNE1 & 1 \\
\hline STAT1 & CDC16 & 1 \\
\hline STAT1 & CDC20 & 1 \\
\hline STAT1 & CDC25B & 1 \\
\hline STAT1 & CDC25C & 1 \\
\hline STAT1 & CDC27 & 1 \\
\hline STAT1 & CDC42EP1 & 1 \\
\hline STAT1 & CDC42EP4 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline STAT1 & CDC45 & 1 \\
\hline STAT1 & CDCA7 & 1 \\
\hline STAT1 & CDCA7L & 1 \\
\hline STAT1 & CDKN1B & 1 \\
\hline STAT1 & CDKN2AIP & 1 \\
\hline STAT1 & CDKN2C & 1 \\
\hline STAT1 & CDR2 & 1 \\
\hline STAT1 & CENPA & 1 \\
\hline STAT1 & CENPE & 1 \\
\hline STAT1 & CENPM & 1 \\
\hline STAT1 & CEP44 & 1 \\
\hline STAT1 & CFD & 1 \\
\hline STAT1 & CHAF1A & 1 \\
\hline STAT1 & CHEK2 & 1 \\
\hline STAT1 & CIC & 1 \\
\hline STAT1 & CIT & 1 \\
\hline STAT1 & CKS2 & 1 \\
\hline STAT1 & CLSPN & 1 \\
\hline STAT1 & CNIH4 & 1 \\
\hline STAT1 & CNOT10 & 1 \\
\hline STAT1 & CREBZF & 1 \\
\hline STAT1 & CRK & 1 \\
\hline STAT1 & CRYBA1 & 1 \\
\hline STAT1 & CSGALNACT1 & 1 \\
\hline STAT1 & CSH2 & 1 \\
\hline STAT1 & CTCF & 1 \\
\hline STAT1 & CTNND1 & 1 \\
\hline STAT1 & CTR9 & 1 \\
\hline STAT1 & CTSD & 1 \\
\hline STAT1 & CYTH2 & 1 \\
\hline STAT1 & CYTH3 & 1 \\
\hline STAT1 & DCTN6 & 1 \\
\hline STAT1 & DEPDC1B & 1 \\
\hline STAT1 & DHFR & 1 \\
\hline STAT1 & DHX8 & 1 \\
\hline STAT1 & DIS3 & 1 \\
\hline STAT1 & DLGAP5 & 1 \\
\hline STAT1 & DNAJB1 & 1 \\
\hline STAT1 & DNAJB6 & 1 \\
\hline STAT1 & DNAJB9 & 1 \\
\hline STAT1 & DNAJC3 & 1 \\
\hline STAT1 & DNAJC6 & 1 \\
\hline STAT1 & DR1 & 1 \\
\hline STAT1 & DSCC1 & 1 \\
\hline STAT1 & DTL & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline STAT1 & DUSP4 & 1 \\
\hline STAT1 & DYNLL1 & 1 \\
\hline STAT1 & DZIP3 & 1 \\
\hline STAT1 & E2F1 & 1 \\
\hline STAT1 & E2F8 & 1 \\
\hline STAT1 & ELP3 & 1 \\
\hline STAT1 & ERN2 & 1 \\
\hline STAT1 & ESPL1 & 1 \\
\hline STAT1 & FADD & 1 \\
\hline STAT1 & FAM105A & 1 \\
\hline STAT1 & FAM110A & 1 \\
\hline STAT1 & FAM214A & 1 \\
\hline STAT1 & FAM60A & 1 \\
\hline STAT1 & FAM83D & 1 \\
\hline STAT1 & FANCA & 1 \\
\hline STAT1 & FANCG & 1 \\
\hline STAT1 & FANCI & 1 \\
\hline STAT1 & FEM1B & 1 \\
\hline STAT1 & FEN1 & 1 \\
\hline STAT1 & FKBP1A & 1 \\
\hline STAT1 & FLAD1 & 1 \\
\hline STAT1 & G2E3 & 1 \\
\hline STAT1 & G3BP1 & 1 \\
\hline STAT1 & GADD45A & 1 \\
\hline STAT1 & GCSH & 1 \\
\hline STAT1 & GINS3 & 1 \\
\hline STAT1 & GMNN & 1 \\
\hline STAT1 & GOT1 & 1 \\
\hline STAT1 & GRK6 & 1 \\
\hline STAT1 & GTF2B & 1 \\
\hline STAT1 & H1F0 & 1 \\
\hline STAT1 & HCP5 & 1 \\
\hline STAT1 & HERPUD2 & 1 \\
\hline STAT1 & HIF1A & 1 \\
\hline STAT1 & HIST1H2AC & 1 \\
\hline STAT1 & HIST1H4H & 1 \\
\hline STAT1 & HIST2H2BE & 1 \\
\hline STAT1 & HMGCR & 1 \\
\hline STAT1 & HMMR & 1 \\
\hline STAT1 & HN1 & 1 \\
\hline STAT1 & HP1BP3 & 1 \\
\hline STAT1 & HRAS & 1 \\
\hline STAT1 & HSD17B11 & 1 \\
\hline STAT1 & HSF2 & 1 \\
\hline STAT1 & HSPA1L & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline STAT1 & HSPA8 & 1 \\
\hline STAT1 & HSPB8 & 1 \\
\hline STAT1 & IDO1 & 1 \\
\hline STAT1 & IFIT1 & 1 \\
\hline STAT1 & IL18BP & 1 \\
\hline STAT1 & ILF2 & 1 \\
\hline STAT1 & INADL & 1 \\
\hline STAT1 & INPP5K & 1 \\
\hline STAT1 & INSIG2 & 1 \\
\hline STAT1 & INSR & 1 \\
\hline STAT1 & INTS7 & 1 \\
\hline STAT1 & ITPR3 & 1 \\
\hline STAT1 & IVNS1ABP & 1 \\
\hline STAT1 & KAT2B & 1 \\
\hline STAT1 & KATNBL1 & 1 \\
\hline STAT1 & KBTBD2 & 1 \\
\hline STAT1 & KCTD2 & 1 \\
\hline STAT1 & KDM4A & 1 \\
\hline STAT1 & KDM5B & 1 \\
\hline STAT1 & KIAA0101 & 1 \\
\hline STAT1 & KIAA1524 & 1 \\
\hline STAT1 & KIF11 & 1 \\
\hline STAT1 & KIF14 & 1 \\
\hline STAT1 & KIF20B & 1 \\
\hline STAT1 & KIF22 & 1 \\
\hline STAT1 & KIF5B & 1 \\
\hline STAT1 & KPNA2 & 1 \\
\hline STAT1 & KRAS & 1 \\
\hline STAT1 & LBR & 1 \\
\hline STAT1 & LMNB1 & 1 \\
\hline STAT1 & LMO4 & 1 \\
\hline STAT1 & LRIF1 & 1 \\
\hline STAT1 & LRRC17 & 1 \\
\hline STAT1 & MAN1A2 & 1 \\
\hline STAT1 & MAP2K6 & 1 \\
\hline STAT1 & MATN2 & 1 \\
\hline STAT1 & MBD2 & 1 \\
\hline STAT1 & MCM2 & 1 \\
\hline STAT1 & MCM4 & 1 \\
\hline STAT1 & MDC1 & 1 \\
\hline STAT1 & MDM2 & 1 \\
\hline STAT1 & ME3 & 1 \\
\hline STAT1 & MED31 & 1 \\
\hline STAT1 & MEGF9 & 1 \\
\hline STAT1 & MELK & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline STAT1 & MET & 1 \\
\hline STAT1 & MID1 & 1 \\
\hline STAT1 & MKI67 & 1 \\
\hline STAT1 & MND1 & 1 \\
\hline STAT1 & MNX1 & 1 \\
\hline STAT1 & MORF4L2 & 1 \\
\hline STAT1 & MTCL1 & 1 \\
\hline STAT1 & MZF1 & 1 \\
\hline STAT1 & NAB1 & 1 \\
\hline STAT1 & NASP & 1 \\
\hline STAT1 & NCAPH & 1 \\
\hline STAT1 & NCOA3 & 1 \\
\hline STAT1 & NCOA5 & 1 \\
\hline STAT1 & NCS1 & 1 \\
\hline STAT1 & NDC80 & 1 \\
\hline STAT1 & NDE1 & 1 \\
\hline STAT1 & NEIL3 & 1 \\
\hline STAT1 & NEK2 & 1 \\
\hline STAT1 & NFIC & 1 \\
\hline STAT1 & NFYB & 1 \\
\hline STAT1 & NIPBL & 1 \\
\hline STAT1 & NKTR & 1 \\
\hline STAT1 & NNMT & 1 \\
\hline STAT1 & NSUN3 & 1 \\
\hline STAT1 & NUCKS1 & 1 \\
\hline STAT1 & NUF2 & 1 \\
\hline STAT1 & NUP160 & 1 \\
\hline STAT1 & NUP98 & 1 \\
\hline STAT1 & OGT & 1 \\
\hline STAT1 & OLR1 & 1 \\
\hline STAT1 & OSER1 & 1 \\
\hline STAT1 & OSGIN2 & 1 \\
\hline STAT1 & OXR1 & 1 \\
\hline STAT1 & PAK1IP1 & 1 \\
\hline STAT1 & PBK & 1 \\
\hline STAT1 & PDGFA & 1 \\
\hline STAT1 & PIK3CD & 1 \\
\hline STAT1 & PKNOX1 & 1 \\
\hline STAT1 & PLIN3 & 1 \\
\hline STAT1 & PLK2 & 1 \\
\hline STAT1 & POC1A & 1 \\
\hline STAT1 & POLD3 & 1 \\
\hline STAT1 & POLQ & 1 \\
\hline STAT1 & POM121 & 1 \\
\hline STAT1 & PPP1R2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline STAT1 & PPP3CA & 1 \\
\hline STAT1 & PPP6R3 & 1 \\
\hline STAT1 & PRC1 & 1 \\
\hline STAT1 & PRIM2 & 1 \\
\hline STAT1 & PRPSAP1 & 1 \\
\hline STAT1 & PRR11 & 1 \\
\hline STAT1 & PRR16 & 1 \\
\hline STAT1 & PSEN1 & 1 \\
\hline STAT1 & PSMG3 & 1 \\
\hline STAT1 & PTP4A1 & 1 \\
\hline STAT1 & PTTG1 & 1 \\
\hline STAT1 & RAB23 & 1 \\
\hline STAT1 & RAD18 & 1 \\
\hline STAT1 & RAD21 & 1 \\
\hline STAT1 & RAD51 & 1 \\
\hline STAT1 & RAD51AP1 & 1 \\
\hline STAT1 & RAD51C & 1 \\
\hline STAT1 & RAD54L & 1 \\
\hline STAT1 & RANGAP1 & 1 \\
\hline STAT1 & RBBP8 & 1 \\
\hline STAT1 & RCAN1 & 1 \\
\hline STAT1 & RCCD1 & 1 \\
\hline STAT1 & REEP1 & 1 \\
\hline STAT1 & RFC2 & 1 \\
\hline STAT1 & RFC4 & 1 \\
\hline STAT1 & RGS3 & 1 \\
\hline STAT1 & RHEB & 1 \\
\hline STAT1 & RHNO1 & 1 \\
\hline STAT1 & RHOBTB3 & 1 \\
\hline STAT1 & RMI1 & 1 \\
\hline STAT1 & RNPC3 & 1 \\
\hline STAT1 & RNPS1 & 1 \\
\hline STAT1 & RRM2 & 1 \\
\hline STAT1 & RRP1 & 1 \\
\hline STAT1 & RSRC2 & 1 \\
\hline STAT1 & SAP30 & 1 \\
\hline STAT1 & SAP30BP & 1 \\
\hline STAT1 & SDC1 & 1 \\
\hline STAT1 & SEPHS1 & 1 \\
\hline STAT1 & SERPINB3 & 1 \\
\hline STAT1 & SFPQ & 1 \\
\hline STAT1 & SH3GL2 & 1 \\
\hline STAT1 & SHC1 & 1 \\
\hline STAT1 & SLC22A3 & 1 \\
\hline STAT1 & SLC25A36 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline STAT1 & SLC38A2 & 1 \\
\hline STAT1 & SLC39A10 & 1 \\
\hline STAT1 & SLC4A1AP & 1 \\
\hline STAT1 & SMARCB1 & 1 \\
\hline STAT1 & SMARCD1 & 1 \\
\hline STAT1 & SNUPN & 1 \\
\hline STAT1 & SP1 & 1 \\
\hline STAT1 & SPAG5 & 1 \\
\hline STAT1 & SRD5A1 & 1 \\
\hline STAT1 & SRF & 1 \\
\hline STAT1 & SRSF3 & 1 \\
\hline STAT1 & SS18 & 1 \\
\hline STAT1 & STAG3 & 1 \\
\hline STAT1 & STAT5B & 1 \\
\hline STAT1 & STIL & 1 \\
\hline STAT1 & SUCLG2 & 1 \\
\hline STAT1 & SV2B & 1 \\
\hline STAT1 & SYNCRIP & 1 \\
\hline STAT1 & TAB2 & 1 \\
\hline STAT1 & TACC3 & 1 \\
\hline STAT1 & TFAP2A & 1 \\
\hline STAT1 & TFF3 & 1 \\
\hline STAT1 & TGIF1 & 1 \\
\hline STAT1 & THRAP3 & 1 \\
\hline STAT1 & TIMP1 & 1 \\
\hline STAT1 & TIPIN & 1 \\
\hline STAT1 & TMPO & 1 \\
\hline STAT1 & TOB2 & 1 \\
\hline STAT1 & TOMM34 & 1 \\
\hline STAT1 & TOP1 & 1 \\
\hline STAT1 & TOP2A & 1 \\
\hline STAT1 & TOP3A & 1 \\
\hline STAT1 & TPX2 & 1 \\
\hline STAT1 & TRA2A & 1 \\
\hline STAT1 & TRIP13 & 1 \\
\hline STAT1 & TSG101 & 1 \\
\hline STAT1 & TSKU & 1 \\
\hline STAT1 & TSN & 1 \\
\hline STAT1 & TTC31 & 1 \\
\hline STAT1 & TTF2 & 1 \\
\hline STAT1 & TUBA1A & 1 \\
\hline STAT1 & TUBB2A & 1 \\
\hline STAT1 & TULP4 & 1 \\
\hline STAT1 & TXNRD1 & 1 \\
\hline STAT1 & UACA & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline STAT1 & UBE2D3 & 1 \\
\hline STAT1 & UBL3 & 1 \\
\hline STAT1 & UBQLN2 & 1 \\
\hline STAT1 & UHRF1 & 1 \\
\hline STAT1 & USP1 & 1 \\
\hline STAT1 & USP6NL & 1 \\
\hline STAT1 & VCAM1 & 1 \\
\hline STAT1 & VEGFC & 1 \\
\hline STAT1 & VPS25 & 1 \\
\hline STAT1 & VPS72 & 1 \\
\hline STAT1 & VTA1 & 1 \\
\hline STAT1 & WSB1 & 1 \\
\hline STAT1 & YY1 & 1 \\
\hline STAT1 & ZBTB7A & 1 \\
\hline STAT1 & ZC3HC1 & 1 \\
\hline STAT1 & ZCCHC10 & 1 \\
\hline STAT1 & ZNF143 & 1 \\
\hline STAT1 & ZNF207 & 1 \\
\hline STAT1 & ZNF217 & 1 \\
\hline STAT1 & ZNF281 & 1 \\
\hline STAT1 & ZNF414 & 1 \\
\hline STAT1 & ZNF521 & 1 \\
\hline STAT1 & ZNFX1 & 1 \\
\hline STAT1 & ZNHIT2 & 1 \\
\hline STAT1 & ZPBP & 1 \\
\hline STAT1 & ZRANB2 & 1 \\
\hline STAT1 & ZSCAN5A & 1 \\
\hline STAT1 & ZWINT & 1 \\
\hline STAT5B & MET & 1 \\
\hline STAT5B & MUC1 & 1 \\
\hline STAT5B & RAD51 & 1 \\
\hline TFAP2A & CCNB1 & 1 \\
\hline TFAP2A & CTSD & 1 \\
\hline TFAP2A & DHX8 & 1 \\
\hline TFAP2A & HSPA8 & 1 \\
\hline TFAP2A & MCAM & 1 \\
\hline TFAP2A & NR3C1 & 1 \\
\hline TFAP2A & RECQL4 & 1 \\
\hline TFAP2A & TFAP2A & 1 \\
\hline TFAP2A & TIMP1 & 1 \\
\hline TFAP2A & TOP1 & 1 \\
\hline TFAP2A & VEGFC & 1 \\
\hline YY1 & BRCA1 & 1 \\
\hline YY1 & CDC6 & 1 \\
\hline YY1 & DKC1 & 1 \\
\hline
\end{tabular}

Table 35 continued
\begin{tabular}{lll}
\hline TF & TG & \# dup \\
\hline YY1 & DNAJB4 & 1 \\
YY1 & HDAC3 & 1 \\
YY1 & HIF1A & 1 \\
YY1 & HLA-DRA & 1 \\
YY1 & MCM5 & 1 \\
YY1 & NUP160 & 1 \\
YY1 & PCNA & 1 \\
YY1 & SAP30 & 1 \\
YY1 & TFAP2A & 1 \\
ZNF143 & BUB1B & 1 \\
\hline
\end{tabular}

The table presents for each edge the number of time it appears in the network obtained after concatenating the two networks collected from the work of Alonso et.al [78]. The authors generated one gold standard network for cancer cells and one for normal cells. The \(1^{\text {st }}\) column represents the TF official name. The \(2^{\text {nd }}\) column the TG official name. The \(3^{\text {rd }}\) column represents the of times the link is repeated after a per row concatenation of the two networks.

Table 36: HeLa "gold-standard" network - Positive links
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline BRCA1 & BARD1 & 1 & 1 \\
\hline BRCA1 & CHEK2 & 1 & 1 \\
\hline BRCA1 & DTL & 1 & 1 \\
\hline BRCA1 & DZIP3 & 1 & 1 \\
\hline BRCA1 & ERN2 & 1 & 1 \\
\hline BRCA1 & FAN1 & 1 & 1 \\
\hline BRCA1 & FANCD2 & 1 & 1 \\
\hline BRCA1 & G2E3 & 1 & 1 \\
\hline BRCA1 & HAUS5 & 1 & 1 \\
\hline BRCA1 & HELLS & 1 & 1 \\
\hline BRCA1 & KDM4A & 1 & 1 \\
\hline BRCA1 & NEK2 & 1 & 1 \\
\hline BRCA1 & PLK1 & 1 & 1 \\
\hline BRCA1 & RAD51 & 1 & 1 \\
\hline BRCA1 & TRIP13 & 1 & 1 \\
\hline CENPA & NDE1 & 1 & 1 \\
\hline CTCF & ABCA7 & 1 & 2 \\
\hline CTCF & ABCC2 & 1 & 2 \\
\hline CTCF & ABHD10 & 1 & 2 \\
\hline CTCF & ADCY6 & 1 & 2 \\
\hline CTCF & ADH4 & 1 & 3 \\
\hline CTCF & AHI1 & 1 & 2 \\
\hline CTCF & AMD1 & 1 & 2 \\
\hline CTCF & ANLN & 1 & 2 \\
\hline CTCF & ANP32B & 1 & 2 \\
\hline CTCF & ANP32E & 1 & 2 \\
\hline CTCF & AOC2 & 1 & 2 \\
\hline CTCF & AOC3 & 1 & 2 \\
\hline CTCF & AP3D1 & 1 & 2 \\
\hline CTCF & AP3M2 & 1 & 2 \\
\hline CTCF & AP4B1 & 1 & 2 \\
\hline CTCF & ARHGAP11A & 1 & 2 \\
\hline CTCF & ARHGAP19 & 1 & 2 \\
\hline CTCF & ARHGAP8 & 1 & 2 \\
\hline CTCF & ARHGEF39 & 1 & 2 \\
\hline CTCF & ARL4A & 1 & 2 \\
\hline CTCF & ARL6IP1 & 1 & 2 \\
\hline CTCF & ASF1B & 1 & 3 \\
\hline CTCF & ASIP & 1 & 2 \\
\hline CTCF & ASPHD2 & 1 & 2 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & ATAD2 & 1 & 2 \\
\hline CTCF & ATF7IP & 1 & 2 \\
\hline CTCF & ATL2 & 1 & 2 \\
\hline CTCF & AURKB & 1 & 3 \\
\hline CTCF & B2M & 1 & 2 \\
\hline CTCF & BAG3 & 1 & 2 \\
\hline CTCF & BAIAP2 & 1 & 2 \\
\hline CTCF & BBS2 & 1 & 2 \\
\hline CTCF & BCLAF1 & 1 & 2 \\
\hline CTCF & BIRC2 & 1 & 2 \\
\hline CTCF & BIVM & 1 & 2 \\
\hline CTCF & BMP2 & 1 & 2 \\
\hline CTCF & BRCA1 & 1 & 2 \\
\hline CTCF & BRD7 & 1 & 2 \\
\hline CTCF & BTBD3 & 1 & 2 \\
\hline CTCF & BUB3 & 1 & 2 \\
\hline CTCF & C6 & 1 & 3 \\
\hline CTCF & CADM1 & 1 & 2 \\
\hline CTCF & CAPN7 & 1 & 2 \\
\hline CTCF & CASP3 & 1 & 2 \\
\hline CTCF & CCDC90B & 1 & 2 \\
\hline CTCF & CCNE1 & 1 & 3 \\
\hline CTCF & CCNF & 1 & 2 \\
\hline CTCF & CDC16 & 1 & 2 \\
\hline CTCF & CDC20 & 1 & 2 \\
\hline CTCF & CDC25A & 1 & 3 \\
\hline CTCF & CDC25B & 1 & 2 \\
\hline CTCF & CDC25C & 1 & 2 \\
\hline CTCF & CDC42 & 1 & 2 \\
\hline CTCF & CDC42EP1 & 1 & 2 \\
\hline CTCF & CDC42EP4 & 1 & 2 \\
\hline CTCF & CDC45 & 1 & 2 \\
\hline CTCF & CDC6 & 1 & 2 \\
\hline CTCF & CDC7 & 1 & 2 \\
\hline CTCF & CDCA7 & 1 & 2 \\
\hline CTCF & CDCA7L & 1 & 2 \\
\hline CTCF & CDK20 & 1 & 2 \\
\hline CTCF & CDK7 & 1 & 2 \\
\hline CTCF & CDKN1B & 1 & 2 \\
\hline CTCF & CDKN2AIP & 1 & 2 \\
\hline CTCF & CDKN2C & 1 & 2 \\
\hline CTCF & CDKN3 & 1 & 2 \\
\hline CTCF & CENPA & 1 & 2 \\
\hline CTCF & CENPE & 1 & 2 \\
\hline CTCF & CENPF & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & CENPM & 1 & 2 \\
\hline CTCF & CEP44 & 1 & 2 \\
\hline CTCF & CEP55 & 1 & 2 \\
\hline CTCF & CEP70 & 1 & 2 \\
\hline CTCF & CFD & 1 & 2 \\
\hline CTCF & CFLAR & 1 & 2 \\
\hline CTCF & CHAF1B & 1 & 2 \\
\hline CTCF & CHEK2 & 1 & 2 \\
\hline CTCF & CIC & 1 & 2 \\
\hline CTCF & CIT & 1 & 2 \\
\hline CTCF & CKAP5 & 1 & 2 \\
\hline CTCF & CKS2 & 1 & 2 \\
\hline CTCF & CLSPN & 1 & 2 \\
\hline CTCF & CNN2 & 1 & 2 \\
\hline CTCF & CNOT10 & 1 & 2 \\
\hline CTCF & COQ6 & 1 & 2 \\
\hline CTCF & CREBZF & 1 & 2 \\
\hline CTCF & CRK & 1 & 2 \\
\hline CTCF & CRYBA1 & 1 & 2 \\
\hline CTCF & CSH2 & 1 & 2 \\
\hline CTCF & CTCF & 1 & 2 \\
\hline CTCF & CTNND1 & 1 & 2 \\
\hline CTCF & CTR9 & 1 & 2 \\
\hline CTCF & CTSD & 1 & 2 \\
\hline CTCF & CWC15 & 1 & 2 \\
\hline CTCF & CXCL14 & 1 & 2 \\
\hline CTCF & CYB5R2 & 1 & 2 \\
\hline CTCF & CYTH3 & 1 & 2 \\
\hline CTCF & DCAF16 & 1 & 2 \\
\hline CTCF & DCAF7 & 1 & 2 \\
\hline CTCF & DCTN6 & 1 & 2 \\
\hline CTCF & DDX11 & 1 & 2 \\
\hline CTCF & DEPDC1B & 1 & 2 \\
\hline CTCF & DET1 & 1 & 2 \\
\hline CTCF & DHX8 & 1 & 2 \\
\hline CTCF & DLGAP5 & 1 & 2 \\
\hline CTCF & DMTF1 & 1 & 2 \\
\hline CTCF & DMXL2 & 1 & 2 \\
\hline CTCF & DNAJB1 & 1 & 2 \\
\hline CTCF & DNAJB4 & 1 & 2 \\
\hline CTCF & DNAJB6 & 1 & 2 \\
\hline CTCF & DNAJB9 & 1 & 2 \\
\hline CTCF & DNAJC3 & 1 & 2 \\
\hline CTCF & DNAJC6 & 1 & 2 \\
\hline CTCF & DTL & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & DUSP4 & 1 & 2 \\
\hline CTCF & DYNLL1 & 1 & 2 \\
\hline CTCF & DZIP3 & 1 & 3 \\
\hline CTCF & E2F1 & 1 & 2 \\
\hline CTCF & E2F5 & 1 & 2 \\
\hline CTCF & E2F8 & 1 & 2 \\
\hline CTCF & EBI3 & 1 & 2 \\
\hline CTCF & EIF4E & 1 & 2 \\
\hline CTCF & ELP3 & 1 & 2 \\
\hline CTCF & ENOSF1 & 1 & 2 \\
\hline CTCF & ERN2 & 1 & 2 \\
\hline CTCF & ESPL1 & 1 & 2 \\
\hline CTCF & EXO1 & 1 & 2 \\
\hline CTCF & FABP1 & 1 & 2 \\
\hline CTCF & FADD & 1 & 2 \\
\hline CTCF & FAM105A & 1 & 2 \\
\hline CTCF & FAM110A & 1 & 2 \\
\hline CTCF & FAM189B & 1 & 2 \\
\hline CTCF & FAM214A & 1 & 2 \\
\hline CTCF & FAM60A & 1 & 2 \\
\hline CTCF & FANCA & 1 & 2 \\
\hline CTCF & FANCI & 1 & 2 \\
\hline CTCF & FBXL20 & 1 & 2 \\
\hline CTCF & FEM1B & 1 & 2 \\
\hline CTCF & FEN1 & 1 & 2 \\
\hline CTCF & FKBP1A & 1 & 2 \\
\hline CTCF & FLAD1 & 1 & 2 \\
\hline CTCF & FXR1 & 1 & 2 \\
\hline CTCF & G2E3 & 1 & 3 \\
\hline CTCF & G3BP1 & 1 & 2 \\
\hline CTCF & GAS1 & 1 & 2 \\
\hline CTCF & GAS6 & 1 & 2 \\
\hline CTCF & GDF15 & 1 & 2 \\
\hline CTCF & GINS2 & 1 & 2 \\
\hline CTCF & GINS3 & 1 & 2 \\
\hline CTCF & GMNN & 1 & 2 \\
\hline CTCF & GNB1 & 1 & 2 \\
\hline CTCF & GOLGA8A & 1 & 2 \\
\hline CTCF & GOT1 & 1 & 2 \\
\hline CTCF & GPSM2 & 1 & 3 \\
\hline CTCF & GRK6 & 1 & 2 \\
\hline CTCF & GRPEL1 & 1 & 2 \\
\hline CTCF & GTF2B & 1 & 2 \\
\hline CTCF & GTSE1 & 1 & 2 \\
\hline CTCF & H2AFX & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & HAUS5 & 1 & 3 \\
\hline CTCF & HAUS8 & 1 & 2 \\
\hline CTCF & HCP5 & 1 & 2 \\
\hline CTCF & HELLS & 1 & 3 \\
\hline CTCF & HERPUD2 & 1 & 2 \\
\hline CTCF & HIF1A & 1 & 2 \\
\hline CTCF & HIST1H4C & 1 & 2 \\
\hline CTCF & HIST1H4E & 1 & 2 \\
\hline CTCF & HIST1H4H & 1 & 2 \\
\hline CTCF & HJURP & 1 & 2 \\
\hline CTCF & HLA-DOA & 1 & 3 \\
\hline CTCF & HLA-DRA & 1 & 2 \\
\hline CTCF & HMG20B & 1 & 2 \\
\hline CTCF & HMGCR & 1 & 2 \\
\hline CTCF & HMMR & 1 & 2 \\
\hline CTCF & HRAS & 1 & 2 \\
\hline CTCF & HSD17B11 & 1 & 3 \\
\hline CTCF & HSF2 & 1 & 2 \\
\hline CTCF & HSPA13 & 1 & 2 \\
\hline CTCF & HSPB8 & 1 & 2 \\
\hline CTCF & IDO1 & 1 & 2 \\
\hline CTCF & ILF2 & 1 & 2 \\
\hline CTCF & INADL & 1 & 2 \\
\hline CTCF & INPP5K & 1 & 2 \\
\hline CTCF & INSIG2 & 1 & 2 \\
\hline CTCF & INSM1 & 1 & 3 \\
\hline CTCF & INSR & 1 & 2 \\
\hline CTCF & INTS7 & 1 & 2 \\
\hline CTCF & ITPR3 & 1 & 2 \\
\hline CTCF & IVNS1ABP & 1 & 2 \\
\hline CTCF & KANK2 & 1 & 2 \\
\hline CTCF & KAT2B & 1 & 2 \\
\hline CTCF & KCTD2 & 1 & 2 \\
\hline CTCF & KDM4A & 1 & 3 \\
\hline CTCF & KDM5B & 1 & 2 \\
\hline CTCF & KIAA0586 & 1 & 2 \\
\hline CTCF & KIAA1147 & 1 & 2 \\
\hline CTCF & KIAA1524 & 1 & 2 \\
\hline CTCF & KIF11 & 1 & 2 \\
\hline CTCF & KIF14 & 1 & 2 \\
\hline CTCF & KIF20B & 1 & 2 \\
\hline CTCF & KIF22 & 1 & 2 \\
\hline CTCF & KIF5B & 1 & 2 \\
\hline CTCF & KIFC1 & 1 & 2 \\
\hline CTCF & KLF6 & 1 & 2 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & KLF9 & 1 & 2 \\
\hline CTCF & KMO & 1 & 2 \\
\hline CTCF & KPNA2 & 1 & 2 \\
\hline CTCF & KPNB1 & 1 & 2 \\
\hline CTCF & KRAS & 1 & 2 \\
\hline CTCF & LARP7 & 1 & 2 \\
\hline CTCF & LMNB1 & 1 & 2 \\
\hline CTCF & LMO4 & 1 & 2 \\
\hline CTCF & LPP & 1 & 2 \\
\hline CTCF & LRIF1 & 1 & 2 \\
\hline CTCF & LYAR & 1 & 2 \\
\hline CTCF & MAD2L1 & 1 & 2 \\
\hline CTCF & MAN1A2 & 1 & 2 \\
\hline CTCF & MAP2K6 & 1 & 2 \\
\hline CTCF & MAP3K2 & 1 & 2 \\
\hline CTCF & MAPK13 & 1 & 2 \\
\hline CTCF & MATN2 & 1 & 2 \\
\hline CTCF & MBD2 & 1 & 2 \\
\hline CTCF & MBD3 & 1 & 2 \\
\hline CTCF & MCAM & 1 & 2 \\
\hline CTCF & MCM5 & 1 & 2 \\
\hline CTCF & MCM8 & 1 & 2 \\
\hline CTCF & MDC1 & 1 & 2 \\
\hline CTCF & MDM2 & 1 & 2 \\
\hline CTCF & ME3 & 1 & 3 \\
\hline CTCF & MED31 & 1 & 2 \\
\hline CTCF & MEGF9 & 1 & 2 \\
\hline CTCF & MELK & 1 & 2 \\
\hline CTCF & MET & 1 & 3 \\
\hline CTCF & MGAT2 & 1 & 2 \\
\hline CTCF & MID1 & 1 & 2 \\
\hline CTCF & MIS18BP1 & 1 & 2 \\
\hline CTCF & MITF & 1 & 2 \\
\hline CTCF & MKI67 & 1 & 2 \\
\hline CTCF & MLLT4 & 1 & 2 \\
\hline CTCF & MND1 & 1 & 2 \\
\hline CTCF & MNT & 1 & 2 \\
\hline CTCF & MNX1 & 1 & 3 \\
\hline CTCF & MORF4L2 & 1 & 2 \\
\hline CTCF & MRPL19 & 1 & 2 \\
\hline CTCF & MRPS2 & 1 & 2 \\
\hline CTCF & MSH2 & 1 & 2 \\
\hline CTCF & MTCL1 & 1 & 2 \\
\hline CTCF & MYCBP2 & 1 & 2 \\
\hline CTCF & MZF1 & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & NAB1 & 1 & 2 \\
\hline CTCF & NCAPD2 & 1 & 2 \\
\hline CTCF & NCAPD3 & 1 & 2 \\
\hline CTCF & NCAPH & 1 & 2 \\
\hline CTCF & NCOA3 & 1 & 2 \\
\hline CTCF & NCOA5 & 1 & 2 \\
\hline CTCF & NCS1 & 1 & 2 \\
\hline CTCF & NDE1 & 1 & 2 \\
\hline CTCF & NEIL3 & 1 & 3 \\
\hline CTCF & NEK2 & 1 & 3 \\
\hline CTCF & NFIC & 1 & 2 \\
\hline CTCF & NFYA & 1 & 2 \\
\hline CTCF & NFYB & 1 & 2 \\
\hline CTCF & NIPBL & 1 & 2 \\
\hline CTCF & NKTR & 1 & 2 \\
\hline CTCF & NMB & 1 & 2 \\
\hline CTCF & NNMT & 1 & 2 \\
\hline CTCF & NPAT & 1 & 2 \\
\hline CTCF & NPM1 & 1 & 2 \\
\hline CTCF & NR3C1 & 1 & 2 \\
\hline CTCF & NSUN3 & 1 & 2 \\
\hline CTCF & NUCKS1 & 1 & 2 \\
\hline CTCF & NUDT4 & 1 & 2 \\
\hline CTCF & NUF2 & 1 & 2 \\
\hline CTCF & NUP160 & 1 & 2 \\
\hline CTCF & NUP37 & 1 & 2 \\
\hline CTCF & ODF2 & 1 & 2 \\
\hline CTCF & OGT & 1 & 2 \\
\hline CTCF & OLR1 & 1 & 2 \\
\hline CTCF & ORC3 & 1 & 2 \\
\hline CTCF & OSER1 & 1 & 2 \\
\hline CTCF & PANK2 & 1 & 2 \\
\hline CTCF & PCNA & 1 & 2 \\
\hline CTCF & PDGFA & 1 & 2 \\
\hline CTCF & PDXP & 1 & 2 \\
\hline CTCF & PIK3CD & 1 & 3 \\
\hline CTCF & PKMYT1 & 1 & 2 \\
\hline CTCF & PLIN3 & 1 & 2 \\
\hline CTCF & PLK1 & 1 & 2 \\
\hline CTCF & PLK2 & 1 & 2 \\
\hline CTCF & POC1A & 1 & 2 \\
\hline CTCF & POLA1 & 1 & 2 \\
\hline CTCF & POLD3 & 1 & 2 \\
\hline CTCF & POLQ & 1 & 2 \\
\hline CTCF & POM121 & 1 & 2 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & PPP1R2 & 1 & 2 \\
\hline CTCF & PPP3CA & 1 & 1 \\
\hline CTCF & PPP6R3 & 1 & 1 \\
\hline CTCF & PRIM1 & 1 & 1 \\
\hline CTCF & PRIM2 & 1 & 1 \\
\hline CTCF & PRKAR1A & 1 & 1 \\
\hline CTCF & PRPSAP1 & 1 & 1 \\
\hline CTCF & PRR11 & 1 & 1 \\
\hline CTCF & PRR16 & 1 & 1 \\
\hline CTCF & PSEN1 & 1 & 1 \\
\hline CTCF & PSMD11 & 1 & 1 \\
\hline CTCF & PSMG3 & 1 & 1 \\
\hline CTCF & PTMS & 1 & 1 \\
\hline CTCF & PTP4A1 & 1 & 1 \\
\hline CTCF & PTPN9 & 1 & 1 \\
\hline CTCF & PTTG1 & 1 & 1 \\
\hline CTCF & PWP1 & 1 & 1 \\
\hline CTCF & QRICH1 & 1 & 1 \\
\hline CTCF & RAB23 & 1 & 1 \\
\hline CTCF & RAB3A & 1 & 1 \\
\hline CTCF & RAD18 & 1 & 2 \\
\hline CTCF & RAD21 & 1 & 1 \\
\hline CTCF & RAD51 & 1 & 1 \\
\hline CTCF & RAD51C & 1 & 1 \\
\hline CTCF & RAD54L & 1 & 1 \\
\hline CTCF & RAN & 1 & 1 \\
\hline CTCF & RANGAP1 & 1 & 1 \\
\hline CTCF & RBBP8 & 1 & 1 \\
\hline CTCF & RBM8A & 1 & 1 \\
\hline CTCF & RCAN1 & 1 & 1 \\
\hline CTCF & REEP1 & 1 & 2 \\
\hline CTCF & RFC4 & 1 & 1 \\
\hline CTCF & RGS3 & 1 & 1 \\
\hline CTCF & RHEB & 1 & 1 \\
\hline CTCF & RHOBTB3 & 1 & 1 \\
\hline CTCF & RNF126 & 1 & 1 \\
\hline CTCF & ROCK1 & 1 & 1 \\
\hline CTCF & RPL13A & 1 & 1 \\
\hline CTCF & RRM1 & 1 & 1 \\
\hline CTCF & RRM2 & 1 & 1 \\
\hline CTCF & RRP1 & 1 & 1 \\
\hline CTCF & SAP30 & 1 & 1 \\
\hline CTCF & SAP30BP & 1 & 1 \\
\hline CTCF & SDC1 & 1 & 2 \\
\hline CTCF & SEC62 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & SEPHS1 & 1 & 1 \\
\hline CTCF & SEPN1 & 1 & 1 \\
\hline CTCF & SGK1 & 1 & 1 \\
\hline CTCF & SH3GL2 & 1 & 2 \\
\hline CTCF & SHCBP1 & 1 & 1 \\
\hline CTCF & SLBP & 1 & 1 \\
\hline CTCF & SLC17A2 & 1 & 1 \\
\hline CTCF & SLC22A3 & 1 & 2 \\
\hline CTCF & SLC25A27 & 1 & 1 \\
\hline CTCF & SLC25A36 & 1 & 1 \\
\hline CTCF & SLC38A2 & 1 & 1 \\
\hline CTCF & SLC39A10 & 1 & 1 \\
\hline CTCF & SLC44A2 & 1 & 1 \\
\hline CTCF & SLC4A1AP & 1 & 1 \\
\hline CTCF & SMARCB1 & 1 & 1 \\
\hline CTCF & SMARCD1 & 1 & 1 \\
\hline CTCF & SMC4 & 1 & 1 \\
\hline CTCF & SMTN & 1 & 1 \\
\hline CTCF & SNUPN & 1 & 1 \\
\hline CTCF & SP1 & 1 & 1 \\
\hline CTCF & SPDL1 & 1 & 1 \\
\hline CTCF & SRF & 1 & 1 \\
\hline CTCF & SS18 & 1 & 1 \\
\hline CTCF & SSR3 & 1 & 1 \\
\hline CTCF & STAG3 & 1 & 1 \\
\hline CTCF & STAT1 & 1 & 1 \\
\hline CTCF & STAT5B & 1 & 1 \\
\hline CTCF & STIL & 1 & 2 \\
\hline CTCF & SUCLG2 & 1 & 1 \\
\hline CTCF & TAB2 & 1 & 1 \\
\hline CTCF & TFAP2A & 1 & 1 \\
\hline CTCF & TGIF1 & 1 & 1 \\
\hline CTCF & THRAP3 & 1 & 1 \\
\hline CTCF & TMPO & 1 & 1 \\
\hline CTCF & TNPO2 & 1 & 1 \\
\hline CTCF & TOMM34 & 1 & 1 \\
\hline CTCF & TOP1 & 1 & 1 \\
\hline CTCF & TOP2A & 1 & 1 \\
\hline CTCF & TPX2 & 1 & 1 \\
\hline CTCF & TRA2A & 1 & 1 \\
\hline CTCF & TRAIP & 1 & 1 \\
\hline CTCF & TRIM45 & 1 & 1 \\
\hline CTCF & TRIP13 & 1 & 2 \\
\hline CTCF & TROAP & 1 & 1 \\
\hline CTCF & TSC22D1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & TSKU & 1 & 1 \\
\hline CTCF & TSN & 1 & 1 \\
\hline CTCF & TTC31 & 1 & 1 \\
\hline CTCF & TTF2 & 1 & 1 \\
\hline CTCF & TTK & 1 & 1 \\
\hline CTCF & TUBB2A & 1 & 1 \\
\hline CTCF & TUBB4B & 1 & 1 \\
\hline CTCF & TUBD1 & 1 & 1 \\
\hline CTCF & TULP4 & 1 & 1 \\
\hline CTCF & TXNRD1 & 1 & 1 \\
\hline CTCF & TYMS & 1 & 1 \\
\hline CTCF & UACA & 1 & 1 \\
\hline CTCF & UBE2D3 & 1 & 1 \\
\hline CTCF & UBE2S & 1 & 1 \\
\hline CTCF & UBL3 & 1 & 1 \\
\hline CTCF & UBR7 & 1 & 1 \\
\hline CTCF & UHRF1 & 1 & 1 \\
\hline CTCF & UNG & 1 & 1 \\
\hline CTCF & USP1 & 1 & 1 \\
\hline CTCF & USP13 & 1 & 1 \\
\hline CTCF & USP53 & 1 & 1 \\
\hline CTCF & USP6NL & 1 & 1 \\
\hline CTCF & VCAM1 & 1 & 1 \\
\hline CTCF & VCL & 1 & 1 \\
\hline CTCF & VEGFC & 1 & 1 \\
\hline CTCF & VPS37C & 1 & 1 \\
\hline CTCF & VPS72 & 1 & 1 \\
\hline CTCF & VTA1 & 1 & 1 \\
\hline CTCF & WSB1 & 1 & 1 \\
\hline CTCF & YWHAH & 1 & 1 \\
\hline CTCF & YY1 & 1 & 1 \\
\hline CTCF & ZBED5 & 1 & 1 \\
\hline CTCF & ZBTB7A & 1 & 1 \\
\hline CTCF & ZC3HC1 & 1 & 1 \\
\hline CTCF & ZMYM1 & 1 & 1 \\
\hline CTCF & ZNF143 & 1 & 1 \\
\hline CTCF & ZNF217 & 1 & 1 \\
\hline CTCF & ZNF281 & 1 & 1 \\
\hline CTCF & ZNF414 & 1 & 1 \\
\hline CTCF & ZNF521 & 1 & 1 \\
\hline CTCF & ZNF593 & 1 & 1 \\
\hline CTCF & ZNFX1 & 1 & 1 \\
\hline CTCF & ZNHIT2 & 1 & 1 \\
\hline CTCF & ZPBP & 1 & 1 \\
\hline CTCF & ZRANB2 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CTCF & ZSCAN5A & 1 & 1 \\
\hline E2F1 & ABCC2 & 1 & 1 \\
\hline E2F1 & ADAMTS1 & 1 & 2 \\
\hline E2F1 & ADH4 & 1 & 2 \\
\hline E2F1 & AHI1 & 1 & 2 \\
\hline E2F1 & AMD1 & 1 & 1 \\
\hline E2F1 & ANTXR1 & 1 & 1 \\
\hline E2F1 & AP3D1 & 1 & 1 \\
\hline E2F1 & AP3M2 & 1 & 1 \\
\hline E2F1 & ARHGAP19 & 1 & 1 \\
\hline E2F1 & ARHGAP8 & 1 & 1 \\
\hline E2F1 & ASF1B & 1 & 2 \\
\hline E2F1 & ATF7IP & 1 & 1 \\
\hline E2F1 & ATL2 & 1 & 1 \\
\hline E2F1 & AURKB & 1 & 2 \\
\hline E2F1 & BAG3 & 1 & 2 \\
\hline E2F1 & BIRC5 & 1 & 1 \\
\hline E2F1 & BORA & 1 & 1 \\
\hline E2F1 & BRD7 & 1 & 1 \\
\hline E2F1 & CADM1 & 1 & 1 \\
\hline E2F1 & CAPS & 1 & 1 \\
\hline E2F1 & CCNA2 & 1 & 1 \\
\hline E2F1 & CCNB1 & 1 & 1 \\
\hline E2F1 & CCNE1 & 1 & 2 \\
\hline E2F1 & CCNF & 1 & 1 \\
\hline E2F1 & CDC27 & 1 & 1 \\
\hline E2F1 & CDC45 & 1 & 1 \\
\hline E2F1 & CDC6 & 1 & 1 \\
\hline E2F1 & CDCA3 & 1 & 1 \\
\hline E2F1 & CDCA7 & 1 & 1 \\
\hline E2F1 & CDK7 & 1 & 1 \\
\hline E2F1 & CDKL5 & 1 & 2 \\
\hline E2F1 & CDKN1B & 1 & 1 \\
\hline E2F1 & CDKN2C & 1 & 1 \\
\hline E2F1 & CDKN2D & 1 & 1 \\
\hline E2F1 & CDKN3 & 1 & 1 \\
\hline E2F1 & CENPE & 1 & 1 \\
\hline E2F1 & CENPF & 1 & 1 \\
\hline E2F1 & CHAF1A & 1 & 2 \\
\hline E2F1 & CHEK2 & 1 & 1 \\
\hline E2F1 & CIT & 1 & 1 \\
\hline E2F1 & CKAP5 & 1 & 1 \\
\hline E2F1 & CNIH4 & 1 & 1 \\
\hline E2F1 & CNOT10 & 1 & 1 \\
\hline E2F1 & COL7A1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline E2F1 & COQ6 & 1 & 1 \\
\hline E2F1 & CTSD & 1 & 2 \\
\hline E2F1 & CYTH2 & 1 & 1 \\
\hline E2F1 & DET1 & 1 & 1 \\
\hline E2F1 & DHFR & 1 & 1 \\
\hline E2F1 & DTL & 1 & 1 \\
\hline E2F1 & E2F1 & 1 & 1 \\
\hline E2F1 & E2F8 & 1 & 1 \\
\hline E2F1 & EIF4E & 1 & 1 \\
\hline E2F1 & FABP1 & 1 & 1 \\
\hline E2F1 & FAM60A & 1 & 1 \\
\hline E2F1 & FANCA & 1 & 1 \\
\hline E2F1 & FANCD2 & 1 & 2 \\
\hline E2F1 & FEN1 & 1 & 1 \\
\hline E2F1 & FLAD1 & 1 & 1 \\
\hline E2F1 & FOXM1 & 1 & 1 \\
\hline E2F1 & FXR1 & 1 & 1 \\
\hline E2F1 & FYN & 1 & 2 \\
\hline E2F1 & G2E3 & 1 & 2 \\
\hline E2F1 & GAS6 & 1 & 1 \\
\hline E2F1 & GCLM & 1 & 1 \\
\hline E2F1 & GDF15 & 1 & 1 \\
\hline E2F1 & GINS3 & 1 & 1 \\
\hline E2F1 & GMNN & 1 & 1 \\
\hline E2F1 & GOT1 & 1 & 1 \\
\hline E2F1 & GPSM2 & 1 & 2 \\
\hline E2F1 & HELLS & 1 & 2 \\
\hline E2F1 & HERPUD2 & 1 & 1 \\
\hline E2F1 & HIST1H2AC & 1 & 1 \\
\hline E2F1 & HIST1H4E & 1 & 1 \\
\hline E2F1 & HLA-DOA & 1 & 2 \\
\hline E2F1 & HRAS & 1 & 2 \\
\hline E2F1 & HRSP12 & 1 & 1 \\
\hline E2F1 & HSPB8 & 1 & 1 \\
\hline E2F1 & INSR & 1 & 1 \\
\hline E2F1 & ITPR1 & 1 & 2 \\
\hline E2F1 & KATNA1 & 1 & 1 \\
\hline E2F1 & KDM5B & 1 & 1 \\
\hline E2F1 & KIAA0586 & 1 & 1 \\
\hline E2F1 & KIF14 & 1 & 1 \\
\hline E2F1 & KIF20B & 1 & 1 \\
\hline E2F1 & KIF23 & 1 & 1 \\
\hline E2F1 & KIF2C & 1 & 1 \\
\hline E2F1 & KIFC1 & 1 & 1 \\
\hline E2F1 & KRAS & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline E2F1 & LBR & 1 & 1 \\
\hline E2F1 & LPP & 1 & 1 \\
\hline E2F1 & LRIF1 & 1 & 1 \\
\hline E2F1 & LRRC17 & 1 & 2 \\
\hline E2F1 & MAD2L1 & 1 & 1 \\
\hline E2F1 & MAN1A2 & 1 & 2 \\
\hline E2F1 & MAP2K6 & 1 & 2 \\
\hline E2F1 & MAPK13 & 1 & 1 \\
\hline E2F1 & MCM8 & 1 & 1 \\
\hline E2F1 & MDM2 & 1 & 1 \\
\hline E2F1 & ME3 & 1 & 2 \\
\hline E2F1 & MEGF9 & 1 & 1 \\
\hline E2F1 & MELK & 1 & 1 \\
\hline E2F1 & MET & 1 & 2 \\
\hline E2F1 & MKI67 & 1 & 1 \\
\hline E2F1 & MND1 & 1 & 1 \\
\hline E2F1 & MNX1 & 1 & 2 \\
\hline E2F1 & MRI1 & 1 & 1 \\
\hline E2F1 & MRPS18B & 1 & 1 \\
\hline E2F1 & MSH2 & 1 & 1 \\
\hline E2F1 & MZF1 & 1 & 1 \\
\hline E2F1 & NCOA3 & 1 & 1 \\
\hline E2F1 & NCS1 & 1 & 1 \\
\hline E2F1 & NDE1 & 1 & 1 \\
\hline E2F1 & NPAT & 1 & 1 \\
\hline E2F1 & NUDT4 & 1 & 1 \\
\hline E2F1 & NUP160 & 1 & 2 \\
\hline E2F1 & NUP37 & 1 & 1 \\
\hline E2F1 & ODF2 & 1 & 1 \\
\hline E2F1 & ORC3 & 1 & 1 \\
\hline E2F1 & OSER1 & 1 & 1 \\
\hline E2F1 & PBK & 1 & 1 \\
\hline E2F1 & PDGFA & 1 & 1 \\
\hline E2F1 & PKNOX1 & 1 & 2 \\
\hline E2F1 & PLIN3 & 1 & 1 \\
\hline E2F1 & PLK1 & 1 & 1 \\
\hline E2F1 & POC1A & 1 & 1 \\
\hline E2F1 & POLA1 & 1 & 1 \\
\hline E2F1 & POM121 & 1 & 1 \\
\hline E2F1 & PPP1R2 & 1 & 1 \\
\hline E2F1 & PPP3CA & 1 & 1 \\
\hline E2F1 & PRIM2 & 1 & 1 \\
\hline E2F1 & PRKAR1A & 1 & 2 \\
\hline E2F1 & PSEN1 & 1 & 2 \\
\hline E2F1 & PTTG1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline E2F1 & PWP1 & 1 & 1 \\
\hline E2F1 & QRICH1 & 1 & 1 \\
\hline E2F1 & RAD18 & 1 & 2 \\
\hline E2F1 & RAD51 & 1 & 1 \\
\hline E2F1 & RAD54L & 1 & 1 \\
\hline E2F1 & RBBP8 & 1 & 1 \\
\hline E2F1 & REEP1 & 1 & 2 \\
\hline E2F1 & RFC2 & 1 & 1 \\
\hline E2F1 & RFC4 & 1 & 1 \\
\hline E2F1 & RGS3 & 1 & 1 \\
\hline E2F1 & RPA2 & 1 & 1 \\
\hline E2F1 & RRM1 & 1 & 2 \\
\hline E2F1 & RRM2 & 1 & 2 \\
\hline E2F1 & RUNX1 & 1 & 1 \\
\hline E2F1 & SAP30BP & 1 & 1 \\
\hline E2F1 & SEPHS1 & 1 & 1 \\
\hline E2F1 & SGK1 & 1 & 1 \\
\hline E2F1 & SLBP & 1 & 1 \\
\hline E2F1 & SLC44A2 & 1 & 1 \\
\hline E2F1 & SP1 & 1 & 1 \\
\hline E2F1 & SRD5A1 & 1 & 1 \\
\hline E2F1 & SRSF5 & 1 & 1 \\
\hline E2F1 & STAT5B & 1 & 1 \\
\hline E2F1 & STIL & 1 & 1 \\
\hline E2F1 & SUCLG2 & 1 & 1 \\
\hline E2F1 & SYNCRIP & 1 & 1 \\
\hline E2F1 & TACC3 & 1 & 1 \\
\hline E2F1 & TGIF1 & 1 & 1 \\
\hline E2F1 & THRAP3 & 1 & 1 \\
\hline E2F1 & TIMP1 & 1 & 1 \\
\hline E2F1 & TMEM132A & 1 & 1 \\
\hline E2F1 & TOMM70A & 1 & 1 \\
\hline E2F1 & TOP1 & 1 & 1 \\
\hline E2F1 & TOP2A & 1 & 1 \\
\hline E2F1 & TOP3A & 1 & 1 \\
\hline E2F1 & TOPBP1 & 1 & 2 \\
\hline E2F1 & TRA2A & 1 & 1 \\
\hline E2F1 & TRIM45 & 1 & 1 \\
\hline E2F1 & TRIP13 & 1 & 2 \\
\hline E2F1 & TROAP & 1 & 1 \\
\hline E2F1 & TSG101 & 1 & 2 \\
\hline E2F1 & TUBB2A & 1 & 1 \\
\hline E2F1 & TULP4 & 1 & 1 \\
\hline E2F1 & TYMS & 1 & 2 \\
\hline E2F1 & UACA & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline E2F1 & UBE2S & 1 & 1 \\
\hline E2F1 & UBE2T & 1 & 1 \\
\hline E2F1 & UBL3 & 1 & 1 \\
\hline E2F1 & UBQLN2 & 1 & 1 \\
\hline E2F1 & UHRF1 & 1 & 1 \\
\hline E2F1 & USP1 & 1 & 1 \\
\hline E2F1 & VCAM1 & 1 & 1 \\
\hline E2F1 & VEGFC & 1 & 1 \\
\hline E2F1 & VPS37C & 1 & 1 \\
\hline E2F1 & WSB1 & 1 & 1 \\
\hline E2F1 & YY1 & 1 & 1 \\
\hline E2F1 & ZBED5 & 1 & 1 \\
\hline E2F1 & ZBTB7A & 1 & 1 \\
\hline E2F1 & ZC3HC1 & 1 & 1 \\
\hline E2F1 & ZMYM1 & 1 & 1 \\
\hline E2F1 & ZNF143 & 1 & 1 \\
\hline E2F1 & ZNF521 & 1 & 1 \\
\hline E2F1 & ZSCAN5A & 1 & 1 \\
\hline E2F1 & ZWINT & 1 & 1 \\
\hline E2F5 & ASF1B & 1 & 1 \\
\hline E2F5 & BRCA1 & 1 & 1 \\
\hline E2F8 & E2F1 & 1 & 1 \\
\hline FOXM1 & ARHGAP8 & 1 & 1 \\
\hline FOXM1 & AURKB & 1 & 2 \\
\hline FOXM1 & BIRC5 & 1 & 1 \\
\hline FOXM1 & CCNA2 & 1 & 1 \\
\hline FOXM1 & CCNB1 & 1 & 1 \\
\hline FOXM1 & CDC25A & 1 & 1 \\
\hline FOXM1 & CDC6 & 1 & 1 \\
\hline FOXM1 & CDKN1B & 1 & 1 \\
\hline FOXM1 & CKS1B & 1 & 1 \\
\hline FOXM1 & MID1 & 1 & 1 \\
\hline FOXM1 & PDGFA & 1 & 1 \\
\hline FOXM1 & PLK1 & 1 & 1 \\
\hline HIF1A & ADAMTS1 & 1 & 2 \\
\hline HIF1A & ARL4A & 1 & 1 \\
\hline HIF1A & C6 & 1 & 1 \\
\hline HIF1A & CDK7 & 1 & 1 \\
\hline HIF1A & CDKN1B & 1 & 1 \\
\hline HIF1A & DNAJB9 & 1 & 1 \\
\hline HIF1A & DYNLL1 & 1 & 1 \\
\hline HIF1A & FANCD2 & 1 & 1 \\
\hline HIF1A & FOXM1 & 1 & 1 \\
\hline HIF1A & FRZB & 1 & 1 \\
\hline HIF1A & GRPEL1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline HIF1A & HERPUD2 & 1 & 1 \\
\hline HIF1A & HIF1A & 1 & 1 \\
\hline HIF1A & HMMR & 1 & 1 \\
\hline HIF1A & INSIG2 & 1 & 1 \\
\hline HIF1A & KDM5B & 1 & 1 \\
\hline HIF1A & MET & 1 & 2 \\
\hline HIF1A & MUC1 & 1 & 1 \\
\hline HIF1A & NLRP2 & 1 & 1 \\
\hline HIF1A & NR3C1 & 1 & 1 \\
\hline HIF1A & PCF11 & 1 & 1 \\
\hline HIF1A & PDXP & 1 & 1 \\
\hline HIF1A & PLIN3 & 1 & 1 \\
\hline HIF1A & POM121 & 1 & 1 \\
\hline HIF1A & PPP6R3 & 1 & 1 \\
\hline HIF1A & PRPSAP1 & 1 & 1 \\
\hline HIF1A & RBM8A & 1 & 1 \\
\hline HIF1A & RHOBTB3 & 1 & 1 \\
\hline HIF1A & RRM2 & 1 & 1 \\
\hline HIF1A & SAP30 & 1 & 1 \\
\hline HIF1A & STIL & 1 & 1 \\
\hline HIF1A & TFF3 & 1 & 1 \\
\hline HIF1A & TIMP1 & 1 & 1 \\
\hline HIF1A & TOMM34 & 1 & 1 \\
\hline HIF1A & TOP3A & 1 & 1 \\
\hline HIF1A & TYMS & 1 & 1 \\
\hline HIF1A & VCAM1 & 1 & 1 \\
\hline HIF1A & VEGFC & 1 & 2 \\
\hline HIF1A & WSB1 & 1 & 1 \\
\hline HIF1A & ZNF217 & 1 & 1 \\
\hline HOXB4 & NIPBL & 1 & 1 \\
\hline HOXB4 & PSEN1 & 1 & 1 \\
\hline HOXB4 & SP1 & 1 & 1 \\
\hline HOXB4 & SRF & 1 & 1 \\
\hline HOXB4 & TFAP2A & 1 & 1 \\
\hline HOXB4 & YY1 & 1 & 1 \\
\hline HSF2 & HIF1A & 1 & 1 \\
\hline INSM1 & INSM1 & 1 & 1 \\
\hline KDM5B & BRCA1 & 1 & 1 \\
\hline KLF6 & PTTG1 & 1 & 1 \\
\hline KLF9 & TFAP2A & 1 & 2 \\
\hline MITF & ABCC2 & 1 & 1 \\
\hline MITF & ACD & 1 & 1 \\
\hline MITF & AFAP1 & 1 & 1 \\
\hline MITF & AHI1 & 1 & 2 \\
\hline MITF & AMD1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MITF & ANKRD10 & 1 & 1 \\
\hline MITF & ANP32B & 1 & 1 \\
\hline MITF & ANTXR1 & 1 & 1 \\
\hline MITF & AP3D1 & 1 & 1 \\
\hline MITF & AP3M2 & 1 & 1 \\
\hline MITF & ARHGEF39 & 1 & 1 \\
\hline MITF & ARL4A & 1 & 1 \\
\hline MITF & ASF1B & 1 & 2 \\
\hline MITF & ASIP & 1 & 1 \\
\hline MITF & ATF7IP & 1 & 1 \\
\hline MITF & ATL2 & 1 & 1 \\
\hline MITF & BAG3 & 1 & 2 \\
\hline MITF & BMP2 & 1 & 1 \\
\hline MITF & BRCA1 & 1 & 1 \\
\hline MITF & BTBD3 & 1 & 1 \\
\hline MITF & BUB3 & 1 & 1 \\
\hline MITF & C6 & 1 & 2 \\
\hline MITF & CADM1 & 1 & 1 \\
\hline MITF & CBX3 & 1 & 1 \\
\hline MITF & CCNB1 & 1 & 1 \\
\hline MITF & CCNE1 & 1 & 1 \\
\hline MITF & CDC16 & 1 & 2 \\
\hline MITF & CDC25B & 1 & 2 \\
\hline MITF & CDC42 & 1 & 1 \\
\hline MITF & CDC7 & 1 & 1 \\
\hline MITF & CDKN1B & 1 & 1 \\
\hline MITF & CDKN2AIP & 1 & 1 \\
\hline MITF & CDKN2C & 1 & 1 \\
\hline MITF & CENPA & 1 & 1 \\
\hline MITF & CENPM & 1 & 1 \\
\hline MITF & CFLAR & 1 & 1 \\
\hline MITF & CHEK2 & 1 & 1 \\
\hline MITF & CIC & 1 & 1 \\
\hline MITF & CIT & 1 & 1 \\
\hline MITF & CKS2 & 1 & 1 \\
\hline MITF & CNOT10 & 1 & 1 \\
\hline MITF & CSGALNACT1 & 1 & 1 \\
\hline MITF & CTNND1 & 1 & 2 \\
\hline MITF & CYB5R2 & 1 & 1 \\
\hline MITF & DDX11 & 1 & 1 \\
\hline MITF & DEXI & 1 & 1 \\
\hline MITF & DKC1 & 1 & 1 \\
\hline MITF & DMXL2 & 1 & 1 \\
\hline MITF & DNAJB1 & 1 & 2 \\
\hline MITF & DNAJB4 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MITF & DNAJB6 & 1 & 1 \\
\hline MITF & DNAJB9 & 1 & 2 \\
\hline MITF & DR1 & 1 & 2 \\
\hline MITF & DSP & 1 & 2 \\
\hline MITF & DUSP4 & 1 & 1 \\
\hline MITF & DYNLL1 & 1 & 1 \\
\hline MITF & E2F5 & 1 & 1 \\
\hline MITF & E2F8 & 1 & 1 \\
\hline MITF & FADD & 1 & 1 \\
\hline MITF & FAM189B & 1 & 1 \\
\hline MITF & FAM60A & 1 & 1 \\
\hline MITF & FAM64A & 1 & 1 \\
\hline MITF & FANCA & 1 & 1 \\
\hline MITF & FEM1B & 1 & 1 \\
\hline MITF & FEN1 & 1 & 1 \\
\hline MITF & FKBP1A & 1 & 1 \\
\hline MITF & FRZB & 1 & 1 \\
\hline MITF & FZR1 & 1 & 2 \\
\hline MITF & GAS1 & 1 & 1 \\
\hline MITF & GAS6 & 1 & 1 \\
\hline MITF & GNB1 & 1 & 2 \\
\hline MITF & GTF2B & 1 & 1 \\
\hline MITF & HAUS5 & 1 & 2 \\
\hline MITF & HAUS8 & 1 & 1 \\
\hline MITF & HERPUD2 & 1 & 1 \\
\hline MITF & HIF1A & 1 & 1 \\
\hline MITF & HIST2H2BE & 1 & 1 \\
\hline MITF & HOXB4 & 1 & 2 \\
\hline MITF & HP1BP3 & 1 & 1 \\
\hline MITF & HRAS & 1 & 1 \\
\hline MITF & HSF2 & 1 & 1 \\
\hline MITF & HSPA8 & 1 & 1 \\
\hline MITF & IDI2 & 1 & 1 \\
\hline MITF & INADL & 1 & 1 \\
\hline MITF & ITPR3 & 1 & 1 \\
\hline MITF & IVNS1ABP & 1 & 1 \\
\hline MITF & JADE2 & 1 & 2 \\
\hline MITF & KANK2 & 1 & 1 \\
\hline MITF & KAT2B & 1 & 1 \\
\hline MITF & KBTBD2 & 1 & 1 \\
\hline MITF & KDELC1 & 1 & 1 \\
\hline MITF & KDM4A & 1 & 1 \\
\hline MITF & KDM5B & 1 & 1 \\
\hline MITF & KIFC1 & 1 & 1 \\
\hline MITF & KLF6 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MITF & KLF9 & 1 & 2 \\
\hline MITF & KPNA2 & 1 & 2 \\
\hline MITF & LBR & 1 & 1 \\
\hline MITF & MAN1A2 & 1 & 2 \\
\hline MITF & MAPK13 & 1 & 1 \\
\hline MITF & MBD2 & 1 & 1 \\
\hline MITF & MBD3 & 1 & 2 \\
\hline MITF & MCAM & 1 & 1 \\
\hline MITF & MCM8 & 1 & 1 \\
\hline MITF & ME3 & 1 & 2 \\
\hline MITF & MIS18BP1 & 1 & 1 \\
\hline MITF & MNT & 1 & 1 \\
\hline MITF & MNX1 & 1 & 2 \\
\hline MITF & MORF4L2 & 1 & 1 \\
\hline MITF & MSH2 & 1 & 1 \\
\hline MITF & MTCL1 & 1 & 1 \\
\hline MITF & MZF1 & 1 & 1 \\
\hline MITF & NAB1 & 1 & 2 \\
\hline MITF & NCAPH & 1 & 2 \\
\hline MITF & NCOA3 & 1 & 1 \\
\hline MITF & NCOA5 & 1 & 1 \\
\hline MITF & NDE1 & 1 & 2 \\
\hline MITF & NFE2L2 & 1 & 2 \\
\hline MITF & NFIC & 1 & 1 \\
\hline MITF & NPM1 & 1 & 1 \\
\hline MITF & NSUN3 & 1 & 1 \\
\hline MITF & OGT & 1 & 1 \\
\hline MITF & OSER1 & 1 & 1 \\
\hline MITF & PAK1IP1 & 1 & 1 \\
\hline MITF & PANK2 & 1 & 1 \\
\hline MITF & PCF11 & 1 & 1 \\
\hline MITF & PDGFA & 1 & 1 \\
\hline MITF & PDXP & 1 & 1 \\
\hline MITF & PIK3CD & 1 & 2 \\
\hline MITF & PKNOX1 & 1 & 1 \\
\hline MITF & PLIN3 & 1 & 1 \\
\hline MITF & PLK1 & 1 & 1 \\
\hline MITF & POC1A & 1 & 1 \\
\hline MITF & POLA1 & 1 & 1 \\
\hline MITF & PPP1R10 & 1 & 1 \\
\hline MITF & PRIM2 & 1 & 1 \\
\hline MITF & PRKAR1A & 1 & 2 \\
\hline MITF & PRR16 & 1 & 1 \\
\hline MITF & PSEN1 & 1 & 1 \\
\hline MITF & PTP4A1 & 1 & 1 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MITF & PTTG1 & 1 & 1 \\
\hline MITF & PWP1 & 1 & 1 \\
\hline MITF & QRICH1 & 1 & 1 \\
\hline MITF & RAB3A & 1 & 1 \\
\hline MITF & RAN & 1 & 1 \\
\hline MITF & RCCD1 & 1 & 1 \\
\hline MITF & RHEB & 1 & 1 \\
\hline MITF & RMI1 & 1 & 1 \\
\hline MITF & RRM2 & 1 & 2 \\
\hline MITF & RRP1 & 1 & 1 \\
\hline MITF & RUNX1 & 1 & 1 \\
\hline MITF & SAP30 & 1 & 1 \\
\hline MITF & SAP30BP & 1 & 1 \\
\hline MITF & SGK1 & 1 & 1 \\
\hline MITF & SLC25A36 & 1 & 1 \\
\hline MITF & SLC38A2 & 1 & 2 \\
\hline MITF & SMARCB1 & 1 & 1 \\
\hline MITF & SMTN & 1 & 1 \\
\hline MITF & SP1 & 1 & 2 \\
\hline MITF & SRSF3 & 1 & 1 \\
\hline MITF & SS18 & 1 & 1 \\
\hline MITF & SSR3 & 1 & 1 \\
\hline MITF & STAG1 & 1 & 1 \\
\hline MITF & STAT1 & 1 & 1 \\
\hline MITF & SV2B & 1 & 1 \\
\hline MITF & SYNCRIP & 1 & 1 \\
\hline MITF & TAB2 & 1 & 1 \\
\hline MITF & TACC3 & 1 & 2 \\
\hline MITF & TFAP2A & 1 & 1 \\
\hline MITF & TGIF1 & 1 & 2 \\
\hline MITF & TOB2 & 1 & 2 \\
\hline MITF & TOMM34 & 1 & 1 \\
\hline MITF & TOP1 & 1 & 1 \\
\hline MITF & TOP3A & 1 & 1 \\
\hline MITF & TRAIP & 1 & 1 \\
\hline MITF & TRIP13 & 1 & 2 \\
\hline MITF & TSC22D1 & 1 & 1 \\
\hline MITF & TSG101 & 1 & 2 \\
\hline MITF & TSKU & 1 & 1 \\
\hline MITF & TSN & 1 & 1 \\
\hline MITF & TTC38 & 1 & 1 \\
\hline MITF & TUBB2A & 1 & 1 \\
\hline MITF & TUBB4B & 1 & 1 \\
\hline MITF & TULP4 & 1 & 1 \\
\hline MITF & TXNRD1 & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MITF & UACA & 1 & 2 \\
\hline MITF & UBE2D3 & 1 & 2 \\
\hline MITF & UBL3 & 1 & 1 \\
\hline MITF & UHRF1 & 1 & 1 \\
\hline MITF & UNG & 1 & 2 \\
\hline MITF & USP1 & 1 & 1 \\
\hline MITF & USP13 & 1 & 1 \\
\hline MITF & VEGFC & 1 & 1 \\
\hline MITF & VPS37C & 1 & 1 \\
\hline MITF & WSB1 & 1 & 1 \\
\hline MITF & YWHAH & 1 & 1 \\
\hline MITF & YY1 & 1 & 2 \\
\hline MITF & ZBED5 & 1 & 1 \\
\hline MITF & ZC3HC1 & 1 & 1 \\
\hline MITF & ZCCHC10 & 1 & 1 \\
\hline MITF & ZNF217 & 1 & 1 \\
\hline MITF & ZNFX1 & 1 & 1 \\
\hline MITF & ZNHIT2 & 1 & 1 \\
\hline MNX1 & CDC42 & 1 & 1 \\
\hline MNX1 & FYN & 1 & 1 \\
\hline MNX1 & GAS6 & 1 & 1 \\
\hline MNX1 & INSR & 1 & 1 \\
\hline MNX1 & KATNA1 & 1 & 1 \\
\hline MNX1 & MYCBP2 & 1 & 1 \\
\hline MNX1 & NDE1 & 1 & 1 \\
\hline MNX1 & PSEN1 & 1 & 1 \\
\hline MNX1 & RAB23 & 1 & 1 \\
\hline MNX1 & TGIF1 & 1 & 1 \\
\hline NCOA3 & BRCA1 & 1 & 1 \\
\hline NFE2L2 & BRCA1 & 1 & 1 \\
\hline NFIA & NR3C1 & 1 & 1 \\
\hline NFIC & HRAS & 1 & 1 \\
\hline NFIC & INSR & 1 & 1 \\
\hline NFIC & NR3C1 & 1 & 1 \\
\hline NFIC & TFAP2A & 1 & 1 \\
\hline NFYA & CDC25A & 1 & 1 \\
\hline NFYA & CDCA8 & 1 & 1 \\
\hline NFYA & CDKN1B & 1 & 1 \\
\hline NFYA & E2F1 & 1 & 1 \\
\hline NFYA & GADD45A & 1 & 1 \\
\hline NFYA & HOXB4 & 1 & 1 \\
\hline NFYA & MCM8 & 1 & 1 \\
\hline NFYA & PTTG1 & 1 & 1 \\
\hline NFYB & CDKN1B & 1 & 1 \\
\hline NFYB & HLA-DOA & 1 & 1 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline NFYB & HLA-DRA & 1 & 1 \\
\hline NFYB & HSPA13 & 1 & 1 \\
\hline NR3C1 & BRCA1 & 1 & 1 \\
\hline NR3C1 & NR3C1 & 1 & 1 \\
\hline NR3C1 & SRF & 1 & 1 \\
\hline NR3C1 & STAT1 & 1 & 1 \\
\hline PKNOX1 & C6 & 1 & 1 \\
\hline PKNOX1 & GAS1 & 1 & 1 \\
\hline PKNOX1 & HLA-DOA & 1 & 1 \\
\hline PKNOX1 & MITF & 1 & 1 \\
\hline RUNX1 & ADAMTS1 & 1 & 2 \\
\hline RUNX1 & BBS2 & 1 & 1 \\
\hline RUNX1 & BCLAF1 & 1 & 1 \\
\hline RUNX1 & BIRC2 & 1 & 1 \\
\hline RUNX1 & C5orf42 & 1 & 1 \\
\hline RUNX1 & CDC25B & 1 & 1 \\
\hline RUNX1 & CENPF & 1 & 1 \\
\hline RUNX1 & CENPL & 1 & 1 \\
\hline RUNX1 & CEP70 & 1 & 1 \\
\hline RUNX1 & CKAP2 & 1 & 1 \\
\hline RUNX1 & CKS2 & 1 & 1 \\
\hline RUNX1 & CTR9 & 1 & 1 \\
\hline RUNX1 & CXCL14 & 1 & 1 \\
\hline RUNX1 & DEPDC1B & 1 & 1 \\
\hline RUNX1 & DNA2 & 1 & 1 \\
\hline RUNX1 & DNAJC3 & 1 & 1 \\
\hline RUNX1 & EIF4E & 1 & 1 \\
\hline RUNX1 & FAM105A & 1 & 1 \\
\hline RUNX1 & FRZB & 1 & 1 \\
\hline RUNX1 & FXR1 & 1 & 1 \\
\hline RUNX1 & GPSM2 & 1 & 2 \\
\hline RUNX1 & HIST1H2BC & 1 & 1 \\
\hline RUNX1 & HSF2 & 1 & 1 \\
\hline RUNX1 & INADL & 1 & 1 \\
\hline RUNX1 & IVNS1ABP & 1 & 1 \\
\hline RUNX1 & KLF6 & 1 & 1 \\
\hline RUNX1 & KPNA2 & 1 & 1 \\
\hline RUNX1 & LARP7 & 1 & 1 \\
\hline RUNX1 & LRRC17 & 1 & 1 \\
\hline RUNX1 & MAD2L1 & 1 & 1 \\
\hline RUNX1 & MAN1A2 & 1 & 1 \\
\hline RUNX1 & MAP2K6 & 1 & 1 \\
\hline RUNX1 & ME3 & 1 & 2 \\
\hline RUNX1 & MET & 1 & 1 \\
\hline RUNX1 & MITF & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline RUNX1 & MKI67 & 1 & 1 \\
\hline RUNX1 & MND1 & 1 & 1 \\
\hline RUNX1 & MTCL1 & 1 & 1 \\
\hline RUNX1 & NCOA3 & 1 & 1 \\
\hline RUNX1 & NEIL3 & 1 & 2 \\
\hline RUNX1 & NSUN3 & 1 & 1 \\
\hline RUNX1 & NUP98 & 1 & 1 \\
\hline RUNX1 & ORC3 & 1 & 1 \\
\hline RUNX1 & PIK3CD & 1 & 2 \\
\hline RUNX1 & PPP6R3 & 1 & 1 \\
\hline RUNX1 & PRIM2 & 1 & 1 \\
\hline RUNX1 & PTP4A1 & 1 & 1 \\
\hline RUNX1 & ROCK1 & 1 & 1 \\
\hline RUNX1 & SGK1 & 1 & 1 \\
\hline RUNX1 & SLC25A27 & 1 & 1 \\
\hline RUNX1 & SLC38A2 & 1 & 1 \\
\hline RUNX1 & SLC39A10 & 1 & 1 \\
\hline RUNX1 & SPAG5 & 1 & 1 \\
\hline RUNX1 & STAG1 & 1 & 1 \\
\hline RUNX1 & SUCLG2 & 1 & 1 \\
\hline RUNX1 & TRIP13 & 1 & 2 \\
\hline RUNX1 & TSKU & 1 & 1 \\
\hline RUNX1 & UACA & 1 & 1 \\
\hline RUNX1 & VCL & 1 & 1 \\
\hline RUNX1 & WSB1 & 1 & 1 \\
\hline RUNX1 & ZPBP & 1 & 1 \\
\hline RUNX1 & ZRANB2 & 1 & 1 \\
\hline SP1 & BIRC5 & 1 & 1 \\
\hline SP1 & BRCA1 & 1 & 1 \\
\hline SP1 & BUB1B & 1 & 2 \\
\hline SP1 & C4B & 1 & 1 \\
\hline SP1 & CASP3 & 1 & 1 \\
\hline SP1 & CCNA2 & 1 & 1 \\
\hline SP1 & CCNB1 & 1 & 1 \\
\hline SP1 & CDC25A & 1 & 2 \\
\hline SP1 & CDC25C & 1 & 1 \\
\hline SP1 & CDKN1B & 1 & 1 \\
\hline SP1 & CDKN2C & 1 & 1 \\
\hline SP1 & CDKN2D & 1 & 1 \\
\hline SP1 & COL7A1 & 1 & 1 \\
\hline SP1 & CTSD & 1 & 1 \\
\hline SP1 & CXCL14 & 1 & 1 \\
\hline SP1 & DHFR & 1 & 1 \\
\hline SP1 & DKC1 & 1 & 1 \\
\hline SP1 & E2F1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline SP1 & EXO1 & 1 & 1 \\
\hline SP1 & FOXM1 & 1 & 1 \\
\hline SP1 & FRZB & 1 & 1 \\
\hline SP1 & G2E3 & 1 & 1 \\
\hline SP1 & GAS1 & 1 & 1 \\
\hline SP1 & GPSM2 & 1 & 1 \\
\hline SP1 & HIF1A & 1 & 1 \\
\hline SP1 & HSD17B11 & 1 & 2 \\
\hline SP1 & HSPA8 & 1 & 1 \\
\hline SP1 & ITGB3 & 1 & 1 \\
\hline SP1 & KIF2C & 1 & 1 \\
\hline SP1 & LMO4 & 1 & 1 \\
\hline SP1 & MCAM & 1 & 1 \\
\hline SP1 & MDM2 & 1 & 1 \\
\hline SP1 & MET & 1 & 1 \\
\hline SP1 & NR3C1 & 1 & 1 \\
\hline SP1 & PDGFA & 1 & 1 \\
\hline SP1 & POLA1 & 1 & 1 \\
\hline SP1 & PSEN1 & 1 & 1 \\
\hline SP1 & PTTG1 & 1 & 1 \\
\hline SP1 & RECQL4 & 1 & 1 \\
\hline SP1 & SP1 & 1 & 1 \\
\hline SP1 & TFAP2A & 1 & 1 \\
\hline SP1 & TIMP1 & 1 & 1 \\
\hline SP1 & TMPO & 1 & 1 \\
\hline SP1 & TYMS & 1 & 1 \\
\hline SP1 & UNG & 1 & 1 \\
\hline SP1 & VCAM1 & 1 & 1 \\
\hline SRF & HOXB4 & 1 & 1 \\
\hline SRF & KPNB1 & 1 & 1 \\
\hline SRF & STIL & 1 & 1 \\
\hline SRF & UBE2S & 1 & 1 \\
\hline STAT1 & ABCA7 & 1 & 1 \\
\hline STAT1 & ABCC2 & 1 & 1 \\
\hline STAT1 & ADAMTS1 & 1 & 2 \\
\hline STAT1 & ADCY6 & 1 & 1 \\
\hline STAT1 & AFAP1 & 1 & 1 \\
\hline STAT1 & AGFG1 & 1 & 1 \\
\hline STAT1 & AHI1 & 1 & 1 \\
\hline STAT1 & AKIRIN2 & 1 & 1 \\
\hline STAT1 & ANKRD10 & 1 & 1 \\
\hline STAT1 & ANP32B & 1 & 1 \\
\hline STAT1 & ANP32E & 1 & 1 \\
\hline STAT1 & ANTXR1 & 1 & 1 \\
\hline STAT1 & AP3M2 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT1 & ARHGAP11A & 1 & 1 \\
\hline STAT1 & ARHGAP19 & 1 & 1 \\
\hline STAT1 & ARHGDIB & 1 & 1 \\
\hline STAT1 & ARHGEF39 & 1 & 1 \\
\hline STAT1 & ARL4A & 1 & 1 \\
\hline STAT1 & ARL6IP1 & 1 & 1 \\
\hline STAT1 & ARMC1 & 1 & 1 \\
\hline STAT1 & ASF1B & 1 & 2 \\
\hline STAT1 & ATAD2 & 1 & 1 \\
\hline STAT1 & ATF7IP & 1 & 1 \\
\hline STAT1 & B2M & 1 & 1 \\
\hline STAT1 & BAG3 & 1 & 1 \\
\hline STAT1 & BARD1 & 1 & 1 \\
\hline STAT1 & BCLAF1 & 1 & 1 \\
\hline STAT1 & BIRC2 & 1 & 1 \\
\hline STAT1 & BMP2 & 1 & 1 \\
\hline STAT1 & BRCA1 & 1 & 1 \\
\hline STAT1 & BRD7 & 1 & 1 \\
\hline STAT1 & BTBD3 & 1 & 1 \\
\hline STAT1 & BUB3 & 1 & 1 \\
\hline STAT1 & C5orf42 & 1 & 1 \\
\hline STAT1 & C6 & 1 & 2 \\
\hline STAT1 & CADM1 & 1 & 1 \\
\hline STAT1 & CASP3 & 1 & 1 \\
\hline STAT1 & CBX3 & 1 & 1 \\
\hline STAT1 & CCDC90B & 1 & 1 \\
\hline STAT1 & CCNA2 & 1 & 1 \\
\hline STAT1 & CCNE1 & 1 & 2 \\
\hline STAT1 & CDC16 & 1 & 1 \\
\hline STAT1 & CDC20 & 1 & 1 \\
\hline STAT1 & CDC25B & 1 & 1 \\
\hline STAT1 & CDC25C & 1 & 1 \\
\hline STAT1 & CDC27 & 1 & 1 \\
\hline STAT1 & CDC42EP1 & 1 & 1 \\
\hline STAT1 & CDC42EP4 & 1 & 1 \\
\hline STAT1 & CDC45 & 1 & 1 \\
\hline STAT1 & CDCA7 & 1 & 1 \\
\hline STAT1 & CDCA7L & 1 & 1 \\
\hline STAT1 & CDKN1B & 1 & 1 \\
\hline STAT1 & CDKN2AIP & 1 & 1 \\
\hline STAT1 & CDKN2C & 1 & 1 \\
\hline STAT1 & CDR2 & 1 & 1 \\
\hline STAT1 & CENPA & 1 & 2 \\
\hline STAT1 & CENPE & 1 & 1 \\
\hline STAT1 & CENPM & 1 & 1 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT1 & CEP44 & 1 & 1 \\
\hline STAT1 & CFD & 1 & 1 \\
\hline STAT1 & CHAF1A & 1 & 1 \\
\hline STAT1 & CHEK2 & 1 & 1 \\
\hline STAT1 & CIC & 1 & 1 \\
\hline STAT1 & CIT & 1 & 1 \\
\hline STAT1 & CKS2 & 1 & 1 \\
\hline STAT1 & CLSPN & 1 & 1 \\
\hline STAT1 & CNIH4 & 1 & 1 \\
\hline STAT1 & CNOT10 & 1 & 1 \\
\hline STAT1 & CREBZF & 1 & 1 \\
\hline STAT1 & CRK & 1 & 1 \\
\hline STAT1 & CRYBA1 & 1 & 1 \\
\hline STAT1 & CSGALNACT1 & 1 & 1 \\
\hline STAT1 & CSH2 & 1 & 1 \\
\hline STAT1 & CTCF & 1 & 1 \\
\hline STAT1 & CTNND1 & 1 & 1 \\
\hline STAT1 & CTR9 & 1 & 1 \\
\hline STAT1 & CTSD & 1 & 1 \\
\hline STAT1 & CYTH2 & 1 & 1 \\
\hline STAT1 & CYTH3 & 1 & 1 \\
\hline STAT1 & DCTN6 & 1 & 1 \\
\hline STAT1 & DEPDC1B & 1 & 1 \\
\hline STAT1 & DHFR & 1 & 1 \\
\hline STAT1 & DHX8 & 1 & 1 \\
\hline STAT1 & DIS3 & 1 & 1 \\
\hline STAT1 & DLGAP5 & 1 & 1 \\
\hline STAT1 & DNAJB1 & 1 & 1 \\
\hline STAT1 & DNAJB6 & 1 & 1 \\
\hline STAT1 & DNAJB9 & 1 & 1 \\
\hline STAT1 & DNAJC3 & 1 & 1 \\
\hline STAT1 & DNAJC6 & 1 & 1 \\
\hline STAT1 & DR1 & 1 & 1 \\
\hline STAT1 & DSCC1 & 1 & 1 \\
\hline STAT1 & DTL & 1 & 1 \\
\hline STAT1 & DUSP4 & 1 & 1 \\
\hline STAT1 & DYNLL1 & 1 & 1 \\
\hline STAT1 & DZIP3 & 1 & 2 \\
\hline STAT1 & E2F1 & 1 & 1 \\
\hline STAT1 & E2F8 & 1 & 1 \\
\hline STAT1 & ELP3 & 1 & 1 \\
\hline STAT1 & ERN2 & 1 & 1 \\
\hline STAT1 & ESPL1 & 1 & 1 \\
\hline STAT1 & FADD & 1 & 1 \\
\hline STAT1 & FAM105A & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT1 & FAM110A & 1 & 1 \\
\hline STAT1 & FAM214A & 1 & 1 \\
\hline STAT1 & FAM60A & 1 & 1 \\
\hline STAT1 & FAM83D & 1 & 1 \\
\hline STAT1 & FANCA & 1 & 1 \\
\hline STAT1 & FANCG & 1 & 1 \\
\hline STAT1 & FANCI & 1 & 1 \\
\hline STAT1 & FEM1B & 1 & 1 \\
\hline STAT1 & FEN1 & 1 & 1 \\
\hline STAT1 & FKBP1A & 1 & 1 \\
\hline STAT1 & FLAD1 & 1 & 1 \\
\hline STAT1 & G2E3 & 1 & 2 \\
\hline STAT1 & G3BP1 & 1 & 1 \\
\hline STAT1 & GADD 45 A & 1 & 1 \\
\hline STAT1 & GCSH & 1 & 1 \\
\hline STAT1 & GINS3 & 1 & 1 \\
\hline STAT1 & GMNN & 1 & 1 \\
\hline STAT1 & GOT1 & 1 & 1 \\
\hline STAT1 & GRK6 & 1 & 1 \\
\hline STAT1 & GTF2B & 1 & 1 \\
\hline STAT1 & H1F0 & 1 & 1 \\
\hline STAT1 & HCP5 & 1 & 1 \\
\hline STAT1 & HERPUD2 & 1 & 1 \\
\hline STAT1 & HIF1A & 1 & 1 \\
\hline STAT1 & HIST1H2AC & 1 & 1 \\
\hline STAT1 & HIST1H4H & 1 & 1 \\
\hline STAT1 & HIST2H2BE & 1 & 1 \\
\hline STAT1 & HMGCR & 1 & 1 \\
\hline STAT1 & HMMR & 1 & 1 \\
\hline STAT1 & HN1 & 1 & 1 \\
\hline STAT1 & HP1BP3 & 1 & 1 \\
\hline STAT1 & HRAS & 1 & 1 \\
\hline STAT1 & HSD17B11 & 1 & 2 \\
\hline STAT1 & HSF2 & 1 & 1 \\
\hline STAT1 & HSPA1L & 1 & 1 \\
\hline STAT1 & HSPA8 & 1 & 1 \\
\hline STAT1 & HSPB8 & 1 & 1 \\
\hline STAT1 & IDO1 & 1 & 1 \\
\hline STAT1 & IFIT1 & 1 & 2 \\
\hline STAT1 & IL18BP & 1 & 1 \\
\hline STAT1 & ILF2 & 1 & 1 \\
\hline STAT1 & INADL & 1 & 1 \\
\hline STAT1 & INPP5K & 1 & 1 \\
\hline STAT1 & INSIG2 & 1 & 1 \\
\hline STAT1 & INSR & 1 & 1 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT1 & INTS7 & 1 & 1 \\
\hline STAT1 & ITPR3 & 1 & 1 \\
\hline STAT1 & IVNS1ABP & 1 & 1 \\
\hline STAT1 & KAT2B & 1 & 1 \\
\hline STAT1 & KATNBL1 & 1 & 1 \\
\hline STAT1 & KBTBD2 & 1 & 1 \\
\hline STAT1 & KCTD2 & 1 & 1 \\
\hline STAT1 & KDM4A & 1 & 1 \\
\hline STAT1 & KDM5B & 1 & 1 \\
\hline STAT1 & KIAA0101 & 1 & 1 \\
\hline STAT1 & KIAA1524 & 1 & 1 \\
\hline STAT1 & KIF11 & 1 & 1 \\
\hline STAT1 & KIF14 & 1 & 1 \\
\hline STAT1 & KIF20B & 1 & 1 \\
\hline STAT1 & KIF22 & 1 & 1 \\
\hline STAT1 & KIF5B & 1 & 1 \\
\hline STAT1 & KPNA2 & 1 & 1 \\
\hline STAT1 & KRAS & 1 & 1 \\
\hline STAT1 & LBR & 1 & 1 \\
\hline STAT1 & LMNB1 & 1 & 1 \\
\hline STAT1 & LMO4 & 1 & 1 \\
\hline STAT1 & LRIF1 & 1 & 1 \\
\hline STAT1 & LRRC17 & 1 & 2 \\
\hline STAT1 & MAN1A2 & 1 & 1 \\
\hline STAT1 & MAP2K6 & 1 & 1 \\
\hline STAT1 & MATN2 & 1 & 1 \\
\hline STAT1 & MBD2 & 1 & 1 \\
\hline STAT1 & MCM2 & 1 & 1 \\
\hline STAT1 & MCM4 & 1 & 1 \\
\hline STAT1 & MDC1 & 1 & 1 \\
\hline STAT1 & MDM2 & 1 & 1 \\
\hline STAT1 & ME3 & 1 & 2 \\
\hline STAT1 & MED31 & 1 & 1 \\
\hline STAT1 & MEGF9 & 1 & 1 \\
\hline STAT1 & MELK & 1 & 1 \\
\hline STAT1 & MET & 1 & 2 \\
\hline STAT1 & MID1 & 1 & 1 \\
\hline STAT1 & MKI67 & 1 & 1 \\
\hline STAT1 & MND1 & 1 & 1 \\
\hline STAT1 & MNX1 & 1 & 2 \\
\hline STAT1 & MORF4L2 & 1 & 1 \\
\hline STAT1 & MTCL1 & 1 & 1 \\
\hline STAT1 & MZF1 & 1 & 1 \\
\hline STAT1 & NAB1 & 1 & 1 \\
\hline STAT1 & NASP & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT1 & NCAPH & 1 & 2 \\
\hline STAT1 & NCOA3 & 1 & 1 \\
\hline STAT1 & NCOA5 & 1 & 1 \\
\hline STAT1 & NCS1 & 1 & 1 \\
\hline STAT1 & NDC80 & 1 & 1 \\
\hline STAT1 & NDE1 & 1 & 1 \\
\hline STAT1 & NEIL3 & 1 & 2 \\
\hline STAT1 & NEK2 & 1 & 2 \\
\hline STAT1 & NFIC & 1 & 1 \\
\hline STAT1 & NFYB & 1 & 1 \\
\hline STAT1 & NIPBL & 1 & 1 \\
\hline STAT1 & NKTR & 1 & 1 \\
\hline STAT1 & NNMT & 1 & 1 \\
\hline STAT1 & NSUN3 & 1 & 1 \\
\hline STAT1 & NUCKS1 & 1 & 1 \\
\hline STAT1 & NUF2 & 1 & 1 \\
\hline STAT1 & NUP160 & 1 & 1 \\
\hline STAT1 & NUP98 & 1 & 1 \\
\hline STAT1 & OGT & 1 & 1 \\
\hline STAT1 & OLR1 & 1 & 1 \\
\hline STAT1 & OSER1 & 1 & 1 \\
\hline STAT1 & OSGIN2 & 1 & 1 \\
\hline STAT1 & OXR1 & 1 & 1 \\
\hline STAT1 & PAK1IP1 & 1 & 1 \\
\hline STAT1 & PBK & 1 & 1 \\
\hline STAT1 & PDGFA & 1 & 1 \\
\hline STAT1 & PIK3CD & 1 & 2 \\
\hline STAT1 & PKNOX1 & 1 & 1 \\
\hline STAT1 & PLIN3 & 1 & 1 \\
\hline STAT1 & PLK2 & 1 & 1 \\
\hline STAT1 & POC1A & 1 & 1 \\
\hline STAT1 & POLD3 & 1 & 1 \\
\hline STAT1 & POLQ & 1 & 1 \\
\hline STAT1 & POM121 & 1 & 1 \\
\hline STAT1 & PPP1R2 & 1 & 1 \\
\hline STAT1 & PPP3CA & 1 & 1 \\
\hline STAT1 & PPP6R3 & 1 & 1 \\
\hline STAT1 & PRC1 & 1 & 1 \\
\hline STAT1 & PRIM2 & 1 & 1 \\
\hline STAT1 & PRPSAP1 & 1 & 1 \\
\hline STAT1 & PRR11 & 1 & 1 \\
\hline STAT1 & PRR16 & 1 & 1 \\
\hline STAT1 & PSEN1 & 1 & 1 \\
\hline STAT1 & PSMG3 & 1 & 1 \\
\hline STAT1 & PTP4A1 & 1 & 1 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT1 & PTTG1 & 1 & 1 \\
\hline STAT1 & RAB23 & 1 & 1 \\
\hline STAT1 & RAD18 & 1 & 2 \\
\hline STAT1 & RAD21 & 1 & 1 \\
\hline STAT1 & RAD51 & 1 & 1 \\
\hline STAT1 & RAD51AP1 & 1 & 1 \\
\hline STAT1 & RAD51C & 1 & 1 \\
\hline STAT1 & RAD54L & 1 & 1 \\
\hline STAT1 & RANGAP1 & 1 & 1 \\
\hline STAT1 & RBBP8 & 1 & 1 \\
\hline STAT1 & RCAN1 & 1 & 1 \\
\hline STAT1 & RCCD1 & 1 & 1 \\
\hline STAT1 & REEP1 & 1 & 2 \\
\hline STAT1 & RFC2 & 1 & 1 \\
\hline STAT1 & RFC4 & 1 & 1 \\
\hline STAT1 & RGS3 & 1 & 1 \\
\hline STAT1 & RHEB & 1 & 1 \\
\hline STAT1 & RHNO1 & 1 & 1 \\
\hline STAT1 & RHOBTB3 & 1 & 1 \\
\hline STAT1 & RMI1 & 1 & 1 \\
\hline STAT1 & RNPC3 & 1 & 1 \\
\hline STAT1 & RNPS1 & 1 & 1 \\
\hline STAT1 & RRM2 & 1 & 1 \\
\hline STAT1 & RRP1 & 1 & 1 \\
\hline STAT1 & RSRC2 & 1 & 1 \\
\hline STAT1 & SAP30 & 1 & 1 \\
\hline STAT1 & SAP30BP & 1 & 1 \\
\hline STAT1 & SDC1 & 1 & 2 \\
\hline STAT1 & SEPHS1 & 1 & 1 \\
\hline STAT1 & SERPINB3 & 1 & 1 \\
\hline STAT1 & SFPQ & 1 & 1 \\
\hline STAT1 & SH3GL2 & 1 & 2 \\
\hline STAT1 & SHC1 & 1 & 1 \\
\hline STAT1 & SLC22A3 & 1 & 2 \\
\hline STAT1 & SLC25A36 & 1 & 1 \\
\hline STAT1 & SLC38A2 & 1 & 1 \\
\hline STAT1 & SLC39A10 & 1 & 1 \\
\hline STAT1 & SLC4A1AP & 1 & 1 \\
\hline STAT1 & SMARCB1 & 1 & 1 \\
\hline STAT1 & SMARCD1 & 1 & 1 \\
\hline STAT1 & SNUPN & 1 & 1 \\
\hline STAT1 & SP1 & 1 & 1 \\
\hline STAT1 & SPAG5 & 1 & 1 \\
\hline STAT1 & SRD5A1 & 1 & 1 \\
\hline STAT1 & SRF & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT1 & SRSF3 & 1 & 1 \\
\hline STAT1 & SS18 & 1 & 1 \\
\hline STAT1 & STAG3 & 1 & 1 \\
\hline STAT1 & STAT5B & 1 & 1 \\
\hline STAT1 & STIL & 1 & 2 \\
\hline STAT1 & SUCLG2 & 1 & 1 \\
\hline STAT1 & SV2B & 1 & 1 \\
\hline STAT1 & SYNCRIP & 1 & 1 \\
\hline STAT1 & TAB2 & 1 & 1 \\
\hline STAT1 & TACC3 & 1 & 1 \\
\hline STAT1 & TFAP2A & 1 & 1 \\
\hline STAT1 & TFF3 & 1 & 1 \\
\hline STAT1 & TGIF1 & 1 & 1 \\
\hline STAT1 & THRAP3 & 1 & 1 \\
\hline STAT1 & TIMP1 & 1 & 1 \\
\hline STAT1 & TIPIN & 1 & 1 \\
\hline STAT1 & TMPO & 1 & 1 \\
\hline STAT1 & TOB2 & 1 & 1 \\
\hline STAT1 & TOMM34 & 1 & 1 \\
\hline STAT1 & TOP1 & 1 & 1 \\
\hline STAT1 & TOP2A & 1 & 1 \\
\hline STAT1 & TOP3A & 1 & 1 \\
\hline STAT1 & TPX2 & 1 & 1 \\
\hline STAT1 & TRA2A & 1 & 1 \\
\hline STAT1 & TRIP13 & 1 & 2 \\
\hline STAT1 & TSG101 & 1 & 1 \\
\hline STAT1 & TSKU & 1 & 1 \\
\hline STAT1 & TSN & 1 & 1 \\
\hline STAT1 & TTC31 & 1 & 1 \\
\hline STAT1 & TTF2 & 1 & 1 \\
\hline STAT1 & TUBA1A & 1 & 1 \\
\hline STAT1 & TUBB2A & 1 & 1 \\
\hline STAT1 & TULP4 & 1 & 1 \\
\hline STAT1 & TXNRD1 & 1 & 1 \\
\hline STAT1 & UACA & 1 & 1 \\
\hline STAT1 & UBE2D3 & 1 & 1 \\
\hline STAT1 & UBL3 & 1 & 1 \\
\hline STAT1 & UBQLN2 & 1 & 1 \\
\hline STAT1 & UHRF1 & 1 & 1 \\
\hline STAT1 & USP1 & 1 & 1 \\
\hline STAT1 & USP6NL & 1 & 1 \\
\hline STAT1 & VCAM1 & 1 & 1 \\
\hline STAT1 & VEGFC & 1 & 1 \\
\hline STAT1 & VPS25 & 1 & 1 \\
\hline STAT1 & VPS72 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT1 & VTA1 & 1 & 1 \\
\hline STAT1 & WSB1 & 1 & 1 \\
\hline STAT1 & YY1 & 1 & 1 \\
\hline STAT1 & ZBTB7A & 1 & 1 \\
\hline STAT1 & ZC3HC1 & 1 & 1 \\
\hline STAT1 & ZCCHC10 & 1 & 1 \\
\hline STAT1 & ZNF143 & 1 & 1 \\
\hline STAT1 & ZNF207 & 1 & 1 \\
\hline STAT1 & ZNF217 & 1 & 1 \\
\hline STAT1 & ZNF281 & 1 & 1 \\
\hline STAT1 & ZNF414 & 1 & 1 \\
\hline STAT1 & ZNF521 & 1 & 1 \\
\hline STAT1 & ZNFX1 & 1 & 1 \\
\hline STAT1 & ZNHIT2 & 1 & 1 \\
\hline STAT1 & ZPBP & 1 & 1 \\
\hline STAT1 & ZRANB2 & 1 & 1 \\
\hline STAT1 & ZSCAN5A & 1 & 1 \\
\hline STAT1 & ZWINT & 1 & 1 \\
\hline STAT5B & ADAMTS1 & 1 & 1 \\
\hline STAT5B & ERN2 & 1 & 1 \\
\hline STAT5B & HLA-DOA & 1 & 1 \\
\hline STAT5B & ITGB3 & 1 & 1 \\
\hline STAT5B & MET & 1 & 2 \\
\hline STAT5B & MUC1 & 1 & 1 \\
\hline STAT5B & NLRP2 & 1 & 1 \\
\hline STAT5B & RAD51 & 1 & 1 \\
\hline STAT5B & VCAM1 & 1 & 1 \\
\hline TFAP2A & CASP3 & 1 & 1 \\
\hline TFAP2A & CCNB1 & 1 & 1 \\
\hline TFAP2A & CDC42 & 1 & 1 \\
\hline TFAP2A & CDKN1B & 1 & 1 \\
\hline TFAP2A & CTNND1 & 1 & 1 \\
\hline TFAP2A & CTSD & 1 & 2 \\
\hline TFAP2A & DHX8 & 1 & 1 \\
\hline TFAP2A & DSP & 1 & 1 \\
\hline TFAP2A & FEM1B & 1 & 1 \\
\hline TFAP2A & FRZB & 1 & 1 \\
\hline TFAP2A & HSPA8 & 1 & 1 \\
\hline TFAP2A & INSIG2 & 1 & 1 \\
\hline TFAP2A & MCAM & 1 & 1 \\
\hline TFAP2A & NIPBL & 1 & 1 \\
\hline TFAP2A & NR3C1 & 1 & 1 \\
\hline TFAP2A & PDGFA & 1 & 1 \\
\hline TFAP2A & PSEN1 & 1 & 1 \\
\hline TFAP2A & RECQL4 & 1 & 1 \\
\hline
\end{tabular}

Table 36 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline TFAP2A & SP1 & 1 & 1 \\
\hline TFAP2A & TFAP2A & 1 & 1 \\
\hline TFAP2A & TIMP1 & 1 & 1 \\
\hline TFAP2A & TOP1 & 1 & 1 \\
\hline TFAP2A & TSG101 & 1 & 1 \\
\hline TFAP2A & VEGFC & 1 & 1 \\
\hline TGIF1 & MNX1 & 1 & 1 \\
\hline YY1 & BMP2 & 1 & 1 \\
\hline YY1 & BRCA1 & 1 & 1 \\
\hline YY1 & CDC25A & 1 & 1 \\
\hline YY1 & CDC6 & 1 & 1 \\
\hline YY1 & DKC1 & 1 & 1 \\
\hline YY1 & DNAJB4 & 1 & 1 \\
\hline YY1 & DTL & 1 & 1 \\
\hline YY1 & FAN1 & 1 & 1 \\
\hline YY1 & GAS1 & 1 & 1 \\
\hline YY1 & HDAC3 & 1 & 1 \\
\hline YY1 & HIF1A & 1 & 1 \\
\hline YY1 & HLA-DRA & 1 & 1 \\
\hline YY1 & HOXB4 & 1 & 1 \\
\hline YY1 & MCM5 & 1 & 1 \\
\hline YY1 & NUP160 & 1 & 1 \\
\hline YY1 & PCNA & 1 & 1 \\
\hline YY1 & RAD51 & 1 & 1 \\
\hline YY1 & SAP30 & 1 & 1 \\
\hline YY1 & TFAP2A & 1 & 1 \\
\hline ZNF143 & BUB1B & 1 & 1 \\
\hline
\end{tabular}

The table gives the list of positive edges in our goldstandard network. The \(1^{\text {st }}\) column represents the TF. The \(2^{\text {nd }}\) column the TG. The \(3^{\text {rd }}\) column informs for each edge if it is present in the network (value of 1) or if it is absent (value of 0). The present edges are the positive links, and the absent edges are the negative links. For each edge, the number in the \(4^{t h}\) column provides the number of times it was repeated before removing the duplicate edges from the network obtained by combining Alonso networks and HumanBase networks.

Table 37: HeLa "gold-standard" networkNegative links
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline BRCA1 & ADAMTS1 & 0 & 1 \\
\hline BRCA1 & ASF1B & 0 & 1 \\
\hline BRCA1 & AURKB & 0 & 1 \\
\hline BRCA1 & BUB1B & 0 & 1 \\
\hline BRCA1 & C6 & 0 & 1 \\
\hline BRCA1 & CCNE1 & 0 & 1 \\
\hline BRCA1 & CDH24 & 0 & 1 \\
\hline BRCA1 & CLSPN & 0 & 1 \\
\hline BRCA1 & GPSM2 & 0 & 1 \\
\hline BRCA1 & HLA-DOA & 0 & 1 \\
\hline BRCA1 & HOXB4 & 0 & 1 \\
\hline BRCA1 & INSM1 & 0 & 1 \\
\hline BRCA1 & LRRC17 & 0 & 1 \\
\hline BRCA1 & MET & 0 & 1 \\
\hline BRCA1 & MNX1 & 0 & 1 \\
\hline BRCA1 & NEIL3 & 0 & 1 \\
\hline BRCA1 & PIK3CD & 0 & 1 \\
\hline BRCA1 & RAD18 & 0 & 1 \\
\hline BRCA1 & REEP1 & 0 & 1 \\
\hline BRCA1 & SDC1 & 0 & 1 \\
\hline BRCA1 & SH3GL2 & 0 & 1 \\
\hline BRCA1 & SLC22A3 & 0 & 1 \\
\hline BRCA1 & STIL & 0 & 1 \\
\hline BRCA1 & UBE2C & 0 & 1 \\
\hline CENPA & ADAMTS1 & 0 & 1 \\
\hline CENPA & ADH4 & 0 & 1 \\
\hline CENPA & ASF1B & 0 & 1 \\
\hline CENPA & C6 & 0 & 1 \\
\hline CENPA & CCNB2 & 0 & 1 \\
\hline CENPA & CCNE2 & 0 & 1 \\
\hline CENPA & CDC25B & 0 & 1 \\
\hline CENPA & CDH24 & 0 & 1 \\
\hline CENPA & CDK7 & 0 & 1 \\
\hline CENPA & CENPE & 0 & 1 \\
\hline CENPA & CSGALNACT1 & 0 & 1 \\
\hline CENPA & CTSD & 0 & 1 \\
\hline CENPA & DMXL2 & 0 & 1 \\
\hline CENPA & DNAJB1 & 0 & 1 \\
\hline CENPA & DZIP3 & 0 & 1 \\
\hline CENPA & ELP3 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CENPA & FAN1 & 0 & 1 \\
\hline CENPA & FANCG & 0 & 1 \\
\hline CENPA & FEN1 & 0 & 1 \\
\hline CENPA & FRZB & 0 & 1 \\
\hline CENPA & G2E3 & 0 & 1 \\
\hline CENPA & GOT1 & 0 & 1 \\
\hline CENPA & HIST1H4B & 0 & 1 \\
\hline CENPA & HIST1H4E & 0 & 1 \\
\hline CENPA & HIST1H4H & 0 & 1 \\
\hline CENPA & HLA-DOA & 0 & 1 \\
\hline CENPA & HSD17B11 & 0 & 1 \\
\hline CENPA & IL18BP & 0 & 1 \\
\hline CENPA & INSM1 & 0 & 1 \\
\hline CENPA & ITPR3 & 0 & 1 \\
\hline CENPA & KIF20B & 0 & 1 \\
\hline CENPA & KMO & 0 & 1 \\
\hline CENPA & MBD4 & 0 & 1 \\
\hline CENPA & MCM2 & 0 & 1 \\
\hline CENPA & MCM6 & 0 & 1 \\
\hline CENPA & ME3 & 0 & 1 \\
\hline CENPA & MGAT2 & 0 & 1 \\
\hline CENPA & NEIL3 & 0 & 1 \\
\hline CENPA & NUP160 & 0 & 1 \\
\hline CENPA & PCNA & 0 & 1 \\
\hline CENPA & PIK3CD & 0 & 1 \\
\hline CENPA & POLD3 & 0 & 1 \\
\hline CENPA & PRKAR1A & 0 & 1 \\
\hline CENPA & PTPN9 & 0 & 1 \\
\hline CENPA & PYM1 & 0 & 1 \\
\hline CENPA & RAD18 & 0 & 1 \\
\hline CENPA & RAD51C & 0 & 1 \\
\hline CENPA & RBM8A & 0 & 1 \\
\hline CENPA & RERE & 0 & 1 \\
\hline CENPA & RHEB & 0 & 1 \\
\hline CENPA & RNPS1 & 0 & 1 \\
\hline CENPA & SFPQ & 0 & 1 \\
\hline CENPA & SH3GL2 & 0 & 1 \\
\hline CENPA & SLC22A3 & 0 & 1 \\
\hline CENPA & SS18 & 0 & 1 \\
\hline CENPA & SYNCRIP & 0 & 1 \\
\hline CENPA & TOPBP1 & 0 & 1 \\
\hline CENPA & TRA2A & 0 & 1 \\
\hline CENPA & TYMS & 0 & 1 \\
\hline CENPA & UNG & 0 & 1 \\
\hline CENPA & VCAM1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline CENPA & VEGFC & 0 & 1 \\
\hline CREBZF & ADAMTS1 & 0 & 1 \\
\hline CREBZF & ADH4 & 0 & 1 \\
\hline CREBZF & ASF1B & 0 & 1 \\
\hline CREBZF & AURKB & 0 & 1 \\
\hline CREBZF & BUB1B & 0 & 1 \\
\hline CREBZF & C6 & 0 & 1 \\
\hline CREBZF & CCNE1 & 0 & 1 \\
\hline CREBZF & CDH24 & 0 & 1 \\
\hline CREBZF & CENPA & 0 & 1 \\
\hline CREBZF & G2E3 & 0 & 1 \\
\hline CREBZF & GPSM2 & 0 & 1 \\
\hline CREBZF & HELLS & 0 & 1 \\
\hline CREBZF & HLA-DOA & 0 & 1 \\
\hline CREBZF & HOXB4 & 0 & 1 \\
\hline CREBZF & HSD17B11 & 0 & 1 \\
\hline CREBZF & IFIT1 & 0 & 1 \\
\hline CREBZF & INSM1 & 0 & 1 \\
\hline CREBZF & LRRC17 & 0 & 1 \\
\hline CREBZF & ME3 & 0 & 1 \\
\hline CREBZF & MET & 0 & 1 \\
\hline CREBZF & MNX1 & 0 & 1 \\
\hline CREBZF & NCAPH & 0 & 1 \\
\hline CREBZF & NEIL3 & 0 & 1 \\
\hline CREBZF & NEK2 & 0 & 1 \\
\hline CREBZF & PIK3CD & 0 & 1 \\
\hline CREBZF & RAD18 & 0 & 1 \\
\hline CREBZF & REEP1 & 0 & 1 \\
\hline CREBZF & SDC1 & 0 & 1 \\
\hline CREBZF & SH3GL2 & 0 & 1 \\
\hline CREBZF & STIL & 0 & 1 \\
\hline CREBZF & TRIP13 & 0 & 1 \\
\hline CTCF & ADAMTS1 & 0 & 1 \\
\hline CTCF & BUB1B & 0 & 1 \\
\hline CTCF & CDH24 & 0 & 1 \\
\hline CTCF & FANCD2 & 0 & 1 \\
\hline CTCF & HOXB4 & 0 & 1 \\
\hline CTCF & IL18BP & 0 & 1 \\
\hline CTCF & LRRC17 & 0 & 1 \\
\hline DR1 & ADAMTS1 & 0 & 1 \\
\hline DR1 & ADH4 & 0 & 1 \\
\hline DR1 & ARHGAP8 & 0 & 1 \\
\hline DR1 & ASF1B & 0 & 1 \\
\hline DR1 & AURKB & 0 & 1 \\
\hline DR1 & BIRC5 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline DR1 & BORA & 0 & 1 \\
\hline DR1 & BUB1B & 0 & 1 \\
\hline DR1 & C6 & 0 & 1 \\
\hline DR1 & CCNA2 & 0 & 1 \\
\hline DR1 & CCNE1 & 0 & 1 \\
\hline DR1 & CDC25A & 0 & 1 \\
\hline DR1 & CDH24 & 0 & 1 \\
\hline DR1 & CENPF & 0 & 1 \\
\hline DR1 & CHEK2 & 0 & 1 \\
\hline DR1 & CSGALNACT1 & 0 & 1 \\
\hline DR1 & DMXL2 & 0 & 1 \\
\hline DR1 & E2F1 & 0 & 1 \\
\hline DR1 & FAN1 & 0 & 1 \\
\hline DR1 & FANCD2 & 0 & 1 \\
\hline DR1 & FRZB & 0 & 1 \\
\hline DR1 & G2E3 & 0 & 1 \\
\hline DR1 & GAS1 & 0 & 1 \\
\hline DR1 & GPSM2 & 0 & 1 \\
\hline DR1 & HAUS5 & 0 & 1 \\
\hline DR1 & HELLS & 0 & 1 \\
\hline DR1 & HLA-DOA & 0 & 1 \\
\hline DR1 & HOXB4 & 0 & 1 \\
\hline DR1 & HSD17B11 & 0 & 1 \\
\hline DR1 & IFIT1 & 0 & 1 \\
\hline DR1 & IL18BP & 0 & 1 \\
\hline DR1 & INSM1 & 0 & 1 \\
\hline DR1 & ITPR3 & 0 & 1 \\
\hline DR1 & KDM4A & 0 & 1 \\
\hline DR1 & KIF20B & 0 & 1 \\
\hline DR1 & KMO & 0 & 1 \\
\hline DR1 & LRRC17 & 0 & 1 \\
\hline DR1 & ME3 & 0 & 1 \\
\hline DR1 & MET & 0 & 1 \\
\hline DR1 & MID1 & 0 & 1 \\
\hline DR1 & MITF & 0 & 1 \\
\hline DR1 & MNX1 & 0 & 1 \\
\hline DR1 & NEIL3 & 0 & 1 \\
\hline DR1 & NLRP2 & 0 & 1 \\
\hline DR1 & NPAT & 0 & 1 \\
\hline DR1 & PIK3CD & 0 & 1 \\
\hline DR1 & POLQ & 0 & 1 \\
\hline DR1 & RAB3A & 0 & 1 \\
\hline DR1 & RAD51 & 0 & 1 \\
\hline DR1 & RECQL4 & 0 & 1 \\
\hline DR1 & REEP1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table 37 continued} \\
\hline TF & TG & W & \# dup \\
\hline DR1 & SDC1 & 0 & 1 \\
\hline DR1 & SH3GL2 & 0 & 1 \\
\hline DR1 & SLC22A3 & 0 & 1 \\
\hline DR1 & SRSF7 & 0 & 1 \\
\hline DR1 & STIL & 0 & 1 \\
\hline DR1 & TFAP2A & 0 & 1 \\
\hline DR1 & TRIP13 & 0 & 1 \\
\hline DR1 & VCAM1 & 0 & 1 \\
\hline DR1 & VEGFC & 0 & 1 \\
\hline E2F1 & ABCA7 & 0 & 1 \\
\hline E2F1 & AGFG1 & 0 & 1 \\
\hline E2F1 & B2M & 0 & 1 \\
\hline E2F1 & BRD8 & 0 & 1 \\
\hline E2F1 & CASP8AP2 & 0 & 1 \\
\hline E2F1 & CCNB2 & 0 & 1 \\
\hline E2F1 & CCNE2 & 0 & 1 \\
\hline E2F1 & CDC16 & 0 & 1 \\
\hline E2F1 & CDC25A & 0 & 1 \\
\hline E2F1 & CDC25B & 0 & 1 \\
\hline E2F1 & CDH24 & 0 & 1 \\
\hline E2F1 & CTR9 & 0 & 1 \\
\hline E2F1 & DNAJB1 & 0 & 1 \\
\hline E2F1 & DNAJB9 & 0 & 1 \\
\hline E2F1 & DR1 & 0 & 1 \\
\hline E2F1 & DSP & 0 & 1 \\
\hline E2F1 & DZIP3 & 0 & 1 \\
\hline E2F1 & FANCG & 0 & 1 \\
\hline E2F1 & HMGCR & 0 & 1 \\
\hline E2F1 & HOXB4 & 0 & 1 \\
\hline E2F1 & HSD17B11 & 0 & 1 \\
\hline E2F1 & IL18BP & 0 & 1 \\
\hline E2F1 & INPP5K & 0 & 1 \\
\hline E2F1 & INSM1 & 0 & 1 \\
\hline E2F1 & JADE2 & 0 & 1 \\
\hline E2F1 & KLF9 & 0 & 1 \\
\hline E2F1 & KPNA2 & 0 & 1 \\
\hline E2F1 & KPNB1 & 0 & 1 \\
\hline E2F1 & MBD2 & 0 & 1 \\
\hline E2F1 & MBD3 & 0 & 1 \\
\hline E2F1 & MBD4 & 0 & 1 \\
\hline E2F1 & MGAT2 & 0 & 1 \\
\hline E2F1 & MYCBP2 & 0 & 1 \\
\hline E2F1 & NAB1 & 0 & 1 \\
\hline E2F1 & NASP & 0 & 1 \\
\hline E2F1 & NEIL3 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline E2F1 & NFE2L2 & 0 & 1 \\
\hline E2F1 & NR3C1 & 0 & 1 \\
\hline E2F1 & PIK3CD & 0 & 1 \\
\hline E2F1 & PTPN9 & 0 & 1 \\
\hline E2F1 & RAB23 & 0 & 1 \\
\hline E2F1 & RCAN1 & 0 & 1 \\
\hline E2F1 & RERE & 0 & 1 \\
\hline E2F1 & ROCK1 & 0 & 1 \\
\hline E2F1 & SDC1 & 0 & 1 \\
\hline E2F1 & SH3GL2 & 0 & 1 \\
\hline E2F1 & SLC22A3 & 0 & 1 \\
\hline E2F1 & SLC38A2 & 0 & 1 \\
\hline E2F1 & TOB2 & 0 & 1 \\
\hline E2F1 & TXNRD1 & 0 & 1 \\
\hline E2F1 & UBE2D3 & 0 & 1 \\
\hline E2F1 & UNG & 0 & 1 \\
\hline E2F1 & VCL & 0 & 1 \\
\hline E2F1 & VPS72 & 0 & 1 \\
\hline FOXM1 & ADH4 & 0 & 1 \\
\hline FOXM1 & ASF1B & 0 & 1 \\
\hline FOXM1 & BUB1B & 0 & 1 \\
\hline FOXM1 & C6 & 0 & 1 \\
\hline FOXM1 & CCNE1 & 0 & 1 \\
\hline FOXM1 & CDH24 & 0 & 1 \\
\hline FOXM1 & DZIP3 & 0 & 1 \\
\hline FOXM1 & FRZB & 0 & 1 \\
\hline FOXM1 & G2E3 & 0 & 1 \\
\hline FOXM1 & GPSM2 & 0 & 1 \\
\hline FOXM1 & HELLS & 0 & 1 \\
\hline FOXM1 & HLA-DOA & 0 & 1 \\
\hline FOXM1 & HOXB4 & 0 & 1 \\
\hline FOXM1 & HSD17B11 & 0 & 1 \\
\hline FOXM1 & INSM1 & 0 & 1 \\
\hline FOXM1 & LRRC17 & 0 & 1 \\
\hline FOXM1 & ME3 & 0 & 1 \\
\hline FOXM1 & MET & 0 & 1 \\
\hline FOXM1 & MNX1 & 0 & 1 \\
\hline FOXM1 & NEIL3 & 0 & 1 \\
\hline FOXM1 & PIK3CD & 0 & 1 \\
\hline FOXM1 & RAD18 & 0 & 1 \\
\hline FOXM1 & REEP1 & 0 & 1 \\
\hline FOXM1 & SDC1 & 0 & 1 \\
\hline FOXM1 & SH3GL2 & 0 & 1 \\
\hline FOXM1 & SLC22A3 & 0 & 1 \\
\hline FOXM1 & STIL & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline FOXM1 & TRIP13 & 0 & 1 \\
\hline HIF1A & ADH4 & 0 & 1 \\
\hline HIF1A & ASF1B & 0 & 1 \\
\hline HIF1A & AURKB & 0 & 1 \\
\hline HIF1A & BMP2 & 0 & 1 \\
\hline HIF1A & BUB1B & 0 & 1 \\
\hline HIF1A & CCNE1 & 0 & 1 \\
\hline HIF1A & CDH24 & 0 & 1 \\
\hline HIF1A & CENPA & 0 & 1 \\
\hline HIF1A & DZIP3 & 0 & 1 \\
\hline HIF1A & G2E3 & 0 & 1 \\
\hline HIF1A & GPSM2 & 0 & 1 \\
\hline HIF1A & HAUS5 & 0 & 1 \\
\hline HIF1A & HELLS & 0 & 1 \\
\hline HIF1A & HLA-DOA & 0 & 1 \\
\hline HIF1A & HOXB4 & 0 & 1 \\
\hline HIF1A & HSD17B11 & 0 & 1 \\
\hline HIF1A & INSM1 & 0 & 1 \\
\hline HIF1A & LRRC17 & 0 & 1 \\
\hline HIF1A & ME3 & 0 & 1 \\
\hline HIF1A & MNX1 & 0 & 1 \\
\hline HIF1A & NCAPH & 0 & 1 \\
\hline HIF1A & NEIL3 & 0 & 1 \\
\hline HIF1A & NEK2 & 0 & 1 \\
\hline HIF1A & PIK3CD & 0 & 1 \\
\hline HIF1A & RAD18 & 0 & 1 \\
\hline HIF1A & REEP1 & 0 & 1 \\
\hline HIF1A & SDC1 & 0 & 1 \\
\hline HIF1A & SH3GL2 & 0 & 1 \\
\hline HIF1A & SLC22A3 & 0 & 1 \\
\hline HIF1A & TRIP13 & 0 & 1 \\
\hline HOXB4 & ABCA7 & 0 & 1 \\
\hline HOXB4 & ACD & 0 & 1 \\
\hline HOXB4 & ADAMTS1 & 0 & 1 \\
\hline HOXB4 & ADH4 & 0 & 1 \\
\hline HOXB4 & AGFG1 & 0 & 1 \\
\hline HOXB4 & AHI1 & 0 & 1 \\
\hline HOXB4 & ANTXR1 & 0 & 1 \\
\hline HOXB4 & AP3D1 & 0 & 1 \\
\hline HOXB4 & ASF1B & 0 & 1 \\
\hline HOXB4 & ATF7IP & 0 & 1 \\
\hline HOXB4 & AURKB & 0 & 1 \\
\hline HOXB4 & B2M & 0 & 1 \\
\hline HOXB4 & BAG3 & 0 & 1 \\
\hline HOXB4 & BAIAP2 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline HOXB4 & BARD1 & 0 & 1 \\
\hline HOXB4 & BIRC2 & 0 & 1 \\
\hline HOXB4 & BIRC5 & 0 & 1 \\
\hline HOXB4 & BMP2 & 0 & 1 \\
\hline HOXB4 & BORA & 0 & 1 \\
\hline HOXB4 & BRCA1 & 0 & 1 \\
\hline HOXB4 & BRD7 & 0 & 1 \\
\hline HOXB4 & BRD8 & 0 & 1 \\
\hline HOXB4 & BUB1 & 0 & 1 \\
\hline HOXB4 & BUB1B & 0 & 1 \\
\hline HOXB4 & BUB3 & 0 & 1 \\
\hline HOXB4 & C6 & 0 & 1 \\
\hline HOXB4 & CADM1 & 0 & 1 \\
\hline HOXB4 & CASP3 & 0 & 1 \\
\hline HOXB4 & CASP8AP2 & 0 & 1 \\
\hline HOXB4 & CCNA2 & 0 & 1 \\
\hline HOXB4 & CCNB1 & 0 & 1 \\
\hline HOXB4 & CCNB2 & 0 & 1 \\
\hline HOXB4 & CCNE1 & 0 & 1 \\
\hline HOXB4 & CCNE2 & 0 & 1 \\
\hline HOXB4 & CCNF & 0 & 1 \\
\hline HOXB4 & CDC16 & 0 & 1 \\
\hline HOXB4 & CDC25A & 0 & 1 \\
\hline HOXB4 & CDC25B & 0 & 1 \\
\hline HOXB4 & CDC27 & 0 & 1 \\
\hline HOXB4 & CDC42 & 0 & 1 \\
\hline HOXB4 & CDC42EP1 & 0 & 1 \\
\hline HOXB4 & CDC42EP4 & 0 & 1 \\
\hline HOXB4 & CDH24 & 0 & 1 \\
\hline HOXB4 & CDK7 & 0 & 1 \\
\hline HOXB4 & CDKL5 & 0 & 1 \\
\hline HOXB4 & CDKN1B & 0 & 1 \\
\hline HOXB4 & CDKN2C & 0 & 1 \\
\hline HOXB4 & CDKN2D & 0 & 1 \\
\hline HOXB4 & CENPA & 0 & 1 \\
\hline HOXB4 & CENPE & 0 & 1 \\
\hline HOXB4 & CENPF & 0 & 1 \\
\hline HOXB4 & CFLAR & 0 & 1 \\
\hline HOXB4 & CHAF1A & 0 & 1 \\
\hline HOXB4 & CKAP5 & 0 & 1 \\
\hline HOXB4 & CLSPN & 0 & 1 \\
\hline HOXB4 & CREBZF & 0 & 1 \\
\hline HOXB4 & CSGALNACT1 & 0 & 1 \\
\hline HOXB4 & CTCF & 0 & 1 \\
\hline HOXB4 & CTNND1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline HOXB4 & CTR9 & 0 & 1 \\
\hline HOXB4 & CTSD & 0 & 1 \\
\hline HOXB4 & DDX11 & 0 & 1 \\
\hline HOXB4 & DIS3 & 0 & 1 \\
\hline HOXB4 & DMXL2 & 0 & 1 \\
\hline HOXB4 & DNAJB1 & 0 & 1 \\
\hline HOXB4 & DNAJB6 & 0 & 1 \\
\hline HOXB4 & DNAJB9 & 0 & 1 \\
\hline HOXB4 & DR1 & 0 & 1 \\
\hline HOXB4 & DSP & 0 & 1 \\
\hline HOXB4 & DTL & 0 & 1 \\
\hline HOXB4 & DZIP3 & 0 & 1 \\
\hline HOXB4 & E2F1 & 0 & 1 \\
\hline HOXB4 & EIF4E & 0 & 1 \\
\hline HOXB4 & ELP3 & 0 & 1 \\
\hline HOXB4 & ERN2 & 0 & 1 \\
\hline HOXB4 & EXO1 & 0 & 1 \\
\hline HOXB4 & FADD & 0 & 1 \\
\hline HOXB4 & FAN1 & 0 & 1 \\
\hline HOXB4 & FANCD2 & 0 & 1 \\
\hline HOXB4 & FANCG & 0 & 1 \\
\hline HOXB4 & FEM1B & 0 & 1 \\
\hline HOXB4 & FEN1 & 0 & 1 \\
\hline HOXB4 & FKBP1A & 0 & 1 \\
\hline HOXB4 & FOXM1 & 0 & 1 \\
\hline HOXB4 & FRZB & 0 & 1 \\
\hline HOXB4 & FYN & 0 & 1 \\
\hline HOXB4 & FZR1 & 0 & 1 \\
\hline HOXB4 & G2E3 & 0 & 1 \\
\hline HOXB4 & GADD45A & 0 & 1 \\
\hline HOXB4 & GAS6 & 0 & 1 \\
\hline HOXB4 & GCLM & 0 & 1 \\
\hline HOXB4 & GNB1 & 0 & 1 \\
\hline HOXB4 & GOT1 & 0 & 1 \\
\hline HOXB4 & GPSM2 & 0 & 1 \\
\hline HOXB4 & H2AFX & 0 & 1 \\
\hline HOXB4 & HDAC3 & 0 & 1 \\
\hline HOXB4 & HELLS & 0 & 1 \\
\hline HOXB4 & HIF1A & 0 & 1 \\
\hline HOXB4 & HIST1H4B & 0 & 1 \\
\hline HOXB4 & HIST1H4C & 0 & 1 \\
\hline HOXB4 & HIST1H4E & 0 & 1 \\
\hline HOXB4 & HIST1H4H & 0 & 1 \\
\hline HOXB4 & HLA-DOA & 0 & 1 \\
\hline HOXB4 & HMG1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline HOXB4 & HMGB2 & 0 & 1 \\
\hline HOXB4 & HMGCR & 0 & 1 \\
\hline HOXB4 & HRAS & 0 & 1 \\
\hline HOXB4 & HSD17B11 & 0 & 1 \\
\hline HOXB4 & HSPA8 & 0 & 1 \\
\hline HOXB4 & IFIT1 & 0 & 1 \\
\hline HOXB4 & IL18BP & 0 & 1 \\
\hline HOXB4 & INPP5K & 0 & 1 \\
\hline HOXB4 & INSIG2 & 0 & 1 \\
\hline HOXB4 & INSM1 & 0 & 1 \\
\hline HOXB4 & INSR & 0 & 1 \\
\hline HOXB4 & INTS7 & 0 & 1 \\
\hline HOXB4 & ITGB3 & 0 & 1 \\
\hline HOXB4 & ITPR1 & 0 & 1 \\
\hline HOXB4 & ITPR3 & 0 & 1 \\
\hline HOXB4 & JADE2 & 0 & 1 \\
\hline HOXB4 & KAT2B & 0 & 1 \\
\hline HOXB4 & KAT7 & 0 & 1 \\
\hline HOXB4 & KATNA1 & 0 & 1 \\
\hline HOXB4 & KDM5B & 0 & 1 \\
\hline HOXB4 & KIF11 & 0 & 1 \\
\hline HOXB4 & KIF20B & 0 & 1 \\
\hline HOXB4 & KIF2C & 0 & 1 \\
\hline HOXB4 & KLF9 & 0 & 1 \\
\hline HOXB4 & KMO & 0 & 1 \\
\hline HOXB4 & KPNA2 & 0 & 1 \\
\hline HOXB4 & KPNB1 & 0 & 1 \\
\hline HOXB4 & KRAS & 0 & 1 \\
\hline HOXB4 & LMNA & 0 & 1 \\
\hline HOXB4 & LRRC17 & 0 & 1 \\
\hline HOXB4 & MAD2L1 & 0 & 1 \\
\hline HOXB4 & MAN1A2 & 0 & 1 \\
\hline HOXB4 & MAP2K6 & 0 & 1 \\
\hline HOXB4 & MAPK13 & 0 & 1 \\
\hline HOXB4 & MBD2 & 0 & 1 \\
\hline HOXB4 & MBD3 & 0 & 1 \\
\hline HOXB4 & MBD4 & 0 & 1 \\
\hline HOXB4 & MCM2 & 0 & 1 \\
\hline HOXB4 & MCM4 & 0 & 1 \\
\hline HOXB4 & MCM6 & 0 & 1 \\
\hline HOXB4 & MDM2 & 0 & 1 \\
\hline HOXB4 & ME3 & 0 & 1 \\
\hline HOXB4 & MGAT2 & 0 & 1 \\
\hline HOXB4 & MID1 & 0 & 1 \\
\hline HOXB4 & MITF & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline HOXB4 & MNX1 & 0 & 1 \\
\hline HOXB4 & MSH2 & 0 & 1 \\
\hline HOXB4 & MYCBP2 & 0 & 1 \\
\hline HOXB4 & NAB1 & 0 & 1 \\
\hline HOXB4 & NASP & 0 & 1 \\
\hline HOXB4 & NCAPD2 & 0 & 1 \\
\hline HOXB4 & NCAPD3 & 0 & 1 \\
\hline HOXB4 & NCAPH & 0 & 1 \\
\hline HOXB4 & NCOA3 & 0 & 1 \\
\hline HOXB4 & NDE1 & 0 & 1 \\
\hline HOXB4 & NEIL3 & 0 & 1 \\
\hline HOXB4 & NEK2 & 0 & 1 \\
\hline HOXB4 & NFE2L2 & 0 & 1 \\
\hline HOXB4 & NLRP2 & 0 & 1 \\
\hline HOXB4 & NPAT & 0 & 1 \\
\hline HOXB4 & NPM1 & 0 & 1 \\
\hline HOXB4 & NR3C1 & 0 & 1 \\
\hline HOXB4 & NUP160 & 0 & 1 \\
\hline HOXB4 & OGT & 0 & 1 \\
\hline HOXB4 & PCNA & 0 & 1 \\
\hline HOXB4 & PDGFA & 0 & 1 \\
\hline HOXB4 & PDXP & 0 & 1 \\
\hline HOXB4 & PIK3CD & 0 & 1 \\
\hline HOXB4 & PKNOX1 & 0 & 1 \\
\hline HOXB4 & PLK1 & 0 & 1 \\
\hline HOXB4 & PLK2 & 0 & 1 \\
\hline HOXB4 & POLA1 & 0 & 1 \\
\hline HOXB4 & POLD3 & 0 & 1 \\
\hline HOXB4 & PPP2CA & 0 & 1 \\
\hline HOXB4 & PPP3CA & 0 & 1 \\
\hline HOXB4 & PRKAR1A & 0 & 1 \\
\hline HOXB4 & PTPN9 & 0 & 1 \\
\hline HOXB4 & PYM1 & 0 & 1 \\
\hline HOXB4 & RAB23 & 0 & 1 \\
\hline HOXB4 & RAB3A & 0 & 1 \\
\hline HOXB4 & RAD18 & 0 & 1 \\
\hline HOXB4 & RAD51C & 0 & 1 \\
\hline HOXB4 & RBBP8 & 0 & 1 \\
\hline HOXB4 & RBM8A & 0 & 1 \\
\hline HOXB4 & RCAN1 & 0 & 1 \\
\hline HOXB4 & RECQL4 & 0 & 1 \\
\hline HOXB4 & REEP1 & 0 & 1 \\
\hline HOXB4 & RERE & 0 & 1 \\
\hline HOXB4 & RHEB & 0 & 1 \\
\hline HOXB4 & RHNO1 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline HOXB4 & RHOBTB3 & 0 & 1 \\
\hline HOXB4 & RNPS1 & 0 & 1 \\
\hline HOXB4 & ROCK1 & 0 & 1 \\
\hline HOXB4 & RPA2 & 0 & 1 \\
\hline HOXB4 & RRM1 & 0 & 1 \\
\hline HOXB4 & RRM2 & 0 & 1 \\
\hline HOXB4 & RUNX1 & 0 & 1 \\
\hline HOXB4 & SAP30BP & 0 & 1 \\
\hline HOXB4 & SDC1 & 0 & 1 \\
\hline HOXB4 & SFPQ & 0 & 1 \\
\hline HOXB4 & SH3GL2 & 0 & 1 \\
\hline HOXB4 & SHC1 & 0 & 1 \\
\hline HOXB4 & SLBP & 0 & 1 \\
\hline HOXB4 & SLC38A2 & 0 & 1 \\
\hline HOXB4 & SLC44A2 & 0 & 1 \\
\hline HOXB4 & SMARCB1 & 0 & 1 \\
\hline HOXB4 & SMARCD1 & 0 & 1 \\
\hline HOXB4 & SMC4 & 0 & 1 \\
\hline HOXB4 & SRSF7 & 0 & 1 \\
\hline HOXB4 & SS18 & 0 & 1 \\
\hline HOXB4 & STAT1 & 0 & 1 \\
\hline HOXB4 & STAT5B & 0 & 1 \\
\hline HOXB4 & STIL & 0 & 1 \\
\hline HOXB4 & SYNCRIP & 0 & 1 \\
\hline HOXB4 & TAB2 & 0 & 1 \\
\hline HOXB4 & TACC3 & 0 & 1 \\
\hline HOXB4 & TGIF1 & 0 & 1 \\
\hline HOXB4 & THRAP3 & 0 & 1 \\
\hline HOXB4 & TIPIN & 0 & 1 \\
\hline HOXB4 & TOB2 & 0 & 1 \\
\hline HOXB4 & TOP2A & 0 & 1 \\
\hline HOXB4 & TOPBP1 & 0 & 1 \\
\hline HOXB4 & TRA2A & 0 & 1 \\
\hline HOXB4 & TRIP13 & 0 & 1 \\
\hline HOXB4 & TSG101 & 0 & 1 \\
\hline HOXB4 & TXNRD1 & 0 & 1 \\
\hline HOXB4 & TYMS & 0 & 1 \\
\hline HOXB4 & UACA & 0 & 1 \\
\hline HOXB4 & UBE2C & 0 & 1 \\
\hline HOXB4 & UBE2D3 & 0 & 1 \\
\hline HOXB4 & UBE2S & 0 & 1 \\
\hline HOXB4 & UNG & 0 & 1 \\
\hline HOXB4 & USP1 & 0 & 1 \\
\hline HOXB4 & USP16 & 0 & 1 \\
\hline HOXB4 & VCAM1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline HOXB4 & VCL & 0 & 1 \\
\hline HOXB4 & VPS72 & 0 & 1 \\
\hline HOXB4 & YWHAH & 0 & 1 \\
\hline HOXB4 & ZWINT & 0 & 1 \\
\hline INSM1 & ABCA7 & 0 & 1 \\
\hline INSM1 & ACD & 0 & 1 \\
\hline INSM1 & ADH4 & 0 & 1 \\
\hline INSM1 & AGFG1 & 0 & 1 \\
\hline INSM1 & AHI1 & 0 & 1 \\
\hline INSM1 & ASF1B & 0 & 1 \\
\hline INSM1 & ATF7IP & 0 & 1 \\
\hline INSM1 & AURKB & 0 & 1 \\
\hline INSM1 & BAG3 & 0 & 1 \\
\hline INSM1 & BARD1 & 0 & 1 \\
\hline INSM1 & BORA & 0 & 1 \\
\hline INSM1 & BUB1 & 0 & 1 \\
\hline INSM1 & BUB1B & 0 & 1 \\
\hline INSM1 & C6 & 0 & 1 \\
\hline INSM1 & CCNA2 & 0 & 1 \\
\hline INSM1 & CCNB1 & 0 & 1 \\
\hline INSM1 & CCNB2 & 0 & 1 \\
\hline INSM1 & CCNE1 & 0 & 1 \\
\hline INSM1 & CCNE2 & 0 & 1 \\
\hline INSM1 & CDC25A & 0 & 1 \\
\hline INSM1 & CDC25B & 0 & 1 \\
\hline INSM1 & CDH24 & 0 & 1 \\
\hline INSM1 & CENPA & 0 & 1 \\
\hline INSM1 & CENPF & 0 & 1 \\
\hline INSM1 & CHAF1A & 0 & 1 \\
\hline INSM1 & CKAP5 & 0 & 1 \\
\hline INSM1 & CLSPN & 0 & 1 \\
\hline INSM1 & CSGALNACT1 & 0 & 1 \\
\hline INSM1 & CTSD & 0 & 1 \\
\hline INSM1 & DNAJB1 & 0 & 1 \\
\hline INSM1 & DZIP3 & 0 & 1 \\
\hline INSM1 & EIF4E & 0 & 1 \\
\hline INSM1 & ELP3 & 0 & 1 \\
\hline INSM1 & FAN1 & 0 & 1 \\
\hline INSM1 & FANCD2 & 0 & 1 \\
\hline INSM1 & FEN1 & 0 & 1 \\
\hline INSM1 & FRZB & 0 & 1 \\
\hline INSM1 & G2E3 & 0 & 1 \\
\hline INSM1 & GCLM & 0 & 1 \\
\hline INSM1 & GPSM2 & 0 & 1 \\
\hline INSM1 & HELLS & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline INSM1 & HIST1H4B & 0 & 1 \\
\hline INSM1 & HIST1H4C & 0 & 1 \\
\hline INSM1 & HIST1H4E & 0 & 1 \\
\hline INSM1 & HIST1H4H & 0 & 1 \\
\hline INSM1 & HOXB4 & 0 & 1 \\
\hline INSM1 & HSD17B11 & 0 & 1 \\
\hline INSM1 & IFIT1 & 0 & 1 \\
\hline INSM1 & IL18BP & 0 & 1 \\
\hline INSM1 & INSIG2 & 0 & 1 \\
\hline INSM1 & INTS7 & 0 & 1 \\
\hline INSM1 & ITGB3 & 0 & 1 \\
\hline INSM1 & JADE2 & 0 & 1 \\
\hline INSM1 & KAT2B & 0 & 1 \\
\hline INSM1 & KDM4A & 0 & 1 \\
\hline INSM1 & KIF11 & 0 & 1 \\
\hline INSM1 & KIF20B & 0 & 1 \\
\hline INSM1 & KIF2C & 0 & 1 \\
\hline INSM1 & KLF9 & 0 & 1 \\
\hline INSM1 & KPNA2 & 0 & 1 \\
\hline INSM1 & LMNA & 0 & 1 \\
\hline INSM1 & LRRC17 & 0 & 1 \\
\hline INSM1 & MCM2 & 0 & 1 \\
\hline INSM1 & MCM6 & 0 & 1 \\
\hline INSM1 & ME3 & 0 & 1 \\
\hline INSM1 & MGAT2 & 0 & 1 \\
\hline INSM1 & MID1 & 0 & 1 \\
\hline INSM1 & NEIL3 & 0 & 1 \\
\hline INSM1 & NEK2 & 0 & 1 \\
\hline INSM1 & NLRP2 & 0 & 1 \\
\hline INSM1 & NUP160 & 0 & 1 \\
\hline INSM1 & PCNA & 0 & 1 \\
\hline INSM1 & PIK3CD & 0 & 1 \\
\hline INSM1 & PLK1 & 0 & 1 \\
\hline INSM1 & POLD3 & 0 & 1 \\
\hline INSM1 & POLQ & 0 & 1 \\
\hline INSM1 & PPP2CA & 0 & 1 \\
\hline INSM1 & PRKAR1A & 0 & 1 \\
\hline INSM1 & PYM1 & 0 & 1 \\
\hline INSM1 & RAD18 & 0 & 1 \\
\hline INSM1 & RAD51C & 0 & 1 \\
\hline INSM1 & RBBP8 & 0 & 1 \\
\hline INSM1 & RBM8A & 0 & 1 \\
\hline INSM1 & RHNO1 & 0 & 1 \\
\hline INSM1 & RNPS1 & 0 & 1 \\
\hline INSM1 & RRM2 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline INSM1 & SAP30BP & 0 & 1 \\
\hline INSM1 & SDC1 & 0 & 1 \\
\hline INSM1 & SFPQ & 0 & 1 \\
\hline INSM1 & SH3GL2 & 0 & 1 \\
\hline INSM1 & SLBP & 0 & 1 \\
\hline INSM1 & SP1 & 0 & 1 \\
\hline INSM1 & SRSF7 & 0 & 1 \\
\hline INSM1 & SS18 & 0 & 1 \\
\hline INSM1 & STIL & 0 & 1 \\
\hline INSM1 & SYNCRIP & 0 & 1 \\
\hline INSM1 & TAB2 & 0 & 1 \\
\hline INSM1 & TFAP2A & 0 & 1 \\
\hline INSM1 & THRAP3 & 0 & 1 \\
\hline INSM1 & TOP2A & 0 & 1 \\
\hline INSM1 & TRIP13 & 0 & 1 \\
\hline INSM1 & TXNRD1 & 0 & 1 \\
\hline INSM1 & TYMS & 0 & 1 \\
\hline INSM1 & UBE2C & 0 & 1 \\
\hline INSM1 & UNG & 0 & 1 \\
\hline INSM1 & USP1 & 0 & 1 \\
\hline INSM1 & VEGFC & 0 & 1 \\
\hline INSM1 & ZWINT & 0 & 1 \\
\hline KAT7 & ADAMTS1 & 0 & 1 \\
\hline KAT7 & ADH4 & 0 & 1 \\
\hline KAT7 & ASF1B & 0 & 1 \\
\hline KAT7 & AURKB & 0 & 1 \\
\hline KAT7 & BIRC5 & 0 & 1 \\
\hline KAT7 & BORA & 0 & 1 \\
\hline KAT7 & BUB1B & 0 & 1 \\
\hline KAT7 & C6 & 0 & 1 \\
\hline KAT7 & CCNA2 & 0 & 1 \\
\hline KAT7 & CCNE1 & 0 & 1 \\
\hline KAT7 & CDC25A & 0 & 1 \\
\hline KAT7 & CDH24 & 0 & 1 \\
\hline KAT7 & CHEK2 & 0 & 1 \\
\hline KAT7 & FANCD2 & 0 & 1 \\
\hline KAT7 & FRZB & 0 & 1 \\
\hline KAT7 & G2E3 & 0 & 1 \\
\hline KAT7 & GAS1 & 0 & 1 \\
\hline KAT7 & GPSM2 & 0 & 1 \\
\hline KAT7 & HAUS5 & 0 & 1 \\
\hline KAT7 & HELLS & 0 & 1 \\
\hline KAT7 & HLA-DOA & 0 & 1 \\
\hline KAT7 & HOXB4 & 0 & 1 \\
\hline KAT7 & HSD17B11 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline KAT7 & IFIT1 & 0 & 1 \\
\hline KAT7 & IL18BP & 0 & 1 \\
\hline KAT7 & INSM1 & 0 & 1 \\
\hline KAT7 & ITPR3 & 0 & 1 \\
\hline KAT7 & KDM4A & 0 & 1 \\
\hline KAT7 & LRRC17 & 0 & 1 \\
\hline KAT7 & ME3 & 0 & 1 \\
\hline KAT7 & MET & 0 & 1 \\
\hline KAT7 & MID1 & 0 & 1 \\
\hline KAT7 & NEIL3 & 0 & 1 \\
\hline KAT7 & NLRP2 & 0 & 1 \\
\hline KAT7 & PIK3CD & 0 & 1 \\
\hline KAT7 & RAD18 & 0 & 1 \\
\hline KAT7 & REEP1 & 0 & 1 \\
\hline KAT7 & SDC1 & 0 & 1 \\
\hline KAT7 & SH3GL2 & 0 & 1 \\
\hline KAT7 & SLC22A3 & 0 & 1 \\
\hline KAT7 & STIL & 0 & 1 \\
\hline KAT7 & TRIP13 & 0 & 1 \\
\hline KAT7 & VCAM1 & 0 & 1 \\
\hline KAT7 & VEGFC & 0 & 1 \\
\hline KDM5B & ADAMTS1 & 0 & 1 \\
\hline KDM5B & ADH4 & 0 & 1 \\
\hline KDM5B & ASF1B & 0 & 1 \\
\hline KDM5B & AURKB & 0 & 1 \\
\hline KDM5B & C6 & 0 & 1 \\
\hline KDM5B & CCNE1 & 0 & 1 \\
\hline KDM5B & CDC25A & 0 & 1 \\
\hline KDM5B & CDH24 & 0 & 1 \\
\hline KDM5B & FANCD2 & 0 & 1 \\
\hline KDM5B & G2E3 & 0 & 1 \\
\hline KDM5B & GPSM2 & 0 & 1 \\
\hline KDM5B & HAUS5 & 0 & 1 \\
\hline KDM5B & HELLS & 0 & 1 \\
\hline KDM5B & HLA-DOA & 0 & 1 \\
\hline KDM5B & HOXB4 & 0 & 1 \\
\hline KDM5B & HSD17B11 & 0 & 1 \\
\hline KDM5B & IL18BP & 0 & 1 \\
\hline KDM5B & INSM1 & 0 & 1 \\
\hline KDM5B & KDM4A & 0 & 1 \\
\hline KDM5B & LRRC17 & 0 & 1 \\
\hline KDM5B & ME3 & 0 & 1 \\
\hline KDM5B & MET & 0 & 1 \\
\hline KDM5B & MNX1 & 0 & 1 \\
\hline KDM5B & NEIL3 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline KDM5B & PIK3CD & 0 & 1 \\
\hline KDM5B & RAD18 & 0 & 1 \\
\hline KDM5B & REEP1 & 0 & 1 \\
\hline KDM5B & SDC1 & 0 & 1 \\
\hline KDM5B & SLC22A3 & 0 & 1 \\
\hline KDM5B & STIL & 0 & 1 \\
\hline KDM5B & TRIP13 & 0 & 1 \\
\hline KLF9 & ADAMTS1 & 0 & 1 \\
\hline KLF9 & ADH4 & 0 & 1 \\
\hline KLF9 & ARHGAP8 & 0 & 1 \\
\hline KLF9 & ASF1B & 0 & 1 \\
\hline KLF9 & AURKB & 0 & 1 \\
\hline KLF9 & BARD1 & 0 & 1 \\
\hline KLF9 & BIRC5 & 0 & 1 \\
\hline KLF9 & BMP2 & 0 & 1 \\
\hline KLF9 & BORA & 0 & 1 \\
\hline KLF9 & BUB1 & 0 & 1 \\
\hline KLF9 & BUB1B & 0 & 1 \\
\hline KLF9 & C6 & 0 & 1 \\
\hline KLF9 & CCNA2 & 0 & 1 \\
\hline KLF9 & CCNE1 & 0 & 1 \\
\hline KLF9 & CDC25A & 0 & 1 \\
\hline KLF9 & CDH24 & 0 & 1 \\
\hline KLF9 & CENPA & 0 & 1 \\
\hline KLF9 & CHEK2 & 0 & 1 \\
\hline KLF9 & CLSPN & 0 & 1 \\
\hline KLF9 & CSGALNACT1 & 0 & 1 \\
\hline KLF9 & DDX11 & 0 & 1 \\
\hline KLF9 & DMXL2 & 0 & 1 \\
\hline KLF9 & DTL & 0 & 1 \\
\hline KLF9 & DZIP3 & 0 & 1 \\
\hline KLF9 & E2F1 & 0 & 1 \\
\hline KLF9 & ERN2 & 0 & 1 \\
\hline KLF9 & FANCD2 & 0 & 1 \\
\hline KLF9 & GPSM2 & 0 & 1 \\
\hline KLF9 & HAUS5 & 0 & 1 \\
\hline KLF9 & HELLS & 0 & 1 \\
\hline KLF9 & HLA-DOA & 0 & 1 \\
\hline KLF9 & HOXB4 & 0 & 1 \\
\hline KLF9 & IFIT1 & 0 & 1 \\
\hline KLF9 & IL18BP & 0 & 1 \\
\hline KLF9 & INSM1 & 0 & 1 \\
\hline KLF9 & ITGB3 & 0 & 1 \\
\hline KLF9 & ITPR3 & 0 & 1 \\
\hline KLF9 & KDM4A & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline KLF9 & KIF20B & 0 & 1 \\
\hline KLF9 & KMO & 0 & 1 \\
\hline KLF9 & LRRC17 & 0 & 1 \\
\hline KLF9 & ME3 & 0 & 1 \\
\hline KLF9 & MET & 0 & 1 \\
\hline KLF9 & MID1 & 0 & 1 \\
\hline KLF9 & NCAPH & 0 & 1 \\
\hline KLF9 & NLRP2 & 0 & 1 \\
\hline KLF9 & NPAT & 0 & 1 \\
\hline KLF9 & PIK3CD & 0 & 1 \\
\hline KLF9 & PLK1 & 0 & 1 \\
\hline KLF9 & POLQ & 0 & 1 \\
\hline KLF9 & RAB3A & 0 & 1 \\
\hline KLF9 & RAD18 & 0 & 1 \\
\hline KLF9 & RAD51 & 0 & 1 \\
\hline KLF9 & RECQL4 & 0 & 1 \\
\hline KLF9 & REEP1 & 0 & 1 \\
\hline KLF9 & SDC1 & 0 & 1 \\
\hline KLF9 & SH3GL2 & 0 & 1 \\
\hline KLF9 & SLC22A3 & 0 & 1 \\
\hline KLF9 & SRSF7 & 0 & 1 \\
\hline KLF9 & STIL & 0 & 1 \\
\hline KLF9 & TAB2 & 0 & 1 \\
\hline KLF9 & TOP2A & 0 & 1 \\
\hline KLF9 & TRIP13 & 0 & 1 \\
\hline KLF9 & UBE2C & 0 & 1 \\
\hline KLF9 & VCAM1 & 0 & 1 \\
\hline KLF9 & VEGFC & 0 & 1 \\
\hline MBD2 & ADAMTS1 & 0 & 1 \\
\hline MBD2 & ADH4 & 0 & 1 \\
\hline MBD2 & ARHGAP8 & 0 & 1 \\
\hline MBD2 & ASF1B & 0 & 1 \\
\hline MBD2 & AURKB & 0 & 1 \\
\hline MBD2 & BARD1 & 0 & 1 \\
\hline MBD2 & BIRC5 & 0 & 1 \\
\hline MBD2 & BMP2 & 0 & 1 \\
\hline MBD2 & BORA & 0 & 1 \\
\hline MBD2 & BUB1 & 0 & 1 \\
\hline MBD2 & BUB1B & 0 & 1 \\
\hline MBD2 & C6 & 0 & 1 \\
\hline MBD2 & CCNA2 & 0 & 1 \\
\hline MBD2 & CCNE1 & 0 & 1 \\
\hline MBD2 & CDC25A & 0 & 1 \\
\hline MBD2 & CDH24 & 0 & 1 \\
\hline MBD2 & CENPA & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MBD2 & CENPF & 0 & 1 \\
\hline MBD2 & CHEK2 & 0 & 1 \\
\hline MBD2 & CLSPN & 0 & 1 \\
\hline MBD2 & CSGALNACT1 & 0 & 1 \\
\hline MBD2 & DDX11 & 0 & 1 \\
\hline MBD2 & DMXL2 & 0 & 1 \\
\hline MBD2 & DTL & 0 & 1 \\
\hline MBD2 & DZIP3 & 0 & 1 \\
\hline MBD2 & E2F1 & 0 & 1 \\
\hline MBD2 & ERN2 & 0 & 1 \\
\hline MBD2 & FANCD2 & 0 & 1 \\
\hline MBD2 & FRZB & 0 & 1 \\
\hline MBD2 & G2E3 & 0 & 1 \\
\hline MBD2 & GAS1 & 0 & 1 \\
\hline MBD2 & GPSM2 & 0 & 1 \\
\hline MBD2 & HAUS5 & 0 & 1 \\
\hline MBD2 & HELLS & 0 & 1 \\
\hline MBD2 & HLA-DOA & 0 & 1 \\
\hline MBD2 & HOXB4 & 0 & 1 \\
\hline MBD2 & HSD17B11 & 0 & 1 \\
\hline MBD2 & IFIT1 & 0 & 1 \\
\hline MBD2 & IL18BP & 0 & 1 \\
\hline MBD2 & INSM1 & 0 & 1 \\
\hline MBD2 & ITGB3 & 0 & 1 \\
\hline MBD2 & ITPR3 & 0 & 1 \\
\hline MBD2 & KDM4A & 0 & 1 \\
\hline MBD2 & KIF20B & 0 & 1 \\
\hline MBD2 & KMO & 0 & 1 \\
\hline MBD2 & LRRC17 & 0 & 1 \\
\hline MBD2 & ME3 & 0 & 1 \\
\hline MBD2 & MET & 0 & 1 \\
\hline MBD2 & MID1 & 0 & 1 \\
\hline MBD2 & MITF & 0 & 1 \\
\hline MBD2 & MNX1 & 0 & 1 \\
\hline MBD2 & NCAPH & 0 & 1 \\
\hline MBD2 & NEIL3 & 0 & 1 \\
\hline MBD2 & NEK2 & 0 & 1 \\
\hline MBD2 & NLRP2 & 0 & 1 \\
\hline MBD2 & NPAT & 0 & 1 \\
\hline MBD2 & PIK3CD & 0 & 1 \\
\hline MBD2 & PLK1 & 0 & 1 \\
\hline MBD2 & POLQ & 0 & 1 \\
\hline MBD2 & RAB3A & 0 & 1 \\
\hline MBD2 & RAD18 & 0 & 1 \\
\hline MBD2 & RAD51 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MBD2 & RECQL4 & 0 & 1 \\
\hline MBD2 & REEP1 & 0 & 1 \\
\hline MBD2 & SDC1 & 0 & 1 \\
\hline MBD2 & SH3GL2 & 0 & 1 \\
\hline MBD2 & SLC22A3 & 0 & 1 \\
\hline MBD2 & SRSF7 & 0 & 1 \\
\hline MBD2 & STIL & 0 & 1 \\
\hline MBD2 & TAB2 & 0 & 1 \\
\hline MBD2 & TFAP2A & 0 & 1 \\
\hline MBD2 & TOP2A & 0 & 1 \\
\hline MBD2 & TRIP13 & 0 & 1 \\
\hline MBD2 & UBE2C & 0 & 1 \\
\hline MBD2 & VCAM1 & 0 & 1 \\
\hline MBD2 & VEGFC & 0 & 1 \\
\hline MBD3 & ADAMTS1 & 0 & 1 \\
\hline MBD3 & ADH4 & 0 & 1 \\
\hline MBD3 & ARHGAP8 & 0 & 1 \\
\hline MBD3 & ASF1B & 0 & 1 \\
\hline MBD3 & AURKB & 0 & 1 \\
\hline MBD3 & BARD1 & 0 & 1 \\
\hline MBD3 & BIRC5 & 0 & 1 \\
\hline MBD3 & BMP2 & 0 & 1 \\
\hline MBD3 & BORA & 0 & 1 \\
\hline MBD3 & BUB1 & 0 & 1 \\
\hline MBD3 & BUB1B & 0 & 1 \\
\hline MBD3 & C6 & 0 & 1 \\
\hline MBD3 & CCNA2 & 0 & 1 \\
\hline MBD3 & CCNE1 & 0 & 1 \\
\hline MBD3 & CDC25A & 0 & 1 \\
\hline MBD3 & CDH24 & 0 & 1 \\
\hline MBD3 & CENPA & 0 & 1 \\
\hline MBD3 & CENPF & 0 & 1 \\
\hline MBD3 & CHEK2 & 0 & 1 \\
\hline MBD3 & CLSPN & 0 & 1 \\
\hline MBD3 & CSGALNACT1 & 0 & 1 \\
\hline MBD3 & DDX11 & 0 & 1 \\
\hline MBD3 & DMXL2 & 0 & 1 \\
\hline MBD3 & DTL & 0 & 1 \\
\hline MBD3 & DZIP3 & 0 & 1 \\
\hline MBD3 & E2F1 & 0 & 1 \\
\hline MBD3 & ERN2 & 0 & 1 \\
\hline MBD3 & FAN1 & 0 & 1 \\
\hline MBD3 & FANCD2 & 0 & 1 \\
\hline MBD3 & FRZB & 0 & 1 \\
\hline MBD3 & G2E3 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table 37 continued} \\
\hline TF & TG & W & \# dup \\
\hline MBD3 & GAS1 & 0 & 1 \\
\hline MBD3 & GPSM2 & 0 & 1 \\
\hline MBD3 & HAUS5 & 0 & 1 \\
\hline MBD3 & HELLS & 0 & 1 \\
\hline MBD3 & HLA-DOA & 0 & 1 \\
\hline MBD3 & HOXB4 & 0 & 1 \\
\hline MBD3 & HSD17B11 & 0 & I \\
\hline MBD3 & IFIT1 & 0 & 1 \\
\hline MBD3 & IL18BP & 0 & 1 \\
\hline MBD3 & INSM1 & 0 & 1 \\
\hline MBD3 & ITGB3 & 0 & 1 \\
\hline MBD3 & ITPR3 & 0 & 1 \\
\hline MBD3 & KDM4A & 0 & 1 \\
\hline MBD3 & KIF20B & 0 & 1 \\
\hline MBD3 & KMO & 0 & 1 \\
\hline MBD3 & LRRC17 & 0 & 1 \\
\hline MBD3 & ME3 & 0 & 1 \\
\hline MBD3 & MID1 & 0 & 1 \\
\hline MBD3 & MITF & 0 & 1 \\
\hline MBD3 & MNX1 & 0 & 1 \\
\hline MBD3 & NCAPH & 0 & 1 \\
\hline MBD3 & NEIL3 & 0 & 1 \\
\hline MBD3 & NEK2 & 0 & 1 \\
\hline MBD3 & NLRP2 & 0 & 1 \\
\hline MBD3 & NPAT & 0 & 1 \\
\hline MBD3 & PIK3CD & 0 & 1 \\
\hline MBD3 & PLK1 & 0 & 1 \\
\hline MBD3 & POLQ & 0 & 1 \\
\hline MBD3 & RAB3A & 0 & 1 \\
\hline MBD3 & RAD18 & 0 & 1 \\
\hline MBD3 & RAD51 & 0 & 1 \\
\hline MBD3 & RECQL4 & 0 & 1 \\
\hline MBD3 & REEP1 & 0 & 1 \\
\hline MBD3 & SDC1 & 0 & 1 \\
\hline MBD3 & SH3GL2 & 0 & 1 \\
\hline MBD3 & SLC22A3 & 0 & 1 \\
\hline MBD3 & SRSF7 & 0 & 1 \\
\hline MBD3 & STIL & 0 & 1 \\
\hline MBD3 & TAB2 & 0 & 1 \\
\hline MBD3 & TFAP2A & 0 & 1 \\
\hline MBD3 & TOP2A & 0 & 1 \\
\hline MBD3 & TRIP13 & 0 & 1 \\
\hline MBD3 & UBE2C & 0 & 1 \\
\hline MBD3 & VCAM1 & 0 & 1 \\
\hline MBD3 & VEGFC & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MBD4 & ADAMTS1 & 0 & 1 \\
\hline MBD4 & ARHGAP8 & 0 & 1 \\
\hline MBD4 & ASF1B & 0 & 1 \\
\hline MBD4 & AURKB & 0 & 1 \\
\hline MBD4 & BARD1 & 0 & 1 \\
\hline MBD4 & BIRC5 & 0 & 1 \\
\hline MBD4 & BMP2 & 0 & 1 \\
\hline MBD4 & BORA & 0 & 1 \\
\hline MBD4 & BUB1 & 0 & 1 \\
\hline MBD4 & BUB1B & 0 & 1 \\
\hline MBD4 & C6 & 0 & 1 \\
\hline MBD4 & CCNA2 & 0 & 1 \\
\hline MBD4 & CCNE1 & 0 & 1 \\
\hline MBD4 & CDC25A & 0 & 1 \\
\hline MBD4 & CDH24 & 0 & 1 \\
\hline MBD4 & CENPA & 0 & 1 \\
\hline MBD4 & CENPF & 0 & 1 \\
\hline MBD4 & CHEK2 & 0 & 1 \\
\hline MBD4 & CLSPN & 0 & 1 \\
\hline MBD4 & CSGALNACT1 & 0 & 1 \\
\hline MBD4 & DDX11 & 0 & 1 \\
\hline MBD4 & DMXL2 & 0 & 1 \\
\hline MBD4 & DTL & 0 & 1 \\
\hline MBD4 & DZIP3 & 0 & 1 \\
\hline MBD4 & E2F1 & 0 & 1 \\
\hline MBD4 & ERN2 & 0 & 1 \\
\hline MBD4 & FANCD2 & 0 & 1 \\
\hline MBD4 & FRZB & 0 & 1 \\
\hline MBD4 & G2E3 & 0 & 1 \\
\hline MBD4 & GAS1 & 0 & 1 \\
\hline MBD4 & GPSM2 & 0 & 1 \\
\hline MBD4 & HAUS5 & 0 & 1 \\
\hline MBD4 & HELLS & 0 & 1 \\
\hline MBD4 & HLA-DOA & 0 & 1 \\
\hline MBD4 & HOXB4 & 0 & 1 \\
\hline MBD4 & HSD17B11 & 0 & 1 \\
\hline MBD4 & IFIT1 & 0 & 1 \\
\hline MBD4 & IL18BP & 0 & 1 \\
\hline MBD4 & INSM1 & 0 & 1 \\
\hline MBD4 & ITGB3 & 0 & 1 \\
\hline MBD4 & ITPR3 & 0 & 1 \\
\hline MBD4 & KDM4A & 0 & 1 \\
\hline MBD4 & KIF20B & 0 & 1 \\
\hline MBD4 & KMO & 0 & 1 \\
\hline MBD4 & LRRC17 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MBD4 & ME3 & 0 & 1 \\
\hline MBD4 & MET & 0 & 1 \\
\hline MBD4 & MID1 & 0 & 1 \\
\hline MBD4 & MITF & 0 & 1 \\
\hline MBD4 & MNX1 & 0 & 1 \\
\hline MBD4 & NCAPH & 0 & 1 \\
\hline MBD4 & NEIL3 & 0 & 1 \\
\hline MBD4 & NEK2 & 0 & 1 \\
\hline MBD4 & NLRP2 & 0 & 1 \\
\hline MBD4 & NPAT & 0 & 1 \\
\hline MBD4 & PIK3CD & 0 & 1 \\
\hline MBD4 & PLK1 & 0 & 1 \\
\hline MBD4 & POLQ & 0 & 1 \\
\hline MBD4 & RAB3A & 0 & 1 \\
\hline MBD4 & RAD18 & 0 & 1 \\
\hline MBD4 & RAD51 & 0 & 1 \\
\hline MBD4 & RECQL4 & 0 & 1 \\
\hline MBD4 & REEP1 & 0 & 1 \\
\hline MBD4 & SDC1 & 0 & 1 \\
\hline MBD4 & SH3GL2 & 0 & 1 \\
\hline MBD4 & SLC22A3 & 0 & 1 \\
\hline MBD4 & SRSF7 & 0 & 1 \\
\hline MBD4 & STIL & 0 & 1 \\
\hline MBD4 & TAB2 & 0 & 1 \\
\hline MBD4 & TFAP2A & 0 & 1 \\
\hline MBD4 & TOP2A & 0 & 1 \\
\hline MBD4 & TRIP13 & 0 & 1 \\
\hline MBD4 & UBE2C & 0 & 1 \\
\hline MBD4 & VCAM1 & 0 & 1 \\
\hline MBD4 & VEGFC & 0 & 1 \\
\hline MITF & ABCA7 & 0 & 1 \\
\hline MITF & ADAMTS1 & 0 & 1 \\
\hline MITF & ADH4 & 0 & 1 \\
\hline MITF & AGFG1 & 0 & 1 \\
\hline MITF & AURKB & 0 & 1 \\
\hline MITF & B2M & 0 & 1 \\
\hline MITF & BRD8 & 0 & 1 \\
\hline MITF & BUB1B & 0 & 1 \\
\hline MITF & CASP8AP2 & 0 & 1 \\
\hline MITF & CCNB2 & 0 & 1 \\
\hline MITF & CCNE2 & 0 & 1 \\
\hline MITF & CDC25A & 0 & 1 \\
\hline MITF & CDC27 & 0 & 1 \\
\hline MITF & CDH24 & 0 & 1 \\
\hline MITF & CDKL5 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MITF & CHAF1A & 0 & 1 \\
\hline MITF & CKAP5 & 0 & 1 \\
\hline MITF & CTR9 & 0 & 1 \\
\hline MITF & CTSD & 0 & 1 \\
\hline MITF & DZIP3 & 0 & 1 \\
\hline MITF & FANCD2 & 0 & 1 \\
\hline MITF & FANCG & 0 & 1 \\
\hline MITF & GPSM2 & 0 & 1 \\
\hline MITF & HELLS & 0 & 1 \\
\hline MITF & HLA-DOA & 0 & 1 \\
\hline MITF & HMGCR & 0 & 1 \\
\hline MITF & HSD17B11 & 0 & 1 \\
\hline MITF & IL18BP & 0 & 1 \\
\hline MITF & INPP5K & 0 & 1 \\
\hline MITF & INSM1 & 0 & 1 \\
\hline MITF & ITPR1 & 0 & 1 \\
\hline MITF & KIF11 & 0 & 1 \\
\hline MITF & KPNB1 & 0 & 1 \\
\hline MITF & KRAS & 0 & 1 \\
\hline MITF & MAP2K6 & 0 & 1 \\
\hline MITF & MBD4 & 0 & 1 \\
\hline MITF & MET & 0 & 1 \\
\hline MITF & MGAT2 & 0 & 1 \\
\hline MITF & MYCBP2 & 0 & 1 \\
\hline MITF & NASP & 0 & 1 \\
\hline MITF & NCAPD2 & 0 & 1 \\
\hline MITF & NCAPD3 & 0 & 1 \\
\hline MITF & NEIL3 & 0 & 1 \\
\hline MITF & NEK2 & 0 & 1 \\
\hline MITF & NR3C1 & 0 & 1 \\
\hline MITF & NUP160 & 0 & 1 \\
\hline MITF & PPP3CA & 0 & 1 \\
\hline MITF & PTPN9 & 0 & 1 \\
\hline MITF & RAB23 & 0 & 1 \\
\hline MITF & RAD18 & 0 & 1 \\
\hline MITF & RCAN1 & 0 & 1 \\
\hline MITF & REEP1 & 0 & 1 \\
\hline MITF & RERE & 0 & 1 \\
\hline MITF & ROCK1 & 0 & 1 \\
\hline MITF & RRM1 & 0 & 1 \\
\hline MITF & SH3GL2 & 0 & 1 \\
\hline MITF & SLC22A3 & 0 & 1 \\
\hline MITF & SMC4 & 0 & 1 \\
\hline MITF & STIL & 0 & 1 \\
\hline MITF & TOPBP1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MITF & TYMS & 0 & 1 \\
\hline MITF & VCL & 0 & 1 \\
\hline MITF & VPS72 & 0 & 1 \\
\hline MNX1 & ABCA7 & 0 & 1 \\
\hline MNX1 & ACD & 0 & 1 \\
\hline MNX1 & ADAMTS1 & 0 & 1 \\
\hline MNX1 & ADH4 & 0 & 1 \\
\hline MNX1 & AGFG1 & 0 & 1 \\
\hline MNX1 & AHI1 & 0 & 1 \\
\hline MNX1 & ANTXR1 & 0 & 1 \\
\hline MNX1 & AP3D1 & 0 & 1 \\
\hline MNX1 & ARHGAP8 & 0 & 1 \\
\hline MNX1 & ASF1B & 0 & 1 \\
\hline MNX1 & ATF7IP & 0 & 1 \\
\hline MNX1 & AURKB & 0 & 1 \\
\hline MNX1 & B2M & 0 & 1 \\
\hline MNX1 & BAG3 & 0 & 1 \\
\hline MNX1 & BAIAP2 & 0 & 1 \\
\hline MNX1 & BARD1 & 0 & 1 \\
\hline MNX1 & BIRC2 & 0 & 1 \\
\hline MNX1 & BIRC5 & 0 & 1 \\
\hline MNX1 & BMP2 & 0 & 1 \\
\hline MNX1 & BORA & 0 & 1 \\
\hline MNX1 & BRD7 & 0 & 1 \\
\hline MNX1 & BRD8 & 0 & 1 \\
\hline MNX1 & BUB1 & 0 & 1 \\
\hline MNX1 & BUB1B & 0 & 1 \\
\hline MNX1 & BUB3 & 0 & 1 \\
\hline MNX1 & CADM1 & 0 & 1 \\
\hline MNX1 & CASP3 & 0 & 1 \\
\hline MNX1 & CASP8AP2 & 0 & 1 \\
\hline MNX1 & CCNA2 & 0 & 1 \\
\hline MNX1 & CCNB1 & 0 & 1 \\
\hline MNX1 & CCNB2 & 0 & 1 \\
\hline MNX1 & CCNE1 & 0 & 1 \\
\hline MNX1 & CCNE2 & 0 & 1 \\
\hline MNX1 & CCNF & 0 & 1 \\
\hline MNX1 & CDC25A & 0 & 1 \\
\hline MNX1 & CDC25B & 0 & 1 \\
\hline MNX1 & CDC27 & 0 & 1 \\
\hline MNX1 & CDC42EP1 & 0 & 1 \\
\hline MNX1 & CDC42EP4 & 0 & 1 \\
\hline MNX1 & CDH24 & 0 & 1 \\
\hline MNX1 & CDK7 & 0 & 1 \\
\hline MNX1 & CDKL5 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MNX1 & CDKN1B & 0 & 1 \\
\hline MNX1 & CDKN2C & 0 & 1 \\
\hline MNX1 & CDKN2D & 0 & 1 \\
\hline MNX1 & CENPA & 0 & 1 \\
\hline MNX1 & CENPE & 0 & 1 \\
\hline MNX1 & CENPF & 0 & 1 \\
\hline MNX1 & CFLAR & 0 & 1 \\
\hline MNX1 & CHAF1A & 0 & 1 \\
\hline MNX1 & CHEK2 & 0 & 1 \\
\hline MNX1 & CKAP5 & 0 & 1 \\
\hline MNX1 & CLSPN & 0 & 1 \\
\hline MNX1 & CREBZF & 0 & 1 \\
\hline MNX1 & CSGALNACT1 & 0 & 1 \\
\hline MNX1 & CTCF & 0 & 1 \\
\hline MNX1 & CTNND1 & 0 & 1 \\
\hline MNX1 & CTR9 & 0 & 1 \\
\hline MNX1 & CTSD & 0 & 1 \\
\hline MNX1 & DDX11 & 0 & 1 \\
\hline MNX1 & DIS3 & 0 & 1 \\
\hline MNX1 & DMXL2 & 0 & 1 \\
\hline MNX1 & DNAJB1 & 0 & 1 \\
\hline MNX1 & DNAJB6 & 0 & 1 \\
\hline MNX1 & DNAJB9 & 0 & 1 \\
\hline MNX1 & DR1 & 0 & 1 \\
\hline MNX1 & DSP & 0 & 1 \\
\hline MNX1 & DTL & 0 & 1 \\
\hline MNX1 & DZIP3 & 0 & 1 \\
\hline MNX1 & EIF4E & 0 & 1 \\
\hline MNX1 & ELP3 & 0 & 1 \\
\hline MNX1 & ERN2 & 0 & 1 \\
\hline MNX1 & EXO1 & 0 & 1 \\
\hline MNX1 & FADD & 0 & 1 \\
\hline MNX1 & FAN1 & 0 & 1 \\
\hline MNX1 & FANCD2 & 0 & 1 \\
\hline MNX1 & FANCG & 0 & 1 \\
\hline MNX1 & FEM1B & 0 & 1 \\
\hline MNX1 & FEN1 & 0 & 1 \\
\hline MNX1 & FKBP1A & 0 & 1 \\
\hline MNX1 & FRZB & 0 & 1 \\
\hline MNX1 & FZR1 & 0 & 1 \\
\hline MNX1 & G2E3 & 0 & 1 \\
\hline MNX1 & GADD45A & 0 & 1 \\
\hline MNX1 & GCLM & 0 & 1 \\
\hline MNX1 & GNB1 & 0 & 1 \\
\hline MNX1 & GOT1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MNX1 & GPSM2 & 0 & 1 \\
\hline MNX1 & H2AFX & 0 & 1 \\
\hline MNX1 & HAUS5 & 0 & 1 \\
\hline MNX1 & HDAC3 & 0 & 1 \\
\hline MNX1 & HIST1H4B & 0 & 1 \\
\hline MNX1 & HIST1H4C & 0 & 1 \\
\hline MNX1 & HIST1H4E & 0 & 1 \\
\hline MNX1 & HIST1H4H & 0 & 1 \\
\hline MNX1 & HLA-DOA & 0 & 1 \\
\hline MNX1 & HMG1 & 0 & 1 \\
\hline MNX1 & HMGB2 & 0 & 1 \\
\hline MNX1 & HMGCR & 0 & 1 \\
\hline MNX1 & HOXB4 & 0 & 1 \\
\hline MNX1 & HRAS & 0 & 1 \\
\hline MNX1 & HSD17B11 & 0 & 1 \\
\hline MNX1 & HSPA8 & 0 & 1 \\
\hline MNX1 & IFIT1 & 0 & 1 \\
\hline MNX1 & IL18BP & 0 & 1 \\
\hline MNX1 & INPP5K & 0 & 1 \\
\hline MNX1 & INSIG2 & 0 & 1 \\
\hline MNX1 & INTS7 & 0 & 1 \\
\hline MNX1 & ITGB3 & 0 & 1 \\
\hline MNX1 & ITPR1 & 0 & 1 \\
\hline MNX1 & ITPR3 & 0 & 1 \\
\hline MNX1 & JADE2 & 0 & 1 \\
\hline MNX1 & KAT2B & 0 & 1 \\
\hline MNX1 & KAT7 & 0 & 1 \\
\hline MNX1 & KDM4A & 0 & 1 \\
\hline MNX1 & KDM5B & 0 & 1 \\
\hline MNX1 & KIF11 & 0 & 1 \\
\hline MNX1 & KIF20B & 0 & 1 \\
\hline MNX1 & KIF2C & 0 & 1 \\
\hline MNX1 & KLF9 & 0 & 1 \\
\hline MNX1 & KMO & 0 & 1 \\
\hline MNX1 & KPNA2 & 0 & 1 \\
\hline MNX1 & KPNB1 & 0 & 1 \\
\hline MNX1 & KRAS & 0 & 1 \\
\hline MNX1 & LRRC17 & 0 & 1 \\
\hline MNX1 & MAD2L1 & 0 & 1 \\
\hline MNX1 & MAN1A2 & 0 & 1 \\
\hline MNX1 & MAP2K6 & 0 & 1 \\
\hline MNX1 & MAPK13 & 0 & 1 \\
\hline MNX1 & MBD2 & 0 & 1 \\
\hline MNX1 & MBD3 & 0 & 1 \\
\hline MNX1 & MBD4 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MNX1 & MCM2 & 0 & 1 \\
\hline MNX1 & MCM4 & 0 & 1 \\
\hline MNX1 & MCM6 & 0 & 1 \\
\hline MNX1 & MDM2 & 0 & 1 \\
\hline MNX1 & ME3 & 0 & 1 \\
\hline MNX1 & MET & 0 & 1 \\
\hline MNX1 & MGAT2 & 0 & 1 \\
\hline MNX1 & MID1 & 0 & 1 \\
\hline MNX1 & MSH2 & 0 & 1 \\
\hline MNX1 & NAB1 & 0 & 1 \\
\hline MNX1 & NASP & 0 & 1 \\
\hline MNX1 & NCAPD2 & 0 & 1 \\
\hline MNX1 & NCAPD3 & 0 & 1 \\
\hline MNX1 & NCAPH & 0 & 1 \\
\hline MNX1 & NCOA3 & 0 & 1 \\
\hline MNX1 & NEIL3 & 0 & 1 \\
\hline MNX1 & NEK2 & 0 & 1 \\
\hline MNX1 & NFE2L2 & 0 & 1 \\
\hline MNX1 & NLRP2 & 0 & 1 \\
\hline MNX1 & NPAT & 0 & 1 \\
\hline MNX1 & NPM1 & 0 & 1 \\
\hline MNX1 & NR3C1 & 0 & 1 \\
\hline MNX1 & NUP160 & 0 & 1 \\
\hline MNX1 & OGT & 0 & 1 \\
\hline MNX1 & PCNA & 0 & 1 \\
\hline MNX1 & PDXP & 0 & 1 \\
\hline MNX1 & PIK3CD & 0 & 1 \\
\hline MNX1 & PKNOX1 & 0 & 1 \\
\hline MNX1 & PLK1 & 0 & 1 \\
\hline MNX1 & PLK2 & 0 & 1 \\
\hline MNX1 & POLA1 & 0 & 1 \\
\hline MNX1 & POLD3 & 0 & 1 \\
\hline MNX1 & POLQ & 0 & 1 \\
\hline MNX1 & PPP2CA & 0 & 1 \\
\hline MNX1 & PRKAR1A & 0 & 1 \\
\hline MNX1 & PTPN9 & 0 & 1 \\
\hline MNX1 & PYM1 & 0 & 1 \\
\hline MNX1 & RAD18 & 0 & 1 \\
\hline MNX1 & RAD51 & 0 & 1 \\
\hline MNX1 & RAD51C & 0 & 1 \\
\hline MNX1 & RBM8A & 0 & 1 \\
\hline MNX1 & RECQL4 & 0 & 1 \\
\hline MNX1 & REEP1 & 0 & 1 \\
\hline MNX1 & RERE & 0 & 1 \\
\hline MNX1 & RHEB & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MNX1 & RHNO1 & 0 & 1 \\
\hline MNX1 & RHOBTB3 & 0 & 1 \\
\hline MNX1 & RNPS1 & 0 & 1 \\
\hline MNX1 & ROCK1 & 0 & 1 \\
\hline MNX1 & RPA2 & 0 & 1 \\
\hline MNX1 & RRM1 & 0 & 1 \\
\hline MNX1 & RRM2 & 0 & 1 \\
\hline MNX1 & SAP30BP & 0 & 1 \\
\hline MNX1 & SFPQ & 0 & 1 \\
\hline MNX1 & SH3GL2 & 0 & 1 \\
\hline MNX1 & SLBP & 0 & 1 \\
\hline MNX1 & SLC22A3 & 0 & 1 \\
\hline MNX1 & SLC38A2 & 0 & 1 \\
\hline MNX1 & SLC44A2 & 0 & 1 \\
\hline MNX1 & SMARCD1 & 0 & 1 \\
\hline MNX1 & SMC4 & 0 & 1 \\
\hline MNX1 & SP1 & 0 & 1 \\
\hline MNX1 & SRSF7 & 0 & 1 \\
\hline MNX1 & SS18 & 0 & 1 \\
\hline MNX1 & STAT1 & 0 & 1 \\
\hline MNX1 & STAT5B & 0 & 1 \\
\hline MNX1 & STIL & 0 & 1 \\
\hline MNX1 & SYNCRIP & 0 & 1 \\
\hline MNX1 & TAB2 & 0 & 1 \\
\hline MNX1 & TACC3 & 0 & 1 \\
\hline MNX1 & TFAP2A & 0 & 1 \\
\hline MNX1 & THRAP3 & 0 & 1 \\
\hline MNX1 & TIPIN & 0 & 1 \\
\hline MNX1 & TOB2 & 0 & 1 \\
\hline MNX1 & TOP2A & 0 & 1 \\
\hline MNX1 & TOPBP1 & 0 & 1 \\
\hline MNX1 & TRA2A & 0 & 1 \\
\hline MNX1 & TRIP13 & 0 & 1 \\
\hline MNX1 & TXNRD1 & 0 & 1 \\
\hline MNX1 & TYMS & 0 & 1 \\
\hline MNX1 & UACA & 0 & 1 \\
\hline MNX1 & UBE2C & 0 & 1 \\
\hline MNX1 & UBE2D3 & 0 & 1 \\
\hline MNX1 & UBE2S & 0 & 1 \\
\hline MNX1 & UNG & 0 & 1 \\
\hline MNX1 & USP1 & 0 & 1 \\
\hline MNX1 & USP16 & 0 & 1 \\
\hline MNX1 & VCL & 0 & 1 \\
\hline MNX1 & VEGFC & 0 & 1 \\
\hline MNX1 & VPS72 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline MNX1 & YWHAH & 0 & 1 \\
\hline MNX1 & YY1 & 0 & 1 \\
\hline MNX1 & ZWINT & 0 & 1 \\
\hline NCOA3 & ADAMTS1 & 0 & 1 \\
\hline NCOA3 & ADH4 & 0 & 1 \\
\hline NCOA3 & AURKB & 0 & 1 \\
\hline NCOA3 & BUB1B & 0 & 1 \\
\hline NCOA3 & C6 & 0 & 1 \\
\hline NCOA3 & CCNE1 & 0 & 1 \\
\hline NCOA3 & CDC25A & 0 & 1 \\
\hline NCOA3 & CDH24 & 0 & 1 \\
\hline NCOA3 & FANCD2 & 0 & 1 \\
\hline NCOA3 & G2E3 & 0 & 1 \\
\hline NCOA3 & GPSM2 & 0 & 1 \\
\hline NCOA3 & HAUS5 & 0 & 1 \\
\hline NCOA3 & HELLS & 0 & 1 \\
\hline NCOA3 & HLA-DOA & 0 & 1 \\
\hline NCOA3 & HOXB4 & 0 & 1 \\
\hline NCOA3 & HSD17B11 & 0 & 1 \\
\hline NCOA3 & IL18BP & 0 & 1 \\
\hline NCOA3 & KDM4A & 0 & 1 \\
\hline NCOA3 & LRRC17 & 0 & 1 \\
\hline NCOA3 & ME3 & 0 & 1 \\
\hline NCOA3 & MET & 0 & 1 \\
\hline NCOA3 & MNX1 & 0 & 1 \\
\hline NCOA3 & NEIL3 & 0 & 1 \\
\hline NCOA3 & PIK3CD & 0 & 1 \\
\hline NCOA3 & RAD18 & 0 & 1 \\
\hline NCOA3 & REEP1 & 0 & 1 \\
\hline NCOA3 & SDC1 & 0 & 1 \\
\hline NCOA3 & SH3GL2 & 0 & 1 \\
\hline NCOA3 & SLC22A3 & 0 & 1 \\
\hline NCOA3 & STIL & 0 & 1 \\
\hline NCOA3 & TRIP13 & 0 & 1 \\
\hline NFE2L2 & ADAMTS1 & 0 & 1 \\
\hline NFE2L2 & ADH4 & 0 & 1 \\
\hline NFE2L2 & ARHGAP8 & 0 & 1 \\
\hline NFE2L2 & ASF1B & 0 & 1 \\
\hline NFE2L2 & AURKB & 0 & 1 \\
\hline NFE2L2 & BARD1 & 0 & 1 \\
\hline NFE2L2 & BIRC5 & 0 & 1 \\
\hline NFE2L2 & BMP2 & 0 & 1 \\
\hline NFE2L2 & BORA & 0 & 1 \\
\hline NFE2L2 & BUB1 & 0 & 1 \\
\hline NFE2L2 & BUB1B & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline NFE2L2 & C6 & 0 & 1 \\
\hline NFE2L2 & CCNA2 & 0 & 1 \\
\hline NFE2L2 & CCNE1 & 0 & 1 \\
\hline NFE2L2 & CDC25A & 0 & 1 \\
\hline NFE2L2 & CDH24 & 0 & 1 \\
\hline NFE2L2 & CENPA & 0 & 1 \\
\hline NFE2L2 & CENPF & 0 & 1 \\
\hline NFE2L2 & CHEK2 & 0 & 1 \\
\hline NFE2L2 & CLSPN & 0 & 1 \\
\hline NFE2L2 & DMXL2 & 0 & 1 \\
\hline NFE2L2 & DTL & 0 & 1 \\
\hline NFE2L2 & DZIP3 & 0 & 1 \\
\hline NFE2L2 & E2F1 & 0 & 1 \\
\hline NFE2L2 & ERN2 & 0 & 1 \\
\hline NFE2L2 & FAN1 & 0 & 1 \\
\hline NFE2L2 & FANCD2 & 0 & 1 \\
\hline NFE2L2 & FRZB & 0 & 1 \\
\hline NFE2L2 & G2E3 & 0 & 1 \\
\hline NFE2L2 & GAS1 & 0 & 1 \\
\hline NFE2L2 & GPSM2 & 0 & 1 \\
\hline NFE2L2 & HAUS5 & 0 & 1 \\
\hline NFE2L2 & HELLS & 0 & 1 \\
\hline NFE2L2 & HLA-DOA & 0 & 1 \\
\hline NFE2L2 & HOXB4 & 0 & 1 \\
\hline NFE2L2 & HSD17B11 & 0 & 1 \\
\hline NFE2L2 & IFIT1 & 0 & 1 \\
\hline NFE2L2 & IL18BP & 0 & 1 \\
\hline NFE2L2 & INSM1 & 0 & 1 \\
\hline NFE2L2 & ITGB3 & 0 & 1 \\
\hline NFE2L2 & ITPR3 & 0 & 1 \\
\hline NFE2L2 & KDM4A & 0 & 1 \\
\hline NFE2L2 & KIF20B & 0 & 1 \\
\hline NFE2L2 & KMO & 0 & 1 \\
\hline NFE2L2 & LRRC17 & 0 & 1 \\
\hline NFE2L2 & ME3 & 0 & 1 \\
\hline NFE2L2 & MET & 0 & 1 \\
\hline NFE2L2 & MID1 & 0 & 1 \\
\hline NFE2L2 & MITF & 0 & 1 \\
\hline NFE2L2 & MNX1 & 0 & 1 \\
\hline NFE2L2 & NCAPH & 0 & 1 \\
\hline NFE2L2 & NEIL3 & 0 & 1 \\
\hline NFE2L2 & NLRP2 & 0 & 1 \\
\hline NFE2L2 & NPAT & 0 & 1 \\
\hline NFE2L2 & PIK3CD & 0 & 1 \\
\hline NFE2L2 & PLK1 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline NFE2L2 & POLQ & 0 & 1 \\
\hline NFE2L2 & RAB3A & 0 & 1 \\
\hline NFE2L2 & RAD18 & 0 & 1 \\
\hline NFE2L2 & RAD51 & 0 & 1 \\
\hline NFE2L2 & RECQL4 & 0 & 1 \\
\hline NFE2L2 & REEP1 & 0 & 1 \\
\hline NFE2L2 & SDC1 & 0 & 1 \\
\hline NFE2L2 & SH3GL2 & 0 & 1 \\
\hline NFE2L2 & SLC22A3 & 0 & 1 \\
\hline NFE2L2 & SRSF7 & 0 & 1 \\
\hline NFE2L2 & STIL & 0 & 1 \\
\hline NFE2L2 & TAB2 & 0 & 1 \\
\hline NFE2L2 & TFAP2A & 0 & 1 \\
\hline NFE2L2 & TOP2A & 0 & 1 \\
\hline NFE2L2 & TRIP13 & 0 & 1 \\
\hline NFE2L2 & UBE2C & 0 & 1 \\
\hline NFE2L2 & VCAM1 & 0 & 1 \\
\hline NFE2L2 & VEGFC & 0 & 1 \\
\hline NR3C1 & ADAMTS1 & 0 & 1 \\
\hline NR3C1 & ADH4 & 0 & 1 \\
\hline NR3C1 & ASF1B & 0 & 1 \\
\hline NR3C1 & AURKB & 0 & 1 \\
\hline NR3C1 & BARD1 & 0 & 1 \\
\hline NR3C1 & BIRC5 & 0 & 1 \\
\hline NR3C1 & BORA & 0 & 1 \\
\hline NR3C1 & BUB1 & 0 & 1 \\
\hline NR3C1 & BUB1B & 0 & 1 \\
\hline NR3C1 & C6 & 0 & 1 \\
\hline NR3C1 & CCNE1 & 0 & 1 \\
\hline NR3C1 & CDH24 & 0 & 1 \\
\hline NR3C1 & CENPA & 0 & 1 \\
\hline NR3C1 & CENPF & 0 & 1 \\
\hline NR3C1 & CSGALNACT1 & 0 & 1 \\
\hline NR3C1 & DDX11 & 0 & 1 \\
\hline NR3C1 & DMXL2 & 0 & 1 \\
\hline NR3C1 & DZIP3 & 0 & 1 \\
\hline NR3C1 & E2F1 & 0 & 1 \\
\hline NR3C1 & ERN2 & 0 & 1 \\
\hline NR3C1 & G2E3 & 0 & 1 \\
\hline NR3C1 & GAS1 & 0 & 1 \\
\hline NR3C1 & GPSM2 & 0 & 1 \\
\hline NR3C1 & HAUS5 & 0 & 1 \\
\hline NR3C1 & HELLS & 0 & 1 \\
\hline NR3C1 & HLA-DOA & 0 & 1 \\
\hline NR3C1 & HOXB4 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline NR3C1 & HSD17B11 & 0 & 1 \\
\hline NR3C1 & INSM1 & 0 & 1 \\
\hline NR3C1 & ITGB3 & 0 & 1 \\
\hline NR3C1 & KDM4A & 0 & 1 \\
\hline NR3C1 & LRRC17 & 0 & 1 \\
\hline NR3C1 & ME3 & 0 & 1 \\
\hline NR3C1 & MET & 0 & 1 \\
\hline NR3C1 & MITF & 0 & 1 \\
\hline NR3C1 & MNX1 & 0 & 1 \\
\hline NR3C1 & NCAPH & 0 & 1 \\
\hline NR3C1 & NEIL3 & 0 & 1 \\
\hline NR3C1 & NEK2 & 0 & 1 \\
\hline NR3C1 & NLRP2 & 0 & 1 \\
\hline NR3C1 & NPAT & 0 & 1 \\
\hline NR3C1 & PIK3CD & 0 & 1 \\
\hline NR3C1 & POLQ & 0 & 1 \\
\hline NR3C1 & RAB3A & 0 & 1 \\
\hline NR3C1 & RAD18 & 0 & 1 \\
\hline NR3C1 & REEP1 & 0 & 1 \\
\hline NR3C1 & SDC1 & 0 & 1 \\
\hline NR3C1 & SH3GL2 & 0 & 1 \\
\hline NR3C1 & SRSF7 & 0 & 1 \\
\hline NR3C1 & STIL & 0 & 1 \\
\hline NR3C1 & TRIP13 & 0 & 1 \\
\hline NR3C1 & UBE2C & 0 & 1 \\
\hline PKNOX1 & ADAMTS1 & 0 & 1 \\
\hline PKNOX1 & ADH4 & 0 & 1 \\
\hline PKNOX1 & ARHGAP8 & 0 & 1 \\
\hline PKNOX1 & AURKB & 0 & 1 \\
\hline PKNOX1 & BARD1 & 0 & 1 \\
\hline PKNOX1 & BIRC5 & 0 & 1 \\
\hline PKNOX1 & BMP2 & 0 & 1 \\
\hline PKNOX1 & BORA & 0 & 1 \\
\hline PKNOX1 & BUB1 & 0 & 1 \\
\hline PKNOX1 & BUB1B & 0 & 1 \\
\hline PKNOX1 & CCNA2 & 0 & 1 \\
\hline PKNOX1 & CCNE1 & 0 & 1 \\
\hline PKNOX1 & CDC25A & 0 & 1 \\
\hline PKNOX1 & CDH24 & 0 & 1 \\
\hline PKNOX1 & CENPA & 0 & 1 \\
\hline PKNOX1 & CENPF & 0 & 1 \\
\hline PKNOX1 & CHEK2 & 0 & 1 \\
\hline PKNOX1 & CLSPN & 0 & 1 \\
\hline PKNOX1 & CSGALNACT1 & 0 & 1 \\
\hline PKNOX1 & DDX11 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline PKNOX1 & DMXL2 & 0 & 1 \\
\hline PKNOX1 & DTL & 0 & 1 \\
\hline PKNOX1 & DZIP3 & 0 & 1 \\
\hline PKNOX1 & E2F1 & 0 & 1 \\
\hline PKNOX1 & ERN2 & 0 & 1 \\
\hline PKNOX1 & FAN1 & 0 & 1 \\
\hline PKNOX1 & FANCD2 & 0 & 1 \\
\hline PKNOX1 & FRZB & 0 & 1 \\
\hline PKNOX1 & G2E3 & 0 & 1 \\
\hline PKNOX1 & GPSM2 & 0 & 1 \\
\hline PKNOX1 & HAUS5 & 0 & 1 \\
\hline PKNOX1 & HOXB4 & 0 & 1 \\
\hline PKNOX1 & HSD17B11 & 0 & 1 \\
\hline PKNOX1 & IFIT1 & 0 & 1 \\
\hline PKNOX1 & IL18BP & 0 & 1 \\
\hline PKNOX1 & INSM1 & 0 & 1 \\
\hline PKNOX1 & ITGB3 & 0 & 1 \\
\hline PKNOX1 & ITPR3 & 0 & 1 \\
\hline PKNOX1 & KDM4A & 0 & 1 \\
\hline PKNOX1 & KIF20B & 0 & 1 \\
\hline PKNOX1 & LRRC17 & 0 & 1 \\
\hline PKNOX1 & ME3 & 0 & 1 \\
\hline PKNOX1 & MET & 0 & 1 \\
\hline PKNOX1 & MID1 & 0 & 1 \\
\hline PKNOX1 & MNX1 & 0 & 1 \\
\hline PKNOX1 & NCAPH & 0 & 1 \\
\hline PKNOX1 & NEIL3 & 0 & 1 \\
\hline PKNOX1 & NEK2 & 0 & 1 \\
\hline PKNOX1 & NLRP2 & 0 & 1 \\
\hline PKNOX1 & NPAT & 0 & 1 \\
\hline PKNOX1 & PIK3CD & 0 & 1 \\
\hline PKNOX1 & PLK1 & 0 & 1 \\
\hline PKNOX1 & POLQ & 0 & 1 \\
\hline PKNOX1 & RAB3A & 0 & 1 \\
\hline PKNOX1 & RAD18 & 0 & 1 \\
\hline PKNOX1 & RAD51 & 0 & 1 \\
\hline PKNOX1 & RECQL4 & 0 & 1 \\
\hline PKNOX1 & REEP1 & 0 & 1 \\
\hline PKNOX1 & SDC1 & 0 & 1 \\
\hline PKNOX1 & SH3GL2 & 0 & 1 \\
\hline PKNOX1 & SLC22A3 & 0 & 1 \\
\hline PKNOX1 & SRSF7 & 0 & 1 \\
\hline PKNOX1 & STIL & 0 & 1 \\
\hline PKNOX1 & TAB2 & 0 & 1 \\
\hline PKNOX1 & TFAP2A & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline PKNOX1 & TOP2A & 0 & 1 \\
\hline PKNOX1 & TRIP13 & 0 & 1 \\
\hline PKNOX1 & UBE2C & 0 & 1 \\
\hline PKNOX1 & VCAM1 & 0 & 1 \\
\hline PKNOX1 & VEGFC & 0 & 1 \\
\hline RUNX1 & ADH4 & 0 & 1 \\
\hline RUNX1 & ASF1B & 0 & 1 \\
\hline RUNX1 & AURKB & 0 & 1 \\
\hline RUNX1 & BUB1B & 0 & 1 \\
\hline RUNX1 & C6 & 0 & 1 \\
\hline RUNX1 & CCNE1 & 0 & 1 \\
\hline RUNX1 & CDC25A & 0 & 1 \\
\hline RUNX1 & CDH24 & 0 & 1 \\
\hline RUNX1 & CENPA & 0 & 1 \\
\hline RUNX1 & DZIP3 & 0 & 1 \\
\hline RUNX1 & FANCD2 & 0 & 1 \\
\hline RUNX1 & G2E3 & 0 & 1 \\
\hline RUNX1 & HAUS5 & 0 & 1 \\
\hline RUNX1 & HELLS & 0 & 1 \\
\hline RUNX1 & HLA-DOA & 0 & 1 \\
\hline RUNX1 & HSD17B11 & 0 & 1 \\
\hline RUNX1 & IL18BP & 0 & 1 \\
\hline RUNX1 & INSM1 & 0 & 1 \\
\hline RUNX1 & MNX1 & 0 & 1 \\
\hline RUNX1 & NCAPH & 0 & 1 \\
\hline RUNX1 & NEK2 & 0 & 1 \\
\hline RUNX1 & RAD18 & 0 & 1 \\
\hline RUNX1 & REEP1 & 0 & 1 \\
\hline RUNX1 & SDC1 & 0 & 1 \\
\hline RUNX1 & SH3GL2 & 0 & 1 \\
\hline RUNX1 & SLC22A3 & 0 & 1 \\
\hline RUNX1 & STIL & 0 & 1 \\
\hline SP1 & ADAMTS1 & 0 & 1 \\
\hline SP1 & ADH4 & 0 & 1 \\
\hline SP1 & ASF1B & 0 & 1 \\
\hline SP1 & AURKB & 0 & 1 \\
\hline SP1 & C6 & 0 & 1 \\
\hline SP1 & CDH24 & 0 & 1 \\
\hline SP1 & CENPA & 0 & 1 \\
\hline SP1 & DZIP3 & 0 & 1 \\
\hline SP1 & FANCD2 & 0 & 1 \\
\hline SP1 & HAUS5 & 0 & 1 \\
\hline SP1 & HELLS & 0 & 1 \\
\hline SP1 & HLA-DOA & 0 & 1 \\
\hline SP1 & HOXB4 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline SP1 & IL18BP & 0 & 1 \\
\hline SP1 & INSM1 & 0 & 1 \\
\hline SP1 & LRRC17 & 0 & 1 \\
\hline SP1 & ME3 & 0 & 1 \\
\hline SP1 & MITF & 0 & 1 \\
\hline SP1 & MNX1 & 0 & 1 \\
\hline SP1 & NCAPH & 0 & 1 \\
\hline SP1 & NEIL3 & 0 & 1 \\
\hline SP1 & NEK2 & 0 & 1 \\
\hline SP1 & PIK3CD & 0 & 1 \\
\hline SP1 & RAB3A & 0 & 1 \\
\hline SP1 & RAD18 & 0 & 1 \\
\hline SP1 & REEP1 & 0 & 1 \\
\hline SP1 & SDC1 & 0 & 1 \\
\hline SP1 & SLC22A3 & 0 & 1 \\
\hline SP1 & STIL & 0 & 1 \\
\hline SP1 & TRIP13 & 0 & 1 \\
\hline SRF & ADH4 & 0 & 1 \\
\hline SRF & ASF1B & 0 & 1 \\
\hline SRF & AURKB & 0 & 1 \\
\hline SRF & BMP2 & 0 & 1 \\
\hline SRF & BUB1B & 0 & 1 \\
\hline SRF & C6 & 0 & 1 \\
\hline SRF & CCNE1 & 0 & 1 \\
\hline SRF & CDH24 & 0 & 1 \\
\hline SRF & DZIP3 & 0 & 1 \\
\hline SRF & G2E3 & 0 & 1 \\
\hline SRF & GPSM2 & 0 & 1 \\
\hline SRF & HAUS5 & 0 & 1 \\
\hline SRF & HELLS & 0 & 1 \\
\hline SRF & HLA-DOA & 0 & 1 \\
\hline SRF & HSD17B11 & 0 & 1 \\
\hline SRF & INSM1 & 0 & 1 \\
\hline SRF & ITGB3 & 0 & 1 \\
\hline SRF & LRRC17 & 0 & 1 \\
\hline SRF & ME3 & 0 & 1 \\
\hline SRF & MET & 0 & 1 \\
\hline SRF & MNX1 & 0 & 1 \\
\hline SRF & NCAPH & 0 & 1 \\
\hline SRF & NEIL3 & 0 & 1 \\
\hline SRF & NEK2 & 0 & 1 \\
\hline SRF & PIK3CD & 0 & 1 \\
\hline SRF & RAD18 & 0 & 1 \\
\hline SRF & REEP1 & 0 & 1 \\
\hline SRF & SDC1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline SRF & SH3GL2 & 0 & 1 \\
\hline SRF & TRIP13 & 0 & 1 \\
\hline STAT1 & ADH4 & 0 & 1 \\
\hline STAT1 & AURKB & 0 & 1 \\
\hline STAT1 & BUB1B & 0 & 1 \\
\hline STAT1 & CDH24 & 0 & 1 \\
\hline STAT1 & GPSM2 & 0 & 1 \\
\hline STAT1 & HAUS5 & 0 & 1 \\
\hline STAT1 & HELLS & 0 & 1 \\
\hline STAT1 & HLA-DOA & 0 & 1 \\
\hline STAT1 & HOXB4 & 0 & 1 \\
\hline STAT1 & INSM1 & 0 & 1 \\
\hline STAT5B & ADH4 & 0 & 1 \\
\hline STAT5B & ASF1B & 0 & 1 \\
\hline STAT5B & AURKB & 0 & 1 \\
\hline STAT5B & BIRC5 & 0 & 1 \\
\hline STAT5B & BUB1B & 0 & 1 \\
\hline STAT5B & C6 & 0 & 1 \\
\hline STAT5B & CCNE1 & 0 & 1 \\
\hline STAT5B & CDH24 & 0 & 1 \\
\hline STAT5B & CENPA & 0 & 1 \\
\hline STAT5B & CHEK2 & 0 & 1 \\
\hline STAT5B & CSGALNACT1 & 0 & 1 \\
\hline STAT5B & DDX11 & 0 & 1 \\
\hline STAT5B & DZIP3 & 0 & 1 \\
\hline STAT5B & G2E3 & 0 & 1 \\
\hline STAT5B & GPSM2 & 0 & 1 \\
\hline STAT5B & HAUS5 & 0 & 1 \\
\hline STAT5B & HELLS & 0 & 1 \\
\hline STAT5B & HOXB4 & 0 & 1 \\
\hline STAT5B & HSD17B11 & 0 & 1 \\
\hline STAT5B & INSM1 & 0 & 1 \\
\hline STAT5B & KIF20B & 0 & 1 \\
\hline STAT5B & LRRC17 & 0 & 1 \\
\hline STAT5B & ME3 & 0 & 1 \\
\hline STAT5B & MNX1 & 0 & 1 \\
\hline STAT5B & NCAPH & 0 & 1 \\
\hline STAT5B & NEIL3 & 0 & 1 \\
\hline STAT5B & NEK2 & 0 & 1 \\
\hline STAT5B & PIK3CD & 0 & 1 \\
\hline STAT5B & POLQ & 0 & 1 \\
\hline STAT5B & RAB3A & 0 & 1 \\
\hline STAT5B & RAD18 & 0 & 1 \\
\hline STAT5B & RECQL4 & 0 & 1 \\
\hline STAT5B & REEP1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline STAT5B & SDC1 & 0 & 1 \\
\hline STAT5B & SH3GL2 & 0 & 1 \\
\hline STAT5B & SLC22A3 & 0 & 1 \\
\hline STAT5B & STIL & 0 & 1 \\
\hline STAT5B & TRIP13 & 0 & 1 \\
\hline TFAP2A & ABCA7 & 0 & 1 \\
\hline TFAP2A & ADAMTS1 & 0 & 1 \\
\hline TFAP2A & ADH4 & 0 & 1 \\
\hline TFAP2A & AGFG1 & 0 & 1 \\
\hline TFAP2A & AHI1 & 0 & 1 \\
\hline TFAP2A & ASF1B & 0 & 1 \\
\hline TFAP2A & AURKB & 0 & 1 \\
\hline TFAP2A & B2M & 0 & 1 \\
\hline TFAP2A & BAG3 & 0 & 1 \\
\hline TFAP2A & BMP2 & 0 & 1 \\
\hline TFAP2A & BRD8 & 0 & 1 \\
\hline TFAP2A & BUB1B & 0 & 1 \\
\hline TFAP2A & C6 & 0 & 1 \\
\hline TFAP2A & CCNB2 & 0 & 1 \\
\hline TFAP2A & CCNE1 & 0 & 1 \\
\hline TFAP2A & CCNE2 & 0 & 1 \\
\hline TFAP2A & CDC16 & 0 & 1 \\
\hline TFAP2A & CDC25B & 0 & 1 \\
\hline TFAP2A & CDC27 & 0 & 1 \\
\hline TFAP2A & CDH24 & 0 & 1 \\
\hline TFAP2A & CDKL5 & 0 & 1 \\
\hline TFAP2A & CENPA & 0 & 1 \\
\hline TFAP2A & CHAF1A & 0 & 1 \\
\hline TFAP2A & CKAP5 & 0 & 1 \\
\hline TFAP2A & CTR9 & 0 & 1 \\
\hline TFAP2A & DNAJB1 & 0 & 1 \\
\hline TFAP2A & DNAJB9 & 0 & 1 \\
\hline TFAP2A & DR1 & 0 & 1 \\
\hline TFAP2A & FANCG & 0 & 1 \\
\hline TFAP2A & G2E3 & 0 & 1 \\
\hline TFAP2A & GAS1 & 0 & 1 \\
\hline TFAP2A & GPSM2 & 0 & 1 \\
\hline TFAP2A & HAUS5 & 0 & 1 \\
\hline TFAP2A & HELLS & 0 & 1 \\
\hline TFAP2A & HLA-DOA & 0 & 1 \\
\hline TFAP2A & HMGCR & 0 & 1 \\
\hline TFAP2A & HOXB4 & 0 & 1 \\
\hline TFAP2A & HSD17B11 & 0 & 1 \\
\hline TFAP2A & INPP5K & 0 & 1 \\
\hline TFAP2A & INSM1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline TFAP2A & ITPR3 & 0 & 1 \\
\hline TFAP2A & JADE2 & 0 & 1 \\
\hline TFAP2A & KIF11 & 0 & 1 \\
\hline TFAP2A & KLF9 & 0 & 1 \\
\hline TFAP2A & KPNA2 & 0 & 1 \\
\hline TFAP2A & KPNB1 & 0 & 1 \\
\hline TFAP2A & KRAS & 0 & 1 \\
\hline TFAP2A & LRRC17 & 0 & 1 \\
\hline TFAP2A & MAN1A2 & 0 & 1 \\
\hline TFAP2A & MAP2K6 & 0 & 1 \\
\hline TFAP2A & MBD2 & 0 & 1 \\
\hline TFAP2A & MBD3 & 0 & 1 \\
\hline TFAP2A & MBD4 & 0 & 1 \\
\hline TFAP2A & ME3 & 0 & 1 \\
\hline TFAP2A & MET & 0 & 1 \\
\hline TFAP2A & MGAT2 & 0 & 1 \\
\hline TFAP2A & MNX1 & 0 & 1 \\
\hline TFAP2A & MYCBP2 & 0 & 1 \\
\hline TFAP2A & NAB1 & 0 & 1 \\
\hline TFAP2A & NASP & 0 & 1 \\
\hline TFAP2A & NCAPD2 & 0 & 1 \\
\hline TFAP2A & NCAPD3 & 0 & 1 \\
\hline TFAP2A & NCAPH & 0 & 1 \\
\hline TFAP2A & NDE1 & 0 & 1 \\
\hline TFAP2A & NEIL3 & 0 & 1 \\
\hline TFAP2A & NFE2L2 & 0 & 1 \\
\hline TFAP2A & NUP160 & 0 & 1 \\
\hline TFAP2A & PIK3CD & 0 & 1 \\
\hline TFAP2A & PKNOX1 & 0 & 1 \\
\hline TFAP2A & PPP3CA & 0 & 1 \\
\hline TFAP2A & PRKAR1A & 0 & 1 \\
\hline TFAP2A & PTPN9 & 0 & 1 \\
\hline TFAP2A & RAB23 & 0 & 1 \\
\hline TFAP2A & RAD18 & 0 & 1 \\
\hline TFAP2A & RCAN1 & 0 & 1 \\
\hline TFAP2A & REEP1 & 0 & 1 \\
\hline TFAP2A & RERE & 0 & 1 \\
\hline TFAP2A & ROCK1 & 0 & 1 \\
\hline TFAP2A & RRM1 & 0 & 1 \\
\hline TFAP2A & RRM2 & 0 & 1 \\
\hline TFAP2A & SDC1 & 0 & 1 \\
\hline TFAP2A & SH3GL2 & 0 & 1 \\
\hline TFAP2A & SLC22A3 & 0 & 1 \\
\hline TFAP2A & SLC38A2 & 0 & 1 \\
\hline TFAP2A & SMC4 & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline TFAP2A & STIL & 0 & 1 \\
\hline TFAP2A & TACC3 & 0 & 1 \\
\hline TFAP2A & TGIF1 & 0 & 1 \\
\hline TFAP2A & TOB2 & 0 & 1 \\
\hline TFAP2A & TRIP13 & 0 & 1 \\
\hline TFAP2A & TXNRD1 & 0 & 1 \\
\hline TFAP2A & UACA & 0 & 1 \\
\hline TFAP2A & UBE2D3 & 0 & 1 \\
\hline TFAP2A & UNG & 0 & 1 \\
\hline TFAP2A & VCL & 0 & 1 \\
\hline TFAP2A & VPS72 & 0 & 1 \\
\hline TGIF1 & ADAMTS1 & 0 & 1 \\
\hline TGIF1 & ADH4 & 0 & 1 \\
\hline TGIF1 & ARHGAP8 & 0 & 1 \\
\hline TGIF1 & ASF1B & 0 & 1 \\
\hline TGIF1 & AURKB & 0 & 1 \\
\hline TGIF1 & BARD1 & 0 & 1 \\
\hline TGIF1 & BIRC5 & 0 & 1 \\
\hline TGIF1 & BMP2 & 0 & 1 \\
\hline TGIF1 & BORA & 0 & 1 \\
\hline TGIF1 & BUB1 & 0 & 1 \\
\hline TGIF1 & BUB1B & 0 & 1 \\
\hline TGIF1 & C6 & 0 & 1 \\
\hline TGIF1 & CCNA2 & 0 & 1 \\
\hline TGIF1 & CCNE1 & 0 & 1 \\
\hline TGIF1 & CDC25A & 0 & 1 \\
\hline TGIF1 & CDH24 & 0 & 1 \\
\hline TGIF1 & CENPA & 0 & 1 \\
\hline TGIF1 & CENPF & 0 & 1 \\
\hline TGIF1 & CHEK2 & 0 & 1 \\
\hline TGIF1 & CLSPN & 0 & 1 \\
\hline TGIF1 & CSGALNACT1 & 0 & 1 \\
\hline TGIF1 & DDX11 & 0 & 1 \\
\hline TGIF1 & DMXL2 & 0 & 1 \\
\hline TGIF1 & DTL & 0 & 1 \\
\hline TGIF1 & DZIP3 & 0 & 1 \\
\hline TGIF1 & E2F1 & 0 & 1 \\
\hline TGIF1 & ERN2 & 0 & 1 \\
\hline TGIF1 & FAN1 & 0 & 1 \\
\hline TGIF1 & FANCD2 & 0 & 1 \\
\hline TGIF1 & FRZB & 0 & 1 \\
\hline TGIF1 & G2E3 & 0 & 1 \\
\hline TGIF1 & GAS1 & 0 & 1 \\
\hline TGIF1 & GPSM2 & 0 & 1 \\
\hline TGIF1 & HAUS5 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline TGIF1 & HELLS & 0 & 1 \\
\hline TGIF1 & HLA-DOA & 0 & 1 \\
\hline TGIF1 & HOXB4 & 0 & 1 \\
\hline TGIF1 & HSD17B11 & 0 & 1 \\
\hline TGIF1 & IFIT1 & 0 & 1 \\
\hline TGIF1 & IL18BP & 0 & 1 \\
\hline TGIF1 & INSM1 & 0 & 1 \\
\hline TGIF1 & ITGB3 & 0 & 1 \\
\hline TGIF1 & ITPR3 & 0 & 1 \\
\hline TGIF1 & KDM4A & 0 & 1 \\
\hline TGIF1 & KIF20B & 0 & 1 \\
\hline TGIF1 & KMO & 0 & 1 \\
\hline TGIF1 & LRRC17 & 0 & 1 \\
\hline TGIF1 & ME3 & 0 & 1 \\
\hline TGIF1 & MID1 & 0 & 1 \\
\hline TGIF1 & MITF & 0 & 1 \\
\hline TGIF1 & NCAPH & 0 & 1 \\
\hline TGIF1 & NEIL3 & 0 & 1 \\
\hline TGIF1 & NEK2 & 0 & 1 \\
\hline TGIF1 & NLRP2 & 0 & 1 \\
\hline TGIF1 & NPAT & 0 & 1 \\
\hline TGIF1 & PIK3CD & 0 & 1 \\
\hline TGIF1 & PLK1 & 0 & 1 \\
\hline TGIF1 & POLQ & 0 & 1 \\
\hline TGIF1 & RAB3A & 0 & 1 \\
\hline TGIF1 & RAD18 & 0 & 1 \\
\hline TGIF1 & RAD51 & 0 & 1 \\
\hline TGIF1 & RECQL4 & 0 & 1 \\
\hline TGIF1 & REEP1 & 0 & 1 \\
\hline TGIF1 & SDC1 & 0 & 1 \\
\hline TGIF1 & SH3GL2 & 0 & 1 \\
\hline TGIF1 & SLC22A3 & 0 & 1 \\
\hline TGIF1 & SRSF7 & 0 & 1 \\
\hline TGIF1 & STIL & 0 & 1 \\
\hline TGIF1 & TAB2 & 0 & 1 \\
\hline TGIF1 & TFAP2A & 0 & 1 \\
\hline TGIF1 & TOP2A & 0 & 1 \\
\hline TGIF1 & TRIP13 & 0 & 1 \\
\hline TGIF1 & UBE2C & 0 & 1 \\
\hline TGIF1 & VCAM1 & 0 & 1 \\
\hline TGIF1 & VEGFC & 0 & 1 \\
\hline YY1 & ADAMTS1 & 0 & 1 \\
\hline YY1 & ADH4 & 0 & 1 \\
\hline YY1 & ASF1B & 0 & 1 \\
\hline YY1 & AURKB & 0 & 1 \\
\hline
\end{tabular}

Table 37 continued
\begin{tabular}{|c|c|c|c|}
\hline TF & TG & W & \# dup \\
\hline YY1 & BUB1B & 0 & 1 \\
\hline YY1 & C6 & 0 & 1 \\
\hline YY1 & CCNE1 & 0 & 1 \\
\hline YY1 & CDH24 & 0 & 1 \\
\hline YY1 & CENPA & 0 & 1 \\
\hline YY1 & DZIP3 & 0 & 1 \\
\hline YY1 & G2E3 & 0 & 1 \\
\hline YY1 & GPSM2 & 0 & 1 \\
\hline YY1 & HAUS5 & 0 & 1 \\
\hline YY1 & HELLS & 0 & 1 \\
\hline YY1 & HLA-DOA & 0 & 1 \\
\hline YY1 & HSD17B11 & 0 & 1 \\
\hline YY1 & INSM1 & 0 & 1 \\
\hline YY1 & LRRC17 & 0 & 1 \\
\hline YY1 & ME3 & 0 & 1 \\
\hline YY1 & MET & 0 & 1 \\
\hline YY1 & MITF & 0 & 1 \\
\hline YY1 & MNX1 & 0 & 1 \\
\hline YY1 & NCAPH & 0 & 1 \\
\hline YY1 & NEIL3 & 0 & 1 \\
\hline YY1 & NEK2 & 0 & 1 \\
\hline YY1 & PIK3CD & 0 & 1 \\
\hline YY1 & RAD18 & 0 & 1 \\
\hline YY1 & REEP1 & 0 & 1 \\
\hline YY1 & SDC1 & 0 & 1 \\
\hline YY1 & SH3GL2 & 0 & 1 \\
\hline YY1 & SLC22A3 & 0 & 1 \\
\hline YY1 & STIL & 0 & 1 \\
\hline YY1 & TRIP13 & 0 & 1 \\
\hline
\end{tabular}

The table gives the list of negative edges in our gold standard network. The \(1^{\text {st }}\) column represents the TF. The \(2^{\text {nd }}\) column the TG. The \(3^{r d}\) column informs for each edge, if it is present in the network (value of 1) or if it is absent (value of 0). The present edges are the positive links and the absent edges are the negative links. For each edge, the number in the \(4^{t h}\) column provides the number of times it was repeated before removing the duplicate edges from the network obtained by combining Alonso networks and HumanBase networks.

Table 38: Duplicate regulatory interaction from TRRUST and RegNetwork
\begin{tabular}{lll}
\hline TF & TG & Number duplicate \\
\hline SP1 & MET & 4 \\
E2F1 & CCNA2 & 3 \\
E2F1 & CCNE1 & 2 \\
E2F1 & CCNE2 & 2 \\
E2F1 & DHFR & 2 \\
E2F1 & NPAT & 2 \\
E2F1 & POLA1 & 2 \\
HIF1A & CDKN1B & 2 \\
HIF1A & PDGFA & 2 \\
HIF1A & TIMP1 & 2 \\
HIF1A & VEGFC & 2 \\
NFE2L2 & TXNRD1 & 2 \\
SP1 & TYMS & 2 \\
STAT1 & VEGFC & 2 \\
TFAP2A & ITPR1 & 2 \\
YY1 & TOP3A & 2 \\
\hline
\end{tabular}

The table gives the edges that are repeated in the network obtained after merging the network from TRRUST and RegNetwork databases. The \(1^{\text {st }}\) column represents the TF. The \(2^{\text {nd }}\) column the TG. The \(3^{\text {rd }}\) column informs for each edge, its number of repetitions.

Table 39: Edges duplicated in our mouse regulatory network
\begin{tabular}{lll}
\hline TF & TG & \# dup \\
\hline ENSMUSP00000001326 & ENSMUSP00000079324 & 4 \\
ENSMUSP00000001326 & ENSMUSP00000111102 & 4 \\
ENSMUSP00000001326 & ENSMUSP00000111103 & 4 \\
ENSMUSP00000001326 & ENSMUSP00000117856 & 4 \\
ENSMUSP00000001326 & ENSMUSP00000118755 & 4 \\
ENSMUSP00000001326 & ENSMUSP00000121923 & 4 \\
ENSMUSP00000126143 & ENSMUSP00000079324 & 4 \\
ENSMUSP00000126143 & ENSMUSP00000111102 & 4 \\
ENSMUSP00000126143 & ENSMUSP00000111103 & 4 \\
ENSMUSP00000126143 & ENSMUSP00000117856 & 4 \\
ENSMUSP00000126143 & ENSMUSP00000118755 & 4 \\
ENSMUSP00000126143 & ENSMUSP00000121923 & 4 \\
ENSMUSP00000127445 & ENSMUSP00000079324 & 4 \\
ENSMUSP00000127445 & ENSMUSP00000111102 & 4 \\
ENSMUSP00000127445 & ENSMUSP00000111103 & 4 \\
ENSMUSP00000127445 & ENSMUSP00000117856 & 4 \\
ENSMUSP00000127445 & ENSMUSP00000118755 & 4 \\
ENSMUSP00000127445 & ENSMUSP00000121923 & 4 \\
ENSMUSP00000127714 & ENSMUSP00000079324 & 4 \\
ENSMUSP00000127714 & ENSMUSP00000111102 & 4 \\
\hline
\end{tabular}

Table 39 continued from previous page
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline ENSMUSP00000127714 & ENSMUSP00000111103 & 4 \\
\hline ENSMUSP00000127714 & ENSMUSP00000117856 & 4 \\
\hline ENSMUSP00000127714 & ENSMUSP00000118755 & 4 \\
\hline ENSMUSP00000127714 & ENSMUSP00000121923 & 4 \\
\hline ENSMUSP00000129638 & ENSMUSP00000079324 & 4 \\
\hline ENSMUSP00000129638 & ENSMUSP00000111102 & 4 \\
\hline ENSMUSP00000129638 & ENSMUSP00000111103 & 4 \\
\hline ENSMUSP00000129638 & ENSMUSP00000117856 & 4 \\
\hline ENSMUSP00000129638 & ENSMUSP00000118755 & 4 \\
\hline ENSMUSP00000129638 & ENSMUSP00000121923 & 4 \\
\hline ENSMUSP00000130747 & ENSMUSP00000079324 & 4 \\
\hline ENSMUSP00000130747 & ENSMUSP00000111102 & 4 \\
\hline ENSMUSP00000130747 & ENSMUSP00000111103 & 4 \\
\hline ENSMUSP00000130747 & ENSMUSP00000117856 & 4 \\
\hline ENSMUSP00000130747 & ENSMUSP00000118755 & 4 \\
\hline ENSMUSP00000130747 & ENSMUSP00000121923 & 4 \\
\hline ENSMUSP00000000894 & ENSMUSP00000029270 & 3 \\
\hline ENSMUSP00000000894 & ENSMUSP00000118239 & 3 \\
\hline ENSMUSP00000000894 & ENSMUSP00000142946 & 3 \\
\hline ENSMUSP00000099434 & ENSMUSP00000029270 & 3 \\
\hline ENSMUSP00000099434 & ENSMUSP00000118239 & 3 \\
\hline ENSMUSP00000099434 & ENSMUSP00000142946 & 3 \\
\hline ENSMUSP00000000894 & ENSMUSP00000006856 & 2 \\
\hline ENSMUSP00000000894 & ENSMUSP00000022218 & 2 \\
\hline ENSMUSP00000000894 & ENSMUSP00000029866 & 2 \\
\hline ENSMUSP00000000894 & ENSMUSP00000048709 & 2 \\
\hline ENSMUSP00000000894 & ENSMUSP00000103658 & 2 \\
\hline ENSMUSP00000000894 & ENSMUSP00000103960 & 2 \\
\hline ENSMUSP00000000894 & ENSMUSP00000117662 & 2 \\
\hline ENSMUSP00000000894 & ENSMUSP00000130693 & 2 \\
\hline ENSMUSP00000000894 & ENSMUSP00000145532 & 2 \\
\hline ENSMUSP00000001326 & ENSMUSP00000026846 & 2 \\
\hline ENSMUSP00000001326 & ENSMUSP00000123377 & 2 \\
\hline ENSMUSP00000001326 & ENSMUSP00000142970 & 2 \\
\hline ENSMUSP00000001326 & ENSMUSP00000143001 & 2 \\
\hline ENSMUSP00000001326 & ENSMUSP00000143540 & 2 \\
\hline ENSMUSP00000001326 & ENSMUSP00000143552 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000003115 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000009530 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000038870 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000065832 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000075463 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000106521 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000106522 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000110999 & 2 \\
\hline ENSMUSP00000021530 & ENSMUSP00000145056 & 2 \\
\hline
\end{tabular}

Table 39 continued from previous page
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline ENSMUSP00000021530 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000021692 & ENSMUSP00000002891 & 2 \\
\hline ENSMUSP00000021692 & ENSMUSP00000099729 & 2 \\
\hline ENSMUSP00000021692 & ENSMUSP00000113057 & 2 \\
\hline ENSMUSP00000021692 & ENSMUSP00000113653 & 2 \\
\hline ENSMUSP00000021692 & ENSMUSP00000115727 & 2 \\
\hline ENSMUSP00000021787 & ENSMUSP00000032192 & 2 \\
\hline ENSMUSP00000021787 & ENSMUSP00000144880 & 2 \\
\hline ENSMUSP00000021787 & ENSMUSP00000145177 & 2 \\
\hline ENSMUSP00000021787 & ENSMUSP00000145339 & 2 \\
\hline ENSMUSP00000021787 & ENSMUSP00000145522 & 2 \\
\hline ENSMUSP00000021787 & ENSMUSP00000145526 & 2 \\
\hline ENSMUSP00000021787 & ENSMUSP00000148284 & 2 \\
\hline ENSMUSP00000066743 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000066743 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000073041 & ENSMUSP00000085581 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000006856 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000022218 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000029866 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000048709 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000103658 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000103960 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000117662 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000130693 & 2 \\
\hline ENSMUSP00000099434 & ENSMUSP00000145532 & 2 \\
\hline ENSMUSP00000099733 & ENSMUSP00000020484 & 2 \\
\hline ENSMUSP00000099733 & ENSMUSP00000151409 & 2 \\
\hline ENSMUSP00000099733 & ENSMUSP00000151629 & 2 \\
\hline ENSMUSP00000099733 & ENSMUSP00000151825 & 2 \\
\hline ENSMUSP00000099733 & ENSMUSP00000152046 & 2 \\
\hline ENSMUSP00000105822 & ENSMUSP00000032192 & 2 \\
\hline ENSMUSP00000105822 & ENSMUSP00000144880 & 2 \\
\hline ENSMUSP00000105822 & ENSMUSP00000145177 & 2 \\
\hline ENSMUSP00000105822 & ENSMUSP00000145339 & 2 \\
\hline ENSMUSP00000105822 & ENSMUSP00000145522 & 2 \\
\hline ENSMUSP00000105822 & ENSMUSP00000145526 & 2 \\
\hline ENSMUSP00000105822 & ENSMUSP00000148284 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000003115 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000009530 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000038870 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000065832 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000075463 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000106521 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000106522 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000110999 & 2 \\
\hline ENSMUSP00000106088 & ENSMUSP00000145056 & 2 \\
\hline
\end{tabular}

Table 39 continued from previous page
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline ENSMUSP00000106088 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000003115 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000009530 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000038870 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000065832 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000075463 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000106521 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000106522 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000110999 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000145056 & 2 \\
\hline ENSMUSP00000106091 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000122403 & ENSMUSP00000043909 & 2 \\
\hline ENSMUSP00000126143 & ENSMUSP00000026846 & 2 \\
\hline ENSMUSP00000126143 & ENSMUSP00000123377 & 2 \\
\hline ENSMUSP00000126143 & ENSMUSP00000142970 & 2 \\
\hline ENSMUSP00000126143 & ENSMUSP00000143001 & 2 \\
\hline ENSMUSP00000126143 & ENSMUSP00000143540 & 2 \\
\hline ENSMUSP00000126143 & ENSMUSP00000143552 & 2 \\
\hline ENSMUSP00000127445 & ENSMUSP00000026846 & 2 \\
\hline ENSMUSP00000127445 & ENSMUSP00000123377 & 2 \\
\hline ENSMUSP00000127445 & ENSMUSP00000142970 & 2 \\
\hline ENSMUSP00000127445 & ENSMUSP00000143001 & 2 \\
\hline ENSMUSP00000127445 & ENSMUSP00000143540 & 2 \\
\hline ENSMUSP00000127445 & ENSMUSP00000143552 & 2 \\
\hline ENSMUSP00000127714 & ENSMUSP00000026846 & 2 \\
\hline ENSMUSP00000127714 & ENSMUSP00000123377 & 2 \\
\hline ENSMUSP00000127714 & ENSMUSP00000142970 & 2 \\
\hline ENSMUSP00000127714 & ENSMUSP00000143001 & 2 \\
\hline ENSMUSP00000127714 & ENSMUSP00000143540 & 2 \\
\hline ENSMUSP00000127714 & ENSMUSP00000143552 & 2 \\
\hline ENSMUSP00000129638 & ENSMUSP00000026846 & 2 \\
\hline ENSMUSP00000129638 & ENSMUSP00000123377 & 2 \\
\hline ENSMUSP00000129638 & ENSMUSP00000142970 & 2 \\
\hline ENSMUSP00000129638 & ENSMUSP00000143001 & 2 \\
\hline ENSMUSP00000129638 & ENSMUSP00000143540 & 2 \\
\hline ENSMUSP00000129638 & ENSMUSP00000143552 & 2 \\
\hline ENSMUSP00000130747 & ENSMUSP00000026846 & 2 \\
\hline ENSMUSP00000130747 & ENSMUSP00000123377 & 2 \\
\hline ENSMUSP00000130747 & ENSMUSP00000142970 & 2 \\
\hline ENSMUSP00000130747 & ENSMUSP00000143001 & 2 \\
\hline ENSMUSP00000130747 & ENSMUSP00000143540 & 2 \\
\hline ENSMUSP00000130747 & ENSMUSP00000143552 & 2 \\
\hline ENSMUSP00000139746 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000139746 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000140482 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000140482 & ENSMUSP00000148210 & 2 \\
\hline
\end{tabular}

Table 39 continued from previous page
\begin{tabular}{|c|c|c|}
\hline TF & TG & \# dup \\
\hline ENSMUSP00000140518 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000140518 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000140643 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000140643 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000140875 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000140875 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000141125 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000141125 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000141132 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000141132 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000141144 & ENSMUSP00000033919 & 2 \\
\hline ENSMUSP00000141144 & ENSMUSP00000148210 & 2 \\
\hline ENSMUSP00000153149 & ENSMUSP00000032192 & 2 \\
\hline ENSMUSP00000153149 & ENSMUSP00000144880 & 2 \\
\hline ENSMUSP00000153149 & ENSMUSP00000145177 & 2 \\
\hline ENSMUSP00000153149 & ENSMUSP00000145339 & 2 \\
\hline ENSMUSP00000153149 & ENSMUSP00000145522 & 2 \\
\hline ENSMUSP00000153149 & ENSMUSP00000145526 & 2 \\
\hline ENSMUSP00000153149 & ENSMUSP00000148284 & 2 \\
\hline ENSMUSP00000153271 & ENSMUSP00000032192 & 2 \\
\hline ENSMUSP00000153271 & ENSMUSP00000144880 & 2 \\
\hline ENSMUSP00000153271 & ENSMUSP00000145177 & 2 \\
\hline ENSMUSP00000153271 & ENSMUSP00000145339 & 2 \\
\hline ENSMUSP00000153271 & ENSMUSP00000145522 & 2 \\
\hline ENSMUSP00000153271 & ENSMUSP00000145526 & 2 \\
\hline ENSMUSP00000153271 & ENSMUSP00000148284 & 2 \\
\hline ENSMUSP00000153522 & ENSMUSP00000032192 & 2 \\
\hline ENSMUSP00000153522 & ENSMUSP00000144880 & 2 \\
\hline ENSMUSP00000153522 & ENSMUSP00000145177 & 2 \\
\hline ENSMUSP00000153522 & ENSMUSP00000145339 & 2 \\
\hline ENSMUSP00000153522 & ENSMUSP00000145522 & 2 \\
\hline ENSMUSP00000153522 & ENSMUSP00000145526 & 2 \\
\hline ENSMUSP00000153522 & ENSMUSP00000148284 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000032192 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000144880 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000145177 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000145339 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000145522 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000145526 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000148284 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000145522 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000145526 & 2 \\
\hline ENSMUSP00000153667 & ENSMUSP00000148284 & 2 \\
\hline
\end{tabular}

The table gives the edges that are repeated in the Mouse regulatory network after merging networks from TRRUST, RegNetwork and STRINGDB databases. The \(1^{\text {st }}\) column represents the TF. The \(2^{n d}\) column the TG. The \(3^{\text {rd }}\) column informs for each edge, its number of repetitions.

\section*{C. 2 Other}

This section gives more details on BENIN's execution time on the ENCS speed cluster. Table 40 gives BENIN's execution time on different network sizes, and without integrating any prior knowledge data. We performed all the computations on the ENCS speed cluster. It has sixteen, 32-core nodes, each with 512 GB of memory and approximately 1 TB of volatile-scratch disk space. We requested 25 cores for all computations. Note that size 10 and 100 networks are obtained from DREAM4 challenge data, and the size 628 network is the human network data.

Table 40: BENIN execution time on different network sizes
\begin{tabular}{llll}
\hline \# Genes & \# TFs & \# Time points & Execution time \\
\hline 10 & 8 & 105 & 125 s \\
100 & 41 & 210 & 931 s \\
628 & 54 & 48 & 5335 s \\
\hline
\end{tabular}

The table reports BENIN's execution time on a ENCS speed cluster, for different network sizes and different expression datasets. The speed cluster has sixteen, 32-core nodes, each with 512 GB of memory and approximately 1 TB of volatile-scratch disk space. We requested 25 cores for all computations. Note that size 10 and 100 networks are obtained from DREAM4 challenge data, and the size 628 network is the human network data. The \(1^{\text {st }}\) column gives the number of genes in the network/dataset. The \(2^{n d}\) column gives the number of TFs in the network/dataset. The \(3^{r d}\) column gives the number of time points in the time-series expression dataset. The \(4^{t h}\) column gives BENIN execution time without considering any prior knowledge data.```

