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Abstract

A Pipeline for Modelling of Ice-Hockey Stick Shape Deformation Using Actual Shot
Video

Gaurav Handa

In Ice-Hockey, performance of the player’s shots depends on their skill level, body strength as

well as stick’s construction and stiffness. In fact, research suggests that one of the primary reasons

that the elite players generate much faster shots is their ability to flex their hockey stick. Thus,

reconstructing the deformable 3D shape of the stick during the course of a player shot has important

applications in performance analysis of ice-hockey stick.

We present a new, low cost, portable system to acquire videos of a player shot and to auto-

matically reconstruct the stick shape’s deformation in 3D. This thesis is a sub-part and contributes

towards the ultimate goal of the pipeline in many different ways. First, designing a mobile stereo-

vision setup and its calibration, capturing a lot of data acquisitions with different players shooting

in different styles. Second, developing a two step pruning methodology to prune structurally thin

and fast moving ice-hockey stick from noisy reconstructed point cloud in 3D. Third, automating the

process of initial rigid alignment of the stick template in the noisy reconstruction. Forth, reducing

the effect of noise by using medial axis approximation approach and suppressing the hand occlusion

effect on the final template bending by a curve fitting approach. This pipeline is also robust against

different ice-hockey sticks along with different players, shooting at different styles.
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Chapter 1

Introduction

Ice-Hockey is a very popular team sport, characterized by high speed skating and rapid move-

ment of players. It is an equipment heavy sport where players use a variety of gears to play. One of

the most important piece of equipment of this sport is the ice-hockey stick. The global market for

ice-hockey sticks was estimated at 240 million USD in 2018 and is expected to reach 320 million

USD by the end of 2025, growing at a compound annual growth rate (CAGR) of 3.6 percent dur-

ing 2019-2025 [5]. A lot of technical advances are happening towards designing equipment for ice

hockey [6].

Performance of the player’s shots in ice hockey depends on their skill level, body strength as

well as sticks construction and stiffness. Rules of the game stipulate on the dimension of the shaft

and blade; however, there is no restriction on the material composition of sticks [7]. As such, stick

manufacturers have focused on making use of composite materials which allows them to modify

the sticks’ mechanical characteristics and evaluate improvements via shot mechanics [8]. This eval-

uation is dependent on variables like peak bending of the stick, peak puck velocity, stick to ground

angles, peak angular deflection of the shaft, and many more. In fact, research suggests that one

of the primary reasons that the elite players generate much faster shots is their ability to flex their

hockey stick [9]. Thus, capturing bending of the stick is an important aspect of performance analysis

of the ice-hockey stick.

But capturing this bend in the ice-hockey stick is a very challenging problem. Ice-hockey is

a very fast sport in terms of motion where a player shoots at very high speed. The average puck
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Figure 1.1: A visualization of slap and wrist shots in Ice-Hockey: Figure a)-c) depict the stages in
the slap shot and Figure d)-f) shows stages in the wrist shot of ice-hockey. The potential energy
stored in the bend of the stick transforms into kinetic energy of puck during shooting.
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velocity for an adult group is close to 97 km/h [10] and the bending in the stick happens for a very

short time. To properly capture this swift bending in the stick we need a high frequency acquisition

setup. With experimental testing we found that a vision based acquisition setup needed to have a

minimum frame rate of 250 frames-per-second (fps) to meticulously capture the bending details.

Apart from motion, structure of the ice-hockey stick poses other big challenges. An ice-

hockey stick is structurally a thin object which generally doesn’t have very good texture for 3D-

reconstruction. Additionally, the camera system has to be placed at a safe distance from fast moving

pucks which increases the camera capture volume. The thin structure and high capture volume adds

to the complexity of the stick segmentation. Thus, recognizing the stick in the scene without using

any added constraints of extra markers is a very challenging problem and one of the motivation of

this work.

After segmentation, Occlusion presents the next big challenge in recovering the true bend shape

of the stick. At any point of time, a part of the stick is at least occluded by the hand gloves of the

player. If not taken into account, this occlusion many a times results into undesired bumps in the

final bending (see Figure-4.26).

We propose a complete software pipeline along with hardware setup to capture and reconstruct

bending of an ice-hockey stick. We present a new, low cost, portable system to acquire videos of

a player shot and to automatically reconstruct the deformation in the 3D shape of the stick using a

template based approach [4]. For acquisition, we use portable high-speed stereo video cameras and

reconstruct the stick in 3D along with its deformation during various hockey shots. To perform the

3D reconstruction, we use a template based approach also known as the Shape From Template (SFT)

[11] approach. We use a shape template of the ice-hockey stick as provided by the manufacturer.

This template is then deformed using motion priors or physics-based principles to match the current

observation. For each captured frame, we deformed a mesh based ice-hockey stick template to

match the actual bending happening during the shot. Automatic initial rigid-alignment of this known

stick-template in the reconstructed 3D scene is another big challenge to address.

This thesis is a sub-part of the proposed pipeline which has many other components apart from

those discussed here. Section 4.2 explains different components of the complete pipeline, while

Section 4.3 summarizes the exact component wise contribution of this thesis towards the proposed

3



solution. As a part of the pipeline, this thesis majorly addresses the following challenges,

(1) Segmentation of the ice-hockey stick both in two and three dimensional spaces

(2) Automatic rigid alignment of stick template in reconstructed scene by means of point feature

matching

(3) Removal of the undesirable bending effect due to noise in reconstruction and hand occlusion

using a medial axis approach

The remaining thesis is organized as: Chapter 2 review related literature work and Chapter

3 summarizes the theoretical background needed to understand the various components of the

pipeline. Chapter 4 explains in detail, the overall pipeline and the technical contribution of this

thesis. Chapter 5 showcases the qualitative and quantitative results. Chapter 6 includes the conclud-

ing remarks and scope for future work.
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Chapter 2

Related Work

Various research studies on the game of Ice-Hockey are available in the literature looking at

different aspects of the game. A recent study in pose estimation and action recognition in the

game of Ice-Hockey is presented by [12]. For the purposes of stick performance analysis, however,

3D reconstruction/representation of the hockey stick is imperative, and not much work has been

reported on this problem. Optical motion capture studies from the perspective of 3D representation

are available in the literature for analyzing various shots employed in the game of Ice-Hockey. Some

of these studies have been carried out in a simulated environment i.e., by making use of the synthetic

ice [13], [14], [15], [16]. A recent study has also been carried out on real ice with professional

hockey players [17] to study the 3D kinematics of various shots played in Ice-Hockey. A few of

the major drawbacks in using these high-end, high accuracy motion capture equipment are (i) the

intrusive nature of the markers, (ii) high cost of equipment and its set-up, and more importantly (iii)

non-portable setup.

3D reconstruction from images and video has been at the core of many of the research problems

for several decades. A lot of literature is available in both computer vision and computer graphics

domains for 3D reconstruction, and similar representations often appear in both the domains. This

is owing to the fact that vision researchers are solving the shape recovery of real objects problem,

whereas graphics researchers are simulating the deformations of virtual ones [18]. The approaches

can be broadly classified into structure from motion (SFM) and template based reconstruction or

shape from template (SFT) [19].
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Figure 2.1: An illustration of state-of-art infra-red based motion capture system. Reflective markers
are placed on the player and equipment, which were analyzed by the camera system to study the
kinematics of the sport [Source: Ice Hockey Research Group, Mcgill University].

In SFM approaches, a set of points are tracked on a set of images, which then are used to

reconstruct the objects. A study on recovering the shape and motion of a single rigid object is

presented by [20]. An assumption of object shape being a linear combination of some basis shapes

has been made to recover shapes of deformable objects in [21], [22]. Stick movement in Ice-Hockey

is very fast and such rapid motion leads to large frame-to-frame differences, which makes tracking

challenging, especially for highly deformable objects [23].

In SFT or template-based reconstruction approaches, a shape template of the non-rigid object is

available a priori. This template is then deformed using motion priors or physics-based principles to

match the current observation. This has been demonstrated to estimate the shapes of human faces by

[24]. SFT approaches can be further subclassified based on input data, namely monocular, RGB-D

and stereo image sequences.

Monocular Data: Wangg et al [25] have proposed a method for reconstructing 3D face expres-

sions from monocular video sequences using a 3D face template mesh. Parashar et al [26] have

proposed volumetric SFT to reconstruct an object’s surface and interior deformation using a single

image and a 3D object template. Perriollat et al [27] have proposed reconstruction of sheet-like in-

extensible surfaces using a single image taken from a camera with known intrinsic parameters and

a template. Alldieck et al [28] have proposed a method to create personalized realistic 3D human

models from a monocular video sequence and a parametric SMPL body model. Zuffi et al [29] have
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proposed a method to obtain 3D textured animal model, given a set of images of the animal an-

notated with landmarks and silhouettes. Deep learning has also been employed in several research

works for 3D object reconstruction based on a single image. A detailed review on state-of-the-art

deep learning methods for image-based 3D object reconstruction is also available in the literature

[30]. The difficulty in using this monocular approach for our problem is that during a shot, the

orientation of the hockey stick keeps changing very rapidly and a single view is unable to provide

all the information needed for deformation modeling.

RGB-D Data: Microsoft introduced Kinect in 2010 and ever since affordable RGB-D devices

like Intel RealSense, Primesense Carmine, Google Tango, Occipital have made RGB-D database

creation very easy. Many foundational research problems have been revisited and rethought to make

best use of the new capabilities of RGB-D cameras, and a detailed survey is available in [31]. Li et al

[32] have proposed a method to reconstruct the 3D human body model from a single RGB-D image

and a parametric body model. Tao Yu et al [33] have proposed a new real-time system that combines

volumetric dynamic reconstruction with data driven template fitting to simultaneously reconstruct

detailed geometry, non-rigid motion and the inner human body shape from a single depth camera.

Raoul de Charette et. al. [34] have proposed a method to reconstruct arbitrary 3D revolving objects

(in context of live pottery making) that handles deformation as well as occlusion using one or more

depth sensors. The primary problem with these acquisition systems is that the speed of capture is

very low and a fast-moving hockey stick is difficult to capture using current state-of-the-art RGB-D

sensors.

We opted for a stereo setup consisting of two high-speed global shutter cameras with hardware

temporal synchronization. The system is capable of capturing at a very high frequency typically

around 275 frames per second, which is sufficient for high speed motion involved in the ice-hockey

shots. Capturing the scene with two different views help to cope up with the changing ice-hockey

stick orientation problem with single view setup. Some of the other major features of our setup is its

portability and economic feasibility. The system is assembled on a moving structure which can be

moved locally and can easily be dissembled-assembled to take out to remote places. Also, the setup

is relatively cheaper as compared to other sophisticated and expensive motion capture systems.
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Chapter 3

Technical Background

In this section, we discuss the theoretical concepts that form the foundation of the overall process

described in this thesis, at a high-level. Firstly, in Section 3.1 we explain the concepts behind

point clouds. We discuss idea behind the binocular stereo vision setup and its calibration. Then,

we introduce the idea of a point cloud descriptor which helps us perform automatic initial rigid

alignment of the stick template in the scene. In Section 3.2, we discuss the theoretical background

of optical flow particularly, dense optical flow which helps us in pruning point clouds. After that, we

describe the basics of different algorithms that we use at multiple occasions in this thesis namely,

RANdom Sample Consensus (RANSAC) in Section 3.3 and Iterative Closest Point (ICP) algorithm

in Section 3.4. Lastly, we discuss the L1-Medial skeleton extraction process in Section 3.5.

3.1 Point Cloud

For a long time, just 2D representation (images) of the real world provide solutions to com-

plex problems like remote sensing, microscopic imaging and many more. In today’s modern world,

adding the third dimension (depth) in the representation facilitates us to deliver more advanced

applications like autonomous vehicles, 3D printing and much more. With the advancement of hard-

ware technologies, there exist different techniques to generate the 3D representation of any object.

We can use modern 3D sensor technologies like projected light sensors (E.g: Kinnect) or Time-

of-flight sensors (E.g: LiDAR) to generate the 3D representation of any object. We can even use
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multiple 2D images from different views of the same object to generate its 3D representation (stereo

vision). We can store and process this 3D representation in different modes like RGB-D images or

point clouds. In our pipeline, we use the stereo vision principle to generate the 3D representation of

the scene in the form of a point cloud data.

A Point cloud is defined as a set of data points that represent object or space. Each point

includes atleast the X, Y and Z geometrical coordinates of an actual point. By means of point clouds

we can combine a large number of single spatial measurements into one dataset which represent a

complete object. Apart from geometrical coordinates a point cloud may also store a number of other

parameters like color, point-normal etc. There are a number of formats in which we can represent a

point cloud like .obj, .pcd, .epts etc.

Applications of point clouds can be seen in different domains. In the manufacturing industry,

point cloud are used to create 3D CAD model of manufactured parts for quality inspection. In the

automobile industry, a great amount of research has already been done to use point cloud based

depth perception for driver-less cars. Point clouds are also used for rendering and animation appli-

cations.

3.1.1 Point cloud generation: Binocular Stereo-vision

The technique of estimating 3D information of a scene by using images from two or more

viewpoints is known as stereo-vision. If only two images corresponding to different viewpoints of

the same scene are involved then it is called binocular stereo-vision. We have used two identical

cameras setup (see Section 4.1) separated by a baseline distance of approximately 1m center-to-

center. Let’s now discuss the geometry of this binocular stereo setup using a simple model as shown

in Figure 3.2 and see how we can retrieve depth information from it.

In this model, we have two identical cameras separated by a distance b in x-direction only

called baseline distance. In this simple model, we assume image planes to be co-planar. Any 3D

point in the scene is located at different 2D positions on both the image planes. These points on

different images that are projection of same real world point are called conjugate pair. The difference

(displacement) between the locations of this point on the image planes is of much importance and

known as the disparity. In simpler terms, disparity may be defined as the difference between the
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Figure 3.1: Visualizing point cloud: An example of point cloud representing an an actual object
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Figure 3.2: A simple model representing the binocular stereo vision geometry (Source [1])

conjugate pairs when we superimpose these images. An imaginary plane passing through the point

and the centers of both the cameras is known as epipolar plane. Let us consider a 3D point P with

geometrical coordinates as (x, y, z) where z is the depth of the point in real world. Let this point

form point P l(xl, yl) and P r(xr, yr) as conjugate pair and x
′
l, x

′
r as disparity values in left and right

images respectively. Then from the similarity of triangles we can say,

z

b
=

f

x
′
l − x

′
r

(1)

which can be written as,

z = b
f

x
′
l − x

′
r

(2)

Where, f is the focal length of cameras and b is the disparity. Thus, we have observed that the

depth of real world points can be retrieved with the knowledge of conjugate pairs and their disparity.

Here, we made an assumption that we know the conjugate pairs in the stereo images. The problem

of detecting conjugate pairs is known as correspondence problem and there exists various methods,

correlation-based, feature based to name a few, to solve it.
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Figure 3.3: Pinhole model of camera (courtesy: openCV)

3.1.2 Camera calibration

Camera calibration is defined as the process of finding intrinsic and extrinsic parameters. These

camera parameters are also called as internal and external parameters respectively. Intrinsic param-

eters are those camera parameters which deal with the camera’s internal characteristics like focal

length, image center, distortion and skew. Extrinsic parameters deal with the camera’s external

characteristics like, camera’s position and orientation with respect to the world.

Camera calibration is one of the vital steps in any 2D or 3D stereo vision application. There

are different techniques available for camera calibration but one of the most popular one is pho-

togrammetric calibration. In this technique, calibration is performed by using a calibration object

like, calibration bars or checkerboard pattern.

Let us consider a pinhole camera model as described in Figure 3.3. Under this model, a scene

view is generated by using perspective transformation of 3D points on image plane. A point object

with coordinates (X, Y, Z) is projected at location (u, v) on an image screen by using the following

perspective transformation:
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
u

v

1

 =


fx 0 cx

0 fy cy

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3





X

Y

Z

1


(3)

Where (cx, cy) is principal point representing the center of the image, fx and fy are focal lengths

with pixel units and s is the scaling factor. The joint matrix [R,t] is known as the extrinsic matrix,

where R corresponds to rotation while t corresponds to translation. This extrinsic matrix describes

the rigid motion of the moving object in front of the still camera. In simpler words, the extrinsic

matrix transforms the coordinates of an actual point to a fixed coordinate system with respect to the

camera. We can rewrite the transformation as below,


x

y

z

 = R


X

Y

Z

+ t (4)

x
′
= x/z (5)

y
′
= y/z (6)

u = fxx
′
+ cx (7)

v = fyy
′
+ cy (8)

In the real world, there are many distortions which influence this model. Like radial distor-

tion introduced by defects in manufacturing of lens and distortion arising from camera sensor not

completely orthogonal to lens axis. To accommodate such distortions, we have to extend the above

discussed camera model. The model mentioned below accommodates radial distortion and slight
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Figure 3.4: Left to right, example showing no-distortion, positive radial and negative radial distor-
tion respectively (courtesy: openCV).

tangent distortion: 
x

y

z

 = R


X

Y

Z

+ t (9)

x
′
= x/z (10)

y
′
= y/z (11)

x” = x
′ 1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′
y
′
+ p2(r

2 + 2x
′2) (12)

y” = y
′ 1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p2x

′
y
′
+ p1(r

2 + 2y
′2) (13)

where

r2 = x
′2 + y

′2 (14)

u = fxx
” + cx (15)

v = fyy
” + cy (16)

Where, k1, k2, k3, k4, k5, k6 are the radial distortion coefficients while p1, p2 are tangential distortion

coefficient.
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Figure 3.5: Coded circular scale bars used for calibration. The distances between the centers of
sequentially arranged circular figures are known which helps calibrate the setup.

The calibration and 3D-reconstruction part of the pipeline is implemented in the Agisoft’s Pho-

toscan API. In order to support high accurate measurement of the 3D data we use coded circular

scale bars shown in Figure 3.5. Before capturing any acquisition, we calibrate the cameras. Once

the cameras are calibrated, we can then capture any number of acquisitions without disturbing the

setup. For the purpose of calibration, we used the setup mentioned in the Figure 3.6. In addition

to coded circular scale bars, we used a colored calibration cloth to increase the correspondence

between left and right images for better results.

We optimize parameters k1, k2, k3, p1, p2 to accommodate distortion effects inside the Photo-

scan API. Sometimes, because of varied lightening effects markers are not automatically captured,

for which we have to mark them as seen in Figure 3.7. After performing the calibration step we

export the calculated camera positions and the parameters evaluated in an .xml file for later use.

After calibration the next step in Photoscan is to reconstruct each frame captured in the acquisi-

tion. By using the already saved calibration data we then reconstruct each frame of the acquisition

and save the results. The reconstruction of every frame is saved in the form of point cloud dataset.
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Figure 3.6: An example setup we used for one of the acquisition. For calibration, we use coded
circular scale bars and calibration cloth. The color calibration cloth helps to increase the correspon-
dence between the stereo images and give better results.

Figure 3.7: Images show the detected circular rings on the calibration bars. Left image belongs
to the left cameras and right image belongs to the right camera of the stereo setup. These circular
coded bars are automatically detected under Agisoft API.
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Figure 3.8: Image showcases the determined relative camera locations (blue boxes) and initial tie
points generated after the calibration step inside Agisoft API.

3.1.3 Point cloud descriptor: Point Feature Histogram

In any 3D point cloud based pipeline, one of the crucial steps is point feature extraction as we

can’t understand the scene just with the points’ 3D coordinates. Point cloud descriptors are compact

point features which could help better understand the geometry represented by the point cloud.

These descriptors should be invariant to translation, rotation and scale. One of the prominent uses

of point cloud descriptors is seen in multi-view point cloud registration problem. In this pipeline, we

use point cloud descriptors to find the initial rigid alignment of the stick template with the pruned

point cloud.

There exists different types of point features which can be broadly categorised as local, global

and hybrid, depending upon the technique used to calculate them. Surface normal and curvature are

the most commonly used local descriptors as they are calculated by using the closest neighbours

of a point. There exist different robust feature descriptors like moment invariants and spherical

harmonic invariants etc.

There are a plethora of techniques to quantify the 3D features in multi-value form like spin
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Figure 3.9: An example of the generated point cloud
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Figure 3.10: An illustration of influence region diagram for a Point Feature Histogram. The query
point (red) and all of its k-neighbours (blue) are shown, source: [2]

image signature and curvature based histogram to name a few. They are created from basic local

features (surface nomals, curvatures) and establish relationship between them by binning them in a

histogram. The Point feature histogram (PFH) [2] is an extension of this research line of multi-value

feature descriptors.

In PFH, we compute the local point feature histogram for every point in the dataset. PFH

quantifies the geometrical properties of the neighbouring points in the influence region of the query

point (see Figure 3.10) into density and pose invariant multi-value feature descriptor. In order to

generate PFH we have to first calculate the surface normal at each point of the point cloud. Now, to

compute the PFH at point p, we first consider a spherical influence zone of radius r with the center

at query point p. We then list all k-neighborhood points within radius r. For every pair pi and pj

(i 6= j) and their respective normals ni and nj, we will select source ps and target pt, where source

is the point which will have smaller angle between the respective normal and the line connecting

both points. Once the source is decided then a Darboux frame is generated with origin at the source

point: u = ns, v = (pt − ps) × u,w = u × v. The four geometrical features, as mentioned below,

are calculated and categorized using 16-bin histogram. Where each bin at index idx captures the

percentage of the point pairs in the k-neighbourhood which have their features in the interval defined
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by idx.

idx =

i≤4∑
i=1

step(si, f i) · 2i−1 (17)

Here step(s, f) is a step function with value 1 if f > s and 0 otherwise with,

f1 = v · nt (18)

f2 = ‖pt − ps‖ (19)

f3 = u · (pt − ps)/f2 (20)

f4 = arctan(w · nt, u · nt) (21)

When s1,s3,s4 are fixed as 0 and s2 as r, then each feature of a point pair in the neighbourhood of

query point is divided in two categories and encodes the percentage of pairs with same category for

all the features in the histogram. In our pipeline, we use a modified version of PFH known as Fast

Point Feature Histogram (FPFH) [35], which is the optimised implementation of PFH for real time

application.

3.2 Optical Flow

Motion is a vital part of our visual experience. This motion is caused by a relative movement

between the observer and the scene. Optical flow deals with the structure/pattern of motion of

objects in the scene. Optical flow is defined as the distribution of relative motion, pixel displacement

vectors within an image which belongs to a sequence of frames. For 2D images, optical flow

is generally represented in the form of 2D-vector fields. Each of these 2D-vectors represents a

displacement vector, showing that movement of a point in two consecutive image frames. Optical

flow has a large number of different applications, like it is used for object segmentation, robotic

navigation, stereo disparity measurements and many more. We have used optical flow for object

(ice-hockey stick) segmentation in this pipeline.

There are two major types of optical flow namely sparse optical flow and dense optical flow.

20



Figure 3.11: An illustration of object motion tracking using movement of pixels in the sequence of
frames. Colored paths in the figure depict the motion of respective point location on the stick from
starting frame to current frame using Lucas Kanade sparse optical flow algorithm [3].
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Sparse optical flow computes optical flow for a sparse feature set like corners etc. while dense

optical flow computes optical flow for all the points in the image. Sparse optical flow is fast but less

accurate while dense optical flow is slow but more accurate. There are different implementations

available for both sparse and dense optical flows. The Lucas-Kanade algorithm [3] is broadly used

for sparse optical flow estimation while Gunner Farneback algorithm [36] is for dense optical flow

calculation.

3.2.1 Dense Optical Flow: Farneback’s two frame optical flow

In Farneback’s algorithm [36], a dense optical flow is calculated using two consective frames.

The calculation of optical flow is based upon the polynomial expansion of a neighbourhood of pixel.

Each pixel’s neighbourhood in both frames is approximated by quadratic polynomials f(x), where

A, b, c are symmetric matrix, vector and scalar respectively.

f(x) ∼ xTAx+ bTx+ c (22)

Lets consider a polynomial signal f1(x)

f1(x) = xTA1x+ b1
Tx+ c1 (23)

It goes through an ideal translation d and results into a new signal f2(x).

f2(x) = f1(x− d)

= (x− d)TA1(x− d) + bT1 (x− d) + c1

= xTA1x+ (b1 − 2A1d)
Tx+ dTA1d− bT1 d+ c1

= xTA2x+ bT2 x+ c2

(24)

After equating coefficients of f2(x) with f1(x) we get,

A2 = A1 (25)
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Figure 3.12: Showcasing the vector representation (white lines) of the resultant Dense optical flow
calculated using the Farneback’s two frame optical flow algorithm with OpenCV. The displacement
of pixels observed by the optical flow is vividly visible around the ice hockey stick which is the
dominant moving object in the selected image pair.

b2 = b1 − 2A1d (26)

c2 = dTA1d− bT1 d+ c1 (27)

One major observation from this equation comparison is that ifA1 is non-singular then we can solve

for translation value d as following.

d = −1

2
A−11 (b2 − b1) (28)

Thus, we can determine the displacement vector for every pixel using consecutive pairs of

frames. In the practical implementation, the optical flow is determined in both the axis of the im-

age and Figure 3.12 showcases the vector representation of the resultant optical flow displacement

vector.
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3.3 Random Sample Consensus (RANSAC)

The Estimation of parameters of a mathematical model from given data points has been an

active area of research. This parameter estimation becomes quite challenging in the presence of a

high number of outliers in the input data. The RANdom Sample Consensus (RANSAC) algorithm

[37] is one of the popular choice for such scenarios. We use RANSAC based approach for initial

rigid alignment of the stick template in the starting frame with the noisy reconstructed point clouds.

RANSAC is an iterative algorithm which helps estimate mathematical model parameters from

a given set of observations that contain outliers. This algorithm assumes that there exist inliers

(may be small) whose distribution can be mapped using some model parameters. RANSAC uses a

random sampling iterative approach to finalize the parameters. This algorithm builds up different

models using different sampling in each case and data elements in the dataset used to find the

optimal solution. First, a random selection of the minimum required points is made from the dataset

and model parameters are computed from the selection. Second, using the estimated parameter a

check is performed with all points in the dataset to validate their fitting to the model based upon

some defined threshold value.

Algorithm 1: Random Sample Consensus

1 Randomly select the required minimum number of points to calculate the parameters of the

model.

2 Evaluate the model parameters using sampled points.

3 Using the estimated model, determine the number of points from complete dataset who fall

under the predefined tolerance value.

4 If inliers fraction is above a predefined threshold, re-calculate the model parameters using

all identified inliers and quit.

5 Else, repeat step 1 through 4 (maximum of N times).
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3.4 Iterative Closest Point (ICP)

ICP [38], sometimes also known as Iterative Corresponding Point algorithm is one of the major

methods to geometrically align 3D models when an initial relative pose is known a priori. A

major use of ICP could be seen in the 3D model generation using 3D scanning techniques. These

scanners produce scans of the object from one view at a time, which need to be registered together

to construct a complete 3D model. In this pipeline, we used ICP to refine the initial rigid alignment

of stick template to point cloud and propagate the bend template from previous the frame to the next

frame. Because of its popularity and widespread use today there exist many different variants of

the ICP depending upon different techniques of selection, matching of points and minimization of

error. An outline of the generic flow of ICP includes the following steps:

(1) Initialize the parameters for registration R,t and assign error metric to infinity.

(2) For every point in the source point cloud, find the corresponding closest point in the target

point cloud.

(3) Calculate the value of R,t for the given correspondence from step 2.

(4) Apply the transformation calculated from last step to the source point cloud.

(5) Calculate the error in the registration of source and target point clouds for a given transfor-

mation.

(6) If error is smaller than the threshold decided before then terminate, else repeat step 2 to 5

(maximum of N times)
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3.5 L1-Medial Skeleton

Shape analysis and manipulation of 3D data become challenging in the presence of noise and

missing geometry. One approach is to extract the skeleton representation from this noisy 3D data.

We followed the same approach to use L1-medial skeleton as 3D shape abstraction of the ice-hockey

stick instead of directly using a noisy point cloud representation for the bending step.

L1-medial skeleton [39] is a 1D structural representation for 3D point cloud data. L1-medial

has proven to be a great tool to get a global center of given data with an interesting property of being

robust to outliers. This approach of L1-medial skeleton makes an important observation to adapt

L1-medians locally for given input 3D points to generate a 1D structure. This calculated structure

represents the localized center of the geometry or a medial curve skeleton.

If Q = qj , where j ∈ J , be the given unorganized, unoriented dataset and X = xi, where i ∈ I ,

be the optimal set of projected median points found using the L1-medial skeleton definition:

argmin
x

∑
i∈I

∑
j∈J
‖ xi − qj ‖ θ(‖ xi − qj ‖) +R(X) (29)

θ(r) = e−r
2/(h/2)2 (30)

where the first term represents the localized adaptation ofL1-median ofQ, R(X) is the regularization

of the local point distribution of X. θ term in the expression that defines the weight function. This

weight function is a fast decaying smooth function with the support radius of h which defines the

local neighbourhood size for the skeleton generation. In the pipeline this approach helped us to

minimize the effect of noisy point cloud on final template bending.
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Chapter 4

Technical Contribution

As described earlier, capturing the bending in fast moving and structurally thin ice hockey stick

is a challenging problem. Additional constraints of keeping the setup portable and low cost add to

the complexity of the problem. We designed and developed hardware setup and software pipeline

to address this problem [4]. This chapter will introduce the proposed hardware setup in Section 4.1,

all components of proposed software pipeline in Section 4.2 and contribution of this thesis towards

proposed pipeline in Section 4.3. Finally, in Section 4.4 we explain the

Figure 4.1: A visualization of complete pipeline. Figure-a) shows pair of stereo-images captured
at an instance. Figure-b) showcases the reconstructed point cloud and Figure-c) shows the rigidly
aligned stick template (blue) in the point cloud. Figure-d) illustrates the fitted quadratic curve in
green. Figure-e) shows the bend template (red) and Figure-f) illustrate the zoomed portion for better
visualization [4].
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Figure 4.2: High speed cameras used for acquisition of the scene, Grasshopper 3.0 USB3 (cour-
tesy:FLIR).

4.1 Hardware Setup

We designed a portable and low cost synchronised binocular vision based acquisition setup. This

acquisition setup comprises of two Grasshopper3 USB3 color cameras from Flir and one custom

made temporal synchronization box. These are vision cameras with global-shutter and temporal

synchronization support. Ice-hockey is a motion intensive sport which is why we need high temporal

acquisition to capture bending of the stick. With experimental testing on the floor, we came up with

the 250 frames per second (fps) as sufficient temporal speed to capture majority of the bending. But

we chose 275 fps as target frame rate as more experienced or skilled players can shoot at relatively

higher speeds than normal.

To achieve this frame rate with relatively inexpensive cameras requires a trade-off between

spatial and temporal resolution, which in turn significantly impacts reconstruction accuracy. In our

setup in order to accomplish required frame rate, we chose a spatial resolution of 672× 608.

4.2 Software Pipeline

In this section we introduce the complete software pipeline. There are different components

involved in this pipeline which can be broadly classified as following, a) Point cloud reconstruction,

b) Primary pruning (motion-based), c) Secondary pruning (proximity based), d) Template rigid-

alignment, e) Medial axis generation, f) Final bending algorithm. Figure 4.4 showcases the logical

28



Figure 4.3: An illustration of the fast speed synchronized cameras setup mounted on the portable
platform. The distance between the cameras can be changed as required. This system is customized
to cater the need of easy portability.

flow of different steps in the pipeline.

For the first step, we used stereo reconstruction to obtain a point cloud per frame of the acquisi-

tion. However, this point cloud contains the stick and all the surrounding environment: the player,

the rink, etc. depending on the setup. We perform two pruning techniques to get rid of all the un-

wanted points. In primary pruning, using the temporal information from the next frame, we prune

the point that are static from frame to frame (Figure 4.5 right-middle). Then, we perform the rigid

fitting of the template to the point cloud. As the stick undergoes a lot of deformation we cannot use

the geometry of the straight stick as a template in all frames. Therefore, we use the reconstruction

of the previous frame as the template for the current frame and we use the Iterative Closest Point

(ICP) algorithm to rigidly align the template.

After the rigid template alignment, we perform the secondary pruning using a proximity based

approach with this aligned template. Under secondary pruning, we prune the point cloud using the

distance to the aligned stick template as a criterion (Figure 4.5 right-bottom). This is necessary

because the pruning based solely on motion may still contain points belonging to some parts of the

player body that are in motion (Figure 4.5 right-middle). We further need to deform the template

stick to match the reconstructed point cloud. This deformation operation has two ingredients: a

deformation model that can be applied to the stick geometry and a constraint mechanism that ensures

the deformed template matches the point cloud.

For the physics-based deformation model, we use the co-rotational Finite Element Model (FEM)
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Figure 4.4: Illustration of the flow in the pipeline, 3D reconstruction, point cloud pruning, initial-
rigid template alignment and media-axis creation (blocks in red) are the direct contribution of this
thesis towards the overall pipeline. First using stereo images (a) reconstruction of point cloud (b) is
performed. Initially pruned point cloud (e) is created by using image mask (d) from optical flow (c).
Initial rigid alignment of stick template (g) is done using this initial pruned cloud (e) and provided
stick template (f). After which the final pruning of point cloud (h) is performed. Medial axis (i) is
generated for each pruned point cloud which guide the final bending in each aligned template stick
(j).
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method similar to [40]. While there is a rich set of deformation models, a FEM model was the

most appropriate because we are aiming for a physically correct deformation. The co-rotational

FEM model is accurate, efficient and numerically stable, particularly suited for deformation that is

primarily rotational as it is in the case of the hockey stick.

The second part is to apply constraints to the hockey stick in order to deform it to fit the point

cloud. However, the point cloud is very noisy due to (i) relative low resolution of the cameras,

(ii) large distance from the subject and (iii) thin geometry of the hockey stick. Furthermore, the

stick is partially occluded by the hands or gloves of the player. Therefore, using the point cloud

directly results in artifacts as illustrated in Figure 4.26. To stabilize the geometry we robustly fit

a quadratic curve to the medial axis of the geometry of the hockey stick and we use this curve to

apply constraints to the hockey stick as illustrated in Fig. 4.1. Now we provide more details of our

acquisition system and deformation process.

4.3 Contribution

This thesis contributes towards the ultimate goal of the pipeline in many different ways. First,

designing a mobile stereo-vision setup and its calibration, capturing a lot of data acquisitions with

different players shooting in different styles. Second, developing a two step pruning methodology

to prune structurally thin and fast moving ice-hockey stick from noisy reconstructed point cloud

in 3D. Third, automating the process of initial rigid alignment of the stick template in the noisy

reconstruction. Forth, reducing the effect of noise by using medial axis approximation approach

and suppressing the hand occlusion effect on the final template bending by a curve fitting approach.

4.4 Implementation

This section focuses on the fine details of the major components which are contribution of this

thesis towards the proposed pipeline. Section 4.4.1 discusses the point cloud pruning methodology

developed for this pipeline. Under this, we first discuss motion based pruning and then explore

proximity based pruning. Then we move on to the details of the Global Initial-Rigid Alignment

problem of stick template under Section 4.4.2. Finally, in Section 4.4.3, we discuss the need and
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Figure 4.5: Complete Pruning Process. top-left) Input image; top-right) Masking out static pixels;
mid-left) Initial point cloud; mid-right) Pruned point cloud based on the pixel mask; bottom-left)
Initial point cloud with the aligned template; bottom-right) Pruned point cloud based on the prox-
imity to the aligned template.
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implementation details of Medial axis from the pruned point cloud.

4.4.1 Point Cloud Pruning

In Section 3.1 we have already discussed the point cloud reconstruction technique using binoc-

ular stereo-vision system. We generate point cloud for each frame of the acquisition using the same

reconstruction technique. The point clouds generated contain points corresponding to ice-hockey

stick (inliers) as well as the surrounding environment (outliers): player body, floor etc (can be seen

in Figure 4.6 a). We have to prune (remove) all outliers because of the following reasons. First, it

makes the pipeline lighter and reduces the per frame processing time. Second, to perform global

registration of the stick template in the first frame automatically and third, to generate the required

quality stick Medial axis for bending algorithm.

Ice-hockey is a very fast sport in terms of motion. When a player takes a shot with the ice-

hockey stick, the bending in the stick happens for a very short time. To capture this fast bending

motion of the ice-hockey stick, the setup requires a capture rate of at least 250 frames per second

(fps). In order to process that frame rate with relatively inexpensive cameras, we trade off the

resolution of acquisition images. With experimental testing we attained 250 fps with an image

resolution of 672 × 608 for the existing setup. This spatial resolution trade off with other factors

like, less availability of texture on objects and high space capture volume, significantly impacts the

quality of point cloud reconstruction. Thus, making pruning of these point clouds with sacrificed

quality a difficult task.

We successfully achieve the goal of pruning all the outliers from each point cloud using a two

step pruning approach as depicted in Figure 4.6. Adding some extra constraints like specific color

markers on the stick might reduce the complexity of the problem. But we try to make the pipeline

as robust as possible without adding any extra constraints. We use the spatiotemporal information

present in every acquisition sequence to segment the stick part only. Thus we settle for initial prun-

ing of the point cloud based on motion using optical flow algorithm (see section 3.2). This initial

motion based pruning removes a majority of static outliers from the point cloud, but still leaves

some behind (see Figure 4.6b). Majorly, these outliers are moving points on the player’s body or

moving shadows found in the frames. Nevertheless, this initial pruning enables us to automatically
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Figure 4.6: A visualization of sequential pruning of point clouds: Figure a) depicts the original
point cloud. In Figure b), we see the primary pruning based on motion. There are still some outliers
that are not removed. They are finally removed using secondary pruning based on proximity, as
seen in Figure c). As a result of both pruning steps, the final pruned point cloud only retains points
corresponding to ice-hockey stick.

position the stick template in the first frame (see Section 4.4.2) and paves the way for our final prun-

ing approach. This secondary pruning is based on proximity with the aligned template (see Figure

4.6c). This two step pruning methodology remove all the outliers but pruned stick still have inbuilt

noise from the reconstruction process. In next section we will see how to reduce this noise effect on

bending by using the Medial axis approach (Section 4.4.3).

Pruning: Based on Motion

In the pipeline we capture the motion as sequence of frames. We use this spatiotemporal infor-

mation to remove those outliers which are static in a pair of these sequential images. Let us say at

any time, T = t and T = t + dt we acquire two time sequential image frames I(t) and I(t + dt)

respectively. Here, time interval dt depends on the capturing frame rate. In our pipeline dt is very

small (for frame rate = 250 fps, dt = 4ms). For such a small time interval dt we take an assumption

based on our setup. We assume that motion captured between these two frames is majorly from

stick movement with some noise (seen from Figure 4.7a). The sources of this noise are moving

pixels that do not belong to the stick like player’s body, object shadows, moving puck etc.

We will capture this motion using concept of Optical-Flow. Section 3.2 summarizes the theo-

retical background of Optical-Flow. For more robustness, we need to calculate the Optical-Flow at
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Figure 4.7: Explaining the motion based pruning technique of point clouds. Figure-a) shows two
sequential images captured at time t0 and t1 from which we calculate the Optical-Flow (HSV rep-
resentation) as shown in Figure-b). Figure-c) depicts the overlap of binary mask created with this
Optical-Flow and original image. Figure-d) and e) compare the original point cloud, and the pruned
point cloud respectively. Using motion based pruning technique a majority of static outliers are
removed from the point cloud.
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all pixel locations instead of some key-points. We have used Gunner Farneback’s algorithm [36]

for calculating Dense optical-flow using OpenCV [41] because of its efficient computation needed

to process bulky data generated in each acquisition. In this two frame based motion estimation al-

gorithm, the first step is to approximate neighborhoods of both frames by quadratic polynomials.

We capture at very high frame rate therefore there is no big jump in pixels location in consecu-

tive frames, in other words the motion captured within two consecutive frames is slow. We choose

pixel neighborhood of size 8 to find polynomial expansion and an averaging window size of 15 as

these values fit well to our slow motion estimation between frames. Since there is no fast motion in

between two consecutive frames therefore we have used the pyramidal approach with just 2 levels

with scaling factor of 0.5. On each pyramidal level algorithm iterates for exactly three times.

For each pair of immediate sequential frames of the acquisition, we have calculated Dense

Optical-Flow in the form of two dimensional displacement vectors. For each pixel location I(x,y)

we will get a displacement vector V=(Vx,Vy) depicting its motion. Figure 4.8a visualizes the Dense

Optical-Flow calculated using a HSV (Hue, Saturation, Value) based color code where Hue value

describes the direction.

Since, we are going to create an image mask for pruning the point cloud from the Optical-

Flow, we have to further refine the Optical-Flow by doing some post processing steps. In this

post-processing we use two approaches. First we filter noise from calculated Dense Optical-Flow

by using a threshold value. Second, we use background subtractor algorithm to further refine it. To

filter noise, we calculate the L2 norm for each vector as following

∥∥∥∥V ∥∥∥∥ =
√
V 2
x + V 2

y (31)

The speed of motion in the stick is slow at the starting and picks up in between before coming to a

halt. Therefore, the value of resultant pixel motion in any two pairs of the sequence is not consistent.

In order to settle down for a robust threshold value which can differentiate noise and moving pixel

points for whole sequence we need normalization of values. Therefore, after finding the resultant

for each vector we shift the values to same scale by normalizing them within the range of 0 and 1.

We do a number of experimental trials, with data from different types of shots (Wrist and slap) and
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Figure 4.8: Comparison of original Dense Optical-Flow and its refinement after post-processing:
Figure-a) shows original Dense Optical-Flow calculated using Gunner Farneback’s algorithm while
Figure-b) showcases the refined version after post-processing. Post processing steps involve thresh-
old based noise filtering and background subtraction.

settle with the threshold value of 0.05. In order to create an Optical-Flow based binary image mask,

we filter all the pixels with normalized value of the displacement vector of less than 0.05. Parallelly,

we then create another binary image mask using a mixture of Gaussian based background subtractor

using OpenCV. Lastly, a logical AND operation on both the masks gives us the final image mask

(as seen in Figure 4.7b)

Now, we have an image mask containing moving stick and some outliers (which will be removed

after the final pruning step). The next step is to prune the point cloud by applying the back projection

technique. Section 3.1.2 touches on the theoretical background of the transformation matrix that we

use in this technique. In a pin hole camera model, object with coordinates (X, Y, Z) is projected at

location (u, v) on an image screen by using the following perspective transformation:


u

v

1

 =
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0 fy cy

0 0 1


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Figure 4.9: An illustration of back-projection of 3D point cloud on a 2D camera image. Blue dots
represent the projected 3D points from pruned point cloud after final pruning step onto 2D image.
For clarity of illustration, only 3D points corresponding to the stick are projected back on image.

In the pipeline we generate the camera transformation matrix after the camera calibration step

in the Agisoft’s Photoscan API. We use this information to back-project all (X,Y, Z) points of each

point cloud to get the projected (u, v) pixel location of that point on camera screen.

After doing the back-projection, we have the set of (u, v) projected pixel locations of each

point of point cloud and (u
′
, v

′
) non zero pixel locations from image masking. We then compare

these two. We then perform a search operation between these two sets by taking advantage of

kd-tree data-structure. Implementing this search operation with kd-tree greatly reduces the time

complexity. We only keep those (X,Y, Z) whose projected pixel location (u, v) matches with non

zero pixel locations (u
′
, v

′
) of masked images. In this way we have pruned the point cloud on the

basis of the motion.

Pruning: Based on Proximity

In the previous section, we have explained the point cloud pruning technique based on motion.

Pruning just based upon motion is not sufficient for this pipeline as outliers like players arm, moving
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Figure 4.10: Showcases the outlier detection in the medial axis created just after the motion based
pruning step that includes outliers like moving body parts of players. Red points are the outliers
while green points are inliers detected using two step curve fitting approach. Because of this
method’s complexity and less robustness, a secondary pruning method based on proximity is pre-
ferred over this
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Figure 4.11: Need for proximity based pruning technique: Figure-a) shows pruned point cloud with
primary pruning technique based on motion and Figure-b) depicts the Medial axis generated with
the pruned point cloud. Medial axis generated with just motion based pruning technique contains a
lot of outliers which further complicate the final bending algorithm.

puck are not pruned off using only motion based approach. But, this step is essential to locate the

stick template in the first frame. Motion based pruning does not completely remove all outliers

which leads to complex Medial axis structure. Figure 4.11 showcases the resultant pruned point

cloud using motion based approach and the Medial axis generated from this pruned point cloud.

We can solve this problem using two approaches. Either remove these outliers before Medial

axis generation or tackle them after Medial axis generation. We test both these approaches. Let’s

first talk about the later approach of removing outliers after generating medial axis. It’s vividly

clear that medial axis generated at this stage is more complex because of the presence of outliers

(see Figure 4.11). We tried to remove these outliers from the generated medial axis using a two

step curve fitting approach (as seen in Figure 4.12). Under this approach the goal was to first filter

out the outliers be fitting linear curve and then filter the blade part by fitting a quadratic curve.

This approach works well for most of the scenarios but this approach gets confused when a very

complex geometry is generated by the presence of high number of outliers in certain motion pruned

point cloud.
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Figure 4.12: An attempt to prune using clustering based algorithm: Left figure shows the clustering
based on OPTICS algorithm. Different colors corresponds to different clusters. Right Figure shows
clustering based on DBSCAN with epsilon value of 0.5. It can be observed that these two clustering
algorithms fails to correctly clusters inliers and outliers with desired quality

Figure 4.13: Secondary pruning of point cloud with proximity based technique. Figure-a) shows
both the pruned point cloud (Yellow) obtained after primary pruning and the initially aligned stick
template (Blue). Figure-b) showcases the point cloud after secondary pruning based on proximity
with initially aligned stick template. Figure-c) illustrates the Medial axis generated with the final
pruned point cloud. By using a secondary proximity based pruning technique all the outliers are
removed from the point cloud and a clean Medial axis can be generated.
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Figure 4.14: Adaptive alignment of stick template in proximity based pruning technique. Figure-a)
shows primary pruned point cloud (Yellow) and stick-template (Blue) from previous frame. We then
run the ICP algorithm on these two and obtain the adapted initial alignment for the current frame
as shown in Figure-b). Figure-c) illustrates the final pruned point cloud generated with proximity
based approach. We have now removed all the outliers which were present in the primary pruned
point cloud.

Then we start trying with the approach of removing these outliers even before creating the

medial axis. We tried a bunch of density based clustering approach like Ordering Points To Identify

the Clustering Structure (OPTICS) and Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) (see Figure 4.12). But, it doesn’t provide required quality results as not all the outliers

are always distant from inliers. Then we inclined towards a lesser complex and more accurate

approach. This time we utilize the information that we generated after locating the stick template in

the first frame. In simple words, initial pruning (motion based) helps us locate the stick template in

the first frame which in turn enables us to do the final pruning based on proximity to this initially

aligned stick template.

After initial pruning with motion, we generate pruned point clouds with outliers for all frames.

Using this initial pruning we locate the stick template in the first frame. For the first frame we use

this initially aligned stick-template to prune. We construct a kd-tree with the points in the pruned

point cloud. Then for each point vertex in the template we find all the points in the pruned point
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Figure 4.15: A comparison of results from proximity based pruning with and without the adap-
tive methodology. Figure-a) shows the point cloud (Yellow) with adaptive aligned bend stick tem-
plate (Blue) and Figure-b) depicts the resultant pruned point cloud. On the other hand, Figure-c)
showcases point cloud (Yellow) with aligned stick template (Blue), without any adaptive approach.
Figure-d) shows final pruned point cloud without adaptive approach. It is clear that the non adaptive
approach causes a loss of points from the bend region.
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cloud, which lie within a certain radius. We keep only these points and delete the rest of them seen.

With experimental testing we find that a radius of value 0.05 works well with our dataset.

In this pruning strategy we have implemented an adaptive methodology for all the frames apart

from the first. For the first frame we get the template from initial alignment step. But for all

the other frames, we use the bend template from the previous frame. The reason for using this

adaptive methodology is demonstrated from Figure 4.15. The figure clearly shows a loss of points

in the bending region if we use unbend template for each frame. To overcome this information loss

problem we have implemented the adaptive method.

Under this adaptive method, we first run ICP (see Section 3.4) algorithm on bend template of

the ith frame and initially pruned point cloud of i + 1th frame. Thus, we get the initially aligned

template for i+1th frame. We then perform the same proximity based pruning method as explained

for first frame. This way we get the new pruned point cloud for each frame which is free from

outliers and suitable to generate the Medial axis.

4.4.2 Global Initial Rigid Alignment: Stick-Template

In this pipeline, we use a template based deformation technique to capture the bending in the ice-

hockey stick. In order to perform the bending, this stick-template needs to be roughly rigidly aligned

with the point cloud as shown in Figure 4.16. In this section, we explore how to achieve this initial

rigid alignment of the template. We start with the initial alignment for first frame in Subsection 4.4.2

and then move on to propagate this aligned stick template for the rest of the sequence in Subsection

4.4.2.

Initial Rigid Template Alignment: First Frame

For the template based deformation technique, the stick template should be roughly aligned to

the stick points of the point cloud. Since, the stick template is generated via different scanning

methods and provided separately by the manufacturer, it can be present anywhere in the frame of

reference of the point cloud. The only valid assumption that we can make is that the template is of

the same shape and size as the one used in the acquisition. Figure 4.17 shows an example of the

actual stick and its 3D-template mesh provided by the manufacturer.
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Figure 4.16: An illustration of rigid initial alignment of stick template. The Figure shows the point
cloud with the initially aligned stick template in blue.

Let us frame this problem as a point cloud alignment problem. Consider we have a source point

cloud (stick-template) and target point cloud (reconstruction) located somewhere in the global frame

of reference. They can be any distance apart and in any relative rotation with respect to each other.

Here, the objective is to find a translation and rotation matrix that would roughly rigidly align them

together.

But there are a couple of challenges here. First, the target point cloud (reconstruction) consists

of many outliers in addition to the source object: floor, player body etc. Second, the source and

target point clouds differ significantly in terms of quality as both are generated by different scanning

techniques. Source (template) point cloud provided by manufacturer is well built with no missing

parts, while the target (reconstructed) point cloud is of sacrificed quality because of the reasons

explained before. Figure 4.18 explains the significant difference between the source and target

point cloud in terms of quality.

In order to remove the outliers from the target point cloud we implemented an initial pruning step

based on motion (see Section ??). After this pruning step, we removed most of these outliers. Now,

we use a technique of feature matching to solve our initial rigid template alignment problem. There
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Figure 4.17: Stick template: Figure-a) shows actual ice-hockey stick used in an acquisition and
Figure-b) showcases 3D mesh based template of the actual ice-hockey stick. Different sticks will
have different stick templates.
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Figure 4.18: A comparison of mesh based stick template with the reconstructed point cloud. Figure-
a) shows a reconstructed point cloud while Figure-b) shows the same reconstructed point cloud in a
different view. A zoomed portion of Figure-b) can be seen in Figure-c). Figure-d) visualizes a mesh
based stick template and Figure-e) showcases its Vertex distribution. Figure-f) is the zoomed rep-
resentation of Figure-e). As vividly seen from Figure-c) and f), stick template point distribution is
more uniform while reconstructed point cloud is noisy and irregular. This irregularity complexifies
the point feature mapping.
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Figure 4.19: Point Normal Visualization: Figure-a) shows point normals (blue lines) of a down-
sampled point cloud (red points). Points in black show original point cloud before downsam-
pling. Figure-b) visualizes point cloud vertices (red) after final pruning while Figure-c) showcases a
zoomed portion with point normal distribution (blue lines). Figure-d) shows vertex distribution (red)
of stick template mesh while Figure-f) showcases the zoomed-in portion with normal distribution
(blue lines). Pruning facilitates for initial stick alignment as with pruning we remove the peripheral
objects from point cloud (like floor, players leg etc) whose normal distribution might falsely match
rather than with the actual stick points’ normal distribution during point feature matching.
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Figure 4.20: A visualization of Point Feature Histogram. Figure shows stick template (Left Stick)
and its point feature histogram for a random point (Left chart), while the figure shows final pruned
point cloud (Right Stick) and its point feature histogram fora random point (right chart).

exists a large number of 3D point feature descriptors like, Signature of Histogram of Orientation

(SHOT), SIFT-3D, Spectral Histogram and FPFH (see Section 3.1.3). We choose FPFH features as

these point features are pose and point cloud density invariant, computationally less expensive and

more robust to noise. We use Open3D [42] library implementation of FPFH and RANSAC (see 3.3)

to solve it.

Finding point correspondence: Fast Point Feature Histogram (FPFH)

This initial alignment problem becomes easily solvable if we know the perfect point-to-point

correspondences in source and target data sets. However, this is not the case here as we are not

using any artificial markers. We have to robustly estimate the good correspondences between the

source and the target. We achieve this by using FPFH. Section 3.1.3 briefly describes the basics

behind creation of this multi-dimensional features.

Before calculating the FPFH we have to do some pre-processing. Firstly, we downsample both

the source and the target point cloud using a voxel based downsampling scheme. This downsam-

pling helps us to save both time and space. By doing the experimental trials on different samples
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of our dataset, we settle on a voxel size of 0.05. After downsampling, next step is to calculate the

surface-normals for both the source and the target. We find normals by best fitting the plane to the

neighbourhood surface using principal component analysis. We use a radius of 5 × voxelsize to

search for neighbours. Figure-4.19 visualizes the normals in the source and the target point clouds.

After generating normals, the next step is to find the Fast point feature histogram for all the points

in both the downsampled source and target point clouds. We construct a kd-tree based data structure

for the target point cloud feature map. In the next section we explain how we use this data structure

for faster searching operations. Figure-4.20 shows an example of the Fast point feature histogram

created as described above.

Finding Rigid Transformation: RANSAC approach

To find the final rigid transformation (translation and rotation) matrix for the source point cloud

so as to align with target point cloud, we use iterative approach of Random Sample Consensus

(RANSAC). A general introduction to the RANSAC is provided in Section 3.3. In the last section,

we explained how to generate FPFH signatures for each point in the source and the target point

cloud. We now find the transformation matrix using these point features iteratively.

For each iteration, we randomly find 4 points in the source point cloud. The only condition

on these points is that they have to be at-least 3.5× (voxel size) distance apart. Then, for each of

these points we find a list of points in the target point cloud whose FPFH is similar. From these,

we randomly select one point, which will become the source’s point correspondence. After finding

the correspondences of all these points we construct the rigid transformation and compute an error

metric for the whole point cloud. This error metric computes the quality of the transformation. We

use an RMSE (Root mean square error) based error metric. After rigid transformation, for each

point in the transformed source we find the closet neighbour point in the target point cloud. We then

calculate the RMSE using the Euclidean distance for all points and save the transformation matrix

with the error value. We iterate the whole process 40,000 times and find the best fit transformation

based on these error values.
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Initial Rigid Template Alignment: Remaining Frames

In the previous section, we explained the idea of initial rigid alignment of the stick template in

the first frame. We now discuss how to propagate this initial alignment in all the other frames of the

sequence. For doing so we use Iterative Closest Point (ICP) algorithm. Section 3.4 describes the

theoretical background for ICP algorithm. After the initial rigid alignment we have a stick template

aligned to the first point cloud of the sequence. First, we run the ICP on the same point cloud for

fine tuning the alignment. We then run the bending algorithm to get the bend stick template. We

then again run ICP on this bend stick and the next point cloud in the sequence. In simpler words, we

run the ICP on the bend template from the previous frame with the point cloud of the current frame.

Thus, by following this adaptive procedure for all the frames we propagate the initial alignment

of stick template to the complete sequence. Figure-4.21 shows the final aligned templates for the

complete sequence.

4.4.3 Medial Axis Generation

Shape analysis and manipulation is a very complex process. In this pipeline, we have to an-

alyze the shape of the deformed ice-hockey stick using point cloud reconstruction and model this

deformation using a mesh template (ice-hockey stick template). But, we have to sacrifice on the

point cloud quality because of frame rate and less texture. This means that the point cloud that we

generate are noisy and have some build-in artifacts. Figure 4.22 shows the various artifacts in the

input point clouds. If we use these noisy point clouds as it is in the pipeline than we would get

non-realistic results in bending as can be seen from Figure 4.26.

In order to solve this problem, we have to extract the exact bending shape from noisy point

clouds. The technique we use to solve this problem is Medial axis skeleton approach. Extracting a

skeleton representation from a 3D shape is known to be an effective means for shape abstraction.L1-

median is known to be a vital statistical quantity that extends the univariate median to multivariate

environment. It represents a global unique center of given dataset and known for its robustness

to outliers and noise [39]. Adapting L1-medians locally in a dataset representing a geometrical

structure results into a one-dimensional structure called as L1-medial skeleton [39]. Since in this
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Figure 4.21: Propagation of initial alignment of stick template from first frame to the entire se-
quence, using ICP with the adaptive approach.
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Figure 4.22: An illustration of artifacts in point cloud reconstruction. Figure-a) shows a pruned
point cloud and Figure-b) showcases a zoomed portion of the same point cloud highlighting the
missing portions. Figure-c) shows the same pruned point cloud in a different view and Figure-d)
showcases the zoomed portion highlighting non-uniformity in reconstruction.

Figure 4.23: Medial Axis Generation. Figure-a) shows a pruned point cloud and Figure-b) show-
cases the generated Medial axis skeleton curve from the pruned point cloud. We reduced the dimen-
sionality of the problem to abstract the shape from the object.
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Figure 4.24: Noise in medial axis. Figure-a) shows a pruned point cloud and Figure-b) showcases
the generated Medial axis skeleton curve (yellow) overlaid with the pruned point cloud. We can
observe the little bump shaped distortion at the center because of hand occlusion and non uniformity
in medial axis because of presence of small outliers in the pruned cloud
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pipeline we are dealing with noisy point cloud with inconsistent point density and missing geometry

which makes L1-medial skeleton a good fit to reduce the dimensionality of the structure. Section

3.5 explains in detail the actual algorithm used to generate this Medial axis skeleton curve.

After we perform final pruning step, we obtain a nicely pruned point cloud that contains just

the stick part. We create a Medial axis skeleton curve from this pruned point cloud. In order to

generate this Medial axis, we first have to downsample the actual point cloud. After downsampling

the point cloud, we use the implementation provided by [39] to generate the Medial axis because

it operates on the raw data scans, provide fast and robust skelton extraction. Figure-4.23 shows the

input pruned point cloud and the Medial axis generated. By using medial axis approach we suppress

this noise by reducing the dimensionality.

But, still there exists a couple of challenges that push us back from getting smooth bending

results directly from this medial axis. First, is the occlusion by hand or hand glove of the player.

If we closely analyze the Figure 4.24, we will see that there is little outward bump in the middle

of medial axis. Reason for this distortion mainly account from the continuous occlusion from the

player’s hand. Second challenge is the non- uniformity in the medial axis. As with medial axis

creation a significant amount of noise is compressed but still the level of noise present in medial

axis is significant enough to disturb smoothness of the bend.

Many attempts were made to smoothen the median curve and one of the failed attempt was to

use a regression spline to fit the medial axis curve but fails as it try to fit the same curve both in

blade and shaft points which results into bad curve fitting. A simple but effective solution to this

problem is fitting a smooth curve to the medial axis. We use a quadratic curve as bend in the stick

is most accurately represented by it.
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Figure 4.25: A failed attempt to smoothen medial axis by fitting a regression spline. a) shows a
pruned point cloud of ice-hockey stick, b) represents a medial axis of the pruned point cloud and c)
showcase the fitting of a regression spline (gray) to the medial axis. A close view at the bottom part
shows that the curve twist a bit to accommodate the blade part which is geometrically wrong for the
bending.

Figure 4.26: Comparison between fitting the point cloud directly or using the medial axis on a given
frame. a-d)Result fitting the point cloud directly. e-h)Result using the medial axis. The results
when using the point cloud directly exhibit clear undesirable artifacts while the result using the
medial axis conforms well to the real stick shape.
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Chapter 5

Results

In this chapter we provide qualitative and quantitative results on the bending of the stick. Figure

5.1 and 5.2 showcases the qualitative evaluation by overlapping the reconstructed scene point-cloud

with the resulting mesh. As observed from a visual inspection, the deformed stick template closely

matches the point-cloud.

The current state-of-art method to quantify the bending of the stick is with MOtion CApture

(MOCAP). In this method a number of markers are attached to the hockey stick and a sate of art

MOCAP is used to determine the various parameters of the stick like the maximun bending of the

stick. Although the MOCAP systems are very mature and accurate, they do not capture the entire

stick, only the trajectories of a few points. Furthermore, since our cameras are color cameras and the

MOCAP system’s cameras are infrared cameras, it is very difficult to align spatially the coordinate

frame of the MOCAP system with very high accuracy. Lastly, it is very challenging to temporally

synchronize the MOCAP system’s data stream and our data stream.

However, the maximum bend of a stick, an important benchmark for the stick deformation is

independent of spatial and temporal alignment so we decided to focus on this for our quantitative

evaluation. We follow the standard industry method used to estimate the maximum bending angle.

As shown in Figure 4.17 we attached a number of markers on the shaft in a pattern that creates

three local coordinate frames A to C. Two axes are formed from the markers and the third one can

be obtained using a cross product operator. The frame is then normalized to obtain an orthonormal

matrix. We computed two angles: angle 1 between the coordinate frames A and B and angle 2
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Figure 5.1: A few frames from a wrist-shot. We can capture the stick orientation both in deformed
and non-deformed configuration.

Figure 5.2: A few frames from a slap-shot. We can even capture the backward bend in the last frame
due to the stick oscillations in the high energy shot.
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Figure 5.3: A comparison of our bending results with a MOCAP system.

between coordinate frames A and C. We mimicked the same setup on the virtual stick by manually

positioning marker points. Since the the MOCAP markers are physically outside the stick, this

is a source of errors. Nevertheless, we averaged the two maximum angles for 2 slapshots and 2

wrist-shots using both systems. The results are presented in 5.3. The expected difference in the

maximum bending angle is about 4 degrees. It is important to note that some of this error arises due

to somewhat imperfect alignment of real and virtual markers.

The running time is dominated by the bending step that takes on average 87 seconds per frame.

All the rest of the steps combined take less than 15 seconds per frame for a total combined of about

100 seconds per frame.
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Chapter 6

Conclusion

Capturing the bending in the ice-hockey stick is one of the crucial parameter for the stick’s per-

formance analysis. There are many big challenges on the way to accurately reconstruct the bend

created by a player in the ice-hockey stick while playing an actual shot. In this thesis, we present

an idea of a complete software pipeline with hardware setup for reconstructing the 3D deformations

in the template shape of an actual ice-hockey shot. We start by capturing a passive-stereo based

acquisition of a complete ice-hockey shot sequence. We then process it by first reconstructing the

complete scene using stereo-vision technique. Then, segment just the ice-hockey stick in 3D using

a two step pruning methodology. After pruning, a medial axis of pruned stick is generated for each

frame and a quadratic curve is fitted to recover the smooth bend from the noisy point cloud recon-

struction. Finally a stick template which is automatically initially rigid-aligned in reconstructed

scene is deformed using a co-rotational FEM model to match the bend curve derived before.

This thesis contribute significantly towards the ultimate goal of the complete pipeline. We did

a lot of data acquisition of different shots with different players to enhance the robustness of the

system. We developed, iterated and compiled the different sub-parts of the software to a single

automatic pipeline. This thesis explains in great detail the exact pruning methodology adopted to

prune a thin structure object from a noisy point cloud reconstruction. It also describe the process to

initial rigid alignment of the stick template in a noisy point cloud reconstruction using the technique

of FPFH 3D feature matching with RANSAC approach. Further, it also suggest an innovative

method using the medial axis to remove the noisy point outliers and accurately recover the bend
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shape from the noisy ice-hockey stick reconstruction. We tested this pipeline with different stick

objects, shooting styles and it perform well in all cases.

6.1 Future work

In this research work we focus solely on the bending of the shaft part of the stick and not on

the deformations of the blade part. A future work would include segmentation and deformation

of the blade part of the stick which is quite challenging because of blade’s geometrical proximity

with puck, floor and partial occlusion by the puck. The other limitation of this pipeline is the over

dependence on the initial reconstruction of the point cloud which is too noisy. In a future work,

one can replace the stereo reconstruction with a visual hull reconstruction using image-based stick

detection in each image.
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