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ABSTRACT

Interest rate models for direct participation products under IFRS 17

Zinatu Ibrahim

The incoming IFRS 17 standard will require insurers to adopt market-consistent methods

in valuing their insurance contract liabilities. Insurance contracts such as segregated funds

categorized as direct participation contracts are highly dependent on the choice of interest

rate model. This thesis describes the general steps in the calibrating the G2++ and G3++

short rate models to swaptions. The calibration process is an optimization problem where

parameters that minimize the difference between market and model implied prices are

determined. We highlight some issues that arise during the calibration such as the choice

of a calibration method and an optimization algorithm as well the imposed constraints

used in solving this inherent non-convex global optimization problem. An evaluation

of the calibrated models’ consistency to replicate market volatility surface is made via

Monte-Carlo simulations. Then a simulation scheme devoid of discretization errors is

provided for the stochastic discount factor, the short rate and bond prices which are

useful in market-consistent valuations. We provide an illustration of a market-consistent

valuation of a segregated fund fully invested bonds and compare the models’ results.

Finally, we assess the robustness of the models’ calibration to different market data and

parameter specification. This is to ensure that the calibrated models provide stable

financial results for annual regulatory reporting.
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General Introduction

Background

Effective January 1, 2023, entities issuing insurance contracts in many jurisdictions will

be subject to the IFRS 17 standard in their regulatory reporting. Under the incoming

IFRS 17 framework, insurers are required to adopt market-consistent methods in valu-

ing their insurance contract liabilities. A valuation is said to be market-consistent if its

assigned value agrees with prevailing market prices or if it is estimated, the model that

estimates the price replicates the observable market prices it is calibrated to within an

acceptable tolerance. The objective behind the requirement for market-consistent valua-

tion per the standard is to reduce subjectivity and reflect evident information available to

users of financial statements. It also provides the use of a common and publicly available

benchmark that users of financial information can easily understand.

IFRS 17 distinguishes between two types of insurance contracts; those with direct partic-

ipation features and those without direct participation features (see paragraphs BC227

of the basis of conclusions IASB [2017])1. Due to the nature of insurance contracts with

direct participation features, they are considered by the standard to generate cash flows

that vary based on the underlying item where the underlying item could be an equity

index, a bond etc. Segregated funds (with guarantees; called variable annuities in the US

and unit-linked insurance in the United Kingdom) are examples of contracts categorised

as insurance contracts with direct participation features [Canadian Institute of Actuaries,

2018]. These fund-linked products offer direct participation in financial market growth

1Reference from the basis of conclusions of the IFRS 17 standard will be italized with the prefix BC.
References from the standard will not include the prefix
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while protecting the initial premium. The guarantee acts a financial option and the con-

tract may be surrendered at anytime before the maturity of the contract.

According to paragraph BC152, insurance contracts with embedded options and guar-

antees such as segregated funds are to be measured (valued) in a way that reflects their

inherent financial risk either through estimates of future cash flows or through their dis-

count rates. However since these embedded options and guarantees are not openly traded

on the market, it is difficult to assign them a market value.

With regards to the methodology in their valuation, the standard does not explicitly re-

quire a specific technique although it allows the use of a replicating portfolio whose cash

flows exactly match in all scenarios, timing and uncertainty to the contract at hand.

Paragraph B48 however explains that stochastic modeling may be robust and that given

the specific situation, “judgement” is required to determine the best technique that meets

the market-consistency criterion. From a mathematical finance perspective, this may be

translated to “where closed-forms exist for the option prices, they may be used, otherwise

Monte Carlo simulation might prove useful”.

In terms of the market variables used in the valuation, entities are by paragraph B44

expected to maximise the use of all observable market variables such as interest rates

as direct model inputs on the valuation date without adjustments if possible. If certain

variables are unobservable (e.g. market prices of long dated options, long maturity yields

etc.), they should be derived as consistently as possible with those that can be directly

observed without any contradictions. Estimates of the discount rates used in discounting

the cash flow scenarios are to reflect the variability of the cash flows. While the standard

does not specify an exact estimating technique for discount rates applied to cash flows

that vary with the underlying item, it recommends the use of stochastic/risk-neutral mod-

eling techniques that maximize market input to ensure that the estimated discount rates

are current and market-consistent. For non-market variables, the entity is encouraged to

use its own perspective suitable for their risk profile, see paragraphs B50-B53.

2



Motivation

The principle-based approach of the standard presents a great challenge to insurers since

it does not exactly specify a practice. Yet, insurers must make justifiable choices in the

entire development of their valuation scheme, which are compliant with the standard.

For insurers already familiar with market-consistency techniques, this task may not be

daunting. For others unfamiliar with this area, particularly those outside of Europe and

North America, this challenge gives rise to several questions [Moody’s Analytics, 2020].

1. Do closed forms exist for the embedded options and guarantees?

2. Which stochastic modeling techniques should be used (e.g. interest rate models)?

3. Which market instruments/data will the models be calibrated to ?

4. How consistent are the models in replicating observable market inputs?

5. Are the models robust?

In this thesis, we attempt to address these questions in addition to other issues subse-

quently raised. Our primary focus shall be on the calibration of interest rate models

as they represent the key drivers of stochastic discounting. In addition, valuation of

embedded guarantee products highly depends on the choice of interest model and their

underlying assumptions since it is used to simulate the future evolution of the underly-

ing fund, the policy account values as well the stochastic discount factors applied to the

generated cash flow scenario. The instantaneous interest rate also represents the drift of

most underlying assets (for example equity and real estate) under the risk-neutral mea-

sure Q. This necessitates the use of robust interest rate models that accommodate the

current ultra-low interest rates we are experiencing [Pedersen et al., 2016].

In this thesis, we provide the general steps of calibrating the two and three-factor-additve

Gaussian interest rate model (known in literature as G2++ [Brigo and Mercurio, 2007]

and G3++ short-rate models respectively) to swaptions by first presenting the theoritical

framework and assumptions of a general n-factor-additive model following Di Francesco

[2012]. The Gn++ interest rate model is a general framework for a deterministically

3



shifted sum of n Gaussian processes which provides an exact fit to the market term

structure. We also highlight certain issues that arise during the calibration process such

as the calibration method; whether to minimize the relative difference of the model and

market (Black) prices or to minimize the relative difference between the model and mar-

ket implied volatility. In addition, we explain some constraints imposed on this inherent

global optimization problem to facilitate the optimization algorithm.

To validate the quality of the calibration, we provide a simulation scheme for swaption

prices used in computing the model implied volatilities. This allows us to assess the

calibrated model’s fit in replicating the market volatility surface. In addition, we at-

tempt to provide an exact simulation scheme of the short-rate under the forward and

risk-neutral measures which is important in derivative pricing and risk-neutral valuation.

We also provide details on simulating the stochastic discount factor under the Gn++

model based on an exact simulation devoid of discretization errors. After verifying the

consistency of the calibrated model with market input, we provide an illustration of a

market-consistent valuation of a segregated fund where the premium is fully invested in

fixed income (bonds). This is to circumvent the need for equity modeling which is outside

the scope of this work.

We also examine the issue of robustness of the interest rate model with respect to the

valuation date. Interest rate models are highly sensitive to the data used to calibrate

them. However these observable market inputs (e.g. implied volatilities, yield curves

etc.) are designed to change following each trade to reflect their realized prices. Hence

it is not surprising for calibrated model parameters to greatly differ by day. For the

derivatives trader, this might not have an great implications as she calibrates the models

everyday [Park, 2004]. For the valuation actuary however, this might be of practical

consequence since the calibration is done on a single day of the year to satisfy regula-

tory requirements. Hence it is important for the financial models to not only satisfy

the market-consistency criterion but also to be robust enough to provide stable financial

statements. We investigate the impact of reparameterization of the interest rate model to

three sets of market data with a two-day lag, where there does not seem to be a huge shift

4



in the market conditions e.g. yield curve and implied volatility surface. We analyse the

distribution/evolution of future interest rates across the three calibration dates by first

visualizing their distributions. Next we investigate the deviation of the short rate implied

by the three sets of calibrations by computing their pairwise root mean square deviation

across simulated short rate paths. We also analyze the stability of the segregrated fund

valuation results with respect to these three calibration dates.

Organization of Study

This study is organized as follows; in Chapter 1 we introduce an overview of interest

rates concepts, zero-coupon bonds, interest rates derivatives specifically swaptions which

are appropriate for the considered multi-factor interest rate model calibration. We also

present important concepts, definitions and notations used through out this thesis. Then

in Chapter 2 we present the Gn++ interest rate model following Di Francesco [2012].

Under this model, the short-rate, is a sum of n correlated Gaussian processes and a

deterministic function used to provide an exact fit to the market discount curve. We

introduce the dynamics of the short-rate under the risk-neutral measure and analytical

formulas of the zero-coupon bond prices. We then switch to the forward-measure dynam-

ics of the short-rate model in order to present a semi-analytic expression of the swaption

price proposed by Brigo and Mercurio [2007]. Due to the numerical inefficiency of the

semi-analytic formula during the calibration process, we use an approximated closed-form

formula of the swaption price under the framework of Gaussian interest rarte models pro-

posed by Schrager and Pelsser [2006]. Closed-formed zero-coupon bond and swaption

prices facilitates a computationally efficient calibration process to market implied swap-

tion volatilities as opposed to using Monte-Carlo simulations or numerical techiniques in

calibration algorithm; albeit it comes at a cost of some approximation errors.

In Chapter 3 we discuss the general steps of calibrating the Gn++ model to market

implied swaption volatilities. We also describe the nature of the relevant market input

(which includes the market yield curve and the market implied volaltility surface) and

5



consistently derive unobservable market yields by cubic spline interpolation. The calibra-

tion of the interest rate model to swaption volatilities is an optimization problem where

the optimization algorithm finds parameters that minimizes the difference of observable

and model implied prices. Therefore the choice of an optimization algorithm is a delicate

step in the interest rate calibration because the the generated parameters are the building

blocks of the model simulated cash flow scenarios used in derivative pricing and insurance

contract valuation. We discuss the drawbacks of deterministic algorithms in calibrating

the interest rate model and the suitability of stochastic optimization algorithms to this

inherent global optimization problem; with a specific focus on the differential evolution

algorithm implemented in the R package DEOptim by Mullen et al. [2009]. We conclude

the chapter by presenting the calibration results using the techniques described.

Chapter 4 illustrates the procedures of validating the market-consistency of the cali-

brated interest rate model via Monte-Carlo simulation of the observable market prices as

described in Pedersen et al. [2016]. We simulate the Monte-Carlo swaption prices then we

use the market Black formula to find the model implied volatilities. The model implied

volatility surface is then compared to the market volatility surface to assess the goodness

of fit. We also provide an exact simulation scheme of the short-rate, stochastic discount

factor and zero-coupon bond prices under both risk-neutral and forward-measures de-

void of discretization errors by virtue of the distributional properties of the short rate.

These simulated quantities are useful in generating scenarios for the underlying fund of

embedded guarantee products. Then we provide an illustration of a market-consistent

valuation of segregated fund invested in rolling-horizon bonds. We assume a dynamic

policyholder behaviour and a deterministic mortality assumption to make our valuations

more realistic.

In chapter 5, we examine the robustness of the Gn++ model and the stability of valuation

results with respect to the market inputs on three different days with a two-day lag. We

present the calibrated parameters of both models on the three different days and analyze

the distribution of the short rate implied by different set of calibrations. We compute

the root mean square deviation (RMSD) of the short rate implied by the calibration sets

6



for the two models separately and analyze their magnitude. Using a similar technique

as before, we compute the RMSD of the underlying fund as implied by the multiple cal-

ibration set. This step ensures that the Gn++ model produces stable valuation results

for financial reporting when calibrated to the different market data where there has not

been a significant shift in the market.

7



Chapter 1

Interest Rates And Interest Rate

Derivatives

1.1 Definition and Notations

Before introducing the interest rate models and its calibration to the market data, we first

present the concepts underlying the interest rate theory widely documented in literature

(particularly in Brigo and Mercurio [2007]). We also provide definitions and relationships

of different interest rates, some important derivatives pertinent to this work together and

key notations used throughout this work.

The Bank Account/Money market account

The bank account is a riskless investment for which profit is accrued continuously at the

prevailing market risk-free rate Brigo and Mercurio [2007]. We denote B(t) as the bank

account value at any time t ≥ 0 and assume that B(0) = 1. It is also assumed that the

bank account evolves according to the differential equation;

dB(t) = r(t)B(t)dt, B(0) = 1 (1.1)

where r(t) is the rate at which the bank account accrues and is referred to as the short

rate or the instantaneous short rate. It can be defined as the interest rate at time t that

8



applies to an investment of an infinitesimally short period of time. (1.1) may be also

expressed as

B(t) = exp

(︃∫︂ t

0

r(s)ds

)︃
. (1.2)

Stochastic Discount Factor

The stochastic discount factor D(t, T ) between times t and T is the amount at time t

that is equivalent to a unit of currency payable at time T . It is given by

D(t, T ) =
B(t)

B(T )
= exp

(︃
−
∫︂ T

t

r(s)ds

)︃
. (1.3)

Zero-Coupon Bond

A T -maturity zero-coupon bond is a contract that guarantees its holder the payment of

one unit of currency at time T with no intermediate payments. The value of the zero-

coupon bond at any time t < T is denoted as P (t, T ) and it depends on interest rate

fluctuations. Since the bond matures at T , P (T, T ) = 1.

If the short rate process r is assumed to be deterministic, then the discount factor is also

deterministic with

D(t, T ) = P (t, T )

for each pair (t, T ). However if r is stochastic, which is the underlying theme of this work

and consistent with happens in reality, the discount factor is also random and is related

to the bond price under certain conditions described shortly.

Continuously-compounded spot interest rate

The spot interest rate is the market interest rate today that would be appropriate to

determine the present value today of a single payment at time T . The continuously-

compounded spot interest rate R(t, T ) at time t is referred to as the yield on the zero

coupon bond is the constant rate at which an investment of P (t, T ) at time t accrues

9



continuously to yield a unit of currency at maturity T . Thus

P (t, T )eR(T,t)(T−t) = 1

which gives

R(t, T ) =
− lnP (t, T )

T − t
. (1.4)

Simply-compounded spot interest rate

The simply-compounded interest rate L(t, T ) at time t is the constant rate at which an

investment of P (t, T ) accrues to one unit of currency at maturity T when accruing occurs

proportionally to the investment time. Thus

(1 + L(t, T )(T − t))P (t, T ) = 1

which gives

L(t, T ) =
1− P (t, T )

(T − t)P (t, T )
. (1.5)

The term structure of interest rates

The term structure of interest rates also referred to as the yield curve, zero-coupon curve

or spot curve is the function mapping maturities into spot rates at a given time t. It is

given by

T ↦→ R(t, T ), T > t. (1.6)

The spot rates on the yield curve may also be quoted in terms of other compounding

conventions. The term structure of interest rates provides an indication of the market’s

expectation about future interest rates.
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Forward rates

Forward rates are interest rates that can be locked in today for an investment in a

future time period. They are interest rates known at a time t, used to discount cash

flows between future time periods [T, S]. They are characterized by three time instants,

the time t at which the rate is considered, the future time T and the maturity S with

t ≤ T ≤ S.

Simply-compounded forward interest rate

The simply compounded forward rate F (t;T, S) at time t for a future time T and maturity

S > T satisfies

P (t, S) = P (t, T )[1 + (S − T )F (t;T, S)].

Hence

F (t;T, S) =
1

S − T

(︃
P (t, T )

P (t, S)
− 1

)︃
. (1.7)

The forward rate F (t;T, S) is an estimate of the future simply compounded spot rate

L(T, S) which is random at time t based on market conditions. Similarly, the continuously

compounded forward rate is an estimate of the future continuously compounded spot rate.

Instantaneous forward interest rate

The instantaneous forward rate f(t, T ) at time t for maturity T > t is defined as the

interest rate known at time t for an investment at a future time T for an infinitesimally

short period of time. It is given by

f(t, T ) = lim
S→T+

F (t;T, S) =
−∂ lnP (t, T )

∂T
(1.8)
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which gives

P (t, T ) = exp

(︃
−
∫︂ T

t

f(t, u)du

)︃
. (1.9)

1.1.1 No-Arbitrage Assumption And The Forward Measure

The assumptions and proofs in this subsection are not rigorous and the interested reader

is directed to for example Björk [2009] and Steele [2012] for a comprehensive treatment

and discussion about arbitrage theory. We assume the existence of a strictly positive and

adapted process on a filtered probability space (Ω,Q, (Ft)0≤t≤T ∗) where T ∗ is the fixed

time horizon for all market activities to end. Ft is the sigma-algebra which represents

the market information available at time t. We also assume the absence of arbitrage

opportunities which implies the existence of the risk-neutral measure Q such that all

future discounted price processes are martingales. By this, we assume that by investing

zero today, it is impossible to obtain a positive gain on your portfolio with a positive

probability, without taking any loss with certainty. This also implies that portfolios

having the same payoff must have the same price today. Under Q, the numeraire1 is

the bank account B. For a series of zero-coupon bonds maturing at time T with price

P (t, T ), the process

{︃
P (t, T )

B(t)

}︃
t∈[0,T ]

is a martingale under Q. Thus,

P (t, T )

B(t)
= EQ

[︃
P (T, T )

B(T )

⃓⃓⃓⃓
Ft

]︃
= EQ

[︃
1

B(T )

⃓⃓⃓⃓
Ft

]︃
,

P (t, T ) = EQ
[︃
B(t)

B(T )

⃓⃓⃓⃓
Ft

]︃
= EQ

[︃
D(t, T )

⃓⃓⃓⃓
Ft

]︃
. (1.10)

The last equation is the price of the zero-coupon bond and it represents the relation-

ship between the stochastic discount factor and the zero-coupon bond price with a unit

maturity value.

1A numeraire is a positive non-dividend paying asset used as reference to normalize other asset prices.
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The Forward Measure

Sometimes Q is the not most convenient measure in pricing derivatives because the

stochastic discount factor D(t, T ) = exp
(︂
−
∫︁ T

t
r(s)ds

)︂
complicates the expected value

calculation since its joint distribution and the underlying claim to be prices has to dealt

with. We consider a martingale measure QT equivalent to Q, where QT represents the

risk-adjusted forward measure or simply the forward measure. The associated numeraire

of QT is a zero-coupon bond with maturity T . Given an asset with price process {St}t∈[0,T ]

and a terminal payoff on the asset H(ST ), we know that its price at time t ∈ [0, T ] is

πt = EQ
[︃
D(t, T )H(ST )

⃓⃓⃓⃓
Ft

]︃
.

This is mathematically equivalent to

πt = P (t, T )ET
[︁
H(ST )

⃓⃓
Ft

]︁
(1.11)

where ET implies expectation under QT . In the first equation the dynamics of ST are

postulated under Q while in the second, it is postulated under QT .

1.2 Interest Rate Swaps and Swaptions

1.2.1 Interest Rate Swaps

An interest rate swap (IRS) is a contract between two counterparties at time t ≤ Tα

to exchange interest rates at a set of pre-specified dates called settelement dates. The

counterparties agree to exchange a fixed interest rate and a floating (variable) one. The

exchanges are usually referred to as the legs of the swap. If we denote T = {Tα+1, ..., Tβ}

as the set of settlement dates, at every time Ti, i = α + 1, ..., β, the fixed leg of the

contract pays

NτiK
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where K is the fixed interest rate (also called the strike), N the notional amount and

τi = Ti − Ti−1 while the floating leg pays the variable rate

NτiL(Ti−1, Ti).

Although the dates of the fixed rate and floating rate payments might differ, for what

concerns this work, we will only consider the case where the payments are made on the

same dates throughout the duration of the contract. The duration Tβ − Tα is called the

swap tenor.

Where the counterparty pays the fixed rate and receives the floating rate, the IRS contract

is a Payer Swap while a holder of a Receiver Swap pays the floating rate and receives the

fixed rate. The floating rate is usually associated to an interbank offered rate such the

LIBOR in the United Kingdom or CAD-IBOR in Canada.

The discounted payoff of a Payer Swap at time t ≤ T is

β∑︂
i=α+1

D(t, Ti)Nτi (L(Ti−1, Ti)−K)

whereas that of a Receiver Swap is

β∑︂
i=α+1

D(t, Ti)Nτi (K − L(Ti−1, Ti)) .

Referring to Brigo and Mercurio [2007], it can be shown that the value of the Payer Swap

contract at time t is

N

β∑︂
i=α+1

P (t, Ti)τi (F (t;Ti−1, Ti)−K) . (1.12)

Definition 1.2.1 Forward Swap Rate: The forward swap rate at time t is the value

of the fixed interest rate (strike) K that makes the IRS swap a fair contract, i.e such that

the value of the contract is zero at inception.
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Notice that if we substitute the expression of the simple forward rate in (1.7), we can

rewrite the value of the payer swap contract as

NP (t, Tα)−NP (t, Tβ)−N

β∑︂
i=α+1

τiKP (t, Ti). (1.13)

The value of the Receiver Swap contract could also be derived by changing the signs in

(1.13). By setting (1.13) equal to 0, we can solve for the the forward swap rate at time

t, Sαβ(t) as

Sαβ(t) =
P (t, Tα)− P (t, Tβ)∑︁β

i=α+1 τiP (t, Ti)
. (1.14)

We can then express the value of IRS payer swap at t in terms of the forward swap rate

as

N (Sαβ(t)−K)

β∑︂
i=α+1

τiP (t, Ti). (1.15)

1.2.2 Swaptions

Definition 1.2.2 A swaption is a combination of two types of contracts; an option and

a swap. It is defined as an option on an interest rate swap. A payer (receiver) swaption

gives its holder the right (and not the obligation) to enter into a payer (receiver) swap at

the maturity of the swaption with a pre-determined strike K.

There are three main types of swaptions namely; European, Bermudan and American

swaptions whose differences mainly lie with their exercise dates as in equity options.

In this thesis, we shall only consider European swaptions. The maturity date of an

European swaption usually coincides with the first reset date Tα of the underlying IRS.

A swaption with maturity Tα and tenor Tβ − Tα (duration of the underlying swap) is

termed a Tα× (Tβ −Tα) swaption. Since an option will only be exercised if it generates a
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positive a payoff, for a payer swaption payoff at the maturity of the swaption Tα is then

N

(︄
β∑︂

i=α+1

P (Tα, Ti)τi (F (Tα;Ti−1, Ti)−K)

)︄+

. (1.16)

We can see that it is not feasible to decompose the payoff additively since summation

is inside the convex function ()+. Consequently, when valuing the swaption, the joint

distribution of the forward rates between the settlement dates of the swap has an impact

on the price and so they need to be appropriately dealt with.

As previously described, the value of the IRS can be expressed in the terms of the forward

swap rate. By making the relevant substitutions, we can express the payoff of the payer

swaption in a similar fashion as

(︄
N (Sαβ(Tα)−K)

β∑︂
i=α+1

τiP (Tα, Ti)

)︄+

.

The value of the swaption with a strike K at time t ≤ Tα is

PS[t, Tα, Tβ, K,N ] = EQ

[︄
D(t, Tα)

(︄
N (Sαβ(Tα)−K)+

β∑︂
i=α+1

τiP (Tα, Ti)

)︄ ⃓⃓⃓⃓
Ft

]︄

= P (t, Tα)ETα

[︄(︄
N (Sαβ(Tα)−K)+

β∑︂
i=α+1

τiP (Tα, Ti)

)︄ ⃓⃓⃓⃓
Ft

]︄
. (1.17)

The term
∑︁β

i=α+1 τiP (Tα, Ti) is called the Present Value of a Basis Point (PVBP) or

annuity factor and it reflects the changes in the fixed rates as the swap rate changes

by a basis point. Thus a payer swaption can be viewed as a call option on the swap

rate. Similarly we can find the price of a receiver swaption at time t, RS[t, Tα, Tβ, K,N ],

by changing the minus sign in (1.17) to a positive sign and negating the swap rate at

maturity. The receiver swaption can also be viewed as a put option on the forward swap

rate.

Definition 1.2.3 A payer (receiver) swaption is said to be At-The-Money (ATM) if the
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strike K is equal to the forward swap rate at time t = 0:

K = Sα,β(0) =
P (0, Tα)− P (0, Tβ)∑︁β

i=α+1 τiP (0, Ti)
.

A payer swaption is In-The-Money if Sαβ(0) > K, and Out-Of-The money if Sαβ(0) < K.

The opposite holds for a receiver swaption.

Now consider portfolio where you are holder of payer swaption and the counterparty

of a receiver swaption with the same strike K, maturity Tα, settlement dates T =

{Tα+1, ..., Tβ} and notional value N . The value of this portfolio at any time t ≤ Tα

is

πt = PS[t, Tα, Tβ, K,N ]−RS[t, Tα, Tβ, K,N ]

so that at the maturity Tα, the payoff on the portfolio is

πTα = N

β∑︂
i=α+1

τiP (Tα, Ti)
[︁
(Sαβ(Tα)−K)+ − (K − Sαβ(Tα))

+]︁ .
If the strike K is less than the swap rate Sαβ(Tα), you will exercise the payer swaption

to pay a fixed rate and receive the floating rate; the holder of the receiver swaption will

not exercise their swaption. On the hand, if the strike K > Sαβ(Tα), you not will not

exercise the payer swaption but the receiver swaption holder will exercise their swaption

for you to pay the fixed rate and receive the floating one. In any case, you will pay a

fixed rate and receive a floating one so that the payoff of the portfolio is equal to that of

a payer swap with the same strike and contract terms. Hence

πTα = payoff of a payer swap .

The strike K which makes for a fair payer swap i.e. equals 0 is the ATM strike. By the

no-arbitrage assumption, the value of the portfolio should also be 0 for this same strike.

Hence for an ATM strike, the price of a payer swaption will equal that of a receiver
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swaption.

Remark 1.2.1 In the financial markets, swaption prices are often based on a Black-like

formula formally known as the Black-76 formula.

The Black-76 model

Definition 1.2.4 Black Price: The Black price of a swaption at time t = 0 is defined

as

Black Price = Nω [Sα,β(0)Φ(ωd1)−KΦ(ωd2)]

β∑︂
i=α+1

τiP (Tα, Ti) (1.18)

where

d1 =

ln

(︃
Sα,β(0)

K

)︃
+

σ2
α,βTα

2

σα,β

√
Tα

and d2 =

ln

(︃
Sα,β(0)

K

)︃
−

σ2
α,βTα

2

σα,β

√
Tα

where Φ is cumulative normal distribution function, ω = 1 for a payer swaption and

ω = −1 for a receiver swaption. σα,β is the Black volatility of the swaption provided on

the market volatility surface.

The Black model makes use of some assumptions in the derivation of the European

swaption price. It assumes the swap rate is, under some suitable martingale measure,

a driftless geometric Brownian motion which is lognormally distributed. Although this

assumption is inconsistent with our chosen interest rate model described subsequently,

the Black-76 model is useful as a standard metric by market traders in solving for the

implied volatility σα,β such that when plugged into d1 in (1.18), the Black price matches

the prevailing market swaption price, hence its relevance in our study.

Since the price of an ATM receiver swaption equals that of an ATM payer swaption, we

can drop ω in the Black price formula in (1.18) and with Sα,β(0) = K, d1 =
σα,β

√
Tα

2

and d2 = −d1, the Black price for ATM swaptions is given as

Black PriceATM = NSα,β(0) [2Φ(d1)− 1]

β∑︂
i=α+1

τiP (Tα, Ti).
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Chapter 2

The Interest Rate Model

There is a wide variety of interest rate models in literature; from simple one-factor models

to more complex multi-factor models. The choice of an interest rate model particularly

depends on the application, the theoretical assumptions of the model such as mean-

reversion, the model’s analytical tractability (allowing for closed-form solutions of zero-

coupon bond prices, bond-option prices etc), ease of implementation etc. Term structure

models like the Nelson-Siegel model provide polynomial representations of the yield curve

that are used for interpolating and forecasting the yield curve based on observed rates.

Although they are easy to implement and interpret, they prescribe the shape of the yield

curve and are not arbitrage-free. Due to this, they can not used to price most interest-

rate derivatives and consequently value direct participation insurance contracts. The

Nelson-Siegel model is still heavily relied on by most central banks and wealth managers

for daily yield curve construction and forecasting [Coroneo et al., 2011].

2.1 Short-Rate Models

Short-rate models characterize the evolution of the yield curve by modeling the instan-

taneous short-rate. From 1.10 and 1.3, we can observe that, when we model the distri-

butional properties of the short-rate r, conditional on Ft, we are able to compute bond

prices at all maturities T and time references t from which we can compute the spot

rates, forward rates etc, through the various relationships described in the previous chap-
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ter. This implies that choosing the appropriate short-rate model is crucial in describing

a realistic evolution of the yield curve. [Brigo and Mercurio, 2007].

2.1.1 Endogenous Models

The Vasicek model is one of the earliest short-rate models that was proposed. In this

model, the short rate evolves as an Ornstein-Uhlenbeck (OU) process. The Vasicek model

assumes that the short-rate is normally distributed which makes it analytically tractable

although this implies the possibility of negative interest rates which is considered a draw-

back of the model. As an OU process, it is mean-reverting which is a desirable property of

interest rates models. Unlike stock prices, interest rates cannot rise indefinitely; otherwise

the economy will crash. Hence it is desirable for the model assumption to allow interest

rates to move within a bounded range, showing a tendency to revert to a long term mean

as described by general economic phenomenon [Hull, 2018]. The Cox–Ingersoll–Ross

(CIR), Exponential Vasicek (EV) (extensions of the Vasicek model) and Dothan models

were proposed to address the negativity of the short rate. The CIR model assumes that

the short rate has a noncentral chi-squared distribution while the EV and Dothan models

assume that the short rate is a geometric Brownian motion hence lognormally distributed.

Although the distributional assumption of the EV and Dothan models eradicates the pos-

sibility of a negative short rate, this can lead to explosion in the bank account value in an

arbitrary small time δt as shown in Brigo and Mercurio [2007]. The Vasicek, CIR, EV and

Dothan short-rate models are endogenous models such that the market term structure is

a model output specified by the calibrated parameters. It has been shown that regardless

of how they are calibrated, they cannot exactly match the market yield curve Brigo and

Mercurio [2007]. Therefore for the purpose of market-consistent valuations, these models

are not appropriate. These class of endogenous short-rate models are also referred to as

“equilibrium models” [Hull, 2018].
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2.1.2 Exogenous One-Factor Models

Ho and Lee [1986] proposed the first short-rate model to address the the inconsistencies

of endogenous models. Their model was deemed to have a drawback due to the absence of

mean-reversion which is considered as an important property of the short rate dynamics.

The Hull & White (also called the extended Vasicek) model introduces one of the most

widely used short-rate model in the financial markets today, the Hull-White one-factor

model (see for example Park [2004]). The model rectifies the inconsistency between the

implied term structure of the Vasicek model and the market term structure by adding

a deterministic function to the Vasicek model which ensures that the model provides an

exact fit to the market yield curve. Later, Hull & White modified their previous extension

of the Vasicek model to account for time-varying drift and volatility coefficients of the

short-rate model. The Black-Karasinki model is also one of the most widely used models

which was introduced as an extension of the Vasicek model to address both limitations

of possible negative rates and inconsistency between the model implied and the market

yield curves. The Black-Karasinki model, as other lognormal short-rate models, leads to

an explosion of the bank account value.

Brigo and Mercurio [2007] provides a general framework to deterministically shift en-

dogenous models to exactly fit the observed term structure while still maintaining their

desirable properties. By their framework, the deterministically shifted Vasicek model

is equivalent to the time home-homogeneous Hull-White one-factor model which can be

referred to as the G1++ for reasons that will be obvious later. The shifted CIR model

is called the CIR++ and so on. Exogenous models are also referred to as “no-arbitrage”

models which is unrelated to no-arbitrage pricing. The concept of no arbitrage principle

can be used to value any derivative or payoff irrespective of model choice, however due

to the mismatches between the equilibrium models and the market term structure, there

is less confidence in the the model implied price [Hull, 2018]1.

1The are other interest rate models such as the Heath-Jarrow Morton framework and the market
models which are outside the scope of this work.
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2.1.3 Exogenous Multi-Factor Models

While exogenous one-factor models provide market-consistent calibrations, they assume a

perfect correlation between spot rates of different maturities. This assumption results in

a poor description of the future evolution of interest rates and inaccuracy in pricing some

derivatives since it has been proven that interest rates of different maturities do exhibit

some form of decorrelation [Brigo and Mercurio, 2007]. One-factor models may be useful

in pricing derivatives which do not depend on the correlation of different interest rates

but rather on a single interest-rate e.g. caps and floors. As we saw from the previous

chapter, the swaption price (1.16) depends on the correlation between forward rates of

varying maturities which makes one-factor models inappropriate in their pricing.

Additionally, empirical analysis through principal component analysis has shown that the

first two principal components explains 85% to 90% of the variations in the yield curve

while three principal components explains 93% to 94% of total variation [Litterman and

Scheinkman, 1991, Jamshidian and Zhu, 1996]. The first factor is deemed to represent the

parallel shit of the curve, the second factor represents the slope and the third factor is the

curvature of the curve. This implies that a two or higher-dimensional process is needed

to capture realistic correlation patterns between interest rates and provide a realistic

future evolution of the whole yield curve (see [Brigo and Mercurio, 2007, p.137-139]

for a comprehensive discussion about the motivations of two to three factor short-rate

models). In view of this, we are motivated to consider a two and three-factor short-rate

exogenous model as our model choice. It is important to note that the multi-factor models

do have their drawbacks such as numerical inefficiency and overfitting (following input

noise too closely) especially when the model parameters are dependent on time Brigo

and Mercurio [2007]. Such situations tends to make the model interpretation difficult.

Their advantages (e.g replicating satisfactory market prices etc.) however outweigh their

drawbacks especially in realistic market situations.

Brigo and Mercurio [2007] further extended the Vasicek model by adding another OU

process to provide two-dimensional sources of randomness and a deterministic function

to ensure an exact fit to the observed yield curve. They showed that by some coordinate
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transformation, the G2++ is equivalent to the two-factor Hull-White model. They also

explain that a similar technique to their extension could be applied to account for more

sources of randomness, i.e. three or more factors in modeling the short-rate process.

This chapter follows Di Francesco [2012] to provide a general framework of the n-factor

additive Gaussian model under which the short rate is sum of n correlated Gaussian

processes (which evolve as OU processes) and a deterministic function used to provide an

exact fit to the market yield curve. The choice of this model is motivated by its mean-

reversion and suitability for the current low interest rate environment (to some extent)

through the assumption of a normally distributed short rate process. Its assumption of a

normally distributed short rate process also provides closed-form solutions of zero-coupon

bond and bond options.

2.2 The Gn++ Short-Rate Model

2.2.1 The Risk-Neutral Short-Rate Dynamics

Under the general factor-additive model, the dynamics of the short-rate process under

the risk-neutral measure Q is given by

r(t) =
n∑︂

i=1

xi(t) + f (t) , r(0) = r0 (2.1)

such that each factor {xi(t) : t > 0} evolves according to an Ornstein–Uhlenbeck process

and satisfies the stochastic differential equation

dxi(t) = −aixi(t)dt+ σidWi(t), xi(0) = 0 , i = 1, . . . , n (2.2)

where ai and σi are positive constants 2 which represent the speed of mean reversion to

the mean level of 0 and the volatility of the process respectively. Wi, i = 1, . . . , n is

a multivariate standard Brownian motion under Q. We assume that the filtration F =

{(Ft)0≤t≤T ∗} is generated by the multi-dimensional Brownian motion Wi, i = 1, . . . , n.

2The drift and volatility can be time-dependent as in the original paper and Hull-White model.
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For every t > 0,

dWi(t)dWj(t) = ρijdt for i, j = 1, . . . , n

where −1 ≤ ρij ≤ 1, is the correlation between the Brownian motion Wi and Wj and

as usual ρii = 1, for i = 1, . . . , n. The correlation matrix (ρij)i,j=1,...,n is assumed to be

symmetric and positive semi-definite. The function f is deterministic and well defined in

the interval [0, T ∗]. By applying Itô’s lemma on (2.2), conditional on Fs we have that

xi(t) = xi(s)e
−ai(t−s) +

∫︂ t

s

σie
−ai(t−u)dWi(u). (2.3)

The last term in (2.3) is an integral of a deterministic function with respect to the

Brownian motion which makes it a Gaussian random variable with null mean. Hence

conditional on Fs, the process {xi(t), i = 1, . . . , n} is normally distributed with mean

xi(s)e
−ai(t−s) and variance

var[xi(t)|Fs] = E

[︄(︃∫︂ t

s

σie
−ai(t−u)dWi(u)

)︃2
]︄

=

[︄(︃∫︂ t

s

σ2
i e

−2ai(t−u)d(u)

)︃2
]︄

By Itô’s Isometry

=
σ2
i

2ai
(1− e−2ai(t−s)).

Therefore (2.1) can be expressed as

r(t) =
n∑︂

i=1

(︃
xi(s)e

−ai(t−s) +

∫︂ t

s

σie
−ai(t−u)dWi(u)

)︃
+ f (t) (2.4)

for every s < t. It follows that, conditional on Fs, the short-rate process is normally

distributed with mean

EQ[r(t)|Fs] =
n∑︂

i=1

xi(s)e
−ai(t−s) + f (t) (2.5)

24



and variance

var[r(t)|Fs] = var

[︄
n∑︂

i=1

(︃∫︂ t

s

σie
−ai(t−u)dWi(u)

)︃]︄

=
n∑︂

i,j=1

cov

(︃∫︂ t

s

σie
−ai(t−u)dWi(u),

∫︂ t

s

σje
−aj(t−u)dWj(u)

)︃

=
n∑︂

i,j=1

E
(︃∫︂ t

s

σie
−ai(t−u)dWi(u)

∫︂ t

s

σje
−aj(t−u)dWj(u)

)︃
.

By Itô’s Isometry, this becomes

var[r(t)|Fs] =
n∑︂

i,j=1

(︃∫︂ t

s

σiσjρije
−(ai+aj)(t−u)du

)︃

which simplifies to

var[r(t)|Fs] =
n∑︂

i,j=1

σiσj

ai + aj
ρij(1− e−(ai+aj)(t−s)). (2.6)

The means that with a positive probability, the short rate can be negative, which is

usually considered as a drawback of the Gaussian additive interest rate model.

2.2.2 Analytical Zero Coupon Bond Price

Through a suitable choice of the function f , the short-rate model gives an exact fitting

to the observed term structure if the model zero-coupon bond price P (0, T ) is equal to

the market bond price PM(0, T ). The value of the zero-coupon bond at time t = 0 is

expressed by the usual relationship

P (0, T ) = EQ
[︂
e−

∫︁ T
0 r(t)dt

]︂
.

In order to compute the value of the zero coupon bond under the Gn++ model, we

need to integrate r(t) over the term of the bond. By first considering the integral of the
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process,
∑︁n

i=1 xi(t), i = 1, . . . , n, conditional on F0, we have

∫︂ T

0

n∑︂
i=1

xi(t)dt =

∫︂ T

0

n∑︂
i=1

∫︂ t

0

σie
−ai(t−u)dWi(u)dt (2.7)

Applying Fubini’s theorem on stochastic integrals, it can be shown that

(2.8)∫︂ T

0

n∑︂
i=1

xi(t)dt =
n∑︂

i=1

∫︂ T

0

eau
∫︂ T

u

σie
−aitdtdWi(u) (2.9)

=
n∑︂

i=1

∫︂ T

0

σi(1− eai(T−u))

ai
dWi(u). (2.10)

This implies that
∫︁ T

0

∑︁n
i=1 xi(t)dt is a deterministic Itô integral and it is normally dis-

tributed with mean

EQ

[︄∫︂ T

0

n∑︂
i=1

xi(t)dt

]︄
= 0

and variance

var

[︄∫︂ T

0

n∑︂
i=1

xi(t)dt

]︄
=

n∑︂
i,j=1

∫︂ T

0

ρij
σi(1− eai(T−u))

ai

σj(1− eaj(T−u))

aj
du

=
n∑︂

i,j=1

ρij
σiσj

aiaj

(︃
T − 1− e−aiT

ai
− 1− e−ajT

aj
+

1− e−(ai+aj)T

ai + aj

)︃
:= V (0, T ). (2.11)

The model zero-coupon bond price can be expressed as

P (0, T ) = EQ
[︂
e−

∫︁ T
0

∑︁n
i=1 xi(t)+f (t)dt

]︂
= e−

∫︁ T
0 f (t)dtEQ

[︂
e−

∫︁ T
0

∑︁n
i=1 xi(t)dt

]︂
.

Using the fact that for Z ∼ N(µz, σ
2
z), E[eZ ] = eµz+

1
2
σ2
z . Then

P (0, T ) = e−
∫︁ T
0 f (t)dte

1
2
V (0,T ). (2.12)
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The model provides an exact fit to market discount factor curve if for T > 0

PM(0, T ) = e−
∫︁ T
0 f (t)dte

1
2
V (0,T ). (2.13)

Denoting f M(0, T ) as the market instantaneous forward rate then (2.13) becomes

e−
∫︁ T
0 fM (0,t)dt = e−

∫︁ T
0 f (t)dte

1
2
V (0,T ). (2.14)

Since the basis agree, we can differentiate the exponents in Equation (2.14) with respect

to T and obtain an explicit solution for the deterministic function f as

f (T ) = f M(0, T ) +
1

2

n∑︂
i,j=1

ρij
σiσj

aiaj
(1− e−aiT )(1− e−ajT ). (2.15)

In order to compute the analytical bond price P (t, T ) at time t for every 0 < t < T ,

we can apply similar techniques in (2.10) to show that, conditional on Ft, the integral∫︁ T

t

∑︁n
i=1 xi(t)dt is normally distributed such that

EQ

[︄∫︂ T

t

n∑︂
i=1

xi(s)ds

⃓⃓⃓⃓
Ft

]︄
=

n∑︂
i=1

xi(t)
(1− e−ai(T−t))

ai
, (2.16)

var

[︄∫︂ T

t

n∑︂
i=1

xi(s)ds

⃓⃓⃓⃓
Ft

]︄
=

n∑︂
i,j=1

ρij
σiσj

aiaj

(︃
T − t− 1− e−ai(T−t)

ai
− 1− e−aj(T−t)

aj
+

1− e−(ai+aj)(T−t)

ai + aj

)︃
(2.17)

:= V (t, T ). (2.18)

Hence we can compute the model bond price P (t, T ) at any time 0 < t < T as

P (t, T ) = EQ
[︂
e−

∫︁ T
t r(s)ds

]︂
= EQ

[︂
e−

∫︁ T
t

∑︁n
i=1 xi(s)+f (s)ds

]︂
(2.19)

= e−
∫︁ T
t f(s)dsEQ

[︂
e−

∫︁ T
t

∑︁n
i=1 xi(s)

]︂
(2.20)

= e−
∫︁ T
0 f(s)dse

∫︁ t
0 f(s)dse

−
∑︁n

i=1 xi(t)
1−e−ai(T−t)

ai
+ 1

2
V (t,T )

. (2.21)

27



Using equation (2.14) we can express the model bond price in (2.21) as

P (t, T ) =
PM(0, T )

PM(0, t)
e

1
2
[V (t,T )−V (0,T )+V (0,t)]e

−
∑︁n

i=1 xi(t)
1−e−ai(T−t)

ai

= A(t, T )e−
∑︁n

i=1 Bi(t,T )xi(t) (2.22)

where

A(t, T ) =
PM(0, T )

PM(0, t)
e

1
2
(V (t,T )−V (0,T )+V (0,t),

Bi(t, T ) =
1− e−ai(T−t)

ai
.

(2.23)

2.2.3 The Short-Rate Dynamics Under The Forward Measure

In order to obtain a closed-form expression that approximates the swaption to facilitate

easier and time efficient calibration to market prices, we need define r under the forward

measure dynamics QT . Referring to the detailed proofs in Brigo and Mercurio [2007],

Casalini and Bonino [2020] and the references therein, for any fixed maturity T , by the

Girsanov’s Theorem, the dynamics of the process {xi(t), i = 1, . . . n} under QT is given

by

dxi(t) = −aixi(t)− σi

(︄
n∑︂

j=1

σjρijBj(t, T )

)︄
dt+ σidW

T
i (t) (2.24)

where W T
i is standard Brownian motion under QT with dW T

i (t)dW
T
j (t) = ρij. Applying

Itô’s lemma on Equation (2.24), conditional on Fs,

xi(t) = xi(s)e
−ai(t−s) −MT

i (s, t) + σi

∫︂ t

s

e−ai(t−u)dW T
i (u) (2.25)

where

MT
i (s, t) = σi

n∑︂
j=1

σj

aj
ρij

(︃
1− eai(t−s)

ai
− e−aj(T−t) − e−aj(T−s)−ai(t−s)

ai + aj

)︃
(2.26)
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is the additional deterministic drift term. Hence, the short rate r(t) is normally dis-

tributed under QT with mean and variance given respectively by,

ET [r(t)|Fs] =
n∑︂

i=1

(︁
xi(s)e

−ai(t−s) −MT
i (s, t)

)︁
+ f (t),

V arT [r(t)|Fs] =
n∑︂

i=1

σiσj

ai + aj
ρij
(︁
1− e−(ai+aj)(t−s)

)︁
.

(2.27)

2.2.4 Swaption Price Under The Gn++ Model

Recall from the previous chapter that, for a European payer swaption with maturity Tα,

strike K, nominal value N , which gives the holder the right to enter at time Tα, a swap

with payment dates Tα+1, ..., Tβ where she pays the fixed rate and receives the floating

rate, the price of the swaption at time t = 0 is given by (1.17). Since the forward swap

rate at time Tα is given as Sαβ(Tα) =
P (Tα, Tα)− P (Tα, Tβ)∑︁β

k=α+1 τkP (Tα, Tk)
, and P (Tα, Tα) = 1, then

the swaption price becomes

PS[0, Tα, Tβ, K,N ] = NP (0, Tα)ETα

⎡⎣(︄1− β∑︂
k=α+1

ckP (Tα, Tk)

)︄+
⎤⎦ (2.28)

where ck = Kτk and cβ = 1 +Kτβ. By equation (2.23),

PS[0, Tα, Tβ, K,N ] = NP (0, Tα)

∫︂
Rn

(︄
1−

β∑︂
k=α+1

ckA(Tα, Tk)e
−

∑︁n
i=1 Bi(Tα,Tk)xi(Tα)

)︄+

g(x1, ..., xn)dx1...dxn

(2.29)

where g denotes the joint density function of the multivariate Gaussian random vector

X = [x1(Tα), . . . , xn(Tα)] with dynamics postulated under QTα . The random vector has

mean

E[X] = µ =
[︁
−MT

1 (0, Tα), ...,−MT
n (0, Tα)

]︁
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and covariance matrix C(Tα) such that

Cij(Tα) =
σiσj

ai + aj
ρij(1− e−(ai+aj)Tα).

Thus

g(x1, . . . , xn) =
1√︁

(2π)n)|C(Tα)|
exp

(︃
−1

2
(X − µ)⊤(C(Tα))

−1(X − µ)

)︃

In practice, the numerical solution of the integral in equation (2.29) is computationally

inefficient for a large n. [Brigo and Mercurio, 2007, p. 173-174] derived a simplification

of (2.29) to a one-dimensional integral for case when n = 2, i.e the G2++ model which

resulted in semi-closed form of (2.29). In order to numerically implement the semi-closed

form formula for the G2++ by Brigo and Mercurio [2007], the bounds will have to be

truncated to apply for example a Gaussian quadrature or a Monte Carlo integration

in solving the integral. However in calibrating the model to market price described

subsequently, which is root finding problem across hundreds of iterations to estimate

the parameters, these methods prove to be computationally intensive given the number

instruments, iterations and simulation paths required to converge to an accurate solution.

A similar case applies to the G3++ model. Hence in calibrating the Gn++ to market

data, we will use an approximation of the swaption price by Schrager and Pelsser [2006]

and then validate the quality of calibration via Monte-Carlo simulation.

Schrager and Pelsser [2006] proposed a method that approximates the European swaption

price for affine term structure models which includes the Gn++ model. As shown in their

paper, their method leads to a closed-form formula for the price of an European swaption

in the framework of both one and multi-factor Gaussian short rate models. For an At-

The-Money swaption, the price can be approximated by

PS[0, Tα, Tβ, K,N ] ⋍ N
VOL√
2π

β∑︂
k=α+1

τkP (0, Tk) ≡ N
VOL√
2π

P
Tβ

Tα+1
(2.30)
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where VOL is the approximated volatility of the underlying swap and is given by

VOL =

⌜⃓⃓⎷ n∑︂
i,j=1

σiσjρijAiAj
e(ai+aj)T − 1

ai + aj

and for every i = 1, . . . , n,

Ai =
1

ai

[︄
e−aiT

P (0, T )

P
Tβ

Tα+1

− e−ajTβ
P (0, Tβ)

P
Tβ

Tα+1

−K

β∑︂
k=α+1

e−aitkτk
P (0, Tk)

P
Tβ

Tα+1

]︄
.

Although (2.30) is an approximation of the true price, it has provided satisfactory calibra-

tion results in similar works, for example Russo and Torri [2019] in calibrating two-factor

Hull-White and Di Francesco [2012] for the G2++ and G3++ model. One of the draw-

bracks of (2.30) is that the approximation error tends to be high for longer maturity and

longer tenor swaptions as seen in Schrager and Pelsser [2006] and Di Francesco [2012].
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Chapter 3

Gn++ Model Calibration to Market

Data

Calibration is the process of determining the parameters of the interest rate model. It

generally consists of choosing liquid instruments similar to the products to be priced

or valued and determining the parameters so that the difference between the market

prices of the instruments and those predicted by the model are minimized. The method

of calibration usually depends on the application of the interest rate model and the

availability of deep liquid markets. The Gn++ short-rate model can be calibrated to

a time series of historical interest rates or interest rate volatility as in Park [2004] and

Aas et al. [2018] or to current prices of interest rate derivatives. For the purpose of

market-consistent valuations, the latter is obviously the relevant choice. To make our

valuations as consistent as possible, it is important to parameterize our model to highly

liquid interest rate derivatives if they are available. Swaptions, caps and floors are some

of the liquid instruments on the market. Caps and floors do not rely on the correlation

between forward rates and so one-factor models provide highly satisfactory fit to their

market volatility surface. As previously mentioned, swaptions rely on the correlation

between forward rates and so they are more suitable to be calibrated to by multi-factor

model. We calibrate our models to ATM swaption volatilities (prices) since they are there

more actively traded (liquid) and so their market quotes are more reliable. It is market
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practice to quote swaptions in terms of their implied volatilities and not necessarily their

prices. The quoted volatilities can however be translated into prices by using the Black

formula (1.18).

3.1 The Calibration Problems

The calibration algorithm essentially tries to find the set of parameters θ∗ = (a∗i , σ
∗
i , ρ

∗
ij, for i, j =

1, . . . , n) that minimizes the sum of absolute relative errors between market and model

prices. This optimization could be implemented in two different ways:

1. Minimizing the sum of absolute relative errors between the market and Gn++

model swaption prices as in Di Francesco [2012].

2. Minimizing the sum of absolute relative errors between the market and model im-

plied volatilities as in Brigo and Mercurio [2007] and Ferranti [2015].

Assuming we have N set of instruments, with the first method, our objective function

will then be of the form

θ∗ = argmin
θ

N∑︂
i=1

⃓⃓
PriceMkt

i − PriceGn++
i

⃓⃓
PriceMkt

i

(3.1)

where the PriceMkt
i and PriceGn++

i are the market price and theoretical price of the ith

swaption respectively. On the other hand, for the second method, we would have,

θ∗ = argmin
θ

N∑︂
i=1

⃓⃓
σMkt
i − σGn++

i

⃓⃓
σMkt
i

(3.2)

where σMkt
i and σGn++

i are the market/quoted and model implied volatility respectively.

For the first objective function the market price is computed by the Black formula (1.18).

Hence we have all the necessary quantities to implement the first objective function right

away.

However for the second objective function, the theoretical implied volatility has to be

calculated by inverting the Gn++ swaption price. For the ATM swaptions, this is quite
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straightforward. However the results get a bit complicated if we consider non-ATM

swaptions. But since we only calibrate our model to only ATM swaptions the we do not

address such complexities.

In fact, for given set of parameters θ = (ai, σi, ρij, i, j = 1, ..., n), the algorithm calculates

the model analytical price PriceGn++ and then tries to find the implied volatility σGn++
i

that makes the market price equal theoretical price. So the algorithm tries to solve for

the model implied volality σGn++, such that when plugged into the expression for d1, the

Black price yields the model price. That is

NSα,β(0) [2Φ(d1)− 1]

β∑︂
i=α+1

τiP (0, Ti) = PriceGn++. (3.3)

Hence we can solve for the model implied volatility as

σGn++ =
2√
Tα

Φ−1

[︄
PriceGn++

2NSα,β(0)
∑︁β

i=α+1 τiP (0, Ti)
+

1

2

]︄
. (3.4)

Imposed Constraints

A major problem about the about finding the theoretical implied volatility is when the

quantity

[︄
PriceGn++

2NSα,β(0)
∑︁β

i=α+1 τiP (0, Ti)
+

1

2

]︄
> 1 (3.5)

during the optimization algorithm, hence the inverse normal CDF can not be computed.

During these stages, the algorithm is still navigating through the vector space of θ to arrive

at an optimal solution and so some parameter combinations are problematic. This is not

surprising given the high number of parameters that are being optimized (5 parameters

for the G2++ model and 9 for the G3++ model). When the situation in (3.5) happens,

the algorithm stops and a solution is not attained. One way to solve this problem is by

penalizing the the objective function for those combination of parameters that produces

this error. Another alternative is by assigning an approximation of the model implied

volatility as described in Ferranti [2015] using either the approximation by Li [2006]
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or Brenner and Subrahmanyan [1988]. Brenner and Subrahmanyan [1988] proposed a

method to approximate the implied volatility of ATM equity call options by considering

the Taylor expansion of the cumulative normal distribution function Φ around d1 = 0.

Applying their method in the context of ATM payer swaptions, we can approximate the

model implied swaption volatility in (3.3) as

σGn++ ≈ PriceGn++
√
2π∑︁β

i=α+1 τiP (0, Ti)NSα,β(0)
√
Tα

. (3.6)

Li [2006] however argued the approximation proposed by [Brenner and Subrahmanyan,

1988] lacked accuracy, often providing option pricing errors well exceeding the bid-ask

spreads. They proposed a method to improve accuracy of equity option implied volatilities

by considering rational approximations. Indeed, Ferranti [2015] showed that by applying

the more accurate approximation in Li [2006] on (3.3), the approximated theoretical

swaption implied volatility

σGn++ ≈ 1√
Tα

(︃
2.506297c− 0.686461c2

1− 0.277069c− 0.237552c2

)︃
(3.7)

where c =
PriceGn++∑︁β

i=α+1 τiP (0, Ti)NSα,β(0)
provided better calibration results than the one in

(3.6), in the context of a G2++ model.

Despite this, we attempted to solve this problem by simply penalizing the objective func-

tion (“brick wall” penalty to be specific). This is because for our considered calibration

data (to be described subsequently), penalizing the objective function provided a lower

mean absolute deviation from the market volatility surface than the second approach

even while using the rational approximation (3.7). This was confirmed for a number of

experiments for both the G2++ and G3++ model. Although the accuracy in replicating

the market implied volatility surface was very similar for a lot of swaptions in both ap-

proaches.

In addition to the calibration problem in (3.5), for some combination of parameters in

the G3++ model specifically, we are faced with the situation where the approximated

swap volatility in the analytical swaption price formula (2.30) is undefined, i.e the esti-
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mated square volatility is < 0. Also, after conducting several calibration experiments, we

noticed that for the G3++ model, the estimated correlation coefficients did not provide

a positive semi-definite matrix without any constraint on the parameters. These pecu-

liar issues associated with the G3++ model are not surprising given the larger number

of parameters that are being optimized. Again, we attempt to solve these two issues by

simply applying “brick wall” penalty 1 for these combination of parameters. We acknowl-

edge that these additional constraints may also slow the optimization process and limit

the freedom of the algorithm in exploring the parameter space by creating “forbidden”

regions in the objective function. They however reduce the chances of being trapped in a

local minimum instead of a global one thereby reducing a premature convergence [Price

et al., 2005].

3.2 Optimization Algorithm

In order to solve the optimization problems discussed in previous section, we need to im-

plement an optimization algorithm. Deterministic optimization include algorithms that

rely heavily on mathematical theory without any element of randomness. They are mostly

gradient-based algorithms which rely on the computation of the of the partial derivatives

of the objective functions with respect to the parameters to be optimized, e.g. (3.1) and

(3.2) in the current study. Stochastic optimizations on the other hand, introduce some

randomness in the search procedure for a solution to the optimization problem. The

choice of an optimization algorithm is in itself an optimization problem as it relies on

the problem at hand and the trade-off between efficiency and computational time among

others. Deterministic algorithms are generally faster than stochastic algorithms in terms

of convergence to a solution. However these “solutions” are more likely to be local opti-

mums than global. This is because deterministic algorithms are designed to move greedily

to states that immediately reduce the value of the objective function and so they have

the tendency of getting stuck on local optimums. Although stochastic algorithms have a

much slower convergence towards a solution, their ability to overcome a local optimum

1Assigning a huge objective function value.
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in the objective function increases the probability of finding the global optimum. Ad-

ditionally, to solve global (or multi-modal) optimization problems, most deterministic

algorithms require starting points that are good guesses of the input parameters to be

optimized in order to kick-start the optimization process. These could be derived from

previous experiences or a mathematical intuition about the problem. If the user-defined

initial starting points are in the wrong neighbourhood, the optimization could converge

prematurely to a local optimum or it could completely fail to even converge to a solution

at all. On the other hand, if the initial guess is good enough and a certain level of ac-

curacy is sought (e.g. tolerance level), deterministic algorithms could converge to such a

desired solution with a few gradient computations thereby reducing computational time.

Stochastic algorithms will require comparatively longer time to reach the same level of

accuracy [Cavazutti, 2013, Binder and Aichinger, 2013]. In the context of interest rate

calibration, good starting points could be prior parameters from a recent calibration.

Stochastic algorithms on the other hand usually require the range of the parameter values

to be specified, from which it generates a population of parameters and gradually evolves

this population towards a global solution. For more details on stochastic and determin-

istic optimization algorithms, we refer to Cavazutti [2013], Price et al. [2005] and the

references cited therein. Since one of the main drawbacks of deterministic algorithms is

their tendency of getting stuck on local optimums, it would not be ideal to use them in

solving our optimization problems. This is due to the fact that the objective function

in (3.1) and (3.2) is non-convex thus implying the existence of many local minimums.

Also, given the dimension of our parameter space (7-dimensional vector for G2++ and

9-dimensional for the G3++), we are faced with the initial starting point problem when

we consider a deterministic algorithm.

There are several families of stochastic optimizations. Among them are Simulated An-

nealing and Evolutionary algorithms. Simulated Annealing (SA) solves the optimization

problems by converging towards points that reduces the value of the objective function

while simultaneously, occasionally moving to regions that contains points that increases

the value of the objective function by a user-defined probability termed “acceptance prob-
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ability”. According to literature (for example Price et al. [2005] and Cavazutti [2013]) SA

are more suitable for optimization problems with a discrete parameter space, although

it has been used by authors such Brigo and Mercurio [2007], Russo and Torri [2019] to

calibrate the G2++ and two factor Hull-White model. Despite being flexible, SA requires

an initial starting point. However it is less likely to be trapped in a region that contains

a local optimum. For more details on SA, we refer to Price et al. [2005] and Cavazutti

[2013].

Evolutionary algorithms are stochastic optimization algorithms whereby the sample popu-

lation used in the search for a solution evolves over time through mutations, re-combinations

and survival of high performing individuals. There are three main variations of evolu-

tionary algorithms which are Evolutionary Search (ES), Genetic Algorithms (GA) and

Differential Evolution (DE). For what concerns this work, we limit our discussion to DE

as GA and ES have been proven to be computationally intensive and more suitable for

other types of optimizations problems.

Differential Evolution (DE) is a population based stochastic optimizer that searches for

the minimum of the objective function by evaluating the function at randomly chosen

points within the bounds of the parameters to be optimized. The algorithm begins by

generating an initial population of vectors from the predefined bounds of parameters of

the D-dimensional vector to be optimized. It then evaluates the objective function on a

population of trial vectors which is derived from combinations of vectors from the initial

and an intermediary population with high performing trial vectors replacing the initial

vectors in the next generation. This process continues until there is convergence or a

pre-specified stopping criteria has been met.

It is important to note that both stochastic and deterministic optimization do not fully

guarantee convergence to a global solution. A good technique is to apply a stochastic

and deterministic algorithms in cascade Cavazutti [2013]. A stochastic optimization is

first used to explore the parameter space in order to converge to a region that is highly

likely to contain the global minimum, then the solution is refined by using it as a starting

point for a local deterministic search. We first use a stochastic optimization to calibrate
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the Gn++, specifically the differential evolution optimization algorithm and then apply

a local deterministic search to refine the solution when it is convenient. This is motivated

by a similar approach implemented in Brigo and Mercurio [2007] for the G2++ model.

This is not to say that the DE is the best stochastic optimization as there does not exist

a perfect algorithm. However given the nature of our problem (non-monotonic, ill-posed

and high dimensional), DE proves to be the most suitable stochastic algorithm for our

problem since it has been proven to be reliable, robust and also generated satisfactory

calibration results in Di Francesco [2012] in calibrating the G2++ and G2++ model with

constant and time-dependent parameters.

3.2.1 Differential Evolution Algorithm

There are several variations of the DE algorithm that differ based on only how an initial

population is mutated to form the intermediary population. For our specific task of

calibrating the Gn++ model, we use the algorithm known as DE/target-to-best/1/bin

or DE/local-to-best/1/bin described below using terms by Price et al. [2005]. We

replace a few terms to avoid to ambiguity with other notations within this study. This

algorithm is implemented as the default strategy in the R package DEOptim by Mullen

et al. [2009].

1. Intialization: To kick start the DE algorithm, the upper and lower bounds of every

parameter of the D-dimensional vector θ = (ai, σi, ρi,j, i, j = 1, . . . , n) need to spec-

ified; from which an initial population of parameter vectors are generated. Ideally,

the population size Np should be ≥ 10×D [Price et al., 2005]. We specifically set

Np = 400. Throughout the optimization process, the population evolves through

perturbations, mutation and survival of high performing individuals. Denoting θb

and θu as the vectors that contain lower and upper bound of the parameters re-

spectively, we have that θu = (ai = 0, σi = 0, ρi,j = −1,∀i, j = 1, . . . , n) and

θu = (ai = 1, σi = 1, ρi,j = 1,∀i, j = 1, . . . , n).

To proceed, we shall denote g = 0, . . . , gmax as the generation to which a vector

belongs where gmax is the maximum number of generations or iterations. Also,
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m = 1, . . . Np will indicate the index of a vector/member/individual in a popula-

tion. Finally k = 1, . . . , D will represent the parameter index of a vector. The

algorithm begins by generating members of the initial population, as

yk,m(0) = θb,k + z̃k,m(θu,k − θb,k), for m = 1, 2, ..., Np, k = 1, 2, ..., D.

where z̃k,m ∼ U[0, 1) and is randomly generated for each paramter k = 1, ..., D and

vector m = 1, 2, ..., Np.

Once the initial population has been simulated, it becomes the parent population

in the first generation g = 0, from which an intermediary population is created

through differential mutations. In subsequent generations, the parent population is

replaced by surviving members and mutants of the previous generation.

2. Mutation: At the mutation stage, members of the intermediary population are

simulated by adding a vector from the parent population with the same index m,

to a scaled difference between the parent vector and the best performing member

of the parent population in that generation g with an arbitrary index best; plus the

scaled difference of another two randomly chosen vectors from the parent population

with indices r1 and r2. This strategy is known as the DE/target-to-best/1/bin.

Them-th member of the intermediary population in the g-th generation is generated

as

vm(g) = ym(g) + F [ybest(g)− ym(g)] + F
[︁
yr1(g)− yr2(g)

]︁
, r1, r2,m = 1, ..., Np

and r1 ̸= r2 ̸= m

where ybest(g) is the vector with least objective function value of the g-th generation

and F is the step size which is effectively defined in (0, 1). We use the default value

of F in DEOptim which is 0.8. To ensure that mutated parameters parameters are

confined in their defined bounds, if vk,m(g) < θb,k it is replaced by θb,k + z̃k,m(θu,k −

θb,k) and if vk,m(g) > θb,k, replaced by θu,k + z̃k,m(θb,k − θu,k).
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3. Trial: At this stage, a trial population is generated from a combination of the parent

and intermediary population. Here vectors of the intermediary population compete

with the those from the parent population as members of the trial population. The

k-th parameter of the m-th trial vector in the g-th generation is defined as

uk,m(g) =

⎧⎪⎪⎨⎪⎪⎩
vk,m(g) if z̃k,m ≤ Cr or k = k̂

yk,m(g) otherwise.

where k̂ ≤ D is a randomly generated index used to ensure that the set of trial

vectors differs at least by one vector from the parent vector, while Cr ∈ [0, 1] is a

user-defined crossover probability used to control the fraction of parameters values

of the trial vectors that originate from vectors in the intermediary population.

Again for the crossover probability we use the default value of 0.5 in DEOptim.

4. Selection: At the selection stage, a trial vector um(g) replaces a target vector of

the same index in the parent population ym(g) if its objective function less than or

equal to that of the target vector, else the target vector retains its place in the next

generation g + 1. Thus

ym(g + 1) =

⎧⎪⎪⎨⎪⎪⎩
um(g) if f(um(g)) ≤ f(ym(g))

ym(g) otherwise.

where f is the objective function. The algorithm repeats the mutation, trial and selection

steps until there is convergence or it stops if a suitably defined termination criterion is met.

For example, the maximum number of iterations/generations has been reached or when

the objective function value has been reduced beyond the tolerance level. Our stopping

criteria for the G2++ calibration is to terminate the algorithm after 300 generations and

600 generations for the G3++ model. These criteria were chosen after several experiments

with different stopping criteria.
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3.3 Calibration Results

In this section, we present the calibration results of model to market prices available on

Friday 28th June, 2019.

Input Market Data

The Gn++ interest rate model takes the market yield curve together with market swap-

tion prices as an input in its calibration process. We used the zero-coupon curve available

on the Bloomberg Terminal which is constructed using using cash rates, interest rate fu-

tures and swaps. The market zero curve on Bloomberg as of 28th June 2019, is provided

in Figure 3.12. It is easy to notice that the spot rates provided by Bloomberg are available

Figure 3.1: Market yield curve on June 28, 2019

Source: Bloomberg.com

for only a finite set of maturities. However it turns out that we need the market bond

prices on other maturities not available on Bloomberg. Indeed to compute the market

and model swaption prices in (1.18) and (2.30) as well as the implied volatility, we need as

input, the market bond prices on the settlement dates between the swaption’s maturity

and expiry T = {Tα, .., Tβ} with an associated year fractions τα+1, .., τβ, giving rise to the

need of interpolation of those market spot rates. We use a cubic spline to interpolate the

missing spot rates due to their accurracy in fitting observable market prices. Further,

given that the interpolation function is continuous and differentiable, we are able derive

2We acknowledge Bloomberg for the permission to use pictures from their terminal.
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Figure 3.2: Market interpolated yield curve

the forward rate to simulate the short rate paths in subsequent chapters. The market

interpolated zero-coupon curve for the considered day is provided in the Figure 3.2. The

interpolated curve is smooth, continuous and consistent with the observable market spot

rates.

Next, we obtained market swaption prices listed as market volatilities also available on

the Bloomberg Terminal. The market swaption surface also known as the market volatil-

ity cube as of 28th June, 2019 is provided in Figure 3.3. These swaptions are all based

on the 3-month Canadian Inter-Bank Offered Rate abbreviated as CAD-IBOR as the

floating rate. On the left, in the row names are the swaption maturities ranging between

1 month to 30 years and in the column headings are the swaption tenors also ranging

between 1 and 30 years3.

A requirement of market consistent valuations is to calibrate models to instrument that

have a similar feature as the liabilities to be valued. Since short tenor and maturity

swaptions are irrelavant to valuing long dated insurance liabilities, we exclude swaptions

with tenors/maturities being less than a year. We specifically limit the model inputs

to swaptions with a maximum maturity of 20 years and a maximum tenor of 10 years

because swaptions beyond these maturity and tenor are less liquid and so their quotes

3Maturities greater than 25 are not captured here.
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Figure 3.3: Market volatility surface on June/28/2019

Source: Bloomberg.com

are not as reliable. Also, to save computational time, we chose a subset of swaptions

that met this criteria but which still exhaustive enough (70 swaptions in total) for our

implementation. This set is provided in the volatility matrix in Table 3.1.

Table 3.1: Market volatilities on June 28

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3858 0.3940 0.4129 0.4158 0.4122 0.3858 0.3343
2 0.4287 0.4306 0.4252 0.4195 0.4070 0.3845 0.3333
4 0.4185 0.4323 0.4124 0.3983 0.3851 0.3583 0.3155
5 0.4000 0.3901 0.3789 0.3769 0.3674 0.3402 0.3023
7 0.3892 0.3635 0.3487 0.3397 0.3242 0.3054 0.2792
8 0.3768 0.3466 0.3306 0.3227 0.3099 0.2911 0.2697
10 0.3373 0.3053 0.2954 0.2887 0.2821 0.2631 0.2511
12 0.3351 0.3033 0.2941 0.2879 0.2817 0.2629 0.2526
15 0.3362 0.3043 0.2950 0.2886 0.2823 0.2660 0.2558
20 0.3501 0.3168 0.3072 0.3005 0.2939 0.2753 0.2635

By solving (3.1) and (3.2), we obtain the calibrated parameters of the G2++ and

G3++ model provided in Tables 3.2 and 3.3 respectively.
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Table 3.2: G2++ Model Parameters

Calibration a1 a2 σ1 σ2 ρ12

Prices 0.0416 0.8922 0.00916 0.0129 -0.7151

Volatilities 0.0420 0.9859 0.00916 0.0149 -0.7217

Table 3.3: G3++ Model Parameters

Calibration a1 a2 a3 σ1 σ2 σ3 ρ12 ρ13 ρ23

Prices 0.0397 0.8220 0.1158 0.00864 0.01309 0.00236 -0.5871 0.2420 -0.8409

Volatilities 0.0513 0.8339 0.5535 0.00998 0.0191 0.00913 -0.516 -0.2178 -0.4811

Henceforth we shall refer to the parameters resulting from minimizing the market and

Gn++ prices as price parameters and those from minimizing market and Gn++ implied

volatilities as volatility parameters. At a glance, we notice that the two set parameters

are within close ranges for the G2++ model while the same cannot be said the G3++

model. One possible explanation could be because the G3++ parameter vectors live in a

9-dimensional space with four additional degrees of freedom (than the G2++ model) in

replicating the market implied volatility surface. Another possible explanation could be

attributed to the nature of the market input. Typically when maturity is held constant,

Figure 3.4: General phenomenon of market swaption prices and implied volatility

swaption prices increases with an increase tenor. The dynamics of swaption implied
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volatilities are quite different. For very short tenor swaptions (typically less than 5 years)

when the tenor is held constant, implied volatility tend to momentarily increase with an

increase in maturity until it “maxes” out and then starts declining until it stabilizes in

the long term. For longer tenor swaption (typically 5 or more years), when tenors are

held constant, implied volatility declines with an increase in maturity until it reaches a

certain threshold where its starts to stabilize for the longer term maturities. This phe-

nomenon implies that the two objective functions in (3.2) and (3.1) will assign different

weights to the same swaption which is reflected in the calibrated parameter values of the

G3++ model. This pattern in swaption prices and implied volatility is more adequately

represented in Figure 3.4.

To validate the calibration results, we analyse the consistency of the models with repli-

cating the observable market prices via Monte-Carlo simulations in the next chapter.
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Chapter 4

Model Validation of the Gn++

model

The validation step assesses the quality of the interest rate model calibration by com-

paring the model simulated output (e.g model implied volatilities) to market observable

prices. This is to ensure that calibrated parameters used to simulate cash flow scenarios

for the contract valuations also replicate observable market inputs (to a satisfactory de-

gree) via Monte-Carlo simulation. We begin by first simulating the model swaption price

and then inverting it to calculate the model implied volatility in order to compare it with

the benchmark; market implied volatilities.

4.1 Simulation of Swaption Prices

We simulate the swaption prices using the swaption price formula in (2.28), 12 To imple-

ment the simulation, for each instrument, we need the price of a bond maturing at the

swaption maturity P (0, Tα) which is the same as the market bond price, the strike price

1A similar implementation can be done under the risk-neutral measure where the bank account is the
numeraire since the prices from both methods are mathematically equivalent. Adjustments are made
when simulating the OU processes by adjusting the drift of the processes when simulating the bond
price and also when simulating the discount factor. Details of simulations under Q are provided in a
subsequent section.

2Simulations under the QT is particularly more convenient and accurate when it is difficult to simulate
the discount factors exactly thereby avoiding discretization errors due to approximations of the short-
rate’s integral.
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K (as provided on Bloomberg) and the simulated future bond prices at the maturity

of the swaption P (Tα, Tk) for k = α + 1, ..., β. This reduces the simulation scheme to

only that of the bond prices at t = Tα since the rest of the inputs are readily available.

The bond prices are determined analytically by (2.22) and (2.23) with the modified OU-

processes postulated under the QT . Since we are valuing a large number of swaptions

with several maturities Tα, we change the formulation in (2.28) so that the numeraire

is the zero-coupon bond price P (0, T ∗). This way, we are able to consider a single for-

ward measure relative to a time horizon T ∗ often called the “terminal forward measure”.

This circumvents the need to simulate the process xi(t), i = 1, . . . , n under the forward

measure for every maturity Tα. Hence the formulation changes to

PS[0, Tα, Tβ, K,N ] = NP (0, T ∗)ET ∗

⎡⎢⎣
(︂
1−

∑︁β
k=α+1 ciP (Tα, Tk)

)︂+
P (Tα, T ∗)

⎤⎥⎦ . (4.1)

The term P (Tα, T
∗) compounds the swaption payoff at maturity to the time horizon T ∗.

The proof behind this technique is provided in Brigo and Mercurio [2007]. We recall

from Chapter 2 that the dynamics of the process {xi(t) : t > 0, i = 1, . . . , n} under

the forward measure satisfy (2.24). We can simulate the processes by simply discretizing

(2.24) with respect to time; i.e finitizing dt. If we denote ∆t = tk+1 − tk, we obtain the

update formula

xi(tk+1) ≈ xi(tk)− aixi(tk)∆t−MT ∗

i (tk, tk+1) + σi

√
∆tZi(k + 1) (4.2)

where [Z1(k + 1), ..., Zn(k + 1)]⊤ ∼ N(0, (ρij)∆t) and 0 denotes the zero vector. If we

consider the Choleski decomposition of the covariance matrix (ρij)∆t, such that BBT =

(ρij)∆t. We can rewrite the update formula in (4.8) as

xi(tk+1) ≈ xi(tk)− aixi(tk)∆t−MT ∗

i (tk, tk+1) + σi

√
∆tBiZ̃i(k + 1) (4.3)

where Bi represents the ith row of B and [Z̃i(k + 1), ..., Z̃n(k + 1)]⊤ are iid N(0, 1).

The update formula above has a shortcoming which is that its accuracy can be guaranteed
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if and only if ∆t is suitably small [Gillespie, 1996]. An exact updating formula exists

for the process {xi(t) : t > 0, i = 1, ..., n} by considering the joint distribution of the

random vectorX(tk+1) = [x1(tk+1), ..., xn(tk+1)]
⊤. We can deduce from subsection 2.2.4 in

Chapter 2 that under the forward measure QT ∗
, conditional on Ftk , the vector X(tk+1) =

[x1(tk+1), ..., xn(tk+1)]
T is jointly normally distributed with mean and covariance matrix

C(∆t). Thus,

E[X(tk+1)|Ftk ] =
[︁
x1(tk)e

−a1∆t −MT ∗

1 (tk, tk+1), ..., xn(tk)e
−an∆t −MT ∗

n (tk, tk+1)
]︁

Cij(∆t) =
σiσj

ai + aj
ρij(1− e−(ai+aj)∆t).

(4.4)

Assuming the covariance matrixC(∆t) is positive semi-definite, if we consider the Cholesky

decomposition such that LL⊤ = C(∆t), then we can have an exact updating formula for

the process {xi(t) : t > 0} such that given Ftk ,⎡⎢⎢⎢⎢⎣
x1(tk+1)

...

xn(tk+1)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
x1(tk)e

−a1∆t −MT ∗
1 (tk, tk+1)

...

xn(tk)e
−an∆t −MT ∗

n (tk, tk+1)

⎤⎥⎥⎥⎥⎦+ L

⎡⎢⎢⎢⎢⎣
Z̃1(k + 1)

...

Z̃n(k + 1)

⎤⎥⎥⎥⎥⎦ (4.5)

where Z̃1(k + 1), ..., Z̃n(k + 1) are iid N(0, 1). The simulated process of {xi(t) : t >

0, i = 1, ..., n} allows us to simulate bond prices at any point in time 0 < t < T ∗

and subsequently compute the Monte-Carlo swaption price by (4.1). Assuming we have

simulated a considerably large number ofM paths across all trajectories, the Monte-Carlo

swaption price is computed as

PS(MC)[0, Tα, Tβ ,K,N ] = NP (0, T ∗)
1

M

M∑︂
m=1

⎡⎢⎣
(︂
1−

∑︁β
k=α+1 ckA(Tα, Tk)e

−
∑︁n

i=1 Bi(Tα,Tk)x
(m)
i (Tα)

)︂+
A(Tα, T ∗)e−

∑︁n
i=1 Bi(Tα,T∗)x

(m)
i (Tα)

⎤⎥⎦ .

(4.6)

Through the law of large numbers, (4.6) approaches the true price (2.28) as M −→ ∞.

Computations of the model implied volatility easily follows from the relationship in (3.4)

by replacing the model analytical prices with Monte-Carlo swaption prices. Using the

calibrated parameters in Tables 3.2 and 3.3, we implemented a simulation of 50,000
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antithetic paths for each process {xi(t) : i = 1, . . . , n} with a time step ∆t = 0.25 and

time horizon T ∗ = 30.

(a) Market implied volatilities (b) Model implied volatilities

Figure 4.1: G2++ calibration to market prices on June 28: volatility surface

(a) In-sample calibration errors (b) Out-of-sample calibration error

Figure 4.2: G2++ calibration to market prices on June 28: calibration errors

The market and model implied volatility surface as well as the relative calibration

errors of the G2++ price parameters are provided in Figures 4.1, 4.2 and Tables 4.1, 4.2

respectively. We can observe other the short tenor volatility term structure, the G2++

model (with price parameters) is able to replicate the market observed volatitlity surface

satisfactorily. We must admit that we do not expect the theoretical implied volatility to

provide a perfect fit to the market observe surface since we calibrated our model to 70

swaptions with different features (strike, tenors, maturity etc). In fact, a perfect fit to the
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Table 4.1: G2++ calibration to market prices on June 28: implied volatilities

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3878 0.4010 0.4130 0.4207 0.4104 0.4002 0.3606
2 0.4215 0.4287 0.4300 0.4248 0.4182 0.3930 0.3501
4 0.4343 0.4196 0.4146 0.4018 0.3883 0.3574 0.3251
5 0.4049 0.4053 0.3886 0.3806 0.3686 0.3399 0.3051
7 0.3671 0.3610 0.3558 0.3351 0.3221 0.3067 0.2866
8 0.3592 0.3492 0.3294 0.3188 0.3096 0.2926 0.2762
10 0.2981 0.2977 0.2959 0.2906 0.2812 0.2771 0.2585
12 0.3000 0.2904 0.2784 0.2809 0.2800 0.2696 0.2634
15 0.2955 0.2897 0.2824 0.2735 0.2631 0.2717 0.2611
20 0.3386 0.3257 0.3133 0.3050 0.2940 0.2883 0.2779

Table 4.2: G2++ calibration to market prices on June 28: calibration errors

Maturity/Tenor 1 2 3 4 5 7 10
1 0.0052 0.0178 0.0003 0.0117 -0.0043 0.0372 0.0786
2 -0.0169 -0.0045 0.0112 0.0127 0.0275 0.0221 0.0504
4 0.0378 -0.0293 0.0054 0.0089 0.0084 -0.0024 0.0305
5 0.0122 0.0391 0.0256 0.0099 0.0032 -0.0007 0.0092
7 -0.0568 -0.0069 0.0203 -0.0136 -0.0064 0.0044 0.0266
8 -0.0468 0.0075 -0.0038 -0.0120 -0.0011 0.0051 0.0241
10 -0.1163 -0.0248 0.0017 0.0066 -0.0032 0.0531 0.0294
12 -0.1049 -0.0424 -0.0535 -0.0243 -0.0059 0.0255 0.0427
15 -0.1211 -0.0479 -0.0427 -0.0525 -0.0680 0.0215 0.0209
20 -0.0328 0.0280 0.0199 0.0149 0.0004 0.0471 0.0545

market volatility term structure is not necessary and could be signal of potential danger

since the liquidity of the market quoted swaptions differ and so not all market quotes are

reliable [Brigo and Mercurio, 2007]. In Table 4.2, we can see that other than the swaptions

with longer maturities of 10, 12 and 15 × 1 and the longest tenor of 10 × 1 swaptions

the absolute relative error is less than 8% with 22 error values being close to 0. The poor

fit to the short tenor × long maturities swaptions could be explained by the magnitude

of swaption prices as one moves around the volatility matrix. Typically, when maturity

is held constant, the swaption price increases with an increase in tenor and since we are

minimizing difference in prices the algorithm will naturally tend to focus on swaptions

with higher prices, thus those with longer tenors. This explains one of the reasons why

some practitioners do not favor this calibration method. Another possible explanation

could be associated to the approximation error in (2.30) during the calibration stage. As
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seen in the calibration of Di Francesco [2012] and reiterated by Russo and Torri [2019],

the approximation by Schrager and Pelsser [2006] tends to provide larger errors for longer

maturity and longer tenor swaptions. In addition to the samples we used in our calibra-

tion, we tested the quality of the calibration on swaptions not included in the calibration

sample to see if the calibrated model is stable with unseen instruments. On the right

hand of Figure 4.2 we can see that the out-of-sample calibration errors is maintained

within the range of the in-sample calibration errors. The out-of-sample calibration errors

increases with an increase in tenor which could be explained by the approximation error

by the swaption price in (2.30). Nevertheless, the G2++ model (with price parameters)

provides a good fit the to market volatility surface is satisfactory with a mean absolute

error (MAE) of 2.66%.

(a) Market implied volatilities (b) Model implied volatilities

Figure 4.3: G2++ calibration to market implied volatilities on June 28: volatility surface

52



(a) In-sample calibration errors (b) Out-of-sample calibration error

Figure 4.4: G2++ calibration to market implied Volatilities on June 28: calibration errors

Figures 4.3, 4.4 together with Tables 4.3 and 4.4 show calibration results for the G2++

volatility parameters. Again with the volatility parameters, the model generally produces

a good fit for the market volatility surface with the most pronounced inconsistency around

the shortest tenor structure when maturity increases. We notice that, the problem with

the long maturity swaptions × short tenor is also prevalent with this calibration type

although the relative error slighty declined. The out-of-sample errors are also not too far

from the range of in-sample ones; with an increase in error when tenor increases. Realizing

the same trend is observed in Table 4.2, this could be mainly due to the approximation

error in (2.30). Regardless of this, 23 of the in-sample errors are close to 0. In general the

G2++ model (with volatility parameters) provides a satisfactory fit to market volatility

surface with an MAE of 2.60%.

Table 4.3: G2++ calibration to market implied volatilities on June 28: implied volatilities

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3860 0.3963 0.4094 0.4179 0.4082 0.3983 0.3589
2 0.4210 0.4275 0.4293 0.4244 0.4177 0.3924 0.3493
4 0.4357 0.4202 0.4150 0.4021 0.3884 0.3572 0.3246
5 0.4059 0.4057 0.3888 0.3807 0.3685 0.3396 0.3045
7 0.3675 0.3610 0.3557 0.3348 0.3218 0.3062 0.2859
8 0.3594 0.3491 0.3291 0.3185 0.3091 0.2920 0.2754
10 0.2981 0.2974 0.2955 0.2901 0.2807 0.2764 0.2576
12 0.2997 0.2900 0.2778 0.2803 0.2793 0.2688 0.2624
15 0.2951 0.2891 0.2817 0.2727 0.2623 0.2707 0.2600
20 0.3377 0.3246 0.3122 0.3038 0.2928 0.2869 0.2764
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Table 4.4: G2++ calibration to market implied Volatilities on June 26: calibration errors

Maturity/Tenor 1 2 3 4 5 7 10
1 0.0005 0.0059 -0.0085 0.0051 -0.0097 0.0324 0.0737
2 -0.0179 -0.0073 0.0096 0.0116 0.0264 0.0206 0.0481
4 0.0410 -0.0280 0.0064 0.0095 0.0085 -0.0032 0.0287
5 0.0148 0.0401 0.0262 0.0100 0.0030 -0.0018 0.0071
7 -0.0558 -0.0070 0.0199 -0.0143 -0.0075 0.0025 0.0239
8 -0.0462 0.0071 -0.0044 -0.0130 -0.0025 0.0030 0.0211
10 -0.1162 -0.0257 0.0005 0.0050 -0.0051 0.0504 0.0259
12 -0.1057 -0.0440 -0.0553 -0.0264 -0.0084 0.0224 0.0387
15 -0.1222 -0.0499 -0.0450 -0.0550 -0.0709 0.0178 0.0163
20 -0.0355 0.0245 0.0163 0.0110 -0.0038 0.0421 0.0488

(a) Market implied volatilities (b) Model implied volatilities

Figure 4.5: G3++ calibration to market prices on June 28: volatility surface

(a) In-sample calibration errors (b) Out-of-sample calibration error

Figure 4.6: G3++ calibration to market prices on June 28: calibration errors
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Figures 4.5, 4.6 and Tables 4.5, 4.6 show calibration results for the G3++ price

parameters. By visual inspection, one can observe that increasing the number of factors

from 2 to 3 provides a similar fit to the market surface as in the two-factor case. The

G3++ (with price parameters) also struggles to replicate the longer maturity portion

of the volatility term structure. Out-of-sample errors are not far from those in-sample;

with out-of-sample errors increasing for an increase in tenor. Overall the replication is

satisfactory with an MAE of 2.62% which is less than that of the G2++ model with

similar calibration method.

Table 4.5: G3++ calibration to market prices on June 28: implied volatilities

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3857 0.3988 0.4116 0.4201 0.4104 0.4007 0.3611
2 0.4203 0.4280 0.4298 0.4253 0.4189 0.3939 0.3507
4 0.4337 0.4195 0.4148 0.4022 0.3888 0.3578 0.3252
5 0.4043 0.4049 0.3883 0.3805 0.3685 0.3397 0.3046
7 0.3673 0.3614 0.3564 0.3358 0.3228 0.3072 0.2868
8 0.3601 0.3502 0.3304 0.3199 0.3105 0.2933 0.2765
10 0.2979 0.2975 0.2958 0.2905 0.2811 0.2768 0.2580
12 0.3002 0.2907 0.2786 0.2811 0.2802 0.2696 0.2631
15 0.2962 0.2904 0.2830 0.2740 0.2635 0.2720 0.2611
20 0.3381 0.3251 0.3128 0.3044 0.2934 0.2876 0.2770

Table 4.6: G3++ calibration to market prices on June 28: calibration errors

Maturity/Tenor 1 2 3 4 5 7 10
1 -0.0004 0.0122 -0.0032 0.0103 -0.0043 0.0386 0.0801
2 -0.0195 -0.0061 0.0109 0.0137 0.0293 0.0245 0.0524
4 0.0362 -0.0297 0.0058 0.0099 0.0097 -0.0013 0.0307
5 0.0108 0.0379 0.0249 0.0094 0.0029 -0.0013 0.0077
7 -0.0563 -0.0058 0.0221 -0.0116 -0.0043 0.0060 0.0273
8 -0.0443 0.0105 -0.0005 -0.0087 0.0021 0.0076 0.0253
10 -0.1169 -0.0254 0.0013 0.0062 -0.0036 0.0521 0.0274
12 -0.1041 -0.0416 -0.0528 -0.0236 -0.0055 0.0254 0.0416
15 -0.1189 -0.0457 -0.0406 -0.0506 -0.0665 0.0226 0.0208
20 -0.0343 0.0263 0.0182 0.0131 -0.0015 0.0446 0.0514
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(a) Market implied volatilities (b) Model implied volatilities

Figure 4.7: G3++ calibration to market implied volatilities on June 28: volatility surface

(a) In-sample calibration errors (b) Out-of-sample calibration error

Figure 4.8: G3++ calibration to market implied Volatilities on June 28: calibration errors

The fit of the G3++ model by the volatility parameters is also satisfactory with the

long maturity × shortest tenor problem still prevalent. For this model in particular, the

fit to the longest tenor swaption of 10 years mostly better than the previous models.

Out-of-sample calibration errors are not too far from the in-sample range; with out-of-

sample errors increasing with an increase in tenor. The MAE for the G3++ model (with

volatility parameters) is 2.49%.

From the model validations, we can make an interesting observation. The overall fit to

the longer maturities 10, 12, 15 × 1 is poor for all models with the calibration error being

greater 10%. Another interesting observation we can make is that minimizing the sum of
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Table 4.7: Mean of absolute relative calibration errors

G2++ G3++
Calibration method
Price 2.66% 2.62%
Volatility 2.60% 2.49%

absolute relative differences between market and model implied volatilities tend to yield

lower MAEs than minimizing the sum of absolute relative differences between market and

model swaption prices. This results holds for the selected datasets and calibration steps

employed in this study. For the sake of brevity, going forward, we shall only concentrate

on the “volatility” parameters.

Table 4.8: G3++ calibration to market implied volatilities on June 28: implied volatilities

Maturity/Tenor 1 2 3 4 5 7 10
1 0.4119 0.3983 0.4040 0.4117 0.4028 0.3946 0.3556
2 0.4317 0.4267 0.4260 0.4215 0.4157 0.3913 0.3477
4 0.4423 0.4220 0.4159 0.4031 0.3896 0.3580 0.3239
5 0.4104 0.4069 0.3894 0.3814 0.3693 0.3400 0.3033
7 0.3726 0.3637 0.3578 0.3366 0.3232 0.3066 0.2844
8 0.3650 0.3521 0.3313 0.3202 0.3104 0.2921 0.2736
10 0.3012 0.2986 0.2961 0.2903 0.2804 0.2751 0.2545
12 0.3007 0.2895 0.2768 0.2789 0.2776 0.2660 0.2578
15 0.2961 0.2885 0.2803 0.2707 0.2597 0.2668 0.2539
20 0.3337 0.3191 0.3062 0.2973 0.2858 0.2786 0.2661

Table 4.9: G3++ calibration to market implied volatilities on June 28: calibration errors

Maturity/Tenor 1 2 3 4 5 7 10
1 0.0678 0.0109 -0.0216 -0.0099 -0.0227 0.0229 0.0638
2 0.0070 -0.0090 0.0020 0.0048 0.0213 0.0177 0.0432
4 0.0568 -0.0239 0.0086 0.0121 0.0116 -0.0007 0.0265
5 0.0261 0.0430 0.0277 0.0120 0.0052 -0.0007 0.0033
7 -0.0425 0.0006 0.0260 -0.0092 -0.0031 0.0040 0.0188
8 -0.0314 0.0160 0.0021 -0.0077 0.0016 0.0036 0.0144
10 -0.1071 -0.0219 0.0023 0.0055 -0.0060 0.0455 0.0135
12 -0.1025 -0.0455 -0.0587 -0.0311 -0.0146 0.0120 0.0204
15 -0.1191 -0.0521 -0.0500 -0.0621 -0.0801 0.0029 -0.0076
20 -0.0469 0.0074 -0.0034 -0.0107 -0.0275 0.0121 0.0099

To conclude the section, we are left with the question of which model is more market-

consistent? As previously mentioned the market-consistency test aims measure how well
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a model is able to replicates market observed prices and not necessarily reproduce all

observable inputs. Based on the considered data set on the calibration date, both the

3-factor and 2-factor additive models reproduce the market volatility cube of the selected

swaptions well. The answer then lies with the subjectivity of an acceptable tolerance level

and type of product to be valued. For example if the product very similar to a 10, 12 or

15 × 1 swaption, the suitability of the models might be questioned. For the purposes of

this work and requirement of the IFRS17 of models to replicate enough market inputs,

both the G2++ model and G3++ shall be considered to be market-consistent.

4.2 Simulation of The Discount Factor

In this section, we provide a joint simulation scheme for the stochastic discount factor

and short rate. In addition to being the fundamental quantity describing the yield curve

for short-rate models, the short rate is an important quantity in generating risk-neutral

scenarios as it represents the drift of most asset classes e.g. equity index, real-estate etc.

The stochastic discount factor is also an important element used to discount cash flow

scenarios in risk neutral valuations. Recall that

D(0, t) = exp

(︃
−
∫︂ t

0

r(s)ds

)︃
= exp

(︄
−
∫︂ t

0

n∑︂
i=1

xi(s)ds+ f(s)ds

)︄
.

If we denote Ytk =
∫︁ tk
0

∑︁n
i=1 xi(s)ds and recall the relationship P (0, T ) = exp(−

∫︁ T

0
f M(0, s)ds),

by (2.18) and (2.15), the integral of the short rate is normally distributed with mean

E
[︃∫︂ tk+1

0

r(s)ds

⃓⃓⃓⃓
Ftk

]︃
= Ytk +

n∑︂
i=1

xi(tk)
1− e−ai(tk+1−tk)

ai
− lnP (0, tk+1)+

1

2

n∑︂
i,j=1

ρij
σiσj

aiaj

[︃
tk+1 −

1− e−aitk+1

ai
− 1− e−ajtk+1

aj
+

1− e−(ai+aj)tk+1

(ai + aj)

]︃

= Ytk +
n∑︂

i=1

xi(tk)
1− e−ai(tk+1−tk)

ai
− lnP (0, tk+1) +

1

2
V (0, tk+1)
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and variance

var

[︃∫︂ tk+1

0

r(s)ds

⃓⃓⃓⃓
Ftk

]︃
= var

[︄∫︂ tk+1

tk

n∑︂
i=1

xi(s)ds

]︄
:= V (tk, tk+1) (4.7)

We implement the simulation of the integral of the short rate in two parts. First we

consider only the process {Yt : t > 0, Y0 = 0} and then incorporate the integral of the

deterministic function later.

The integral of the short rate depends on the process {
∑︁n

i=1 xi(t) : t > 0, i = 1, . . . , n},

so we implement a joint simulation with the process {xi(t) : t > 0, i = 1, . . . , n} under

measure Q. We provide an expression for the covariance between the short rate and its

integral. Following Chapter 3 of Glasserman [2013],

cov

(︄
n∑︂

i=1

xi(tk+1), Ytk+1

⃓⃓⃓⃓
Ftk

)︄
= cov

(︄
n∑︂

i=1

xi(tk+1),

∫︂ tk+1

tk

n∑︂
i=1

xi(s)ds

⃓⃓⃓⃓
Ftk

)︄

=

∫︂ tk+1

tk

cov

(︄
n∑︂

i=1

xi(tk)e
−ai(tk+1−tk) + σi

∫︂ tk+1

tk

e−ai(tk+1−u)dWi(u),

n∑︂
i=1

xi(tk)e
−ai(s−tk) + σi

∫︂ s

tk

e−ai(s−u)dWi(u)

)︄
ds

assuming tk < s < tk+1

=

∫︂ tk+1

tk

n∑︂
i,j=1

E
(︃∫︂ s

tk

σie
−ai(tk+1−u)dWi(u)

∫︂ s

tk

σje
−aj(s−u)dWj(u)

)︃

and by Itô’s Isometry, this becomes

=

∫︂ tk+1

tk

n∑︂
i,j=1

(︃∫︂ s

tk

σiσjρije
−ai(tk+1−u)e−aj(s−u)du

)︃

which simplifies to

=
n∑︂

i,j=1

ρijσiσj

(ai + aj)

[︃
1

ai
− e−ai(tk+1−tk)

ai
− e−aj(tk+1−tk)

aj
+

e−(ai+aj)(tk+1−tk)

(ai + aj)

]︃
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so that denoting tk+1 − tk = ∆t, for p = 1, . . . , n

cov

(︃
xp(tk+1), Ytk+1

⃓⃓⃓⃓
Ftk

)︃
=

n∑︂
j=1

ρpjσpσj

(ap + aj)

[︃
1

ap
− e−ap∆t

ai
− e−aj(∆t)

aj
+

e−(ap+aj)∆t

(ap + aj)

]︃
:= γ̃(p)(∆t).

Under the Q, conditional on Ftk , the vector X̂(tk+1) = [x1(tk+1), ..., xn(tk+1), Ytk+1
]⊤ is

jointly normally distributed with covariance matrix Ĉ(∆t). Thus

E[X̂(tk+1)|Ftk ] =

[︄
x1(tk)e

−a1∆t, ..., xn(tk)e
−an∆t, Ytk +

n∑︂
i=1

xi(tk)
1− e−ai∆t

ai

]︄

and given that cov [xi(tk+1), xj(tk+1)|Ftk ] is,

Ĉij(∆t) =
σiσj

ai + aj
ρij(1− e−(ai+aj)∆t),

the covariance matrix of X̂(tk+1) is

Ĉ(∆t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C11(∆t) · · · C1n(∆t) γ̃1(∆t)

...
. . .

...
...

Cn1(∆t) · · · Cnn(∆t) γ̃n(∆t)

γ̃1(∆t) · · · γ̃n(∆t) V (tk, tk+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Assuming the covariance matrix Ĉ(∆t) is positive semi-definite, if we consider the Cholesky

decomposition such that LLT = Ĉ(∆t), then we can have an exact updating formula for

the process {xi(t) : t > 0} and {Y (t) : t > 0} such that given Ftk ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1(tk+1)

...

xn(tk+1

Ytk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(tk)e
−a1∆t

...

xn(tk)e
−an∆t

Ytk +
∑︁n

i=1 xi(tk)
1− e−ai∆t

ai

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ L

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z̃1(k + 1)

...

Z̃n(k + 1)

Z̃n+1(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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and an exact updating formula for the short rate r(t) 3 and its integral
∫︁ t

0
r(s)ds such

that given Ftk , ⎡⎢⎣ r(tk+1)∫︁ tk+1

0
r(s)ds

⎤⎥⎦ =

⎡⎢⎣ ∑︁n
i=1 xi(tk+1) + f (tk+1)

Ytk+1
− lnP (0, tk+1) +

1

2
V (0, tk+1)

⎤⎥⎦
where Z̃i(k + 1), ..., Z̃n(k + 1) are iid N(0, 1) with xi(0) = 0, i = 1, . . . , n, Y (0) = 0 and

r(0) = f (0).

We implemented a simulation of 50,000 antithetic paths with a time step ∆t = 0.25 for

both the short rate and the discount factor. Figure 4.9 provides 5,000 randomly sampled

paths of the future evolution of the short rate over time. Although the presence of negative

Figure 4.9: Evolution of the short rate over time

short rate is a desirable for the current low interest environment, many jurisdictions or

entities usually place a floor on the lower bound such that r(t) does not fall beyond the

prescribed value. For example, the Canadian institute of actuaries recommends to place

a lower bound of −0.0075 on r(t) [Canadian Institute of Actuaries, 2013]. We provide

the empirical probability of Q(r(t) < −0.0075) for 0 < t ≤ 30 in Figure 4.10. It is

evident from that Figure 4.10 that empirical Q(r(t) < −0.0075) increases over time with

the G3++ model having a higher proportion of negative short rate values across time.

The distributions of the 5-year and 30-year discount factor is provided in Figure 4.11.

3values of the market forward rates in deterministic f (t) is calculated by differentiating the spline
function used to interpolate the market yield curve
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Figure 4.10: Proportion of r(t) < −0.0075

Figure 4.11: Distribution of discount factor

It obvious both models and maturities have discount factors which are greater than one

sometimes which is due to the existence of negative interest rate. The distribution of the

30-year discount factor has a longer tail for both models due to the increase in probability

of negative short rates (and its integral) as t increases. Having provided the necessary

simulation scheme for the quantities useful in market-consistent valuations, we provide a

specific application to the valuation of segregated fund.

4.3 Application To A Segregated Fund Policy

Segregated funds (called variable annuities in the US, unit-linked insurance in the United

Kingdom and parts of Asia) are fund-linked products that combine both investment and
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insurance features. The policyholder pays an initial premium which is invested in the

underlying fund (made of equity, bonds, or a mix of both) that follows the financial market

growth. At maturity, the policyholder receives a lump sum that is dependent on the

market performance. To protect the policyholder against the downside risk of the market,

the insurer provides additional benefits to the contracts referred to as benefit riders. There

are several types of segregated fund riders available on the market which include: the

Guaranteed Minimum Maturity Benefit (GMMB), Guaranteed Minimum Death Benefit

(GMDB), Guaranteed MinimumWithdrawal Benefit(GMWB) and Guaranteed Minimum

Income Benefit (GMIB). In this thesis we focus on GMMBs and direct the interested

reader to a host of literature dedicated on the rest, for example Hardy [2003].

Insurers issuing GMMBs guarantee a full or partial return of premium contingent on

survival at the maturity of the contract. Thus at maturity, the policyholder receives

the maximum between the underlying account value and the guarantee amount. The

guarantee cost (excess of the guarantee amount over the account value) is financed via

a fee charged to the account value. During the period of the contract, the insured may

surrender the policy which comes at a charge called a surrender penalty or lapse penalty.

An insurer selling a GMMB is faced with other risks in addition to surrender such as

mortality.

4.3.1 GMMB Contract Cashflows

The main cashflows involved in valuing a GMMB, are the guarantee payout (if triggered)

by the insurer at maturity, the guarantee fees collected by the insurer at periodic intervals

and the surrender charge when it occurs.

We consider a set of equally spaced time intervals T = {t|0 = t0, t1, . . . , tN = T} where

T is the maturity of the contract. ∆t = tk+1 − tk represents the time step size and

for for every k = 0, 1, 2, . . . , N , tk = k∆t so that t0 = 0. We assume premiums are

invested in a pure bond fund that follows a “rolling-horizon” trading strategy where

funds are continuously reinvested in zero-coupon bonds with a target fixed maturity

τ . The underlying fund assumptions and notations is greatly influenced by work done
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in Augustyniak et al. [2019] and references mentioned therein, with adjustments made

where necessary.

At time t = tk, the underlying fund value is

Ftk = Ftk−1

P (tk, tk + τ −∆t)

P (tk−1, tk−1 + τ +∆t)
=

k∏︂
n=1

P (tn, tn + τ −∆t)

P (tn−1, tn−1 + τ −∆t)
, k = 1, . . . , N, F0 = 1.

At time t = 0, the policyholder pays the initial premium A0. At time t = tk, the policy

account evolves as

Atk = Atk−1
(1− ε)

Ftk

Ftk−1

where ε is the periodic guarantee charge. The proportion of policy holders active at time

t = tk is

tkax = tk−1
ax

(︃
tkpx

tk−1
px

)︃
(1− L(mtk−1

)), 0ax = 1

where
tkpx

tk−1
px

is the conditional probability of an aged-x policyholder alive at tk−1 to

survive to time tk. K is the guaranteed amount and mtk−1
=

Atk−1

K
is the measure of the

moneyness of the guarantee at time t = tk−1.

L : (0,∞) −→ [0, 1] is a function on the moneyness which indicates the proportion of

policyholders who surrender their policy at time t = tk. In summary the cash inflow to

the insurer at time t = tk is

the guarantee fee = tk−1
axεAtk−1

Ftk

Ftk−1

, k = 1, . . . , N

and

the surrender penalty = tk−1
ax

(︃
tkpx

tk−1
px

)︃
L(mtk−1

)AtkP(tk)

where P is a deterministic function which indicates proportion of the account value

retained by the insurer in the event of a surrender.

The maturity payout at t = T is GT = max(K,AT ) = AT + (K − AT )
+ so that cash
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outflow by the insurer is an embedded put option. Considering surrender behaviour and

mortality, this is expressed as

Taxmax(K − AT , 0).

The net cashflow at anytime t = tk is then given by

CFtk = I{tk=T}Taxmax(K − AT , 0)− tk−1
axεAtk−1

Ftk

Ftk−1

− tk−1
ax

(︃
tkpx

tk−1
px

)︃
L(mtk−1

)AtkP(tk)

k = 1, . . . , N.

The market-consistent value of the GMMB guarantee at time t = 0, on the initial recog-

nition t = 0 of the contract is

Πguar
0 = EQ [D(0, T )Taxmax(K − AT , 0)] . (4.8)

The expected value of the future cash inflow to insurer on initial recognition is

Πin
0 = EQ

[︄
N∑︂
j=1

D(0, tk)

(︃
tk−1

axεAtk−1

Ftk

Ftk−1

+ tk−1
ax

(︃
tkpx

tk−1
px

)︃
L(mtk−1

)AtkP(tk)

)︃]︄
.

(4.9)

So that the value of the GMMB liability is

Π = Πguar
0 − Πin

0 . (4.10)

Due to the complexities associated with the GMMB policy (surrender, mortality, fees

etc) and segregated funds in general, it is impossible to find closed-form expression for

the liability value in (4.10) which necessitates stochastic simulations techniques as rec-

ommended by the IFRS 17 standard.

The GMMB contract details are as follows. Policyholders are assumed to have a dy-

namic surrender behaviour. The annual surrender proportion for year t+ 1 is defined as
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computed as

Lann(mt) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0.02 if mt ≤ 0.4434

0.02 + 0.0616(mt − 0.4434) if 0.4434 < mt < 1.74

0.1 otherwise.

These rates are directly from taken those provided in Augustyniak et al. [2019] which is

claimed to be representative of rates charged on the Canadian market. Quarterly rates

are derived directly by L(mt) = (1− Lann(mt))
1
4 . Surrender charges are assumed to

decrease by 1% every year from 7% in the first year to 0% after the seventh year. This

is given by

P(t) = max

(︃
0, 0.07− 0.01

⌊︃
(t− 1)

4

⌋︃)︃
.

Mortality assumptions are modeled as in Augustyniak et al. [2019]4 using the Canadian

experience.

We consider quarterly intervals ∆t = 1/4 at which the fund is “rebalanced” and fees are

charged.

We consider an initial premium of A0 = 100, maturity period of T = 20 with guarantee

amount of K = 100. The fee rate for the contract is inspired by those in Augustyniak

et al. [2019] 5. The quarterly guarantee fee charge is ε = 0.00519. The market-consistent

valuations for the two short rate models are provided in Table 4.10. From Table 4.10, we

Table 4.10: Market-consistent GMMB Valuations on June 28, 2019

Πguar
0 Πin

0 Π
T = 20, K = 100

G2++ 5.001 22.013 −17.003
G3++ 4.958 22.013 −17.055

can observe that although both model lead to the same expected cash in flow, the G3++

4We thank the authors for making the source code on mortality assumptions and improvements
accessible.

5Using the RBC fund. See Augustyniak et al. [2019] for more details
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model provides a lower guarantee value which is 22.52% of the expected cash inflow while

the G2++ model provides a guarantee value that represents 22.7% of the cash in flow.
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Chapter 5

Robustness Study

Interest rate models are highly sensitive to the data to calibrate them. However these

observable market inputs (e.g. implied volatilities, spot rates etc.) are designed to change

following each trade to reflect their realized prices. Hence it is not surprising for calibrated

model parameters to greatly differ by day. We investigate the robustess of the two short

rate models by re-calibrating them to three sets of market data with a two-day lag,

where there does not seem to be a huge shift in the market conditions e.g. yield curve

and implied volatility surface. This is to ensure that the calibrated model is not only

consistent with the market on the valuation date but it is also robust to the market

data used as an input in the calibration process. We consider market data across three

different days with a two day lag, Monday June 24, 2019, Wednesday June 26, 2019 and

Friday June 28, 2019. The market yield curves on the three days are provided in Figure

5.1.

Figure 5.1 shows there has not been a major shift in the market yield curve within

the week. The yield curves in Figure 5.1 overlap at a certain points especially towards

short end while being spread out over a few bps towards the longer end. Spot rates on

Wednesday is the highest for most maturities particularly from the mid curve to the long

end. The rates on the short end of curve are the lowest on Monday while Friday has

lowest rates for long end. The market implied volatility surfaces in Figure 5.2 show there

has not been a significant shift in the market ATM swaption volatility surface between

68



Figure 5.1: Market yield curves

Monday and Wednesday. The most pronounced change on Friday compared to the other

two days is that shortest tenor volatility term structure has a higher hump than the other

two days. Additionally by observing the implied volatility matrices in Tables 3.1, A.1

and A.6, the market implied volatilities are generally higher on Friday, with Wednesday

having the lowest quotes and Monday being in-between. After analysing the market

situation across the three days we can conclude there has not been a major change in

either the yield curve or the implied volatility surface. In the next section we present the

calibrated results of the G2++ and G3++ models on these three days and examine how

they “respond” to the market input, their “forecast” of the future term structure and

how stable these “forecasts” are.

5.1 Calibration To Three Days With A Two Day Lag

We calibrated the G2++ and G3++ models by minimizing model and market implied

volatilities and validated the results using procedures described in Chapters 3 and 4.

The validation results for Monday and Wednesday are provided in Appendix A. The

calibrated parameters including those from the previous chapter on Friday June 28, 2019

are provided in Tables 5.1 and 5.2.
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(a) Mon June 24 (b) Wed June 26

(c) Fri June 28

Figure 5.2: Market volatility surface on all three days

Table 5.1: G2++ Model Parameters

Ref. dates a1 a2 σ1 σ2 ρ12

Mon 06/24/19 0.0427 0.6515 0.00923 0.00610 -0.9846

Wed 06/26/19 0.0499 0.5525 0.0100 0.00654 -0.9865

Fri 06/28/19 0.0420 0.9859 0.00916 0.0149 -0.7217

We can observe from Table 5.1 of the calibrated G2++ models that, the parameters

of the first factor x1(t) is mostly stable across the three days with its mean reversion
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hovering around 0.04 and volatility being around 0.009. The second factor is mostly

deviant on Friday compared to the other two days given the state of the market on

this day. One interesting observation with the G2++ is that, for the calibration on

Friday where the correlation, ρ12 is farthest from −1; the MAE of 2.60% from the market

volatility surface is the lowest compared to 3.17% and 3.23% for correlations of 0.9846

and 0.9865 respectively. This explains why it is recommended to assign a non-trivial

value to ρ12 in order to capture the correlation between forward rates more effectively

and provide a better fit to the market volatility surface Brigo and Mercurio [2007].

Table 5.2: G3++ Model Parameters

Ref. dates a1 a2 a3 σ1 σ2 σ3 ρ12 ρ13 ρ23

Mon 06/24/19 0.04964 0.7027 0.7315 0.00971 0.00941 0.00743 -0.2741 -0.9000 -0.00729

Wed 06/26/19 0.04352 0.7936 0.5486 0.00940 0.0135 0.0119 -0.2072 -0.2798 -0.8790

Fri 06/28/19 0.0513 0.8339 0.5535 0.00998 0.0191 0.00913 -0.516 -0.2178 -0.4811

We can observe from Table 5.2 that the G3++ model has more variance in its pa-

rameters. This is not surprising given the additional degrees of freedom compared to

the G2++ (the parameters have freedom to vary) hence the variability of its estimated

parameters. We should state that we have no expectation on the parameter values as

this is a naive (assuming no prior knowledge of parameter values) calibration. In fact,

the optimization problems described previoulsy are ill-posed, such they do not depend

continuously on data but are rather highly sensitive to the input market data. The im-

plication of this is that small changes in the market data may lead to arbitrarily large

changes in the parameters of the interest rate model [Albrecher et al., 2013, Binder and

Aichinger, 2013]. A technique employed by practitioners to obtain stable parameters is

to apply so-called regularization methods where an additional penalty term is added to

the objective functions in either (3.1) and (3.2) to penalize deviations from a set of de-

sired/prior parameter values while still maintaining market-consistency. For more details

on such regularization techniques and other parameter stabilization techniques in the

context of interest rate calibrations, see for example Albrecher et al. [2013] and Joshi and

Kwon [2010] and the references mentioned therein.
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These parameters observations do not necessarily give us proper insight about the future

evolution of the term structure implied by the calibrated model since the short rate model

depends on the interactions between all the factors. Our specific interest rely on not just

value of these parameters but rather how robust the calibrated models are with respect

to different input data and parameter specifications across the reference dates.

We begin by analyzing the distribution of r(t) for some selected future times across the

three days. To make the comparison between the different simulations results consistent,

we used the same set of generated random N(0, 1) numbers so that the variance in the

differences will be less influenced by the variation in the randomly generated normal iid’s

described previously. We can observe from Figures 5.3 and 5.4 that the distribution

Figure 5.3: Distribution of five year short rate

of the 5 year short rates on Monday Friday has the largest variance (for both calibrated

models) compared to the other two days. In the long term however, there is a stability

in variance of the thirty year short rate on the three days. This is consistent with the

market situation (based on the implied volatility surface) where there is a much higher

implied volatility for short maturities and tenors swaptions on Friday and a similar im-

plied volatility long maturities and tenors on the three dates.

To gain additional insight into how similar (or different) the short rate distribution is as

implied by the calibrated models across the three dates, we compute the pairwise devia-
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Figure 5.4: Distribution of thirty year short rate

tion of r(t) and r. Here, the deviations are measured in terms of the root mean square

deviation/error (RMSD/E). As mentioned previously, for each model (either G2++ or

G3++) we simulated M paths of the short rate process r for all times t, using the same

randomly generated normal iid’s for all three reference dates. We define the deviations

of r(t) between two reference dates g and h as

MSD(r(t)g, r(t)h) = E
(︁
||r(t)g − r(t)h||2L2

)︁
where L2 is the Euclidean norm. The RMSD or simply the deviation between r(t)g and

r(t)h is,

d(r(t)g, r(t)h) =
√︂
E
(︁
||r(t)g − r(t)h||2L2

)︁
≈

⌜⃓⃓⎷ 1

M

M∑︂
i=1

(r(t)gi − r(t)hi )
2 (5.1)

where r(t)gi refers to the ith path of r(t) on day g and M is the number of simulation

paths.
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For the short process r, we compute the deviation of r between days g and h as

d(rg, rh) ≈

⌜⃓⃓⎷ N∑︂
j=1

1

M

M∑︂
i=1

(r(t)gi − r(t)hi )
2 (5.2)

where M is the number of simulation paths and N is number of time steps. Using (5.1),

we obtain the deviations of r(t) with respect to the three days in Figure 5.5. We can

Figure 5.5: Deviations of r(t) across the three days

observe that the deviations of r(t) is more significant in the G3++ model than in the

G2++. For the G2++ model, deviations between Monday and Wednesday is almost

negligible by lying close to 0 for most times t. Additionally for the G2++ model, the

deviations of r(t) between Friday and the other two days rise for short term rates and

they stabilize around 0.007 in the longer term. This sharp contrast seems to be effected

by the G2++ parameter values (parameter values on Monday and Wednesday are more

closer in magnitude than on Friday) since the shift in the market input is not huge, as

shown.

Using (5.2), we compute the deviations of r across the three days which are provided

in Tables 5.4 and 5.5. In Table 5.4 we observe that, in addition to deviations of r(t),

the deviations of the short rate process r between Friday and the other two days more

pronounced. This further shows the sensitivity of G2++ to parameter values. Although

the G3++ Figure 5.5 also shows the deviations between Monday and Wednesday to be

the lowest, the deviations are much higher as a result of parameter values since ρ23 differs
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greatly between the two calibration dates. The deviations on Friday are higher here as

well although at a more sigificant magnitude. Given that we used the same set of random

variables and market data which shows no indication of a major market shift, both the

G2++ and G3++ model are not robust to different parameter specification, with the

G3++ model being the more sensitive one.

Table 5.3: Deviations of r

Table 5.4: G2++

Mon Wed Fri
Mon 0 0.00822 0.07683
Wed 0.00822 0 0.07736
Fri 0.07683 0.07736 0

Table 5.5: G3++

Mon Wed Fri
Mon 0 0.2183 0.47834
Wed 0.2183 0 0.39165
Fri 0.47834 0.39165 0

A plot of the deterministic function f of both models that ensures consistency with the

market yield curve in Figure 5.6. We can observe that f assumes the same shape for

Figure 5.6: f (t) across the three days

both models on all three days. The main dissimilarity occurs in the long term where f (t)

differs by a few basis points between the two models. The shape of f (t) across the three

days also reflects the movement in market yield curves since f (t) is highly influenced by

the market instantaneous forward rates.
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Robustness With Respect To Valuations of The GMMB

These different parameter specification and and their implications are not of practical con-

sequence to derivatives traders, since they calibrate their models everyday [Park, 2004].

For the valuation actuary however, this might be of practical consequence since the cal-

ibration is done on single day to satisfy regulatory requirements. Hence it is important

for the interest rate model to not only satisfy the market-consistency criterion but also

to be robust enough to provide stable financial statements.

In this section, we analyse the valuation results of the segregated fund described in Chap-

ter 4 with the calibrated models on the three reference dates. Since the model calibration

to market data is done on single day to satisfy regulatory requirements, it is important for

the model to provide stable valuation results thereby providing reliable valuation results

for stakeholders and users of financial statements. For each calibrated model (G2++

Table 5.6: GMMB Valuations: G2++ model

Mon 06/24 Wed 06/26 Fri 06/28
T = 20, K = 100
Πguar

0 4.847 4.690 5.001
Πin

0 22.014 21.998 22.013
Π −17.168 −17.308 −17.003
Πguar

0

Πin
0

0.220 0.213 0.227

Table 5.7: GMMB Valuations: G3++ model

Mon 06/24 Wed 06/26 Fri 06/28
T = 20, K = 100
Πguar

0 4.775 4.723 4.958
Πin

0 22.014 21.998 22.013
Π −17.230 −17.275 −17.055
Πguar

0

Πin
0

0.217 0.215 0.225

or G3++), we use the same set of pseudo-random numbers in simulating the underlying

fund on the three days. The GMMB valuation results on all three days are provided in

Table 5.6 for the G2++ model and Table 5.7 for the G3++ model. It is evident that the
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valuation results for both models is consistent with the market observed term structure

and volatility surface on the calibration date. Valuations of the expected cash inflow,

the embedded guarantee and liability of the segregated fund are highest on Friday re-

flecting the most volatile swaption volatility surface and lower bond yields particularly

toward long end of the yield curve. The opposite is true for Wednesday, with Monday

being in-between.Given that there has not been a significant shift in the market, for any

robust model, the market-consistent valuation results implied by its calibration to the

market should be stable. For example if the
Πguar

0

Πin
0

= 22% on Monday June 24 2019

and
Πguar

0

Πin
0

= 50% on Wednesday June 26 2019, then this is a sign of potential danger

in the model or the entire calibration process and needs to be properly addressed. This

particular robustness check is a vital step in ensuring confidence in the entire calibration

process and subsequently in the valuation results implied by calibrated model so as to

prevent distortions in perceived finacial risks..

Having observed how sensitive the models are in terms of parameter specifications, we

investigate the deviations of the underlying fund F over the duration of the contract on

the three calibration dates. In Figure 5.7, the deviations between the underlying fund

Figure 5.7: Deviations of Ft across the three days

values over time are much higher than the short rate deviations. We also notice that the

deviations do not stabilize even in the long term; but rather increase in the long term.

Further the G3++ model provides much larger pairwise deviations of the underlying fund

over time. Tables 5.9 and 5.10 also show the pairwise deviations of the underlying fund
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across all times step and paths. The deviations on the underlying fund F reiterates how

Table 5.8: Deviations of F

Table 5.9: G2++

Mon Wed Fri
Mon 0 0.05211 0.07706
Wed 0.05211 0 0.10486
Fri 0.07706 0.10486 0

Table 5.10: G3++

Mon Wed Fri
Mon 0 1.1744 2.57751
Wed 1.1744 0 2.1186
Fri 2.57751 2.1186 0

sensitive the G2++ and particularly, the G3++ are to parameter specifications; given

that there was no significant shift in the market data input.

To the close the chapter, we conclude that as most interest rate models, both the G2++

and G3++ are sensitive to the market data used to calibrate them. While the G2++

model provided more stable parameters over the three chosen dates the G3++ model

showed a much larger variance in parameter values due to its additional degrees of free-

dom. A method to obtain stable parameters over multiple calibration dates is to apply

for example, regularization techniques. Although both models provide stable valuation

results that reflect the market situation on the calibration date, they are not robust to

different parameter specifications particularly for the G3++ model since it is less parsi-

monious. Given that the interest rate model calibration is done by insurers on a single

day of the year to satisfy regulatory requirements, insurers should be extra cautious when

calibrating both the G2++ and G3++ model to avoid distortions in the perceived risks.
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Conclusion

This thesis presented the general steps in calibrating the G2++ and G3++ short-rate

models to swaptions. We explained through established literature that two to three

sources of randomness are needed in providing a realistic evolution of the future term

structure due to the decorrelation between spot rates with different maturities. We also

highlighted some issues that arised during the calibration process such as the imposed

constraints placed on models and those peculiar to the G3++ model which were simply

resolved by applying a “brick wall” penalty. The “brick wall” penalty was applied to

combinations of parameters that either stopped the optimitization algorithm or led to

non-positive semi-definite correlation matrices. We also discussed the drawbacks of deter-

ministic optimization algorithms in solving this is non-convex optimization problem such

as their tendency of getting stuck in local optimums. Although a global solution is not

guaranteed with stochastic optimization algorithms, we explained that they have higher

chances of escaping local optimums due to the randomness in their search, although this

comes with an increased computational effort. We implemented the calibration of both

short rate models in two folds; we minimized the sum of absolute relative differences

between market and model swaption prices in one respect and then minimized the sum

of absolute relative differences between market and model implied swaption volatilities

in another. In the calibration algorithm, we used an approximation of the swaption price

by Schrager and Pelsser [2006] as opposed to quadratures or Monte-Carlo integration for

a faster numerical efficiency. Although this approximation led to higher relative errors of

around 10% − 12.3% from the market implied volatilities for swaptions with maturities

10, 12 or 15 and 1 year tenor, the overall fit of the calibrated models in replicating the
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market volatility surface was satisfactory, with the mean absolute relative errors being

below 3%, for both models and calibration methods. In assessing the calibrated models’

fit in replicating the market volatility surface, we found that by minimizing the sum of

model and market implied volatilities, both the G2++ and G3++ models provided bet-

ter replication of market volatility surface as opposed to minimizing the sum of market

and model swaption prices. Overall the G3++ model provided the best replication of

the market volatility surface with a mean absolute error of 2.49%. After the verification

of quality of the calibrated models, we provided a simulation scheme of the short rate,

future bond prices and the discount factor which are essential in derivative pricing and

market-consistent valuations. The simulated short rate process showed that the G3++

provided a higher empirical probability of negative interest rates than the G2++ model.

Through a numerical illustration of a market-consistent valuation of a return of premium

GMMB, the ratio of the expected cash out flow to expected cash in flow to the insurer

hovered around 22% for both calibrated models. To test the robustness of the calibrated

short rate models, we calibrated both the G2++ and G3++ models to market data of

three different days with a two-day lag. The market input data showed that there was

not a significant shift in the market on the considered dates. Through visual inspection of

the calibrated parameters, we observed that as most interest models, both the G2++ and

G3++ were sensitive to the market input data with the G3++ model showing a much

larger variance in calibrated parameter values since it has 4 more degrees of freedom.

Calibrated parameters of the G2++ were more stable between Monday June 24, 2019

and Wednesday June 26, 2019 given the similarity of the data used on the two calibration

dates. On Friday June 28, 2019 however, where the shift in the market volatility surface

was more pronounced, the calibrated parameter values of the G2++ were more deviant.

We recommended that where there is a need for stable parameters, a useful technique

could be an application of regularization methods to penalize parameter deviations. To

gain more insight about the robustness of both models, we computed the pairwise root

mean square deviations (RMSD) of the short rate and the underlying fund of the GMMB

across the three reference dates. Results show that both models are not robust to dif-
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ferent parameter specifications given that there has not being a significant change in the

market, and the fact the we used the same random normal iid’s in simulating the short

rate and underlying fund. From the RMSD values, we noticed that the calibrated G3++

model showed more sensitivity to different parameter specifications.

Since the market-consistent valuations is done on a single day, we also examined the val-

uation results implied the calibrated model on the three calibration date. This particular

robustness check is a vital step in ensuring confidence in the entire calibration process

and subsequently in the valuation results implied by calibrated model so as to prevent

distortion in perceived risk. Results show both the G2++ and G3++ provided stable

valuation results which were only reflective of the market situation on the valuation date.

The proportion of the expected cash out flow to the expected cash in flow to the insurer

stabilized around 22% on the three dates for the G3++ model and 21 − 22% for the

G2++ model.

We concluded the although G2++ and G3++ models have some desirable properties such

analytical tractability, providing satisfactory replication of the market volatitility surface

and stability in valuation results, they are not robust to different parameter specifications

hence one has to be cautious when calibrating them particularly where the calibration is

done on a single day of the year to satisfy regulatory requirements.
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Appendix A

A.1 Validation Results On Monday June 24

Figure A.1: Market interpolated spot curve on Monday June 24

Table A.1: Market volatilities on June 24

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3617 0.4023 0.4324 0.4338 0.4257 0.3946 0.3208
2 0.3870 0.4017 0.4233 0.4223 0.4074 0.3877 0.3192
4 0.3912 0.3833 0.3868 0.3853 0.3766 0.3523 0.2985
5 0.3657 0.3641 0.3611 0.3670 0.3575 0.3353 0.2920
7 0.3335 0.3373 0.3325 0.3343 0.3226 0.3073 0.2773
8 0.3279 0.3260 0.3149 0.3116 0.3002 0.2876 0.2695
10 0.3142 0.3021 0.2819 0.2671 0.2573 0.2495 0.2546
12 0.3114 0.2994 0.2802 0.2660 0.2565 0.2489 0.2557
15 0.3118 0.2998 0.2806 0.2663 0.2567 0.2513 0.2584
20 0.3231 0.3106 0.2907 0.2758 0.2659 0.2588 0.2648
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(a) Market implied volatilities
(b) Model implied volatilities

Figure A.2: G2++ implied volatility surface on June 24

Table A.2: G2++ implied volatilities on June 24

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3682 0.3945 0.4124 0.4246 0.4196 0.3919 0.3581
2 0.4008 0.4207 0.4276 0.4187 0.4099 0.3868 0.3477
4 0.4079 0.4041 0.3960 0.3810 0.3717 0.3459 0.3114
5 0.3881 0.3786 0.3708 0.3665 0.3497 0.3280 0.2976
7 0.3479 0.3443 0.3367 0.3234 0.3113 0.2987 0.2794
8 0.3391 0.3254 0.3151 0.3078 0.3008 0.2849 0.2720
10 0.2961 0.2895 0.2885 0.2823 0.2778 0.2721 0.2543
12 0.2877 0.2800 0.2734 0.2769 0.2734 0.2634 0.2554
15 0.2902 0.2824 0.2754 0.2668 0.2596 0.2637 0.2527
20 0.3153 0.3060 0.2962 0.2897 0.2805 0.2705 0.2622

Table A.3: G2++ calibration errors on June 24

Maturity/Tenor 1 2 3 4 5 7 10
1 0.0180 -0.0194 -0.0462 -0.0213 -0.0143 -0.0067 0.1163
2 0.0357 0.0474 0.0102 -0.0086 0.0061 -0.0023 0.0893
4 0.0426 0.0542 0.0237 -0.0112 -0.0131 -0.0181 0.0431
5 0.0613 0.0398 0.0267 -0.0013 -0.0217 -0.0217 0.0190
7 0.0431 0.0206 0.0127 -0.0327 -0.0351 -0.0281 0.0075
8 0.0342 -0.0017 0.0005 -0.0121 0.0021 -0.0094 0.0092
10 -0.0577 -0.0417 0.0235 0.0568 0.0795 0.0904 -0.0011
12 -0.0762 -0.0649 -0.0243 0.0408 0.0660 0.0581 -0.0014
15 -0.0692 -0.0581 -0.0187 0.0017 0.0111 0.0494 -0.0219
20 -0.0242 -0.0148 0.0191 0.0506 0.0550 0.0451 -0.0098
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(a) In-sample calibration errors
(b) Out-of-sample calibration error

Figure A.3: G2++ calibration errors on June 24

(a) Market implied volatilities
(b) Model implied volatilities

Figure A.4: G3++ implied volatilities on June 24
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(a) In-sample calibration errors
(b) Out-of-sample calibration error

Figure A.5: G3++ calibration errors on June 24

Table A.4: G3++ implied volatilities on June 24

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3667 0.3873 0.4061 0.4200 0.4164 0.3898 0.3554
2 0.3974 0.4168 0.4253 0.4176 0.4096 0.3865 0.3461
4 0.4110 0.4063 0.3981 0.3830 0.3733 0.3464 0.3099
5 0.3916 0.3808 0.3725 0.3678 0.3505 0.3275 0.2951
7 0.3505 0.3464 0.3386 0.3249 0.3123 0.2986 0.2776
8 0.3420 0.3275 0.3167 0.3090 0.3015 0.2843 0.2696
10 0.2962 0.2889 0.2874 0.2807 0.2757 0.2690 0.2496
12 0.2885 0.2800 0.2730 0.2760 0.2720 0.2608 0.2510
15 0.2892 0.2809 0.2736 0.2646 0.2569 0.2599 0.2471
20 0.3104 0.3005 0.2902 0.2832 0.2735 0.2624 0.2524

Table A.5: G3++ calibration errors on June 24

Maturity/Tenor 1 2 3 4 5 7 10
1 0.0139 -0.0373 -0.0608 -0.0318 -0.0218 -0.0122 0.1080
2 0.0269 0.0376 0.0047 -0.0110 0.0053 -0.0030 0.0844
4 0.0506 0.0599 0.0293 -0.0060 -0.0087 -0.0167 0.0382
5 0.0707 0.0460 0.0316 0.0023 -0.0197 -0.0234 0.0105
7 0.0510 0.0270 0.0184 -0.0281 -0.0319 -0.0282 0.0011
8 0.0429 0.0047 0.0058 -0.0083 0.0043 -0.0113 0.0003
10 -0.0574 -0.0439 0.0197 0.0511 0.0717 0.0780 -0.0195
12 -0.0736 -0.0647 -0.0257 0.0375 0.0604 0.0477 -0.0184
15 -0.0726 -0.0630 -0.0250 -0.0064 0.0009 0.0341 -0.0436
20 -0.0392 -0.0326 -0.0016 0.0269 0.0287 0.0137 -0.0468
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A.2 Validation Results On Wednesday June 26

Figure A.6: Market interpolated curve on Monday June 26

Table A.6: Market volatilities on June 26

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3533 0.3973 0.4262 0.4268 0.4188 0.3927 0.3208
2 0.3857 0.3991 0.4191 0.4178 0.4053 0.3871 0.3202
4 0.3877 0.3823 0.3893 0.3882 0.3780 0.3550 0.3009
5 0.3662 0.3703 0.3670 0.3706 0.3617 0.3387 0.2948
7 0.3413 0.3421 0.3388 0.3392 0.3261 0.3104 0.2796
8 0.3330 0.3286 0.3185 0.3143 0.3019 0.2888 0.2701
10 0.3113 0.2994 0.2796 0.2650 0.2553 0.2471 0.2518
12 0.3076 0.2958 0.2774 0.2637 0.2544 0.2465 0.2528
15 0.3087 0.2969 0.2784 0.2644 0.2550 0.2491 0.2557
20 0.3197 0.3075 0.2883 0.2737 0.2640 0.2568 0.2627
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(a) Market implied volatilities (b) Model implied volatilities

Figure A.7: G2++ volatility surface on June 26

(a) In-sample calibration errors (b) Out-of-sample calibration error

Figure A.8: G2++ calibration errors on June 26

Table A.7: G2++ implied volatilities on June 26

Maturity/Tenor 1 2 3 4 5 7 10

1 0.3547 0.3907 0.4086 0.4139 0.4175 0.4008 0.3600
2 0.3978 0.4206 0.4221 0.4209 0.4087 0.3874 0.3480
4 0.4144 0.4071 0.4023 0.3917 0.3758 0.3488 0.3166
5 0.3882 0.3845 0.3803 0.3663 0.3593 0.3316 0.2991
7 0.3538 0.3434 0.3407 0.3290 0.3182 0.3005 0.2812
8 0.3285 0.3304 0.3169 0.3115 0.3026 0.2849 0.2708
10 0.2925 0.2951 0.2909 0.2831 0.2762 0.2728 0.2528
12 0.2843 0.2796 0.2700 0.2753 0.2709 0.2615 0.2534
15 0.2919 0.2857 0.2775 0.2679 0.2572 0.2598 0.2494
20 0.3118 0.3024 0.2956 0.2854 0.2787 0.2671 0.2559
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Table A.8: G2++ calibration errors on June 26

Maturity/Tenor 1 2 3 4 5 7 10
1 0.0041 -0.0166 -0.0414 -0.0303 -0.0032 0.0206 0.1222
2 0.0313 0.0540 0.0073 0.0074 0.0085 0.0009 0.0870
4 0.0689 0.0649 0.0334 0.0089 -0.0058 -0.0176 0.0523
5 0.0600 0.0384 0.0362 -0.0116 -0.0068 -0.0210 0.0146
7 0.0365 0.0039 0.0055 -0.0302 -0.0242 -0.0318 0.0057
8 -0.0134 0.0056 -0.0051 -0.0090 0.0025 -0.0137 0.0025
10 -0.0604 -0.0142 0.0406 0.0683 0.0818 0.1039 0.0039
12 -0.0757 -0.0548 -0.0266 0.0440 0.0648 0.0607 0.0024
15 -0.0545 -0.0378 -0.0032 0.0133 0.0088 0.0428 -0.0246
20 -0.0247 -0.0167 0.0252 0.0429 0.0559 0.0401 -0.0260

(a) Market implied volatilities (b) Model implied volatilities

Figure A.9: G3+ volatility surface on June 26

(a) In-sample calibration errors (b) Out-of-sample calibration error

Figure A.10: G3++ calibration errors on June 26
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Table A.9: G3+ implied volatilities on June 26

Maturity/Tenor 1 2 3 4 5 7 10
1 0.3552 0.3935 0.4111 0.4151 0.4175 0.3994 0.3586
2 0.3986 0.4216 0.4219 0.4192 0.4060 0.3839 0.3451
3 0.4168 0.4087 0.4029 0.3915 0.3751 0.3479 0.3166
4 0.3882 0.3839 0.3789 0.3644 0.3571 0.3296 0.2982
5 0.3556 0.3450 0.3419 0.3299 0.3191 0.3017 0.2833
6 0.3292 0.3310 0.3171 0.3115 0.3027 0.2852 0.2722
7 0.2897 0.2924 0.2882 0.2805 0.2738 0.2711 0.2525
8 0.2839 0.2793 0.2697 0.2751 0.2709 0.2622 0.2554
9 0.2947 0.2886 0.2805 0.2710 0.2605 0.2638 0.2547
10 0.3149 0.3054 0.2987 0.2887 0.2822 0.2712 0.2613

Table A.10: G3++ calibration errors on June 26

Maturity/Tenor 1 2 3 4 5 7 10
1 0.0053 -0.0095 -0.0355 -0.0274 -0.0030 0.0171 0.1179
2 0.0335 0.0563 0.0067 0.0034 0.0018 -0.0083 0.0777
4 0.0751 0.0690 0.0349 0.0084 -0.0076 -0.0199 0.0523
5 0.0601 0.0366 0.0324 -0.0167 -0.0128 -0.0268 0.0116
7 0.0420 0.0086 0.0092 -0.0274 -0.0216 -0.0281 0.0133
8 -0.0114 0.0072 -0.0044 -0.0088 0.0026 -0.0124 0.0078
10 -0.0694 -0.0234 0.0308 0.0585 0.0725 0.0969 0.0026
12 -0.0772 -0.0559 -0.0277 0.0434 0.0649 0.0635 0.0103
15 -0.0455 -0.0279 0.0077 0.0251 0.0216 0.0589 -0.0039
20 -0.0150 -0.0067 0.0360 0.0546 0.0689 0.0562 -0.0053
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