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Abstract

Robust position-based visual servoing of industrial robots

Xinyi Wu

Recently, the researchers have tried to use dynamic pose correction methods to improve

the accuracy of industrial robots. The application of dynamic path tracking aims at adjusting

the end-effector’s pose by using a photogrammetry sensor and eye-to-hand PBVS scheme.

In this study, the research aims to enhance the accuracy of industrial robot by designing

a chattering-free digital sliding mode controller integrated with a novel adaptive robust

Kalman filter (ARKF) validated on Puma 560 model on simulation. This study includes

Gaussian noise generation, pose estimation, design of adaptive robust Kalman filter, and

design of chattering-free sliding mode controller. The designed control strategy has been

validated and compared with other control strategies in Matlab 2018a Simulink on a 64bits

PC computer. The main contributions of the research work are summarized as follows.

First, the noise removal in the pose estimation is carried out by the novel ARKF. The

proposed ARKF deals with experimental noise generated from photogrammetry observation

sensor C-track 780. It exploits the advantages of adaptive estimation method for states noise

covariance (Q), least square identification for measurement noise covariance (R) and a robust

mechanism for state variables error covariance (P). The Gaussian noise generation is based

on the collected data from the C-track when the robot is in a stationary status. A novel

method for estimating covariance matrix R considering both effects of the velocity and pose

is suggested.
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Next, a robust PBVS approach for industrial robots based on fast discrete sliding mode

controller (FDSMC) and ARKF is proposed. The FDSMC takes advantage of a nonlinear

reaching law which results in faster and more accurate trajectory tracking compared to

standard DSMC. Substituting the switching function with a continuous nonlinear reaching

law lead to a continuous output and thus eliminating the chattering. Additionally, the

sliding surface dynamics is considered to be a nonlinear one, which results in increasing the

convergence speed and accuracy.

Finally, the analysis techniques related to various types of sliding mode controller have

been used for comparison. Also, the kinematic and dynamic models with revolutionary joints

for Puma 560 are built for simulation validation. Based on the computed indicators results, it

is proven that after tuning the parameters of designed controller, the chattering-free FDSMC

integrated with ARKF can essentially reduce the effect of uncertainties on robot dynamic

model and improve the tracking accuracy of the 6 degree-of-freedom (DOF) robot.
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Chapter 1

Introduction

1.1 Visual servoing

In industrial robotic field [3], some tasks such as drilling, welding large scale parts, assem-

bling and fiber placement of composite manufacturing demand high accuracy positioning

and trajectory tracking. Currently, the low accuracy issue is one of the important barriers

to the development of industrial robots. The robot accuracy is defined as a measure of

robot capability to attain a commanded position in terms of an absolute reference coordi-

nate. Considering trajectory tracking, the accuracy can be defined as a measure of robot

capability to track the prescribed trajectory with respect to the absolute coordinate frame.

However, the concept of robot accuracy is also related to repeatability. Its definition says the

measurement capability of robot returning to a previously memorized pose or a capability

to repeatedly track the memorized trajectory. In real reality, the repeatability and absolute

positioning accuracy are on the magnitude of 0.1mm and 1mm to 1cm respectively for the

majority of robots.
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1.2 Overview on accuracy

The first solution to improve the accuracy of robots is through the calibration process,

which is performed by measuring the pose of the end-effector in different configurations us-

ing sophisticated measurement equipment and identifying the calibration parameters [20].

Firstly, the mathematical model obtained by calibration is able to find the relation between

the pose of the end-effector and the joint variables within tolerance. The robot calibration

method includes identification of kinematic parameters and error compensation. The pa-

rameter identification process forms a simple measurement procedure using a cost-effective,

instrumented, and articulated linkage with proper data collection. The measurement of

end-effector positions can be present automatically.

As for error compensation, a computation scheme based on the nominal model differ-

ent from the calibrated one is presented. In most industrial robots, the design algorithm

allows the development of the closed-loop inverse kinematics solutions accessible which is

widespread among on-line applications [21]. This paper [22] presented the concept of model

completeness for kinematic identification models, which is defined as describing the model’s

capability of mapping joint positions into tool’s pose for the chosen manipulator. The com-

plete models should have a number of independent parameters. Since the end-effector pose is

in general not available by measurement directly, the end-effector is manipulated by servoing

joints into related positions. In order to get the desired pose, it is necessary to relate the

tool’s pose to joint positions. Many of these relations are combined with kinematic formulas

to describe the motion mechanism. Even though there are several manipulator formulas,

they are usually not accurate enough. Everett and Hsu attempt to improve the accuracy

of these kinematic formulas by identifying these constant parameters. However, it is shown

by example that model completeness does not guarantee its usefulness in identification al-

gorithms. As mentioned before, a predetermined number of parameters to be identified
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are suggested in terms of completeness. It is not sufficient to simply count the number of

parameters changed by the algorithm since least squares or other optimal programs might

assign values to dependent parameters. It is necessary to compute the rank of the Jacobian

matrix. The identification might be considered complete when these matrices have sufficient

rank. Zhang [23] proposed a new calibration method. The only required information for

calibration is the planar pattern with different orientations. The camera and planar pattern

are allowed to move by hand. However the motion should be previously known and the

radial lens distortion is considered via modeling. It utilizes 2D measured information for the

photogrammetric calibration and expressed 3D model.

As for self-calibration, rigid motion 3D information is adopted. Compared with classical

techniques, this technique is kindly more flexible and user friendly. Compared with classical

self-calibration, it develops the degree of robustness to large extent. It brings 3D com-

puter vision to connect tightly from laboratory environments to the real application which is

meaningful and a no-negligible milestone. In [12], a calibration of the ABB IRB 1600 robot

considering all possible geometric errors using a laser tracker. The identification of 29 param-

eter errors using least square optimization. The maximum position errors therefore reduced

from 2.158mm to 0.69mm after calibration. The robot calibration is offered by most of the

main industrial robot manufacturers vendors. However, it is a costly and time-consuming

service for the clients. The calibration can be performed on-site occasionally, but in most

cases the robot needs to be returned to the manufacturer and their trained engineers who

can operate 6D metrology measurement equipment. Apart from shipping and calibration

service, the production stop can also be one of the shortcomings.

Considering that the industrial robots need calibration at least once a year, these pro-

cedures will impose a significant annual cost for the company. In addition to calibration

services from robot manufacturers, there are some companies who provide software packages
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for robot calibration. Dynalog has been operating exclusively in this field, the calibration

package from Dynalog costs about ✩50, 000. The software is capable of being conjugated

with a 3D measurement device like a laser tracker. Rocal, offed by Nikon Metrology, is

another calibration package based on the 6D measurement sensors [13]. Considering the

total expense for an accurate measurement sensor and the software expense, this solution

is feasible only for large companies who has hundred of robots needs calibration each year.

Besides, filtering the robot programs before being uploaded to the robot of the third-party

software in marketing for calibration is demanding, which performs automatically in case

of manufacturer calibration [13]. However, robot calibration can only improve the accuracy

under static or quasi-static conditions [24].

1.2.1 High-end Encoder Installation

The second solution is to install extra high-accuracy encoders at each joint of the robot to

eliminate the effect of backlash, elasticity, and non-linearities in the gearbox [25]. In [26],

the development of accurate robot technology has expanded the practical applications for

articulated robots in air-frame assembly for both tracking and regulation. The secondary

encoders integrating on each robot joint provide actual axis positions as opposed to inferred

positions from motor encoders. This precise feedback through an optimized kinematic model

is able to produce a high accuracy motion platform besides virtual stiffness. Global and

on-part positioning under 0.25mm use long reach and heavy payload jointed arms. The

corresponding required hardware for enhancement is minimal, retaining cost-competitive

compared with standard systems. The range and flexibility of the arm are independent since

it is not necessary for reaching accuracy via guidance. In this case, the articulated arm

can be applied to a broader range of assembly, i.e. one-up assembly, two-sided drilling and

fastening, automated fiber placement and material removal.
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1.2.2 Dynamic Pose Correction

The third method is to use an external measurement device to guide the robot’s end-effector

to the desired pose dynamically. In this method, the external sensor provides the current

pose of the robot on-line, and the obtained pose information is compared with the desired

value through third-party software. Currently, the majority of the industrial robots are

calibrated by laser trackers. Considering the economical expense, the most efficient method

of robot calibration with the minimum costs is needed in the robotic industry. Among the

major measurement instruments in industrial field, C-Track has the lowest price (less than

✩50, 000) compared with the laser trackers and Nikon Metrology’s optical CMM which cost

more than ✩100, 000 and ✩70, 000 respectively. Besides, the reflectors for the laser tracker

cost more than ✩1000 each while the magnetic reflector stickers for the C-Track are cost-

effective. Besides, the C-Track is more safe and user friendly compared with laser tracker

which needs experienced operators. The C-track is able to measure the pose of all the targets

simultaneously but the laser tracker can only measure one point each time step. Some

factors like vibration, air turbulence, and temperature variation, humidity, and different

operation affect the laser tracker measurement accuracy. In [12], the absolute accuracy of

an ABB IRB1600 industrial robot is improved after extensive experimentation by using a

29-parameter calibration model. The error model considered all potential geometric errors

including 25 geometric error parameters’ identification through optimization and the pose

parameters for the base and tool frames besides four error parameters corresponding to the

compliance in joints 2 to 5. The least squares optimization technique is used to find the 29

error parameters that fit the measures best acquired with a laser tracker. By contrast with

other similar works, the establishment of the robot’s accuracy is performed with a very large

number of measures around 1,000 throughout the robot’s joint space. After calibration, the

mean and maximum position errors of eight different measurement points on the end effector
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were reduced from 0.968mm/2.158mm to 0.364mm/0.696mm respectively.

Considering the above-mentioned robot’s accuracy enhancement methods, the robotic

manufacturing companies such as GE Aviation and Coriolis Inc. are seeking for further

research from academic research teams. Concordia University, ETS, and Creaform Inc pro-

pose using various photogrammetry measurement sensors to look at a cost-effective way to

enhance the absolute accuracy of the industrial robots. C-Track is regarded as the feedback

sensor to measure the pose of the robot end-effector and the dynamic pose correction is

applied to the robot controller simultaneously. This method does not rely on high-end en-

coders. Also, it does not need to intrusively modify the built-in kinematic model of the robot

during the controller. With the support of FRQNT, the team in Concordia University has

developed real-time positioning and path tracking algorithm for an industrial robot (Fanuc

M20-iA) using the Creaform 3D measurement sensor (C-Track). Several noise reduction

methods have been developed for the pose date from C-track such as RMS [20] and adaptive

Kalman Filter [16]. Also, the team has developed PID position-based visual servoing with

stability proof to enhance the dynamic performance of industrial robots. However, the devel-

oped noise reduction and the pose-based visual servoing controller cannot handle the large

uncertainties in the robot and the disturbances from the environment. This thesis research

tries to explore an effective noise reduction method to obtain precise pose information and

a robust PBVS controller to handle large uncertainties and disturbances.

1.3 Research Objectives

This research goal is to enhance the overall accuracy of the industrial robots via designed

control algorithm and Kalman filters to reduce the disturbance from the noise and uncer-

tainties of the system. Motivated by the adaptive Kalman filter that is proposed to obtain

smooth pose estimation and to eliminate the effects caused by image noise, vibration, and
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other uncertain disturbances resources. This research aims at enhancing the robustness of

this control system and eliminating the noise and uncertainties of the robot physics model

and the measurement. To achieve the objectives, a robust PBVS scheme is in demand to

filter out the noise in the measured robot’s pose data and to realize the fast and accurate

trajectory tracking performance of the industrial robots.

1.4 Contribution of This Thesis

1.4.1 Pose Estimation

The main contribution of this research is designing an enhanced robust PBVS approach

for industrial robots. The proposed method utilizes the ARKF for smooth estimation of the

robot pose and a chattering-free fast SMC (CFSMC) as the controller. The designed adaptive

robust Kalman filter (ARKF) exploits the advantages of adaptive covariance estimation

method for Q along with a state variables-dependent tuning method for R.

1.4.2 ARKF

ARKF enjoys the robust estimation mechanism of state variables covariance P mentioned

in the literature [27]. The combination of all these above-mentioned techniques makes the

proposed ARKF method a fairly precise, smooth, and robust filter for robots’ end-effectors’

pose estimation. Note that the adaptation mechanism used in ARKF makes its performance

optimal since it corrects the deviation of the estimated P from its theoretical one emanated

from existing model dynamic uncertainties [27]. Both simulation and experimental tests

demonstrate the superiority of the proposed ARKF over the classical KF and the reported

AKF method in the pose estimation of industrial robots. This paper ”Adaptive Robust

Kalman Filter for Vision-based Pose Estimation of Industrial Robots” has been presented in
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ICCC 2019 IEEE 5th International Conference on Computer and Communications (ICCC

2019) with Ei Compendex and Scopus index.

1.4.3 CFSMC

The CFSMC exploits a nonlinear reaching law which increases the convergence speed and

tracking precision. Substituting the switching function with a slope generates continuous

output and thus eliminates the chattering. This substitution, however, leads to a boundary

layer around the sliding surface that affects the tracking accuracy [28]. The boundary layer

analysis along with stability proof of the CFSMC is also investigated in this thesis.

1.4.4 Simulated Validation

To evaluate the performance of the proposed method, simulation tests on the PUMA560

robots are conducted. Analyzing the results demonstrate the proposed method outperforms

other well-known approaches in terms of chattering level, tracking accuracy, and convergence

speed. There is another paper ”Robust position-based visual servoing of industrial robots

utilizing chattering-free sliding mode control method” to be submitted.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 1 aims at introducing the problem statement,

research goal, and background information for this research. Chapter 2 is about the liter-

ature review on visual servoing, sliding mode control method and the error enhancement

methodologies combined with controller and Kalman filter. Chapter 3 introduces the pose

estimation solution for the removal of the noise in the measurement sensor. An adaptive

robust Kalman filter is proposed and a noise identification experiment has been carried out.
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Chapter 4 aims at demonstrating the design procedure of the chattering-free fast sliding

mode controller and its performance has been validated through simulation in MATLAB

Simulink. Chapter 5 illustrates the comparison of the afore-mentioned controller and analy-

sis of the tracking performance of the proposed CFSMC. Chapter 6 summarizes the research

work and gives future work related to this research.
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Chapter 2

Literature Review

Robustness plays an important role in the practical visual servoing systems. The handling

uncertainty when modeling systems is the first and foremost procedure to achieve accurate

and robust visual servoing. Camera displacement error due to image noise has been investi-

gated using the noise boundaries in the previous works. Also, error covariance propagation

has already been developed to model the uncertainties of different visual servoing system

components. However, these works were either open-loop or not fully successful under when

the robot system is subjected to large uncertainties and disturbances.

2.1 Visual Servoing

Visual servoing (VS) is to use the visual measurement from a visual sensor as the feedback

to guide the robot [29].Visual servoing (VS) is a mature technology which has been widely

applied in robotic and control engineering fields [30–32]. In robotics, VS regularly utilizes

visual definition instead of the low-precision technique of manually teaching in Cartesian

space coordinates by CAD models of the workplace [33]. Low accuracy always being an issue

in industrial applications of robots. When a robot tool-tip pose is calculated d based on the
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robot kinematics and the measured joint positions sensed by the encoders, the pose error

will arise due to the existing uncertainties in the robot physical model [34]. By processing

the information of the robot and environment acquired from a vision system and designing

a proper controller, VS can handle the uncertainty issue and the accuracy of the robot

manipulation therefore increases [31, 32].

It has been used in the industrial robots to control the pose of the robot’s end-effector

with respect to a target object or target features. VS can be categorized into two basic

branches: image-based visual servoing (IBVS) and position-based visual servoing (PBVS).

While the former takes advantage of image planes’ features as feedback to generate the

control command directly, the latter reconstruct the 3-dimensional (3D) end-effector pose

from the 2-dimensional (2D) image plane features [35] for control. The PBVS has a significant

advantage over IBVS: it can directly act on workspace variables, which means the controller

can be designed based on the dynamic behavior of the end-effector motion variables [3].

However, it is highly sensitive to the calibration errors of the vision system subject to the

uncertainties and noise [3, 35]. It is noted that the images captured by an optical system are

always contaminated by the noises, whose properties may vary from one position to another

of the industrial robots or with different velocities [16] due to translation from 2D image to

3D pose in a Cartesian frame [35], and intrinsic noises of the captured image introduced by

the low light of the environment and/or fading issues [36].

2.1.1 PBVS of Industrial Robots

As for PBVS, the reconstruction of the 3-dimensional (3D) robot’s pose from the 2-dimensional

(2D) image features [35] and utilizing the 6-DOF pose variables in the controller are carried

out. Therefore, the PBVS holds a noticeable advantage over IBVS: the controller can be de-

signed based on the dynamic behavior of the end-effector motion variables in the workspace
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[3, 37]. However, it is highly sensitive to the error of the vision system calibration associated

with the uncertainties and noises [3, 35]. Accordingly, a desirable PBVS process relies on

a competent controller along with an efficacious method for filtering the restructured pose

signals in order to approximate robot pose precisely. The images captured by a visual system

are always contaminated by noises, whose characteristics may vary in different positions and

velocities of the industrial robot end-effector [16, 35, 36].

2.1.2 Principles of Visual Servoing

Visual servoing is commonly proposed to deal with the general case of full 3D motion.

It uses related position and orientation of the object inside the field-of-view (FOV) with

respect to the camera frame and to form the six-elemental pose vector. Both of two broad

classes: position-based visual servo control, and image-based visual servo control methods

can handle the full 3D motion case. The relative position and orientation of the target object

with respect to the camera frame is used to form the six-element POSE vector. X, Y, Z used

for the position, and using roll, pitch, and yaw angles for orientation. The pose vector is

denoted as follows:

W = [X, Y, Z, φ, α, ψ]T (2.1)

where the relative position of the object frame with respect to the camera frame is defined

by X, Y , Z in each orthogonal direction of coordinate respectively. The relative orientation

of the object frame in respect of the camera frame is defined by the roll, pitch and yaw angles

of coordinate via φ, α, ψ respectively.

The object feature points are mapped into image plane and measurement of those feature

points are used for the robot control. In PBVS, the measurement image plane points are

used to constitute the POSE values. And the control design is therefore to generate control
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command according to the comparison of these estimated Poses and the desired Poses. The

most common method used in IBVS is by controlling robot motion to control the camera

and to guide the image plan feature measurements to the desired destination. In some cases,

it also uses the definition of feature characteristics relation. For IBVS, it is usually involved

with an image interaction matrix, which relates the changing rate of image plan feature

coordinates to the changing rate of POSE parameters. Through normal robot Jacobian, the

robot joint rate can then calculated with the kinematic relationship between the camera and

the endpoint of the robot manipulator [38].

Many researchers are working on the tracking of objects moves at 2D plane [3, 35]. Since

the object moving in a 2D plane, the desired POSE trajectories should be transferred into

image plane feature coordinate trajectories which are tedious and causing time-delay for real

implementation. Note that the range of the object is assumed to be known. The adaptive

control methods normally cannot handle unpredictable changes and uncertainty of image

interaction matrix and therefore the large change of control system loop gain is needed.

However, the PBVS allows the direct and intuitive specification of desired trajectories in

the end-effector Cartesian coordinate frame. That is the extra procedure compared with

IBVS, i.e. the POSE estimation. According to the POSE estimation results, we can get

a more accurate value which is close to the true POSE of end-effector and the controller

design will achieve high precision. The object’s feature characteristics are in demand in both

PBVS and IBVS for POSE estimation and specification of path planning. There has been a

comprehensive research on IBVS [35, 39]. By contrast, only a few researchers focus on the

PBVS method in the robotics [40, 41].

The paper [38] proposes a 3D POSE estimation strategy considering planar motion in

VS design. It improves the normal method by defining an integrated 3D relative POSE

estimation approach instead. The overall 3D visual servo control is designed based on the

14



POSE estimation. The ability of eliminating occlusion of features is also improved without

abrupt control. An extended Kalman filter(EKF) is used in this control loop which solves

the photogrammetric equations to transform the 2D image plan feature point coordinates to

the POSE parameters. The recursive and statistical combination of redundant measurement

information demonstrates the advantages of the filtering method for POSE estimation. The

control design according to the POSE estimates takes the Cartesian POSE vector trajectories

as the reference input. The control error is therefore defined in the end-effector frame. There

are transformation relationships among the end-effector frame, the robot base frame, and

joint coordinate frame through the robot forwards and inverse kinematics. It adopts PD

controllers in the joint space control for the visual servo loop and the control signal regulates

the joint positions in the joint position servo loops. In summary, it is a dual loop with a

multi-sample rate system.

When the robot is working in a manufacturing environment, it is surrounded by noises

and existing uncertainties which will lead to poor performance and low accuracy and even

failure of robot operation and undesired trajectories. In general, there is an open-loop

kinematic transformation relationships utilized to calculating the accuracy end-point pose in

a fixed world coordinate frame while the object work-piece must be positioned in the same

coordinate frame. The errors will fail those predefined tasks. Hence, an advanced controller

is in demand to handle large errors and uncertainties.

However, the robot control strategy based on the immediate measurement of the relative

pose of work-piece with respect to the robot end-point aims at reducing or eliminating the

errors throughout the whole process in the conventional robot manufacturing. It also realizes

the online programming and operation based on the moving object. [42] presents a control

loop design with the experimental verification based on the visual servoing. This design is

in eye-in-hand configuration and is based on the measurement of image plane coordinates of
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known object feature points. The relative POSE of the object with respect to the camera

is therefore determined. The estimated POSE values and their velocities based on Kalman

filter are used in the closed-loop trajectory control.

2.2 Source of Errors and Noise Under Measurement

An error is the difference between the observed value and the true value that usually unob-

served and generated by the DGP. A residual is the difference between the observed value

and the predicted value (by the model). The residual is the difference between the true

value and the model being employed to describe it. Noise is that part of the residual which

is in-feasible to model by any other means than a purely statistical description. Note that

such modeling limitations also arise due to limitations of the measurement device (e.g. finite

bandwidth resolution). Error is the component of the residual that remains after account-

ing for the noise according to the above definitions: a) noise and error are uncorrelated.b)

residual may be reduced by either reducing noise or by reducing error.c) these definitions

are compatible with the intuitive statements that noise does not introduce bias.

Nowadays, the product quality, expense, and productivity have attracted extensive at-

tention worldwide. In this case, the offline programming based on simulation and motion

control has been essential. Considering accuracy, the robot motion control and the simula-

tion according to real robot demand the accurate dynamic robot model, especially for the

design of advanced modern robot controllers such as computed torque or velocity controller.

Hence, the controller performance directly depends on the extent of model accuracy. If a

robot model simulated without a dynamic robot model, it can not provide meaningful and

realistic execution time estimates.[43]. For example, in the case of spot welding operations,

where the time required to stop the robot end-effector at the different spot welding places

depends on robot dynamics. In order to obtain the accurate robot models and indications
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on their accuracy, confidence, validity, the experimental parameter identification is required.

The dynamic model parameter provided by robot manufactures is not sufficient enough and

even not given.

It is also impossible to measure the physics parameters directly since the complex assem-

bling of most robots. In the real specific designed experiment, the identification of the robot

can estimate the robot model parameters from measurement data. During the design proce-

dures of identification experiment for a robot manipulator, the sufficient excitation is required

so as to offer timely and accurate parameter estimation in the presence of measurement noise

and actuator disturbances. The statistical properties of the measurement noise been bringing

about due to the coherent parameter estimation. Those consistent error estimation methods

consider random disturbances on both input and output measurements.[44]. In [45], Xi pro-

poses a common space-time stereo framework that unifies and generalizes triangulation-based

depth extraction methods and using the total least square(TLS) method for the identification

of robot parameters.

Another method is the generalized total least squares(GTLS) which allows corrections

between the noise on the elements of the regression matrix and is able to calculate errors and

random variables covariance matrix. However, the nonlinearity relationship of the regression

matrix on joint angle measurements makes it difficult to obtain a covariance matrix. The

maximum-likelihood estimator as a consistent estimator even though the model is highly

nonlinear in parameter or measurements which means if a complicated nonlinear friction

model is included in the robot model, this method is the optimal solution than TLS and

GTLS.
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2.2.1 Strategy of Eliminating Errors and Noise

To address the aforementioned imperfection, several techniques have been suggested [37, 46–

48], the most widely-used of which is employing a Kalman Filter [37, 48]. For the nonlinear

equation definition of relative POSE values with respect to multiple feature points measured

on the image plane, the solution is the iterative method which can be extremely time-

consuming if the sampling rate is high when doing dynamic vision servoing. Kalman filter

is widely used in industrial field for its dynamic estimation of system state and redundant

output measurements [42]. KF and its derivations have been employed in many research

studies in the context of PBVS [16, 37, 49]. In [49], an adaptive KF (AKF) for robot pose

estimation is presented whose noise co-variances were adjusted online. The adaptation rules

are based on the forgetting factor technique which contributes smooth parameter tuning.

2.2.2 Photogrammetry Sensor C-track

If using the regular camera as the control loop sensor offing feedback signal, the processing

of image and pose estimation algorithm will be time-consuming. Besides, the accuracy of

the estimated pose is sensitive to the camera’s parameters. The correlated time delay is the

challenging part of online pose correction. Therefore, a sensor with dynamic pose information

will be the solution to those problems.

Stereo vision is the data fusion of two views of the scene taken from known different

feature points so as to resolve depth ambiguity. The location of feature points in one view

should match the location of the same feature points in the other. This correspondence

problem is in the presence of error. The missing parts is another non-negligible problem. If

we only use this stereo camera sensor for measurement and a feature point is only visible

in one of the views, its depth cannot be known. This matching normally can be done on a

few feature points. For example, the region’s centroids, corner features, or fine features like
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surface texture, projected random texture pattern [50].

In [51], the stereo-vision system receives left and right image from the two CCD cameras

installed on the robot head. Image distortion is removed by calibration and camera intrinsic

parameters such as focal length and the principal point are therefore obtained, which are

used on 3D range data computation. In [52] an approach to stereo visual servoing on which

vision is used to measure error is proposed. The error is the visual distance between a robot

manipulator and the pre-defined position in the sensor coordinates which is the feedback

signal throughout the robot end-effector PBVS design. Murray and James [53] present a

method for reducing stereo vision inequality images to two-dimensional map information.

They reduce errors by segmenting inequality images based on continuous disparity surfaces

to prevent stereo mismatches. Stereo vision processing and map updates are effectively

reduces at 5 Hz and the robot moves at the speed of 300 cm/s.

Optical coordinate measurement machines(CMMs) use an image-based triangulation

method for calculating the model of robot pose. They are able to dynamically tracking

the object model. The C-track equipped with high-quality optical element and especial

lighting and can measure all the reflectors within the operating range. In order to track

the entire model of the object, the C-track determines the location of the HandyPROBE

and emerges continuous image acquisition and transmission, the lighting of reflectors and

the arrangement exchange with the computer configuration and storage of correlated pa-

rameters at the rate of maximization 29Hz. The accuracy of C-track 780 in this research is

up to 0.025mm, 0.050mm with 3.8m2, 0.055mm with 7.8m3. It weighs 5.5kg and operating

temperature between 15 to 40◦C.
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2.2.3 Kalman Filter

To address the aforementioned shortcomings of the PBVS, i.e. the effects of the existing

noise on the estimated pose of the robot’s end-effector, numerous methods such as analytical

solutions i.e. Kalman Filter and the numerical stochastic solutions have been suggested

[5, 46, 47, 54, 55]. However, the latter has been more attractive to the researchers than the

former analytical methods [48]. The reason is that analytical solutions such as perspective 3-

point-problem or 4-point-problem [46, 47] need a piece of profound mathematical knowledge

and are to solve, whereas numerical methods are more convenient to apply and can bring

about a rather optimal solution [48].

Applying Kalman filtering for pose relative POSE estimation has many advantages. First,

Kalman filter can solve the nonlinear photogrammetric equations in each time step which

is of vital importance in the case of a high-sampling rate compared with the relative mo-

tion method. Second, Kalman filter is able to provide appropriate statistical data fusion

from different sensors. Third, Kalman filter implements temporal filtering so as to improve

dynamical estimation. The fourth advantage is that since Kalman filter predicts the state

at the next time it can be used as a windowing technique in image processing. Last and

most relative is that, the Kalman filter also proposes the esimates of POSE velocities as it

is commonly used throughout control system design. If the Kalman filter method is used to

solve the relative POSE estimation problem, the dynamical model of the system and out-

put equation should be defined in advance. In many cases, the motion of the work-piece is

unknown even if the model of robot end-point dynamic motion is usually known.

Therefore, a constant velocity is assumed in modeling the relative dynamic motion. In

each time step, the relative velocity is not much changed or slowly from time to time and

remains constant. Considering the disturbance noise, there exist small errors during model-

ing. The state vector can be defined as w = [X, Ẋ, Y, Ẏ , Z, Ż, φ, φ, α, α, ψ, ψ]T , and let γ be

20



the disturbance white noise vector which means zero Gaussian distributed with covariance

matrix Q. The discrete system dynamical model is therefore represented as

wk = Awk−1 + γk (2.2)

where A is the state transition related to the system model with the diagonal elements of 1

and sampling interval T

A = diag




1 T

0 1
: · · · · · ·


 (2.3)

another system output model marked as B is utilized to link the output variables with defined

system states. Those outputs are presented in the image plane feature point locations.

Noted that the output equations are the nonlinear photogrammetric functions. The output

equations are of the form

zk = G (wk) + vk (2.4)

where v always assume to be zero-mean Gaussian white noise with covariance matrix R.

In a camera system by calibration, the covariance matrix R elements can be obtained from

experiments on this visual servoing system. Also, other sensor outputs such as robot joint

encoders can be included to determine the POSE state throughout the combination. In[42],

KF and its derivations, as one of the most efficacious methods for filtering noisy signals

and observing the state variables have been employed in many researches [56–59]. The KF

method carries out the filtering in two stages: the prediction of the real signal out of noisy

signal based on the dynamic model of the system and the correction of the predicted signal

based on the covariance of the measurements errors of the system output R and stated

variables Q associated with the existing noises [60]. Therefore, the quality of the filtering

largely depends on the accuracy of the system’s dynamics, the error covariances R and Q.
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To improve the performance of the KFs, a lot of modifications and techniques have been

suggested, such as, adaptive Kalman filter(AKF), robust Kalman filter(RKF), and extended

or uncented Kalman filter(EKF or UKF) [16, 27, 39, 49, 59].

The standard KF uses the linear dynamic model of the system for the variables estimation,

which results in an inaccurate estimation when the dynamic model of the system under

observation is nonlinear. To cope with this issue, extended KF (EKF) has been suggested.

EKF is the nonlinear version of standard KF which uses the linearized model of the nonlinear

dynamic model around the current estimated point rather than using a predetermined linear

dynamic model [48]. Consequently, its estimation is more accurate than those of the standard

KF. Several researchers have employed EKF for the pose detection of robots [61, 62]. Another

method is unscented Kalman filter which is the same as EKF except that it uses unscented

transformation (UT) for estimating the covariance matrices, which results in more accurate

estimation and hence, lower error in nonlinear estimation [63]. UKF has also been employed

for pose detection in [64]. Although EKF and UKF tackle the problem with nonlinearity of

the estimation, setting the appropriate components of the R and Q matrices still remains

unaddressed. Therefore, adaptive Kalman filters (AKF) are presented in order to solve the

mentioned issue. Several methods for adaptive Kalman filters have been used to estimate

the pose of industrial robots [16, 27, 49, 65]. The most well-known one is based on the

limited memory and/or forgetting factor covariance estimation and state variables covariance

estimation correction [16, 27, 49].

In the AKF with limited windowing memory, the estimation of covariance matrices, i.e.

Q and R, is carried out by using the numerical covariance of the previously collected data.

However, the numerical computing of the covariance or averaging is cumbersome, hence, a

limited windowing memory method is employed [65]. A similar procedure takes place for

the forgetting factor AKF, except for the fact that instead of collecting a number of data
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in a window, a forgetting factor method is employed [49]. Another AKF, known as robust

KF (RKF), has been presented to address the estimation error of P due to the uncertainties

of the model’s dynamics. In this method, a correction coefficient is adaptively computed

to correct the estimated P based on the comparison between the theoretical and estimated

P. Since this method aims to correct the estimated covariance matrix P towards the real

covariance matrix P adaptively, it is also called to be an adaptive optimal KF (AOKF) [27].

The mentioned advantages of the RKF makes it a good candidate to be employed for VS

and that is the reason why a lot of research work has been conducted using this method

[6, 66].

2.2.4 Kalman Filter-based Pose Estimation

In computer vision field, pose estimation is to determine the pose of a camera in terms of an

object’s coordinate frame according to image information. It is also known as an extrinsic

calibration problem with its solution which plays a crucial role in many computer-vision

applications, such as object recognition [67], intelligent surveillance [10], and robotic visual

servoing (RVS) [68]. Estimation of the camera displacement (CD) between the current and

desired pose for RVS [69, 70] is also relevant.

However, this study will be on pose estimation for visual servoing of the robotics system in

which the relative pose between camera and object in real-time control of robot motion [68].

In RVS, the control error will be calculated in the image space, Cartesian space, even hybrid

spaces [68, 71, 72]. However, partial estimation of the pose vector is required for image-

based and hybrid visual-servoing schemes [73, 74], an important class of visual-servoing

methods. The position-based visual-servoing (PBVS) scheme requiring full pose estimation

to calculate Cartesian error of the relative pose between end-effector and object [38]. Those

major difficulties in pose estimation are related to the requirements of the robustness of pose

23



estimation effectively [75].

The solutions to pose estimation problem usually focus on using sets of 2-D–3-D corre-

spondences between physics features and their projections on the image plane. Even though

high-level geometric features, such as lines and conics, have been proposed, point features

are used for pose estimation thanks to their wide available in many objects [76]. Solutions

for three points [11], and 4 to higher points [77] have been presented. Nevertheless, exact

and closed-loop solutions are only available for three or four non-collinear points [46]. Such

method is simple to implement but often encounters the difficulty of point matching during

crowded environments. Moreover, point-based solutions are not robust and demonstrate

highly sensitive to noise in image coordinates [78]. For three-point solutions, it has been

shown that the point configuration and noise in the coordinates of points can affect the out-

put errors [11]. It has also been demonstrated that when the noise level exceeds a knee level,

least-squares-based methods, which are usually used for points solutions, becoming unsta-

ble and result in huge errors[79]. Addition of more points would enhance pose-estimation

robustness with the cost of increased computational expense. Nonlinear, iterative, and/or

recursive methods are then recommended for more than four points as well as high-level

features.

The least-square problem can be formulated by the iterative approaches. It offers the

robustness and accuracy for the control system, which depends on the initial condition of

the pose estimation [80, 81]. In most cases, iterative methods rely on nonlinear optimization

techniques, such as the Gauss–Newton method [67]. In order to simplify the problem, there

are approximation method proposed via the perspective camera model simplification, such

as relaxing the orthogonality constraint on the rotation matrix [81, 82]. The survey on both

superior approximation pose-estimation methods is found in the papers [5, 46]. In summary,

this class of methods demonstrates convergence problems and does not clearly explain the
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orthonormal structure of rotation matrices [83].

Furthermore, those noisy visual-servo images will result in poor pose estimation with

this class of techniques [84] hence requiring temporal filtering. There is a class of recursive

methods on temporal-filtering methods. Kalman-filtering techniques are used to address

robustness and efficiency issues. Owing to 3-D pose time rate forming a 12-D state vector

to be estimated online, those class of these filtering methods e.g. particle filters model

the true distribution in real time [85]. A 3-D pose estimation with Kalman filter (KF) for

robotic visual servoing has been realized in [38]. Photogrammetric equations using KFs are

constructed by projecting the object features into the camera frame and then mapping them

onto the image plane. A KF is then applied to provide a recursive solution of those pose

values.

Due to the non-linearity of filter output model in the system states, an extended KF is

proposed where the output equations are linearly approximated about the current state. KF

is applied in RVS due to several advantages which are recursive implementation, statistical

ability combine redundant information for instance features or measurement sensors, tempo-

ral filtering, the possibility of using a lower number of features, and the possibility of changing

the measurement set without interrupting the operation [38, 68]. For example, an EKF-based

platform has been proposed in [75] range sensor integrated with a vision sensor for robust

pose estimation. Additionally, an EKF implementation facilitates dynamic windowing of the

features of interest by providing an estimation of the next time-step feature location which

means only small window areas are allowed to be processed for image-parameter measure-

ments and results in a significant reductions in image-processing time. It has been shown

that practically, an EKF providing near-optimal estimation[38].

Despite those advantages, there exist a few issues during the application of EKF to pose

estimation in robotic visual servoing. Firstly, a known object model is usually assumed to
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be available. Some model-free approaches based on Euclidean reconstruction have been pro-

posed for pose estimation [38, 74], which are typically relying on the fundamental, essential,

and homography matrix estimation in [38, 86]. Despite some strategies on [74], it is still sen-

sitive to outliers. Additionally, the majority of these require several images for reconstruction

and hence are more appealing for post-production applications [87]. The assumption of th

object model is not a major issue in many industrial setups owing to computer-aided-design

(CAD) models of the objects. For uncertain environments with an unknown model of the

object, an EKF-based approach for real-time estimation of and target model combined pose

has been proposed in [88, 89].

Secondly, although KF provides an optimal solution with the assumption of zero-mean

Gaussian noise, the EKF formulation can not guarantee optimal results. Actually, lineariza-

tion can generate unstable filters when the assumption of local linearity is not satisfied [90].

Through previous work, taking a sufficiently high sampling rate to impose linearization ac-

curacy through the sampling period is suggested [38]. Nevertheless, RVS-system bandwidth

limits the sampling rate of filtering in the real applications. As it is shown in [65], an

EKF-based system will easily diverge with fast and nonlinear trajectory dynamics or with a

relatively high-sampling rate.

Thirdly, the statistics of the measurement and dynamic noise are known and remain

constant in advance. Poor measurement and dynamic models and poor noise estimates

probably degrade the system performance and causing the filter divergence. Particularly, al-

though the measurement noise-covariance matrix is tuned through experiments, it is difficult

to tune dynamic covariance matrix [84]. The reason of this phenomenon is that dynamics

of the object motion with respect to camera frame would not be predicted accurately in

the dynamic environment. Fourth and foremost, the convergence of EKF large relies on the

initial state estimate setting and tuning of filter parameters. In many RVS applications, such
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as the assembly industry, the initial pose of the object with respect to the camera is able to

be approximated. However, sufficiently good pose estimates cannot be initially available in

unstructured and uncertain environments. The paper [59] will contribute to the formulation

of the EKF method to address two of the aforementioned issues.

The adaptive EKF (AEKF) with a fixed setting of image features has been proposed

for the first time in [65] to update the dynamic-noise covariance matrix and to address the

issue of varying uncertain dynamic noise. The AEKF-based approach extended in [91] has a

variable set of image features when improving servoing robustness. Despite the adaptation

capability of AEKF to unsuspected noise statistics, the presented AEKF methods do not offer

robustness and accuracy of pose estimation under uncleared filter initialization or camera

calibration, especially when tracking a fast and nonlinear trajectory. Tuning EKF noise-

covariance matrices is addressed in the aforementioned AEKF-based approaches [65, 91]

and tuning or initialization of other EKF parameters and mechanisms to enhance output

linearization for RVS did not matter compared with the overall system performance.

In order to address tuning of other filter parameters and to achieve its initialization,

an initial proposal for iterative EKF (IEKF) in RVS has been provided in [92]. In fact,

Lefebvre et al. [93] have studied several modifications of KFs for general nonlinear systems,

such as the central difference filter (CDF), unscentedKF (UKF), and divided difference filter

(DDF) as the linear regression KFs (LRKFs). The comparison study shows that EKF

and IEKF outperform LRKFs even if the trial and error tuning is required. The result of

their study shows that IEKF outperforms EKF credit to the measurements to linearize the

measurement function, while in EKF and LRKFs, the measurement is not adopted with the

same purpose. However, the lack of an adaptive noise estimation mechanism would degrade

the performance of IEKF. The iterative AEKF (IAEKF) for RVS is also proposed to address

the existing limiting problem of IEKF and AEKF.

27



2.3 Controller Design for PBVS

Most reported visual servo systems do not perform as expected. The most obvious charac-

teristics are slowness of motion and lag in terms of target motion, and often causing jitter or

shakiness. Computer vision holds a number of significant disadvantages when used as a feed-

back sensor such as relatively low sample rate, and significant latency like one or more sample

intervals, and quantization of crude. These characteristics present a challenge for the design

of high-performance motion control systems and they are not insurmountable. Latency, as

the most significant dynamic characteristic and its sources including transmitting delay of

pixels from the camera to vision system, image processing algorithms, communications be-

tween vision system commanding computer, control algorithm software, and communications

with the robot.

In fact, problems of delay in visual servo systems were first noted over 15 years ago

[94]. If the target motion is constant, the prediction can be used to compensate for latency.

However, a low sample rate results in poor disturbance rejection and long reaction time to

unmodeled motion. Grasping objects on a conveyor belt [95] are however ideal applications

for prediction. Franklin [96] suggests that the sample rate of a digital control system should

be between 4 and 20 times of the desired closed-loop bandwidth. For the case of a 50Hz vision

system, this implies that a closed-loop bandwidth between 2.5Hz and 12Hz is achievable.

Very few reported systems can achieve this. One can draw the conclusion that the whole

area of dynamic modeling and control design has, to date, been largely overlooked [34].

2.3.1 PD Controller on Industrial Robots

Many advanced industrial manipulators especially those from CRS Robotics Ltd., Applied

AI, Inc., etc.[97–99] are controlled by using only proportional–derivative (PD) or PID con-

trollers. This PD type of robot controller can be dated back to [100, 101]. The design
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procedure of the controller comprises PD control with gravity compensation and the PD

control with the desired gravity compensation term. Those researchers demonstrate that a

PD-type robot controller can be used to stabilize the joint positions of rigid robot manipula-

tors asymptotically. Nevertheless, the controller design according to the gravitational loading

vector of the robot dynamics, where those uncertain parameters of manipulator dynamics

are essential to meet the desired control objective.

The adaptive form of these controllers can be found at [102, 103] which require a prior

known structure of the gravitational loading vector. It is very difficult to meet the challenges

of the online operation. In fact, PD design may cause a steady-state filtering error with the

gravitational loading vector, which can be deduced by tuning the proportional and derivative

gains or adding integration parts. In [104–106] it is shown the local stability proof of the

PID-based robot controller without the knowledge of the robot dynamics. The control design

parameters can be chosen to achieve the desired tracking objective which depends on the

robot manipulator dynamics [104–107].

In order to eliminate the gravitational loading vector from the controller structure, a new

control strategy is introduced in [108, 109]. The controller is developed through proportional

and differential feedback with proportional integral components via the linear sum of velocity

and saturation position error. Basically, the fundamental method is to use the energy-shaping

technique and passivity theory. This method is able to achieve the desired tracking only if

the designer can choose suitable design parameters by using the Lyapunov second method.

In fact, the controller parameters of these controllers need to satisfy complex inequalities that

maybe not popular for industrial applications. In [110], Rocco proposed the Lyapunov-based

PID controller in which the local stability property of the closed-loop system is established.

The author shows that the overall design is just a simple PD controller design. This is

because the integral gains used in PID design are smaller than PD control gains. Actually,
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the implementation of the PD or PID controller is difficult to realize owing to the fact that

it requires velocity signals in addition to joint position signals.

Practically, the advanced robotic systems do not offer velocity sensors due to the con-

straints of weight and cost. To obtain velocity signals, the communal practical method is to

differentiate the position measurements obtained from encoders. The measurement of joint

position is also contaminated by noise [97–99]). Consequently, the performances of the PD

and PID controller are limited since practically the noise is amplified with the increase of

the values of controller gains. To reduce the amplification of noise, the cut off frequency of

the filter should be chosen by a trial-and-error method based on the derivative control gains

containing measurement noise of the sensor and the filtered derivation of the velocity signals

[97, 98]. However, it may work for some applications, such as a simple approximation which

is often not sufficient with polarized velocities. Furthermore, the quantization effect of the

noisy velocity signals usually bring about undesirable oscillations at joint. This may render

the control system unstable. Last but not least, there is a lack of theoretical proof for such

a solution which has been applied in existing industrial robot controllers.

In [111], a linear estimator is proposed to reproduce the unknown velocity signal in PD-

based industrial robot controllers. At the beginning of the design procedure, a PD term

with nominal robot model dynamics is proposed in which the unknown velocity signals

estimated via the linear estimator output. The Lyapunov method is used to construct

necessary conditions in order to guarantee the asymptotic stability of the closed-loop error

model dynamics. This condition sets the bound on the filtering error trajectory of the closed-

loop system. Secondly, the nominal model dynamics are removed from the control design to

formulate an independent PD model type feedback method. It is shown in the analysis that

the filtering error bound can be made randomly small by increasing the minimal eigenvalue

of the control gains. With a given set of initial conditions, the region of the PD-based state
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feedback design is estimated.

Then, the control outside the estimated region is saturated in order to get bounded

control input. The linear estimator is utilized after that so as to generate unknown velocity

signals and to develop the law of PD-based output feedback control. The bounded control

allows increasing the speed of the observer dynamics without compromising the transient

tracking performance for the user. With the adoption of such an asymptotic analysis of

the singularly perturbed closed-loop model, it is proven that the observer and filtering error

variables are finally bounded. Besides, their bounds can be limited to a small neighborhood

of the origin through observer–controller gains.

2.3.2 Sliding Mode Controller on Industrial Robots

In recent years, the control of uncertain processes has attracted great interest in the research

community[112, 113]. Among the robust control methods, the sliding mode control has

attracted high attention due to its high simplicity and robustness. The essence of SMC

techniques is that the controlled system trajectories converge to the designed sliding surface.

The system performance is expected on the sliding manifold in order to obtain the control of

the designed system with authority to dominate the uncertainties and disturbances acting on

the system. The control will promptly react to any declination from the prescribed behavior

of the system back to the sliding manifold. One of the advantages of this approach is that

the sliding behavior is robust to model uncertainties and disturbances which would not let

the system state to escape outside from the chosen manifold.

Even though the presence of aforementioned robustness advantages, the implementation

of SMC techniques still holds an obvious drawback since the finite switching frequency of real

control devices. The high-frequency components of the system could affect parasitic resonant

modes so that the system trajectories from the ideal ones. In general, the system and the
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actuators will definitely result chattering phenomenon, which is a high frequency motion that

effect the state trajectories oscillating about the sliding manifold briskly. The chattering

phenomenon and the discontinuous control constitute two main reasons for criticisms of

sliding modes in variable structure systems and these drawbacks are much more evident

when dealing with mechanical systems.

In spite of the above-cited drawbacks, VSS with SlidingModes (SM) have been considered

often in the technical literature for the robust control of mechanical systems [28, 40, 114–120].

The sign function of the discontinuous control is approximated by the saturation function in

order to avoid chattering. In this case, the system motion is bounded within a boundary layer

of the sliding manifold [121–123]. However, if the parasitic dynamics is not accurate in the

dynamic model, the approximation of the discontinuous control may scarify the robustness

of disturbance rejection properties in SMC [124]. Since the chattering phenomenon is caused

by both the switching delays and parasitic system dynamics.

Another solution for this chattering phenomenon is to implant an asymptotic state ob-

server in the controller. In this case, [125, 126], a different approach to avoid chattering is

proposed to augment the controlled system dynamics by adding integrators at the input.

If the discontinuous signal is consistent with the highest derivative controlled by the plant,

the latter result is continuous. Also, the smoothness is related to the considered derivative

order. This procedure is referred to as higher-order SM implementing higher-order sliding

modes, dynamic SMC, and terminal SM [124, 127–129] respectively. Even though the usage

of differentiators has been assumed to be a regular inspection. The theoretical development

of output feedback is considered [130].

In practice, the behavior of those devices needs to be considered for real implementation

due to the prescience of the measurement noise, whose negative effects on the closed-loop

performance rapidly increase along with the number of differentiation stages. Those research
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activities are devoted to develop online differentiators which are less sensitive to the noise

propagation as well as control algorithms for non-linear uncertain systems. Hence, the

number of differentiation stages are reduced. In the real situation, many differentiation

algorithms based on second and higher order sliding modes have been presented [125, 127,

131] which shows a non-eligible compromise between accuracy and noise-immunity.

The second research topic of 2-SM controllers, to deal with the cases where the rela-

tive degree between the constraint output of which the system motion meets the desired

performance specification and the discontinuous control. The main challenging part lies in

solving differential inequalities of a higher order. The comparison principle in non-linear

control theory including Lyapunov stability theorems in general does not work in the high

relative degree case. In this paper [119], various 2-SMC algorithms are presented to solve

several classes of second-order differential inequalities. The proper tuning of parameters are

identified influence some qualitative of transient properties [119, 125].

2.3.3 Chattering Free SMC on Industrial Robots

The initial propose of the sliding-mode control is to design a control law with varying struc-

tures of control then let the trajectory of the system state goes to a certain predefined sliding

surface, although an appropriate switching of the control structures such that the system

state will stay there. However, the digital implementation of the sliding-mode control has

a chattering problem. The chattering phenomenon occurs when the control input switches

discontinuously cross the boundary which involves high control activity and may excite high-

frequency dynamics [132]. To eliminate chattering, various methods such as sliding-mode

controller with boundary layer (SMCB) [133], fuzzy sliding-mode controller (FSMC) [134],

the sliding-mode controller (SMC) with the sliding sector [135] has been proposed. In all

these researching works, the fundamental goal is to smooth the control action across the
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sliding surface while preserving the classical variable-structure control law. In order to im-

prove the system response of the traditional SMC and SMCB, However, chattering still may

occur under certain operating conditions [122]. There is a new chattering-free sliding mode

controller with fast-response behavior has been proposed and implemented in paper [122].

Different from the traditional SMC or SMCB adopting a switching control term, the

proposed SMCS utilizes a continuously varying term instead. It also takes the distance of the

system state from the sliding surface into account. In this case, the proposed SMCS has the

superiorities of chattering-free behavior. By contrast with SMCB, it holds the controllable

max steady-state error and ease of adaptability, reduced hitting time and better robustness.

Sliding-mode control has been widely used for the nonlinear system [136]. Nowadays, a

growing number of modern advanced control systems are implemented with computers, the

study of SMC in the discrete-time domain. The discrete-time SMC has been an important

topic in SMC literature [137]. The main feature of discrete-time SMC (DSMC) compared

with continuous-time SMC (CSMC) relies on that the switching frequency of DSMC is

bounded [138].

In this case, the study of DSMC attracted the attention of many researchers and can be

divided into two categories. The first direction is that obeying the design procedure of CSMC

and meanwhile, the switching term is still preserved. The design of DSMC law directly based

on discrete-time systems. Although there is no switching term in the reaching law based

DSMC, the generation of an over-large control effort is also processed. Therefore, the main

problem is find a suitable method to guarantee a smaller boundary layer area especial for

the sliding mode movement. According to this, some improved DSMC methods have been

therefore proposed, such as disturbance observer-based DSMC.

However, these improved DSMC methods belong to the equivalent-control-based DSMC.

In [139], Bhat, Sanjay, and Sprovide provided a new DSMC design method which is based on
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non-smooth control. The advantage of such non-smooth control lies in its good performances

such as better robustness. In this new kind of DSMC, avoiding the chatting phenomenon

and the generation of large control, a non-smooth term or continuous function is therefore

employed instead of the switching term, and a reaching process is added. Under the proposed

DSMC, a strict theoretic analysis shows the same accuracy for the sliding mode motion that

may be obtained as the equivalent-control-based DSMC which provides a higher precision

than that of traditional reaching law-based DSMC. The related example is funded in [123]

to show the potential of such a proposed method.

2.4 Summary

In this chapter, a comprehensive literature survey on the key components of PBVS has been

carried out. On the pose estimation topic, this chapter presents the analysis of the modeling

errors and strategies of eliminating errors and measuring noise. The main focus is on the

techniques based on Kalman filter. On the topic of controller design, this chapter presents

a complete survey on the schemes based on the PD controller and sliding mode controller.

The subsequent chapters will develop an adaptive robust Kalman filter (ARKF) and a fast

chattering-free SMC for PBVS.
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Chapter 3

Pose Estimation

In this chapter, an adaptive robust Kalman filter (ARKF) for precise and robust pose de-

tection of industrial robots is presented. The proposed ARKF exploits the advantages of

adaptive estimation method for states noise covariance (Q), least square identification for

measurement noise covariance (R), and a robust mechanism for state variables error covari-

ance (P). In the simulation of PUMA 560, the comparison between the proposed ARKF

and other well-known Kalman filters such as adaptive Kalman filter (AKF) and standard

Kalman filter (SKF) shows the superiority of the ARKF in terms of root mean square (RMS)

and Variance (Var) of filtered errors. The ARKF outperforms the above-mentioned meth-

ods both in smooth filtering and in signal tracking. Simulation results reveal the superior

tracking performance of the ARKF when the robot is subjected to the measurement noises

and uncertainties.

3.1 Robustness

There are many essential requirements on control system such as tracking availability, re-

jecting the external disturbances through measurement, and process noise. It is of vital

36



importance to analyze the system performance with a previous understanding of the afore-

mentioned indexes. There always exist a compromise between the robustness and system

performance. Robustness is the capability to describe the extent that the system can suffi-

ciently reject external disturbance. It simplifies the design procedure via extremely simplified

models which plays a key role in system design. The dynamics variation captured by the

models can be used for analysis. However, some dynamic phenomena may be ignored when

building a system model such as time delay due to the difficulty of high order modeling.

The transfer functions are used to describe linear variation and adopted to correspond to

dynamic variation including time delay. It is also worthy of seeking a numerical method to

determine to what extent the feedback system performs.

3.2 The Sensitivity Function

The parameters of varying during the control process. Thus, it is necessary to set the

controller parameters with the capability of insensitive to process dynamics. The character-

ization of the extent of sensitivity is through the sensitivity peak Ms as follows,

Ms = max
0≤ω<∞

|S(jω)| = max
0≤ω<∞

∣∣∣∣
1

1 +G(jω)C(jω)

∣∣∣∣ (3.1)

where G(s) and C(s)) are the transfer function of plant and controller with negative, and

S is the sensitivity function. The sensitivity function suggests how the disturbances are

influenced by feedback and how sensitive the closed-loop system is to small perturbations of

process dynamics. The structure of the feedback controller is another essential element. The

sensors in the error feedback system only obtain the error signal while in the other feedback

systems both the reference and output are measurable. Therefore, it is automatic to separate

command signals from robustness and disturbance attenuation via 2-DOF controller. The
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feedback signal is for processing disturbance and robustness. The feedforward signal is to

take a response to generate the control signal. In the error feedback system, the feedback

signals need further estimation. In order to enhance the accuracy of the industrial robot

control system, we have to get the accurate pose of the object, i.e. end-effector’s pose in

this research. However, in the real situation, there are several sources of noise such as

robot intrinsic noise, sensor instruments measurement noise due to its limitation. Hence, the

distribution of those kinds of noise can be obtained by measuring the data time series in the

experiments.

3.3 Gaussian Noise and Adaptive Robust Kalman Fil-

ter Functions

In this section, the design procedure of the ARKF for pose detection is presented. First,

SKF is introduced in a discrete time domain. Then, the modifications on the SKF towards

adaptation and robustness will be stated.

3.3.1 State Variables of the End-effector’s Pose

The position and orientation of the end-effector of a six degree-of-freedom (DOF) robot is

represented by 6 variables, i.e.,x, y, and z, the translational variables in the Cartesian ground

frame, r, p, and w, the Euler angles in the mentioned frame(see Fig 3.1 [1]). Accordingly, the

vector of state variables q of the end-effector in Kalman filter is usually denoted as follows,

q =

[
x y z r p w ẋ ẏ ż ṙ ṗ ẇ

]T
(3.2)

where q is the vector of state variables consisting pose variables and their velocities.
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Figure 3.1: The pose variables in the ground frame [1]

3.3.2 Standard Kalman Filter for Pose Detection

The task of a KF is to estimate the pose q as q̂ , which is the real signal vector without noise.

SKF normally filters a noisy signal in two stages: prediction and correction. For prediction,

SKF relies on a pre-determined dynamic model of the system, through which it predicts the

current state based on the previous data. The prediction relations the first stage is shown

as follows [140],

q̂k|k−1 = Aq̂k−1|k−1

Pk|k−1 = APk−1|k−1A
T +Qk−1

(3.3)

where q̂ is the estimated state vector of the robot pose q, W is the covariance matrix of

the state variables error, and Q is the covariance matrix of the noise in the state variables.

Note that subscript k indicates the time instant. Matrix A, a 12 × 12 matrix of the state

transition (system model), with the diagonal elements of 1, and A(i,i+6)(i = 1, . . . , 6) equals

the sampling interval Ts [16]. After obtaining the prediction of the state vectors, one has to

correct the prediction using the following relations [49],
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q̂k|k = q̂k|k−1 +Kk (dk)

Pk|k = Pk|k−1 −KkBPk|k−1

(3.4)

where dk and Kk are the residual and Kalman filter gain respectively, which are obtained as,

dk = ok −Bq̂k|k−1

Kk = Pk|k−1B
T
(
BPk|k−1B

T +Rk−1

)−1
(3.5)

where, ok is the vector of noisy signals of the robot end-effector’s pose, acquired from vision

measurement system, R is the 6 × 6 measurement noise covariance matrix and B is the

output matrix transformation considered as,

B =

[
I6×6 O6×6

]
(3.6)

3.3.3 Adaptive State Noise Covariance (Q) using Forgetting Fac-

tor

Setting the entries’ values of Q is a demanding task, and improper tuning leads to an

undesired performance in filtering [141]. Therefore, one way to handling this issue is to

update the entries of Q adaptively. The numerical estimation of Q, i.e., Q̂, using previously

collected data, whether by taking advantage of averaging limited memory windowing or

forgetting factor, has been employed widely in many research works [16, 65]. In this paper,

the forgetting factor method is employed for evaluating Q̂ due to its slighter numerical

computation. As a matter of fact, forgetting factor is used for computing the expected value

for Q̂ in [49],

Q̂k = E
[
Kkdkd

T
kK

T
k

]
(3.7)
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Q̂k = γ
(
Kk−1dk−1d

T
k−1K

T
k−1

)
+ (1− γ)

(
Kkdkd

T
kK

T
k

)
(3.8)

In the relation above, γ is the forgetting factor which takes a value between 0 and 1.

3.3.4 Identification of Noise Covariance (R) using Least Square

Method

Matrices Q and R need to be appropriately tuned for KF for having acceptable performance.

Since R is the covariance matrix of the measurement noises, it is possible to estimate its

entries by taking numerical samples. Following this idea, in the case of VS, one possible task

is to get the data from the visual system when the robot is in a stationary status and to

estimate R as R̂. However, it has been observed that R entries vary when the end-effector

moves from one point to another with different velocities, causing the delay, blur, vibration

in the acquired images by camera. To cope with this problem, the following adaptive Kalman

filter method was suggested by Tingting et al [16]:

R̂k = R̂sk + R̂vk (3.9)

where, R̂sk is the covariance of noise measurement evaluated when the robot is stationary,

and R̂vk is the additive covariance of noise measurement emanated from the moving end-

effector’s variables shown as the following relation.

R̂vk = diag ([µ1|ẋ(k)| µ2|ẏ(k)| µ3|ż(k)| µ4|ṙ(k)| µ5|ṗ(k)| µ6|ẇ(k)|) (3.10)

where µ1 to µ6 are positive constant weights estimated based on the influences of the vari-

ables’ velocities [16]. In this relation, although the effect of the velocity is taken into account,

the effect of the location and orientation of the end-effector is being neglected. Therefore,
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in this paper, a novel method for computing R̂ is suggested which considers both effects of

the velocity and pose, i.e., the state of the end-effector. However, R̂s and R̂v are calculated

differently as follows,

R̂ski,i
= Ci × qk(1:i)

R̂vki,i
= µi ×

∣∣∣qk(s+1)

∣∣∣
(3.11)

where Ci is the regressors vector, whose entries are computed by applying the least square

error (LSE) identification method [142] based on the collected data from several tests on the

stationary robot(see Figure 3.2-a). Furthermore, µi is considered to be dependent on the

position and orientation variables as follows,

µi = Di × qk(1:6) (3.12)

where Di is the regressor vector, whose entries are calculated by using the same method

employed for Ci, and using the collected data from several tests on the robot moving with

constant speed (see Figure 3.2-b). Note that both R̂s and R̂v are diagonal matrices.

Figure 3.2: Least square identification; a) constant position and orientation b) constant velocity
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3.3.5 Robust Correction of the State Error Covariance (P)

Properly tuning of Q and R, whether by adaptive updating or by identification, leads to

improving the performance of the KF significantly. However, the existing uncertainties in

dynamic model considered for KF result in inaccurate estimation of P and hence cause

destructive effect on the filtering process. To tackle this issue, an adaptive robust correction

method is suggested, in which the estimate P and the theoretical evaluated P are compared

and a correction factor α compensates the inaccuracy of P. The compensated P, namely P̂

is obtained as follows [27],

P̂k =
Pk

αk

(3.13)

where αk is obtained using the following switching mechanism:

αk =





1 tr
(
Pk

)
< tr (Pk)

tr(Pk)

tr(Pk)
otherwise

(3.14)

In the relation above, P is obtained as the follows [27],

Pk = E
[
dkd

T
k

]
(3.15)

which can be represented by:

Pk = ω
(
dk−1d

T
k−1

)
+ (1− ω)

(
dkd

T
k

)
(3.16)

In the relation above, γ is the filter coefficient which takes a value between 0 and 1. Addi-

tionally, it is worth to mention that, in order to avoid the chattering problem in adapting

α the forgetting factor and smoother adaptation, technique is also applied to this adaptive
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rule which leads to deriving the following relation.

αk = β (αk−1) + (1− β) (αk) (3.17)

ω is the weighting coefficient which takes a value between 0 and 1.

3.4 Results and Discussion

In this section, the performance of the proposed method, i.e. ARKF is compared to other

well-known methods such as SKF and AKF with limited-memory windowing technique, and

the results are presented both by plotting the test and by computing several numerical

indicators, experimentally, and in simulation. The numerical indicator that are considered

for comparing the simulation results includes root mean square (RMS) and Variance (Var) of

the end-effector’s pose’s errors. Note that in the simulation test, a PUMA 560 is implemented

in Matlab/Simulink and the pose of the robot is contaminated by the noise (see Fig. 3.7

A PBVS with a PID controller is adopted to control the pose of the PUMA 560 robot to

follow the desired one. In the experimental test, the C-Track from Creaform Inc. is adopted

to obtain the end-effector’s pose information of a FANUC robot (see Fig. 3.5).

3.4.1 Simulation Results

As mentioned before, a PUMA 560 with noisy output is implemented for the simulation test.

The desired input for the robot is chosen as a spiral path in 3D space and sinusoidal path
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Figure 3.3: Flow chart of ARKF algorithm
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Figure 3.4: Simulation and experiment for testing the ARKF; a) Simulation’s schematic.

Figure 3.5: Simulation and experiment for testing the ARKF: b) Experimental setup.

for the end-effector orientation (angles) as presented in the following relation.

xd = 0.3 + 0.1 sin(t)

yd = 0.3 + 0.1 cos(t)

zd = 0.01t

rd =
π
6
sin(t)

pd =
π
6
cos(t)

wd =
π
6
cos

(
t+ π

6

)

(3.18)
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The simulation results of applying ARKF, AKF, and SKF are presented in Fig. 3.6. In this

figure, it is evident that the ARKF has a better performance than other KF methods in

terms of smoothness and filtering errors for all state variables. The SKF have filtered the

noise compared to the AKF in a smoother manner. However, it fails to track the signals

properly compared to the AKF, and there exist a significant delay and error in its predictions

for almost all end-effector’s pose variables. In addition to simulation results’ plots, the

mentioned numerical indicators are evaluated and presented in Table. 3.1. According to

this table, it can be seen that the values of Var and RMS indicators for all state variables

are lowest for ARKF, which means the ARKF filters the noise in the signals smoother and

with lowest filtering error than those of the other methods do. Overall, ARKF and AKF

outperform the SKF both by comparing the values of RMS and by values of Var.

Indicator Method Filtered signal’s error
ex ey ez er ep ew

SKF 7.3165 7.6855 7.8694 1.7927 1.3263 0.7434
RMS AKF 3.2322 1.0326 1.0153 0.9680 0.9196 0.4317

ARKF 2.6039 0.8471 0.2615 0.8434 0.6951 0.3782
SKF 51.7836 55.6627 58.0549 3.0671 1.6792 0.5381

Var AKF 10.4533 1.0669 1.0305 0.9371 0.8455 0.1857
ARKF 6.7613 0.7160 0.0684 0.6959 0.4835 0.1411

Table 3.1: RMS and Var indicators’ values for the simulation test on PUMA 560

3.4.2 Experimental Results

In the experimental test, a multi-step desired signal is considered for the input of a Fanuc

M20iA industrial robot and while the robot is tracking the desired signal, the pose of the

robot is captured consistently by a C-track 780 dual camera in 29 frames per second (FPS).

The noisy signals, captured by the camera, are filtered by the mention KFs and their results

are illustrated in Fig. 3.7. As shown in the plots, the ARKF outperforms other KF methods
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both in terms of smoothness and filtering errors for all state variables. It shows that the

ARKF has filtered the noisy signals with higher precision than those of the other methods

do. Compared with SKF, AKF tracks the signal with a lower lag. However, in terms of

smoothness, the SKF is superior to AKF. These plots show that the SKF has the highest

lag in tracking the signals and longest converging time specially after a high rate change in

the steps’ values.

3.5 Summary

In this chapter, an adaptive robust Kalman filter (ARKF) for pose estimation of industrial

robots’ end-effectors is proposed. The method takes advantage of an adaptive estimation

method for Q, automatic least square identification for R and a robust mechanism for P.

The simulation tests demonstrate that the proposed ARKF is able to reduce the effects of

noise on the pose estimation signal effectively and has a superior performance to the other

KF methods in terms of smoothness and filtering errors for all state variables. However,

compared with SKF, AKF tracks the signal with a smaller lag. SKF has better smoothness

than AK but with the largest lag and longest converging time especially when the rate change

occurs.
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Chapter 4

Controller design

In this chapter, a novel robust position-based visual servoing (PBVS) approach for industrial

robots is presented. This method combines a chattering-free fast digital sliding mode con-

troller (FDSMC) with an adaptive robust Kalman filter (ARKF) to exploit their beneficial

features. This combination results in improving the robustness and tracking performance of

the robot. First, an eye-to-hand vision system (C-track) is used to detect the pose of the

robot. Then, ARKF is applied to filter out the noises in the detected pose signals. These fil-

tered signals then are fed to the FDSMC. FDSMC exploits a fast-nonlinear reaching law that

provides not only robustness against uncertainties in dynamics and kinematics of the robot,

but also high tracking accuracy and faster convergence speed. Furthermore, this reaching

law is continuous which results in a chattering-free control process. The sliding surface of

the FDSMC is also considered to be a nonlinear one, which contributes to faster convergence

and decreasing the filtering error. The stability proof of the FDSMC is investigated and

quasi-motion in the generated boundary layer is also analyzed.
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4.1 Industrial Robot

In our research lab, we focus on the research of FANUC M20iA serial industrial robot. Since

the identification techniques for modeling the FANUC M20iA is experience required and

time-consuming. We use the PUMA560 robot model instead, which is an RRRRRR type

robot, similar as FANUC M20iA both with 6-DOF and is regarded as one of the mature

industrial robot for research and education purpose with the known mathematics description

method of kinematics and dynamic parameters from previous researchers’ work, to simplify

the process of testing the control methodology for FANUC M20iA in order to enhance its

accuracy. The controller design and entire PBVS control system response depend on both the

kinematic and dynamic model of the plant which is PUMA560 in the simulation environment.

Hence, modeling the PUMA560 is the first design procedure preparation. Model of robot

with n-DOF can be derived by utilizing the Lagrange-Euler method as follows [143].

τ =M(θ)θ̈ + V (θ, θ̇) +G(θ) (4.1)

ẋ = A(x) + Bτ

y = Cx

(4.2)

where x =



x1

x2


 =



θ

θ̇


 , A(x) =



x2

M−1(x)[V (x) +G(x)]


 , B =




0

M−1(x)




(4.3)

with the assumption of robot kinematic structure, the position of the tool center tip(TCP)

in industrial robot manipulators is generalized from the measured joint coordinates. Errors

do exist once the assumed kinematic structure differs from that of the actual manipulator.
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Table 4.1: Parameters of PUMA 560 robot (Denavit-Hartenberg notation).

Link i m [kg] rx [m] ry [m] rz [m]
1 0 0 0 0
2 17.4 −0.3638 0.006 0.2275
3 4.8 −0.0203 −0.0141 0.070
4 0.82 0 0.019 0
5 0.34 0 0 0
6 0.09 0 0 0.032

Table 4.2: Inertia parameters of the PUMA 560 robot. [2]

Link i Ixx [kg ·m2] Iyy [kg ·m2] Izz [kg ·m2] Ixy = Iyz = Izx [kg ·m2]
1 0 0.35 0 0
2 0.13 0.524 0.539 0
3 0.066 0.086 0.0125 0
4 0.0018 0.0013 0.0018 0
5 0.0003 0.0004 0.0003 0
6 0.00015 0.00015 0.00004 0

Such errors may from manufacturing tolerances in link length or link distortion due to heavy

load. Due to the factual tolerances during manufacturing, these invalid assumptions will

reduce robot accuracy.

4.1.1 Accuracy and repeatability

Accuracy defined as the error between the measurement and command pose of the robot.

Practically, the inverse kinematics must be solved for the required joint coordinate when

robot moving to the desired position, even the servo system moves very accurately to the

computed joint coordinates, the discrepancies between the assumed kinematic model when

the designed controller and the actual robot will cause noneligible positioning errors at

the TCP. Accuracy typically varies over difference workspace and could be improved by

calibration which means identify the kinematic parameters for the particular robot is also

demanding.
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Repeatability refers to the error that a robot returns to a previously taught point. Gen-

erally, repeatability performed better than accuracy, which depends on the quality of joint

servo performance. In order to exploit this capability, points must be manually taught which

is time-consuming and takes the robot ”strike”. For example, the AdeptOne manipulator has

a quoted repeatability of 15µm but accuracy of 76µm. The comparative of low accuracy and

difficulty exist in applying repeatability are the main of the vindication for visual servoing

[26, 50].

4.1.2 Manipulater Kinematic Parameters

Kinematics is the science of motion without regard to the forces that cause it. Once studies

the position, the velocity, the acceleration, and all higher-order derivatives of the position

variables with respect to time or any other variables should consider its kinematics. Hence,

the study of the kinematics of manipulators refers to all the geometrical and time-based

properties of the motion. The relationships among motion, force and torque cause them to

establish the dynamics[144].

In this research, we use PUMA560 for the kinematic and dynamic controller design and

analysis. Although the PUMA560 robot is classical compared with modern standards hav-

ing poor performance. Its mechanical design such as revolute structure, geared servo motor

drive, and nested control loops, independent axis control, remain typical over many modern

industrial robots. The kinematic parameters of a robot are important in computing the for-

ward and inverse kinematics of the manipulator. The kinematic constants for the PUMA560

are given in Table 4.2. These parameters are derived from several sources [145, 146]. In-

trinsically, some variation exists in the link lengths and offsets provided by several previous

researchers [147]. Those variations in parameters could gradually impact the design or man-

ufacture of the robot or may be counted as errors. Hence, the kinematic parameters are of
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Table 4.3: DH table of the PUMA 560 robot

Link αi ai di θi range
i [◦] [m] [m] [◦]
1 190 0 0 −160 to 160
2 0 0.4318 0 −225 to 45
3 −90 0.0203 0.15005 −45 to 225
4 90 0 0.4318 −110 to 170
5 −90 0 0 −100 to 100
6 0 0 0 −266 to 266

vital importance both in kinematics and manipulator dynamics calculations. The kinematic

parameters arose on the dynamic equations of motion according to the link transformation

matrices 4.1.2.

i− 1Ai
=




cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1




(4.4)

4.1.3 Dynamic Model and Manipulator Control of PUMA560

The manipulator dynamics is about the equations of motion. The manipulator moves as the

input of actuator applied torques as well as external forces. The main concern related to

manipulator dynamics is inverse dynamics. It is used on solving the manipulator’s equations

of motion under the given motion in order to define the generalized force. In typical ma-

nipulator control, for instance, the standard Unimate controller, the torques due to inertial

coupling, Coriolis, centripetal and gravity effects are treated as disturbances. Furthermore,

although each axis is independently controlled, gearing helps reduce the coupling of some
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dynamic effects, and the magnitude of disturbance torques from the motor. In the conven-

tional robot regulation and tracking problem, its quality directly depends on the robustness

of each axis servo. From the manipulator’s equations of motion, inertial parameters and

state of the manipulator, and the assigned joint torques are therefore available. The torque

demand for each actuator is

Q = M(q) {Kv (q̇d − q̇) +Kp (qd − q) + q̈d}+C(q, q̇)q̇ + F(q̇) +G(q) (4.5)

whereKp andKv are the position gain and the velocity gain or damping term respectively.

The inverse dynamics are included in the control loop and must be evaluated every servo

interval.

4.2 Robot Modeling and Problem Statement

Let the forward and inverse kinematics of a six-DOF industrial robot be as,

X = FK(Θ)

Θ = IK(X)

(4.6)

where X is the robot pose, Θ is the vector of robot joints’ angels and FK(.) is forward kine-

matic function IK(.) is inverse kinematic function that takes X and returns Θ. Additionally,

the kinematic relation at the velocity level maps the joint velocities to the pose velocities as

follows,

Ẋ = J(Θ)Θ̇ (4.7)

where J(Θ) is the Jacobian matrix that can be derived using the following relation:
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J(Θ) =
∂(FK(Θ))

∂Θ
(4.8)

Note that there always exist uncertainties in kinematic relations associated with the

physical parameters of the robot. Considering these uncertainties, i.e. Ẋ = J(Θ)Θ̇, Eq. 4.7

can be rewritten as,

Ẋ = (Jn(Θ) + ∆J(Θ, t)) Θ̇ (4.9)

where Jn(θ) is the nominal Jacobian and ∆J is the uncertainty of the Jacobian. In order to

control the pose of the robot, its end-effector position and orientation must be measured. To

this end, the data can be obtained by using the C-track and the designed ARKF. However, the

detected pose signals are contaminated with noise emanated low regulation of the cameras,

low light of the environment or fading issues [36]. Schematic of a six-DOF industrial robot

(PUMA-560) equipped with a camera with an ETH configuration is depicted in Figure 4.1.

The main problem of position-based visual servoing of the mentioned system is to design

a control scheme that is robust against the vision system noisy signal and the existing

uncertainties. A competent controller should also be fast and accurate. The solution to this

control problem is investigated in the following section.

The dynamics and kinematics a series six-DOF industrial robot are modeled as the fol-

lowing pair of relations [3]:

(Mn(q) + δM(q)) q̈ + (Cn(q, q̇) + δC(q, q̇)) q̇ + (Gn(q) + δG(q)) +D(q, q̇, t) = τ

Ẋ = (Jn(q) + δJ(q)) q̇ + d(q, q̇, t)
(4.10)

whereX ∈ R6 is the robot’s pose and q ∈ R6 is the vector of robot joint angels,Mn(q) ∈ R6×6

is the nominal inertia matrix, Cn(q) ∈ R6×6 is the nominal matrix of centrifugal and Coriolis

forces, Gn(q) ∈ R6 is the nominal vector of gravitational torques, D(q, q̇, t) ∈ R6 is the vector
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Figure 4.1: Schematic of a six-DOF industrial robot (PUMA 560) equipped with a camera with an
ETH configuration

of external disturbances exerted to the system dynamics, and τ ∈ R6 denotes the system

input (the controller output). Jn(q) ∈ R6×6 is the nominal Jacobian matrix which relates

that of velocity of the robot pose to the robot joints, d(q, q̇, t) ∈ R6 is the external disturbance

which affects the kinematics. δM(q) ∈ R6×6, δC(q, q̇) ∈ R6×6,δG(q) ∈ R6 and δJ(q) ∈ R6

are the matrices and vectors written in compact forms denoting the uncertain parts of the

dynamics and kinematics of the robot system. The pair relations of Eq. 4.10 can be rewritten

in compact forms as follows:

q̈ = fn(q, q̇) + gn(q)τ +∆q

Ẋ = Jn(q)q̇ +∆X

(4.11)
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where,

∆q = (M(q))−1(−δM(q)q̈ − δC(q, q̇)q̇ −D(q, q̇, t))

∆X = δJ(q)q̇ + d(q, q̇, t)

fn(q, q̇) = (Mn(q))
−1 (−Cn(q, q̇)q̇ −Gn(q))

gn(q) = (M(q))−1

(4.12)

The presented relations are derived to be used in controller designing. However, as discussed

in Section 4.1, the derived controller will be discretized to be implementable on digital

computers and devices. Therefore, it would be more convenient to design the controller in

discrete dime domain in the first place [148]. To this end, the dynamics and kinematics

of the robot should be converted to discrete time models. Using forward finite-difference

technique for first and second derivatives, i.e.,

ẋ(t) ≡
xk − xk−1

T
(4.13)

and

ẍ(t) ≡
xk+1 − 2xk + xk−1

T 2
(4.14)

where T is the sampling time, k is the sampling index. Hence Eq. 4.11 and can be discretized

to the following relations:

qk+1−2qk+qk−1

T 2 = fn (qk, qk−1) + gn (qk, qk−1) τk +∆q

Xk+1−2Xk+Xk−1

T 2 =
(

Jn(qk)−Jn(qk−1)

T

) (
qk−qk−1

T

)
+ Jn (qk)

(
qk+1−2qk+qk−1

T 2

)
+ ∆̇X

(4.15)

The main target of position-based visual servoing of the mentioned system is to increase

the accuracy of the industrial robot by using C-track and designing a control scheme that is

robust against the vision system noise and the existing uncertainties. The solution to this

control problem is investigated in the following section.
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4.2.1 Adaptive Robust Kalman Filter

To implement the KF the measurement equations of the end-effector of a six-DOF industrial

robot are usually considered as follows [37].





ηk = Aηk−1 + wk−1

Xk = Bηk + vk

, wk−1 ∼ N(0,Q), vk ∼ N(0,R) (4.16)

where, η =

[
XT ẊT

]T
∈ R12 is the vector of state variables, w ∈ R12 is the vector

of state noise with the covariance matrix Q, v ∈ R6 is the measurement noise vector with

the covariance matrix R, and Xk ∈ R6 is the vector of noisy signals of the robot pose

acquired from vision system. Matrix A ∈ R12×12 matrix of the state transition with the

diagonal elements of 1 and Ai,i+6(i = 1, . . . , 6) equal to the sampling interval Ts, and B =[
I6×6 06×6

]
is the output matrix transformation [16]. Note that subscript k indicates

the time instant. The standard KF handles a noisy signal into two stages: prediction and

correction. Using Eq. 4.17 and Eq. 4.18, KF predicts the current state based on the previous

data [140].

η̂k|k−1 = Aη̂k−1|k−1 (4.17)

Pk|k−1 = APk−1|k−1A
T +Qk−1 (4.18)

η̂k|k = η̂k|k−1 +Kk (dk) (4.19)

Pk|k = Pk|k−1 −KkBPk|k−1 (4.20)
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where η̂ is the estimation of η, P is the covariance matrix of the errors of the state

variables. After obtaining the predictions of the state variables, one has to correct the

prediction using Eq. 4.19 and Eq. 4.20 [49]. dk and Kk are the residual and Kalman filter

gain respectively, and are obtained as,

dk = Xk −Bη̂k|k−1 (4.21)

Kk = Pk|k−1B
T
(
BPk|k−1B

T +Rk−1

)−1
(4.22)

Accordingly, the filtered signal of the robot pose can be obtained as X̂k = Bη̂k|k. Setting the

entries of Q is a demanding task. Besides, their improper tuning may result in undesired

filtering [49]. Therefore, a solution to this problem is to update the entries of Q adaptively.

Based on the forgetting factor technique, ARKF presented in [37] suggests that Q̂ which is

the estimation of Q, can be adaptively updated using the following relation.

Q̂k = γ
(
Kk−1dk−1d

T
k−1K

T
k−1

)
+ (1− γ)

(
Kkdkd

T
kK

T
k

)
(4.23)

where, γ is the forgetting factor coefficient which takes a value between 0 and 1.

Since R is the covariance matrix of the measurement noises, it is possible to estimate its

entries by taking numerical samples. Following this idea, in the case of visual servoing, one

possible task is to get the data from the visual system whenever the robot is in a stationary

status and estimate R as R̂. However, it has been observed that R entries vary by the end-

effector moves from one point to another or with different velocities caused by delay, blur,

and vibration during image acquisition. To cope with this problem, the following tuning

method for R was suggested by Wu et al. [37],
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R̂k =
∣∣∣R̂sk + R̂vk

∣∣∣ (4.24)

where R̂s and R̂v are the covariances of noise measurement when the robot is stationary and

moving respectively. R̂s and R̂v are evaluated utilizing the following relations,

R̂ski,i
= Ci × ηk(1:6) (4.25)

R̂vki,i
= µi ×

∣∣∣ηk(6+i)

∣∣∣ (4.26)

where, µ1 to µ6 are positive constant weights and Ci is the regressor vector whose entries

are computed by applying the least square error (LSE) identification method [142] based on

the collected data from several tests on the robot. µi is considered to depend on the position

and orientation variables as follows [37]:

µi = Di × qk(1:6) (4.27)

In the relation above, Di is the regressor vector, whose entries are calculated by using

the same method employed for Ci, and using the collected data from several tests on the

robot when it is moving with constant speed. Both R̂s and R̂v are diagonal matrices [37].

The existing uncertainties in the robot model may result in in accurate estimation of P. To

cope with this issue, an adaptive robust correction method is suggested [27]. In this method,

the estimation of P and the theoretical evaluated P are compared. A correction factor α

is adopted to compensate the inaccuracy of P . The compensated P , i.e. P is obtained as

follows [27],

P̂k = Pk/α̂k (4.28)
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where α̂k is obtained using the following switching mechanism:

α̂k = β (α̂k−1) + (1− β) (αk) (4.29)

where α̂k is computed by Eq. 3.14 and β is the forgetting factor coefficient which valued

between 0 and 1.

αk =





1 tr
(
Pk

)
< tr (Pk)

tr (Pk) / tr
(
P̄k

)
otherwise

(4.30)

In Eq. 4.30, P is obtained as follows [37],

Pk = ω
(
dk−1d

T
k−1

)
+ (1− ω)

(
dkd

T
k

)
(4.31)

where ω is the filter coefficient which takes a value between 0 and 1.

4.2.2 Chattering-free Digital Fast Sliding Mode Control Method

The objective of the designing a PBVS is to steers the error of the robot’s pose to zero. The

error of the robot’s pose eX is:

eXk
= X̂k −Xdk (4.32)

where Xd is the desired pose. Based on Eq. 4.14, the first and second derivative of Eq. 4.32

are as follows:

(
eXk

− eXk−1

)

T
=

(
X̂k − X̂k−1

)

T
−

(
Xdk −Xdk−1

)

T
(4.33)

(
e
Xk+1−2eXk

+eXk−1)

T 2
=

(
X̂k+1 − 2X̂k + X̂k−1

)

T 2
−

(
Xdk+1

− 2Xdk +Xdk−1

)

T 2
(4.34)
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In order to design and SMC, first a sliding variable must be defined. In this study, the

sliding variable considered to be a nonlinear one as follows:

σk =

(
eXk

− eXk−1

)

T
+ Λ1 × tanh

(
Λ2 × eXk−1

)
(4.35)

In the relation above, Λ1 and Λ2 are 6× 6 diagonal positive definite matrices of the sliding

surface coefficients. Note that σ = 0 is the sliding surface and it must be asymptotically

stable. This issue is investigated in Theorem 1. In discrete time domain, the control processes

of SMC comprises of two: reaching phase, and Quasi -sliding motion [149]. The SMC law

should be defined in a way that the sliding variable converges towards zero, i.e. sliding

surface. This is the reaching phase. Once it reaches the vicinity of the sliding surface, it is

trapped in a boundary layer, and cannot escape out. This is the Quasi-motion phase. the

two phases of an SMC in discrete time domain is shown in Fig. 4.2. In order to let the

robot system present as Eq. 4.15 to comply with the above-mentioned conditions of SMC,

the following chattering-free fast control law is considered.

τk = (Jn (qk)g (qk, qk−1))
−1

(
− (fσ (σk))−

(
Jn(qk)k−Jn(qk)k−1

T

) (
qk−qk−1

T

)
−

Jn (qk) fn (qk, qk−1) +
xdk+1

−2Xdk+Xd

T 2 − Λ1(tanh(Λ2ek)−tanh(Λ2ek−1))

T

) (4.36)

with,

fσ (σk) = sat
(
K1σk +K2 |σk|

α sign (σk) +K3 |σk|
β sign (σk)

)
(4.37)

In the relation above, K1 toK1 are 6×6 diagonal positive definite matrices of the reaching

law, α and β are positive constant powers of the nonlinear functions. The influence of each

term is stated in Remark-1. Note that α is higher than 0 and lower than 1, whereas, beta is

higher than 1. Therefore, the second term take effects when the error is rather low and the
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third term takes effect when the error is rather high. sat(.) is the saturating linear transfer

function with the following relation:

sat(x) =





K0, x ≥ K0

x, −K0 < x < K0

−K0, x ≤ −K0

(4.38)

where, K0 is the threshold of the saturation. The idea behind adopting sat(.) is to prevent

the generation of excessive value of controller output at the beginning of the reaching phase

[117]. The block diagram of the proposed robust visual servoing controller is shown in Figure

4.2. Also, the stability proof of the closed-loop system of the robot under the control law of

Eq. 4.36 is investigated in Theorem 2. However, Assumption 1 must be held beforehand.

The block diagram of the proposed robust visual servoing controller is shown in Fig 4.2.

Assumption 1. δL is bounded as follows,

|∆L| < δL (4.39)

where, σL is a 6× 1 vector with positive elements and δLis:

∆L = ∆qk + Jn (qk) ∆̇Xk
(4.40)

Theorem 1 (Stability of the nonlinear sliding surface) Considering the sliding variable

as given in Eq. 4.35, the sliding surface, i.e., σk = 0 is asymptotically stable if the following
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Figure 4.2: Schematic of the proposed controllers.

Figure 4.3: Schematic of the proposed controllers: a) FSMC.

Figure 4.4: Schematic of the proposed controllers:b) chattering-free FSMC.
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condition is satisfied.

Λ1 <
2

T
Λ−1

2 (4.41)

Proof. Let the candidate Lyapunov function Ve
(
eXk−1

)
and its time difference ∆V (eXk

) for

the system error be as Eq. 4.40.

Ve
(
eXk−1

)
= eTXk−1

eXk−1

∆Ve (eXk
) = Ve (eXk

)− V
(
eXk−1

)
= eTXk

eXk
− eTXek−1eXk−1

(4.42)

By puttingσK = 0 in Eq. 4.35, the following relation yields:

eXk
= −T

(
Λ1 × tanh

(
Λ2 × eXk−1

))
+ eXk−1

(4.43)

Substituting the relation above into Eq. 4.42 results in:

∆Ve (eXk
) =

(
−T

(
Λ1 × tanh

(
Λ2 × eXk−1

))
+ eXk−1

)T
(−T (Λ1 × tanh (Λ2×

eXk−1

))
+ eXk−1

)
− eXT

k−1
eXk−1

(4.44)

Referring to the relation above, when exk
= 0,∆Ve (exk

) = 0. For eXk
6= 0, from inequality

of Eq. 4.39, the following relation is concluded:

∣∣−T
(
Λ1 × tanh

(
Λ2 × eXk−1

))∣∣ < 2 |ek−1| (4.45)

Accordingly, since −T
(
Λ1 × tanh

(
Λ2 × eXk−1

))
and ek−1 have the opposite signs. Therefore,

∣∣−T
(
Λ1 × tanh

(
Λ2 × eXk−1

))
+ eXk−1

∣∣ <
∣∣eXk−1

∣∣ and thus,∆Ve (eXk
) < 0.

This proves that the defined sliding surface is asymptotically stable [150].

Theorem 2 (Stability of chattering-free DFSMC) If the conditions in Eq. 4.46 and
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Assumption 1 are satisfied, the control law of Eq.4.36 makes the system of Eq.4.15 stable as

an sliding mode with quasi-motion.

K0 > fσ (C0) , fσ (C0) > δL, C0, K1, K2, K3 > 0, 0 < α < 1, β > 1

|2σk| > |T (fσ (σk) + fσ (C0))|
(4.46)

Λ1 <
2

T
Λ−1

2 (4.47)

V (σk) = σT
k σk

∆V (σk+1) = V (σk+1)− V (σk) = σT
k+1σk+1 − σT

k σk

(4.48)

Proof. Let the candidate Lyapunov function Ve
(
eXk−1

)
and its time difference ∆V (eXk

) for

the sliding variable of Eq. 4.35 be as Eq. 4.48.

Based on Eq. 4.35, the following can be obtained:

σk+1 = T

(
Xk+1 − 2Xk +Xk−1

T 2
−
Xdk+1

− 2Xdk +Xdk−1

T 2
+

Λ1 (tanh (Λ2ek)− tanh (Λ2ek−1))

T

)
+σk

(4.49)

which can be rewritten as:

σk+1 = T

(
Xk+1 − 2Xk +Xk−1

T 2
−
Xdk+1

− 2Xdk +Xdk−1

T 2
+

Λ1 (tanh (Λ2ek)− tanh (Λ2ek−1))

T

)
+σk

(4.50)

Substituting Eq. 4.15 into Eq. 4.50 yields:

σk+1 = T
((

Jn(qk)−Jn(qk−1)

T

) (
qk−qk−1

T

)
+ Jn (qk)

(
qk+1−2qk+qk−1

T 2

)
+ ∆̇Xk

)
−

Xdk+1
−2Xdk

+Xdk−1

T 2 + Λ1(tanh(Λ2ek)−tanh(Λ2ek−1))

T

)
+ σk

(4.51)
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Substituting Eq. 4.15 into Eq. 4.51 yields:

σk+1 = T
((

ln(qk)−Jn(qk−1)

T

) (
qk−qk−1

T

)
+ Jn (qk) (fn (qk, qk−1) + gn (qk, qk−1) τk+

∆qk) + ∆̇Xk

)
−

Xdk+1
−2Xdk+Xdk−1

T 2 + Λ1(tanh(Λ2ek)−tanh(Λ2ek−1))

T

)
+ σk

(4.52)

Then, substituting Eq. 4.36 into Eq. 4.52 results in:

σk+1 = T
(
−fσ (σk) + ∆qk + Jn (qk) ∆̇Xk

)
+ σk (4.53)

Substituting relation above in Eq.4.48 yields:

∆V (σk+1) =
(
T
(
−fσ (σk) + ∆qk + Jn (qk) ∆̇Xk

)
+ σk

)T

(T (−fσ (σk) + ∆qk+

Jn (qk) ∆̇Xk

)
+ σk

)
− σT

k σk

(4.54)

Considering the above-mentioned conditions and Assumption 1, Lemma 1 can be applied

to Eq.4.54. Based on Lemma 1, when |σk| > C0,∆V (σk+1) in Eq. 4.54 is negative. It is

the reaching phase. It means that σk would be converging towards the sliding surface until

|σk| ≤ C0. Thereafter, |σk| ≤ C0 holds, and as a result σk performs a Quasi motion in the

boundary layer.

Figure 4.5: Different types of reaching laws for SMC

Lemma 1. Assume that |∆| < ∆A,∆A < |fA (xA)|, and |2x| > |t (|fA(x)|+ fA (xA))| where

69



Figure 4.6: Reaching phase and Quasi-motion phase in DSMC

fA(xA) is an ascendant and odd function, xA > 0, t > 0, and δA > 0. Then, for |x| > xA the

following relation holds.

(t (−fA(x) + ∆) + x)T (t (−fA(x) + ∆) + x)− xTx < 0 (4.55)

Proof. Since fA(.) is ascendant and odd, for |x| > xA,∆A < |fA(x)|. Also, |∆| ≤ ∆A.

Accordingly, |∆| < |fA(x)|. Therefore, −fA(x) dominates δ and thus signs of t(−fA(x) + δ)

and x are always the opposite of each other, i.e.

sign (−fA(x) + ∆) = − sign(x) (4.56)

Additionally, since|∆| < |fA (xA)| ≤ |fA(x)|, then one has:

t |−fA(x) + ∆| < t (|fA(x)|+ fA (xA)) (4.57)

Based on Eq. 4.56 and Eq. 4.57 and given that |2x| > |t(|fA(x)|+fA(xA))|, it can be deduced
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that t |−fA(x) + ∆| < |2x| and thus |t (−fA(x) + ∆) + x| < |x|. Accordingly inequality Eq.

4.55 holds [144].

4.3 Summary

In this chapter, a robust PBVS approach for industrial robots based on FSMC and ARKF is

suggested. ARKF filters out the noise of the robot’s pose that is detected by the C-track. The

FSMC takes advantage of a nonlinear reaching law which results in faster and more accurate

trajectory tracking compared to standard SMC. Substituting the switching function with a

linear function and a saturate function to the overall reaching law also leads to a continuous

output and thus eliminating the chattering. In the next chapter, a simulation of applying

the proposed method to a PUMA 560 robot will be carried out to validate the superiority

of the proposed method over standard SMC and SMC with saturated output in terms of

chattering level, precision, and convergence speed.
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Chapter 5

Matlab Simulation of Vision Servoing

System

In this chapter, we aim at evaluating the performance of the proposed method. A PUMA

560 robot is therefore modeled in the SimScape toolbox (formerly known as SimMechanics)

of MATLAB software. The physical parameters of the robot are taken from Ref. [151].

The robot’s pose contaminated with additive noise is assumed to be the given pose detected

by the visual system C-track. Note that the additive noise is structured by identifying the

experimental data as in Ref. [37]. Also, to have a comparative study, standard SMC and

saturated-line SMC (SMC-SAT) are applied to the system. The desired pose is considered

to be a circular trajectory as:

5.1 Schemes of PBVS Control Strategies

The block diagram of different PBVS methods are declared as follows Fig. 5.4, 5.5, 5.6, 5.7,

5.8.
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Figure 5.3: Linear and nonlinear sliding surface using tanh(.)

Figure 5.4: Schematic of digital Sliding mode control method
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Figure 5.5: Schematic of torque computing-proportional derivative (TC-PD) control method

Figure 5.6: Schematic of sliding mode control method

Figure 5.7: Schematic of chattering-free fast sliding mode method
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Figure 5.8: Schematic of open-loop control using invers kinematics

Xd =

[
0.5 0.33 + 0.15 sin(0.5t) 0.15 cos(0.5t) −π

2
0 0

]T
(5.1)

where t is the simulation time.

5.2 Simulation Configuration

In this project, MATLAB 2018a is used as the main modeling and programming software.

All simulations are performed in the Simulink, which is a block diagram environment for

Model-Based Design. For modeling the robot, however, first, the mechanical and physical

components were designed by SOLIDWORKS-2019 software (see Figure 5.9). Then, the

model exported as an XML file. Finally, the generated files, including physical parameters

such as mass and moment of inertia of the links, center of mass of each link, their frames,

and graphical parts were imported in SimScape Toolbox of MATLAB/Simulink SimScape

toolbox, which formerly known as SimMechanics, is a multibody modeling software for me-

chanical systems, which sets the stage for modeling of a robot as well (see Figure 5.10).

Therefore, the model includes dynamics and kinematics of the robot. The input of the robot

is vector of joint torques and its outputs in the vector of end-effector’s pose variables. Note

that to model the estimated robot’s pose by C-Track vision system, a variable noise vector
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added to the robot’s pose, the structure of which was identified based on the collected ex-

perimental data of C-track and Fanuc robot in the real application.

Figure 5.9: Figure A: Modeling the robot in SOLIDWORKS-2019 software.

The simulation of each Simulink file includes two separated parts: Simulation of the

robot, and simulation of the vision system. For the first part, the solver type considered to

be Runge-Kutta 4th-order with the sampling time interval of 0.001s, while for the second

part, the discrete-time solver is chosen with the sampling time interval of 1/29 s.

5.2.1 Comparison among Aforementioned Control Strategies

Fig. 5.13 shows the results of the pose control highlights the superiority of CFSMC to other

methods. CFSMC converges towards the desired signals faster than SMC and SMC-SAT.

It also tracks the desired signals more accurately without chattering. The results, however,

demonstrate a high level of chattering for SMC and a high level of filtering error for SMC-

SAT. Noticeable level of offset error also appears when the compensators are not applied

which emphasizes the necessity of providing a proper PBVS method. Fig. 5.11 shows Θd
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Figure 5.10: Figure B: SimScape Toolbox.

and Θin generated by SMC, SMC-SAT, and CFSMC. The results reveal the high level of

chattering generated by SMC and relatively smooth output for FSMC and SMC-SAT. These

plots also demonstrate that Θin deviated from Θd, which means the compensators are capable

of modifying the desired joint angles so as to correct the robot pose.

To perform a numerical comparison, root mean square (RMS) and standard deviation

(STA) indexes for error of the robot pose are also evaluated and tabulated in Table 5.2. The

results show that these values are the lowest for CFSMC and definitely superior to other

methods. The dramatic difference between these values is evident for non-compensated and

compensated robot pose control. It further shows the necessity of a proper compensator to

address the offset error emanated from uncertain kinematics.

5.3 Simulation Results

The performance of a DSMC depends on a) the reaching law, and b) the dynamics of the

sliding surface. Generally, DSMC with the relative order of one has the following form [123]:
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σk+1 − σk
T

= −fσ (σk) + ∆L (5.2)

fσ (σk) = K0 sign (σk)

fσ (σk) = sat
(

σk

φ

)

fσ (σk) = sat
(
K1σk +K2 |σk|

α sign (σk) +K3 |σk|
β sign (σk)

)
(5.3)

In the relation above, fσS
, i.e. the reaching law of DSMC, has the switching form of

Eq.5.3. Continuous forms of reaching laws are also suggested such as saturating linear

reaching law of Eq.5.3. As mentioned before, the proposed reaching law in this paper is a

continuous and a fast one as presented in Eq.5.3.

5.3.1 Analysis of the Tracking Performance of the Chattering-free

DFSMC

For the above-mentioned reaching laws, the relationship between fσ (σk) and σk, along with

the thickness of bandar layer are plotted in 5.3. Unlike the continuous SMC, in DSMC, the

boundary layer always exists [120] which directly results in increasing the filtering error. The

thicker the boundary layer is, the higher the filtering error is. Even, adopting a switching

function cannot prevent generating the boundary layer in DSMC. This is because the required

stability condition presented in 4.46, i.e. |2σk| > |T (fσ (σk) + fσ (C0))| This inequality can

be rewritten as two separated inequalities as follows:

(2σk−T fσ(C0))
T

> fσ (σk) when σk ≥ 0

(−2σk+T fσ(c0))
T

< −fσ (σk) when σk < 0
(5.4)
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Based on Theorem 2, simultaneous satisfaction of the relation above and uncertainty condi-

tion, i.e. Assumption 1, is required for the DSMC to be convergent. However, in the vicinity

of the sliding surface, those conditions cannot be satisfied, and hence, boundary layer ap-

pears. The switching function has just one tunable parameter, i.e. K0, which is adjusted

based on the bound of the uncertainty. It means minimum flexibility. Besides, its switching

essence results in an intense chattering in the boundary layer. Therefore, it is not a good

choice for reaching law and usually is not employed. Saturating linear transfer function Eq.

5.3 is an alternative solution. It has two parameters to tune, i.e. φ and K0. Therefore, it is

more flexible than the switching function.

Additionally, it is continuous and thus results in alleviating the chattering issue. However,

since its flexibility is not high enough, a trade-off between the chattering reduction and the

boundary layer thickness exist. The fast reaching law proposed in this paper, i.e. Eq. 5.3 has

some advantageous features compared to the previously discussed. Employing this reaching

law, the boundary layer thickness depends on three terms including five parameters. It means

that this reaching law is more flexible than the others. Therefore, tuning the controller gains

properly may lead to increasing the tracking precision, convergence speed, and continuous

output, simultaneously.

Remark 1. The fast reaching law of Eq.5.3 comprises three linear and nonlinear terms.

The first term is a sloping line which is responsible for converge with medium rate when

the sliding variable error is medium. The two next nonlinear terms lead to increasing the

convergence speed and tracking precision. These terms take effect when the filtering error is

low and rather high, respectively Fig. 5.3.

As mentioned earlier, dynamics of the sliding surface affects the precision of the filtering
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error. The general form of the sliding dynamics for a second-order system is:

(
eXk+1

− eXk

)

T
= −fs (exk

) (5.5)

For the conventional DSMC a linear surface is considered as Eq. 5.6. The problem with this

linear function is its low flexibility. When λ is set to a high value, the convergence speed of

the system increases. However, when the error is relatively high, it may enlarge the value of

the sliding value which not only reduces the stability of the range of system, but also results

in generating excessive value of controller output. In this study, a nonlinear sliding surface

dynamic based on tanh(.) function is proposed Eq. 5.6 to tackle the mentioned issues. Its

parameters can be adjusted in a way that for the low error values it has the maximum

admissible slop, while for high error values it has a rather low value. The comparison of the

proposed nonlinear sliding surface dynamics and the linear one is presented in Fig. 5.3.

fs (eXk
) = ΛeXk−1

fs (eXk
) = Λ1 tanh

(
Λ2eXk−1

) (5.6)

5.3.2 Circular Trajectory Tracking Results and Discussion

Also, to have performed a comparative study, a torque computing technique based on

proportional-derivative controller (TC-PD), standard DSMC (as in Eq.5.3). In the simu-

lations (experimental test), the sampling interval T is determined to be 0.03s. The desired

pose is considered to be a circular trajectory as:

Xd =

[
0.5 0.33 + 0.15 sin(0.5t) 0.15 cos(0.5t) −π

2
0 0

]T
(5.7)

where t is the simulation time. 5.13, Referring to 5.13, it can be seen that FDSMC track

the desired signals with higher precision and faster rate than those of the other methods.
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Table 5.1: Computed indicators for the simulation result.

Indicator
PBVS

. . . SMC SMC-SAT FSMC-SAT
RMS 0.02396 0.00347 0.00385 0.00251
STD 0.00582 0.00338 0.00370 0.00247

Table 5.2: Computed indicators for the robot’s pose control

Indicator
Control method

TC-PD SMC CFSMC
RMS 0.02646 0.00712 0.00467
STD 0.01394 0.00605 0.00275

DSMC also tracks the desired signals relatively with high precision. However, it suffers from

a high level of chattering. Besides, compared to TC-PD and FDSMC, its convergence speed

is rather low. TC-PD tracks the desired signals smoothly, although its precision is very low

due to the existing uncertainties in the robot parameters. TC-PD is not robust against them.

As a result, high level of filtering error appears. The extent of the chattering in FDSMC is

close that in TC-PD, while DFSMC suffers from a very high extent of chattering. This is

because, in FDSMC the switching function is replaced with a smooth reaching law, which

reduces resultant chattering significantly.

The generated chattering of the FDSMC in the controller output is lower than that of the

DSMC to a high extend. The existing chattering in the controller outputs is associated with

two terms: a) camera noise in the pose feedback signals and b) variable structure within the

sliding mode controllers. In the TC-PD controller, the chattering is only associated with the

feedback noise, and since ARKF is used to smooth the camera noise, its output is relatively

smooth. It is obvious that the sliding variables in FDSMC converge towards the sliding

surfaces faster and smoother those in the DSMC. It shows that employing the fast reaching

law is practically effective.

To perform a quantitative comparison, root mean square (RMS) and standard deviation
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Table 5.3: Computed indicators for controller

Indicator
Control method

TC-PD SMC CFSMC
RMS 4.88603 5.36198 4.80922
STD 1.54765 2.24383 1.58708

Table 5.4: Indicators for sliding variable

Indicator
Control method

TC-PD SMC CFSMC
RMS − 0.09395 0.03848
STD − 0.08505 0.02488

(STA) indexes for error of the robot’s pose, control effort, and sliding variable are evaluated

and tabulated in Table 5.2, Table 5.3, and Table 5.4, respectively. The results of Table

5.2 show that the lowest values of RMS and SDT are attributed to FDSMC with 82% and

80% reductions compared to DSMC, and 34% and 54% reductions compared to TC-PD.

These dramatic reductions show that the adopted controller has been significantly effective

in increasing precision of the robot’s pose in tracking the desired signals. Referring to Table

5.3, RMS and STD indicators of the control efforts for TC-PD and FDSMC are almost in

the same level. However, due to the high level of chattering in the controller output of the

DSMC, its RMS and STD values are about 10% and 30% higher than the FDSMC. Since

TC-PD is not an SMC controller, it has not any sliding variable. Therefore, Table 5.4 only

contains RMS and STD values of sliding variables of FDSMC and DSMC. The numerical

results of this table show high reductions by FDSMC compared to DSMC: 59% reduction of

RMS and 70% of STD. All of these numerical results confirm the results of simulation plots,

that FDSMC is superior to other methods in terms of filtering error precision, chattering

level, control effort, and convergence speed.
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5.4 Summary

In this chapter, we analyzed the performance of the proposed CFSMC method. First a

PUMA 560 robot is modeled in the SimScape toolbox of MATLAB2018a. The robot’s pose

contaminated with additive noise is assumed to be the given pose detected by the visual

system C-track. Then, root mean square (RMS) and standard deviation (STA) indexes for

error of the robot’s pose, control effort, and sliding variable are evaluated and tabulated

for quantitative comparison. The results show that the adopted controller is very effective

in increasing precision of the robot’s pose in tracking the desired signals. RMS and STD

indicators of the control efforts for TC-PD and FDSMC are almost in the same level. The

RMS and STD values of DSMC are higher than those of FDSMC due to the high level

chattering of DSMC. The numerical results of this table show high indicators reductions by

FDSMC compared to DSMC. The FDSMC is demonstrated to be superior to other afore-

mentioned methods in terms of filtering error precision, chattering level, control effort, and

convergence speed.
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Chapter 6

Conclusion and Future Work

In this chapter, the main conclusions of this thesis are summarized according to the obtained

results. Some extra extensions and future works are suggested as well.

6.1 Research Summary

In this research, a novel robust position-based visual servoing (PBVS) approach for industrial

robots is presented. This method combines a chattering-free sliding mode controller (CF-

SMC) with an adaptive robust Kalman filter (ARKF) to exploit their beneficial features.

The main contributions of this thesis are as follows:

❼ The proposed ARKF exploits the advantages of adaptive estimation method for states

noise covariance (Q), least square identification for measurement noise covariance (R)

and a robust mechanism for state variables error covariance (P).

❼ In simulation on PUMA 560, the comparison between the proposed ARKF and other

well-known version of Kalman filter such as adaptive Kalman filter (AKF) and standard

Kalman filter (SKF) shows the superiority of the ARKF in terms of root mean square
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(RMS) and Variance (Var) of filtered errors.

❼ The simulation tests demonstrate that the proposed ARKF is able to reduce the effects

of noise on the pose estimation signal effectively and has a superior performance to the

other KF methods in terms of smoothness and tracking errors for all state variables.

❼ This PBVS control scheme results in improving the robustness and tracking perfor-

mance of the robot. An eye-to-hand vision system (C-track) is used to detect the pose

of the robot and ARKF is applied to filter out the noises in the detected pose signals

which exploit a fast-nonlinear reaching law and nonlinear sliding surface.

❼ The CFSMC provide not only robustness against uncertainties in dynamics and kine-

matics of the robot, but also high tracking accuracy and fast convergence speed.

❼ The stability proof of the CFSMC in the discrete time domain is investigated and the

quasi-motion in the generated boundary layer is also analyzed.

❼ The simulation results of applying the proposed PBVS method to PUMA 560 robot

demonstrate superiority of the proposed CFSMC with ARKF to other controllers in

terms of tracking accuracy, convergence speed, control effort, and chattering level.

❼ The CFSMC takes advantage of a nonlinear reaching law which results in faster and

more accurate trajectory tracking compared to the standard SMC. Substituting the

switching function with a continuous nonlinear reaching law to eliminating the chat-

tering.

❼ Since the sliding surface dynamics is considered to be a nonlinear one, the convergence

speed and accuracy are improved. The simulation results of applying the proposed

method to a PUMA 560 robot showed the superiority of the proposed method over
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standard SMC and TC-PD in terms of chattering level, precision, control effort, and

convergence speed.

6.2 Future Works

The future work includes applying the ARKF to the experimental test of pose estimation

of industrial robots and implemented the CFSMC control scheme via communicating with

the industrial robot’s controller to improve the tracking accuracy for the industrial robots.

Analyzing the corresponding experimental results also are suggested.
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