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Abstract 
 

Detection of counterfeit coins based on 3D Height-Map Image Analysis 

 

Saeed Khazaee, Ph.D. 

Concordia University, 2020 

 

Analyzing 3-D height-map images leads to the discovery of a new set of features that cannot be 

extracted or even seen in 2-D images. To the best of our knowledge, there was no research in the 

literature analyzing height-map images to detect counterfeit coins or to classify coins. The main 

goal of this thesis is to propose a new comprehensive method for analyzing 3D height-map images 

to detect counterfeit of any type of coins regardless of their country of origin, language, shape, and 

quality. Therefore, we applied a precise 3-D scanner to produce coin height-map images, since 

detecting a counterfeit coin using 2D image processing is nearly impossible in some cases, 

especially when the coin is damaged, corroded or worn out. In this research, we propose some 3-

D approaches to model and analyze several large datasets. In our first and second methods, we 

aimed to solve the degradation problem of shiny coin images due to the scanning process. To solve 

this problem, first, the characters of the coin images were straightened by a proposed straightening 

algorithm. The height-map image, then, was decomposed row-wise to a set of 1-D signals, which 

were analyzed separately and restored by two different proposed methods. These approaches 

produced remarkable results. 

We also proposed a 3-D approach to detect and analyze the precipice borders from the coin surface 

and extract significant features that ignored the degradation problem. To extract the features, we 

also proposed Binned Borders in Spherical Coordinates (BBSC) to analyze different parts of 

precipice borders at different polar and azimuthal angles. We also took advantage of stack 

generalization to classify the coins and add a reject option to increase the reliability of the system. 

The results illustrate that the proposed method outperforms other counterfeit coin detectors. 

Since there are traces of deep learning in most recent research related to image processing, it is 

worthwhile to benefit from deep learning approaches in our study. In another proposed method of 

this thesis, we applied deep learning algorithms in two steps to detect counterfeit coins. As 

Generative Adversarial Network is being used for generating fake images in image processing 

applications, we proposed a novel method based on this network to augment our fake coin class 
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and compensate for the lack of fake coins for training the classifier. We also decomposed the coin 

height-map image into three types of Steep, Moderate, and Gentle slopes. Therefore, the grayscale 

height-map image is turned to the proposed SMG height-map channel. Then, we proposed a hybrid 

CNN-based deep neural network to train and classify these new SMG images. The results 

illustrated that a deep neural network trained with the proposed SMG images outperforms the 

system trained by the grayscale images. In this research, the proposed methods were trained and 

tested with four types of Danish and two types of Chinese coins with encouraging results. 
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Chapter 1  

Introduction 

 

This thesis proposes several new methods for counterfeit coin detection. Counterfeit coin detection 

is a classic research topic, and it has attracted much interest in fields such as numismatics and 

forensic investigation. In this research, instead of conventional 2-D methods for counterfeit coin 

detection, we applied several 3-D approaches to model and analyze six different coin datasets. In 

this chapter, the problems of counterfeit coin detection, motivation, dataset preparation, 

challenges, and their solutions, and related research problems will be discussed. 

 

1-1 Problem Statement 

A counterfeit coin is an imitation of a genuine coin with very high quality so that it can deceive 

many ordinary people and even experts. There are presently a lot of companies, museums, and 

government agencies in the world that have increased the demand for automatic systems to classify 

precious, historical, and common coins. Thanks to the increased necessity on intelligent 

approaches to recognize counterfeit coins, coin detection has continuously been evolving in recent 

years, and image-based coin recognition has become an integral part of this research area. An 

image-based coin recognition system takes digital images of coins as input and classifies them 

according to their denomination, country, and year of production. According to previous works, 

coin detection is mostly based on 2-Dimensional image processing techniques. Many researchers 

usually have extracted texture features from coin images and recognized them. In particular, edge 

information had been frequently adopted as features of coin images with Fourier transform. The 

difficulty level of coin detection heavily depends on the backgrounds of the coin datasets used in 

the experiments. Fortunately, all the datasets used for coin detection are captured with plain 

backgrounds, such as pure white or conveyor belt with extremely deficient gray levels [1]. 

Counterfeit coin detection can be more challenging than coin recognition because of the very high 

similarity between fake and genuine coins, in most cases, needing more sophisticated features to 

distinguish between them. Some of the standard features in coin recognition like diameter, 

thickness, weight, or shape may be used to detect counterfeit coins. We should note that these basic 

attributes are easy to copy, and the fake coins made nowadays are of high quality; therefore, these 

systems cannot distinguish counterfeit coins from genuine ones when their physical properties are 
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necessarily the same. Recently, several methods based on image processing techniques and 

classification algorithms have been proposed to improve the performance of counterfeit detection 

systems, and many lectures and tutorials have been devoted to them. Some of these methods are 

not very sophisticated and use coin colors and radius-based features to detect counterfeit coins. 

Unfortunately, these approaches are incapable of distinguishing coins having the same values of 

the limited set of features. They are also not able to overcome the problems related to rusty, dusty, 

or poor-quality coins.  

In this research, we applied 3-D scanning to obtain a height-map image-dataset. In the height-map 

images, most of the quality problems of the coins are compensated. We take advantage of 3-D 

approaches to extract effective features that can ignore many of the coin’s quality problems and 

prove the feasibility of 3-D approaches for counterfeit coin detection.  

In our first and second papers of this research, the ring part of coin images were straightened by a 

proposed straightening algorithm. Then the height-map image was decomposed row-wise to a set 

of separate 1-D signals, which were analyzed separately and restored by two different proposed 

methods. After estimating degradation function and signal restoration, we performed feature 

extraction by various methods. The system trained by several state-of-the-art classifiers, and the 

results were compared.  

We also proposed a new method using 3-D approaches to detect and analyze the precipice borders 

of the coin’s surface and extract significant features to recognize counterfeit coins. Therefore, 

proposing a method that can extract more useful features from the precipice border of the coin 

images, can be remarkable. Our first contribution in this method was to propose an approach based 

on fuzzy C-Means clustering to detect precipice borders. Our next contribution was to propose 

Binned Borders in the Spherical Coordinate system. This system can be used to analyze the 

detected precipice borders from different directions in a polar and azimuthal angle. Besides, for 

extracting feature, a method using BBSC and sub-division structure is proposed.  

In another proposed method of this thesis, we applied deep learning algorithms in different steps 

to detect counterfeit coin. As Generative Adversarial Network is being used for generative fake 

images in image processing applications, we proposed a method based on this network to augment 

our fake coin class and solved the lack of fake coins for training the classifier. We also decomposed 

the coin height-map image into three proposed channels of Steep, Moderate, and Gentle slopes. 

Therefore, the grayscale height-map image is turned to the proposed SMG height-map channel. 

Then, we used transfer learning to train a pre-trained neural network and classify these new SMG 

images. 
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1-2 MOTIVATION 

Criminals have made counterfeit coins for thousands of years as an illegal industry. A lot of 

counterfeiting rings manufacture and sell fake coins, which have caused great loss and damage to 

society. As an example, in Europe, the data withdrawn from the Counterfeit Monitoring System 

(CMS) indicate an increase in the number of counterfeit coins seized from 2015 to 2017. Figure 

1.1 shows that the total number of counterfeit euro coins removed from circulation since 2013 was 

equal to 837,910 pieces with a value of 1,330,401 Euros [2] while much more are still expected to 

remain in circulation. In non-circulating coin markets, ancient and valuable coins, counterfeiting 

is the most serious issue facing collectors today that could cost billions of dollars every year. In 

the past, rare coins were forged to deceive tourists, inexperienced people, or novices. These days, 

the technology of counterfeiting has grown exponentially that can even fool coin experts in some 

cases [3]. 

 

 
Figure 1.1. The total number and value of the counterfeit coins removed from circulation from 2013 to 

2017. 

 

Given the highly improving qualities of fake coins made nowadays, more thorough and closer 

inspections are necessary to detect well forged fake coins to provide substantial evidence for 

detection results. To get the idea to extract effective features from coins, we met several experts 

from several companies and coin collectors in Montreal, Canada, to find the features with which 

they used to concentrate, for counterfeit coin detection. Consequently, we found that all experts 

rotate the coins and focus on precipice borders of the characters and shapes on the coin’s surface 

when the weights of the coins were mostly correct. Therefore, we decided to propose a method 

that can detect and analyze precipice borders on the coin surface as an expert, with the difference 

that we take advantage of machine intelligence, which has been a remarkable and very effective 

alternative for human experts in the most similar applications. 
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1-3 DATASET PREPARATION 

1-3-1 Source of Coins and Labeling 

The coins in this research were provided by the Law enforcement office and Danish police, 

including fake and genuine coins. In collaboration with Ultra Electronics Forensic Technology 

Ltd. Co and coin experts in Montreal, we labelled Danish coins available for this research. We also 

applied the majority votes for Chinese coin labelling by at least five coin-experts. 

 

       1-3-2 The 3-D scanner 

Coin image were acquired by a very precise 3-D scanner in the name of IBIS TRAX. The scanner 

was patented by Ultra Electronics Forensic Technology company. Inside the machine, they have 

a built-in microscope. With a very high resolution of the height-map images in the order of 6 

microns and lateral resolution in sub-micron, users can extract useful information from tiny 

topographical features. The machine uses five groups of adjustable LEDs which allow users to 

acquire the coin image from different angles. The machine can produce both 2-D and height-map 

images as a result of scanning [4].  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1.2. Height-map and 2-D images produced by IBIS TRAX machine. 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1.3. Comparing the results from the 3-D scanner and 2-D camera. 

 

Figure 1.2 illustrates the scanning of three coins, for example. Figure 1.2. (a), (b), and (c) are the height-

map images for Danish, Brazilian, and Hong Kong coins, and Figure 1.2. (d), (e), and (f) are their 2-D 

images resulted by IBIS TRAX machine respectively.  Figure 1.3. (a), (b), and (c) demonstrate the height-

map image for coins in Figure 1.3. (d), (e), and (f) respectively. It is clear from the images that the 

scanner can perfectly collect the height/depth information on the coin surface. 
 

1-4 CHALLENGES AND THEIR SOLUTIONS 

In this research, during the study on 3-D approaches to extract effective features, we have faced 

many challenges related to shiny coins and tried to find proper solutions for them. 

1. Well-forged Coins  

The preliminary goal of this research is to demonstrate the feasibility of the use of 3-D image 

processing to detect counterfeit coins which are very well-forged and similar to genuine 

counterparts. In some cases, even experts are not able to recognize them. As mentioned earlier, we 

employed a powerful 3-D scanner (depth resolution in the order of 6 microns, lateral resolution in 

sub-micro [4]) to scan six types of coins with different qualities. The first contribution of this 

research is exploiting the significant advantages of the 3-D approach in coin recognition, which 

had not been explored in the previous works. Considering the nature of the data captured by 3-D 

scanning, it was expected to extract effectively features related to height or depth instead of colors 
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related to the coin luminance. Besides, the most important benefit of 3-D scanning is its robustness 

against the quality of the coin surface in many cases. This capability contributed to purifying 

images captured from damaged coins.  

2. Degradation problem due to poor scanning shiny coins 

Despite the advantages of 3-D scanning [5], [6], there is a severe challenge when shiny coins are 

processed [6]. Although 3-D scanning is indeed independent of the lighting condition of the 

environment, we had a lot of unexpected degradations and shadowing on shiny coin images. 

Therefore, we faced unreal values of height or depth. 

There are many different technologies used in 3-D scanners; each technology has its advantages, 

restrictions, and cost. For example, optical technologies face many difficulties when processing, 

reflecting, transparent, or shiny objects [6]. Figure 1.4 illustrates how a 3-D scanner captures 

height and depth: it is robust regarding the quality of the coin surface, while the 2-D image of this 

coin is entirely unreadable. In Figure 1.5, we can see the degradation of a shiny coin image 

captured by the 3-D scanner, which uses optical technology. As can be seen from this figure, 

despite the remarkable advantages of 3-D scanning for poor quality coins, there may be some 

abnormal and invalid results while scanning shiny and high-quality coins. However, the validity 

of the data captured by scanning is crucial for this research as the invalid values related to height 

and depth will adversely affect the pattern recognition process. To face the problems about 

scanning the shiny coins, we have two options: 

a) Restoring the degradation problem; which we provided two different proposed methods for 

restoring the degraded image in chapters 3 and 4. 

b) Ignoring the degradation problem, which in this research, we proposed a new approach to 

analyze the precipice borders in chapter 5 and a method based on deep neural networks, which 

are not affected by the degradation problem in chapter 6. Robustness against this problem is 

one of the advantages of these proposed methods. 

 
(a) 

 
(b) 

Figure 1.4. (a) Twenty Kroner 1990 coin captured by a normal camera, and (b) the same coin captured by 

a 3-D scanner. 
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(a) 

 
(b) 

Figure 1.5. (a) Degraded image of a shiny coin, and (b) mesh plot of the same image. 

3. Physically degraded or worn-out coins 

Apart from the degradation problem in shiny coin’s image, classifying the damaged coins is also 

a very challenging problem in this research. Here, we apply a dataset of damaged and suspected 

coins for training and testing the proposed model. There are two primary purposes of the use of 

the damaged coins for testing the model. Firstly, in many cases, counterfeit coin makers slightly 

damage the fake coins to conceal the critical details which are made roughly. Therefore, damaged 

counterfeit coins are more similar to damaged genuine coins. Secondly, to generalize the system 

to use for ancient and old coins that are precious even with low quality, we need to have the 

damaged coins dataset to evaluate the system. Figure 1.6 illustrates that recognizing a damaged 

coin can be very difficult or even impossible in many cases. According to Figure 1.6. (a), it is clear 

that a 2-D image of the damaged coin does not give us any useful information, and it cannot even 

be recognized as a Danish coin. Figure 1.6. (b) is the result of 3-D scanning having more details. 

However, it can be said with certainty that neither information comes from the height-map image 

enough to distinguish fake from genuine coins and mislead the classifier in the training process. 

To increase the reliability of the method, we designed a reject option for the counterfeit coin 

detection system. In this step, if a training sample is not good enough to lead the classifier, it is 

labelled rejected. The reject option will be described in Chapter 5. 

 

      

(a) (b) 

Figure 1.6. The difference between the results 2-D and 3-D scanning for a damaged coin. 
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4. Lack of fake coins 

The limited number of counterfeit coins available in the literature was always a challenging 

problem. As mentioned earlier, the coins used in this research were provided by the Law 

Enforcement Office, and we used all of them. Yet, we should note that access to more fake coins 

is restricted and has been an enormous challenge for this research. To compensate for the adverse 

impact of this problem, in this study, we used a common augmentation technique and proposed a 

new method based-on Deep Convolutional Generative Adversarial Networks (DCGAN) to 

increase the size of the dataset for both the genuine and fake coins, which will be described in 

Chapter 6. 

 

1-5 LITERATURE REVIEW 

There have been a lot of studies in the literature for coin recognition and counterfeit coin detection, 

illustrating how to use coin features to classify the coin. In imaged-based coin recognition, for 

example, methods have been proposed to prepare and pre-process coin images indicating what 

features from the images are extracted and used in the classification step. In this section, an 

overview of coin recognition and counterfeit coin in literature is briefly summarized. 

 

1-5-1 Image-based counterfeit coin detection 

Recently, a few studies based on pattern recognition and image processing techniques have 

attracted interest as a means to detect counterfeit coins. These studies proposed different methods 

and were divided into three steps: finding the Region of Interest (ROI) of the coin image with coin 

segmentation, feature extraction, and training a classifier. Coin segmentation is the first step where 

the actual coin is located and segmented from the whole image [7]. Feature extraction is the most 

important step, which extracts effective features capable of discriminating the high-similarity 

objects. Several feature extraction methods have been used on coins in the literature using Gabor 

filter, Hough Transform, Heuristics, and Artificial Neural Networks. Eventually, in the 

classification step, different machine learning methods have been used to distinguish fake coins 

from genuine ones. In particular, edge detection has been widely used in the feature extraction 

process. In [8], an image-based approach to detect the fake coins has been proposed, which exploits 

the structure of the coin by using spatially local coding to extract effective features from the surface 

of the coin image. In several previous works, an edge map was extracted and segmented into 

several parts. After that, the authors proposed a method using histogram analysis and Fourier 
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transformation to handle and recognize rotated coin images. For example, in [9], the letters were 

extracted from the coin image, and a feature extraction method was applied to the letters and 

characters. The accuracy of fake coin detection was around 100%. Although the results mentioned 

in the paper were significant, the method was not applicable for any type of coin as it was limited 

to letters or shapes. However, the extracted features were not very useful for noisy and degraded 

images such as corroded or worn out coin images. In reference [10], the authors proposed a method 

to extract local texture features for coin recognition. They used Gabor wavelets and local binary 

pattern (LBP) to detect texture information. The coin was divided into several small sections by a 

concentric ring structure. Then using Gabor coefficients or LBP values, the feature vectors were 

produced. In the proposed method, a circular shift operator was used to provide the robustness of 

Gabor features against rotation variance. For matching between two-coin images, a distance 

measurement was used. Despite the adequate feature extraction time, the experiments in this paper 

illustrate that the method was not tested for poor quality coins and might be sensitive during 

matching coins with high similarity. In reference [11], the authors proposed a region binary 

patterns method which was rotation-invariant. They applied gradient magnitudes instead of 

histogram analysis and extracted rotation-and-flipping-robust features using local difference 

magnitude transform. Although the result is acceptable from the feature extraction point of view, 

the performance of the model is not satisfactory for fake coin detection. In reference [12], the 

authors proposed a multistage procedure that could recognize hundreds of coin types. Despite the 

novelties and results, this approach was not able to distinguish fake from genuine as it did not 

concentrate on the similarity of counterfeit and genuine coins. The authors in reference [1] 

proposed a new image-based approach to detect counterfeit coins. There, the local descriptors were 

employed to generate image representations. However, instead of resorting to the BOVW (Bag of 

Visual Words) model for a generation of vectorial representations, the authors represented a coin 

image in the dissimilarity space. They conducted one-class learning for fake coin detection. For 

this purpose, one-class SVM was employed. However, the method was susceptible to any variation 

and not suitable for poor quality coins. In [13], a transfer learning approach by fine-tuning a pre-

trained network to analyze the features of characters on the coin surface has been used. The authors 

used an ensemble method to combine results of two classifiers trained by deep features from 

convolutional layers as well as a third classifier which was trained on distance-based feature of 

characters. The proposed method resulted in a precision rate of 85.1%. Albeit the method, in our 

knowledge, was the first use of deep learning to counterfeit coin detection, yet the results illustrated 

that the method did not have superiority rather than the recent methods. Recently, in [14], a 
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combination of a blob detector system and a method based on fuzzy association rules mining was 

proposed to detect counterfeit coins. The first step was about to preprocess the original image 

dataset by a blob detector to generate the frequent features. In the second stage, fuzzy association 

rules mining extracts the effective fuzzy rules and classifies automatically the coin image data. 

This method could handle better the sensitivity rather than the reference [1]. Since there was no 

option for rejecting damaged coins, in many cases, the system classified damaged coins, almost 

randomly. 

1-5-2 Non-image-based methods 

There have been several nonimage-based methods for counterfeit coin detection besides image-

based methods. The authors in [15] proposed a method using an optical mouse to detect fake coins. 

They applied this method to the two-Euro coins and compared partial images of the coin under 

analysis with some partial reference coin images for matching in the detection process. The method 

was better in comparison with the untrained user and was almost the same as coin experts. Results 

illustrate that valid coins can be rejected if they are worn out or have physical damage, while poor 

copies and different types of coins are 100% rejected. The report in [15] also shows that the system 

cannot identify most of the well-forged coins as counterfeit. In [16] a method based on acoustic 

signal spectrum analysis for authentic and fake coins, has been proposed. In this reference, the 

authors optimized the parameters for time-spectrum co-analysis, and a very small dataset of Euro 

coins was used to validate the method. However, low costs and high accuracy were reported as the 

strength of the method.  

 

1-5-3 Three-Dimensional image analysis 

Albeit there have not been any studies on height-map image analysis for counterfeit coin detection 

before our research, it is worth mentioning some research in the literature review, which are 

conceptually close to our research methodology. Recently, interest in using 3-D approaches for 

image processing applications. Relevant studies illustrate that since 3-D approaches discover 

highly confident features, they can overcome some constraints introduced by other 2-D image 

classification methods. A plane detection algorithm in height-map 3-D images plays a vital role in 

3-D object recognition. Much research is conducted to detect and analyze the planes for 

recognizing specific objects in a 3-D scene. For example, the authors in [17] proposed a depth 

image-based plane detection algorithm. As stated in this paper, the algorithm could be used as 

preprocessing for planar object recognition that has a fast run-time compared with other methods. 
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In [18], the authors proposed a method for depth image segmentation. The efficiency and accuracy 

of several methods for depth map segmentation are explored. They modified several state-of-the-

art segmentation methods and proposed new segmentation approaches with the aim of optimizing 

performance characteristics. In [19], a method based on disparity transformation and 3-D road 

surface modelling was proposed for pothole detection. They used two stereo cameras for road data 

acquisition and finally extracted the point clouds of the detected potholes from the reconstructed 

3-D road surface and got remarkable results rather than 2-D based images. In [20], a method of 

edge plane detection in three-dimensional images has been introduced by utilizing features of edge 

vector and edge reliability. This method can detect only reliable edge planes against noise 

influences. In [21], a method based on Hough transform for plane detection was proposed. The 

method could identify the clusters of coplanar points in the 2.5-D space using an implicit quadtree. 

They also applied a Hough-transform voting structure for the detection process to model the 

uncertainty associated with the best-fitting plane considering each cluster as a trivariate-Gaussian 

distribution. As concluded in this paper, the method was a real-time technique for plane detection. 

Figures 1.7. (a) and (b) indicate the depth-map image as input and the result of plane detection. 

Although the method can perfectly detect non-planar objects, we cannot extract any features from 

the objects, but contour-based features which are not very effective in counterfeit coin detection. 

Therefore, in a special task like recognizing a coin that has a very complex geometry, plane 

detection would not be very useful for feature extraction.  
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(a) 

 
(b) 

Figure 1.7. Result of plane detection produced by the method proposed in [18]: (a) a depth image as input, 

and (b) detected planes, visualized by colors (black color illustrates non-planar objects). 

To get better use of depth images, we propose an ensemble method based on precipice border 

analysis in height-map images to detect counterfeit coins. In this method, the height-map image of 

the coins will be triangulated, and a clustering process based on Fuzzy C-Means algorithm will 

cluster the triangles to detect precipice borders of the coin’s surface. Then, we propose a method 

to analyze the precipice borders and extract the valuable features for training a stacking classifier. 

The method will precisely investigate and analyze the precipice borders of the coin’s surface to 

extract features and build a model sensitive to any little dissimilarity with genuine coins, which is 

indispensable for modern counterfeit coin detection. In the edge plane detection, we find a set of 

planes that are very useful to recognize and distinguish different objects in a scene. In contrast, in 

the precipice border detection, we find curved surfaces and analyze complicated details on non-
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planar objects. By analyzing the precipice borders, we extract features capable of discriminating 

the high-similarity objects.  

 

1-6 OUTLINE 

The remainder of this thesis is organized as follows: 

Chapter 2 defines the fundamental and preliminary concepts. In Chapters 3 and 4, we present two 

papers entitled “Detecting of Counterfeit Coins Based on Modeling and Restoration of 3-D 

Images” and “Restoring height-map images of shiny coins using spline approximation to detect 

counterfeit coins”. These papers concentrated on restoring degraded images caused by poor-

scanning of shiny coins. In chapter 5, the paper entitled “Detection of counterfeit coins based on 

3-D Height-Map Image Analysis” will be introduced. In Chapter 6, a proposed method using deep 

learning approaches will be submitted. In this chapter, a new channel for height-map images will 

be proposed before using any deep learning method for counterfeit coin detection, and interesting 

results will be discussed. Finally, this study is concluded with a summary of the primary 

contributions and an outline of future work in Chapter 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

Chapter 2  

Preliminary Concepts 

 

In this chapter, the preliminary concepts and the overall objective to investigate the counterfeit 

coin detection will be briefly introduced.  

 

2-1 FUZZY CLUSTERING 

In classic clustering, each input sample belongs to one and only one cluster, and it cannot be a 

member of two or more clusters. When a sample is close to two or more clusters, the classic 

clustering for determining that the sample to which clusters belongs will have trouble. In fuzzy 

clustering, an instance may belong to more than one cluster and, in this situation, can solve the 

problem of sharp boundaries. The membership degrees in the range [0,1] are used in fuzzy 

clustering instead of assigning a sample to only one specific cluster. The clustering algorithms are 

divided into hard clustering techniques and soft clustering techniques [22]. In this paper, we use 

one of the most popular soft clustering techniques, fuzzy c-means (FCM) clustering, in our 

proposed precipice border detection of the coin’s image. FCM is based on fuzzy approach and 

minimization of the following objective function [22], [23]: 

 

𝐽𝑚 = ∑∑𝑢𝑖𝑗
𝑚

𝐶

𝑗=1

𝑁

𝑖=1

‖𝑥𝑖 − 𝑐𝑗‖
2
               , 1 ≤ 𝑚 < ∞                                                                        (2.1)       

where m is a real number greater than 1, 𝑢𝑖𝑗 is the membership degree of 𝑥𝑖 in the cluster 𝑗, 𝑥𝑖 is 

the 𝑖th d-dimensional measured data,𝑐𝑗  is the d-dimension center of the cluster, and ‖∗‖ is the 

norm indicating the similarity between any measured data and the center of the cluster [22], [23]. 
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2-2 PRECIPICE BORDERS DETECTION 

In digital image processing, one of the most effective methods for extracting features from the 

important parts of objects is edge detection. Edge detection leads to a set of connected curves that 

indicate the contours of objects, the borders of the surface markings and curves that correspond to 

variations in surface orientation. Hence, an edge detection algorithm can reduce the volume of data 

to remove useless information by retaining the significant characteristics of an image.  

In three-dimensional image processing also, edge detection can be used to identify the points 

placed on 3-D boundaries, which provides more effective and discriminative features.  Instead of 

the standard edge detection in 2-D or 3-D approaches, we detect precipice borders for the height-

map images. In edge detection, typically, we have a line separating two segments or regions while 

in three-dimensional precipice border detection, we have a plane separating two segments leading 

to a set of attributes. It helps us to extract useful features based on the normal vectors and the areas 

of the planes around the letters, numbers and other objects on the coin surface. Figure 2.1 shows 

the objects on the part of the coin image surrounded by precipice borders, which are highlighted 

in red color. Details about the proposed method for precipice border detection will be described in 

chapter 5. 

 

 
Figure 2.1. Objects are surrounded by precipice borders on a 20 Kroner 1990 coin. 

 

 

2-3 STACKED GENERALIZATION 

Stacking (Stacked generalization) is an ensemble learning technique that combines multiple 

classifications or regression models via a meta-classifier. Stacked generalization in classification 

tasks trains a meta-classifier by the predictions of the first-level classifiers. First, all the classifiers 

are trained by the train set. Then the meta-classifier is trained to predict the class using all the 

results of the first-level classifiers as its input. Generally, stacking performs better than any 
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individual trained models. It has also been successfully used on both supervised and unsupervised 

learning. Figure 2.2 shows a pseudo-code for stacking from [24]. 

 

 

Input: Training data 𝑫𝒌 = {𝒙𝒊, 𝒄𝒊}𝒊=𝟏
𝒎  (𝒙𝒊 ∈ ℝ𝒏, 𝒄𝒊 ∈ 𝑪) 

Output: An ensemble classifier 𝑯 

   1:  Step 1: Learn first-level classifiers 

   2:  for 𝒌 ← 𝟏 to 𝑻 

   3:       Learn a base classifier 𝒉𝒕 using 𝑫 

   4:  end 

   5:  Step 2: Construct new datasets from 𝑫 

   6:  for 𝒊 ← 𝟏 to 𝒎 

   7:       Construct a new dataset that contains {𝒙𝒊
′, 𝒄𝒊}, where 𝒙𝒊

′ = {𝒉𝟏(𝒙𝒊), 𝒉𝟐(𝒙𝒊),… , 𝒉𝑻(𝒙𝒊)} 

   8:  end 

   9:  Step 3: Learn a second-level classifier 

 10:  Learn a new classifier 𝒉′ based on the newly constructed dataset 

 11:  return 𝑯(𝒙) = 𝒉′(𝒉𝟏(𝒙), 𝒉𝟐(𝒙), … , 𝒉𝑻(𝒙)) 

 
Figure 2.2. Stacked generalization in the classification task algorithm [24]. 

 

Regarding reference [25], for successfully stacked generalization, it is necessary to use output class 

probabilities rather than class predictions for the first-level classifiers. To this end, we may use 

several classifiers that are naturally probabilistic or can be turned into probabilistic. In probabilistic 

classifiers, conditional distributions are considered as an alternative to functions. 𝑃(𝑋|𝑌), meaning 

that for a given 𝑥 ∈ 𝑋, they assign probabilities to all 𝑦 ∈ 𝑌. The final decision for classifying 𝑥 

is done by this formula: 

 

𝑦̂ = arg𝑚𝑎𝑥𝑦 𝑃(𝑌 = 𝑦|𝑋).                                              (2.2)       

  

In General, the selected class is the class with the highest probability. As mentioned earlier, some 

classification models, such as naive Bayes, logistic regression, and Multilayer perceptron are 

naturally probabilistic. However, there are several models, such as support vector machines that 

are not probabilistic initially. Therefore, we can use the methods to turn them into probabilistic 

classifiers [26]. 

2-4 DEEP NEURAL NETWORK  

A deep neural network is a neural network with a high level of complexity and more than two 

layers. The term deep learning is also used to define these deep neural networks. Deep learning is 
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a subset of machine learning based on artificial neural networks, in which the learning process 

needs a large amount of data. Deep learning or hierarchical learning can be supervised, semi-

supervised, or unsupervised. It uses multiple layers to extract higher-level features from the input 

data iteratively.  

 

2-4-1 CONVOLUTIONAL NEURAL NETWORK (CNN) 

Convolutional Neural Network (CNN), also known as a ConvNet is one of the most common deep 

neural networks in the field of image processing. A Multilayer perceptron usually has fully 

connected networks in all layers, also called dense layers, where each neuron of a layer is 

connected to all other neurons in the next layer. This characteristic of the dense networks leads 

them to overfit in many cases. Without concentrating on any specific segments of images, dense 

layers learn global patterns in input images. In CNN, the network is not fully connected in all 

layers. With convolution operation, convolution layers learn the local pattern. As can be seen in 

Figure 2.3, convolution operations are used to find patterns in small 2D windows of the input 

image. Another essential action in CNNs is pooling, also known as subsampling or down-

sampling. The main reason to use pooling is to reduce the dimensionality and complexity. Pooling 

layers are usually placed after convolution layers. By reducing the dimensionality as well as the 

complexity of the input and parameters, the overfitting phenomenon would be minimized.  

It should be noted that max-pooling outperforms alternative solutions like using strides in the prior 

convolution layer or average pooling. As is clear in the figure, the fully connected layer is typically 

put after the convolutional and pooling layers meaning that the output of the last layers is the input 

to the fully connected layers. To assign each node to a specific class (the type of virus in this 

example), an activation function naming softmax is used to produce the membership degree of the 

input to each class, where the sum of all probabilities is 1.  

 

 

Figure 2.3. Structure of Convolutional Neural Networks. 

https://en.wikipedia.org/wiki/Overfitting
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A common and highly effective approach to deep learning when image datasets are very small is 

to use a pre-trained network. A pre-trained CNN is a saved network that was trained previously 

by a large dataset [27]. CNN models are getting deeper and improving by new structures that are 

being proposed frequently. Several structures of state-of-the-art pre-trained CNNs like LetNet-50 

[28], AlexNet [29], VGGNet [30], ResNet [31], MobileNet [32], and Google’s Inception v3 [33] 

have been proposed in the literature. 

A pre-trained network can be used in feature extraction and fine-tuning in two different 

approaches. Here, feature extraction is to take the convolutional base layers of a previously trained 

network, and run the new data through it, and train a new classifier on top of the output layer. Fine-

tuning changes and optimizes the filter weights of newly added blocks of the network iteratively. 

It freezes the first two convolution base layers. While those frozen layers already extracted generic 

types of features like edges, fine-tuning will update all intermediate layers with new data [27].  

 

2-4-2 Deep Convolutional Generative Adversarial Networks (DCGAN) 

Generative Adversarial Networks (GANs) belong to one of the most popular deep neural networks 

which are used to generate fake images from a set of original images [34]. Here, two models are 

trained at the same time by the adversarial learning process. A generator model learns to create 

fake images with high similarity to its counterpart, while a discriminator model learns to 

distinguish real images apart from fakes. Here, both generator and discriminator models are fine-

tuned Convolutional Neural Networks. The generator tries to fool the discriminator network during 

the training process. By generating realistic images, discriminator learns to find dissimilarity. The 

result of this competition is to generate artificial images that are not easily distinguishable from 

genuine ones (Figure 2.4).  

One of the most critical challenges in this study is the lack of fake coins. Since counterfeiting a 

coin for the research is impossible and the fake samples provided by the Law Enforcement Office 

is not enough for both training and test processes, we consider GANs to produce fake samples for 

training our counterfeit detector.  

 

https://arxiv.org/abs/1406.2661
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Figure 2.4.  Generative Adversarial Network structure 
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Abstract. In image-based coin detection, making the image readable is an indispensable part of the 

feature extraction. However, using a 2-D image processing approach for detecting a counterfeit 

coin is nearly impossible in case of destroyed coins whose textures are severely burnt, sulfated, 

rusted, or colored. In this research, we used a 3-D scanner to scan and model an acceptable number 

of coins capturing height and depth instead of levels of color. The most important advantage of 3-

D scanning is to compensate for the destruction mentioned above of the coin surface. Despite this 

advantage, we had several unexpected degradations due to shiny coin images. To solve this 

problem, the 3-D image was decomposed row-wise to a number of separate 1-D signals, which 

were analyzed separately and restored by the proposed method. This approach gave remarkable 

results when used to extract valuable features. 

 

Keywords. counterfeit detection, coin recognition, 3-D-images, restoration 

 

3-1 INTRODUCTION 

A counterfeit coin is an imitation of a genuine coin with very high quality so that it can deceive 

many ordinary people and even experts. Nowadays, a lot of companies, museums, and government 

mailto:suen%7d@encs.concordia.ca
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agencies have increased the demand for automatic systems to classify precious, historical, and 

common coins. Thanks to the increased demand for automated approaches for detecting counterfeit 

coins, coin recognition has been continuously improving in classification performance, and image-

based coin recognition has become a crucial part of coin detection.  

Many automatic counterfeit coin detectors employ a primitive technology based on low-cost 

sensors to measure the weight, thickness, radius, conductivity, magnetic, or acoustic features of 

the coins [15]. However, these systems cannot distinguish fake coins from genuine ones when their 

physical properties are necessarily the same.  In order to increase the potential of fake coin 

detectors and image-based coin detection, several methods based on image processing techniques 

and classification algorithms were proposed [10], [15], [35], and many lectures and tutorials were 

devoted to them [10], [36], [37]. Some of these methods are not very sophisticated and use coin 

color and radius-based features to detect counterfeit coins. Unfortunately, these approaches are 

incapable of distinguishing coins having the same values of the limited set of features. 

In recent years, image-based counterfeit detection has expanded, and many researchers have 

applied image processing techniques to extract effective features from the texture of the coin 

images [9], [12]. In particular, edge detection information has been widely used in the feature 

extraction process. In references [12], [38], an edge map was extracted and segmented into several 

parts. After that, the authors proposed a method using histogram analysis and Fourier 

transformation to handle and recognize rotated coin images. However, the extracted features were 

not very useful for noisy and degraded images such as rust, dust, or sulfated coin images. In [9], 

the authors extracted the letters on the coin surface and tried to recognize them. In spite of the 

mentioned novelties of the proposed method, it is clear that the method was not robust enough to 

distinguish the counterfeit from genuine coins whose images have weak or smooth edges. In 

reference [11] a new method using rotation-invariant region binary patterns based on gradient 

magnitudes was proposed. To increase the accuracy of coin recognition, it computes gradient 

magnitudes in a coin image and extracts rotation-and-flipping-robust features using local 

difference magnitude transform. Although the result is acceptable from the feature extraction point 

of view, the time-performance of the model is not satisfactory.  

Paper [15] proposes to use the sensor of an optical mouse as a counterfeit coin detector based on 

the image acquisition capabilities of the optical mouse sensor in short distances. The results are 

compared with the ones of trained and untrained users. 

In this paper, a new method is proposed based on analyzing and restoration of 3-D images to detect 

counterfeit coins. We employed a 3-D scanner to scan a large number of coins with different 
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qualities. The first contribution of this research is exploiting the significant advantages of the 3-D 

approach in coin recognition, which had not been discussed in the previous works. Considering 

the nature of the data captured by 3-D scanning, it was expected to extract effectively features 

related to height or depth instead of colors related to coin luminance. In addition, the most 

important benefit of 3-D scanning is the robustness of the quality of the coin surface. This 

capability contributed to purifying images captured from sulfated, rusted, or colored coins.  

Despite the advantages of 3-D scanning, there is a severe challenge when shiny coins are 

processed. Although 3-D scanning is indeed independent of the lighting condition of the 

environment, we had a lot of unexpected degradations and shadowing on shiny coin images. 

Therefore, we faced unreal values of height or depth. The next contribution of the proposed method 

is to eliminate this degradation. In order to restore an image, it was decomposed to many separated 

signals. To extract significant features from the signals, the part of the coin with the letters was 

converted into a long rectangle. Then, the signal of each row was analyzed and restored by the 

proposed method separately. The signal restoration process was notably improved, and we could 

use each newly restored signal to extract new effective features. The experimental results on 

various classifiers showed that the proposed method has an outstanding performance in terms of 

true positive (detection rate), false positive, precision, recall, f-measure, and feature extraction 

time. 

The rest of this paper is organized as follows: Section 3-2 explains the 3-D scanning and its 

advantages and challenges briefly. Section 3-3 describes the proposed method to detect counterfeit 

coins and contains three essential subsections: straightening the coin, signal restoration, and 

feature extraction.  In Section 3-4, we present the experimental results and analyze them. Finally, 

we conclude in Section 3-5 and comment on some future works. 

 

 

3-2 DEGRADATION PROBLEM IN THE 3-D IMAGES 

There are many different technologies used in 3-D scanners; each technology has its advantages, 

restrictions, and cost. For example, optical technologies face many difficulties when processing, 

reflecting, transparent, or shiny objects. Figure 3.1 illustrates how a 3-D scanner captures height 

and depth: it is robust regarding the quality of the coin surface, while the 2-D image of this coin is 

completely unreadable. In Figure 3.2, we can see the degradation of a shiny coin image captured 

by the 3-D scanner, which uses optical technology. As can be seen from this figure, despite the 

remarkable advantages of 3-D scanning for poor quality coins, there may be some abnormal and 
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invalid results while scanning shiny and high-quality coins. However, the validity of the data 

captured by scanning is crucial for this research as an invalid value related to height and depth will 

adversely affect the pattern recognition process. Therefore, our proposed restoration module 

should enhance not only the quality of the images as a whole but also each small part of the image 

must be restored as precisely as possible. 

 

 
(a) 

 
(b) 

Figure 3.1. (a) Twenty Kroners 1990 coin captured by a normal camera, and (b) the same coin captured 

by a 3-D scanner. 

 
(a) 

 
(b) 

Figure 3.2. (a) Degraded image of shiny coin and (b) mesh plot of the same image. 

 

3-3 PROPOSED COUNTERFEIT DETECTION METHOD 

In this section, we present a new method based on signal restoration using 3-D images robust 

enough against rust, dust, sulfate, or any other factors, which may affect the coins’ quality. In 

addition, the proposed method eliminates the problem of the degradation related to the shiny coin 

images, which occurs during the 3-D scanning. 

 

3-3-1 Straightening the Coin Image 

In this section, we present the first innovation of our proposed method, which is very important 

for performing the next steps. Having in mind that our final goal is to extract features from the 
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height and depth information, we assume that the part of the coin where the letters are placed in is 

more useful.  Because the remaining part of the coin such as head profile or shapes placed in the 

center of the coin, most likely would have greater height and will be scratched earlier than the 

letters. Therefore, the straightening coin image is proposed to reduce the complexity of processing. 

This algorithm can also be beneficial for the segmentation of the letters in 2-D approaches. For 

implementing this step, we proposed an algorithm mapping the ring part of the coin into a rectangle 

using the equation of a circle in polar coordinates. Algorithm 3.1 demonstrates the straightening 

process of the coin where 𝐶2 –  𝐶1 is the radius of the part we want to process. It means that the 

matrix of the linear image is created column by column. Each column is composed of the values 

of the pixels from the circumference toward the center as much as 𝐶2 –  𝐶1 pixels. Below, 𝑙𝑟 is the 

growth of 𝑟 for reading the next pixel’s values of the current column diagonally, and 𝑙𝑡 adjusts the 

increase of the angle for reading the next column of the linear image from the original image 

circularly. These parameters should be adjusted for various images in different sizes on the circular 

images with center coordinates (𝑎, 𝑏). Figure 3.3 (b) shows the result of the algorithm for Figure 

3.3 (a). As can be seen from this figure, all letters are placed next to each other and can easily be 

processed more simply than in a circular coin. This shape is convenient before the segmentation 

of the 2-D image.  

In the next section, the key role of the straightening process for the proposed method will be 

presented. Figure 3.4 presents the steps of the proposed method schematically to create a record-

dataset, which will be used for training and testing a counterfeit coin detector. 
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Algorithm 3.1. Pseudocode for the main part of the proposed straightening algorithm 

 

 

 

 

Figure 3.3. Straightening algorithm on a Danish 1990 coin(a) original image, and (b) rectangular image 

after executing the straightening algorithm. 

 

3-3-2 Image and Signal Restoration 

In digital image processing, restoration means recovering an image that has been degraded by 

using a priori knowledge of the degradation phenomenon. Therefore, restoration techniques are 

oriented toward modelling the degradation function in order to infer the inverse process and 

recover the original image [39]. 

After the straightening process, we can see an adverse effect of poor scanning on shiny coin 

images. For some kinds of coins, for example, Danish 20 kroner 2008, all the images are totally 

degraded. In Figure 3.5, the differences between two examples of the 1-D signal of a specific row 

Straightening algorithm: 

 

Input: cropped circular coin image  

Output: straightened coin image (linear image) 

C1 (the number of column)/2 

C2 (the number pixels which should be considered as the 

ring part of the coin’s image) 

For each t between 𝜋 and −𝜋 step lt=-0.001 
    k(k+1) 

    i0 

For each r in the ring part of coin image from C1 to 

C2 step lr=0.01    

     i(i+1) 

     xround(r.*sin(t)+a) 

     yround(r.*cos(t)+b) 

     if x>0 and y>0 

        Linear_image(i,k)Circular_image(x,y) 

 

Pseudocode for the main part of the straitening algorithm 
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related to a normal and a degraded image have been shown. In both images, a long rectangular 

image containing the letters can be seen. The signals below these images have numerous peaks 

showing the heights of the letters or numbers in the lines marked. Clearly, the figure shows that 

shininess has adversely affected the quality of the image and signal. 

Our initial experiments showed that the degradation problem is not random noise. We scanned 

three coins, four times each one of them, and we obtained the same poor results. Since our proposed 

counterfeit coin detector is based on height and depth information, signal restoration from this 

digital data is an inevitable process. For the given digital data set obtained from scanning, we 

needed to recover the original signal, which includes more precise data, since the degraded signals 

related to fake and genuine coins are very similar. Referring to Figure 3.5, the signal demonstrates 

that the important information of letters and numbers corresponds to a low-frequency signal. 

Therefore, we have to estimate the low-frequency signal and subtract it from the original signal. 

Thus, we have 𝑥 = 𝐴 + 𝐷 ; where x is the original and degraded signal, A is an approximation of 

x, and D contains the details of x. In other words, the useful information comes from the details of 

the signal. In our first attempt, we used wavelet transform to find A or D. For restoring all signals 

and the image, and several well-known methods were performed. In the first implementation, we 

used various kinds of wavelet transform on the degraded image and obtained interesting results by 

subtracting the approximation A from the original signal x. However, the obtained signals were 

not precise enough to allow us to distinguish fake from genuine coins through height and depth 

information.  
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Figure 3.4. Structure of the proposed method. 

Our second attempt for estimating 𝐴  was to apply a Gaussian low-pass filter using Fourier 

transform. To find 𝐴, we can consider 𝐴𝑇 = 𝑋 ∗ 𝐻 , where 𝐴𝑇, 𝑋, and 𝐻 are Fourier transforms of 

𝐴, 𝑥, and h, respectively.  Although this method was better than the wavelet transforms in restoring 

the image and produced a better signal, it could not approximate 𝐴 as well as we needed. 

 

 

 



28 
 

 

 

 

(a) 

 

 

(b) 

Figure 3.5. The difference between degraded and normal signals and images: (a) Normal image and its 

corresponding signal, and (b) degraded image and its corresponding signal. 
 

After applying the Gaussian low-pass filter and wavelet transform, to find an approximation of the 

degradation function and to subtract it from the degraded signal, we could find that the restored 

image was still degraded. Although we had obtained an acceptable image after using the low-pass 

filters, there had not been the best-estimated values of height or depth. As mentioned before, the 

foundation of the proposed method is based on the height of the letters or numbers. Therefore, we 

need to perform a restoration method, which can be applied to each signal (row) of the image 

separately because the degradation function is completely abnormal and has to be considered as a 

1-D signal restoration. For this purpose, we propose using a restoration module, which contains 

several steps, as described below. 

Estimating Degradation Function and Signal Restoration. For estimating more accurately the 

degradation function for each 1-D signal, we proposed an estimator, which uses selected points 

determined by the discrete derivative. Since the signals, on which the process should be performed, 

are not smooth enough to perform mathematic operations, we used a low-pass filter to make them 

smoother. For estimating the approximation of degradation function related to the original signal 

g, we use the formula: 

𝑓(𝑥) =
𝑔𝑖(𝑥𝑖) − 𝑔𝑖+1(𝑥𝑖+1)

𝑥𝑖 − 𝑥𝑖+1

(𝑥 − 𝑥𝑖) + 𝑔𝑖(𝑥𝑖)                                               (3.1) 

where 𝑔𝑖(𝑥𝑖) is the closest critical selected point to 𝑥 and 𝑥𝑖 < 𝑥 < 𝑥𝑖+1.  The critical selected 

point is routinely an extremum point selected by the effective point selector function. This function 
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uses momentum to avoid local minima that the signal has a lot of them. In addition, if the distance 

between two selected points is greater than a specific threshold, the point selector will consider 

several points on this part of the signal instead of the critical points. Figure 3.6 illustrates a small 

part of the original signal and the approximation of the degradation signal. As shown in the figure, 

the approximated signal is too sharp and needed to be smoothed. Consequently, we used a low-

pass filter again to obtain the final signal, and we have 𝐴 = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝐹 ∗ 𝐻) where 𝐹 and 𝐻 are 

Fourier transforms of 𝑓, and a 1-D Gaussian filter in the order. Also, the 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 function returns 

the inverse discrete Fourier transform of the resulted vector. In addition, there is a simple parameter 

optimizer which regulates the value of 𝜎 in Gaussian filter, intending to minimize the Euclidean 

distance between 𝐴 and 𝑓.  Figure 3.7 demonstrates that the original image has been restored 

successfully. The signal related to the marked row of the restored image shows that the heights of 

the letters are more precise than the original rectangular image. Figure 3.7 also shows that the 

proposed restoration produces more balanced height information for the surface of the coin. 

 

Figure 3.6. Estimating the approximation of degradation function. 

 

Figure 3.7. Result of the proposed restoration method on the images and their signals: (a) degraded image 

and its corresponding signal, and (b) restored image and its corresponding signal. 
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3-3-3 Feature Extraction and Creation of a Record Dataset 

After performing the straightening process and restoring the images, we noticed that the signals 

corresponding to the genuine coin (in the same rows) are identical, while there is a significant 

difference between the genuine and the counterfeit coins. In Figure 3.8, the 1-D signals of the same 

row of six genuine and fake coins are shown for comparison. Since we can easily distinguish the 

counterfeit coin from the genuine with a height-map signal, we concentrated on the simple features 

of the signals. For each rectangular image, we have 311 rows, whose signals cover all the letters 

and the numbers. If we consider each signal as a feature, all these features would form a substantial 

set of features to distinguish fake from genuine coins, whereupon we would need to consider one 

or more features for each signal instead of the whole signal. In this paper, we use two simple 

features for each signal. The first feature is the energy (L2-Norm) of each decomposed signal, 

which can easily be calculated using the formula [40]: 

𝐸𝑖 = < 𝑥𝑖(𝑛). 𝑥𝑖(𝑛) > =   √∑|𝑥𝑖(𝑛)|2
𝑐

𝑛=1

                                           (3.2) 

where 𝑥𝑖  is the signal of row 𝑖  and 𝑐  is the number of columns in the matrix related to the 

rectangular image of the coin. An additional feature for each signal is the percentage of the energy 

of wavelet details in level two, whose calculation method was mentioned before; we denote it with 

𝑃𝐸𝑖.  In addition, each coin has two general features: year and coin number and a target label class 

(Fake or Genuine). Accordingly, each rectangular image is converted to a record-data, and thus 

we have a total of 624 features from 311 signals, and a coin ID is assigned for the training process. 

After performing the feature extraction method on all existing images, a record-dataset is created. 

 

3-4 EXPERIMENTAL RESULTS ON COUNTERFEIT DETECTION 

In this section, the efficiency of the proposed system is discussed. The hardware of the test 

environment consisted of an i7-4500U 4.2 GHz CPU (only one core was used), DDR3 6 GB RAM, 

the operating system used was Windows 8.1- 64 bit, and the programming environment was 

MATLAB 2015. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3.8. Examples of 1-D signals related to the rectangular image of coins for the same row: (a, b) two 

genuine Danish coins from 2008 and (c) a fake Danish coin from 2008; (d, e) two genuine Danish coins 

from 1996 and (f) a fake Danish coin from 1996. 

 

3-4-1 Dataset 

In this research, we used a total of 322 genuine and 162 fake coins for training and evaluating the 

system, respectively. The Law Enforcement Office provided the coins used in the research, and 

we applied all of them. We would note that access to more fake coins was restricted. In Figure 3.9, 

samples of fake and genuine coins of the years 1990 and 2008 are shown. Table 3.1 indicates four 

types of Danish 20 Kroner scanned by the 3-D scanner and used in this model verification. In 

Table 3.2, the average times of scanning, restoration, and feature extraction, are listed. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.9. Examples of genuine and counterfeit coins: (a) genuine 1990, (b) fake 1990, (c) genuine 2008, 

and (d) fake 2008. 
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Table 3.1. The properties of coins used in this research. 

Year of coin 

(Danish 20 

Kroner) 

Number of 

Genuine 

coins 

Number 

of Fake 

coins 

Training set Test set 

Genuine Fake Genuine Fake 

2008 23 113 15 75 8 38 

1996 100 10 75 6 25 4 

1991 100 14 75 8 25 6 

1990 99 25 75 15 24 10 

All coins 322 162 225 104 97 58 

 

Table 3.2. Time spent on the steps of the proposed method. 

Year of coin (Danish 

20 Kroner) 

Scanning time 

(Avg/Minutes ) 

Restoration time 

(Avg/Sec) 

Feature extraction 

time (Avg/Sec) 

2008 9.8 16.2 1.48 

1996 10.2 14.4 1.46 

1991 10.6 15.1 1.47 

1990 10.4 13.9 1.52 

 

As previously stated, after scanning and performing the proposed method on the coin images, each 

height-map image whose class (fake or genuine) was clear was converted to a record data. 

Therefore, the final data set contained 484 labelled records. Consequently, we used various 

classifiers to illustrate the fitness of the proposed method and extracted features to detect 

counterfeit coins. 

3-4-2 Evaluation Criteria 

There are several standard metrics to evaluate a classification system. True positives or detection 

rate, true negatives, false positives, and false negatives are often used to evaluate a classification 

system [41]. For a counterfeit detector, a true positive or detection rate indicates that the system 

detects precisely a counterfeit coin. A true negative illustrates that the counterfeit detector has 

correctly detected a genuine coin. The false positive is the case when a genuine coin is falsely 

classified as a fake one. The False negative shows that the counterfeit coin detector is unable to 

detect the fake coin. To improve the accuracy of the evaluations, we calculated the precision, 

recall, and F-value, which are not very dependent on the size of the train or test dataset. They can 

easily be computed by Eqns. (3.3), (3.4), and (3.5) where TP, FP, and FN are the numbers of true 

positives, false positives, and false negatives, respectively. Also,  𝛽 is the relative importance of 

precision versus recall and is usually set to one [41]. Furthermore, we considered the time of 

building a model for classifiers to compare their training time.  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                  (3.3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                         (3.4) 

 

𝐹 − 𝑣𝑎𝑙𝑢𝑒 =
(1 + 𝛽2) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                           (3.5) 

3-4-3 Results and Discussions 

We used several well-known classifiers available in Weka [42] to evaluate the performance of the 

proposed method. By employing a feature selection algorithm and removing irrelevant and 

redundant, we reduced the processing complexity and improved the classification efficiency. After 

using Chi-squared feature evaluation on all 624 features, 36 features were selected.  

Tables 3.3 and 3.4 illustrate the results of three metrics comparing the performance of the 

classification process for the system using 624 extracted, and 36 selected features in the order. In 

terms of training and test times, NaïveBayes, and Lazy.Kstar had a shorter time than other 

classifiers, while neural network multi-layer perceptron was the worst. TP (detection rate) and FP 

are weighted and averaged for both the genuine and fake classes. Stochastic Gradient Descent or 

SGD (with loss function: Hinge loss (SVM), learning rate: 0.01, epoch: 500, and lambda: 1.0E-4), 

and MLP (with learning rate: 0.2, momentum: 0.3, number of sigmoid nodes in hidden layer: 20) 

had better results compared to others. The decision tree was the weakest classifier in these metrics. 

These classifiers for both experiments (624 features, and 36 features) showed roughly the same 

superiority in the mentioned criteria, although the performance of the classification was 

dramatically improved after feature selection. SGD has correctly classified 99.3 % of the coins by 

36 features; for the other classifiers, we can see acceptable results in the metrics. Taking precision, 

recall, and f-value into consideration, SGD was still the most remarkable classifier, according to 

Table 3.5. In spite of the relatively weaker results for decision tree, and NaiveBayes in the 

classification of the fake coins, the other classifiers could classify both fake and genuine coins 

satisfactorily. As can be seen from Table 3.5, precision, recall, and f-value were indispensable to 

measure the accuracy of the classifications. The results showed that although NaiveBayes and 

decision tree had an appropriate outcome in the detection of the genuine coins, they were slightly 

weaker in detecting the counterfeit coins. Apart from the ability of classifiers in the mentioned 

standard metrics, all the results are satisfactory for the proposed method and demonstrate that the 

extracted features are very effective for any kind of classification algorithms.  
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Very few researchers have used image-based coin recognition techniques to detect counterfeit or 

invalid coins. Therefore, the proposed method was compared with two recent counterfeit coin 

detection methods. Albeit the test time is not reported well in these two methods, it can be 

concluded that in reference [15], researchers designed a real-time system, and the method performs 

much better than the other methods in term of processing time. The possible metrics for a more 

precise comparison of these methods are classification accuracy and test data information. As 

Table 3.6 shows, the proposed method performs better than the reference [15] in terms of  

accuracy, but its accuracy is not as precise as reference [9]. However, with respect to the test 

process of these methods, there is another issue that could have a straightforward effect on 

accuracy. Although the accuracy resulted in the method of reference [9] is 100%, the size of the 

test set for evaluation of the system was very small. Also, it is clear that our proposed method was 

trained and tested by four different types of coins (years 1990, 1991, 1996, and 2008) while in [9] 

only two types of coins (years 1990, and 1996) were considered.  

In order to indicate the impact of the restoration process proposed in Section 3.2 on this paper, we 

tested the coins with different qualities separately. As Table 3.7 demonstrates, the signal 

restoration had a significant impact on the classification of the degraded images resulted from 

scanning of the shiny coins. It is also worth noting that all six oxidized coins (4 fake and 2 genuine) 

classified correctly. It means that a 3-D scanning of an oxidized coin can produce an image as 

good as a normal coin.  

 

Table 3.3. Comparing the classification results for various classifiers using 624 features. 

Classifier 
Training Time 

(sec) 

Test Time 

(sec) 
True Positive (%) False Positive (%) 

SGD 0.67 0.23 97.8 7.8 

MLP 157.9 21.3 94.9 26.7 

NaiveBayes 0.03 <0.01 92 12.6 

Decision tree 0.11 <0.01 90.5 38.6 

Lazy.Kstar < 0.01 <0.01 83.9 83.9 

Logistic 0.63 0.2 94.49 4.7 

 

Table 3.4. Comparing the classification results for various classifiers using 36 features. 

Classifier 
Training Time 

(sec) 

Test Time 

(sec) 

True Positive  

(%) 

False Positive 

(%) 

SGD 0.05 <0.01 99.3 3.8 

MLP 1.52 0.71 97.1 4.2 

NaiveBayes < 0.01 <0.01 92.0 12.6 

Decision tree 0.02 <0.01 91.2 31.1 

Lazy.Kstar < 0.01 <0.01 95.6 15.5 

Logistic 0.02 <0.01 95.6 4.5 
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Table 3.5. Comparing the results of classifiers in terms of precision, recall, and f-value for classifying 

fake and genuine coins. 

Classifier 
Metric Class 

Logistic LazyKstar DT (J48) Naïve Bayes MLP SGD 

0.991 90.966 0.933 0.973 0.991 0.991 Precision 

Genuine 0.957 0.983 0.965 0.93 0.974 1 Recall 

0.973 0.974 0.949 0.951 0.982 0.996 F-value 

0.808 0.9 0.778 0.704 0.875 1 Precision 

Fake 0.955 0.818 0.636 0.864 0.955 0.955 Recall 

0.875 0.857 0.7 0.776 0.913 0.997 F-value 

 

Table 3.6. Comparison of different methods with the proposed counterfeit detector in terms of accuracy. 

Accuracy 
[15] [9] 

Proposed method using 

SGD classifier 

97 % 100 % 99.3 % 

Testset 

information 

Genuine coins 100 3 97 

Fake coins 96 2 58 

Type of 

Coins 
Two-Euro 

20 Kroner 1990, 

1996 

20 Kroner 1990, 1991, 

1996, and 2008 

 

Table 3.7. Impact of the restoration process on the classification of the coins with different qualities. 

Coin Quality 
Number of 

Test samples 

Correctly classified (%) 

Before restoration After restoration 

Worn out coins 6 100 100 

Degraded images 81 59.4 98.7 

Normal coins 68 100 100 

Overall 155 78.9 99.3 

 

3-5 CONCLUSION AND FUTURE WORKS 

In this paper, a new counterfeit coin detection method based on analyzing and restoration of 3D 

images was proposed. We used a 3-D scanner to scan a large number of coins and obtained the 

coin height-map images. To simplify and reduce the complexity of the proposed method, we 

suggested a straightening algorithm to convert each circular coin image to a linear rectangular 

image. Since the shiny coin images were abnormally degraded, it was impossible to use height and 

depth information to detect counterfeit coins. Because of that, the next step was to restore the 

images by processing the images signal-wise. After restoration, the 1-D signals of the image, the 

energy, and the percentage of the energy of the wavelet details in level two were extracted for all 

311 signals. In sum, we had 624 features before the feature selection process. The comparison of 

the performance of several well-known classifiers in Weka illustrated that the proposed method 
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gives excellent results in detecting counterfeit coins. Employing multi-processing allowed easily 

restoring the signals and reducing the processing time. In addition, there was no need to perform 

any of the well-known methods for noise reduction or and contour tracking for coin recognition. 

Surprisingly, the proposed method had significant results on counterfeit coin detection using four 

kinds of coins to train and test the method. Finally, the proposed counterfeit detection method is 

robust against rust, dust, and sulfation, cases of which were not considered in most of the previous 

works. 

Our plan for future work is to focus on the drawbacks of the proposed method. In spite of the 

substantial precision and acceptable time for feature extraction, the time of coin scanning needs 

improvement. To overcome this problem, we can use a 3-D scanner to capture only a small part of 

the coin and work on it. Enriching the feature extraction and using a hybrid classifier built 

especially for the created data set can improve the performance of the counterfeit detector. Another 

direction of our research will be towards coins with non-circular shapes and ones with no text 

embossing. 
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Abstract. There are presently a lot of companies, museums, and government agencies in the world 

that have increased the demand for automatic systems to classify precious, historical, and common 

coins. Thanks to the increased exigency on the intelligent approaches to recognize counterfeit 

coins, coin detection has continuously been evolving in recent years, and image-based coin 

recognition has become an integral part of this research area. In this research, we have been 

studying various methods related to image-based coin detection in 2-D image processing, and we 

also used a 3-D scanner to scan hundreds of coins to apply 3-D approaches to detect counterfeit 

coins. Here, instead of conventional 2-D methods for counterfeit coin detection, we applied a 3-D 

approach to model and analyse a large set of different Danish coins. One of the most important 

advantages of 3-D approaches is the ability to extract features that cannot be found in 2-D images. 

Despite this advantage, we had a lot of unexpected degradations on shiny coin images. In order to 

restore the degraded images, we proposed a method based on signal separation in this paper. The 

experimental results showed that the proposed method outperformed previous methods in 

detecting counterfeit coins. 

 

Keywords. counterfeit coin detection, spline approximation, 3D images 
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4-1 INTRODUCTION 

An image-based coin recognition system takes digital images of coins as input and classifies them 

according to their properties. Pursuant to the previous works, coin detection is mostly based on 2-

Dimensional image processing techniques. In particular, edge information had been extracted as 

features with Fourier transform. The difficulty level of coin detection heavily depends on the 

backgrounds of the coin datasets used in the experiments. Fortunately, all the datasets used for 

coin detection are captured with plain backgrounds, such as pure white or conveyor belt with 

extremely low gray-level [1]. 

Some of the common features in coin recognition like coin diameter, thickness, weight or shape 

may be used to detect counterfeit coins. We should note that these basic attributes are easy to copy, 

and the fake coins made nowadays are of high quality. Therefore, these systems cannot distinguish 

fake coins from genuine ones when their physical attributes are basically the same.  To increase 

the potential of fake coin detectors and image-based coin detection, several methods based on 

image processing techniques and classification algorithms have been proposed [10], [15], [43] and 

many lectures and tutorials were devoted to them [37], [44]. Some of these methods are not very 

sophisticated and use coins’ colors and radius-based features to detect counterfeit coins. 

Unfortunately, these approaches are incapable of distinguishing coins having the same values of 

the limited set of features. 

In recent years, image-based counterfeit detection has expanded, and many researchers have 

applied image processing techniques to extract effective features from the texture of the coin 

images [36]. In general, edge detection has been frequently employed in the feature extraction 

process. In references [9], [38], an edge map was extracted and segmented into several parts. After 

that, the authors proposed a method using histogram analysis and Fourier transformation to handle 

and recognize rotated coin images. However, the extracted features were not very useful for noisy 

and degraded images such as rust, dust, or sulfated coin images. In [9], the authors extracted the 

letters on the coin surface and tried to recognize them. In spite of the mentioned novelties of the 

proposed method, it is clear that the method was not robust enough to distinguish the counterfeit 

from genuine coins whose images have weak or smooth edges. In reference [11] a new method 

using rotation-invariant region binary patterns based on gradient magnitudes was proposed. To 

increase the accuracy of coin recognition, it computes gradient magnitudes in a coin image and 

extracts rotation-and-flipping-robust features using local difference magnitude transform. 
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Although the result is acceptable from the feature extraction point of view, the time-performance 

of the model is not satisfactory.  

In references [8] and [12], authors proposed their methods to recognize coin images in terms of 

their denominations and countries of origin. However, the problem of coin recognition 

significantly differs from fake coin detection investigated in this study. For coin recognition, one 

important concern is to reduce the sensitivity to the variations among the coins from the same 

class. Therefore, it is highly probable that the fake coins, especially those of high quality, are 

classified as belonging to the same class as their genuine counterparts under the coin recognition 

framework. 

 As we discuss later, we have been using a three-dimensional scanner to create an image data set 

for Danish coins. In this research, during the study on 3-D approaches to extract effective features, 

we have faced many challenges related to shiny coins and tried to solve this problem. There are 

many different technologies used in 3-D scanners; each technology has its own advantages, 

restrictions, and cost. For example, optical technologies face many difficulties when processing, 

reflecting, transparent, or shiny objects. Figure 4.1 illustrates how a 3-D scanner captures height 

and depth: it is robust regarding the quality of the coin surface, while the 2-D image of this coin is 

completely unreadable. In Figure 4.2, we can see the degradation of a shiny coin image captured 

by the 3-D scanner, which uses optical technology. As it can clearly be seen from this figure, in 

spite of the remarkable advantages of 3-D scanning for poor quality coins, there may be some 

abnormal and invalid results while scanning shiny and high-quality coins [45]. However, the 

validity of the data captured by scanning is crucial for this research as an invalid value related to 

height and depth will adversely affect the pattern recognition process. Therefore, our proposed 

restoration module should enhance not only the quality of the images as a whole but also each 

small part of the image must be restored as precisely as possible.  

The rest of this paper is organized as follows. Section 4.2 describes the proposed method to 

detection counterfeit coins. In this section, we will explain our proposed image restoration and 

feature extraction.  In Section 4.3, we talk about the experimental results and analyze them, and 

we explain our new method to edge plane detection. Finally, we conclude in Section 4.4 and 

comment on some future works. 
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(a) 

 

(b) 

Figure 4.1. (a) Twenty Kroner 1990 coin captured by a normal camera, and (b) the same coin captured by 

a 3-D scanner. 

 

 

Figure 4.2. Degradation problem for a shiny coin’s image in a height-map image (wrong height and depth 

information. 

 

4-2 COUNTERFEIT COIN DETECTION 

4-2-1 Restoring Images Using Spline Approximation 

After the straightening process, which we proposed in [45], we can see an adverse effect of 

improper scanning on shiny coin images. For some kinds of coins, for example, in the Danish 20 

kroner 2008 dataset, all the images are totally degraded. Our initial experiments showed that the 

degradation problem is not random noise. We scanned three coins, four times for each coin, and 

we obtained the same poor results [45].        

Since our proposed counterfeit coin detector (Figure 4.3) is based on height and depth information, 

signal restoration from this digital data is an inevitable process. For a given digital data set obtained 

from scanning, we needed to recover the original signal, which includes more precise data, since 

the degraded signals related to fake and genuine coins are very similar. Here, the important 

information of letters and numbers corresponds to a low-frequency signal. Therefore, we must 



41 
 

estimate the low-frequency signal and subtract it from the original signal. Thus, we have x=A+D; 

where x is the original and degraded signal, A is an approximation of x, and D contains the details 

of x. In other words, the useful information comes from the details of the signal.  

In our first attempt, we used wavelet transform to find A or D. For restoring all signals and the 

image, and several well-known methods were performed. 

 

For estimating more accurately the degradation function for each 1-D signal, we proposed an 

estimator, which uses control points determined by the Catmull-Rom spline. Figure 4.4 shows the 

basis, control matrix used for estimating a Catmull-Rom spline in a specific period. Since the 

signals, on which the process should be performed, are not smooth enough to perform mathematic 

operations, we used a low-pass filter to smooth them. The critical selected point or control point 

is routinely an extremum point selected by the effective point selector function. This function uses 

momentum to avoid local minima, which should be ignored, and the signal has a lot of them. In 

addition, if the distance between two control points is greater than a specific threshold, the point 

selector will consider several points on this part of the signal instead of the critical points. 

The principal advantage of this technique is that the points along with the original set of points 

also make up the control points for the spline curve. Two additional points are required on either 

end of the signal. Figure 4.5 illustrates a small part of the original signal and the approximation of 

the degradation signal. 

Consequently, we used a low-pass filter again to obtain the final signal, and we have 𝐴 =

𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝐹 ∗ 𝐻) where 𝐹 and 𝐻 are Fourier transforms of 𝑓, and a 1-D Gaussian filter in the order. 

Also, the 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 function returns the inverse discrete Fourier transform of the resulted vector. In 

addition, there is a simple parameter optimizer which regulates the value of 𝜎 in Gaussian filter, 

with the aim of minimizing the Euclidean distance between 𝐴 and 𝑓.  In this module, a distance 

between each signal and a fixed counterpart signal will be calculated. The fixed signal is an average 

of a signal related to each row of the straightened images which are not degraded. Then, the 

optimizer can optimize the proper values to filter the images by Fourier transformation. Figure 4.6 

demonstrates that the original image has been restored successfully. The signal related to the 

marked row of the restored image shows that the heights of the letters are more precise than the 

original rectangular image. Figure 4.6 also shows that the proposed restoration produces more 

balanced height information for the surface of the coin. In the top of the figure, we can see a 3-D 
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view of the straightened image of a shiny coin, and in the bottom, the restored image by the 

proposed method.  

 

 

 

Figure 4.3. Proposed method for restoring the signals. 
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Figure 4.4. Basis and control matrix to approximate the spline [46]. 

 

 

Figure 4.5. Example of a restored signal corresponds to a specific row of the straightened image obtained 

from the original and the spline approximation. 

 

4-2-2 Feature Extraction 

Here, we consider one 1-D signal as a representative of the straightened and restored image. To 

achieve this aim, we calculated the median of each column of the matrix instead of all rows and 
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made a new vector or signal, which we call it, the median signal. The median signal of different 

coins’ images is shown in Figure 4.7. Figures (a) through (c) show that the median signal of 

original coins which are ideally similar, while in Figure 4.7 (d) it is clear that the median signal of 

the fake coin is totally different from the genuine coins’ pattern. Therefore, the median signal is a 

desirable representative for the image, and we have one 1-D signal to extract features.  

 

 

Figure 4.6. Restoration of the degraded image in 3-D view. 

 

 

(a) 

 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

Figure 4.7. Figures (a) through (c) are the median signals of three genuine Danish 2008 coins, and (d) the 

median signal of a fake Danish 2008 coin. 
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Extracted features in the feature extraction module were quite dependent on the time (horizontal 

parameter of the signal) and starting point. Here, for extracting a lot of features, we must consider 

a base signal and shift other signals to the same position. 

 

1) Shifting the Median Signal 

To shift the median signal to the correct position, we considered a signal as a base signal and 

shifted the signal in the right direction until a similarity criterion was satisfied. To calculate the 

similarity between the signals, the cross-correlation has been used. From the cross-correlation 

function, we can obtain the correlation coefficient, which will give us a single value of similarity. 

Right from the start, the similarity of the median signal and the base signal was calculated then the 

median signal was shifted to the right. The best position for the median signal was marked when 

the similarity was the highest value. Figure 4.8 (a) shows the median signal of one coin, which we 

consider as a base of shifting. Figure 4.8 (b) is the shifted signal of (c). The figure shows that the 

signal was shifted to the best position. After shifting the median signal, we extracted two different 

kinds of features. The first kind of features were the statistical features, and the next ones were the 

information about the band power, bandwidth, and distortion. Experimentally, to extract these 

features, we divided the signal into four parts and extracted the features for each part separately.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.8. The base signal, (b) the shifted signal, (c) the original median signal. 

 

2)  Statistical Feature  

The first statistical feature extracted from the signal is the period of the sequence that is computed 

as the minimum length of a subsequence 𝑥𝑖(1: 𝑝) of signal 𝑥 that repeats itself continuously every 
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𝑝 samples in 𝑥𝑖 . The length of 𝑥  does not have to be a multiple of 𝑝, so that an incomplete 

repetition is permitted at the end of 𝑥𝑖. If the sequence 𝑥 is not periodic, then 𝑝 =  𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖).  

To extract four next features, we estimated the mean normalized frequency of the power spectrum 

of a time-domain signal, 𝑥𝑖. Features 9 through 12 are the ratio of the largest absolute value in 𝑥 

to the root-mean-square (RMS) value of 𝑥𝑖, which are also called Peak-magnitude-to-RMS ratio. 

In all explanations, 𝑥𝑖 is one of the four parts of the original signal and 𝑖 = 1,2,3,4. 

 

3)  Peak Analysis Features 

To extract features based on peak analysis, we found the prominent peaks as far as the number of 

the peaks in all signals were equal. Then we estimated the average distances between peaks for 

each xi. Therefore, there are four features based on peak analysis. Finally, we have 16 features 

through the feature extraction process.      

 

4-3 EXPERIMENTAL RESULTS 

In this paper, various well-known classifiers were employed to evaluate the performance of the 

proposed method. We used CENPARMI Danish dataset introduced in [45]. Table 4.1 illustrates 

the results of three metrics comparing the performance of the classification process for the system 

using 16 extracted features. In terms of Detection Rate or TP (True Positive) and FP (False 

Positive), which are weighted and averaged for both genuine and fake classes, Stochastic Gradient 

Descent (SGD), and MLP had better results than others. SGD has correctly classified 99.3 % of 

the coins tested. For the other classifiers, we can see the acceptable results in the metrics. Turning 

to precision, recall, and f-value, SGD was still the most remarkable classifier in Table 4.1. Despite 

the weaker results for NaiveBayes and decision tree in detection rate, other classifiers could 

classify both fake and genuine coins satisfactorily. Table 4.2 demonstrated that although 

NaiveBayes and decision tree had an acceptable outcome in the detection of the genuine coins and 

were very fast in the building model, they were relatively mediocre in detecting the fake coins 

rather than the other models. Apart from the capability of classifiers in the mentioned standard 

criteria, all the results are satisfactory for the proposed method and illustrate that the extracted 

features are significant. 
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Table 4.1. Comparing the classification results for various classifiers using 16 features. 

Classifier Time taken to build model (sec) TP (%) FP (%) 

SGD < 0.01 99.3 3.8 

MLP 0.6 98.4 3.6 

NaiveBayes < 0.01 92.7 10.4 

Decision Tree (J48) < 0.01 92.8 26.1 

Lazy.Kstar < 0.01 96.8 15.5 

Logistic < 0.01 96.6 4.5 

 

Table 4.2. Comparing the results of classifiers in terms of precision, recall, and f-value for classifying 

fake and genuine coins by 16 features. 

Classifier 
Measure 

C
la

ss Logistic Lazy.Kstar J48 NaïveBayes MLP SGD 

0.993 0.966 0.933 0.981 0.993 0.991 Precision G
en
u
in
e 

0.963 0.983 0.965 0.936 0.976 1 Recall 

0.978 0.974 0.949 0.956 0.987 0.996 F-value 

0.812 0.90 0.778 0.712 0.90 1 Precision 

F
a
k
e 

0.964 0.818 0.636 0.864 0.964 0.955 Recall 

0.881 0.857 0.7 0.776 0.927 0.997 F-value 

 

 

4-4 CONCLUSION AND FUTURE WORK 

We have been trying to find a comprehensive way to detect counterfeit coins, which can analyze 

the coin images as precisely as possible. In our preliminary counterfeit coin detector, the 

comparison of the performance of several well-known classifiers in Weka [42] illustrated that the 

proposed method produces excellent results in detecting counterfeit coins. Employing multi-

processing will facilitate the restoration of the signals and the reduction of the processing time. 

Surprisingly, the proposed method had a remarkable outcome on counterfeit coin detection when 

we use the four types of coins for training and testing together. Finally, it was apparent that the 

proposed counterfeit detection method is robust against rust, dust, and sulfation, cases. However, 

the biggest challenge in detecting fake coins is always the lack of fake samples. In some cases, it 

is nearly impossible to have fake coins as many as we can build a model or test our system. Hence, 

investigating the feasibility of using unary (one-class) classification and PU (Positive and 
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Unlabeled samples) learning for improving the accuracy of the counterfeit coin detector is open 

for future works. 
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Abstract. Detecting a counterfeit coin using 2D image processing is nearly impossible in some 

cases, especially when the coin is damaged, corroded or worn out. Edge detection is one of the 

most widely used techniques to extract features from 2D images. However, in 2D images, the 

height information is missing with losing the hidden characteristics. In this paper, we propose a 

3D approach to detect and analyze the precipice borders from the coin surface and extract 

significant features to train an ensemble classification system. In order to extract the features, we 

also propose Binned Borders in Spherical Coordinates (BBSC) to analyze different parts of 

precipice borders at different polar and azimuthal angles. The proposed method is robust even 

against degradation, which appears on shiny coins after 3D scanning. Therefore, there is no need 

to restore the degraded images before the feature extraction process. Here, the system has been 

trained and tested with four types of Danish and two types of Chinese coins. We take advantage 

of stack generalization to classify the coins and add the reject option to increase the reliability of 

the system. The results illustrate that the proposed method outperforms other counterfeit coin 

detectors. The accuracy obtained by testing Danish 1990, 1991, 1996, and 2008 datasets are 98.6%, 

98.0%, 99.8%, and 99.9% respectively. In addition, results for half Yuan Chinese 1942 and one 

Yuan Chinese 1997 were 95.5% and 92.2%, respectively. 

Keywords. Counterfeit coin detection, 3D precipice borders, ensemble classifier, height-map 

images. 

 

 



50 
 

5-1 INTRODUCTION 

Over the past several decades, a lot of counterfeit money has caused significant damage to the 

society. They have been made by criminals or unknown coin collectors for thousands of years as 

an illegal industry [47]. It is worth noting that as a significant topic of security, counterfeit coin 

detection has become the focus of research in the field of numismatics. The data drawn from the 

Counterfeit Monitoring System (CMS) indicate that only in Europe, the total number of counterfeit 

euro coins removed from circulation from 2013 to 2017 was equal to 837,910 pieces whose value 

amounted to 1,330,401 Euros [2]. It is expected a very large number of counterfeit euro coins still 

remain in circulation. In addition, as an example of an old coin which is being traded in the market, 

we can mention a half Chinese Yuan 1942. The price of the best quality of this coin in the market 

is over $1200, which illustrates the importance of counterfeit detection for old coins.  

With the continuous development of 3D technologies and the fast evolution of depth sensors 

attached to handheld devices, 3D approaches have become a hot topic of computer vision due to 

its applications in areas such as recognition, security, and biometrics. It also motivates the 

extension of novel image processing and computer vision techniques. Because of the progress of 

3D applications for different purposes, the notion of 3D approaches has determined itself as one 

of the most significant alternatives for 2D approaches and has attracted considerable attention of 

the community in recent years. In addition, it is worth noting that 3D approaches are gradually 

emerging as an appealing area for the design and implementation of a classification scheme, 

especially by those employing image datasets. Up to now, several studies based on image 

processing techniques and classification algorithms have been proposed that exploit images for 

counterfeit coin detection. Fundamentally, fake coin detection is an effortful procedure because of 

widely varying input templates, cluttered images, and various rotations, which are the big 

challenges. Most of the existing image-based methods for counterfeit coin detection relied only on 

2D images, failing to equip some statistical information about the height and depth, and often lose 

the hidden characteristics or suffer from low accuracy. Although researchers have recently 

achieved fruitful results in 2D image-based systems, these studies have an important drawback. It 

is not conceivable to rely only on 2D images, when the coins are corrupted, colored, or worn out, 

where 2D detected edges are the only source of information. As a remedy to this limitation, the 

development of techniques to establish a 3D structure from a coin image can discover the complex 

characteristics of the coin.  
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Based on the type of analysis carried out, the potential of a 3D image-based method has not yet 

been applied for counterfeit coin detection and is still an open field of research. Despite the 

significance of the 3D technologies, the research in this regard is relatively scant. In this paper, we 

propose a 3D approach to detect and analyze the coin surface and extract significant features to 

train an ensemble classification system. To do this, a novel method to detect specific parts of 

objects on the coins that we name it Precipice Border Detection Algorithm (PBDA) will be 

proposed, which is incorporated into the proposed framework for counterfeit coin detection. 

Considering the nature of the data in height-map images, we extract effective 3D features related 

to height or depth of the coin surface and prove the robustness of the method with cases not 

considered in previous works [45], [48]. In this method, the height-map image of the coins will be 

triangulated, and a clustering scheme based on the Fuzzy C-Means algorithm [22], [23] will cluster 

the triangles to detect precipice borders of the coin surface. Then, we propose a method to analyze 

the precipice borders and extract the valuable features for training a stacking classifier with a reject 

option.  

The focus of this paper is to propose a method to detect counterfeit coins. However, the proposed 

algorithms have much broader applications in the context of 3D image classification. The major 

contributions of the proposed framework are summarized as the following:  

a) Creating six height-map image datasets and proving the competency of 3D approaches in 

counterfeit coin detection: We successfully detect the precipice border of the surface on the 

coin with our proposed 3D Precipice Border Detection Algorithm (PBDA) and use it for the 

feature extraction process. 

b) No need for image restoration or enhancement for degraded images: The precipice borders are 

not affected by the degradation problem. 

c) Extracting features with a high discriminating capability: We propose a system to consider the 

direction of the precipice borders as well as their approximate areas for the feature extraction 

module that we name it Binned Borders in Spherical Coordinates (BBSC).  

d) Feeding an ensemble classifier by feature matrices: A feature extraction methodology is 

proposed to extract a feature matrix instead of a feature vector in which each row of the matrix 

is used separately. 

The rest of the paper is organized as follows. To illustrate the current state of research on the field 

of image-based coin detection, we provide a literature review in Section 5.2. The preprocessing 

steps like resizing, rotation, and normalization are described in Section 5.3. Section 5.4 presents 

the concept and proposes a method for precipice border detection and analysis. Section 5.5 
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discusses to design an efficient ensemble classifier with a reject option for the classification 

process. In Section 5.6, the experimental results are given to show the performance of the proposed 

method regarding counterfeit coin detection. Finally, the paper concludes with a summary of the 

primary contributions of this research and suggests an outline for future work in Section 5.7. 

 

5-2 LITERATURE REVIEW 

In recent years, several studies have been made to recognize coins through different methods such 

as Gabor filter, Hough Transform, Heuristics, and Artificial Neural Networks. Recently, several 

image-based approaches to detect the fake coins have been proposed that extracted effective 

features from the texture of the coin image  [8].  In particular, edge detection information has been 

widely used in the feature extraction process. In reference [9], an edge map was extracted and 

segmented into several parts. After that, the letters were extracted from the coin image, and the 

accuracy for fake coin detection was around 100%, while a small dataset tested the system. 

Although the results mentioned in the paper were significant, the method was not applicable for 

any other type of coin as it was limited to letters. In reference [10] the authors proposed a method 

to extract local texture features for coin recognition. They used Gabor wavelets and local binary 

pattern (LBP) to detect texture information. In the proposed method, a circular shift operator was 

used to provide the robustness of Gabor features against rotation variance. In reference [11], the 

authors proposed a region binary patterns method which was rotation-invariant. They applied 

gradient magnitudes instead of histogram analysis and extracted rotation-and-flipping-robust 

features using local difference magnitude transform. For matching between two-coin images, a 

distance measurement was used. Despite the acceptable feature extraction time, the experiments 

in this paper illustrate that the method was not tested for poor quality coins and might be sensitive 

during matching coins with high similarity. In reference [12], the authors proposed a multistage 

procedure that could recognize hundreds of coin types. In spite of the novelties and results, this 

approach was not able to distinguish fake from genuine as it did not concentrate on the similarity 

of counterfeit and genuine coins. Recently, the authors in reference [1] proposed a new image-

based approach to detect counterfeit coins. There, the local descriptors were employed to generate 

image representations. Instead of resorting to the BOVW (Bag of Visual Words) model for a 

generation of vectorial representations, the authors represented a coin image in the dissimilarity 

space. They conducted one-class learning for fake coin detection. However, the method mentioned 

was sensitive to any variation and was not suitable for poor quality coins and degraded coin 

images. 
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Apart from image-based methods, there are some non-image-based methods for counterfeit coin 

detection. In [15], the authors proposed a method using the sensor of an optical mouse to detect 

counterfeit coin. They applied this method to the two-Euro coins and compared partial images of 

the coin under analysis with some partial reference coin images for matching in the detection 

process. The report in [15] also shows that the system cannot identify most of the well-forged coins 

as counterfeit. In [16] a method based on acoustic signal spectrum analysis for authentic and 

counterfeit coins has been proposed. In this paper, the authors optimized the parameters for time-

spectrum co-analysis. They used a very small dataset of Euro coins to validate their methods. 

However, low costs and high accuracy classification were reported as properties of the method.  

In recent years, studies on image processing techniques illustrate that since 3D approaches 

discover highly confident features, they can overcome some constraints introduced by other 2D 

image classification methods. As plane detection in height-map 3D images plays an important role 

in 3D object classification, much research is conducted to detect and analyze the planes for 

recognizing specific objects in a 3D scene. For example, the authors in [17] proposed a depth 

image-based plane detection algorithm. As stated in this paper, the algorithm could be used as 

preprocessing for planar object recognition that has a fast run-time compared with other methods. 

In [19], a method based on disparity transformation and 3D road surface modelling has been 

proposed for pothole detection. They used two stereo cameras for road data acquisition and finally 

extracted the point clouds of the detected potholes from the reconstructed 3D road surface and got 

remarkable results rather than 2D based images. In [20], a method of edge plane detection in three-

dimensional images has been introduced by utilizing features of edge vector and edge reliability. 

This method can detect only reliable edge planes against noise influences. In [21], a method based 

on Hough transform for plane detection was proposed. The method could identify the clusters of 

coplanar points in the 2.5-D space using an implicit quadtree. They also applied a Hough-transform 

voting structure for the detection process to model “the uncertainty associated with the best-fitting 

plane” considering each cluster as a trivariate-Gaussian distribution. As concluded in this paper, 

the method was a real-time technique for plane detection. 

Though at first glance, the precipice border detection is similar to the plane detection, there is an 

important distinction between them in 3D height-map image processing. In the edge plane 

detection, we find a set of planes that are very useful to recognize and distinguish different objects 

in a scene while in the precipice border detection, we find the curved surfaces and complicated 

details on an object. Therefore, in a special task like recognizing a coin that has a very complex 
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geometry, plane detection would not be very useful for feature extraction, while by analyzing the 

precipice borders, we extract features capable of discriminating the high-similarity objects. 
 

5-3 PREPROCESSING 

All the coins used in this study have circular shapes. However, there are rare cases that the output 

of scanning is an ellipse instead of a circle for a coin image. Therefore, the Hough transform is 

employed for ellipse detection [49] as the first preprocessing step for separating the coin from the 

background. The original resolution of the height-map images is 3550 × 3550, and we resize them 

to 400 × 400 with the gray level of 0 to 255. Despite the advantages of 3D scanning [5], [6], there 

has been a serious challenge when shiny coins are processed [6]. As we encountered a lot of 

unexpected degradation and shadowing on shiny coin images, we faced wrong values of height or 

depth. Figure 5.1 (a) illustrates the degraded image after scanning a shiny coin image. The restored 

image by a proper filter is demonstrated in Figure 5.1 (b) while missing a lot of height information. 

To solve the above problems, we have two options: 

a) Restoring the degradation problem without losing height information for which we provided two 

different proposed methods in our previous works [45], [48]. 

b) Ignoring the degradation problem for which in this paper, we propose a new method to analyze 

the precipice borders that are not affected by the degradation problem. Robustness against this 

problem is one of the advantages of our proposed methods. 

 

  
(a) (b) 

Figure 5.1. Degradation problem related to the 3D scan of the shiny coins: (a) an original image after 3D 

scanning, (b) restoration of the degraded image by high-pass filtering. 

 

As the coins scanning process was performed manually, variations in the scale and rotation are 

inevitable. In this research, we consider the passive transformation in which the coordinate system 

is rotated counterclockwise by 𝜃 around the 𝑧 axis, where 𝜃 is the angle between a fixed image 

and the current image on which the feature extraction process is being performed. Additionally, 

instead of using a manual approach to register the two images, we use feature-based techniques to 
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automate the registration process. Here, the MSER (Maximally Stable Extremal Regions) is used 

to extract the feature descriptors. As MSER performs well on images containing homogeneous 

regions with distinctive boundaries [50], in order to extract feature descriptors, we need to make 

an image with brighter regions. To address this issue, we calculate the new image by adding the 

original images to a coefficient of their gradient magnitude. Then we extract feature descriptors in 

both fixed and rotated images using MSER. After matching features by using their descriptors and 

retrieving locations of the corresponding points for the images, we find a transformation 

corresponding to the matching point pairs using the statistically robust M-estimator SAmple 

Consensus (MSAC) algorithm, which is a form of the RAndom SAmple Consensus (RANSAC) 

algorithm [51]. Finally, we use the geometric transform to recover the scale and find the angle 

between the fixed and rotated images. More information on how to calculate the normal scale and 

the angle of rotation is provided in [52]. 
 

5-4 PRECIPICE BORDER DETECTION ALGORITHM (PBDA) 

In this part, we explain our proposed precipice border detection on the coin surface, which can be 

extended for any height-map images. Instead of the normal edge detection in 2D approaches, a 

new 3D bordering concept that we name it a precipice border is proposed for the height-map 

images. In two-dimensional edge detection, an edge is a line separating two segments or regions 

while in our proposed border detection, a precipice border separates two segments leading to a set 

of attributes. It helps us to extract effective features based on the normal vectors and the areas of 

the precipice around the letters, numbers, and shapes. 
 

5-4-1 Proposed Method for Detecting Precipice Borders 

In this subsection, we propose the precipice borders detection method for height-map images using 

a triangulating method and fuzzy clustering. To detect the precipice borders of the height-map 

image, several features are used for clustering the triangles, and one of these clusters will be the 

precipice borders cluster. In order to use triangles for clustering, we consider an array that contains 

the information about all triangles of an image and name it, triangle array. The triangle array 

contains rows, columns of triangle samples as well as their vertex coordinates. Figure 5.2 (a) shows 

the triangulation gridding on the image matrix applied to the coin image. As in the triangulation 

gridding, the gray triangles cover all pixels of the image, the white triangles are disregarded with 

the aim of reducing the processing time. Accordingly, in a height-map image with 𝑛 rows and 𝑚 

columns, the triangle array includes (𝑛 − 1) rows and (𝑚 − 1) columns. In the clustering process, 
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we have a 5-dimension feature space consisting of three entries of the normal vector of the triangle, 

triangle area, and the angle between the triangle sample and its surrounding larger triangle. In 

many places on the coin triangulated image, it is difficult to define sharp boundaries where the 

features of the triangles change gradually from one to another. Therefore, we take advantage of 

fuzzy clustering to solve this problem. In this step, fuzzy c-means clustering [22] is applied to 

cluster the triangles with several features based on the normal vector and the area of the triangle. 

The normal vector of a triangle can be calculated by: 

𝑁⃗⃗ = (𝑣2⃗⃗  ⃗ −  𝑣1⃗⃗  ⃗) × (𝑣3⃗⃗  ⃗ −  𝑣1⃗⃗  ⃗)          (5.1) 

 

where 𝑣1, 𝑣2, and 𝑣3 are vertices of the triangle. The area of a triangle is also calculated by Heron’s 

formula:  

 

𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)  ,  𝑠 =
(𝑎+𝑏+𝑐)

2
          

                                                                  

(5.2) 

where a = |(v2⃗⃗  ⃗  −  v1⃗⃗  ⃗)|  , 𝑏 = |(𝑣3⃗⃗  ⃗ −  𝑣1⃗⃗  ⃗)|  , and 𝑐 = |(𝑣2⃗⃗  ⃗ −  𝑣3⃗⃗  ⃗)| . To improve the clustering 

process and ignore the very tiny scratches and noises on the coin surface, we also consider a larger 

triangle for each sample whose vertices are the neighbors of the triangle sample. Accordingly, 

there may be an angle between these two triangles. As mentioned earlier, this angle is another 

feature for each triangle sample through the clustering process. Therefore, each triangle sample 

has five features in the clustering process; 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐴, and 𝛼, where 𝑁⃗⃗ = (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) is the 

normal vector of the triangle sample, A is the area of the triangle sample, and 𝛼 is the angle 

between the larger triangle and the triangle sample. Also, 𝛼 can be computed by: 

𝛼 = cos−1 (
|𝑁𝑠.⃗⃗ ⃗⃗  ⃗ 𝑁𝑏

⃗⃗ ⃗⃗  |

‖𝑁⃗⃗ 𝑠‖ × ‖𝑁⃗⃗ 𝑏‖
) 

(5.3) 

where 𝑁𝑠 is the normal vector of the triangle sample, 𝑁𝑏 is the normal vector of the larger triangle, 

and ‖𝑁⃗⃗ ‖ is the magnitude of the normal vectors. The number of clusters is equal to 3. Since the 

clusters are very different in the mean value of their matrices, we can easily select the cluster 

containing precipice borders. 

Figure 5.2 (b) illustrates the larger triangle, which covers a neighborhood of the triangle sample. 

A large 𝛼 for any triangle sample demonstrates that this triangle is not following the pattern of its 

neighborhood and probably is a noise or a very tiny scratch. The result of PBDA is similar to a 



57 
 

Gabor Filter bank with different orientations. To see the outstanding result of the proposed method 

comparing with the Gabor filter, we provide an example. Figure  5.3 (a) shows a reconstruction of 

a Gabor filter bank of 8 different directions on a genuine twenty Kroner 1996 height-map image 

and Figure 5.3 (b) illustrates the result of PBDA for the image in a 2D view. There was no 

preprocessing on the coin images in these two methods for extracting the borders. As can be seen 

in these figures, the proposed border detection method is able to provide more precise information 

about characters and shapes than the Gabor filter. 

 

  

(a) (b) 

Figure 5.2. (a) Triangulation of the height-map image; the triangle array on the image matrix, and (b) the 

larger triangle which is considered for the fifth feature of the triangle sample. 

 

  

(a) (b) 

Figure 5.3. (a) Reconstruction of a Gabor filter bank on a genuine twenty Kroner 1996 image with 

wavelength=5 and 8 directions= {0,22.5,45,67.5,90,112.5,135,157.5} and (b) Precipice borders of the 

image resulted from PBDA. 
 

In Figure 5.4 (a), which is a three-dimensional view of the coins after the precipice border 

detection process, the significant variations between the fake, in the right and genuine coin, in the 

left of the figure, it is clear, although they are degraded. Some of these differences were marked 

with arrows where the expected precipice borders at the same place on two coins are totally 

different and are worthwhile to be analyzed. Figure 5.4 (b) and Figure 5.4 (c) show the mesh grid 

of the precipice borders and low-slope surfaces for the genuine and fake coins, respectively.  
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As signified by the arrows in these figures, the immense scale of the precipice borders on the fake 

coin was more significant than the genuine counterpart. Also, several regions on the genuine coin 

with low slope surfaces have not been detected as the precipice borders, unlike the high-altitude 

borders detected in the same regions on the counterfeit one and vice versa. Since the precipice 

borders are separated from the texture, they can simply give us the correct information about the 

height of specific letters, numbers or shapes. Given that we want to analyze the precipice borders 

and PBDA results in precise values of heights, we no longer need to restore degraded images of 

shiny coins. 

 

5-4-2 Binned Borders in Spherical Coordinates (BBSC) 

In this subsection, we propose Binned Borders in Spherical Coordinates (BBSC) to analyze 

different parts of those precipice borders which are normally folded or curved. In spherical 

coordinates, any point on a surface has a normal vector equal to a counterpart normal vector on 

the sphere. BBSC is proposed to categorize the triangles which build surfaces on an object, using 

their normal vectors. In fact, a histogram of normal vectors on the sphere is built with several bins. 

Thus, each triangle on any object in a 3D triangulated image is assigned to a Bin. The mapping to 

the Bins can easily be computed by considering the normal vector of the triangle and the polar and 

azimuthal angles.  

In this system, each BBSC has five parameters 𝜂, 𝜌, 𝛿, 𝜃, and φ illustrating the number of sub-

divisions based on the polar angle, number of sub-divisions based on the azimuthal angle, 𝛿 ∈

{1,2,3, … ,  𝑛𝐵} polar angles in maximum range (0, 2𝜋), and azimuthal angles in maximum range 

(0, 2𝜋) respectively. From now on, a Bin in this concept is a set of triangles with similar normal 

vectors. The number of Bins, 𝑛𝐵, in 𝐵𝐵𝑆𝐶𝜂,𝜌
𝛿,𝜃,𝜑

 system is equal to 𝜂 × 𝜌. Figure 5.5 (a) shows a 

𝐵𝐵𝑆𝐶4,6
𝛿,𝜃,𝜑

 with 24 Bins where 𝜃 = (0,2𝜋) and a triangle which was assigned to 𝐵𝑖𝑛2. Since the 

value of the objects like shapes, letters, and numbers on the coin image are positive in the 𝑧 axis, 

we consider the positive part of the sphere in the 𝑧 axis. As we apply the precipice borders of the 

coin surface for extracting features, we consider a histogram of normal vectors, in which the 

histogram bins cover only a small part of the hemisphere.  
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(a) 

 
 

 
(b) 

 
 

 
(c) 

 

Figure 5.4. Significant differences between the precipice borders: (a) a genuine coin 20 kroner 2008 on 

the left side and the fake counterpart on the right side in a 3D view, (b) the precipice borders of a specific 

region on a genuine Danish 2008 coin, and (c) the precipice borders of the same region in (b) on a fake 

Danish 2008 coin. 

 

The distribution of normal vectors for the precipice borders detected by PBDA is shown in Figure 

5.5 (b). Therefore, we adjust 𝜃 = (
12𝜋

26
,
𝜋

2
) and 𝜑 = (0,2𝜋) in polar and azimuthal angles to reach 
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the desired coin BBSC. Figure 5.5 (c) shows the Bins of the small part of the sphere which is used 

for the desired coin BBSC. Given that 𝐵𝐵𝑆𝐶2,8
𝛿,𝜃,𝜑

 is the precipice borders set of the image which 

are classified as 𝐵𝑖𝑛𝛿  where 𝛿 ∈ {1,2,3, … ,  16}, we have 𝐵𝐵𝑆𝐶2,8
𝛿1,𝜃1,𝜑1  with 𝜃1 = (

12𝜋

26
,

25𝜋

52
) and 

𝛿1 = {1,2, … ,8}, and  𝐵𝐵𝑆𝐶2,8
𝛿2,𝜃2,𝜑2   with 𝜃2 = (

25𝜋

52
,
𝜋

2
) and 𝛿2 = {9,10, … ,  16} emphasizing that 

𝜑1 = 𝜑2 =  𝜑. 

 

   

(a) (b) (c) 

Figure 5.5. (a) Assigning a triangle to a specific Bin in 𝐵𝐵𝑆𝐶4,6
𝛿,𝜃,𝜑

, (b) distribution of the normal vectors 

on the coin precipice borders, and (c) Desired binning for coin 𝐵𝐵𝑆𝐶2,8
𝛿,𝜃,𝜑

. 

 

Figure 5.6 shows the 2 Bin images of 16 Bin images of a Danish 20 kroner 1990 coin, for instance. 

Figure 5.6 (a) illustrates 𝐵𝐵𝑆𝐶2,8
𝛿,𝜃,𝜑

, the precipice borders when 𝛿 = 𝛿2, 𝜃 = 𝜃2, and 𝜑 = 𝜑2 and 

Figure 5.6 (b) demonstrates the precipice borders when 𝛿 = 𝛿1, 𝜃 = 𝜃1, and 𝜑 = 𝜑1. In the next 

step, all the 16 sets of the 𝐵𝐵𝑆𝐶2,8
𝛿,𝜃,𝜑

 will be used for feature extraction separately.  

 

5-4-3 Feature Extraction and Eliminating Sparse Features 

As mentioned earlier, the precipice borders in a 3D image consist of much useful information for 

feature extraction. In several methods for coin recognition, researchers used Local Binary Patterns 

(LBP) and Region Binary Patterns and divided a coin image into several rings and extracted LBPs. 

For example, in Region Binary Pattern, histograms or gradient magnitudes were calculated from 

each region and were used as a final descriptor. In this paper, however, we utilize the area of the 

triangles provided by the precipice borders of the coin surface instead of histograms or gradient 

magnitude of the color scale. In order to extract features from the precipice borders of the coin 

image, we combine the region pattern approach with the coin 𝐵𝐵𝑆𝐶2,8
𝛿,𝜃,𝜑

 proposed in subsection 

5.4.1. Using the coin BBSC allows us to include the normal vector of the triangles as well, which 
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is indispensable to extract the features from the precipice borders for detecting counterfeit coins. 

This is inspired by the act of coin experts who rotate and look at the coins with different azimuthal 

and polar angles to find dissimilarities. 

 

  
(a) (b) 

Figure 5.6. Examples of the precipice borders for a 20 Kroner 1991 coin: (a) 𝐵𝐵𝑆𝐶2,8
3,𝜃,𝜑

where 𝜃 = 𝜃2 

and (b) 𝐵𝐵𝑆𝐶2,8
11,𝜃,𝜑

 where 𝜃 = 𝜃1. 

 

Using Information Gain for ranking the features extracted from BBSC illustrated that the 

discriminating capability of each feature was markedly different after concatenating the feature-

sets of the Bins compared to when we consider each Bin feature-set separately. Hence, without 

concatenation, instead of a feature vector, we will have a set of vectors representing the coin 

considering all Bins of the coin BBSC. It means that each coin is represented by a feature matrix 

containing 𝑟 rows and 𝑐 columns where 𝑟 is equal to the number of the Bins (𝑛𝐵) and 𝑐 is equal to 

the number of regions (𝑛 × 𝑚) on the coin image. However, we will compare these two collecting 

feature approaches in Section 5.5. To extract features from each Bin, the Bin image is divided into 

𝑛 concentric rings, and each ring consists of 𝑚 sub-regions. Then the sum of the area of triangles 

from each sub-region is added to the feature-set. Figure 5.7 (a) shows an example for 3 rings and 

8 sub-regions then we have 24 small regions for any Bin image of the coin BBSC.  Figure 5.7 (b) 

and (c) show the 24 small regions for 𝐵𝑖𝑛3 and 𝐵𝑖𝑛11 of the coin BBSC respectively. After the 

feature extraction process, we have the feature matrices representing the coins, which are extracted 

from the related BBSC banks. As can be seen in Figure 5.7 (b) and Figure 5.7 (c), some of the 

features have information while some of them do not. Here, sparse features are those features 

which have frequently zero values. Therefore, the sparse features should be taken out of the 

feature-set. Eliminating the spare features is applied to each row of the matrix separately because 

each row comes from different Bin images of a coin BBCS bank and has a different meaning. It 

means that a specific row of the matrices has its own feature-set.  
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(a) (b) (c) 

Figure 5.7. (a) Concentric rings and sub-regions structure, (b) the structure for 𝐵𝐵𝑆𝐶2,8
3,𝜃,𝜑

, and (c) the 

structure for 𝐵𝐵𝑆𝐶2,8
11,𝜃,𝜑

. 

 

5-5 DETECTING COUNTERFEIT COINS USING AN ENSEMBLE CLASSIFIER 

In this section, we explain how to apply an ensemble learning method in the proposed method. As 

mentioned in subsection 5.4.2, the proposed feature extraction method represents a coin by a 

matrix whose records are the set of features extracted from the various Bins of coin BBSC. It is 

clear that an individual classifier is not able to get a matrix as an input to build a model. To do this, 

we can easily concatenate these features to form a vector. However, we also take advantage of 

stacking classification to keep the nature of the matrix for the classification step. Regarding the 

characteristics of stacking classification, it is possible to train the classification module with the 

feature matrices if we change it slightly. In order to achieve an ensemble classifier, we consider 

each row of the coin matrix separately so that we will have 𝑝 = 𝑛𝐵 datasets each of which contains 

all training samples with a different set of features and values. In the stacked generalization, a 

combination of several heterogeneous learning algorithms is applied to the same data set that 

should be divided into several sub-datasets [53]. However, this is not necessary for our ensemble 

classification algorithm thanks to having 𝑝 different datasets for the same samples (not the same 

set of features).  

Regarding reference [25], for improving stacking classification, the use of output class 

probabilities instead of class predictions is indispensable for the first-level classifiers. To this end, 

we may use several classifiers that are naturally probabilistic or can be turned into probabilistic. A 

probabilistic classifier generalizes the concept of conditional distributions instead of functions. For 

a given 𝑥 ∈ 𝑋 , 𝑃(𝑋| 𝑌)signifies that probabilities are assigned to all 𝑦 ∈ 𝑌 . The final class can 

then be predicted by this formula: 
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𝑦̂ = arg 𝑚𝑎𝑥𝑦 𝑃(𝑌 = 𝑦| 𝑋) 

 

                 (5.4) 

Generally speaking, the class with the highest probability is selected as the predicted class [54]. 

According to this, some classification models, such as Naive Bayes, Logistic Regression and 

Multi-Layer Perceptron with an appropriate loss function, are naturally probabilistic. Albeit some 

other models, such as support vector machines, are not naturally probabilistic, there exist some 

methods to convert them into probabilistic classifiers [26]. In reference [25], a formula for 

estimating output class probabilities has been provided. In this research, however, we apply to 

stack classification with a proposed reject option. A classification system with a reject option will 

ignore a case when making a decision is difficult. On account of the significant similarity between 

fake and genuine coins, in this research, the classifier with the proposed reject option is able to 

reject uncertain cases. Hence, in the first level classification, regarding reference [55] example 𝑥 ∈

 𝐷𝑘 is classified as fake or genuine only if the probability that 𝑥 belongs to 𝐶𝑖 ∈ {𝑓𝑎𝑘𝑒,  𝑔𝑒𝑛𝑢𝑖𝑛𝑒} 

is higher than or equal to a threshold 𝑡 (𝑡 =  0.5 is selected here): 

 

ℎ𝑘(𝑥) = {
𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝑖

(𝑝(𝐶𝑖|𝑥))     𝑖𝑓 𝑚𝑎𝑥𝐶𝑖
(𝑝(𝐶𝑖|𝑥)) ≥ 𝑡

𝑟𝑒𝑗𝑒𝑐𝑡     𝑖𝑓 (𝑝(𝐶𝑖|𝑥)) < 𝑡  ∀𝑖                             
 

 

          (5.5) 

Regarding Figure 5.8, by 𝑝 first-level classifiers, we construct a new dataset that contains {𝑥𝑖
′ ,  𝐶𝑖} 

where 𝑥𝑖
′ = {ℎ1(𝑥𝑖,1),  ℎ2(𝑥𝑖,2),   … ,  ℎ𝑝(𝑥𝑖,𝑝)}. To provide the reject option in order to increase the 

reliability of the prediction, the new sample 𝑥𝑖
′  will remain in the train or test set if 𝑚𝑎𝑥(𝐹,  𝐺) >

𝑚𝑖𝑛(𝐹,  𝐺) + 𝑅 and the sample will be rejected if 𝑚𝑎𝑥(𝐹,  𝐺) ≤ 𝑚𝑖𝑛(𝐹,  𝐺) + 𝑅 where 𝐹, 𝐺, and 

𝑅  are the number of predicting “fake”, “genuine”, and “rejected” of 𝑥𝑖
′  in the first-level 

classification, respectively. The performance of different strategies for selecting first-level and 

second-level classifiers will be discussed in Section 5.6. 

 

 

 

 

 

 



64 
 

Algorithm 5-1. Stacked generalization in the classification task algorithm with reject option used 

in the proposed counterfeit coin detection 

Input: Training data 𝑫𝒌 = {{𝒙𝒊,𝒌, 𝒄𝒊}𝒊=𝟏

𝒎
}
𝒌=𝟏

𝒑
 (𝒙𝒊,𝒌 ∈ ℝ𝒏, 𝒚𝒊 ∈ 𝑪), where 𝒌 is a Bin and 𝒑 is the 

number of Bins in BBSC. 

Output: An ensemble classifier 𝑯 

   1:  Step 1: Learn first-level classifiers 

   2:  for 𝒌 ← 𝟏 to 𝒑 

   3:       Learn a base classifier 𝒉𝒌 using 𝑫𝒌 

   4:  end 

   5:  Step 2: Construct new datasets from 𝑫𝒌 

   6:  for 𝒊 ← 𝟏 to 𝒎 

   7: Construct a new data set that contains {𝒙𝒊
′, 𝒄𝒊}, where 𝒙𝒊

′ = {𝒉𝟏(𝒙𝒊,𝟏), 𝒉𝟐(𝒙𝒊,𝟐),… , 𝒉𝒑(𝒙𝒊,𝒑)} 

   8:  end 

   9:  Step 3: Learn a second-level classifier 

 10:  Learn a new classifier 𝒉′ based on the newly constructed data set 

 11:  return 𝑯(𝒙) = 𝒉′(𝒉𝟏(𝒙), 𝒉𝟐(𝒙),… , 𝒉𝒑(𝒙)) 

Figure 5.8. Stacked generalization in the Classification task algorithm with reject option used in the 

proposed counterfeit coin detection. 

 

5-6 EXPERIMENTAL RESULTS 

We conducted experiments to evaluate the performance of the proposed method for counterfeit 

coin detection. Several types of coins were used, and we applied a precise 3D scanner to scan a 

large number of Danish and Chinese coins. In addition, the effect of the parameters involved in 

the proposed method is rigorously examined. In order to demonstrate the impact of the proposed 

ensemble method, we compare it with the recently related published methods. Moreover, we 

compare the effectiveness of different classifiers on the stack classification task which is an 

important part of the proposed method. The hardware of the test environment consisted of an i7-

4500U 4.2 GHz CPU (only one core was used), DDR3 6 GB RAM, the operating system used was 

Windows 8.1- 64 bit and the programming environment was MATLAB 2015 and Visual C++.Net 

2015. 
 

5-6-1 Datasets 

In this research, we created six types of height-map image datasets by a 3D scanner to train and 

evaluate the performance of our proposed ensemble system. Four different years of 20 Kroner 

1990, 1991, 1996, and 2008 and two different Chinese coins: half Yuan 1942 and one Yuan 1997 

have been selected. The first reason for selecting these specific coins is to have enough fake 

samples of these types of coins provided by the Law Enforcement office as having fake coins is a 

crucial challenge for this research. The second reason for testing our method on the mentioned 
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datasets is that in these datasets, counterfeit samples are very well-forged as far as coin experts 

cannot detect them easily. The 3D scanner that was used for capturing the coins was a powerful 

scanning device named IBIS TRAX patented by Ultra Electronics Forensic Technology Ltd. Co 

in Montreal, Canada. The machine has a built-in microscope and a 5-group of adjustable LEDs are 

configured to view the object from different angles. The precision of the scanner is about 6 microns 

resulting in a 3550 × 3550 image resolution (with the gray level of 0 to 255 for JPG and 0 to 65535 

for JPEG2000 images). As mentioned earlier in Section 3, in this research, we used the JPG images 

and resized them to 400 × 400. Table 5.1 demonstrates the number of coin images for each dataset. 

In order to train and evaluate the system, each dataset is stochastically split into training (60%), 

validation (20%), and test (20%) sets. Apart from using the validation set to avoid over-fitting, the 

parameters used in the proposed method are also tuned by comparing the results on the validation 

set. The configuration with the lowest EER on the validation set is applied to the test set 

accordingly. Figure 5.9 shows the examples of the height-map images for the six different coin 

datasets resulted from 3D scanning. 

Table 5.1. The number of coin images for Train, Validation, and Test sets in this research. 

 

Dataset 

Training set Validation set Test set 

Genuine  Fake  Genuine  Fake  Genuine  Fake  

20 Kroner 1990 1731 1480 577 493 577 493 

20 Kroner 1991 1800 1740 600 580 600 580 

20 Kroner 1996 1287 1356 430 452 430 452 

20 Kroner 2008 2400 2142 800 714 800 714 

Half Yuan Chinese 1942 261 360 87 120 87 120 

One Yuan Chinese 1997 345 426 115 142 115 142 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

 

 
(h) 

 

 
(i) 

 

 
(j) 

 

 
(k) 

 

 
(l) 

Figure 5.9. Examples of genuine and fake Danish and Chinese coin images: (a) Danish 1990, (b) Danish 

1991, (c) Danish 1996, (d) Danish 2008, (e) Chinese 1942, (f) Chinese 1997; and (g), (h), (i), (j), (k), and 

(l) are the fake counterparts of the coins respectively. 
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5-6-2 Experimental Setup and Results 

In this subsection, we describe the setup for tuning the parameters used in the explained algorithms. 

In the precipice borders detection algorithm using fuzzy clustering, the threshold 𝜏 on membership 

degrees is set equal to 0.78 manually. In more important setups, the proposed feature extraction 

and the coin BBSC are analyzed to determine the best parameters 𝜂, 𝜌, 𝑚, and 𝑛 for extracting 

features based on precipice borders detected beforehand. Firstly, we implemented the coin BBSC 

with a variable number of sub-regions 𝜂 and 𝜌 explained in subsection 5.4.2 which had 1 to 4 sub-

divisions 𝜂 with 8, 16, and 36 sub-divisions 𝜌. In this experiment, as Table 5.2 illustrates, we used 

two criteria (number of Zero-Matrix images in coin BBSC and the average of coin BBSC time) to 

find the best value for 𝜂 and 𝜌. Regarding Table 5.2, by increasing the number of sub-divisions 𝜂, 

some of the coin BBSC images which are supposed to contain some information about precipice 

borders will be the Zero-Matrix images whose pixels are all black or zero. On the other hand, we 

want to take advantage of the coin BBSC which should have at least two sub-divisions η. In Figure 

5.10 (a) to Figure 5.10 (d), the accuracy of the proposed method with respect to different values of 

𝜂 and 𝜌 are shown for the four Danish coin datasets 20 Kroner 1990, 1991, 1996, and 2008. 

Therefore, considering 𝜌 ∈ {8,16,32} and the criteria, the best selection was 𝜂=2 and 𝜌=8. In 

addition, we implemented the feature extraction module with different Bins that had different 

values for 𝑛 (the number of sub-regions) between 8 and 26 with 2 increments and 4 to 24 for 𝑚 

(number of rings) with 4 increments. Table 5.3 shows the accuracies according to these templates 

for the test data of Danish 1990 which is the most important case study in our research. Regarding 

Table 5.3, the accuracies are best when 𝑚 = 12. The best result obtained in this experiment was 

98.6% accuracy when 𝑛 = 20 and 𝑚 = 12. The total number of features extracted by the proposed 

method is 3840 which is calculated by 𝑚 × 𝑛 × 𝑛𝐵 . The size of the selected feature-set after 

eliminating sparse features is 1311, which is about three times smaller than the whole feature-set 

after feature extraction. The number of features extracted from each Bin is illustrated in Figure 

5.11. It is clear in this image that the size of the feature-set extracted from coin BBSC when 𝛿 =

𝛿2 and 𝜃 = 𝜃2 is almost two times larger compared to when 𝛿 = 𝛿1 and 𝜃 = 𝜃1. The accuracies 

mentioned in Table 5.3 and Figure 5.10 have resulted from the efficient ensemble classifier on the 

validation set, which is discussed in the next subsection.  
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Table 5.2. Comparison of coin BBSCs with different configurations for Danish dataset 1990. 

𝜼 𝝆 # of Bins (= 𝜼 × 𝝆) Avg. of Coin BBSC time (sec) # of Zero-Matrix in coin BBSC 

1 8 8 0.098 0 

1 16 16 0.113 0 

1 32 32 0.125 0 

2 8 16 0.117 0 

2 16 32 0.129 1 

2 32 64 0.172 2 

3 8 24 0.137 8 

3 16 48 0.164 16 

3 32 96 0.201 34 

4 8 32 0.155 16 

4 16 64 0.190 33 

4 32 128 0.268 69 

 

Table 5.3. Tuning the number of the sub-regions and the rings in the feature extraction process on dataset 

Danish 1990. 

𝐧 (# of sub-regions) 𝐦 (# of rings)  
4 8 12 16 20 24 

 
8  

A
cc

u
ra

cy
 (

%
) 

72.4 85.6 88.8 84.8 79.2 72.8 

10  74.9 90.3 94.3 94.1 82.4 78.5 

 12  78.5 90.8 94.7 95.4 90.2 80.3 

 14  82.2 91.2 94.9 93.2 92.0 82.5 

 16  84.6 90.4 95.5 90.8 88.4 84.2 

 18  80.1 88.9 96.2 90.6 88.7 78.8 

 20  86.3 88.2 98.4 87.4 86.3 78.1 

 22  88.2 86.3 94.6 86.4 86.7 76.1 

 24  82.3 80.9 92.6 87.8 82.1 78.6 

 26  78.3 80.9 88.2 84.1 80.6 73.7 

 

 

(a) 

 

(b) 

 

(c) 

(d) 

 

Figure 5.10. Accuracy of the proposed method with different values of 𝜂 and 𝜌 on datasets: (a) 20 Kroner 

1990, (b) 20 Kroner 1991, (c) 20 Kroner 1996, and (d) 20 Kroner 2008. 
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5-6-3 Efficient Ensemble Classifier 

Before applying ensemble classification, we used six state-of-the-art classifiers to train and test 

the method (Table 5.4). To do this, we concatenated each feature matrix of the coins to a single 

vector and used it as the input of the classifiers. To a fairer comparison of the impact of the 

concatenated feature vectors against feature matrices, we also applied an ensemble classification 

proposed in [25] and trained it by the concatenated features. Since the class fake and genuine in 

the datasets are not balanced well, comparing precision and recall as well as the rejection rate and 

the detection rate can be reasonable. Table 5.4 shows the result of the counterfeit coin detection 

by seven classifiers. The best detection rate 91.3% was about SGD (Stochastic Gradient Descent) 

while the lowest rejection rate 1.5% was about MLP (Multi-Layer Perceptron). Also, the accuracy 

reported for the ensemble classifier trained by this feature-set was by far lower than SGD. 

 

 
Figure 5.11. Number of features for each Bin for 20 Kroner 1990 coin. 

 

Table 5.4. Result of classification by seven state-of-the-art classifiers for dataset 20 Kroner 1990. 

Classifier Precision Recall Rejection Rate (%) Detection Rate (%) 

MLP 0.902 0.888 1.5 87.5 

KNN 0.864 0.833 3.0 80.8 

SGD 0.941 0.936 2.5 91.3 

Random Forest 0.824 0.840 3.2 81.3 

SVM 0.908 0.896 1.8 88.0 

MLR 0.842 0.848 2.0 83.1 

Ensemble [25] 0.847 0.856 3.6 82.5 

 

To demonstrate the discriminating capability of the feature matrices over the concatenated 

features, we apply the ensemble classifier designed in Section 5.5 and improve the performance of 
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the system. To find the efficient classifiers, first, we implemented the stack generalization with the 

same first-level classifiers and the same meta-classifier. 

In this comparison, as it is clear in Table 5.5, SGD and MLR (Multiple Linear Regressions) 

performed better than other classifiers. Then we randomly made five groups of classifiers from the 

list available in Table 5.5 and used their predicted classes as inputs for SGD (with loss function: 

Hinge loss (SVM), learning rate: 0.01, epoch: 500, and lambda: 1.0E−4) and MLR classifiers as 

meta-classifiers in two separate examinations. Group 1 is the combination of eight MLR classifiers 

trained by the bank of 𝐵𝐵𝑆𝐶2,8
𝛿1,𝜃1,𝜑1  and eight 𝐶4.5  [56] classifiers trained by the bank of 

𝐵𝐵𝑆𝐶2,8
𝛿2,𝜃2,𝜑2 . Group 2 is the combination of eight SVM classifiers trained by the bank of 

𝐵𝐵𝑆𝐶2,8
𝛿1,𝜃1,𝜑1  and eight IB1 [57] classifiers trained by the bank of 𝐵𝐵𝑆𝐶2,8

𝛿2,𝜃2,𝜑2 . Group 3 is a 

combination of eight KNN classifiers trained by the bank of 𝐵𝐵𝑆𝐶2,8
𝛿1,𝜃1,𝜑1 and eight IB1 classifiers 

trained by the bank of 𝐵𝐵𝑆𝐶2,8
𝛿2,𝜃2,𝜑2. Group 4 is a combination of eight KNN classifiers trained by 

the bank of 𝐵𝐵𝑆𝐶2,8
𝛿1,𝜃1,𝜑1 and eight IB1 classifiers trained by the bank of 𝐵𝐵𝑆𝐶2,8

𝛿2,𝜃2,𝜑2. Group 5 is 

a combination of eight KNN classifiers trained by the bank of 𝐵𝐵𝑆𝐶2,8
𝛿1,𝜃1,𝜑1  and eight MLP 

classifiers trained by the bank of 𝐵𝐵𝑆𝐶2,8
𝛿2,𝜃2,𝜑2. As can be seen in Table 5.6, the combination of 

Group 2 with both SGD and MLR produced remarkable results in terms of precision, recall, and 

RMSE while SGD outperformed MLR as a meta classifier. Therefore, we consider the 

combination of Group 2 and SGD as the efficient ensemble classifier. 

 

Table 5.5. Performance of counterfeit detection by same classifiers for the first-level and the meta-

classifier on dataset 20 Kroner 1990 

16× First-level Classifiers Meta-Classifier Precision Recall Rejection Rate (%) Accuracy (%) 

MLP MLP 0.941 0.936 0.8 92.8 

KNN KNN 0.946 0.933 1.0 92.4 

SGD SGD 0.988 0.988 1.1 97.7 

Random Forest Random Forest 0.968 0.961 1.0 95.1 

Decision Tree C4.5 Decision Tree C4.5 0.930 0.923 1.4 91.0 

Logistic Regression Logistic Regression 0.966 0.965 1.4 95.1 

Naïve Bayes Naïve Bayes 0.899 0.896 1.0 88.7 

KStar KStar 0.940 0.941 1.6 98.4 

SVM SVM 0.944 0.944 0.8 93.6 

IB1 IB1 0.946 0.933 0.9 92.5 

MLR MLR 0.982 0.980 0.7 97.3 
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Table 5.6. Performance of counterfeit detection by several groups of classifiers for the first-level and the 

meta-classifier on dataset 20 Kroner 1990 

First-level Classifiers Meta-Classifier Precision Recall RMSE 

Group 1 SGD 0.972 0.968 0.1782 

Group 1 MLR 0.970 0.968 0.1810 

Group 2 SGD 0.993 0.992 0.0867 

Group 2 MLR 0.992 0.992 0.0891 

Group 3 SGD 0.971 0.970 0.1658 

Group 3 MLR 0.970 0.969 0.1810 

Group 4 SGD 0.986 0.986 0.0935 

Group 4 MLR 0.986 0.986 0.1003 

Group 5 SGD 0.979 0.979 0.1448 

Group 5 MLR 0.973 0.972 0.1454 

 

In order to perceive the impact of precipice border analysis on extracting effective features, we 

compared the proposed BBSC with Gabor filter bank with different wavelength={3, 5, 10, 15}. As 

in the proposed method, the number of Bins in azimuthal angle was 8, we consider 8 

directions={0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5} to build the Gabor filter bank. Then, instead of 

the area of triangles, we calculated the number of non-zero pixels in each sub-region for feature 

extraction (we display it here with the star sign). Another comparison for the feature extraction 

step is to use Circular Shift of Gabor coefficients (CSGabor) for feature representation which is 

presented in [10]. We also performed feature selection by eliminating sparse features on these 

three methods. As can be observed in the results of the accuracy listed in Table 5.7 for these three 

methods, the proposed BBSC method has a significant impact on the feature extraction process 

rather than using Gabor filter-based method. Although the feature dimension for CSGabor was 

1177 and smaller than the proposed method, the feature extraction time was a bit slower. The 

feature extraction in method (*) was faster, although the feature dimension was 1706 and the 

highest. 

Table 5.7. Comparison of two feature extraction methods based on Gabor filter with the proposed BBSC 

based feature extraction in terms of accuracy of the efficient ensemble classifier on the height-map 

datasets 

Method 
Danish 

1990 

Danish 

1991 

Danish 

1996 

Danish 

2008 

Chinese 

1942 

Chinese 

1997 

Proposed BBSC based 98.6 98.0 99.8 99.9 95.5 92.2 

Gabor filter bank (*)  92.6 91.0 95.5 95.7 87.6 78.5 

CSGabor [10] 90.2 76.8 92.2 88.1 64.9 70.7 

 

In Table 5.8, we report the performance of the proposed method on the six datasets separately. As 

expected, the highest accuracies in counterfeit coin detection were about Danish 1996, and 2008 
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coins. While Precision, TP, and FP were 1.0, 1.0, and 0.0 respectively for both datasets, the 

accuracy for Danish 1996, and Danish 2008 were 99.8, 99.9 respectively because of a very low 

rejection rate in both tests. For the Chinese coins, we got acceptable results as we had a smaller 

dataset than Danish datasets. Also, the rejection rates for Chinese data sets, in this experiment, 

were by far higher than other data sets. The results for precision, recall, TP, and FP are weighted 

averages of the two classes. As mentioned previously, the accuracies for both 20 Kroner 1996 and 

2008 were dramatically high while we got 98.6 and 98.0 accuracies for 20 kroner 1990 and 1991 

respectively. The detection failures for Danish 1990 and 1991 are caused by the significant 

similarities between the genuine coins and their fake counterparts. The precipice borders detected 

in 2008 and 1996 for the fake coins are dramatically thicker than the genuine counterparts. Hence, 

there would be a big difference between the coin BBSCs of genuine and fake coins. In this case, 

the coin BBSC approach is more effective on the feature extraction and makes the features more 

separable insofar as the number of rings and sub-regions is no longer very important. By contrast, 

the number of rings and sub-regions should be optimized if there is no significant variation in the 

thickness of the details on the coins. In such circumstances, there should normally be significant 

differences in precipice border orientations which are considered by rings and sub-regions in 

feature extraction.  

Table 5.8. Performance of the proposed method for all available datasets. 

Datasets  Precision 
TP 

Rate 

FP 

Rate 

Rejected-

fake (%) 

Rejected-

genuine (%) 

Accuracy 

(%) 

20 Kroner 1990  0.993 0.992 0.007 0.4 0.2 98.6 

20 Kroner 1991  0.984 0.984 0.034 0.1 0.3 98.0 

20 Kroner 1996  1.000 1.000 0.000 0.15 0.0 99.8 

20 Kroner 2008  1.000 1.000 0.000 0.1 0.0 99.9 

Half Yuan Chinese 1942  0.973 0.972 0.025 1.7 0.0 95.5 

One Yuan Chinese 1997  0.935 0.929 0.262 0.7 0.0 92.2 

 

5-6-4 Comparison with Previous Methods 

We compared the proposed method with five recent works published in the field of counterfeit 

coin detection and coin recognition, noting that the data used for this comparison was exactly the 

same as we used to train and evaluate our proposed method. First, we calculated the accuracy of 

the models trained by the six datasets and compared them.  
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Table 5.9. Comparison of previous research in terms of accuracy. 

Datasets [11] [9] [48]  [10] [1] Proposed 

20 Kroner 1990 87.2 NA 94.2 94.1 93.2 98.6 

20 Kroner 1991 86.4 92.1 95.6 92.2 96.6 98.0 

20 Kroner 1996 98.0 96.8 99.5 97.7 100 99.8 

20 Kroner 2008 92.8 95.5 100 95.2 99.6 99.9 

Half Yuan Chinese 1942 70.5 NA 99.7 76.3 87.0 95.5 

One Yuan Chinese 1997 64.6 NA 78.2 75.5 82.5 92.2 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.12. ROC comparison on four Danish coin datasets: (a) 20 Kroner 1990 dataset, (b) 20 Kroner 

1991 dataset, (c) 20 Kroner 1996 dataset, and (d) 20 Kroner 2008 dataset. 

As we can see clearly in Table 5.9, the proposed method with the efficient ensemble classifier 

discussed in subsection 5.6.3, outperformed the other previous methods in most cases. The results 

demonstrate that the proposed method has obtained a significant improvement in the classification 
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of the coins, especially for Danish 1990, 1991 dataset, and Chinese coin datasets. As the image 

features employed in Sun et al.’s method are specified for the 20 Kroner 1991, 1996, and 2008 

coins, they cannot be applied to the 20 Kroner 1990 and Chinese coin datasets. Since the 

performance of the system, in this research, is more important when the system classifies the fake 

coins, we evaluated the proposed method by comparing it with Li Liu et al.’s method [1], in terms 

of Receiver Operating Characteristic curve (ROC curve) and Area Under the Curve (AUC) for the 

fake coins. The ROC comparison on 20 Kroner 1990, 1991, 1996, and 2008 datasets are illustrated 

in Figure 5.12. The ROC curves in Figure 5.12 (a) to Figure 5.12 (d) simplify the trade-off between 

the True Positive Rate (TPR) and False Positive Rate (FPR) for the models using various 

probability thresholds. In these figures also, the AUCs demonstrate a substantial performance over 

Li Liu et al.’s method, especially for 20 Kroner 1990, and 1991. 

 

5-6-5 Example of a Misrecognized Coin 

In this subsection, we provide an example of a coin misrecognized in our system. Figure 5.13 

illustrates the image of precipice borders (∑ 𝐵𝐵𝑆𝐶2,8
𝛿,𝜃,𝜑16

𝛿=1 ) of a 20 Kroner 1996 coin on which 

the regions of features are specified. Albeit the coin is a genuine one and is not a very damaged or 

difficult case for recognition, our system is not able to distinguish it from the fake pattern. As it 

can be seen clearly from the example, there are a lot of regions with deep scratches. 

To make the issue clearer, we should compare the coin with another genuine coin which has also 

deep scratches but the system was able to recognize them. As mentioned before in subsection 5.4.3, 

when features have frequently zero values entire the dataset, they are removed from the feature-

set and will have no effect on the classification process. Normally, the scratches have values and 

are on those regions of coins, which have frequently zero values. These scratches will be omitted 

because of the removal of sparse features. The problem occurs when the scratches are placed on 

those regions of coins that remain in the features set. Therefore, the values related to the scratches 

will be added to the correct values and mislead the classifier. In Figure 5.13, some scratches with 

this condition have been marked by yellow arrows. To solve this problem, we could shrink the 

regions by increasing the number of rings and sub-regions. As discussed before in subsection 5.6.2, 

increasing the number of rings or sub-regions will not necessarily lead to a better classification, 

although it could solve the problem for our rejected example. 
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Figure 5.13. An example of 20 Kroner 1996 with deep scratches rejected by the system. 

 

5-7 CONCLUSION 

In this study, we found an efficient method to detect different types of counterfeit coins. In this 

research, four major contributions have been made. First, we created six height-map image datasets 

of coins and proved that 3D approaches are remarkable in counterfeit coin detection. Secondly, in 

our proposed method, there was no need for restoring the degraded images. Thirdly, we extracted 

high discriminating features based-on precipice border analysis. Finally, an ensemble classifier 

was designed and trained by the extracted feature matrices. The experimental results for Danish 

and Chinese coin datasets were remarkable. It is also worth noting that the method can be simply 

applied to various 3D applications like face recognition and medical imaging with configuring 

BBCS parameters. 

For future research, considering the similarity between fake and genuine coins and the lack of fake 

samples, implementing a system that can classify the coins and determine how much a coin belongs 

to a specific class, could be interesting. Because in many cases, we need to detect the coins which 

are not fake but are of very poor quality or worn out so that governments can take them out of 

circulation and replace them with new ones. Another future work for this research is to build a 

model that can be trained with all kinds of datasets without considering the type of coins due to 

the informative and discriminating features extracted by our proposed methodology. 
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Abstract. In this research, we take advantage of deep learning approaches to improve the 

performance of counterfeit coin detection. We compensate for the lack of fake coins by using 

Generative Adversarial Network. As most of pre-trained networks accept three channels for their 

input, we propose a new method to represent the relief map (height-map image) in three 

geometrical forms with Steep, Moderate, and Gentle slope. Therefore, we propose a new channel 

for the height-map images for generating fake coins and training a pre-trained network. Then, we 

proposed a hybrid method using fine-tuning pre-trained deep neural networks to detect fake coins 

and provide a rejection option to increase the reliability of the system. While a small number of 

fake coins available in this research are used in the training process, the model is mostly trained 

by the images that are generated as fake coins from the genuine ones. However, the system 

produces remarkable results to classify the coins. It is also worthwhile to note that the method can 

even be applied to those types of coins that their genuine or fake counterparts have never 

previously been seen by the model. 

 

6-1 INTRODUCTION 

Counterfeit coin detection has been enticing researchers in the field of forensic science for decades. 

In non-circulating coin markets, ancient and valuable coins, counterfeiting is the most serious issue 

facing collectors today that could cost billions of dollars every year. In the past, rare coins were 

forged to deceive tourists, inexperienced people, or novices. These days, the technology of 

counterfeiting has grown exponentially that can even fool coin experts in some cases [3].  
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6-1-1 Problem Statement 

Thanks to the increased necessity on the intelligent approaches to recognize counterfeit coins, 

image-based coin detection has continuously been evolving in recent years. According to previous 

works, coin detection is mostly based on 2-Dimensional image processing techniques. Many 

researchers have extracted features from the surface of the coin images and analyzed them. The 

difficulty level of coin detection vitally depends on the quality of the coin datasets used in coin 

recognition studies. Fortunately, all the standard datasets used for coin detection are captured with 

plain backgrounds, such as pure white or conveyor belt with gray levels [1]. However, fake coin 

detection is more challenging than coin recognition because of the very high similarity between 

counterfeit and genuine coins, needing more sophisticated features to distinguish between classes. 

Some of the standard features in coin recognition like diameter, thickness, weight, or shape may 

be effective for coin recognition or detecting some counterfeit coins. But we should note that these 

preliminary attributes are easy for counterfeiting, and the fake coins made nowadays are of high 

quality. Therefore, these systems cannot distinguish counterfeit coins from genuine ones when 

their primary physical properties are precisely the same. Recently, several methods based on image 

processing techniques and classification algorithms have been proposed to improve the 

performance of counterfeit detection systems, and many lectures and tutorials have been devoted 

to them [45]. Some of these methods are not very complicated and use coin colors and radius-

based features to detect counterfeit coins. Unfortunately, these approaches are incapable of 

detecting well-forged counterfeit coins and are also not able to handle the problems related to poor-

quality or worn-out coins.  

In this research, we applied 3-D scanning to create six height-map image-datasets. Using such 

relief map images can compensate for the quality problems of the coins in many cases.  

In this paper, we apply deep learning algorithms in different steps to design our proposed method. 

As Generative Adversarial Network (GAN) is being used for generative fake images in image 

processing applications, we propose a method to augment our fake coin class and compensate the 

lack of counterfeit coins for training the classifier based on GAN. We also decomposed the coin 

height-map image into three proposed channel Steep, Moderate, and Gentle slopes. Therefore, the 

grayscale height-map image is turned into the proposed SMG height-map channels. Then, we used 

transfer learning to retrain a pre-trained neural network and classify these new SMG images. 
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6-1-2 Related Works 

Recently, a lot of articles were published for presenting image-based and non-image-based 

methods to distinguish fake from genuine coins. For example, in non-image-based methods, the 

authors in [15] proposed a method using an optical mouse to detect fake two-Euro coins. Although 

the method was useful for coin authentication, the report in this paper indicates that the system 

cannot identify most of the well-forged coins as counterfeit. In [16] a method based on acoustic 

signal spectrum analysis for authentic and fake coins, has been proposed. While low costs and high 

accuracy were reported as the strength of the method, this method was evaluated by a very small 

dataset only. 

However, exploiting images to detect counterfeit coins can benefit from low cost and high 

efficiency. Feature extraction is the most critical part of image-based counterfeit coin detectors. 

Therefore, coin images are processed by using different techniques of feature extraction such as 

Fast Fourier Transformation, Gabor Wavelets, image subtraction, edge detection, and 

segmentation, blob detection, and other image processing algorithms. Accordingly, after extracting 

effective features from the coin images, other image processing techniques and machine learning 

are applied to classify the set of features and detect the counterfeit coins. For example, in [58], a 

system for Indian coin recognition by Heuristic approach and Hough Transform (HT) has been 

proposed. The proposed method has been limited to recognizing only the Indian Coins. 

Furthermore, there are some methods for coin classification in which edge information has been 

used as features of images with Fourier transform [12], [38]. In [4], a feature extraction method 

was applied to the letters and characters that were previously segmented. Albeit the results 

mentioned in the paper were significant, the method was not applicable for any type of coin as it 

was limited to characters of specific coins. However, edge features are not strong enough because 

they are undeniably distorted by noises such as rust, dust, and abrasion. 

In [8], the structure of the coin was exploited by using spatially local coding to extract useful 

features from the surface of the coin image. In reference [11], the authors proposed a region binary 

patterns method which was rotation-invariant. They applied gradient magnitudes instead of 

histogram analysis and extracted rotation-and-flipping-robust features using local difference 

magnitude transform. Although the result is acceptable to coin classification, the method is not 

able to distinguish fake from genuine as it does not concentrate on the similarity of counterfeit and 

genuine coins. The authors in reference [1] proposed to employ local descriptors to generate image 

representations. However, instead of resorting to the BOVW (Bag of Visual Words) model for a 



78 
 

generation of vectorial representations, the authors represented a coin image in the dissimilarity 

space. They conducted single-class learning for counterfeit coin detection. However, the method 

was susceptible to any variation and not suitable for poor quality coins. 

Besides the classic image processing techniques, in [13], a transfer learning approach by fine-

tuning a pre-trained network to analyze the features of characters on the coin surface has been 

used. The authors used an ensemble method to combine results of two classifiers trained by deep 

features from convolutional layers as well as a third classifier that was trained on a distance-based 

feature of characters. The method, to the best of our knowledge, was the first use of deep learning 

to counterfeit coin detection. Yet, the results illustrated that the method did not have superiority 

over recent methods. 

Since the use of 3-D height-map images discover highly confident features, they can overcome 

some constraints introduced by other 2-D image classification methods. In our recent works, we 

took advantage of height-map image analysis to detect counterfeit coins while other researchers in 

the literature have not applied it. In references [45], [48], the characters of the coin images were 

straightened by a proposed straightening algorithm. The height-map image, then, was decomposed 

row-wise to a set of 1-D signals, which were analyzed separately and restored by two different 

proposed methods. Although these approaches produced remarkable results in accuracy rather than 

related works, they were not efficient in detection time.  

 

6-1-3 Proposed Framework Overview and Contributions 

In this paper, we propose a new method based on deep learning algorithms in two steps to detect 

counterfeit coins. Here, we use six height-map image datasets to take advantage of 3-D image 

processing. As Generative Adversarial Network (GAN) is being used for generating fake images 

in image processing applications, we propose a novel method using GAN to produce new samples 

to our fake coin class and compensate for the lack of counterfeit coins for training the classifier. 

In this method, we decompose the coin height-map image into three types of Steep, Moderate, and 

Gentle slopes. Therefore, the grayscale height-map image is turned to the proposed SMG height-

map channel. Then, we propose a hybrid deep neural network to train and classify these new SMG 

images. Figure 6.1 illustrates a general schema for the proposed method. In this research, the 

proposed methods are trained and tested with four types of Danish and two types of Chinese coins 

with encouraging results. 



79 
 

This paper concentrates on proposing a deep learning-based method to detect counterfeit coins. 

However, the proposed approach has much broader applications in the context of height-map 

image classification. The major contributions of the proposed framework are summarized as the 

following:  

a) Creating six SMG image datasets that are proposed for counterfeit coin detection: We 

successfully decompose a relief map to three separate images with no overlap in the value of 

pixels and convert them to SMG channel. This conversion causes CNNs to pay more attention 

to the worthwhile relief map information like slopes of different regions. 

b) Generating fake coin images for training the models by Generative Adversarial Networks to 

compensate for the lack of counterfeit coins in the research. 

c) Proposing a hybrid CNN method based on fine-tuning by SMG relief map images instead of 

grayscale images. 

d) No need for some essential preprocessing methods to normalize, rotate and scale the images 

that are essential in most image-based coin recognition systems.  

e) Building a model that uses only one type of coin and detects counterfeit coins of other types. 

This can be very useful in case that we do not have any fake samples of specific coin to train 

a model and distinguish genuine from fake ones. 

The rest of the paper is organized as follows. Background of research and preliminary concepts 

related to the proposed method will be described in Section 6.2. In Section 6.3, the proposed 

method will be presented. Section 6.3.1 presents the concept and proposes a method to decompose 

height-map images to Steep-Moderate-Gentle (SMG) slope channels. Section 6.3.2 describes the 

proposed GAN for generating fake samples. Section 6.3.3 designs a new hybrid CNN classifier 

with a rejection option for counterfeit coin detection. 

In Section 6.4, the experimental setup and results are given to show the performance of the 

proposed method regarding counterfeit coin detection. Finally, the paper concludes with a 

summary of the primary contributions of this research and suggests an outline for future work in 

Section 6.5. 
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Figure 6.1. Structure of the proposed framework. 

 

6-2 BACKGROUND AND PRELIMINARY CONCEPTS 

6-2-1 Height-Map Image Benefits 

A height-map contains one channel interpreting a distance or height from the background of a 

surface and is stored as a grayscale image. Darker colors represent the shorter height, and brighter 

ones represent longer where black is the minimum and white is the maximum height.  Pixels are 

effectively valued by height or depth, instead of colors related to coin luminance. Therefore, the 

most important benefit of 3-D scanning is robustness against the quality of the coin. This capability 

contributed to purifying images captured from sulfated, rusted, or colored coins [45]. 

Representing a depth/height-map can also be found by a colormap. It is shown in Figure 6.2 (b) a 

color depth-map for Figure 6.2 (a). In Figure 6.2 (b), the depth image is represented as a jet 

colormap image, where blue and red are meaning closer and farther objects, respectively. It can be 

visualized that the depth change is gradual in this figure [59].  

https://en.wikipedia.org/wiki/Channel_(digital_image)
https://en.wikipedia.org/wiki/Grayscale
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Figure 6.2. (a) Color map, and (b) normal map for height/depth image [59]. 

 

However, a colormap of depth or normal is only used for better visualization in many applications. 

They could also be considered in the feature extraction process. In this paper, instead of focusing 

on depth information, we decompose objects and important parts of objects on a coin surface based 

on three slopes (Steep, Moderate, and Gentle) that are very useful for feature extraction or training 

a deep neural network. 

6-2-2 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN), also known as a ConvNet is one of the most commonly 

used deep neural networks in the field of image processing. A Multilayer perceptron usually has 

fully connected networks in all layers, also called dense layers, where each neuron of a layer is 

connected to all other neurons in the next layer. This characteristic of the dense networks leads 

them to overfit in many cases. Without concentrating on any specific segments of images, dense 

layers learn global patterns in input images. In CNN, the network is not fully connected in all 

layers. With convolution operation, convolution layers learn the local pattern. As can be seen in 

Figure 6.3, convolution operations are used to find patterns in small 2D windows of the input 

image. Another essential action in CNNs is pooling, also known as subsampling or down-

sampling. The main reason to use pooling is to reduce the dimensionality and complexity. Pooling 

layers are usually placed after convolution layers. By reducing the dimensionality as well as the 

complexity of the input and parameters, the overfitting phenomenon would be suppressed.  

It should be noted that max-pooling outperforms alternative solutions like using strides in the prior 

convolution layer or average pooling. As is clear in the Figure 6.3, the fully connected layer is 

typically put after the convolutional and pooling layers meaning that the output of the last layers 

 
(a) 

 
(b) 

https://en.wikipedia.org/wiki/Overfitting
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is the input to the fully connected layers. To assign each node to a specific class (a person 

nationality in this example), an activation function naming softmax is used to produce the 

membership degree of the input to each class, where the sum of all probabilities is 1.  

 

 Figure 6.3. Structure of Convolutional Neural Networks. 

 

A common and highly effective approach to deep learning when image datasets are very small is 

to use a pre-trained network. A pre-trained CNN is a saved network that was trained previously 

by a large dataset [27]. CNN models are getting deeper and improving by new structures that are 

being proposed frequently. Several structures of state-of-the-art pre-trained CNNs like LetNet-50 

[28], AlexNet [29], VGGNet [30], ResNet [31], MobileNet [32], DenseNet[60], and Google’s 

Inception v3 [33] were proposed in the literature.   

A pre-trained network can be used in feature extraction and fine-tuning in two different 

approaches. Hence, feature extraction is to take the convolutional base layers of a previously 

trained network, and run the new data through it, and train a new classifier on top of the output 

layer. Fine-tuning changes and optimizes the filter weights of newly added blocks of the network 

iteratively. It freezes the first two convolution base layers. While those the frozen layers already 

extracted generic types of features like edges, fine-tuning will update all intermediate layers with 

new data [27].  

 

6-2-3 Deep Convolutional Generative Adversarial Networks (DCGAN) 

Generative Adversarial Networks (GANs) are one of the most popular deep neural networks which 

are used to generate fake images from a set of original images [34]. Here, two models are trained 

at the same time by the adversarial learning process. A generator model learns to create fake 

images with high similarity to its counterpart, while a discriminator model learns to distinguish 

real images apart from fakes. Here, both generator and discriminator models are types of CNNs 

and fine-tuned. The generator tries to fool the discriminator network during the training process. 

https://arxiv.org/abs/1406.2661
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By generating realistic images, discriminator learns to find dissimilarity. The result of this 

competition is to generate artificial images that are not easily distinguishable from genuine ones. 

One of the most critical challenges in this study is the lack of fake coins. Since counterfeiting a 

coin for the research is impossible and the fake samples provided by the Law Enforcement Office 

are not enough for both training and test processes, we consider GANs to produce fake samples 

for training our counterfeit detector.  

 

6-3 PROPOSED FRAMEWORK 

6-3-1 Steep-Moderate-Gentle (SMG) Slope Channels for Height-Map 

Images 

Most of the pre-trained networks for image processing applications get three channels as input. To 

employ the pre-trained models and use grayscale images for fine-tuning, we can also repeat the 

grayscale images over three channels, while it would be an overload without benefiting all power 

of the pre-trained network. Therefore, having three channels carrying meaningful information can 

strengthen the networks for classification. In addition, augmenting height-map grayscale images 

should be more than shifting, rotating, adding noise, or other commonly used methods. Using 

GANs for augmenting grayscale images is remarkable. While the augmented images by GANs are 

useful for 2-D image processing, they are not always suitable for height-map image analysis, since 

the height information is not protected after augmentation, and object luminance in the image is 

concentrated for generating processes instead. 

In this research, we propose a new method to decompose a height-map image into three different 

slopes. In a coin height-map image, considering spherical coordinates, we define three slopes. We 

first, triangulate the height-map image and find normal vectors for tringles on the coin surface by 

proposed gridding. Figure 6.4. (a) shows the triangulation gridding on the image matrix applied to 

the coin image. As in the triangulation gridding, the gray triangles cover all pixels of the image, 

the white triangles are disregarded with the aim of reducing the processing time. 

Since the resolution of the height-map images affects the normal vectors of triangles on a specific 

region, we normalize the height-value by the coin diameter and thickness for normal vector 

computations. Then, we normalize all values by min-max normalization by: 

𝑀𝑎𝑥𝑧 =
𝑟 × 𝑡

𝑑
 (6.1) 
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𝑧2 =
𝑧1

𝑀𝑎𝑥𝑧
 (6.2) 

 

where 𝑡 and 𝑑 are the coin thickness and diameter respectively, and 𝑟, 𝑧1 and 𝑧2 are number of 

rows of image matrix, the pixel value of the point, and the normalized value for 𝑧1, respectively. 

To improve the decomposition process, we also consider a larger triangle for each sample whose 

vertices are the neighbors of each triangle. Figure 6.4. (b) illustrates the larger triangle which 

covers a neighborhood of the triangle sample. Accordingly, there may be an angle between these 

two triangles. 𝛼 is the angle between the larger triangle and the triangle sample. Also, 𝛼 can be 

computed by: 

𝛼 = cos−1 (
|𝑁𝑠.⃗⃗ ⃗⃗  ⃗ 𝑁𝑏

⃗⃗ ⃗⃗  |

‖𝑁⃗⃗ 𝑠‖ × ‖𝑁⃗⃗ 𝑏‖
) (6.3) 

where 𝑁𝑠  is the normal vector of the triangle sample, 𝑁𝑏 is the larger triangle, and ‖𝑁⃗⃗ ‖ is the 

magnitude of the normal vectors.  

A large 𝛼 computed for any triangle demonstrates that this triangle is not following the pattern of 

its neighborhood and probably is a noise or a very tiny scratch. Therefore, we count these tiny 

scratches as Gentle slope, which are less important to represent the characteristics of the coin.  

Assuming level with the normal vector of 𝑁𝑙 = (0, 0, 1), Gentle slope covers all parts on the coin 

surface where the angle between their normal vector and 𝑁𝑙 , is smaller than a threshold 𝜏1 . 

Accordingly, Moderate and Steep slopes must meet the conditions with thresholds 𝜏1 and 𝜏2, as 

defined in Equation 6.4 where function 𝐶 gets a normal vector of each triangle and returns its class. 

Figure 6.5 illustrates the normal vector distribution on coin surfaces considering Steep, Moderate, 

and Gentle slopes. Therefore, after decomposing a height-map image, we have three matrices 

representing the coin image, and we name it SMG channel. 

We should note that S, M, and G matrices have no overlap in their elements. It means that if an 

element in matrix S has a non-zero value, the other matrices have zero value in the same elements. 

Hence, we can easily store them in JPEG files and visualize them in a single image with a specific 

type of RGB color model, which we name it SMG or RGB-NO (RGB with No Overlap). Turning 

the SMG image into S, M, and G matrices is also very simple. Figures 6.6 (a), (b), (c), (d), and (e) 

demonstrate a grayscale height-map image of a fake Chinese 1942-coin, Gentle slope, Moderate 

slope, Steep slope, and SMG image of the coin, respectively. Figures 6.6 (f) through (j) are the 

same images for a genuine Chinese coin. In this difficult case, distinguishing the genuine and fake 

coins is very challenging by the grayscale image. In contrast, SMG images of the coins provide 
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discriminative information to predict the class of the coins. Focusing on the color of the slopes of 

the same regions on the genuine and fake coins clearly illustrates a significant difference between 

them. This is inspired by the coin experts that rotate and look carefully at the coins with different 

azimuthal and polar angles to find dissimilarities in the edges and the slopes. However, they can 

also be deceived by a very-well forged coin like the Chinese coin example.     

𝐶(𝑛) = {

𝐺𝑒𝑛𝑡𝑙𝑒            𝑖𝑓          𝜃 < 𝜏1

 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒   𝑖𝑓    𝜏1 ≤ 𝜃 < 𝜏2

𝑆𝑡𝑒𝑒𝑝              𝑖𝑓          𝜃 ≥ 𝜏2

 (6.4) 

Figure 6.7 shows a 3D visualization of an SMG height-map image in RGB-NO color map model. 

As can be seen in this figure, the objects are perfectly decomposed to SMG channel leading to 

significant details. 

 

  

(a) (b) 

Figure 6.4. (a) Triangulation of the height-map image; the triangle array, and (b) the larger triangle. 
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Figure 6.5. Normal vector distribution for the SMG channel.  

 

6-3-2 Proposed Generative Adversarial Network for Generating Fake 

Coin  

In this subsection, we design our proposed DCGAN to generate fake coin images. This network 

gets several SMG images of genuine and a very small number of fake coins as input and produces 

fake coin SMG images. As shown in Figure 6.8, the general structure of the proposed GAN is 

rather standard with a minor change. Since the network is fed by RGB-NO images, the output must 

also be the same. Therefore, we need a post-processing module to purify S, M, and G into the non-

overlapping condition. Inside the network, we build a sequential model for both generator and 

discriminator. We initialize the network input by random noise from the latent space using a 

normal distribution like Gaussian distribution. 
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(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 6.6. fake and genuine Chinese 1942 coin: (a) grayscale height-map image of a fake Chinese half 

Yuan coin, (b) Gentle, (c) Moderate, and (d) Steep slopes of the fake coin and (e) an SMG image for the 

fake coin. (f), (g), (h), (i), and (j) are the same image as above for the genuine coin. 

 

 

Figure 6.7. Steep, Moderate, and Gentle slopes on a 1990 Danish coin. 

 

Figure 6.9 provides details about the layers added to generator and discriminator models. The last 

activation function in the generator is set to tanh instead of sigmoid or other commonly used 

activations. Although in most cases of deep neural networks, sparsity can play a positive role, in 

GAN, sparse gradients can adversely affect the training process. To tackle this issue, as suggested 

by [27], we use strided convolutions for down-sampling and LeakyReLU layer as an activation 

that can handle the sparsity problem by small negative activation values. In this research, the first 
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block of the generator transforms the input into a 50×50 512-channel feature map where the size 

of the training images is selected be 200×200 in this study. 

Since the real images of the network inputs are SMG images, unequal coverage of the pixel space 

in the generator is lesser compared to when the images are the standard RGB. To stabilize the 

learning processes, as can be seen in Figure 6.9, we employ batch normalization after using the 

Conv2DTranpose or Conv2D in both the generator and the discriminator. 

 

 

Figure 6.8.  Proposed fake coin generator. 
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6-3-3 Proposed Hybrid Convolutional Neural Networks 

In this subsection, we propose a hybrid CNN based on fine-tuning to detect counterfeit coin and 

provide a rejection option. Fine-tuning is a widely used technique for reusing a model that was 

pre-trained by a massive benchmark dataset. In this study, before achieving a new idea, we fine-

tuned several state-of-the-art CNNs like VGG16, VGG19, and Resnet50 networks and found the 

best pre-trained model for our research. As VGG16 outperformed other networks, we propose a 

new structure based on a combination of two VGG16 pre-trained networks and three custom 

densely connected classifiers. These networks are pre-trained on ImageNet dataset [61], which 

contains millions of images with multiple dogs and cats classes. For counterfeit coin detection, we 

have two classes plus a rejection option. Hence, the top fully connected layers of these networks 

are truncated and must be replaced by the custom fully connected networks. 

Figure 6.10 illustrates the general workflow of our hybrid method. In this method, we build a black 

box, including Model 1 and Model 2. The black box is trained in the first stage of training. In this 

stage, Model 1 and Model 2 are trained separately by the same training dataset. When the black 

box is trained, all layers in both models are frozen for the second stage of training. In the second 

stage of training, we train the last fully connected classifier by tuning the weights. The input of the 

last classifier is the output of the black box, which is a tensor of two real values in the range (0,1), 

which are produced by using all training samples for the second-round training. Normally these 

values are used for classification, meaning that a value greater than 0.5 is assigned to class 0; 

otherwise, it is classified as class 1. As figure 10 illustrates, the outputs go indirectly to neurons A 

and B of the densely connected classifier. Still, only one of the neurons A and B are turned on as 

the input of the classifier. Before one of the outputs 𝑂1 and 𝑂2 participates in the training of the 

last classifier, 𝑆(𝑂1) that is a selective function turns on one of the neurons. The input, models, 

blocks, and the function employed in the proposed framework are defined below. 

Input: of the hybrid method is an SMG height-map image that facilitates feature extraction for the 

models due to clarification of the important regions in the process of decomposition discussed 

earlier in subsection 6-3-1. 

Model 1: is a completely frozen VGG16 with a custom densely classifier on top. The custom 

classifier has a flatten, a fully connected layer with 256 neurons and activation relu, and a dense 

output node with one neuron and activation sigmoid. It would merely be used for extracting 

features to avoid misleading the classifier by poor quality or uncertain cases and enabling a 

rejection option. Model 1 is trained in only one epoch. Therefore, we employ Model 1 to handle 
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the misleading issue related to damaged coins, which may happen in Model 2. The logic behind 

this decision will be discussed in section 4, comprehensively. 

Model 2: is a VGG16 pre-trained network that we unfreeze a few frozen layers at the top to fine-

tune the network. We fine-tune the last three convolutional layers and all other layers are frozen. 

We also add the custom model the same as Model 1 to define our densely connected classifier for 

Model 2. Fine-tuning the network is started by RMSProp optimizer with a very low learning rate. 

The initialized weights of unfrozen layers are continuously updated over the training process 

leading the network to learn features specific to counterfeit coin detection. Because this model 

tries to update the weights to assign the samples to one of fake or genuine classes, it is not able to 

keep interclass distance related to damaged coins or uncertain cases for rejecting. Therefore, the 

model can perfectly classify the coins when their quality is not very poor. As mentioned earlier, 

we let Model 2 to train enough; at the same time, we apply Model 1 with the aim of balancing the 

problem of misleading the last densely connected classifier. 

Selective: is a function that turns on one of the neurons A or B as the input of the next fully 

connected network. This function gets 𝑂1 to make the decision. 𝑆(𝑂1) turns on neuron A and turns 

off neuron B if 𝑡1 < 𝑂1 < 𝑡2 ; otherwise, neuron B would be turned on and vice versa. The 

thresholds 𝑡1 and 𝑡2 are selected experimentally to 0.3 and 0.6. 

Since we have different quality of coins in this study, the very damaged and worn-out samples are 

difficult to be classified. In this case, a better decision could be to reject the coin to increase the 

reliability of the method. Apart from reliability, most of the very damaged coins do not have much 

value in the market or circulation that can be rejected even if they are genuine. 

Last Densely Connected classifier (LDC): is a very simple fully connected network that has only 

one hidden layer that experimentally has four neurons. As mentioned earlier, the output 𝑂2 is very 

close to the classification results except when the input sample is a very damaged, worn-out, 

technically speaking, misleading by outliers. Therefore, this simple network does not need many 

hidden layers, since it only has the mission for keeping a distance between certain and uncertain 

predictions. The last densely connected classifier is trained by one input neuron and four neurons 

in the hidden layer. We select the activations relu and sigmoid for hidden and the output layer with 

Adam optimizer.  Therefore, in the test step only, the output of LDC (𝑂𝐿𝐷𝐶) is assigned to one of 

the three classes, fake, genuine, or rejected. It should be noted that we train the model by only fake 

and genuine samples, and there were no rejected samples in our preliminary hypothesis. Here also, 
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if 𝑂𝐿𝐷𝐶 < 0.3 then the coin is assigned to class fake. If  𝑂𝐿𝐷𝐶 > 0.6, the sample is supposed to be 

a genuine coin, and if   0.3 ≤ 𝑂𝐿𝐷𝐶 ≤ 0.6 the sample is rejected.  

 

 

Figure 6.10. Proposed hybrid Convolutional Neural Network structure. 

 

6-4 EXPERIMENTAL RESULTS 

6-4-1 Datasets 

The coins in this research were provided by the Law enforcement office of Denmark, including 

fake and genuine coins. In collaboration with Ultra Electronics Forensic Technology Ltd. Co and 

coin experts in Montreal, we labelled Danish coins available for this research. We also applied the 

majority votes for labelling the Chinese coins by at least five coin-experts. 

To image acquisition, we employed a very precise 3-D scanner in the name of IBIS TRAX. The 

scanner was patented by Ultra Electronics Forensic Technology company.  

Inside the machine, they installed a built-in microscope. With a very high resolution of the height-

map images in the order of 6 microns and lateral resolution in sub-micro, users can extract useful 

information from tiny topographical features. The machine uses a five-group of adjustable LEDs 

which allow users to acquire the coin image from different angles. The machine can produce both 

2-D and height-map images as a result of scanning [4].  

In this study, we created six types of height-map image datasets by the powerful 3D scanner. Four 

different years of 20 Kroner 1990, 1991, 1996, and 2008 and two different Chinese coins: half 

Yuan 1942 and one Yuan 1997 have been selected. We also generate SMG images of these datasets 

to apply them for training and testing the proposed hybrid classifier. The coins provided by the 
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Law Enforcement office as having fake coins is a crucial challenge for this research, and the 

counterfeit samples of the selected coins are very well-forged, and even coin experts can be 

deceived in many cases. These datasets are a mix of good and poor-quality coins or degraded 

images resulted from poor scanning. 

The scanner that we used in this research results in a 3550 × 3550 image resolution (with the gray 

level of 0 to 255 for JPG and 0 to 65535 for JPEG2000 images). In this study, we used the JPG 

images and resized them to 224 × 224. 

Table 6.1 illustrates the statistics of coin images for each dataset. In order to train and evaluate the 

system, coin samples are stochastically split into training (20%), validation (40%), and test (40%) 

sets before any augmentation. The validation set is used to avoid over-fitting and tuning the 

parameters of the neural networks. The proposed augmentation approach allows us to keep most 

of the samples for the test and validation processes. Table 6.1 shows the statistics about the datasets 

and some information on the physical and chemical characteristics of the coins. Figure 6.11 

provides examples of the height-map images of the fake and genuine coins from the six datasets.  

 

Table 6.1. statistics of the six coin datasets. 

Type of coin Diameter Thickness Weight Composition Genuine Fake 

20 Kroner 

1990 
27 mm 2.35 mm 9.3 g Cu, Al, Ni 300 100 

20 Kroner 

1991 
27 mm 2.35 mm 9.3 g Cu, Al, Ni 300 128 

20 Kroner 

1996 
27 mm 2.35 mm 9.3 g Cu, Al, Ni 300 140 

20 Kroner 

2008 
27 mm 2.35 mm 9.3 g Cu, Al, Ni 300 234 

Half Yuan 

1942 
28 mm 2.30 mm 9.06 g Cu, Ni 30 32 

One Yuan 

1997 
25 mm 2 mm 6.1 g Ni, plated steel 28 32 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

 

 
(h) 

 

 
(i) 

 

 
(j) 

 

 
(k) 

 

 
(l) 

Figure 6.11. Examples of genuine and fake Danish and Chinese coin images: (a) Danish 1990, (b) Danish 

1991, (c) Danish 1996, (d) Danish 2008, (e) Chinese 1942, (f) Chinese 1997; and (g), (h), (i), (j), (k), and 

(l) are the fake counterparts of the coins respectively. 

 

6-4-2 Augmentation 

To provide enough training data and prevent overfitting problems, we apply two types of 

augmentation techniques. We employ one of them to generate genuine coins, and another to 

produce fake coins in SMG channel since the input of the proposed method is an SMG image. 

 

6-4-2-1 Classic Augmentation of the SMG Images for Genuine Class 

A specific type of a genuine coin in the market or circulation is produced from a single source. 

Therefore, the genuine coins are physically the same except their quality and capturing rotation. 

Hence, augmenting train data for genuine class can be done by rotation and adding some noises. 

We add some Gaussian, salt and Pepper, and speckle noises to produce poor quality coins, and in 

some cases, we only rotate the images to produce good quality coins. 

6-4-2-2 Augmenting SMG Images by GAN for Fake Class 

Unlike genuine coin images that follow the same patterns, fake ones are mostly from different 

sources. Therefore, classic augmentation may not be enough to generate fake samples. As 

mentioned earlier, we proposed a GAN based method to produce fake samples. Figure 6.12 in 

rows (a), (b), and (c) illustrate examples of SMG images for genuine, fake, and fake generated by 

GAN of the dataset used in this research, respectively. The quantity for enough augmented data 

for training set is selected by a logic reported in reference [1]. In the proposed method, a significant 

decrease in EER can be seen when the size of the training set increases to the size mentioned in 
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Table 6.2, after which increasing the size of the training set only contributes to asymptotic 

performance. This phenomenon may be due to the fact that some images of the original coin in the 

data set are too corrupt. As the number of instances in the training set increases, it becomes more 

likely that these broken images will be involved. Table 6.2 provides information about the number 

of samples used in train, validation, and test data. We applied the entire process above for the 

grayscale images for other experiments. 

Table 6.2. Number of image samples for train, validation, and test data. 

Datasets 
Train Augmented Train Validation Test 

Genuine Fake Genuine Fake Genuine Fake Genuine Fake 

20 Kroner 1990 60 20 500 500 120 40 120 40 

20 Kroner 1991 60 26 552 552 120 51 120 51 

20 Kroner 1996 60 28 455 455 120 56 120 56 

20 Kroner 2008 60 48 520 520 120 93 120 93 

Half Yuan 1942 6 8 250 250 12 12 12 12 

One Yuan 1997 6 6 228 228 10 12 12 12 

 

 

(a) 

      

(b) 

      

(c) 

      

Figure 6.12. SMG images for the six datasets: (a) SMG of original genuine images, (b) SMG of the 

original fake images, and (c) SMG of the generated fake images. 

 

6-4-3 Experimental Setup and Results  

In this subsection, we set up some parameters of the three main proposed methods. In 

decomposition of the grayscale images, we set 𝜏1 = 30 and 𝜏2 = 82 degrees. The setting for the 
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proposed GAN is provided in Figure 6.9. We also provide the results of experiments to setup our 

proposed hybrid neural network for counterfeit coin detection. To select pre-trained CNNs for 

Model 1 and Model 2 of the black box, mentioned in subsection 6-3-3, we compared some state-

of-the-art pre-trained CNNs in terms of accuracy. In Table 6.3, we demonstrate the remarkable 

effect of using SMG channels in the training process. As Table 6.3 illustrates, all the models fine-

tuned by SMG Danish 1990 images outperformed the models trained by grayscale images.  By 

this experiment, we found that VGG16 pre-trained by ImageNet dataset performed better than 

others by far. Therefore, we selected VGG16 for the base of Model 1 and Model 2. To emphasize 

the significant role of SMG channel for feature extraction, in Figures 6.13 and 6.14, we visualize 

some activations of block1_conv1 and block1_conv2 of the fine-tuned VGG16 that was trained 

separately by datasets SMG Danish 2008 and grayscale Danish 2008. In these figures, we can 

compare a fake coin and a genuine one and can see the effective features extracted by the SMG-

based model rather than the grayscale-based one. 

Table 6.3. Comparison of some fine-tuned state-of-the-art pre-trained models in terms of accuracy for 

grayscale and SMG images on the validation set. 

 Grayscale images SMG images 

Fine-tuned Models Epoch=10 Epoch=20 Epoch=50 Epoch=10 Epoch=20 Epoch=50 

VGG16 70.00 72.50 73.12 94.37 93.75 95.62 

VGG19 65.62 75.00 70.62 82.50 84.37 82.50 

ResNet50 60.00 65.62 67.50 74.37 73.75 74.37 

Google’s Inception-v3 73.75 76.25 79.37 85.00 82.50 86.87 

DenseNet 70.00 68.75 72.50 81.25 85.62 84.37 

 

The important configuration about Model 1 and Model 2 that we left in the previous section was 

the reason for setting the number of epochs equal to 1 for Model 1 and 50 for Model 2 in the first 

stage of training. To clarify this issue, we fine-tuned three VGG16 networks, experimented and 

visualized their output values (predictions) by three different training epochs equal to 1, 5, and 20. 

As can be seen clearly in Figure 6.15, with increasing the number of epochs in all experiments, the 

models learned to predict a value close to 1 or 0. While the predictions of the good quality coins 

had a fast upward trend to approach 0 or 1 depends on their classes, the model which is trained by 

samples with uncertain classes needed more training epochs for reaching this goal while most of 

these coins misled the classifier. Hence, less training epochs can keep the uncertainty of the 

sample. Since in the training step, we have a mix of all difficult and easy cases together and have 
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no prior knowledge of them, we employ Model 1 in the black box of the hybrid model to keep 

uncertainty of the outliers to avoid misleading the classifier and enabling the rejection option. 

As the proposed hybrid method benefits from Model 1 and function Selective, it can stop the 

adverse effect of most of the outliers on the training process and prevent misleading the classifier. 

Figure 6.16 shows training and validation accuracy for a single fine-tuned VGG16 and the 

proposed method. The high accuracy of 83.1% and 91.8% for both training and validation in the 

first epoch visualizing in Figure 6.16 (a) illustrates that the VGG16 network can produce 

remarkable results even before fine-tuning. A comparison of our proposed classifier and the single 

fine-tuned VGG16 in Figures 6.16 (a) and (b), demonstrates the hybrid method is successful in 

both training and validation accuracy rather than the single VGG16.  

In Table 6.2, the results on the test set for the single VGG16 and the proposed classifier for six 

coin-datasets have been provided. To comprehend the effect of the rejection option on the 

performance of the models, we define True Positive (TP), True Negative (TN), False Positive (FP), 

False Negative (FN), Rejected Positive (RP), and Rejected Negative (RN) for counterfeit coin 

detection. For a counterfeit detector, TP, which is equal to Detection Rate indicates the percentage 

of detecting counterfeit coins. TN illustrates the percentage of recognizing genuine coins. FP is 

the percentage of the system failure when the genuine coins are falsely classified as the fake class. 

False Negative shows the rate of the system failure when the counterfeit coin detector wrongly 

assigns the fake coins to genuine class. Here, we define RP and RN, meaning the percentage of 

counterfeit and genuine coins that are rejected, respectively. In the single fine-tuned VGG16, the 

samples with the prediction value between 0.3 and 0.7 were rejected. In this experiment, we also 

trained the models by only Danish 2008 coins and tested them with all types of coins together and 

obtained encouraging results.  

As can be seen in Table 6.2, in the proposed hybrid classifier, the errors FP and FN are less than 

the fine-tuned single VGG16, while rejection rate RN and RP in most datasets are greater in the 

proposed method, as we expected. This portion demonstrates that by increasing the reject rate, the 

model predicts better since uncertain samples (that probably would be rejected in the test process), 

participate differently in the training step. In all datasets, the hybrid method outperformed in the 

mentioned criteria. TPs in all datasets are less than TNs, meaning that detecting fake coins is more 

challenging than detecting genuine ones. It can be resulted by the imbalance nature of data (before 

augmentation) for fake and genuine coins in the training set. For example, the system errors about 

classifying fake coins as genuine (FNs) in Danish 1990, 1991, 1996 and 2008 have reached zero, 

and the system failure when the fake coins are falsely classified as genuine (FPs) in all types of 
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coin datasets have been dramatically reduced. This means that there are several samples with 

uncertain classes that must be ignored in the training process. Rejection of the samples with 

reducing the errors at the same time illustrates that similar samples have not been select by the 

selective function in the training process. 
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Figure 6.13. Channels of layer activation on a genuine 20 Kroner 2008 SMG and grayscale images. 

 

 

 

 

 

 
Figure 6.14. channels of layer activation on a fake 20 Kroner 2008 SMG and grayscale images. 

In Figure 6.17, we provide the results of accuracy, Rejection Rate (RR), FPR, and FNR on all-

types-together dataset by selecting different thresholds of selective function. As can be seen in this 

figure, in terms of accuracy, FPR, and FNR the best selection for 𝑡2 is 0.6. Although by selecting 

𝑡1 = 0.1 we obtained an accuracy a bit higher than when we selected 𝑡1 = 0.3, in terms of FPR 

and FNR errors, the best selection was 𝑡1 = 0.3. 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 6.15. Effect of the number of epochs in the training fake, genuine, and uncertain cases. (a) through 

(c), (d) through (f), and (g) through (i) are results of a fine-tuned VGG16 for some worn-out, genuine, 

fake coins, respectively, when epochs numbers are equal to 1, 5, or 20. 

 

 
(a) 

 
(b) 

Figure 6.16. Comparison of a single fine-tuned VGG16 and the proposed classifier in the training process. 
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Table 6.4. Comparison of the fine-tuned VGG16 and the proposed hybrid classifier in terms of TP, FN, 

RP, FP, TN, and RN. 

Datasets 
Fine-tuned VGG16 with rejection option Proposed hybrid classifier 

TP FN RP FP TN RN TP FN RP FP TN RN 

20 Kroner 

1990 
0.75 0.225 0.025 0.1 0.892 0.008 0.921 0 0.079 0.017 0.942 0.042 

20 Kroner 

1991 
0.765 0.235 0 0.1 0.883 0.017 0.922 0 0.078 0.024 0.952 0.024 

20 Kroner 

1996 
0.946 0.054 0 0.017 0.983 0 1 0 0 0 1 0 

20 Kroner 

2008 
0.806 0.183 0.011 0.058 0.942 0 0.989 0 0.011 0 1 0 

Half Yuan 

1942 
0.75 0.25 0 0.25 0.75 0 0.833 0 0.167 0 0.833 0.167 

One Yuan 

1997 
0.667 0.25 0.083 0.2 0.8 0 0.833 0.083 0.083 0 0.917 0.083 

All types 

together 
0.742 0.174 0.083 0.105 0.873 0.022 0.835 0.075 0.09 0.026 0.917 0.058 

 

Accuracy is another popular metrics to compare the performance of methods. As the method has 

a rejection option, the accuracy of the models can be calculated by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁 + 𝑅𝑃 + 𝑅𝑁)
 (6.5) 

 

Figure 6.18 illustrates the proposed hybrid classifier performs better than a fine-tuned single 

VGG16 in terms of accuracy. The proposed method has an accuracy of 87.56% when we trained 

the model by only 20 Kroner 2008 and applied to all types of coins together in the testing process. 

In this case, we keep only the fake and genuine classes and ignore the type of coins and mix all 

data. As in both approaches in train and test the system, the results are remarkable; it could be the 

significant effect of SMG channel in recognizing fake coin patterns. This means that the Steep, 

Moderate, and Gentle slopes on the relief map of coins follow a certain pattern while counterfeit 

coins do not. Without decomposing the relief maps and using grayscale images, the method did 

not perform well with an accuracy of 61.24% when we trained the model by only 20 Kroner 2008 

and test it by all types of coins. 
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Figure 6.17. Results of Accuracy, Rejection Rate, False Positive Rate, and False Negative Rate by 

selecting different thresholds of 𝑡1 𝑎𝑛𝑑 𝑡2 in the selective function on all-types-together dataset. 

 

 

Figure 6.18. Comparison of the fine-tuned VGG16 and the proposed hybrid classifier in terms of 

accuracy. 
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6-4-4 Comparison with Other Methods 

We compared the proposed method with five recent works published in the field of counterfeit 

coin detection and coin recognition, noting that the data used for this comparison was the same as 

we used to train and evaluate our proposed method. First, we calculated the accuracy of the models 

trained by the six datasets and the case of all coins together and compared them. Table 6.5 shows 

that the proposed method has a higher accuracy than other methods, except for a slightly lower 

accuracy in dataset Danish 1990 than the method in [1]. 

Table 6.5. Comparison of the proposed method and the previous methods in terms of accuracy. 

Datasets [10] [11] [1] [48] [13] Proposed 

20 Kroner 1990 90.62 85.62 93.12 91.25 76.25 93.1 

20 Kroner 1991 89.47 88.30 92.98 90.05 77.78 93.7 

20 Kroner 1996 93.90 95.77 96.71 94.37 91.48 100 

20 Kroner 2008 95.2 92.8 98.12 97.65 93.90 99.45 

Half Yuan Chinese 1942 70.83 66.67 70.83 79.17 62.5 83.3 

One Yuan Chinese 1997 66.67 62.5 79.17 70.83 70.83 87.54 

All types together 73.18 71.74 75.78 79.04 70.44 87.56 

 

 

6-5 CONCLUSION AND FUTURE WORK 

We scanned the coins by a powerful 3-D scanner that could produce both 3-D and 2-D images. 

In this article, we proposed a new hybrid method based-on fine-tuning CNNs for counterfeit coin 

detection. In this paper, we proposed new methods to decompose the grayscale images of coins to 

the SMG channel and produced six SMG image datasets. The SMG images have been fed by a 

proposed GAN to generate fake samples since the real fakes were so limited in our research. The 

augmented data were used to train the hybrid CNN method, which could provide the rejection 

option for the samples with uncertain class. We demonstrated by several experiments using the 

proposed SMG channel has a significant effect on counterfeit coin detection than using grayscale 

of the height-map images.  The method performed better than previous ones related to fake coin 

detection. The method could even be applied to those types of coins that their genuine or fake 

counterparts have never previously been seen by the model. 

For future work, it could be interesting to include the grade of the coins in the details of the datasets 

to enrich the rejection option of the classifier. Then the system could be trained to keep coins with 
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specific grades and reject the coins with lower ones. In addition, using the proposed SMG 

decomposition can be extended to more channels. Then it can be useful for other applications like 

face recognition and medical imaging.  
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Chapter 7  

Conclusion 

 

The Danish police department started the investigations collaborating with a forensic technology 

company in Montreal, Canada. The Danish police and law enforcement department have provided 

the coins, especially the counterfeit ones. We scanned the coins by a powerful 3-D scanner that 

could produce both 3-D and 2-D images. 

In this thesis, we analyzed 3-D height-map images by four proposed methods to extract new sets 

of effective features that were useful for counterfeit coin detection. In Chapters 3 and 4, we solved 

the degradation problem of shiny coin images due to the scanning process and extracted features 

from row-wise signals of the coin images. In Chapter 5, a 3-D approach to detect and analyze the 

precipice borders from the coin surface were proposed. We also introduced the Binned Borders in 

Spherical Coordinates (BBSC) to extract significant features while ignoring the degradation 

problem. We also took advantage of stack generalization to classify the coins and add a reject 

option to it. In Chapter 6, we proposed a new hybrid method that used a box of fine-tuning CNNs. 

A new approach to decompose the grayscale images of coins to the SMG channel and produced 

six SMG image datasets was proposed to feed a proposed GAN for generating fake samples. Then, 

we trained the hybrid deep learning method by the augmented data and equipped the classifier with 

a rejection option for classifying the samples with uncertain classes.  
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7-1 ADVANTAGES AND DISADVANTAGES OF THE PROPOSED METHODS  

All the proposed methods introduced in this thesis have advantages and disadvantages that we 

describe briefly in Table 7.1. 

Table 7.1. Advantages and disadvantages of the proposed methods in Articles 1, 2, 3, and 4. 

 Advantages Disadvantages 

Articles 

1&2 

1) These methods were simple to understand 

and easy to implement.  

2) They did not need much RAM or a 

powerful CPU or GPU for the training 

process comparing with other proposed 

methods. 

 

1) Since the proposed methods focused only on the 

characters on the ring part of the coins, they are 

not applicable to those kinds of coins that do not 

have characters on their ring part.  

2) These methods concentrate on restoring the 

degradation problem due to poor scanning of 

shiny coins to precise the height information 

while this was an overload to the system and 

was not successful for all cases. Therefore, the 

straightening algorithm and restoring process 

that was used in both methods prolong the 

detection time. 

3) Apart from the detection time, the methods are 

not competitive with the two latest proposed 

methods in terms of the detection rate, 

accuracy, and other metrics. 

 

 

Article 3 

1) In this proposed method, the degraded 

problem of shiny coins was ignored, and 

there was no need for restoring the degraded 

images.  

2) A high discriminating feature set based-on 

precipice border analysis was extracted that 

was inspired by coin experts' acts. The 

experimental results illustrated much better 

performance than the previous methods. 

3) In terms of RAM, processor, and other 

hardware required for the research, this 

method is comparable with the previously 

proposed methods. 

1) Albeit the method ignored the degradation 

problem and faster than the previous method, it 

could not be used for real-time purposes and 

was suitable for forensic intentions of 

counterfeiting ancient and precious coins. 

2) The method cannot handle some of the specific 

problems related to scratched coins explained 

completely in subsection 5.6.5.  
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4) The methods supplied by a rejection option 

handling the samples with uncertain classes. 

 

Article 4 

1) The attitude towards features in the 

proposed method resembles the proposed 

method in Section 5 by different extraction 

strategies. However, by using deep learning, 

the feature extraction from SMG images 

was performed automatically and much 

faster in the detection process comparing the 

other proposed methods. 

2) The method could handle most of the 

scratched, damaged, and worn-out coin 

samples and raised above the other proposed 

methods in this matter. 

3) The rejection option proposed in this 

method prevented the confusion of the 

classifier by outliers and poor-quality coins, 

while the samples participated in the 

training process. 

4) The proposed method has an encouraging 

accuracy of 87.56 when we trained the 

model by only 20 Kroner 2008 and tested it 

by all types of coins together.  

1) Unlike the methods proposed in Sections 3, 4, 

and 5, this method required a powerful system 

with GPU. Although we received the advantage 

of transfer learning for the proposed classifier, 

the process of generating fake coins by SMG 

images can take several weeks without a 

powerful GPU. 

 

 

 

7-2 WHICH OF THE PROPOSED METHODS SHOULD BE APPLIED? 

Since the proposed methods in this study have their advantages and disadvantages (Table 7.1), 

selecting one of the proposed methods as the best approach is an important question. Therefore, 

providing some tips will be useful for researchers who want to continue the research and industry 

to implement one of the methods to widen its usage. 

Regarding the advantages and disadvantages of the proposed method stated above, the methods 

related to Chapters 3 and 4 are useful for Danish coins and no other types of coins. We preferred 

to use these methods for only Danish coin images if we do not have access to GPU and a powerful 

machine or scanner. 
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The method proposed in Chapter 5 is capable of detecting counterfeit coins of any type of coins 

and has remarkable accuracy. However, in case that we do not have fake samples for each type, 

the method cannot work properly. 

The method proposed in Chapter 6 is capable of detecting counterfeit of any type of coins, 

surprisingly, any type even if we do not have any fake sample of it. Although the accuracy is not 

as high as the previous method in chapter 6, it can handle worn out and damaged coins much better.  

In conclusion, the best method for the future work can be the method proposed in Chapter 6. Since 

the deep learning methods are growing so fast, they can be very effective on the proposed method. 
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APPENDIX: 

OTHER COLLABORATIONS 

Apart from the proposed methods for counterfeit coin detection in this thesis analyzing 3-D height-

map images, I cooperated in several other research solving the problem by 2-D image processing. 

I have also been studying and collaborating in some other deep learning-based projects that led me 

to propose a hybrid CNN based method described in Section 6. The related papers and their 

abstracts are listed below. 

 

 

 

 

 

Appendix A: Other Articles Related to Counterfeit Coin Detection as the 

Second Author 

 

Counterfeit Coin Detection Based on Image Content by Fuzzy Association Rules Mining 

Sharifi M., Khazaee, S., Suen, C. 

In proceeding of ICPRAI 2018, Montreal, Canada, Center for Pattern Recognition and Machine 

Intelligence, 2018, p. 285-289. 

Abstract: In this paper, a new framework is proposed for counterfeit coin detection that shows the 

effectiveness of image mining techniques in this field. The proposed system is developed in two 

modules. In the first module, the segmentation of digital coin images is applied to find the region 

of interest (ROI). These ROIs serve as inputs to the next stage. In the next module, image mining 

is applied to find frequent image patterns present in coin images using fuzzy association rules 

mining. The experimental results show that fuzzy association rules mining based on image content 

is feasible and gives strong rules that can be further used for the effective classification of coin 

images. 
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A Blob Detector Images-Based Method for Counterfeit Coin Detection by Fuzzy Association 

Rules Mining 

M. Sharifi Rad, S. Khazaee, L. Liu, and C.Y. Suen 

Second International Conference on Pattern Recognition and Artificial Intelligence, ICPRAI 

2020, Zhongshan City, China, In press. 

Abstract: Image processing techniques using the knowledge obtained from known historical data 

has become recently one of the most intensively studied topics in decision science and computer 

science. This paper presents an automatic system for fake coins detection based on image content. 

In this study, a blob detector image-based method by fuzzy association rules mining is proposed 

to detect counterfeit coins. This method consists of two-stages. In the first stage, the original image 

dataset is preprocessed by a blob detector. This provides all frequent features that must be mined 

in the next stage. In the second stage, fuzzy association rules mining extracts the effective fuzzy 

rules and classifies the coin image data automatically. The performance of the proposed method 

has been compared with some other methods, and we demonstrate that our framework surpasses 

in terms of classification accuracy, which is a desirable level when compared with recent studies 

in this field. This research demonstrates the proposed framework is a reliable, intelligent detection 

system and can be utilized for other applications based on image content. 

 

A Pruned Fuzzy Associative Classifier to Detect Image-Based Counterfeit Coins 

M. Sharifi Rad, S. Khazaee, L. Liu, and C.Y. Suen 

Pattern Analysis and Applications, (Under review) 

Abstract: In this research, a novel framework is proposed for counterfeit coin detection that shows 

the effectiveness of image mining techniques. We develop an image miner system on top of the 

fuzzy concept that helps us to discover the implicit information from the images in the way closer 

to the human's viewpoint. Our proposed framework is developed in two modules, and the principal 

privilege of it is a compressed and white-box system that can be considered as a knowledge 

attainment tool. In the first module, a method to detect the region of interests (ROIs) is applied 

that focuses on blob detection. In the second module, image mining is applied to find image 

patterns present in coin images using fuzzy association rules mining. In this paper, we preserve 

the full power of fuzzy association rule mining to reduce the amount of redundant and insignificant 

rules by focusing on pruning methods. Furthermore, a new algorithm named Engine_FAFS for 



116 
 

feature selection and also a pruned based fuzzy associative classifier named Classifier PFA, have 

been proposed to create a robust counterfeit coin detector system. By comparing the achieved 

results with some other methods obtained from the same dataset, we demonstrate that our 

framework surpasses in terms of lower feature dimensions, and smoother boundaries while 

maintaining satisfactory accuracy. In this study, the problem with a general form will be described 

to provide a common framework for appearing issues in other domains. 


