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Abstract

Variational techniques for medical and image processing applications

using generalized Gaussian distribution

Srikanth Amudala

In this thesis, we propose a novel approach that can be used in modeling non-

Gaussian data using the generalized Gaussian distribution (GGD). The motivation

behind this work is the shape flexibility of the GGD because of which it can be

applied to model different types of data having well-known marked deviation from

the Gaussian shape.

We present the variational expectation-maximization algorithm to evaluate the

posterior distribution and Bayes estimators of GGD mixture models. With well de-

fined prior distributions, the lower bound of the variational objective function is con-

structed. We also present a variational learning framework for the infinite generalized

Gaussian mixture (IGGM) to address the model selection problem; i.e., determina-

tion of the number of clusters without recourse to the classical selection criteria such

that the number of mixture components increases automatically to best model avail-

able data accordingly. We incorporate feature selection to consider the features that

are most appropriate in constructing an approximate model in terms of clustering

accuracy. We finally integrate the Pitman-Yor process into our proposed model for

an infinite extension that leads to better performance in the task of background sub-

traction. Experimental results show the effectiveness of the proposed algorithms.
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Chapter 1

Introduction

Statistical inference plays a vital role in many research areas such as computer vision,

signal processing, and pattern recognition. In particular, mixture models have been

widely deployed. Challenges in fitting finite mixture models include identifying the

appropriate probability density function as well as the corresponding optimal number

of components. Gaussian distribution has been widely used and studied with success

for many applications involving computer vision, machine learning, image processing

and statistical analysis [1]. However, in many real applications, Gaussian distribution

fails to fit different shapes of data [2].

Recently alternative techniques have been reported in the literature to resolve the

Gaussian assumption limitation. The generalized Gaussian distribution (GGD) has

been proposed to provide more flexibility, by introducing a new parameter called the

shape parameter. The GGD has three special cases concerning the varying shape

parameter namely the Laplacian, the Gaussian, and the asymptotically uniform dis-

tributions and can be observed in Fig. 1 where β in the figure represents the shape

parameter and when β = 2, the GGD becomes Gaussian.

For instance, generalized Gaussian mixture model (GGMM) has been used in [3]

for buffer control, in [4, 5, 6] for texture classification and retrieval, in [7, 8, 9] for video

and image segmentation, in [10] for multiresolution transmission of high-definition

video, in [11] for SAR images statistics modelling, in [12] for subband decomposition

of video, in [13] for denoising applications, in [14, 15] for data and image compression,

in [16] for edge modeling, in [17, 18] for image thresholding, in [19, 20] to fit subband
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Figure 1: Generalized Gaussian distribution

histograms, in [21, 22] for speech modeling, and in [23] for multichannel audioresyn-

thesis. The accurate modeling of wavelet coefficients distributions by GGMM was

presented in [24] [25] and this property had been utilized in many signal and image

processing applications which include image denoising [26], image thresholding [27],

content-based image retrieval [28] and texture classification [29].

Several methods have been proposed to estimate the parameters of GGMM such

as entropy matching estimation [22, 30] and maximum likelihood estimation [4, 31,

32, 33, 34] with a deterministic approach where a single distribution is considered.

Maximum likelihood estimation is performed via the Expectation Maximization (EM)

algorithm which has gained attention in recent times with its lower computational

time. However, the EM algorithm is known for its convergence to local maxima and

the tendency to overfit the model.

Solutions that incorporate Bayesian inference techniques are widely discussed in

approximating intractable distributions [35]. It gives a robust hypothetical frame-

work to utilize clustering algorithms. Markov Chain Monte Carlo (MCMC) is one of

the most common techniques to estimate parameters since it is capable of accurately

approximating the actual variable distribution [35] [36]. However, MCMC techniques

are based on sampling to approximate the ideal distribution. This requires a large

amount of computational time and resources [37]. Thus, in this thesis, we utilize

2



variational inference approaches [38]. Variational inference, also known as variational

Bayes, is a deterministic approximation method, where, the model’s posterior distri-

bution is approximated using analytical procedures [39]. It has recently generated

more interest in finite mixture models through the provision of high generalization

schemes and high computation tractability. Model selection and parameter estimation

can be performed simultaneously through the use of variational inference.

Model selection plays a challenging role while applying finite mixture models with

a potentially inaccurate number of mixture components may result in poor gener-

alization capability. Recent studies have tackled the problem of number of mixture

components by considering a Dirichlet process (DP) prior to extend mixture models

to infinity [40]. The DP permits unbounded development of the number of mixture

components where it is important to fit the observations, in which the individual

variables follow certain parametric distributions.

Feature selection is an important step when data are multidimensional; some

features could be irrelevant and then compromise the algorithm performance as well

as the clustering process. Indeed, these features do not have any discriminatory

impact on the clustering. Moreover, having a high number of features increases the

complexity of the model [41][42]. Thus, it is important to detect the salient features

to produce efficient out comes. Consequently, in this thesis we propose a DP mixture

of GGD’s and employ the model proposed in [43], a feature saliency determination

process, where each feature is weighted up to a probability ranging between zero and

one and incorporate it into the proposed Bayesian framework.

A good alternative to DP is the Pitman-Yor process (PYP) which is a general-

ization to the DP prior for nonparametric Bayesian modeling. Hierarchical Bayesian

nonparametric models, during the recent years, have been successfully applied in

different fields such as image segmentation and language modelling [44]. The hier-

archical Dirichlet process (HDP) model has shown promising results in addressing

model-based clustering of grouped data with sharing clusters [45]. Using the hier-

archical Pitman-Yor (HPY) process model [46], we develop a variational learning

algorithm on the resulting model to estimate the parameters and apply the proposed

model for background subtraction application.
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1.1 Contribution

The major contributions of this thesis are as follows:

• Variational Inference of Finite Generalized Gaussian Mixture Mod-

els:

We present a variational learning framework to analyze finite generalized Gaus-

sian mixture models (GGMM). The model incorporates several mixtures that

are widely used in signal and image processing applications. We present a

method to evaluate the posterior distribution and Bayes estimators using the

variational expectation-maximization algorithm. The effective number of com-

ponents of the GGMM is determined automatically. This work has been ac-

cepted and published by Symposium Series on Computational Intelligence IEEE

SSCI 2019 [47].

• Variational Inference of Infinite Generalized Gaussian Mixture Mod-

els with Feature Selection:

We present a variational learning framework for the infinite generalized Gaus-

sian mixture (IGGM) model. Infinite model addresses the model selection prob-

lem; i.e., determination of the number of clusters without recourse to the clas-

sical selection criteria such that the number of mixture components increases

automatically to best model available data accordingly. We also incorporate

feature selection to consider the features that are most appropriate in con-

structing an approximate model in terms of clustering accuracy. This work has

been submitted to 2020 IEEE International Conference on Systems, Man and

Cybernetics (SMC) [48].

• Background Subtraction with a Hierarchical Pitman-Yor Process Mix-

ture Model of Generalized Gaussian Distributions:

We present hierarchical Pitman-Yor process mixture of generalized Gaussian

distributions for background subtraction. The Pitman-Yor process is integrated

into our proposed model for an infinite extension that leads to better perfor-

mance in the task of background subtraction. This work has been submitted

to IEEE International Conference on Information Reuse and Integration (IRI

2020) [49].
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1.2 Thesis Overview

The rest of this thesis is organized as follows:

• In chapter 2, we introduce variational inference for finite generalized Gaussian

mixture models and show the results of our proposed model on real applications.

• In chapter 3, we extend our finite generalized Gaussian to the infinite case using

Dirichlet process and apply feature selection for medical applications and image

categorization.

• In chapter 4, we propose an infinite generalized Gaussian distribution based on

the hierarchical Pitman-Yor process for background subtraction application.

• In chapter 5, we summarize our contributions.
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Chapter 2

Variational Inference of Finite

Generalized Gaussian Mixture

Models

In this chapter, in order to tackle problems related to both Bayesian and deterministic

estimation, we propose a variational approach. By considering possible distributions

we assign appropriate priors to the mean and the precision of GGMM. We do not

assign any prior distribution to the shape parameter of the GGMM to appropriately

derive closed-form expressions.

This chapter is organized as follows. In Section 2.1, we present the variational

inference of GGMM. In Section 2.2, we evaluate the performance of the proposed

model on several applications.

2.1 Variational Inference of the Generalized Gaus-

sian Mixture Model

2.1.1 Generalized Gaussian Mixture Model

The one-dimensional generalized Gaussian distribution for a vector X ∈ R with

parameters µ, τ, λ is defined as follows:

P (X|µ, τ, λ) =
λτ

1
λ

2Γ( 1
λ
)
e−τ |(X−µ)|λ (1)

6



where τ =

(
1
σ

√
Γ( 3
λ

)

Γ( 1
λ

)

)λ
, Γ(.) indicates the Gamma function given by Γ(z) =

∫∞
0
pz−1e−pdp,

where z and p are real variables. The parameters µ, σ, λ denote the mean, standard

deviation and the shape parameter, respectively. The parameter λ controls the shape

of the probability density function. The higher the value, the flatter the probability

density function indicating that λ determines the decay rate of the density function.

There are two special cases, when λ = 2 and λ = 1, the GGD is reduced to the

Gaussian and the Laplacian distributions, respectively. If X follows a mixture of K

GGDs, then

P (X|Θ) =
K∑
k=1

P (X|µk, τk, λk)πk (2)

where πk (0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1) are the mixing weights and p(X|µk, τk, λk) is

the probability density function corresponding to component k. As for the sym-

bol Θ = (ε, π), it refers to the entire set of parameters to be estimated where

ε = (µ1, τ1, λ1, ..., µK , τK , λK) and π = (π1, ..., πK).

Considering N observations, X = (X1, X2, ..., XN), and supposing that the num-

ber of components K is known, the data likelihood is denoted as follows:

P (X|Θ) =
N∏
n=1

K∑
k=1

P (Xn|εk)πk (3)

where εk = (µk, τk, λk). For each variable Xn, let Zn be K-dimensional vector known

as the unobserved vector that assigns the appropriate mixture component that Xn

belongs to. Then, Znk is equal to 0 if Xn does not belong to class k and 1, otherwise.

Hence, considering Z = (Z1, Z2, ..., ZN) the complete-data likelihood is given by:

P (X|Θ, Z) =
N∏
n=1

K∑
k=1

(P (Xn|εk)πk)Znk (4)

The EM algorithm allows to find the mixture parameters that maximize the complete

data log-likelihood given by:

L(X , Z,Θ) =
N∑
n=1

K∑
k=1

Znk ln(P (Xn|εk)πk) (5)

The assignment of Xn to the kth component of the mixture can be denoted as follows

[50]:

Ẑt
nk =

P t−1(Xn|εt−1
k )πt−1

k∑K
k=1 P

t−1(Xn|εt−1
k )πt−1

k

(6)

7



where t denotes the current step. εtk and ptj are the current estimates of the parameters.

A sequence of approximations to the mixture parameters Θt, for t = 0, 1, ..., are

produced by the EM algorithm until a convergence measure is fulfilled through the

expectation and the maximization steps. The EM algorithm comprises of:

1. Initialize the mixture parameters.

2. E-step: Compute Ẑt
nk (Eq. (6)).

3. M-step: Update the parameters using

Θ̂t = argmaxzΘ L(Θ, Z,X ).

We note that the EM algorithm has some setbacks, like convergence to local

maxima due to its dependence on initialization. A discussion on the disadvantages of

the EM algorithm can be found in [51].

2.1.2 Variational Inference of the Generalized Gaussian Mix-

ture Model

In this section, we propose a variational inference approach for the GGMM within the

Variational Expectation-Maximization (VEM) framework [52] [53] to accomplish the

closed-form updates and automatic determination of the number of mixture compo-

nents by optimizing the Kullback–Leibler (KL) divergence between the true posterior

p(Z,X ) and the approximate distribution q(Z) [53]. The smaller the KL divergence,

the stronger the relationship between the distributions. The KL divergence is denoted

by:

KL(p ‖ q) = −
∫
q(Z) ln{p(Z,X )

q(Z)
− ln p(X )}dZ

= −
∫
q(Z) ln{p(Z,X )

q(Z)
}dZ + ln p(X )

(7)

In order to calculate the KL divergence, we need to calculate the evidence ln p(X ).

This is difficult to calculate which motivates the proposed variational inference ap-

proach. Reordering Eq. (7), we get:

ln p(X ) = KL(p ‖ q) +

∫
q(Z) ln{p(Z,X )

q(Z)
}dZ︸ ︷︷ ︸

Evidence Lower Bound

(8)

8



Maximizing the Evidence Lower Bound (ELBO) is equivalent to minimizing the KL

divergence. By applying Jensen’s inequality, the ELBO serves as a lower-bound for

the log-evidence, ln p(X ) ≥ ELBO(q) for any q(Z), which is the approximate of the

posterior. In order to maximize the ELBO, we need to choose a variational family q.

The complexity of the family determines the flexibility in providing an appropriate

approximation to the true posterior distribution.

We assign Normal priors for the distributions mean, and Gamma priors for the

precision and shape parameters [47,48]: µk ∼ N(µ|m0, s
−1
0 ), τk ∼ G(τ |α0, β0), λk ∼

G(λ|αλ, βλ) where N(µ|m0, s
−1
0 ) is the Normal distribution with mean m0 and pre-

cision s−1
0 , G(τ |α0, β0) is the Gamma distribution with shape parameter α0 and rate

parameter β0, λ, µ0, s0, β0, α0 are the hyperparameters of the model. The posterior

distributions for µ, τ, λ are defined as [50]:

p(µk|Z,X) ∝ e−(µk−µ0)2s0/2+
∑
Znk=1−(τk|Xn−µk|)λk

p(τk|Z,X) ∝ αα0−1
k e−β0τkτ

nj
k e

∑
Znk=1−(τk|Xn−µk|)λk

p(λk|Z,X) ∝ λαλ−1
k e−βλλkτ

nj
k

(
λk

Γ(1/λk)

)nj
e
∑
Znk=1−(τk|Xn−µk|)λk

(9)

Accordingly, we can not use the posterior distributions in their current state. To

formulate the variational inference model, we denote the joint distribution of all the

random variables assuming all parameters are independent as can be observed in Fig.

2:

p(X,Z, π, µ, τ, λ) = p(X|Z, µ, τ, λ)p(Z|π)p(π)p(µ)p(τ)p(λ) (10)

For the shape parameter, a conjugate prior distribution can not be directly found.

Therefore, we considered using the Taylor approximation to determine an approxi-

mate lower bound of the complete-data log-likelihood to determine whether an ap-

propriate prior exists in the exponential family. However, the negative second-order

derivative causes the function q(λ) to be concave, resulting in an upper bound rather

than a lower bound; which is required. Hence, we consider λ as a parameter and it

is not assigned a prior distribution [2]. The conjugate exponential priors for µ and τ

are Normal and Gamma distributions. Therefore, we specify all the priors according

to:

µk ∼ N(µ|mk, s
−1
k ) (11)

9



Figure 2: Graphical model for the VGGM. The filled circle, unfilled circle and square
indicate observations, random variables, and parameters, respectively. The depen-
dency among the variables is indicated by the arrows.

τk ∼ G(τ |αk, βk) (12)

We consider the following variational distribution that factorizes into the latent vari-

ables and the parameters as:

q(Z, π, µ, τ, λ) = q(Z)q(π, µ, τ, λ) (13)

ln q?(Z) = Eµ,τ,π[ln p(X , π, µ, τ, λ)] + const. (14)

ln q?(Z) = Eπ[ln p(Z|π)] + Eµ,τ [ln p(X|Z, µ, τ, λ)] + const. (15)

where E represents the expectation with respect to the subscripted parameter and

const denotes an additive constant. Substituting the two conditional distributions,

and retaining any terms that are not dependent on Z into the constant, we have:

ln q?(Z) =
N∑
n=1

K∑
k=1

znk ln ρnk + const (16)

where we define:

ln ρnk =Eπ[lnπk] + Eµ,τ [
1

λk
ln τk + lnλk − ln 2Γ(1/λk)

− τk|Xn − µk|λk ]
(17)

10



Normalizing the distribution, noting for each value of n the values of Znk are

binary and add up to 1 overall values of k, we obtain:

q?(Z) =
N∏
n=1

K∏
k=1

rznknk (18)

where

rnk =
ρnk∑K
k=1 ρnk

(19)

The ideal solution for q(Z) follows the equivalent functional form as the prior

p(Z|π). As ρnk is given by the exponential of a real quantity, the quantities ρnk will

be non-negative and will sum to one. For the discrete distribution q?(Z):

E[znk] = rnk (20)

where rnk denotes the responsibilities with the sum of all the responsibilities for the

respective cluster k given by Nk as follows:

Nk =
N∑
n=1

rnk (21)

Similarly, the factor in the variational posterior distribution q(π, µ, τ, λ) is given by:

ln q?(π, µ, τ, λ) = ln q(π) +
K∑
k=1

q(µk, τk, λk) (22)

We observe that this equation decomposes into an aggregate of terms with only π in

addition to terms with µ and τ , implying that the variational posterior q(π, µ, τ, λ)

factorizes to:

q(π, µ, τ, λ) = q(π)
K∏
k=1

q(µk, τk, λk) (23)

Identifying the terms that depend on π, results in:

ln q?(π) = (γ0 − 1)
K∑
k=1

lnπk +
K∑
k=1

N∑
n=1

rnk ln πk + const (24)

We recognize q?(π) as a Dirichlet distribution with parameter γ:

q?(π) = Dir(π|γ) (25)

11



where γ has components γk that are given by:

γk = γ0 +Nk (26)

E[lnπk] = ψ(γk)− ψ(γ̂)

γ̂ =
K∑
k=1

γk
(27)

The expectation of µ with prior means m0 and precision s−1
0 are denoted by:

E[ln q(µk)] =Eτ
[ N∑
n=1

(−Znkτk|Xn − µk|λk)−

s0

2
(µk −m0)2

] (28)

where |Xn−µk|λk is expanded using the Binomial Expansion to the power 2 with the

following conditions:

if(µk > Xn)

|µk −Xn|λk =µλkk − λkµ
λk−1
k Xn +

λk
2

(λk − 1)µλk−2
k X2

n
(29)

if(Xn > µk)

|Xn − µk|λk = |Xn|λk
(

1− µk
Xn

)λk
,(

1− µk
Xn

)λk
= 1− λk

µk
Xn

+
λk
2

(λk − 1)
µ2
k

X2
n

(30)

Substituting Eq. (29) and Eq. (30) in Eq. (28) and comparing it to the prior

distribution, we obtain:

mk =
s0m0

2
+ p1

sk
(31)

sk =
s0

2
+ p2 (32)

where p1, p2 have two different cases as follows:

p1 =


∑N

n=1(rnkτ̄k
λk
4

(λk − 1)µλk−3
k x2

n +
∑N

n=1(rnkτ̄k
λk
2
µλk−2
k xn)), if Xn < mk

∑N
n=1 rnkτ̄kλk

|xn|λk
xn

, otherwise

12



p2 =


∑N

n=1(rnkτ̄kµ
λk−2
k ), if Xn < mk

∑N
n=1(rnkτ̄k

λk
2

(λk − 1) |x
λk
n |
x2
n

), otherwise

where τ̄ represents Eτ [τ ]. Similarly, the solution for τ is as follows:

E[ln q(τk)] = Eµ
[
λkτ

1
λk
k

2Γ( 1
λk

)
e−τk|X−µk|

λk + ln τα0−1
k − β0τk

]
(33)

αk =
N∑
n=1

rnk + α0 − 1 (34)

βk = β0 +
N∑
n=1

rnk Eµ[|Xn − µk|λk ] (35)

Eµ[|Xn − µk|λk ] =


|Xn|λk − λk |Xn|

λk

Xn
mk + λk(λk−1)

2
|Xn|λk
X2
n

( 1
sk

+m2
k), if Xn > µk

E[|µk|λk − λkµλk−1
k Xn + λk

2
(λk − 1)µλk−2

k X2
n], otherwise

Then, using confluent hypergeometric function, E|µk|λk can be defined as:

E
[
|µk|λk

]
= (

1
√
sk

)λk · 2λk/2
Γ
(

1+λk
2

)
√
π

1F1

(
−λk

2
,
1

2
,−1

2
(mk)

2 sk

)
. (36)

The following equation denotes the lower bound:

L = E[lnP (X|Θ)] + E[lnP (Z|π)] + E[lnP (π)]

+ E[lnP (µ)] + E[lnP (τ)]− E[ln q(Z)]

− E[ln q(π)]− E[ln q(µ)]− E[ln q(τ)]

(37)

The posterior distributions are obtained from the VE-step and the parameters are

updated in the VM-step by augmenting the approximate lower bound L. To approxi-

mate the parameters of the GGMM (i.e. λ), the first-order derivative of the estimated

lower bound is set to zero, prompting:

∂L̄(q,Θ)

∂λk
= L̄′i(q,Θ)

=
N∑
n=1

K∑
k=1

rnk(|Xn − µ̄k|λk ln |Xn − µ̄k|(τk − τ̄k)

− 1

λ2
k

ln τ̄k +
1

λk
−

Γ′( 1
λk

)

2Γ( 1
λk

)
+ τ̄k|Xn − µk|λk ln |Xn − µk|)

(38)
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The second-order derivative is given by:

∂2L̄(q,Θ)

∂2λk
= L̄′′i (q,Θ)

=
N∑
n=1

K∑
k=1

rnk(2|Xn − µ̄k|λk ln |Xn − µ̄k|(τk − τ̄k)

+
2

λ3
k

ln τ̄k −
1

λ2
k

+
1

2

Γ
′
( 1
λk

)2

Γ( 1
λk

)2
−

Γ
′′
( 1
λk

)

2Γ( 1
λk

)

+ 2τ̄k|Xn − µk|λk ln |Xn − µk|)

(39)

The shape parameter is now estimated as:

λ?k = λk + s∆λk

where ∆λk = −L
′

k(q,Θ)

L′′k(q,Θ)

(40)

where s is determined by the backtracking line search [54]. Our complete algorithm

can then be summarized as follows:

Algorithm

1. Input: X , K, given an initial large K value.

2. Initialization: choose α0, β0, γ0,m0, s0 using K-means algorithm, λk = 2

3. Compute αk, βk, γk,mk, sk ← Initial values for each component.

4. While Li − Li−1 ≤ 1e− 9

5. Compute ln ρnk using Eq. (60)

6. Generate the responsibilities rnk from Eq. (61)

7. Update αk, βk, γk ← from Eq. (70), Eq. (71) and Eq. (26)

8. Calculate mk, sk from Eq. (65), Eq. (66)

9. Choose the step size s by the backtracking line search

10. Update λk using Eq. (96)

11. Generate lower bound L using Eq. (37)
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12. Assign the cluster labels to the highest responsibilities in each row of the

responsibility matrix.

13. end

2.2 Experimental results and discussion

2.2.1 Implementation details

In this section, we will be discussing about the implementation details of the pro-

posed algorithm. The hyperparameters are set as α0 = µ2/σ, β0 = µ/N, given N

observations. λ = 2,m0, s
−1
0 , γ0 are initialized using K-means algorithm. Based on

these initializations, we estimate the sample mean, sample precision, and shape in the

ith initial class. When the VEM algorithm stops, αk, βk, γk,mk, sk, λk are acknowl-

edged as the hyperparameter and parameter estimates in the Variational GGMM

(VGGMM).

2.2.2 Dataset validation

This section has two main objectives: first applying the algorithm to estimate the

mixture parameters and comparing with Variational GMM (VGMM). To reach the

first objective, we apply our VGGMM estimation algorithm for binary classification

in medical and astrological applications involving detection of heart diseases1 and

predicting a Pulsar Star2 and finally we apply our model in image segmentation.

Among the two data sets, the heart disease data set provides all the potential

symptoms of a person having heart disease. This data set contains 76 features,

however, all circulated tests allude to utilizing a subset of 14. The target field suggests

the presence of heart infection within the patient. The second data set contains

an example of pulsar candidates accumulated through the High Time Resolution

Universe Survey. Pulsars are a phenomenal kind of Neutron star that produces radio

outflow perceptible here on earth. It has picked up prominence over late occasions to

mark the pulsar contender to encourage fast examination. Treating the pulsar data

1https://www.kaggle.com/ronitf/heart-disease-uci.
2https://www.kaggle.com/pavanraj159/predicting-a-pulsar-star/downloads/predicting-a-pulsar-

star.zip/1
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Figure 3: Histograms of Heart Disease. Histogram-0 to Histogram-12 represent the
features, Histogram-13 represents the target value. X-axis indicating value range and
Y-axis showing the frequency.

set as a binary classification problem makes it an ideal fit for our examination. The

histograms of the input data sets are presented in Fig. 3 and Fig. 4.

We have implemented our VGGMM classifier using cross-validation with the split

size of 4 for both the datasets. In order to determine the class-label of all the data

points, the largest component is considered amongst the likelihood of the data points

belonging to the classes. Table 1, presents the model accuracy in comparison with

VGMM.

Table 1: Model accuracy comparison

Accuracy
Data set name VGMM VGGMM GMM
Heart Disease UCI 41% 69.64% 52%

Predicting a Pulsar star 88% 93.2% 87%
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Figure 4: Histograms of Pulsar Star. Histogram-0 to Histogram-7 represent the
features, Histogram-8 represents the target value. X-axis indicating value range and
Y-axis showing the frequency.

2.2.3 Image Segmentation

In computer vision, image segmentation is the process of finding the pixels with similar

characteristics and clustering them to different segments. The goal of segmentation is

to find similar pixels and represent the whole image in the form of segments with each

segment representing pixels with similar characteristics making it easier for analysis

[55][56].

In the first experiment, we choose an image (768 x 512) with two objects in the

sky to demonstrate the capability of segmenting small objects in large background

(Fig. 4a). The goal is to cluster the image into two classes: the sky and the two

birds. We set the number of components, K = 5. Comparing the outcomes for

K-means algorithm, GMM, and VGMM (Fig. 4c, Fig. 4d, Fig. 4e), there is an

enormous misclassification of the sky and the space between the little object and the

large object. Our method, VGGMM (Fig. 4f), is able to recognize the two birds and

the components effectively. Contrasted to the other methods, the wings, the tail of

the little bird (red square), and the big bird are also shown in more details.

In the second experiment, we executed our estimation on a human face image (132
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(a) Original Image

(b) histogram

(c) K-means algorithm (K=5) (d) GMM (K=5)

(e) VGMM (K=5) (f) VGGMM (K=5)

Figure 5: Segmentation results, Fig. 4a represents the original image.

18



(a) Original Image (b) histogram

(c) K-means algorithm (K=2) (d) GMM (K=2)

(e) VGMM (K=2) (f) VGGMM (K=2)

Figure 6: Segmentation results, Fig. 5a represents the original image.
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x 221) as shown in Fig. 5a to segment the image into two classes. In Fig. 5b, we

can see the histogram of the image. We set the number of mixture components to

two, K = 2. Comparing the result with K-means algorithm, GMM, VGMM methods,

we noticed that K-means algorithm and GMM have similar results and were able to

detect some features of the face. However, they contained only a part of the eyebrows

and a part of the texture of clothes rather than the whole. VGMM was able to detect

the eyebrows but was not able to detect the texture and the hair. Our algorithm

VGGMM (Fig. 5f), was able to extract more information for image understanding.
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Chapter 3

Variational Inference of Infinite

Generalized Gaussian Mixture

Models with Feature Selection

In this chapter, we develop a non-parametric Bayesian approach for modelling, par-

ticularly based on the Dirichlet process (DP). Here, we employ the model proposed

in [43], a feature saliency determination process, where each feature is weighted up

to a probability ranging between zero and one and incorporates it into the proposed

Bayesian framework.

This chapter is organized as follows. In Section 3.1, we introduce the DP and

stick-breaking construction. We also introduce the simultaneous clustering and fea-

ture selection algorithm and details of the proposed variational inference method.

Experimental results are presented in Section 3.2.

3.1 Proposed Model

3.1.1 Dirichlet process with a stick-breaking representation

The DP is a random process with a base distribution G0 which has probability distri-

bution as its realization [57] and non-negative scaling parameter α. For DP construc-

tion, a random measure G ∼ DP (α,G0) is drawn from k-components of measure sets
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{P1, ..., Pk} which are discrete [58]:

(G(P1), ..., G(Pk)) ∼ (αG0(P1), ..., αG0(Pk)) (41)

The learning approach is normally based on the stick-breaking process using vari-

ational inference [57]. An approximate posterior is placed on the represented set of

latent variables [59]. The stick-breaking process is a representation of the DP which

depends on two infinite groupings of independent and identically distributed ran-

dom variables Vk and ck, for k ∈ {1, ...,∞} [60]. Using this construction, an infinite

mixture model is formed as:

p(Vk|α) = Beta(1, α) p(c∗k|α,G0) ∼ G0 (42)

where Vk is the stick-breaking length with concentration parameter α. c∗k represent

the atoms drawn from the base distribution G0 independently. We define the stick-

breaking representation of the random representation G as follows:

πk = Vj

k−1∏
s=1

(1− Vs) G =
∞∑
k=1

πkδc∗j (43)

δc∗ is the probability concentration at c∗ with weight π. The mixing weights π =

(πk)
∞
k=1 are formed by breaking a unit length stick into infinite pieces with weights

summing to one. Thus, the resultant has an unknown number of components that can

increase as new data are observed. Thus, we have a set of observations x = {x1, ..., xN}
with parameters c = {c1, ..., cN}, where N is the total number of samples. The

distribution of random measure G is formed as follows:

G|{α,G0} ∼ DP (α,G0)

cn|G ∼ G

xn|cn ∼ p(xn|cn)

(44)

where G is a random measure from a DP prior DP (α,G0) and the atom cn is in-

dependently drawn from G0 with weight πn given by the nth stick-breaking length

Vn.

We utilize the above DP mixture model with the stick-breaking process. The

arbitrary variable cn takes on c∗k with weight πk and the component assignment is

indicated by the latent indicator variable Zn representing the assignment of data

point xn. The generative process of the DP mixture model can be explained as

follows:
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• Step 1: Vk|α ∼ Beta(1, α), k ∈ {1, ...,∞}

• Step 2: c∗k|G0 ∼ G0, k ∈ {1, ...,∞}

• Step 3: Draw the nth observation, n ∈ {1, ..., N}

– Zn|V ∼Multi(π)

– xn|Zn ∼ p(xn|c∗Zn)

From the above algorithm, the relative prevalence of the mixture is specified by the

probability distribution of atoms c which is drawn from the base distribution G0 with

stick lengths V . For the observations in Step 3, the indicators Z are distributed

according to a Multinomial distribution with mixing weights π generated from V .

3.1.2 Infinite generalized Gaussian mixture model

In this section we build an infinite generalized Gaussian mixture model (IGGM)

utilizing the DP with the stick-breaking representation described in Section 4.1.1. In

this thesis, we confine the proposed distribution to generalized Gaussian distribution

(GGD) with set of parameters θ. We set a truncation level on the highest component

number K of the stick-breaking representation. Given a dataset X = {X1, ..., XN},
if each vector Xn = (Xn1, ..., XnD) is represented in a D−dimensional space, the

truncated DP mixture model is given as follows:

p(X|Θ) =
N∏
n=1

K∑
k=1

πkp(Xn|θk) (45)

where Θ = (π1, ..., πK , θ1, ..., θK) represents the complete set of parameters for the

mixture model. π = (π1, ..., πK) represents the mixing proportions which are always

positive and sum up to one, and θk = (µk, τk, λk) represents the parameters of the

GGD for mixture components k. The mixing weights π of the stick-breaking approach

are represented as stick lengths V .

Given GGD parameters mean (µk), precision (τk) and shape (λk) for mixture

component k, the GGD probability density function can be written as:

P (Xn|θk) ∝
D∏
i=1

λikτ
1
λik
ik

2Γ( 1
λik

)
e−τik|(Xni−µik)|λik (46)
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where τik =

(
1
σik

√
Γ( 3
λik

)

Γ( 1
λik

)

)λik
, Γ(.) denotes the gamma function given by Γ(z) =∫∞

0
pz−1e−pdp where z and p are real variables, µk = (µ1k, ..., µDk), τk = (τ1k,...,τDk),

and λk = (λ1k, ..., λDk). The shape of the probability density function is determined

by the shape parameter λ. The larger the value, the flatter the probability density

function. This means that the decay rate of the density function is determined by λ.

Note that for the two special cases, when λ = 2 and λ = 1, the GGD is reduced to

Gaussian and Laplacian distributions, respectively. In this thesis, we assume that the

covariance matrix is diagonal and each dimension of observation Xn is independent

from the other dimensions.

For each variable Xn, let Zn be a K-dimensional vector known by the unobserved

vector that assigns the appropriate mixture component Xn belongs to. Then, Znk

is equal to 1 if Xn belongs to class k and 0 otherwise. Hence, the complete-data

likelihood is given as follows:

P (X|Z,Θ) =
N∏
n=1

(p(Xn|θk))Znk (47)

The mixing proportion πk = p(Znk = 1), k = {1, ..., K} indicates the probability that

a data point Xn is allocated to component k. Hence, the marginal distribution over

Z given a multinomial prior is given as follows:

p(Z|π) ∼Multi(π) =
N∏
n=1

K∏
k=1

π
I(Zn=k)
j (48)

where I(Zn = k) represents the indicator function. According to Eq. (48), the mixing

proportions π are represented by sticks V . Rearranging Eq. (48) gives p(Z|V ) as

follows:

p(Z|V ) =
N∏
n=1

K∏
k=1

[Vk

k−1∏
s=1

(1− Vs)]I(Zn=k) (49)

We truncate the number of mixture components to K, with the Beta prior of stick V

from Eq. (42)

p(V |α) =
K∏
k=1

Beta(1, α) =
K∏
j=1

α(1− Vk)α−1 (50)
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3.1.3 Infinite generalized Gaussian mixture model with fea-

ture selection

Feature selection is an essential process in a mixture model as some features in the

data do not necessarily contain information that is essential to clustering. We expect

that each mixture component density is factorized over the features. Hence, the

features are considered to be independent for each mixture component and we assume

that a feature relevancy corresponds to a weight ranging between 0 and 1.

Thus, for each mixture component, we assume that a feature of X is drawn from

a mixture of two univariate sub-components, as proposed in [42]. The first sub-

component models relevant information since it is distinctive from all other mixture

components and the second sub-component represents the ”noisy” information which

is common to all mixture components. Hence, we model the features with the follow-

ing distribution:

p(X|Z,Θ, ζ, S) =
N∏
n=1

K∏
k=1

[ d∏
i=1

p(Xi|Θik)
snp(Xi|ζik)1−sn

]znk
where Θ = {µ, τ, λ}, ζ = {ε, δ,Ω}

(51)

p(X,Z, π, µ, τ, λ, ε, δ,Ω, S) =
N∏
n=1

K∏
k=1

[ d∏
i=1

p(Xi|Znk, µik, τik, λik)s
n
i

p(Xi|Znk, εik, δik,Ωik)
1−sni

] (52)

where ε, δ, and Ω are the set of parameters for the irrelevant subcomponent. The

saliency of the features is expressed through the hidden variables sni , where sni ∈
{0, 1}. If the value of sni is one, then the ith feature of Xn is generated from the

relevant subcomponent; otherwise, it is generated from the irrelevant subcomponent.

The distribution of the hidden variable S given the probabilities w = {wi} (feature

saliencies) is given as follows:

p(S|w) =
N∏
n=1

d∏
i=1

w
sni
i (1− wi)1−sni (53)
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3.1.4 Variational learning

In this section, we propose a variational inference framework [52] [53] for the param-

eters estimation of the IGGM with feature selection. Fig. 7 represents the graphical

representation of our model.

Figure 7: Graphical model for the Variational IGGM with feature selection. Filled cir-
cle, unfilled circles and squares represent observations, random variables, and param-
eters, respectively. The dependency among the variables is represented by directional
arrows.

As discussed in the previous chapter 2 regarding the concept of variational infer-

ence, the variational distribution then factorizes into the latent variables and param-

eters as follows:

q(V, Z, µ, τ, λ, S) =
K∏
k=1

q(Vk)
N∏
n=1

q(Zn)

K∏
k=1

d∏
i=1

q(µik)q(τik)q(λik)q(Sin)

(54)

where a Beta prior with parameters γ1 and γ2 is assigned to q(Vk), q(µik) is given a

normal prior with mean mik and precision sik and q(τik) is assigned a gamma prior

with parameters αik and βik. q(Sin) is assigned a Bernoulli prior with parameter ηin.

Model parameter λik is not assigned any prior distribution [2], since the second-order
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derivative of the function λ is negative making the function concave [47].

q?(V ) = Beta(γk1, γk2) (55)

q?(µ) = N(µik|mik, s
−1
ik ) (56)

q?(τ) = G(τik|αik, βik) (57)

q?(S) = η
sni
in (1− ηin)1−sni (58)

Hence, the ELBO for the proposed IGGM using the mean field assumption is given

as follows:

L =
N∑
n=1

(E[ln p(Xn|Θ)] + E[ln p(Zn)])

+ E[ln p(µ)] + E[ln p(τ)] + E[ln p(S)] + E[ln p(V )]

− E[ln q(V, Z, µ, τ, λ, S)]

(59)

By applying Eq. (54) for every factor, the optimal solution of the variational posterior

for all the factors is given as follows:

ln ρnk =EV [lnVk] +
k−1∑
m=1

EV [ln(1− Vm)] + Eµ,τ,s
[
snk

(
ln
λkτ

1
λk
k

2Γ( 1
λk

)
− τk|X − µk|λk

)
+

(1− snk)
(

ln
kΛ

1
δk
k

2Γ( 1

k
)
− Λk|Xn − δk|k

)]
(60)

The variational parameters rnk, γ1, γ2, mik, s
−1
ik ,αik, βik and ηin are obtained by max-

imizing and determining the densities involved in q. The variational parameters are

defined using the expected values of znk, µik, τik, s
n
i , Vk and corresponding functions of

these parameters. The following equations are obtained after deriving the expectation

from q?(V ), q?(µ), q?(τ) and q?(S) as follows:
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rnk =
ρnk∑K
k=1 ρnk

(61)

Nk =
N∑
n=1

rnk (62)

γk1 = 1 +
N∑
n=1

rnk (63)

γk2 = α +
N∑
n=1

K∑
m=k+1

rnm (64)

mik =
s0m0

2
+ t1

sik
(65)

sik =
s0

2
+ t2 (66)

ηin =
wiη̂in

wiη̂in + (1− wi)εin
(67)

η̂in = exp

{
1

2

K∑
k=1

rnk[ψ(αik)− log βik]

− 1

2

K∑
k=1

rnk
αki
βki

[(xni −mik)
2 + τik]

} (68)

εin = exp

{
− 1

2
γi(x

n
i − εi)2 +

1

2
log γi

}
(69)

where t1, t2 have two different cases as follows:

t1 =



∑N
n=1(rnks̄nτ̄ik

λik
4

(λik − 1)µλik−3
ik x2

n+∑N
n=1(rnks̄nτ̄ik

λk
2
µλk−2
ik xn)), if Xn < mk

∑N
n=1 rnks̄nτ̄kλk

|xn|λk
xn

, otherwise

t2 =


∑N

n=1(rnks̄nτ̄ikµ
λik−2
ik ), if Xn < mik

∑N
n=1(rnks̄nτ̄ik

λik
2

(λik − 1) |x
λik
n |
x2
n

), otherwise
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where τ̄ represents Eτ [τ ].

αik =
N∑
n=1

s̄nrnk + α0 − 1 (70)

βik = β0 +
N∑
n=1

s̄nrnk Eµ[|Xn − µik|λik ] (71)

Eµ[|Xn − µik|λik ] =



|Xn|λik − λik |Xn|
λik

Xn
mik+

λik(λik−1)
2

|Xn|λik
X2
n

( 1
sik

+m2
ik),

if Xn > µik

E[|µik|λik − λikµλik−1
v Xn+

λik
2

(λik − 1)µλik−2
ik X2

n], otherwise

Then using the confluent hypergeometric function results in:

E
[
|µik|λik

]
=

(
1
√
sik

)λik · 2λik/2
Γ
(

1+λik
2

)
√
π

1

F1

(
−λik

2
,
1

2
,−1

2
(mik)

2 sik

)
.

(72)

E[lnVk] = ψ(γk,1)− ψ(γk,1 + γk,2)

E[ln(1− Vk)] = ψ(γk,2)− ψ(γk,1 + γk,2)
(73)

After the maximization of lowerbound L with respect to Q, the second step of the

method requires maximization of L with respect to wi, εi, and γi. Setting the deriva-

tive of L with respect to the parameters equal to zero results in the following update

rules:

wi =
1

N

N∑
n=1

ηin (74)

εi =

∑N
n=1 ηinx

n
i∑N

n=1 ηin
(75)

1

γi
=

∑N
n=1 ηin(xni − εi)2∑N

n=1 ηin
(76)
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Given the posterior distributions from the variational expectation (E)-step, the vari-

ational maximization (M)- step updates the parameters by maximizing the approxi-

mate lower bound L. To estimate the parameters of the GGD, i.e. λ,

λ?ik = λik + ι∆λik

where ∆λik = −L
′

ik(q,Θ)

L′′ik(q,Θ)

(77)

where ι is determined by the backtracking line search [54].

Algorithm 1 Variational learning of infinite generalized Gaussian mixture model
with feature selection

1. Initialization: Initialize the truncation level K and hyperparameters αi0, βi0,
mi0, si0 and rnk using K-means algorithm, λik = 2.

2. Initialize, sni , wi, εi, γi and ηin and compute αik, βik, mik and sik.

3. loop

i Update the irrelevant assignments wi, εi, γi, and ηin from the posteriors
using Eq. (74), Eq. (75) Eq. (76), Eq. (67) and Eq. (96).

ii Calculate mik and sik from Eq. (65) and Eq. (66).

iii Choose the step size ι by the backtracking line search and update λik using
Eq. (96).

iv The convergence criteria is reached when the difference of the current value
of joint posteriors and the previous value is less than 1e−9. Otherwise,
repeat above loop until convergence.

end

4. Compute the expected value of stick length Vj and the value of mixing propor-
tions using Eq. (43).

5. Detect the ideal number of mixture components K by eliminating the compo-
nents with small mixing coefficients close to zero.

3.2 Experimental results and discussion

In this section, we evaluate the proposed variational IGGM model using image cat-

egorization and a medical application. We compare the effectiveness of the model
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based on Gaussian mixture model (GMM) and variational Gaussian mixture model

(VGMM). For efficient computation, we set Ω = 2 for the irrelevant subcomponent

to be a Gaussian distribution.

3.2.1 Image categorization

Image categorization plays an important role in automation and multimedia applica-

tions where identifying patterns is vital [61]. In our experimental setup, we choose

the Caltech 101 objects dataset [62]. Among the 101 categories, we choose four cat-

egories: Bikes, Yin Yang, Sunflowers and Aeroplanes. All the categories have 60

images each to have a balanced dataset. Sample images are shown in Fig. 8. Also,

to evaluate the robustness of our model, all the categories that are considered have a

similar landscape.

Figure 8: Caltech 101 categories utilized in this chapter (top to bottom rows): Mo-
torbike, Aeroplane, Sunflower, Yin Yang.

To implement our model, we initially extract features and utilize the bag of visual

words (BoVW) representation [63][64]. Some of the most commonly utilized descrip-

tors are Scale-Invariant Feature Transform (SIFT) [65], Speeded Up Robust Features

(SURF) [66], Histogram of Oriented Gradients (HOG) [67]. In this chapter, we use

SIFT features for representations of the Caltech 101 dataset. SIFT feature extraction
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has the target of decreasing the subsequent computational complication and facilitat-

ing credible and accurate recognition for unknown new data. Our BoVW approach

consists of 200 features. Consequently, we first extract the features from the images

and perform K-means clustering over the extracted SIFT descriptors to form the bag

of the words feature vector for each image.

Our experiments comprise of clustering with no training stage as information is

infused into the algorithm with no prior knowledge about the observation labels. As

outlined in Fig. 8, the Caltech 101 dataset for a given label has many number of

images with different objects along with the focused object. We initialize the input

dataset using K-means algorithm and start with one mixture component (K = 1).

The proposed algorithm, denoted in Algorithm 1, then iterates until convergence. We

evaluate the effectiveness of the model in terms of the accuracy, recall and the preci-

sion metrics which are defined as accuracy = (TP + TN)/Total no of observations,

recall = TP/(TP +FN) and precision = TP/(TP + FP) where TP, TN, FP, and FN

represent the total number of true positives, true negatives, false positives, and false

negatives respectively.

Fig. 9 depicts the confusion matrix of the variational IGGM with and without

feature selection. Our results show that the model has misclassified Aeroplane as

MotorBike because of the high similarity of the landscape. Nonetheless, Table 2 shows

that our model outperforms the other comparing models as well as the variational

IGGM without feature selection. We can observe that VGMM resulted in a much

lower accuracy and precision than any other model due to overfitting. Incorporating

feature selection into the IGGM has improved the accuracy by 3%.

Table 2: Results for image categorization application with the Caltech 101 dataset
and 200 features.

Method Precision(%) Recall(%) Accuracy(%)
GMM 33.31 38.43 38.34

VGMM 14.10 25.61 25.41
IGGM without 72.51 71.10 71.40
feature selection

IGGM with 75.12 74.67 74.51
feature selection
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(a) with feature selection. (b) without feature selection.

Figure 9: Confusion matrices of variational IGGM model for for Caltech 101 dataset.

(a) with feature selection. (b) without feature selection.

Figure 10: Confusion matrices of variational IGGM model for heart disease dataset.

3.2.2 Heart Disease Detection

For the second application, we apply our proposed variational IGGM estimation al-

gorithm with feature selection in medical applications involving detection of heart

diseases. The heart disease data set provides all the potential symptoms of a person

with positive heart disease.

We have implemented our variational IGGM model with and without feature

selection starting with K = 1. The label for each data point is determined with the

largest component among the likelihood of the data point belonging to the classes.

Fig. 12 represents the confusion matrix results of the variational IGGM model

with and without feature selection. We can observe that inclusion of feature selection

increased true positives significantly by reducing the false positives when compared

33



Table 3: Results of Heart Disease UCI dataset.

Method Precision(%) Recall(%) Accuracy(%)
GMM 50.43 58.31 51.22

VGMM 57.07 62.31 59.10
IGGM without 77.10 77.10 76.10

feature selection
IGGM with 79.33 79.34 79.33

feature selection

with the model without feature selection which is crucial in any medical-related ap-

plication.

Table 3 presents the precision, recall and model accuracy of the three algorithms.

Although VGMM performed better than GMM due to relatively less number of fea-

tures, we can see that the variational IGGM model performed better than all the

other models and the inclusion of feature selection resulted in an improvement of 3%

in precision, recall and accuracy.
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Chapter 4

Background Subtraction with a

Hierarchical Pitman-Yor Process

Mixture Model of Generalized

Gaussian Distributions

Gaussian mixture models (GMM) are widely used for video background subtraction

[1]; however, the foreground and the background pixels are not necessarily always

distributed as a Gaussian [68]. In this work, we take advantage of the flexibility of

the generalized Gaussian distribution (GGD) to fit the foreground and the background

pixels [47].

In this chapter, we use the hierarchical Pitman-Yor (HPY) process model [46],

we develop a variational learning algorithm on the resulting model to estimate the

parameters and apply the proposed model for background subtraction. The rest of

the chapter is organized as follows. In the next section, we present HPY process

mixture model with GGD. The model learning is presented in Section 4.2. Section

4.3 is devoted to the experimental results.
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4.1 Model specification

4.1.1 Hierarchical Pitman-Yor process mixture model

The PYP for a random distribution G with a base distribution H is defined with

two parameters; namely, a discount parameter ιa and a concentration parameter ιb,

satisfying 0 < ιa < 1, ιb > −ιa and given by [69]:

G ∼ PY P (ιa, ιb, H) (78)

ιa = 0 is a special case of DP with concentration parameter ιb. The HPY process

is an extension to the PYP with a Bayesian hierarchy and the base measure is itself

distributed according to a PYP prior. The HPY process consists of a base distribu-

tion G0 and a group-level distribution Gj which are formed using the stick-breaking

construction. It gives an explicit representation of the HPY which depends on two

infinite random variables Φ′k = {Φ′1, ...,Φ′∞} and κk = {κ1, ..., κ∞} which are inde-

pendent and are distributed identically. The stick-breaking construction of the base

distribution G0 can be described as follows [69]:

κk ∼ H, Φ′k ∼ Beta (1− ιa, ιb + kιa)

Φk = Φ′k

k−1∏
l=1

(1− Φ′l) , G0 =
∞∑
k=1

Φkδκk
(79)

where κk is the set of independent random samples distributed according to the base

distribution H. Φk represents the stick-breaking weights,
∑∞

k=1 Φk = 1 and δκk is an

atom at κk. The stick lengths Φ′ are defined using the two parameters ιa and ιb of the

Beta distribution. The stick-breaking representation of the group-level PYP process

is defined as follows:

ψjt ∼ G0, p′jt ∼ Beta (1−Ba,Bb + tBa)

pjt = p′jt

t−1∏
s=1

(
1− p′js

)
, Gj =

∞∑
t=1

pjtδψjt
(80)

where pjt represents the stick-breaking weights and satisfies
∑∞

t=1 pjt = 1. p′jt is

the stick-breaking lengths used to recursively cut a unit length stick into infinite

number of pieces. The stick lengths p′jt follow a Beta prior and are defined using two

parameters Ba and Bb. ψjt is distributed according to the base distribution G0 and

δψjt represents the corresponding realization concentrated at ψjt.
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We assign global-level indicator variables I such that Ijtk ∈ {0, 1}. For each ψjt,

Ijtk = 1 if ψjt maps to the base-level atom κk which is indexed by k; Ijtk = 0,

otherwise. Hence, we can represent ψjt = κ
Wjtk

k . The indicator variable follows a

Multinomial distribution with stick parameter Φ and is defined as follows:

p(I|Φ) =
M∏
j=1

∞∏
t=1

Multi(Φ) =
M∏
j=1

∞∏
t=1

∞∏
k=1

Φ
Ijtk
k (81)

As Φ is a function of Φ′ according to the stick-breaking construction in Eq. (79), we

can rewrite Eq. (81) as follows:

p (I|Φ′) =
M∏
j=1

∞∏
t=1

∞∏
k=1

[
Φ′k

k−1∏
l=1

(1− Φ′l)

]Ijtk
(82)

The prior for Φ′ is drawn from a Beta distribution described in Eq. (79) and can be

given as follows:

p
(
~Φ′
)

=
∞∏
k=1

Γ (1− ιak + ιbk + kιak)

Γ (1− ιak) Γ (ιbk + kιak)
(1− Φ′k)

ιbk+kιak−1
Φ′−ιakk (83)

We construct the HPY process mixture as a factor associated with the observation

Xji, where i indexes the observations within each jth group of the grouped dataset.

The HPY process mixture generates θji as a factor to every observation of Xji, and

θj = (θj1, θj2, ...) and are distributed according to Gj of the PYP. Hence, the likelihood

function is given as follows:

θji |Gj ∼ Gj, Xji| θji ∼ F (θji) (84)

where F (θji) represent the distribution of Xji given the factor θji. The base distri-

bution H of G0 gives the prior for θji. As per this setup, each group j is related

with a mixture model, and as the atoms κk are shared among all Gj; therefore, the

mixture components are also shared among the mixture models. As each factor θji

is distributed according to Gj with values ψjt and probability pjt. We introduce one

more latent indicator variable W following the Multinomial distribution as:

p(W |p) =
M∏
j

N∏
i

∞∏
t

p
Wjit

jt (85)

Hence, for each θji, we place an indicator variable Wjit ∈ {0, 1} where Wjit = 1 if θji

belongs to component t and maps to the group-level atom ψjt; otherwise, Wjit = 0.
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Therefore, we have θji = ψ
Wjit

jt . Since ψjt maps to the global-level atom κk, we can

also write θji = ψ
Wjit

jt = κ
WjtkIjtk
k .

According to the stick-breaking construction in Eq. (80), rewriting Eq. (85)

results in:

p(W |p′) =
M∏
j

N∏
i

∞∏
t

[p′jt

t−1∏
s=1

(1− p′js)]Wjit (86)

The prior for p′ is given by a Beta distribution described in Eq. (80) and can be given

as follows:

p (~p′) =
M∏
j=1

∞∏
t=1

Γ (1−Bajt + Bbjt + tBajt)

Γ (1−Bajt) Γ (Bbjt + kBajt)(
1− p′jt

)Bbjt+tBajt−1
p
′−Bajt
jt

(87)

4.1.2 HPY mixture of generalized Gaussian distributions

In this thesis, we restrict the base distribution H in Eq. (78) to GGD. Given the

datasetX havingN random vectors divided intoM groups, where eachD dimensional

observation Xji = (Xji1, ..., XjiD) is drawn from a HPY process mixture model of

GGD’s with parameters µk = (µ1k, ..., µDk), τk = (τ1k,...,τDk), and λk = (λ1k, ..., λDk).

Thus, the likelihood function with the latent indicators can be given as follows [69]:

p(X|W, I, µ, τ, λ) =
M∏
j=1

N∏
i=1

∞∏
t=1

∞∏
k=1

p (Xji|µk, τk, λk)WjitIjtk

=
M∏
j=1

N∏
i=1

∞∏
t=1

∞∏
k=1

[∏D
d=1

λkdτ

1
λkd
kd

2Γ( 1
λkd

)
e−τkd|(Xjid−µkd)|λkd

]WjitIjtk
(88)

Γ(.) denotes the gamma function given by Γ(z) =
∫∞

0
pz−1e−pdp, where z and p are

real variables. Normal N and Gamma G priors are assigned to the parameters µ and

τ with hyperparameters p, q,m, and s respectively as follows:

µkd ∼ N
(
pkd, q

−1
kd

)
τkd ∼ G (mkd, skd)

(89)

No prior distribution is considered for shape (λ) parameter [47].
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4.2 Variational inference

In this section, we use the already presented variational inference from the previous

chapter 2 to approximate a distribution q(Θ) for the true posterior p(Θ|X), where

Θ = {I,Φ′,W, p′, µ, τ, λ} indicates the set of latent variables in the HPY process GGM

(HPYPGGM). Thus, the mean field variational inference of HPYPGGM is given by:

q (I,Φ′,W, p′, µ, τ, λ) = q(I)q (Φ′) q(W )q (p′) q(µ)q (τ) q (λ) (90)

In our algorithm, we truncate the variational approximation of the base distribution

G0 at K : β′K = 1, βk = 0 when k > K, satisfying the condition
∑K

k=1 βk = 1.

Similarly for the variational approximate Gj at T : p′jT = 1, pjt = 0 when t >

T and,
∑T

t=1 pjt = 1. The variational parameters K and T are optimized during

the variational learning process. Next, considering the suitable family of variational

approximations, we can have the distributions for the parameters as follows:

q(I) =
M∏
j

T∏
t

K∏
k

Multi (Ijtk|ϕjtk)

q(W ) =
M∏
j

N∏
i

T∏
t

Multi (Wjit|%jit)

q (Φ′) =
K∏
k

Beta (Φ′k|ck, dk)

q (p′) =
M∏
j

T∏
t

Beta
(
p′jt|ejt, fjt

)
q(µ) =

K∏
k

D∏
d

N
(
µkd|pkd, q−1

kd

)
q (τ) =

K∏
k

D∏
d

G (τkd|mkd, skd)

(91)

By applying the mean field theory for the proposed HPYPGGM, we expand the

ELBO as follows:

L = Eq [log p (X|I,W, µ, τ, λ)]) + Eq [log p (I|Φ′)] + Eq [log p (Φ′|ιa, ιb)]

+ Eq [log p (W |p′)] + Eq [log p (p′|Ba,Bb)]

+ Eq[log p(µ|p, q−1)] + Eq [log p (τ |m, s)]

− Eq [log q (W,Φ′, I, p′, µ, τ, λ)]

(92)
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where, E represents the expectation with respect to the subscripted parameter.

We obtain the updated equations for the variational parameters by maximizing

Eq. (92) with respect to Eq. (91) as follows:

ϕjtk =
ϕ̂jtk∑K
k ϕ̂jtk

, %jit =
%̂jit∑T
t %̂jit

ϕ̂jtk = exp

{
Eq [log Φ′k] +

k−1∑
l=1

Eq [log (1− Φ′l)]

−
N∑
i

Eq [Wjit] R̃

}

%̂jit = exp

{
Eq
[
log p′jt

]
+

t−1∑
s=1

Eq
[
log
(
1− p′jt

)]
−

K∑
k

Eq [Ijtk] R̃

}
ϕ̂jtk

R̃ =
D∑
d

Eq[
1

λkd
log τkd − τkd|Xjid − µkd|λkd ]

ck = 1− γak +
M∑
j

T∑
t

Eq [Ijtk]

dk = γbk + kγak +
M∑
j

T∑
t

K∑
l=k+1

Eq [Ijtl]

ejt = 1−Bajt +
N∑
i

Eq [Wjit]

fjt = Bbjt + tBajt +
N∑
i

T∑
s=t+1

Eq [Wjis]

mkd =
M∑
j

T∑
t

N∑
i

Eq[Ijtk]Eq[Wjit] +m0 − 1

skd =
M∑
j

T∑
t

N∑
i

Eq[Ijtk]Eq[Wjit]

+ Eq[|Xjid − µkd|λkd ] + s0

pkd =
p0q0

2
+ t1

qkd

qkd =
q0

2
+ t2
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where m0, s0, p0 and q0 are the hyperparameters of mkd, skd, pkd and qkd. t1 and t2

are defined as:

t1 =



∑M
j

∑T
t

∑N
i

(
(Eq[Ijtk]Eq[Wjit]Eq[τkd]

λkd
4

(λkd − 1)µλkd−3
kd X2

jid+

(Eq[Ijtk]Eq[Wjit]Eq[τkd]
λkd
2
µλkd−2
kd Xjid))

)
, if Xjid < pkd

∑M
j

∑T
t

∑N
i Eq[Ijtk]Eq[Wjit]Eq[τkd]λkd

|Xjid|λkd
Xjid

, otherwise

t2 =


∑M

j

∑T
t

∑N
i (Eq[Ijtk]Eq[Wjit]Eq[τkd]p

λkd−2
kd ), if Xjid < pkd

∑M
j

∑T
t

∑N
i (Eq[Ijtk]Eq[Wjit]Eq[τkd]

λkd
2

(λkd − 1)
|Xλkd
jid |
X2
jid

), otherwise

(93)

The expected values for the equations in Eq. (93) are defined as follows:

Eq [Ijtk] = ϕjtk, Eq [Wjit] = %jit

Eq [log Φk] = Eq [log Φ′k] +
k−1∑
l=1

Eq [log (1− Φ′l)]

Eq [log (Φ′k)] = Ψ (ck)−Ψ (ck + dk)

Eq [log (1− Φ′k)] = Ψ (dk)−Ψ (ck + dk)

Eq [log pjt] = Eq
[
log p′jt

]
+

t−1∑
s=1

Eq
[
log
(
1− p′jt

)]
Eq
[
log
(
p′jt
)]

= Ψ (ejt)−Ψ (ejt + fjt)

Eq
[
log
(
1− p′jt

)]
= Ψ (fjt)−Ψ (ejt + fjt)

Eq[|Xjid − µkd|λkd ] =



|Xjid|λkd − λkd |Xjid|
λkd

Xjid
pkd+

λkd(λkd−1)
2

|Xjid|λkd
X2
jid

( 1
qkd

+ p2
kd),

if Xjid > pkd

E[|µkd|λkd − λkdµλkd−1
kd Xjid+

λkd
2

(λkd − 1)µλkd−2
kd X2

jid],

otherwise

(94)

Using confluent hypergeometric function [47], the expected value of |µkd|λkd can be
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defined as :

Eq
[
|µkd|λkd

]
= (

1
√
qkd

)λkd · 2λkd/2
Γ
(

1+λkd
2

)
√
π

1F1

(
−λkd

2
,
1

2
,−1

2
(pkd)

2 qkd

) (95)

The shape parameter λ is given as follows [47]:

λ?kd = λkd + υ∆λkd

where ∆λkd = −L
′

kd(q,Θ)

L′′kd(q,Θ)

(96)

where υ is determined by the backtracking line search [54].

Algorithm 2 Hierarchical Pitman-Yor process of generalized Gaussian mixture
model

1. Initialization: Set the truncation levels K and T .
2. Initialize the hyperparameters ιa, ιb, Ba, Bb, p0, q0, m0 and s0.
3. Initialize %jit using K-means
4. loop

i Estimate all the expected values in Eq. (94) and Eq. (95).

ii Update the parameters of the variational solution using the equations in
Eq. (93).

iii Choose the step size υ by the backtracking line search and update λkd
using Eq. (96).

iv The convergence criteria is reached when the difference between current
and previous values of joint posteriors is less than 1e− 9.

5. end

4.3 Experimental results and discussion

4.3.1 Background subtraction

In this section, we employ the proposed HPYPGGM to address the problem of video

background subtraction using a pixel-level evaluation approach [1]. This approach

classifies whether the pixel belongs to the foreground or the background. Let us con-

sider a frame X containing U pixels such that X = ( ~X1, ..., ~XU). In the proposed

algorithm, each pixel ~Xi represents red, green and blue (RGB) colors (3-dimensional)

of the pixel which is modeled as a mixture of infinite GGD and the mixture com-

ponents are shared between the groups (i.e., frames). The HPY process mixture
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satisfies the above setting. We preprocess the frames by normalizing all the pixel

values in an observed frame to unit sum. The preprocessed data is then used for

learning the proposed HPYPGGM. In our mixture model, we can observe that some

of the mixture components are used to model background pixels and the other mod-

els the foreground pixels. The final step in our framework is to determine if ~Xi is

a foreground or a background pixel. In the proposed model, we assume a mixture

component is classified as background if it occurs frequently, indicating high Φ and

high precision τ [1]. We order the estimated components according to the product of

Φkτk and the resulting first B components are classified as background components,

with B given by:

B = arg min
b

b∑
k=1

Φk > Υ (97)

where Υ represent the minimum threshold of the data that should be accounted for

the background in the frame, and the other components are classified as foreground

components.

4.3.2 Results and discussion

In this section, we implement the proposed HPYPGGM algorithm on the challenging

Change Detection dataset [70] which consists of 31 videos categorized into 6 differ-

ent categories (baseline, shadows, dynamic background, intermittent object motion,

camera jitter, and thermal). To evaluate the efficiency of the proposed model, we

consider six videos of the Change Detection dataset which are described as follows:

• Pedestrians: This video sequence shows pedestrians walking in a park.

• Office: This video sequence shows a person walking around in an office.

• Library: This thermal video sequence shows a person walking in the library.

• Corridor: This thermal video sequence shows a person walking in the corridor.

• Canoe: This video sequence shows a moving canoe in a dynamic background.

• Badminton: This video sequence shows players playing badminton.

Sample images from the videos can be found in Fig. 11. In our experiments, we

initialize threshold Υ = [0.55, 0.75] for different videos. Our results for each of the
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(a) Pedestrians. (b) Office. (c) Library.

(d) Corridor. (e) Canoe. (f) Badminton.

Figure 11: Sample frames of the video sequences from Change Detection dataset.

video sequences can be observed in confusion matrix form in Fig. 12. We evaluate the

classification measure by accuracy, recall and precision which are defined as accuracy

= (TP + TN)/Total no of observations, recall = TP/(TP + FN) and precision =

TP/(TP + FP) where TP, TN, FP, and FN represent the total number of true

positives, true negatives, false positives, and false negatives respectively. The reported

results of precision and recall are based on the macro averages of the overall frames.

(a) Pedestrians. (b) Office. (c) Library.

(d) Corridor. (e) Caneo. (f) Badminton.

Figure 12: Confusion matrices of applying the proposed HPYPGGM model.
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We compare our results with four other approaches from the literature; namely,

K-means, GMM, variational GMM (VGMM) and Dirichlet process GMM (DPGMM).

We set the number of components to 6 for K-means, GMM, VGMM and DPGMM.

The threshold Υ is set to the same value as HPYPGGM for a fair comparison between

the models. A visual comparison of the results from all the video sequences can be

observed in Fig. 13 and Table 4 shows the comparison of the proposed HPYPGGM

against K-means, GMM, VGMM and DPGMM. We can observe in the Pedestrians

video sequence, that our model performed better in classifying between the back-

ground and foreground pixels while the others misclassified most of the background

with foreground pixels. In the Office video sequence, K-means, GMM, VGMM and

DPGMM were not able to precisely distinguish between the background and fore-

ground pixels. This may be due to the close color intensity of the person’s jeans

with the color intensity of the box next to him. Nonetheless, HPYPGGM was able

to segment a better foreground compared with the other models. All the models

performed better in the Library video sequence where the background pixels are dark

with perfect illumination, thereby resulting in a high accuracy with a supporting high

precision and recall for all the models. In the Canoe video sequence all the models

misclassified background water with foreground. However, HPYPGMM was able to

give a better classification between the background and the foreground pixels. This

can be observed clearly in Fig. 13. Similar results were obtained in the Badminton

video sequence. Table 4 shows that the proposed HPYPGGM model outperformed

K-means, GMM, VGMM and DPGMM in most cases in terms of precision, recall and

accuracy.
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Table 4: The macro average results of background subtraction with the Change De-
tection dataset.

Model Precision (%) Recall (%) Accuracy (%)
Pedestrians

K-means 67.30 73.11 96.48
GMM 60.12 73.42 94.02

VGMM 57.21 71.60 92.31
DPGMM 67.48 65.33 93.33

HPYPGGM 77.31 69.10 97.64
Office

K-means 67.51 65.23 90.52
GMM 56.10 60.40 81.30

VGMM 58.92 65.11 81.51
DPGMM 89.48 87.12 87.21

HPYPGGM 93.31 65.20 94.05
Library

K-means 98.97 96.02 98.04
GMM 98.56 96.01 98.06

VGMM 98.61 96.30 98.09
DPGMM 98.48 98.13 98.09

HPYPGGM 99.01 96.31 98.72
Corridor

K-means 92.31 62.01 84.22
GMM 94.12 76.89 90.25

VGMM 95.23 78.12 83.50
DPGMM 94.48 93.21 93.01

HPYPGGM 96.01 83.51 93.43
Caneo

K-means 80.10 78.26 93.22
GMM 76.82 77.12 92.59

VGMM 71.13 77.23 90.64
DPGMM 93.10 74.42 93.46

HPYPGGM 97.01 74.51 95.66
Badminton

K-means 61.12 72.51 95.22
GMM 57.51 74.12 93.52

VGMM 57.12 74.71 93.50
DPGMM 66.48 65.47 94.73

HPYPGGM 66.01 66.52 97.40
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Figure 13: The foreground mask results for each of the original images (Pedestrians,
Office, Library, Corridor, Caneo and Badminton from top to bottom respectively)
obtained by K-means, GMM, VGMM, DPGMM and HPYPGMM algorithms are
shown in columns 1 to 5 respectively.
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Chapter 5

Conclusion

Clustering algorithms have been broadly applied in many research areas such as com-

puter vision, signal processing, and pattern recognition. A mixture model, one of the

most predominant statistical techniques, clusters data into a collection of homoge-

neous groups. Gaussian distribution has been widely used and studied with success

for many applications involving computer vision, machine learning, image processing

and statistical analysis. However, in many real applications, Gaussian fails to fit

different shapes of data.

In this thesis, first we have presented a variational inference approach for general-

ized Gaussian Distribution. The algorithm was based on treating the shape parameter

as a variable. Using the single-step update of Newton’s method, the shape param-

eter is updated in the VM-step. Experimental results on medical, astrological, and

image segmentation applications have shown the effectiveness of the algorithm when

compared with the traditional models.

Second, we extended the variational inference approach to the infinite case using

Dirichlet process and applied feature selection. Also, by extending the model to

infinity with simultaneous feature selection, we were able to detect the number of

mixture components and relevant features without the need to specify the number

of mixture components a priori thereby resulting in an overall better accuracy. The

variational learning approach aided in approximating the posteriors and experimental

results have shown that the proposed variational IGGM with feature selection has

favorable results compared to standard models.

Third, as an alternative to the proposed Dirichlet process prior, we considered
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hierarchical Pitman-Yor process prior for our model. The proposed model tackles the

estimation of parameters via variational learning. We inspected the benefits of our

approach on video background subtraction using the challenging Change Detection

dataset. The experimental results compared with the traditional models as well as the

Dirichlet process of Gaussian distributions shows that our nonparametric Bayesian

framework performed better over other models resulting in significant outcomes.

In conclusion, when compared with existing models and techniques which are

mostly based on Gaussian assumption, our approach’s can model non-Gaussian data

with an efficient approximation of the model parameters resulting in better accuracy.

Our models were also able to automatically determine the better number of mixture

components resulting in overall better performance.

Future work could be dedicated to investigating online variational techniques for

our proposed approaches and also extending the proposed models with component

splitting. Another potential future work related to video background subtraction

can be to modify the pixel based approach into segmenting each pixel of all the

frames might lead to better over all performance in terms of classifying foreground

and background pixels.
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