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Abstract

Estimating Reflectance Properties and Reilluminating Scenes Using Physically Based

Rendering and Deep Neural Networks

Farhan Rahman Wasee

Estimating material properties and modeling the appearance of an object under varying illumi-

nation conditions is a complex process. In this thesis, we address the problem by proposing a novel

framework to re-illuminate scenes by recovering the reflectance properties. Uniquely, following a

divide-and-conquer approach, we recast the problem into its two constituent sub-problems.

In the first sub-problem, we have developed a synthetic dataset of spheres with realistic mate-

rials. The dataset has a wide range of material properties, rendered from varying viewpoints and

under fixed directional light. Images from the dataset are further processed and used as reflectance

maps used during the training process of the network.

In the second sub-problem, reflectance maps are created for scenes by reorganizing the outgoing

radiances recorded in the multi-view images. The network trained on the synthetic dataset, is used to

infer the material properties of the reflectance maps, acquired for the test scenes. These predictions

are reused to relight the scenes from novel viewpoints and different lighting conditions using path

tracing.

A number of experiments are conducted and performances are reported using different metrics

to justify our design decisions and the choice of our network. We also show that, using multi-view

images, the camera properties and the geometry of a scene, our technique can successfully predict

the reflectance properties using our trained network within seconds. In the end, we also present the

visual results of re-illumination on several scenes under different lighting conditions.
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Chapter 1

Introduction

In recent years, due to the rapid development of cameras, particularly with the widespread avail-

ability of handheld cameras and imaging devices, there has been a big rise in the number of images

that are taken everyday. Any person owning a cellphone can take a photo anywhere and anytime.

The availability of image capturing devices and the ease of use has also made the task of collecting

images for large scale datasets easier. Retrieval of images for a place or landmark from different

viewpoints and under varying lighting conditions is not challenging anymore. While capturing an

image is as easy as clicking a button, doing the inverse of this process is very hard and compu-

tationally intense. For any image, performing the inverse process involves recovering information

related to its construction, such as the camera properties, the geometry of the scene or finding the

reflectance properties of the objects that appeared in the images, etc. Having access to one or more

of these information allows one to perform a multitude of tasks ranging from 2D to 3D reconstruc-

tion, re-rendering the images, or to make modifications to one or more of the parameters to create

alternate versions of the images.

The creation of photorealistic images is a well-studied yet non-trivial process that involves solv-

ing the rendering equation [43, 44] at each surface point of the scene visible in a camera’s field of

view (fov). To generate such photorealistic images, information about the scene geometry, materi-

als, lights, camera, etc have to be known. Once these parameters are available, then it is a matter

of choice of the rendering technique that can produce the final render. Indeed being a well-studied

process, for the past few decades numerous techniques have been proposed primarily focusing on
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the main challenges of (i) physics-based reflection models [21, 34] and (ii) efficient and effective

processing of the input information, [19, 20, 35, 39, 40, 54] - to name a few.

Going back from the images to the various parameters involving the image creation process i.e

camera poses, scene properties, etc, is a complicated process known as Inverse Global Illumination

(IGI). The goal of the process is the recovery of the reflectance properties of the objects in the

scene given (i) a set of images capturing the scene, information about the geometry of the scene,

and (ii) the illumination conditions at the time the images were captured. Recovering reflectance

properties has immense value in various applications. It allows us to render view independent

images, rendering under novel lighting conditions or for creating timelapse effects of a scene for

visualization. Over the past few years, IGI has been performed on small-scale scenes under a

lab setup where the scene can be captured using a laser scanner. In these studies, the lighting

environment is captured by using light probes or by placing chromium spheres [25, 26].

Limited work has been done over the years on the field of inverse rendering or inverse global

illumination in uncontrolled setup. In recent years, deep convolutional neural network and gener-

ative adversarial networks have been used to address this problem. Several techniques have been

proposed e.g. [17,49,81] in which given images of the scene and in some cases additional informa-

tion extracted from those images e.g. depth map, semantic maps [67], the network then produces

renders of the scene from novel viewpoints. In these techniques, most of the test scenes are either

indoor and small scale or architectural landmark sites that have similar structures and texture. Also,

despite producing impressive results, the users do not have limited control over the output of the

network i.e. the reflectance properties are embedded in the network and cannot be deciphered or

extracted.

In this thesis, we present a technique for reilluminating scenes under novel lighting conditions

and from novel viewpoints by estimating the reflectance properties of the objects within the images.

Uniquely, we recast the problem of recovering the bidirectional reflectance distribution function

(BRDF) of four parameters fr(ωi, ωo) into its two constituent components. In the first component,

a residual neural network is used to reduce the parameter space of the BRDF from the 4-parameters

relating to the incoming light direction ωi and outgoing view direction ωo, to only the 2-parameters

relating to ωo. The network learns a function for mapping a sparse reflectance map that encaptures
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the outgoing radiances across all the directions, to a 7-vector representing the reflectance properties

of the surface. This is achieved by training the network with a vast number of reflectance maps

created using renders of the unit sphere with different material properties being lit from a fixed light

source and varying viewpoints.

In the second component, all samples of the reflected radiance captured in the images - from

arbitrary view directions - are aggregated per triangular face. This results in a reflectance map

per triangular face, which is a function of the remaining 2-parameters of the BRDF specifying the

outgoing view direction ωo. We assume that each surface in the scene has a uniform and isotropic

material. Under this assumption, this reflectance map is then used as the input to the network. The

output of the network is a 7-vector representing the reflectance properties for each surface. This

process is repeated for the rest of the surfaces contained in the scene.

In summary, we propose a two-stage processing pipeline for inferring the reflectance properties

per triangular face, given several images capturing the scene, and finally relighting the scenes under

different lighting conditions and viewpoints.

The first stage focuses on the training of the deep neural network for inferring reflectance prop-

erties. There are two parts associated with it:

• Generation of training data: A synthetic dataset is created with renders from varying view-

points, under a fixed lighting direction and with large number of varying reflectance proper-

ties.

• Network training A wide residual neural network is trained on the synthetic dataset using

regression.

The second stage focuses on the composition and aggregation of the outgoing radiances from

the images and inference of the reflectance properties. It can be broken down into two parts:

• Composition of reflectance maps for scenes: A per-triangular face reflectance map is com-

posited by aggregating the corresponding outgoing radiance values captured in the images.

• Inference from the reflectance Maps: Inferring reflectance properties for each of the re-

flectance maps and re-rendering with the predicted properties using path tracing.

3



1.1 Thesis Organization

The remaining of this thesis is organized as follows: Chapter 2 highlights a few classical and recent

methodologies of similar research which includes procedural and classical computer vision based

algorithms. This chapter also presents the recent related methodologies involving deep learning

and modern computer vision approaches. In the following chapter, Chapter 3, we discuss some

theoretical and practical background including rendering techniques, various reflection models, and

also discuss the basis of our problem formulation. Chapter 4 describes our complete system pipeline

for data generation, the estimation of reflectance properties from reflectance maps. Additionally, this

chapter presents some of the rendering results obtained using our approach. Lastly, in Chapter 5,

the conclusion and scope of future work are presented.
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Chapter 2

Literature Review

In recent years, due to the development of multiple open-source frameworks [5,41,76] and massive

computational improvements (mostly GPU based parallel computation) [51, 60], there has been a

rise in deep learning based research. This has resulted in the publication of a lot of new network

architectures that can have numerous applications. Nowadays, deep learning is being applied in

multidisciplinary fields ranging from image processing, natural language processing, video analysis

and object tracking to topics like analyzing medical images and artificial/synthetic content creation

i.e using deep learning to write texts, creating images of objects or scenes that do not exist, etc [15,

38, 46, 47, 80, 107]. In the following few sections, we go over some of the recent and past methods

that attempt to solve similar problems such as ours. More specifically, we will first go over some

of the most famous deep neural network architecture that has made notable contributions. Then

we discuss some appearance modeling techniques which attempt to recover reflectance properties

and information about the materials from images. We separately discuss the more conventional

procedural based techniques and the deep learning based techniques in two different subsections.

2.1 Deep learning and Convolutional Neural Networks

Many major contributions have led to the recent success of deep learning across different domains.

LeNet [56] and AlexNet [53] introduced modern ConvNet architectures and began this uprising.

Several factors contributed to this widespread success. Amongst which one is the improvement of
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Figure 2.2: The architecture of AlexNet [53] which created a revolution in image classification and

introduced several new ideas including the use of data augmentation and GPUs for training.

2.1.2 AlexNet

Although LeNet was the earliest deep network that introduced ConvNets to recognize handwritten

digits, it was a shallow network that did not scale well on images from other categories. With the in-

troduction of AlexNet [53], the scenario changed. Krizhevesky et al. [53] enhanced the performance

by making the network deeper by adding more layers, by introducing some parameter optimization

techniques, and most importantly by introducing GPU training. The architecture of AlexNet can

be seen in Figure 2.2. AlexNet also introduced the idea of using data augmentation techniques on

images to reduce overfitting and artificially increasing the dataset size. Two parallel GPUs were

used to train the AlexNet model that is also divided into two similar but parallel modules. The

introduction of AlexNet changed the way of research in computer vision completely.

2.1.3 ResNet

He et al. [32] proposed the deep residual network architecture named ResNet [32] in 2016 which

comes with a few variants. It achieved the state of the art results in ImageNet [85] challenge signif-

icantly. Figure 2.3 shows a couple of examples of the residual blocks. ResNet introduced multipath

training by creating a skip connection with the earlier layers and the latter layers. The success of of

ResNet revolutionized the idea of residual learning for ConvNets, something similar like this that

was also noticed in U-Net [83] for semantic segmentation. ResNets have smaller blocks that are

called residual blocks. For the success of this network, a few other variants have also been proposed
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2.2 Appearance Modeling and Inverse Rendering

Inverse rendering, appearance capture and modeling have been a challenging topic for well over four

decades. Humans are very good at understanding materials or the type of object just by using their

vision. However, accurately estimating reflectance properties from images remains a challenging

problem to this day. There has been a large number of studies and a wide variety of techniques that

address this topic. Some of them try to estimate material properties, whereas a few of them try to

label objects into a predefined set of material labels. Below we will go over some of the works in

this domain and categorize them into procedural-based and the other ones based on deep learning.

2.2.1 Procedural-based

Traditional systems need human assistance, a controlled environment for setting up experiments that

capture the appearance of a scene. To capture the illumination or environment, various instruments

have to be used. For instance, a laser scanner that can capture the scene geometry, light probes that

are used to capture the environment, the light information, etc. [65] presents one such attempt to

estimate the effects of light in an image with the help of the scene geometry and camera parameters.

The system tries to solve a least square system to find the light distribution which is then used

to compute the changes required to go to the target lighting conditions. Another significant work

in reflectance estimation was done by Yu et al. [104]. It attempts to recover diffuse and specular

reflectance, and model it using a low parameter reflectance model. This requires several calibrated

images taken under predefined lighting conditions alongside the geometric model of that scene.

Then they try to optimize for the reflectance parameters iteratively. Romeiro et al. [82] were also one

of the first to show how reflectance properties can be estimated under known shape and illumination.

[25, 26] proposed a technique for estimating reflectance properties of a landmark under natu-

ral illumination. The technique involves scanning the scene geometry using a laser scanner, taking

multi-view photographs from different locations, and also capturing the illumination condition for

each of the images. In addition to all of these, a subset of BRDF measurements is also taken

from different surfaces amongst the scene. Afterwards, an iterative global illumination procedure is

performed that estimates the reflectance properties and re-renders the scene. The images are then
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compared with the original ones and the parameters are tuned to minimize the errors. Lombardi and

Nishino [62] reformulated the problem of acquiring reflectance from images using a probabilistic

approach. Despite adding valuable contribution to the field, the downside with many of these ap-

proaches is they rely heavily on the setup of the scene, and will need a different approach if one or

more information is not available about the scene. Laser scanning a scene is not easy, and it is not

always practical to design a method for which the geometry, images, BRDFs, etc will be readily

available to estimate the materials. Also, a few of these experiments work with simplistic objects

i.e. images of spheres against a solid background or an environment map. Hence, they do not scale

up with complex geometric shapes.

Barron and Malik [9,10] proposed two separate techniques for recovering shape, diffuse albedo

and illumination from an image. The first of these two techniques focused on achromatic images

while the latter worked on colored images. However, the problem with this approach was the sur-

face materials were modeled using the Lambertian reflection model. Glossiness or the concept of

roughness is not defined in the Lambertian model. Which makes the technique non physics based

and thus it is limited in its ability when it comes to real-world materials. Brelstaff and Blake [14]

proposed a method that attempted to address this issue of identifying specularity in images. Their

method works well but it can only identify specular shiny regions from images. Abe et al. [6]

use several feature detectors to extract features from images and use an SVM to rank the images

based on a few predefined attributes, which are glossiness, roughness, transparency and coldness.

Goldman et al. [29] estimated per-pixel mixture weights and a combination of parametric materi-

als. However, this approach requires a few HDR input images which were captured under known

lighting conditions, which is again difficult to obtain.

Over the years, several different techniques have been proposed to obtain material properties

from images. However, using traditional techniques most often work by relying on laboratory setup.

Also, some of these techniques put constraints on additional factors like illumination, shape, etc.

Shapes of objects can be of countless types, illumination can have a lot of variations. Besides, ma-

terials can have subtle variations producing changes in appearance - addressing all of these factors

at once is difficult using traditional techniques and rule-based approaches. Therefore, estimating

realistic materials properties under varying illumination, i.e estimating diffuse, specular, roughness
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components can be challenging with these methodologies.

To apply a machine learning method, a person has to decide on the features that are to be

extracted from the images, videos or other forms of data. Feature descriptors such as SIFT [63],

SURF [11], ORB [84], BRISK [57], etc. are commonly used with images. Using features extracted

using one of these techniques, a model would be trained. This model would generally be a Support

Vector Machine (SVM), Bayes Classifier, Decision Tree, etc. The downside with this approach

is choosing the feature descriptor and the model. Since the descriptor would be extracting the

feature information from the data, and that information would later be used to train the model, it is

crucial that the feature descriptor extracts maximum and most meaningful patterns from the data.

Most of the time this is a very difficult decision to make beforehand and it is very challenging to

pick one model/descriptor with certainty that would produce optimal performance. In recent years,

deep learning approaches have shown significant improvement in this domain. Some of which are

discussed in the next section.

2.2.2 Deep Learning based

Since the earlier days of classical Computer Vision and Computer Graphics algorithms, things have

come a long way with the help of modern deep learning algorithms. Many tasks that were previ-

ously challenging and erroneous can now be solved using deep learning based solutions with near

human-level accuracy. In the domain of computer vision and computer graphics, deep learning

has achieved more widespread success than machine learning. The revolution of deep learning

has opened a new paradigm of ways to tacking the inverse problem of relighting and material es-

timation, especially with the development of various deep learning frameworks [5, 41, 76]. Lately,

differentiable rendering has also been used to solve similar subtasks as seen in [8,17,59,61,73,103].

Dror er al. [27] estimates reflectance properties from just 6 predefined types specified by the

Ward model [97] and trains a classifier using synthetically created images of spheres. Rematas

et al. [81] addressed this inverse problem by creating reflectance maps from specular materials in

natural lighting conditions. Their technique assumes that the object is made up of a single material

that is consistent throughout its geometry. They proposed two modules in their system, one of which

directly estimates the reflectance maps from the image while the other first predicts per-pixel surface
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normals that are used to compute a sparse reflectance map. It is then used in interpolation to create

a denser map.

Meka et al. [66] used a system with 5 smaller deep networks to estimate materials for performing

material transfer. An image is taken as input which is first masked from its background and then

further processed to estimate diffuse and specular components of the material. The technique works

well on objects having simple shapes and it estimates a single material for each image. However, this

approach has a few limitations like not supporting global illumination and not modeling specularity.

Kim et al. [50] built a lightweight system to estimate surface reflectance from images in realtime.

They estimate the surface reflectance by using a simple BRDF representation and by estimating

surface albedo and gloss instead of estimating the full 4D BRDF function. They use two networks

to estimate the BRDF which enables rendering under different illumination and view independent

conditions.

Philip et al. [78] proposed an end to end approach for relighting outdoor scenes, mostly of

landmarks. Their system takes a set of multiview images, computes a proxy 3D geometry. A

part of their system focus on the shadow removal and refining process using another sub-network.

Their system has also been trained on photorealistic synthetic data generated using physics-based

raytracing. A similar approach has been taken by Meshry et al. [67] where they attempt to do a total

scene capture. The system utilizes publicly available images of landmarks as inputs and uses off the

shelf reconstruction algorithms to retrieve the geometry as part of the process.

NeRF [68] which is proposed by Mildenhall et al., proposed a differentiable rendering approach.

Their system performs volumetric rendering to compute the final color value for each pixel. The

system also takes the direction of a ray into account when computing the final color for a pixel.

Therefore, their system can model non-Lambertian materials and complex scenes that exhibit view

dependent phenomena such as shininess or specularity.

Chen et al. [18] use one of the recent approaches of using a neural renderer to tackle a similar

subproblem. In their work, they designed a neural renderer to synthesize novel viewpoints and

perform reillumination by defining the appearance as a combination of environment lighting, object

intrinsic attributes, and the light transport function (LTF). These are learnable through training. The

scenes are mainly of small-scale objects and it does not work particularly well in the presence of
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highly specular objects.

The authors in [69] published a dataset of indoor scenes composed of a fixed number of prede-

fined material categories in multi-illumination conditions. Along with the dataset they tackled the

problem of scene illumination prediction by predicting the light probe for the given input image.

Also, they formulated image relighting as an image to image translation problem where they train

a network to learn the direct mapping (without factoring out the material properties) between two

images taken from the same viewpoint under two lighting conditions. The system does not esti-

mate reflectance properties throughout the process and is limited to close shot images that are taken

indoors.

There has also been a lot of research done on estimating reflectance for human faces and portrait

relighting in particular. A good example of these can be seen in [70,90,106]. Reilluminating indoor

or outdoor scenes with a wide variety of materials and their properties do not fit well with these

techniques. Also, it is impractical and impossible to generate a large dataset of indoor-outdoor

scenes comprising objects of different shapes and materials in a studio-like environment as it can be

done with human faces.

There are other methods [28, 36, 89] that capture the illumination condition or the environment

that the image was shot in, to perform manipulations such as inserting a new object into the scene,

etc. However, these methods do not give a way to reintroduce new lighting conditions and re-

rendering. [48] shows another method to insert objects into scenes realistically using a single image.

However, it requires annotations to be done by the user on the image.

2.3 Conclusion

Despite all the recent advancements and contributions in the field of inverse rendering and material

estimation the procedural methods generally work well under constrained environment, controlled

lighting and/or with objects with simpler geometry. On the other hand, the recent deep learning

techniques produce results that provide limited or no control from the end user. Also, most often,

the internal representation of what is going on under the hood in these relighting models is very

hard or nearly impossible to interpret. Some of these techniques take in images, and re-render
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using different lighting condition. Most often, the user has no knowledge on how the network is

internally registering the materials. Whereas, in our technique, the materials are well defined, and

the viewpoints can be controlled. Each of the objects in the scene has specific reflectance properties

assigned to the geometry. Besides, the material reflectance model used in this work is physically

based and can be used to model any realistic material.
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Chapter 3

Background

In recent times, there is a large number of publicly available renderers that allow photorealistic

rendering using a wide variety of algorithms to produce images with a realistic appearance. A few

of these are Mistuba Renderer [74], Physically Based Rendering (PBRT) [77], Arnold [1], Cycles [2]

and Maxwell [4].

3.1 Rendering and Different Rendering Techniques

Rendering involves the process of synthesizing images using 3D scenes, illumination and camera

positions. Typically, a renderer parses a scene description file and produces a single or a set of

images as the output. Generally, the scene description file contains information about the scene

geometry, material properties, texture, and additional renderer settings. It may also contain infor-

mation about the light source(s) along with the intrinsic and extrinsic properties of the camera. The

particular 3D scene would be rendered from the viewpoint of this camera with the illumination com-

ing from the light sources. Rendering is the final phase of the graphics pipeline. Rendering can take

place in two different parts of the system hardware. Based on that they can be categorized as CPU

rendering and GPU rendering. Most renderers work in the CPU and are relatively slow. Whereas,

GPU rendering is the more recent technology and it takes advantage of the GPUs for rendering,

producing high-quality results in a shorter time. Many techniques and algorithms exist that can be

used for rendering and all of them try to solve the rendering equation [45]. In the following sections,
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we briefly go over some of the major and mostly used rendering techniques.

3.1.1 Rasterization

Rasterization is one of the oldest and simplest forms of image rendering. It produces very fast ren-

ders, however, the resultant images lack realistic shading and appearance. Rasterization essentially

breaks down the rendering process into two parts, i. Visibility checking and ii. Shading com-

putation. Generally, the 3D scene geometry is broken into very small triangles or polygons. The

vertices of the triangles are then projected onto the screen. Afterwards, the pixel lying within the

projected vertices are filled with color. The final color of a pixel can be calculated using various

shading techniques.

Rasterization is an object-centric approach where the algorithm starts its process from the object

level and finishes up in the screen space, forming the image. Most often it is a memory-intensive

algorithm. It operates by having a few memory buffers during rendering. For example, the z-

buffer has to be maintained which is used during depth testing. During rasterization, 3D points are

mapped into the 2D image plane using the camera’s intrinsic and extrinsic properties. Specifically,

the projection of a world space point (X,Y, Z) can be computed using Equation 1. Here, using a

homogeneous coordinate system, (u, v, w) is in image/screen space. The first matrix on the right-

hand side represents the camera intrinsics. (fx, fy) correspond to the focal lengths of the camera.

In a true pinhole camera, both fx and fy should have the same value. However, due to flaws in the

camera sensors, they can vary a little. Also, the lens distortion and errors in camera calibration can

make them unequal. (u0, v0) is the coordinate of the principal point of the camera. s represents the

skew of the camera lens, which is non-zero if the image axes are not perpendicular to each other.

The second matrix on the right-hand side corresponds to the camera extrinsic parameters, the 3x3

on the left express the rotations, whereas the rightmost column containing (tx, ty, tz) represents the

translations. (X,Y, Z, 1) are world space coordinates. Once the 3D point has been converted from

the world space coordinate system to the camera space, it can be used to compute the z-distance of

the point, which in turn can be used for computing the z-buffer. For shading, a number of common

techniques can be applied like Phong [79] or Gouraud [30] shading.
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3.1.2 Ray casting

Ray casting is also an older technique and was introduced in 1982 by Arthur Appel [7]. Unlike

rasterization, ray casting operates in image order and goes from image space towards the 3D object

space. To start, a ray is generated from the camera through a pixel. Afterwards, the shading is

calculated for the hitpoint of that pixel. Ray casting is fast because only one ray is shot for each

pixel and there are no additional recursive rays from the hitpoints. The downside of this is images

rendered using ray casting has hard shadows and lacks global illumination effects like reflection,

refraction, etc. The advantage of using ray casting over older scanline algorithms is, raycasting can

easily deal with non-simple shapes like spheres, cylinders and cones. However, due to the lack of

realism, it is not that widely used any longer.

3.1.3 Raytracing

Even though raycasting was widely used it could not address a few properties that contribute towards

making an image appear realistic. The lack of common appearance attributes like reflection and

refraction did not produce satisfactory results. This changed when Turner Whitted introduced his

technique [99]. Figure 3.1 illustrates the process. In its simplest form, the process of raytracing

begins from the camera. A ray goes through each pixel in the image plane which is being shaded.

This ray travels towards the scene until it is intersected with an object. From there it can generate

up to three new types of rays, they are: reflection, refraction, and shadow rays. If the object has

reflective or refractive properties, secondary rays are determined by the physical laws of reflection

or refraction. For finding out if a point is illuminated or shadowed, the technique finds out if there

is a direct path from the point towards the light source. If a ray from that point towards the light
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Figure 3.2: 3 different renders generated using path tracing. The three images are using rendered

using sampling sizes 4, 32 and 256 respectively. The noisiness gets stronger as the number of

samples is lowered. As the number of samples grows bigger, more rays end up reaching the light

source, thereby, producing a cleaner and smoother image.

3.2 Reflection Models

3.2.1 Bidirectional Reflectance Distribution Function

As our objective is focused on modeling the surface appearance, we need to specify how a surface

reflects light. The bidirectional reflectance distribution function (BRDF) is a function of four real

variables that defines how light is reflected from an opaque surface. It is widely used in computer

graphics and computer vision algorithms. Given an incoming light ray at a point on a surface, the

BRDF is used to calculate how much of that light will be reflected in a particular outgoing direction.

The function takes an incoming light direction and outgoing direction with respect to the surface

normal. It returns the ratio of the reflected radiance exiting towards the specific outgoing direction,

and the incident irradiance incoming from the direction of the light source.

An important property of BRDF is that it is illumination independent, which means BRDF val-

ues calculated or measured for a specific material under a lighting conditions are true for any lighting

conditions. This is because BRDFs describe the relationship between the incoming and outgoing

radiances for a surface point. As BRDF is the ratio of both the outgoing and incoming radiances, the

values are independent of the strength and geometry of the light source. The reflectance at a surface

point P is modeled by the bidirectional reflectance distribution function (BRDF) and is given by,

fr(P, ωi, ωo) =
L(P, ωo)

L(P,−ωi)cos(φ)m(Ω)
(2)
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component. Ward proposed a model [97] that also supports effects like surface anisotropy. The

BRDF model proposed by He et al. [33, 34] considers Fresnel reflections, surface micro-geometry,

subsurface scattering, and also self-shadowing. It can model specular reflections and it also supports

modeling rough surfaces. Other than these, [55,58,98] have also introduced new ways of modeling

the BRDF function amongst which [21, 42, 75] fall under the physical BRDF models.

Acquisition: The acquisition of the BRDF (Equation 2) at a surface point P involves measuring

the amount of the incoming radiance that is reflected at P for all combinations of (ωi ∈ S2
−
, ωo ∈

S2
+. We use S2 to denote the unit sphere in 3-space i.e. the set of all possible directions in which

light can flow. S2
+ consists of all vectors pointing away from the surface, while S2

−
consists of

vectors pointing into the surface. Figure 3.3 describes part of a general BRDF measuring process.

Acquiring BRDF measurements under lab conditions is a straight-forward procedure which

usually involves the use of a gonioreflectometer located in a dark room. Having no additional light

sources avoids interference with the measurements. A spotlight illuminating a sample placed at the

center of the sphere is mounted on a spherical arm. Its position is varied and a sensor captures the

amount of light bouncing off the sample.

Although a lot of research has been done for acquiring BRDFs [23,31,64,72] for models placed

indoors under controlled environment and lighting setup, it is not well suited for outdoor environ-

ment and lighting conditions. Also, for both small and large scale stationary objects which are

located outdoors, acquiring BRDF measurements is an extremely difficult and nontrivial task pri-

marily because of the complex illumination and the fact that the environment cannot be controlled.

During the day the sun serves as the only light source of the scene whereas at night a number of light

sources (e.g. light posts, moon, flashlights, etc) may contribute to the illumination of the scene. In

either case, moving the object around and having control over the illumination are almost impos-

sible. In this case, unless there are strong assumptions made about the scene, acquiring the BRDF

measurements for all surface points of the scene becomes intractable.

Perhaps the most popular work on the acquisition of BRDFs of an ancient structure located

outdoors under complex illumination condition was the work of Debevec et al in [25, 26]. In their

work, the authors had ground-access to the structure during the night which allowed them to capture

BRDF measurements using a custom-made gonioreflectometer-like device from four representative
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areas of the structure. Based on the assumption that the entire structure could be represented by

those 4 BRDFs, they could relight the structure under novel lighting and produce very realistic

renders.

In our case there are additional restrictions which exacerbate the difficulties of acquiring BRDFs:

(i) Unlike [25, 26] we are not putting constraints on the number of different materials/BRDFs that

can be present in our test scenes. Each scene can have a single or multiple arbitrary materials, (ii)

Multi-view images have to be available which are captured from a certain distance, orbiting the

scene, (iii) As we plan on to train a deep neural network to internally estimate the reflectance prop-

erties, we need a lot of training data from different viewpoints and which are composed of different

reflectance properties.

Representation. Assuming all the problems relating to measuring BRDFs are overcome, there

is still the issue of storage and representation. Using dense/full BRDF measurements can provide

the most accurate results. The BRDF for a particular pair (ωi, ωo) can be retrieved or interpolated

from nearby samples. This however increases computational complexity and imposes a significant

cost for performing effective sampling during rendering. In this work, we use a combination of

phenomenological and physically-based scattering models.

A diffuse surface scatters incident illumination equally in all directions. These types of surfaces

are modeled as a Lambertian reflection model. This is a phenomenological model that assumes that

the BRDF is constant and is given by fL
r (P, ωi, ωo) =

ρ
π

where ρ is the albedo i.e. the fraction of

the arriving light energy that is scattered. The reflected radiance Lo varies linearly with the incident

radiance Li and is given by Lo = fL
r (P, ωi, ωo)Li =

ρLi

π
.

The Lambertian reflection model does not account for cast shadows or specularities. Specular

scattering is modeled using the microfaceted Torrance-Sparrow BRDF [93] given by,

fTS
r (P, ωo, ωi) =

D(ωh)G(ωo, ωi)Fr(ωo)

4cos(θo)cos(θi)
(3)

where D(.) is the Trowbridge and Reitz microfacet distribution function [94], G(.) is the ge-

ometric attenuation term, Fr(.) is the Fresnel function, and θo and θi are the angles between the

normal at surface point P and the outgoing direction ωo and incoming direction ωi respectively.
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The relation between the reflected radiance Lo and the incoming radiance Li is then given by

Lo = fTS
r (P, ωi, ωo)Li = Li

D(ωh)G(ωo,ωi)Fr(ωo)
4cos(θo)cos(θi)

.

To summarize, in our work the Lambertian reflectance model has been used to model the dif-

fuse component, microfaceted Torrance-Sparrow BRDF [93] was used to model the specularities,

whereas, the Trowbridge and Reitz [94] microfacet distribution function handled the surface rough-

ness. Combining all of these would allow us to model the external appearance of a material.
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Chapter 4

Estimating Reflectance Properties and

Relighting

In this chapter, we discuss our approach towards predicting the reflectance properties from multi-

view images of a scene. We present a synthetic multi-view dataset of spheres with varying materials,

which is used to create the reflectance maps to train our network. The training process of the

network is also discussed in detail. We justify our design choices for the system pipeline throughout

this chapter. Performance comparisons using an ablation study is also discussed in the latter part.

We conclude this chapter by demonstrating some of the results obtained using our technique.

4.1 Overview

In our work, the acquisition of the multi-view images involves the camera orbiting around the scene

from different altitudes. Usually, during the capture process, the sun serves as the single directional

light source illuminating the scene and is considered to remain fixed throughout the capturing pro-

cess. To incorporate the light direction and properties with our system, additional information along

with the images describing the illumination are required. Typically, measuring the sun’s direction

and intensity requires additional captures using specialized equipment [24]. Although this may be

appropriate when ground access to the scene is possible, however, it is not always practical. Also,

for any multi-view images, it might not be possible to capture the lighting details once the images
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are taken. For this reason, we avoid the explicit measurement of light direction ωi by training a

neural network to predict the reflectance parameters given samples of the reflected radiance of an

object under arbitrary directional illumination conditions. Formally, the neural network Φ(.) learns

the mapping function Φ : Iµ −→ µ where µ is a 7-vector representing the reflectance properties.

The reflectance properties µ are defined in terms of the diffuse k3d and specular k3s components, and

the surface roughness r. The fact that the incident radiance is arriving from a single fixed direction

ωi facilitates the representation of the reflectance properties of a surface point P as a unit sphere

S2 where the reflected radiance value is stored at each point on the sphere’s surface corresponding

to each outward direction ωo ∈ S2
+. Thus, the input to the network Iµ is a reflectance map created

using the outgoing radiance for each outgoing direction ωo ∈ S2
−

in a spherical coordinate system.

For the first part of the system, a wide residual network has been trained on multi-view images

of varying material properties. As the network will estimate the material properties from images,

the network has to learn the mapping between material properties and appearance. Therefore, there

should be sufficient training data with a variety of material properties. Also, to learn the relationship

between the reflectance properties and appearance changes based on viewpoint, the dataset should

contain images from varying viewpoints for a single material. Therefore, we generated this synthetic

dataset keeping the following things in mind,

• Coverage of a wide range of material properties

• Variation in viewpoints

• Single directional light source imitating the effects of the sun

4.1.1 Materials

The materials have been defined using a set of 3 different parameters in our system. Table 4.1 lists

these properties and their purposes. The three parameters correspond to the diffuse, specular, and

roughness components of a material. The diffuse and specular components are made up of a triplet

of values. Therefore, the diffuse and specular components each use a 3-vector [Kr,Kg,Kb] where

Kr, Kg and Kb control the intensities of the diffuse and specular components over the red, green and

blue channels. Whereas, roughness uses a single parameter and can be denoted by r. Therefore, any
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material in our system can be defined using a length 7 vector comprising of [krd, k
g
d, k

b
d, k

r
s , k

g
s , k

b
s, r].

Each of the values in the vector is a floating point number that ranges between 0 to 1.

Material Property Description

Kd Diffuse property

Ks Specular component

Roughness Surface roughness

Table 4.1: Properties that are used to define a material.

Effects on appearance: Each of the 3 parameters controls a different aspect over the appear-

ance of an object. The diffuse component (Kd) generally sets the base color of any object which is

more commonly referred to as the diffuse color/albedo. The specular component (Ks) is responsible

for the color of the reflections visible on shiny surfaces. Roughness controls the shininess and works

along with the specular parameter to give off reflections. The renders in Figure 4.1 illustrate the vari-

ations the parameters create in the appearance of a sphere. Each row exhibits the changing effects

of one specific material property. The three images on the first row were produced with varying the

Kd component such that it creates a red, a green and a blue sphere. For these three images the Kd

component was assigned to be [0.5 0.0 0.0], [0.0 0.5 0.0] and [0.0 0.0 0.5] respectively. The Ks and

roughness (r) properties were kept fixed and the illumination and background are also unchanged

throughout the process. The second row shows the effect of changing the specular component Ks.

Here, the first and third images have the same Kd. The Ks component controls the color of the

specular shine and the highlights. The green tint in the reflection and the specular hotspot in the

first two images were produced using a Ks value of [0 1 0]. For the third image, Ks was changed to

show a red/pink glow to the sphere. Lastly, the third row shows the effect of changing the roughness

(r). It controls the shininess and strength of reflections.

4.1.2 Lights

Changing the position, direction, color or the type of light can produce very different results on

the same material. PBRT provides a number of common lighting methods alongside environment

maps. For the generation of the training data, our system uses a single directional light source with

a constant white color. We assume the light does not move throughout the process. The directional
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Figure 4.1: Each row highlights each distinct property used to define a material. The topmost row,

from left to right illustrates the effect of Kd. Changing the value of Kd alters the diffuse color of

the material, which is tweaked in this image to change the color to red, then green and finally to

blue. The second row demonstrates the effect of Ks, the specular component, on the overall color of

the sphere. The Ks controls the reflectivity component, and also the color of the specular hotspot.

Giving it a green-ish color produces a green highlight and also adds a green glow to the brighter

reflections. The first two images show the results of having a Ks value on the sphere that creates

green highlights on two different diffuse colors. The third image shows the effect of Ks, this time

producing red with a purple diffuse color. Finally, the last row (the bottommost) shows the effects

of changing the roughness parameters. As we go from left to right, a stronger roughness value has

been used to produce less prominent highlights and reflections. This is the reasons why the top row

does not contain any reflections, as they all had a very high roughness value.
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Figure 4.3: A set of images from our generated synthetic dataset comprising of spheres rendered

using different materials.

4.2 Dataset and Reflectance Maps Generation

4.2.1 Generating realistic spheres dataset

We have used PBRT for generating our training data. PBRT is a physically-based renderer, that has

path tracing support and is open-sourced. PBRT stands on a few base classes i.e. lights, shapes,

materials, etc. This makes extending the system with additional features easy. We extended PBRT

to generate a number of information for the image that is being rendered. The source code was mod-

ified and additional scripts were used to meet the needs of the data generation. To ensure variability

in the training dataset the following conditions were varied: (i) reflectance properties (diffuse, spec-

ular, roughness) and (ii) viewpoints. The light direction and color were fixed throughout the data

generation process. The scene, therefore, consisted of a unit sphere with uniform, isotropic, and

opaque reflectance properties, a perspective camera, and a single directional light source. The cam-

era orientation is defined in spherical coordinates (θc, φc) with θ ∈ {π
9 ,

5π
18 ,

4π
9 } and φ ∈ [0, 2π] at

intervals of π
4 . Figure 4.2 shows the camera positions that were used for orbiting around the sphere

at different altitudes. The reflectance properties were defined in terms of the diffuse, specular and

roughness components given by [krd, k
g
d, k

b
d, k

r
s , k

g
s , k

b
s, r] where krd, k

g
d, k

b
d are the diffuse compo-

nent, krs , k
g
s , k

b
s are the specular component, and r is the surface roughness. These parameters are

set to different values in their respective range creating a total of 24,000 unique materials. The
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Figure 4.4: The top row shows the images of a few spheres for which the reflectance maps were

generated. The associated reflectance map for each sphere is in the bottom row.

parameters are set according to the following two configurations: 20,480 of the materials are uni-

formly sampled and 3,520 materials are formed by randomly sampling. Each of the materials was

rendered from 24 different view points which resulted in a total number of 576,000 images. Figure

4.3 shows a few of the images from our dataset of spheres.

4.2.2 Generating reflectance maps from spheres

For a surface point, a reflectance map shows how the material reflects light in different directions

within the sphere centered on the point. We used the spheres on our dataset to create the reflectance

maps. Each of the spheres on our dataset had a uniform isotropic material. Therefore, all the points

on its surface share the same material properties. As the light is fixed at a fair distance and the radius

of the sphere is negligible compared to the distance of the light from the sphere, we can assume, two

different points on the surface of the sphere do not create a large difference in angle with the light.

For each point on the sphere, we calculate its spherical coordinates in terms of (r, θ, φ) where the r

is the distance of the point from the origin of the sphere whereas θ and φ represent the azimuth and

altitude for that point. Using this, every point of the sphere adds a contribution to the reflectance

map. A few samples of this process can be seen in Figure 4.4. Instead of generating the reflectance

map of shape 180× 360× 3 that would correspond to all possible values of (θ, φ), we use a smaller

sized map of 60×120×3. Experiments have shown that accuracy remains unaffected while training

time is reduced.
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4.3 Network Training

4.3.1 Network Architecture

A Wide ResNet-50 [105] architecture was used as the deep neural network model for our system.

The model was chosen after evaluating a few different architectures on a number of images in the

test set. The results from the experiments are listed in Table 4.2 and discussed in detail in Section

4.4.1. For training, the shape of the input image is 60 × 120 × 3 and the output is a 7 × 1 vector.

A sigmoid activation function was used after the fully connected layer as the 7 dimensional output

vector comprises of floating point values ranging from [0 − 1]. A number of data augmentation

techniques were used to introduce sparsity in the training data and add robustness to the model

towards small variations during inference. A 80− 20 split was made for training and validation. An

additional 30,000 images were generated and retained for subsequent testing. A step learning rate

was used starting from 0.0003 and gradually reduced by 10% after every 20 epochs.

4.3.2 Loss function

The network uses a weighted sum-of-squared-errors as the loss function. Since the parameters

(kd, ks) are size 3-vectors, we scaled the weight for (r) by a factor of 3. This was done to make sure

that an error in the roughness parameter is given equal weight as for kd and ks. Since values were

sampled uniformly to create the materials for training, there are samples that have high roughness

but varying ks. These different rough materials that essentially have different ks values, produce

almost identical images since the value of ks has little or no impact on the final render. To address

this, another weight was used to supervise the network to stop penalizing for the ks parameter

whenever a high value of r was seen. With the addition of these two weights, the loss function was

designed as Equation 4 which the network tries to optimize on.

L(ω, ω̂) = sse(kd, k̂d) + θ1 × sse(ks, k̂s) + θ2 × sse(r, r̂) (4)

where, θ1 = (1− 3
√
r), θ2 = 3
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In Equation 4, L is the loss that takes in the ground truth material properties ω and the prediction

ω̂. The "hat" symbol indicates the predicted properties. The loss incurred by the prediction for kd is

simply calculated using the sum of squared errors (SSE). Whereas, for ks and r, two scaling factors

θ1 and θ2 are applied. θ1 controls the weight updates for ks depending on the value of r. θ2, on the

other hand, makes the error of (r, r̂) equally important as the other parameters.

4.3.3 Data augmentations

Data augmentation was introduced during the training process to increase variabilities and to add

sparsity to the reflectance maps. Salt-pepper noise was introduced to arbitrary pixels. Due to the

nature of the data acquisition process for multi-view imagery, it is common to have incomplete data

for a surface point. This is due to occlusion or invisibility from the cameras. The number of images

taken around the scene is the maximum number of samples that a point can have on its reflectance

map, making the map very sparse. We tried to address this with the addition of salt and pepper noise

and by randomly activating just a few samples within the reflectance map while making the rest of

it black. Additionally, random vertical and horizontal flips were applied to the images to increase

variability and for reducing overfitting.

4.3.4 Training and Inference

Training: The Wide-Resnet50 architecture was trained for 90 epochs. Using a step learning rate

with a step size of 20, produced lower validation loss and a smooth training loss. The network was

trained in the Compute Canada cluster with a single Nvidia V100 GPU. The network and input were

as explained in Section 4.3.1. Instead of using dropout as a regularization technique, our system

relies on the data augmentations and weight decay to avoid overfitting on the training set. We used

a batch size of 256. Besides performing on the fly augmentation during training, we normalize the

data during training, validation and testing to have a mean of 0 and a standard deviation of 1.

Inference: For testing, the system requires multi-view images, the camera properties and the ge-

ometry of that scene. If the geometry is not available, it can be generated using COLMAP [87, 88]

or VisualSFM [100, 101] before inputting to our system. At the first stage of our system, a buffer

is created for all the images using the camera poses and the 3D model. Lets denote the n number
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Figure 4.5: Some of the results of predicting material properties and re-rendering using the predicted

values on images of spheres. In each of the two subfigures, the top row represent the prediction. and

the row next to it represents the ground truths.
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of multi-view images as I = {I1, I2, I3, ..., In} and the camera poses as C = {C1, C2, C3, ..., Cn},

then the system would generate buffers B = {B1, B2, B3, ..., Bn} where height(Ii) = height(Bi),

width(Ii) = width(Bi) and i = 1, 2, ..., n.

The buffers record a few pieces of information about the closest intersection for each of the

pixels. These information include, (i.) ID of the closest intersecting triangle from the mesh, denoted

by (tid) (ii.) World coordinate of the intersecting point (px, py, pz) (iii.) Normal of the intersecting

point (nx, ny, nz) (iv.) Projected point in pixel/image space (u, v). Therefore,

(tid), (px, py, pz), (nx, ny, nz), (u, v) ∈ B1, B2, B3, ..., Bn

After calculating the buffers, the system proceeds by reading in a set of (Ii, Bi, Ci). Then for

each (u, v), it collects the RGB value from Ii. Then it has to find the index to place this RGB value

in the reflectance map associated with tid. The system calculates the index by computing the angle

between the normal (nx, ny, nz) and using the viewpoint direction from Ci. The resultant angle

(θ, φ) in spherical coordinates is used to place the extracted RGB value into the reflectance map

associated with tid. This step is repeated for all the pixels in Ii. After all sets of (Ii, Bi, Ci) are

processed, all the triangular surfaces in the scene will have their reflectance maps computed.

A single triangle tid can be very small compared to the size of the entire model as it can be seen

from Figure 4.6. Therefore, the visible part of any triangle tid in an image Ii might not have a lot of

(u, v) recorded against itself in the buffer. This results in making the reflectance maps very sparse.

The number of images that are available for a test scene will also impact the number of samples.

The reflectance maps for each of the triangles go into the network for prediction. The output of the

network is then assigned to each of the triangles individually. A slight error in the estimation can

cause the re-rendered image to appear triangulated.

4.4 Evaluation and Results

We conducted a series of experiments to evaluate our two-stage approach. For comparison, several

network architectures were evaluated on the test set. Based on this performance we used the best

performing network in our system pipeline. For the second stage, a number of 3D models and their
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associated multi-view images were used to relight them. The next subsections contain more details.

4.4.1 Comparison of networks

For the ablation study, separate 30,000 images were held out separately from the training/validation

images. The test set was designed to exhibit a lot of variation over each of the material property

parameters. We conducted our experiments on a total of 8 different network architectures. We

experimented on the different variants of the ResNet architecture [32]. To experiment on deeper

and wider networks we have used multiple variants of ResNext [102] and WideResNets [105] in

our tests. An older and simpler model like AlexNet [53] was chosen to show how a model with

fewer parameters and less depth fits our data. The most recent architecture and state-of-the-art

network that we have used is the EfficientNet [92].

The reflectance maps in the test set had variations in viewpoints and materials. The predic-

tions from the network were used to re-render the spheres under original lighting and from the

same viewpoint. To analyze the performance of each of the networks the metrics had to do image

to image comparisons. We report our results on 3 different metrics. (i.) Peak Signal to Noise

Ratio (PSNR): PSNR is regularly used to evaluate the quality of digital signal transmission and

is also widely used in researches involving image to image comparison. It is a variation of the

mean squared error metrics and relies on pixel-by-pixel comparison. A higher value of PSNR

translates to lower differences between the two images. (ii.) Normalized Root Mean Squared

Error (NRMSE): Normalized Root Mean Squared Error simply compares each of the pixels of the

original with the predicted image. In our case, a lower value indicates a better prediction of the

reflectance properties. (iii.) Structural Dissimilarity Index (DSSIM) [96]: SSIM is a metric that

derives image distortion using the changes in structural information, while also taking into account

simpler changes like luminance, contrast, etc. Unlike, RMSE or PSNR which only calculate the

errors amongst pixels, SSIM utilizes structural information as well. It assumes that the pixels have

strong inter-dependencies when they are spatially close within a neighborhood. These assumptions

utilize important information from the images about the structure of objects within the images.

While SSIM gives the result in terms of similarity, Structural dissimilarity (DSSIM) calculates the

differences in the images and can be derived from SSIM using Equation 5. A lower value of DSSIM
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Architecture PSNR NRMSE DSSIM

AlexNet [53] 41.6841 0.0564 0.00676

ResNet-18 [32] 45.4900 0.0354 0.00391

ResNet-34 [32] 46.3642 0.0349 0.00401

ResNet-50 [32] 47.2551 0.0325 0.00398

Wide Resnet-50 [105] 48.0526 0.0287 0.00326

ResNext-50 [102] 47.4328 0.0309 0.00375

ResNext-101 [102] 47.5832 0.0307 0.00357

EfficientNet B0 [92] 47.7031 0.0306 0.00358

Table 4.2: Results on the test set across different model architectures using PSNR, NRMSE and

DSSIM as metrics. The test set had 30,000 samples.

indicates lower errors between the two images.

DSSIM(µ1, µ2) =
1− SSIM(µ1, µ2)

2
(5)

Here, DSSIM is the Structural Dissimilarity Index between the two images (µ1, µ2), calculated

using the SSIM of (µ1, µ2). A lower value indicates a lower difference between the original and

predicted image.

To summarize, from the experiments on the test set, WideResnet-50 outperformed all the other

networks. From Table 4.2 it can be seen that this network has the best score over all the three

metrics in comparison with the other networks. Therefore, we use this model with our system and

for relighting the scenes.

4.4.2 Analysis of image relighting

For testing the network’s performance on complex scenes, we needed to have access to a multi-view

image dataset and the geometry. We collected a number of free scenes available online and created

multi-view images of the model using PBRT. The number of images varies between 200-300 for

each of the scenes. For generating the multi-view images, a directional light was used with the

camera orbiting around the object from a constant distance. The reflectance maps for all the surface

of the scenes were recorded using the approach described in Section 4.3.4. One key point is that

there is no information sharing amongst the surfaces of the meshes. As our approach is estimating
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Model Triangles Inference time

(seconds)

Time/triangle

(ms)

Fire Hydrant [3] 6148 6.3449 1.0320

Dragon [22] 13,377 13.5027 1.0094

Stanford Bunny [95] 8038 8.2926 1.0317

Utah Teapot [13] 7809 8.1644 1.0455

Table 4.3: Timing comparisons for inference on the test scenes that are shown in Figures 4.7, 4.8,

4.9 and 4.11

materials for each triangle in the geometry, the predictions have to be consistent and accurate

to generate a smooth render. Usually, the larger the number of triangles, the smoother and more

accurate the geometry is. However, it makes the task of relighting more challenging. Since the sizes

of the triangles are small, they do not take up many pixels in the image. Therefore it reduces the

number of samples recorded against a triangle. During inference, the task becomes challenging due

to the reflectance maps being very sparse. Neighboring triangles that share the material properties

can look distorted and triangulated in the rendered image if the predictions vary even slightly. A

few examples of the triangulated meshes can be seen from Figure 4.6.

Figure 4.7, 4.8, 4.9 and 4.11 show a few results obtained using our technique. For each of the

models, we display results under : (i.) Simple directional light (ii.) Realistic indoor and outdoor

illumination setting. From the results, it can be seen the network is picking up the diffuse colors

and also picking up the specular shines from the images. The images do not have any triangular

artifacts which can happen due to incorrect estimation by the network. Figure 4.7 shows an example

scene. Here the prediction of the diffuse color is consistent throughout the changes in illumination.

The network picked up the specular highlights from the original images. The predicted images do

not contain any holes or distortions. Similarly in Figure 4.8 and Figure 4.9 produce accurate results

without any visible artifacts. Although in Figure 4.9 there are a few spots on the top of the model,

but that is the result of the part of the model being on the opposite side of directional light and

thereby producing darker regions. Finally, Figure 4.11 also produced results close to the original.

Despite minor darkness in few parts at the bottom of the teapot occurring due to the shadow, the

network picked up the rest of the details of the model.

For predicting the material properties from reflectance maps, our trained Wide ResNet-50 model
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was used. The batch size was kept to 256 for all of the test scenes. For inference, we used a

machine with a Core i7 processor and a single NVidia 2080ti GPU. Figure 4.7 had a total of 6148

triangles. The inference time taken was 6.3449 seconds. That translates to 1.0320 milliseconds per

triangle. Considering the density of triangular mesh and the number of reflectance maps generated,

our technique estimates the material properties within a few seconds. The timings for the rest of the

models are listed in Table 4.3
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Figure 4.7: This figure shows a re-illuminated scene consisting of a fire hydrant [3] under two

different lighting conditions. Top row: corresponds to one of the images of the multi-view image

set for this model. There is a single directional light source. The multi-view images were used

to generate the reflectance maps. The estimated reflectance properties are used and the scene was

re-rendered as it is shown on the right (2nd column). Middle row: For this row, the image is under

a natural daytime lighting condition, created using an environment map (HDR lighting). For the top

two rows, the first column corresponds to the ground truth, and the second column is the results of

our technique. Bottom row: shows the ability of our technique to render from novel viewpoints.

Both of the camera positions used in this row were not present in the original multi-view images.

The model has a total of 6,148 triangles with an inference time of 6.3449 seconds.
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Figure 4.8: This figure uses the renowned dragon model, first appearing in [22]. Similar to the

previous figure, the top two rows show relighting under two different light setups. Top row: The

first image is one of the multi-view images under a single directional light. The image on the

right is the results of relighting. Middle row: This is a comparison under a daytime lighting

illuminated by the sun. The left and right images show the ground truth and prediction respectively.

Finally, the bottom row shows two different renders from completely novel viewpoints. The model

comprises 13,377 triangles, for each of them the reflectance properties were estimated exclusively.

The inference time was 13.5027 seconds.
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Figure 4.9: The model in this figure is the widely used Stanford Bunny [95]. The top row is under

a directional light setup. The ground truth image is taken from the original images for this model.

The middle row shows the model under indoor lighting conditions. For the first two rows, the

images on the left are the ground truth and the predictions are on the right. The bottom row shows

the model rendered from two novel viewpoints under a directional light and an indoor illumination

respectively. This model has a total of 8,038 triangles for inference and the time taken was 8.2926

seconds.
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Figure 4.10: The Utah teapot model [13] was tested under two different light setups. The first

two rows show the comparisons of the ground truth and the prediction respectively in first and

second columns. The top row shows results under a directional light setup and the middle row is

in an indoor environment setup. In both of the illumination conditions the colors were estimated

accurately, and the small reflections on the upper part of the teapot is present in re-rendered images.

The bottom row shows two additional images rendered from new camera positions not present in

the original images. This model has a total of 7,809 triangles and the inference time was 8.1644

seconds.
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Figure 4.11: Finally the fire hydrant [3] model was relit again by using different materials on its

surface. The top part use a rough plastic like material with a purple color. Whereas, the bottom part

of the model has a wood like material. In this case as well the predictions look very close to the

ground truth with a little triangulation on the parts for which there was a lower number of samples

captured. The top row show the model under a directional light source. The middle row shows

the same model relit under an outdoor light setup. And finally the bottom row show the model

rendered from two different viewpoints not originally present in the multiview images.
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Chapter 5

Conclusion and Future work

In this work, we presented a novel technique to (i.) Estimate reflectance properties and (ii.) To

reilluminate scenes under novel lighting conditions. We justify our design choices by providing

comparisons with different network architectures and by showing our results on a number of scenes.

We show that our model can very quickly estimate reflectance properties quickly and can re-render

realistically using physically based rendering.

5.1 Concluding Remarks

In our proposed technique, we have reformulated the problem of image relighting as a two-stage

process following a divide and conquer approach. As part of the first stage, a synthetic dataset of

images of spheres having different materials and rendered from different viewpoints and under dif-

ferent illumination. Using this we compute the reflectance map and train our Convolutional Neural

Network. We discuss the performance of our network and provide comparisons with different ar-

chitecture using several image ti image comparison metrics. Our test set consisted of an additional

30,000 reflectance maps that were held out separately. We showed that, for a scene, our technique

can estimate the reflectance properties within seconds. After identifying the reflectance properties

we have used path tracing to realistically render the original scene by changing the illumination

condition and by changing the camera viewpoints. Finally, we have presented relighting results

several scenes under varying lighting conditions.
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5.2 Future Work

Currently, the system is mostly limited to indoor scene under simpler lighting conditions. Hence,

as a future work, we plan to extend this to support large-scale outdoor scenes mainly consisting of

buildings, roads, landmarks, etc. Our dataset and technique was developed by already keeping these

factors in mind. Therefore, we have used a single directional light source that acts as the sun. We

have used multi-view images from multiple altitudes as it is usually done for Wide Area Motion

Imagery (WAMI). The possible difficulties with outdoor images can be the number of images not

being large enough which produces sparse samples in the relfectance maps, complexity arising due

to occlusions, cameras not capturing the entire scene in full orbits etc. Once it is extended to support

urban outdoor images, another extension can be to conduct a quantitative comparison over outdoor

datasets consisting of LIDAR data and multi-view images.
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