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ABSTRACT 

Resilience-Driven Management of Water Distribution Networks 

Ahmed Assad, Ph.D. 

Concordia University 2020.  

Water distribution networks (WDNs) are critical infrastructure systems that secure needed supply 

of potable water to the public. Efficient management of WDNs has always been a primary concern 

for decision-makers, particularly in events of natural disasters, deliberate attacks, human-made 

accidents and/or sudden failures. Aging and deterioration of WDNs further exacerbate their 

vulnerability and likelihood of service disruption. Previous hazards reveal that classical risk-based 

approaches are not sufficient to prevent disruptions of WDNs. As a result, the concept of resilient 

WDNs has emerged to cope up with inevitable disruptions that are becoming more frequent.   

The objective of this research is to develop a holistic resilience-based management model for 

WDNs. In this context, WDNs is sought to be strong enough to withstand unforeseen disruptions 

with a minimum performance impact and to recover rapidly after a service interruption. Firstly, a 

multi-attribute metric is developed for assessing resilience of WDNs based on robustness and 

redundancy. Attributes from graph theory are employed to quantify the network redundancy. 

Robustness is measured by integrating the reliability and criticality of pipe segments of the 

network. Multi-attribute utility theory and Fuzzy analytical network process are exploited to 

estimate the criticality of water segments based on a set of economic, social, and environmental 

factors. Survival analysis and maximum likelihood estimate are employed to dynamically 

determine reliability of pipe segments. Censored inter-failure time data are leveraged to model the 

deterioration behavior of homogenous cohorts of pipe. The developed metric was used to measure 
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the resilience of a real-life WDN in the City of London, Ontario. The results obtained showed an 

average of 5% variation when compared to previously developed flow-based and topology-based 

metrics.  

In the second step, rapidity and resourcefulness qualities are considered to develop a resilience-

based restoration model. A failure scenario causing multiple simultaneous breaks across the 

network is simulated to investigate the recovery process. A stochastic multi-objective optimization 

model that maximizes resilience while minimizing the total time and cost of the recovery process 

is then formulated. This model accounts for different restoration methods, relocation time and cost 

of restoration crews, and uncertainties in recovery estimates. The optimum restoration plan 

encompasses a sequence of failed segments restorations along with the restoration method. This 

plan achieved 4% cost saving, 48% duration reduction, and 4% resilience improvement when 

compared to current planning practices. 

The last step involves developing a multi-objective resilience enhancement model so that WDNs 

can be better prepared for future disruptions. The aim is to maximize resilience of WDNs while 

minimizing the life cycle cost and carbon emissions of enhancement actions. Optimum 

enhancement interventions are firstly determined and clustered into work packages before an 

optimized schedule is generated considering various operational and managerial factors. Applied 

to a section of an actual WDN of 34 km in a length and average age of 40 years, resilience was 

increased by 20% with CAD 1.65 million of current investment. The study of that network 

indicates that a cost-saving of 32% could be attained when adopting the developed model over 

ongoing portfolio management practices.   
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The novel resilience-driven management model introduced in this research is expected to assist 

decision-makers better assess and enhance resilience of WDNs and improve restoration planning. 

The developed model can assist city mangers in allocation and utilization of resources more 

effectively in development of optimized plans for resilient and sustainable WDNs. 
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1 Chapter 1: Introduction  

1.1 Overview  

Critical infrastructure systems are those whose continuous function must be secured and 

quickly restored following to any disruption. They include systems that transport people and 

goods, deliver drinking water, handle waste, and protect cities against natural hazards. Water 

supply networks are civil infrastructure systems that are responsible for securing adequate 

quantities of safe high-quality water to the public. Ensuring a proper function of water systems has 

always been a major concern for utilities and municipalities because of their direct impact on 

public health and safety. Water is delivered to the users via millions of pipes that extend over 

thousands of miles across any country. In North America, many of those pipes were installed back 

in the early to mid of the twentieth century with lifespans extended in some cases to more than 100 

years (ASCE 2017). According to the Canadian Infrastructure Report Card (CIRC 2019), one-

fourth of potable water infrastructures are in fair, poor, and very poor condition. The Canadian 

Infrastructure Report Card indicates that rehabilitation or replacement of these assets is required 

within the next 5-10 years to ensure continuous provision of accepted levels of service (CIRC 

2019). The situation is not quite different in the United States, where the general grade of the water 

network on the national level is D, (ASCE 2017).  

Aging is not the sole challenge that threatens the continuous function of water infrastructure 

systems. In fact, the ubiquitous nature and extended service life of water distribution networks 

(WDNs) have made them highly vulnerable to a wide spectrum of disruptions, whether natural or 

anthropogenic. Earthquakes, hurricanes, extreme temperatures, and climate change are examples 

of such natural hazards. Human-made threats include terrorist and cyber-attacks, overloading, and 

vandalism. The aforementioned hazards might cause adverse impacts on water supply networks, 
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including hydraulic failure, mechanical failures, and failures related to water quality requirements. 

Pipe breaks, leaks, loss of pressure, and contaminants entering the network are all instances of 

such potential failures (Klise et al. 2015).  After hazardous events, water networks play a central 

role in firefighting and other rescue activates. Thus, sustaining functionality of such networks is 

more crucial during and after such undesirable events (Farahmandfar et al. 2016) . Traditional 

approaches of managing WDNs were emphasized on physical protection to maintain functionality 

of these systems by either avoiding the likelihood of failure or mitigating the adverse expected 

consequences. Nonetheless, due to the stochastic nature of hazard events and failures, classical 

risk-based strategies fall short of protecting water networks from all hazards.  

In light of these issues, a new concept of infrastructure resilience is recently emerging as an 

important consideration in both planning and management of WDNs. Increasing efforts both in 

practice and academia are being directed towards defining resilience of water networks and to 

deriving quantifiable resilience metrics. In this context, WDNs are sought to be strong enough to 

withstand disruptions with minimum degradation and to rapidly recover in case of service 

interruptions (Assad et al. 2019). To ensure this, a multi-attribute resilience index shall be 

formulated to provide an eloquent valuation of WDNs resilience. In addition, reliable prioritization 

tools shall be developed that can help in establishing better enhancement programs and optimal 

restoration schedules.  

1.2 Problem statement  

Water distribution networks (WDNs) confront momentous challenges that disrupt their 

sustainable functionality. Classical approaches of physical protection are not sufficient to sustain 

the functionality of WDNs, which necessitates the inclusion of resilience WDNs management.  
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Several models have been developed to incorporate resilience in the design of new WDNs, 

however, there are fewer models that integrate resilience in operation and management of current 

WDNs. Many of these models involve exhaustive hydraulic simulation, which makes them 

infeasible in view of the expansive size and complexity of networks parameters. Other models 

require calibrating numerus parameters leading to impractical metrics that cannot be utilized in 

real-life applications to assess and enhance resilience of WDNs. Most of the previous efforts 

addressed the technical component of resilience disregarding other vital social, and economic 

aspects. In addition, these models did not holistically address the four qualities of resilience: 

robustness, redundancy, available resources, and rapidity of restoration. 

Most resilience enhancement and service restoration models after disruptions have focused 

solely on cost minimization, disregarding other significant objectives. Time of service disruption, 

criticality of segments, and the compelling need to cut down carbon emissions are examples of 

such overlooked issues. Enhancement and restoration models shall assess the suitability of various 

intervention actions for different segments and failures characteristics. Given the ubiquitous nature 

of WDNs, optimization models shall aim at minimizing the relocation time and cost between failed 

segments’ locations. In addition, work packaging and scheduling tools are required to cope up with 

the limited resources and tight budgets, and to assure fair business practices.  

1.3 Research Objectives  

The main objective of this research is to develop a holistic resilience-driven management 

model for water distribution networks. This model intends to facilitate decisions aiming at 

maximizing both the absorptive and restorative capacities of WDNs. The former maximizes the 

network’s ability to withstand disruptions with minimum service interruption. The latter utilizes 

available funds and resources to determine the optimal strategy for putting the system back into 
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service after an interruption. To achieve the main objective, the following sub-objectives are 

defined:  

1. Identify and study existing resilience assessment models of WDNs to highlight their 

advantages and limitations.  

2. Develop a multi-attribute metric for assessing resilience levels of WDNs.  

3. Develop a recovery optimization model for minimizing time and cost of restoration and 

maximizing resilience improvement. 

4. Develop an optimization model for forming work packages and scheduling optimized 

resilience enhancement actions.  

5. Automate the developed models in a user-friendly computer application tool. 

1.4 Methodology Overview  

A detailed methodology of this research is described in Chapter 3. Figure 1-1 illustrates its 

main components. It encompasses review of related literature and development of three models 

for assessment of resilience levels, optimized restoration and optimized enhancement plans. 

1.5 Dissertation Outline 

Chapter 2 provides a comprehensive literature review of previous research efforts related 

to resilience WDNs. The review includes an illustration of the previously developed metrics and 

formworks for resilience assessment of WDNs. In addition, resilience enhancement and resilience-

based restoration models are discussed to complete building the theoretical background for this 

research. A brief explanation of the techniques and tools utilized in this research is included in this 

chapter. The chapter concludes by identifying the gaps and limitations of existing methods.  

Chapter 3 details the methodology adopted in this research. It starts with  general overview 

and proceeds by describing the models developed in this research.  
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Figure 1-1: Methodology Overview 

 

It then proceeds by describing the resilience-based restoration and enhancement optimization 

models. Underlying concepts, data gathered, and mathematical formulations of each model are 

presented in detail in this chapter.  

Chapter 4 illustrates the development of an automated tool and a dashboard to integrate the 

developed models and visualize the obtained results.  

Chapter 5 demonstrates the practicality of the developed model by an application on a real 

case study from the City London, Ontario. It also includes the evaluation and validation results of 

the developed models.  

Chapter 6 draws a summary of this dissertation, highlighting the research contributions and 

limitations. Recommendations for future work and enhancements are finally presented in this 

chapter. 
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2 Chapter 2: Literature Review   

2.1 Overview  

This chapter presents an overview of previous research efforts in the field of resilience 

management of water distribution networks (WDNs). The review starts by defining the nature and 

some features WDNs as vital critical infrastructure systems. Next, the concept of resilience and 

characteristics of resilient WDNs are discussed. This review proceeds by detailing an illustration 

of previously developed resilience assessment metrics and frameworks. An overview of resilience-

based restoration models is then included. Various deterministic and stochastic restoration models 

are discussed along with the role of criticality in the efficient restoration of WDNs. Previous 

research attempts to enhance resilience of WDNs are then illustrated. This section sheds light on 

the role of resilience in the rehabilitation planning of WDNs. Figure 2-1 depicts three types of 

resilience-based applications of WDNs that are discussed in this chapter. Subsequently, the 

techniques and algorithms utilized in this research are introduced. Finally, a summary highlighting 

some of the limitations in existing models and gaps identified in this field are included.   

 
Figure 2-1: Resilience-based Management Models of WDNs 
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2.2 Resilience of Water Distribution Networks  

In a broader sense, water supply systems consist of physical infrastructure components, 

service provided, organizations that regulate and maintain the provision of this service, and 

customers who use this service as depicted in Figure 2-2  (Klise et al. 2015). Hence, water 

distribution network is a component of water supply systems that represents the physical 

infrastructure. It consists of several subcomponents such as pipes, pumps, tanks, valves, and others. 

 
Figure 2-2: Components of Water Supply System (Klise et al. 2015) 

Water distribution network is the backbone and water supply systems that dictates the 

status and level of service of the entire system. Consequently, tremendous endeavors both in 

practice and academia have been directed to sustain and maximize the performance of WDNs, as 

will be reported in subsequent sections.  

 The root of the word resilience is found in the Latin language, resilio. It consists of two 

parts, re (again) and silio (jump), which means to bounce back. Resilience of an entity is 

characterized by its ability to return to the normal state after being disrupted. Individuals who 
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overcome a sever chock, sports teams who get back to win after serial of losses, markets that 

recover from a fiscal crisis, and troops winning a battle from a losing start are all examples of 

resilient entities (Henry and Ramirez-Marquez 2012). In disaster management, resilient cities and 

communities are those who return back to original conditions after catastrophic events. Cities that 

return, recover, faster to normalcy are recognized to be more resilient (Ayyub 2014).  

In the past few years, the concept of resilience has gained much interest in engineering 

infrastructure systems. Scholars elicited several frameworks to incorporate the concept of 

resilience in design, operation, and management of infrastructure systems. The American Society 

of Civil Engineers defines resilience of infrastructure systems as the ability to mitigate hazards 

and rapidly restore critical services with least harm to the public health, safety, economy and 

national security (Ayyub 2014). The US Department of Homeland Security outlined that resilient 

systems are those that can resist, absorb, recover from, and prepare to or adapt to a destruction or 

a loss (Collins and Baggett 2009).  

These definitions proclaim resilience of infrastructure systems as a process that 

encompasses four phases, as illustrated in Figure 2-3. The process starts with some preparedness 

measures to mitigate the impacts of expected hazards. After a hazard occurrence, recovery actions 

are taken to restore the service. Afterward, policies and procedures are revised based on lessons 

learned to be better prepared for next disruptions. Resilience is not only about rapid recovery, but 

it is also about having some preparedness measures to reduce the vulnerability, potential 

performance loss, of this system. 
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Figure 2-3: Continuous Cycle of Building Resilience to Hazards (Klise et al. 2015) 

In actual fact, resilience of infrastructure systems are usually characterized by three main 

capacities, namely: absorptive, adaptive, and restorative capacities (Vugrin et al. 2011). 

Absorptive capacity measures the ability of an infrastructure system to withstand impacts of 

hazards with minimum interruption in services provided. Adaptive capacity measures the system's 

capability to continue functioning by adjusting itself under a new disrupted state. Restorative 

capacity measures the efficiency of an infrastructure system's recovery (Assad et al. 2019).  

The concept of infrastructure resilience is still an evolving topic as evidenced by the different 

definitions and frameworks proposed to quantify it. Resilience may also share some similarities 

with other existing concepts such as vulnerability and disaster risk. Vulnerability is the degree to 

which a structure is likely to undergo a performance loss as a result of a specific hazard. On the 

other hand, the National Academic Science defines disaster risk as: "the potential adverse effects 

from the occurrence of a particular hazardous event, which is derived from the combination of 

physical hazards, exposure levels, and vulnerabilities" (Cutter et al. 2013). The main difference 

between these concepts and resilience is that the latter investigates both the performance loss and 

recovery efforts. As such, the focus is not only directed towards estimating the potential damage 
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as in vulnerability assessment or on anticipating the potential consequences resulting from an asset 

failure as in disaster risk assessment. Restorative capacity is a vital quality of resilience that makes 

it more than just the inverse of vulnerability. Resilience explains why two different systems of the 

same vulnerabilities may undergo different restoring behaviors in terms of rapidness and final level 

of service.  It is worth mentioning that despite such differences, these concepts might still be highly 

related. Measures that aim at reducing a system's vulnerability and risk of failure are 

simultaneously contributing to increasing the system's resilience (Brashear and Jones 2008).  For 

example, the location of specific components of a water system in flood plain makes them highly 

vulnerable to flooding. Measures aiming to change their location will decrease their vulnerability. 

At the same time, these measures increase the water system's resilience because the level of 

disruption will be reduced, and the service will be restored more rapidly.  

2.3  Resilience Assessment Models of WDNs 

The literature includes several models and approaches for assessing and evaluating resilience 

of WDNs. These approaches are generally classified as either qualitative approaches or 

quantitative approaches (Klise et al. 2015).  

Qualitative approaches include research efforts that introduce conceptual frameworks or 

semi-quantitative indices for resilience assessment (Hosseini et al. 2016). Tierney and Bruneau 

(2007) introduced a widely accepted framework, the 4R's framework, for resilience assessment. 

4R stands for robustness, redundancy, resourcefulness, and rapidity, four main aspects of resilient 

systems. In this framework, the ability to cope with a disruption without substantial performance 

loss is denoted as robustness. Redundancy is the availability of alternative paths to substitute the 

unviable damaged components. Resourcefulness is the accessibility to a wide range of suppliers 

and materials needed for restoration activities. Rapidity measures the extent to which a disrupted 
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system can be restored swiftly (Tierney and Bruneau 2007). Fiksel et al.  (2014) developed another 

example of conceptual frameworks for evaluating resilience of WDNs. In this model, several 

factors are included to assess resilience such as vulnerability, adaption, resource productivity, 

cohesion, diversity, and recoverability. 

On the other hand, semi-quantitative indices are generated by aggregating specific weighted 

resilience indicators. Fisher et al. (2010) proposed a resilience assessment index based on an 

extensive data collection of about 1,500 variables related to robustness, recovery, and 

resourcefulness. Weights of these variables are then estimated, and weighted factors summed to 

produce a single global index. This index can be utilized to compare resilience levels of different 

infrastructure systems (Fisher et al. 2010). The main drawback of qualitative approaches is that 

they are subjective by nature, and detailed technical results cannot be generalized on a large scale 

due to the variations in the operational requirements of each network.  

Quantitative approaches for resilience assessment aim at identifying some quantifiable 

performance functions or systems' outcomes that can be observed before and after hazard 

occurrence. These approaches can be either probabilistic or deterministic based on whether the 

stochastic nature of system function during different phases is considered. In addition, some of 

these approaches are dynamic as they consider time-dependent system performance functions or 

outputs. Others are static approaches since they provide an estimation of resilience as a snap-shot 

of time. Bruneau et al. (2003) developed one of the most commonly utilized metrics for resilience 

assessment. Resilience loss, Equation 2.1, is a deterministic dynamic metric that quantifies the 

degradation of a system following a hazard event.   

𝑅𝐿 = ∫ [100 − 𝑄(𝑡)]𝑑𝑡
𝑡1
𝑡0

            ( 2.1 ) 
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Where RL is the resilience loss, Q(t) is a function that measures the system performance as a 

percentage, t0 is the time of disruption occurrence, and t1 the time at which the resilience is 

calculated. The performance function Q(t) can be any performance indicator of the system such as 

structural connectivity, hydraulic performance, or concentration of contaminants. Figure 2-4 

provides a graphical illustration of resilience loss calculation based on the resilience triangle 

method.  In this method, quality-based method, the initial system performance is assumed to be 

100, and the shaded area represents the resilience loss (Bruneau et al. 2003; Nicholson et al. 2015; 

Adams et al. 2012; Sahebjamnia et al. 2015). Equations 2.2 and 3.3 are used to calculate the 

average values of resilience loss and retained resilience, respectively (Bruneau et al. 2003).  

𝐴𝑅𝐿 =  
𝑅𝐿

𝑡1−𝑡0
                (2.2) 

𝐴𝑅𝑅 = 100 − 
𝑅𝐿

𝑡1−𝑡0
                (2.3) 

 
Figure 2-4: Resilience Loss Measurement (Bruneau et al. 2003) 

Henry and Ramirez-Marquez (2012) proposed an extension to this method by considering 

the system's status before, during, and after disruptions. Three distinct states were defined in this 

model: original stable (S0), disrupted (Sd), and stable recovered (Sf).  Figure 2-5 shows these states 

along with two transition periods: system disruption and system recovery. Function F (•) in Figure 



 

 

 

13 

 

2-5 represents the system delivery function, which is equivalent to the system quality function in 

quality-based methods. For each system state, there exists a value for the figure of merit function 

F (•). Equation 2.4 was formulated to calculate resilience as a ratio between the recovery level at 

any instant and the initial loss in the performance function (Cutter et al. 2008; Henry and Ramirez-

Marquez 2012; Pant et al. 2014; Dessavre et al. 2016).  

Я𝐹 (𝑡𝑟|𝑒𝑗) =  
[𝐹( 𝑡𝑟 | 𝑒𝑗 ) − 𝐹( 𝑡𝑑| 𝑒𝑗 )]

[𝐹 (𝑡0) − 𝐹 ( 𝑡𝑑| 𝑒𝑗)]
             (2.4) 

Where ЯF (tr |ej) is the proportion of delivery function recovered from the disrupted state under 

event ej, F (tr |ej) is the figure-of-merit of the system at the recovered state tr, F (td | ej) is the figure-

of-merit- of the system at the disrupted state td under the event ej.  

 

Figure 2-5: System State and Delivery Function Transition in Resilience (Henry and Ramirez-

Marquez 2012) 

A more recent extension was suggested by Dessavre et al. (2016), who formulated a five-

state resilience framework urban infrastructure resilience assessment. Figure 2-6 illustrates the 

model, which starts at some steady reliability condition as the system usually functions before 

disruptions. When a disruptive event occurs, the system undergoes some transition states starting 

with a gradual reduction in its performance, followed by idle time for damage estimation and 

restoration planning. Finally, a course of recovery actions is taken to restore services. The final 
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recovered state may be either the same, less, or even more of than the initial state. Some conceptual 

attributes can be drawn from this illustration such as vulnerability, which is the difference between 

the initial performance, Po, in the reliability state and the vulnerable performance, Pv, in the 

unreliability state (Dessavre et al. 2016).  

 
Figure 2-6: Five States Engineering Resilience Curve (Dessavre et al. 2016) 

Ouyang et al. (2012) advanced previous models to present a stochastic time-dependent 

resilience assessment metric. Annual resilience metric, AR, given in Equation 2.5 measures 

resilience as the expected ratio between the actual performance curve, P(t), and the target 

performance curve, TP(t), over a time period T, equals one year in this model.  

𝐴𝑅 = 𝐸 [
∫ 𝑃(𝑡)𝑑𝑡
𝑇
0

∫ 𝑇𝑃(𝑡)𝑑𝑡
𝑇
0

]                 (2.5) 

In a different effort, Rose (2007) introduced the concept of economic resilience as "the 

ability of an entity or system to maintain system functionally when a disruption occurs." Economic 

resilience is measured as a ratio between avoided drops in infrastructure performance to the 

maximum potential drop, as shown in Equation 2.6.   

𝑅 =  
∆𝑌𝑚𝑎𝑥−∆𝑌

∆𝑌𝑚𝑎𝑥
                (2.6) 
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Where ΔYmax is the difference between undisputed and worst disrupted system outputs, and ΔY 

is the difference between undisrupted and expected disrupted system outputs.  

Some researchers utilized hydraulic performance indicators as the system performance 

function to assess resilience of WDNs. Metrics that assess resilience based on these approaches 

are usually referred to as flow-based metrics. They require running hydraulic simulation models 

to find the flow and pressure conditions at different points throughout the network. Todini (2000) 

introduced one of the early and widely cited flow-based resilience metrics. In this approach, 

resilience is measured as the excess energy available in WDNs. Todini (2000) demonstrated the 

applicability of his metric in the design of WDNs by measuring the surplus power that could be 

dissipated due to physical failures or increased demand. He perceived resilient networks as those 

who have sufficient energy to be dissipated when failures occur. Todini's resilience metric, 

Equation 2.7, is a ratio between the available energy surpluses at the nodes over the maximum 

energy surplus in the network.  

𝑅 =  
∑ 𝑞𝑖

∗(ℎ𝑖−ℎ𝑖
∗)𝑛

𝑖=1

∑ 𝑄𝑗𝐻𝑗
𝑟
𝑗=1 +∑ (

𝑃𝑘
𝛾
)

𝑝
𝑘=1 −∑ 𝑞𝑖

∗ℎ𝑖
∗𝑛

𝑖=1

             (2.7) 

Where 𝑞𝑖
∗ and ℎ𝑖

∗ are design demand and required head at node i; ℎ𝑖is the head available at node i; 

𝑄𝑗 is the flow from reservoir j; 𝐻𝑗is the total head at reservoir j; Pk is the energy supplied to the 

network from pump k, 𝛾 is the water specific weight; and n; r; and p are the number of nodes, 

reservoirs, and pumps, in the network respectively. Values of these parameters depend on the size 

of the analyzed network. In his application, the author utilized the metric in resilience assessment 

of a small sub-network that consists of seven nodes and one reservoir. Prasad and Park (2004) built 

on Todini's work to investigate the effect of redundancy on WDNs resilience by incorporating 

loops and surplus power in calculating the resilience index. Their index called, network resilience 

index, assigns more weights to energy surplus at nodes where connected pipes have less diameters 
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variation since these loops are sought to be more reliable. The weighting factor, node's uniformity, 

is given in Equation 2.8, Prasad and Park (2004): 

𝐶𝑖 = 
∑ 𝐷𝑗,𝑖
𝑁𝑝,𝑖
𝑗=1

𝑁𝑝,𝑖×𝑚𝑎𝑥  {𝐷𝑗,𝑖}
                          (2.8) 

Where 𝐶𝑖 is the uniformity of node i; 𝐷𝑗,𝑖 is the diameter of jth pipe connected to node i; and 𝑁𝑝,𝑖 

is the number of pipes connected to node i. Similarly, Jayaram and Srinivasan (2008) extended the 

original Todini's metric to formulate a modified resilience that accounts for multiple sources in 

resilience quantification. The proposed modified resilience index is a ratio of surplus energy to the 

demand energy, Equation 2.9. 

𝑀𝑅𝐼 =  
∑ 𝑞𝑖

∗(ℎ𝑖−ℎ𝑖
∗)𝑛

𝑖=1

∑ 𝑞𝑖
∗𝑛

𝑖=1 ℎ𝑖
∗                (2.9) 

Suribabu (2017) utilized Todini's index and the modified resilience index to optimize the 

design of WDNs. In this work, the authors considered minimizing the cost of the network subject 

to specific pipe diameters and pressure head constraints. The optimization suggested configuring 

the network such that the pipe sizes are decreasing along the shortest path (Assad et al. 2019). 

Another variation of Todini's resilience index was proposed by Liu et al. (2017). Liu et al. (2017) 

utilized hydraulic head surplus instead of hydraulic energy surplus. In this analysis, the available 

hydraulic head surplus is compared to the head surplus at previous nodes in estimating resilience 

of WDNs. In a different study that aims to optimize the design of WDNs, Choi and Kim (2019) 

formulated a multi-objective model that accounts for mechanical redundancy under multiple pipe 

failures of different states. The study established a relationship between pipe failure states and 

mechanical redundancy. Through simulation, the authors were able to analyze the demand levels 

of abnormal situations based on a defined extreme demand. In this study, hydraulic reliability was 

used as an indication of the system's redundancy instead of structural redundancy. Creaco et al. 
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(2016) presented a flow-based resilience index based on Todini's work.  In this research effort, the 

authors extended the original resilience index by utilizing pressure-driven modeling and 

accounting for the energy dissipated through pipes and leaks, Equation 2.10:  

𝐼𝑟 =
max (∑ 𝑄𝑖

𝑠𝐻𝑖
𝑠+∑ 𝑄𝑗

𝑝
𝐻𝑗
𝑝
−∑ 𝑞𝑘𝐻𝑘,0)

𝑁𝑑
𝑘=1

𝑁𝑝
𝑗=1

𝑁𝑠
𝑖=1

∑ 𝑄𝑖
𝑠𝐻𝑖

𝑠+∑ 𝑄
𝑗
𝑝
𝐻
𝑗
𝑝
−∑ 𝑄𝑘𝐻𝑚𝑖𝑛,𝑘

𝑁𝑑
𝑘=1

𝑁𝑝
𝑗=1

𝑁𝑠
𝑖=1

          (2.10) 

Where 𝑄𝑖
𝑠 and 𝐻𝑖

𝑠 are the flow and total head at source i, respectively; 𝑄𝑗
𝑝
and 𝐻𝑗

𝑝
are the flow and 

total head at pump j, respectively; 𝑄𝑘 and 𝐻𝑚𝑖𝑛,𝑘 are nodal demand and minimum nodal head 

required by users at node k, respectively;  𝑁𝑠; 𝑁𝑠;  and 𝑁𝑠 are the number of sources; pumps; and 

demand nodes, reactively. The maximum function in Equation 2.10 was used to set the resilience 

index value equal to 0 in networks that feature a power deficit rather than a power surplus. Raúl 

Baños et al. (2011) compared the performance of the Todini's RI, Prasad's NRI, and Jayaram's MRI 

in the problem of resilient WDNs design. Through multi-objective optimization and simulation of 

over-demand scenarios, the authors analyzed the advantages and disadvantages of each metric. 

The authors concluded that none of those metrics could accurately determine the network's 

capability to provide sufficient supply under demand uncertainty. Those metrics considered the 

global excess of network pressure rather than where over-demand is applied. As such, the authors 

suggested that topology of the network be considered to determine the most critical points.  

Chang and Shinozuka (2004) proposed a probabilistic method, acceptance method, for 

resilience quantification based on performance loss and recovery period. Resilience is calculated 

as the probability that a system's performance loss, ro, is less than a maximum acceptable 

performance loss, r*, and that the time to full recovery, t1, is less than some maximum allowable 

disruption time, t*, Equation 2.11. The authors demonstrated the practicality of this metric in 

mitigating seismic consequences on a WDN in Memphis, TN, USA (Chang and Shinozuka 2004). 
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𝑅 = 𝑃(𝑟0 < 𝑟
∗ 𝑎𝑛𝑑 𝑡1 < 𝑡

∗)           (2.11) 

Gay Alanis (2013) employed the acceptance method along with hydraulic simulations to 

assess resilience of water systems. The authors utilized both Matlab and EPANET software 

packages to investigate system performance under several disruptive scenarios. Resilience was 

then calculated by comparing the system performance to some previously defined resilience 

thresholds. Zhuang et al. (2013) employed the concept of availability in resilience evaluation of 

WDNs. Resilience in this model was captured as the ratio between the flow supplied to demand 

nodes to the required demand during disrupted conditions. The authors utilized Monte Carlo 

simulation to model various failure scenarios and calculate the resultant resilience accordingly. 

Cimellaro et al. (2015) proposed a more general metric for assessing resilience of WDNs based on 

technical, social, and environmental performance functions. The authors defined the ratio of water 

level in the tank to the tank capacity as the technical performance, the ratio of households with 

satisfying water demand to the total number of households as the social performance, and the ratio 

of water quality before and after disruption as the environmental performance. Resilience related 

to each system performance function is given by Equation 2.12:  

𝑅𝑖 = ∫
𝐹𝑖(𝑡)

𝑇𝐶

𝑇𝐶
0

𝑑𝑡                        (2.12) 

Where Ri and Fi are the resilience and the system performance functions related to the ith domain, 

respectively (i.e. social, technical, environmental). TC is the control time, which is the time from 

disruption until full restoration. The authors formulated a weighted multiplication model to 

aggregate the metric into a single general resilience index.  

Besides energy perspective, resilience of WDNs was also assessed utilizing graph-based 

methods. In these approaches, researchers leverage the concepts of structural connectivity and 

redundancy as the system performance function. WDNs are expressed as networks of nodes and 
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links. Indicators from graph theory are utilized to assess the topological performance of WDNs. 

(Meng et al. 2018; Shuang et al. 2019).    
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Table 2-1 illustrates some of the topological metrics that were used in resilience evaluation 

of WDNs. Yazdani et al. (2011) analyzed the suitability of structure metrics such as link density, 

meshed-ness, nodal degree, clustering coefficient and spectral gap, and spectral metrics such as 

spectral gap and algebraic connectivity in assessing resilience of WDNs. In a later effort, Yazdani 

and Jerey (2012) exploited the flow passing through pipe segments and the connectivity 

information to propose a new entropic degree metric of resilience assessment. Zarghami et al. 

(2018) proposed a two-stage method to assess redundancy of WDNs. Local redundancies of pipes 

were first quantified utilizing the cospanning tree technique. Entropy theory was then employed 

to aggregates these redundancies and compute a global network redundancy index. Farahmandfar 

et al. (2016) proposed a new topology-based metric for assessing the seismic resilience of WDNs. 

In their model, the authors integrated robustness and redundancy in resilience evaluation for water 

segments.  The authors employed a variation of the nodal degree to measure network redundancy 

and reliability to estimate the robustness. The metric was then utilized in formulating a resilience 

enhancement optimization problem. The authors reported a resilience enhancement by 8% with a 

$10 million investment in replacement and new installation interventions.  

Other authors attempted to integrate both flow-based and topological-based approaches in 

assessing resilience of WDNs. For example, Di Nardo et al. (2018) introduced a two-stage model 

for assessing resilience of WDNs. The model starts by evaluating the network topology and then 

proceeds in resilience quantification based on flow-based indices. The authors showed that 

topological features provide useful knowledge about resilience assessment of WDNs even in cases 

when partial hydraulic information is not available.   
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Table 2-1: Structural Network Indicators Commonly Used for Resilience Evaluation (Yazdani et 

al. 2011; Archetti et al. 2015) 

Metric Definition 

Link density The ratio between the total and the maximum possible number of links 

Average nodal degree The average value of the nodal degrees in a graph 

Meshed-ness 
The ratio between the total and the maximum number of independent 

loops in planar graphs 

Diameter 
The maximum geodesic length of the shortest path between possible 

pairs of nodes 

Average path length 
The average geodesic distance of the shortest paths between all possible 

pairs of nodes 

Clustering coefficient The ratio between the total triangles and the total connected triples 

Betweenness centrality The number of all the shortest paths passing through a node 

Closeness centrality 
The inverse average distance of the shortest paths between a node and 

other nodes 

Central-point 

dominance 

The average difference between maximum betweenness centrality and 

betweenness centrality of all other nodes 

Spectral gap 
Difference between the first and the second eigenvalues of the graph's 

adjacency matrix 

Algebraic connectivity The second smallest eigenvalue of the Laplacian matrix of the graph 

Similarly, Herrera et al. (2016) employed K- shortest paths and closeness centrality to 

evaluate resilience of WDNS. In his work, Herrera et al. (2016) combined the topological 

computation with a hydraulic simulation model to calculate the head losses. A water network 

including many nodes with a low value of flow closeness and K-shortest path is considered as a 

low resilient system. That is because more energy is required, and dissipated, to supply water for 

such nodes that also have poor connectivity to water sources. Soldi et al. (2015) provided a similar 

study that integrated the flow-based and topology-based approaches for assessing resilience and 

vulnerability of an actual WDNs in Milan. In their work, the authors utilized connectivity metrics 

for resilience and vulnerability evaluation and hydraulic simulation for pipes' potential failures 
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estimation. Results about components connectivity and potential failure have been integrated into 

an asset management plan to suggest the most suitable intervention.  

2.4 Resilience-based Restoration Models of WDNs 

As previously mentioned, restoration capacity is one of the main aspects of resilient 

infrastructure systems. Restorative capacity can be conceptualized by two main attributes: the 

degree of recovery and recovery time (Assad et al. 2020).  The recovery degree measures the level 

of the system performance function after accomplishing all recovery actions. This is usually 

controlled by funds allocated for recovery actions and availability of required material and skilled 

personal (Zhao et al. 2016). The recovery time refers to the total time elapsed since the service was 

interrupted until it was restored to normal conditions. It depends on the recovery strategy, recovery 

schedule, and available resources Cimellaro et al. (2015). 

Several researchers focused their research on the recovery efforts of WDNs following 

hazardous events. Many of these efforts attempted to determine the most efficient recovery 

strategies to minimize the time of service disruption.  For example, Luna et al.  (2011) developed 

a discrete event simulation model to improve the restoration process of WDNS after a rare 

disastrous event. Through colored Petri nets, the authors modeled the system behavior leveraging 

a real network, trunk network, in Tokyo, Japan. The authors simulated various recovery strategies; 

each represents a distinct resource allocation and restoration time management plan. The model 

determined the earliest expected recovery time at a specific location following an earthquake event 

of a specific magnitude. Zhao et al. (2015) provided another model for WDNs restoration after 

seismic hazards.  Zhao et al. (2015) employed the stochastic time-dependent resilience metric 

introduced by Ouyang et al. (2012), Equation 2.5, to compare the technical and organizational 

effects of two restoration strategies on improving the seismic resilience of WDNs. The authors 
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analyzed the effects of ductile retrofitting strategy and meshed expansion strategy on seismic 

resilience of an actual WDN in China. They concluded that ductile retrofitting was a more effective 

strategy for resilience improvement of WDN in cases of limited resource and fund scarcity. 

Mahmoud et al. (2018) developed an optimization model to minimize the adverse impacts of 

sudden failures on WDNs performance and the costs associated with intervention actions. The 

authors employed GA and pressure-driven hydraulic simulation to select the optimal set of 

operational interventions such as resetting pressure reducing valves and installing temporary 

bypasses to respond to several sudden failures.  

In a different effort, Balut et al. (2019) applied the preference ranking organization method 

for enrichment evaluation (PROMETHEE) technique and hydraulic simulation to rank the set of 

failed segments restoration and to select the best ranking strategy. In this analysis, five disputing 

scenarios were simulated, and several performance indicators were measured such as rapidity of 

recovery and volume of water loss (Bałut et al. 2019). Liu et al. (2020) provided a framework for 

resilience-based restoration of WDNs considering different types of accidents such as leakages 

and bursts. The authors considered two repair methods, plugging and replacement, to test and 

compare various combinations of resilience restoration strategies. Replacing all the cast iron pipes 

with new ductile iron pipes after failure was found to be the best restoration strategy of a disrupted 

water network in Mianzhu city, China. Besides, some scholars studied the role of interdependency 

in selecting the best restoration strategy. For example, Almoghathawi et al. (2019) developed an 

optimization model to minimize the cost of restoring fictitious interdependent water and power 

networks. In this resilience restoration application, the authors focused on retaining the 

performance of the interdependent networks to the same level before the disruption. This approach, 

however, might lead to some of the disrupted components being unrestored.  
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Once a hazard event occurs, it can result in multiple simultaneous failures along the WDNs. 

This is different from the case of random failures that occur individually in pipe segments at 

different time periods. In the first case, water service providers shall prioritize their response plan 

and recovery efforts to restore the most critical segments first. In this regard, there is a need to 

quantify the criticality of pipe segments in WDNs to prioritize the sequence of restoration actions. 

Asset Criticality is a measure of the associated consequences with the failure of this asset to 

perform its intended function (Cromwell 2002; InfraGuide 2004). Critical Assets are those whose 

failure is accompanied by significant economic, social, and environmental consequences. 

Continuous monitoring, regular maintenance, and rapid restoration of these assets are of 

paramount importance to minimize the overall system degradation.  

Many authors attempted to develop models and metrics for assessing the criticality of 

infrastructure components and WDNs segments. For example, Salman (2011) provided one of the 

earliest and practical criticality estimation metrics. Criticality index of each segment was 

calculated based on a set of economic, operational, social, and environmental factors. To ensure 

consistency in relative weights assigning, the Analytical Hierarchy Process (AHP) was utilized. 

This index was computed considering the land use to assist in resource allocations purposes. For 

each distinct land zone, the weights of critical factors would assume different values (Salam 2011). 

The model was incorporated in the WDN management plan for the City of Hamilton, ON. Wang 

et al. (2012) developed another metric to identify the criticality of infrastructure components based 

on their physical interdependency with other infrastructure networks. The importance of a 

component is determined by estimating the drop in network performance when this specific 

component is disrupted. Accordingly, components are ranked based on their contribution to the 
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overall network performance degradation when all segments are disrupted; a higher degradation 

share indicates a more vulnerable, critical, component.  

Baroud et al. (2014) and Barker et al. (2013) introduced two component importance 

measures to rank the most critical links in infrastructure networks. The authors formulated these 

two metrics to rank segments based on their contribution to network resilience as a function of 

vulnerability and recoverability. The first metric estimates the system performance loss when a 

disruption impacts a particular link. The second metric quantifies the potential positive impacts on 

system performance when measures are taken to avoid the failure of particular links. The authors 

utilized a stochastic ranking technique, Copeland Score method, to order the components 

according to those metrics. Similarly, Laucelli and Giustolisi (2015) proposed a risk-based 

methodology to specify the most critical segments in WDNs whose failure due to seismic hazard 

would result in the most degradation of system performance. The authors formulated a multi-

objective optimization model to determine the most critical scenario, a set of links disruption that 

would lead to the most amount of unsatisfied water supply demands. The scope was limited to a 

single hazard and a single damage indicator without considering other factors such as the 

characteristics of the pipe segment or the time of restoration.  

In a different effort, Moursi (2016) introduced a model for estimating the criticality of water 

mains using Paprika and Swing techniques. While maintaining the same categorization as in 

Salman's work (Salman 2011), Moursi (2016) included more factors in each category of his model. 

Opinions from experts in North America, Europe, and Qatar were sought to rank the relative 

importance of those factors. Subsequently, Moursi established a criticality index scale that reflects 

the level of criticality along with linguistic descriptions (Moursi 2016). More recently, He and 

Yuan (2019) developed a framework for identifying critical pipeline from a restorative resilience 
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perspective. The authors proposed a WDN recovery optimization model that aims at minimizing 

network service loss. In this model, the authors utilized two metrics to quantify the criticality of 

water segments. The first metric, optimal repair priority, represents the priority at which a pipeline 

shall be repaired to minimize the system's service loss. The second metric is recovery reduction 

worth, which measures the increase in service loss due to delaying the optimal repair priority of a 

pipeline. The model was applied on a WDN with an assumed number of pipelines failures. A high 

positive correlation between the two metrics was reported suggesting that pipelines with high 

repair priority are those whose delay results in the most unfavorable impact on service recovery.  

2.5 Resilience Enhancement Models of WDNs 

Resilience absorptive capacity is another essential quality of resilience WDNs. In this regard, 

measures to increase the strength of WDNs such that it can withstand future disruptions with 

minimum performance loss are taken. Such measures include developing optimal rehabilitation 

programs for aging components or actions that increase the level of network redundancy such that 

alternative paths are available, especially around critical components.   

Jayaram and Srinivasan (2008) utilized their proposed modified resliced index, Equation 2.9, 

to develop one of the very first resilience enhancement models of WDNs. In this study, a multi-

objective optimization model was developed to obtain a trade-off analysis between the modified 

resilience index and life-cycle cost. The authors modeled the deterioration of pipe segments by 

simulating a fictitious network with an increasing roughness coefficient over an extended period. 

The main finding was a significant cost saving when considering design and rehabilitation in one 

single analysis rather than solely focusing on network overdesigning. It is worth mentioning that 

the roughness increase rate was arbitrarily assumed without considering an accurate deterioration 

estimation. Yazdani et al. (2011) employed some metrics from graph theory to model and compare 
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different resilience enhancement actions. The rationale of this study is an interplay between WDNs 

structural connectivity and resilience. The authors investigated the effect of four different 

expansion strategies in improving the resilience of a WDN in a developing country, Ghana. The 

objective was to determine an invulnerable expansion strategy of the network subjected to a set of 

budget and design constraints. Utilizing statistical and spectral metrics shown in Table 2-1, the 

authors were able to objectively quantify the network structural robustness, optimal connectivity, 

and path redundancy.  

Yoo et al. (2014) introduced a multi-criteria methodology for determining the rehabilitation 

priority of pipe segments subjected to a seismic hazard. The authors ranked the needs for 

rehabilitation based on the importance of each segment. However, they did not investigate different 

types of rehabilitation actions and their impact on the overall network robustness. In a different 

effort, Suribabu et al. (2016) proposed a model to enhance resilience of WDNs considering pipe 

diameter increase and parallel piping. The authors modeled two benchmark networks and 

iteratively increased the diameter of the pipe segment that has the maximum flow velocity to the 

next available commercial size. Similarly, pipes were added parallel to those through which water 

flows with maximum velocity. Such a simplified approach is, however, not feasible for large-sized 

networks. Similarly, Creaco et al. (2016) utilized a generalized form of Todini's index, Equation 

2.10, to analyze a time variation of resilience resulting from changing pipe leakage and roughness 

coefficients while investigating the cost of the network. The results of the optimization showed 

that cost and delivered power of configuration obtained by the proposed index outperform the 

original ones suggested by Todini (2000). In this analysis, leakage and roughness coefficients were 

randomly increased to capture the network deterioration.  
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Farahmandfar and Piratla (2017a) introduced a resilience-based rehabilitation plan utilizing 

different resilience metrics. The authors compared the effectiveness of topology-based and flow-

based methods in selecting optimal rehabilitation strategies of a WDN located in a seismic prone 

location. The model considered a single objective of maximizing resilience enhancement subject 

to a budgetary constraint. Resilience could be enhanced via two distinct methods: pipeline 

replacements and new pipeline installations. They found that the flow-based metric yielded 

relatively accurate results. However, the computational time of the simulation was significantly 

increased compared to the case of the topology-based metric. In a different effort, Farahmandfar 

and Piratla (2017b) considered two main rehabilitation actions, relining and replacement, to 

enhance resilience of WDNs against seismic hazards. GA was employed to determine which pipe 

segments to be rehabilitated considering their current condition and an expected earthquake 

scenario. However, this analysis was limited to one year, a snap-shot in time, without considering 

the effect of deterioration and life cycle cost on the rehabilitation planning decisions.  

Cimorelli et al. (2018) developed a rehabilitation methodology to improve resilience of 

WDNs subject to a limited budget. The authors utilized genetic algorithm, GA, and pressure-driven 

hydraulic simulation to investigate the practicality of Creaco's resilience index and flow entropy 

in rehabilitation planning. The study concluded that the resilience index is more accurate in 

reliability estimations and, thus, resilience enhancements than flow entropy. Demand satisfaction 

was suggested to be considered as an auxiliary factor if flow entropy is to be considered in the 

rehabilitation planning of WDNs. However, only one rehabilitation method, replacement, was 

considered, and a single failure was studied in this work. Meirelles et al. (2018) suggested 

considering the energy generated and resilience improvement to justify the costs encountered in 

pipe rehabilitation. It was found that increasing the size of 20% of the pipes would result in both 
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significant resilience improvement and considerable energy recovery benefits that even surpasses 

additional needed investment in this regard. This approach asserts the economic and technical 

added values of WDNs rehabilitation, as evidenced by improved resilience and energy recovery 

benefits, respectively.   

2.6 Rehabilitation Techniques  

For resilience enhancement and service restoration purposes of WDNs, various 

rehabilitation intervention actions shall be carried out as deemed necessary. These interventions 

can be divided into several activities based on the rehabilitation type. Figure 2-7 shows the 

different water segments rehabilitation methods that include repair, renovation, and replacement. 

 
Figure 2-7: Rehabilitation Techniques of Water Pipe Segments 

 

Repairs are utilized to fix leakages and small breaks on water pipes. Typically, a repair 

option would be sought if in structural condition of the pipe segment is not compromised. In 

addition, some municipalities set a certain threshold for the number of breaks, after which the pipe 

segment shall be replaced. Mechanical clamps and couplings are the main types of repair 

techniques that are used to fix small breaks, leaks, and circumferential cracks. Clamps, in 
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particular, facilitates the execution of repair actions without the need for full depressurization of 

water pipe segments (Weaver and Woodcock 2014). 

When a water pipe segment deteriorates such that its structural condition is debilitated, 

employing some renovation or renewal actions becomes mandatory. Pipe renovation encompasses 

applying either a coating or a lining to the aged pipe segment. Epoxy lining (EL) and cured in 

place pipe (CIPP) are two of the widely applied minor and major renewal actions, respectively. In 

epoxy lining (EL), a thin coating of liquid epoxy is sprayed on the internal wall of aging yet 

structurally sound pipe segments. Some advantages of EL over regular cement mortar lining are 

the provision of a smoother surface that is easier to be maintained, being faster to be cured, and 

more flexible to even smaller pipes segments (Yazdekhasti et al. 2014).  Cured in Place Pipe 

(CIPP) is a major rehabilitation method in which a resin-coated fiber tube, liner, is inserted into a 

structurally deteriorated host pipe. This method results in the least diameter reduction with a 

significantly smoother surface among other structural rehabilitation techniques (Yazdekhasti et al. 

2014).  

 

Replacement is a conventional technique for water pipe rehabilitation. Open cut method 

(OCM) is the most commonly used method for water pipes replacement with no restrictions on the 

size or material type of pipes that can be replaced. In this type of rehabilitation, a new pipe segment 

is installed instead of a severely deteriorated one. Despite being the most trivial rehabilitation 

technique, it is usually accompanied by significant disruption to users and other infrastructure 

systems such as the transportation network. Accordingly, various trench-less technologies have 

been developed to decrease the time, cost, and efforts associated with this lengthy and tedious 

process (Yazdekhasti et al. 2014).  
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Pipe Bursting (PB) is the most common trenchless technology that has been widely utilized 

to replace deteriorated pipe segments. In this method, a bursting head is inserted to break a host 

pipe and pull along a new pipe of the same or larger diameter. PB has been applied to replace water 

pipes of various sizes, material types, and surrounding conditions. However, rocks and densely 

compacted soils are not favorable conditions for this method. (Yazdekhasti et al. 2014). Pipe 

Splitting (PS) is a method for replacing an existing deteriorated pipe segment by longitudinal 

splitting and drawing in a new pipe. Similar to PB, this method allows for installing new pipes of 

the same or even larger diameters. PS is considered a special variant of PB to replace water pipes 

segments that do not fracture using regular PB, such as ductile iron pipes (Alan Atalah 2009).  

2.7 Research Methods   

In this research, multiple techniques were utilized to achieve its ultimate objectives. Such 

techniques include but are not limited to; fuzzy analytical network process (FANP), PROMETTE, 

survival analysis, k-means clustering, Shannon entropy, and optimization algorithms. Below is a 

brief description of each.  

2.7.1 Fuzzy analytical network process (FANP) 

Fuzzy analytical network process (FANP) belongs to the family of multi-criteria decision 

making (MCDM) techniques. MCDM tools are employed to obtain the best alternative among a 

set of feasible alternatives based on multiple decision criteria (Işıklar and Büyüközkan 2007). 

There are different techniques to solve MCDM problems such as Analytic Hierarchy Process 

(AHP), Fuzzy AHP, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), 

Preference Ranking Organization Method for Enrichment of Evaluations (PROMETHEE), ANP, 

and FANP.  
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AHP has gained wide acceptance as a powerful and flexible method for ranking decision 

alternatives and selecting the best solution based on multiple criteria. It has many advantages, such 

as ease of application and effectively handling both qualitative and quantitative criteria. However, 

one of the main drawbacks of AHP is the inability to deal with the imprecise or vague nature of 

linguistic assessment (Srichetta and Thurachon 2012). FAHP has been developed to overcome this 

limitation by using common sense linguistic statements in the pairwise comparison. Table 2-2 

shows three of the most used linguistic scales in FAHP and FANP calculations (Etaati et al. 2011). 

In addition, Saaty (2007) developed ANP as an extension to AHP to account for the 

interdependencies and feedback among the assessment criteria. Since then, ANP has been the most 

inclusive approach for the analysis of societal, governmental, and corporate decisions. This is 

mainly because of its nature as a comprehensive approach that handles all tangible and intangible 

assessment criteria as well as allowing both interaction and feedback within elements of clusters, 

inner dependence, and between clusters, outer dependence (Wei et al. 2010).  

Table 2-2: Cheng, Kahraman and Saaty Scale (Etaati et al. 2011) 

 

Fuzzy set theory was introduced by Zadeh (1965) to deal with uncertainty due to imprecision 

and vagueness. Typically, a fuzzy set is defined by a membership function that represents the grade 

of any element x of X that has the partial membership to M. Triangular membership function is 

one, and the most common, fuzzy membership functions that have been reported in the literature. 

A triangular fuzzy number is defined as (l, m, u), where the parameters l, m, and u denote the 

Scale Fuzzy Linguistic Scale 

Cheng {(0,0,0.25); (0,0.25,0.5); (0.25,0. 5,0.75); (0.5,0.75,1); (0.75,1,1);} 

Kahraman {(1,1,1); (0.5,1,1.5); (1,1. 5,2); (1.5,2,1.5); (2,2.5,3); (2.5,3,3.5)} 

Saaty {(1,1,1); (2,3,4); (4,5,6); (6,7,8); (8,9,10)} 
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smallest possible value, the most promising value, and the largest possible value that describe a 

fuzzy event respectively. Figure 2-8 shows a triangular fuzzy number.  

 

Figure 2-8: Triangular fuzzy number (Wei et al. 2010) 

Fuzzy ANP is a technique that combines the capabilities of ANP, fuzzy theory, and fuzzy 

AHP to account for both inner and outer interdependence as well as the uncertainty and 

imprecision in decision making. Application of FANP involves computing three relevant matrices 

known as supermatrix, weighted supermatrix, and limited matrix. Supermatrix is firstly 

constructed after specifying the system's objective and criteria hierarchy. Pairwise comparison is 

usually made by seeking expert's opinions about the relative importance of one criterion when 

compared to another with respect to the problem's preference. Generally, a scale 1-9 is used to 

evaluate this comparison where 1 and 9 stand for equal importance and extreme importance, 

respectively. Weighted supermatrix is then readily calculated by dividing each cell in the 

supermatrix by the sum of the column in which it lies, Equation 2.12 (Etaati et al. 2011) 

𝐴𝑖𝑗 = 
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗𝑛
𝑖=1

                (2.12) 

Where 𝐴𝑖𝑗 is the value in the weighted supermatrix; 𝑎𝑖𝑗 is the corresponding value in the 

unweighted supermatrix; and n is the number of cells in column j.  Finally, the limited matrix is 



 

 

 

34 

 

found by raising the weighted supermatrix to limiting powers to get the global priority vector, 

global weights column, Equation 2.13, (Etaati et al. 2011).  

�̅�∞ = lim
𝑘→∞

�̅�𝑘             (2.13) 

Where �̅� is weighted supermatrix.  

The weighted supermatrix is raised to many powers unit convergence is achieved, i.e., the 

resulted matrix is the same as the one before it (Wei et al. 2010). Examples of using FANP in asset 

management of water systems can be found in El Chanati (2014) and El-Abbasy (2016). In these 

models, FANP was utilized to establish indices for assessing the performance of water pipelines 

and accessories. These indices are then aggregated to generate an integrated performance 

assessment model for WDNs (El Chanati 2014; El-Abbasy et al. 2016).  

2.7.2 Preference Ranking Organization Method for Enrichment of Evaluations 

(PROMETHEE) 

Preference Ranking Organization Method for Enrichment of Evaluations (PROMETHEE) is 

multi-criterion decision-making (MCDM) technique that assists in selecting the most appropriate 

solution among a set of alternatives. In this research study, PROMETHEE II is utilized to 

determine the best solution of the Pareto frontier points resulted from a multi-objective 

optimization model. The PROMETHEE method is an interactive MCDM technique that can 

handle quantitative as well as qualitative criteria with discrete alternatives (Brans et al. 1986). 

Recently, the PROMETHEE method has been successfully applied to real-life planning problems 

to rank alternatives which are difficult to be compared because of the conflicting trade-off relation 

between the evaluation criteria. (Abdullah et al. 2019). In this method, a preference function for 

each criterion is selected. Based on this function, a preference index for alternative "a" over "b" is 
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computed. This index represents a measure to support the hypothesis that alternative "a" is 

preferred to "b". The steps of applying the PROMETHEE II method are detailed below based on 

and (Brans et al. 1986; Polat 2016)  

1. Determine the criteria, along with their relative weights of importance, and the set of 

possible alternatives for the considered problem. In this study, the criteria are the objective 

functions: cost, resilience, and emissions. Shannon entropy was employed to determine the 

weights of the criteria. The set of alternatives is the set of Pareto optimal points.  

2. Normalize the decision matrix using Equations 2.14 or 2.15 in case of beneficial or non-

beneficial criteria, respectively: 

𝑅𝑖𝑗 = 
[𝑋𝑖𝑗−min(𝑋𝑖𝑗)]

[max(𝑋𝑖𝑗)− min(𝑋𝑖𝑗)]
                 (2.14) 

𝑅𝑖𝑗 = 
[max(𝑋𝑖𝑗)− 𝑋𝑖𝑗]

[max(𝑋𝑖𝑗)− min(𝑋𝑖𝑗)]
  , i = 1, 2…, n and j = 1, 2…, m)          (2.15) 

Where 𝑋𝑖𝑗 is the performance measure of ith alternative with respect to jth criteria.  

3. Determine the differences in criteria values for each alternative by pairwise comparison 

with respect to other alternatives.  

4. Define the preference function 𝑃𝑗(𝑎, 𝑏). In this study, a linear preference function is 

assumed for the criteria, as shown in Equation 2.16:  

𝑃(𝑥) =  {

0,   𝑥 < 0
𝑥

𝑚
, 0 ≤ 𝑥 ≤ 𝑚

1, 𝑥 > 𝑚

                  (2.16) 

Where m is an arbitrary parameter called the preference threshold, it represents the smallest 

deviation that is considered sufficient to generate a full preference.  

5. Calculate the aggregated preference index using Equation 2.17:  
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𝜋(𝑎, 𝑏) = ∑ 𝑃𝑗(𝑎, 𝑏)𝑤𝑗
𝑚
𝑗=1              (2.17) 

Where 𝑤𝑗 > 0 is the weight of the jth criterion. 0 ≤ 𝜋(𝑎, 𝑏) ≤ 1 indicates the degree that 

alternative a is preferred to alternative b overall criteria. 

6. Calculate the leaving (positive) and entering (negative) outranking flows as follows: 

𝜙+(𝑎) =  
1

𝑛−1
∑ 𝜋(𝑎, 𝑥)𝑥∈𝐴\{𝑎}               (2.18) 

𝜙−(𝑎) =  
1

𝑛−1
∑ 𝜋(𝑥, 𝑎)𝑥∈𝐴\{𝑎}              (2.19) 

Where 𝜙+is the leaving outranking flow and it represents how "a" dominates all other 

alternatives, and 𝜙− is the entering outranking flow, and it represents how "a" is dominated 

by all other alternatives, and A is the set of alternatives.  

7. Determine the ranking of the considered alternatives based on the net outranking flow 

which is given by Equation 2.20: 

𝜙 (𝑎) =  𝜙+(𝑎) − 𝜙−(𝑎)              (2.20) 

Where 𝜙(𝑎) is the net outranking flow for alternative "a". The most preferred alternative 

is donated by the highest value of 𝜙(𝑎).  

2.7.3 Survival Analysis  

Survival analysis is the set of methods used for data analysis where the outcome is the time 

until the occurrence of an event of interest (Kleinbaum and Klein 2010). In this analysis, subjects 

are monitored for a specific period, and times at which certain events occur are recorded. Objects 

whose survival time information is not complete by the end of the observation process are called 

censored observations. Classical linear regression cannot sufficiently handle censored 

observations. On the other hand, survival analysis can accommodate both censored and uncensored 

observations in estimating the parameters of interest. Once the time to events and events status is 



 

 

 

37 

 

known, hazard function and survival function can be ascertained. The most common approach for 

fitting survival models is the parametric approach. In this approach, the underlying distribution of 

survival times is assumed to follow a known distribution such as Weibull and exponential models. 

Model parameters are then estimated utilizing the maximum likelihood method. In this study, 

several probability distributions were tested to fit the inter-failure time of water pipe segments. 

The most common type of these approaches, Weibull Distribution, is explained in the remainder 

of this subsection.  

In 1939 Waloddi Weibull developed a failure distribution function that is presented by a 

bathtub curve, Figure 2-9, to describe the deterioration phenomenon (Weibull 1939). Since then, 

this formulation has been accepted as the most popular model to assess and predict failures and 

malfunctions across several fields (Jardine and Tsang 2013). The probability density function for 

a 3-parameter Weibull distribution is given by Equation 2.21, (Jardine and Tsang 2013): 

𝑓 (𝑇, 𝛽, 𝜂, 𝛾) =  
𝛽

𝜂
(
𝑇−𝛾

𝜂
)
𝛽−1

𝑒
−(

𝑇−𝛾

𝜂
)
𝛽

                                                                                                   (2.21) 

Where:  T ≥ 0, β > 0, 𝜂 > 0, -∞ ≤ γ ≤ ∞, β is the shape parameter, 𝜂 is the scale parameter, and γ is 

the location parameter.  

 

Figure 2-9: Bathtub Failure Rate Function (Murthy et al. 2008) 
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A Weibull distribution with a shape factor β less than one corresponds to a decreasing failure 

rate over time, improving reliability. This phase is known as the infant mortality phase or early-

life failures. On the other hand, a Weibull distribution with a shape factor β more than one 

corresponds to an increasing failure rate over time, deteriorating reliability. This phase is known 

as the wear-out phase or end-life failures. A Weibull distribution that has a shape parameter β 

equals exactly one corresponds to a constant failure rate. In such a particular case, the Weibull 

distribution reduces to an exponential one indicating a Poisson process. The scale parameter 𝜂 

determines the spread of the Weibull distribution. A higher value of 𝜂 corresponds to a lower 

failure rate or higher reliability. The location parameter γ describes the shift, time offset, of the 

distribution. When the value of the location parameter is set to zero, the distribution is reduced to 

a 2-parameter Weibull distribution. The reliability, survivability, for the 3-parameter Weibull 

distribution and the failure rate can be given by Equations 2.22 and 2.23, respectively, (Jardine 

and Tsang 2013):  

𝑅(𝑇) = 𝑒
−(

𝑇−𝛾

𝜂
)
𝛽

                                                                                      (2.22) 

𝜆(𝑇) =  (
𝛽

𝜂
)  (

𝑇−𝛾

𝜂
)
𝛽−1

                                                                                              (2.23) 

Where T ≥ 0 is the duration, β > 0 is the shape parameter, 𝜂 > 0 is the scale parameter, and -∞ ≤ γ 

≤ ∞ is the location parameter. 

To calibrate a Weibull distribution, the maximum likelihood method is employed. The first 

step is to establish the likelihood function, as shown in Equation 2.24 (Kleinbaum and Klein 2010):  

𝐿 =  ∏ 𝐿𝑖
𝑛
𝑖=1 = ∏ 𝜆(𝑡𝑖)

𝑑𝑖
𝑖 𝑅(𝑡𝑖)           (2.24) 
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Where n = the number of pipe segments; ti is the observation period; and  𝑑𝑖 is a failure indicator 

that takes a value of one when if pipe i failed during period ti and zero otherwise. Calibrating the 

model parameters can then be performed by setting the partial derivative of the natural logarithm 

of L to zero and solving the set of system of equations, Equation 2.25. The parameter values that 

maximize L are the maximum likelihood estimates (Kleinbaum and Klein 2010).  

𝜕𝛬

𝜕𝜃𝑗
= 0              (2.25) 

Where 𝛬 = ln 𝐿 ; 𝜃𝑗  is the distribution parameters vector. In this case j=3 and the parameters are 

β, 𝜂, and γ.  

2.7.4 K-means Clustering  

Clustering is the process of portioning a set of objects into homogenous groups based on shared 

similarities. In this analysis, clustering techniques are utilized to divide the selected network into 

a set of clusters based on the geographical location. K-means and K-medoids algorithms are 

investigated and compared to select the best performing algorithm in clustering the chosen 

network. K-means clustering algorithm is based on minimizing the squared error between the 

empirical mean of a cluster, clusters' centroids, and the points in the cluster.  In this algorithm, the 

cluster's centroid can, but does not have to, be one of the data points. This is the main distinction 

between K-means and K-medoids. In K-medoids, the centroid of a cluster is always one of the 

points in that cluster. The steps of K-means algorithms are shown below (Jain 2010):  

1. Select the desired number of clusters K, and select K random starting points that will serve 

as the initial clusters' centroids.  

2. Calculate the Euclidean distance between each data point and the centroids. Euclidean 

distance is the square root of the sum of squares of differences between components of two 
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pattern vectors Xi = Xi1; Xi2; …, Xid, and Xj = Xj1; Xj2; … Xjd, as shown in Equation 2.26 

(Sawant 2015):  

𝑑𝑖𝑗 = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑑

𝑘=1            (2.26) 

3. Assign data points to clusters based on the minimum distance between the data points and 

clusters' centroids, and recalculate the clusters' centroids.  

4. Repeat steps 2-3 until convergence, centroid and data points do not move anymore.   

As clustering is an unsupervised machine learning algorithm, evaluating the quality of the 

generated clusters may not be trivial. Clustering aims to minimize the intra-cluster distance, 

distance within the same cluster, and to maximize the inter-cluster distance, the distance between 

clusters. To attain that, the Davies–Bouldin Index is employed to compare the clustering quality 

of K-means and K-medoids. Davies–Bouldin Index is a ratio between the sums of intra-cluster 

scatter and the inter-cluster separation, as shown in Equation 2.27 (Davies and Bouldin 1979): 

𝐷𝐵𝐼 =   
1

𝑁
 ∑ max

𝑖≠𝑗
(
𝐷𝑖+𝐷𝑗

𝑑𝑖,𝑗
)𝑁

𝑖,𝑗=1                (2.27) 

Where D and d are the intra-cluster and the inter-cluster distances. The intra-cluster distance is the 

average distance between the data points and the cluster centroid, Equation 2.28.  The inter-cluster 

distance is the distance between the centroids of the two clusters, Equations 2.26, by replacing Xi 

and Xj with Ci and Cj.  

𝐷 =  
∑ ‖𝑋𝑎−𝐶𝑖‖𝑖

𝑁𝑖
                 (2.28) 

Where 𝑋𝑎 is an arbitrary point in cluster i; 𝐶𝑖 and 𝑁𝑖are the centroid and the total number of points 

in cluster i. A lower value of Davies–Bouldin index donates compact clusters with centroids far 

from each other, thus a better cluster (Sahani and Bhuyan 2017).  
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2.7.5 Shannon entropy  

The concept of entropy was presented in the 1940s by Claude Shannon as a mathematical 

component of the information theory (Shannon 1948). In this mathematical formulation, 

information entropy refers to the amount of earned information content from observing a specific 

result. This information portion represents the amount of uncertainty inherited from the 

information source and the stochastic nature of random events. The concept of information theory 

had been adopted in a wide range of scientific fields such as physics, engineering, social science, 

and others. In this research, Shannon entropy was utilized to compute the weights of objectives in 

multi-objective optimization problems.  

As the theory implies, smaller weights are assigned to those attributes that assume similar 

values across alternatives. When the measures of performance of a specific attribute are close to 

each other across the studied alternatives, this attribute is considered relatively unimportant by the 

decision-maker. In this thesis, weights of attributes were calculated based on the degree of index 

dispersion (Akyene 2012) as detailed below:  

1. Calculate the weight of the ith alternative with respect to jth attribute, 𝑃𝑖𝑗, as shown in 

Equation 2.29: 

𝑃𝑖𝑗 = 
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

       (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑛 ≤ 𝑗)       (2.29) 

Where 𝑥𝑖𝑗  is the measure of performance of the ith alternative with respect to jth attribute; 

m and n is the number of alternatives and number of attributes, respectively. 

2. Calculate the entropy value of the jth attribute, 𝑒𝑗, as shown in Equation 2.30 

𝑒𝑗 = −
1

ln(𝑚)
 × ∑ 𝑃𝑖𝑗

𝑚
𝑖=1  × ln𝑃𝑖𝑗                (2.30) 

3. Calculate the variation coefficient of the jth attribute, 𝑑𝑗, as shown in Equation 2.31 
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𝑑𝑗 = 1 − 𝑒𝑗                    (2.31) 

4. Calculate the weights of the jth attribute, 𝑤𝑗, as shown in Equation 2.32 

𝑤𝑗 =
𝑑𝑗 

∑ 𝑑𝑗 
𝑛
𝑖=1

                  (2.32) 

2.8 Optimization algorithms  

As stated earlier, municipalities manage a massive inventory of infrastructure assets that are 

running over extended life spans. Municipalities are expected to face an increased number of 

widespread failures due to natural and human-made disruptions. Given fund scarcity and limited 

resources, maintenance programs are usually postponed for several years. As such, decision-

makers need to utilize optimization techniques to solve this performance-cost paradox. Typically, 

optimization models aim at maximizing performance improvement, both before and after 

anomalous events, while minimizing associated costs. Optimization techniques are search engines 

that aim at minimizing a cost function while satisfying a set of constraints. Both cost function(s) 

and constraints can be mathematically represented as functions of decision variables. The result is 

an optimization problem that can be solved by a method from those reported in the operational 

research and optimization field. Appropriate optimization techniques may be selected based on the 

type and number of decision variables, the form of the objective functions and constraints, and 

whether a decision must be made in sequence (Shahata 2013). Optimization techniques can be 

broadly classified into two main categories: classical mathematical programming and evolutionary 

algorithms, as shown in Figure 2-10.  
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Figure 2-10: Optimization Solving Techniques 

Mathematical programming models converge faster and are guaranteed to obtain a global 

optimum solution in a specific type of problems. Linear Programming (LP), Integer Programming 

(IP), Dynamic Programming (DP) are examples of mathematical optimization models that had 

been widely used in the field of infrastructure asset management (Nunoo 2001). Linear 

Programming is the most straightforward optimization solving method in which both objective 

functions(s) and constraints are linear functions of the decision variables. However, this method 

cannot handle a substantial number of decision variables or non-linear formulations. Integer 

Programming can handle both linear and non-linear formulation of optimization problems. 

Decision variables are constrained to integer values. In some cases, they can take values of 0's and 

1's only, binary integer programming. The issue of significant decision variables cannot be handled 

using this type of algorithms, either. Mixed Integer Non-Linear Programming represents a 

combination of both mixed integer programming and non-linear programs. It can handle both 

linear and non-linear formations of objectives and constraints. In this formulation, some, but not 

all, of the decision variables must be integers. However, in many cases, it is challenging to be 

solved.  

Optimizaiton 
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Mathematical 
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As the scale and complexity of the optimization problem increase, metaheuristic algorithms 

emerge as feasible alternatives. These algorithms are usually inspired by biological evolution, 

social behavior, or human memory. They utilize stochastic approaches in learning, adaption, and 

evolution to reach a near-optimum solution (Dorigo and Gambardella 1997). It is worth 

mentioning that the concept of an optimal solution does not exist in evolutionary algorithms. 

Hence, users need to define some termination criteria to stop the search process before starting as 

there is no explicit way to test whether a given solution is optimal (El-Ghandour and Elbeltagi 

2017). Below is a brief description of common types of evolutionary algorithms that were utilized, 

tested, in this research:    

• Genetic Algorithm (GA) is a search heuristic that was introduced in the 1970s by John 

Holland (Holland 1975), inspired by the natural evolution theory. The search process starts by 

initializing a population, a set of random solutions; each represents a possible combination of 

the decision variables. The fitness of each solution is then calculated, and solutions are ranked 

according to their fitness. Best solutions are then selected via a specific selection strategy to 

reproduce by undergoing further genetic operators of crossover and mutation. In crossover, 

genes in two parents are exchanged until reaching a randomly selected crossover point. To 

prevent premature convergence, genes are randomly flipped with a low probability in the 

mutation step. The process is iteratively repeated until meeting the stopping criteria (Assad et 

al. 2020).  

• Tabu Search is a local-based metaheuristic algorithm that has been used to solve many 

combinatorial problems such as water network design optimization, traveling salesman 

problem and routing problems (da Conceicao Cunha and Ribeiro 2004; Brandão 2009; Basu 

2012).  The search process starts with an initial solution expressed as a combination of the 
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decision variables. Exploring the possible neighborhood of that solution is then iteratively 

conducted. A neighborhood to a solution is any other solution that can be obtained by altering 

the values of the decision variables. To avoid cycling within a small set of the search space, 

moves that lead to recently visited solutions are temporarily prohibited, stored in the Tabu List. 

Sporadically, certain Tabu moves are allowed given that they generate better solutions than the 

best-known solutions so far, aspiration criteria. A diversification procedure is added to 

minimize the possibility of getting trapped around a local optimum. This is achieved by 

boosting moves to new regions in the search space that was not previously visited. The 

algorithm terminates after a pre-specified number of iterations (Glover 1997). 

• Ant Colony Optimization (ACO) is an evolutionary algorithm that is inspired by the social 

behavior of ants trying to reach a source of food. ACO was firstly introduced by Dorigo (1996) 

and has been widely used since then, especially in scheduling and graph routing optimization 

problems (Dorigo and Gambardella 1997; Maier et al. 2003; El-Ghandour and Elbeltagi 2017).  

The algorithm exploits that ants deposit pheromone while traveling as a method of indirect 

communication. The shortest path is the one with the largest amount of deposited pheromone. 

The process starts by initiating some randomly generated ants that represent different possible 

solutions. In this context, ants are expressed by several variables and pheromone concentration. 

Ants are first evaluated according to the objective function. Next, pheromone concentrations 

for each possible path are iteratively updated to reinforce good solutions, shorter paths. The 

variable values of each ant are then changed according to the updated pheromone concentration 

until meeting the termination criteria (Elbeltagi et al. 2005). To prevent premature 

convergence, a pheromone evaporation parameter is introduced (Dorigo et al. 2006).  
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• An extension of the classical ant colony optimization is proposed by (Schlüter et al. 2009). 

In the original formulation of ACO, Pheromone values, usually within a pheromone table, are 

continuously updated based on information gained during the search process. Schlüter et al. 

(2009) exploited an aggregated weighted sum of several Gaussian distribution functions 

instead of pheromone tables to guide the search process. A discretization of this continuous 

function is introduced to allow intuitive handling of integer variables. Solution archive, SA, is 

proposed to continuously store and rank the most promising solutions investigated so far. In 

this extension, the mean and deviation of the Gaussian PDF are updated based on solutions 

stored in the SA. Each time a solution is created, its attractiveness is calculated and compared 

to those in the SA archive. A solution will be placed in the jth position of the SA only if it has 

a better attractiveness than the existing solution j. This way updating the SA implies updating 

the characteristics of the PDF, pheromone update, and thus the process of creating new 

solutions. The algorithm is also fortified with a robust penalty method for constraints handling. 

A local heuristic, sequential quadratic programming, is also employed to guide searching 

around the best known solution (Exler and Schittkowski 2007). More details about this 

modified version of ACO and its implementation on real-world problems can be found at 

(Schlüter et al. 2009; Schlüter et al. 2012).  

2.9 Gaps in Literature  

Previous research studies were reviewed to search for suitable resilience assessment models 

for WDNs. It was found that resilience metrics can be either flow-based or structural-based 

indexes. The reviewed literature covered different restoration and resilience enhancement 

frameworks from which system performance can be improved to some accepted thresholds. 

Several optimization algorithms and multi-criteria decision-making techniques utilized in this 

research were also discussed in this chapter. Table 2-3 depicts a comparison analysis between the 
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main resilience metrics and frameworks reviewed in this dissertation. Main findings and 

limitations of the literature review can be listed in the following points below:     

• Considerable efforts have been directed towards developing resilience metrics to help 

achieve the optimal design of WDNs. Very few studies have incorporated resilience in the 

rehabilitation-based decision making process.  

• Even though several studies attempted to quantify the resilience of WDNs, very few 

introduced a practically applicable and easy-to-use metrics along with a comprehensive 

framework that can be used by municipalities in resilience improvement planning. 

• Many of the previously developed metrics for resilience assessment of WDNs are flow-

based ones necessitating the need to run sophisticated and hard-to-calibrate hydraulic 

simulations. Such approaches require extensive computational time, that can extend up to 

several hours especially as the size and complexity of the network increase. Faster models 

are needed for the restoration planning after each hazardous event.  

• Many structural-based metrics are solely based on graph theory indicators and rarely 

consider other non-topological characteristics of WDNs such as pipe lengths, sizes, aging 

effects, surrounding conditions.
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Table 2-3: Comparison between Reviewed Resilience Metric 

Authors (Metric) 
Functionality 

Thresholds 

Component 

Criticality  

Components 

Deterioration  

System 

Redundancy  

Resilience 

Time 

Variation  

Multiple-

Hazard 

Stochastic 

Failure 

Scenarios  

Restoration 

Investigation  

Enhancement 

Planning  

Todini (2000) ✔     ✔    

Prasad and Park (2004) ✔   ✔  ✔    

Jayaram and Srinivasan 

(2008) 
✔  ✔  ✔    ✔ 

Yazdani et al. (2011)     ✔  ✔   ✔ 

Luna et al.  (2011) ✔ ✔   ✔ ✔ ✔ ✔  

Gay Alanis (2013) ✔  ✔  ✔  ✔ ✔  

Cimellaro et al. (2015)  ✔    ✔   ✔  

Soldi et al. (2015)    ✔   ✔  ✔ 

Zhao et al. (2015)     ✔ ✔  ✔ ✔  

Herrera et al. (2016)    ✔   ✔   

Creaco et al. (2016)  ✔  ✔  ✔ ✔   ✔ 

Farahmandfar et al. 

(2016) 
✔  ✔ ✔ ✔    ✔ 

Liu et al. (2017) ✔     ✔    

Di Nardo et al. (2018)     ✔  ✔ ✔   

Mahmoud et al. (2018)      ✔ ✔ ✔  

He and Yan (2019)  ✔   ✔  ✔ ✔  

Choi and Kim (2019)     ✔ ✔ ✔    

Balut et al. (2019)  ✔   ✔ ✔ ✔ ✔  

Liu et al. (2020)          ✔ ✔   ✔   
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• The majority of previous efforts investigated the resilience of WDNs to a particular specific 

hazard, such as earthquakes. There is a need for a comprehensive approach that shifts the 

emphasis from analyzing separate threats to studying the impact of such hazards on WDNs 

and how they respond to different resorting strategies.  

• Models that investigated restoration actions of WDNs following disruptive events 

overlooked several vital issues such as the need to consider various repair methods along 

with their suitability to various pipes characteristics and failure types. The impact of such 

actions of the restoration objectives has been rarely investigated. The time and cost crews 

spend relocating between failed components location along with uncertainties in estimating 

the time and cost of restoration activities had received little or no attention in previous 

research efforts. The relocation time plays a more dominant rule in the case of multiple 

simultaneous failures across the network.  

• A proper framework of resilience-based management of WDNs shall integrate social, 

economic, and environmental aspects of resilience by including the criticality of different 

segments in the network. There is no criticality assessment model for WDNs, at least to 

the knowledge of the author, which captures the interdependency between criticality 

factors and handle the inherited uncertainty in criticality estimating.  

• Most resilience enhancement models lack explicit precise deterioration and improvement 

estimation models.  

• Resilience enhancement planning shall consider distinct resilience targets for different 

zones in the network. Clustering enhancement actions into work packages based on repair 

methods and geographical location is another concern that needs to be addressed. Such 
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clustering and work packing formulating facilitate the scheduling and resource allocation 

process while complying with fair business practices.  

3 Chapter 3: Developed models for Resilience-Based Management of WDN 

3.1 Overview  

To meet the ultimate objective of this dissertation, the research process encompasses four 

main phases: i) conducting a comprehensive literature review of current resilience frameworks and 

their application on WDNs; ii) proposing a new metric to assess and evaluate resilience of WDNs; 

iii) developing a restoration model to obtain an optimal recovery strategy that minimizes the time 

and cost of service interruption; and iv) developing an optimization model to determine the 

optimum resilience enhancement program. Each of these phases will be further explained in the 

subsequent sections. Tasks included in each phase, underlying concepts, required assumptions, 

and mathematical formulations, along with the final expected output of each model, are presented 

in detail.  In this work, resilience is defined as the ability of WDNs to withstand various hazards 

with minimum physical impacts. Besides, restoring activities shall be prioritized in a way that 

minimizes the time of service disruption while satisfying a set of operational and managerial 

constraints. Even though WDNs consist of several components such as water mains, fire hydrants, 

valves, and other accessories, this study focuses on water pipe segments. This is because water 

pipe segments constitute the biggest majority of components and play the most significant role in 

functioning of WDNs.  

The general flow chart of this research methodology is depicted in Figure 3-1. The process 

starts by reviewing existing resilience approaches that aim at evaluating and enhancing resilience 

of water networks followed by developing comprehensive resilience-based management model 

that consists of i) a metric to assess the resilience of WDNs; ii) a prioritization model to optimize 
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the restoration process scheduling; and iii) an optimization model to develop an optimum, or near-

optimum, resilience enhancement plans. The work developed in this study is based on a 

comprehensive framework presented by Bruneau et al. (2003) for analyzing the resilience of urban 

communities and infrastructure systems. Generally, resilience of infrastructure systems can be 

conceptualized by four main qualities, namely: robustness, redundancy, rapidity, and 

resourcefulness (Tierney and Bruneau 2007). The first two properties are integrated to develop a 

new practical metric for assessing resilience of WDNs. Concepts of rapidity and resourcefulness 

are then integrated in developing an optimization model that investigates recovery strategies and 

selects an optimal one that minimizes the time and cost of service interruption following a 

hazardous event. In addition, a sustainability objective is included in developing a resilience 

enhancement model that maximizes the strength of WDNs to withstand future expected 

disruptions.  

Data needed to develop, apply, and validate the proposed models was acquired from various 

sources. Literature review, maintenance reports, and experts’ opinions are examples of these 

sources. Moreover, geographic information systems, GIS, shapefiles represent the main 

component of gathered information in this research. Data about pipeline characteristics, 

geographical features, previous failures, are extracted from these files. Another set of GIS files 

contain information about land use, street types, and distribution of water streams.  

 



 

 

 

52 

 

 

Figure 3-1:  Research Methodology 
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3.2 Resilience Assessment Model  

In this section, a metric that can be readily used by utility managers to evaluate resilience of 

WDNs is introduced. Figure 3-2 illustrates the overall methodology of developing this metric. As 

shown in Figure 3-2, this metric is based on the robustness and redundancy of WDNs. Robustness 

is quantified as a function of the reliability and criticality of water mains. Redundancy is computed 

by utilizing concepts of graph theory. Detailed assumptions and analytical quantifications of each 

attribute of this metric are presented in the following sub-sections. The metric is then applied on a 

real WDN that serves a selected area in the City of London, Ontario. After evaluating the current 

resilience level of the network, the practicality of this model is demonstrated by assuming a 

specific disruption event and investigating various restoration strategies. Results are then 

compared with different flow-based and topological-based metrics for verification and validation 

purposes.  
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Figure 3-2: Resilience Metric Methodology (Assad et al. 2019) 

3.2.1 Robustness 

Robustness of a WDN is its ability to withstand destructive forces without significant 

degradation (Bocchini et al. 2013). Robustness can be viewed as the resistance to unusual external 

shocks often measured by the residual functionality level, system performance, after a hazard 

occurrence (Bocchini et al. 2013). In this work, mechanical reliability was chosen as the base for 

quantifying the robustness of WDNs.  Mechanical reliability presents a direct measure of WDNs 

structural performance. Mechanical reliability can be defined as the “probability that an item can 

perform its intended function for a specified interval under stated conditions” (Murthy et al. 2008). 

In this dissertation, mechanical reliability will be referred to as reliability. The structural 

performance of WDNs is a measure of the condition and strength of its components. A pipe burst 
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or a pump malfunctioning can compromise the structural performance of a WDN and decrease its 

reliability (Murthy et al. 2008; Verma et al. 2010). Additionally, a deteriorated pipe segment with 

long failure history is more fragile, vulnerable, to even light disruptions. Robustness was thus 

calculated as a function of reliabilities of all connected pipe segments according to the connection 

type. Criticality of each pipe segment was then added as weights to prioritize critical segments. 

For a network that consists of several pipe segments, the most important segments in determining 

its performance are the most critical ones. Critical segments are defined below according to the 

considered criticality factors. Finally, the weighted formulation was normalized by the sum of the 

criticalities of all pipe segments. By adding criticalities, the developed metric was extended to 

account for the socioeconomic dimensions of resilience beside the technical one, which was 

captured in the reliability estimation. Criticality and reliability calculations are presented in detail 

below:  

3.2.1.1 Criticality  

Asset Criticality is a measure of the consequences associated with the failure of an asset to 

perform its intended function (Cromwell 2002; Vanier and Rahman 2004). Estimating criticality 

of pipe segments involves identifying some factors, known as criticality factors, that play a 

dominant role in dictating criticality of water pipe segments. A criticality factor is thus a factor 

that impacts the consequence of the pipe segment’s failure. For example, the size of a pipe segment 

is an economic criticality factor because it affects the economic consequence associated with this 

segment's failure. Based on the type of potential consequences, criticality factors can be classified 

into three main categories: economic, environmental, and social factors. A factor can be assigned 

to one or more categories if it impacts the type of consequences represented by that category. For 

example, the size of a pipe segment can be categorized as both economic and environmental factor 
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because the failure of bigger segments results in more environmental consequences and require 

more budgets to be repaired. Also, there is a considerable degree of interdependency between the 

main categories of these factors. Social consequences, for example, may contribute to worsening 

the economic effects. As illustrated in Chapter 2, despite several previous efforts, estimating water 

segment’s criticality is still subjected to bias and uncertainty. Bias arises from specific previous 

experience of practitioners participating in estimating the segment's criticality. As a result, a proper 

criticality estimation of water pipe segments shall account for uncertainties and interdependencies 

between the criticality factors.  

Data needed for developing this model include factors affecting the criticality of water pipe 

segments, their relative importance, and scores for their measure of performance. Figure 3-3 

illustrates a flow diagram that summarizes the criticality estimation steps. A set of criticality 

factors was first determined, and their ranges of measure were defined. Next, relative weights of 

importance of these factors were derived. Weighted factors were then aggregated into a single 

index that represents the criticality of each segment.  

Firstly, the available literature was consulted to gather relevant criticality influential 

factors. As stated previously, three main categories of criticality factors were included in this study, 

shown in Figure 3-4. Economic factors provide a measure of the monetary losses realized due to a 

water segment’s failure. These losses can be quantified as increased repair costs or loss of 

revenues. The economic category includes pipeline size, material, installation depth, and 

accessibility factors. As the size of a water pipe segment increases, the monetary losses associated 

with its failure increases due to the increased repair costs. Similarly, the repair costs increase with 

increasing the depth at which a water segment is buried. It was reported that the repair cost 



 

 

 

57 

 

dramatically increases when the failed water segment is buried at a depth exceeding four meters, 

Salman (2011). 

 

Figure 3-3: Flow Diagram of Criticality Estimation Process (Assad et al. 2019) 

Moreover, material type plays a vital role in specifying the repair type and methodology. 

Hence, it directly affects the cost of failure and repair actions. Concrete pipes usually have more 
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repair costs than other material types (Salman 2011). Finally, the financial consequences of the 

water pipe’s failure are more significant when it is difficult to access.   

Pipeline Criticality 

Economic Environmental Social 

- Size 

- Material 

- Installation Depth

- Low Accessibility  

-Size 

-Soil Type 

- Proximity to 

Water Streams  

-Population  

Density

- Traffic Disruption 

- Alternative Route

- Type of Facility  

 
Figure 3-4: Criticality Factors and Sub-factors (Assad et al. 2019) 

Environmental factors are those that measure the environmental impacts resulting from a 

water segment’s failure. These impacts can be in the form of health impacts, contaminations, 

pollutions, and others. In this category, soil type, proximity to water streams, and pipeline size are 

the sub-factors considered. It is well-known that water segments closer to water streams such as 

rivers and lacks are more critical due to the possible contamination that might result from their 

failure. Additionally, environmental impacts increase gradually with the size increase of the failed 

segment due to the higher amount of discharged water. Each soil type has its own permeability 

and density characteristics that control the amount and spread of the consequences resulted from 

a water main failure. Failures in sandy soil are considered more critical due to the possibility of 

runoffs and adversely affecting adjacent facilities. Social factors include sub-factors that influence 

the social disruptions exhibited due to the failure of a water pipe segment. Population density, 
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traffic disruption, existence of an alternative route, and type of the serviced area are the sub-factors 

included in this category. Social impacts are increased as the population density increases due to 

the larger number of affected users as a result of a pipe failure. In addition, the availability of an 

alternative path to deliver water for end-users reduces the criticality of those pipe segments. A 

water segment that is under, or close, to a highway is known to be more critical than those buried 

under small local roads due to a higher volume of disrupted traffic. Similarly, water mains that 

deliver water to sensitive facilities such as hospitals and power plants are deemed more critical. 

The consequence of failure of such segments has more adverse impacts on society and may take 

more extended periods to recover due to the propagated effects resulting from the insufficient 

water supply to those facilities.  

Secondly, structured questionnaires were conducted with experts to collect the rest of the 

data needed for estimating the criticality of pipe segments. Structured questionnaires were 

exploited in these interviews to assure the consistency and reliability of the gathered responses. 

Figure 3-5 depicts a distribution of the respondents according to their years of experience. As 

observed in Figure 3-5, most of the participated respondents are of 5-15 years of experience, with 

a percentage of 55%. These experts were reached out via phone calls, e-mails, LinkedIn messages, 

and other research portals. After filling some personal-related questions, they were asked to 1) 

answer the pairwise comparison questions regarding the criticality factors, and 2) estimate, 

propose, effect values for each possible range of criticality factors.  

In the criticality factors weights section, experts were asked "How much a certain criticality 

factor is more important than another one?" (Wei et al. 2010). To ensure the consistency of the 

collected judgments by the experts, consistency ratio was calculated for each pairwise comparison 

matrix, as shown in Equations 3.1 and 3.2 (Lee 2010): 
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Figure 3-5: Distribution of Respondents’ Experience  

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
                    (3.1) 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
                   (3.2) 

Where 𝜆𝑚𝑎𝑥  is the biggest eigenvalue of the considered pairwise comparison matrix; 𝑛 is 

the number of factors in the considered pairwise comparison matrix; 𝐶𝑅 is the consistency ratio;  

𝐶𝐼 is the consistency index; and 𝑅𝐼 is the random index. The value of the RI is determined based 

on the size of the pairwise comparison matrix. For example, the RI values for (3×3) and (4×4) 

matrices are 0.58 and 0.90, respectively (Saaty 2007; Lee 2010). The pairwise comparison matrix 

is considered to achieve satisfactory consistency as the value of CR is less than 0.1. 

Figure 3-7 depicts a section of the questionnaire questions in which experts were asked to 

evaluate the relative importance of economic criticality sub-factors.  Similar to Figure 3 6, experts 

were asked to evaluate the relative importance of social and environmental criticality sub-factors. 
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Example: 
In the table below, consider comparing “Pipeline Size” (Criterion X) with “Pipeline Material” (Criterion Y) with respect to “Physical 

Factors.”  
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    Degree of Importance  Criterion 
(Y) 

 

(9
) 

A
b

s
o

lu
te

 

(7
) 

V
e

ry
 

S
tr

o
n

g
 

(5
) 

S
tr

o
n
g
 

(3
) 

M
o

d
e

ra
te

 

(1
) 

E
q

u
a

l 

(3
) 

M
o

d
e

ra
te

 

(5
) 

S
tr

o
n
g
 

(7
) 

V
e

ry
 

S
tr

o
n

g
 

(9
) 

A
b

s
o

lu
te

 

 

Pipeline Size 

         Pipeline Material 

         Installation Depth  

         Low Accessibility 

 

 

 

 

 

In addition, experts were asked to evaluate the relative importance of the main factors 

concerning their effect on each other and on the overall pipeline criticality, as shown in Figure 3-8. 

In this research, the average values of the collected responses were utilized as the adopted weights. 
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Figure 3-6: Sample of Criticality Sub-factors’ Relative Importance Questions 



 

 

 

62 

 

Figure 3-7: Sample of Criticality Main Factors’ Relative Importance Questions 

After identifying criticality factors, experts' opinions were sought to derive the relative 

weight of importance of each sub-factor and to determine their effect values on criticality on a 

scale from 0-10. This scale is used to provide an adequate range of options for the possible 

performance measure of each factor, with higher values representing more critical situations. 

Figure 3-8 illustrates an example of this section. In this example, the experts are asked to set a 

unique effect value, score, for each possible material type. Similarly, experts were asked to 

determine a score for each possible value of the economic, social, and environmental criticality 

factors. Criticality estimation process constitutes integrating a diverse set of factors, not all of 

which are measured on comparable scales. For example, some criticality factors are measured on 

a binary scale, while others are measured on a continuous range or a discrete categorical interval. 

It is thus necessary to define a unified scale, effect value, to facilitate a meaningful combination 

of the different factors in a multi-attribute utility model.  

 

Figure 3-8: Sample of Criticality Factors’ Effect Values Questions 

Table 3-1 shows the adopted ranges of performance and effect values for each criticality 

factor. These ranges were sought both from expert opinion and consulting the literature (Salman 

2011; Shahata 2013; Moursi 2016). Taking an economic sub-factor in Table 3-1 as an example, 
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accessibility is measured on a binary scale as either high or low. Thus, only two effect values are 

considered 1 and 10 representing the least and most critical conditions, respectively, without 

considering the intermediate conditions. Effect values that represent these intermediate conditions 

were marked as NA. The same approach was followed for the installation depth criticality factor. 

Similar values were collected for environmental and social factors as shown in Table 3-1. 

Table 3-1: Effect Values of Criticality Factors 

Economic Factors 

Effect 

Value 
Pipe Size Pipe Material 

Installation 

Depth 
Accessibility 

1 
Less or equal 

150 mm 
PVC, Poly Ethylene Less than 4.0 m High 

3 150 to 350 mm NA NA NA 

5 350 to 700 mm Steel, Iron NA NA 

7 NA Copper NA NA 

10 
Greater or equal 

700 mm 
Concrete 

Greater or equal 

4.0 m 
Low 

Environmental Factors 

Effect 

Value 
Pipe Size Soil Type 

Proximity to rivers and 

streams 

1 
Less or equal 

150 mm 
Clay No 

3 150 to 350 mm NA NA 

5 350 to 700 mm Silt NA 

7 NA NA NA 

10 
Greater or equal 

700 mm 
Sand Yes 

Social Factors 

Effect 

Value 

Population 

Density 

Traffic 

Disruption 
Alternative Route Type of Facility 

1 NA Low Yes Parking/open space 

3 Low NA NA Residential 

5 Medium Medium NA NA 

7 NA NA NA Commercial 

10 High High No 
Industrial and 

Institutional 

The fuzzy analytical network process (FANP) was then employed to determine the global 

weights of the criticality factors. The process starts by identifying the system objective and sub-
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criteria, which has been done in the previous steps. The aim is to calculate the criticality index of 

water pipe segments, and the criteria are the main factors and sub-factors considered. 

Subsequently, a comparison between criteria was performed as stated above.  

The fuzzy component was implemented by applying a fuzzification scale, shown in Table 

3-2 on the gathered responses. Cheng's fuzzy scale was exploited in this study for pairwise 

comparisons and fuzzified weights computations (Cheng et al. 1999; Kiriş 2013). According to 

this scale, if a particular expert evaluated factor A to be weekly more important than factor B, then 

the mean value of the fuzzy membership function associated with this evaluation response would 

be 3/2. Furthermore, the corresponding lower and upper values associated with this response would 

be 1 and 2, respectively. This application yields formulation of three matrices, namely: lower, most 

probably, and upper matrices, which represent the three vertices of a triangle fuzzy number ship 

function. Triangular fuzzy membership function was utilized in this application since it is the most 

commonly utilized in literature. Besides, this function fits for the objective of this application, 

where three points are sufficient to describe the inherited uncertainty. This step was repeated to 

compare all sub-factors in each category and between the three main considered categories. The 

output of this step is a set of lower, upper, and most probable matrices for each evaluated 

comparison.  

Table 3-2: Cheng’s Fuzzy Linguistic Scale for Importance and the Corresponding Triangular 

Fuzzy Numbers (Wei et al. 2010) 

Linguistic Scale for Importance Triangular Fuzzy Scale Triangular Reciprocal Scale 

Equally important (EI) (1/2,1,3/2) (2/3,1,2) 

Weakly more important (WMI) (1,3/2,2) (1/2,2/3,1) 

Strongly more important (SMI) (3/2,2,5/2) (2/5,1/2,2/3) 

Very strongly more important (VSMI) (2,5/2,3) (1/3,2/5,1/2) 

Absolutely more important (AMI) (5/2,3,7/2) (2/7,1/3,2/5) 
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The fuzzifying scale was applied to account for the vagueness and uncertainty in the 

collected responses. These matrices are then used as inputs for a specific written Matlab code to 

obtain the factors’ relative weights. The obtained relative weights were used to construct the 

unweighted supermatrix. The weighted supermatrix was next attained by normalizing each cell in 

the unweighted supermatrix by dividing over the summation of cells in the column in which it lies. 

This step is similar to the concept of Markov chains for ensuring the sum of these probabilities of 

all states is equal to one. The weighted supermatrix was then iteratively multiplied by itself to get 

the limited matrix, as shown in equation 3.3. This step is essential because the weighted 

supermatrix will not be in a steady state until the row values converge to the same value for each 

column of the matrix. The first column in the limited matrix is the global priority vector or weights 

(Wei et al. 2010). Summing up the weights obtained from the limited matrix yields an exact unity.  

�̅�∞ = lim
𝑘→∞

�̅�𝑘               (3.3) 

Multi-attribute utility theory (MAUT) was finally employed to obtain the criticality index 

of each pipe segment using equation 3.4. A Matlab code that is integrated within an Excel 

environment was written to automate the criticality computations. 

Ci = ∑ Wj
r
j=1 × AVj                (3.4) 

Where Ci is the criticality index for pipe segment i, Wj is the global weight of criticality sub-factor 

j, AVj is the effect value of sub-factor j, and r is the number of criticality sub-factors. This criticality 

index reflects the significance of failure associated with water segments on a scale from 0-1, where 

0 represents the least critical, and 1 represents the most critical pipe segments. 

3.2.1.2 Reliability 

Reliability is defined as the probability that an infrastructure system, or any of its 

components, will perform its intended function without failure for a specified period (Verma et al. 
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2010). A failure in water pipe segments could be either a hydraulic failure, a structural /mechanical 

failure, or a failure related to water quality issues (Gheisi and Naser 2014; Mohammed 2016). This 

work focused exclusively on the structural failure of water segments in the form of pipe breaks 

and leaks. Reliability of an asset can be calculated using equations 3.5 (Murthy et al. 2008): 

R(T) = P(t > T) = 1 − ∫ f(x)dx
∞

T
             (3.5) 

Where t is the time to failure, T is the failure-free period, and f(x) is the failure probability density 

function. The overall methodology of reliability and deterioration estimation is illustrated in Figure 

3-9. 

Data needed for calibration of this model include characteristics, locations, and failure history 

of water segments. These data were gathered from the City of London, Ontario. The concept of 

censored data was utilized in this research. The most generic form of censoring is right-censored 

data. In this case, the failure event starting the inter-failure time series has occurred, but at the time 

of the last observation, the failure ending this series has not occurred yet. The only thing known 

for sure is that the failure will happen sometime in the future. The main advantage of employing 

data censoring is the ability to include the effect of no-failures in addition to the effect of failures. 

Once the required data were collected, preprocessing steps proceeded as follows:  

1. Data cleansing was firstly done to eliminate miscoded and irrational data like those whose 

installation date, or failure date was sometime in the future.   

2. Pipes that had significant time to the first failure were excluded from modeling. This step 

was essential to avoid the bias resulting from intervention and major rehabilitation works 

that were carried out but not reported in the database.  

3. Pipe material types that do not match construction era were excluded (e.g., PVC pipe with 

a construction date of 1940). 
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4. Pipe construction eras do not match urban development patterns were excluded (e.g., new 

pipe in an old location that did not undergo any pipe replacement projects). 

5. Pipe material types do not match diameters were excluded (e.g., 6 in. prestressed concrete 

pipe). 

6. The number of breaks in each pipe segment was counted and linked to that specific pipe. 

The gathered data included several GIS layers that were not spatially linked to each other. 

A joining technique was needed to link the breaks to each corresponding pipeline. Hence, 

a Matlab code was written to count the number the breaks and match them to the 

appropriate pipe segment utilizing features of Arc-GIS as shown in Figure 3-10.  

7. The inter-failure time, the time between successive failures was calculated to get times to 

the nth failure. These times would be used later to calibrate the model and find the best fit, 

as will be shown in this section.  
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Figure 3-9: Flow Diagram of Reliability and Deterioration Estimation (Assad et al. 2019) 
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Figure 3-10: GIS Shapefiles for Water Pipe segments and Previous Breaks (London, Ontario) 

Analyzing the obtained failure dataset reveals more than 3,900 breaks distributed across 

the London WDN. The earliest break incident dated back to April 1966 while the most recent 

incident was recorded in October 2017. It shall be noted that the City of London provided this 

dataset in November 2017. The available wealth of breakage history is flawlessly sufficient to 

calibrate a performance model that forecasts future breakage trends and suggests appropriate 

strategies for enhancement and restoration based on resilience objectives.  
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Table 3-3 illustrates an example of the collected failure history dataset. For each pipe 

segment, the previous number of failures and their data of occurrence were provided. Besides, the 

type of failure, nature of the break, was also provided.  Dates of previous failures were utilized in 

calculating the inter-failure times as previously mentioned.  

Table 3-3: Sample of Water Pipe Segment’s Failure History  

Pipe ID NOPB* Break No. Date Nature of Break 

2491 1 1 9/10/1976 Circumferential 

16558 2 
1 2/14/2002 Circumferential 

2 1/14/2009 Circumferential 

15341 3 

 

1 3/9/1992 Blowout 

2 2/2/2007 Longitudinal 

3 3/3/2014 Circumferential 

* NOPB = Number of previous breaks.  

Water pipes were then clustered into homogeneous cohorts based on their size and material 

type. This step was performed to cluster the segments that are likely to share similar deterioration 

behavior in the same cluster. Five main groups resulted from this clustering namely: segments that 

are made of cast iron, CI and of a diameter less than or equal to 150mm; segments that are made 

of CI and of diameter more than 150mm; segments that are made of ductile iron, DI and of diameter 

less than or equal to 150mm; segments that are made of DI and of diameter more than 150mm, 

and others. The “others” group contains pipelines of any sizes that are made of polyvinyl chloride. 

Weibull distribution function (WDF), along with some other distributions, were then employed 

to model the reliability and deterioration of water mains. Weibull distribution was chosen because 

it is a stochastic statistical failure prediction model based on historical failure data. Unlike Markov-

based models in which deterioration is predicted solely based on the immediate previous condition 

state, WDF can leverage the entire failure history of pipe segments in deterioration and reliability 
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predicting. Most of the previously developed deterioration models assumed a constant failure rate 

of water pipes. In this work, Weibull distribution functions were used to fit the time-to-failure data 

allowing for distinct failure rates for different phases of the water segment’s life. The main 

advantage of this approach is the ability to model the failure behavior of water segments more 

realistically since failure rates are not constant along the service life of water segments. Weibull 

distribution was also chosen as it can be related to several other probability distributions such as 

exponential, and others. This offers more flexibly in estimating the accurate deterioration behavior 

of pipe segments.  

Reliability is estimated for pipe segments in a dynamic fashion. Survival analysis was 

performed to obtain the distribution parameters for each transition state utilizing the maximum 

likelihood method. A state is defined here as the order of a break, and the time between states is 

the time elapsed between the nth break and the (n+1)th break. For instance, the first transition time 

is the time to the first failure calculated from the installation date. The second transition time is the 

time to the second failure measured from the date of the first failure, and so on. The deterioration 

was evinced by a decreasing mean time to failure as the break order increases reflecting a more 

deteriorated segment. Different distributions were considered to fit the inter-failure time data, 

including both 2-parameter or 3-parameter Weibull distributions, exponential distribution, and 

normal distribution, among others. The data fitting was done using Matlab. The quality of each 

distribution fit was tested via the Anderson-Darling statistical test. Anderson-Darling statistic 

measures how well the data follow a specific distribution and is used to compare the fits of several 

distributions to determine the best one. The hypotheses for the Anderson-Darling test are  

H0: The data follow a specified distribution, or  

H1: The data do not follow a specified distribution  
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Three main measures are commonly used in this type of curve fitting, as shown below:  

• Anderson-Darling statistic (AD): A Lower AD value indicates a better fit. Nevertheless, to 

compare the suitability of different distributions to fit the data, p-value should be assessed. 

• P-value: A higher p-value indicates a better fit. A low p-value (e.g., < 0.05) indicates that 

the data do not follow that distribution, and other distribution shall be tested. It should be 

noted that the p-value cannot be calculated for 3-parameters distributions.  

• LRT P, P-value for the likelihood-ratio test: A lower value indicates significant 

improvement realized by adding the third parameter over the 2-Parameter version.  

Once the appropriate distribution parameters are computed for a cohort of water pipe segments, 

the reliability function of this cohort can be calculated as given by Equation 2.20. Finally, 

deterioration curves were established for each cohort of segments by incrementally increasing the 

age in Equation 2.20. It is worth mentioning that the computed reliability is a time-based one and 

depends on the break order. As such, if a water pipeline experiences its nth break, its reliability 

along the subsequent years will be calculated using the reliability function of the (n+1)th break. 

In addition, when a pipe segment is subjected to a specific intervention action, its reliability 

is updated according to the type of this intervention. To achieve that, previous intervention actions 

applied to various segments in London WDN along with their dates of occurrence were gathered. 

Table 3-4 shows an example of information obtained from the maintenance reports. This set 

included information about previous intervention rehabilitation and actions that were applied to 

different water pipe segments in the London WDN. For each pipe segment, the number, date, and 

intervention action type were provided. This information is vital in determining the realized 

improvement and expected deterioration behavior after specific intervention actions are taken. 

These two pieces of information will be utilized as inputs in the resilience enhancement model and 



 

 

 

73 

 

resilience-based restoration model to calculate the resilience improvement objectives, as will be 

illustrated in the subsequent sections.   

Table 3-4: Sample of Water Pipe Segment’s Intervention Actions History  

Pipe ID Date Intervention Type 

2206 5/15/2006 Cement mortar 

10787 6/15/2000 Cement mortar 

16564 7/25/2016 Aqua pipe CIPP 

8936 11/23/2010 Nordi tube CIPP 

 

3.2.2 Redundancy  

Redundancy is the extent to which a system is capable of satisfying functional requirements 

if significant degradation occurs (Tierney and Bruneau 2007). Several authors have employed 

metrics from graph theory to quantify the redundancy and connectivity of WDNs (Yazdani and 

Jeffrey 2011; Yazdani and Jeffrey 2012; Torres et al. 2017). In graph theory, a network is presented 

as a mathematical graph G = (V, E) where V = the set of graph nodes with n elements; and E = the 

set of graph edges with m elements. Each edge of G = represented by a pair of nodes (i, j) where i 

≠ j. The size of G = the number n of vertices in V, and the order of G = the number of m edges in 

E (Yazdani and Jeffrey 2011; Yazdani and Jeffrey 2012). An adjacency matrix A = [aij] is a non-

negative n x n matrix that describes the graph G. In A, aij = 1 if (i, j) is an edge in G and 0 otherwise.  

Three different parameters, reported in the literature, were studied to analyze their 

applicability and limitations in quantifying redundancy of WDNs. These metrics are link density, 

clustering coefficient, and meshed-ness. Link density is an important measure related to the overall 

structure of the network. It can be calculated as the ratio between the total and the maximum 

possible number of links in a network (Yazdani and Jeffrey 2011; Yazdani and Jeffrey 2012). Link 

density is used to indicate the sparseness or dense connectivity of network layout, yet it only 
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captures very general information regarding the structure of WDNs. Extending the analysis to 

include other structural properties such as the number of cycles and loops in a network is needed. 

The clustering coefficient measures the ratio between total triangles and the total connected, 

closed, triples in a network. Because the majority of looped structures in WDNs are non-triangular, 

quadrilateral, it is difficult to utilize this metric to measure redundancy in such networks (Yazdani 

and Jeffrey 2011). Meshed-ness is a more relevant metric in this respect that can be used to estimate 

the intensity of any loops in planar graphs such as WDNs. It may be regarded as a surrogate 

measure of path redundancy in a network. Meshed-ness is calculated as the ratio of the total 

number to the maximum number of independent loops in a planar graph Euler's formula, as shown 

in Equation 3.6 (Yazdani and Jeffrey 2011): 

𝑅𝑚 = 
𝑚−𝑛−1

2𝑛−5
                 (3.6) 

Where Rm = meshed-ness coefficient, n is the total number of nodes, and m is the total number of 

links in a graph G. Rm can vary from zero in tree structures to one in maximal, complete, planar 

graphs. The value of this coefficient is increased by installing new pipe segments at selected 

locations across the network. Duplicating critical segments or those supplying water to sensitive 

facilities may be the ideal option to increase the network redundancy, especially in conditions of 

limited resources and funds scarcity.  

3.2.3 Resilience Metric  

The proposed resilience metric was finally formulated as a weighted sum of the robustness 

and redundancy coefficients that were discussed above, as shown in Equation 3.7:     

Я  = w1 ×
∑ R i × C i
P
i=1

∑ C i
n
i=1

+w2 ×
m−n−1

2n−5
             (3.7) 

where Я is the resilience metric, Ri is the reliability of water pipe segment i, Ci is the criticality 

index of water pipe segment i, P is the total number of pipe segments, n is the network size, m is 
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the network order when presented as graph G, w1 and w2 are relative weights of importance. The 

lower bound of the resilience metric is 0, which is realized when Ri is 0 for all pipe segments in a 

fully damaged network, and no water is being delivered to customers. The theoretical upper bound 

is 1 and might be realized when Ri is 1 for all pipe segments, and the network is a complete planner 

graph. In reality, these two cases are not likely to exist, and the expected value of the resilience 

metric is always less than 1. 

As it can be observed from Equation 3.7, this metric is not based on a specific hazard. 

Instead, it can be used to assess the resilience of WDNs based on the failure mode, the impacts of 

different hazards on the water network. As mentioned earlier, this effort is focusing only on 

structural impacts such as pipe breaks and leaks. These structural failures can result from different 

hazardous events such as earthquakes, target attacks, and accidents. The proposed metric can be 

used to assess the resilience of WDNs against all these types of hazards in a single analysis that 

investigates the number of pipes broken and the corresponding loss on resilience.  

By including the criticality of pipe segments in the proposed formulation, different social, 

economic, and environmental consequences of pipe segments failure are considered. These all are 

essential dimensions of resilience that still need to be addressed (Assad et al. 2019). The reliability 

estimation model in this formulation can stochastically estimate the deterioration of each pipe 

segment utilizing its previous failure history and other characteristics such as material type, 

diameter, and failure order. In this model, each time a pipe segment fails or breaks, its reliability 

and expected deterioration over the subsequent years are estimated using a new deterioration 

curve, as previously explained. This approach provides a more accurate estimation of water pipe 

deterioration, which is reflected by the increased failure rate over time and decreased mean time 

to failure. A precise estimate of pipes’ deteriorations is an essential cornerstone in making 
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decisions regarding resilience enhancement actions during the operation and management phase. 

Such decisions can be obtained by optimizing a resilience metric that explicitly accounts for these 

factors.  

In short, this metric represents a measure of the structural performance of WDNs in 

resilience applications. This metric can be used to compare the preparedness level and the ability 

of different networks to withstand disruptions and continue functioning under stressing hazardous 

events. It can also be utilized to investigate the gradual increase in resilience during the recovery 

process, as will be shown in subsequent sections. The proposed metric was applied to assess the 

resilience of an actual WDN in the City of London, Ontario, referred here as LWDN. Robustness 

and redundancy of the network were first estimated before being integrated into the multi-attire 

metric to quantify the network resilience. Also, the reduction in resilience due to aging and 

deterioration was calculated. This application concluded with a two-tier evaluation of the proposed 

metric in different resilience applications, as described below.  

To evaluate the usefulness of utilizing the proposed metric in resilience enhancement 

applications, an optimization model was formulated to determine the optimal strategy for 

enhancing the resilience of LWDN. The objective of the optimization was to maximize the 

resilience of LWDN subject to a budget constraint. The resilience of LWDN could be enhanced 

by increasing its robustness and redundancy. Two main enhancement actions were considered in 

this framework: replacement of deteriorated pipe segments and installing new ones. Replacement 

of deteriorated segments improves the network robustness while installing new segments adds 

redundancy to the network and improves its robustness. The objective of this optimization 

framework is to maximize the resilience metric, which is given in Equation 3.7. The budget 

constraint of the possible enhancement actions is given in Equation 3.8: 
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𝐶𝑇 = ∑ 𝐶𝑖
𝑁𝑟
𝑖=1 + ∑ 𝐶𝑗

𝑁𝑗
𝑗=1

 ≤  𝐵𝐸              (3.8) 

Where CT = total resilience enhancement cost; Nr = number of pipe segments that need to be 

replaced; Ci = cost of replacing pipe segment i and it is a function of its length and diameter; Nj = 

number of newly installed pipe segments; Cj = cost of adding pipe segment j to the network and it 

is a function of its length and diameter; BE = available budget for resilience enhancement actions. 

As a means of validation, the estimated resilience level of LWDN was compared to a 

resilience level obtained by another resilience metric develop by Farahmandfar et al. (2016). This 

metric is similar to the proposed one in integrating robustness and redundancy in resilience 

estimation. The metric is formulated as the sum of reliabilities of the connected pipelines each 

multiplied by its nodal demand in a modified form of the original nodal degree formulation as 

given by Equation 3.9 (Farahmandfar et al. 2016):  

𝑅 =  
∑ {[∑ (1−𝑃𝑓𝑗)

𝑁𝑖
𝑗=1

]×𝑄𝑖}
𝑁𝑛
𝑖=1

4×∑ 𝑄𝑖
𝑁𝑛
𝑖=1

               (3.9) 

Where Nn = total number of nodes, Ni = total number of links connected to node i, Pfj = 

failure probability of link j, and Qi = demand of node i.  

A hydraulic model was then simulated to assess the suitability of utilizing the developed 

metric during the WDNs restoration phase. The performance of the proposed metric was evaluated 

and compared to serviceability index SI, a frequently used surrogate measure of hydraulic 

reliability in resilience applications of WDNs (Yoo et al. 2014). The hydraulic simulation model 

was built and run on the WaterGEMS software package. A topological map of LWDN was 

exported from the Arc-GIS shapefiles and fed into WaterGEMS software.  Nodes’ coordinates, 

pipes’ lengths, diameters, and roughness coefficients were directly extracted from the available 

layers in the shapefiles. A Google application programming interface (API) was used to access 
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Google Earth® from which the user could determine the elevation of any location in the network. 

Nodes’ elevations and estimated nodal demands were then assigned. The model was run, and data 

regarding the service pressure at each junction were collected. A disrupted scenario was then 

analyzed by modeling breaks in some selected pipe segments. In this analysis, a pipe break was 

modeled by changing its status to “closed” and evenly distributing a discharge flow to the end 

nodes as additional demands (Farahmandfar and Piratla 2017b). Error! Reference source not f

ound. illustrates a sample of the approach followed in simulating breaks of water pipe segments 

and discharge distribution. Discharge flows were calculated using Equations (3.10) (Farahmandfar 

and Piratla 2017b; Tabesh et al. 2009):  

𝑄𝑗 = 84.04 × 𝐶𝑑  ×  𝐴𝑗  ×  𝑃𝑗
0.5         (3.10) 

Where Qj = discharge from the orifice pipe j; Cd = discharge coefficient (taken as 0.8 in this srudy); 

Aj = the total cross-sectional area of pipe j; Pj = average pressure of ends nodes of pipe j.  

 

Figure 3-11: Simulation Approach for the Impact of Pipe Damages 

There are two main types of hydraulic analysis methods of water systems: demand-driven 

analysis (DDA) and pressure-driven analysis (PDA) (Yoo et al. 2014). DDA is more suitable for 

analysis under normal conditions as they assume that demands at junctions are always satisfied, 

which might result in unrealistic negative pressure values (Yoo et al. 2014). PDA, on the other 

hand, is preferred when analyzing abnormal conditions as they assume that the demand is a 



 

 

 

79 

 

function of the pressure, and thus, unrealistic values can be avoided. However, PDA application 

requires assuming a head-outflow relationship (HOR) for each network as there is no such 

universally accepted relationship (Yoo et al. 2014).  In this simulation, quasi-PDA was employed 

to deal with negative pressure that might occur during the disrupted state of the network based on 

the same methodology followed by Yoo et al. (2014). In this approach, whenever a negative 

pressure was encountered at a node, the demand at that node was set to zero and the simulation 

was repeated. If negative pressure reoccurred, the calculated pressure was assumed zero. 

Serviceability index of the system SI was used to estimate the reliability of the network based 

on Equations (3.11) and (3.12) (Yoo et al. 2014):  

𝑆𝐼 =
∑ 𝑄𝑎𝑣𝑙,𝑖
𝑛
𝑖=1

∑ 𝑄𝑟𝑒𝑞,𝑖
𝑛
𝑖=1

              (3.11) 

𝑄𝑎𝑣𝑙,𝑖 =

{
 

 
0, when 𝑃𝑖 ≤ 0

𝑄𝑛𝑒𝑤,𝑖  ×  √
𝑃𝑖

𝑃𝑚𝑖𝑛
, when 0 ≤ 𝑃𝑖 ≤ 𝑃𝑚𝑖𝑛

𝑄𝑛𝑒𝑤,𝑖, when 𝑃𝑖 ≥ 𝑃𝑚𝑖𝑛 

         (3.12) 

Where Qavl,i = available demand at node i; Qreq,i = required demand at node i; Qnew,i = updated 

nodal demand after considering the disrupted state and dealing with the negative pressure at node 

i; Pi = nodal pressure at node i; Pmin = allowable minimum nodal pressure head (taken as 15 m); n 

= number of nodes. Due to the new disrupted state, the minimum pressure would be available at 

some of the nodes only. For those nodes, the available demand would be the same as the new 

demand value. Results are compared to those obtained by the developed metric, and conclusions 

were drawn accordingly.  

3.3 Resilience-based Restoration Model  

In the previous section, robustness and redundancy of water networks were integrated to 

develop a multi-attribute metric for evaluating resilience of WDNs. In this section, two more 
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qualities of resilience, rapidity and resourcefulness, are included along with the developed 

resilience metric to formulate a resilience-based restoration model. The optimization-based 

restoration model aims at prioritizing and scheduling restoration actions of WDNs. The model 

takes into consideration efficient resource allocation by minimizing both the time and cost of 

recovery and maximizing resilience. To achieve these objectives, the model takes three sets of 

inputs, as shown in Figure 3-12. These inputs represent the results of three sub-models: resilience 

assessment sub-model, restoration sub-model, and crew relocation sub-model.  

The resilience assessment sub-model was explained in detail in the previous section. 

Restoration and crew relocation sub-models determine feasible recovery methods for each pipe 

segment and the time and cost of the crew’s relocation, respectively. The output of this model is 

an optimal restoration plan that comprises two main components: 1) a prioritized sequence of water 

segments to be repaired, and 2) an optimal repair method for each. Additionally, a time schedule 

is generated to visualize the restoration activities and the overall restoration process. Details of the 

developed methodology are described in the subsequent subsections. 
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Figure 3-12:  Restoration Model Methodology framework (Assad et al. 2020) 

3.3.1 Crew Relocation Sub-model   

Restoration crews spend time while traveling from one location to another to restore failed 

segments across the network. As these times and associated costs can significantly increase the 

time and cost of the recovery process, especially in sparse networks, they need to be considered in 
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developing optimum restoration plans. This sub-model was developed to accurately estimate the 

times and costs associated with the crew’s relocation. Coordinates of pipe segments were extracted 

from ArcGIS (ESRI, 2011) layers to create an origin-destination matrix from which the relocation 

time and cost can be determined. A Google application programming interface (API) was utilized 

to access Google Maps from which the distance and travel time between any two locations were 

determined. Utilizing the abilities of Google Maps, API allowed for site routing and finding the 

shortest distance between the locations of failed segments. Additionally, travel times reported in 

Google Maps were adjusted to account for traffic conditions, which is crucial in dense urban cities 

and after massive disruptions. Relocation costs were then computed by multiplying the hourly rate 

of restoration crews by the relocation time. The final output of this model is the relocation time 

and cost between the locations of each pair of failed segments’ locations.  

3.3.2 Restoration Sub-model   

Various repair methods can be utilized to restore a broken water segment. This model 

evaluates different alternatives for restoring failed segments and selects suitable methods based on 

a set of predefined criteria. The factors considered in this selection process include the pipe size, 

material type, location and accessibility, soil type under which the pipe is buried, the previous 

number of breaks, and defect characteristics. The repair methods considered in this study are 

mechanical clamps, pipe bursting (PB), pipe splitting (PS), and open-cut-method (OCM). Brief 

descriptions of these methods, along with their applicability, were provided in Chapter 2. This sub-

model considers the criteria mentioned above in selecting the possible restoration methods for each 

pipe segment. For example, small breaks, or leaks, can be repaired using mechanical clamps and 

couplings while PB, splitting, and OCM are used to replace segments of bigger break sizes. A pipe 
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segment might be nominated for replacement even if the break size is small when the total number 

of breaks reaches a certain threshold set by the municipality.  

The restoration time and cost were calculated based on the type of the repair method, 

diameter, and length of the pipe segment. Unit costs and times of the considered methods were 

gathered from different consultants and contractors in Canada. Resilience improvement realized 

from restoring a particular pipe segment depends on whether it was repaired or replaced. The 

theoretical value of the reliability of newly replaced segments shall be 1.0. However, this value is 

usually reduced to account for mistakes and other factors that compromise the installation quality. 

Each City can define this value based on the qualifications of the executing crews, or contractors 

in case of outsourcing. This value is fed as an input that reflects the skills and qualifications of the 

restoring crews. In this model, replacing a pipe segment was assumed to increase its reliability to 

a value of 0.95. On the other hand, when a pipe segment of a specific failure order was repaired, 

its reliability along subsequent years was calculated utilizing the survivability function of the 

successive failure order, as demonstrated in the previous section and in Assad et al. (2019). The 

final output of this model is the time, cost, and resilience improvement of all possible restoration 

options for each failed pipe segment.  

3.3.3 Optimization Framework 

The base of the formulated optimization in this study is a combination of the traditional 

knapsack and traveling salesman optimization problems (Lawler et al. 1985; Pisinger and Toth 

1998). The proposed model aims at optimizing three conflicting objectives: 1) minimizing 

restoration cost; 2) minimizing restoration time; 3) and maximizing resilience level after adopting 

all restoration actions as shown in Equations 3.13 - 3.16.    

Minimize  
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𝑅. 𝐶. + 𝑧 = ∑ ∑ ∑ (𝑥𝑗,𝑘
𝑖 × 𝑅𝐶𝑗,𝑘

𝑖 )𝑘∈𝑀𝑗∈𝐶𝑖∈𝑃 + ∑ ∑ ∑ ∑ (𝑥𝑗
𝑖,𝑡 × 𝑥𝑗

𝑙,𝑡+1) ∗𝑙∈𝑃𝑖∈𝑃𝑗∈𝐶𝑡∈𝑇 𝐿𝐶𝑖,𝑙 + 𝑧  (3.13) 

Where R.C. is restoration cost; 𝑥𝑗,𝑘
𝑖  is a decision variable that takes a value of 1 when pipe segment 

(i) is restored by crew (j) using repair method (k) and 0 otherwise; 𝑅𝐶𝑗,𝑘
𝑖  is the cost of restoring 

pipe segment (i) by crew (j) using restoration method (k); 𝐿𝐶𝑖,𝑙 is relocation cost between sites at 

which pipe segments (i) and (l) are located respectively; 𝑥𝑗
𝑖,𝑡

 is decision variable that takes a value 

of 1 when pipe segment (i) is restored by crew (j) during restoration time step (t); C; P; M; and T 

is sets of the available number of crews, failed pipe segments, repair methods, and restoration time 

steps, respectively. A restoration time step represents the order at which a particular segment is 

restored. Parameter (z) represents the penalty amount resulted from violating the budget constraint. 

This vale represents the extra costs associated with the restoration activities. As such, it is 

calculated as the multiplication of the unit cost of restoration methods times the lengths of the 

restored segments.  

Minimize   𝑅. 𝑇 =  max
𝑗∈𝐶

𝑇. 𝑅. 𝑇𝑗            (3.14) 

𝑇. 𝑅. 𝑇𝑗  =  ∑ ∑ (𝑥𝑗,𝑘
𝑖 × 𝑅𝑇𝑗,𝑘

𝑖 )𝑘∈𝑀𝑖∈𝑃 + ∑ ∑ ∑ (𝑥𝑗
𝑖,𝑡 × 𝑥𝑗

𝑙,𝑡+1) ∗𝑙∈𝑃𝑖∈𝑃𝑡∈𝑇 𝐿𝑇𝑖,𝑙     (3.15) 

Where R.T is the time of the restoration process; 𝑇. 𝑅. 𝑇𝑗  is total restoration time for crew (j); 𝑅𝑇𝑗,𝑘
𝑖  

is the time needed for restoring water pipe (i) by crew (j) using restoration method (k); 𝐿𝑇𝑖,𝑙 is 

relocation time between locations at which pipe segments (i) and (l) are located, respectively.  

Maximize 𝑇. Я. 𝐼. =  ∑ ∑ ∑ (𝑥𝑗,𝑘
𝑖 × Я𝐼𝑗,𝑘

𝑖 )𝑘∈𝑀𝑗∈𝐶𝑖∈𝑃          (3.16) 

Where T.Я.I. is total resilience improvement realized after restoring all failed segments, Я𝐼𝑗,𝑘
𝑖  is 

resilience improvement resulting from restoring pipe segment (i) by crew (j) using method (k).  
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A set of constraints was then added to represent the operational and managerial restrictions 

that control the optimization search process. Firstly, a constraint was added to guarantee that 

restoration costs would not exceed a specific allocated recovery budget, Equation 3.17. The budget 

constraint was considered as a soft constraint that might be violated by some solutions. However, 

such solutions would incur a penalty (z) in the objective function, as shown in Equation 3.13. In 

addition, a constraint is added in Equation 3.18 to assure that no segment will be left unrestored. 

It limits the number of visits for each segment to exactly 1. Another constraint was also added to 

avoid assigning the same crew to more than one location at the same time step, Equation 3.19. The 

constraint shown in Equation 3.20 allows the user to specify a minimum resilience level that shall 

be achieved upon accomplishing all restoration actions.  

Subject to  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 −  𝑧 ≤  𝐵𝑇𝑜𝑡𝑎𝑙            (3.17) 

 𝑉𝑖 = {1}              (3.18) 

𝐿𝑖𝑡 = {1}                         (3.19) 

 Я 𝐹  ≥  Я 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑              (3.20) 

𝑥𝑗,𝑘
𝑖 , 𝑥𝑗

𝑖,𝑡, 𝑥𝑗
𝑙,𝑡+1 = {0,1}            (3.21) 

𝑧 ≥ 0               (3.22) 

∀  𝑖 ∈  𝑃, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝑀, 𝑙 ∈ 𝑃 / {𝑖}, 𝑡 ∈ 𝑇  

Where 𝐵𝑇𝑜𝑡𝑎𝑙  is the total restoration budget;  𝑉𝑖 is the number of visits for segment (𝑖); 𝐿𝑗𝑡 is the 

number of pipe locations that can be visited by crew (j) in a time step (t).  Я 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a 

benchmark value for network resilience at the recovered state as set by the decision-maker; and 

 Я 𝐹 = the final resilience value. Resilience threshold value represents the minimum resilience level 
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that a City aims to satisfy based on the importance of the considered sub-network, resilience loss, 

and the available budget and resources.  

Weighted some method was employed to solve the multi-objective optimization problem 

described above. In this approach, the objectives are aggregated into a single weighted objective 

function, as shown in Equation 3.23.  

Minimize 𝑍 = 𝛼1 𝑇𝑅𝐶 + 𝛼2𝑅𝑇 + 𝛼3𝑇𝑅𝐼          (3.23) 

The weights here represent the relative importance of each objective. This approach is 

usually referred to as a prior preference approach. As with most methods that involve objective 

function weights, inputs from users are needed to reflect their preferences. These preferences can 

be exploited in two ways. Firstly, the decision-maker may directly assign the weights of each 

objective before the problem is solved. This allows the user to get a single solution. Alternatively, 

decision-makers may not be quite decisive about a specific set of relative weights, and they may 

wish to investigate a possible trade-off between the considered objectives. In such cases, ranges of 

possible weights for each objective would be sought from the decision-makers. The problem would 

be iteratively solved for several times, specified by the user, while systematically altering the set 

of relative weights according to those ranges. This analysis yields several solutions from which 

users choose the one that best matches their preferences. Finally, should decision-makers desire to 

investigate the full search space, the single objective formulation in Equation 3.23 can be further 

enhanced using dynamic weights, as shown in Equation 3.24 - 3.25. These dynamic weights are 

randomly generated to obtain an optimum Pareto frontier for the considered optimization problem.  

Minimize 𝐹(𝑥) =  ∑ 𝛼𝑖𝑓𝑖(𝑥)
𝑛
𝑖=1            (3.24) 

𝛼𝑖 =
𝝁𝒊

∑ 𝝁𝒊
𝒏
𝒊=𝟏

              (3.25) 

Where n = total number of objective value (in this case 3); 𝛼𝑖 = relative weight; and ∑ 𝜇𝑖
𝑛
𝑖=1  = 1.  
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 The search space for this problem is significant. The number of possible solutions equals 

the factorial of the number of failed segments multiplied by the possible restoration methods raised 

to the number of failed segments. For example, if the number of failed segments is 15, and there 

are two different restoration methods to restore each segment, the search space will then be 4.28 

× 1016 (15! × 215). Factorial operator is considered to represent each distinct sequence of repairing 

the failed segments. Several algorithms that are commonly used in asset management and 

resilience applications were investigated to identify the best performing algorithm to be used in 

solving the formulated restoration optimization problem. These algorithms are Genetic Algorithm 

(GA), Ant Colony Optimization (ACO), and Tabu Search (TS). A brief description of each can be 

found in Chapter 2. 

3.3.4 Deterministic Versus Stochastic optimization  

As previously mentioned, the model asks the users to provide three sets of inputs regarding 

the considered repair methods. These inputs are the unit cost, time, and resilience improvement of 

each repair method. In case the values of these parameters are known to decision-makers with 

reasonable certainty, they can be directly assigned. For example, the case when a municipality 

calls for estimates about the unit time and cost of specific repair methods from contractors along 

with their professional profiles to choose one of them. The problem, in this case, would be solved 

deterministically. In many cases, however, estimates about these parameters are rather uncertain, 

which is the case when decision-makers plan for long-term resilience. Also, hazardous events are 

usually accompanied by severe disruptions to supply chains, which may further increase the 

uncertainties in the time and cost of delivery. Estimates about costs, durations, and resilience 

improvements are thus subjected to change in such cases due to several factors such as material 

availability, skills of restoration crews, surrounding conditions, and other risks.  
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In order to provide decision-makers with a comprehensive analysis that includes the worst 

and best possible estimates regarding the restoration objectives, the optimization problem would 

be stochastically solved. In this approach, the optimization objective is modified such that the 

mean of the original objective function is minimized. In this type of optimization, a predefined 

number of trials, sets of distinct values of the decision variables, are generated, and the simulation 

runs several iterations for each specific trial. In each iteration, the probability distribution functions 

of the uncertain variables are sampled, and the objective function is computed.  

In this analysis, minimum, maximum, and average values of the gathered restoration costs 

and durations were assumed to be the limits and most probable estimates that were fed to the Monte 

Carlo simulation. PERT distribution was selected as the type of probability distribution to sample 

the associated uncertainties. Different than triangular distribution, PERT distribution places more 

emphasis on the most probable estimate, which is usually more-well known than the extreme 

values. This suits the case of utility managers who consistently respond to segments’ failures and, 

consequently, accumulate historical experience allowing them to better estimate the most probable 

values compared to the limit values. Besides, PERT distribution has a smoother shape compared 

to the angular shape of the triangular distribution, which offers a better fit for the subjective 

estimates of the limit values (Law et al. 2000). Upon completing the iterations, the result of the 

trial is the statistic of the objective function of interest. This value is then used by the optimization 

algorithm to guide generating new better trial solutions until some termination criterion is met. 

Figure 3-13 depicts the steps of stochastic optimization, as followed in this research.  
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Figure 3-13: Procedure for stochastic optimization 

To evaluate the performance of the developed optimization model, the obtained results were 

compared to a restoration plan suggested by the City of London. Differences between the City’s 

approach and the framework developed in this section were then highlighted and discussed. These 

variations resulted in enhanced values for the considered objective functions. Several sensitivity 

analyses were then conducted to determine the input variables whose impacts on the mean values 

of the objective functions are the highest. 
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3.4 Resilience Enhancement Model  

In this section, a newly developed model for resilience enhancement planning of WDNs is 

presented. The objective is to develop an optimization model for determining and scheduling 

resilience enhancement actions of WDNs. The model integrates sustainability objectives by 

minimizing both the cost and carbon emissions of the resilience enhancement intervention actions. 

The output of this model is an optimal intervention action for each segment. Additionally, a 

schedule is generated to visualize the rehabilitation work packages and the overall enhancement 

process.  

Obtaining an optimal resilience enhancement plan encompasses two main phases: 1) 

determining optimal enhancement actions, and 2) scheduling these actions. In the first phase, 

segments selected for enhancement along with the enhancement actions and their timings are 

determined. The second phase aims at clustering the resulted actions into work packages based on 

specific commonalities before scheduling them. In this model, resilience absorptive capacity is the 

resilience objective that is aimed to be improved. As previously mentioned, absorptive capacity is 

the ability of WDNs to withstand disruptions without significant degradation. It can be boosted 

through protective mitigation measures that enhance the current strength of WDNs. These 

enhancement measures play an essential role in shortening the time of recovery following 

disruptive events. In addition, life cycle cost and carbon emissions associated with various 

enhancement actions are considered to account for the sustainability aspects of WDNs. The 

developed method encompasses three main sub-models in addition to utilizing the previously 

developed resilience metric, as shown in Figure 3-14. Details of each sub-model are presented 

subsequently along with a description of underlying derivations and mathematical formulations. 
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Figure 3-14 depicts the components of the proposed framework and the relation between its sub-

models.  

 

Figure 3-14: Resilience Enhancement Model Methodology framework  

The model focused on enhancing resilience of water segments by improving their 

robustness. Rehabilitation of deteriorated segments can increase the reliability and robustness of 
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water networks. The innovative feature of utilizing the previously developed metric is the ability 

to dynamically update reliability of segments, and thus network resilience, based on their age, the 

previous number of failures, and intervention actions they may undergo based on the type of such 

actions. For example, replacing a pipe segment can increase its reliability to a value of 1.0. In 

practice, this value is usually less than the theoretical value of 1.0 to account for factors that 

compromise the installation quality. Also, the segment’s reliability along the subsequent years is 

calculated based the deterioration curve of newly installed segments that share the same size and 

material cohort. Similarly, major and minor actions increase the current reliability level of a 

segment and change its deterioration behavior along the following years. Resilience improvement 

realized due to major and minor interventions were assumed to be 0.5 and 0.25, respectively. These 

estimated are based on the leveraged maintenance reports and the updated behavior reported. 

Successive deterioration of these segments was elicited based on the deterioration curves of 

segments that were subjected to similar intervention actions and share the same characteristics. 

More details about the dynamic calculation and update of segments’ reliabilities and deteriorations 

can be found at (Assad et al. 2019).  

3.4.1 Enhancement Sub-model   

This sub-model investigated various types of interventions, along with their associated costs, 

durations, and carbon emissions. Four different intervention alternatives were considered, namely: 

do nothing; minor intervention; major intervention; and full replacement. Epoxy lining, Cured in 

Place Pipe (CIPP), and Pipe Bursting (PB) are the considered intervention actions associated with 

minor, major, and full replacement alternatives, respectively. A brief description of each 

considered enhancement method is shown in Chapter 2. It shall be noted that other methods can 

be included based on the preference of the responsible municipality. Costs and duration of 
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enhancement methods were calculated based on the method type and the segment size. Unit costs 

and times of the considered methods were gathered from different consultants and contractors in 

Canada.  

Carbon emissions were then calculated for each enhancement method utilizing a calculator 

tool that was initially developed by the North American Society of Trenchless Technology, 

NASTT, (O’Sullivan 2010). The calculator has then been updated by the British Columbia chapter, 

NASTT-B, and approved by the province of British Columbia, Canada (Beale et al. 2013; 

O’Sullivan 2010). This tool estimates the carbon emission profile associated with various pipeline 

replacement and renovation techniques based on the project dimensions, pipeline size, material, 

surface type, and other factors. The estimated emission profile considers site and transportation 

operations, including mobilization, excavation, disposal, backfilling, and pipe installation or 

rehabilitation works. For example, the estimated CO2 emissions resulting from replacing a pipe 

segment of 200mm in diameter, 150m in length, and buried at 2.5m depth utilizing PB technique 

is 2.5 (CO2-e tonne). Similar results were calculated for all other segments and intervention 

methods. These results were used as inputs to the enhancement optimization model.  

3.4.2 Optimization Framework 

As previously mentioned, the developed enhancement model aims at optimizing three 

conflicting objectives: 1) minimizing life cycle cost; 2) minimizing emissions; 3) and maximizing 

resilience after adopting all enhancement actions, as shown in Equations 3.26-3.28, respectively.   

Minimize  𝑇. 𝐶. =  ∑ ∑ ∑
1

(1+𝑟)𝑡
 (𝑥𝑖,𝑗

𝑡 ∗ 𝐶𝑖,𝑗
𝑡 )𝑗∈𝑀𝑖∈𝑃𝑡∈𝑇         (3.26) 

Where T.C. is the total cost of resilience enhancement actions; 𝑥𝑖,𝑗
𝑡  is a decision variable that takes 

a value of 1 when pipe segment i is enhanced using repair method j during year t and 0 otherwise; 
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𝐶𝑖,𝑗
𝑡  is enhancement cost of pipe segment i using method j during year t; r = discount rate; P; M; 

and T is the number of pipe segments, enhancement methods, and years respectively. 

Minimize  𝑇. 𝐸.=  ∑ ∑ ∑ (𝑥𝑖,𝑗
𝑡 ∗ 𝐸𝑖,𝑗

𝑡 )𝑗∈𝑀𝑖∈𝑃𝑡∈𝑇                   (3.27) 

Where T.E. is total CO2 emissions; 𝐸𝑖,𝑗
𝑡  is CO2 emissions resulting from the enhancement of pipe 

segment i using method j during year t. 

Maximize  Я𝑇  =  
∑ (Я𝑘

𝑇 ×𝐿𝑘 )𝑘∈𝑆

∑ (𝐿𝑘 )𝑘∈𝑆
                             (3.28) 

  Я𝑘
𝑡 = Я𝑘

𝑡−1 + Я𝐼𝑘
𝑡 − Я𝐷𝑘

𝑡                               (3.29) 

Я𝐼𝑘
𝑡 = ∑ ∑ (𝑥𝑖,𝑗

𝑡 ∗ Я𝐼𝑖,𝑗
𝑡 )𝑗∈𝑀𝑖∈𝑃                                          (3.30) 

Where Я𝑇  is resilience at year T, the end of the planning horizon. When several subnetworks are 

considered, their lengths, 𝐿𝑘 , are used to get a weighted average resilience. Я𝑘
𝑡  is resilience level 

of subnetwork k at year t, Я𝐷𝑘
𝑡  is resilience deterioration of subnetwork k at year t due to aging, 

Я𝐼𝑘
𝑡  is resilience improvement of subnetwork k at year t due to enhancement actions, Я𝐼𝑖,𝑗

𝑡  is 

resilience improvement resulting from the enhancement of pipe segment i using method j during 

year t, and S is the total number of subnetworks.  

A set of constraints were added to represent the operational and managerial restrictions that 

control the optimization process. Firstly, a constraint was added to guarantee that annual 

enhancement costs would not exceed annual allocated budgets, Equation 3.31. Another constraint 

was also added in Equation 3.32 to assure that the minimum resilience of any subnetwork along 

the planning horizon would be more than a minimum threshold value. This value can be specified 

individually for each subnetwork based on its importance. Setting different minimum resilience 

threshold is a realistic and practical measure that municipalities implement to manage their vast 

highly deteriorated water assets. In addition, enhancement actions are usually accompanied by 
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significant disruption to traffic, adjacent facilities, and other infrastructure systems. Hence a 

special constraint was added, Equation 3.33, to limit the number of visits for each specific segment 

along the planning horizon to a user-defined value. This factor aims at minimizing the amount of 

disruptions accompanying the enhancement actions. The exact number of visits for each segment 

can be estimated based on its criticality and the available resources. This value was set to 1 in this 

analysis.  

Subject to  

∑ ∑ (𝐶𝑖,𝑗
𝑡 )𝑗∈𝑀𝑖∈𝑃 ≤ 𝐴𝐵𝑡             (3.31) 

min
𝑡∈𝑇

(Я𝑘
𝑡 )  ≥   Я 𝑘,𝑇ℎ             (3.32) 

𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥               (3.33) 

𝑥𝑖,𝑗
𝑡 , =  {0,1}                              (3.34) 

∀  𝑖 ∈  𝑃, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑆, 𝑡 ∈ 𝑇  

Where 𝐴𝐵𝑡 is the annual budget allocated for enhancement actions;  Я 𝑘,𝑇ℎ is minimum resilience 

threshold for each subnetwork; and 𝑉𝑖 is the number of visits for segment 𝑖 .  

3.4.3 Packaging and Scheduling Sub-model 

Once enhancement actions of individual segments were determined along with their 

implementation year, the framework proceeded with the scheduling process. A set of actions 

during a specific year was scheduled on two main stages: 1) Clustering the enhancement actions 

into work packages, and 2) Determine the optimal enhancement schedule. In the first stage, pipe 

segments were divided into work packages (WPs) based on their geographical location and 

intervention method. These WPs were formulated to facilitate monitoring and control of the 

enhancement process. Packages were formulated based on a set of factors such as the number of 

pipe segments, type of enhancement intervention, its complexity, available budget, and the number 
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of available contractors or in-house maintenance crews. Different clustering techniques were 

utilized to cluster each pipe segment in a specific group based on its geographical location. 

Coordinates of each segment were exploited from ArcGIS files to determine its location. K-means 

and K-medoids clustering algorithms were tested for clustering the selected section of London 

WDN. The Davies–Bouldin Index was employed to compare the clustering quality of K-means 

and K-medoids and select the best performing algorithm. 

An optimization model was then formulated to determine the best distribution of resilience 

enhancement actions into work packages. The objective was to maximize the resilience 

improvement of each work package by adding as many enhancement actions as possible while 

respecting a set of constraints. This was performed by maximizing the resilience improvement of 

the work package that had the minimum resilience improvement, as shown in Equation 3.35. A 

constraint was added in Equation 3.37 to specify the minimum size of a work package. Resilience 

variability across packages will not be an issue as the package size is respected. Two more 

constraints were added in Equations 3.38 and 3.39 to determine the maximum size of work 

packages and to assure that each package consisted of segments that share the same enhancement 

method, respectively. These two constraints were defined as soft constraints to account for the 

exceptional solutions where segments of different enhancement methods, a hybrid work package, 

or more actions than the maximum size, an over-sized work package, needed to be clustered in a 

single work package. However, such solutions would incur a penalty (𝛼) and (𝛽) in the objective 

function, as shown in Equation 3.35. Another Constraint was included in Equation 3.40 to ensure 

that all segments in a work package share the same geographical zone. 

Maximize   Я =  min
𝑣∈𝑊𝑃

( Я. I𝑣) −  𝛼 − 𝛽          (3.35) 

 Я. I𝑣 = ∑ ∑ (𝑦𝑖,𝑣 ∗  Я. 𝐼𝑖)𝑖∈𝑃𝑣∈𝑊𝑃            (3.36) 
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Subject to  

 C𝑣 ≥ C𝑚𝑖𝑛              (3.37) 

 C𝑣 − 𝛼 ≤  C𝑚𝑎𝑥             (3.38)  

 MT𝑣 − 𝛽 = 1              (3.39) 

 Z𝑣 = 1                        (3.40) 

𝛼, 𝛽 ≥ 0                          (3.41) 

Where 𝑦𝑖,𝑣 is a decision variable that takes a value of 1 when pipe segment i is clustered in work 

package v;  Я. I𝑣 is resilience improvement of work package v,  C𝑣 is the cost of work package v, 

the summation of the individual enhancements actions’ costs in work package v,  C𝑚𝑖𝑛 and 

 C𝑚𝑎𝑥are the minimum and maximum costs of work packages representing the minimum and 

maximum possible size of a work package, 𝛼, 𝛽 are the penalty factors to account for increased 

costs and excess number of methods types in a certain work package,  MT𝑣 is the number of 

enhancement methods in work package v,  Z𝑣 is the number of location zones in work package v, 

and WP is the number of work packages.  

Finally, an optimization model was formulated to schedule the resulted work packages. 

The inputs of this model were the work packages, their total costs and durations, available number 

of contractors, and maximum contract value. The objective of this scheduling model was to 

minimize the time of the resilience enhancement process, as shown in Equation 3.42. This 

objective was derived from the need to strengthen WDNs as soon as possible, so they are ready to 

confront future expected disruptive events with minimum performance degradation.  

Minimize   𝑇 =  max
𝑤∈𝐶

(𝑇𝑇𝑤)                            (3.42)        

𝑇𝑇𝑤  =  ∑ ∑ (𝑧𝑣,𝑤 ∗ 𝑇𝑣)𝑣∈𝑊𝑃𝑤∈𝐶                        (3.43) 
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Where 𝑇 is the time of resilience enhancement process; 𝑇𝑇𝑤 is the total time for contractor w; 𝑇𝑣 

is the duration of work package v, the summation of the individual enhancements actions’ 

durations in work package v; and 𝑧𝑣,𝑤 is a decision variable that takes a value of 1 when work 

package v is assigned to contractor w. The maximum contract price constraint was added to comply 

with the fair business regulations, Equation 3.44. 

 C𝑤 ≤  CP𝑚𝑎𝑥              (3.44) 

Where  C𝑤is the total cost of work packages assigned to contractor w; and  CP𝑚𝑎𝑥 is the maximum 

allowable contract price to assure fair business practices.  

3.4.4 Multi-objective Optimization   

Posterior approach is followed to solve the formulated optimization problem in this section. 

In this approach, the whole search space is investigated so that the users get a holistic view of all 

possible optimal solutions. The output, in this case, is not a single solution like the case in the prior 

approach of solving multi-objective optimization problems. Instead, the result is a set of optimal 

solutions, usually called a Pareto frontier. Decision-makers, in this case, need to apply some 

techniques to determine the most suitable solution from the set of Pareto solutions that aligns with 

their preferences and constraints. Various Multi-criteria decision-making techniques are available 

to obtain the solution that perfectly fits the decision-makers’ preferences. Determining optimal 

resilience enhancement plans is a strategical planning process in which decision-makers would 

typically prefer to investigate the full search space, or a wide portion of it, to get a comprehensive 

view of the possible solutions. This is unlike the situation after hazards occurrence where decision-

makers would typically be interested in restoring the interrupted service as soon as possible. The 

speed of recovery would typically receive the most relative weight. Hence, it is more efficient to 

exclusively search around solutions that serve this purpose.   
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Two algorithms were investigated to identify the best performing one to solve the formulated 

problem described in this section. These algorithms were a modified version of ant colony 

optimization, ACO, and genetic algorithm, GA. A brief description of each was provided in 

Chapter 2. Hypervolume indicator was utilized to compare the performance of the investigated 

optimization algorithms. Hypervolume indicator is the most commonly utilized metric to compare 

the performance of multi-objective optimization algorithms (Zitzler et al. 2003). It measures the 

m-dimensional volume of the region in objective space enclosed by the obtained non-dominated 

solutions and a reference point. Hypervolume indicator is the only indicator that can consider 

accuracy, cardinality, and diversity of the optimal solution (Riquelme et al. 2015).  Accuracy is a 

closeness measure of the obtained solutions to the true non-dominated solutions. Cardinality is the 

number of points in the obtained solution. Diversity refers to the spread and relative distances of 

the obtained solutions in the search space (Riquelme et al. 2015). Equation 3.45 is used to compute 

the hypervolume indicator (Nebro et al. 2013): 

𝐼𝐻𝑉 = volume (⋃ 𝑣𝑖
|𝑄|
𝑖=1 )                           (3.45) 

Where 𝐼𝐻𝑉 is the hypervolume indicator; 𝑣𝑖is the hypercube of non-dominated solution i; and Q is 

the set of non-dominated solutions. A higher Hypervolume indicator indicates a more considerable 

distance between the obtained solution and the reference point, nadir point, hence a better solution.  

The result of multi-objective optimization is a set of Pareto optimal solutions. Multi-criterion 

decision-making (MCDM) techniques can assist in selecting the most appropriate solution among 

the set of Pareto solutions. In this analysis, PROMETHEE II is utilized to determine the best 

solution of the Pareto frontier points. The PROMETHEE method is an interactive MCDM 

technique that can handle quantitative as well as qualitative criteria with discrete alternatives 

(Brans et al. 1986). Steps of applying PROMETHEE II was detailed in Chapter 2. 
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The two-tier scheduling optimization model developed in this section was then applied to a 

larger section of London WDNs. The model started by labeling the network’s different areas based 

on their functionality. Residential, commercial, industrial, undeveloped, and others are examples 

of this functionality-based distribution. Three sub-networks were then selected to cover different 

combinations of these areas. For each sub-network, a distinct resilience threshold was set 

according to the importance of the areas within each sub-network. Next, resilience enhancement 

actions were determined for each segment, along with their timings along the planning horizon. A 

base year was then selected, and intervention actions happening along this year were scheduled. 

The scheduling process started by clustering the resilience enhancement interventions into work 

packages based on their type and geographical location. These packages were then scheduled, 

considering the number of available contracts.  The attained resilience improvement was computed 

along with the associated cost and carbon emissions.  A comparison between the obtained results 

and a current in-house portfolio management practice was also carried out to evaluate the 

performance of the developed optimization model. 

3.4.5 Redundancy Enhancement Strategy  

The second way of boosting the resilience of a WDN is to increase the level of redundancy 

offered by this network. This can be achieved by explicitly imposing alternative paths to secure 

water provision around critical demand points. The core idea of resilience enhancement through 

redundancy improvement is to ensure that as many critical segments as possible have an alternative 

route to provide water for the most vital customers. This is done by duplicating these pipe segments 

such that the newly installed segment acts as a backup to supply water to the same customer when 

the original segments are damaged or unable to meet the amount of needed services. The new 

duplicate segment is typically sought to be stronger than the original one such that it can provide 
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service in case the original segment went offline. The point of installing structurally stronger 

segments is to minimize the probability of services interruption due to anticipated disruptions that 

would result in damaging the original segments. This shall act a means of enhancing the system's 

adaptive capacity such the pipe segments are more prepared to withstand future disruptions. The 

new segment can also function in parallel to the original one in case the City aims to increase the 

system's capacity. Examples of pipe segment Duplication projects can be found in several leading 

cities such as British Columbia, Canada, Tokyo, Japan, and Palmerston North, New Zeeland.  

Mathematically, duplicating a pipe segment is assumed to increase the number of links in 

the network without increasing the number of corresponding nodes. This modeling is valid since 

both the original and duplicate segments provide service to the same set of nodes. While the new 

pipe segment is actually presented in the network, no demand points are added. A separate 

optimization model was formulated to improve the redundancy of the selected section of the 

London WDN. New pipe installation and expansion strategies are usually planned separately from 

regular rehabilitation and replacement programs. Hence, it was also separated in this research.  In 

addition, separating the two optimization problems is important to avoid any dual effect that might 

result from mixing decision variables related to redundancy and robustness enhancements. The 

objective function of this optimizing problem is shown in Equation 3.46: 

Maximize Red. I. =   ∑ ∑ 𝑅𝑒𝑑𝐼𝑘𝑖
𝑚
𝑖=1 ∗ 𝑥𝑘𝑖

𝑠
𝑘=1                           (3.46) 

 Where  Red. I. is redundancy improvement; 𝑥𝑠𝑖 is a binary decision variable that takes a 

value of 1 when pipe segment i in sub-network k is chosen to be duplicated and 0 otherwise; 𝑅𝑒𝑑𝐼𝑘𝑖 

is the redundancy improvement of sub-network k when pipe segment i is chosen for duplication; 

m = the number of pipe segments candidates considered for duplication in subnetwork k; and s is 

the total number of sub-networks in the considered water distribution network. A candidate 



 

 

 

102 

 

segment considered for duplication is any segment with a criticality index exceeding a certain 

threshold, as shown in Equation 3.47. This screening metric was added to limit candidates of 

segments considered for duplication to the most critical ones. The focus shall be first directed to 

those highly critical segments given tight budgets available. A constraint was added is Equation 

3.48 to specify the set of redundancy targets for each sub-network. This constraint shall serve as a 

bias-metric to prioritize selecting segments from most important sub-networks according to the 

decision-maker perceptive. Another constraint was added in Equation 3.49 to ensure the costs of 

duplications actions do not exceed a specific allocated budget.  

Subject to  

 𝐶𝑟𝑖  ≥   𝐶𝑟𝑇ℎ                 (3.47) 

 𝑅𝑒𝑑𝑘  ≥   𝑅𝑒𝑑𝑘,𝑇ℎ             (3.48) 

∑ ∑ (𝐶𝑠𝑖)𝑖∈𝑚𝑠∈𝑆𝑁 ≤ 𝐴𝐵𝑡             (3.49) 

𝑥𝑘𝑖 = {0,1}                              (3.50) 

∀  𝑖 ∈  𝑚, 𝑘 ∈ 𝑠  

Where 𝐶𝑠𝑖 is the cost of duplicating pipe segment i which located in subnetwork k;  𝐴𝐵𝑡 is the 

available budget allocated for redundancy improvement via duplication actions;  and 𝑅𝑒𝑑𝑘,𝑇ℎ = 

minimum redundancy threshold for subnetwork k.  

3.5 Research Limitations  

The proposed methodology includes some limitations that might undermine the applicability 

of the proposed models. The following features these limitations: 

• The impacts of hazardous events studied in this research are structural impacts exclusively.   

• Water pipelines are the only components of WDNs analyzed in this research as they 

constitute the biggest majority of components.  
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• Other social factors can be considered in criticality estimation of pipe segments such as the 

right to water. This factor accounts for the level of accessibility of some vulnerable 

communities to water.  

• The Meshed-ness coefficient is the only metric employed to quantify redundancy in this 

study. It measures the intensity of available loops in the network as a way to quantify the 

availability of potential alternative paths. Other metrics from graph theory can reinforce 

the obtained results.  

• The improvements in reliability due to major and minor intervention actions were assumed 

due to the lack of available data. Accordingly, they were coded as user-defined values.   

• Updated deterioration behavior for specific segments could not be generated due to the 

lack of relevant data. Updated behaviors of similar segments were employed.  

 

3.6 Summary 

The methodology adopted in this research was presented in this chapter. The topics of related 

literature were briefly discussed, and different sources of gathered data were briefly stated. The 

chapter then proceeded in describing the development of the resilience assessment, restoration, 

and enhancement models. Underlying concepts, assumptions, and mathematical formulations of 

each model were presented in detail.  The core idea of the developed framework is to integrate 

robustness, redundancy, rapidity, and restoration in resilience-based management of WDNs. 

Suitability of various restoration and mitigating actions, uncertainty in the recovery process, and 

sustainability objectives, carbon emissions and life cycle cost, were also considered in the 

presented framework. Survival analysis and various MCDMs tools were employed in formulating 

a multi-attribute resilience assessment metric. Multi-objective optimization tools along with 
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MCDM techniques, and clustering techniques were employed to ascertain the optimum resilience 

enhancement and restoration plans while satisfying a set of operational and managerial constraints.   
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4 Chapter 4: Developed Automated Computer Application 

4.1 Overview  

This chapter describes the development of an automated tool that integrates the models 

mentioned in Chapter 3. This tool was developed utilizing Matlab App designer® to integrate the 

calculations performed in Matlab scripts and Microsoft Excel sheets. This tool has three main 

components: (1) Resilience assessment, (2) resilience restoration, and (3) resilience enhancement. 

The resilience assessment module is developed using the following calculations (1) reliability 

assessment of water pipes segments, (2) criticality indices of water pipe segments, and (3) 

redundancy of the network. Resilience level of the studied network is the output of this module.  

The second module takes this resilience level as input, along with inputs from repair and relocation 

sub-models, to generate an optimal schedule of restoration activities following a hazardous 

scenario. Similarly, the enhancement model utilized the resilience level from the resilience 

assessment module and other factors to determine an optimum enhancement plan and an optimal 

schedule of packaged enhancement actions. Figure 4-1 shows the input and output of the developed 

tool, Resilient Water distribution Network (RSWDN). The following subsections illustrate a more 

detailed description of this tool and the navigation through different resilience modules.  

In addition, this chapter presents the developed dashboard which is fully integrated within 

the ARC-GIS environment. The developed dashboard can be utilized to visualize the different 

characteristics of each segment in the network. Besides, joined filters can be applied to investigate 

various attributes of the pipe segment’s inventory.  
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Figure 4-1: Input and Output of RSWDN 
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4.2 Resilience Assessment Module 

Figure 4-2 shows the homepage of (RSWDN) tool, where the user chooses the type of 

resilience application of interest. As previously mentioned, this module integrates reliability and 

criticality of pipe segments to compute the network robustness. In addition, network redundancy 

is added to estimate the resilience level of the network. A detailed description of the developed 

tool to streamline these calculations is shown subsequently.  

 

Figure 4-2: Homepage of the developed tool, RSWDN 

4.2.1 Criticality computations  

 In order to determine the criticality index of each pipe segment, two main steps are followed. 

First, the weights of criticality factors are found utilizing the FANP technique. Next, the criticality 

index of each segment is computed based on the weights of criticality factors and the effect values 
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of each segment’s characteristics. Figure 4-3 illustrates the set of inputs and outputs of the 

criticality computation module.  

 

Figure 4-3: Inputs and Outputs of Criticality Computation 

  A Matlab-Excel interface was written to automate the calculation of criticality factors’ 

weights. First, the survey results are filled in an excel template. The user fills the answers of each 

respondent, as shown in Figure 4-4. Fuzzifying scale is applied based on the collected responses. 

Next, the lower, most probable, and upper matrices are formulated using these data. This sheet is 

then fed as input to the Matlab interface, where the user specifies the sheet number. The user will 

need to fill to the name, number, of the sheet that contains the answers of an individual participant, 

as shown in Figure 4-6.  
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Figure 4-4: Input Sheets for Criticality Computations 

 

Figure 4-5: Sample of Automatically Formulated Lower, Upper and Most Probable Matrices 
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Once a sheet is specified, the FANP computations are performed, and the resulted 

unweighted, weighted, and limited matrices are automatically written in the same specified sheet. 

Figure 4-7 captures a sample of these matrices for one of the selected respondents.  

 

Figure 4-6: A Matlab Interface Asking the User to Specify a Sheet Contacting a Respondent’s 

Answerers 

After weights of criticality factors are determined, the user will input the characteristics of 

the pipe segments inventory. The Excel sheet will automatically calculate the corresponding effect 

value for each criticality factor possible value. These values will be aggregated with the weights 

to find the criticality index of each segment. As the characteristics of pipe segments are stored in 

ARC-GIS shapefiles, these attributes can be readily imported to an Excel sheet where the relevant 

calculation can be performed as need.  
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Figure 4-7: Automatically Formulated Matrices for Criticality Computations 

4.2.2 Reliability computations  

The first step in reliability calculation is to specify the number of previous failures and to 

compute the time to each failure for each homogenous cohort of pipe segments. To achieve that, 

two attribute tables are imported from Arc-GIS files to an Excel sheet. The first table represents 

the breakage dataset of pipe segments. The second table represents some main characteristics of 

pipe segments such as pipe ID, material type, diameter, and installation date. The output of this 
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model is the reliability of each pipe segment and its deterioration curve among the subsequent 

years. Figure 4-8 depicts the inputs and outputs of the reliability computation module.  

 

Figure 4-8: Inputs and Outputs of Reliability Computations  

Figure 4-9 depicts a sample of breakage data that contains information about the break ID, 

breaks data, and corresponding pipe ID.  

 

Figure 4-9: Sample of Breakage Input Data 
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A Matlab code is written to count the number of breaks for each pipe segment and to 

calculate the inter-break times as detailed in section 3.2. Figure 4-10 illustrates the result of this 

step.  

 

Figure 4-10: Output Sample of Breaks Counting and Connecting to Pipe Segments 

Another Matlab code was then written to determine the best distribution that fits the 

deterioration behavior of each cohort of pipe segments. A cohort of pipe segments shares the same 

material type and size range. This step was repeated for each break order, i.e., time to first break, 

time to second break, etc. This Matlab interface is integrated within an Excel environment such 

that an excel sheet is automatically opened when the code is run to allow the user to select the 

inter-failure time set of interest. Parameters of various investigated distribution fits are 

automatically written on the Excel sheet along with the results of the Anderson-Darling test.  

Figure 4-11 shows a sample of these results for a specific break order of a particular segment’s 

cohort.   
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Figure 4-11: Output Sample of Inter-failure Time Fitting 

Once the distribution fit is determined along with its associated parameters, the reliability 

and expected deterioration for each pipe segment can be estimated based on its relevant cohort, 

break order, and age.  

4.2.3 Resilience computations  

Once reliability and criticality of each pipe segment are calculated, the resilience assessment 

computation proceeds. Criticality and reliability values are firstly aggregated at the network level 

to compute the network robustness. The user is also required to specify the number of nodes and 

links in the selected network to facilitate the meshed-ness calculation. Network resilience is then 

calculated based on the computed network robustness, redundancy, and relative weight of each. 
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Figure 4-12 shows the window that asks the user to specify the parameters needed to calculate the 

network resilience. The output of this step is the resilience level for the specified network.  

 

Figure 4-12: Resilience Assessment Input Window 

4.3 Resilience Restoration Module 

Resilience restoration module takes three sets of inputs, which represent the results of three 

sub-models, namely: resilience assessment model, restoration model, and relocation model. Figure 

4-13 depicts the inputs and output of this restoration module. Below is a brief description of the 

tool that integrates the computations of this module.  

 

Figure 4-13: Inputs and Outputs of Resilience Restoration Module  
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Firstly, the user has to list the repair and replacement techniques that will be considered as 

decision variables in the optimization model, as shown in Figure 4-14. By default, mechanical 

clamp, pipe bursting, pipe splitting, and open-cut methods are included. The user can choose to 

disregard any of these methods or to add other new methods. In addition, the user is asked to 

provide the unit cost and time of each of the considered methods.  

 

Figure 4-14: Restoration Methods Input Window 

Secondly, the user is directed to upload a matrix containing the X and Y coordinates of the 

failed segments’ locations. An origin-distention matrix, ODM, is then formulated using these 

coordinates. A Google API is then run to find the travel time and distance between the locations 

of the ODM based on routing and traffic conditions. The relocation cost is then computed by 

multiplying the unit rate of the repair crew by the relocation time. The results of this model are 

then written on an Excel sheet, as shown in Figure 4-15. Figure 4-15 shows a sample of relocation 

time between some of the locations of the failed segments. Similar results were obtained for 

relocation costs as well.  
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Figure 4-15: Sample of Relocation Time Results 

The main piece of input to this model encompasses the pipe segments, material type, size, 

length, soil type, age, and the number of previous breaks. These data are utilized in specifying pipe 

cohort, a list of suitable restoration methods, and the deterioration curve. These data are imported 

to an Excel sheet as an attribute table from Arc-GIS shapefiles. The user is then asked to specify 

the budget constraint, minimum resilience threshold, and the maximum number of breaks after 

which any pipe segment shall be replaced, as shown in Figure 4-16 

 

Figure 4-16: Resilience Restoration Input Window 

The optimization will be run utilizing the Excel adds-in Evolver and @Risk from Palisade 

Inc. Results are then shown as a restoration plan that encompasses the sequence of segments 
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restoration, assigned crew, and restoration method for each. This restoration plan is automatically 

printed on the Excel Sheet, as shown in Figure 4-17. 

 

Figure 4-17: Sample of Resilience Restoration Module Output 

  

4.4 Resilience Enhancement Module 

This resilience enhancement model aims at determining the list of optimal enhancement 

activities for each segment and scheduling these actions after being clustered into work packages. 

Figure 4-18 illustrated the list of inputs and outputs of the resilience enhancement model. A brief 

description of the tool that integrated these actions is presented below.  

Similar to the resilience restoration module, the user is first asked to list the enhancement 

interventions that will be considered as decision variables in the optimization model. By default, 

pipe bursting, cast in place pipe, and epoxy lining are included. The user can choose to disregard 

any of these methods or to add other new methods. In addition, the user has to provide the unit 

cost and time of each of the considered methods. Also, expected the CO2 emissions per unit length 

per unit area of each enhancement intervention actions are required. Figure 4-19 shows the window 

for defining the list of considered enhancement intervention actions.  
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Figure 4-18: Inputs and Outputs of Resilience Restoration Module 

 

Figure 4-19: Enhancement Methods Input Window 

Each intervention action will result in different improvement and deterioration behavior. If 

segment replacement is chosen, the reliability values of the segment along the subsequent five 

years are derived utilizing the deterioration curve that represents the time to the first failure of the 

cohort to which this segment belongs. Similarly, minor and major interventions will change the 

deterioration behavior of pipe segments to ones that had the same number of previous failures and 

experienced similar intervention actions. However, minor and major actions would typically result 

in an immediate performance improvement that can be specified by the user.   
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 The second set of input is the list of pipe segment’s characteristics for each sub-network. 

In this input, the user will provide information about the pipe segments such as their size, length, 

and material type, number of previous breaks, reliability, and criticality. The current reliability 

curve, distribution parameters, is required to determine the reliability improvement realized by 

each intervention action, as explained above. These inputs can be imported from an excel sheet, as 

shown in Figure 4-20. The user is then required to specify the current redundancy components of 

each considered sub-network. Relative weights of resilience metric components can be changed 

when filling the data of the first sub-network. Finally, the overall resilience level is calculated as 

a weighted average of individual sub-networks resilience values, with the sub-network lengths 

used as weights. The weighted resilience is then normalized by the total length of the considered 

networks. The resilience level of each network, along with the overall resilience level, will then 

be printed on the Excel Sheet. A minimum resilience threshold needs to be determined for each 

sub-network. Also, the annual and total available budgets as well as the interest discount rate along 

the considered planning horizon need to be identified, as shown in Figure 4-21.   

 

Figure 4-20: Resilience Enhancement Input Window 
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Figure 4-21: Resilience Enhancement Constraints Input Window 

The optimization will then run within the Matlab environment, and the results of this phase 

will be imported to an Excel sheet. The result of this phase represents a set of optimal resilience 

enhancement plans, as suggested by the optimization algorithm. Shannon Entropy calculation will 

then proceed within the same Excel Sheet to determine the weights of each objective, as shown in 

Figure 4-22. These weights and the obtained solutions are then exported to the Visual 

PROMETHEE software package (Maier et al. 2003) to determine the optimal solution from the 

set of candidate Pareto.  

The X and Y coordinates of each pipe segment are required to cluster the networks into a 

set of zones based on their geographical location. This clustering is performed utilizing the 

RapidMiner platform and is not automated within this tool. Hence, the user would have to provide 

this clustering result as an input for the packaging and scheduling step. In this step, the intervention 

actions of a specific year, or years, are fed as inputs along with their durations, costs, and resilience 

improvements. Type of each intervention and zone at which corresponding segment is located are 

also required, as shown in Figure 4-23.   
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Figure 4-22: Sample of Resilience Enhancement Output - Phase I 

 

Figure 4-23: Sample of Inputs to the Packaging and Scheduling Step 
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The user is then asked to specify the minimum and maximum values of each package along 

with the maximum contract value as shown detailed in section 3.4 as shown in  

 

Figure 4-24: Packaging Constraints Input Window 

Evolver, adds-in solver, is utilized to run the packaging and scheduling optimization. The 

output of this model, which consists of two components, is finally presented on the same Excel 

sheet. The first component includes the list of intervention actions of pipe segments that achieves 

the optimal values according to the considered constraints. The second component represents the 

packaging and scheduling results of the enhancement intervention actions. Intervention actions are 

clustered such that those sharing similar intervention type and geographical zone are clustered into 

one package while respecting the maximum package size.  

4.5 Dashboard 

This section presents the concept and main features of the developed dashboard that 

integrates the results of the developed resilience modules. The dashboard facilitates visualization 

of the main characteristics of pipe segments along with the results of the previously developed 

modules in a single platform. The main purpose of this visualization is to support timely decisions 

regarding resilience enhancement and restoration activates. The dashboard is designed and fully 
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integrated within Arc-GIS environment. It is also available as a Webpage application that can be 

accessed online without the need to install the Arc-Map software package. Distinct levels of access 

can be granted for different users to visualize, update, and even modify the developed dashboard 

based on their organizational role.  

Figure 4-25 depicts the main components of the developed dashboard. Characteristics of 

pipe segments encompasses information regarding segments sizes, material types, breakage 

history, and external condition. These information were imported from attribute tables available at 

the different shapefiles provided by the City of London, Ontario. Next, the results of the previously 

developed resilience modules are imported from their excel sheets to the main layer dedicated for 

establishing this dashboard. Arc-Pro was utilized to publish this layer along with tis features as a 

web map.  The last step involved creating the different widgets by selecting specific pairs, or more, 

of variables whose relationship need to be assessed and visualized. Current widgets can be 

modified and new ones can be created based on user’s input. Various levels of filtering and 

dynamic relationship were designed as will be shown subsequently. Figure 4-26 depicts the 

homepage of the developed dashboard.  
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Figure 4-25: Dashboard Components 

 

Figure 4-26: Homepage View of London WDN Dashboard 
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In Figure 4-26, the top right filter is used to select the specific sub-network of the entire 

considered section of the London WDN. These sections were generated based on land use, 

population density, tab base, and other factors, as illustrated in section 3.4.  Once a particular 

network is chosen, all the widgets are updated to reflect the data of the selected network. These 

widgets include the distribution of the segments’ sizes, ages, and material types. Also, the average 

age of the selected segments is shown. Results of the reliability calculation are transferred into a 

condition rating scheme that consists of four degrees, namely: very poor, poor, good, and very 

good. These rankings are shown on the condition widgets, which specifies the number of pipe 

segments in each condition rating. The results of the resilience enhancement module are also 

shown in this dashboard. A special widget is created to show the number and individual pipe 

segments for each resilience enhancement action along each year of the planning horizon. Finally, 

the resilience assessment widget is used to show the results of resilience metric components, 

namely: redundancy, robustness, and resilience for each sub-network. Figure 4-27 shows a 

different view of the developed dashboard at which sub-network 2 is chosen. It can be observed 

that all distribution widgets and measures are updated to reflect the data of the selected network. 

For example, the average age of the pipe segments in sub-network 2 is around 37 years, and the 

replacement value is around CAD 21.6 million. Size, material, age distribution, condition, and 

resilience enhancement actions are also updated, as shown in Figure 4-27.  
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Figure 4-27: Sub-network 2 View of London WDN Dashboard 

All the created widgets are dynamically connected to facilitate deriving whatever needed 

metric by the decision-makers. For example, Figure 4-28 and Figure 4-29 show the updated views 

when segments in poor and good conditions are selected, respectively. The age, size, material, and 

resilience enhancement widgets are automatically updated. As expected, the average age is bigger 

for segments that are in poor conditions. Besides, most of the enhancement actions for such 

segments are either major actions or full replacement, unlike those in good conditions where minor 

enhancement actions are the dominant options are depicted in Figure 4-27 and Figure 4-28. 

Relationships between the age and condition, age and resilience enhancement actions, and 

resilience enhancement actions and condition can be readily validated utilizing this dynamic tool.  
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Figure 4-28: Segments in Poor Condition View of London WDN Dashboard 

 

Figure 4-29: Segments in Good Condition View of London WDN Dashboard 

Breakage data are also innovatively presented in this dashboard. Two main views are 

created for this purpose. The first one is a heat map of breaks along the selected section of London 

WDN. This heat map is essential in identifying critical sections of the network that experienced 
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more frequent series of breakage incidents. Efforts are then paid to study and analyze the internal 

and external factors that contribute to such failure increase. For example, Figure 4-30 shows the 

heat map of the previous break incidents in the considered section of the London water network. 

It can be observed from Figure 4-30 that specific segments experienced a higher breakage rate as 

indicated by bigger and darker bubbles. Asset managers can then derive a relationship between 

this increase in breaks from one side and the characteristics of those segments and the surrounding 

conditions such as traffic volume from the other side.   

 

Figure 4-30: Breaks Heat Map of London WDN 

In addition, a breakage timeline is also developed such that it dynamically shows the 

occurrence of segments’ breaks along their service lives since installation until 2017, the data at 

which these data were collected. This timeline is vital in understanding how breaks propagated in 

the past and how certain existing breaks may contribute to the formation of new ones in the future. 

Figure 4-31 illustrates a sample of this created timeline for the considered section of London WDN 
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for the period from December 1973 until December 2017. Breaks are consecutively shown in this 

view, bright red bubbles, as the time elapses during the selected period.  

 

Figure 4-31: Breaks Timeline of London WDN 

4.6 Summary 

This chapter introduced a graphical user interface that integrates various components of the 

developed resilience-based WDNs management methodology. Several feature windows of the 

inputs and outputs as well as the fields of user-defined variables were shown. This integration tool 

was coded in Matlab® to integrate a set of Matlab codes and Excel Sheets. Finally, the results of 

applying the developed modules on London WDN were integrated and visualized utilizing a 

specially developed dashboard that is fully integrated within Arc-GIS environment.    
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5 Chapter 5: Testing and Validation 

5.1 Overview  

In this chapter, the application of different developed models on real WDNs is presented. To 

demonstrate the robustness and validity of the developed models, their performance was evaluated 

through different case studies. The implementation phase encompasses applying three main 

models, along with their various components. Firstly, the resilience assessment model is applied 

to evaluate the resilience level of a section in London’s water distribution network. Then, a random 

failure scenario is assumed, leading to multiple breaks and leaks along with the network. Users 

can specify the intensity of assumed scenarios by changing the number of expected breaks and 

leaks in the network.  Different recovery strategies are then investigated through a multi-objective 

restoration model. Finally, the resilience level of a larger section of London’s water distribution 

network is enhanced through a multi-objective resilience enhancement model. The considered 

section was bigger in the third case study to demonstrate various capabilities and features of the 

resilience enhancement model.  

Figure 5-1 depicts the steps for the application and validation of the developed models. In 

Figure 5-1, the performance of the newly developed metric was assessed by comparing with two 

previously developed resilience metrics. One topology-based and one hydraulic-based metric were 

utilized for this purpose. The resilience-based restoration model was verified on two steps: first, 

the best performing optimization algorithm was selected, then the obtained restoration strategy 

was compared to a plan suggested by the City of London. Similarly, different optimization 

algorithms were investigated to pick the best performing one to solve the resilience enhancement 

model. Subsequently, the attained enhancement plan was compared to a plan generated utilizing 

existing management portfolio practice. 
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Figure 5-1: Developed Models’ Application and Validation 

The City of London was incorporated in 1855 and rapidly established itself as a business 

hub in southern Ontario. The City of London owns a water main network in excess of 1,500 Km 

with a replacement value of more than $2.7B (SOI 2013). The total number of pipe segments in 

the network is more than 24,000, with some installed as far back as 1900 and are still active until 

today. Table 5-1 shows a sample for the data found in the GIS shapefiles regarding the 

characteristics of the pipe. As shown in Table 5-1, data such as the segment’s length, diameter, 

material type, year of installation, start, and end nodes are available. In addition, details about the 

status of each segment, whether active or abandoned, are found.  
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Table 5-1: Sample Pipelines Characteristics in GIS Shapefiles (London, Ontario) 

Pipe segments of the London water distribution network are composed of different material 

types such as cast iron (CI), ductile iron (DI), Polyvinyl chloride (PVC copper), copper, concrete, 

and others. Figure 5-2 shows a distribution of pipe segments in London WDNs based on their 

material type. It can be observed from Figure 5-2 that PVC is the most available material in the 

network, followed by CI and DI pipes. The “others” category in Figure 5-2 includes pipe segments 

that are made of material types such as copper, steel, galvanized steel, Polyethylene. These pipe 

segments represent a tiny portion of the total pipe segments in London WDN.  

 
Figure 5-2: Distribution of Pipes’ Material in Collected Data 

On the other hand, Figure 5-3 depicts the distribution of pipe segments in the City of 

London according to their size. London WDN encompasses a broad spectrum of pipe sizes that 
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549 100 186.771 N10743 N10742 1/1/1986 DI Abandoned 

682 200 227.442 N11911 N14895 1/1/1985 DI Abandoned 

2038 300 232.8505 N4143 N5109 1/1/1979 CI Active 

2085 100 98.3560 N11152 N11296 1/1/1973 CI Active 

2105 200 73.9638 N4144 N4143 1/1/1988 DI Active 

2163 200 64.889 N11172 N11152 1/1/1966 CI Active 

2183 200 55.4926 N11316 N10805 1/1/1988 DI Active 
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ranges from 40 mm in diameter to 1350 mm in diameter. Large diameter pipes are only needed for 

transmission of water from the source to the distribution pipes. Most of the pipe segments in this 

water network are of 150 mm to 250mm in diameter. These categories constitute the vast majority 

of available sizes, as evidenced in Figure 5-3.  

 
Figure 5-3: Distribution of Pipes’ Diameters in Collected Data 

Another set of information regarding external surrounding conditions of water pipe 

segments was also extracted from GIS shapefiles. These conditions are expressed by some 

socioeconomic parameters associated with each water pipe segment. Table 5-2 illustrates a sample 

of these data which includes information about the street's types, soil types, and serviced facilities 

of various water segments. The main soil types available in the City of London are sand, clay, 

Alluvium, and sand gravel. Water segments in the City of London are buried under different types 

of streets. According to the road class, size, and number of lanes, the volume of traffic could be 

either low, medium, or high. Water segments secure the provision of water for various types of 

facilities. These facilities could be either residential, the most common type, commercial, 

industrial, or parks. These parameters are vital in estimating the criticality associate with each pipe 

segment.   
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Table 5-2: Sample Pipelines Surrounding Conditions in GIS Shapefiles (London, Ontario) 

Finally, geographical features were also available in GIS shapefiles. In this type of data, 

connectivity options, coordinates, elevations could be retrieved. Figure 5-4 depicts a view of the 

water distribution network in the City of London. Coordinates of the start, mid, and end nodes of 

each pipe segment can be viewed. In addition, the elevation of any selected point can also be 

computed. This information is essential in calculating the relocation time and cost across failed 

segments' locations in the resilience-based restoration model and in calibrating the hydraulic model 

for the verification purposes. This map can also be superimposed with other maps from Google 

Earth for the City of London to locate water streams and other types of adjacent structures. Such 

information will be utilized in the criticality estimation model.   

Pipe ID Soil Type Traffic Volume Type of Facility  

549 Sand Residential  Low 

682 Sand Industrial  Low 

2038 Sand Commercial High  

2085 Clay Residential  High  

2105 Alluvium Commercial  High  

2163 Sand Residential Low  

2183 Clay Residential Low 
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Figure 5-4: Water Distribution Network (London, Ontario) 

 

5.2 Resilience Assessment Model  

As previously discussed in section 3.2, the developed metric for assessing resilience of 

WDNs integrates two main qualities of the network: robustness and redundancy. This section starts 

with an illustration of utilizing the proposed metric in assessing resilience of WDNs following the 

steps detailed in section 3.2. Next, a two-tier validation process is illustrated to demonstrate the 

practicality of the developed metric. In this validation, the utilization of the proposed metric in two 

other resilience applications is briefly tested in this section. More complex formulations of such 

applications are presented in subsequent sections. In the first application, an optimization model 

was formulated to determine the optimal resilience enhancement plan. The objective of this 
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optimization framework was to assess the usefulness of utilizing the developed metric in 

improving the current resilience level. Subsequently, the developed metric was utilized in 

evaluating different restoration strategies after assuming a specific resilience loss scenario. This 

evaluation aimed to select the most effective restoration strategy that minimizes the time of service 

disruption after a hazard occurrence. The analysis here focuses on the impacts of the hazard on the 

network rather than the hazard itself. This three-level application demonstrates the practicality and 

usefulness of integrating the proposed metric in operation and management programs of WDNs 

both before and after disruption events. Obtained results were compared to values obtained by 

previous resilience metrics to highlight the main differences and improvements offered by the 

proposed metric.  In the second sub-section, the obtained results were compared to values obtained 

by previous resilience metrics to highlight the main differences and improvements offered by the 

proposed metric.   

The developed metric was utilized to assess the resilience of a real-life water network that 

serves a specific area in the City of London, Ontario. The selected subnetwork serves a specific 

region in the heart of London downtown. This sub-network is composed of 186 pipe segments that 

amount approximately 13.1 km of length and has 143 demand nodes. Figure 5-5 shows the layout 

of the selected sub-network, referred here as LWDN, which is carefully selected to provide water 

to a wide spectrum of diverse customers. LWDN is located in a condensed area that serves various 

residential, commercial, and institutional buildings. LWDN is mainly composed of cast iron (CI) 

and Polyvinyl chloride (PVC) pipes with diameters ranging from 40mm to 450mm. The 

distributions of pipe material and size for the LWDN are illustrated in Figure 5-6. 
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Figure 5-5: A layout of London Water Distribution Network, LWDN (Assad et al. 2019) 

 

Figure 5-6: Characterization through Distribution of Pipe: (a) Material; (b) Diameter (mm) of 

the Selected Network for Resilience Assessment Model (Assad et al. 2019) 

The first part of this section shows sample calculations to obtain criticality and reliability of a 

selected pipe segment. Subsequently, the results of all pipe segments in LWDN are integrated to 
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compute the robustness of the network. Redundancy is then added to estimate the resilience level 

of LWDN. Data needed for the criticality calculations were gathered form two primary sources 

GIS shapefiles and Experts’ opinions. Characteristics of pipe segments were extracted from the 

shapefiles. Experts were asked to rank the relative importance of criticality factors. The FANP 

procedure then started by applying Chang’s fuzzifying scale to construct the upper and lower 

matrices. Table 5-3 to Table 5-9 show the fuzzified pairwise comparison of the main factors and 

sub-factors. Each cell has three values representing the lower, most probable, and upper values 

obtained as a result of applying the fuzzifying scale.  

Table 5-3: Main Factors Pairwise Comparison With respect to Main Goal for (Lower, Most 

Probable, Upper) 

 Factor  Financial  Environmental Social 

Financial (1,1,1)      (1,1 1/2,2)       (1,1 1/2,2)            

Environmental (1/2,2/3,1)       (1,1,1)            (1/2,2/3,1)      

Social (1/2,2/3,1)       (1,1 1/2 ,2)      (1,1,1)            

 

Table 5-4: Financial Sub-Factors Pairwise Comparison (Lower, Most Probable, Upper) 

 
Table 5-5: Environmental Sub-Factors Pairwise Comparison (Lower, Most Probable, Upper) 

Factor  Size Soil type 
Proximity to water 

streams 

Size (1,1,1) (1 1/2,2,2 1/2) (1,1 1/2,2) 

Soil type (2/5, 1/2,2/3) (1,1,1) (2/5,1/2,2/3) 

Proximity to water streams (1/2, 2/3,1) (1 1/2,2,2 1/2) (1,1,1) 

Factor  Size Material Depth Accessibility 

Size (1,1,1)            (1 1/2,2,2 1/2)            (1,1 1/2,2)       (1/2,1,1 1/2)            

Material   (2/5,1/2,2/3)  (1,1,1)            (1/2,2/3,1)      (2/5,1/2,2/3)       

Depth   (1/2,2/3,1)       (1,1 1/2,2)       (1,1 ,1)          (2/5,1/2,2/3)       

Accessibility (2/3,1,2)            (1 1/2,2,2 1/2)            (1 1/2,2,2 1/2)            (1,1,1)            
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Table 5-6: Social Sub-Factors Pairwise Comparison (Lower, Most Probable, Upper) 

 Factor 
Population 

Density 

Traffic 

Disruption 

Alternative 

route 
Serviced Facility 

Population Density  (1,1,1)            (1,1 1/2,2)      (1,1 1/2,2)            (1,1 1/2,2)            

Traffic Disruption  (1/2,2/3,1)       (1,1,1)           (2/5,1/2,2/3)       (1,1 1/2,2)       

Alternative route (1/2,2/3,1)            (1 1/2,2,2 1/2)            (1,1,1)            (1/2,1,1 1/2)            

Serviced Facility (1/2,2/3,1)            (1/2,2/3,1)      (2/3,1,2)            (1,1,1)           

 

Table 5-7: Pairwise Comparison between Environmental and Social (Lower, Most Probable, 

Upper) 

Factor  Environmental Factors Social Factors 

Environmental Factors (1,1,1)            (1/2,2/3,1)       

Social Factors  (1,1 1/2,2)       (1,1,1)            

 

Table 5-8: Pairwise Comparison between Financial and Social (Lower, Most Probable, Upper) 

 Factor Financial Factors Social Factors 

Financial Factors (1,1,1)            (1 1/2,2,2 1/2)            

Social Factors   (2/5,1/2,2/3)      (1,1,1)            

 

Table 5-9: Pairwise Comparison between Financial and Environmental (Lower, Most Probable, 

Upper) 

 Factor Financial Factors Environmental Factors 

Financial Factors (1,1,1)            (1,1 1/2,2)       

Environmental Factors  (1/2, 2/3,1)       (1,1,1)            

The lower, upper, and most probable pairwise comparison matrices were then used as inputs 

to generate the unweighted supermatrix, Table 5-10. A Matlab code was written specifically for 

this purpose. Weighted supermatrix, shown in Table 5-11, is then established by normalizing each 

cell by the summation of the column in which it is located. The last step was to obtain the limited 

matrix, Table 5-12, by multiplying the weighted supermatrix by itself several times until 

convergence. The multiplication was done using a Matlab environment where the weighted matrix 

was multiplied by itself around 1075 times before convergence.   
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Table 5-10: Unweighted Super Matrix (Assad et al. 2019) 

1 Water mains criticality, 2 Economic factors, 3 Environmental factors, 4 Social factors, 5 Pipeline size, 6 Pipeline material, 7 Installation depth, 8 

Accessibility, 9 Soil type, 10 Proximity to water streams, 11 Population Density, 12 Traffic Disruption, 13 Alternative route, 14 Type of Facility. 

 

 WMC1 EF2 EVF3 SF4 S5 M6 ID7 A8 S ST9 WS10 D11 TD12 AR13 TF14 

WMC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EF  0.425  0 0.667  0.60  0 0 0 0 0 0 0 0 0 0 0 

EVF  0.253   0.40  0  0.40  0 0 0 0 0 0 0 0 0 0 0 

SF  0.322   0.60  0.333 0 0 0 0 0 0 0 0 0 0 0 0 

S 0  0.319  0 0 1.0 0 0 0 0 0 0 0 0 0 0 

M 0  0.171  0 0 0 1.0 0 0 0 0 0 0 0 0 0 

ID 0  0.196  0 0 0 0 1.0 0 0 0 0 0 0 0 0 

A 0  0.314  0 0 0 0 0 1.0 0 0 0 0 0 0 0 

S 0 0  0.523  0 0 0 0 0 1.0 0 0 0 0 0 0 

ST 0 0  0.277  0 0 0 0 0 0 1.0 0 0 0 0 0 

WS 0 0  0.200  0 0 0 0 0 0 0 1.0 0 0 0 0 

D 0 0 0  0.317  0 0 0 0 0 0 0 1.0 0 0 0 

TD 0 0 0  0.171  0 0 0 0 0 0 0 0 1.0 0 0 

AR 0 0 0  0.235  0 0 0 0 0 0 0 0 0 1.0 0 

TF 0 0 0  0.277  0 0 0 0 0 0 0 0 0 0 1.0 
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Table 5-11: Weighted Super Matrix (Assad et al. 2019) 

1 Water mains criticality, 2 Economic factors, 3 Environmental factors, 4 Social factors, 5 Pipeline size, 6 Pipeline material, 7 Installation depth, 8 

Accessibility, 9 Soil type, 10 Proximity to water streams, 11 Population Density, 12 Traffic Disruption, 13 Alternative route, 14 Type of Facility. 

 

 

 

 WMC1 EF2 EVF3 SF4 S5 M6 ID7 A8 S ST9 WS10 D11 TD12 AR13 TF14 

WMC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EF  0.425  0 0.333  0.300 0 0 0 0 0 0 0 0 0 0 0 

EVF  0.253   0.200  0  0.200 0 0 0 0 0 0 0 0 0 0 0 

SF  0.322   0.300  0.167 0 0 0 0 0 0 0 0 0 0 0 0 

S 0  0.160  0 0 1.0 0 0 0 0 0 0 0 0 0 0 

M 0  0.085  0 0 0 1.0 0 0 0 0 0 0 0 0 0 

ID 0  0.098  0 0 0 0 1.0 0 0 0 0 0 0 0 0 

A 0  0.157  0 0 0 0 0 1.0 0 0 0 0 0 0 0 

S 0 0  0.261 0 0 0 0 0 1.0 0 0 0 0 0 0 

ST 0 0  0.139  0 0 0 0 0 0 1.0 0 0 0 0 0 

WS 0 0  0.100  0 0 0 0 0 0 0 1.0 0 0 0 0 

D 0 0 0  0.159  0 0 0 0 0 0 0 1.0 0 0 0 

TD 0 0 0  0.086 0 0 0 0 0 0 0 0 1.0 0 0 

AR 0 0 0  0.117  0 0 0 0 0 0 0 0 0 1.0 0 

TF 0 0 0  0.138  0 0 0 0 0 0 0 0 0 0 1.0 
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Table 5-12: Limited Matrix (Assad et al. 2019) 

 1 Water mains criticality, 2 Economic factors, 3 Environmental factors, 4 Social factors, 5 Pipeline size, 6 Pipeline material, 7 Installation 

depth, 8 Accessibility, 9 Soil type, 10 Proximity to water streams, 11 Population Density, 12 Traffic Disruption, 13 Alternative route, 14 Type of 

Facility. 

 

 

 

 WMC1 EF2 EVF3 SF4 S5 M6 ID7 A8 S ST9 WS10 D11 TD12 AR13 TF14 

WMC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EVF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S  0.128   0.198   0.078   0.075  1.0 0 0 0 0 0 0 0 0 0 0 

M  0.068   0.106   0.042   0.040  0 1.0 0 0 0 0 0 0 0 0 0 

ID  0.079   0.121   0.048   0.046  0 0 1.0 0 0 0 0 0 0 0 0 

A  0.126   0.195   0.077   0.074  0 0 0 1.0 0 0 0 0 0 0 0 

S  0.142   0.087   0.305   0.087  0 0 0 0 1.0 0 0 0 0 0 0 

ST  0.075   0.046   0.162   0.046  0 0 0 0 0 1.0 0 0 0 0 0 

WS  0.054   0.033   0.117   0.033  0 0 0 0 0 0 1.0 0 0 0 0 

D  0.104   0.068   0.054   0.190  0 0 0 0 0 0 0 1.0 0 0 0 

TD  0.056   0.037   0.029   0.102  0 0 0 0 0 0 0 0 1.0 0 0 

AR  0.077   0.050   0.040   0.140  0 0 0 0 0 0 0 0 0 1.0 0 

TF  0.090   0.059   0.047   0.166  0 0 0 0 0 0 0 0 0 0 1.0 
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The first column in the limited matrix represents the global weights of importance for each sub-

factor. Table 5-13 shows that the most influential factor in estimating criticality of a pipe segment is 

its size, followed by its accessibility level, population density, and the type of facility it serves, 

respectively.  

Table 5-13: Global Weights of Criticality Factors (Assad et al. 2019) 

Criticality Factor Weight 

Size  0.2703  

Accessibility  0.1261  

Population Density  0.1036  

Type of Facility  0.0904  

Depth  0.0786  

Alternative route  0.0767  

Soil type  0.0754  

Material  0.0685  

Traffic Disruption  0.0559  

Proximity to water streams  0.0544  

A particular pipe segment was chosen to estimate its criticality for demonstration purposes. This 

pipe segment was made of ductile iron and had a diameter of 150mm. The characteristics and effect 

values are shown in Table 5-14. Criticality index of this pipe segment was found to be 0.41 using 

Equation 3.4. As mentioned earlier, the effect values for each criticality factor were obtained from 

experts working in the WDN in different cities and municipalities across Canada and the US.  

Reliability computations started next by leveraging the previous failure history of pipe segments 

in calculating the times between breaks for each break order, transition state. Curve fitting techniques 

were then applied utilizing the maxim likelihood method to obtain the parameters of the best 

distribution. These parameters were then used to estimate the reliability of pipe segments and 

generate their deterioration curves. A distinct deterioration curve associated with each break order 

was derived. This step was repeated for each cluster of homogenous pipe segments, as stated in 
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section 3.2. Pipes were clustered into cohorts according to their size and material type to acquire a 

more accurate estimation of their reliability and deterioration behavior. 

Table 5-14: Criticality Computation for a Pipe Segment in LWDN (Assad et al. 2019) 

Critical Factor Actual Value Assigned Value 

Size 150 mm 3 

Material Ductile Iron 5 

Depth 1.6 m 1 

Accessibility Low 10 

Soil type Sand 10 

Proximity to water streams No  1 

Population Density   Low 3 

Traffic Disruption  Low 3 

Alternative route Yes  1 

Type of serviced facility Residential 3 

Table 5-15 illustrates a sample of the obtained parameters of Weibull distribution for the group 

of pipelines that are made of cast iron and of a nominal size that is less than 150mm, (CI <150mmm). 

In this case, a 3-parameter Weibull distribution yielded a better fitting for data related to the time to 

the first failure and for subsequent failures. This is evidenced by the results of the Anderson-Darling 

(AD) test in which the p-value of 3-parameter Weibull distributions are higher, which represents a 

better fit.   

Table 5-15: Parameters of the Weibull Fitting for Each State (CI<150mm) (Assad et al. 2019) 

State Shape Parameter β  Scale Parameter 𝜂 Location Parameter γ 

Time to 1st failure 2.461 62.642 -1.655 

Time to 2nd failure 2.221 59.168 -0.214 

Time to 3rd failure 2.101 56.249 -0.798 

Time to 4th failure 1.756 42.579 -0.430 
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Table 5-16 illustrated the results of the Anderson-Darling (AD) test for some of the considered 

distributions. As previously mentioned, several distribution functions were tested to select the best 

distribution that fits the inter-failure time data.  

Table 5-16: Goodness of Fitting the Time to 1st Failure Data (CI<150mm) 

State 
2-Parameter 

Weibull 

3-Parameter 

Weibull 
Normal Exponential 

AD Statistics 0.396 0.360 0.991 0.689 

P-Value 0.250 0.466 0.111 0.273 

Values of the shape parameter in each of the previous Weibull distributions w more than one. 

These values correspond to an increasing failure rate over time, deteriorating reliability. This phase 

is known as the wear-out phase or end-life failures, which reflects aged pipe segments. The reliability 

curve for this cohort (CI <150mmm) is shown in Figure 5-7. The red "dots" represent the reliably 

values every ten years. The age of the selected pipe segment in criticality calculation was 31 years.  

 
Figure 5-7. Reliability, Survival, Behavior for the Cohort (CI <150mmm) (Assad et al. 2019) 
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Substituting the shape and scale parameters from Table 5-15 in Equation 3.7, the reliability of this 

specific segment over the following five years is depicted in Table 5-17. Reliability is continuously 

decreasing under the assumption that no maintenance or repair actions are considered for this pipe 

segment during the planning horizon of the next five years. It is also worth mentioning that this pipe 

segment will reach a reliability level of 0.751 in five years from today, not the year since it was 

initially installed. The overall robustness of the network was then computed by aggregating the 

reliabilities of all pipe segments and normalizing the summation over the sum of criticalities, as 

previously mentioned. 

Table 5-17: Reliability Computations for a Pipe Segment in LWDN (Assad et al. 2019) 

Year Age Reliability (t) 

0 31  0.818  

1 32  0.805  

2 33  0.792  

3 34  0.779  

4 35  0.765  

5 36  0. 751 

The Meshed-ness coefficient was then calculated to estimate the redundancy of the network. In 

LWDN, the numbers of links and nodes are 186 and 143, respectively. Using Equation 3.6, the 

meshed-ness coefficient (Rm) for LWDN was found to be 15.30%. This value indicates a low 

redundancy level evidenced by the scattered structure of the network, as can be observed in Figure 

5-5. This was also due to the existence of a large number of dead-end nodes in the network, almost 

25% of the nodes. Dead-end nodes are those connected to dead-end links that are not part of any 

loop. This represents an exception to the usual rule, where each node is connected to at least 2-3 

links, because only one link is connected to a node, Figure 5-5. The result of such configuration is 
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an increase in the number of nodes, without a proportional increase in the number of connected links 

(Assad et al. 2019). 

 The resilience of LWDN was found to be 0.467, which is a low resilience level. Besides its 

structure, which offers little redundancy, this might be related to other factors such as the aging of 

this network. Table 5-18 shows a continuous decrease in the resilience of LWDN, mainly due to 

aging and deterioration when no enhancements actions are considered. As this metric measures the 

preparedness of LWDN to withstand disruptions and to continue supplying water to customers, such 

decrease compromises the network’s ability to withstand these disruptions and contributes to 

extending the periods of service interruptions. This is due to the increased risk of pipe segments 

failure, especially the most deteriorated ones. For example, a failure of the two most deteriorated 

segments during a hazard event might cost between $142,600 and $166,200 in both direct and 

indirect costs, respectively, due to service interruption and other factors. To mitigate these risks, the 

City of London is expected to take several actions to increase this resilience level up to a certain 

acceptable level. Acceptable levels are defined by the end users, accounting for criticality of the 

considered sub-network, initial resilience loss, and the available budget and resources. Such actions 

may include a broad spectrum of alternatives for repairing and replacing deteriorated pipe segments 

in addition to the possibility of installing new segments to increase the network’s redundancy. It shall 

be noted that these estimates are based on the local context of the City of London and the set of 

contractors/suppliers the City is committed with. The bottom line is that aging and deterioration are 

contributing to decreasing resilience and increasing the risk of failure. Those risks might be reduced 

by establishing efficient resilience enhancement programs, as will be demonstrated below.  
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Table 5-18: Resilience of LWDN along the Next Five Years (Assad et al. 2019) 

Year Resilience (t) 

0  0.467  

1  0.460  

2  0.453  

3  0.446  

4  0.439  

5  0.432  

The relative weights of robustness and redundancy that were used in estimating resilience are 

75% and 25%, respectively. These weights can be changed based on the preference of decision-

makers that manage the operation and maintenance of the network. Figure 5-8 shows the results of 

sensitivity analysis in which the weights of robustness in Equation 3.7, and accordingly weights of 

redundancy, were changed from 100% to 0%. This verification is aimed to provide decision-makers 

with a full analysis to illustrate the impact of the relative weights of importance on the resilience 

level computations. The resilience increases with the increase of robustness's weight because the 

robustness level of the considered network is higher than its redundancy level.  
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Figure 5-8: Effect of Changing Robustness’s Weight on Resilience (Assad et al. 2019) 
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that could occur in reality and compromise the theoretical value. Pipe bursting technique was used 

for replacement, and horizontal directional drilling technique was utilized for new installations.  

This study employed genetic algorithm, GA, to determine the optimal, or near-optimal, 

resilience enhancement plan. Figure 5-9 shows the convergence of the optimization model for a 

sample budgetary constraint of $500,000, in which the y-axis represents the resilience of LWDN, 

and the x-axis represents the number of generations after which the model would converge. An 

optimum value of 0.564 was obtained after 2,200 generations, following which no improvement was 

observed. The optimization algorithm was run on an 8GB RAM, 3.60 GHz i7 core CPU, and 

Windows 7 with a 64-bit operating system. The optimization model run time was 42 seconds. It was 

found that replacement actions constituted about 77%, $384,500, of the total resilience enhancement 

budget. This could be explained by the existence of multiple deteriorated, aged, pipe segments in this 

subnetwork. Replacing such severely deteriorated segments would significantly increase the 

resilience of LWDN with a relatively cheaper cost than installing new segments; thus, such solutions 

were selected.  
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Figure 5-9: Convergence of the Genetic Algorithm Optimization Model (Assad et al. 2019) 

Resilience enhancement budgets ranging between $200,000 and $1 million, with an increment 

of $200,000, were then considered to be the budget constraint of the optimization model. Figure 5-10 
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be observed from Figure 5-10 that resilience of LWDN could be increased to 0.564, by 21%, with a 
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investment in resilience enhancement actions. It is observed that the amount of resilience increase 
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Figure 5-10: Resilience Versus Cost Trade-Off for LWDN (Assad et al. 2019) 

Finally, to demonstrate the practicality of using the proposed metric during the restoration phase, 

a simple scenario is discussed below. Assuming a disruption event that caused a certain number of 

segments to fail. The failed pipe segments were randomly chosen to depict the case of natural 
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based on their criticality in descending order. The second one was to repair the failed segments based 

on their age from the oldest to the newest pipe segment. The last strategy was to fix the failed 

segments based on the realized increase in resilience metric such that those segments that yield the 

most significant improvement are fixed first. The first two strategies are employed here for 

comparison because they are commonly utilized in several cities across Canada. Yet, it shall be noted 

that the resilience-based strategy already accounts for both the ageing effect and the criticality 

simultaneously. Table 5-19 describes the state of LWDN after each time step following the first 

restoration strategy.  

Table 5-19: LWDN Behavior Following Restoration Strategy 1 (Assad et al. 2019) 

Pipe 

Segment  

 Status 

to td t1 t2 t3 t4 t5 t6 t7 t8 t9 

34 1 0 1 1 1 1 1 1 1 1 1 

148 1 0 0 0 1 1 1 1 1 1 1 

76 1 0 0 1 1 1 1 1 1 1 1 

161 1 0 0 0 0 1 1 1 1 1 1 

56 1 0 0 0 0 0 1 1 1 1 1 

42 1 0 0 0 0 0 0 0 1 1 1 

130 1 0 0 0 0 0 0 0 0 0 1 

185 1 0 0 0 0 0 0 1 1 1 1 

1 1 0 0 0 0 0 0 0 0 1 1 

 

At td, time of disruption, a disruption occurred, which caused a sudden resilience drop (in this 

specific case to=td). This drop is indicated by a status value of 0 for the failed pipe segments. Pipe 

segments were then sequentially restored, indicated by a value of 1, from time steps t1 through tf, the 

time step at which restoration actions were accomplished. The increase in resilience over time 

following restoration strategy 1 is depicted in Table 5-20. Similar computations were attained for 

restoring strategies 2 and 3. Figure 5-11 illustrates three distinct resilience restoration behaviors for 



 

 

 

236 

 

LWDN. For example, the resilience of LWDN reached a level of 97% of its original value after 16 

days following strategy 3 and reached the same level after 31 and 20 days following strategy 1 and 

strategy 2, respectively. In general, the third strategy was the fastest in restoring LWDN to its original 

state. It is worth mentioning that this example is simplified to illustrate the applicability of the 

proposed resilience metric. However, the distinct behaviors of each strategy imply the importance of 

developing more reliable methods to determine the best restoration plan. Optimization and other 

multi-criteria decisions making tools can be utilized to achieve this purpose, as will be shown in the 

following section.  

Table 5-20: Resilience Computations for Strategy 1 (Assad et al. 2019) 

Time (days) Resilience  Resilience (%) 

0  0.467  100.00 

0  0.443  94.84 

 7   0.443  94.89 

 20   0.445  95.37 

 23   0.447  95.89 

 27   0.449  96.13 

 31   0.452  96.82 

 32   0.456  97.63 

 36   0.459  98.46 

 41   0.463  99.18 

 53   0.467  100.00 
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Figure 5-11: Comparison of Three Resilience Restoring Strategies Based on the Proposed Metric 

(Assad et al. 2019) 

Resilience Metric Validation  

This section proceeds with an evaluation of utilizing the proposed metric in the three 
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of the resilience level of their network yet. Thus, it is not possible to judge which metric is 

overestimating the resilience level or which metric is outperforming in terms of resilience evaluation. 

However, the resilience levels of LWDN as obtained by these metrics are quite comparable with the 

proposed metric yielding a higher, less than 3% increase, resilience level. These results shall serve a 

way of validating the viability of the proposed metric in the resilience assessment application of 

WDNs. 

Additionally, resilience levels attained by the two metrics during the different disrupted and 

enhanced states were compared. This was done to investigate the consistency in the differences 

between the obtained results and to highlight the main improvements offered by the newly developed 

metric. When the same resilience enhancement actions were applied, the resilience of LWDN, using 

the metric develop by Farahmandfar et al. (2016), had increased by 19% to a value of 0.540. This 

was comparable to an increase of 21% obtained using the developed metric. The difference between 

the resilience levels of LWDN under the enhanced state, as obtained by the two metrics, was around 

4%. The original resilience level of LWDN, 0.454, was then used as a reference value, and the same 

failure scenario was assumed, a failure of the same nine pipe segments. The resilience of LWDN, 

using the metric develop by Farahmandfar et al. (2016), decreased 4% to a value of 0.435. This was 

also comparable to the result obtained by the proposed metric, where a reduction of 5% was 

encountered. The difference between resilience levels of LWDN under the disrupted state was less 

than 2%. Generally, it was observed that the proposed metric estimated a higher resilience level, 

which can be referred to the difference between the two metrics in quantifying robustness and 

redundancy.  

While in their metric, Farahmandfar et al. (2016) depended solely on the nodal degree, the 

developed metric in this study considered both the number of nodes and links in determining the 
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number of loops in a network, Equation 3.6. Additionally, Farahmandfar et al. (2016) utilized nodal 

demand as a weighting factor, multiplied by the sum of reliabilities, to highlight the nodes of higher 

demand. However, the demand can be zero for some nodes based on the network structure. Hence, 

reliabilities of the segments connected to such nodes would not be counted in resilience estimation. 

This was avoided in the developed metric, where criticality of each segment was used as a weighting 

factor instead of nodal demand (Assad et al. 2019). As such, the developed metric offers an advantage 

in ability to account for the structural performance of water pipe segments more accurately. Decisions 

related to enhancement and restoration based on this metric shall yield a better performance for the 

considered objectives such as the total time and cost. In addition, the developed metric can be easily 

integrated within the City's management tools.  

Secondly, to verify the suitability of utilizing the developed metric in restoration applications, a 

hydraulic model was simulated. The previously mentioned failure scenario was simulated on 

WaterGEMS software utilizing the failure mechanism mentioned in section 3.2. Table 5-21 depicts 

a sample of the hydraulic simulation results both before and after the disruption. Nodes elevation and 

demand data were assigned before running the simulation and obtaining the pressure requirements. 

Subsequently, the failures scenarios were simulated as described above, and the new pressure 

information along with the satisfied demand was observed.  

Table 5-21: Sample of Hydraulic Simulation Results both before and after Disruption 

Node ID 
Elevation 

(m) 

Demand 

(L/day) 

Hydraulic 

Grade* (m) 

Pressure* 

(bars) 

Hydraulic 

Grade** (m) 

Pressure** 

(bars) 

Demand 

Available 

(L/day) 

Node 28 248.65 15,000 286.21 3.68 257.08 0.83 11,157 

Node 227 234.27 20,000 264.94 3.01 256.59 2.19 20,000 

Node 362 248.14 24,000 286.16 3.73 257.38 0.91 18,693 

Node 353 247.91 62,000 286.16 3.75 257.64 0.95 49,340 

Node 352 248.43 20,000 286.18 3.7 257.9 0.93 15,748 
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* Base Values.  

** Values at the disrupted state.  

The network was then restored three times based on the same restoration strategies considered 

earlier in the previous sub-section. In each time, pipe segments were gradually reopened, the assigned 

flow discharge was removed, and the serviceability index (SI) index was iteratively computed. Figure 

5-12 shows three different restoration behaviors of SI from a value of 0.835 to the original value. 

Restoration strategy 3 yielded the fastest rate at which SI was recovered, as shown in Figure 5-12. 

This strategy suggests restoring the failed segments based on the improvement in the proposed 

resilience metric. These results were obtained without running any optimization model. Running 

such models shall establish the most optimum restoration strategy.  

 

Figure 5-12: Comparison of Three Resilience Restoring Strategies Based on Serviceability (Assad 

et al. 2019) 
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metric had shown similar results to those obtained by SI in this regard, the fastest recovery. This 

shows the potentiality of using the proposed metric as a proxy indicator for SI. Using the proposed 

metric requires much less computational time in investigating and selecting the best restoration 

strategy during the recovery phase. In a real application, this can be assured through an optimization 

model that determines the fastest restoration plan. Such optimization models can be formulated to 

search over all possible restoration strategies in terms of the order and method of restoring each failed 

segment. This way, decision-makers can be more confident about their decisions, since all possible 

strategies have been considered. The formulation and solution of such a holistic optimization model 

are presented in the following section.  

5.3 Resilience-Based Restoration Model  

As previously mentioned in section 3.3, the resilience-based restoration model integrates the 

results of the resilience assessment model, along with the restoration and crew relocation sub-models, 

to achieve the most rapid recovery. In this section, the application of this restoration optimization 

model on a case study is presented. Various optimization algorithms were investigated to select the 

best performing one. Results obtained were also compared with a heuristics approach followed by 

municipalities in Canada to restore WDNs that are subjected to multiple simultaneous failures.  

Resilience Metric Application 

The restoration model was applied on the same section of London WDN for which the 

resilience level was evaluated in section 5.1. To demonstrate the practicality of the developed model, 

a disruption scenario that caused a failure of 30 pipe segments in the form of small and big breaks 

was assumed. These failures were assumed at different location across the network. It was assumed 

that five repair crews would be available to respond to this event. Table 5-22 illustrates a sample of 
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the input data to the restoration optimization model. All the data in Table 5-22 were extracted from 

the database provided by the City of London, Ontario.  

Table 5-22: Sample of Input Data Used in the Restoration Optimization Model (Assad et al. 2020) 

*NOPB = Number of previous Breaks 

As previously mentioned, several restoration techniques were considered in this model. 

Several factors were taken into account in specifying the set of possible restoration methods for each 

segment. For example, open-cut and splitting methods are the possible options for replacing pipe 

segments that are made of ductile iron since they do not fracture using regular pipe bursting. Also, 

the existing of rocks, densely compacted soils, or expansive soils represents unfavorable conditions 

for PB. Costs and durations of the considered restoration methods were gathered from various 

contractors across Canada.  

Inputs from various contractors and consultants in the field operation and management of 

WDNs in Canada were consulted to determine the unit costs and required durations of various 

rehabilitation methods. These data are needed for applying this resilience-based restoration model 

and the resilience enhancement model explained in the subsequent section. Table 5-23 depicts the 

unit costs and durations of considered restoration and enhancement methods. These estimates 

represent the average values of the collected responses. It shall be noted that the main contribution 

of this research study is not to collect data regarding the costs and duration of different rehabilitation 

Pipe 

ID 

X 

(Easting) 

Y 

(Northing) 
Ri Ci 

Diameter 

(mm) 

Length 

(m) 

Soil 

Type 
NOPB* Age Material 

Break 

Type 

1 480,086 4,758,960 0.375 0.402 150 116.38 Sand 0 28 CI Small 

2 479,268 4,758,590 0.383 0.394 450 107.55 Clay 4 19 CI Small 

3 478,790 4,759,090 0.695 0.321 150 82.97 Sand 1 21 CI Big 

4 478,850 4,759,650 0.769 0.333 200 152.92 Clay 0 17 PVC Small 

5 479,833 4,759,070 0.514 0.368 250 64.58 Clay 1 25 CI Big 

 ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ

30 479,790 4,758,790 0.446 0.422 450 57.06 Sand 0 30 CI small 
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techniques. As such, these estimated costs and durations are fed as inputs to the model, where 

decision-makers can either use them or specify different values according to their preferences. In 

addition, the same gathered values related to unit costs and durations are utilized during the validation 

of the developed models.  

Table 5-23: Summary of Rehabilitation Methods 

Intervention Action Intervention Type 
Unit Cost 

(CAD/mm2/m) 

Unit time 

(days/m) 

Mechanical Clamps / Couplings Repair  8,000* 8.00** 

Epoxy lining (EL) Renewal (minor) 66.39*** 0.01000 

Cured in Place Pipe (CIPP) Renewal (major) 2.04 0.01615 

Pipe Bursting (PB)/ Splitting Replacement 

(Trenchless)  

3.02 0.02019 

Open-Cut Method (OCM) Replacement  5.43 0.08833 

* This estimate is an average lump sum value in CAD.  

** This estimate is an average total duration in hours not days.  

*** Cost is in CAD/m.  

Deterministic Analysis 

Next, the multi-objective optimization problem was solved deterministically as per Equation 

3.23. In this analysis, the relative weights for the cost, time, and resilience objectives were suggested 

as 0.3, 0.5, and 0.2, respectively. Genetic algorithm (GA), ant colony optimization (ACO), and Tabu 

search (TS) were tested to determine their respective capabilities in achieving a near-optimal solution 

of the three considered objectives. Table 5-24 presents the results obtained from solving the problem 

using those three algorithms. It was observed that the three algorithms were able to provide similar 

solutions in terms of restoration cost and resilience improvement. However, there were some 

variations when it comes to the restoration time. GA provided a 12% and 14% shorter restoration 

time than ACO and TS, respectively. This comparison indicates that GA is the most suitable 

algorithm to get the optimum values of the formulated problem. It is also suggested to be the 
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algorithm employed for solving this restoration problem even if the number or individual failed 

segments change.   

Table 5-24: Comparison of Optimization Results Using GA, ACO, and TS (Assad et al. 2020) 

Criterion GA ACO TS 

Time (days) 13.9 15.8 16.2 

Cost (x103 CAD) 1,557 1,557 1,557 

Resilience Improvement 0.106 0.106 0.106 

While the time objective would typically pose the most significant concern in restoration 

applications, there are cases where the fund and other resources could be scarce. In others, achieving 

a certain level of resilience after accomplishing the recovery process might be required. For both 

cases, decision-makers will aim to define a range of possible weights for each objective instead of 

assigning a specific value. The problem would then be iteratively solved several times to investigate 

the part of the Pareto front enclosed within the defined ranges. This would yield a set of various near-

optimal solutions from which decision-makers can choose the one that best matches their 

preferences. For illustration purposes, it was assumed that the range of weights for the time objective 

is (0.3-0.5) and for the cost objective (0.1-0.4). The range of weights for resilience objective was 

calculated as the complement of the corresponding values to 1. The problem was then solved using 

several combinations of the possible weights between these ranges (15 sets). Table 5-25 shows a 

sample of the different runs of the multi-objective optimization problem that were solved using 

different combinations of weights.  

Table 5-25: Different Optimal Solution Sets Resulting from Different Iterations (Assad et al. 2020) 

Iteration  W1 W2 W3 
Cost  

(x103 CAD) 

Time  

(days) 

Resilience 

Improvement 

Weighted 

Objective Function  

1 0.3 0.3 0.4 1,588  14.45   0.110   0.471  

2 0.4 0.3 0.3 1,557  14.26   0.106   0.734  

3 0.1 0.5 0.4 1,587  14.30   0.110   0.435  

4 0.4 0.4 0.2 1,557  13.84   0.106   0.965  

5 0.3 0.5 0.2 1,557 13.86 0.106 0.949 

 ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ ــ  ــ
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15 0.2 0.5 0.3 1,557 14.26 0.106 0.707 
Note: The bold row represents the combination of weights that was assumed in solving the optimization 

problem. 

The optimization problems were run on an 8GB RAM, 3.60 GHz i7 core CPU, and Windows 7 

with a 64-bit operating system. The computational time of the different optimization runs ranged 

between 125 s and 179 s. This performance allows utility managers to obtain real-time near-optimal 

restoration plans to respond to different hazard events. The realized saving in computational time is 

around 80% compared to running hydraulic simulation.  The benefit in computational time is 

expected to increase as the size and complexity of WDSs increase. 

The model allows the user to investigate a larger portion of the search space utilizing randomly 

generated dynamic weights of the objectives, as illustrated in section 3.3. It is worth mentioning that 

this case is rarely needed in practice, where decision-makers would typically know ahead of time the 

relative importance of restoration objectives. However, it is provided here to complete the theoretical 

analysis. The different solution sets resulted from 100 runs of solving the optimization problem in 

Equation 3.15 with randomly generated weights is shown in Figure 5-13. 
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Figure 5-13: Optimal Solution Sets Generated from Running Optimization Model  

The solution resulting from the optimization model was then used to create a restoration work 

plan and a restoration schedule. A typical restoration work schedule encompasses the sequence of 

segments restoration, the methods of restoration, start and end dates, and the crew assignment. Also, 

restoration activities assigned to each crew were connected, assuming a finish-to-start logical 

relationship to generate the restoration schedule. Lag times between successive activities were 

introduced to capture the relocation time between the locations of failed segments across the network. 

Detailing the steps of each restoration method is beyond the scope of this work. Readers can refer to 

(Yazdekhasti et al. 2014; Weaver and Woodcock 2014; Simicevic and Sterling 2001) for more about 

major activities and best practices regarding the various possible restoration methods. Figure 5-14 
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and Table 5-26 depict a restoration schedule and restoration work plan for one solution of the 

optimization model.  

 

Figure 5-14: Restoration Schedule Based on a Sample Output of the Restoration Model 

Stochastic Analysis 

When decision-makers cannot make certain estimates about the unit time, cost, and resilience 

improvement of the various considered repair methods, stochastic optimization can be utilized to 

provide a range of expected values of the considered objectives. Decision-makers would be asked to 

provide some minimum, maximum, and most probable estimates about the uncertain values. these 

values were then fed to the Monte Carlo simulation. Stochastic optimization was then run as per the 

steps explained in section 3.3. 
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Table 5-26: Restoration Schedule Based on a Sample Output of the Restoration Model (Assad et 

al. 2020) 

 

Figure 5-15 illustrates the probability distribution functions associated with the cost and time 

of fixing pipe segment #1 using pipe bursting technique. The minimum and maximum costs 

associated with resorting this segment utilizing PB are 34,500 CAD and 41,160 CAD, respectively. 

[Figure 5-15(a)] shows that in 95% of the simulated runs, the cost of this restoration activity would 

approximately range between CAD 35,900 and CAD 41,800. Additionally, [Figure 5-15(b)] shows 

that there is a 0.95 probability of accomplishing this restoration action between 2.2 days and  2.6 

Objective Tasks Restoration MethodResponsible Start Date Target Date

Restoring Seg. 18 Clamp Crew #1 3/1/2020 3/1/2020

Restoring Seg. 10 Pipe Bursting Crew #2 3/1/2020 3/4/2020

Restoring Seg. 29 Open-Cut Crew #3 3/1/2020 3/9/2020

Restoring Seg. 28 Pipe Splitting Crew #4 3/1/2020 3/3/2020

Restoring Seg. 30 Clamp Crew #5 3/1/2020 3/1/2020

Restoring Seg. 21 Pipe Bursting Crew #1 3/1/2020 3/3/2020

Restoring Seg. 19 Pipe Bursting Crew #5 3/1/2020 3/2/2020

Restoring Seg. 17 Clamp Crew #5 3/2/2020 3/3/2020

Restoring Seg. 12 Clamp Crew #5 3/3/2020 3/3/2020

Restoring Seg. 2 Pipe Bursting Crew #1 3/3/2020 3/5/2020

Restoring Seg. 5 Pipe Bursting Crew #5 3/3/2020 3/4/2020

Restoring Seg. 20 Clamp Crew #4 3/3/2020 3/3/2020

Restoring Seg. 8 Pipe Bursting Crew #4 3/3/2020 3/7/2020

Restoring Seg. 27 Open-Cut Crew #5 3/4/2020 3/14/2020

Restoring Seg. 13 Clamp Crew #2 3/4/2020 3/5/2020

Restoring Seg. 4 Clamp Crew #2 3/5/2020 3/5/2020

Restoring Seg. 9 Pipe Bursting Crew #1 3/5/2020 3/6/2020

Restoring Seg. 15 Pipe Bursting Crew #2 3/5/2020 3/7/2020

Restoring Seg. 26 Pipe Splitting Crew #1 3/6/2020 3/9/2020

Restoring Seg. 24 Pipe Bursting Crew #2 3/7/2020 3/11/2020

Restoring Seg. 11 Clamp Crew #4 3/7/2020 3/7/2020

Restoring Seg. 14 Pipe Bursting Crew #4 3/7/2020 3/12/2020

Restoring Seg. 6 Pipe Splitting Crew #1 3/9/2020 3/13/2020

Restoring Seg. 22 Clamp Crew #3 3/9/2020 3/10/2020

Restoring Seg. 16 Pipe Bursting Crew #3 3/10/2020 3/12/2020

Restoring Seg. 3 Clamp Crew #2 3/11/2020 3/11/2020

Restoring Seg. 25 Pipe Splitting Crew #3 3/12/2020 3/16/2020

Restoring Seg. 7 Pipe Bursting Crew #4 3/12/2020 3/16/2020

Restoring Seg. 1 Clamp Crew #3 3/16/2020 3/16/2020

Restoring Seg. 23 Pipe Splitting Crew #3 3/16/2020 3/18/2020

Restoring the failed water 

subnetwork to the agreed resilience 

level within the minimum possible 

time and respecting the allowed 

budget and available resources.  

Tasks shall be performed based on 

the listed sequence and specified 

restoration method.
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days. Similar distributions were sampled to model uncertainties associated with the time, cost, and 

resilience improvement of all possible restoration methods for each pipe segment. 

 
Figure 5-15: Sample of Input Probability Distributions (a) Cost (b) Time  

Figure 5-16 illustrates the probability density functions and the cumulative distribution 

functions for the total cost, time, and resilience improvement of the restoration plan obtained using 

GA algorithm. [Figure 5-16(a)] shows that the minimum and maximum values of the total restoration 

cost were CAD 1.513 million and CAD 1.623 million, respectively. Similarly, the minimum and 

maximum total restoration durations were 16.40 days and 18.91 days, respectively [Figure 5-16(b)], 

and the minimum and maximum resilience improvement were 0.1058 and 0.1070, respectively 

[Figure 5-16(c)].  This variation range reflects the level of confidence in the skills of the restoration 
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crews. The mean values of the restoration cost, time, and resilience improvement were CAD 1,570 

million, 17.54 days, and 0.106, respectively.  
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Figure 5-16: Distributions of the Optimal Solution Resulting from Stochastic Optimization (a) 

Cost (b) Time (c) Resilience Improvement (Assad et al. 2020) 

Table 5-27 depicts a comparison between the results of the deterministic and stochastic solutions 

of the formulated problem. As evidenced by the observable variations, utility managers shall consider 

utilizing a stochastic approach in cases when the input estimates are highly uncertain. In stochastic 

analysis, different statistics can be optimized instead of the mean of the original objective such as 

the 95th percentile. However, when decision-makers have reasonable certainty about the used 

estimates, deterministic approach is preferred due to the significant decrease in the computational 

time and effort. It is worth mentioning that the objective functions need to be normalized before the 

optimization is run to avoid any bias due to the distinct performance range of each objective.      

Table 5-27: Comparison between Deterministic and Stochastic Solutions of the Restoration 

Optimization Model (Assad et al. 2020) 

Criterion Deterministic Results 
Stochastic Results  

(Mean Values) 

Time (days) 13.86 17.54 

Cost (x103 CAD) 1,557 1,570 

Resilience Improvement  0.106 0.106 

Computational Time (min.) 2.1 – 3.0 10.5 - 14.1 

 

Restoration Model Validation    

To evaluate the performance of the developed optimization model, the obtained results were 

compared to a restoration plan suggested by the City of London. Municipalities in Canada develop 

in-house heuristics to guide investment planning and obtain such restoration plans. The total 

restoration time, cost, and resilience improvement resulting from the City’s plan were calculated. 

The suggested optimization model resulted in a significant improvement over the City’s plan 

concerning the restoration time and cost, as shown in Table 5-28. The obtained restoration plan by 

the optimization model was around 13 days shorter and CAD 63,000 less expensive. The realized 

improvement in network resilience, as suggested by the optimization model, was around 4% more 
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than its corresponding value following the City’s approach. The two plans were mainly different in 

the sequence of restoring the failed segments and in the individual segments that were suggested to 

be replaced despite having a small break because of exceeding a certain number of breaks. This 

policy is followed to avoid significant decrease in performance capacity of water segments. While 

respecting the available budget, the segment that was selected for replacement by the optimization 

model is more critical, and thus resulted in a more significant resilience improvement, than the 

corresponding segment suggested based on the City’s plan. This is because the criticality of each 

segment is explicitly considered in the utilized resilience metric, as shown in Equation 3.7 (Assad et 

al. 2020).   

Table 5-28: Comparison between City’s Approach and Suggested Optimization Model (Assad et 

al. 2020) 

Criterion 
Optimization 

Model 

City’s 

Approach 
Enhancement  

Time (days) 13.86 26.95 48.5% 

Cost (x103 CAD) 1,557 1,620 3.9% 

Resilience Improvement  0.1056 0.1018 3.7% 

Several sensitivity analyses were then conducted to determine the input variables whose impacts 

on the mean values of the objective functions were the highest. Figure 5-17 depicts a tornado graph 

showing the sensitivities of total restoration cost to different inputs. Restoring pipe segments #10 

and #27 were found to impact the restoration cost the most. Segments 10 and 27 are two of the largest 

segments in this studied network with diameters of 450mm and 300mm, respectively. Additionally, 

the restoration methods suggested for these two segments were pipe bursting and open-cut-method. 

Similar analyses were performed to highlight critical segments based on restoration time and 

resilience improvement. This kind of analysis is essential to determine the crucial segments whose 

restoration needs to be carefully reviewed and monitored.    
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Figure 5-17: Tornado Graph Ranking Inputs by Effect on the Mean of the Restoration Cost (Assad 

et al. 2020) 

5.4 Resilience Enhancement Model  

As previously mentioned in section 3.4, the resilience enhancement model is the last model 

developed in this dissertation. This model aims to increase the strength of WDNs to withstand future 

disruptions without significant performance loss. This model integrates resilience and sustainability 

objectives to determine the optimum resilience enhancement plan of WDNs. This section illustrates 

the application of this enhancement optimization model. Similar to the restoration model, various 

optimization algorithms were investigated to select the best performing one. In addition, obtained 

results were also compared against a heuristics s approach followed by municipalities in Canada to 

evaluate the robustness of the developed optimization model.  

The developed model was applied on a section of the water network in London, Ontario. The 

selected section is composed of 369 pipe segments of diameters ranging between 40mm and 450 mm 

that amount approximately to 34 km of length. The material types available are cast iron (CI), ductile 

iron (DI), and PVC. The selected section consists of three sub-networks covering a wide variation in 
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land use, serviced facilities, and road types, as shown in Figure 5-18 and Figure 5-19. Figure 5-18 

shows the overall water network in the City of London with the land use zones superimposed. Figure 

5-19 depicts three sub-networks that form the selected case study of this section. Each network is 

assumed to have a different minimum accepted resilience threshold reflecting its importance to the 

decision-makers, as previously explained in section 3.4. It is observable that the section of London 

WDN selected to implement the enhancement level is bigger than the section that was selected to 

implement the previously developed model. This is because the resilience enhancement model 

explicitly accounts for different land use. Also, the nature of this model requires considering a larger 

portion of the network to capture situations similar to those that municipalities deal with on a daily 

basis. Municipalities are typically responsible for managing and sustaining a large inventory of water 

assets. Given the limited resources and scarce funds, they will have to develop prioritization models 

to assess the urgency of the rehabilitation needs of these assets. As such, this model is applied to a 

bigger section of the London water network that covers segments in various zones of the network. 

Each zone represents a particular land use and relative importance compared to other zones in the 

selected case study. It is also remarkable that Figure 5-18 includes multiple distinct residential zones. 

That is true because these zones are different in several attributes such as the population size and tax 

base. This zoning can also be useful to highlight areas that are more prone to certain types of hazards 

such as seismic prone locations or floods prone locations. These zones would then receive a higher 

priority in resilience enhancement decisions.  
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Figure 5-18: Layout of the Water Network in the City of London, Ontario 

 
Figure 5-19: Layout of the Selected Sub-networks 
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Enhancement Actions Determination  

The resilience enhancement optimization problem was formulated, as described in section 3.4. 

Two main set of inputs were used in calculating the objectives of this optimization. The first set of 

inputs represents the results of the resilience assessment model. The resilience metric introduced in 

section 5.2 was utilized to evaluate the resilience level of the selected section of the London WDN. 

The second set of inputs represents the cost, resilience improvement, and carbon emissions 

associated with each of the considered resilience enhancement actions. Costs and resilience 

improvements are calculated as detailed in section 3.4. Carbon emissions were also calculated 

utilizing the North American Society of Trenchless Technology calculator, as mentioned in section 

3.4. Figure 5-20 depicts a sample of the carbon emissions results associated with PB and CIPP 

techniques that were calculated utilizing this NASTT calculator. These emissions were calculated 

considering a pipe segment that was made of cast iron and of 200mm in diameter. The 150m in length 

segment was buried at a depth of 2.5m. Dump location was assumed to be 10m away from the 

segment’s location. This information is important in calculating the CO2 emissions associated with 

open- cut method for comparison analysis. Emissions associated with the Open Cut method was also 

added to highlight the realized reductions in carbon emissions when utilizing trenchless technologies.  
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Figure 5-20: Variation of Carbon Emissions Associated with Various Rehabilitation Techniques  

In this work, the formulated multi-objective optimization problem was solved using a modified 

version of ant colony optimization (ACO) and genetic algorithm (GA) to determine their respective 

capabilities in achieving a near-optimal solution for the considered problem. Theoretical concepts 

and underlying mathematical computations of the modified ACO and GA were detailed in section 

2.8. Each algorithm was run several times with distinct initialization to provide a fair comparison 

between the optimization algorithms and to assure the consistency of the obtained results. To provide 

a meaningful basis of comparison, the number of iterations was assumed 200, and the population 

size is assumed 150 for the considered optimization algorithms. Table 5-29 illustrates the comparison 

results between the modified ACO and GA based on the outputs of ten runs.  

The modified ACO achieved the best values for the cost, resilience, and emissions objectives. 

Similarly, the worst values for the cost, resilience, and emissions objectives obtained by the modified 

ACO were better than those obtained by GA. The modified ACO had a lower standard deviation 

regarding all the considered objective functions, indicating higher stability of the algorithm. It also 

had a larger hypervolume indicator (78.79%) than GA. On the other hand, GA had a longer 

computational time (8.11 min) than the modified ACO (5.38 min). All optimization runs were 
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performed on an 8GB 343 RAM, 3.60 GHz i7 core CPU, and Windows 7 with a 64-bit operating 

system. It can be observed from Table 5-29 that the range of resilience variation is less than the 

ranges of other objectives. This is due to the size of the considered network, 370 segments, and the 

minimum resilience threshold constraints. The dual effect of these factors limits the solution engine 

in certain preferred area of the search space.   

Table 5-29: Comparison between Results of the Modified ACO and GA 

 Objective function Modified ACO GA 

Minimum 

Cost (million CAD) 1.6055 1.7148 

Resilience 0.6429 0.6128 

Emissions (CO2-e tonne) 132.70 135.10 

Maximum 

Cost (Million CAD) 1.8152 2.2827 

Resilience 0.6458 0.6228 

Emissions 139.20 140.40 

Mean 

Cost (million CAD) 1.6547 2.0621 

Resilience 0.6447 0.6159 

Emissions (CO2-e tonne) 135.13 137.34 

Standard deviation 

Cost (million) 0.0376 0.1652 

Resilience 0.0008 0.0032 

Emissions (CO2-e tonne) 1.50 3.06 

Hypervolume indicator (HV) 78.79% 60.43% 

Computational time (min) 5.38 8.11 

  Note: The bold values represent the best values corresponding to each performance metric 

Next, a two-tailed student’s t-test was performed to statistically evaluate the significance level 

of the optimal solutions. The student’s t-test investigated the null hypothesis (H0) that assumed no 
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significant difference between the optimal solutions obtained from the optimization algorithms. The 

alternative hypothesis (H1) implied that there was a significant difference between the obtained 

optimal solutions. The P-value needs to be less than the significance level (alpha =0.05), to reject the 

null hypothesis in favor of the alternative hypothesis. Before running the t-test, a condition that the 

data are coming from approximately normal distributions needs to be satisfied. This is the case in 

our example since the sample size is large (>30), according to the central limit theory. The t-test 

performed in this analysis assumed unequal variances of the population of the data since such 

equality was not possible to be proved. The computed P-value was found to be 9.505 X 10-6, which 

indicates that the performance of the modified ACO was on average statistically significantly better 

than GA. From the previous analysis, the modified ACO was recommended to solve the formulated 

problem in this paper.  

The model then proceeded with the MCDM process to determine the best solution among the 

Pareto frontier points obtained from the multi-objective optimization. First, the Shannon entropy 

method was exploited to compute the weights of the objective functions. The weights of the cost, 

resilience, and emissions attributes were 51.36%, 29.28%, and 19.36%, respectively, as shown in 

Table 5-30. 

Table 5-30: Calculation of Objectives’ Weights based on Shannon Entropy 

Criterion Cost Resilience Emissions 

Entropy value (ej) 0.273 0.5856 0.726 

Variation coefficient (dj) 0.727 0.4144 0.274 

Weight (wj) 51.36% 29.28% 19.36% 

Once the objectives’ weights were found, PROMETHEE II was utilized to determine the best 

solution based on the steps explained in section 2.7. Figure 5-21 depicts a sample of the Pareto 

frontier points obtained by the modified ACO algorithm for one of the runs with the selected optimal 
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solution highlighted in red. Table 5-31 illustrates some of these candidate solutions along with their 

ranking based on the net outranking flow, as calculated by Equation 2.18.   

 
Figure 5-21. Pareto Frontier Points of the Modified ACO Algorithm  

Table 5-31: Different Optimal Solution Resulting from the Modified ACO 

Solution 
Cost 

(x106 CAD) 
Resilience 

Emissions 

(CO2-e tonne) 
ϕ (a) Rank 

1 1.637 0.6443 133.0 0.1227 9 

2 1.628 0.6443 139.2 -0.1219 25 

3 1.626 0.6437 138.0 -0.2164 32 

…
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…
 

19 1.651 0.6447 132.7 0.1707 1 

…
 

…
 

…
 

…
 

…
 

…
 

35 1.657 0.6456 134.9 0.1334 6 
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Note: The bold row represents the selected optimal solution for the optimization problem. 

Solution number 19 in Table 5-31, involved interventions actions for 57%, a total of 211, of 

the pipe segments in the considered sub-networks to achieve the reported objective values while 

satisfying the set of defined constraints. Figure 5-22 illustrates the distribution of these segments 

based on their sub-network, diameter, and age. It can be observed from Figure 5-22 that most of the 

selected segments for enhancements were in subnetwork 3. This is due to the fact that this subnetwork 

had the most deteriorated segments, as evidenced by the average age of its segments. The average 

ages of the segments in subnetworks 1, 2, and 3 were 31, 37, and 50 years, respectively. The attained 

resilience improvement with CAD 1.65 million investment represented a 20% increase in resilience 

compared to the case where no enhancement actions were taken over the five subsequent years.  
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Figure 5-22: Distribution of Rehabilitated Segments Based On a) sub-network; b) age; and c) size. 

Enhancement Actions Packaging and Scheduling 

Next, resilience enhancement actions of year one were selected to be scheduled. The first step 

was to cluster them into work packages based on the intervention method and geographical location. 

The area of the considered networks has been divided into two zones to speed up the travel time. 

Both K-means and K-medoids clustering techniques were tested to cluster the pipe segments into 

two groups based on their geographical locations. K-means yielded a lower Davies–Bouldin index, 

0.850, than K-medoids. Thus, K-means was selected for the geographical clustering. RapidMiner 7.5 

is the platform that is used to perform the clustering algorithms (Mierswa et al. 2006). Figure 5-23 
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depicts the interface of the RapidMiner Platform, where the clustering techniques were performed 

and tested.   

 

Figure 5-23: Interface of the Clustering Algorithms Utilizing RapidMiner Platform 

  Enhancement actions were then clustered into work packages as per Equation 3.35. Table 

5-32 illustrates the output of this clustering process. It shows nine packages, each composed of 

segments that share the same geographical zone and intervention method except for package two, 

which was a mixed one. These work packages were then scheduled, assuming three contractors will 

perform enhancements actions along three time steps. A time step represents the order at which a 

work package is being performed. The scheduling process aims at minimizing the cumulative time 

of the resilience enhancement process while satisfying the maximum contract price of each 

contractor.  

Table 5-32: Packaging and Scheduling of Enhancement Actions of Year 1 

Package 

No. 

Cost 

(x103 CAD) 
Resilience Time (day) 

Enhancement 

Action 
Time Step Contractor 

1 99.42 0.0035 7.03 PB 1 C1 

2 76.93 0.0036 5.26 PB & CIPP 1 C2 

3 89.92 0.0055 9.74 CIPP 1 C3 

4 93.11 0.0036 4.46 CIPP 2 C1 

5 87.20 0.0027 6.33 CIPP 3 C1 

6 48.92 0.0038 14.74 EL 2 C2 

7 56.36 0.0050 16.98 EL 2 C3 
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8 49.12 0.0047 14.80 EL 3 C2 

Figure 5-24 depicts the incremental increase of resilience with time. According to this plan, 

it was possible to achieve a total of 0.034 resilience enhancement resulting from the first year’s 

actions during 26.72 days. The assignments of contractors among the different time steps are also 

shown in Table 5-32. The total price values for contractors 1, 2, and 3 were CAD 241,649, CAD 

213,057, and CAD 146,284, respectively.  

 

 
Figure 5-24: Optimum Scheduling Results 

Redundancy Enhancement Strategy  

As previously stated, a separate optimization model was formulated to improve the 

redundancy of the selected section of the London WDN. This is achieved by duplicating some of the 

most critical segments in each sub-network.  

By applying the proposed model, it was possible to increase the redundancy level of sub-

networks 1, 2, and 3 by 21%, 18%, and 23%, respectively, as shown in Table 5-33. Resilience 
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enhancement percentages resulting from this redundancy improvement are also shown in Table 5-33.  

These results were obtained after substantiating the new redundancy values in Equation 3.7.  

Table 5-33: Results of Resilience Enhancement due to Redundancy Improvement  

Sub-

network 

Original 

Redundancy  

Updated 

Redundancy  

Redundancy 

Improvement  

Resilience 

Enhancement  

1 0.15 0.18 20.6% 5.2% 

2 0.16 0.19 18.1% 4.5% 

3 0.18 0.22 23.2% 5.8% 

 

Enhancement Model Validation  

A comparison between the obtained results of the resilience enhancement optimization model 

and an in-house portfolio management plan suggested by the City of London was then performed to 

evaluate the performance of the developed optimization model.  Table 5-34 shows that the developed 

model resulted in a 32% cost savings, a 6% increase in resilience improvement, and a 6% carbon 

emissions reduction. The two plans were different in the selection criteria of individual segments to 

be enhanced. While the City’s approach focused on the age and reliability of segments, the developed 

method integrated the criticality of segments in the selection process. Thus, asserting more weights 

to select the most critical segments. In addition, the dynamic nature of reliability computation yielded 

a more accurate deterioration estimation of various segments. Table 5-34 shows the comparison 

results, excluding resilience enhancement due to redundancy improvement. Currently, network 

expansion strategies are handled at a different level of management for which relevant data for 

comparison and validation purposes could not be retrieved.  

Table 5-34: Comparison between City’s Approach and Suggested Optimization Model 

Criterion 
Optimization 

Model 

City’s 

Approach 
Enhancement  

Cost (x106 CAD) 1.651 2.440 32.35% 

Resilience  0.6447 0.6083 5.99% 

Emissions (CO2-e tonne) 132.7 141.2 6.02% 
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5.5 Summary 

In this chapter, the implementation of the developed models was presented.  Actual data from real 

water networks were used to demonstrate the efficiency and practicality of the developed models. 

The proposed resilience metric was validated by comparing its results with the results of flow-based 

and topological-based metrics. The results obtained assured the usefulness of utilizing this metric in 

various resilience applications of WDNs. A section of London WDN was leveraged as a case study, 

and a failure scenario was assumed to apply the resilience-based restoration model. Different 

algorithms were tested to select the best performing one to solve the formulated optimization 

problem. In addition, the generated restoration schedule was compared to a suggested schedule by 

the City of London.  The comparison showed that the developed model would result in considerable 

cost-savings if employed instead of the currently utilized heuristics. Similarly, the resilience 

enhancement optimization model was applied and evaluated utilizing a real water network. A 

modified version of ACO optimization was compared to the performance of GA to solve the 

formulated optimization model. It was found that the performance of the modified ACO is better 

than that of the GA and of the results optioned by current portfolio management practices. Several 

strategies could be elicited from the results of the developed models. Firstly, segments of bigger sizes 

that secure the provision of water to bigger population are the most critical ones. Their performance 

shall be restored at the earliest and constantly enhanced. Secondly, when planning for enhancement 

actions, intervention type and geographical location shall be utilized as the basis of clustering to 

facilitate efficient resource utilization and scheduling. Thirdly, when selecting the set of 

enhancement actions, suitability of various methods to the existing pipe segment shall be assessed. 

Finally, relocation time and cost shall be accurately estimated to capture the routing and traffic 

conditions during widespread hazardous events.  
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6 Chapter 6: Conclusions and Recommendations 

6.1 Summary  

A newly developed holistic resilience-based asset management model for WDNs is developed. 

This model encompasses three main steps to systematically integrate resilience in sustainable 

performance management of WDNs. Firstly, robustness and redundancy were integrated to assess 

the current network resilience level. Network redundancy was estimated by employing graph theory 

and complex network indicators. The core idea behind this step is to measure the extent to which 

alternative paths can be secured to supply water in case of structural damage of some components. 

Network robustness was measured as a function of various segments reliabilities. A real-life network 

was utilized to demonstrate the practicality of the proposed metric in various resilience applications. 

Results were compared to flow-based and topological-based metrics as a means of validation. It was 

also shown that the proposed metric could be used as a proxy indicator for the serviceability index 

in resilience restoration application without the need to run extended hydraulic simulations.  

The second step is to develop a resilience-driven restoration model of WDNs. Because this 

study aims to propose a general methodology framework, disruption scenarios on WDS were 

simulated by randomly assuming a certain number of broken pipe segments, neglecting the 

dependence of the failure probability on disasters. This model accounts for the time and cost that 

crews spend in relocating from one location to another across the network. The restoration process 

was formulated as a multi-objective optimization problem that aims at minimizing the time and cost 

of recovery and maximizing the resilience improvement. As this model aims to plan for future 

expected hazardous scenarios, accurate estimates about specific optimization parameters may not be 

known with an acceptable confidence level. As such, stochastic optimization was utilized to account 
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for these uncertainties. The restoration model resulted in 4% cost savings, 48% duration reduction, 

and 4% resilience improvement when compared to a plan suggested by the City of London. 

Subsequently, a two-tier resilience enhancement model was developed. In the first phase, a 

multi-objective optimization framework is formulated to maximize the resilience level of WDNs 

while minimizing the life cycle cost of enhancement actions and the associated carbon emissions. A 

dynamic reliability estimation model was utilized to determine the resilience improvement and the 

updated deterioration behavior after implementing various sets of intervention actions. The resilience 

enhancement plan resulting from this phase consists of optimum resilience actions along with their 

timing along the planning horizon. These actions were then clustered into work packages based on 

the intervention type and geographical location. Next, an optimization-based scheduling model was 

formulated to determine the optimum sequence of resilience enhancement work packages. A 

resilience improvement of 20% was attained with CAD 1.65 million investment in enhancement 

actions over the planning horizon of five years. Resilience enhancement model resulted in a 32% 

cost saving, a 6% increase in resilience improvement, and a 6% reduction in carbon emissions when 

compared to a portfolio management approach that is commonly followed by several cities in 

Canada. 

Finally, an automated computer application was developed to integrate the previously 

developed models. The application was programmed and fully compatible with Microsoft Excel® 

and Matlab® environments. Options to specify, add, and change any user-defined values or relevant 

constraints were also added. Results of these models were presented as Excel spreadsheets and on a 

specially developed dashboard that is fully integrated with Arc-GIS.  
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6.2 Recommendation and Future Work 

Several interesting topics relevant to this study could be researched in the future. Some of these 

promising suggestions are extensions that may enrich and enhance current research. Others represent 

major and fundamental reinforcement to extend the applicability and efficacy of the developed models. 

Recommended future topics are listed subsequently: 

• Including other assets of WDNs such as pumps, valves, and other accessories.  Robustness 

of each segment can be modified to consider the reliability and criticality of other 

components. Additionally, availability of alternative components can be studied to quantify 

the network's redundancy. 

• Utilizing other metrics to quantify redundancy of water segments. Beside the meshed-ness 

coefficient, other graph theory and complex graph metrics can be utilized to measure the 

redundancy level of water networks.  

• Reformulating the criticality model such that the segment's criticality is dynamically updated 

once pipe segments are replaced with a segment of another size or material type.  

• Including other failure modes of WDNs such as hydraulic failures and failures related to 

water quality. This will require calibrating and running hydraulic simulation models. For 

example, adding the service pressure to the formulation can help in obtaining an accurate 

estimation of hydraulic performance loss.  

• Refining the resilience enhancement analysis to include more sustainability objectives other 

than carbon emissions such as energy requirements. Energy needed for different pumping 

operational conditions can be calculated utilizing a hydraulic simulation model.   
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