
A Cloud Infrastructure as a Service for an Efficient Usage of IoT

Capabilities

Jasmeen Kaur Ahluwalia

A Thesis

in

the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

November 2020

©Jasmeen Kaur Ahluwalia, 2020

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Jasmeen Kaur Ahluwalia

Entitled: ³A Cloud Infrastructure as a Service for an Efficient Usage of IoT Capabilities´

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

Complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

______________________________________ Chair

Dr. Y.-G. Guéhéneuc
______________________________________ Examiner

Dr. Y.-G. Guéhéneuc

______________________________________ Examiner

Dr. J. Rilling
______________________________________ Supervisor

Dr. R. Glitho

Approved By: ___

 Dr. Mourad Debbabi

 Interim Dean, Faculty of Engineering and Computer Science

_________20__ __________________

Dr. Mourad Debbabi

Interim Dean,

Faculty of Engineering and Computer Science

 iii

Abstract

A Cloud Infrastructure as a Service for an Efficient Usage of IoT Capabilities

Jasmeen Kaur Ahluwalia

The Internet of Things comprises of a system of devices (or objects) connected to the Internet

and interacting with each other to satisfy various tasks or goals. These objects could be sensors,

actuators, smart phones, smart appliances, etc. With the ever-increasing demand of IoT in daily

life as well as in the industry, and billions of devices being connected over the internet, most IoT

applications aim for cost and energy efficiency, scalability, and minimal latency in terms of

resource provisioning.

To fulfill these requirements, Cloud Computing might prove beneficial. Cloud Computing

provides on demand access to configurable computing resources (servers, memory, network, etc.)

in the cloud, which require minimal management by the end user. It comprises of three service

models, which are: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software

as a Service (SaaS). The cloud IaaS aims at an efficient usage of resources. In the specific case of

IoT, these resources are the sensing and actuation capabilities. However, there are still many

challenges that the design and implementation of an IoT IaaS faces. Some examples are the

heterogeneity of the sensors and actuators, orchestration, provision of bare metal access, and also

publication and discovery of the capabilities of IoT devices.

This thesis aims at the design and implementation of an architecture for IoT IaaS. First, it lays

down a set of requirements essential to the architecture. This is followed by a thorough review of

the state of the art. Next, it proposes an architecture for IoT IaaS that utilizes node level

virtualization for an efficient usage of IoT capabilities. Functional entities are proposed as well as

 iv

interfaces relying on RESTful Web services. The interfaces include a low-level interface for

homogenously accessing all the heterogenous capabilities of IoT devices, as well as high level

interfaces which allow the IoT cloud users (e.g. PaaS or individual applications) to access these

capabilities in an efficient manner. We have implemented a prototype using real-life as well as

simulated Temperature sensors & Humidity sensors, and EV3 LEGO Mindstorms robots. The

architecture is validated by concrete measurements on the prototype and by extensive simulations.

 v

Acknowledgements

First of all, I would like to give my sincere thanks to my supervisor Dr. Roch Glitho, without

whose guidance and constant support I would not have reached this far. I wholeheartedly thank

him for accepting me as his student and for helping me stay on track and progress well by providing

me with his expertise. His patience, knowledge, and motivation truly helped me in not only

enhancing my abilities but also in overcoming challenging tasks that seemed impossible initially.

I would also like to express my sincere gratitude to Dr. Yann-Gaël Guéhéneuc and Dr. Juergen

Rilling for serving as the members of my thesis committee. I would also like to thank Dr. Yann-

Gaël Guéhéneuc for serving as the chair at my thesis defence.

I would also like to thank my colleagues at Concordia University for their guidance, help, and

encouragement. I would like to especially thank Carla Mouradian for helping me and guiding me

at every stage of the thesis, and Vahid Maleeki for his encouragement and support. I would also

like to thank Nazmul Alam for providing me with his valuable advice whenever I faced issues. I

would further like to thank my colleague and friend Ujjwal Khanna for motivating me and boosting

my confidence.

Finally, I am forever indebted to my parents and my sister Divleen, without whose constant

motivation, encouragement, and support I would not have reached this far in life and accomplished

so much. I can never thank them enough for supporting me through every step of my journey and

always believing in me incessantly.

 vi

Contents

List of Figures xiii

List of Tables xvi

Acronyms and abbreviations xvii

Introduction 1

1.1. Definition«««««««««««««««««««««««««««««.1

1.1.1. Internet of Things (IoT)«««««««««««««««««««««1

1.1.2. Cloud Computing«««««««««««««««««««««««..2

1.1.3. Infrastructure as a Service (IaaS)«««««««««««««««««..3

1.2. Motivation and Problem Statement«««««««««««««««««««3

1.3. Thesis Contributions««««««««««««««««««««««««..5

1.4. Thesis Organization««««««««««««««««««««««««...5

Background 7

2.1. The Internet of Things (IoT)«««««««««««««««««««««.7

2.1.1. General Definition of the Internet of Things (IoT)««««««««««.7

2.1.1.1. Sensors«««««««««««««««««««««««9

2.1.1.2. Actuators«««««««««««««««««««««.....9

2.1.2. Enabling Technologies of IoT«««««««««««««««««...10

2.1.2.1. Hardware«««««««««««««««««««««...10

2.1.2.1.1. RFID«««««««««««««..«..«««..10

2.1.2.1.2. NFC««««««««««««««««««...11

2.1.2.1.3. Wireless Sensor Networks««««««««««11

2.1.2.2. Software««««««««««««««««««««««12

 vii

2.1.2.2.1. Middleware«««««««««««««««...12

2.1.2.2.2. Searching/Browsing««««««««««««..12

2.1.2.3. Architecture««««««««««««««««««««...13

2.1.3. Application Areas for IoT««««««««««««««««««««13

2.1.3.1. Healthcare««««««««««««««««««««««14

2.1.3.2. Supply Chains/Logistics««««««««««««««««..14

2.1.3.3. Smart Transportation«««««««««««««««««...14

2.1.3.4. Smart Infrastructure««««««««««««««««««.15

2.1.3.5. Social Applications««««««««««««««««««..16

2.2. Virtualization«««««««««««««««««««««««««««.16

2.2.1. Definition««««««««««««««««««««««««««.16

2.2.1.1. Server Virtualization«««««««««««««««««...17

2.2.1.1.1. Full Virtualization«««««««««««««...17

2.2.1.1.2. Para-Virtualization«««««««««««««..18

2.2.1.1.3. Hardware Assisted Virtualization«««««««...18

2.2.1.2. Desktop Virtualization«««««««««««««««««19

2.2.1.3. Virtual Networks«««««««««««««««««««.19

2.2.2. Virtualization of IoT Devices««««««««««««««««««..19

2.2.2.1. Node-Level Virtualization«««««««««««««««..20

2.2.2.2. Network-Level Virtualization««««««««««««««.20

2.2.2.3. Node-Level vs Network-Level Virtualization««««««««21

2.3. Cloud Computing«««««««««««««««««««««««««..23

2.3.1. Definition««««««««««««««««««««««««««.23

 viii

2.3.2. Characteristics of Cloud Computing«««««««««««««««...24

2.3.2.1. Multi-tenancy««««««««««««««««««««..24

2.3.2.2. Scalability«««««««««««««««««««««...24

2.3.2.3. Elasticity«««««««««««««««««««««««25

2.3.2.4. Pay-per-use Model«««««««««««««««««««.25

2.3.2.5. Dynamic Provisioning of Resources««««««««««««..26

2.3.3. Advantages and Disadvantages of Cloud Computing««««««««««26

2.3.3.1. Advantages of Cloud Computing«««««««««««««...26

2.3.3.2. Disadvantages of Cloud Computing««««««««««««...27

2.3.4. Service Models in Cloud Computing««««««««««««««««..28

2.3.4.1. IaaS (Infrastructure-as-a-Service)«««««««««««««...28

2.3.4.1.1. Definition««««««««««««««««««28

2.3.4.1.2. IaaS Cloud Architecture««««««««««««..29

2.3.4.1.2.1. Physical Infrastructure««««««««30

2.3.4.1.2.2. Cloud OS Drivers««««««««««30

2.3.4.1.2.3. Cloud OS Core«««««««««««30

2.3.4.1.2.4. Cloud OS Tools««««««««««...32

2.3.4.2. PaaS«««««««««««««««««««««««««.34

2.3.4.3. SaaS«««««««««««««««««««««««««.34

2.4. Bare Metal Provisioning««««««««««««««««««««««««34

2.5. Conclusion«««««««««««««««««««««««««««««.35

Use Case and State of the Art 36

3.1. Use Case««««««««««««««««««««««««««««««36

 ix

3.1.1. Monitoring of Cooling Systems««««««««««««««««««...37

3.1.2. Anti-Fire Systems««««««««««««««««««««««««.37

3.1.3. Items Tracking Systems«««««««««««««««««««««...38

3.1.4. Inventory Management Systems«««««««««««««««««...38

3.1.5. Smart Security Systems«««««««««««««««««««««.38

3.1.6. Smart Energy Systems«««««««««««««««««««««...39

3.2. Requirements«««««««««««««««««««««««««««...40

3.3. State of the Art«««««««««««««««««««««««««««.44

3.3.1. Architectures for IoT IaaS««««««««««««««««««««..44

3.3.2. Summary of the State of the Art of Architectures for IoT IaaS««««««.56

3.3.3. Models and Frameworks for aiding the IoT IaaS«««««««««««...56

3.3.4. Summary of the State of the Art of the Models and Frameworks

for aiding the IoT IaaS««««««««««««««««««««««66

3.4. Conclusion«««««««««««««««««««««««««««««66

The Architecture of the IoT IaaS 68

4.1. High-Level View of the IoT IaaS Architecture«««««««««««««««68

4.2. Detailed View of the IoT IaaS«««««««««««««««««««««..71

4.2.1. Coordinators««««««««««««««««««««««««««71

4.2.1.1. Cloud Coordinator«««««««««««««««««««..72

4.2.1.2. Capabilities Coordinator«««««««««««««««««.72

4.2.1.3. Device Coordinator«««««««««««««««««««.73

4.2.2. Orchestrators«««««««««««««««««««««««««....73

4.2.2.1. Cloud Orchestrator«««««««««««««««««««..74

 x

4.2.2.1.1. Orchestration Plan Generator««««««««««...74

4.2.2.1.2. Orchestration Plan Executor««««««««««....76

4.2.2.2. Capabilities Orchestrator««««««««««««««««....77

4.2.2.2.1. Orchestration Plan Generator««««««««««77

4.2.2.2.2. Orchestration Plan Executor««««««««««..79

4.2.3. Publication/Discovery Entities««««««««««««««««««..79

4.2.3.1. Discovery Engine«««««««««««««««««««..80

4.2.3.2. Publication Engine«««««««««««««««««««80

4.2.4. Interface Mappers«««««««««««««««««««««««..80

4.2.4.1. Bare Metal Device Interface Mapper««««««««««««81

4.2.4.2. Virtual Device Interface Mapper«««««««««««««...81

4.2.5. Repository««««««««««««««««««««««««««..82

4.2.5.1. Physical IoT Device Repository««««««««««««««82

4.2.5.2. Virtual IoT Device Repository««««««««««««««..82

4.2.6. Interfaces«««««««««««««««««««««««««««83

4.3. Procedures««««««««««««««««««««««««««««...88

4.3.1. Procedures within the Layers of the Architecture«««««««««««..89

4.3.1.1. Orchestration«««««««««««««««««««««..89

4.3.1.2. Device Capabilities Management«««««««««««««..90

4.3.1.3. Virtual Device Creation/Device Reservation«««««««««.91

4.3.2. Procedures spanning several Layers of the Architecture««««««««....91

4.3.2.1. IoT Devices Provisioning««««««««««««««««...91

4.3.2.2. IoT Devices Monitoring«««««««««««««««««.94

 xi

4.4. Evaluation of the Proposed Architecture against the Requirements««««««....95

4.5. Conclusion««««««««««««««««««««««««««««...97

Validation of the Architecture 98

5.1. Prototype Architecture Overview«««««««««««««««««««...98

5.1.1. Implemented Scenario«««««««««««««««««««««..98

5.1.2. Description of the Implemented Prototype«««««««««««««..100

5.1.3. Software and Hardware Used««««««««««««««««««..101

5.1.3.1. Advanticsys TelosB SkyMote ± CM5000«««««««««..101

5.1.3.2. Virtenio Preon32 Shuttle with VariSen Module«««««««.102

5.1.3.3. LEGO Mindstorms EV3««««««««««««««««.103

5.1.3.4. Contiki Cooja««««««««««««««««««««..104

5.1.3.5. JVM««««««««««««««««««««««.««105

5.1.3.6. Python-Flask««««««««««««««««««««...105

5.1.3.7. Python Requests Library««««««««««««««««.106

5.1.3.8. MySQL«««««««««««««««««««««««106

5.1.3.9. Programming Languages and IDE Used««««««««««.106

5.2. Prototype Architecture«««««««««««««««««««««««..107

5.2.1. IoT IaaS Prototype««««««««««««««««««««««..107

5.2.1.1. IoT Devices Layer««««««««««««««««««..108

5.2.1.2. Interface C (Int. C)««««««««««««««««««.109

5.2.1.3. IoT Capabilities Management Layer«««««««««««.109

5.2.1.4. Interface B (Int. B) and Interface D (Int. D)««««««««..110

5.2.1.5. IoT Cloud Management Layer«««««««««««««...110

 xii

5.2.1.6. Interface A (Int. A)««««««««««««««««««.111

5.2.1.7. Repository«««««««««««««««««««««...111

5.2.1.8. Anti-Fire Systems Application«««««««««««««...111

5.2.1.9. Monitoring of Cooling Systems Application««««««««..112

5.2.2. Summary««««««««««««««««««««««««««..112

5.3. Performance Evaluations««««««««««««««««««««««...113

5.3.1. Performance Metric««««««««««««««««««««««..114

5.3.2. Experimental Setup««««««««««««««««««««««..115

5.3.3. Results and Analysis««««««««««««««««««««««116

5.3.3.1. IoT Device Provisioning Delay for Setup 1«««««««««116

5.3.3.2. IoT Device Provisioning Delay for Setup 2«««««««««120

5.3.3.3. Orchestration Delay for Setup 2«««««««««««««..123

5.3.3.4. Sensor Threshold ± Actuation Trigger Delay for Setup 3«««...125

5.4. Conclusion««««««««««««««««««««««««««««.126

Conclusion 127

6.1. Contributions Summary«««««««««««««««««««««««127

6.2. Future Research Direction««««««««««««««««««««««130

 xiii

List of Figures

1 Simplified Internet of Things Structure«««««««««««««««««««9

2 Node Level Virtualization: Execution of multiple applications in a general purpose

WSN node«««««««««««««««««««««««««««««...22

3 Network-Level Virtualization: (a) Multiple VSNs over single WSN

(b) Single VSN over multiple WSNs«««««««««««««««««««..22

4 IaaS cloud architecture with its three layers: drivers, core components, and high-level

tools««««««««««««««««««««««««««««««««.33

5 Motivating Scenario: Smart Factory use case««««««««««««««««.40

6 Layered architecture of the proposed IoT network virtualization««««««««...45

7 Virtualization layers in Se-aaS««««««««««««««««««««««48

8 The Architecture of the IoT IaaS«««««««««««««««««««««.52

9 Multi-layer WSN virtualization architecture««««««««««««««««...54

10 The complete architecture showing the NFVI for IoT and the connected

devices Gateway«««««««««««««««««««««««««««..60

11 Architectural Framework for Things as a Service««««««««««««««...62

12 Software Framework for WSN virtualization««««««««««««««««..64

13 High Level View of the Architecture of the IoT IaaS«««««««««««««..70

14 Detailed View of (a) Cloud Manager in the IoT Cloud Management Layer,

(b) Capabilities Manager in the IoT Capabilities Management Layer,

(c) Device Manager in the IoT Devices Layer««««««««««««««««.73

15 Orchestration Plan generated by the Orchestration Plan Generator in the Cloud

Orchestrator«««««««««««««««««««««««««««««..75

 xiv

16 Orchestration Plan generated by the Orchestration Plan Generator in the

Sensing Capabilities Orchestrator««««««««««««««««««««..78

17 Sequence Diagram for Provisioning a Single IoT Device«««««««««««.93

18 Sequence Diagram for Provisioning of Sensing and Actuation IoT Devices««««93

19 Sequence Diagram for Provisioning of Several Sensing Devices««««««««.94

20 Sequence Diagram for IoT Devices Monitoring Procedure««««««««««..95

21 The Advanticsys TelosB SkyMote«««««««««««««««««««..102

22 Virtenio Preon32 Shuttle and VariSen Module««««««««««««««...103

23 EV3 Robot built in our lab for the Proof-of-Concept Prototype from the EV3

Mindstorms Kit«««««««««««««««««««««««««««104

24 Prototype Architecture for the IoT IaaS«««««««««««««««««..107

25 Bare Metal and Virtual Device Provisioning of Virtenio Preon32 Shuttle +

Varisen Module««««««««««««««««««««««««««...119

26 Bare Metal and Virtual Device Provisioning of Advanticsys CM5000

TelosB SkyMote««««««««««««««««««««««««««.119

27 Bare Metal and Virtual Device Provisioning of LEGO EV3 Mindstorms Robot«..120

28 Bare Metal and Virtual Device Provisioning of Virtenio Sensor and EV3 Robot«.120

29 Average IoT Device Provisioning Delay, in milliseconds, for provisioning

2, 4, 8, 16, 32 devices««««««««««««««««««««««««..123

30 Average IoT Device Provisioning Delay, in seconds, for provisioning

10, 100, 200, 400, 1000 devices««««««««««««««««««««..123

31 Average Orchestration Delay, in milliseconds, for orchestrating the services of

2, 4, 8, 16, 32 devices««««««««««««««««««««««««..125

 xv

32 Average Orchestration Delay, in seconds, for orchestrating the services of

10, 100, 200, 400, 1000 devices««««««««««««««««««««.125

33 Sensor Threshold ± Actuation Trigger Delay, in seconds, measured

over 10 iterations««««««««««««««««««««««««««126

 xvi

List of Tables

1 Summary of the Related Works involving Architectures for the IoT IaaS««««««56

2 Summary of the Related Works involving the models and frameworks for aiding the

IoT IaaS«««««««««««««««««««««««««««««««..66

3 Summary of the API to access the IoT IaaS (Interface A)««««««««««««.83

4 Summary of the API for the Bare Metal Provisioning of IoT Devices«««««««..85

5 Summary of the API for Creating a Virtual Actuation Device««««««««««...86

6 Summary of the API for Creating a Virtual Sensing Device«««««««««««..87

 xvii

Acronyms and abbreviations

AMD-V Advanced Micro Dynamics ± Virtualization.

Amazon EC2 Amazon Elastic Compute Cloud.

ANSI American National Standards Institute.

API Application Programming Interface.

AWS Amazon Web Services.

CAN Controller Area Network.

CPU Central Processing Unit.

CRUD Create Read Update Delete.

EPC Electronic Product Code.

EV3 Evolution 3.

GRE Generic Routing Encapsulation.

HTTP HyperText Transfer Protocol.

HVAC Heating Ventilation and Air Conditioning.

IaaS Infrastructure as a Service.

IDE Integrated Development Environment.

I2C Inter-Integrated Circuit.

Intel-VT Intel Virtualization Technology.

IoT Internet of Things.

 xviii

IR Infrared.

IT Information Technology.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

LAN Local Area Network.

nesC Network Embedded Systems C.

NFC Near Field Communication.

NFV Network Functions Virtualization.

NFVI Network Functions Virtualization Infrastructure.

OMNeT++ Objective Modular Network Testbed in C++.

OPNFV Open Platform for Network Function Virtualization.

OS Operating System.

PaaS Platform as a Service.

PC Personal Computer.

PIR Passive Infrared.

REST Representational State Transfer.

RFID Radio Frequency Identification.

SaaS Software as a Service.

SDN Software Defined Networking.

 xix

Se-aaS Sensing as a Service.

SLA Service Level Agreement.

SOA Service Oriented Architecture.

SPI Serial Peripheral Interface.

URI Uniform Resource Identifier.

USB Universal Service Bus.

UID Unique Identification.

UUID Universally Unique Identifier.

VM Virtual Machine.

VMM Virtual Machine Monitor.

VSN Virtual Sensor Network.

WSN Wireless Sensor Network.

 1

Chapter 1

Introduction

This chapter consists of a definition of the key terminologies and concepts which are related to

this thesis. These definitions are then followed by a description of the motivation and problem

statement, and the contribution of this thesis. The last section of this chapter consists of an

overview of how the rest of the thesis is organized.

1.1. Definition

In the section to follow, the definitions of key terms essential to this thesis are provided. The

terms included in this section are Internet of Things, IaaS (Infrastructure-as-a-Service), and Cloud

Computing. These are the terminologies that are most crucial to this thesis.

1.1.1. Internet of Things (IoT)

The Internet of Things refers to a paradigm that “enables physical objects to see, hear, think

and perform jobs by having them “talk” together, to share information and to coordinate

decisions. The IoT transforms these objects from being traditional to smart by exploiting its

underlying technologies such as ubiquitous and pervasive computing, embedded devices,

communication technologies, sensor networks, Internet protocols and applications” [1]. These

physical ‘objects’ involved in IoT are essentially devices that can perform some type of

computation and communication, and all these devices can have differing capabilities. The main

components that make up the Internet of Things include these objects, a network for

communicating data, such as the Internet, and backend servers to handle and process this data. In

 2

fact, the Internet of Things is a very broad domain that is now gaining immense popularity and

providing efficient solutions in nearly all sectors and industries, such as health care, traffic systems,

education, retail, etc. Some examples of the various IoT devices include microcontrollers such as

ESP8266, Arduino, to which external sensors can be attached, sensors and actuators such as

Virtenio Preon32, Lego EV3 Mindstorms, DHT22, Advanticys TelosB Skymotes, etc.

1.1.2. Cloud Computing

Cloud Computing provides on demand access to configurable computing resources (servers,

memory, network, etc.) in the cloud, which require minimal management by the end user. It “refers

to both the applications delivered as services over the Internet and the hardware and systems

software in the datacenters that provide those services. The services themselves have long been

referred to as Software as a Service (SaaS). The datacenter hardware and software is what we will

call a Cloud” [2]. The resources provided by the cloud platforms are provided on a pay-per-use

basis and allow the users to easily carry out dynamic provisioning on a seemingly infinite pool of

computing resources [2]. When these cloud services are made available to the general public using

the pay-per-use model, it is referred to as the Public cloud. When these resources, such as

datacenters, are not made available to the public and are instead utilized internally by an

organization, it is referred to as the Private Cloud. Cloud computing includes three service models

which are: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). IaaS is when cloud providers give users access to servers, networking, storage,

and other such computing resources; PaaS is when the cloud providers provide the users with

software development environments where they can build their own applications; and SaaS is

when the cloud service providers give users access to specific applications or software for them to

use.

 3

1.1.3. Infrastructure as a Service (IaaS)

“Infrastructure as a service (IaaS) is an instant computing infrastructure, provisioned and

managed over the internet” [3]. In simpler words, it is a category of cloud computing that allows

the users to leverage resources like storage, processing, network, computing, and other

“Infrastructural” resources on a pay-per-use or on-demand basis. These resources can be used by

the users to run applications requiring different degrees of computational power, or other software.

It allows the users to cut on the costs of purchasing high cost physical resources such as servers,

operating systems, and other datacentre resources, and instead use the infrastructure provided by

these IaaS Cloud service providers on demand. Examples of some providers of IaaS include

Microsoft Azure, Amazon Web Services (AWS), Google Compute Engine, IBM Cloud etc.

1.2. Motivation and Problem Statement

The emergence of Cloud Computing has made it somewhat possible to provision the

heterogenous IoT devices (sensors, actuators, etc.) in a manner that is scalable, energy efficient,

and suffers minimal latency to some extent. However, the conflicting properties of the cloud and

IoT infrastructure pose many challenges to the successful integration of Cloud computing and IoT.

More specifically, “IoT is generally characterized by real world small things, widely distributed,

with limited storage and processing capacity, which involve concerns regarding reliability,

performance, security, and privacy” [4]. Thus, IoT devices are usually resources constrained and

expensive. On the contrary, “Cloud computing has virtually unlimited capabilities in terms of

storage and processing power, is a much more mature technology, and has most of the IoT issues

at least partially solved” [4]. To address this particular challenge and bridge the gap between these

incompatibilities in the two infrastructures, it is essential to decouple the IoT device services from

 4

the physical IoT devices. The IoT devices (sensors and actuators) can be virtualized through node

level virtualization, which will enable these IoT devices to become multi-purpose by concurrently

running several applications on a single node [5]. The virtualization of these devices will allow the

applications to share the capabilities of these devices and have access to them in a manner similar

to the rest of the cloud infrastructure. It will not only improve the costs, but also provide better

flexibility in terms of IoT device access. Currently there are several IoT devices in the market that

support virtualization, for example, Virtenio Preon 32 Shuttle with Varisen Module, Advanticsys

CM5000 and XM1000 sensors, etc.

However, in order to utilize the IoT infrastructure in a manner similar to the Cloud

infrastructure, it is essential to design and implement an IoT IaaS. This turns out to be a very

challenging task due to the heterogenous nature of the IoT devices and their capabilities. Each IoT

device supports different modes of communication and different types of tools and platforms. In

fact, some IoT devices might not support virtualization at all. Hence the first challenge encountered

in the design of an IoT IaaS is the creation of a high-level interface to access the IoT IaaS, as well

as a low-level interface to access the different IoT devices in a homogenous manner. The second

challenge is to build a mechanism for allowing the publication and discovery of the various IoT

devices and their capabilities. The third challenge would be the need for an orchestration

mechanism to orchestrate the different device capabilities based on the application’s requirements.

The fourth challenge would be to allow virtualization as well as bare metal access to devices. This

will also be helpful in situations when certain devices do not support virtualization at all. The fifth

and last challenge would be to allow the automatic triggering of certain IoT devices based on the

outputs obtained from other IoT devices, for example, dispatching fire-fighting robots

automatically when fire is detected by sensors.

 5

1.3. Thesis Contributions

The contributions made by this thesis are as follows:

• A set of requirements essential to the IoT IaaS architecture.

• Review of the state of the art and its evaluation based on our derived requirements.

• An architecture for the IoT IaaS, with IoT devices such as sensors and actuators as part of

the infrastructure, and virtualized, as well as Bare metal access to the IoT devices.

• High level interfaces to allow access to the IoT IaaS.

• Low level interfaces for accessing the heterogenous IoT devices in a uniform manner.

• Implementation of the prototype and evaluation of its performance metrics.

• A Simulation using Contiki Cooja to measure the scalability performance of the

architecture.

1.4. Thesis Organization

The remaining thesis is organized in the following manner:

Chapter 2 focusses on the background and key concepts associated with this thesis, where each

concept is discussed in detail.

Chapter 3 presents the motivating scenario and also lays down the set of requirements essential

to the IoT IaaS architecture. The state of the art is also reviewed and assessed against these

requirements.

Chapter 4 focuses on the description of the proposed IoT IaaS architecture. Each component of

the architecture is explained along with the various interfaces utilized.

 6

Chapter 5 describes the tools and platforms used for realizing the proof-of-concept prototype.

The implemented architecture is also thoroughly explained followed by detailed explanations of

the performance metrics for the architecture’s evaluation.

Chapter 6 provides a conclusion to the thesis. The overall thesis contributions are summarized

and the future research directions for the proposed architecture are identified.

 7

Chapter 2

Background

The goal of this chapter is to explain all the terms and concepts related to this thesis. The chapter

begins by providing a detailed overview of the Internet of Thing (IoT) including its enabling

technologies and application areas. This is followed by a review of the concept of virtualization

and its various techniques, with special focus on virtualization in IoT devices. This includes node-

level virtualization, which is essential for this thesis. Then, we describe Cloud Computing, its

features and service models with a special focus on IaaS, which is crucial to this thesis. We also

provide a brief description of Bare Metal Provisioning before concluding the chapter.

2.1. The Internet of Things (IoT)

In this section, we present an overview of the internet of things. First, a general definition along

with the simplified structure of the IoT is presented. This is followed by a brief overview of the

key enabling technologies of IoT and its application areas.

2.1.1. General Definition of the Internet of Things (IoT)

The Internet of Things refers to a paradigm that “enables physical objects to see, hear, think

and perform jobs by having them “talk” together, to share information and to coordinate

decisions. The IoT transforms these objects from being traditional to smart by exploiting its

underlying technologies such as ubiquitous and pervasive computing, embedded devices,

communication technologies, sensor networks, Internet protocols and applications” [1]. It can

further be defined as “An open and comprehensive network of intelligent objects that have the

capacity to auto-organize, share information, data and resources, reacting and acting in face of

 8

situations and changes in the environment” [6]. These physical ‘objects’ involved in IoT are

essentially devices that can perform some type of computation and communication, and all these

devices can have differing capabilities. The main components that make up the Internet of Things

include these objects, a network for communicating data, such as the Internet, and backend servers

to handle and process this data. In fact, the Internet of Things is a very broad domain that is now

gaining immense popularity and providing efficient solutions in nearly all sectors and industries,

such as health care, traffic systems, education, retail, manufacturing etc.

Figure 1 [7] shows the main components that constitute the Internet of Things. The first

essential component is the IoT devices, represented as ‘Smart devices’, which make up the entire

infrastructure for the Internet of Things. These devices or ‘things’ are capable of interacting with

other devices on the network as well as with users. These devices must be capable of computation

and some forms of communication. Moreover, these ‘things’ must be context aware, meaning that

they must be able to dynamically adapt to their changing environments or contexts and accordingly

take suitable measures for self-configuration. Some examples of these ‘things’ are sensors,

actuators, smart phones, etc. The second component of the Internet of Things is the Network

Infrastructure, which refers to all the resources that make up this network over which these devices

can communicate. For example, the internet. This network allows these devices to send and receive

data to and from other devices, other servers, or other platforms connected to the network. The

third component is the Cloud and back end servers [7].

Sensors and actuators, the ‘things’ or ‘smart devices’ which make up an essential part of the

IoT IaaS proposed in this thesis, are described below.

 9

Figure 1. Simplified Internet of Things Structure [7]

2.1.1.1. Sensors

Sensors are devices, modules, or machines that can sense the environment and the changes

taking place within it, communicate with other devices or systems to send this data, and

occasionally, perform basic computations on the data being collected [8]. They are always used

with other computing systems/electronics. Nowadays, sensors are used in nearly every system and

have become of wide importance. They are key enablers for IoT and are used in everyday objects

such as Air Conditioning and Heating system thermostats, smart phones, smart home systems,

security systems etc. Some examples of sensors are Virtenio Preon32 with VariSen module,

Advanticsys SkyMote sensors like XM1000 and CM5000, DHT22 temperature-humidity sensor,

PIR motion sensor, Arduino, etc.

2.1.1.2. Actuators

“Actuators perform actions to change the behavior of the environment or physical systems”

[9]. For instance, a robot starts moving when some command is sent to it. “In many situations,

 10

actuator nodes typically have stronger computation and communication powers and more energy

budget that allows longer battery life” [9]. In order to properly function, actuators need an energy

source and a control signal. This signal can come from various other sources, for example, devices

such as sensors, PCs, other IoT devices, or other events taking place in the external environment

of the actuators. The actuators, thus, perform certain actions when triggered. Examples of various

actuators are Lego Mindstorms Robots, relay motors, solenoids, etc.

2.1.2. Enabling Technologies of IoT

In this section, the key enabling technologies of IoT are described. According to [10], there are

several capabilities that allow these smart ‘things’ to interact with and understand their

environments. These capabilities are the key enablers on which IoT relies. In [10], these enabling

technologies have further been divided into 3 categories: hardware, software, and architectures.

2.1.2.1. Hardware

The hardware infrastructure on which IoT is built primarily includes RFID, NFC, Sensor

Networks.

2.1.2.1.1. RFID (Radio Frequency Identification)

“RFID is a short-range communication technology where an RFID tag communicates with an

RFID reader via radio-frequency electromagnetic fields” [10]. The RFID tags contain some form

of data. It allows for tracking as well as identification of the objects with the RFID tags attached

on it. This proves beneficial for IoT. For IoT applications, the data contained in these RFID tags

is mostly Electronic Product Code (EPC). This EPC is essential to IoT as it allows each device in

the IoT network to be uniquely identified, as the EPC is unique for each ‘thing’ [10].

 11

2.1.2.1.2. NFC (Near Field Communication)

NFC is a communication technology that has evolved from RFID and is a communication

standard over short-range. NFC allows devices to communicate via radio communication when

kept in close proximity to each other. Similar to RFID, each device with NFC capability contains

a tag that uniquely identifies the device, also called Unique Identification (UID). Currently, most

smart phones contain the NFC technology and are capable of transferring data to each other

quickly, when kept within few centimetres from each other. In fact, NFC devices can also connect

with objects containing NFC tags that are not powered up, or are passive, for example, smart

posters with NFC tags containing relevant data [10]. The NFC chips have very low power

consumption, and thus NFC is currently one of the most efficient ways of wireless communication.

2.1.2.1.3. Wireless Sensor Networks

Sensors are devices, modules, or machines that can sense the environment and the changes

taking place within it, communicate with other devices or systems to send this data, and

occasionally, perform basic computations on the data being collected [8]. Whenever a collection

of several sensors is utilized as a network, where they are capable of interacting with each other as

well as with the external environment, it is called a wireless sensor network (WSN). “Wireless

sensor networks contain the sensors themselves and may also contain gateways that collect data

from the sensors and pass it on to a server” [10]. It is also possible to have sensor-actuator

networks as part of the WSN. This can allow the networks to sense the environment as well as

perform some action, or interact with the environment in response, which is an essential objective

of IoT. For example, in the case of smart irrigation systems, sensor-actuator networks can allow

detection of low water levels in crops through temperature and humidity sensors, which will in

 12

turn signal the relay motor to turn on in order to water the plants. Thus, sensor-actuator networks

are frequently utilized.

2.1.2.2. Software

Since the IoT hardware and infrastructure comprises of several different types of devices, i.e.

heterogenous devices, it is essential to constantly have new software available in order to allow

interoperability between these devices, as well as the ability to search the data being generated by

these different IoT devices [10]. The key enabling technologies for IoT with regards to software

are described in this section.

2.1.2.2.1. Middleware

In order to provide abstraction to the IoT applications from IoT devices, it is essential to have

an application-independent software in between, known as middleware. The middleware enables

interoperability between heterogenous IoT devices. It “sits between the IoT hardware and data

and the applications that developers create to exploit the IoT” [10]. It facilitates the connection

between the IoT devices and applications irrespective of the underlying networks, hardware,

operating system, etc. This gives the flexibility to developers to simply focus on creating and

deploying new IoT applications instead of worrying about writing different application code for

different types of IoT device platforms [10]. Some examples of middleware solutions that exist

include Hydra, Impala, Lime, MiLAN etc.

2.1.2.2.2. Searching/Browsing

IoT devices tend to generate a large amount of information and data. Moreover, due to their

capabilities to adapt dynamically to their environment, often the information generated by these

devices keeps changing. Therefore, similar to the search engines that currently exist for the World

 13

Wide Web, there needs to be a similar search engine for IoT devices, which can constantly search

the information that these devices generate. Moreover, similar to the current internet browsers,

there is also a dire need for a browser for the IoT, which can interact with the IoT devices, identify

them, and discover their capabilities [10].

2.1.2.3. Architecture

There are several architectures that have been proposed in order to represent, organize, and

structure the IoT [10]. This section aims at exploring these architectures that can support the IoT

devices and their services. In [10], the architectures for IoT have been classified into

hardware/network, software, process, and general. The hardware/network architectures are

proposed in order to handle and provide support for the distributed computing environments for

the heterogenous IoT devices. Examples include peer-to-peer architecture. In order to access and

share services of the IoT smart devices, various software architectures have also been proposed.

Some examples include Service Oriented Architectures (SOA), Representational State Transfer

(REST) model, etc. Certain process-based architectures have also been proposed in order to

provide a structure for the business processes that make use of IoT, for instance, architectures for

structuring workflows. The last category of architectures, general/requirements, includes those

architectures that are generalised, not based on specific categories, since currently there is no single

architecture that is the best fit for IoT. This includes various architectural design concepts that

have been proposed and currently exist in the literature [10].

2.1.3. Application Areas for IoT

With the advancement in technology and the ever-increasing demand for IoT, the number of

domains within which IoT applications can now be used are limitless. There are several categories

 14

within which the IoT applications can be categorized. In [10] and [11], several applications of IoT

are proposed, which are summarized below.

2.1.3.1. Healthcare

IoT applications are being extensively used in the healthcare industry, especially in aiding in

assisted living. Certain tasks such as making decisions based on patients’ symptoms, monitoring

body fluid levels and other bodily changes are now being handled by several IoT applications.

Patients’ monitoring equipment often contain smart sensors that collect the patients’ health data

and make them available to doctors, as well as provide treatments during certain circumstances.

Examples of some smart sensors in the healthcare sector include blood glucose level sensors, blood

pressure sensors, sensors for detecting heart attacks etc. The information collected by these sensors

is sent on to the cloud from where it can be made available as needed [10].

2.1.3.2. Supply Chains/Logistics

Supply chains and logistics industry has been making use of RFID and sensor networks for

tracking and tracing products in manufacturing as well as other parts of the supply chain process.

Currently, IoT applications are improving the processes within the supply chain and logistics

sector by providing up-to-date information in an efficient and reliable manner [10]. IoT

applications are being used for inventory management and tracking in warehouses, monitoring

transportation of the items, decision making processes and analysis in this industry etc.

2.1.3.3. Smart Transportation

Smart transportation, i.e. Intelligent transportation systems, is another area of research which is

being extensively explored. IoT applications are being built to enable smart transportation systems.

Smart transportation refers to a network of smart vehicles, interconnected with each other and

 15

capable of communicating, as well as smart traffic signals, etc. Smart transportation aims at

improving the current transportation system through the use of cloud computing and IoT in order

to make the system more secure, reliable, and efficient for the citizens [11]. Google’s self-driving

cars, vehicles developed by Tesla Inc. are some examples of smart vehicles that are currently being

tested. The main idea is to allow vehicles to use IoT and cloud services to share data with other

vehicles nearby, as well as to analyse the traffic data within its vicinity. One such example can be

a smart car which communicates with the smart vehicles present within a range of a few kilometres

and can thus judge which routes would be less congested than others. It can then suggest the driver

the best path to reach the destination making it possible to avoid getting stuck in traffic congestion.

2.1.3.4. Smart Infrastructure

“Integrating smart objects into physical infrastructure can improve flexibility, reliability and

efficiency in infrastructure operation” [10]. The IoT technology is now being utilized to enhance

the infrastructure of homes, industries, offices, parking lots, public spaces etc., thus, invoking the

concept of ‘smart cities’. Smart homes are gaining increased popularity, where the homes are fitted

with smart infrastructure, such as smart HVAC systems, smart security systems, smart lighting,

smart appliances, smart energy consumption systems etc., which make homes more secure, giving

the resident a superior experience. Similar systems are also being incorporated into offices to

enhance the security and reduce the costs and power consumption. To enable the realization of

‘smart cities’, all of its sub-applications (which include smart transportation, smart healthcare,

smart infrastructure, etc.) must be incorporated. The city of Padova in Italy is one such example

where a smart city framework has been deployed [11].

 16

2.1.3.5. Social Applications

IoT technology is also being increasingly incorporated into social media applications for several

functionalities such as detecting friends, social events, or activities taking place nearby, or fetching

information about the whereabouts and activities of an individual etc. For example, social media

applications such as snapchat now allow people to detect their friends present within a range of a

few kilometers. Another example can be the transfer of data (through NFC or other IoT

technologies) between several smart devices just by bringing the devices in the vicinity of each

other [10]. All these are examples of IoT technologies being integrated into the various social

networking platforms, providing users with a better experience and service.

2.2. Virtualization

This section provides detailed overview of virtualization, which is a key concept utilized

throughout the IoT IaaS proposed in this thesis. First, a general definition of virtualization is

provided, followed by explanations of the various types of virtualizations that currently exist. This

is followed by a brief overview of the techniques to virtualize IoT devices.

2.2.1. Definition

The term Virtualization refers to a technology that “promises a reduction in cost and complexity

through the abstraction or emulation of physical resources (e.g., servers, network links, and host

bus adapters) into logical units” [12]. Virtualization, thus, allows decoupling between the

hardware infrastructure and the software and applications running on the machine. This allows

complete and more efficient utilization of the hardware resources, thus minimizing the overall

costs. To perform this decoupling between the hardware resources and applications running on the

machine, a Hypervisor (also called Virtual Machine Monitor-VMM) is used. A hypervisor allows

 17

one host computer to support multiple guest VMs (Virtual Machines) by virtually sharing its

resources, such as memory and processing [13]. The hypervisor software, which is installed

directly on the system hardware, divides/partitions the hardware resources as needed amongst the

various virtual machines running on top of it. These virtual machines run independently from each

other, in an isolated manner, while the hypervisor manages how they share the underlying

hardware resources. According to [14], virtualization can be of several types, which are as

described below.

2.2.1.1. Server Virtualization

In Server Virtualization, special software is used to virtualize one physical server into many

virtual servers. The virtual servers run in isolation from each other and can run different operating

systems. This allows optimum CPU utilization as the resources are not underutilized, since

multiple virtual servers are running on it, thus reducing the CPU idle time. Server virtualization is

further divided into three types.

2.2.1.1.1. Full Virtualization

In Full Virtualization, the hypervisor has complete control over the resources of the physical

server and is responsible for providing them, as needed, to the different virtual servers. The

“hypervisor creates isolated environment between the guest or virtual server and the host or server

hardware” [15]. Privileged instructions sent by the virtual servers are trapped by the hypervisor.

Moreover, the overall performance of the server is quite slow since the hypervisor needs some

processing power for itself as well. However, each virtual machine server is provided with

complete isolation and maximum security in full virtualization. It also makes the migration and

portability relatively easily as the guest OS can be migrated and run as-is on other virtualized or

 18

physical servers. Some examples of products which provide full virtualization include VMWare

ESXi, Microsoft Virtual Server, etc.

2.2.1.1.2. Para-Virtualization

“Para virtualization modifies the OS kernel in order to replace the non-virtualizable instructions

with hyper calls which can communicate directly with the virtualization layer i.e., hypervisor”

[14]. The guest OS and hypervisor are thus able to communicate with each other. Moreover, the

various guest servers are also not fully isolated (but are partially isolated) and are able to work

together in a more efficient manner. Furthermore, the guest Operating System is modified to be

able to run on the hypervisor, and the hypervisor does not need as much processing power for itself

as it needed in full virtualization. The privileged instructions sent by the guest OS are not trapped

by the hypervisor. Para-virtualization provides much better performance compared to full

virtualization but is not as good when it comes to migration and portability since the guest OS is

modified to be compatible with the hypervisor. An example of a para virtualization project is the

Xen Windows GPLPV.

2.2.1.1.3. Hardware Assisted Virtualization

Hardware Assisted Virtualization is when the features for virtualization are built into the

hardware (CPUs) in order to simplify the virtualization techniques. It thus enables virtual machines

to be run without any modification, and with less overhead compared to full virtualization.

Moreover, “the privileged and sensitive calls are set to automatically trap to the hypervisor and

removes the requirement for either binary translation or paravirtualization” [14]. Examples of

some processors that include these features include AMD-V where Virtual Control Blocks are

used for storing the guest state, and Intel-VT-x where Virtual Machine Control Structures are

responsible for storing the guest state [14].

 19

2.2.1.2. Desktop Virtualization

“Desktop virtualization refers to the virtualization of the computer desktop in order to achieve

security and flexibility of the desktop usage” [16]. In Desktop virtualization, the desktop

environment is completely decoupled from the computing device that is utilized to access it (i.e.

physical client device). This poses an advantage that the user can access their desktop from any

client device. Moreover, desktop virtualization, as a result, also “reduces the need for duplicate

hardware and has other economical aspects” [14]. Some examples of desktop virtualization

software include Citrix XenDesktop, Microsoft Remote Desktop Services, etc.

2.2.1.3. Virtual Networks

Virtual Networks, which can at times also be called Virtual Private Networks allow the user to

believe that they are directly connected to a company’s network or other resources, even if there

is no direct physical link present. The users can utilize any internet network to connect to a virtual

private network that can provide them access to the company’s resources [14].

2.2.2. Virtualization of IoT Devices

Virtualization of IoT devices is more challenging compared to the virtualization of traditional

nodes such as servers, computers, etc. This is because IoT devices possess limited processing

capacity, storage, and might also be battery operated. Their resource-constrained nature requires

more efforts in terms of carrying out effective virtualization in order to realize the true potential of

these IoT devices. It is possible to virtualize the IoT device nodes at node-level and at network

level [17].

These two approaches of virtualizing IoT devices are described in this subsection. Furthermore,

the key differences between these two approaches are also explored within this subsection.

 20

2.2.2.1. Node-Level Virtualization

When virtualization is utilized to allow several applications to run concurrently on a single

sensor node or other IoT device, it is referred to as Node-level virtualization [5]. This technique,

thus, allows efficient utilization of the devices by rendering them multi-purpose. The two main

ways in which node level virtualization is carried out are: Sequential execution and Simultaneous

execution [5]. “Sequential execution can be termed a weak form of virtualization, in which the

actual execution of application tasks occurs one-by-one (in series)” [5]. Sequential execution is,

thus, much easier to implement but is not as efficient since the applications have to wait in order

to execute their tasks and utilize the device resources. Whereas, in the case of simultaneous

execution, “application tasks are executed in a time-sliced fashion by rapidly switching the context

from one task to another” [5]. Even though simultaneous execution is much more complex to

implement, it is beneficial as the waiting times for applications are reduced as context switching

at time intervals allows each application to carry out its task without having to endlessly wait for

more time-consuming applications to finish their execution. Node-level virtualization, thus,

essentially allows applications to share the devices’ resources and capabilities, which is

specifically beneficial in the case of IoT devices (sensor nodes, actuators etc.). In this thesis, node-

level virtualization has been incorporated.

2.2.2.2. Network-Level Virtualization

In Network-Level Virtualization, Virtual Sensor Networks (VSN) are formed. In this type of

virtualization, a subset of the nodes in the IoT network (Wireless Sensor Network) are used to

form VSNs. At a given time, the VSN can be dedicated exclusively to one application, thus

providing it isolation [5]. Moreover “enabling the dynamic formation of such subsets ensures

 21

resource efficiency, because the remaining nodes are available for different multiple applications”

[5]. There are two ways of creating VSNs, one way is to use the same IoT network infrastructure

and create several VSNs over them, or the second way is to have a VSN composed of nodes from

administratively different IoT networks [5].

2.2.2.3. Node-Level vs Network-Level Virtualization

Both node-level and network-level virtualization aim to increase resource utilization and

efficiency within a network of physical IoT devices. According to [5], the general architecture of

node-level virtualization is shown in figure 2, while figure 3 shows the general architecture for the

two types of network-level virtualizations.

While node-level virtualization aims to enable “multiple applications to run their tasks

concurrently on a single sensor node, so that a sensor node can essentially become a multi-purpose

device” [5], network-level virtualization aims to enable the formation of dynamic Virtual Sensor

Networks (VSNs) over the Wireless Sensor Networks (WSNs). This dynamic formation of the

VSNs over a subset of the WSN’s nodes can allow efficient utilization of resources as the

remaining nodes in the network can then be available for other applications. Thus, it can be inferred

that while node-level virtualization targets the increase in the utilization of a single IoT device

through virtualization, network-level virtualization aims to increase the efficiency of a network of

physical IoT devices through virtualization.

 22

 Figure 2. Node Level Virtualization: Figure 3. Network-Level Virtualization:
Execution of multiple applications in a general (a) Multiple VSNs over single WSN

 purpose WSN node [5] (b) Single VSN over multiple WSNs [5]

Node-level virtualization consists of two approaches: sequential and simultaneous execution of

the application task, while the two approaches of network-level virtualization are: creating multiple

VSNs over the same underlying WSN infrastructure, or having a VSN which is composed of WSN

nodes from different administrative domains (depicted in figure 3 (a) and (b)). Although network-

level virtualization increases resources efficiency, it is still possible that the individual devices

within the networks are underutilized, since at a given point in time the device is only a part of one

virtual network and can thus only cater to the needs of the application using this network. This

issue can only be tackled through node-level virtualization, which can allow several applications

to run simultaneously on a single physical device. Thus, often a hybrid of the two techniques is

used to achieve maximum resource, as well as cost efficiency [5].

 23

2.3. Cloud Computing

This section aims at describing Cloud Computing. The section first gives an overview of Cloud

computing, followed by a brief description of some of its unique characteristics. This is followed

by a brief discussion of the advantages and disadvantages of Cloud Computing. It then covers the

service models of Cloud Computing, with special focus on IaaS (Infrastructure-as-a-Service),

which is a crucial concept for this thesis.

2.3.1. Definition

Cloud Computing provides on demand access to configurable computing resources (servers,

memory, network, etc.) in the cloud, which require minimal management by the end user. It “refers

to both the applications delivered as services over the Internet and the hardware and systems

software in the datacenters that provide those services. The services themselves have long been

referred to as Software as a Service (SaaS). The datacenter hardware and software is what we will

call a Cloud” [2].

The resources provided by the cloud platforms are provided on a pay-per-use basis and allow

the users to easily carry out dynamic provisioning on a seemingly infinite pool of computing

resources [2]. When these cloud services are made available to the general public using the pay-

per-use model, it is referred to as the Public cloud. When these resources, such as datacenters, are

not made available to the public and are instead utilized internally by an organization, it is referred

to as the Private Cloud. When the cloud infrastructure is made available for a specific community

of users, it is called Community Cloud, for example a group of universities interconnecting their

infrastructure to provide cloud services to their students, faculty, etc. [18]. Another type of cloud

is the Hybrid Cloud where “the computing infrastructure is a combination of two or more distinct

 24

entities, namely, private cloud, public cloud or community cloud. Each entity remains distinct, but

they are bound together by standardized protocols that permit data and application portability”

[18]. For example, when an organization is unable to handle the customer load on its private cloud,

it may decide to use the services of the public cloud to manage the load. In this case, both private

and public cloud are used.

2.3.2. Characteristics of Cloud Computing

Cloud Computing has several unique characteristics that make it particularly enticing to

organizations as well as independent users. This section aims at briefly describing the

characteristics of Cloud Computing that make it a distinct paradigm today.

2.3.2.1. Multi-tenancy

Cloud Computing supports multi-tenancy. This implies that multiple users share the same

resources provided by the cloud service providers. However, each user (tenant) uses the cloud

platform in an isolated manner, and the data of each user remains separate from the other users.

All the users are unaware of the fact that they are sharing the same resources.

2.3.2.2. Scalability

“Scalability is the ability of a system to sustain increasing workloads with adequate

performance provided that hardware resources are added” [19]. In simpler words, scalability

refers to the ability to process increased workloads on the current infrastructure (scale up) or on

the current plus some additional infrastructural resources (scaling out) without having drastic

impacts on the performance, and without any interruptions. In order to maintain the performance

when the load increases, cloud computing can allow either vertical scaling, i.e. scaling up within

the existing infrastructure, or horizontal scaling, i.e. scaling out to additional infrastructure. The

 25

infrastructural resources are usually of pre-planned capacity. When the application demands less

resources, the IT manager can scale down the resources statically and thus reduce costs. Thus, in

scalability, the resource allocation is such that it can suffice the maximum predicted workload

without suffering significant performance degradation. Furthermore, as mentioned in [19], “The

scalability of a system including all hardware, virtualization, and software layers within its

boundaries is a prerequisite in order to be able to speak of elasticity”.

2.3.2.3. Elasticity

“Elasticity is the degree to which a system is able to adapt to workload changes by provisioning

and deprovisioning resources in an autonomic manner, such that at each point in time the

available resources match the current demand as closely as possible” [19]. In simpler terms,

Elasticity refers to the ability to dynamically add or remove resources based on the needs of the

users. These resources could be any of the cloud computing resources such as servers, storage

resources, network resources, etc. Elasticity is a main feature of several public cloud platforms

that rely on the pay-per-use model. It is closely associated with cloud solutions that provide

horizontal scaling (scale-out). Elasticity allows cost efficiency as the users only pay for what they

use. When the workloads are high, more resources are added and the users pay more, whereas

when the workload is less, the users pay less since resources are removed. Thus, elasticity gives

the users the illusion of there being an infinite pool of resources at their dispersal.

2.3.2.4. Pay-per-use Model

Cloud Service Providers provide a pay-per-use or pay-as-you-go model to the customers. This

essentially means that the users only pay for the services and infrastructure that they use. The

 26

customers are billed based on several criteria, such as the number of hours or usage, workload,

type of resources being used, etc.

2.3.2.5. Dynamic Provisioning of Resources

“One of the key features of cloud computing is that computing resources can be obtained and

released on the fly” [20]. Cloud computing makes it very easy for service providers to obtain

resources based on the current demand. If the demand increases, they can easily acquire more

resources, or release them when the demand decreases, thus lowering the cost of operating [20].

2.3.3. Advantages and Disadvantages of Cloud Computing

With the rapid growth of Cloud Computing, more and more users and organizations are starting

to rely on its services for better managing their costs and enhancing the overall functioning of their

organizations. In this section, we review the advantages that Cloud Computing poses, as well as

its disadvantages.

2.3.3.1. Advantages of Cloud Computing

According to [18], Cloud Computing has the following advantages:

• It allows organizations to reduce their capital expense as they do not need to purchase their

own new infrastructure but can instead use the Cloud infrastructure at reasonable costs.

• Cloud computing provides a plethora of software systems and other services on a pay-per-

use basis.

• Cloud Computing provides the users access to scalable and elastic infrastructure on

demand. This allows organizations to increase their computing power by requesting the

cloud resources as needed, thus, giving the illusion of infinite availability of resources.

 27

This can be especially advantageous for start-up companies that can lower their investment

costs by making use of the cloud resources and requesting more resources as needed.

• Cloud Service Providers and organizations sign Service Level Agreements (SLAs) which

assure the quality of the service provided by the service providers to the organizations.

• Cloud services can be used by organizations for automatic backing up of data. In the case

of server crashes or data corruption this will prove beneficial for immediate recovery of

data.

2.3.3.2. Disadvantages of Cloud Computing

There are several advantages in addition to those mentioned above. However, there are also

certain disadvantages or risks that Cloud Computing can pose. These are listed below.

• Since access to the Cloud Computing infrastructure requires a constant connection, such

as connection to the internet, etc., if the connection gets disrupted then the access to the

Cloud services also gets cut off. This can be mitigated by having backup independent

modes of connection to the Cloud Service Provider’s services.

• The exchanging of data back and forth between the user and the Cloud Service over a

public connection, such as the internet, can lead to security threats, such as eavesdropping

by malicious third parties, corruption or stealing of data while it is being sent, etc. To avoid

this issue, strong data encryption techniques need to be utilized along with other forms of

security in order to make the access to the Cloud Services and exchange of data as secure

as possible.

• Due to the lack of standardization of the services provided by different Cloud Service

Providers, it becomes tedious for an organization to back-up and move all of their data onto

a different Cloud platform in case the vendor they currently use is unable to provide the

 28

desired quality of service, or declares bankruptcy. Such a situation can be mitigated if the

organization considers vendors whose services are similar to the standards used by other

vendors, thus allowing minimum software rewriting in case the vendor needs to be

changed.

• Another disadvantage is when the Cloud Service providers and the users/organization using

the services are both located in different countries. In this case, if the data gets corrupted

or stolen, legal problems can arise. To avoid such a situation, the Service Level Agreements

should clearly state what laws should apply during such a situation.

2.3.4. Service Models in Cloud Computing

Cloud computing includes three service models which are: Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS is when cloud providers give

users access to servers, networking, storage, and other such computing resources; PaaS is when

the cloud providers provide the users with software development environments where they can

build their own applications; and SaaS is when the cloud service providers give users access to

specific applications or software for them to use.

2.3.4.1. IaaS (Infrastructure-as-a-Service)

IaaS is the main focus of this thesis. This section provides a brief overview of IaaS. First, we

define Infrastructure as-a Service, followed by a detailed overview of its architecture and the layers

into which it is organized.

2.3.4.1.1. Definition

“Infrastructure as a service (IaaS) is an instant computing infrastructure, provisioned and

managed over the internet” [3]. In simpler words, it is a category of cloud computing that allows

 29

the users to leverage resources like storage, processing, network, computing, and other

“Infrastructural” resources on a pay-per-use or on-demand basis. These resources can be used by

the users to run applications requiring different degrees of computational power, or other software.

It allows the users to cut on the costs of purchasing high cost physical resources such as servers,

operating systems, and other datacentre resources, and instead use the infrastructure provided by

these IaaS Cloud service providers on demand. The role of the Cloud IaaS providers is to only

provide the required hardware of appropriate capacity. In addition, several users utilize the

hardware provided by the vendors at the same time. Thus, “as different customers may deploy

their own operating systems and applications running on them, the servers are enveloped by a

layer of software which makes them behave like the hardware system demanded by the user” [18].

This implies that virtualization is required, where several different types of virtual machines can

be supported. This is achieved by running the hypervisor. IaaS allows multitenancy, and

companies usually provide an Application Programming Interface (API) for users to easily be able

to access the hardware [18]. Examples of some providers of IaaS include Microsoft Azure,

Amazon Web Services (AWS), Google Compute Engine, IBM Cloud etc.

2.3.4.1.2. IaaS Cloud Architecture

According to Moreno-Vozmediano et at (2012) [21], the IaaS Cloud Architecture is divided into

distinct layers, which are shown in figure 4. The Cloud IaaS comprises of two main layers, which

are the Physical Infrastructure and the Cloud Operating System. This section briefly describes the

components present within this IaaS Cloud Architecture, which is responsible for managing the

infrastructure (both physical and virtual), as well as the provisioning of resources.

 30

2.3.4.1.2.1. Physical Infrastructure

The physical infrastructure comprises of all the resources present in the data centre, which are

servers, networks, storage units, etc. It is the lowest layer in the architecture.

2.3.4.1.2.2. Cloud OS Drivers

This layer includes the 2 components: The Physical Infrastructure Drivers and the Cloud

Drivers, as shown in the figure 4. These drivers and adapters are utilized by the Cloud Operating

System to interact with the different virtualization technologies that permit the abstraction of the

underlying infrastructure. These virtualization technologies could include the hypervisor, storage

drivers, etc.

2.3.4.1.2.3. Cloud OS Core

The Cloud OS Core comprises of several components such as the VM Manager, Network

Manager, Storage Manager, etc. These components utilize the underlying Cloud OS drivers to

manage the virtual infrastructure, deploy the virtual infrastructure as well as manage it after

deploying. The components within this layer are as follows:

• Virtual Machine Manager: The Virtual Machine Manager manages the entire life cycle

of the Virtual Machines. It is responsible for performing the VM actions such as deploy,

resume, suspend, shut down, migrate etc. based on the commands sent by the user. “To

perform these actions, the VM manager relies on the hypervisor drivers, which expose the

basic functionality of underlying hypervisors, and VMware to avoid limiting the cloud OS

to a specific virtualization technology” [21].

• Network Manager: The Network manager is responsible for managing the instantiation

of all the possible networks on the physical network infrastructure. It uses the network

 31

drivers for the provisioning of the virtual networks and allows the services to be accessible

by external users through the management of the interconnection of various service

components.

• Storage Manager: “The storage manager's main function is to provide storage services

and final-user virtual storage systems as a commodity” [21]. The storage services provided

to the user need to be scalable, reliable, available, easily manageable, and high performing.

In order to suffice these requirements, the Storage Manager uses the storage drivers, which

provide abstraction and allow the storage resources to appear as one, thus, enabling the

storage manager to manage them easily based on the users’ needs.

• Image Manager: The Image Manager is responsible for efficiently managing all the

different VM images used by different users. These VM images have different

configurations, different operating systems, etc. The Image Manager is also responsible for

ensuring the security of the VM images.

• Information Manager: The Information Manager monitors the state of each VM, servers,

and other infrastructural components and collects information on it. It, thus, ensures that

each component is functioning normally and maintaining the expected level of

performance.

• Authentication and Authorization: This component is responsible for authenticating the

users and administrators in order to create a secure cloud environment, as well as give the

customers access to authorized resources.

• Accounting and Auditing: This component is responsible for providing the billing

information for each user (accounting), as well as monitoring the users’ activities in the

 32

cloud resources indicating which resources were accessed when and what operations were

performed on these resources.

• Federation Manager: This component allows the Cloud OS to access remote and partner

cloud infrastructures managed by similar or public cloud providers. It provides the basic

mechanisms such as deployment, authentication, runtime management, etc. as well as

several advanced features depending on the design and capabilities of the Federation

Manager.

2.3.4.1.2.4. Cloud OS Tools

The Cloud OS Tools layer comprises of components that allow the IaaS to be accessible by

external users and organizations. It includes several components such as Administrator Tools,

Service Manager, Scheduler, and Cloud Interfaces, which are briefly described below.

• Scheduler: The scheduler is responsible for managing the scheduling within the cloud

infrastructure. Its role is to decide which VM will get access to the system resources, and

which physical CPUs and other resources will be assigned to the VMs, as well as which

VM will be deployed on which physical server.

• Administrative Tools: This component is responsible for providing the different

interfaces and tools that will allow the users and administrators to perform several tasks on

the Cloud OS. For example, tasks such as shutting down or starting servers; deploying,

shutting down, suspending VMs etc.

• Service Manager: “The cloud OS should be able to manage and support virtualized

multitier services. A multitier service can comprise several component/tiers with some

intrinsic dependencies among them” [21]. The role of the Service Manager is to

accept/reject services depending on the resources available and the requirements of the

 33

service, and manage the entire life cycle of the accepted services, which would include

deployment, canceling, suspending, etc.

• Cloud Interfaces: Cloud interfaces allow the services of the Cloud to be exposed to the

users and organizations. This would involve standardized APIs, which the users can use to

access the cloud services. Most cloud service providers provide their own APIs such as

Amazon’s EC2, etc.

Figure 4. IaaS cloud architecture with its three layers: drivers, core components, and high-level tools [21]

 34

2.3.4.2. PaaS

The PaaS is built on top of the IaaS. In PaaS, the vendors provide the users with an

environment/platform where they can develop their applications. This includes providing the

operating system, deployment tools, programming languages, and the application program

development tools[18]. Some examples of PaaS include Windows Azure by Microsoft, IBM’s

SmartCloud, Google App Engine, etc.

2.3.4.3. SaaS

In SaaS, the vendors build applications that run on the IaaS or on their own servers. These

applications are then provided to the customers on a pay-per-use basis. The customers use this

application software simultaneously by connecting with it through the internet. For instance, the

email applications provided by various companies like Google, Yahoo, etc. are one such example.

Several other examples include third party customer relationship management software on the

cloud, etc. [18].

2.4. Bare Metal Provisioning

Bare metal provisioning refers to allocating the entire server hardware to the

user/organization/application. “Consequently, applications can run natively on the host and fully

utilize the underlying hardware. However, this is a single tenant option as unused hardware

resources cannot be shared or re-used by others within the data center” [22]. Bare metal

provisioning does not allow any form of virtualization, and the hardware remains fully dedicated

to the user/application. Furthermore, since the provisioning of a server as bare metal allows the

direct installation of an operating system, it is specifically advantageous for running latency

sensitive tasks that require significant processing power. Moreover, since the user is the only tenant

 35

on the bare metal server, it gives the user better control over the resources. However, the single

tenancy of the bare metal resources often leads to decreased overall utilization rates of the

hardware, and thus, it is often not cost effective [22].

2.5. Conclusion

In this chapter, we discussed all the essential terms and concepts crucial to this thesis. We began

by providing an overview of the Internet of Things (IoT), its enabling technologies and application

areas. We then described virtualization and covered its definition, types and techniques. We also

discussed briefly the techniques to virtualize IoT devices. Next, we discussed Cloud Computing,

its characteristics and service models with special focus on IaaS. Lastly, we provided a brief

overview of Bare Metal provisioning before concluding the chapter.

The next chapter presents the motivating scenario and also lays down the set of requirements

essential to the IoT IaaS architecture. The state of the art is also reviewed and assessed against

these requirements.

 36

Chapter 3

Use Case and State of the Art

In this chapter we first provide a motivating use case for the IoT IaaS. The requirements of the

IoT IaaS are then derived with the help of this use case. Finally, the chapter focuses on evaluating

the current state of the arts against these derived requirements and obtaining conclusive results.

3.1. Use Case

The use case considered in this thesis is a ‘Smart Factory’ scenario. The goal is to make product

manufacturing factories, such as pharmaceutical manufacturing factories, or cellular devices

manufacturing factories smarter and more efficient. Applications of IoT can enhance the

functioning of these factories by improving their performance, making them more cost and energy

efficient, and also enhance their risk/hazard handling systems.

In particular, the case of Pharmaceutical factories is considered. The pharmaceutical industry

is essential in enhancing the health care of any country and, thus, making it more efficient is

necessary. Making the factory smart would allow automation of the manufacturing process, as well

as better monitoring and control over the equipment. The idea is to use IoT technologies to enhance

the performance of the pharmaceutical factories in a number of ways, for instance, by monitoring

the performance of the equipment, by efficiently tracking the products, by ensuring the proper

storage of cold chain products, by improving the efficiency of fire and hazard handling systems,

by enhancing the security systems etc.

In order to improve the pharmaceutical factory’s performance, as well as handle risks in a better

and efficient manner, several IoT applications, along with the required infrastructure (such as

 37

sensors and actuators) can be deployed into factories. The Smart Factory Scenario is depicted in

figure 5. The following types of IoT applications can be utilized for this purpose:

3.1.1. Monitoring of Cooling Systems

Pharmaceutical factories always contain or manufacture certain cold chain products. These

products are those that require very low or refrigerated temperatures in order to remain usable.

These products could include certain temperature sensitive medicines, vaccines, etc. In order to

enhance the working of these cooling systems and make them more efficient, IoT sensors can be

deployed to monitor the cooling systems in areas where these products are kept. This would allow

continuous monitoring of these spaces and immediate control of the cooling system without much

human interference. This application could require IoT devices for temperature sensing, humidity

sensing, and a mechanism to control the HVAC systems. For example, the sensors could constantly

detect the temperature and humidity levels within the specific area where environment sensitive

products are kept, and when the environment conditions in the area become unsuitable for the

products, the HVAC systems are immediately controlled to mitigate the situation.

3.1.2. Anti-Fire Systems

Pharmaceutical factories contain certain flammable items and materials such as acetone, plastic

powder dust etc. Due to the presence of these substances it is essential to have an efficient Anti-

Fire System in place to allow early detection and proper mitigation of these situations. The Anti-

Fire Systems application could require temperature sensing, humidity sensing, smoke detection,

firefighting robots. For example, the sensors can be utilized to keep checking for potential fire

hazards or detect fires. When a fire is detected, firefighting robots can be immediately dispatched

to extinguish the fire.

 38

3.1.3. Items Tracking Systems

It is important to keep track of all the products and items present in the factory, where they are

kept, where they have been moved to etc. This is essential to avoid misplacing or losing the

products, since these products could incur significant costs to the pharmaceutical factory. Real-

time tracking of these products within the factory is thus necessary. This Items Tracking

application could require RFIDs (tags and readers), and access to databases. For example, the

location of the items in the factory can be tracked by RFID tags in real time.

3.1.4. Inventory Management Systems

In a factory, it is essential to have an effective inventory management system. Inventory

management includes updating the databases with the quantities of each item, most up-to-date

information on each product, etc. In pharmaceutical factories, this is essential too. Having an

efficient inventory management system will allow the factory to know exactly which products are

sufficiently available, and which need to be produced or ordered as they are low in stock. This

will, in turn, allow cost-savings as no excess products will be produced/ordered since the most up-

to-date information will be available on each item. This application would require RFIDs (tags and

readers), database access and management. For example, the RFID tags associated with each item

will contain information on that item, which can be updated or modified. These tags will then

allow the databases to have the most up-to-date information on each item in the inventory.

3.1.5. Smart Security Systems

An efficient security system is essential in any factory to ensure that unauthorized personnel

cannot access the factory, as well as to ensure no thefts, etc. IoT Applications can be utilized to

enable a smart and efficient security system that can detect such unauthorized access and

 39

immediately issue alerts, notify the respective authorities, etc. Especially in the pharmaceutical

factories, where expensive and specialty drugs/vaccines etc. are prepared, which may not be

available to the general public or have limited distribution, the security of these products is

essential. Thus, a smart security system is essential in the pharmaceutical factories. The Smart

Security Systems application could require motion sensors, alarms, and other devices for issuing

alerts or notifying authorities. For example, motion sensor-alarm systems can be deployed. The

motion sensors can be activated when the factory operating hours end. If any unauthorized motion

is detected, alarm modules can be triggered, and alerts can be sent to the respective authorities.

3.1.6. Smart Energy Systems

In order to reduce the costs of the factories, energy efficient systems need to be enabled. In

pharmaceutical factories, there are several equipment that are used for preparing medicines and

other products, which consume a lot of energy and incur a lot of costs to the factory. Moreover,

lots of workers work in these factories and, thus, proper lighting and ventilating systems are also

in place, which incurs additional costs. Thus, a smart energy system is needed that can detect when

one section of the factory is not being used and automatically turn of the lights, ventilation, and

other non-essential electric equipment in that area. This will not only reduce overall costs but will

also allow the factories to be more environment friendly and consume less energy. This Smart

Energy Systems application would require motion sensors, access to systems for controlling

electricity, etc. For example, the motion sensors at the factories can detect motion in the areas of

the factories where workers are present. When no motion is detected, i.e. no worker is present, a

signal can be sent to turn off the lights, and other non-essential electronic equipment in that area.

This can allow lower energy consumption as well as lower electricity costs.

 40

Figure 5. Motivating Scenario: Smart Factory use case

3.2. Requirements

The first requirement that our IoT IaaS must fulfill is node level virtualization of the IoT

devices in order to allow better and more efficient utilization of the resources.

Node level virtualization will prove beneficial in our use case as well, since most of the

applications in our ‘Smart Factory’ use-case require IoT devices that are common (sensors,

actuators). To increase the efficiency of the factory and to reduce the costs spent on the

infrastructure, it is essential that many applications share the same physical IoT devices. The

applications can send requests for virtualizations of the physical IoT devices and then use these

virtual devices. For instance, the ‘Anti Fire Systems’ application and the ‘Monitoring of Cooling

Systems’ application can share the temperature and humidity sensors, since both the applications

 41

involve detecting the temperature and humidity of the environment after certain time intervals in

order to take specific actions. Similarly, the motion sensors can be shared by the ‘Smart Security

Systems’ and the ‘Smart Energy Systems’ application. The ‘Smart Security Systems’ can use these

motion sensors to identify motion after factory operating hours in order to detect unauthorized

access, while the ‘Smart Energy Systems’ can use these motion sensors to detect motion in the

specific factory areas and thus, turn the lights and equipment off when no motion is detected for a

considerable period. Node level virtualization can enable this sharing, as the physical IoT devices

will be virtualized for each application depending on the parameters specified by the application,

and the application can then use the specific virtualization created for it. These virtualizations on

the IoT devices are run simultaneously. Thus, these applications should be able to use the particular

IoT sensors or actuators concurrently, and in order to support this scenario the IoT IaaS must

support node level virtualization.

The second requirement of the IaaS would be to have a publish and discovery mechanism

that can allow the IoT devices’ capabilities to be stored and queried as needed.

As is evident from the Smart Factory scenario, in order to efficiently handle all the deployed

infrastructure and use it efficiently, there is a need for a Repository which will contain information

about all the physical devices available in the IaaS. This is essential in order to create

virtualizations on, or reserve devices that can fulfill the requirements of the applications requesting

the resources. For instance, if the IaaS receives requests from the applications in the Smart Factory,

it must be able to search for an appropriate physical device which can meet the needs of

application, and further reserve it or create virtualizations on it. In order to achieve this, the

information about the capabilities of each device can be published in a database, i.e. Repository,

 42

from where the IaaS can easily discover this device. Thus, our second requirement is necessary for

the IoT IaaS.

The third requirement of the IaaS is to have an orchestration mechanism to allow the

orchestration of different device capabilities.

This is critical for our use case as well, since some applications in the Smart Factory scenario

require the services of several IoT devices for their functioning. An orchestration mechanism needs

to be in place to allow an application to get access to several devices as needed. Moreover, this

orchestration mechanism is essential to ensure that the various IoT devices work together as one

unit to achieve the task of the IoT application.

For example, the ‘Anti-Fire Systems’ application requires the temperature sensor and humidity

sensor to sense potential fire hazards. It also needs access to the robot which will be dispatched to

extinguish fires in case the temperature falls outside a threshold. To allow the ‘Anti-Fire Systems’

application to use all of these devices, an orchestration mechanism is needed, which can allow for

the creation of virtualizations for each of these devices and orchestrate them to be used by the

application.

Similarly, the ‘Monitoring and Cooling Systems’ application requires temperature sensing,

humidity sensing, and access to the HVAC system in order to control it. Thus, the orchestrator

would need to virtualize the temperature sensor and humidity sensor to be used by the application.

The orchestrator would also need to provide the application with the HVAC control actuator. All

of these services would need to be orchestrated and given to the application to be used in

conjunction.

Another example is the ‘Smart Security Systems’ application, which would need access to the

motion sensor and the alarm module. Thus, the orchestrator would again need to orchestrate these

 43

two services and provide it to this application. All these applications would not be able to function

without the provision of an orchestration mechanism within the IaaS.

The fourth requirement that our IoT IaaS must fulfill would be to have bare metal access

to the IoT devices.

At times it is possible that an application might need hardware that remains fully dedicated to

the specific application and is not virtualized and shared with any other application. In such a

situation, this requirement becomes critical for the IoT IaaS. For instance, in our ‘Smart Factory’

scenario, the ‘Anti-Fire Systems’ application would require exclusive access and complete control

over the fire-fighting robots in order to immediately dispatch them during hazardous situations.

However, if these robots are being utilized by other applications, then the ‘Anti-Fire Systems’

application might not be able to utilize the full capabilities of the robot, or the robots might not

perform efficiently to mitigate the fire hazard since other applications are also using them

simultaneously. Hence, in such a scenario, there needs to be a mechanism to provision the physical

devices as bare metal, thus allowing the application to use the device as-is and have complete

control over it. Moreover, since the physical device is used as is without any middleware for

virtualization, bare metal provisioning poses an additional advantage of supporting tasks that are

latency sensitive. Thus, the ‘Anti-Fire Systems’ application, which is a latency sensitive

application, would benefit from this bare metal provisioning since the robots will be dispatched

immediately without significant delay.

Finally, the fifth and last requirement of the IaaS would be the ability to control and use

actuators as needed by the application.

This requirement becomes critical for the IoT IaaS when applications request for actuation

capabilities from it. For instance, the applications within the Smart Factory scenario require both

 44

sensing as well as actuation capabilities. The ‘Anti-Fire Systems’ application would require

firefighting robots, which would need to be dispatched in case of fire hazards. Similarly, the

‘Monitoring and Cooling Systems’ application would require access to an actuator to control the

HVAC system in situations when the temperatures increase beyond the specified threshold in the

cooling areas. Therefore, it is essential that besides providing sensing capabilities, the IaaS also

provide actuation capabilities to allow the applications to perform certain controlling/actuating

tasks.

3.3. State of the Art

In this subsection, the current state of the art is analysed and evaluated against our proposed

requirements. For this purpose, the state of the art is divided into two categories. First the state of

the art involving complete architectures for the IoT IaaS is analyzed and summarized. This is

followed by an analysis and summary of the state of the art involving models and frameworks that

can aid the IoT IaaS.

3.3.1. Architectures for IoT IaaS

There currently exist very few architectures for the IoT IaaS that have been analyzed in this

subsection. Each of these works is first discussed in detail and then evaluated against our set of

derived requirements.

In the work titled “Cloud Based IoT Network Virtualization for Supporting Dynamic

Connectivity among Connected Devices”, Ullah et al. [23] propose a concept for building a

dynamic virtualized IoT network over the cloud environment. These IoT devices can belong to

different domains, are interconnected, and their virtual objects are utilized for the creation of this

network over the cloud. Figure 6 shows the architecture proposed in this work. To begin the

 45

process, the IoT devices first register themselves by posting their profile information to a pre-

configured virtualization server. To do this, a registration request is sent by the devices. Next, the

virtualized objects are created for these registered IoT devices which are stored in this

virtualization server. Whenever a user sends a request based on certain criteria and with the desired

settings, this request is sent to the Controller component present within the Virtualization Layer

of the architecture. This Controller is responsible for retrieving the virtual objects from the

virtualization server that match the criteria specified in the users’ requests, as well as manipulating

these virtual objects to obtain the required network settings. To obtain data from the virtual objects

an activation command can be sent to them. Moreover, a mapping list is maintained that can be

used to retrieve the mapped virtual object to which an actuation command can be sent. The paper

presents three use cases: Automatic Door Opening Application, Fire Safety Application, and

Indoor Environment Application. OMNeT++ is used for simulating the virtualization networks,

which include the client, server, and the IoT device nodes. A local gateway node is also present in

this simulation that allows the IoT device nodes to be connected to the virtualization server.

Figure 6. Layered architecture of the proposed IoT network virtualization [23]

 46

In addition, there is also a dedicated interface that permits the applications to express the

number of IoT devices they require, along with the specifications and settings of these devices.

However, there is no mention of any high-level APIs for interacting with the gateway node or any

sort of cloud access interface.

 On evaluating the architecture proposed in this work against our derived requirements, the

following points were observed:

1. Node Level Virtualization: In this work, for every IoT device, a corresponding virtual

object is created. Moreover, a concept is proposed to build a dynamic network of these

virtual objects, based on the needs of the application. The virtual networks on top of the

physical IoT devices are then utilized by the application. This implies that this work makes

use of network level virtualization, and not node level virtualization. Thus, our first

requirement of node level virtualization is not met.

2. Publication and Discovery Mechanism: In this work, since initially each IoT device

registers and posts its specification by sending the server a registration request, and the

Controller can later discover these device profiles, the second requirement of a ‘Publication

and Discovery mechanism for IoT devices’ is met.

3. Orchestration Mechanism: The Controller module, proposed in the architecture specified

in this work, is responsible for orchestrating the various virtual objects to dynamically form

a network based on the application’s specifications. Thus, the third requirement for an

orchestration mechanism is met by this work.

4. Bare metal access to IoT devices: The main focus of this work is to create a virtual

network using the virtual objects of the IoT devices. There is no mention of any provision

 47

to access the physical IoT devices as bare metal. Hence, the fourth requirement of having

bare metal access to IoT devices is not met.

5. Ability to control and use Actuators: The proposed work highlights the ability to control

virtualized actuators in a similar manner to the virtual sensors. Moreover, the Controller

module contains a set of simple rules to determine whether to send the actuation command

to the actuator or not based on the obtained sensor output. Hence, the fifth requirement

pertaining to the ability to control and use actuators is met in this work.

Guerreiro et al. [24] present a resource allocation model for assigning sensor and cloud

resources to the clients/applications. The Sensing as a Service (Se-aaS) paradigm used in this work

allows multi-client access to these sensor resources as well as multi-supplier deployment. The

work also proposes a heuristic algorithm based on Se-aaS.

As shown in figure 7, the registered physical sensors are virtualized to allow management and

customization of the IoT devices according to the needs of the applications/clients/consumers.

Many virtual sensors can be grouped together to achieve the applications’/clients’ needs.

One of the main contributions of this work is to enable the software components to have

bindings to mashups managed in the cloud. Each of these mashups consists of a workflow that

combines one or more devices. This allows the events to be processed and actuation commands to

be triggered in the cloud, based on the workflows of the mashup. Only the final data is then

delivered to the application. The sensors and data are shared by the clients/applications through

the dedicated instances of each distinct type of sensor.

 48

Figure 7. Virtualization layers in Se-aaS [24]

The proposed resource allocation model was evaluated against our requirements and the

following points were observed:

1. Node Level Virtualization: Since the resource allocation model allows several

applications/clients to share the same sensor devices (through their virtualizations), the first

requirement of node level virtualization is met by this work.

2. Publication and Discovery Mechanism: In this work, there is no mention of any kind of

registry service for publishing the capabilities of the IoT devices or any discovery service.

It is assumed that the physical devices are registered in the cloud. Hence the second

requirement of a publication and discovery mechanism is not met by this work.

3. Orchestration Mechanism: The ‘mashups’ seen in the architecture of this work somewhat

mimic the role of an orchestrator. The mashups (workflows), for instance, allow for

 49

actuations to be triggered based on the outputs of certain virtual sensors. This allows for a

proper mechanism to orchestrate (mashup) these virtual devices and only deliver the final

data of interest to the applications/clients. Thus, the third requirement of an orchestration

mechanism is met by this work.

4. Bare metal access to IoT devices: The work only proposes virtualizing all the registered

physical sensors to be used by applications/clients through the mashups in the cloud.

However, there is no mention of any mechanism to allow these IoT devices to be used as

bare metal by these applications/clients. Thus, the fourth requirement of having bare metal

access to the IoT devices is not met in this work.

5. Ability to control and use actuators: The architecture proposed in this work is Se-aaS

(Sensor as a Service). Its main focus is to virtualize the registered physical sensors for

usage. Even though the ‘mashups’ proposed in the work do mention triggering actuations,

there is no mechanism mentioned to virtualize the physical actuators in a manner similar

to the physical sensors. Hence the fifth requirement for handling and using actuators is not

met.

Atzori et al. [25] in their work titled “SDN&NFV contribution to IoT objects virtualization”,

aim to provide IoT devices “as a Service” i.e. “Smart Devices as-a-Service” (SDaaS) to the users

through virtual images, similar to [24]. However, the main aim of this work is to design a novel

infrastructure and paradigm to enable the “deployment of new personal IoT services inside the

infrastructure provider premises” [25]. The idea is to provide the users with the IoT services

through the virtual objects of the IoT devices present at the service provider’s end, instead of

physically placing the IoT devices in the users’ homes/premises, such as network-attached storage

servers, sensors, set-top boxes etc. The design proposed in this work utilizes Network Functions

 50

Virtualization (NFV) and Software Defined Networking (SDN) in order to create virtual overlay

networks for each user. These virtual overlay networks allow the users to connect to the virtual

images of the IoT devices required for the services they need and provides the level of isolation

and security similar to LAN (Local Area Network). On evaluating this work with our requirements,

the following were observed:

1. Node Level Virtualization: In this work, a virtual overlay network is associated with each

user. This virtual network is deployed on top of the network of physical IoT devices.

Moreover, each physical IoT device is associated with only one virtual object, and there is

no mention of any possibility of running several virtualizations of the same physical device

simultaneously. Thus, several applications cannot run concurrently on this physical device.

Thus, it can be said that the work proposed by Atzori et al. [25] does not satisfy our first

requirement of node level virtualization.

2. Publication and Discovery Mechanism: The proposed work does not explain any

mechanism for publication and discovery of the physical IoT devices’ specifications.

Although a ‘Discover’ operation is mentioned in the LwM2M enabler interface, it isn’t

explained in any further detail. Hence the second requirement of a publication and

discovery mechanism is not satisfied.

3. Orchestration Mechanism: The solution proposed in this work supports the grouping

together of several Virtual Objects in a PaaS instance to create a virtual overlay network

depending on the needs of each user. Hence, a mechanism for the orchestration of several

services is present and our third requirement is satisfied.

4. Bare metal access to IoT devices: One of the main features of this work is to provide

added security by not allowing direct access to the physical IoT devices. Instead, only the

 51

virtual objects of these devices are utilized in the overlay networks. Each user makes use

of the virtual overlay network created as per their needs, and the sensors/actuators cannot

be accessed for specific functions directly by any external entity. Hence the fourth

requirement of having bare metal access to the physical IoT devices is not met.

5. Ability to control and use actuators: The proposed system includes virtualization of IoT

services that includes all its associated sensors and actuators. Hence actuator control is

carried out by the system in a manner similar to sensor control and control of other IoT

devices. Thus, the fifth requirement of controlling and using actuators is met by this work.

In [26] Alam et al. propose a full-fledged architecture for an IaaS for the Internet of Things,

which can permit the low-cost provisioning of IoT applications as well as their decoupling from

the underlying physical devices. In addition, the work also proposes high-level APIs that allow the

applications and users to interact with the IoT IaaS and utilize the virtualized resources as per their

needs. Low level APIs are also proposed for the management of the physical IoT devices. The

work stresses on sharing the capabilities of the physical devices via node level virtualization and

depicts this through an Anti-Fire application and a Smart HVAC application as use cases. The

work proposes an architecture that allows for more efficient resource utilization. The architecture

proposed in the work is shown in figure 8.

 52

Figure 8. The Architecture of the IoT IaaS [26]

In the proposed architecture, the Physical IoT Layer contains all the physical IoT devices

(sensors, actuators etc.), while the Virtual IoT Layer consists of a logical representation of the

virtualized IoT devices. The Physical and Virtual IoT Management Layer allow the underlying

heterogenous devices to be managed and used in a homogenous manner. Furthermore, the Virtual

IoT Infrastructure Management Layer manages the virtual IoT infrastructure and is responsible

for providing the applications with the required virtual resources as per their needs. It makes use

of the uniform interface to interact with and control the virtual IoT resources. On evaluating the

work against our requirements, the following points can be observed:

 53

1. Node Level Virtualization: The proposed architecture utilizes node-level virtualization

to allow several applications to simultaneously run on the physical IoT devices through

their virtualizations. Thus, this work meets our first requirement.

2. Publication and Discovery Mechanism: The proposed architecture contains a

Publisher module, which is responsible for publishing the information of each device

into the repository, as well as a Discovery Engine to discover the devices with the

capabilities required by the application. Thus, this work meets our second requirement

of a mechanism for publication and discovery of the devices’ services.

3. Orchestration Mechanism: The authors describe a detailed mechanism for the

orchestration of several services in this work. The architecture contains an Orchestrator

which is responsible for this task. The Orchestration Plans are further stored in the

repository for usage later on. Thus, this work fulfills the third requirement for an

orchestration mechanism.

4. Bare metal access to IoT devices: The work only focuses on creating virtual instances

of the physical IoT devices and provides no mechanism to have bare metal access to a

physical IoT device. Thus, this work does not meet our fourth requirement of having

bare metal access to an IoT device.

5. Ability to control and use actuators: Although the work mentions orchestration plans

consisting of actuation tasks, it does not provide any detailed mechanism for the

provision of, or usage of actuators. The work focuses primarily on sensor devices. Thus,

this work does not meet our fifth requirement of the ability to control and use actuators.

Khan et al. propose a novel architecture for WSN Virtualization in [27], which is shown in

figure 9. The work focuses on tackling the issue of redundant WSN deployment by using

 54

virtualization techniques. The architecture makes use of node level as well as network level

virtualization to enhance cost and resource efficiency. In this work, the architecture allows a single

WSN to be shared by several applications. The architecture makes use of the constrained

application protocol and consists of four layers, as shown in the figure 9.

Figure 9. Multi-layer WSN virtualization architecture [27]

The Physical Layer contains various independent WSNs, while the Virtual Sensor Layer

consists of a logical representation of each of the physical sensors. The Virtual Sensor Access

Layer contains sensor agents that control and retrieve data from the virtual sensors and interact

accordingly with the overlays, thus, ensuring platform independence. The last layer, the Overlay

Layer contains the different overlay networks created on the basis of the specifications of each

application. The work is further evaluated against our proposed requirements and the results are

summarized below.

 55

1. Node Level Virtualization: The architecture proposed in this work allows the physical

sensor nodes to simultaneously execute several tasks by allowing their virtualizations

to be a part of several application specific overlay networks at a given time. Thus, this

work meets our first requirement of node level virtualization.

2. Publication and Discovery Mechanism: Although the proposed architecture contains

a discovery service for finding the appropriate devices, it assumes that the sensor and

GTO owners have already published their nodes to a central repository. Hence, a

dynamic mechanism does not exist for the publication and discovery of the devices’

services, and thus, this work does not fully satisfy our second requirement of a

publication and discovery mechanism for the devices’ services.

3. Orchestration Mechanism: Although the overlay networks for each application

contain several virtual sensors for fulling the application’s tasks, there is no mechanism

described in this work for orchestrating the services of the different IoT devices. The

overlays are simply a network of several different virtual devices and do not depict these

devices as one orchestrated virtual device for the application. Thus, this work does not

meet our third requirement of an orchestration mechanism for orchestrating the services

of several IoT devices together as needed.

4. Bare metal access to IoT devices: The architecture does not provide any mechanism

for accessing the physical devices as bare metal, and thus, it does not meet our fourth

requirement of having bare metal access to the devices.

5. Ability to control and use actuators: The architecture primarily focuses on sensors as

physical devices. It does not provide any mechanism for controlling or using actuators,

which implies that our fifth requirement is not satisfied by this work.

 56

3.3.2. Summary of the State of the Art of Architectures for IoT IaaS

Table 1 summarizes the state of the art of the architectures for the IoT IaaS against the

evaluation of our requirements. In this table a ‘✓’ means that the requirement is met by the

particular work, whereas a ‘×’ means that the requirement is not met by the work.

Table 1. Summary of the Related Works involving Architectures for the IoT IaaS

Papers
Requirements

Node Level
Virtualization

Publication
and Discovery
Mechanism

Orchestration
Mechanism

Bare metal
access to IoT

devices

Ability to
control and use

actuators
Ullah et al. [23] × ✓ ✓ × ✓

Guerreiro et al.
[24]

✓ × ✓ × ×

Atzori et al.

[25] × × ✓ × ✓

Alam et al. [26] ✓ ✓ ✓ × ×

Khan et al. [27] ✓ × × × ×

3.3.3. Models and Frameworks for aiding the IoT IaaS

There are few works in the current state of the art that propose frameworks or service models

that can aid in the development of an IoT IaaS by overcoming the issues that it currently faces. In

this section, some of these current works have been analyzed. First, each of the works is discussed

in detail followed by an evaluation against our set of derived requirements.

In [28] and [29], Gupta et al. propose and provide an implementation of virtual sensors at the

IaaS level respectively. The implementation in [29] focusses on representing the physical sensors

as virtual sensors and provides a soft sensor API to handle these sensor objects at the IaaS level.

 57

The aim is to enable on-demand, pervasive, and shared access to these physical sensors through

their abstractions (virtual sensors). The authors propose a distributed architecture for the virtual

sensor system abstraction. This architecture consists of a total of 5 layers: Physical Sensor Devices

layer, Sensing System layer, Processing System layer, Storage System layer, and Communication

System layer. There is also a Monitoring System in the architecture. Basic APIs are also proposed

to facilitate interaction between the layers as well as to expose the virtual sensor system abstraction

to the cloud. The Physical Sensor layer contains the physical sensor devices, while the Sensing

System acquires the sensor data, converts it into the appropriate form and analyzes it. The Sensing

System contains appropriate APIs for collecting and interpreting the sensor data. The Processing

System is responsible for modifying the sensor data to suit the needs of the user. It contains APIs

to efficiently handle the individual functions and allows the processing tasks to be executed in the

cloud. It contains APIs capable of terminating or creating virtual sensors, reading and writing to

sensor objects, etc. Storage System is responsible for handling the storage constraints of the

physical sensors by providing virtual sensor storage in the cloud. It has APIs for providing

specifications such as storage types, i.e. heap, database, etc., allocation and deallocation of

memory space, as well as a handler to access the stored data. The last layer is the Communication

System which is responsible for transmitting the data received from the physical sensors to the

appropriate destinations, as well as for receiving any data sent to the virtual sensor objects. It

handles tasks such as protocol specification for effective communication and identifying the sensor

data source. It consists of appropriate APIs to achieve these tasks. The Monitoring System is

responsible for providing error free sensor data by interacting with user and physical sensors to

ensure that the data is correct and is provided in an uninterrupted manner. The architecture extracts

the data from the physical sensors and provides it to the virtual sensors. Modifications are

 58

performed on these readings directly fetched from the sensor based on the needs of the users. The

work proposed in this paper is further analyzed against our proposed requirements as follows:

1. Node Level Virtualization: The architecture proposed in this paper proposes virtual

sensors that simply request the same sensor data, which is further modified at the higher

layers to fit the user specified configurations of the virtual sensor. There is no provision

in this architecture to run several applications concurrently on the same physical sensor

node. Thus, the first requirement of node level virtualization is not met in this work.

2. Publication and Discovery Mechanism: The proposed work does not contain any

mechanism for publishing the capabilities or discovering the capabilities of the physical

sensors. In addition, there is no repository or database present in the architecture that

can store the information of each device. Thus, the second requirement for a publication

and discovery mechanism is also not met.

3. Orchestration Mechanism: In the proposed architecture in this work there is no

mention of any orchestration mechanism for orchestrating several services provided by

the physical sensors. The Virtual Sensor System abstraction architecture only allows

for abstracting the sensor services from the underlying physical devices. The data

fetched directly from the sensors is simply provided to the virtual sensors, which can

be further utilized by the users directly, other applications, or cloud services. However,

the services are not orchestrated together. Thus, our third requirement for an

orchestration mechanism is not met by this work.

4. Bare metal access to IoT devices: The aim of this work is to provide a virtual sensor

system for abstracting the services of the physical devices. There is no provision for

 59

accessing the physical sensors as bare metal in this work. Thus, the fourth requirement

of bare metal access to the physical IoT devices is not met.

5. Ability to control and use actuators: The architecture proposes abstraction for virtual

sensors and provide no mechanism for controlling or using actuators. Hence, this work

does not meet our fifth requirement of the ability to control and use actuators.

In [30], Mattos et al. propose a network function virtualization infrastructure for the Internet of

Things that is effective and agile. The paper mainly proposes the development of a gateway node

that can effectively virtualize the domains to which the physical IoT devices connect. The proposed

gateway in this work allows for the creation of virtual interfaces that behave as different virtual

access points for different domains of the connected IoT devices. The physical resources/devices

of the network are abstracted into virtual resources in the NFVI. Furthermore, the software-based

virtual network functions are chained together in the virtual environment to provide the required

network service. Moreover, outsourcing the network functions to the proposed virtualized

infrastructure also allows for minimum load on the gateway. The gateway is, thus, mainly

responsible for providing access to the IoT devices through the virtual interfaces. The entire NFVI

along with the gateway and virtual interfaces is presented in figure 10.

The gateway and NFVI communicate via the GRE (Generic Routing Encapsulation) tunnel, and

once the devices are associated, all the frames are forwarded to the NFVI through this tunnel. For

the network virtualization infrastructure OPNFV (Open Platform for Network Function

Virtualization) 4 is utilized, while the management of the virtualization layer is carried out through

OpenStack5. Virtual network functions are implemented as virtual machines running Linux

Ubuntu 16.04.

 60

Figure 10. The complete architecture showing the NFVI for IoT and the connected devices Gateway. [30]

The proposed work is evaluated against our requirements and the results are summarized below.

1. Node Level Virtualization: In the proposed work the physical IoT devices are used and

connected through the virtual interfaces. However, there is no mechanism mentioned for

running several applications together on the same IoT device. The devices are a part of

different virtual networks and the work does not address the possibility of a device being

used in several virtual networks at the same time and concurrently running several

applications on it. Thus, this work does not meet our first requirement of node level

virtualization.

2. Publication and Discovery Mechanism: The proposed work does not mention any

mechanism for publishing and discovering the capabilities of the different IoT devices.

Hence, our second requirement of having a mechanism for publication and discovery of

the IoT device services is not met.

3. Orchestration Mechanism: Although, in this work, there is a mention of orchestration of

the various network services together, as such a proper orchestration mechanism has not

 61

been described. Hence, the third requirement for an Orchestration Mechanism is not met

by this work.

4. Bare metal access to IoT devices: This work only focuses on a gateway node that allows

for the creation of virtual interfaces for connecting the physical IoT devices to NFVI. Thus,

the physical devices are only accessible through these virtual interfaces and there is no

means to provide bare metal access to these physical IoT devices. Thus, the fourth

requirement is also not met in this work.

5. Ability to control and use actuators: The proposed work provides a gateway node to

access IoT devices, such as both sensors and actuators. However, there is no specific

mechanism mentioned pertaining to controlling and using actuators. Thus, the fifth

requirement of having the ability to control and use actuators is not completely met by this

work.

In [31], Mandal et al. propose a service model for IoT services, called ‘Things as a Service’

(TaaS) that allows the users to be exposed to the capabilities of the IoT devices, and efficient

utilization of the IoT resources. The architecture framework for the TaaS is shown in figure 11.

The primary constituents of the proposed service model are the ‘things’, i.e. sensors and

actuators. The service gateways present in the framework allow the IoT devices to expose their

service interfaces and publish it onto the cloud, from where it can be accessed by users and

applications. The cloud is responsible for maintaining a registry containing information of all these

devices and providing the users with the appropriate services. It is also responsible for event and

process management. The overall architecture also utilizes REST based services for the interaction

between the various layers.

 62

Figure 11. Architectural Framework for Things as a Service [31]

The proposed framework is further evaluated against our proposed requirements as follows:

1. Node Level Virtualization: The proposed framework simply exposes the services

provided by the IoT devices to the cloud but does not provide any mechanism for

running several applications concurrently on the IoT devices. The work is more ‘data’

driven, i.e. the data collected by the IoT devices is retrieved and provided to the

applications as needed. Thus, our first requirement of node level virtualization is not

met by this work.

2. Publication and Discovery Mechanism: The framework focuses on publishing the

services of the IoT devices to the cloud registry. Moreover, the cloud is responsible for

discovering the service needed by the application and providing it. Thus, there exists

the implementation of a proper publication and discovery mechanism which fulfills our

second requirement.

 63

3. Orchestration Mechanism: In this work, there is no explicit definition of any kind of

orchestration mechanism for combining the services of several devices as per the

applications’ needs. Thus, the third requirement for an orchestration mechanism is not

met by this work.

4. Bare metal access to IoT devices: In this work, the services of the devices are

published in the cloud and simply provided to the applications as needed. However,

there is no mechanism described to allow an application to access an IoT device

exclusively as bare metal. Thus, our fourth requirement for bare metal access to IoT

devices is not met in this work.

5. Ability to control and use actuators: The framework proposed in this work involves

handling actuators. It treats both the sensors and actuators as ‘things’ with certain

capabilities, which are published onto the cloud. Further, the cloud layer is responsible

for handling actuator events, i.e. it carries out event management. Thus, our fifth

requirement of controlling and using actuators is met by this work.

K.P.S. et al. propose a software framework for WSN (Wireless Sensor Network) virtualization,

i.e. virtualization of a network of IoT sensors, in [32]. “This new Framework presents few

conventions that help application developers to create applications without requiring it to

understand underlying hardware and hardware developers can provide plug-and-play modules to

the virtualization layer” [32].

The framework proposed in this work is shown in figure 12. The lowest layer comprises of the

various sensors. These devices first need to be registered to be utilized in this framework. There is

a special registration server for this purpose in the framework. After registration the Middleware

Layer is responsible for implementing each functionality that the hardware layer may require. It

 64

also provides the respective APIs to access the functionalities of each sensor. Furthermore, there

is also Session Management present in this Middleware Layer that allows management of each

session such as data acquisition, actuation, etc. As we go up the layers in the framework, it becomes

possible to provide application developers or other clients/platforms with high level Java APIs

which they can use in their own applications and interact with the devices.

Figure 12. Software Framework for WSN virtualization [32]

This framework is further evaluated against our requirements, and the results are summarized

below:

1. Node Level Virtualization: The framework proposed in this paper contains a session

manager that ensures that the no two devices can access the same device at the same time.

Thus, the concept of node level virtualization is not possible in this work since a device

 65

cannot have many concurrent sessions on it. Thus, this first requirement is not satisfied by

this work.

2. Publication and Discovery Mechanism: The framework contains a special Registration

Server where the all the new devices are registered. This Registration Server contains a

database that stores the relevant information of each device, such as location, module

supported data types, etc. This database is further utilized for finding appropriate

functionalities. Thus, this framework contains a mechanism for publication and discovery

of the devices, which fulfills our second requirement.

3. Orchestration Mechanism: The framework does not explicitly state any mechanism for

orchestrating the services of several devices. This implies that our third requirement for an

orchestration mechanism is not met by this work.

4. Bare metal access to IoT devices: This framework does not provide any mechanism for

having access to the devices as bare metal. It only provides virtualization of the WSN. Thus,

our fourth requirement of having bare metal access to the IoT devices is also not met by this

work.

5. Ability to control and use actuators: As mentioned in the framework, actuation tasks are

handled by the Session Management. However, there is no explicit mechanism or APIs

described for the management of actuators. Thus, this requirement for controlling and using

actuators is not completely met by this work.

 66

3.3.4. Summary of the State of the Art of Models and Frameworks for aiding

the IoT IaaS

Table 2 summarizes the state of the art of the models and frameworks for aiding the IoT IaaS

against the evaluation of our requirements. In this table a ‘✓’ means that the requirement is met

by the particular work, whereas a ‘×’ means that the requirement is not met by the work.

Table 2. Summary of the Related Works involving the models and frameworks for aiding the IoT IaaS

Papers
Requirements

Node Level
Virtualization

Publication
and Discovery
Mechanism

Orchestration
Mechanism

Bare metal
access to IoT

devices

Ability to
control and use

actuators
Gupta et al. [28]

and [29]
× × × × ×

Mattos et al.
[30]

× × × × ×

Mandal et al.
[31]

× ✓ × × ✓

K.P.S et al. [32] × ✓ × × ×

3.4. Conclusion

In this chapter, we first provided a motivating use case for the IoT IaaS. This use case was then

discussed and used to derive the requirements of the IoT IaaS. This was followed by a thorough

analysis of the current state of the art. We divided the state of the art into two categories:

architectures for the IoT IaaS, and models and frameworks to aid the IoT IaaS. For the works in

each of these categories, we first discussed each work in detail and then evaluated the work against

the set of our derived requirements. Summary tables were also presented to show which

 67

requirements were fulfilled by which state of the art. It was observed that none of the current state

of the art was able to meet all of our derived requirements.

In the next chapter, the proposed architecture of the IoT IaaS is discussed in detail. All the

components, functionalities, procedures, and interfaces are thoroughly discussed in it.

 68

Chapter 4

The Architecture of the IoT IaaS

This chapter involves providing a description of the architecture of the IoT Infrastructure-as-a-

Service proposed in this thesis. First, a high-level view of the architecture is provided, followed

by the detailed description of the various architectural modules. The detailed description also

includes the interfaces present within the architecture. Next, we provide a detailed description of

the procedures pertaining to the architecture along with sequence diagrams for their illustration.

Finally, the proposed architecture is evaluated against our derived requirements, followed by a

conclusion to the chapter.

4.1. High-Level View of the IoT IaaS Architecture

Figure 13 shows the high-level view of the proposed architecture for the IoT IaaS. The

architecture consists of the IoT Devices Layer, the IoT Capabilities Management Layer, the IoT

Cloud Management Layer, the Repository, and several interfaces. The IoT Capabilities

Management Layer and the IoT Devices Layer have access to the Repository. Moreover, each layer

contains a Front End that is responsible for processing the incoming request and forwarding this

request to the appropriate managers within the layer.

The topmost layer of the architecture is the IoT Cloud Management Layer which is responsible

for parsing all the incoming requests. This layer includes the Cloud Front End and the Cloud

Manager. The Cloud Front End forwards the received request to the Cloud Manager, which can

handle application requests requiring a single IoT device or several IoT devices. It also specifically

handles the cases when applications request both sensing as well as actuation capabilities.

 69

Next is the IoT Capabilities Management Layer, which is responsible for handling the sensing

capabilities and the actuation capabilities requested by the applications. This layer includes a

Capabilities Front End, the Sensing Capabilities Manager and the Actuation Capabilities

Manager. The Capabilities Front End receives the request and sends it to either the Sensing

Capabilities Manager or the Actuation Capabilities Manager. The Sensing/Actuation Capabilities

Managers handle the provisioning of the sensing or actuation IoT devices. The Sensing

Capabilities Manager is responsible for handling application requests for sensing devices, such as

temperature sensors, humidity sensors, motion sensors, etc., while the Actuation Capabilities

Manager is responsible for handling requests for actuation devices, such as Lego Mindstorms

robots, motors, etc. Both these managers are responsible for querying the Repository to find the

appropriate IoT devices with the requested capabilities, and then handle the provisioning of these

devices as per the applications’ needs.

The lowest layer is the IoT Devices Layer, which consists of all the physical IoT devices, the

virtual IoT devices created on top of the physical devices, and the modules to handle these IoT

devices. These devices have sensing and/or actuation capabilities and are all heterogenous and

resource constrained. The virtual IoT devices are basically abstractions of the properties of the

physical IoT devices. These virtual devices can be orchestrated together to fulfill the needs of

various applications. The applications that request virtual devices have complete control over the

provisioned virtual IoT devices. In addition, a physical IoT device can only support a certain

maximum number of virtualizations running on top of it. For instance, the Advanticsys SkyMote

can support a maximum of 4 virtualizations on it without running out of memory. The IoT Devices

Layer is further responsible for handling the creation of virtual devices, as well as the bare metal

provisioning of the physical IoT devices. It also has the provision to add/update/delete information

 70

to/from the Repository based on the status of the IoT devices. This layer includes the IoT Devices

Front End, Virtual/Bare-Metal Device Manager, and the physical/virtual IoT devices. The IoT

Devices Front End sends the received request to the Virtual Device Manager or the Bare Metal

Device Manager, which are responsible for handling the provisioning of the virtual and physical

IoT devices, respectively.

There also exists a Repository in the architecture, to which two layers of the architecture have

access. This Repository includes all the information about the physical as well as the virtual

devices, including their device IDs, capability descriptions, type of device (sensor/actuator), and

status (idle/busy). The capability description includes the number of virtual devices the physical

device can support (if any). For instance, the Repository includes the information of a physical

Virtenio sensor with its capabilities: temperature sensing, humidity sensing, illuminance, air

pressure, and acceleration; the virtual sensors created on top of it, their IDs, and their status.

Figure 13. High Level View of the Architecture of the IoT IaaS

 71

The architecture also contains several REST based interfaces, which include a high-level

interface (Int. A) and several inter-layer interfaces. The high-level interface, Int. A, exposes the IoT

IaaS to be used by various applications, which are shown above this interface in the figure as the

External Applications layer. However, in addition to these applications, various PaaS can also

access this IoT IaaS through this interface. In addition, several other interfaces, denoted by Int. B,

Int. C, and Int. D, are also present between the different layers in order to facilitate their interaction.

4.2. Detailed View of the IoT IaaS

This section provides a detailed description of the various modules present in the architecture.

More specifically, the details of the internal components of the Managers within the architecture,

the Repository, as well as the interfaces are provided. A detailed view of the Cloud Manager, the

Sensing/Actuation Capabilities Manager, and the Virtual/Bare Metal Device Manager are shown

in figure 14 (a), (b), and (c) respectively. In order to describe these modules in detail, the internal

components have been categorized into various entities based on their functions within these

modules. These categories include the Coordinators, Orchestrators, Publication/Discovery

Entities, and the Interface Mappers. Each of these entities are described in detail in the following

subsection, followed by a description of the Repository. Finally, this section provides a brief

description of the interfaces, especially the high-level interface (Int. A) that exposes the IoT IaaS

to external applications and PaaS, and the inter-layer interface Int. C that allows the virtual and

bare metal provisioning of the IoT devices.

4.2.1. Coordinators

As shown in figure 14 (a), (b), and (c), each of the managers contains a Coordinator entity. The

main responsibility of the Coordinators is to send the request to the appropriate modules within

 72

these managers in addition to facilitating the coordination within the managers’ modules. These

coordinators have similar, yet slightly different roles in each manager. This section describes in

detail the role of each Coordinator within the Cloud Manager, the Capabilities Manager, and the

Device Manager.

4.2.1.1. Cloud Coordinator

The Cloud Coordinator is a part of the Cloud Manager in the IoT Cloud Management Layer.

This component is primarily responsible for directing all the applications’ requests to the

appropriate component within the IoT Cloud Management Layer or to the underlying layers. All

the application requests forwarded to the Cloud Manager are first received by the Cloud

Coordinator. The responsibility of the Cloud Coordinator is to decide whether to forward this

request to the Cloud Orchestrator within the Cloud Manager, or to the underlying IoT Capabilities

Management Layer, depending on whether the application request requires the orchestration of the

services of several IoT devices for sensing and actuation, or only a single device.

4.2.1.2. Capabilities Coordinator

The Capabilities Coordinator is present in the Sensing Capabilities Manager and Actuation

Capabilities Manager within the IoT Capabilities Management Layer. All the requests sent to any

of the Capabilities Managers first reach its Capabilities Coordinator. This module is responsible

for checking if the request needs orchestration or not, and then taking appropriate measures to

handle this request. If only a single device is needed, then the Capabilities Coordinator accesses

the Discovery Engine for the information of such a matching device and sends a command to the

underlying IoT Devices Layer for reserving the device to be used as bare metal or creating a

virtualization of this device. If more than one sensing or actuation devices are needed, in which

 73

case orchestration of the capabilities of several devices is needed, it forwards the obtained request

to the Capabilities Orchestrator within the Capabilities Manager, which further handles the

request.

4.2.1.3. Device Coordinator

The Device Coordinator is present within the Virtual Device Manager and the Bare Metal

Device Manager within the IoT Devices Layer. It is responsible for coordinating between and

interacting with the Device Interface Mapper and the Publication Engine in order to provision the

devices and publish the most up-to-date information into the Repository. In order to provision the

devices as bare metal, or create virtual devices, the Device Coordinators of the respective

managers, i.e. Bare Metal Device Manager and Virtual Device Manager, interact with the

respective Device Interface Mappers so that the devices can be provisioned. Once these devices

are provisioned, the coordinators further interact with the respective Publication Engines within

these managers to update the Repository with the information pertaining to the devices.

Figure 14. Detailed View of (a) Cloud Manager in the IoT Cloud Management Layer, (b) Capabilities Manager in

the IoT Capabilities Management Layer, (c) Device Manager in the IoT Devices Layer

4.2.2. Orchestrators

The Orchestrators are present within the Cloud Manager, the Sensing Capabilities Manager

and the Actuation Capabilities Manager. They are responsible for the orchestration of the services

 74

of several IoT devices and contain the Orchestration Plan Generator and Orchestration Plan

Executor. This subsection describes the Cloud Orchestrator present in the Cloud Manager, and

the Capabilities Orchestrator present in the Sensing/Actuation Capabilities Managers in detail.

Both these orchestrators have similar roles, with one key difference being that the Cloud

Orchestrator orchestrates the services of both sensing and actuation devices, while the Capabilities

Orchestrator only orchestrates the services of specific types of devices (i.e. sensing or actuation).

This implies that the Capabilities Orchestrator within the Sensing Capabilities Manager

orchestrates the services of several sensing devices, while the Capabilities Orchestrator within the

Actuation Capabilities Manager orchestrates the services of several actuation devices.

4.2.2.1. Cloud Orchestrator

The Cloud Orchestrator is present within the Cloud Manager in the IoT Cloud Management

Layer. It is responsible for handling the orchestration of the services of several IoT devices when

the application needs both sensing and actuation capabilities. It is also responsible for monitoring

the outputs of the provisioned IoT devices and taking appropriate measures, such as firing

actuation triggers, whenever the outputs of the devices exceed the specified thresholds. The Cloud

Orchestrator further contains the Orchestration Plan Generator and the Orchestration Plan

Executor, which are described below in detail.

4.2.2.1.1. Orchestration Plan Generator

The Orchestration Plan Generator within the Cloud Orchestrator is responsible for handling

the requests when both sensing, and actuation devices are needed by the application. Based on the

sensing and actuation devices requested, it generates an appropriate Orchestration Plan which will

meet the needs of the application. This Orchestration Plan also includes the threshold values for

 75

the IoT devices, and the actions to be taken when these thresholds are exceeded. This

Orchestration Plan is further sent to the Orchestration Plan Executor which is responsible for

executing the plan.

A flowchart of the sample Orchestration Plan generated by the Orchestration Plan Generator

in the Cloud Orchestrator is shown in figure 15 and described below.

Figure 15. Orchestration Plan generated by the Orchestration Plan Generator in the Cloud Orchestrator

On getting the application’s request for both sensing and actuation devices, as well as the

thresholds for these devices’ outputs, the Orchestration Plan Generator within the Cloud

Orchestrator generates an Orchestration Plan.

The Orchestration Plan is as follows:

! On receiving the request for sensing and actuation devices, the request is first parsed for the

specifications of all the sensing and actuation devices, and their thresholds.

! Next, commands are sent to the underlying IoT Capabilities Management Layer to find the

suitable sensing and actuation devices and provision them.

 76

! If matching devices are not found, and thus the provisioning of all devices cannot take place,

then the respective message is sent to the Orchestration Plan Generator indicating that the plan

cannot be executed and thus the application’s request cannot be met. This terminates the plan.

! If all matching devices are found and provisioned, the IoT devices’ outputs can now be

monitored for the specified thresholds, if provided by the application. When the IoT devices’

outputs exceed the thresholds, the corresponding action trigger is fired. For example, in the case

of the ‘Anti-Fire Systems’ application, when the obtained temperature sensor value is above a

certain specified threshold, the command is sent to dispatch the firefighting robots in that area

to extinguish the fires.

This Plan is sent to the Orchestration Plan Executor, which executes all the steps in this Plan.

4.2.2.1.2. Orchestration Plan Executor

The Orchestration Plan Executor simply executes the Orchestration Plan that it receives from

the Orchestration Plan Generator. This Orchestration Plan includes all the steps required for

fulfilling the needs of the application. This, first and foremost, involves checking the request for

the different devices requested by the application, and further sending the request to the underlying

IoT Capabilities Management Layer to handle the provisioning of the sensing and actuation

devices.

The Orchestration Plan also includes the information about the threshold values for the outputs

of the IoT devices, and the actions to be taken when these thresholds are exceeded. Thus, the

Orchestration Plan Executor is also responsible for monitoring these IoT devices once they are

provisioned. For example, it monitors the outputs of the temperature sensors being used by the

application. When the outputs of these sensors exceed the specified threshold (indicating a possible

 77

fire hazard), it sends commands to the underlying layers to immediately dispatch the fire-fighting

robots provisioned for this application.

4.2.2.2. Capabilities Orchestrator

The Capabilities Orchestrator is present in the Sensing Capabilities Manager and the Actuation

Capabilities Manager present within the IoT Capabilities Management Layer. It is responsible for

the orchestration of the services of several IoT devices, when these services belong to the same

type of device, i.e. sensing or actuation. Thus, the Capabilities Orchestrator within the Sensing

Capabilities Manager is responsible for orchestrating the services of several sensing devices, while

the Capabilities Orchestrator within the Actuation Capabilities Manager handles the orchestration

of several actuation devices. The Capabilities Orchestrator consists of the Orchestration Plan

Generator and the Orchestration Plan Executor, which are described below.

4.2.2.2.1. Orchestration Plan Generator

The Orchestration Plan Generator within the Capabilities Managers is responsible for

generating an orchestration plan for orchestrating the services of the various sensing devices or

actuation devices needed as per the specifications of the request, as well as for monitoring these

devices. For instance, when several sensing devices are requested, it parses the request for

specifications of each sensing device. It then accesses the Discovery Engine to check if the required

devices with the specifications provided in the application’s request are available for provisioning

or not. Once it receives this information, if all the matching devices required for the application’s

request are available, it generates an Orchestration Plan and forwards this plan to the

Orchestration Plan Executor to be executed. However, if any of the devices matching the

 78

specifications requested by the application are not available, an Orchestration Plan cannot be

generated since the needs of the application cannot be met.

The sample Orchestration Plan generated by the Orchestration Plan Generator within the

Capabilities Orchestrator of the Sensing Capabilities Manager is shown in figure 16 and

explained below.

After storing the information of all the sensing devices that match the devices’ specifications

requested by the external application, the Orchestration Plan Generator within the Capabilities

Orchestrator generates an Orchestration Plan, which can be executed by the Capabilities

Orchestration Plan Executor. The Orchestration Plan is shown in figure 16.

Figure 16. Orchestration Plan generated by the Orchestration Plan Generator in the Sensing Capabilities

Orchestrator

The Orchestration Plan Generator generates an Orchestration Plan which is as follows:

! Let us say that ‘n’ sensing devices were found in the Repository that match the

application’s request and need to be provisioned.

! For each device, a command is sent to the underlying IoT Devices Layer to provision this

device.

 79

! The above step is carried out until commands are sent for all the sensing devices needed

by the application (i.e. device_num is incremented until it is equal to ‘n’).

! Once all the sensing devices are provisioned, the specific IoT devices’ outputs are now

monitored. If the outputs exceed the threshold values specified by the application, the

corresponding measures are taken. For example, in the case of several sensors, this could

mean starting another sensor when one sensor’s output exceeds the threshold value. This

concludes the plan.

This plan is sent to the Orchestration Plan Executor which carries out all its steps.

4.2.2.2.2. Orchestration Plan Executor

The Orchestration Plan Executor is responsible for receiving the Orchestration Plan from the

Orchestration Plan Generator and executing it. Based on the Orchestration Plan, it sends

commands to the underlying IoT Devices Layer for the creation of virtual devices and/or

reservation of devices to be used as bare metal by the applications. Similar to the Cloud

Orchestrator, it performs all the actions present in the Orchestration Plan, which can also include

monitoring the outputs of the provisioned IoT devices for thresholds and taking appropriate

measures based on these outputs. For example, when the threshold of a particular sensor is

exceeded, it sends commands to start/stop another sensor as per the Orchestration Plan.

4.2.3. Publication/Discovery Entities

The publication and discovery modules present within the IoT Capabilities Management Layer

and the IoT Devices Layer allow for the publication of the IoT devices information into the

Repository, as well as for the discovery of the suitable devices based on the applications’ needs.

 80

This section describes the Discovery Engine in the Sensing/Actuation Capabilities Managers and

the Publication Engine in the Virtual/Bare Metal Device Managers in detail.

4.2.3.1. Discovery Engine

The Discovery Engine is present in the Sensing Capabilities Manager and the Actuation

Capabilities Manager within the IoT Capabilities Management Layer. It is responsible for

querying the Repository to find suitable information about the IoT devices as requested by the

Orchestration Plan Generator in the Capabilities Orchestrator, or the Capabilities Coordinator.

It interacts directly with the Repository and fetches the information as needed.

4.2.3.2. Publication Engine

The Publication Engine is present in the Virtual Device Manager and the Bare Metal Device

Manager within the IoT Devices Layer. It is responsible for updating the Repository with the most

relevant information on the physical and virtual IoT devices. Whenever a new physical device is

added to the Physical IoT Devices layer or a new virtual IoT device is created over the physical

IoT devices, this component updates the Repository with the information pertaining to these new

devices. Similarly, it also updates the Repository with the relevant information whenever a device

is removed from the infrastructure or a virtual device is deleted. If a physical device is reserved to

be used as bare metal or released by the application using it as bare metal, it again updates the

Repository with this latest information. It gets the command to do so from the Device Coordinator.

4.2.4. Interface Mappers

The Device Interface Mappers are present in the Virtual Device Manager and the Bare Metal

Device Manager within the IoT Devices Layer. They interact with the proprietary interfaces of the

IoT devices, and essentially play the role of a ‘mapper’ between these proprietary interfaces and

 81

the uniform interfaces. Although the roles of both these Device Interface Mappers are similar, they

differ in handling the virtual devices and physical devices respectively. The Bare Metal Device

Interface Mapper and the Virtual Device Interface Mapper are described in this section.

4.2.4.1. Bare Metal Device Interface Mapper

The Bare Metal Device Interface Mapper within the Bare Metal Device Manager is responsible

for controlling the physical devices by directly interacting with them through their proprietary

interfaces. It acts as a mapper between the uniform bare metal REST based interface, and the

proprietary interfaces of the IoT devices. Whenever the IoT Devices Layer gets the command via

the uniform interface to reserve a device to be used as bare metal, this component interacts directly

with the physical device (through the proprietary interface of this physical device) and reserves it

for the application. Similarly, it also releases the physical device being used as bare metal when

the application is done using it. For example, the Bare Metal Interface Mapper uses nesC for

interacting with the advanticsys sensor when it needs to be reserved as bare metal.

4.2.4.2. Virtual Device Interface Mapper

The Virtual Device Interface Mapper is responsible for creating virtualizations of the physical

IoT devices by interacting with them through their proprietary interfaces. Whenever the IoT

Devices Layer gets the command via the uniform interface to create a virtual device, this

component interacts with the physical devices and creates their virtualization as per the

application’s specifications. Similarly, it also deletes the virtual device when it receives the

command to do so, when the application is done using the virtual device. Similar to the Bare Metal

Interface Mapper, it acts as a mapper between the uniform and independent REST based interface

for creating virtual devices, and the proprietary interfaces of the IoT devices. For example, the

 82

Virtual Device Interface Mapper uses Java for creating virtualizations on top of the Virtenio

sensor.

4.2.5. Repository

The Repository is essentially a database responsible for storing the latest and most up-to-date

information pertaining to the physical and virtual IoT devices. There are two types of repositories

utilized within this IoT IaaS. These repositories are: Physical IoT Device Repository, and the

Virtual IoT Device Repository. These repositories are described in detail in the subsections to

follow.

4.2.5.1. Physical IoT Device Repository

The Physical IoT Device Repository contains the information about all the physical IoT devices

present within the infrastructure. It contains information about their capabilities/functionalities,

type of device (sensor/actuator), device ID, and their status (idle/busy) i.e. whether they have been

reserved to be used as bare metal or not. The capability description would also include the number

of virtual devices the physical device could support (if any). For instance, the Repository would

include the information of a physical Virtenio Preon32 Shuttle + VariSen sensor with its

capabilities, i.e. temperature sensing, humidity sensing, illuminance, air pressure, and acceleration,

and the virtual sensors created on top of it, their IDs, and status.

4.2.5.2. Virtual IoT Device Repository

The Virtual IoT Device Repository contains information about all the virtualized devices created

on top of the physical devices. It contains information about their capabilities/functionalities, type

of device (sensor/actuator), device ID, and status.

 83

4.2.6. Interfaces

For the interaction between the layers of the proposed architecture, several interfaces have been

designed. The general principle used to design these interfaces is the use of the REpresentational

State Transfer (REST) architectural style. The interfaces between the layers expose CRUD

(Create, Read, Update, Delete) operations. For instance, the interface between the applications and

IoT Cloud Management Layer (Int. A) allows the applications to send a request to the IoT Cloud

Management Layer to create a sensor + actuator module with given sensor and actuator parameters

(e.g., service-type, location, sampling rate, etc.), whenever a combination of sensors and actuators

is required by the application. It also allows the applications the get the sensors data and a list of

actuator actions. Table 3 demonstrates the uniform interface we propose for Interface A. Each

sensor+actuator module is identified by a unique ID.

Table 3. Summary of the API to access the IoT IaaS (Interface A)

Plane Operation Explanation Focus
Point Example Values Resource URL

Control
create_sam
(sensor
actuator
module)

Create a
sensor_actuator
module with
given sensor
and actuator
parameters.

Method: POST

<BASE_URI>

Parameters

{sensor: [{service-
type, location,
sampling-rate, data-
mode}],
actuator:[{service-
type, location}]}

Success 200 OK <ID>

Failure

Error message/code
(e,g – 404 Not
Found, 422
Unprocessable
Entity)

Control delete_sam
Delete the
sensor_actuator
module with ID

Method: DELETE

<BASE_URI/ID> Parameters

Success 200 OK <ID>

 84

Failure
Error message/code
(e,g – 404 Not
Found)

Data get

Gets the sensor
output/data and
list of actuator
actions
(actionIDs for
each action the
actuator can
perform)

Method: GET

<BASE_URI/ID/sam_data>

Parameters

Success 200 OK

Failure
Error message/code
(e,g – 404 Not
Found)

Data post

Specify the
threshold value
for the sensor
and its
corresponding
actuator action

Method: POST

<BASE_URI/setter>

Parameters

{mappings:
[{samID:xx,
sensor_ID: xx,
sensor_threshold :
[{type:range/const,
val:xxx,…}],
actuator_ID:xx,
action_URI:
xx},…]}

Success 200 OK

Failure
Error message/code
(e,g – 404 Not
Found, 403
Forbidden)

Similarly, the interfaces for provisioning of the IoT devices as bare metal, and creation of virtual

devices are shown below. The Int. C (Interface C) comprises of these interfaces for the

provisioning of devices. Table 4 shows the RESTful API for provisioning of the bare metal

devices. Each physical device has a unique UUID. The table shows the request types for reserving

a device as bare metal, getting list of devices which are available to be provisioned as bare metal,

releasing the device being used as bare metal. Similarly, table 5 and 6 show the APIs for

provisioning virtual actuators and sensors respectively, identified by unique UUIDs.

The interfaces Int. B and Int. D are simply concerned with exchanging the information

pertaining to the applications’ requests between the IoT Cloud Management Layer and the IoT

 85

Capabilities Management Layer, and the exchange of IoT devices information between the

Repository and the Publication/Discovery Engines respectively. Thus, they are not as full-fledged

as the interfaces summarized below.

Table 4. Summary of the API for the Bare Metal Provisioning of IoT Devices.

Plane Operation Explanation Focus Point Example Values Resource URL

Control reserve_biot

Reserve the
physical IoT
device to be
accessed as
bare metal for
the
application
requesting it

Method POST

<BASE_URI/UUID>

Parameters {status (e.g.
busy)}

Success 200 OK
<UUID>

Failure

Error
message/code
(e,g – 404 Not
Found on giving
uuid that does
not exist)

Control get

Get list of
UUIDs of
IoT devices
(to access as
bare metal)

Method: GET

<BASE_URI/LIST_IOT>

Parameters

Success 200 OK

Failure
Error
message/code
(e,g – 404 Not
Found)

Control release_biot

Release the
physical IoT
device once
application is
done using it

Method POST

<BASE_URI/UUID>

Parameters {status (e.g.
idle)}

Success 200 OK
<UUID>

Failure

Error
message/code
(e,g – 404
Not Found on
giving uuid that
does not exist)

 86

Table 5. Summary of the API for Creating a Virtual Actuation Device.

Plane Operation Explanation Focus
Point Example Values Resource URL

Control create_act
Create virtual
actuator with
given
parameters

Method: POST

<BASE_URI>

Parameters {service-type,
location}

Success 200 OK <UUID>

Failure

Error
message/code
(e,g – 404
Not Found, 422
Unprocessable
Entity)

Control delete_act
Delete
actuator
identified by
the UUID

Method: DELETE

<BASE_URI/UUID>

Parameters

Success 200 OK <UUID>

Failure
Error
message/code
(e,g – 404
Not Found)

Control get
List all actions
that the actuator
can perform

Method: GET

<BASE_URI/UUID/actions>

Parameters

Success 200 OK

Failure
Error
message/code
(e,g – 404
Not Found)

Data post
Post request
trigger for firing
an action in the
actuator

Method: POST

<BASE_URI/UUID/actions/
actionid>

Parameters
{event_start_time,
status (eg. on/off),
action_duration
etc.}

Success 200 OK

Failure
Error
message/code
(e,g – 404 Not

 87

Found, 422
Unprocessable
Entity)

Control get

List the device’s
specifications
(eg. location,
manufacturer,
serial number)
and device’s
configurable
settings (eg.
uptime, task-
mode, (other
device specific
settings))

Method: GET

<BASE_URI/UUID>

Parameters

Success 200 OK

Failure
Error
message/code
(e,g – 404
Not Found)

Control post

Configure
device
parameters or
settings that can
be configured
by user

Method: POST

<BASE_URI/UUID>

Parameters

{set-task-
mode=XX
(specific to
device, for eg.
Standard
mode/advanced
mode for
particular action),
set-velocity=XX
(eg. In case of
robots set their
velocity or other
device specific
parameters) etc.}

Success 200 OK

Failure

Error
message/code (e,g
– 404 Not Found,
422
Unprocessable
Entity)

Table 6. Summary of the API for Creating a Virtual Sensing Device

Plane Operation Explanation Focus Point Example Values Resource URL

Control create_sen Create virtual
sensor with Method: POST <BASE_URI>

 88

given
parameters Parameters

{service-type,
location, sampling-
rate, data-mode}

Success 200 OK <UUID>

Failure
Error message/code
(e,g – 404 Not Found,
422 Unprocessable
Entity)

Control delete_sen
Delete sensor
identified by
the UUID

Method: DELETE

<BASE_URI/UUID>

Parameters

Success 200 OK <UUID>

Failure
Error message/code
(e,g – 404
Not Found)

Data get
Get the data
from the virtual
sensor device

Method: GET

<BASE_URI/UUID/data>

Parameters

Success 200 OK

Failure Error message/code
(e,g – 404 Not Found)

Control get

List the device’s
specifications
(eg. location,
manufacturer,
serial number),
capabilities, and
device’s
configurable
settings (if any)

Method: GET

<BASE_URI/UUID>

Parameters

Success 200 OK

Failure
Error message/code
(e,g – 404
Not Found)

4.3. Procedures

The proposed architecture consists of three sub-procedures within the layers of the IoT IaaS, as

well as two procedures that span several layers and may contain the specified sub-procedures. This

 89

section describes each of these procedures in detail. These main procedures spanning several layers

of the architecture are: IoT Devices Provisioning, and IoT Devices Monitoring.

4.3.1. Procedures within the Layers of the Architecture

The procedures within the layers of the IoT IaaS architecture include orchestration, device

capabilities management, and virtual device creation/device reservation. Each of these procedures

are described in this subsection. These procedures may further act as sub-procedures for the

procedures that span several layers, and which are described in the upcoming subsections in this

chapter.

4.3.1.1. Orchestration

The orchestration procedure is essential to the IoT IaaS when the orchestration of the services

of several IoT devices is required as per the applications’ requests. The Orchestrators present

within the respective Managers, i.e. Capabilities Manager and/or the Cloud Manager, are

responsible for carrying out this orchestration. The orchestration procedure starts with a request

being forwarded to the orchestration component to orchestrate the services of 2 or more devices.

On receiving this request, the Orchestration Plan Generator within the Orchestrator of the

appropriate Manager, creates an Orchestration Plan for orchestrating the services of the devices,

and monitoring the devices. The Orchestration Plan Executor of this Manager further handles the

execution of this Orchestration Plan. If the application’s request is for a combination of sensing

and actuation devices, the Cloud Orchestrator handles this orchestration, whereas if the

application’s request is for a combination of only sensing devices or only actuation devices, then

the Capabilities Orchestrator present within the respective Capabilities Manager, i.e. Sensing

Capabilities Manager or Actuation Capabilities Manager, handles the orchestration of the

 90

devices’ services. Furthermore, the orchestration procedure would also include monitoring the

outputs of the devices based on specified thresholds once the provisioning is completed. Figures

18 and 19 highlight the IoT devices provisioning procedure, which is described in the upcoming

subsections. The sequence diagrams in these figures also show the sequence of steps when the

request reaches the Cloud Orchestrator or the Capabilities Orchestrator respectively.

In the motivating ‘Smart Factory’ scenario presented in chapter 3, the ‘Monitoring of Cooling

Systems’ application will use this procedure when requesting for temperature and humidity

sensors. Since this application will require only sensing devices, the Capabilities Orchestrator

within the Sensing Capabilities Manager will handle the orchestration of the temperature and

humidity sensing devices. Similarly, in the case of the ‘Anti-Fire Systems’ application, the Cloud

Orchestrator within the Cloud Manager will handle this orchestration since both sensing and

actuation capabilities would be needed.

4.3.1.2. Device Capabilities Management

The Device Capabilities Management procedure is carried out by the Sensing Capabilities

Manager and the Actuation Capabilities Manager within the IoT Capabilities Management Layer.

This procedure handles the management of the sensing and actuation capabilities of the IoT

devices. Primarily, it involves querying the Repository to find the appropriate and available sensing

or actuation devices as per the needs of the application. For instance, in the case of the ‘Smart

Factory’ scenario, all the applications would require access to sensing or actuation devices. In this

case, the Device Capabilities Management procedure would be used to find the most appropriate

devices that can fulfill the applications’ needs. Furthermore, this procedure would not only be used

for applications requiring single IoT devices, but also for applications requiring several IoT

 91

devices, in which case the Orchestration procedure would require the devices’ data obtained from

the Device Capabilities Management procedure.

4.3.1.3. Virtual Device Creation/ Device Reservation

This procedure is carried out by the Virtual Device Manager or the Bare Metal Device Manager

in the IoT Devices Layer. This procedure involves two distinct functions, which include interacting

with the proprietary interfaces of the physical IoT devices to virtualize them or provision them to

be used as bare metal, and publish the most relevant information pertaining to these physical and

virtual IoT devices into the repository. Furthermore, once the devices are provisioned based on the

applications’ requests, the appropriate ‘device reserved/virtualization created’ messages must also

be returned. The Virtual Device Manager is responsible for creating virtual devices on top of the

physical IoT devices and for publishing their information into the repository, while the Bare Metal

Device Manager does the same for the bare metal provisioning of the physical IoT devices.

Within the ‘Smart Factory’ use case mentioned in chapter 3, the ‘Anti-Fire Systems’ application

will require bare metal access to the fire-fighting robots in order to reduce latency. In order to

achieve this, the Device Reservation procedure would be utilized by the IoT Devices Layer to

provide bare metal access to the robots.

4.3.2. Procedures spanning several Layers of the Architecture

The procedures that span several layers of the architecture are described in this subsection.

These include the IoT Devices Provisioning and the IoT Devices Monitoring procedures.

4.3.2.1. IoT Devices Provisioning

The IoT Devices Provisioning procedure involves the provisioning of the various sensing and

actuation devices as bare metal or as virtual devices on top of the physical IoT devices. This

 92

procedure, which involves the provisioning of the required devices (sensors, actuators), would

further include the sub-procedures, which are Orchestration, Device Capabilities Management,

and Virtual Device Creation/Device Reservation explained in the previous subsection. This

procedure spans all the layers of the architecture, since the request must pass through each layer

in order to finally allow the IoT devices to be reserved or virtualized.

The request received by the IoT IaaS is first processed and if several devices are requested, i.e.

orchestration is needed, then it is performed by the appropriate Orchestrator, i.e. the Cloud

Orchestrator or the Capabilities Orchestrator. The Device Capabilities Management procedure is

further used to find the appropriate device or devices that can be provisioned. The last step of this

procedure involves the Virtual Device Creation/Device Reservation, i.e. the virtual devices are

created on top of the physical IoT devices, or the physical IoT devices are reserved to be used as

bare metal. The sequence diagrams for the IoT Devices Provisioning procedure are shown in

figures 17, 18 and 19. Figure 17 shows the provisioning of a single IoT device, where the sequence

diagram depicts step-by-step how the request passes through the appropriate components in each

layer. For provisioning a single IoT device orchestration is not required. Similarly, figure 18 shows

the sequence diagram for provisioning a combination of several sensors and actuators, while figure

19 shows the sequence of steps for provisioning several devices of only one specific type (i.e.

sensing or actuation), in this case, several sensing devices. These diagrams depict how these

different types of requests pass through the various layers in the architecture, and which

components are responsible for handling them.

In the motivating ‘Smart Factory’ scenario, this procedure proves critical as every application

must send a request to the IoT IaaS to provision the devices it requires. For instance, the ‘Smart

Energy Systems’ application will send the request to the IoT IaaS, which will use the IoT Devices

 93

Provisioning procedure to provide motion sensors and actuators for controlling electricity systems

to the application.

Figure 17. Sequence Diagram for Provisioning a Single IoT Device

Figure 18. Sequence Diagram for Provisioning of Sensing and Actuation IoT Devices

 94

Figure 19. Sequence Diagram for Provisioning of Several Sensing Devices

4.3.2.2. IoT Devices Monitoring

The IoT Devices Monitoring procedure involves monitoring the outputs of the IoT devices to

detect the specified thresholds. Once the thresholds are exceeded, it is further responsible for taking

appropriate actions as per the applications’ specifications. Thus, this procedure is not only

responsible for monitoring the IoT devices, but also for automatically sending control commands

to other IoT devices whenever the threshold values are exceeded. The Orchestrators present within

the Cloud Manager and the Capabilities Manager handle this monitoring of the devices’ outputs.

The threshold values, mentioned above, are incorporated into the Orchestration Plan, which is

generated by the Orchestration Plan Generator and executed by the Orchestration Plan Executor

of the appropriate managers. The Orchestration Plan Executor then constantly checks the IoT

devices for the outputs matching or exceeding the threshold values, and further sends commands

to the underlying layers to fire the appropriate actuation triggers or control other sensing IoT

devices. Figure 20 shows the sequence diagram for the IoT Devices Monitoring procedure.

 95

Within the ‘Smart Factory’ use case, the ‘Anti-Fire Systems’ application will use this procedure

to monitor the values of the temperature and humidity sensors. Once these sensors exceed the

specified thresholds, the fire-fighting robots would automatically be launched.

Figure 20. Sequence Diagram for IoT Devices Monitoring Procedure

4.4. Evaluation of the Proposed Architecture against the Requirements

It is essential to evaluate our proposed architecture against the requirements derived from the

motivating use case. In fact, it is observed that this architecture fulfills all the requirements.

The provision of several virtual devices on top of the same physical device based on the

applications’ needs aim to increase resource utilization by running several applications

simultaneously on the physical device. Thus, the architecture relies heavily on node level

virtualization, which fulfills our first requirement.

The proposed architecture consists of a Publication Engine in both the Virtual Device Manager

and Bare Metal Device Manager, which are responsible for publishing the most relevant

information on the virtual devices and the physical devices respectively into the Repository. This

 96

includes information about addition of new devices, deletion of devices, and their current status.

In addition, the Sensing Capabilities Manager and Actuation Capabilities Manager both consist

of a Discovery Engine which is responsible for querying the Repository and fetching information

about the matching devices based on the request received.

Thus, there exists a mechanism for the publication and discovery of the devices’ services,

which satisfies our second requirement.

The proposed architecture consists of a mechanism for orchestration. The Cloud Manager

contains a Cloud Orchestrator, which is responsible for handling the orchestration of the

capabilities of the sensing and actuation devices. In addition, the Sensing Capabilities Manager

and Actuation Capabilities Manager both contain the Capabilities Orchestrator, which is

responsible for handling the orchestration of the capabilities of several sensing devices or of

several actuation devices respectively.

Thus, it can be seen that there exists a proper orchestration mechanism to orchestrate the

capabilities of the different IoT devices. Hence, our third requirement is fulfilled by the

proposed architecture.

The proposed architecture supports the bare metal provisioning of IoT devices. The Bare Metal

Device Manager present in the IoT Devices Layer is responsible for reserving devices to be used

as bare metal by the applications. It achieves this by interacting with the proprietary interfaces of

the physical IoT devices.

Thus, the architecture supports the bare metal provisioning of the IoT devices, which

satisfies our fourth requirement.

Finally, the architecture consists of a mechanism for using and controlling actuators. The

architecture contains the Actuation Capabilities Manager, which is responsible for the

 97

provisioning and control of actuation devices by sending appropriate commands to the underlying

layers. To facilitate this, the architecture contains RESTful APIs for interacting with the actuator

devices.

Thus, our fifth requirement of the ability to control and use actuators is fulfilled by the

proposed architecture.

4.5. Conclusion

In this chapter, we provided a detailed description of the architecture of the IoT Infrastructure-

as-a-Service proposed in this thesis. We began by providing a high-level view of the architecture,

followed by a detailed view of the various architectural modules and interfaces. Next, we described

the procedures pertaining to the architecture along with several detailed sequence diagrams for

their illustration. Finally, we provided a justification of our proposed architecture by evaluating it

against our derived requirements.

In the next chapter, we will present the implemented prototype and describe the tools and

platforms used. In addition, we will also analyze the performance metrics for the architecture’s

evaluation and derive conclusive results.

 98

Chapter 5

Validation of the Architecture

This chapter begins by providing an overview of the implemented prototype architecture. This

overview includes a brief description of the implemented scenario and the implemented prototype,

followed by the details of the hardware and software used. We then provide the detailed description

of the prototype architecture, which includes the description of each implemented layer of the

prototyped architecture using the bottom-up approach, and a validation summary. This is followed

by a detailed section on the performance evaluations, which includes the description of the

performance metrics, the experimental setup, and a thorough analysis of the results obtained. In

addition, the performance evaluation also includes testing the scalability of the IoT IaaS by

provisioning a large number of devices through extensive simulations. Finally, we conclude the

chapter by providing its summary.

5.1. Prototype Architecture Overview

In this section we first describe the implemented scenario, followed by a high-level description

of the working of the prototype. Finally, we present a brief description of the hardware and

software used for the implementation of this prototype.

5.1.1. Implemented Scenario

The implemented scenario consisted of a subset of our motivating use case. The ‘Anti-Fire

Systems’ and ‘Monitoring of Cooling Systems’ applications were implemented for this purpose.

For the ‘Anti-Fire Systems’ application, both the sensing capabilities (temperature sensing and

humidity sensing) and actuation capabilities (firefighting robot movement) were considered. For

 99

the ‘Monitoring of Cooling Systems’ application, only the sensing capabilities (temperature

sensing and humidity sensing) were considered. The actuation capabilities for this application were

excluded. The sensors (for temperature and humidity sensing) used were from two different

vendors, Advanticsys (CM5000 TelosB SkyMote) and Virtenio (Preon32 Shuttle and VariSen

module), while the actuator (robot) used was the LEGO Mindstorms EV3 robotics kit. For both

the applications, the sampling rate for temperature and humidity sensing was set to 1

sample/second. In the case of the ‘Anti-Fire Systems’ application, the requirement was to start the

robot as soon as the temperature and humidity sensing values exceeded a pre-defined threshold.

For trial purposes this threshold was set to 25ºC for the temperature sensor and 50% relative

humidity for the humidity sensor. The threshold of 25ºC for the temperature sensor was simply

chosen for the purpose of experimentation. In the case of the ‘Monitoring of Cooling Systems’

application, the requirement was to raise an alert message whenever the temperature and sensing

values exceeded beyond the pre-defined threshold.

Both the applications required orchestration of several services. While the ‘Anti-Fire Systems’

application required the orchestration of both sensing and actuation capabilities, the ‘Monitoring

of Cooling Systems’ application only required the orchestration of multiple sensing capabilities.

More specifically, the ‘Anti-Fire Systems’ application required sending a request to the IoT IaaS

for temperature sensor, humidity sensor, and EV3 LEGO robot, along with arbitrary thresholds for

values of temperature and humidity sensors. Since these are several devices, orchestration was

needed, and the virtualizations of these devices or bare metal access to these devices needed to be

provisioned. Next, the temperature and humidity sensor readings were to be constantly monitored

and as soon as the value of the temperature and humidity sensors crossed the specified threshold,

the EV3 robot was to be automatically started. A similar procedure was required for the

 100

‘Monitoring of Cooling Systems’ application, except that this application did not require an

actuator, instead it required that an alert message be issued to the application when thresholds were

exceeded. Both the applications required access to common IoT devices (temperature sensor and

humidity sensor). The devices were, thus, to be shared by creating virtualizations that would be

accessed independently by these applications or by provisioning some devices as bare metal for

an application, depending on the application’s request.

5.1.2. Description of the Implemented Prototype

In order to access the IoT IaaS, a REST API (Application Programming Interface) has been

implemented that allows the applications to utilize the services of the IoT IaaS in a uniform

manner. This further enables the programming interface to be platform/language independent. The

interfaces for provisioning of virtual sensors and actuators, and bare metal provisioning of IoT

devices, as well as interaction between the different components in the architecture, are also sets

of REST APIs.

The captured application request is parsed by the IoT IaaS and on successful completion of the

request the results are returned to the application with the appropriate URIs to access the devices,

whether virtualized, composite, or reserved for bare metal access. In the case of monitoring IoT

devices for thresholds, the responses returned include messages indicating that the threshold is

exceeded, as well as messages indicating the successful completion of actions triggered on

threshold surpassing. In order to match devices with the applications requests, the application

requests are parsed for parameters such as type of device/devices (i.e. sensor/actuator),

functionalities of devices (eg. temperature sensing, humidity sensing, movable robot), virtualized

or bare metal access to the devices, sampling-rate (in case of temperature and humidity sensors).

 101

In order to validate the prototype, we conducted experiments using the following physical

devices: an Advanticsys TelosB CM5000 SkyMote (temperature and humidity sensing), a Virtenio

Preon32 Shuttle with VariSen module (temperature and humidity sensing), and a LEGO EV3

Mindstorms robot (actuation). In addition, Contiki Cooja was used to simulate SkyMotes

(temperature and humidity sensing) up to a limit of 1000 devices to test the scalability of the IoT

IaaS. First, each of the single physical devices were individually used for bare metal provisioning

as well as creation of virtual devices. Next, for validating the ability of the IoT IaaS to monitor the

outputs of the IoT devices (in this case, sensing device) and immediately take appropriate actions

(in this case, sending command to actuator) based on the applications’ needs, the EV3 robot and

Virtenio sensor were provisioned to get both the actuation and sensing capabilities respectively.

Finally, in order to test the scalability of the IoT IaaS, provisioning of 2, 4, 8, 10, 16, 32, 100, 200,

400, and 1000 SkyMotes was carried out using Contiki Cooja Simulator. This setup was also

utilized to validate the orchestration of the services of these devices.

5.1.3. Software and Hardware Used

In this section, we briefly describe the software and hardware used while implementing the

proof-of-concept prototype.

5.1.3.1. Advanticsys TelosB SkyMote – CM5000

The Advanticsys CM5000 TelosB sensor is a wireless IoT device which has limited processing

power and memory, and is IEEE 802.15.4 compliant. It is based on the TelosB platform, which is

designed by University of California, Berkeley and is open source. This SkyMote comes with three

sensing capabilities, which are temperature sensing (within the range -40 ~ 123.8 ºC), humidity

sensing (within the range 0 ~ 100% RH), and light intensity sensing. The capabilities utilized in

 102

our implementation prototype only included temperature and humidity sensing. The sensor

contains a USB interface that can be used to connect with the device and program it. The

programming language required to program this device is C-like, called NesC. It can be used

wirelessly by inserting 2xAA batteries or can be used by powering up through the USB connector.

It is compatible with TinyOS and ContikiOS [33]. We used ContikiOS to connect with, and

program the device.

Figure 21. The Advanticsys TelosB SkyMote (©AdvanticsysTM)

5.1.3.2. Virtenio Preon32 Shuttle with VariSen Module

The Virtenio Preon32 Shuttle is a radio module with a 32-bit microcontroller and IEEE 802.15.4

compatibility. It contains interfaces such as USB, SPI, I2C, CAN. It does not possess any sensing

capabilities but has an expansion module, the VariSen Module, which is the ultimate sensor

extension for it. This VariSen Module contains several different sensing capabilities, which are

temperature (in the range -40°C to +105°C), humidity (in the range 0 to 100 %RH),

illuminance, air pressure, and acceleration. However, only temperature sensing and humidity

sensing were used in our prototype. The Preon32 shuttle can be programmed in Java and consists

of a JavaVM for embedded sensors developed by Virtenio on it. This JavaVM contains Java

libraries that are modified for these sensors and not the same as the standard Java libraries [34,35].

 103

The Virtenio documentation for these Java Libraries is provided along with concrete examples on

how to utilize the interfaces and access the sensors. The Virtenio Pren32 Shuttle is more capable

compared to the Advanticsys CM5000 and can be battery operated or connected to a power source.

Figure 22. Virtenio Preon32 Shuttle and VariSen Module (©VirtenioTM)

5.1.3.3. LEGO Mindstorms EV3

We used LEGO Mindstorms EV3 robot as part of the prototype. The EV3 is the third generation

of robots in the LEGO Mindstorms series and was released in 2013. The programmable robotics

kit of EV3 contains a programmable brick that can be programmed using the original firmware

which comes pre-installed on it, or in Java using the LeJOS firmware, which is a replacement to

the original firmware and includes a Java Virtual Machine [36]. In our prototype, we installed the

leJOS firmware on the brick to program it. The kit includes the brick, three servo motors, color,

touch, and IR sensors [37]. The kit contains several pieces that can be assembled to make several

types of robots. In our prototype we built the basic EV3 ‘Botticelli’ robot. The robot built in our

 104

prototype in the lab is shown in figure 23. The robot can be powered up using the rechargeable

batteries provided in the kit or using 6xAA batteries. It can be connected to the laptop/PC via USB

or via Bluetooth. It is easy to program and reusable since the same kit can be utilized to make

several robots with different functionalities.

Figure 23. EV3 Robot Built in our Lab for the Proof-of-Concept Prototype from the EV3 LEGO Mindstorms Kit

5.1.3.4. Contiki Cooja

Contiki operating system is an open source OS for memory and resource constrained

microcontrollers and other IoT devices. It allows efficient applications to be developed for these

IoT devices, which can fully utilize the hardware and provide low-power wireless communication

[38]. Cooja is a network-simulator application for Contiki OS. It permits the emulation of real IoT

devices with special focus on the simulation of wireless sensor networks. It supports several

standards such as IEEE 802.15.4, Contiki-RPL, uIPv6 stack, etc. [39]. It can simulate various

 105

sensor motes such as SkyMote, Z1 mote, Wismote mote etc. without using any actual physical

motes. We used Contiki Cooja for simulating several Sky Motes to test the scalability performance

of the IoT IaaS. In our implementation, we used Instant Contiki with ContikiOS version 3.0. Instant

Contiki allows easy installation and usage of ContikiOS since it is a virtual machine having all the

required software and toolchains.

5.1.3.5. JVM

A Java Virtual Machine (JVM) makes it possible to run java bytecode on a hardware processor.

It is essentially a virtual machine that allows java programs, or programs from other languages

compiled into bytecode, to run on machines irrespective of the underlying platforms or operating

systems. Thus, it enables interoperability. In our infrastructure, the Virtenio Preon32 Shuttle comes

with the PreonVM installed on it, which is a modified version of the JVM for the embedded

systems. It allows java bytecode to run on the Virtenio sensor, and includes all data types, several

libraries and drivers.

5.1.3.6. Python-Flask

Flask is a microframework for python that does not require specific libraries or tools. Flask

makes it easy to add several different types of functionalities to application through the various

extensions that it supports. For instance, in our implementation, Flask was used to build REST

APIs with ease. The Flask-RESTful extension adds support for building REST APIs quickly.

Although, even without this RESTful extension Flask can easily allow building of REST APIs and

handling of HTTP requests.

 106

5.1.3.7. Python Requests Library

The python Requests library makes it easy to send HTTP requests easily. Simple methods for

‘get’, ‘post’, ‘put’, ‘delete’ etc. can be utilized for sending requests. Moreover, a response object

gets returned for every request, which has data such as status, encoding, etc. [40]. In our

implementation, the Requests library was used by the applications to issue requests to the IoT IaaS.

It was also utilized by the various components in the architecture to forward requests and thus

interact.

5.1.3.8. MySQL

MySQL is one of the most utilized open source relational database management system. It

allows the storage of data in a structured manner. SQL is used for sending commands to the

database to perform operations such as adding data, modifying data, deleting data, etc., through

the MySQL server. Since this comprises of relational databases, all the data is stored in tabular

form, with several tables having relationships between them such as pointers, one-to-many, one-

to-one etc. MySQL is open source, fast, reliable, and easy to use [41]. Moreover, python’s MySQL

driver can allow python programs to have access to and control databases.

5.1.3.9. Programming Languages and IDE Used

For programming the IoT devices, the languages used were Java and nesC. The IDE used was

the Eclipse IDE. The leJOS plugin was installed on the Eclipse IDE in order to enable the

programming of the EV3 LEGO Mindstorms robot. In order to implement the REST APIs, the

applications, and the various components of the architecture, python was used. Primarily, python-

flask along with libraries such as Requests, MySQL driver were used. The IDE used for python

programming was Visual Studio Code.

 107

5.2. Prototype Architecture

The architecture of the prototype is shown in figure 24. As shown in this architecture, the ‘Anti-

Fire Systems’ application and ‘Monitoring of Cooling Systems’ application are able to utilize the

services of the IoT IaaS by sending requests for the provisioning of devices.

Figure 24. Prototype Architecture for the IoT IaaS

In the subsections to follow, the details of the IoT IaaS implementation prototype are discussed

along with a description of the interfaces and the applications. Finally, a short summary of the

prototype validation is provided.

5.2.1. IoT IaaS Prototype

In this section, we describe each implemented layer of the prototype using the bottom up

approach. For each of these layers we discuss the components implemented, or excluded, and how

 108

the implementation was carried out. The Repository implementation and the implementation of the

applications and interfaces is also discussed.

5.2.1.1. IoT Devices Layer

For the implementation of the prototype, the physical sensing devices used were from two

different vendors. These devices were the Virtenio Preon32 Shuttle with the VariSen module and

the Advanticsys CM5000 TelosB SkyMote. Both these devices had temperature and humidity

sensing capabilities. In addition, Contiki Cooja was used to simulate several TelosB SkyMotes

with simulated temperature and humidity sensing. The actuation device used was the LEGO

Mindstorms EV3 robot. The virtual sensing and actuation devices were run on top of the physical

IoT devices. The simulated sensors in Contiki Cooja also supported running several virtual

instances on each simulated sensor.

The Virtenio Preon32 Shuttle with VariSen module was programmed in Java with the help of

the modified Java libraries for embedded systems developed by Virtenio. The Advanticsys

CM5000 TelosB SkyMote and the simulated SkyMotes on Contiki Cooja were programmed in a

C-like language known as nesC. Lastly, the EV3 robot was programmed in the Java language using

the leJOS firmware, which was installed on the robot and provided libraries for controlling the

robot. The IoT Devices Front End was implemented using python-Flask. The components within

the Bare Metal Device Manager and the Virtual Device Manager were all implemented, with the

Device Coordinators being implemented using python. The Device Interface Mappers present

within these managers received the command from the Device Coordinators, and then handled

these requests by directly interacting with the proprietary interfaces of the IoT devices, which

included utilizing Java and nesC programs for controlling the devices. The implementation of the

Publication Engine present within these managers required the use of python and the MySQL

 109

driver of python to interact with the Repository and publish information pertaining to the IoT

devices on it. For implementing the publishing capability of the Publication Engine in a simplified

manner, some details such as functionality of the specific device, type of the device were set to

predefined values for the specific devices, so that whenever these devices would connect to the

IoT IaaS, their information would be added to the Repository. For example, when the EV3 robot

would connect to the IoT IaaS, its information would be published into the repository with

predefined value “moveable” for functionality of device, and predefined value “actuator” for type

of device.

5.2.1.2. Interface C (Int. C)

The interface for interacting with the IoT Devices Layer (Int. C) was implemented using the

REST architectural style. For virtual devices provisioning, operations for creation, deletion of

virtual devices, fetching data, fetching capabilities, fetching and modifying the configurable

settings were implemented. In addition, for virtual actuators, extra operations were implemented

for fetching the list of actions that the actuator could perform, and for firing actuation action

triggers. For bare metal provisioning of devices, operations such as getting list of physical devices

available for bare metal provisioning, reserving device for bare metal access, and releasing device

from bare metal access were implemented. Python-flask was used for creating the REST API for

the implementation of this interface.

5.2.1.3. IoT Capabilities Management Layer

Within the IoT Capabilities Management Layer, the Capabilities Front End, the Sensing

Capabilities Manager and Actuation Capabilities Manager were all implemented using python.

The Capabilities Front End was implemented with python’s Flask being used to receive the

 110

incoming requests. The Capabilities Coordinators within the managers were also implemented

using python. Within the Capabilities Orchestrators, the Capabilities Orchestration Plan

Generator was implemented in python and simply generated a json file, instead of a graph, that

could later be parsed by the Orchestration Plan Executor. The Capabilities Orchestration Plan

Executor and the Discovery Engine were also implemented using python, and the Discovery

Engine could query the Repository using the MySQL driver for python. The Requests library of

python was used for issuing requests to the underlying layers by the Capabilities Orchestration

Plan Executor.

5.2.1.4. Interface B (Int. B) and Interface D (Int. D)

The implementation of the interface B included very basic commands to parse the incoming

requests from IoT Cloud Management Layer and forward them to the appropriate component in

the underlying IoT Capabilities Management Layer. It was implemented using python’s Flask and

Requests library.

Furthermore, Interface D (Int. D) did not need to be implemented as a separate API since the

implemented publication and discovery entities within the architecture made use of the MySQL

driver for python to send requests to the MySQL based Repository.

5.2.1.5. IoT Cloud Management Layer

In order to implement the IoT Cloud Management Layer, all its components were implemented

with the Orchestration Plan Generator specifically being implemented in a simplified manner.

The Cloud Front End was a request processing python program implemented using python’s Flask,

and Requests libraries. Within the Cloud Manager, the Cloud Coordinator was also implemented

in python. Furthermore, within the Cloud Orchestrator, the Orchestration Plan Generator python

 111

program gave the output for the orchestration plan as a simple json file, instead of a graph, which

could then be parsed by the Cloud Orchestration Plan Executor. The Cloud Orchestration Plan

Executor also used the python-requests library to further send commands to the underlying

interface.

5.2.1.6. Interface A (Int. A)

Interface A was the interface that exposed the IoT IaaS to external applications. The REST API

was implemented using Python-flask for the implementation of this interface. This interface

included operations through which the applications could request for the provisioning of sensor

and actuator combinations, with given parameters for sensors and actuators, such as service-type,

location, sampling rate. It also included operations for deleting the provisioned devices, getting

data from the sensors, and specifying the threshold values for sensors and the corresponding

actions.

5.2.1.7. Repository

The Repository was implemented using MySQL. Both the Physical IoT Device Repository and

the Virtual IoT Device Repository were implemented as MySQL tables in which the records of the

physical and virtual IoT devices could be created, queried, updated, or deleted by the different

layers of the IoT IaaS. The records in MySQL stored information pertaining to each device, which

included, device ID, type of device (sensor/actuator), functionality of device, status of device

(idle/busy), action URI (in the case of actuators).

5.2.1.8. Anti-Fire Systems Application

The ‘Anti-Fire Systems’ application was implemented using python. Since an anti-fire system

requires constant and regular monitoring, the sampling rate used was 1 sample/sec for this

 112

application. The python application used the Requests library to initiate the request for temperature

sensing, humidity sensing, and robot devices, and displayed distinct messages when it received

confirmation of devices provisioning, confirmation of threshold exceeding, and confirmation of

actuation action being triggered. The application also constantly pulled the data from the IoT IaaS

and displayed it. For testing the application and using it with the IoT IaaS, the threshold for

temperature sensing was set to 25°C and for humidity sensing was set to 50%.

5.2.1.9. Monitoring of Cooling Systems Application

The ‘Monitoring of Cooling Systems’ application was also implemented in python in a similar

manner to the ‘Anti-Fire Systems’ application. However, this application only required

temperature and humidity sensing capabilities, and not any actuation capability. The sampling rate

for this application was set to 1 sample/second for both the sensing capabilities. The threshold set

for trial purposes was 25°C for temperature sensing and 50% for humidity sensing. This

application displayed messages for devices provisioning, and also displayed the data being

received. Whenever the threshold was exceeded, it displayed an alert message to alert the user of

the same.

5.2.2. Summary

The prototype implementation allowed the applications to provision several virtual devices on

top of the physical IoT devices. This was made possible through the sharing of the same physical

devices for running several virtualizations. Thus, this validated Node Level Virtualization in the

proof-of-concept implementation. Furthermore, in order to implement the publishing of devices’

information, some predefined values for the devices, such as functionality, type of device, were

added automatically to the Repository as soon as the devices were available within the IoT IaaS.

 113

The implemented Discovery Engine was also able to query this Repository and fetch the

information of the appropriate devices as needed. Thus, the Publication and Discovery mechanism

for finding the appropriate devices and keeping up to date information on each device, was

validated. In addition, it was possible for the applications to send requests for provisioning multiple

devices, for which the orchestration of the capabilities of several different IoT devices was

required. It was handled successfully by the orchestration components of the prototype, which

further validated the Orchestration Mechanism. Moreover, the Int. C included the implementation

of an API for the bare metal provisioning of the IoT devices. In addition, the discovery mechanism

involved checking the Repository for the information of the physical IoT devices matching the

capabilities required by the application and available to be reserved for bare metal usage. The IoT

Devices Layer then handled the interaction with the proprietary interface of the physical device in

order to reserve it to be solely used as-is by the application. This validated that the prototype

allowed bare metal access to the physical IoT devices. Lastly, the infrastructure for the prototype

included actuators, in this case the EV3 Mindstorms robot. It was possible to use the robot and

control it, for instance, to make it move. The application was able to request for actuators, which

could further be accordingly provisioned. This validated the ability of our proof-of-concept to

control and use actuators. Thus, we can conclude that the architecture for the IoT IaaS proposed

in this work is validated by the implemented prototype.

5.3. Performance Evaluations

In this section, we first describe the performance metrics to evaluate the performance of the

proposed architecture. This is followed by a description of the experimental setups for this

evaluation. Finally, we provide an end to this section by an analysis of the obtained results.

 114

5.3.1. Performance Metric

Three performance metrics were selected in order to evaluate the performance of our proposed

architecture. These were as follows:

IoT Device Provisioning Delay: It is measured from the time a request is sent by the

application for the provisioning of devices, to the time the acknowledgement message of the

devices having been provisioned is received. This includes the time taken for the processing of the

application’s request, orchestration of the services of several devices, and the creation of virtual

devices or reservation of the devices to be used as bare metal. The IoT Devices Provisioning Delay

is measured for the various individual heterogenous devices available within the infrastructure, as

well as for a combination of several devices. The measurements on the individual devices were

taken for provisioning virtual devices on these physical devices, as well as for bare metal

provisioning of these physical device. In addition, the number of devices requested for

provisioning were gradually increased up to 1000 devices to test for scalability.

Orchestration Delay: The orchestration delay is measured whenever 2 or more capabilities are

requested by the application, in which case, the orchestration of the services of several IoT devices

is needed. The Orchestration Delay is defined as the time between the orchestrator component

receiving the request for orchestration, and the time the acknowledgment message of orchestration

completion is received. The Orchestration Delay was measured for the orchestration of the

services from 2 to up to a 1000 IoT devices. This also allowed testing the scalability of the

architecture.

 115

Sensor Threshold – Actuation Trigger Delay: The Sensor Threshold – Actuation Trigger

Delay is defined as the time taken from the detection of the IoT devices’ output exceeding the

specified threshold, to the time the appropriate actuation action trigger is fired.

5.3.2. Experimental Setup

For the experimental setup, each physical IoT device was programmed to run a maximum of 4

virtual devices on top of it. This was because the Advanticsys TelosB SkyMote could only support

a maximum of 4 virtual devices running on top of it without running out of memory. Hence, to

maintain uniformity, each device in the infrastructure was programmed to support up to 4 virtual

instances.

In order to evaluate the first performance metric, the following setups, Setup 1 and Setup 2,

were considered.

Setup 1: In this setup, virtual device provisioning, as well as bare metal device provisioning

was done individually for the following physical IoT devices within the infrastructure: the

Advanticsys CM5000 SkyMote, Virtenio Preon32 Shuttle with VariSen module, and the LEGO

Mindstorms EV3 Boticelli robot. For each of these individual experiments, the tests were repeated

10 times in order to capture the average delays. In addition, virtual device provisioning, as well as

bare metal device provisioning was also done for a combination of sensor and actuator, in this case

the Virtenio sensor and the EV3 robot, with the test being repeated 10 times.

Setup 2: In this setup, Contiki Cooja simulator was incorporated into the infrastructure to

simulate several TelosB SkyMotes. Experiments were conducted where 2, 4, 8, 10, 16, 32, 100,

200, 400, and 1000 virtual devices were provisioned from the infrastructure. For each of these

experiments, an average of ten (10) iterations was taken. The number ten (10) was chosen because

beyond these ten iterations there was no significant difference in the measurements.

 116

In order to evaluate the second performance metric, the Setup 2 was considered.

For evaluating the third performance metric, the following setup, Setup 3, was considered.

Setup 3: In this setup, the EV3 robot and the Virtenio sensor were provisioned in order to detect

the delay between the sensor output’s threshold detection and the automatic starting of the robot

action. Both the devices were provisioned, and a threshold of 25ºC was provided for the

temperature sensor. A total of 10 iterations were conducted for this experiment in order to capture

the average delay. The number of experiments was arbitrarily chosen to be 10, since after 10

iterations there was no significant difference observed in the measurements.

5.3.3. Results and Analysis

In this subsection, the performance results are discussed based on the specified metrics. First,

the IoT Device Provisioning Delay is analyzed for the setups 1 and 2 in separate subsections. Next,

the Orchestration Delay is analyzed for setup 2, and finally, the Sensor Threshold – Actuation

Trigger Delay is analyzed for setup 3.

5.3.3.1. IoT Device Provisioning Delay for Setup 1

Figure 25 shows the time taken for creating a virtual device over the Virtenio sensor as well as

for its bare metal provisioning over 10 iterations. The average device provisioning delay for

creating a virtual sensor on top of the Virtenio sensor is 606.5 ms (milliseconds), while the average

delay for the bare metal provisioning of the Virtenio sensor is 338.6 ms. Similarly, the figures 26

and 27 show the time taken for creating a virtual device and the time taken for bare metal

provisioning of the Advanticsys sensor and the EV3 Mindstorms robot respectively, taken over 10

iterations. For the Advanticsys sensor, the average time for provisioning a virtual device on top of

the physical sensor is 154 ms, whereas the time taken for the bare metal provisioning of the device

 117

is 79.2 ms. The average time taken to create a virtualization on top of the EV3 robot is 518.7 ms,

whereas the average time taken for the bare metal provisioning of the robot is 233.2 ms.

It can be observed that for all these physical devices, the time taken to create a virtual instance

on top of the physical device is nearly double the time taken to provision the device as bare metal,

with a factor of 1.79 for the Virtenio sensor, 1.94 for the Advanticsys sensor, and 2.22 for the EV3

robot.

In the case of the EV3 robot, there was one limitation encountered while creating several virtual

devices on top of it. These virtual devices would run successfully on top of the physical robot as

long as their actions did not clash, i.e. require access to the same parts of the robot, or overlap. For

instance, while trying to run two virtual devices on top of the robot, where both the devices

required controlling the motors of the robot to move it for 2 seconds and 4 seconds respectively, it

was noticed that the robot would only move for 2 seconds and then stop. However, the messages

for both the actions would be displayed. This was because for the first virtualization, the command

to stop the robot would come after 2 seconds, while for the second virtualization the command to

stop the robot would come after 4 seconds. However, since the 2 actions would overlap, the

command to stop the robot after 2 seconds would reach it and control it first, and it would thus

remain in the stopped position even when it received another stop command 2 seconds later.

However, such issues could be avoided to some extent by handling the edge cases while

programming.

In addition, on comparing the Advanticsys CM5000 sensor and the Virtenio Preon32 Shuttle +

VariSen Module, it can be observed that for virtualization, the Virtenio sensor takes nearly 3.93

times the time taken by the Advanticsys sensor. In order to provision the devices as bare metal,

the Virtenio Sensor takes nearly 4.27 times the time taken by the advanticsys sensor. Thus, on an

 118

average, for both the provisioning operations, the Virtenio sensor takes nearly 4 times more time

than the Advanticsys sensor. One reason that can possibly explain this phenomenon is the fact that

the Advanticsys sensor makes use of C based libraries for running programs on it, whereas the

Virtenio sensor uses the Java based libraries, which causes some overhead leading to additional

overall delays. It is a known fact that C based code, in general, runs faster than java as it usually

provides better startup performance for machines for which it is compiled. Moreover, Java requires

JVM to convert byte code to machine code which causes more delay.

Figure 28 shows the time taken for the virtualization and bare metal provisioning of the Virtenio

sensor and EV3 robot combination. The test is repeated 10 times, and it can be observed that the

average time taken to create virtual sensor and virtual actuator combination is 1130.9 ms, while

the time taken to provision a combination of these devices as bare metal is 593.6 ms. Here as well,

the time taken for virtualization is nearly double the time taken for bare metal provisioning, with

a factor of 1.9, which aligns with the results obtained above. Moreover, it can be seen that the time

taken to provision the combination of the virtenio sensor and the robot is slightly greater, or nearly

equal, to the sum of provisioning both the devices individually in most of the iterations, for both

virtual device provisioning and bare metal device provisioning. Both these devices, i.e. the

Virtenio sensor and the EV3 robot, utilize java-based libraries for running programs, which is why

nearly 1 second is taken for their provisioning.

 119

Figure 25. Bare Metal and Virtual Device Provisioning of Virtenio Preon32 Shuttle + VariSen Module

Figure 26. Bare Metal and Virtual Device Provisioning of Advanticsys CM5000 TelosB SkyMote

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10

Ti
m
e
in
 M

illi
se
co
nd

s

Number of Iterations

Provisioning of Sensor- Virtenio

Baremetal Prov isioning Virtual Dev ice Prov isioning

Baremetal Prov isioning Average Virtual Dev ice Prov isioning Average

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Ti
m
e
in
 m

illi
se
co
nd

s

Number of Iterations

Provisioning of Sensor-Advanticsys

Virtual Dev ice Prov isioning Baremetal Prov isioning

Baremetal Prov isioning Average Virtual Dev ice Prov isioning Average

 120

Figure 27. Bare Metal and Virtual Device Provisioning of LEGO EV3 Mindstorms Robot

Figure 28. Bare Metal and Virtual Device Provisioning of Virtenio Sensor and EV3 Robot

5.3.3.2. IoT Device Provisioning Delay for Setup 2

Figure 29 shows the average delay, in milliseconds, for provisioning 2, 4, 8, 16, 32 devices.

Each of these averages were taken over 10 iterations. Similarly, figure 30 shows the average delay,

in seconds, for the provisioning of 10, 100, 200, 400, 1000 virtual devices, taken over 10 iterations.

In order to provision this large number of devices, Contiki Cooja simulator was utilized for

simulating the TelosB SkyMotes.

0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8 9 10

Ti
m
e
in
 m

illi
se
co
nd

s

Number of Iterations

Provisioning of Actuator - EV3 Mindstorms

Baremetal Prov isioning Virtual Dev ice Prov isioning

Baremetal Prov isioning Average Virtual Dev ice Prov isioning Average

0
200
400
600
800

1000
1200
1400
1600

1 2 3 4 5 6 7 8 9 10

TI
M
E
IN
 M

ILL
IS
EC

ON
DS

NUMBER OF ITERATIONS

Sensor and Actuator Provisioning

Baremetal Prov isioning Virtual Dev ice Prov isioning

Baremetal Prov isioning Average Virtual Dev ice Prov isioning Average

 121

During the provisioning of 2 devices, the average device provisioning delay was found to be

317.1 ms. For 4 devices it was 777.7 ms, which is slightly greater than double the time taken for

two devices, and so on. On observing the device provisioning delays for up to the 1000 devices, it

was observed that the delays increased by nearly the same factor as the increase in the number of

devices. As another instance, the device provisioning delay for 100 devices was 9.038 seconds,

while that for 200 devices was 19.297 seconds, an increase by a factor of 2.1.

This indicates that the IoT device provisioning delay increased almost linearly with the increase

in the number of devices to be provisioned. In order to test the scalability of the architecture, the

number of devices were increased up to 1000 devices, and the linearity was confirmed by the

nearly straight-line graph, as can be seen in the figures 29 and 30.

This is indeed expected in these results. The reason for this is that a majority of the device

provisioning time, more than 80%, is spent in the orchestration of the devices, and the processing

of the application’s request and capabilities handling, as we will observe in the section 5.3.3.3.

Much less part of the device provisioning time is actually spent in interacting with the IoT devices’

proprietary interfaces. Therefore, the majority of the device provisioning time is not dependent on

the type of device being provisioned from the infrastructure. In addition, as the number of devices

in the request increase, the implemented prototype would take more time to go over each requested

device one by one and accordingly handle the request. As shown in section 5.3.3.3., the

orchestration delay also increases linearly when the number of requested devices increase. Thus,

unless severe delays are suffered in the interaction with the proprietary interfaces of the IoT

devices, the device provisioning would be more or less linear. Moreover, in our experimental

setup, all the IoT devices are simulated TelosB SkyMotes in Contiki Cooja, on which virtual

instances are provisioned. These TelosB SkyMotes are all of the same type. There can be several

 122

possible cases, such as bare metal provisioning of all the requested devices, virtual provisioning

of all devices running on the same type of real physical sensors, virtual provisioning of all devices

running on different types of real physical sensors, or some devices being provisioned as bare

metal and some being provisioned as virtual devices. However, the explanation given above would

apply to all of these cases, and thus, it is expected that the results in all of them would be similar

to the ones obtained in our experiment.

Furthermore, the linear scalability depicted by these graphs implies that the performance of the

architecture remained consistent with the increase in the number of devices provisioned. The

architecture was able to handle the provisioning of the devices without suffering any significant

degradation or delays successfully up to 1000 devices.

However, this linear scalability might not prove beneficial for certain applications that require

quicker provisioning of devices and have strict start times. More specifically, for provisioning 100

devices, the delay encountered is nearly 9 seconds, and for 1000 devices, it is nearly 1 minute 36

seconds. For instance, for certain real time and large scale applications, such as a ‘Monitoring of

Cooling Systems’ in large factories or setups, where hundreds or thousands of temperature sensors

are to be provisioned for ensuring that the equipment within that area remains in a cooled

environment, provisioning delays as long as 1 minute and 36 seconds can cause significant damage

to the equipment by the time the sensors get provisioned.

 123

Figure 29. Average IoT Device Provisioning Delay, in milliseconds, for provisioning 2, 4, 8, 16, 32 devices

Figure 30. Average IoT Device Provisioning Delay, in seconds, for provisioning 10, 100, 200, 400, 1000 devices

5.3.3.3. Orchestration Delay for Setup 2

In order to calculate the orchestration delay, 2, 4, 8, 10, 16, 32, 100, 200, 400, 1000 devices

were provisioned, and the time taken by the orchestration component to orchestrate the capabilities

of the devices was measured. Figure 31 shows the delay, in milliseconds, experienced in

orchestrating the services of 2, 4, 8, 16, and 32 devices, while figure 32 shows the orchestration

317.1

777.7

1084.7

1897.7

3176

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Ti
m
e
in
 M

ill
ise

co
nd

s

Number of Devices

Average IoT Device Provisioning Delay

1.129

9.038

19.297

38.372

106.498

0

10

20

30

40

50

60

70

80

90

100

110

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

Ti
m
e
in
 Se

co
nd

s

Number of Devices

Average IoT Device Provisioning Delay

 124

delay, in seconds, for 10, 100, 200, 400, and 1000 devices. Both these figures show the average

orchestration delay for the different number of devices taken over 10 iterations. On comparing

figures 29 and 31 it can be observed that in the case of 2 devices, the total device provisioning

delay is 317.1 ms, while the orchestration delay is 254.61 ms, which is nearly 80.29% of the

average IoT device provisioning delay. Similarly, the orchestration delay is nearly 77% of the

average device provisioning delay for 4 devices; 84.7% of the average device provisioning delay

for 8 devices, and so on. In fact, on observing all the delays, it is found that, on an average, the

orchestration delay takes nearly 80.7% of the device provisioning delay for the different numbers

of devices, up to 1000 devices. This denotes that a majority of the time (nearly 80.7%) is taken by

the orchestration components during the provisioning of the IoT devices.

Moreover, the nearly straight graphs in the figures 31 and 32 show that the orchestration delay

also increases in a linear manner as the number of devices increase. For example, the orchestration

delay increases by a factor of nearly 2.3 as the number of devices double from 2 to 4. Similarly,

the orchestration delay increases by a factor of nearly 2.1 as the number of devices double from

100 to 200. Therefore, the orchestration delay increases by nearly the same factor as the increase

in the number of devices. This linear scalability shows that the performance of the architecture

does not suffer significant degradation for up to 1000 devices, and that it is able to handle their

orchestration successfully.

 125

Figure 31. Average Orchestration Delay, in milliseconds, for orchestrating the services of 2, 4, 8, 16, 32 devices

Figure 32. Average Orchestration Delay, in seconds, for orchestrating the services of 10, 100, 200, 400, 1000

devices

5.3.3.4. Sensor Threshold – Actuation Trigger Delay for Setup 3

Figure 33 shows the delay, in seconds, between detection of the threshold value of the

temperature sensor, and corresponding starting of the actuator action. This test was repeated 10

times, with the minimum time taken being 2.971 seconds, and maximum being 3.37 seconds. The

254.61

596.2

878.6

1537.4

2574

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Ti
m
e
in
 M

ill
ise

co
nd

s

Number of Devices

Average Orchestration Delay

0.957

7.14

15.438

31.425

84.133

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

Ti
m
e
in
 Se

co
nd

s

Number of Devices

Average Orchestration Delay

 126

average time taken over these 10 iterations was 3.203 seconds. In this case, the threshold was

assumed to be 25ºC, and every time the sensor gave this output or larger, the command was sent

automatically to the robot to start moving. The average delay calculated indicates that the robot

starts moving nearly 3.203 seconds after the sensor output is found to exceed the threshold value.

This value might not be acceptable for certain time sensitive applications which require quick

action, and where even a second of delay can create a significant difference, such as smart patient-

health monitoring applications, and so on. However, this delay might be acceptable in applications

that can withstand few seconds of delay.

Figure 33. Sensor Threshold – Actuation Trigger Delay, in seconds, measured over 10 iterations

5.4. Conclusion

In this chapter, we began by providing an overview of the implemented prototype architecture,

after which we gave a detailed description of the prototype architecture. Next, we described the

performance evaluations. This included details of the performance metrics used, the experimental

setup for performing these evaluations, followed by the results obtained and their discussion.

In the next chapter, we provide a conclusion to this thesis by summarizing it and discussing the

future works yet to be done.

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

1 2 3 4 5 6 7 8 9 10

Ti
m
e
in
 Se

co
nd

s

Number of Iterations

Sensor Threshold-Actuation Trigger Delay

Time taken for each Iteration Average time

 127

Chapter 6

Conclusion

In this chapter, we first provide a summary of the contribution of this thesis, and then highlight

the possibility of the future research direction.

6.1. Contributions Summary

With the ever-increasing demand of IoT in daily life as well as in the industry, most IoT

applications aim for cost and energy efficiency, scalability, and minimal latency in terms of

resource provisioning, which is somewhat made possible through Cloud Computing. However, the

conflicting properties of the cloud and IoT infrastructure, such as the heterogenous and resource

constrained nature of the IoT devices, pose many challenges to the successful integration of Cloud

computing and IoT. To bridge this gap, it is essential to decouple the IoT device services from the

physical IoT devices through virtualization techniques, such as node level virtualization. This

would allow the sharing of the capabilities of the IoT devices, thus improving cost efficiency, as

well as more flexible and uniform access to the devices. Therefore, there is a need to design and

implement an IoT IaaS that not only enables sharing the capabilities of IoT devices to improve

costs, but also addresses other challenges that the integration of Cloud computing and IoT face,

such as the heterogeneity of the devices, orchestration of the different IoT devices’ services, bare

metal provisioning of the devices, and publication and discovery of the capabilities of IoT devices.

In order to derive the requirements for the IoT IaaS, we presented a motivating scenario within

a ‘Smart Factory’ environment. This scenario consisted of six applications that required sharing of

the capabilities of the same physical devices, which included both sensors and actuators, as well

 128

as bare metal access to the devices. In addition, some applications also required automatic

triggering of actuator actions whenever some sensors obtained outputs beyond specified

thresholds. This use case, thus, allowed us to derive several requirements for the IoT IaaS, which

included node level virtualization as one of the primary requirements in order to enable the sharing

of the physical resources. In addition, a publication and discovery mechanism for storing and

querying the IoT devices’ capabilities information, and an orchestration mechanism to combine

the services of different devices, were also considered essential for the realization of the IoT IaaS.

Two other critical requirements were also identified, which included having a mechanism to allow

the bare metal provisioning of the physical IoT devices and enabling the applications to control

and use actuators included in the infrastructure. We then proceeded to evaluate complete

architectures for the IoT IaaS, and the models and frameworks that can aid the IoT IaaS, against

these derived requirements. None of the works in the state-of-the-art could meet all the

requirements.

Next, we proposed an architecture for the IoT IaaS that would meet all of our derived

requirements. The architecture relied heavily on node level virtualization, since it enabled several

virtual devices to be provisioned on top of a single physical device in order to increase resource

utilization and meet the needs of the applications. Furthermore, the publication and discovery

entities described within the architecture along with the database Repository provided a well-

established mechanism to publish and discover the devices and their information as needed. In

addition, the architecture also contained orchestration modules, such as the Cloud Orchestrator

and Capabilities Orchestrator, that enabled the provisioning of a proper mechanism for the

orchestration of the services of several IoT devices. Moreover, the architecture also contained

components and interfaces that allowed the physical IoT devices to be provisioned as bare metal.

 129

All of the devices present within the infrastructure included both sensing and actuation devices.

Thus, a mechanism was also presented within the architecture for controlling and using actuators.

Finally, the architecture also contained several RESTful interfaces, such as those for provisioning

the devices as bare metal, for provisioning virtual sensors and actuators, and a high-level interface

for exposing the proposed IoT IaaS to external applications. In the end, we proposed the procedures

for the IoT IaaS architecture to depict its functioning.

This was followed by the implementation of a prototype for validating the IoT IaaS. A subset

of the motivating ‘Smart Factory’ scenario was used along with the implementation of a subset of

the proposed architecture. The subset of the motivating scenario implemented involved developing

two applications, the ‘Anti-Fire Systems’ application and ‘Monitoring of Cooling Systems’

application which could utilize the interface for accessing the IoT IaaS.

Finally, three performance metrics were described along with the experimental setups. The

results of each of the experiments were graphically depicted and analysed. The feasibility of the

architecture was evaluated, as well as its scalability performance through extensive simulations.

From the results it was evident that provisioning virtual devices on top of the physical devices took

nearly double the time taken to provision the physical devices as bare metal. In addition, on

extensive simulations of up to 1000 devices it was found that the IoT device provisioning delay

increased almost linearly with the increase in the number of devices, i.e. showed linear scalability.

Thus, the performance of the architecture did not suffer significant performance degradation up to

1000 devices. As the number of provisioned devices increased, this mechanism would not satisfy

certain real time applications with stricter start times, since for 1000 devices the provisioning delay

went up to 1 minute 36 seconds. However, it would still be an appropriate choice for non-real time

applications or real-time applications with lenient start times. Furthermore, nearly 80.7% of the

130

device provisioning time was spent in the orchestration of the services of several devices. Finally,

the experimentally calculated average delay experienced between the detection of the threshold

values within the sensors’ outputs and the corresponding action triggers were acceptable for

applications that could withstand few seconds of delay.

6.2. Future Research Direction

In this work, while evaluating the scalability of the architecture, no particular algorithms were

implemented to enhance the resource efficiency and performance. Future works can incorporate

algorithms into the architecture to enable dynamic scaling and optimum utilization of the devices.

Furthermore, our architecture did not involve network level virtualization, which can prove

beneficial in future works and allow for efficient resource utilization within networks of IoT

devices.

In addition, the proposed architecture for the IoT IaaS provided no mechanism for securing the

IaaS, which is very critical nowadays. Furthermore, since the proposed architecture in this thesis

supports virtualized as well as bare metal access to the IoT devices, security becomes all the more

necessary. For instance, if the attackers gain bare metal access to the IoT device, they can directly

corrupt IoT devices or render them completely useless, while if they gain virtualized access to the

IoT devices, they can potentially corrupt the other virtual instances running on the same device

and affect the working of the other applications. Thus, in order to secure the IoT IaaS one approach

is to secure the interface which exposes the IoT IaaS to the applications, through techniques such

as token based authentication. Moreover, encryption keys and SSL certificates can be incorporated

into the IaaS in order to transmit and receive data to/from the IoT devices. Further research in this

domain can definitely enhance the IoT IaaS.

131

Moreover, in our work, it was observed that as the number of devices to be provisioned

increased, the time taken to provision them also increased linearly, which went up to nearly 1

minute and 36 seconds for 1000 devices. This might not be feasible for certain applications. Thus,

there is a need for a mechanism that can reduce the factor by which the total IoT device

provisioning time increases, i.e. as the number of devices increase by a certain factor, the total IoT

device provisioning time increases by a reduced/lower factor, also called supra-linear scalability.

Although supra-linear scalability is a rare scenario, it does hold significant research potential.

$QRWKHU limitation of the IoT IaaS proposed in this thesis was that it provisioned only virtual

and bare metal IoT devices to the applications but was unable to provision virtual IoT networks or

bare metal IoT networks to the applications. However, certain applications may require the

provisioning of virtual or bare metal IoT networks. For instance, in applications such as a ‘Fire

Direction Map’ application, a network of IoT temperature and humidity sensors may be needed,

which can allow these sensors to communicate with each other and, thus, enable the detection of

the fire as well as its direction of propagation within an area. In such a case, the application would

require the provisioning of either a bare metal or a virtual IoT network of these sensors. In order

to make this happen, there can be two possible research directions. The first is the architectural

direction, where specific layers, software modules, and interfaces can be added into the IoT IaaS.

A possible challenge in this scenario will be the new interfaces, which will enable applications to

request for the creation of virtual or bare metal IoT networks. The second is the algorithmic

direction, which would involve the development of specific algorithms to enable efficient resource

allocation.�)LQDOO\�� DQRWKHU� SRVVLEOH� IXWXUH� UHVHDUFK� GLUHFWLRQ� FDQ� LQYROYH� UHILQLQJ� WKH�

IXQFWLRQLQJ�RI�WKH�RUFKHVWUDWLRQ�PHFKDQLVP��SURSRVHG�ZLWKLQ�WKH�,R7�,DD6�DUFKLWHFWXUH��WKURXJK�

WKH� DGGLWLRQ� RI� EXVLQHVV� SURFHVV� PRGHOV� LQ� RUGHU� WR� JHQHUDWH� LPSURYHG� DQG� RSWLPL]HG�

RUFKHVWUDWLRQ�SODQV��&ORXG�EDVHG�%XVLQHVV�3URFHVV�0RGHOLQJ�WRROV�FDQ�HQKDQFH�WKLV�SRVVLELOLW\�

132

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, "Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applications," in IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, Fourthquarter 2015,
doi: 10.1109/COMST.2015.2444095.

[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., & Konwinski, A. et al. (2009).
Retrieved 5 September 2020, from
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

[3] What is IaaS? Infrastructure as a Service | Microsoft Azure. Retrieved 24 July 2020, from
https://azure.microsoft.com/en-ca/overview/what-is-iaas/

[4] Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud
computing and Internet of Things: A survey. Future Generation Computer Systems, 56,
684-700. doi: 10.1016/j.future.2015.09.021

[5] Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2016). Wireless
sensor network virtualization: a survey. IEEE Communications Surveys and
Tutorials, 18(1), 553–576.

[6] Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A
Literature Review. Journal Of Computer And Communications, 03(05), 164-173. doi:
10.4236/jcc.2015.35021

[7] Silverio-Fernández, M., Renukappa, S., & Suresh, S. (2018). What is a smart device? - a
conceptualisation within the paradigm of the internet of things. Visualization In
Engineering, 6(1). doi: 10.1186/s40327-018-0063-8

[8] R. Elhabyan, W. Shi and M. St-Hilaire, "Coverage protocols for wireless sensor networks:
Review and future directions," in Journal of Communications and Networks, vol. 21, no.
1, pp. 45-60, Feb. 2019, doi: 10.1109/JCN.2019.000005.

[9] C. Nan, Y. Lee, F. Tila, S. Lee and D. H. Kim, "A Study of Actuator Network Middleware
Based on ID for IoT System," 2015 8th International Conference on Grid and Distributed
Computing (GDC), Jeju, 2015, pp. 17-19, doi: 10.1109/GDC.2015.12.

[10] Whitmore, A., Agarwal, A., & Da Xu, L. (2014). The Internet of Things—A survey of
topics and trends. Information Systems Frontiers, 17(2), 261-274. doi: 10.1007/s10796-
014-9489-2

[11] Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet
of Things: Architecture, Enabling Technologies, Security and Privacy, and
Applications. IEEE Internet Of Things Journal, 4(5), 1125-1142. doi:
10.1109/jiot.2017.2683200

133

[12] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer and P. F. Chan, "Leveraging virtualization
to optimize high-availability system configurations", IBM Syst. J., vol. 47, no. 4, pp. 591-
604, 2008.

[13] Hypervisor. (2020). Retrieved 7 August 2020, from
https://www.vmware.com/topics/glossary/content/hypervisor

[14] Gouda, K., Patro, A., Dwivedi, D., & Bhat, N. (2014). Virtualization Approaches in Cloud
Computing. International Journal Of Computer Trends And Technology, 12(4), 161-166.
doi: 10.14445/22312803/ijctt-v12p132

[15] M. Durairaj M., P. Kannan (2014). A Study On Virtualization Techniques And Challenges
In Cloud Computing. International Journal of Scientific & Technology Research, 3, 147-
151.

[16] L. Yan, "Development and application of desktop virtualization technology," 2011 IEEE
3rd International Conference on Communication Software and Networks, Xi'an, 2011, pp.
326-329, doi: 10.1109/ICCSN.2011.6013725.

[17] I. Khan, F. Z. Errounda, S. Yangui, R. Glitho and N. Crespi, "Getting Virtualized Wireless
Sensor Networks' IaaS Ready for PaaS," 2015 International Conference on Distributed
Computing in Sensor Systems, Fortaleza, 2015, pp. 224-229, doi:
10.1109/DCOSS.2015.39.

[18] Rajaraman, V. (2014). Cloud computing. Resonance, 19(3), 242-258. doi:
10.1007/s12045-014-0030-1

[19] Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and
what it is not. In: 10th International Conference on Autonomic Computing (ICAC), San
Jose, CA, USA, pp 23–27

[20] Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and
research challenges. Journal Of Internet Services And Applications, 1(1), 7-18. doi:
10.1007/s13174-010-0007-6

[21] Moreno-Vozmediano, R., Montero, & Llorente, I. (2012). IaaS Cloud Architecture: From
Virtualized Datacenters to Federated Cloud Infrastructures. Computer, 45(12), 65-72. doi:
10.1109/mc.2012.76

[22] C. G. Kominos, N. Seyvet and K. Vandikas, "Bare-metal, virtual machines and containers
in OpenStack," 2017 20th Conference on Innovations in Clouds, Internet and Networks
(ICIN), Paris, 2017, pp. 36-43, doi: 10.1109/ICIN.2017.7899247.

[23] Ullah, I., Ahmad, S., Mehmood, F., & Kim, D. (2019). Cloud Based IoT Network
Virtualization for Supporting Dynamic Connectivity among Connected
Devices. Electronics, 8(7), 742. doi: 10.3390/electronics8070742

134

[24] Guerreiro, J., Rodrigues, L., & Correia, N. (2019). Resource Allocation Model for Sensor
Clouds under the Sensing as a Service Paradigm. Computers, 8(1), 18. doi:
10.3390/computers8010018

[25] Atzori, L., Bellido, J., Bolla, R., Genovese, G., Iera, A., & Jara, A. et al. (2019).
SDN&NFV contribution to IoT objects virtualization. Computer Networks, 149, 200-212.
doi: 10.1016/j.comnet.2018.11.030

[26] M. Nazmul Alam and R. H. Glitho, "An Infrastructure as a Service for the Internet of
Things," 2018 IEEE 7th International Conference on Cloud Networking (CloudNet),
Tokyo, 2018, pp. 1-7, doi: 10.1109/CloudNet.2018.8549493.

[27] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow and P. Polakos, "Wireless sensor
network virtualization: early architecture and research perspectives," in IEEE Network, vol.
29, no. 3, pp. 104-112, May-June 2015, doi: 10.1109/MNET.2015.7113233.

[28] A. Gupta and N. Mukherjee, "Can the Challenges of IOT be Overcome by Virtual
Sensors," 2017 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, 2017, pp. 584-590, doi:
10.1109/iThings-GreenCom-CPSCom-SmartData.2017.92.

[29] A. Gupta and N. Mukherjee, "Implementation of virtual sensors for building a sensor-cloud
environment," 2016 8th International Conference on Communication Systems and
Networks (COMSNETS), Bangalore, 2016, pp. 1-8, doi:
10.1109/COMSNETS.2016.7439978.

[30] Mattos, D., Velloso, P., & Duarte, O. (2019). An agile and effective network function
virtualization infrastructure for the Internet of Things. Journal Of Internet Services And
Applications, 10(1). doi: 10.1186/s13174-019-0106-y

[31] A. K. Mandal, A. Cortesi, A. Sarkar and N. Chaki, "Things as a Service: Service model for
IoT," 2019 IEEE 17th International Conference on Industrial Informatics (INDIN),
Helsinki, Finland, 2019, pp. 1364-1369, doi: 10.1109/INDIN41052.2019.8972241.

[32] K. P. S and V. P. M S, "Software Framework for Wireless Sensor Network
Virtualization," 2019 International Conference on Smart Systems and Inventive
Technology (ICSSIT), Tirunelveli, India, 2019, pp. 1136-1143, doi:
10.1109/ICSSIT46314.2019.8987948.

[33] Retrieved 27 October 2020, from https://www.advanticsys.com/shop/mtmcm5000msp-p-
14.html

[34] Ziegler, S. Preon32 - Innovative 2.4 GHz radio module. Retrieved 27 October 2020, from
https://www.virtenio.com/en/portfolio-items/preon32/

 135

[35] Ziegler, S. Preon32 Shuttle VariSen - Multi-sensor module for the Preon32 Shuttle.
Retrieved 27 October 2020, from https://www.virtenio.com/en/portfolio-items/preon32-
shuttle-varisen/

[36] LeJOS. Retrieved 27 October 2020, from https://en.wikipedia.org/wiki/LeJOS

[37] LEGO® MINDSTORMS® EV3 31313 | MINDSTORMS® | Buy online at the Official
LEGO® Shop CA. Retrieved 27 October 2020, from https://www.lego.com/en-
ca/product/lego-mindstorms-ev3-31313

[38] contiki-os/contiki. Retrieved 27 October 2020, from https://github.com/contiki-os/contiki

[39] Mehmood, T. (2017). COOJA Network Simulator: Exploring the Infinite Possible Ways
to Compute the Performance Metrics of IOT Based Smart Devices to Understand the
Working of IOT Based Compression & Routing Protocols. ArXiv, abs/1712.08303.

[40] Requests: HTTP for Humans™ — Requests 2.24.0 documentation. Retrieved 27 October
2020, from https://requests.readthedocs.io/en/master/

[41] MySQL :: MySQL 8.0 Reference Manual :: 1.2.1 What is MySQL?. Retrieved 27 October
2020, from https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html

