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Abstract

A Model Traceability Framework for Network Service Management

Omar Hassane

Automating the enactment of processes using model-driven methods and tools paves the way

for streamlining or optimizing these processes. Establishing traceability in automated processes is

instrumental in carrying out analysis of the process and the involved artifacts.

In this thesis, we propose a traceability information generation, visualization and analysis ap-

proach integrated with process modelling and enactment. A process model (PM) defined as an

Activity Diagram has associated model transformations implementing the various activities and

actions in the process. Enactment of the PM is carried out with the use of model transformation

chaining in cooperation with model management means, in particular, megamodelling. We have in-

corporated both traceability in the small (at the model transformation level) and traceability in the

large (at the PM level) in our approach. The traceability information is retained in the megamodel

and forms the basis for traceability analysis of the enacted process. We have built a change impact

analysis which allows the impact of a change in a model involved in the process to be assessed with

the help of the derived megamodel.

We further extended our approach with the notion of intents. We propose the usage of intents

at both the PM and model-transformation levels as part of our traceability information. We define

intents as information representing the objective of the PM actions/activities and their implementa-

tions. Furthermore, we have incorporated traceability visualization support to visualize trace links

relating models at different levels through the captured intents. The intent-enriched traceability

information and the enhanced visualization enable semantically richer traceability analysis.

We applied our work to Network Service (NS) management in the context of the Network Func-

tions Virtualization (NFV) paradigm.We believe automation of the orchestration and management

of network services can progress rapidly with the help of model-driven engineering methods and

tools. We applied our approach on a NS design process to analyze the impact of changing input

models on output models as well as to show the benefits of intents not only in the context of this

process, but also for the whole NS lifecycle management operations.

Our work is concretized in a tool, MAPLE-T, built as an Eclipse plugin. It extends MAPLE,

an integrated process modelling and enactment environment.
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Chapter 1

Introduction

In this chapter, we introduce the motivations, the target domain, context and contri-

butions of this thesis.

1.1 Thesis Motivations

Model-driven engineering (MDE) is a paradigm for top-down software development.

It promotes using models as first-class citizens in the software engineering process.

Thus, models are no longer used only to describe software processes. They are now

created and manipulated as part of these processes. Models are successively manipu-

lated to achieve the final desired results. Furthermore, explicit modelling of processes

not only allows for automation but also paves the way for streamlining or optimizing

these processes. Process models can be used to not only represent but also execute

workflows by leveraging MDE methods and tools.

However, in order to understand and analyze any process, it is not only essential

to link its artifacts, but also generate and retain the traceability details at each step of

the process. In fact, the traceability information collected can be the basis for various

types of analysis or assessments (e.g., origin tracking, change impact analysis) of the

enacted process [71] and also enables information recovery, change propagation, de-

pendency visualization, and even defect detection and prediction [25,81]. Traceability

management in software processes can be facilitated with the use of MDE enablers,

such as model transformation chaining and megamodelling.
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Generally, the analysis and diagnosis of a process is done in a manual and error-

prone manner that requires a deep understanding of the process, its technicalities

and interdependencies. Moreover, these interdependencies are generally implicit and

are not captured in any step of the process. Thus, the same dependencies can be

interpreted differently leading to confusing and contradicting analysis results.

In this thesis, our goal is to propose a method which automatically generates

traceability information at both the transformation-level and process model-level.

Thus, making the implicit links in the process model explicit. Based on that we

provide the groundwork for change impact analysis.

While the generated traceability information proved to be useful in many ways,

the relationships induced by them are generally shallow and not sufficient to gain

deeper insights about the process. This knowledge can be obtained by augmenting

the traceability information. We enhance the traceability information by augmenting

the local and global traceability support with application-specific semantics captured

from annotations of the process.

Additionally, when trace models and trace links become detailed and numerous, it

becomes essential to be able to visualize the traceability information. Therefore, we

further enriched our approach with the ability to visualize the semantically-enhanced

traceability information.

1.2 Target Domain

The telecom industry has been moving from dedicated hardware /physical equipment

network functions to virtualized network functions (VNF). This has been enabled by

the virtualization technology and the cloud. The paradigm of Network Function Vir-

tualization (NFV) [6,7] decouples network functions from the hardware infrastructure

and allows for automated network service (NS) provisioning and management. Au-

tomating the management and orchestration of network services is one of the primary

goals of network operators, but this comes with major challenges [27, 57]. Achieving

full automation for NS management is among the main requirements of 5G. Zero-

touch network and service management (ZSM), an industry specification group, was

launched by the European Telecom Standards Institute (ETSI) to focus on full au-

tomation of the end-to-end management of network services to help with the 5G

5



deployment challenges [36].

Model-driven engineering (MDE) is a potential enabler for achieving automation

in the NFV domain [22, 55]. Advanced support for discoverability and traceability

have also been identified as essential features in virtualizing network services [20]. Fur-

thermore, deeper knowledge of the NS design, deployment and management process

and the collection of meaningful application-specific information about this process

can lead to advanced analysis of NFV systems.

While NFV would greatly benefit from end-to-end traceability support, there has

been very little done in this regard in this domain in the context of MDE.

Thus, we apply our work in the NFV domain for traceability analysis of the

network service design process in order to assess the impact of changes in source

models. The vendor-provided virtualized network function deployment templates

form the core of the network service design process, and any changes in these templates

can affect the target artifacts (mainly, the network service deployment template) and

the process itself. It would be highly beneficial in NFV systems to be able to assess

the impact of a change and to provide feedback.

Furthermore, our approach is applied to the NS design process to gain deep and

useful insights into this design process through traceability analysis. We use the

intent-enriched traceability analysis of the NS design process in order to investigate

the dependencies between the input and output artifacts along with their design in-

tents. This is achieved by leveraging the generated NS design traceability information

and visualizing it. This turns out to be highly beneficial as we are able to investigate

explicitly the entire NS design process and generate semantically richer analysis re-

sults that could not be achieved previously. These results can help in improving the

diagnostic of potential problems observed at runtime.

1.3 Thesis Context

This work is part of a larger research program within the NSERC/Ericsson Industrial

Research Chair on Model Based Software Management 1 related to the automation of

Network Service (NS) design and management in the context of the Network Func-

tions Virtualization (NFV) framework.

1https://users.encs.concordia.ca/~magic/
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Prior to this work, a high-level model-based process for NS design, deployment and

management [62], and a model-based approach for the design of network services [61]

have been proposed. Furthermore, an approach has been proposed to model and

enact process models (PM) and has been applied in the NFV domain particularly to

the NS design process [59,60]. This approach has been concretized in a tool, MAPLE

(MAGIC Process Modelling and Enactment Environment), which uses MDE meth-

ods to enact process models.

In this thesis we propose a model traceability framework for generating and ana-

lyzing traceability information in the context of process model enactment. We have

applied our framework to the NS design process. We concretize our approach as an

Eclipse plugin extending MAPLE and which is called MAPLE-T.

1.4 Thesis Contributions

The contributions of this thesis can be summarized as follows:

• An automatic model-driven traceability information generation approach at

both the local (transformation-level) and global (process model-level) levels for

enactable process models.

Published in: [50].

• An easily extensible traceability analysis solution carried out on the basis of

the generated traceability information. We have incorporated more advanced

traceability analysis solutions, specifically to incorporate change impact analy-

sis. The purpose of this is to determine how impactful a model or element is on

the whole process at both the metamodel and model levels.

Published in: [50].

• An approach for capturing application-specific information (intents) at both the

process model (PM) and model-transformation levels (from their annotations)

as part of our traceability information. We further use them to enable advanced

application-specific traceability analysis solutions.

Accepted for publication in: [51].
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• A traceability visualization solution for visualizing traceability information

relating models at different levels through the captured application-specific in-

formation.

Accepted for publication in: [51].

• An Eclipse [39] plugin tool incorporating all the aforementioned solutions. The

tool support is demonstrated with the use of the NS design PM modelled as a

UML 2 activity diagram [64] in the Papyrus [35] environment.

Published in: [49].

1.5 Thesis Organization

This thesis is organized into nine chapters. Chapter 2 introduces the background

information related to Model-driven engineering , traceability and MAPLE. In Chap-

ter 3, we present existing work related to our thesis. Chapter 4 presents the overall

approach for integrating traceability support with process enactment. In Chapter 5,

we discuss how the traceability information generation process is incorporated in our

work. We follow up in Chapter 6 by presenting how traceability visualization and

analysis is incorporated based on the generated traceability information. In Chap-

ter 7, we present the MAPLE-T tool and its backend. In Chapter 8, we present the

NS design case study in the context of NFV. We further discuss the results induced

by the enabled traceability generation, visualization and analysis in two different

applications. Finally, we sum up with a conclusion and future work in Chapter 9.

8



Chapter 2

Background

In this chapter, we present the model driven engineering (MDE) background informa-

tion related to our work. Moreover, we discuss the concept of traceability in general

and in the MDE context. Furthermore, we introduce the MAGIC Process Modelling

and Enactment Environment (MAPLE).

2.1 Model Driven Engineering

The term Model-Driven Engineering (MDE) is typically used to describe a software

development methodology in which abstract models of software systems are created

and systematically transformed to concrete implementations [40]. Models are consid-

ered as first class citizens in the engineering process. The models are manipulated

via transformations which form the backbone for automation in MDE.

In the remainder of this section, we give a brief overview of the main MDE con-

cepts, particularly those that relate to the contributions of this thesis. First, we intro-

duce the concepts of models and metamodels in Section 2.1.1. Model transformations

are discussed in Section 2.1.2. Furthermore, we discuss how model transformations

can be composed to form what is referred to as a transformation chain in Section 2.1.3.

Since various heterogeneous models can be used as part of the MDE approach, there

needs to be a way to properly manage them. This is called model management [19].

In Section 2.1.4 we discuss megamodelling as one of the main concepts used in model

management. Finally, we introduce the concept of process modelling in Section 2.1.5.

9



2.1.1 Models and Metamodels

According to [37]: “A model is a simplification of a system built with an intended

goal in mind. The model should be able to answer questions in place of the actual

system”.

A model is composed of objects and associations (i.e. relations) between them. A

model conforms to well-defined rules constructing what is referred to as a metamodel.

The same way a model is defined as an abstraction of a system, we can define a

metamodel as yet another abstraction, capturing properties of the model itself [26].

The relation between a model and its metamodel is referred to as a conformance

relationship.

Metamodels are hugely beneficial in defining constructs of modelling languages.

Metamodels are themselves represented as models and often conform to a metamodel

referred to as a meta-metamodel which conforms to itself. MOF (Meta-Object Facil-

ity) [10] is the defacto metamodelling framework defined by the Object Management

Group (OMG). One of its well-known implementations is EMF (Eclipse Modelling

Framework) [2]. Normally EMF is not a strict implementation of MOF so as often

than not it is considered a standalone metamodelling framework itself. The core

EMF implementation includes a meta-metamodel called Ecore. Furthermore, EMF

includes an API enabling easy manipulation of Ecore models.

The OMG also defined a useful modelling standard called the Unified Modeling

Language (UML) [64]. Generally, UML has been always used for representation and

design purposes. A major release (UML 2) introduced the ability to extend UML and

its semantics by using the concept of profiles. A profile can be mapped to the concept

of metamodel by extending the UML metamodel with meta-classes (stereotypes),

tagged values (attributes for stereotypes), constraints and relations between them.

However, a UML 2 profile should not be confused with a metamodel. A model

can use various profiles at the same time, but it can conform to one and only one

metamodel.

2.1.2 Model Transformations

Model transformations are generally categorized as Model-to-Model (M2M) or Model-

to-Text (M2T). M2M transformations transform one or multiple source models to one

or multiple target models. M2T transformations transform one or multiple source

10



models to text strings.

Transformations are generally implemented using special purpose programming

languages such as ATL (Atlas Transformation Language) [5] or QVT (Query/ View/

Transform) [21]. They provide specific syntax and execution semantics for the purpose

of simplifying the implementation and maintenance of model transformations [76].

ATL is a widely used M2M model transformation language. It is a hybrid model

transformation language supporting both the declarative and imperative program-

ming styles. ATL is rule-based building heavily on the Object Constraint Language

(OCL) [63], but also provides built-in features that OCL is missing [26]. The main

components of an ATL transformation are rules and helpers. Each rule transforms

several input model elements into multiple output elements in the output models.

The input and output models as well as their metamodels are generally specified in

a field referred to as the Launch Configuration.

Rules are categorized into matched and lazy rules. Matched rules are called in

a declarative manner. They automatically match well-defined source elements and

generate a set of elements in the target models. Lazy rules on the other hand are

explicitly invoked from other rules. A helper is a function that makes it possible to

factorize and reuse a block of code in different parts of the ATL transformation [26].

A model transformation can itself be expressed as a model conforming to a trans-

formation metamodel. This can enable advanced capabilities such as Higher Order

Transformations (HOTs) [74]. They are defined as model transformations transform-

ing an input transformation model to another transformation model [76].

2.1.3 Transformation Chaining

In order to achieve better maintainability, reusability and extensibility, model trans-

formations can be integrated to form what is referred to as a model transformation

chain. Model transformation chains are typically constructed following a pipeline ar-

chitecture where the output of a transformation is the input of the subsequent one and

so on [29]. Generally, a transformation chain can be composed of heterogeneous model

transformations (i.e. implemented using different transformation languages) [45].

Transformation chaining is the preferred technique for modelling the orchestration

of different model transformations [26]. Typically, model transformation chains are

defined using orcherstration languages. These languages can model the chain as a set
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of transformations to be executed sequentially. Furthermore, advanced features such

as loops, conditions and nested compositions (nested model transformation chains)

can be supported.

Model transformation chains are often defined using textual languages, such as

ANT [33].

2.1.4 Megamodelling

Megamodelling is preeminently used in model management to avoid what we refer

to as the ‘meta-muddle’. A megamodel is defined as a model which contains other

models as elements as well as the relationships between them [24]. A megamodel

can contain metamodels, meta-metamodels, models, and transformations along with

their interdependencies (such as, conformance or derivation). A megamodel can also

be composed of other megamodels.

A megamodel can be used to ensure the consistency between the retained models.

It can keep track of every change that can happen to a model and synchronize the

related models accordingly [52]. Thus, conformance and compatibility checks can be

enforced between the involved artifacts.

Among its various uses, a megamodel enables the reuse and construction of trans-

formation compositions, allows for the creation and maintenance of traceability links

and enables the construction of a repository of tools and languages.

Figure 1 shows an example of a simple megamodel composed of different kind

of resources. rectangles represent model instances (Model1 and Model2), roundtan-

gles represent metamodels to which these models conform to (MM1 and MM2), el-

lipses represent transformations/executables (ATLTransformation and JavaProgram)

conforming to their corresponding metamodels (ATLMM and JavaMM). The confor-

mance links within the megamodel are shown as dashed links and the transformation

links are shown as straight arrows. Moreover, other artifacts are represented as circles

in the megamodel (metadata files, unrecognized resources, etc).

2.1.5 Process Modelling and Enactment

According to [38], a process model is : “an abstract representation of a process ar-

chitecture, design or definition... Process models may be used to assist in process
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Figure 1: Simple Megamodel

analysis, to aid in process understanding, or to predict process behavior”.

In practice, process models and workflows can be described using UML 2.0 Activ-

ity Diagrams [65]. Activity diagrams support the modelling and synchronization of a

set of behaviors using data and control flows. The data and control flows are repre-

sented using activity edges connecting activity nodes. Activity nodes can be a simple

action (representing an atomic step within an activity) or an activity (representing

an activity itself composed of actions and other activites).

A process model represented using UML 2.0 activity diagrams can contain:

• Actions: defines a task or several tasks related to input and output artifacts

(e.g. models)

• Object flows: relations represented as links between the artifacts involved in

an action.

• Input/Output: represent artifacts (models) that can be fed into or generated

from the process model actions.

• Control flows: relations represented as links directing the ordering of the

actions.

Figure 2 shows a simple process model expressed as a UML2 activity diagram. It

has actions represented as rountangles, object nodes (input/output parameters) as

rectangles, object flows as dashed arrows and control flows as filled arrows. Object
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Figure 2: Simple Process Model

nodes can also be attached to a specific action (small rectangles attached to the

action).

In our work, process models are modelled using Papyrus [35]. Papyrus is an

Eclipse-based open source project which provides a modelling environment for creat-

ing UML 2 diagrams as well as other UML-based domain-specific languages (such as

SysML [66] or UML-RT [65]).

Process models can be analyzed, validated and even enacted. The enactment

of a process model refers to the act of executing the process model using what is

refered to as process agents. A process agent is an entity responsible for executing

the process model. It can be a person following a process script or a machine executing

a program [38].

2.2 Traceability

Traceability is defined as the degree to which a relationship can be established be-

tween two or more products of the development process, especially products having a

predecessor-successor or master- subordinate relationship to one another [12].

Traceability information in MDE can be classified as generic or specific [15].

Generic traceability provides the ability to link MDE artifacts but does not provide

detailed semantics for these relationships. The trace links are not tightly coupled to

any domain, however, they are semantically weak. Specific traceability, on the other

hand, is domain-dependent and provides a predefined and specific set of relationship
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types relevant to the domain. This allows the generation of semantically richer and

fine-grained traces.

Traceability information can be represented as models conforming to an external

metamodel (extra-model traceability), or as part of the traced models (intra-model

traceability) thus requiring the metamodels of the traced models to be extended and

polluted with trace information [78]. Intra-model traceability stores traceability in-

formation in the traced models themselves. The metamodels of the traced models,

hence, should be extended to include information related to traceability which are

meaningless in the domain of the models. This often makes the intra-model trace-

ability ineffective as it populates the models with traceability information that are

meaningless in the domain of the models.

Extra-model traceability defines a separate trace model conforming to an external

traceability metamodel. Elements of the traced models are linked via a trace link

created within the external trace model.

Traceability metamodelling can follow a pure metamodel approach or a tag-based

approach [78]. In the first approach, all the required trace types along with their usage

semantics are specified at the metamodel level making the traceability metamodel

rigid to change and therefore hard to reuse in other projects. The trace tagging

approach uses a general traceability metamodel which can be annotated with specific

tags. This allows for more flexible traces that can be used in any project, but with

weak usage semantics specified in the metamodel.

When referring to traceability at the model transformation level, the trace links

are between the elements of the source and target artifacts associated with the trans-

formation. A trace model is created for each transformation. This is referred to as

local traceability or traceability in the small. However, the link between the differ-

ent trace models across multiple model transformations (or a model transformation

chain) needs to be created to produce global traceability (or traceability in the large)

information. This enables end-to-end navigation throughout a chain of intermediately

created trace models [18].
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2.3 MAPLE

MAPLE (MAGIC Process Modelling and Enactment Environment) [60] is an inte-

grated environment for process modelling and enactment. Process modelling is sup-

ported with UML Activity Diagrams in Eclipse Papyrus. MAPLE supports enactment

of process models with underlying heterogeneous (cross-technology) transformation

chains.

Megamodels (MgM) have been used to manage all the resources needed for the

enactment. This requires registering the process model (PM) as well as the repository

of resources (metamodels, profiles, model instances, model transformations, programs,

etc.). Relationships such as conformance links between all of these resources are

included in the megamodel as well. Based on the derived megamodel and the process

model, a model transformation (MT) chain is automatically created in MAPLE. This

chain is then executed using token-based semantics leading to the generation of output

artifacts. When an action is given a token, it is executed and the token is passed to

the next action. The generated artifacts are added to the megamodel dynamically

during enactment. MAPLE is built on top of the Eclipse Papyrus [35] environment.
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Chapter 3

Related Work

In this chapter , we present an overview of approaches related to our work. Firstly,

we discuss MDE approaches and projects related to supporting local, global and

semantically rich traceability information generation. We follow up by discussing

approaches supporting traceability visualization and analysis in the context of MDE.

3.1 Traceability Information Generation

There has been a lot of work done on traceability in MDE, and these are discussed and

summarized in [11,15,44,72,81]. In the following, we discuss approaches that specif-

ically address local, global and semantically rich traceability information generation

in the context of model management, process enactment and model transformation

chains.

3.1.1 Local Traceability

Guana et al. [47] propose Chain Tracker, a traceability generation environment for

model transformation chains/compositions (particularly for Model-to-Model ATL

transformations). Although they augment an ATL transformation chain with trace-

ability information automatically, the collected traces are generated only at the trans-

formation level and they are not interlinked globally.

Falleri et al. [68] introduce a framework to augment Kermeta [58] model trans-

formations with traceability support. The transformations are manually augmented
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with traceability support and no explicit link between distant models is captured

within the generated traces.

Beyhl et al. [23] present a framework for retaining and maintaining traceability

links between the artifacts within a hierarchical megamodel (a megamodel combining

high-level artifacts along with low-level fine-grained artifacts). However, no support

for linking distant artifacts using global traceability links has been mentioned in their

approach.

Our first intention was to reuse the Tracer Adder Higher Order Transformation

(HOT) [53] and the corresponding traceability metamodel, but it turns out that it is

very basic and does not cover all of the possible traceability information we wish to

retain. We have also looked into more advanced traceability support in ATL in the

ATL EMF Transformation Virtual Machine (ATL EMFTVM) work [34,82]. However,

this work does not support the ability to retain more granular tracing (e.g., with

attribute-level elements traceability). Additionally, our first intention was to reuse

the ATL EMFTVM engine for traceability generation support as a first potential

solution for our traceability generation approach in MAPLE-T. However, we did not

proceed in that direction as the EMFTVM engine is not straightforward to use for

models which conform to UML2 profiles as their metamodels (all the metamodels are

expressed as UML profiles in our case). It is only relatively easy to use for models

conforming to Ecore metamodels (i.e. the EMFTVM is fundamentally built to be

used with Ecore metamodels and its ease of usage depends on the complexity of these

metamodels).

None of the work discussed above provide any support for process enactment with

the use of megamodels.

3.1.2 Global Traceability

Fritzsche et al. [41, 42] and Jouault et al. [54] have proposed approaches similar to

ours in terms of using model transformation chaining and/or model management

with megamodelling to enable traceability. The former combines both techniques

and proposes automatic generation of trace models as byproducts of the execution of

augmented ATL transformations. However, the generated trace models lack in details,

since both the higher-order transformation and the corresponding traceability meta-

model used are very basic and do not cover more granular trace information. While
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the latter work constructs model element-level traces and model-level traces within

the megamodel, no explicit support is provided with regards to process enactment

nor automatic augmentation of transformation chains with traceability information.

Von Pilgrim et al. [80] extend UNiTI [77] (an Eclipse-based tool to construct, reuse

and execute transformation chains) with traceability generation support. Although

they assume that the transformations explicitly generate trace models as target mod-

els, they do not mention anything about how the transformations are augmented

(manually by the developer or automatically using a HOT).

In the MegaM@Rt2 ECSEL project [13, 14], they attempt to use a traceability

management approach with megamodels in order to handle and link runtime arti-

facts with their corresponding design artifacts. The generated trace models conform

to a traceability metamodel which is much more generic than our local traceability

metamodel in terms of the generated trace links. In our case, trace links are con-

tained within model transformation rules. This gives us a more detailed view not

only of what source and target elements are linked but also in which rule at the

implementation level this trace link has been constructed. Moreover, to the best of

our knowledge, no support for transformation chaining nor process enactment was

proposed as part of their documents.

3.1.3 Semantically Rich Traceability Information

There has been work regarding process/transformation intents in the model-driven

engineering community. Levi et al. [56] propose a framework for defining transfor-

mation intents from a pure MDE perspective. Moreover, they have defined an intent

catalog in which a non-exhaustive list of transformation intents and their properties

are defined and described. However in our case, intents are tightly related to the ob-

jectives of the implementer/modeller as labeled in the PM and the transformations.

Also, there is no support for traceability in [56]. In MAPLE-T, intents are captured

and integrated with the generated traceability information.

In the following, we discuss existing work related to rich traceability information

generation.

Beatriz et al. [69] have proposed an automated and semantically-aware approach

for capturing semantically-rich traceability relationships across different models. They

further propose an architecture for model management task automation with the use
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of semantically rich trace links. While they address semantically-rich traceability sup-

port and model management, their approach does not use model transformations and

is not carried out in the context of process enactment or transformation chain execu-

tion. In MAPLE-T, intents are defined and captured at both PM and transformation

levels in the traceability information.

Drivalos, Paige et al. [31, 67] have proposed an approach for creating and main-

taining strongly typed and semantically rich model-to-model traceability links. They

achieve this by defining a strongly typed application-specific traceability metamodel

as well as a set of constraints to check the validity of the models. The traceability

metamodel is tightly coupled to the application domain. The application-specific

trace information is similar to our intent-augmented local trace model. In fact, they

can define application-specific information as a rationale associated with a particular

trace link. This rationale captures why the links exist. In our traceability informa-

tion, the intents capture the purpose behind every traced link associated with every

transformation rule and what its specific parameters are. However, we use a generic

traceability metamodel which can be used to capture such traceability information in

any domain. Also, no automatic semantically-rich traceability generation is supported

in [31,67].

Dick et al [30] have proposed an approach to augment traceability information

with more semantics by adding textual rationals to traces. It makes use of a textual

rationale expressing the rich semantics as well as propositional logic to enhance the

traceability information. The work introduces advanced and new kind of analysis

that are made possible due to the enhancing of the traceability information with

semantics. This work is in the area of traceability in requirements engineering. No

MDE techniques for the enactment nor automatic traceability information generation

are supported.

3.2 Traceability Visualization

There exists various work on traceability visualization within the MDE community.

van Amstel et al. [75] propose TraceVis, a tool for traceability information visualiza-

tion in model transformation chains. However, there is no visualization filtering based

on custom parameters in [75]. In MAPLE-T, we can focus on specific parameters
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instead of going through a huge visualization graph.

Santiago et al. [70] propose iTrace, a tool which incorporates different kinds of

visualizations at different granularity levels (transformations, rules, models and model

elements). Although it shows various dashboards to visualize the trace models and the

transformations, there is no support for semantically-rich and detailed links in their

visualizations. In MAPLE-T, we label every link with application-specific semantics

(intents) and their specific parameters. Moreover, we visualize explicitly the distant

links between models. In [70], the visualization shows only local trace links for a

given transformation/rule.

Pilgrim et al. [80] present a traceability visualization framework using the GEF3D [79]

tool. It enables 3D visualization of diagrams related to the traced models involved in

a transformation chain execution. However, there is no support for semantically rich

traceability links in their visualization graph.

3.3 Traceability Analysis

There has been extensive work carried out on change impact analysis in the require-

ments engineering community [46, 72, 81]. However, these approaches are not in the

context of process enactment and megamodelling techniques.

As mentioned in the previous section, van Amstel et al. [16] propose TraceVis [75],

a tool which uses traces to visualize the relationships between traced models. Using

their generated traceability visualization, change impact analysis can be implicitly

(manually) inferred from the visualization results, but no method or approach has

been proposed to automatically analyze the change impact using the generated traces.

N. L. S. Fung et al. [43] presents MMINT-A, a tool built on top of a model

management framework (MMINT) using megamodels, which identifies the impact

of software system changes on their assurance cases (which are cases or arguments

guaranteeing that a system is operating as intended with a focus on security, safety,

etc). However, it is not clear whether their megamodel has traceability extensions

enabling navigation between artifacts at the global and local levels.
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Table 1: Comparison of the approaches (supports (3), does not support (7) , un-

known/unclear ( ))

Approach Traceability Information Generation Traceability Visu-

alization

Traceability

Analysis

Local Global Semantically

Rich

Guana et al. [47] 3 7 7 3 7

Falleri et al. [68] 3 7 7 3 7

ATL EMFTVM [34,

82]

3 7 7 7 7

Fritzsche et al. [41,

42]

3 3 7 7 7

Jouault et al. [54] 3 3 7 7 7

Von Pilgrim et

al. [80]

3 3 7 3 7

MegaM@Rt2 [13,14] 3 3 7 7

Beyhl et al. [23] 3 7 7 7

Beatriz et al. [69] 3 3 3 7 7

Drivalos, Paige et

al. [31,67]

3 7 3 7 7

Van Amstel et

al. [75]

3 7 7 3 Change Impact 3

Santiago et al. [70] 3 7 7 3 7

N. L. S. Fung et

al. [43]

7 7 Change Impact 3

3.4 Summary

In Table 1, we summarize and compare the related approaches using four criteria.

The first criterion addresses support for traceability information generation. We

further detail this criterion to see whether the approach supports local, global and

semantically rich traceability information. The second criterion addresses whether the

approaches support traceability visualization or not. Finally, we have also investigated

whether each approach supports traceability analysis. As can be deduced from the

comparison table, none of the related approaches satisfies all the three criteria, while

our approach provides support for all of these features.
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Chapter 4

Model Traceability Framework for

Process Enactment: Big Picture

In this chapter, we present the overall picture of our work. In Section 4.1, we

present the core concepts used in our approach. Particularly, we start by introducing

the concept of intents which provides semantically richer traceability information.

We then proceed by presenting the local and global traceability concepts as used in

MAPLE-T. In Section 4.2, we introduce our model-driven traceability information

generation, visualization and analysis approach. Our approach integrates the trace-

ability information generation support with our megamodel-based process enactment.

Furthermore, the generated traceability information are visualized and analyzed as

part of our approach.

4.1 Concepts

4.1.1 Intents

The notion of intent in our work represents the objective of tasks at different levels

in the process model: activities, actions, and the underlying model transformations

(MTs). We classify intents into two categories:

• PM-level intent: represents the objective of an activity or action of the PM as

well as the activity representing the PM itself.
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• Transformation-level intent: represents the objective of a rule within a trans-

formation (implementing the actions in the PM).

Each intent can be associated with multiple parameters representing further application-

specific information. Also, since transformation rules can be composed of several

helpers, lazy rules and imperative blocks (see Section 2.1.2) within their implemen-

tations, one needs to support capturing intents at a lower level by associating each

intent with its corresponding sub-intents. These sub-intents represent the objectives

of any nested logic within the transformation rules.

It should be noted that in this work we use the term intent with a meaning of

design or processing intent and distinguish it clearly from the concept of intent, gener-

ally used to express high level requirements on what should be done in the networking

domain in the context of intent-based networking [28,48].

4.1.2 Local Traceability

As mentionned in Section 2.2, traceability is referred to as local when trace models

are generated as a result of the transformation execution.

In MAPLE-T, we refer to the local trace models as LTrace models. This LTrace

model contains the trace links for each in/out of the transformation execution, and

conforms to an LTrace metamodel which represents local traceability information el-

ements both at the model element-level and at the attribute-level. The main elements

in the LTrace are mentioned below.

• TraceLinkSet: This represents the set of all the traced rules of a transformation

execution as well as all the trace links linking input and output elements of the

traced models.

• TracedRule: This represents the rule responsible for transforming the traced

output model element(s) from the corresponding traced input model element(s).

• TraceLink: This represents the set of input elements and their corresponding

output elements within a rule.

Our LTrace metamodel was inspired from the EMFTVM trace metamodel defined

in [82] (this work is discussed in Section 3.1.1). Our additional features are mainly
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the “SourceElementAttribute” and “TargetElementAttribute” elements capturing

further attribute-level traced information.

Additionally, in order to capture intents and their parameters in our trace models,

it was necessary to extend the LTrace metamodel accordingly. An “intent” element

has been added to the metamodel representing the intent of a TracedRule. Also,

each intent can have sub-intents captured within the TracedRule. Figure 3 shows

the LTrace metamodel illustrating the main elements mentionned above.

4.1.3 Global Traceability

The LTrace models are interlinked in the MgM to achieve global traceability. In

MAPLE-T, the set LTrace models and the global links are refered to as the GTrace.

The megamodel metamodel is extended to retain the GTrace elements.

The metamodel in Figure 4 shows the main elements of the MgM including ele-

ments constructing the GTrace. Every resource is associated with a history which

represents a set of versions of the resource, that can be updated whenever the resource

is being used or changed. Also, each resource has an origin that enables identification

of the source it is coming from. It can be, unknown, user provided or derived (for

instance, a transformation output). In addition to that, transformations are associ-

ated with a link to the set of their actual executions. Each TransformationExecution

element contains a set of TransformationConfiguration elements which represent the

actual transformation parameters given to the transformation launch configuration.

Each TransformationExecution is associated with an LTrace model linking elements

of the provided and the produced resources.

4.2 Overall Approach

Our work extends MAPLE’s process enactment approach (introduced in Section 2.3)

with traceability support. Our goal is to go further and use the MgM for advanced

traceability of MT chains.

To enact a process model (PM), we need to start by creating the PM. We use the

Eclipse Papyrus Activity Diagram environment to build PMs.

Figure 5 shows an example of a PM modelled as a UML 2.0 activity diagram
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Figure 3: LTrace Metamodel
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Figure 4: Megamodel Metamodel
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Figure 5: Simple PM Example

in the Papyrus environment. The figure shows two actions: “Task1” and “Task2”.

“Task1” takes a model named “Input” conforming to a UML profile (“InputMM”)

and its output is a model conforming to a profile called “tempMM”. “Task2” takes

a model of type “tempMM” as input and outputs a model of type “OutputMM”.

Strictly speaking, the models do not actually “conform” to the profiles but rather

to the UML metamodel. The conformance term is used here because each model has

only one and only one profile applied to it [32].

In order to capture intents in the traceability information, the PM and its im-

plementations need to be annotated first. This is done by the PM designer who

labels every activity and action with their respective intent. These labels are gen-

erally added as comments within the PM and the transformations implementing it.

These intents can be retrieved manually one by one or automatically as part of the

traceability information gathered during the PM enactment.
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Figure 6: MAPLE-T Approach

Once the PM has been annotated, we can proceed with the PM enactment and

the traceability information generation, visualization and analysis. The MAPLE-T

approach is shown in Figure 6. Following the derivation of the megamodel (MgM)

and the construction of the MT chain, the chain execution results in the generation

of artifacts. During this execution, LTrace models will also be output and will be

retained in the MgM in order to build a global traceability map (GTrace). The GTrace

can then be used for traceability visualization and analysis.

In the following, we discuss every step and we highlight our traceability-related

features in every one of them.

4.2.1 MgM Derivation

In MAPLE-T, the actions in the PM are implemented with model transformations.

A transformation involves several input and output models, possibly conforming to

different metamodels that can be expressed using heterogeneous technologies. More-

over, a PM can be implemented with a heterogeneous set of languages, and hence

MAPLE-T supports execution of cross-technology model transformation chains. Each

transformation part of the MT chain can be implemented with a different language.
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Figure 7: Base MgM

Moreover, languages can be model transformation languages (For instance, ATL or

Epsilon) or general programming languages (For instance, Java or C) [59]. Due to

this, deploying model management techniques is essential in MAPLE-T. As described

in Section 2.3, megamodels have been used for this purpose.

The MgM is derived after registering the resources and the PM. First, a base MgM

is loaded as part of the MAPLE-T environment and consists of the metamodels of

the built-in loaders (needed to load resources) and the pre-loaded meta-metamodels

(e.g., Ecore) and their conformance links. This MgM is incrementally updated by

registering the different resources which are part of the project (metamodels/profiles).

This is carried out automatically by going through the project workspace (referred

to as workspace discovery), and as a result an initial MgM is derived at this stage. A

base LTrace metamodel conforming to the Ecore metamodel is also registered in the

MgM (see Figure 7). Each trace model generated as a byproduct of a transformation

execution conforms to this metamodel.

Figure 8 shows an example of the MgM after registering the three UML profiles

(in green):“InputMM”, “OutputMM” and “tempMM” to which the models depicted

in Figure 5 conform to. The profiles conform to the UML metamodel. The red dashed

links represent conformance links.

As the next step, the MgM is refined by carrying out a PM discovery. This involves

updating the MgM with new resources: the PM and the associated transformations.

Since we wanted the MgM to be PM-agnostic, a weave model is automatically cre-

ated behind the scenes whenever a PM is registered. The weave model binds all

the necessary elements of the PM to their equivalent resources in the MgM. Fur-

thermore, PM-level intents are added to the weave model and associated with their

corresponding actions/activities.
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Figure 8: Example of an MgM after registering UML profiles

Figure 9: Example of an MgM after registering the PM in Figure 5

Figure 9 shows the MgM after registering the PM shown in Figure 5. The PM

actions are registered as ATL transformations (shown in brown) conforming to the

ATL metamodel. Moreover, the weave model and the PM are shown in grey and they

respectively conform to the weave and UML metamodels. Also, the placeholders for

the models conforming to the profiles are shown in purple.

At this point, the MgM holds all the essential resources which are required for

enactment. During enactment, the LTrace models generated are added to the MgM

which makes it possible to construct the GTrace (part of the MgM).
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4.2.2 Transformation Chain Derivation

The PM is given translational semantics by mapping it to a transformation chain.

The chain is in essence a schedule with the required details (sequence of actions,

transformations used, inputs and outputs of the transformations). This allows us to

build a generic enacter, instead of having an enacter for each kind of PM. Having a

generic enacter also leaves scope for integrating other formalisms for modelling the

PM.

The translation from a PM to an MT chain is implemented using an ATL trans-

formation which takes relevant inputs (including the MgM and the PM) and produces

the target transformation chain.

This phase of the process has no traceability-related extensions. It would be pos-

sible to augment the transformation chain to build a chain with traceability support.

The reason we did not proceed in that direction was to provide more flexibility and

let the user enable or disable traceability within MAPLE-T during enactment.

Otherwise, we would end up with a solution which always generates traceability

information as a result of the enactment, which might not be always desirable, as

generating trace information might be unnecessarily time-consuming in some appli-

cations.

4.2.3 Executing the Transformation Chain and Generating

the Trace Models

Each of the transformation in the MT chain is first augmented such that LTrace

models are generated as extra artifacts with the execution of each transformation.

The generated artifacts, including the trace models, are dynamically added to the

MgM during enactment. Each LTrace model in the MgM is connected to the relevant

input and output models. In addition to the links between input and output models

via the LTrace model, the links between the trace models are also saved in the MgM.

The links retained are at the model-level as well as at the model-element level. This

leads to the creation of the GTrace.

This step is discussed in details in Chapter 5.
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4.2.4 Traceability Visualization and Analysis

Following the generation of traceability information, traceability analysis can be car-

ried out on the basis of the GTrace. For this purpose, we have incorporated means

to analyze trace information within MAPLE-T which can be easily extended and

adapted to the targeted application domain. The exposed features allow the gener-

ated LTrace models and GTrace links to be parsed and manipulated, typically with

the use of the captured intents that provide richer semantics for the analysis.

We have incorporated traceability analysis support, specifically to carry out change

impact analysis as well as to generate a comprehensive and semantically-rich trace-

ability map that provides in-depth knowledge about the process.

Also, in order to simplify the investigation and navigation of our semantically

enhanced traceability information, we have incorporated traceability visualization

support in MAPLE-T. Visualization is implemeted in MAPLE-T using automatically

generated directed graphs in the DOT graph description language [1]. DOT graphs

are essentially files with the “dot” extension. They provide a rich syntax aimed

towards expressing graphs in a textual format. We generate the graphs as additional

output of the enactment process. We use GraphViz [4] to process the generated

graphs and render them in a graphical format.

This step is discussed in details in Chapter 6.
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Chapter 5

Traceability Information

Generation

In this chapter, we present how the traceability information generation support is

built in MAPLE-T. In Section 5.1, we discuss how the PM and the transformations

implementing it are first annotated with intents. In Section 5.2, we talk about the

automatic transformation chain augmentation with traceability support. The aug-

mented transformation chain is executed and as a result the desired output artifacts

from the PM as well as the LTrace models are generated. Finally, we discuss how

the MgM is updated and as a result the GTrace is constructed.

Figure 10 depicts the traceability information generation approach. The steps of

the approach are discussed in details in the next sections.

5.1 PM and Transformations annotation

Figure 10: MAPLE-T Traceability Generation Approach
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Before enacting the PM and therefore generating the traceability information, the

PM and the transformations implementing it need to be annotated first as discussed

in Section 4.2. This step is not necessary to generate the traceability information.

However, if no annotation is performed, the generated traceability information will

only retain trace links between the artifacts and no intents will be captured. Thus,

advanced traceability features using the captured intents will not be applicable.

In order to efficiently label and parse intents in MAPLE-T, we provide the follow-

ing labelling guidelines for both the PM and the transformations:

5.1.1 Annotating the PM

• Actions and activities in the PM should be labeled with intents in their applied

comment fields. These fields represent text boxes where the user can enter

custom comments related to the activity diagram elements [65].

• The activity representing the PM itself should be labeled as well, this way the

PM can be reused/embedded in larger PMs.

• Only comments starting with the string “#intent” will be parsed by MAPLE-T

to distinguish them from normal comments that start with the word “intent”.

For instance, the two actions shown in Figure 5 are annotated in their applied

comment fields with the intents “#intent: intent of task1” (as shown in Figure 11)

and “#intent: intent of task2” (as shown in Figure 12) respectively. Moreover, the

activity itself is annotated with the intent “#intent: intent of the PM” (as shown in

Figure 13).

Note that the intent labels are just used as examples here to explain the approach;

real applications would be using meaningful intent labels.

5.1.2 Annotating the Transformations

In some cases, almost all the semantics are hidden within the transformations imple-

menting the PM. To be able to retrieve the semantics (particularly, the intents), these

transformations need to be well-labelled with such information. The designer, i.e. the
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Figure 11: Applied comment field of the “Task1” action

Figure 12: Applied Comment Field of the “Task2” Action

Figure 13: Applied Comment Field of the “PM” Activity

expert, is expected to label the transformation rules with meaningful intents, sub-

intents and intent-specific parameters. Every label should be defined as a comment

right before the rule definition.

These labels are parsed automatically by MAPLE-T by mapping the #intent label

to the intent element in the LTrace. In other words, whenever a rule, a helper or

even any imperative part of the transformation is labeled with a comment starting

with “#intent” or “#sub-intent”, MAPLE-T will automatically parse and retrieve

this information. Any other label will be ignored and not parsed by MAPLE-T.

Figure 14 shows an example of an ATL transformation consisting of one rule
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Figure 14: Annotated Transformation Example

named “Rule1” annotated with the intent “DeriveBfromA”. It has also a helper named

“helperMapE” with its intent “MapE”.

5.2 Transformation Chain Augmentation and Ex-

ecution

In MAPLE-T, a PM is enacted by executing the underlying MT chain. Similar to

UML Activity Diagrams, the generated chain is given token-based semantics (see

Section 2.3). Therefore, the enacter developed is based on controlling the tokens and

activating the actions when needed.

However, in order to support both local and global traceability, it was necessary

to integrate means to generate local traces as byproducts of each transformation

execution part of the chain and to explicitly link these trace models in the MgM to

get the global traceability map. The MgM also needs to be updated with these new

model instances and their relationships.
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5.2.1 Generating Trace Models

One of the issues we had to address when building a traceability solution with

MAPLE-T was how to actually generate traceability information during enactment.

One might consider a naive approach in which each model transformation imple-

menting an action in the PM, is refined manually with new traceability-related rule

bindings or blocks of code. In such a case, each transformation would need to be

manually modified to generate new target models for the trace information. This

approach is clearly not ideal, as extensively refining every transformation manually

results in a very cumbersome process that is in total opposition of our main vision,

which is full automation.

For this reason, we adopted an approach that augments the transformation chain

automatically with traceability information (see Figure 10). Similar to [53], we de-

fined an ATL higher order transformation (HOT) to systematically enrich our trans-

formations with traceability notions. The HOT takes the transformations part of the

chain and augments them, resulting in a new chain which has the same flow but with

traceability-augmented transformations.

The augmentation of transformations is similar to the concept of instrumentation

in software engineering. Instrumentation is the process of adding informations to a

program [73]. The additional information are generally pieces of code for collecting

data about the program execution.

Figure 15 shows an example LTrace model (conforming to the metamodel shown

in Figure 3 corresponding to the transformation shown in Figure 14.

When the transformation is executed, the LTrace is generated containing all the

links between elements of source and target models (ModelA and ModelB in this

example) as well as the application-specific intents of the traced rule and the sub-

intents if any. In this example, we capture the intent of the rule “DeriveBfromA”

and its specific parameters as well as a sub-intent “MapE” of a helper function called

within the rule.
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Figure 15: Sample LTrace Model

5.2.2 Megamodel Update and Global Traceability Construc-

tion

During enactment, the MgM is updated on the fly with the augmented trans-

formation executions and their corresponding input/output instances including the

LTrace models.

Once the enactment is done, the MgM is completely updated with all the newly

generated artifacts. At this point, the MgM also provides a global traceability map,

GTrace. The set of global links as well as the local traces generated for each trans-

formation form the basis for carrying out traceability visualization and analysis in

MAPLE-T.

Figure 16 shows the megamodel after enactment of the simple PM shown in Fig-

ure 5. The added input/output models as well as the LTrace models are shown in

blue. The GTrace is the collection of all the LTraces (shown in blue) and the links

connecting them (shown in green).
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Figure 16: Example of an MgM after enacting the PM in Figure 5
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Chapter 6

Traceability Visualization and

Analysis

In this chapter, we present our traceability visualization and analysis approach en-

abled by the generated traceability information. In Section 6.1, we introduce our

visualization approach which allows us to visualize relevant and useful information

before and after enacting the PM. In Section 6.2, we discuss our traceability anal-

ysis approach which incorporates a change impact analysis approach as well as a

semantically richer traceability analysis approach based on the captured intents.

6.1 Traceability Visualization

Visualization in MAPLE-T is incorporated in two phases of our approach. We use

the visualization capabilities to visualize the relations between the PM-level intents

and the components of the PM (pre-enactment) as well as the the relations between

the transformation-level intents and their parameters, the trace links and the in-

put/output artifacts of the PM (post-enactment).

6.1.1 Pre-enactment Visualization Graph

Once the PM is registered in the MgM, we generate a visualization graph associ-

ating every PM-level intent to its corresponding action and/or activity because at

this stage intents are captured in the weave model and hence cannot be easily visu-

alized. Figure 17 shows the structure of the automatically generated DOT graph. It
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Figure 17: DOT Graph Structure for PM-level Intents

consists of rectangles representing the intents, ellipses representing the PM actions,

hexagon representing the PM activity, dashed arrows associating every intent to its

corresponding element and solid links linking actions to their related activity.

6.1.2 Post-enactment Visualization Graph

Once the enactment is finished and the LTrace and GTrace models are generated,

we automatically create a traceability visualization graph showing every trace link

between models and their elements as well as the intents/sub-intents and their pa-

rameters. Figure 18 shows the structure of such a graph. In orange , we represent

every input/output model element. Dashed red arrows represent the links between

the models or model elements and are labelled with the intents/sub-intents and their

parameters. As shown in Figure 19, the graph can be further filtered and narrowed to

focus only on a small number of elements and highlight the intent-specific parameters

as well as the sub-intent for clearer visualization.

6.2 Traceability Analysis

We have incorporated traceability analysis support, specifically to carry out change

impact analysis and intent-based analysis in MAPLE-T which relies on the proposed

traceability generation means.
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Figure 18: DOT Graph Structure for Intent-rich Traceability Graph

Figure 19: DOT Graph Structure for a filtered intent-rich traceability graph

6.2.1 Change Impact Analysis

Change impact analysis is defined as“identifying the potential consequences of

a change, or estimating what needs to be modified to accomplish a change” [17].

The purpose of our change impact analysis approach is to determine how impactful

a model or element is on the whole process (i.e, how impactful it is on the other

involved models, model elements, and transformations) at both the metamodel and

model levels. It is triggered by a request specifying the element or the model for

which the change impact is to be analyzed. The process starts first by filtering all

the relevant information from the GTrace and LTrace models based on what was

provided as input at the metamodel level. Based on that, we can conclude whether

the input is impactful (i.e, changing it can impact other artifacts in the process) or

impactless (i.e, changing it has no impact on other artifacts in the process) at the

metamodel level. In case it is impactless at the metamodel level, then it is inferred

to be impactless at the model level as well. In this case, the input is concluded to
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be impactless at both levels and no further analysis is required. On the other hand,

if the input turns out to be impactful at the metamodel level, then the decision is

not as straightforward as in the previous case. MAPLE-T then continues to analyze

the gathered traceability information (LTrace models and GTrace links) at the model

level as well. As a result, the impact decision is further categorized into two outcomes.

• Input is impactful at the model level : This means that the provided input has

been used in the enacted process and changing it requires re-enactment. Ad-

ditionally, the solution collects the set of all the impacted resources (models,

model elements, and transformations) and provides them as outputs of the

change impact analysis along with the impact decision.

• Input is impactless at the model level : This means that although the type of

the input model/element has impact on the enacted process, the actual input

model/element instance has never been used and had no impact on that specific

enactment.

6.2.2 Traceability Analysis with Intents

With the augmentation of our traceability information generation with intents, application-

specific traceability analysis can be enabled in MAPLE-T. As shown in Figure 20,

our traceability analysis starts by analyzing every input element of the PM based

on the generated traceability information. This means that we are able to explicitly

link every input element with its related output element along with every intent and

intent-specific parameter that have been captured throughout the process. The pur-

pose of this is to generate a comprehensive and semantically-rich traceability map

that provides in-depth knowledge about the process. This gives us an extensive view

of the interdepencies within the process, and most importantly, reveals how artifacts

are linked by intents and for what purpose. Also, we are able to identify every labeled

intent-specific parameter used with each intent. The next step of the analysis is to

filter this set of information based on custom parameters that the user specifies. This

enables narrowing the analysis results down to information that the user is interesed

in to investigate or to understand the process.
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Figure 20: Intent-Based Traceability Analysis Process
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Chapter 7

Tool Support

In this chapter we discuss the tool support for our approach developed as an

Eclipse plugin (an entity enabling the customization of the Eclipse environment).

We present existing MAPLE tool support in Section 7.1. We follow up in Section 7.2

by presenting the tool extensions developed exclusively in MAPLE-T.

The architecture of MAPLE-T is shown in Figure 21. The core functionalities

are represented with rountangles (rounded-corner rectangles). Some of these func-

tionalities provide an extension point (black circle) for specializations (shown with

rectangles).

7.1 MAPLE Components

In this section we introduce existing components developed as part of MAPLE prior

to our work. The Megamodel Manager (in orange in Figure 21) module deals

with the megamodel (registering and management of resources). It is composed of the

megamodel (Ecore model) itself and a manager which provides extensive interfaces

to use megamodels within plugins. It binds megamodels to directories, manages the

additional files that can be created (e.g., the weave , intermediate models, etc) and

handles the megamodel user interface. The Weave Engine (in yellow) creates the

weave model which maps elements of the PM to their equivalents in the MgM. The

weave model keeps the MgM PM-agnostic.
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Figure 21: Backend Architecture

The Loading Engine (in blue) is used for loading, reading resources and extract-

ing relevant information from them. It provides a generic extension point, that is

for the system to be able to read a model, one should provide the associated loader

extension, which will be automatically used by the engine. For instance, UMLLoader

is used to read UML models, and ATLLoader is used to read ATL resources. The

Discovery Engine (in green) is responsible for registering resources into the MgM.

It is extended with specific discoverers via the exposed extension point. Two dis-

coverer extensions are defined: workspace discoverer responsible for registering any

non-process model resources (for example, UML profiles) , and process model discov-

erer used for discovering a PM.
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The Translation Engine (in purple) is responsible for reading the PM and ex-

tracting its semantics. The Enacter (in red) handles the PM execution by config-

uring and launching the processes (transformations, executables, etc) it holds. It is

composed of a generic and project independent enacter which is extended by the Pro-

cessModelEnacter which makes use of handler interfaces representing interfaces to

the different transformation engines. The Launcher (in gray) component serves as

an interface (as a launch configuration mechanism in Eclipse) between the enactment

components and the user.

7.2 MAPLE-T Components

Prior to building MAPLE-T, we have investigated and tested MAPLE’s func-

tionalities to identify what is supported and what is not. There were several issues

encountered in the MAPLE core functionality. Some of the issues along with the fixes

are listed below.

(i). When enacting a PM composed of multiple activities, we realized that each

activity was being enacted individually in parallel. This created an incoherence

during the enactment process. Solution: The MAPLE codebase needed to be

modified to fix the issue so that during enactment multiple activities are merged

in one transformation chain and enacted according to the PM flow (in sequence

or in parallel).

(ii). The mapping between elements of the root PM and the composed activities

was not functioning in the correct way. The sub-activities are defined as a

call behaviour action - a separate UML activity diagram - which is part of

the PM. Solution: The MAPLE codebase needed to be changed so that each

input/output of the root PM is mapped to its corresponding input/output (ac-

tivity parameter nodes of the call behaviour action) in the activities within.

We have also introduced new features in MAPLE. Mainly, we have added support

to allow enactment of a heterogeneous model transformation chain.

These extensions are discussed in : [60].

In the following, we discuss components developed as part of MAPLE-T.
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7.2.1 Traceability Engine

The Traceability Engine provides abstract features to handle the generation and

analysis of traceability information during enactment. It provides an Application Pro-

gramming Interface (API) for augmenting the transformation chain using a Higher-

Order Transformation (HOT) and for manipulating the generated local traces and

the global traceability map. It also enables user interactions through an abstract user

interface.

7.2.2 Generator Engine

The Generator Engine represents the core component behind traceability informa-

tion generation. It consists of the augmenter which is a higher-order transformation

that upgrades the transformation chain with traceability features. It also provides

means for the megamodel manager to access and manipulate the generated local

traces (LTrace 4.1.2 models) in order to update the megamodel and construct the

GTrace 4.1.3.

As shown in Figure 22, before proceeding with augmenting our transformations, we

need to ensure that the transformations we provide to the HOT are passed as models

(not as model transformations). Thus, we first convert each ATL model transfor-

mation into an ATL transformation model (XMI model) using the injector/extractor

interfaces provided by the ATL API. Afterwards, our ATL HOT takes the XMI

transformation models and augments them. In other words, it extends the transfor-

mations with extra rule bindings and expressions for the added traceability support.

The XMI models are then serialized back into ATL model transformations, resulting

in a new chain composed of traceability-augmented transformations. Each augmented

transformation ends up having in addition to its original input/output parameters, a

new target parameter (LTrace model) representing the trace model to be generated

holding the local trace links for each in/out of the transformation execution. These

trace models (LTrace models) are conforming to our defined LTrace metamodel which

represents local traceability information elements (i.e., trace information at the ele-

ment/attribute level).
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Figure 22: ATL Transformation Chain Augmentation Process
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7.2.3 Analysis Engine

The Analysis Engine incorporates means to analyze the generated traceability in-

formation. It provides an abstract API which can be used to collect and manipulate

this information for analysis for a specific application. For this purpose, it exposes

an extension point to allow customization of the API features to application-specific

features. Thus, MAPLE-T can be extended with different analysis engines for multi-

ple applications and domains. For instance, a custom change impact analysis engine

is built as an extension of the abstract engine. Furthermore, an intent-based analysis

engine extends the generic analysis engine by using the parsed intents.

7.2.4 MAPLE-T Visualization-related Components

The Visualization Engine provides an abstract interface for mapping resources

from the MgM or the Weave to DOT graphs.

In order to make the visualization backend more modular and easily reusable,

we have built two separate extensions of the visualization engine. The first one is

to visualize pre-enactment graphs and the second one is to visualize post-enactment

graphs.

Pre-Enactment Visualizer

The Pre-enactment Visualizer is a custom extension of the abstract visualization

interface. It generates a DOT graph from elements contained in the weave model.

Particularly, it maps the PM actions/activities and the PM-level intent elements

contained in the weave to their corresponding graph nodes in the DOT graph.

Post-Enactment Visualizer

Similarly, the Post-enactment Visualizer is an extension of the abstract visual-

ization interface. It maps elements of the GTrace to nodes and edges in the DOT

graph.

We have added these visualization extensions

51



7.2.5 Intent Parser Components

The Intent Parser is responsible for reading resources in order to retrieve intents.

It is developed to parse any string starting with the string “#intent” using regular

expression techniques to match string patterns. This parser is extended by two custom

parsers. A PM-level intent parser responsible for parsing the PM-level intents

when the PM is loaded to the MgM and a Transformation-level intent parser

responsible for parsing the transformation-level intents when transformations are read

by the loading engine.

These extensions are added in order to make the intent parser engine easily ex-

tensible and modular.
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Chapter 8

Case Study: Network Service

Design

In this chapter, we present the case study used to validate our work. In Section 8.1,

we give an overview of the Network Functions Virtualization (NFV) framework which

is the domain of application of our case study and we introduce network services (NSs).

We follow up in Section 8.2 by introducing the NS Design method proposed in [62] to

which we apply our approach. In Section 8.3, we illustrate the process of generating

traceability information in MAPLE-T as part of the enactment of the NS Design

process. In Section 8.4, we discuss the change impact analysis solution enabled by

MAPLE-T applied to the NS design process. Particularly, we discuss how changing

some input models impacts the output models in different scenarios. In Section 8.5,

we introduce our second application concerning further diagnosis of the NS design

process. We present the enhanced traceability information with intents leading to

richer traceability analysis results for the NS design.
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Figure 23: NFV Architectural Framework (ETSI GS NFV 002 [7])

8.1 Network Function Virtualization and Network

Services

8.1.1 Network Functions Virtualization

The telecom industry has been moving from dedicated hardware /physical equip-

ment network functions (NFs) to virtualized network functions (VNF). This has been

enabled by the virtualization technology and the cloud. Network Function Virtual-

ization (NFV) is a framework proposed and standardized by the European Telecom-

munications Standards Institute (ETSI) [3] for the management and orchestration of

Network Services (NSs) by means of virtualization technology. NFV decouples the

software implementations of the NFs from the infrastructure [8].

The NFV architectural framework proposed by ETSI is composed of four main

parts, the NFV Management and orchestration (NFV-MANO), VNFs and Element

Management (EM), the NFV Infrastructure (NFVI) and the Operation Support Sys-

tem/Business Support System (OSS/BSS) [7] as shown in Figure 23.
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NFV Management and orchestration (NFV-MANO) is responsible for man-

aging the infrastructure, allocating required resources to the VNFs and NSs, and

orchestrating them [8]. It consists of three functional blocks:

• NFV Orchestrator (NFVO): responsible for the NS lifecycle management and

the NFVI resources orchestration.

• VNF Manager (VNFM): responsible for the lifecycle management of VNF in-

stances.

• Virtualized Infrastructure Manager (VIM): responsible for managing the NFVI

compute, storage and network resources.

VNFs and Element Managers (EMs) A virtualized NF (VNF) is an NF de-

ployed on NFV infrastructure virtual resources. An Element Manager (EM) is an

entity responsible for the management of the VNF functionality including the secu-

rity, configuration, fault management, etc.

NFV Infrastructure (NFVI) NFVI represents all the hardware and software

components providing the infrastructure resources on top of which VNFs are deployed

and executed. The NFVI is composed of: virtualized resources, hardware resources

and the virtualization layer [7].

Operation Support System/Business Support System (OSS/BSS) The OSS/BSS

is an entity encompassing the NS operator’s proprietary system. It is outside the scope

of the NFV architecture framework. It provides functions dealing with the operator’s

business and operation.

8.1.2 Network Services

A network service (NS) is a composition of network function(s) (NF) and/or other

nested NSs to provide a desired (composite) functionality/behaviour. An NF can be

physical (e.g. a traditional firewall device) or virtual (VNF) (e.g. a virtual firewall)

and has a functional operation/behavior and well-defined external interfaces, i.e. con-

nection points (CP). The different NFs/nested NSs within an NS are interconnected
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with one or more forwarding graphs (FG) that define the traffic flows between them.

Figure 24 shows an example of an NS composed of three VNFs.

8.2 Network Service Design Process

The main goal behind the NS design process (proposed in [61]) is to automatically

design an NS and generate an NS Descriptor (NSD) which is a template used by the

NFV-MANO (see Section 8.1.1) for the deployment and management of the NS. The

process starts by specifying the functional and non-functional characteristics of the

NS using the NS requirements(i.e., intents in the networking domain) (NSReq). The

functionalities in the NSReq are then decomposed with the help of an NF ontology

(NFOntology) which represents a knowledge-base capturing known NF decomposi-

tions and their architectures. After decomposition to a certain level, VNFs are se-

lected from a catalog (VNFCatalog) by matching the decomposed functionalities. The

traffic flows in the NS are then defined with the design of the VNF FGs (VNFFGs)

and the NS dimensioned according to the non-functional requirements. NFOntology

may be updated with new information from NSReq after a successful design, with the

onboarding of new VNFs, or manually by an expert.

A VNF is described by a VNF descriptor (VNFD) which captures all its deployment

characteristics. One main element within the VNF is a VNF component (VNFC) which

represents an internal component of the VNF that provides a part of its functionality.

A Virtual Deployment Unit (VDU) is the deployment template or descriptor of the

VNFC and it is an element contained within the VNFD. The generated NSD is

compliant with ETSI NFV definition and refers to the NS constituent descriptors

Figure 24: A Simple Network Service Example
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Figure 25: NSD Overview [9]

including VNFDs and VNFFG descriptors (VNFFGDs) as shown in Figure 25.

For the NS design process, the VNFD, provided by the VNF vendor to describe a

VNF, has been extended with the VNF Architecture Descriptor (VNFAD) to provide

information about the functionalities and the interfaces provided at the connection

points to access these functionalities. This extension [61] is necessary for the NS design

process for selecting appropriate VNFs and connecting them properly. The standard

VNFD does not provide such information. This is part of a previous work [61].

.

As an example, let us consider the NSReq in Figure 26 with two functional require-

ments, Functionality1 and Functionality2, and two corresponding NFRs, T = 40 and

T=60, respectively, indicating the throughput for each functionality delivered at the

service interface.

After the design and dimensioning we may end up, for example, with an NS con-

sisting of one VNF (VNF-A) realizing both functionalities as shown in Figure 26.

VNF-A has four CPs providing two entry and two exit interfaces through which two

flows are propagated. A flow related to a functionality can propagate within the NS

through a sequence of VNF interfaces. Each flow is related to one functional require-

ment and its NFRs in the NSReq. The propagation flows within a VNF from an entry
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Figure 26: Network Service Design from NSReq Example

to an exit interface are defined in the VNFAD and characterized by a transformation

ratio indicating the relation of the incoming and outgoing traffic of the flow. These

ratio parameters are used in the NS design to meet the throughput requirements. In

our example, a ratio of 2 was provided in the VNFAD and used for Flow 1 and a ratio

of 3 was provided and used for Flow 2, to meet the required throughput at the exit

interfaces. The designed NS is shown on the left hand side of Figure 26 where the

throughputs and the design parameters like ratio are shown the way they have been

used in the NS design process.

8.2.1 NS Design Process Model (PM)

Figure. 27 presents the NS design PM explicitly modelled in Papyrus as a UML2

Activity diagram. The PM is composed of six actions. The actions composing the

PM are discussed here.

• CreateSolutionMap: This action takes as input the NSReq model and creates

a SolutionMap (SM) model from it. The SM model is just an intermediate

model to reduce the implementation complexity of the process.

• SM2Ontology: This action takes as input the SM model created in the first

action as well as an NFOntology model and generates a new enriched SM model.
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• GeneratingFG: This action takes as input the enriched SM model as well

as a VNFCatalogue model and generates a new SM model enhanced with the

information provided in the VNFCatalogue.

• SM2NSD: This action takes as input the enriched SM model as well as a Pro-

tocolStack model (a model containing information about the TCP/IP protocol

stack) and generates a generic NSD model as well as an SM model containing

further details.

• NSDRefinement: This action takes as input the enriched SM model, the

ProtocolStack model as well as the generic NSD model and generates a refined

NSD model based on the non-functional requirements defined in the NSReq and

captured in the SM model.

• OntologyUpdate: This action takes as input the enriched SM model, the

NFOntology model as well as the generic NSD model and generates an updated

NFOntology model.

8.3 NS Design Enactment and Traceability Infor-

mation Generation

In order to enact the NS Design PM, we need to register all the needed resources/profiles

(NSReq, NSD profiles, etc.). As a result, the base MgM (Figure 7) is updated with all

the registered UML profiles as well as the conformance links. Figure 28 shows the

initial MgM with UML profiles.

Next, we need to register the PM which automatically registers all the underlying

model transformations implementing the actions in the PM. Consequently, the MgM

is updated (see Figure 29) with the following: 1) a new resource representing the NS

Design PM as a UML activity diagram conforming to the UML metamodel (shown

in gray), 2) the ATL transformations conforming to the ATL metamodel (shown in

brown), and also 3) the weave model containing the MgM and PM mappings (shown

in gray).
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Figure 27: NS design PM [61]

With this MgM, MAPLE-T has all the necessary resources to enact the PM, and

therefore enable NS Design traceability generation and analysis.

When the PM is registered, all the intents provided as comments in the NS

design PM are retrieved and mapped to their corresponding actions in the weave

model. Figure 30 illustrates the intent graph, which is automatically generated and

which shows the captured PM-level intents corresponding to the actions and the

activities of the NS design PM. As introduced in the previous section 6, the PM-level
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Figure 28: Initial NS Design MgM

intents are shown in yellow and are associated with actions (shown in green) in the

PM as well as the activity (shown in gray) itself. For instance, the intent of the action

“NSDRefinement” is “NFRBasedTailoring”.

Once all the model instances are specified, an initial transformation chain is built

based on the NS design PM. This transformation chain is then augmented so that each

transformation is able to generate local trace (LTrace) model instances in addition

to its original output model instance(s) (see Figure 31).

The execution of this MT chain includes six augmented transformation executions.

The first transformation starts by taking the NSReq model as input and generates

an initial intermediate model as well as the LTrace model corresponding to that

transformation execution. In the same way, the execution process continues according
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Figure 29: Updated NS Design MgM

to the order defined in the MT chain. For each subsequent transformation execution,

the LTrace model is generated and the intermediate model incrementally refined until

we end up with our desired models: NSD and updated NFOntology.

Figure 32 shows a fragment of an LTrace corresponding to the execution of the

last transformation in the NS design PM (NSDRefinement). It not only captures

the links between source and target elements of that transformation at the model

element/attribute level, but also holds intents, sub-intents and their parameters as-

sociated with the traced rule within the transformation. For example, the “Dimen-

sioning” intent is captured within the TracedRule “calculateNumberOfInstances”. It

has the parameters: VNF.Ratio and RequiredNumberofInstances. It also has the sub-

intent getRealizedFunctionality which is the intent of a helper rule (GetFunctionality)

called within the TracedRule.
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Figure 30: NS Design PM-level Intents

The MgM is updated during enactment with actual model instances (see Fig-

ure 29). The LTrace model instances along with the global links interconnecting

them are also added to the MgM. This results in the construction of our NS Design

global traceability map (GTrace). The subset of the MgM representing the NS Design

GTrace is shown in Figure 33. LTrace models (e.g, NSReq2SM Trace, SM2NSD Trace)

are shown in blue and their interconnections are shown with blue dashed links. Each

LTrace model (output of a transformation) is linked with its corresponding model

transformation with an object flow link (solid black line).

8.4 Change Impact Analysis for the Network Ser-

vice Design

Now that all the NS Design models are interlinked via LTrace models and GTrace

links, we can automatically trace back and forth between all the involved source and
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Figure 31: Augmented MT Chain

target resources (i.e; NSReq, Ontology, the VNFCatalog and its constituent VNFDs as

well as the resulting NSD and the updated Ontology). Each LTrace model enables
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Figure 32: Augmented LTrace: NSD Refinement (Subset)

navigation at the element level of adjacent models. Additionally, the GTrace enables

navigation at the PM level, which means that we can explicitly navigate between

distant models as well. For example, we can explicitly trace back from the NSD

(last element of the NS design process) to the NSReq (first element of the NS design

process).

Because of the foundation set by the local and global traces, it is relatively straight-

forward to incorporate change impact analysis in MAPLE-T. We can automatically

figure out how changing an element of an input model (NSReq, VNFDs included in the

VNFCatalog, or the NFOntology) can impact the NS Design transformations and the

target (e.g, NSD) models and their elements. Using MAPLE-T, the user selects the

input element for which the change impact is to be determined. The user will then be

provided with the desired result showing whether the selected element is impactful or

not, and if applicable, a list of all the impacted transformations and models as well

as their elements is provided.

Typically, the VNFPackage is provided by external vendors and might likely be

subject to change. In our case study, we focus specifically on the impact induced

by changing a resource within the VNFPackage, mainly the VNFD. After an NS is

deployed, a VNF vendor might point out that a parameter or set of parameters in a

VNFD within the catalog are erroneous (not describing the VNF properly). In such a

scenario, the decision on going about making a change in the process and associated
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Figure 33: NS Design GTrace
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artifacts depends on whether the running NS instance is successfully meeting the

requirements (NSReq) or not. With our traceability analysis environment, we can

determine whether the erroneous parameters have impact on the NS design process

and therefore the generated NSD. This will allow us to know if a running NS instance

is not meeting the NSReq due to an erroneous NSD (if the erroneous VNFD parameters

have impact on the design) or not, and whether the NS should be re-designed and re-

instantiated. In the rest of this section, we discuss both scenarios. In this analysis, we

assume that our NS design approach, NSReq and NFOntology are correct and cannot

be source of errors.

8.4.1 Scenario 1: NS instance is behaving according to the

requirements (NSReq)

In this scenario, the assumption is that the NS instance is running as expected ac-

cording to the NSReq, no issues have been detected (yet). However, at some point,

the VNF vendor indicates that a VNFD involved in the NS design was not correctly

describing the VNF and its instance is used now within the running NS instance. This

implies that some VNFD parameters are erroneous and need to be changed. The de-

cision of re-designing and re-deploying the NS depends on whether these parameters

have an impact on the NSD.

Parameters are impactless at the metamodel level : In this case, since the erroneous

parameters have no impact on the design and the NS instance is behaving as expected

according to the NSReq, there is no action to take. For instance, the vendor might

point out that the software image descriptor (SwImageDesc) used in the VNFD is

erroneous. After analyzing the change impact of the SwImageDesc element on the

NS Design process, it turns out that it is impactless as shown in Figure 37 since it is

never considered in the design process. Changing this element will never impact the

generated NSD, and therefore there is no need to re-design the NS.

Parameters are impactful at the metamodel level : In this case, the impact at the

model level should be considered.

• Parameters are impactful at the model level :

As opposed to the previous case, we need to consider re-designing the NS even

though it is running as expected according to NSReq. In this case, the erroneous
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Figure 34: Impactful Vdu Element

Figure 35: Impactless Vdu Element

Figure 36: Impactful Instantiation Level Element
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Figure 37: Impactless SwImageDesc Element

parameters were used to design the NS and therefore they are impactful. For

example, the vendor might report that an Instantiation Level element (which

specifies the number of instances of each VNFC within the VNF) within the

VNFD is erroneous and needs to be corrected. The change impact analysis of this

element finds it impactful (e.g., as shown in Figure 36). This means that, while

the NS instance shows no problem (yet), this does not preclude the possibility

that the provisioning of VNFC instances is not done inefficiently (e.g. VNFC

instances may be over-provisioned) and/or incorrectly (e.g. the parameter value

may not have been used yet), and therefore the re-design of the NS needs to be

considered in this case.

• Parameters are impactless at the model level :

In this case, since the parameters are impactful at the metamodel level but

not at the model level, it is not straightforward to conclude whether the re-

enactment of the NS Design is needed or not. A new parameter value might

make a previously impactless parameter impactful after the change. Using the

generated traces to analyze the impact of such parameters might provide a false

negative result, in the sense that the impact analysis will suggest that changing

the parameter would be impactless, even though it is not the case. For instance,

the vendor might indicate that the Id of a Vdu element referenced in the VNFD is

erroneous. As shown in Figure 35, the analysis of the change impact of the Vdu

Id parameter on the NS Design process suggests that it is impactless. However,

the reason may be that the Vdu with the incorrect Id was not selected because

it did not meet the requirements. On the other hand, the correct Id might point

to a VDU , which meets the requirements making the parameter impactful at the
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model level as well. In this case if we re-run the NS design enactment with the

changed parameter value and generate new traces, our change impact analysis

will suggest that this element is impactful. Thus, at this point, no conclusion

can be made in this case from the analysis and it is better to re-enact the NS

Design with the changed parameters.

8.4.2 Scenario 2: NS is not meeting the requirements (NSReq)

In this scenario the NS instance is not behaving as expected according to the NSReq.

Similar to the previous scenario, the VNF vendor indicates that a provided VNFD is

erroneous and requires changes. Using MAPLE-T, we can try to determine if the

erroneous behaviour of the NS instance is due to the erroneous VNFD or not.

Parameters are impactless at the metamodel level :

Since the erroneous parameters of the VNFD are impactless (case shown in Fig-

ure 37), we can conclude that the erroneous behaviour of the NS instance is not due

to the erroneous VNFD. It might be due to other NS management activities (instanti-

ation, configuration, etc.), but the error did not originate from the VNFD parameters

used in the design.

Parameters are impactful at the metamodel level : Similar to the first scenario, we

consider the impact at the model level.

• Parameters are impactful at the model level (shown by the example in Figure 36):

This means that the generated NSD is erroneous. Thus, we can infer that the

misbehaviour is possibly due to the incorrectly-designed NS, which was due to

input errors (in the VNFDs). One needs to re-design the NS and re-deploy it.

• Parameters are impactless at the model level : As discussed in the first scenario

(see Section 8.4.1) , this case is inconclusive. Even if the change impact analysis

suggests that the parameters are impactless, we cannot know if this result is

accurate or if it is a false negative. The only way we can determine this is to

re-enact and generate new traces (but that is what we are trying to avoid in

the first place).

A summary of the two scenarios, their different cases, and analysis results is shown

in Table 2.
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Table 2: Summary of VNFD Change Impact Analysis Results

Impact Decision

Running NS Instance

No problem has been

detected

Problems have been

detected

Impactless at both

metamodel and model

levels

No re-design required NS instance misbehaviour

does not originate from

the parameter error, no

re-design is required

Impactful at both

metamodel and model

levels

NS needs to be re-

designed (e.g., over-

provisioning)

NS instance misbehaviour

may originate from the

pa-rameter error. NS

needs to be re-designed

Impactful at meta-

model level and

impactless at model

level

Inconclusive, NS re-

design needs to be

considered

Inconclusive, NS re-

design needs to be

considered
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In this section we considered only one NS and analyzed the impact of erroneous

VNFDs on its design and the behavior of its instances. The same analysis applies

similarly to all NSs in which the erroneous VNFDs are involved. Moreover, one

may undertake the huge task of analyzing all designed NSs including NSs where the

VNFDs are not involved as this could be the result of exclusion due to the erroneous

VNFDs. This is along the same lines as reconsidering the design of any NS once a

new VNF is made available, but this might be unrealistic.

8.5 Network Service Diagnosis

As mentioned in Section 8.1, the NFV Orchestrator is responsible for the NS lifecycle

management and NFV infrastructure resource orchestration. The NS lifecycle man-

agement includes operations such as update, scaling and monitoring. Monitoring is

performed based on predefined virtualized resource-related performance metrics to be

monitored at an NS or a VNF level. The performance reports related to these met-

rics are collected from the infrastructure or VNF managers. Based on these reports,

the orchestrator can scale out/in the NS when necessary, and also notify Operation

Support System/Business Support System (OSS/BSS) with respect to predefined

performance metrics such as throughput. In the case of problems with the reported

performance metrics, OSS/BSS will need to investigate further.

Let us consider again the NS in Figure 26 and assume the NS is instantiated and

deployed. Let us assume the NS instance (right hand side of Figure 26) is running,

the throughputs are monitored at all interfaces and the values shown in the figure of

the instance are reported to OSS/BSS. Based on these values, it can be inferred that

the throughputs at the output interfaces do not meet the requirements (they do not

satisfy the NFR1 and NFR2 defined in the NSReq). A violation of the NSReq has been

detected. The problem may be due to the use of wrong parameters, wrong values

for the parameters or wrong design decisions in the design process. The question is

where to start the investigations. Knowing, for instance, the ratio relating the input

interface to the output interface of a flow that has been used during the design of the

NS can help and speed up these investigations. Indeed, the actual ratios of the VNF-A

instance shown on the right hand side of Figure 26, i.e. calculated from the measured

throughputs, are 3 and 2 for Flow 1 and Flow 2, respectively, instead of 2 and 3. One
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can conclude that the ratios used in the design do not reflect the behavior of VNF-A,

i.e. they are wrong in the VNFAD or the VNF instance is misbehaving with respect

to these ratios. However, the ratios are not reflected among the attributes of the NS

design. Even the throughputs are not associated with the VNF directly, but with the

virtual links connected to the VNF.

Knowledge about the design process and the underlying implementation will allow

to carry out a more meaningful and deeper investigation when an NS instance is not

meeting its NSReq. With such knowledge, one can identify parameters hidden in

the design process (e.g. Ratio) or design decisions that may impact the observed

behavior (e.g. Throughput). This knowledge can be obtained with semantically-rich

traceability information generated during enactment of the process.

Within the GTrace, every model associated with the process is explicitly inter-

linked to its related models with LTrace models and GTrace links. Using the in-

corporated visualization support, visualization graphs are generated showing every

association between the NS design elements, the intents and their parameters. Based

on this, investigation and analysis can be performed allowing for the explicit navi-

gation back and forth between every NSReq element and its corresponding interme-

diate and target NSD elements. Furthermore, with the addition of intents at both

levels, our analysis solution allows us to identify the intents/sub-intents of every ac-

tion/transformation and rule executed by enacting the PM as well as to pinpoint

application-specific parameters used within these intents. Such additional parame-

ters can be used for a deeper analysis and diagnostic in case of problems observed at

runtime.

An extensive traceability map is generated and enables rich traceability analysis

applied on the NS design process. At this stage, a graph visualizing such a map

is automatically generated. This visualization shows all the semantically-enhanced

traceability information that one can navigate and analyze. Figure 38 shows a por-

tion of the visualized map. It consists of NSReq elements such as FunctionalRequire-

ment:Register, etc. It shows every intent and intent-specific parameter related to

such elements. For example, FunctionalRequirement:Register element is related to

NSD!NFPD[NFP-rg] through the “FlowDesign” intent. The NS design intent trace-

ability map can be highly beneficial in different NFV contexts. For instance, one does

not have to be an expert or dig into every transformation to know the intents of the

73



NS design process implementation. They can go through this map to identify and

investigate the intents and their parameters. For easier investigations, this map of

links can be further filtered based on user-specified parameters to focus only on spe-

cific elements. In this case, a filtered visualization graph is automatically generated

at this stage as well. It highlights intents and their parameters according to the user-

specified filter. Figure 39 shows a visualization of a filtered traceability map based

on the NSReq element, NFR:Throughput. With this result, we can easily identify

every intent and intent-specific parameters related to such an element. This analysis

result helps us identify easily the application-specific parameters that can help in

achieving deeper investigations in case a running NS instance is not meeting the re-

quired NFR:Throughput. Going back to the example shown in Figure 26, the intent

“Dimensioning” has a “VNF Ratio” parameter, and is linked to NFR:Throughput.

With this information, we know that the ratio has been used in the design and is

linked to NFR:Throughput. If a problem with the throughputs has been detected at

runtime, we now know the design parameters that may have an impact on this, the

ratio parameter being one of them. The user can investigate the ratios of VNF-A as

a starting point for the diagnosis of the throughput problem.

8.6 Summary

In this chapter, we presented the NFV network service design and management

case study used in our work. We have demonstrated the capabilites of MAPLE-T

applied to the NS design process. The enactment of the NS design process results

in the generation of a network service descriptor in addition to LTrace models. The

generated LTrace models are analyzed to enable a change impact analysis solution

assessing the impact of changing input models (e.g., VNF catalog) on the NSD.

Moreover, advanced network service diagnosis is enabled by using intents and their

application-specific parameters.

Automating the management and orchestration of network services is one of the

primary goals of network operators. Achieving full automation for NS management

is among the main requirements of 5G. Our approach can be the basis for achieving

full automation. The NS diagnosis, monitoring and other advanced management

activities can be seamlessly automated with the help of our traceability generation and
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Figure 38: Subset of the Generated GTrace Model
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Figure 39: NS Monitoring and Diagnosis: Filtered Trace Links

analysis framework. For instance, instead of manually investigating network services,

MAPLE-T can be employed to automatically provide analysis results allowing easier

and efficient diagnosis.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, we presented a model-driven traceability information generation, vi-

sualization and analysis approach. Our approach provides support for automatic

generation of local and global traceability information during process enactment. It

starts with a process model (PM) and a set of resources (metamodels, profiles), which

are all registered in a megamodel (MgM). The PM is then mapped to a transformation

chain with the help of the MgM. When process enactment begins, the transformation

chain is augmented with traceability support on the fly. During enactment of the PM,

the underlying transformations are executed and as a result the target models as well

as the trace models (LTrace models) are generated. Trace links are generated both at

the model-level and at the model element-level. The generated artifacts are retained

in the MgM. The global trace map (GTrace) which provides traceability information

at the PM-level is also part of the MgM.

Furthermore, we have extended our traceability approach to capture intents rep-

resenting the application-specific objective of every transformation rule implement-

ing the PM as well as the higher-level intents of the PM actions/activities. Intents

also are associated with application-specific parameters giving them deeper seman-

tics. The megamodel captures all associated intents in a PM and its implementation.

We have incorported multi-level traceability visualization support in our approach.

Visualization graphs are automatically built as part of the enactment process. A

post-enactment visualization graph is generated illustrating the associations between
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the actions/activities of the PM and their intents. After enactment, a traceability

map visualization is generated showing the links between all the models, model el-

ements, the intents/sub-intents and their parameters. This visualization model can

be further filtered based on custom parameters.

We have applied our approach to an NFV case study, namely to network service

(NS) design, to carry out change impact analysis and enable richer traceability anal-

ysis (using intents). The goal of the change impact analysis solution was to assess

whether changes in the building blocks of a network service, the VNFs, have any

impact on the process and the generated deployment templates.

The focus of the intent-enriched traceability analysis was mainly on how capturing

intents (and their parameters) and visualizing them can further ease the interpretation

and understanding of the NS design process. Particularly, it can help in achieving

deeper understanding of how every NS requirement (NSReq) element is linked to its

associated NS descriptor (NSD) elements and why. Moreover, the results of this

analysis can be used to shed light on hidden NS design intent parameters. These

parameters can be investigated for better and more accurate diagnosis in case a

running network service instance is not satisfying the network service requirements.

We have implemented our approach as an Eclipse plugin called MAPLE-T built

on top of MAPLE [59], an extensible environment which enables model-driven process

enactment by interleaving transformation chaining and model management means.

9.2 Limitations and Future Work

9.2.1 Limitations

There are some limitations to the proposed approach presented in this thesis.

While MAPLE provides enactment support for a heterogeneous set of transfor-

mation languages (e.g., ATL, Java), MAPLE-T only supports implementations with

ATL transformations at the moment. The higher order transformation(HOT) im-

plementation augments transformation models conforming to the ATL metamodel.

Also, the LTrace metamodel is built to represent trace models produced from the

execution of the augmented ATL transformations.

The captured intents are tightly coupled to how the PM and the transforma-

tions are annotated. There is no support for the validation or the verification of the
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correctness of the labels provided by the PM designer. In case the annotations are

semantically incorrect, the traces will retain incorrect intents.

The generated traceability visualization graphs are not scalable nor navigable

when the number of traces is large. In case of a very complex PM, the graph becomes

slow to process and hard to navigate.

9.2.2 Potential Future Work

Our traceability generation approach can be extended to support further transforma-

tion and general programming languages (e.g. Java, Epsilon, etc.). MAPLE-T can be

extended to generate traceability information by enacting a PM implemented using

various languages.

The traceability visualization can be extended to support advanced navigability.

Responsive navigation and searching can make the generated visualization graphs

more user friendly and interactive.
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