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Abstract

Anonymizing and Trading Person-specific Data with Trust

Rashid Hussain Khokhar, Ph.D.

Concordia University, 2020

In the past decade, data privacy, security, and trustworthiness have gained tremendous attention

from research communities, and these are still active areas of research with the proliferation of cloud

services and social media applications. The data is growing at a rapid pace. It has become an integral

part of almost every industry and business, including commercial and non-profit organizations. It

often contains person-specific information and a data custodian who holds it must be responsible

for managing its use, disclosure, accuracy and privacy protection. In this thesis, we present three

research problems. The first two problems address the concerns of stakeholders on privacy protection,

data trustworthiness, and profit distribution in the online market for trading person-specific data. The

third problem addresses the health information custodians (HICs) concern on privacy-preserving

healthcare network data publishing.

Our first research problem is identified in cloud-based data integration service where data

providers collaborate with their trading partners in order to deliver quality data mining services.

Data-as-a-Service (DaaS) enables data integration to serve the demands of data consumers. Data

providers face challenges not only to protect private data over the cloud but also to legally adhere

to privacy compliance rules when trading person-specific data. We propose a model that allows the

collaboration of multiple data providers for integrating their data and derives the contribution of each

data provider by valuating the incorporated cost factors. This model serves as a guide for business

decision-making, such as estimating the potential privacy risk and finding the sub-optimal value for

publishing mashup data. Experiments on real-life data demonstrate that our approach can identify

the sub-optimal value in data mashup for different privacy models, including K-anonymity, LKC-

privacy, and ε-differential privacy, with various anonymization algorithms and privacy parameters.

iii



Second, consumers demand a good quality of data for accurate analysis and effective decision-

making while the data providers intend to maximize their profits by competing with peer providers.

In addition, the data providers or custodians must conform to privacy policies to avoid potential

penalties for privacy breaches. To address these challenges, we propose a two-fold solution: (1) we

present the first information entropy-based trust computation algorithm, IEB_Trust, that allows a

semi-trusted arbitrator to detect the covert behavior of a dishonest data provider and chooses the

qualified providers for a data mashup, and (2) we incorporate the Vickrey-Clarke-Groves (VCG)

auction mechanism for the valuation of data providers’ attributes into the data mashup process.

Experiments on real-life data demonstrate the robustness of our approach in restricting dishonest

providers from participation in the data mashup and improving the efficiency in comparison to

provenance-based approaches. Furthermore, we derive the monetary shares for the chosen providers

from their information utility and trust scores over the differentially private release of the integrated

dataset under their joint privacy requirements.

Finally, we address the concerns of HICs of exchanging healthcare data to provide better and

more timely services while mitigating the risk of exposing patients’ sensitive information to privacy

threats. We first model a complex healthcare dataset using a heterogeneous information network that

consists of multi-type entities and their relationships. We then propose DiffHetNet, an edge-based

differentially private algorithm, to protect the sensitive links of patients from inbound and outbound

attacks in the heterogeneous health network. We evaluate the performance of our proposed method in

terms of information utility and efficiency on different types of real-life datasets that can be modeled

as networks. Experimental results suggest that DiffHetNet generally yields less information loss and

is significantly more efficient in terms of runtime in comparison with existing network anonymization

methods. Furthermore, DiffHetNet is scalable to large network datasets.
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Chapter 1

Introduction

Data is an integral part of almost every industry, such as social media, healthcare, e-commerce,

and government. With the advancements of digital technologies and the proliferation of online

services, data is growing at a tremendous pace. Data often contains explicit identifying information

associated with personal data such as name, social insurance number, birth date, address, phone

number, marital status, salary, health record, and so on. A data custodian who holds person-specific

information must be responsible for managing the use, disclosure, accuracy and privacy protection of

collected data. Privacy is a fundamental human right [97], and for this several privacy legislation

and regulations such as Personal Information Protection and Electronic Documents Act (PIPEDA)

by Canada, Health Insurance Portability and Accountability Act (HIPAA) by the United States, and

General Data Protection Regulation (GDPR) by the European Union, across the globe have been

imposed for protecting personal data. These legal and regulatory frameworks enforce companies

or businesses who deal with personal data must ensure the protection of individuals by removing

identifiable information from the data they own. In this thesis, we present three research problems in

perspective to preserving the privacy of individuals in publishing data. The first two problems address

the concerns of stakeholders on privacy protection, data trustworthiness, and profit distribution in the

online market for trading person-specific data. The third problem addresses the health information

custodians (HICs) concern on preserving the privacy of individuals in publishing health-network

data. In this chapter, we present some motivations linked to each of the problems studied, followed

by our main contributions.
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The motivation of first research work is that data consumers demand customers’ data over the

cloud to identify demographic characteristics of customers from persons-specific data. Data-as-a-

Service (DaaS) is a cloud computing paradigm that provides data on demand to consumers over

the Internet [19]. It is becoming popular in commercial setups because it provides flexible and

cost-effective collaboration among business enterprises. In the e-market industry, enterprises conduct

online market research to collect feedback about their products and services and to identify the

demographic characteristics of customers by various means such as surveys, social networks, online

purchases, posts, blogs, internet browsing preferences, phone calls, and apps. The primary purpose in

collecting personal information is to provide better services, which in turn generate higher revenue.

Business enterprises (or data providers) face four major challenges for trading person-specific

information. First, extensive research has shown that simply removing explicit identifying infor-

mation such as name, social security number, birth date, and telephone number is insufficient for

privacy protection. Many organizations believe that enforcing regulatory compliance, such as the

Gramm-Leach-Bliley Act (GLBA), which protects the privacy and security of individually identifi-

able financial information, or simply employing common de-identification methods, such as Health

Insurance Portability and Accountability Act (HIPAA) Safe Harbor method, which involves removing

18 types of identifiers from health data, is sufficient for privacy protection. Yet an individual can be

re-identified by matching the quasi-identifiers QID with an external data source [147]. Second, the

data providers collaborate in order to fulfill the demands of a data consumer and to generate more

profit by offering better data utility. In addition, they would avoid sharing information other than the

final integrated data because the collaborating data providers could be competitors. Third, a cloud

service provider may not be a trusted party. The cloud service provider can be a third-party who

offers data integration services over the cloud or one of the data providers. Fourth, the data providers

want to ensure that the mashup data can facilitate the queries of data consumers.

Second, data trustworthiness is also an important concern to consumer stakeholders in the e-

market. According to a recent survey [52], organizations in the U.S. estimate that 33% of their

customer data is inaccurate. This skepticism about data elicits the increased risk of non-compliance

and regulatory penalties. The study by IBM estimated that $3.1 trillion of the U.S.’s GDP is lost due

to poor quality data [138]. Organizations may mitigate these potential risks by taking appropriate

2



measures regarding the quality of their data, leading to more reliable analysis and decision-making.

There is a line of research [28, 93] that focuses on exchanging data between multiple parties from

the perspective of ensuring confidentiality and integrity. These works aim to provide prevention

from unauthorized use and modification when data are in transit but do not verify data if any party

provides false data. Many trust models [18, 148] and frameworks [35, 131] have been proposed to

evaluate the security strength of cloud environments, but limited research considers the aspect of

data reliability.

Third, with the increasing adoption of digital health platforms through mobile apps and online

services, people have greater flexibility connecting with medical practitioners, pharmacists, and

laboratories and accessing resources to manage their health-related concerns. Many healthcare

institutions are being connected for exchanging healthcare data with the goal of providing better

and timely services. Health data contains patients’ sensitive information, and it is the obligation of

health information custodians (HICs) to ensure the protection of patients’ private information in the

collection, use, and release of health data as mandated by law [73]. It has been a common practice by

many health service providers to obtain the patients’ consent in sharing health data. However, HICs

have faced increasing privacy breaches of different natures [7, 8, 94] due to negligence of administra-

tive employees, compliance failures, and deployment of weak de-identification methods [23]. Health

social networking sites such as MedXCentral, Sermo and PatientsLikeMe have been increasingly

adopted by the healthcare professionals and patients for sharing health-related information. This

poses risks of privacy breaches on sharing personal health data over these platforms [111, 168].

1.1 Contributions

The main contributions of this thesis are summarized below.

1.1.1 Privacy-preserving data mashup model for trading person-specific data

Data providers adopt cloud-based data integration services to improve collaboration with their

trading partners and to deliver quality data mining services. They face challenges not only to

protect private data over the cloud but also to legally adhere to privacy compliance rules when

3



trading person-specific data. They need an effective privacy-preserving data mashup model to deal

with the challenges in emerging markets. To address this problem, we contribute with a privacy-

preserving data mashup model to quantify and compare the costs and benefits for releasing integrated

anonymized data of multiple providers over an individual data provider when trading person-specific

information in the e-market. We incorporate relevant factors that are associated with the revenue

and costs to determine the net value. We organize these factors into three phases: before data

mashup, during data mashup, and after data mashup. Our model helps data providers in making

effective-decision by evaluating the benefits of data mashup and impacts of data anonymization

based on the choices of privacy models and data mashup anonymization algorithms. The proposed

model captures only the relevant factors that are crucial for cost-benefit analysis in our research

problem. However, the model provides flexibility for users to include additional factors based on

the specific requirements of other scenarios. Experiments on real-life data demonstrate that our

approach can identify the sub-optimal value in data mashup for different privacy models, including

k-anonymity, LKC-privacy, and ε-differential privacy, with various anonymization algorithms and

privacy parameters.

1.1.2 Secure trustworthiness assessment and privacy protection in integrating data

Services computing promises on the secure and reliable transport of big data over a cloud to

improve business efficiencies. Research communities have investigated the problem of exchanging

data between multiple parties from the perspective of ensuring confidentiality and integrity [28, 93].

They have proposed solutions to prevent the unauthorized use and modification of data in transit.

However, the existing works do not address the problem of verifying the correctness of private data if

any party has provided false data. This is the first work providing a solution to stakeholders to address

their concerns on data trustworthiness, privacy protection and profit distribution in integrating data

over the cloud. We propose IEB_Trust, an information entropy-based trust computation algorithm

that allows a semi-trusted arbitrator to detect the covert behavior of a dishonest data provider,

evaluates the trustworthiness of the participating data providers by a trust metric, and chooses the

qualified providers for data mashup. Compared to the existing work on data trustworthiness [114,

115, 165], our proposed algorithm not only detects fabricated or incorrect data from a dishonest data
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provider during the verification process but also preserves the privacy of customers’ data owned by a

data provider. Furthermore, our method provides better runtime efficiency over provenance-based

approaches [40, 114]. We incorporate the Vickrey-Clarke-Groves (VCG) auction mechanism for the

valuation of data providers’ attributes into the data mashup process. Finally, we derive the monetary

shares for the chosen data providers from their contribution in information utility and their attained

trust scores over the differentially private release of the integrated dataset under the mutually agreed

privacy requirements.

1.1.3 Differentially private release of heterogeneous network for healthcare data

In recent years, heterogeneous information networks (HINs) have gained increasing attention in

various application domains such as social media, communications, energy, and health informatics,

mainly due to its ubiquitousness and capability of representing rich semantics [151]. Various mining

methods have been proposed to tackle the problem of heterogeneity for network analysis, such

as ranking-based classification and clustering [81, 157], meta-path-based similarity search [160],

relationship prediction and relation strength learning [159, 161], and advanced embedding meth-

ods [58, 70, 153]. On the one hand, these mining and embedding methods for heterogeneous

networks serve different requirements of data analysis, but on the other hand, the privacy of an

individual is at stake unless proper protection measures are deployed. In this thesis, we first model a

complex de-identified healthcare dataset using a heterogeneous information network that consists

of multi-type entities and their multi-type relationships. Existing solutions [37, 76, 173] consider

nodes and edges to each be of a single type and edges to be bidirectional (or undirected). Thus,

these solutions cannot maintain important semantics and structural information of the heterogeneous

network. This is the first work providing a practical solution to health information custodians (HICs)

who wish to release real-life heterogeneous health-network data. We propose DiffHetNet, an edge-

based differentially private algorithm, to protect the sensitive links of patients from inbound and

outbound attacks in a heterogeneous health network. We evaluate the performance of our proposed

method in terms of information utility and efficiency on different types of real-life datasets that can be

modeled as networks. Experimental results suggest that DiffHetNet generally yields less information

loss, significantly improved runtime efficiency in comparison with existing network anonymization
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methods, and scalability to large network datasets.

1.2 Thesis organization

The rest of the thesis is organized as follows.

• In Chapter 2, we present the background needed to understand the different concepts of our

research work. In particular, we first present the formal definitions of widely adopted privacy

models. Next, we present a utility measure for classification analysis. Afterwards, we present

the principles that are crucial for establishing trust and discuss methods for imputation of

missing data. Then, we provide an overview of information networks and discuss widely-

adopted graph metrics. Finally, we discuss differential privacy in the context of anonymizing

network data, followed by information loss measures.

• In Chapter 3, we summarize the literature to the problems presented in this thesis for the

following related areas: monetizing data privacy for business value generation, a trade-off

between privacy and utility in data integration, statistical disclosure control methods, policies

and regulations with the perspective of data protection, data trustworthiness and auction-based

pricing, cryptographic primitives, relational data anonymization in a distributed setup under

differential privacy models, network data anonymization under non-differential privacy models

and differential privacy models.

• In Chapter 4, we address the problem of developing privacy-preserving data mashup model to

quantify the costs and benefits for releasing integrated anonymized data of multiple providers

when trading person-specific information in the e-market. First, we provide an introduction

followed by the challenges and problem statement, then we present a solution to address the

research problem, and finally, we evaluate our proposed model based on the incorporated

factors for multiple data providers by conducting extensive experiments on real-life data. The

work in this chapter has been published in [95].

• In Chapter 5, we address the problem of data trustworthiness, privacy protection, and profit
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distribution in integrating data from multiple data providers for trading person-specific infor-

mation. First, we provide an introduction followed by an overview of trust mechanism and the

problem statement, then we describe our proposed solution to address the problem, and finally,

we evaluate the robustness of our proposed approach by conducting extensive experiments on

real-life data. The work in this chapter has been published in [96].

• In Chapter 6, we address the problem of publishing heterogeneous network data, particularly,

the protection of sensitive links of a patient within health-network data. First, we provide an

introduction followed by the formal definition of our problem, then we describe our proposed

solution to address the problem, and finally, we evaluate our proposed method by conducting

extensive experiments on three real-life datasets that can be modeled as networks. The work in

this chapter is under review in a refereed journal.

• Finally, in Chapter 7, we summarize the thesis contributions and shed light on some future

research.
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Chapter 2

Preliminaries

In this chapter, we present the background needed to understand the different concepts of our

research work. In particular, we first present the formal definitions of widely adopted privacy models.

Then, we present a utility measure for classification analysis. Afterwards, we present the principles

that are crucial for establishing trust and discuss methods for imputation of missing data. Then, we

provide an overview of information networks and discuss widely adopted graph metrics. Finally, we

discuss differential privacy in the context of anonymizing network data, followed by information-loss

measures.

2.1 Privacy models

In this section, we present the formal definitions of widely adopted models from the perspective

of a single data custodian, namely k-anonymity, LKC-privacy, and ε-differential privacy.

Definition 2.1.1 (k-anonymity [147]). Let D(A1, . . . , Am) be a data table and QID be its quasi-

identifier. D satisfies k-anonymity if, and only if, each group of QID appears in at least k records in

D .

k-anonymity does not provide adequate privacy protection if the sensitive values in an equivalence

class (i.e., the group of records matching a QID value) lack diversity, that is, it is subject to

attribute linkage attacks. Due to the curse of high dimensionality [10], enforcing k-anonymity on

high-dimensional data would result in significant information loss. To overcome this bottleneck,
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Mohammed et al. [123] pointed out that, in a real-life privacy attack, it is very difficult for an

adversary to acquire the values of all QID attributes of a target victim, leading to the LKC-privacy

model. In this model, an adversary’s background knowledge is bounded by at most L values of the

QID attributes.

Definition 2.1.2 (LKC-privacy [123]). Let L be the maximum number of QID attributes acquired

by an adversary as prior knowledge about a target victim and S ⊆ Sens be a set of sensitive values.

A data table D satisfies LKC-privacy if, and only if, for any qid with 0 < |qid| ≤ L,

(1) |D[qid]| ≥ K, where K > 0 is an integer representing the anonymity threshold, and

(2) for any s ∈ S, P (s|qid) ≤ C, where 0 < C ≤ 1 is a real number representing the confidence

threshold.

Intuitively, LKC-privacy prevents both record and attribute linkage attacks [61] by ensuring that

every qid value with maximum length L in D is shared by at least K records and that the confidence

of inferring any sensitive values in S is not greater than C, where L, K, C are thresholds and S is

a set of sensitive values specified by the data custodian. LKC-privacy bounds the probability of a

successful record linkage to be ≤ 1/K and the probability of a successful attribute linkage to be

≤ C, provided that the adversary’s background knowledge qid does not exceed L attributes.

Dwork et al. [50] propose differential privacy (DP) that provides strong privacy guarantees to an

individual independently of an adversary’s background knowledge and computational power. The

intuition of differential privacy is that individual information is not revealed from the output of the

analysis in the anonymized data. In other words, it is insensitive whether an individual record is

present in the input dataset or not. It is mathematically defined as follows:

Definition 2.1.3 (ε-differential privacy). [50]. A sanitization mechanismM provides ε-differential

privacy, if for any neighboring datasets D1 and D2 differing by at most one record (i.e., symmetric

difference |D14D2| ≤ 1), and for any possible sanitized dataset D̂,

Pr[M(D1) = D̂] ≤ eε × Pr[M(D2) = D̂],

where the probability is taken over the randomness of theM.
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ε is the privacy budget that is specified by the data custodian. A smaller value of ε results in

stronger privacy protection but produces lower data utility. Conversely, a larger value of ε results in

weaker privacy protection but yields higher data utility.

The Laplace mechanism and exponential mechanism are the canonical examples of a differentially

private mechanism. A standard mechanism to achieve differential privacy is to add random noise

to the outcome of the analysis for providing privacy protection. The calibration of noise is done

according to the sensitivity of the function f .

Definition 2.1.4 (Sensitivity). For any function f : D → Rd, the sensitivity of f is

∆f = max
D,D′
||f(D)− f(D′)||1 (1)

for all D,D′ differing at most by one record.

The sensitivity of a function does not depend on the data but instead produces an upper bound to

how much noise we must add to the true output to preserve privacy. Suppose function f answers

count queries over a dataset D. Then, the ∆f is 1 because f(D) can differ at most by 1, due to the

addition or removal of a single record.

Laplace mechanism. Dwork et al. [50] proposed the Laplace mechanism. It is appropriate when the

output of function f is a real value, and f should perturb its output with a noisy answer to preserve

privacy. The noise is calibrated based on the privacy parameter ε and the sensitivity of the utility

function ∆f . Formally, the Laplace mechanism takes as inputs a data set D, the privacy parameter

ε, and a function f and outputs ˆf(D) = f(D) + Lap(λ), where Lap(λ) is a noise drawn from the

Laplace distribution with probability density function Pr(x|λ) = 1
2λexp(−|x|/λ). The variance of

this distribution is 2λ2, and the mean is 0.

Exponential mechanism. McSherry and Talwar [122] proposed the exponential mechanism. It is

appropriate for situations in which it is desirable to choose the best response, because adding noise

directly to the count can eradicate its value. Given an arbitrary range T , the exponential mechanism

is defined with respect to a utility function u : (D × T ) → R that assigns a real valued score to

every output t ∈ T , where a higher score means better utility. The exponential mechanism induces a

probability distribution over the range T and then samples an output t. Suppose ∆u = max∀t,D,D′
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|u(D, t)− u(D′, t)| to be the sensitivity of the utility function. The probability associated with each

output t is proportional to exp( εu(D,t)
2∆u ).

Differential privacy is increasingly being accepted as the cornerstone of privacy protection by

domain experts due to its robustness and rigorous mathematical definition. In literature, two settings,

namely interactive and non-interactive, are mainly discussed regarding utilization of the privacy

budget ε. The primary difference is that in the interactive setting [50, 57, 180, 181] the data custodian

holds the raw data and a data analyst poses a set of queries in real time for which the data custodian

provides differentially private answers. Each query would utilize a fraction of ε incrementally to

produce a noisy answer. When the entire privacy budget has been depleted, a data analyst would

not be able to get the answer by querying the database. On the other hand, in the non-interactive

setting, the data custodian first anonymizes its raw data by utilizing the entire privacy budget. Later,

the anonymous (ε-differentially private version) data releases to the data analyst, who would perform

an analysis without any constraints on the data usage. This approach is widely known as privacy-

preserving data publishing (PPDP) [61], which is more appropriate in many real-life data sharing

scenarios because of the flexibility for a data analyst to perform an analysis without back and forth

querying of the database. In this thesis, we focus on the non-interactive setting for a differentially

private release of relational data in a distributed setup.

2.2 Information utility

The information utility is measured depending on the requirements for data analysis. In this

thesis we present classification analysis as a utility measure on the consumer’s specified service

request and analysis task.

Score for classification analysis: We use information gain, denoted by InfoGain(v), to measure

the goodness of a specialization [62]. Our selection criterion, IGScore(v), is to keep the specializa-

tion (i.e., replacing a generic value of an attribute with specific value in the domain) v → child(v)

that has the maximum InfoGain(v):

IGScore(v) = InfoGain(v) (2)
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Let Dx denote the set of records in the data table D generalized to the value x. Let freq(Dx, cls)

denote the number of records in Dx having the class cls. Note that |Dv| =
∑

c |Dc|, where

c ∈ child(v). The information gain InfoGain(v) and entropy H(Dx) are defined as follows:

InfoGain(v) = H(Dv)−
∑
c

|Dc|
|Dv|

H(Dc) (3)

H(Dx) = −
∑
cls

freq(Dx, cls)

|Dx|
× log2

freq(Dx, cls)

|Dx|
(4)

where H(Dx) measures the entropy of classes for the records in Dx [137], and InfoGain(v)

measures the reduction of the entropy by specializing v into c ∈ child(v). A smaller entropy H(Dx)

implies a higher purity of the partition with respect to the class values.

We build a classifier on 2/3 of the records of the anonymized dataset as the training set and

measure the Classification Error (CE) on 1/3 of the records of the anonymized records as the testing

set to determine the impact of anonymization on data utility for classification analysis. Classification

Accuracy (CA) is calculated by 1 − (CE). We use the well-known C4.5 classifier [137] for

classification analysis.

2.3 Trust aspects

Trust is a critical aspect of decision making in e-commerce. Trust principles are a part of many

service-oriented architectures (SOA)-based models where participants in the system interact for

service delivery and use [171]. We review the principles that are crucial for trust establishment. First,

entities should be identified [88] as they have claimed. In the world of the Internet, where entities

are physically isolated, they may use fake identities to show their existences in their interactions.

Authentication is a way of validating entities by the use of usernames and passwords, tokens, or

digital certificates before granting them access to the resources or applications [29]. Second, it

is crucial for trust formation to initialize new entities with trust rates. This process is called trust

bootstrapping. Third, when one entity trusts another entity’s decision there is a risk of an undesirable

outcome due to some degree of uncertainty and dependency [102]. The risk is considered to be a
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prerequisite before trusting the trustee’s behavior. The entities who are involved in an interaction

should comply with the norms and rules of trust to avoid penalties for violation. Fourth, trust rates

are of two types: local and global [166]. Local trust rating refers to a personalized score in which

each trustee would have different scores from the trustors. Global trust rating provides a unique score

about the trustee regardless of the trustors involved in the evaluation. Global trust rating often requires

the trusted third party (TTP) services to collect feedback from the trustors about trustees and compute

the trust rates. Last, security and privacy are the main components for trust establishment. Trust is

required when there is uncertainty; it has widely been accepted that perfect security does not exist,

even though security measures are necessary to gain trust in many circumstances [26]. Customers

who place their orders online and submit private information in the form of their name, address,

and credit details necessitate that their private information should not be disclosed or shared by any

means with untrusted parties. Building a trust relationship requires protection of customers’ privacy

in online transactions. We pay attention to some of the aforementioned principles for establishing

trust on the data providers in the context of our trust mechanism.

2.4 Methods for imputation of missing data

There are different types of missing data [79], such as Missing at Random (MAR), Missing Com-

pletely at Random (MCAR), and Missing Not at Random (MNAR). MAR refers to the probability of

missing data of an attribute on other present observations of attributes in the dataset, but not on the

attribute’s own value. Whereas, MCAR occurs when there is no dependency on the attribute value

itself or any other attribute in the dataset. The special case MNAR occurs when the missing data

meets neither the condition defined in MAR nor MCAR. In such case, missing values in MNAR

cannot be imputed by using other present observations of attributes.

There is extensive research [17, 25, 188, 189] done on machine learning methods such as hot-

deck imputation, mean imputation, regression imputation, k-nearest neighbors imputation, and

random forest imputation. Hot-deck imputation is a technique for replacing missing values of a

non-respondent on one or more attributes with the most similar characteristics to a respondent [17].

This method has been used in practice, but the theory is not as well developed. Mean imputation is a
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technique used for replacing missing values of a numerical attribute by the average value, and for

a categorical attribute by the mode, i.e., most frequent value. This method is quite simple, but it is

not suitable for multivariate analysis. Regression imputation first builds a model from the observed

data, then predictions for the incomplete cases are calculated under the fitted model to replace the

missing data [189]. The drawback of the regression model is that all predicted values fall directly

on the regression line, which decreases variability. Random forest is a type of ensemble learning

method [188]. It is used widely for classification and regression tasks. The learning process of a

random forest algorithm is based upon the bootstrap aggregation technique, in which a specified

number of trees are trained on a given dataset. As the random forest is built upon multiple decision

trees, intrinsically it uses the same approach for attribute selection measures such as information gain,

gini index, and gain ratio of decision trees. Random forest can deal with missing values with different

types of variables. k-nearest neighbors (kNN) imputation is an efficient approach for replacing

missing values on some records by computing another value from similar examples in the given

dataset [25]. kNN computes the similarity by using a distance metric, such as Euclidean distance.

k is a positive integer, when k = 1 the object is simply assigned to the class of that single nearest

neighbor. When k > 1 the object is assigned to the class that appears most frequently within the

k-subset. kNN generally produces good quality predictions, but the computation cost is high because

of computing distances.

2.5 Types of information networks

Generally, an information network is a representation that models the real world, focusing

on objects and the interactions between objects [156]. These interactions in the network can be

symmetric and asymmetric. In a symmetric interaction the relationship between objects can be in both

directions, whereas asymmetric represents a one-way relationship. Typical examples of information

networks are social networks, collaboration networks, health networks, and communication networks.

Definition 2.5.1. (Homogeneous information network) [156]. Given a network, G = (V,E) with

an entity type-mapping function ϕ : V → E and a relation type-mapping function ψ : E → R, it is

called a homogeneous information network if there exists only one type of entities and relations (i.e.,
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|E| = |R| = 1).

Definition 2.5.2. (Heterogeneous information network) [156]. The information network is called a

heterogeneous information network if the types of entities |E| > 1 or the types of relations |R| > 1.

The network schema describes the meta structure of a heterogeneous information network, in

which type constraints on the set of objects and relationships are specified. Many complex networks

are modeled by heterogeneous networks to capture rich semantics. Traditional mining methods [105,

164] are designed for homogeneous networks, which cannot be directly applied to solve the problems

of heterogeneity in many real-world networks. Various mining methods have been proposed to

tackle the problem of heterogeneity for network analysis, such as ranking-based classification and

clustering [81, 157], meta-path-based similarity search [160], relationship prediction and relation

strength learning [159, 161], and community evolution [158]. Recently, advanced embedding

methods for homogeneous networks [69, 141, 163] and heterogeneous networks [58, 70, 152, 153]

have gained increasing attention for large-scale network analysis. On the one hand, these mining and

embedding methods for heterogeneous networks serve different requirements of network analysis,

but on the other hand, the privacy of an individual is at stake unless proper protection measures are

deployed.

2.6 Network measures

Here, we discuss some widely adopted graph metrics, namely betweenness centrality, degree

centrality, closeness centrality, and harmonic centrality. These measures [108] contribute to the

analysis of the structural properties of a network.

2.6.1 Betweenness centrality

The intuition of this measure is to determine the importance of a node in connecting other nodes.

The betweenness of a node vi in the network is computed by

CB(vi) =
∑

j 6=i6=k∈V

σvj ,vk(vi)

σvj ,vk
(5)
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where |V | is the number of nodes in the network, σvj ,vk is the total number of shortest paths from

node vj to node vk, and σvj ,vk(vi) is the number of those paths that pass through vi. To normalize

the betweenness centrality, divide the metric in Eq. (5) by (|V | − 1)(|V | − 2) for directed graphs

and by (|V | − 1)(|V | − 2)/2 for undirected graphs.

2.6.2 Degree centrality

A node is in the “central” if it has many direct neighbors. For a directed network, indegree is the

number of incoming links representing the popularity of a node, whereas outdegree is the number

of outgoing links representing the sociability of a node. In an undirected network, the degree of a

node is simply the number of directly connected neighbors ignoring edge directions. The normalized

degree centrality CD for a node vi is computed by

CD(vi) =
d(vi)

|V | − 1
(6)

where d(vi) is the degree of node vi.

2.6.3 Closeness centrality

In this measure, a node is in the “central” if it is close to many other nodes, and of which the

closeness can be measured by the shortest paths for reaching those nodes. The normalized closeness

centrality CC for a node vi is computed by

CC(vi) =
|V | − 1∑|V |
j 6=i d(vj , vi)

(7)

where d(vj , vi) is the shortest-path distance between vj and vi. If the direction between nodes vi and

vj is not specified, then the total number of nodes |V | is used in Eq. (7) instead of the path length.

2.6.4 Harmonic centrality

It is a variant of closeness centrality that deals with the scenario of unconnected networks. It is

the sum of the reciprocal of the shortest path distances from all other nodes to a given node. The
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normalized harmonic centrality CH for a node vi is computed by

CH(vi) =
1

(|V | − 1)
×
|V |∑
j 6=i

1

d(vj , vi)
(8)

If there is no path from vj to vi, then 1/d(vj , vi) becomes 0.

2.7 Differential privacy for network data

Differential privacy [50] is a widely known privacy model with an assumption that all the records

in the database are independent of each other. A line of research [85, 101, 179, 182] indicates

that differential privacy may not guarantee privacy against adversaries with arbitrary background

knowledge when data records are correlated. To tackle this issue, a notion of correlation parameter k

is proposed by [37] that provides a similar differential privacy guarantee when releasing network data.

In the correlation setting, any record in database D is correlated to at most k − 1 other records. The

intuition of their solution is to add extra Laplace noise in the anonymization process to compensate

for the effect of correlation.

Definition 2.7.1. (ε-differential privacy under correlation) [37]. A sanitization mechanism M

provides ε-differential privacy if for any two datasets D1 and D2 with a correlation parameter k

that differs on at most one record (i.e., symmetric difference |D14D2| ≤ 1), and for any possible

sanitized dataset D̂, we have

Pr[M(D1) = D̂] ≤ e
ε
k × Pr[M(D2) = D̂],

where the probability is taken over the randomness ofM.

In the literature, node-differential privacy [33, 42, 92] and edge-differential privacy [37, 76, 173]

are the most prevalent formulations for anonymizing network data. In node-DP, two graphs G and G′

are neighboring graphs if they differ by at most one node and, by extension, all its edges. Whereas

in edge-DP, two graphs G and G′ are neighboring graphs if they differ by at most one edge or an

isolated node (a node that has no edges). The following definitions define two types of neighboring
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graphs under node- and edge-differential privacy, respectively.

Definition 2.7.2. (Neighborhood under node-differential privacy) [72]. Given graph G = (V,E),

where V is a set of nodes and E is a set of edges, two graphs G and G′ are neighbors if |V ⊕V ′| = 1

and E ⊕ E′ = {(u, v)|u ∈ (V ⊕ V ′) or v ∈ (V ⊕ V ′)}.

Definition 2.7.3. (Neighborhood under edge-differential privacy) [72]. Given graph G = (V,E),

where V is a set of nodes and E is a set of edges, two graphs G and G′ are neighbors if |V ⊕ V ′|+

|E ⊕ E′| = 1.

2.8 Information loss measures

Here, we discuss some generic measures to quantify the information loss when releasing

anonymized network G′. The general goal is to minimize information loss. It is the antithesis

of data utility, where a decrease in information loss leads to an improvement in data utility.

2.8.1 Mean absolute error

This measures the absolute error by comparing the degree centrality score of a node vi in

the anonymized network G′ with respect to the original network G. The mean absolute error

(MAE) [174] for all the nodes in the network is computed as follows:

MAE(G,G′) =
1

|V |
×
|V |∑
i=1

|CD(G′, vi)− CD(G, vi)| (9)

2.8.2 Average relative error

This measures the relative error of a node vi in the anonymized network G′ with respect to

the original network G [94]. The average relative error (ARE) for all the nodes in the network is

computed as follows:

ARE(G,G′) =
1

|V |
×
|V |∑
i=1

|CD(G′, vi)− CD(G, vi)|
CD(G, vi)

(10)
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2.8.3 Kullback–Leibler divergence

Degree distribution captures the important structural properties of a network. This one computes

the frequency count of the occurrence of each degree to differentiate the number of connections

between nodes in a network. For a directed network, the frequency counts for the indegree and

outdegree of a node are computed based on the type of degree direction. Given the degree distributions

of the original network and the anonymized network, DD(G) and DD(G′), we measure their

difference by Kullback–Leibler divergence [99] as follows:

KLDiv(DD(G)||DD(G′)) =

|V |−1∑
i=0

DD(G)[i] · ln
(
DD(G)[i]

DD(G′)[i]

)
(11)
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Chapter 3

Literature Review

In this chapter, we summarize the literature to the problem presented in Chapter 4, Chapter 5,

and Chapter 6 for the following related areas: monetizing data privacy for business value generation,

trade-off between privacy and utility in data integration, statistical disclosure control methods,

policies and regulations with the perspective of data protection, data trustworthiness and auction-

based pricing, cryptographic primitives, relational data anonymization under differential privacy

models, and network data anonymization under non-differential privacy models and differential

privacy models.

3.1 Monetizing data privacy for business value generation

Many organizations are embracing innovations in digital economy to maximize their business

value through data. Barbara et al. [176] conducted seven case studies on companies that monetize

data by selling information-based products and/or services. They hypothesized that a company

whose business model draws upon six sources, such as data, data architecture, data science, domain

leadership, commitment to client action, and process mastery, can bring a competitive advantage for

information business value. Barbara et al. [175] further identified an approach that they termed “Data

Value Assessment” to analyze the costs, benefits, and risks of selling information-based products

and services by business enterprises. Li et al. [110] proposed a theoretical framework for private

data pricing in an interactive setting. There are three main actors in their proposed architecture:
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Data owners contribute their personal data; a buyer submits an aggregate query and pays its price

to a market maker; and a market maker, a trusted party to both, answers buyer queries on behalf

of data owners by adding an appropriate noise [50] in response to the query. The market maker

compensates the data owners whenever they suffer from a privacy loss in response to a buyer’s

query. Riederer et al. [142] proposed a mechanism called “transactional privacy” to control the

disclosure of personal information in a privacy-preserving system. This mechanism allows end

users to release personally identifiable information (PII) by giving them the choice to valuate their

personal information. Their system leveraged prior work on auctions and particularly the exponential

mechanism [122] to guarantee truthfulness in the bidding process. In this thesis, we follow a

distributed approach in a non-interactive setting for data mashup of multiple data providers, which is

different from our previous work [94] in which the challenges were to quantify the costs and benefits

between privacy and utility from the perspective of a single data custodian. In addition, the business

model presented in this thesis can derive the contribution of each data provider in terms of monetary

value by computing the information gain on the data mashup.

3.2 Trade-off between privacy and utility in data integration

Arafati et al. [19] proposed a cloud-based framework for a privacy-preserving Data-as-a-Service

(DaaS) mashup that enables data providers to integrate their person-specific data on demand de-

pending on a consumer’s request for data analysis. In their framework, a data consumer can submit

a request with a set of attributes, bid price, and classification accuracy. They introduced a greedy

algorithm that can dynamically determine the group of DaaS providers offering the lowest price

per attribute. They employed a Privacy-preserving High-dimensional Data Mashup (PHDMashup)

algorithm [62] for secure data integration and to preserve the privacy of mashup data using the

LKC-privacy model [123]. Mohammed et al. [128] proposed a differentially private algorithm to

securely integrate person-specific data from two parties so that integrated data maintains the necessary

information to support data utility. They presented a scenario for a distributed setup to integrate

the vertically partitioned data, where different attributes for the same set of individuals are held by

two parties. No additional information is leaked to any party as a result of integrating data. There
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are other works [87, 124] that address the problem of integrating horizontally partitioning data in a

distributed manner. This would yield different costs and benefits when quantifying the privacy and

utility from the integrated data using horizontal partitioning. In this thesis, the data mashup model

employs the approach that was presented in [62] and [128] for vertically partitioned data to satisfy

LKC-privacy and ε-differential privacy requirements, respectively.

3.3 Statistical disclosure control methods

Many non-perturbative and perturbative anonymization methods, such as global and local recod-

ing [162, 169], suppression and local suppression [118, 169], sampling [154], micro-aggregation [46],

noise addition [103], data swapping [41], and post randomization [106] have been adopted in the past

with the goal of providing confidentiality and privacy in publishing person-specific data. According

to Gehrke [66], the statistical methods used for limiting information disclosure do not formally

address how much sensitive information an adversary would glean from the published data. Waal and

Willenborg [169] used global recoding and local suppression methods to quantify the information

loss in a microdata set. In the case of a global recoding method, specific attribute values are mapped

to the same generalized value in all records; in the case of local suppression, the specific value of an

attribute in a record changes to a ‘missing’ value, but the attribute values in other records remain

unchanged [170]. Global recoding is the preferable method when there are many unsafe combinations

to eliminate in the person-specific data and when one wants to obtain a uniform categorization of

attributes [169]. Truta et al. [167] used a microaggregation statistical disclosure control technique to

measure the trade-off in disclosure risk and information loss on synthetic data based on the criteria

specified by the data owner.

3.4 Policies and regulations for data protection

Currie and Seddon [39] discussed the cross-country approaches to data privacy, regulation, and

rules. They did a survey in six countries to collect the views of people on the benefits and risks for

adopting cloud computing in a healthcare setup. Generally, healthcare professionals are in favor of

adopting cloud computing, but stakeholders involved in the setup have to provide a guarantee for the
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protection of personal data subject to the regulations enforced in their jurisdictions. They addressed

an important issue of how international governments harmonize an effective legal and regulatory

framework for trans-border data flows over the cloud environment. Recent studies [39, 107] showed

that more than sixty countries in the world have adopted privacy and data protection laws that

regulate trans-border data flows. Hu et al. [77] presented Law-as-a-Service (LaaS) as an emergent

technology for cloud service providers to ensure that legal policies are compliant with the laws

for users. They presented a conceptual layout of the law-aware semantic policy infrastructure in

which a semantic cloud of Trusted Legal Domains (TLDs) are established over the Trusted Virtual

Domains (TVDs). Each TLD has a super-peer that provides data integration services for its peers.

The super-peer specifies how legal compliance policies are unified and enforced in a domain. Legal

policies are composed of OWL-DL ontologies and stratified Datalog rules with negation for a policy’s

exceptions handling through defeasible reasoning. Description Logic (DL)-based ontologies provide

data integration, while Logic Program (LP)-based rules provide data query and protection services.

3.5 Data trustworthiness and auction-based pricing

Different trust models, frameworks, and techniques have been proposed to address the problem

of data trustworthiness. Bertino and Lim [27] proposed a framework that consists of two key

components. The first component is based on the concept of data provenance in which information

relies on the origin of data for computation of trust scores. The second component undertakes the

notion of confidence policy in which query results are filtered based on the specified confidence

range for use in certain tasks. Dai et al. [40] proposed a provenance-based model in which they

evaluated the trustworthiness of data items based on the aspects of data similarity, path similarity,

data conflict, and data deduction. Benjelloun et al. [24] introduced databases with uncertainty and

lineage in which they combined the concept of lineage and uncertainty for querying in probabilistic

databases.

There are studies related to data trustworthiness in mission-critical applications [115, 165]. Tang

et al. [165] proposed trustworthiness analysis for sensor networks in cyber-physical systems to

eliminate false alarms that occur due to random noise or defective sensors. They validated events
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by using a graph-based filtering approach. However, their method does not deal with coordinated

attacks where a fraction of sensing nodes are compromised by malicious attackers. Lim et al. [115]

addressed this challenge by adopting a game-theoretic approach based on the Stackelberg competition

for defending the network against false data injection. They assessed trust scores for both data items

and network nodes using the cyclic framework proposed in [114]. This framework is based on the

interdependency property between data items and their associated network nodes in which trust

scores are computed using two types of similarity functions. First, value similarity is derived from

the principle that the more that similar values refer to the same event, the higher the trust scores.

Second, provenance similarity is based on the principle that the more that different data sources

are with similar data values, the higher the trust scores. Mainly, the approaches presented in the

above works fall under the category of workflow provenance. In contrast, we are not concerned with

the higher level of instrumentation at the data collection phase by data providers because it is not

practically efficient to determine the data provenance in the e-market. Furthermore, the above works

mainly focus on similarity functions for trust computation but do not consider privacy protection

for data trustworthiness. We propose an approach that makes novel use of information entropy to

verify the correctness of data in a multiple data providers scenario where a semi-trusted arbitrator

cannot derive any customers’ private data when evaluating the trustworthiness of the participating

data providers.

Karabati et al. [91] studied the challenge of pricing with short-term capacity allocation decisions

for multiple products in a single-supplier and multiple-buyers scenario. They proposed an iterative

auction mechanism with monotonically increasing prices to maximize the profit of a supplier. Li et

al. [113] presented dynamic pricing strategies for resources allocations in cloud workflow systems.

Their proposed reverse auction-based mechanism allows resource providers to change the prices

during the auction, depending upon their trading situation, to improve the efficiency of resource

utilization as well as the competitiveness. Wu et al. [178] employed a Vickrey-Clarke-Groves (VCG)

auction to implement a dynamic pricing scheme for multi-granularity service composition. They

considered both coarse-grained and fine-grained services for composition. In their approach, service

providers bid for services of different granularities in the composite service, whereas a recipient of

the bids decides a composition that minimizes the overall cost while satisfying quality constraints.
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They solved the problem of winner determination by an integer programming model. In this thesis,

we define the procedure for the valuations of data providers’ attributes based on the VCG mechanism.

3.6 Cryptographic primitives

Private set intersection (PSI) is a cryptographic primitive that was first formally defined in [55].

The protocols for PSI allow two parties, holding sets A and B, to compute the private intersection

without revealing to each other any additional information from their respective sets. At the end

of the protocol, either one or both parties may learn the size of the intersection, depending on the

application. Since its inception, many variants have been proposed in an attempt to speed up PSI

computation, including garbled Bloom filters [48, 78], server-aided computations [47, 89, 90], and

computational optimizations [104, 132, 134].

Oblivious Transfer (OT) is one of the fundamental primitives in cryptography and has been

extensively used for secure multi-party computation. Particularly, the most efficient OTs were

introduced by Pinkas et al. [132] and further strengthened in [104, 133, 134]. Kolesnikov et al. [104]

proposed a batched related-key oblivious pseudo-random function (BaRK-OPRF) protocol to improve

the performance of semi-honest secure PSI. They achieved a 1-out-of-n OT of random messages

for an arbitrarily large n at nearly the same cost as 1-out-of-2 in [80]. The new OPRF construction

of Pinkas et al. [134] is similar to Kolesnikov et al. [104] except in handling error correcting code.

Kolesnikov et al. [104] demonstrated that their protocol outperforms Pinkas et al. [133] in almost all

settings, particularly for the long bit length of input and large values of the input size. In practice,

the OT-based protocols are much faster than the random garbled Bloom filter-based protocols for

larger set sizes, yet these protocols do not have the lowest communication cost [104]. One desirable

property is to achieve the fairness that ensures either all the parties of a group learn the output of the

computation or none do [90]. This is not the case with standard approaches to PSI. These approaches

are suitable for different motivating applications in private data mining, online recommendation

services, and genomic computations.

Our solution to the problem is different from several PSI-based approaches in which the intention

is to achieve both privacy and security simultaneously. In our approach, we maintain confidentiality
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and integrity by exchanging only an encrypted information gain message and its keyed hash between

a data provider and the cloud server based on a random challenge (i.e., attribute request) of the cloud

server, instead of exchanging encrypted individual data items. This apparently reduces the overhead

of communication. In addition, we do not rely on the cloud server to perform the computation

on clients’ private data. In the context of privacy, PSI protocols enable parties to privately know

the result from their intersection, but the total information is not published for data analysis [183].

However, we intend to securely integrate person-specific data from multiple data providers and to

release differentially private data for classification analysis.

3.7 Relational data anonymization under differential privacy models

Here, we discuss related works on differentially private release of relational data in the non-

interactive setting for a distributed setup.

The group of works [14, 128] based on distributed approaches are suitable for multiple parties

whose prime concern is to integrate their data in a way that no party could learn additional information

from other parties’ data as a result of data integration. Mohammed et al. [128] proposed an algorithm,

called DistDiffGen, in which data is vertically partitioned among multiple parties in a distributed setup.

It allows two parties to securely integrate their person-specific data while maintaining necessary

information to support data utility. Each party in this setup owns a mutually exclusive set of attributes

over the same set of records. A similar problem has also been studied by Alhadidi et al. [14]

where data is horizontally partitioned among two parties. Each party in this setup owns a disjoint

set of records over the same set of attributes. In this thesis, we employ DistDiffGen [128] for a

distributed setup with an extension for multiple data providers to achieve ε-differential privacy. There

are existing works that allow data integration for horizontally partitioned databases [87, 124] and

vertically partitioned databases [62, 82, 126] under the privacy constraints in a distributed setup.

These works are based on syntactic privacy models, which are vulnerable to certain attacks such

as minimality attack [177], composition attack [64], and deFinetti attack [98]. Therefore, we adopt

differential privacy [50] because it provides strong privacy guarantees against such attacks. Whereas

existing work [95] proposed a privacy-preserving data mashup model that allows the collaboration of
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multiple data providers for integrating their data and derives the contribution of each data provider

by evaluating the incorporated cost factors, our work derives the monetary shares for the chosen data

providers from their contribution to information utility over the differentially private integrated data

for classification analysis and their trust scores.

3.8 Network data anonymization under non-differential privacy mod-

els

A family of works [38, 119, 191, 192] has proposed to preserve the structural information in graph

networks. Liu and Terzi [119] proposed an approach to construct an anonymous graph of k-degree

anonymity, which requires generation of at least k − 1 other nodes, for every node v. This notion of

anonymity prevents identity disclosure from structural attacks based on adversary knowledge on a

certain degree of nodes. Zhou and Pei [191] proposed k-neighborhood anonymization to prevent an

adversary’s attack with 1-neighborhood background knowledge about the victim. The goal of this

approach is to ensure that the identity of an individual may not be revealed with a confidence greater

than 1/k in the sanitized version of the original graph. Cheng et al. [38] proposed k-isomorphism,

a solution that generates k disjoint subgraphs for an input graph G. k-isomorphism prevents an

adversary inference on re-identification of nodes and disclosure of edges in the published k-secure

graph, denoted by Gk. The complexity of a subgraph isomorphism problem is NP-hard.

Zou et al. [192] developed K-Match algorithm, which has the following techniques: graph

partitioning, graph alignment, and edge copy to achieve k-automorphism. According to this algorithm,

for each node v in the published graph, denoted by G∗, there exist k − 1 symmetric nodes to resist

any structural attacks. They argue that an adversary cannot distinguish v from its other k − 1

symmetric nodes based on any structural information, and also it cannot identify the target node with

a probability higher than 1/k. Fung et al. [63] presented a method to k-anonymize a social network

while preserving frequent-sharing patterns and maximal frequent-sharing patterns. The purpose of the

aforementioned graph anonymization algorithms is to defend against graph structural attacks. Zhang

et al. [186] argued that these algorithms are not effective in preserving the privacy of an anonymized

heterogeneous information network. Generally, all the above works provide prevention against
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node re-identification, edge disclosure, or both, based on the assumption that the adversary has

access to limited background knowledge about a victim. We propose a solution that does not make

any assumptions about the adversary’s knowledge of victims by adopting the differential privacy

model [50], which provides strong privacy guarantees independently of an adversary’s background

knowledge.

3.9 Network data anonymization under differential privacy models

In the literature, node-differential privacy [33, 42, 92] and edge-differential privacy [37, 76, 173]

are the most prevalent formulations for network data anonymization. Node-DP is too strong to

get the desired utility in a sparse network. To overcome this problem Kasiviswanathan et al. [92]

developed a customized notion of low-sensitivity based projection operators to preserve certain

graph statistics. They employed Laplace and Cauchy distributions for output perturbation. In

addition, they devised a generic method to apply any differentially private algorithm for bounded-

degree graphs to an arbitrary graph. They assumed that the tail of the degree distribution decreases

rapidly, which resembles the characteristics of scale-free networks [86]. A similar problem was also

studied by Borgs et al. [33]. They proposed a node-DP algorithm for fitting a high-dimensional

statistical model to a sparse network by the use of non-parametric block model approximation. They

employed Lipshitz extensions inside the exponential mechanism [122] to control the sensitivity of

the score functions. Raskhodnikova et al. [139] proposed some Lipschitz extensions for designing

a node-private algorithm to release the degree distribution of a graph. The extensions use convex

programming and can be computed in polynomial time. It provides more accurate graph statistics

than [92].

Day et al. [42] proposed a graph projection technique to transform an input graph to be θ-

degree-bounded for releasing node-private degree distributions. They showed that the sensitivity

from the projection is 2θ+1 when releasing a degree histogram, whereas for a cumulative degree

histogram the sensitivity is θ+1. Their results indicate a significant improvement over the flow-based

approach [139] in releasing node degree distributions. Song et al. [155] proposed a node-private

algorithm for online graphs based on the assumption of a bounded maximum degree in the entire
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graph sequence. They showed that the sequence of differences in the computed graph statistics has

low sensitivity, which can yield better privacy-accuracy trade-off.

The group of works [37, 76, 173], based on edge-DP, prevents disclosure of sensitive relationships

among nodes. Sala et al. [146] proposed a partition-based approach to divide the dK-2-series into

subseries and then inject the noise proportional to its local maximum degree to generate synthetic

graphs. They used large privacy parameters ε ∈ [5, 100] to evaluate degree-based metrics and

node-separation metrics on the resulting DP-synthetic graphs. Under stringent privacy parameters

(e.g., ε ≤ 1.0), the error is large because of the high noise injected by the dK-Perturbation Algorithm

(dK-PA) into dK-2, resulting in a significant deviation from the original graph. Wang et al. [173]

determined degree correlation parameters from the input graph and then enforced edge-DP on graph-

model parameters to generate a perturbed graph. They adopted the concept of smooth sensitivity [130]

for calibrating noise magnitude to guarantee privacy.

Chen et al. [37] proposed DER, in which a notion of correlation parameter k is introduced to

provide a similar differential privacy guarantee when releasing network data with the consideration

of data correlation. They formed dense regions from an adjacency matrix of input graph by first

identifying a good vertex labeling, then adopting a standard quadtree [54] to explore the dense

regions, and finally, making use of the exponential mechanism to reconstruct the leaf nodes of

a quadtree. They assumed any record in database D can be correlated to at most k − 1 other

records. It is different from k-edge differential privacy [72], where the goal is to protect k edges’

collective information but not to conceal the presence of any single edge in the correlated setting.

Hu et al. [76] proposed a differentially private method to protect sensitive edges by converting a

deterministic graph into an uncertainty form. In this method, they computed the probability for each

edge independently of an original structure of the network to inject uncertainty. Lin et al. [116]

proposed a DP-graph structural-clustering algorithm, called DP-SCAN, in which they define edge-DP

of adjacent graphs, and then add the Laplace noise proportional to the global sensitivity of the

function. This algorithm partitions an input graph into several clusters, bridge connections, and

outliers while preserving sensitive information. The above edge-DP methods focus on preserving

privacy in homogeneous networks, whereas our proposed edge-DP algorithm protects individuals’

sensitive links in heterogeneous networks. Existing solutions assume that edges are bidirectional and
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that nodes and edges are of a single type, each. In contrast, heterogeneous networks are characterized

by having multiple types of nodes and edges. Thus, solutions that are intended for homogeneous

networks will not be able to maintain important semantics and structural information if applied to

heterogeneous networks. In this thesis, we propose a solution that not only takes into account the

types of nodes and edges in a given network, but also considers the direction of edges in the network.
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Chapter 4

Privacy-preserving Data Mashup Model

for Trading Person-specific Information

4.1 Introduction

Business enterprises have widely adopted web-based mashup technologies for collaboration with

their trading partners. A web-based mashup involves the integration of information and services

from multiple sources into a single web application. For example, real estate companies mashup

their data and other third-party data with Google Maps for comprehensive market analysis. The rapid

adoption of mashup technologies by the business enterprises are mainly concerned with revenue and

cost factors [150]. Enterprise Mashup Markup Language (EMML) is a standard proposed by the

Open Mashup Alliance to improve collaboration among business enterprises and to reduce the risk

and cost of mashup implementation [143]. Several companies including IBM, StrikeIron, Kapow

Technologies, and others have been actively involved in leveraging various web-based mashup

technologies such as Quick and Easily Done Wiki (QEDWiki), IBM Mashup Center, and Data-as-

a-Service (DaaS). Business enterprises need to focus on a data-oriented perspective along with the

initiatives of Service-Oriented Architecture (SOA). They face challenges not only to protect private

data over the cloud but also to legally adhere to privacy compliance rules when trading person-specific

data.
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Figure 4.1 presents an overview of a privacy-preserving data mashup e-market for trading person-

specific information. The process consists of five steps. First, data providers register their available

data on the registry hosted by the mashup coordinator, who can be a cloud service provider or one

of the data providers. Second, data consumers (or data recipients) submit their data requests to the

mashup coordinator. A “data request” can be a simple count query or a complicated data mining

request. To provide a concrete scenario in the rest of the chapter, we assume the data request is a

data mining request for classification analysis. Third, since a single data provider may not be able

to fulfill the data requests from a data consumer, a mashup coordinator dynamically determines the

group of data providers whose data, through interconnection, can collectively fulfill the demand

of a data consumer. Fourth, the data providers quantify their costs and benefits using joint privacy

requirements and integrate their data over the cloud. Finally, the anonymous mashup data is released

to the data consumers. The data consumers have the option to perform the data mining operations on

the cloud or take the data and perform the data mining operations locally on their own machines.

In the proposed architecture, business enterprises face four major challenges for trading person-

specific information. First, extensive research has shown that simply removing explicit identifying

information such as name, social security number, birth date, telephone number, and account

number is insufficient for privacy protection. Many organizations believe that enforcing regulatory

compliance or employing common de-identification methods is sufficient for privacy protection.

Indeed, an individual can be reidentified by matching the quasi-identifiers QID with an external

data source [147]. Second, the data providers collaborate with peer providers in order to fulfil the

demands of a data consumer and to generate more profit. In addition, they would avoid sharing

information other than the final integrated data because the collaborating data providers could be

competitors. Third, a cloud service provider may not be a trusted party. It can be a third-party who

offers data integration services over the cloud or one of the data providers. Fourth, the data providers

want to ensure that the mashup data can facilitate the queries of data consumers. So, there is a

trade-off between data utility and privacy protection in terms of monetary reward. In this chapter, we

propose a model that examines the intangible benefits and potential risks of sharing person-specific

data for classification analysis. Our model allows the data providers to quantify the costs and benefits

in monetary term from trading person-specific information.
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Figure 4.1: Privacy-preserving data mashup architecture for trading person-specific information

Our contributions are summarized as follows: The first three challenges, discussed in the previous

paragraph, have already been widely studied in the literature [15, 19, 61, 62, 128, 147]. Here we focus

on the fourth challenge that addresses the need of a privacy-preserving data mashup model for trading

person-specific information in the e-market. We develop a business model that identifies the data

consumers’ (e.g., data recipients) requirements and performs the valuation on important parameters

associated with revenue and costs for a business. Our business model is suitable for multiple data

providers in making decisions where they have the following goals: (a) to find the sub-optimal value

on the trade-off between data privacy and data utility and (b) to derive the contribution of each data

provider in terms of monetary value. Finally, we show that our proposed approach can effectively

achieve both goals through extensive experimental evaluations on real-life, person-specific data. The

proposed model captures only the relevant factors that are crucial for cost-benefit analysis in our

research problem. However, the model provides flexibility for users to include additional factors
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based on the specific requirements of other scenarios.

The rest of the chapter is organized as follows: In Section 4.2, we explain the challenges faced

by business enterprises, followed by the problem statement. In Section 4.3, we present our model as

a privacy-preserving data mashup solution for e-markets. In Section 4.4, we discuss the limitations

of our proposed model. In Section 4.5, we evaluate our proposed model based on the incorporated

factors for multiple data providers by conducting extensive experiments on real-life data. Finally, we

provide the summary in Section 4.6.

4.2 Challenges and problem statement

In this section, we explain the privacy challenges faced by business enterprises when integrating

data from multiple sources, followed by the problem statement.

4.2.1 The challenges

The research problem is identified in [3], where the challenges are to integrate marketing

data from multiple sources and to ensure the privacy of the customers. We generalize the prob-

lem as follows: Suppose two data providers, DP1 and DP2, own raw data tables D1 and D2,

respectively. Each data provider owns a different set of attributes about the same set of records

identified by the common Record IDs, such that DP1 owns D1(RecID,Age, Job) and DP2 owns

D2(RecID, Sex,Education). The data providers want to integrate their data to improve the data

utility for classification analysis in order to maximize their profit. The attributes in data tables D1 and

D2 are classified into four categories for classification analysis: explicit identifier, quasi-identifier

(QID), sensitive attribute, and class attribute. An explicit identifier attribute explicitly identifies a

person, such as name, social security number (SSN ), and account number. A QID attribute, such as

date of birth, sex, and education, is a set of predictor attributes whose values are used to predict class

attribute. A sensitive attribute, such as disease, salary, and marital status, contains an individual’s

sensitive information. A class attribute contains the class values for classification analysis. In the

following example we discuss the privacy threats that can arise as a result of simply joining the raw

data tables of data providers DP1 and DP2.
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Table 4.1: Raw data table of data providers

Data Provider DP1 Data Provider DP2 Sens Class
RecID Age Job Sex Education Marital-status Loan approval

1 39 Painter F 12th Divorced N
2 43 Doctor M Doctorate Never-married Y
3 37 Cleaner F 12th Divorced Y
4 56 Cleaner M 10th Never-married N
5 64 Welder M 8th Married-civ-spouse Y
6 49 Doctor F Doctorate Married-civ-spouse Y
7 33 Lawyer F Masters Never-married Y
8 41 Lawyer F Doctorate Married-civ-spouse N
9 32 Painter F 12th Divorced N
10 52 Cleaner M Bachelors Divorced Y
11 39 Cleaner F 11th Divorced Y
12 61 Lawyer M Doctorate Married-civ-spouse Y
13 24 Technician M 11th Married-civ-spouse N
14 44 Technician F Bachelors Divorced N
15 34 Lawyer M Masters Never-married Y
16 27 Painter M 11th Divorced N
17 35 Cleaner F 10th Divorced Y
18 41 Cleaner M 11th Divorced Y
19 63 Welder M 8th Married-civ-spouse N

Example 1. Consider a raw data table D(RecID,A1, . . . , Am, Sens, Class) of two data providers

DP1 and DP2 in Table 4.1 for the predefined generalization hierarchy of the attributes illustrated

in Figure 4.2. Both data providers want to release an integrated anonymized dataset D′ to the

data consumer for joint classification analysis. RecID, Sens, and Class are shared between data

providers DP1 and DP2. DP1 and DP2 own data tables D1(Age, Job) and D2(Sex,Education),

respectively. Each record corresponds to the personal information for an individual person. A record

in D has the form 〈v1, v2, . . . , vm, s, cls〉, where vi is a value in Ai, s is a sensitive value in Sens,

and cls is a class value in Class. The two data providers want to develop a data mashup service to

integrate their data in order to perform classification analysis on the shared Class attribute Loan

approval, which has two values, Y and N , indicating whether or not the loan is approved.

In a record linkage attack [61], an adversary attempts to identify the record of a target victim in

the released data table. Assume an adversary knows that the target victim is a female cleaner, denoted

by qid = 〈F,Cleaner〉. The group of records matching qid is denoted by D[qid]. If the group size

|D[qid]| is small, the adversary may identify the victim’s record and his/her sensitive value. The

probability of a successful record linkage is 1/|D[qid]|. In this example, D[qid] = {Rec#3, 11, 17}.
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Figure 4.2: Taxonomy trees

In an attribute linkage attack [61], an adversary may not be able to accurately identify the record

of a target victim but can infer a sensitive value with high confidence if it occurs frequently in

the released table. With the prior knowledge qid about a target victim, an adversary can identify

a group of records D[qid] and can infer that the victim has sensitive value s with confidence

P (s|qid) = |D[qid∧s]|
|D[qid]| , where D[qid ∧ s] denotes the set of records matching both qid and s.

P (s|qid) is the percentage of the records in D[qid] containing s. For example, given qid =

〈M,Cleaner〉, in Table 4.1, D[qid ∧ Divorced] = {Rec#10, 18}, D[qid] = {Rec#4, 10, 18},

and P (Divorced|qid) = 2/3 = 66.67%.

Many privacy models, such as k-anonymity [147], `-diversity [120], and t-closeness [112] have

been proposed to protect against the aforementioned record and attribute linkage attacks in the

relational raw data tables. k-anonymity prevents record linkage attacks by generalizing the records

into equivalence groups of K size with respect to some QID attributes; however, it could suffer

from an attribute linkage attack if the sensitive values are not diversified in an equivalence group.

The principle of `-diversity overcomes this problem by requiring every QID group to contain at

least ` well-diversified values for the sensitive attribute. This model presents a stronger notion of
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privacy against homogeneity attacks and background knowledge attacks. Mohammed et al. [123]

propose a LKC-privacy model in which they assume that the adversary’s background knowledge

is bounded by at most L values of the QID attributes. This model provides better data utility in

comparison to k-anonymity on high-dimensional data [60]. Dwork et al. [50] propose a differential

privacy model that ensures the addition or removal of a single database record does not significantly

affect the outcome of any computation over a database. It provides strong privacy guarantees to an

individual independent of an adversary’s background knowledge and computational power.

The aforementioned privacy models are discussed from the perspective of a single data custodian.

Another challenge is related to the data mashup of multiple data custodians when consumer data

requests cannot be fulfilled by a single data provider. The data mashup is a process over the cloud

infrastructure that enables multiple data providers to integrate their data in order to fulfil the demands

of data consumers. The cloud service provider may be one of the data providers or a third party,

but the mashup scenario for the integration of data from multiple data custodians should not reveal

person-specific information of the customers to unauthorized parties. The trust of a customer in

an exchange of services with one data provider by sharing person-specific information does not

necessarily extend trust to the other data providers. So, there is a need to avoid disclosure of sensitive

information during the data mashup process and in the final release of mashup data. There are some

known approaches that do not ensure privacy of an individual, such as (1) mashup-then-generalize

and (2) generalize-then-mashup. The first approach integrates the raw data tables from two data

providers and then generalizes using single table anonymization methods [59, 109]. This approach

fails to preserve privacy because once the mashup coordinator or any other third party holds the

integrated raw data it will instantly discover all the private information of both data providers. The

second approach generalizes the data providers’ tables individually using single-table anonymization

methods, then integrates the generalized tables. This approach seems to preserve privacy locally at an

individual data provider’s end, but it does not guarantee the privacy when there is a quasi-identifier

spanning multiple data providers’ tables.

To address the above-mentioned privacy issues that arise from the data mashup when data is

owned by multiple providers, Fung et al. [62] propose an extended version of the LKC-privacy
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model specific to a multiple data providers scenario. The LKC-privacy model is suitable for high-

dimensional data, as would normally be the case when integrating data from multiple data providers.

This overcomes the problem of high-dimensionality when using k-anonymity. k-anonymity [147] is

known to be a special case of LKC-privacy with adversary knowledge L = |QID| and confidence

C = 100%, where |QID| is the number of quasi-identifying attributes in the data table [123].

Mohammed et al. [128] have proposed a differentially private data release algorithm for multiple

data providers in a distributed setup. Our model employs the approaches presented in [62] and [128]

for data mashup of multiple data providers and sets the joint privacy requirements of contributing

data providers in order to ensure that no extra information is leaked to any provider as a result of data

integration.

4.2.2 Problem statement

Suppose data providers DP1, . . . , DPn own data tables D1, . . . , Dn, respectively. They want

to generate an integrated anonymous dataset D′ that fulfils the demands of data consumers and

generates more profit in terms of monetary value for the data providers. Our proposed model enables

the collaboration between data providers to set their joint privacy requirement for data mashup. It also

benefits data providers by quantifying their costs and benefits in trading person-specific information

and by determining the contribution of each data provider. Formally, the research problem is stated

as follows.

Problem (Data mashup model for valuation of cost factors). Given multiple person-specific

raw data tables D1, . . . , Dn from data providers DP1, . . . , DPn and a set of requested attributes

Attrreq for classification analysis from a data consumer, the research problem is to develop a business

model that performs the valuation on cost factors to find the sub-optimal value from the anonymized

integrated data table D′ under the joint privacy requirements of the data providers and to derive the

contribution of each data provider DP1, . . . , DPn in terms of monetary value.
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4.3 Proposed solution

In this section, we present a privacy-preserving solution for the business enterprises that seek

to adopt an appropriate cloud-based data mashup model to manage the challenges of the e-market

for trading person-specific information. Section 4.2.1 discusses the challenges of integrating data

from multiple data providers, where each data provider owns a different set of attributes. We

assume that every data provider intends to maximize the data utility, which in turn maximizes their

profits, without violating the mutually agreed-upon privacy requirement. In this chapter, we focus on

analyzing the problem of preventing the disclosure of sensitive information during the data mashup

process and on the final release of mashup data. We employ anonymization algorithms, namely Top-

Down Specialization(TDS) [62] and Diff erentially private anonymization based on Generalization

(DistDiffGen) [128], for relational data mashup from multiple data providers. Our model quantifies

the costs and benefits of privacy-preserving data publishing for the contributing data providers in

terms of monetary value.

In our model, customers, data providers, and data consumers are the main stakeholders. For these

stakeholders we identify the most relevant factors, as illustrated in Figure 4.3, to reflect the customers’

requirements on data privacy, the data consumers’ requirements on data utility, and the data providers’

requirements on properly balancing privacy and utility with the goal of releasing the integrated data

for profit. One of the limitations of our model is the lack of a standard method to monetize the value of

personal data, especially when several parties are involved in collecting person-specific information

from the same population. Currently, many companies actively collect personal information by

providing monetary rewards to their customers or respondents. There is no standard price for a

specific piece of personal information, but some market estimates are available in [4, 65]. It is also

pointed out in [4] that there is no commonly accepted methodology for estimating the monetary

value of personal data. Person-specific data contains sensitive and non-sensitive information. It is the

utmost responsibility of data providers to take preventive measures when dealing with the sensitive

information of individuals. Indeed, sensitive data is qualitative by nature. We set the sensitivity level

of a dataset on the scale of 1-5 to indicate its significance for privacy protection. Another limitation

of our model is the inconsistency of the expected cost of a lawsuit. The expected cost of a lawsuit

39



depends on the sensitivity of data and can be estimated from the historical cases of privacy breach.

An individual may file a lawsuit against a data provider when his or her sensitive information is

disclosed to a third party or made public without his or her consent. Although there is no fixed cost

related to privacy breach cases, regulatory agencies such as the Federal Trade Commission (FTC) and

the Securities and Exchange Commission (SEC) have imposed monetary fines and penalties subject

to the nature of privacy breaches [144]. According to the revised HITECH penalty scheme [44], the

penalty for a violation due to reasonable cause and not to willful neglect is between $1, 000 and

$50, 000 for each violation.

Section 4.3.1 presents the business model for privacy-preserving data mashup. Section 4.3.2

discusses the key business factors for determining the value of integrated data and the factors that

contribute to the potential damage cost. Section 4.3.3 discusses privacy-preserving data mashup

algorithms. Section 4.3.4 discusses the implicit and explicit risk measures for privacy attacks.

4.3.1 Business model for privacy-preserving data mashup

Our proposed privacy-preserving data mashup business model allows the collaboration of multiple

data providers to mashup their data over the cloud and to quantify the costs and benefits of releasing

anonymized person-specific information in terms of monetary value. Figure 4.3 provides an overview

of the proposed model; key factors are organized into three phases: before data mashup, during data

mashup, and after data mashup. The left pane of the model depicts the factors held by each data

provider, who registers its available data before the data mashup. For example, Price per attribute,

Number of attributes, and Size of dataset are the factors that depend on the market value and consumer

demand. Data providers can mutually set their key factors. These factors contribute to finding the

Price of a raw dataset for every data provider. In the presented model, nodes represent different

types of factors, and arrows indicate the influences or dependencies between different factors. For

example, an arrow pointing from the Baseline accuracy on raw dataset to the Total value of raw

dataset in the model indicates the influence of the Baseline accuracy on raw dataset on the Total

value of raw dataset.

The objective of maximizing the profit can be achieved by balancing the two important factors:

maximizing the Value of integrated data, and minimizing the Potential damage cost. The Value
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Figure 4.3: Business model for privacy-preserving data mashup

of integrated data depends upon the Total value of raw dataset and Cost of anonymization in

integrated data. The Cost of anonymization in integrated data is computed on the data integration

of contributing data providers with respect to the classification analysis (data mining) task. Each

data provider can compare his or her benefits and costs before and after participation in the mashup

process. For classification analysis, a data provider can estimate the cost of classification analysis

on the anonymized data of his or her own data, and then on the integrated data. On the one hand,

trading person-specific information has a high value in the e-market, but on the other hand, data

providers who collaborate in sharing person-specific information need to be cautious of the risk of

privacy breaches and cost of potential damages when integrating data. Our business model allows

the participating data providers to: (1) set up their joint privacy requirements during data mashup by

choosing the privacy model along with the anonymization algorithm and privacy parameters, and (2)

analyze the impact of anonymization on information utility for classification requirement in terms of
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monetary value after data mashup. The aforementioned business factors can help the data providers

in defining the overall objective of maximizing Net value. Furthermore, in the data mashup process

the contribution of each data provider is derived fairly from the achieved Net value by computing

the information gain on the anonymized data. Accordingly, the data provider whose data provides a

larger information gain for classification can get a larger share of the monetary net value.

Companies that face similar challenges, and whose business models are primarily based on shar-

ing person-specific information, can be our potential audiences. There are quite a few companies to

whom our research problem can be generalized. Some of them are Acxiom, AdAdvisor, AnalyticsIQ,

BlueKai, comScore, Datacratic, Dataline, eXelate, Lotame, etc. that aggregate information from

various sources for a variety of purposes [6].

4.3.2 Key factors for business model

The selection and valuation of key factors are crucial in developing the cost-benefit business

model. We learn and identify key factors from different sources [4, 74]. These factors are broadly

classified into two categories: factors that contribute to the Value of integrated data and factors that

associates with the Potential damage cost. We further divide the factors by phases in the data mash

up process: before the start of the data mashup process, during the data mashup process, and after

the data mashup process.

4.3.2.1 Before data mashup

In this subsection we discuss the factors that are considered as essential prior to performing the

cost-benefit analysis. The data providers can set up the market prices on their available data [65]

(e.g., set of attributes) before the data mashup process. Let us assume there are n data providers

DP1, . . . , DPn, and DPi denotes the identity of the data provider.

4.3.2.1.1 Price per attribute

The price per attribute Priceattri of a data provider DPi represents the cost of collecting one

successful questionnaire for an attribute. Each DPi can set a price on their data attributes based upon

prior knowledge of market pricing by competing data providers [4]. There is no definite price for
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personal identifying attributes, such as name, address, email, birthdate, phone number, etc. But the

values can be inferred from cases where personal identity is being sold at a low price, as highlighted

in the literature [65]. In our empirical study, we assume the monetary value for Priceattri .

4.3.2.1.2 Number of attributes

The attribute count Countattri of a data provider DPi represents the number of attributes in

a single record. Each DPi owns a different set of attributes.

4.3.2.1.3 Price per record

The price per record Pricereci of a data provider DPi represents the unit price of a record.

Naturally, it is the product of the price per attribute Priceattri and the attribute count Countattri in

a single record. That is,

Pricereci = Priceattri × Countattri (12)

The price of a raw dataset of the data provider DPi increases as the unit price per record

increases.

4.3.2.1.4 Size of dataset

The size of a dataset Sizedsi represents the total number of records in the DPi dataset. Each

record has an associated price. As the number of records increases, the overall pricing of a raw

dataset also increases.

4.3.2.1.5 Sensitivity of dataset

The sensitivity of a dataset Sendsi indicates that a dataset contains sensitive or personally

significant information. It is a given qualitative factor and every data provider should consider this

factor for privacy risk assessment. The sensitivity level signifies the importance of data privacy for

each data provider DPi. Intuitively, a higher sensitivity level implies a higher price of a raw dataset

and a higher impact on the lawsuit and compensation cost.
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4.3.2.1.6 Price of a raw dataset

The price of a raw dataset Pricerdi represents the data provider DPi’s selling price of a raw

dataset in the e-market. It is the product of the sensitivity of the dataset Sendsi , the size of the dataset

Sizedsi , and the price per record Pricereci , which is formulated as follows:

Pricerdi = Sendsi × Sizedsi × Pricereci (13)

4.3.2.1.7 Total price of raw dataset

The total price of the raw dataset TPricerd is the sum of the prices of all contributing data

providers’ raw datasets, which is formulated as follows:

TPricerd =

n∑
i=1

Pricerdi (14)

4.3.2.1.8 Baseline accuracy on raw dataset

Baseline accuracy on raw dataset BA is determined by considering the classification task

as the utility function to evaluate the information utility on the raw datasets of contributing data

providers. Data providers can compute BA using the secure multiple party classifier [49] without

sharing their raw data.

4.3.2.1.9 Total value of raw dataset

The total value of the raw dataset TV aluerd represents the monetary value of a raw dataset

that the data providers derive from the information utility. It is the product of the total price of the raw

dataset TPricerd and the baseline accuracy of the raw dataset BA, which is formulated as follows:

TV aluerd = TPricerd ×BA (15)

4.3.2.2 During data mashup

In this subsection, we discuss the factors involved in the data mashup process.
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4.3.2.2.1 Privacy models

The participating data providersDPn can mutually choose the privacy model (refer to Section 2.1

for details), namely k-anonymity, LKC-privacy, and ε-differential privacy, prior to integrating their

data.

4.3.2.2.2 Anonymity measures in data integration

The participating data providersDPn can jointly set up the data mashup anonymization algorithm

(refer to Section 4.3.3 for details), such as multi-party TDS (Algorithm 1) and DistDiffGen (Algo-

rithm 2), along with the anonymity thresholds, such as K, L, C, for k-anonymity and LKC-privacy

models and ε, and h for a ε-differential privacy model.

4.3.2.2.3 Information gain

The information gain is employed to determine the usefulness of classification. It computes the

reduction of entropy by specializing node v into c ∈ child(v) as discussed in Section 2.2. Each

data provider owns a different set of attributes in the same set of records. Each data provider DPi

computes the information gain or IGScore(x) locally for each candidate and picks the candidate x

with the highest value of IGScore(x). Then each data provider DPi communicates IGScore(x)

with the n collaborating data providers for determining the global winner w. The winner w data

provider performs specialization w ∈ child(w) on its own copy locally. The winner w data provider

then instructs other n collaborating data providers how to perform specialization (further explanation

of this process can be seen in Section 4.3.3). This process is iterative and it runs until no candidate is

left in the mark. The information gain IGScore(x) of winner candidate w data provider accumulates

under the relevant winner w data provider.

4.3.2.3 After data mashup

In this subsection we discuss the factors that are applied after the data mashup process. These

factors help in determining the sub-optimal value and the contribution of each data provider.
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4.3.2.3.1 Cost of anonymization in integrated data

To determine the cost of anonymization in integrated data Costintgdata, we make use of the

difference between baseline accuracy (BA) and classification accuracy (CA). BA measures the

accuracy of classification analysis on raw data while CA measures the accuracy on anonymized

integrated data. Therefore, Costintgdata becomes:

Costintgdata = TPricerd × (BA− CA) (16)

4.3.2.3.2 Value of integrated data

The value of integrated data V alintgdata is the difference between the total value of raw dataset

TV aluerd and the cost of anonymization in integrated data Costintgdata. It is the benefit that the data

providers can earn from the information utility of classification analysis by trading their integrated

data. Formally, V alintgdata is defined as:

V alintgdata = TV aluerd − Costintgdata (17)

4.3.2.3.3 Probability of attack

The probability of attack Probatk is employed to determine the implicit weaknesses in privacy

protection methods. The data providers can prevent an adversary’s attempt to assess the probability

of occurrence of a sensitive attribute value in the anonymized integrated dataset using precision

and recall measures (refer to Section 4.3.4 for details). The probability of occurrence changes with

respect to the chosen privacy model and its level of privacy protection. Probatk is calculated using

F-measure on the sensitive attribute value Senval. F-measure is a weighted harmonic mean of

precision and recall. Formally, Probatk is defined as:

Probatk =
2× (Precision on Senval × Recall on Senval)

Precision on Senval + Recall on Senval
(18)
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4.3.2.3.4 Expected cost of lawsuit

The expected cost of lawsuit Ecostlwst is enforced subject to the nature of a privacy breach

and the sensitivity of data. It increases as the level of data sensitivity increases. Ecostlwst enables

business enterprises to predict the potential cost of privacy breach incident. The monetary cost can be

estimated based on the historical trends of privacy breach incidents. The Federal Trade Commission

Act (FTCA), Gramm-Leach-Bliley Act (GLBA), Fair Credit Reporting Act (FCRA), and Personal

Data Privacy and Security Act regulate the collection, use, and protection of personal information

and impose monetary fines and penalties subject to the nature of the data breach [2, 5].

The lawsuit cost is not fixed and it varies with the applied anonymity measures on data mashup.

For instance, an adversary may exploit the inherent weakness of the privacy protection method to

infer sensitive information about a victim by using the precision and recall measures in the equation

of the probability of attack.

4.3.2.3.5 Likelihood of privacy breach

The likelihood of a privacy breach Lpb measures an adversary’s prowess in inferring the victim’s

sensitive value. This inference is measured using an attack model (refer to the Section 4.3.4 for

details) by exploiting the background knowledge about a victim. We assume that the victim’s record

is in the integrated published dataset and the adversary knows the victim’s QID. Formally, Lpb is

defined as:

Lpb =
Total records count on Senval

Total records count on class label Senattr
(19)

where Senval denotes the value of the sensitive attribute and Senattr denotes the sensitive attribute

in the integrated dataset.

4.3.2.3.6 Potential compensation cost

The potential compensation cost PCC is a factor that can help data providers to determine the

approximate cost of compensation prior to sharing the anonymized integrated dataset. It is impacted

by the enforcement of privacy policies and privacy protection methods. The potential compensation

cost would vary with the risk of sensitive information disclosure of a privacy attack. In general, more
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stringent privacy parameters impede the probability of a privacy attack. It is our rational hypothesis

that privacy attacks would have an exponential impact on the compensation cost due to the substantial

increase in the cost of litigation processes [1]. There is no fixed monetary value for compensation cost

in [1], but in the e-market a customer who suffers monetary loss due to the disclosure of his or her

sensitive information may claim against data providers (e.g., business enterprises) for compensation.

Formally, PCC is defined as:

PCC = exp(Probatk)× Ecostlwst (20)

4.3.2.3.7 Fixed operating cost

The fixed operating cost FOpCost indicates the fixed monthly cost that business enterprises would

have to pay when adopting cloud-services for data integration. Business enterprises would gain

more benefits with the adoption of cloud-services comparative to expenditures incurred on hardware

and software purchase, setup and installation, licensing and upgrades, maintenance and support,

power and utility, and allocation of physical space. FOpCost is a quantitative factor, and its value

is independent of the employed anonymity measures in the process of data mashup. It remains the

same regardless of the changes in value of integrated data V alintgdata.

4.3.2.3.8 Potential damage cost

The potential damage cost PDC indicates the cost that the data providers would suffer from

data privacy breaches. An adversary may attempt to infer sensitive information about a victim

from the anonymized integrated dataset by using an explicit form of a privacy attack as discussed

in Section 4.3.2.3.5. In case of a privacy breach, business enterprises (e.g., data providers) would

face substantial costs because of the mandatory notification of data breach, handling of regulatory

investigations, hiring of external auditors, possibility of class action litigation, and loss of business

goodwill and customer relationships [30]. As suggested by existing studies [9, 22, 71], data breaches

negatively impact business profitability. We postulate that the likelihood of a privacy breach would

have an exponential impact on the potential damage cost because a plaintiff (e.g., customer) seeks

redress for alleged harms such as actual monetary loss from the identity theft, emotional distress,
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sexual harassment, discrimination, or possible future losses [145]. PDC is determined by the

likelihood of a privacy breach Lpb, the potential compensation cost PCC, and the fixed operating

cost FOpCost. Formally, PDC is defined as:

PDC = exp(Lpb)× PCC + FOpCost (21)

4.3.2.3.9 Net value

The net value NV demonstrates due diligence in evaluating the key business factors on the

trade-off between privacy and information utility. It is employed to quantify the difference between

the value of integrated data and the potential damage cost on the applied anonymity measures in the

mashup process. The net value changes with respect to the chosen privacy model along with the

anonymization algorithm and privacy parameters. Formally, NV is calculated as follows.

NV = V alintgdata − PDC (22)

4.3.2.3.10 Sub-optimal value

The sub-optimal value Suboptval is achieved at the maximum of the net value NV . It changes

with the variations of price settings and joint privacy requirements of data providers. NV is realized

by the difference between the value of integrated data and the potential damage cost. Formally,

Suboptval is defined as:

Suboptval = max(NV ) (23)

4.3.2.3.11 Contributions of data providers

The contribution of each data providerDPi is derived from the net valueNV by fairly computing

first the accumulative information gain of each data provider, denoted by G̃DP i , on the anonymized

integrated dataset. Generally, the data provider whose data attributes result in greater information

gain can get a proportionally higher share of the monetary net value. Formally, ContDP i is defined
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as:

ContDP i =
G̃DP i∑n
i=1 G̃DP i

×NV (24)

4.3.3 Data mashup algorithms

In this section, we discuss our extension on the state-of-the-art anonymization algorithms for data

mashup in a multiple data-providers scenario: Top-Down Specialization(TDS) [62] and Diff erentially

private anonymization based on Generalization (DistDiffGen) [128].

4.3.3.1 Top-down specialization algorithm for multiple data providers

Algorithm 1 presents an overview of the Top-Down Specialization (TDS) algorithm to integrate

data in a scenario of multiple data providers, which is an extension of Fung et al. [62].

Consider multiple data providers DP1,. . . ,DPn, who own private data tables D1,. . . ,Dn having

a common record identifier RecID. Initially, every data provider generalizes all of its own attribute

values to the topmost value according to the taxonomy trees, as illustrated in Figure 4.2, and maintains

a mark Marki that contains the topmost value for each attribute Ai in QID. A taxonomy tree is

specified for each categorical attribute in QID. A leaf node represents a precise value and a parent

node represents a generic value. For continuous attributes in QID, taxonomy trees can be grown

at runtime, where each node represents an interval, and each non-leaf node has two child nodes

representing some optimal binary split of the parent interval [137]. The ∪Marki on all attributes

represents a generalized table D, denoted by Dg. ∪Marki also contains the set of candidates for

specialization. A specialization v → child(v) is valid, written as IsV alid(v), if the generalized table

Dg still satisfies the privacy requirements stated in Definitions 2.1.1 and 2.1.2 after the specialization

on v. At each iteration, the TDS multiple data providers mashup (TDSmdpm) algorithm identifies

the winner candidate by communicating the IGScore with all the participating data providers (Lines

4-5). The valid candidate that has the highest IGScore, among all the candidates, performs the

winner specialization and the information gain, denoted by G̃DP i , accumulates IGScore(x) on

winner’s attribute specializations (Lines 7-13) and updates the IGScore and the IsV alid status of

the new and existing candidates in the mark (Line 16). The contribution of each data provider is
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Algorithm 1 TDS multiple providers data mashup
1: Initialize every record values in D to the topmost generalized values Dg.
2: Initialize ∪Marki to include only topmost values and update IsV alid(v) for every v ∈
∪Marki;

3: while ∃v ∈ ∪Marki s.t. IsV alid(v) do
4: Find the local winner candidate x of DPi that has the highest IGScore(x);
5: Communicate IGScore(x) with all the other participating data providers to determine the

global winner w;
6: if the winner w is local then
7: Specialize w on Dg;
8: Instruct all the other data providers to specialize w;
9: G̃DP i = G̃DP i + IGScore(x);

10: else
11: Wait for the instruction from the winner data provider;
12: Specialize w on Dg using the instruction;
13: G̃DP j = G̃DP j + IGScore(x);
14: end if
15: Replace w with child(w) in the local copy of ∪Marki;
16: Update IGScore(x) and IsV alid(x) for every candidate x ∈ ∪Marki;
17: end while
18: Compute the contribution of each data provider according to Eq.( 24);
19: return Dg and ∪Marki;

computed according to Eq.( 24). TDSmdpm terminates when there are no valid candidates in the

mark.

Suppose that winner candidate w is local to data provider DP1 that performs w → child(w)

on its copy of ∪Marki and Dg. This means specializing each record r ∈ Dg containing w into

r′1, . . . , r
′
z; the child values are in child(w). Similarly, all the other data providers DP2, . . . , DPn

update their ∪Marki and Dg and partition D2[r] into D2[r′1], . . . , D2[r′z] . . .Dn[r] into Dn[r′1], . . . ,

Dn[r′z]. Since all the other participating data providers do not have w, DP1 needs to instruct

DP2, . . . , DPn on how to partition their records in terms of RecIDs.

4.3.3.2 DistDiffGen anonymization algorithm for multiple data providers

Algorithm 2 provides an extension of the two-party Diff erentially private anonymization based

on Generalization [128] to differentially integrate multiple private data tables D1,. . . ,Dn sharing a

common identifierRecID, which is owned by data providersDP1,. . . ,DPn for classification analysis.

However, the distributed exponential mechanism is limited to two parties. DistDiffGen [128] is an
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extension of the TDS algorithm [59] to achieve ε-differential privacy. The two major extensions over

the TDS algorithm include: (1) DistDiffGen selects the Best specialization based on the exponential

mechanism, and (2) DistDiffGen perturbs the generalized contingency table by adding the Laplacian

noise to the qid counts. The Laplacian noise is calibrated based on the sensitivity of a utility function,

which quantifies the maximal impact of adding or deleting a single record on a function. This

algorithm provides secure data integration of two parties under the definition of the semi-honest

adversary model.

Initially, all values in the predictor attributes Apr (i.e., attributes used to predict the class

attribute) of each data provider are generalized to the topmost value in their taxonomy trees (Line 1),

as illustrated in Figure 4.2, and Marki contains the topmost value for each attribute Apri (Line 2).

The predictor attributeApr can be either categorical or numerical, but the class attribute is required to

be categorical. The value of a categorical attribute is denoted by vc, whereas the value of a numerical

attribute is denoted by vd. Each data provider keeps a copy of the ∪Marki and a generalized data

tableDg. The algorithm first determines the split points for all numerical candidates vd ∈ ∪Marki by

using the exponential mechanism (Line 4), then computes the scores for all candidates v ∈ ∪Marki

(Line 5). At each iteration the algorithm uses the secure distributed exponential mechanism (DistExp)

as presented in [128] (readers may refer to the details of DistExp algorithm) to select a winner

candidate w ∈ ∪Marki for specialization (Line 7). Different utility functions (e.g., information

gain) can be used to calculate the score. If the winner candidate w is local to DPi, DPi specializes

w on Dg by splitting its records into child partitions, updates its local copy of ∪Marki, and instructs

all the other participating data providers to specialize and update their local copy of ∪Marki (Line

8-11). The information gain, denoted by G̃DP i , accumulates IGScore(x) on winner’s attribute

specializations (Line 12). DPi further calculates the scores of the new candidates as a result of the

specialization (Line 14). If the winner w is not one of DPi’s candidates, DPi waits for instructions

from the other winner data provider to specialize w and to update its local copy of ∪Marki (Lines

16 and 17). This process is iterated until the specified number of the specializations h is reached. The

contribution of each data provider is computed according to Eq.( 24). Finally, the algorithm perturbs

the output by adding the noisy count at each leaf node (Line 22) using the Laplace mechanism.
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Algorithm 2 DistDiffGen for multiple data providers
1: Initialize Dg with one record containing topmost generalized values;
2: Initialize Marki to include the topmost value;
3: ε′ ← ε

2(|Aprn |+2h)
;

4: Determine the split value for each vd ∈ ∪Marki with probability ∝ exp( ε′

2∆uu(D, vd));
5: Compute the IGScore for ∀v ∈ ∪Marki;
6: for iter = 1 to h do
7: Determine the winner candidate w by using the DistExp Algorithm [128];
8: if w is local then
9: Specialize w on Dg;

10: Replace w with child(w) in the local copy of ∪Marki;
11: Instruct all the other participating data providers to specialize and update ∪Marki;
12: G̃DP i = G̃DP i + IGScore(x);
13: Determine the split value for each new vd ∈ ∪Marki with probability ∝

exp( ε′

2∆uu(D, vd));
14: Compute the IGScore for each new v ∈ ∪Marki;
15: else
16: Wait for the instruction from the winner data provider;
17: Specialize w and update ∪Marki using the instruction;
18: G̃DP j = G̃DP j + IGScore(x);
19: end if
20: end for
21: Compute the contribution of each data provider according to Eq.( 24);
22: return each leaf node with count (CT + Lap(2/ε))

4.3.4 Risk measurement

In this section, we present an attack model to measure the risk associated with implicit weaknesses

of privacy protection methods and the risk caused by explicit knowledge attack.

4.3.4.1 Attack model

Data providers participating in data integration express concern on two types of privacy threats:

identity linkage and attribute linkage. Based on background knowledge, adversaries in identity

linkage attacks can uniquely identify an individual, whereas adversaries in attribute linkage attacks

can infer an individual’s sensitive information with relatively high confidence. In this chapter, we

employ classification analysis to quantify the potential privacy risks. Specifically, we build a C4.5

classifier by using the sensitive attribute as the class attribute, and we quantify the privacy risks by

measuring the accuracy of predicting the sensitive values. There are many types of classification
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Table 4.2: Anonymous integrated data (L = 2, K = 2, C = 0.5)

Data Provider DP1 Data Provider DP2 Sensitive Class
RecID Age Job Sex Education Marital-status Loan approval

1 [39− 99] Blue-collar Any Secondary Divorced N
2 [39− 99] White-collar Any Post-secondary Never-married Y
3 [33− 39] Blue-collar Any Secondary Divorced Y
4 [39− 99] Blue-collar Any Secondary Never-married N
5 [39− 99] Blue-collar Any Elementary Married-civ-spouse Y
6 [39− 99] White-collar Any Post-secondary Married-civ-spouse Y
7 [33− 39] White-collar Any Post-secondary Never-married Y
8 [39− 99] White-collar Any Post-secondary Married-civ-spouse N
9 [1− 33] Blue-collar Any Secondary Divorced N
10 [39− 99] Blue-collar Any Post-secondary Divorced Y
11 [39− 99] Blue-collar Any Secondary Divorced Y
12 [39− 99] White-collar Any Post-secondary Married-civ-spouse Y
13 [1− 33] Blue-collar Any Secondary Married-civ-spouse N
14 [39− 99] Blue-collar Any Post-secondary Divorced N
15 [33− 39] White-collar Any Post-secondary Never-married Y
16 [1− 33] Blue-collar Any Secondary Divorced N
17 [33− 39] Blue-collar Any Secondary Divorced Y
18 [39− 99] Blue-collar Any Secondary Divorced Y
19 [39− 99] Blue-collar Any Elementary Married-civ-spouse N

models, such as naive Bayesian, support vector machines, and so forth, that an adversary can employ

to make predictions. Our proposed framework is flexible to adopt other classification methods to

quantify the potential privacy risks.

Let D be the raw data, as shown in Table 4.1, and D′ be the anonymous integrated data from

the mashup process of two data providers, as shown in Table 4.2. Recall that Marital-status is the

sensitive attribute and Loan approval is the class attribute. Let us assume that the data providers

release their anonymized integrated data table D′ to the data consumer (i.e., data recipient) with the

classifier. A data recipient (or an adversary) can employ the C4.5 classification algorithm to infer

sensitive records of individuals by setting the sensitive attribute Divorced as the class label. This

approach is similar to [98] in a way that a data recipient (or an adversary), instead of inferring new

records on a class label, can predict the sensitive attribute value of a target victim who is a participant

in the anonymized integrated training data.
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Table 4.3: Confusion matrix

Predicted class
A B C

Actual class
Divorced (A) 4 0 0

Married-civ-spouse (B) 1 0 0
Never-married (C) 0 1 0

4.3.4.1.1 Implicit risk measure

Implicit risk is due to attribute linkage attack [61]: an adversary attempts to infer the sensitive

attribute value in the released dataset using a C4.5 classifier. In this type of attack, an adversary can

negatively use the precision and recall performance measures to identify a victim’s sensitive value.

Precision indicates the measure of exactness or quality, meaning the number of correctly classified

positive elements divided by the total number of elements classified as positive. Recall indicates

the measure of completeness or quantity, which means the number of correctly classified positive

elements divided by the total number of actual positive elements. We measure the adversary’s power

of inferring sensitive values by calculating the F-measure according to Eq. (18), which is a weighted

harmonic mean of precision and recall measures. F-measure represents the probability of attack

Probatk. An adversary may use these performance measures to determine the success rate of a

privacy attack. We elaborate this by the following example.

Example 2. Consider the anonymous integrated data D′ in Table 4.2. Suppose an adversary sets

the sensitive attribute Marital-status as a class on D′. This results in a new integrated data table

T ∗. The adversary performs the attack by using the classification model C4.5 on T ∗ to infer the

sensitive attribute value of the victim. Table 4.3 shows the confusion matrix for the classification

of three classes. Each instance (e.g., an individual) has an actual class and a predicted class. The

rows represent actual classes of the raw records, and the columns represent predictions made by the

model. The entries on the diagonal indicate the correct predictions; other entries show the errors.

For the sensitive value Divorced, true positive TP = 4, false negative FN = 0, and false positive

FP = 1. So, the values of performance measures are Precision = 80%, Recall = 100%, and

F -measure = 88.8%.
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4.3.4.1.2 Explicit risk measure

Explicit risk is due to record linkage attack [61]: an adversary applies his or her background

knowledge on the integrated data table T ∗ to predict the sensitive value of a victim who is part of

the anonymized integrated training data. In addition, we assume that an adversary knows that a

victim has a record on the table and also has some knowledge about the victim. For example, an

adversary knows that the victim is female, age is greater than 35, education level is secondary, and

job is cleaning. By applying this external knowledge to the anonymized integrated training data,

the adversary finds a total of 3 records on the sensitive value Divorced under the class attribute

Marital-status. The likelihood of the privacy breach Lpb for this case becomes 3/4, which is

calculated according to Eq. (19). This implies that the adversary has a 75% confidence of inferring

the sensitive value of the victim. The likelihood of a privacy breach would increase if the data

providers are semihonest [117, 184].

4.4 Limitations

In this section, we discuss some of the limitations of our proposed business model that are

inherent problems related to the cost-benefit analysis. Our model provides the basic framework for

analyzing the cost-benefit of data mashup. The data providers can add, remove, or adjust the cost

factors according to their specific applications and scenarios. The common sources of errors are

omission errors and valuation errors. Omission error refers to excluding relevant factors in the

process of factor analysis. Valuation error refers to making an incorrect estimation of the value of

the cost factors, especially in the presence of intangible assets such as person-specific information.

These errors do not undermine the value of cost-benefit analysis, and they are expected to decline

with the passage of time by the increase in domain knowledge and follow-up of ex-post analysis [31].

The privacy protection, database, and data mining communities have identified many types of

potential privacy attacks, such as record linkage attack, attribute linkage attack, table linkage attack,

and probabilistic attack. Consequently, many privacy models and anonymization methods [61],

such as MinGen, K-Optimize, Bottom-Up Generalization, Top-Down Specialization, Anatomy, and

ε-Differential Additive Noise, have been proposed to thwart these attacks. The objective of this
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chapter is not to address all these privacy attacks. Instead, we are presenting a framework with

a flexible cost-benefit business model for multiple data providers to achieve sub-mutual benefits

given an agreed privacy requirement. Any partition-based anonymization methods that result in

equivalent classes with counts are applicable to our framework. To illustrate the effectiveness of our

proposed framework and model, in our discussion we adopt two anonymization algorithms, namely

TDSmdpm and DistDiffGen, that can anonymize vertically-partitioned relational data. TDSmdpm

and DistDiffGen were chosen because they can achieve two commonly employed privacy models,

LKC-privacy and ε-differential privacy, respectively. We would like to emphasize that our model is

not limited to these privacy models and anonymization algorithms. They can be replaced, depending

on the consent of privacy protection among the data providers. The negotiation process for reaching

the consent is beyond the scope of this chapter.

4.5 Empirical study

In this section, we analyze and compare the costs and benefits for each data provider before

participation in the data mashup process on their own data and after participation in the data mashup

process on the integrated data. We evaluate our business model with the assumption of having 3

data providers who mashup their data using a secure Privacy-preserving High-dimensional Data

Mashup (PHDMashup) algorithm [62] in a cloud environment. This model is independent of the

cloud platform.

We employ a real-life dataset Adult1 in our experiments, which has been widely used for many

empirical studies. It is also known as the de facto benchmark for comparing the performance of

anonymization algorithms [59, 75, 125]. After removal of records with missing values, the Adult

dataset contains 45, 222 records with 8 categorical attributes, 6 numerical attributes, and a binary

class attribute Income with two levels, ≤ 50K or > 50K. For a classification analysis task this

dataset is split into 30, 162, and 15, 060 records for the training and testing set, respectively. We

vertically partition the Adult dataset into three partitions P1, P2, and P3 for data providers DP1,

DP2, and DP3, respectively. Table 4.4 represents the attributes with their types of each data provider.
1Available at: http://archive.ics.uci.edu/ml/datasets/Adult
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Table 4.4: Attributes hosted by each data provider

Data Provider DP1

Attribute Type
Age numerical

Hours-per-week numerical
Workclass categorical

Capital-gain numerical
Income categorical

Marital-status categorical

Data Provider DP2

Attribute Type
Education categorical

Education-num numerical
Occupation categorical
Capital-loss numerical

Income categorical
Marital-status categorical

Data Provider DP3

Attribute Type
Sex categorical

Race categorical
Relationship categorical
Final-weight numerical

Native-country categorical
Income categorical

Marital-status categorical

Each data provider computes Baseline Accuracy (BA) and Classification Accuracy (CA) on its raw

dataset and anonymized dataset, respectively, by using a C4.5 classifier. The BA is 81.8%, 82.5%,

and 75.6% on DP1, DP2, and DP3 datasets, respectively. Whereas, the baseline accuracy (BA) on

the integrated data is 85.3% using the secure multiple party classifier [49] without sharing their raw

data. We consider Income as the class attribute and Marital-status as the sensitive attribute in each

data provider’s table. The remaining attributes in each data provider’s table are the QID attributes.

We consider Married-civ-spouse and Divorced in the attribute Marital-status as sensitive. In addition,

a common unique ID is included in each table for joining the data provider’s tables. All experiments

were performed on an Intel Core i3-2350M 2.3GHz PC with 4GB memory.

4.5.1 Cost of anonymization without data mashup

In this section, we analyze the cost of anonymization Costad to individual data providers without

their participation in the data mashup process. Suppose the sensitivity of the dataset Sendsi = 2 on

the scale of 1-5, the price per attribute Priceattri = $0.1, the size of dataset Sizedsi = 45, 222 for

the data providers DP1, DP2, and DP3 to fairly quantify and compare the cost of anonymization

under different privacy models including k-anonymity, LKC-privacy, and ε-differential privacy.

Figure 4.4 depicts the cost of anonymization to each data provider without participating in

the data mashup process. Figure 4.4.a depicts the cost of anonymization when privacy models

k-anonymity and LKC-privacy are enforced with the anonymity threshold L, K, and C. Costad

generally increases as K or L increases, but this monotonicity does not maintain for DP1 and DP2

with the increase of K. For example, Costad decreases by $72.35 for DP1, when K increases from

40 to 50 when L = 2. This is because of the better classification accuracy CA, which is increased
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(a) k-anonymity and LKC-privacy (b) ε-differential privacy

Figure 4.4: Cost of anonymization to individual data provider without data mashup

from 80.3% to 80.5%. This anti-monotonic property of the algorithm helps in finding the sub-optimal

anonymization cost. We observe that the DP1 anonymization cost is higher than DP2 and DP3

because DP1 holds 3 continuous numeric attributes (refer to Table 4.4) that require discretizing

into intervals (categorical values) for anonymization. The classification analysis on new data would

be less accurate than categorical attributes due to the chance of information loss. The Costad of

LKC-privacy equals the Costad of the traditional k-anonymity when L = 4 for each data provider.

Costad is also insensitive to the change of confidence threshold 10% ≤ C ≤ 50%.

Figure 4.4.b depicts the cost of anonymization when ε-differential privacy is enforced with

privacy parameters ε = 0.5 and 1.0 and specialization levels 3 ≤ h ≤ 19. We observe that Costad

generally decreases when the specialization level h increases for DP1 and DP2 with the setting

of a privacy budget to either ε = 0.5 or 1.0. But this trend is quite different in relation to DP3

where Costad increases monotonically with the increase in h; the random noise results in lower

classification accuracy.

4.5.2 Cost of anonymization in integrated data

In this section, we analyze the cost of anonymization in integrated data Costintgdata under the

joint privacy settings of the three contributing data providers in the data mashup process. Suppose the

sensitivity of the dataset Sendsi = 2 on the scale of 1-5, the price per attribute Priceattri = $0.1,
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(a) k-anonymity and LKC-privacy (b) ε-differential privacy

Figure 4.5: Cost of anonymization in integrated data

the number of attributes Countattr = 13 (sum of attributes of DP1, DP2, and DP3) and the size

of dataset Sizedsi = 45, 222 to quantify and compare the cost of anonymization in integrated data

under different privacy models, including k-anonymity, LKC-privacy, and ε-differential privacy.

Figure 4.5.a depicts the cost of anonymization in integrated data when privacy models k-

anonymity and LKC-privacy are enforced with the anonymity threshold 10 ≤ K ≤ 50, background

knowledge L = 〈2, 4, 6〉, and confidence threshold C = 50%. Costintgdata generally increases

as L increases, but does not exhibit obvious monotonicity with the increase of K. For example,

Costintgdata decreases by $3, 644.89 when K increases from 10 to 20 when L = 4 and L = 6.

This is because of improvement in classification accuracy CA, which increases by 3.1%. This

helps in finding the sub-optimal anonymization cost. The Costintgdata of LKC-privacy equals the

Costintgdata of traditional k-anonymity when L = 4 and L = 6. Costintgdata is also insensitive to

the change of confidence threshold 10% ≤ C ≤ 50%.

Figure 4.5.b depicts the cost of anonymization in integrated data when ε-differential privacy

is enforced with privacy parameters ε = 0.5 and 1.0 and specialization levels 3 ≤ h ≤ 19. We

calculate the average accuracy on 10 runs. We observe that Costintgdata generally decreases as the

specialization level h increases, except an increase by $693.71 when privacy budget ε = 0.5 and the

specialization level h increases from 15 to 19. When ε is small, having too many levels makes each

specialization less accurate.
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(a) without data mashup (b) with data mashup

Figure 4.6: Implicit risk measure

4.5.3 Implicit risk measure

In this section, we analyze the implicit risk for each data provider before participation in the data

mashup process on their own data and after participation in the data mashup process on the integrated

data of the contributing data providers.

Figure 4.6.a depicts the probability of attack Probatk on the sensitive value Married-civ-spouse

to the data providers DP1, DP2, and DP3 with privacy threshold 10 ≤ K ≤ 50, background

knowledge L = 〈2, 4〉, and confidence threshold C = 50%. We observe that the chance of inferring

the sensitive attribute value is approximately 71%, 67%, and 99% on the anonymized dataset of

DP1, DP2, and DP3, respectively. DP2 is comparatively better than DP1 and DP3 because it has

less risk of inferring the sensitive attribute value.

Figure 4.6.b depicts the probability of attack Probatk on the sensitive value Married-civ-spouse

in the anonymized integrated dataset of contributing data providers DP1, DP2, and DP3 under

the joint privacy settings with the anonymity threshold 10 ≤ K ≤ 50, background knowledge

L = 〈2, 4, 6〉, and confidence threshold C = 50%. We can observe the trend that Probatk generally

decreases as K or L increases, which also conforms to the theoretical analysis.
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(a) without data mashup (b) with data mashup

Figure 4.7: Explicit risk measure

4.5.4 Explicit risk measure

In this section, we analyze the explicit risk for each data provider before participation in the data

mashup process on their own data and after participation in the data mashup process on the integrated

data of contributing data providers.

Suppose an adversary has prior knowledge about a male victim, that his age is between 40 to 50,

his education is masters, his hours-per-week is > 40., and his income is ≥ 50, 000.

Figure 4.7.a depicts the likelihood of a privacy breach Lpb on the sensitive value Married-civ-

spouse when the aforementioned external knowledge about the victim is linked to the data providers

DP1, DP2, and DP3 attributes, where privacy threshold 10 ≤ K ≤ 50, background knowledge

L = 〈2, 4〉, and confidence thresholdC = 50%. We observe that the Lpb is approximately 86%, 82%,

and 85% on the anonymized dataset of DP1, DP2, and DP3, respectively. DP2 is comparatively

better than DP1 and DP3 because it has less risk of a privacy breach.

Figure 4.7.b depicts the likelihood of a privacy breach Lpb on the sensitive value Married-civ-

spouse when the aforementioned external knowledge about a victim is linked to the anonymized

integrated dataset of contributing data providers DP1, DP2, and DP3 under the joint privacy settings

with the anonymity threshold 10 ≤ K ≤ 50, background knowledge L = 〈2, 4, 6〉, and confidence

threshold C = 50%. Generally, Lpb decreases with the increase of L but this trend is not obvious

with the increase of K. For example, Lpb is 86.44% when K = 40 and L = 〈4, 6〉, which is higher
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by 3.4% when L = 2. This anti-monotonic property of the TDS algorithm helps in identifying

the sub-optimal solution. The Lpb of LKC-privacy equals the Lpb of k-anonymity when L = 4

and L = 6 because the classification accuracy on the sensitive attribute Marital-status remains

unchanged with the increase of L. Though not shown in the figure, Lpb is insensitive to the change

of the confidence threshold 10% ≤ C ≤ 50%.

4.5.5 Impact of privacy requirements on net value

In this section, we analyze the impact of k-anonymity, LKC-privacy, and ε-differential privacy

requirements on monetary value for each data provider before participation in the data mashup

process and after participation on the integrated data of contributing data providers. Suppose the

sensitivity of the dataset Sendsi = 2 on the scale of 1-5, the price per attribute Priceattri = $0.1 ,

the expected cost of lawsuit Ecostlwst = $1000, the size of dataset Sizedsi = 45, 222, and the fixed

operating cost FOpCost = $300.

Figure 4.8 depicts the impact of k-anonymity and LKC-privacy requirements onDP1’s net value,

where privacy threshold 10 ≤ K ≤ 50, and confidence threshold C = 50%. Figure 4.8.a depicts the

impact on DP1’s net value when the threshold L = 2. We observe that DP1’s net value without data

mashup (refer to theDP1’s attributes in the Table 4.4) decreases slightly with the increase ofK, but it

does not maintain monotonicity when K = 50. On the other side, DP1’s net value with data mashup

drops with the increase of K from 10 to 30, but the net value rises when K > 30. This change in

trend depends on the information gain for classification analysis of the DP1’s attributes. Figure 4.8.b

depicts the impact on DP1’s net value when the threshold L = 4. We observe that DP1’s net value

without data mashup decreases slightly with the increase of K from 10 to 30, but it is insensitive

to change when K > 30. On the other side, DP1’s net value with data mashup does not exhibit

monotonicity with the increase of K because DP1’s attributes for classification analysis contribute

different information gains at different privacy thresholds K on integrated data with collaborating

data providers DP2 and DP3. Figure 4.8.c depicts the impact on DP1’s net value when the threshold

L = QID. There are a total of 4 QID attributes in DP1’s dataset. DP1’s net value of traditional

k-anonymity is equal to LKC-privacy when L = 4. Though not shown in Figure 4.8, net value is

insensitive to the change of the confidence threshold 10% ≤ C ≤ 50%. The maximum net value
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(a) L=2 (b) L=4 (c) L=QID

Figure 4.8: Impact of k-anonymity and LKC-privacy requirements on DP1’s net value

achieved by the DP1 is $27, 190.94 when K = 20 and L = 4.

Figure 4.9 depicts the impact of k-anonymity and LKC-privacy requirements on DP2’s net

value, where privacy threshold 10 ≤ K ≤ 50, and confidence threshold C = 50%. Figure 4.9.a

depicts the impact on DP2’s net value when the threshold L = 2. We observe that DP2’s net value

without data mashup (refer to the DP2’s attributes in the Table 4.4) decreases slightly with the

increase of K except when K = 30. On the other side, DP2’s net value with data mashup increases

with the increase of K from 10 to 30, but the net value drops when K > 30. This change in trend

depends on the information gain for classification analysis of DP2’s attributes. Figure 4.9.b depicts

the impact on DP2’s net value when the threshold L = 4. We observe that DP2’s net value without

data mashup decreases slightly with the increase of K from 10 to 20, but it is insensitive to change

when K > 20. On the other side, DP2’s net value with data mashup increases with the increase of

K from 10 to 40, but it drops when K = 50. This drop in net value is due to the loss of information

gain in classification analysis. Figure 4.9.c depicts the impact on DP2’s net value when the threshold

L = QID. There are a total of 4 QID attributes in DP2’s dataset. DP2’s net value of traditional

k-anonymity is equal to LKC-privacy when L = 4. Though not shown in Figure 4.9, net value is

insensitive to the change in the confidence threshold 10% ≤ C ≤ 50%. The maximum net value

achieved by DP2 is $68, 060.37 when K = 30 and K = 40, and L = 4.

Figure 4.10 depicts the impact of k-anonymity and LKC-privacy requirements on DP3’s net

value, where privacy threshold 10 ≤ K ≤ 50, and confidence threshold C = 50%. Figure 4.10.a

depicts the impact on DP3’s net value when the threshold L = 2. We observe that DP3’s net value

64



(a) L=2 (b) L=4 (c) L=QID

Figure 4.9: Impact of k-anonymity and LKC-privacy requirements on DP2’s net value

(a) L=2 (b) L=4 (c) L=QID

Figure 4.10: Impact of k-anonymity and LKC-privacy requirements on DP3’s net value

without data mashup (refer to the DP3’s attributes in Table 4.4) is insensitive to change with the

increase of K. On the other side, DP3’s net value with data mashup drops with the increase of K

from 10 to 20, but the net value gradually rises when K > 20. This change in trend depends on the

information gain for classification analysis of DP3’s attributes. Figure 4.10.b depicts the impact on

DP3’s net value when the threshold L = 4. We observe that DP3’s net value without data mashup is

insensitive with the increase of K. On the other side, DP3’s net value with data mashup drops with

the increase of K except when K = 50. This fall in net value is due to the loss of information gain

in classification analysis. Figure 4.10.c depicts the impact on DP3’s net value when the threshold

L = QID. There are a total of 5 QID attributes in DP3’s dataset. DP3’s net value of traditional

k-anonymity is equal to LKC-privacy when L = 4. Though not shown in Figure 4.10, net value is

insensitive to the change of the confidence threshold 10% ≤ C ≤ 50%. The maximum net value

achieved by DP3 is $34, 522.01 when K = 10 and L = 4.
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(a) ε = 0.5 (b) ε = 1.0

Figure 4.11: Impact of ε-differential privacy requirements on DP1’s monetary value

Figure 4.11 depicts the impact on DP1’s monetary value when ε-differential privacy is enforced

with privacy parameters ε = 0.5 and 1.0 and specialization levels 3 ≤ h ≤ 19. Figure 4.11.a depicts

the impact on DP1’s monetary value when the threshold ε = 0.5. We observe that DP1’s monetary

value without data mashup (refer to the DP1’s attributes in Table 4.4) increases monotonically as

the increase in specialization level h. On the other side, DP1’s monetary value with data mashup

increases when specialization level h increases from 3 to 7 and 11 to 15, but the value drops due to

the loss of data utility when h = 11 and h = 19. Figure 4.11.b depicts the impact onDP1’s monetary

value when the threshold ε = 1.0. We observe that DP1’s monetary value without data mashup

increases slightly with the increase in the specialization level h except when h = 11. DP1’s net value

with data mashup generally increases with the increase in h, but it does not maintain monotonicity

when h = 11 due to the provision of less data utility in classification analysis with collaborating data

providers DP2 and DP3. The benefits to DP1 of doing data mashup is higher than going without

data mashup by gaining the maximum net value $30, 0187.37 when ε = 1.0 and h = 19.

Figure 4.12 depicts the impact on DP2’s monetary value when ε-differential privacy is enforced

with privacy parameters ε = 0.5 and 1.0 and specialization levels 3 ≤ h ≤ 19. Figure 4.12.a depicts

the impact on DP2’s monetary value when the threshold ε = 0.5. We observe that DP2’s monetary

value without data mashup (refer to the DP2’s attributes in Table 4.4) generally increases as the

increase in specialization level h except when h = 15. DP2’s monetary value with data mashup does

not exhibit monotonicity with the increase in the specialization level h due to the loss of data utility
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(a) ε = 0.5 (b) ε = 1.0

Figure 4.12: Impact of ε-differential privacy requirements on DP2’s monetary value

in classification analysis when h = 11 and the provision of less data utility in comparison to the

other collaborating data providers DP1 and DP3 when h = 15. Figure 4.12.b depicts the impact on

DP2’s monetary value when the threshold ε = 1.0. We observe that DP2’s monetary value without

data mashup increases monotonically with the increase in the specialization level h. On the other

side, DP2’s monetary value with data mashup does not exhibit monotonicity with the increase in

the specialization level h due to the loss of data utility in classification analysis when h = 7 and the

provision of less data utility in comparison to other collaborating data providers DP1 and DP3 when

h = 19. The benefits of doing data mashup are higher than doing without data mashup to DP2 by

gaining the maximum net value $29, 971.26 when ε = 0.5 and h = 7.

Figure 4.13 depicts the impact on DP3’s monetary value when ε-differential privacy is enforced

with privacy parameters ε = 0.5 and 1.0 and specialization levels 3 ≤ h ≤ 19. Figure 4.13.a

depicts the impact on DP3’s monetary value when the threshold ε = 0.5. We observe that DP3’s

monetary value without data mashup (refer to the DP3’s attributes in the Table 4.4) decreases slightly

as the specialization level h increases. DP3’s monetary value with data mashup does not exhibit

monotonicity with the increase in the specialization level h, but DP3’s monetary value is greater than

DP1 and DP2 at specialization levels 3 to 19. Figure 4.13.b depicts the impact on DP3’s monetary

value when the threshold ε = 1.0. We observe that DP3’s monetary value without data mashup

decreases slightly as the specialization level h increases. On the other side, DP3’s monetary value

with data mashup decreases with the increase in the specialization level h except when h = 19. The
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(a) ε = 0.5 (b) ε = 1.0

Figure 4.13: Impact of ε-differential privacy requirements on DP3’s monetary value

benefits of doing data mashup is higher than going without data mashup to DP3 by gaining the

maximum net value $78, 993.45 when ε = 1.0 and h = 3.

4.6 Summary

We have proposed a business model to quantify and compare the costs and benefits for releasing

integrated anonymized data of multiple providers over an individual data provider when trading

person-specific information in the e-market. Our model enables data providers to set up their

joint privacy requirements for classification analysis on mashup data. The data mashup process is

implemented fairly that allows data providers to integrate their data subject to the given privacy

requirements. During the data mashup process every data provider competes with the other participat-

ing data providers to generate more profit from their own data. The data provider whose data provides

more information gain will get a proportionally higher share in terms of monetary value from the

distribution of the achieved net value. We have incorporated relevant factors that are associated

with the revenue and costs to determine the net value. Our model helps data providers in finding

the sub-optimal value by evaluating the benefits of data mashup and impacts of data anonymization

based on the choices of privacy models and data mashup anonymization algorithms.
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Chapter 5

Enabling Secure Trustworthiness

Assessment and Privacy Protection in

Integrating Data for Trading

Person-specific Information

5.1 Introduction

Data are the fuel of today’s digital economy. Yet, data coming from a single source often fail to

provide a complete picture for big data analytics. To answer complex queries, companies usually

have to seek additional data from multiple sources. The emerging cloud paradigm Data-as-a-Service

(DaaS) provides an ideal platform for data integration in order to serve data consumers’ demands.

However, business data often contain person-specific information. Mashing up personal data from

different sources raises concerns on security, privacy, and data reliability. In the past decade, research

communities have proposed various trust models [18, 148] and frameworks [35, 131] to evaluate and

measure the security strength of cloud environments, but limited research considers the aspect of

data reliability. In this chapter, we propose a cloud-based data integration solution that considers

privacy protection, data trustworthiness, and fairness of profit distribution among data providers.
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Recent studies [52, 138] report the financial impact of poor quality of data on businesses. For

effective decision-making, organizations must have to take appropriate measures regarding the

quality of their data. Existing works [28, 93] aim to provide prevention from unauthorized use and

modification when data is in transit but do not verify data if any party provides incorrect or fabricated

data. Our research perspective is to determine the trustfulness of private data held by dishonest

data providers who may arbitrarily attempt to provide false data when trading person-specific

information in the e-market for monetary benefits. Our proposed method can detect such behavior

from dishonest data providers, who resemble adversaries under the covert security model [21]. In

literature [11, 43, 55] two protocols are discussed, namely Private Set Intersection (PSI) and Private

Set Intersection Cardinality (PSI-CA) for privacy and data quality assessment. Freudiger et al. [56]

claimed that these protocols are incurred from computational overhead and thus are not applicable

to real-world scenarios. They proposed some protocols that operate on reduced dimensionality

descriptions and so can be scalable to large datasets. It is a challenging problem to evaluate the

trustfulness of private data held by untrusted data providers. In this chapter, we study the problem of

untrusted data providers holding overlapping attributes on a person-specific dataset. We illustrate the

problem in the following example.

Example 3. Suppose there is a cloud-based data market, where data consumers can place their data

mining requests and data providers compete with each other to contribute their data with the goal of

fulfilling the requests for monetary reward. Consider the 12 raw data records in Table 5.1, where

each record corresponds to the personal information of an individual. The three data providers own

different yet overlapping sets of attributes over the 12 records.

Since the data providers collect data from different channels, it is quite possible that their data

conflict with each other as illustrated in Table 5.1. According to the predefined generalization

hierarchy of the attributes in Fig. 5.1, the individuals in the table can be generalized to two groups:

Non-Technical and Technical. Suppose a data consumer wants to perform a data analysis that depends

on the Non-Technical and Technical groups. Yet, the inconsistent, conflicting, or even inaccurate data

may mislead the analysis result. For example, DP1 andDP3 state that the individuals in {Rec#3, 5}

are Cleaner, while DP2 states that they are Technician. A similar conflict can be seen in the
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Table 5.1: Raw data owned by three data providers

Data Provider DP1 Data Provider DP2 Data Provider DP3

RecID Age Sex Job Sex Education Job Age Education Job
1 39 M Lawyer M Bachelors Lawyer 45 Doctorate Lawyer
2 50 M Lawyer M Masters Lawyer 50 Doctorate Lawyer
3 38 M Cleaner M 12th Technician 35 12th Cleaner
4 53 M Lawyer M Doctorate Doctor 57 Masters Lawyer
5 28 F Cleaner F 11th Technician 28 11th Cleaner
6 37 F Welder F 12th Welder 37 11th Welder
7 49 F Painter F 12th Cleaner 49 12th Painter
8 59 M Doctor F Doctorate Doctor 66 Doctorate Doctor
9 31 F Painter M 12th Welder 27 12th Painter
10 42 M Technician M Bachelors Technician 42 Bachelors Technician
11 37 M Lawyer M Masters Lawyer 38 Masters Lawyer
12 30 M Lawyer M Masters Lawyer 28 Bachelors Lawyer

Rec#9, where DP1 and DP3 provide the Job as Painter, and DP2 provides the Job as Welder.

In this example, the Job attribute on {Rec#3, 5, 9} has two different values that are categorized as

Non-Technical and Technical, respectively. These inconsistencies significantly impact the quality of

data analysis.

Presumably the data providers would have missing values on some attributes, although the same

set of records is identified by executing the secure set intersection protocol [11] on the globally unique

identifiers [126, 128]. Instead of avoiding participating in the data mashup process, they would prefer

to impute missing values by using the machine learning methods appropriate for their datasets. The

properties of a dataset such as low dimensional or high dimensional data, single-type or mixed-type

data, or linearly separable or non-linearly separable data are a crucial factor before choosing the

imputation method. The data providers’ decision whether to use a single imputation method or

multiple imputation methods is conditional on their missing data. We evaluate the robustness of our

approach when an acquisitive data provider employs a machine learning method for imputation of

missing data.

In the context of quantifying monetary value through sharing person-specific data, the data

providers first must do the valuation of personal data, but there is no determined market price [129,

135] for person-specific data that can be taken as a proxy for the valuation. It is also well-

acknowledged from the existing literature [4, 53] that there is no commonly agreed methodology

for valuing personal data. However, in the e-market, many companies actively collect personal
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Figure 5.1: Taxonomy trees

information by providing monetary rewards to their customers. In this chapter, we incorporate the

Vickrey-Clarke-Groves (VCG) auction mechanism for the valuation of data providers’ attributes. We

reason that it is a dominant strategy, where no data provider has an incentive to lie about his true

valuations. In addition, private data often encode privacy-sensitive information related to individuals

that need to be protected when integrating data from the competing data providers. In this chapter

we adopt differential privacy [50] because it provides strong privacy guarantees to an individual

independently of an adversary’s background knowledge, in contrast to underlying assumptions in

syntactic privacy models [112, 120, 147] about an adversary’s knowledge.

Contributions. We propose a novel solution to address the critical issues of data trustworthiness,

privacy protection, and profit distribution for cloud-based data integration services. The data

trustworthiness problem has been studied in [114, 115, 165] applications of sensor networks. The

provenance-based approach has been used in [40, 114] to evaluate the trustworthiness of network

nodes and data items. This approach is primarily used to collect evidence about where the data

originates and how the data generates. In this chapter we are not concerned about the high degree of
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the instrumentation of customers’ private data, which is collected by data providers. However, our

proposed approach makes novel use of information entropy to verify the correctness of data from

untrusted data providers and also to preserve the privacy of customers’ data held by data providers

when evaluating the trustworthiness of the providers. We summarize our contributions as follows:

• Our proposed method, IEB_Trust, is the first entropy-based trust computation method that

enables secure trustworthiness assessment and incorporates fairness in the verification process

to restrict dishonest data providers from participation in the next phase for integrating data.

• We compare our proposed method with a closely related method. Results suggest that our

entropy-based trust computation algorithm is capable of significantly improving runtime

efficiency.

• We evaluate the robustness of our method when an acquisitive data provider adopts machine

learning techniques to substitute missing values on their own data and claim them as original

data collected from customers to compete with the other participating data providers.

• We define the procedure for setting the price on person-specific attributes in trading personal

information from data providers based on the VCG mechanism.

• We integrate data from chosen data providers using Differentially private anonymization based

on Generalization (DistDiffGen) [128] and analyze the impacts of privacy protections and trust

scores on data providers’ monetary value.

The rest of the chapter is organized as follows: In Section 5.2, we provide an overview of the

trust mechanism and the problem statement. In Section 5.3, we present our proposed solution. In

Section 5.5, we compare our proposed method and provide empirical study to analyze the trustwor-

thiness of each data provider and further analyze its impact along with the ε-differential privacy

protection on a data provider’s monetary value. Finally, we provide the summary in Section 5.6.
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5.2 Trust mechanism

In this section, we first provide an overview of our trust mechanism and then formally define the

research problem.

5.2.1 Overview of trust mechanism

Fig. 5.2 provides an overview of our trust mechanism in which data providers, data consumers,

and cloud service providers are the main entities. Data providers collect person-specific information

from customers and intend to participate in the data mashup for generating more profit by competing

with peer data providers, data consumers perform data analysis on the received data, and the cloud

service provider (CSP) is a semi-trusted arbitrator between data providers and data consumers. The

CSP manages three key services: authentication, mashup coordination, and data verification. These

services are run on a cloud server by the CSP. First, each data provider has to pass the authentication

phase to prove their identity. Second, data consumers submit their data requests to the CSP. In this

chapter, we assume that a data consumer runs a classification analysis on its requested attributes by a

supervised machine learning method. A resource queue is built by the mashup service to manage

data requests from a data consumer, which is accessible only to authenticated data providers. Third,

data providers register their available data attributes on the registry hosted by the mashup service;

each data attribute is assigned a sequence number based on its arrival. Fourth, the verification process

is run to detect false or incorrect data and to determine the trustworthiness of each data provider.

Fifth, this process results in determining the accepted data providers. Sixth, the CSP connects the

group of accepted data providers with the data consumer to serve its demand. This is done by the

mashup service that determines the group of data providers whose data can collectively fulfill the

demand of a data consumer. Seventh, the data providers quantify their costs and benefits using joint

privacy requirements and integrate their data over the cloud. Finally, the anonymous integrated data

is released to the data consumer.
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Figure 5.2: Trust mechanism

5.2.2 Problem statement

We describe our problem as follows. There are three main entities discussed in our trust

mechanism: data providers, data consumers, and a cloud service provider (CSP). Data verification

service runs on a cloud server CS, which is managed by the CSP. The purpose of this service is to

verify the correctness of data. The CSP is a semi-trusted arbitrator who would not have access to

customers’ private data, which is held by the data providers. Data providers are considered to be

dishonest, meaning that they may arbitrarily attempt to provide false data because they are acquisitive

in competing with others in the e-market. The behavior of such data providers is similar to adversaries

in the covert security model.

Suppose data providers DP1,. . . ,DPn own private data tables D1, . . . , Dn, respectively. Each

record in the data table belongs to a unique individual. All explicit identifiers of an individual,

such as name, social security number (SSN ), and account number, have been removed. Each Di

is defined over a set of attributes PAi = {A1, . . . , Ad}. We assume that the data providers hold

overlapping attributes for the same set of records identified by executing the secure set intersection

protocol [11, 126] on the globally unique identifiers RecID. We require ∀PAi ∃PAj such that
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PAi ∩ PAj 6= ∅, where i 6= j, and PA = {PA1, . . . ,PAn}. In addition, each Di contains a

Acls attribute for classification analysis, which is shared among all the data providers. Each AJ is

either a categorical or a numerical attribute, but Acls is required to be categorical. A data consumer

submits a data request ReqA = {ReqA1, . . . , ReqAm} for classification analysis. We assume that

each data provider has PAi ⊆ ReqA to serve the demand of a data consumer. The goal of this trust

computation is to restrict dishonest data providers from participation in the data mashup process

when their trust scores drop below a certain threshold.

Problem 1 (Trust computation). Given multiple person-specific raw data tables D1, . . . , Dn

from data providersDP1, . . . , DPn and a set of requested attributesReqA = {ReqA1, . . . , ReqAm}

for classification analysis from a data consumer, the research problem is to verify the correctness

of data on the submissions of the overlapping set of attributes PAi = {A1, . . . , Ad} on the same

set of records from each data provider DPi, where PAi ∩ PAj 6= ∅ ∀PAi ∃PAj and i 6= j and to

compute the trust score TSDPi of each data provider.

In the context of data privacy, the data providers want to integrate their data in a way such

that no data provider should learn any additional information about the others as a result of data

integration. After the completion of trust computation, the data providers DP1, . . . , DPn attain

a mutually exclusive set of attributes PAi = {A1, . . . , Ad} over the same set of records for data

integration. That is, PAi ∩ PAj = ∅ for any 1 ≤ i, j ≤ n. We assume that for each attribute

AJ ∈ PAi, a taxonomy tree is provided that defines the hierarchy of values in Ω(AJ ), where Ω(AJ )

represents the domain of AJ . Data providers require doing their attributes’ valuations for price

setting and jointly setting up the privacy requirements, such as privacy budget ε and specialization

level h for a ε-differential privacy model, before data integration. They wish to derive their monetary

shares from the information utility of anonymous integrated data D̂ for classification analysis and

their trust scores.

Problem 2 (Monetary share under ε-differential privacy mechanism). Given multiple raw

data tables D1, . . . , Dn containing mutually exclusive sets of attributes PAi = {A1, . . . , Ad},

i.e., PAi ∩ PAj = ∅ for any 1 ≤ i, j ≤ n over the same set of records, and a data request

ReqA = {ReqA1, . . . , ReqAm} from a data consumer for classification analysis, the research

problem is to derive the monetary share of each DPi from their information utility and trust scores
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over the differentially private release of integrated dataset D̂ under the joint privacy requirements

and attributes’ valuations.

Several companies, such as Acxiom, AnalyticsIQ, Dataline, and Expedia, collect user data

including demographic, financial, retail, social, and travel information from multiple sources with the

goal of serving different market needs [6]. Our research problem can be generalized to other similar

companies who face trustworthy or quality data issues [52] and whose business models are primarily

based on sharing person-specific information.

5.3 Proposed solution

In this section, we provide a solution to address the concerns of stakeholders on data trustwor-

thiness, privacy protection, and profit distribution in the online market for trading person-specific

data. Section 5.3.1 presents our proposed IEB_Trust, an information entropy-based trust computation

algorithm to restrict dishonest data providers from participation in the data mashup process and

to assess the trustworthiness of each data provider. Section 5.3.2 discusses security properties.

Section 5.3.3 provides an analysis of IEB_Trust algorithm. Section 5.3.4 provides an evaluation of

learner models. Section 5.3.5 provides an auction mechanism for price-setting among data providers

who own multiple attributes. Section 5.3.6 presents an algorithm for privacy protection by which

data providers can determine the impact of anonymization on data utility for classification analysis.

Section 5.3.7 discusses how the chosen data providers can quantify their monetary value.

5.3.1 Trust computation

In Section 5.2.2, we state the problem where the challenge is to verify the correctness of data

from untrusted multiple data providers who own overlapping attributes for the same set of records.

We assume that the data providers are competitors who intend to maximize their profits. The data

providers consider as dishonest anyone who may arbitrarily attempt to provide false data to get a

larger monetary share from their participation. To address this problem, we propose a novel algorithm

that adopts information entropy for secure trustworthiness assessment of acquisitive data providers.

Information entropy has been widely used in machine learning tools and decision-making systems.
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Compared to the existing work on data trustworthiness [114, 115, 165], our proposed algorithm not

only detects false or incorrect data from a dishonest data provider during the verification process, but

also preserves the privacy of customers’ data owned by a data provider. Furthermore, our method

provides better runtime efficiency over provenance-based approaches [40, 114].

Algorithm 3 presents our approach in more detail. A cloud service provider (CSP) runs this

algorithm on a cloud server(CS). Consider multiple data providers DP1, . . . , DPn, who own private

data tables D1, . . . , Dn having overlapping attributes for the same set of records identified by the

common record identifier RecID [11, 126]. First, the CS and each DPi mutually authenticate each

other and derive ksi symmetric keys for all i ∈ I by the mutual authentication protocol [45] for the

secure exchange of messages. Each DPi has its own ksi to answer the CS’s queries. Second, a

data consumer submits a data request ReqA = {ReqA1, . . . , ReqAm} to the CS. Third, each data

provider DPi submits an available set of attributes PAi = {A1, . . . , Ad}, where PAi ⊆ ReqA, to

the CS. We assume that initially all the participating data providers have “zero” in their trust scores

(Line 3). ε′ is the allocated privacy budget to consume for each requested attribute. A resource queue

is created by the mashup service for m requested attributes, where each attribute AJ ∈ PAi of a

corresponding data provider is registered with its arrival sequence (Line 9).

Fourth, the verification process is run to determine the trustworthiness of each data provider. In the

first round, CS successively selects one attribute ReqAx′ uniformly at random without replacement

over a domain of m requested attributes and sends an encrypted challenge E(ksi, ReqAx
′) to the

corresponding data providers DP1, . . . , DPn, who own common attribute AJ . Prior to responding

to this challenge, each DPi decrypts to retrieve ReqAx′, computes information gain on the challenge

attribute in Line 16, denoted by G(1)
AJ

(refer to Section 5.3.1.1 for details), according to Eq. (27) [136]

and then adds noise to a true output. Then DPi encrypts the message ψ(1) ← E(ksi,G(1)′

AJ
) and

computes tags Υ(1) ← S(kh, ψ
(1)) by using keyed hash-based message authentication code (HMAC)

in Line 17. CS receives the concatenated message, tag, and identity ψ(1)‖Υ(1)‖DPi on his challenge

from each data provider. Then CS computes the comparison to determine the majority candidates by

invoking procedure findMajCand(ψ(1)‖Υ(1), size) in Line 19, where size indicates the number of

data providers who own the requested attribute. This procedure returns majority candidate Maj
R(1)
Cand.

In the second round, CS generates K random IDs for the requested challenge ReqAx′, i.e., picked in

78



the first round, from |Di| records, then generates P pairs of values for ReqAx′ and Acls attributes.

CS sends another challenge to each DPi by concatenating the encrypted K random IDs and P

pairs of values as E(ksi,K, ReqAx′)‖E(ksi, vx′ , vcls). DPi decrypts to retrieve K record IDs and

P pairs of values. DPi concatenates K records and P pairs of values received from the CS. DPi

computes G(2)
AJ

on the concatenated version and then adds noise to a true output, encrypts it as

ψ(2) ← E(ksi,G(2)′

AJ
), and computes the tag as Υ(2) ← S(kh, ψ

(2)). CS receives ψ(2)‖Υ(2)‖DPi

on the second round challenge from the corresponding data providers in Line 28. CS again invokes

procedure findMajCand(ψ(2)‖Υ(2), size) to determine the majority candidates in Line 29. This

process repeats α times. In Line 33 an intersection of both the rounds is computed to determine

MajCand.

Candidates whose scores match on the majority are considered as Qualified, denoted byQualDPi ,

who gain a positive weight γ in their trust scores TSDPi . Alternatively, candidates whose scores do

not match are considered as Non-Qualified, denoted by UnQualDPi . Subsequently, UnQualDPi

is penalized with a negative weight -γ in their trust scores TSDPi . For example, when two data

providers own a common attribute, but their scores do not match, they both will be penalized with a

negative trust score. When only a single data provider responds to the CS challenge of ReqAx′, it is

accepted based on his existing trust score TSDPi ≥ 0. However, in this case, the trust score does not

increase for that data provider. When a data consumer request for an attribute, which is not fulfilled

by the participating data providers, then that attribute is excluded from the verification process, and

the data providers gain no monetary value from it. The comparison is performed (Line 45) to select

one candidate (or data provider) on each attribute from the qualified data providers QualDPn based

on their arrival sequences (using first-come first-served (FCFS) rule). If the final aggregated trust

score of any data provider becomes < 0 that data provider drops from the final selection for the data

mashup and the attributes initially belonging to him are subsequently reassigned to other qualified

data providers that appear next in the arrival sequences. The algorithm terminates when there is no

more attribute for verification.
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5.3.1.1 Computation of information gain

We use information gain as a criterion for splitting attributes [136] based on the concept in-

troduced by Claude Shannon on information theory [149]. We compute information gain on an

individual attribute AJ ∈ PAi of each data provider in the presence of a shared class attribute Acls

on raw data. Let Dτ ⊆ Di denote a subset of the data table Di. Suppose the attribute Acls has C

distinct values. Let Aclsi,Dτ be the set of records of class Aclsi in Dτ . Let |Dτ | and |Aclsi,Dτ | denote the

number of records in Dτ and Aclsi,Dτ , respectively. The entropy on the data table Dτ is computed as

follows.

E(Dτ ) = −
C∑
i=1

Pri × log2 Pri (25)

where Pri is the probability that an arbitrary record in Dτ belongs to class Aclsi . It is estimated

by
|Aclsi,Dτ |
|Dτ | .

We can further partition the records in Dτ on the attribute AJ . If AJ is discrete-valued, then one

branch is grown for each known value of AJ . On the other side, if AJ is continuous-valued, then

two branches are grown, corresponding to AJ ≤ splitpoint and AJ > splitpoint. It is calculated

by the following equation.

EAJ (Dτ ) =

V∑
j=1

|Dτ
j |

|Dτ |
× E(Dτ

j ) (26)

Finally, we can compute the information gain GAJ on the chosen attribute AJ of each data

provider DPi as follows.

GAJ = E(Dτ )− EAJ (Dτ ) (27)

5.3.1.2 Differentially private GAJ

Given a privacy budget ε′, the sensitivity of the utility function (∆f) is 1, and a true computed

GAJ . We add independently generated noise from the Laplace distribution Lap(1/ε′) to a true

computed GAJ to have a differentially private version of Eq. (27).

G′AJ = GAJ + Lap(1/ε′) (28)
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Algorithm 3 IEB_Trust
Key Setup: CS and DPi derive n symmetric keys by mutual authentication protocol
Input: Data consumer attributes request ReqA1, . . . , ReqAm, privacy budget ε
Input: Data provider DPn’s attributes A1, . . . , Ad
Output: Accepted DPn

1: DP1, . . . , DPn own private data tables D1, . . . , Dn ∀i ∈ I , where I = 1, . . . , n;
2: Each DPi holds set of attributes PAi = {A1, . . . , Ad}, over a domain of attributes request
ReqA = {ReqA1, . . . , ReqAm};

3: TSDPi ← 0; /* Initially, trust score is set to 0 for each data provider */
4: st← 0; /* Initially, arrival sequence is set to 0 for all data providers’ attributes */
5: ε′ ← ε

|ReqA| ;
6: while ∃ReqAx ∈ ReqA do
7: for i ∈ I do
8: if ∃ReqAx ∈ PAi then
9: register arrival sequence st on each attribute;

10: end if
11: end for
12: end while

Round 1
13: while ∃ReqAx ∈ ReqA do
14: CS randomly picks ReqAx′ over a range of ReqA1, . . . , ReqAm without replacement;
15: CS sends challenge E(ksi, ReqAx

′) to each DPi where ∃ReqAx′ ∈ PAi;
16: Each DPi computes G(1)

AJ
according to Eq. (27) and then adds Lap(1/ε′), to have G(1)′

AJ
;

17: Each DPi encrypts the message ψ(1) ← E(ksi,G(1)′

AJ
) and then computes tag Υ(1) ←

S(kh, ψ
(1));

18: CS receives ψ(1)‖Υ(1)‖DPi on his challenge from the corresponding data providers;
19: CS computes comparison to determine Maj

R(1)
Cand← findMajCand(ψ(1)‖Υ(1), size);

20: end while
Round 2

21: while ∃ReqAx ∈ ReqA do
22: for ` = 1 to α do
23: CS generates K random IDs for ReqAx′ (pick in Round 1) from |Di| records, where

5 ≤ K ≤ 10;
24: CS generates P pairs of values for ReqAx′ and Acls attributes, where 5 ≤ P ≤ 10;
25: CS sends challenge E(ksi,K, ReqAx′)‖E(ksi, vx′ , vcls) to each DPi where ∃ReqAx′ ∈

PAi;
26: Each DPi computes G(2)

AJ
on the concatenated K specified records and P pairs of values

and then adds Lap(1/ε′), to have G(2)′

AJ
;

27: Each DPi encrypts the message ψ(2) ← E(ksi,G(2)′

AJ
) and then computes tag Υ(2) ←

S(kh, ψ
(2));

28: CS receives ψ(2)‖Υ(2)‖DPi on his challenge from the corresponding data providers;
29: CS computes comparison to determine Maj

R(2)
Cand`

← findMajCand(ψ(2)‖Υ(2), size);
30: end for
31: CS computes

⋂α
`=1Maj

R(2)
Cand`

;
32: end while
33: CS computes Maj

R(1)
Cand

⋂
Maj

R(2)
Cand to determine MajCand;

34: for all Cand ∈MajCand do
35: set Cand as QualDPi ;
36: TSDPi = TSDPi + γ;
37: end for
38: for all Cand /∈MajCand do
39: set Cand as UnQualDPi ;
40: TSDPi = TSDPi − γ;
41: end for
42: if size == 1 ∧ TSDPi ≥ 0 then
43: set DPi as QualDPi ;
44: end if
45: Pick one Cand by comparison on the arrival sequences of the QualDPn on each attribute;
46: return Data providers whose final aggregated trust score ≥ 0
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5.3.1.3 Discretization

We use equal-width method to discretize a continuous-valued attribute AJ into K intervals of

equal size. The minval and maxval parameters are used for defining the boundaries of the range,

whereas arity K is used to determine the number of bins. Each bin is associated with a distinct

discrete value. The width of interval is computed by

Intwidth =
maxval −minval

K
(29)

Example 4. We continue from Example 3. Consider the example data of numerical type attribute

in Table 5.2. In this table Age is a numerical attribute, whereas Loan approval is an Acls at-

tribute. Data providers DP1 and DP3 own raw data tables Table 5.2.(a) and Table 5.2.(b), respec-

tively. DP3 has somewhat different values on the Age attribute in contrast to DP1 on records

{ID#1, 3, 4, 8, 9, 11, 12}. They discretize their data on the Age attribute, as shown in Table 5.2.(c),

according to the parameters of equal width binning. A boundary is defined as minval = 10.0 and

maxval = 70.0, whereas arity K = 5. Though they have differences in their raw data, the produced

discrete version is the same for both since the data values occurred in the specified range. Therefore,

the computed information gain 0.34573 is also the same.

Table 5.2: Example data of numerical type attribute

Data Provider DP1

ID Age Loan approval
1 39 N
2 50 N
3 38 N
4 53 N
5 28 N
6 37 N
7 49 N
8 59 N
9 31 Y
10 42 Y
11 37 Y
12 30 Y

Raw data table (a)

Data Provider DP3

ID Age Loan approval
1 45 N
2 50 N
3 35 N
4 57 N
5 28 N
6 37 N
7 49 N
8 66 N
9 27 Y
10 42 Y
11 38 Y
12 28 Y

Raw data table (b)

Discretization
ID Age Loan approval
1 [34.0 - 46.0] N
2 [46.0 - 58.0] N
3 [34.0 - 46.0] N
4 [46.0 - 58.0] N
5 [22.0 - 34.0] N
6 [34.0 - 46.0] N
7 [46.0 - 58.0] N
8 [58.0 - 70.0] N
9 [22.0 - 34.0] Y
10 [34.0 - 46.0] Y
11 [34.0 - 46.0] Y
12 [22.0 - 34.0] Y

Raw data table (c)

Example 5. We continue from Example 3. Consider the raw data tables of two data providers
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who own common attribute, e.g., Sex (which has two values, M or F) as shown in the compressed

Table 5.3. The class attribute Loan approval shared between the data providers has two values, Y

or N, indicating whether or not the loan is approved. Both DP1 and DP2 have the same number

of records and the same count on their records, i.e., M = 8, and F = 4, but they have different

information gain DP1 = 0.011580 and DP2 = 0.251629 on the Sex attribute. Since the data

providers are not consistent in providing the same information on the common RecIDs, this results

in a change in the count for class label values. For instance, DP1 indicates that there is 1 female

whose loan is approved, whereas DP2 indicates 0 females.

Table 5.3: Compressed data table for categorical type attribute

Data Provider DP1

Sex Loan approval #of Recs.
M 3Y5N 8
F 1Y3N 4

Total 12

Raw data table (a)

Data Provider DP2

Sex Loan approval # of Recs.
M 4Y4N 8
F 0Y4N 4

Total 12

Raw data table (b)

5.3.1.4 Computation of trust score

Intuitively, the trust score is a metric for assessing the trustworthiness of each data provider. We

compute the trust score TSDPi locally for each data provider in an iterative manner on each attribute

ReqAx from the CS. γ is a user-defined weight. A data provider qualifying on the majority gains a

positive γ weight in the trust score. On the other hand, a disqualified data provider is penalized with

a negative -γ weight in the trust score. We aggregate on both positive and negative weights at each

iteration to determine the final trust score for each data provider.

TSDPi =
∑

ReqAx∈ReqA
γ

 if(Cand ∈MajCand) +γ

if(Cand /∈MajCand) −γ
(30)

5.3.2 Security properties

In this section, we discuss the security properties of our proposed, IEB_Trust, algorithm.
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5.3.2.1 Security against covert adversaries

In the context of our problem, a dishonest data provider is a kind of covert adversary who may

arbitrarily provide false data on his attribute AJ ∈ PAi. The probability of detecting this cheat by

our proposed trust computation algorithm is 1− ξ (refer to the Section 5.3.3.1 for details). Each DPi

who has committed to, when registering, the available attributes PAi = {A1, . . . , Ad} is responsible

to answer the CS’s challenge request, where ∃ReqAx′ ∈ PAi. When the CS detects a data provider

cheating, the provider is penalized with a negative -γ weight in the trust score.

5.3.2.2 Mutual authentication

Before the verification process, each DPi and the CS mutually authenticate each other by the

TLS 1.2 protocol or higher [45, 140]. It is indispensable for the CS to negotiate on the latest stable

version of the TLS protocol and stronger cipher suite to prevent against different forms of deception.

After successful authentication of each DPi, they are granted access to the resource queue, where

they can register their data attributes.

5.3.2.3 Minimal access for outsourcing verification

The data providers who own customers’ private data outsource the verification on their data

to the CS. Each DPi computes locally the information gain function G on an available attribute

AJ ∈ PAi, whereas the CS can have access to only an encrypted G′AJ
message, i.e., ψ, and its

keyed hash, i.e., Υ for the verification. It benefits the data providers to restrict the CS from accessing

the customers’ private data. Since encrypted individual data records are not exchanged during the

verification, the overhead of computation on the CS is also reduced.

5.3.2.4 Authentication and integrity

HMAC enforces integrity and authenticity. It depends on what underlying hashing function has

been used. There are some collision-related vulnerabilities of MD5; however, HMAC-MD5 is not as

affected by those vulnerabilities. Regardless, SHA-2 is cryptographically stronger than MD5 and

SHA-1. HMAC is constructed by using two nested keys, say kin and kout. These nested keys are not
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independent; instead they are derived from a single kh. Let M bytes be assumed to be the message

blocks for the underlying Merkle-Damgard hash. To derive the keys kin and kout, which are byte

strings of length M, we first construct kh exactly M bytes long. If the length of kh ≤M, we pad it

out with zero bytes; otherwise, we replace it withH(kh) padded with zero bytes. Then we compute

kin ← kh ⊕ ipad

kout ← kh ⊕ opad

The ipad denotes the inner pad and the opad denotes the outer pad. These pads are 512 bit

constants that never change and are embedded in the implementation of HMAC. HMAC is assumed

to be a secure PRF [32]. It provides better protection against length extension attacks. It is built as

follows:

S(kh, ψ) = H
(
kh ⊕ opad,H

(
kh ⊕ ipad‖ψ

))
One of the properties of a cryptographic hash function is that if there is a minor change in an

input message, it changes the message digest so extensively that the new message digest appears

uncorrelated with the old computed message digest. In our case, we do not apply cryptographic

hash functions directly on the input data for data integrity because we allow parties to have minor

inaccuracies on numerical attributes for a specified threshold.

5.3.3 Analysis

In this section, we analyze the correctness and security of Algorithm 3.

Proposition 5.3.1. (Correctness) Assuming multiple data providers are dishonest, Algorithm 3

correctly computes the trust scores among them, as stated in Problem 1 in Section 5.2.2, to evaluate

the trustworthiness of each data provider.

Proof. Algorithm 3 selects an attribute uniformly at random without replacement from a listReqA =

{ReqA1, . . . , ReqAm} of m requested attributes. Each DPi computes GAJ according to Eq. (27)

for its matching attribute in the presence of a shared class attribute Acls. For a continuous-valued

attribute, each provider follows equal-width method for discretization into intervals of equal size.

85



Consider AJ is discrete-valued, owned by two providers, where Ω(AJ ) = {v1, v2} is in its domain

of data values. Assume there is a single record between two providers where they have different

values. Algorithm 3 computes G(1)′

AJ
in the first round for both the data providers and returns different

scores. This suggests that they are not the same.

Now, we consider an extended case where two data providers (say DP1, DP2) would have

different sets of records but the computation of G(1)′

AJ
in the first round on the full dataset for both data

providers returns the same score, so we have Maj
R(1)
Cand = {DP1, DP2}. Algorithm 3 verifies further

by running the process α times in the second round. During each iteration data providers have to

select records over K random IDs for AJ , and they also have to add P pairs of values vx′ and vcls for

AJ and a class attribute Acls, respectively, from the CS before computation of G(2)′

AJ
. Algorithm 3

computes Maj
R(1)
Cand ∩ (

⋂α
`=1Maj

R(2)
Cand`

) to determine MajCand. This determines whether or not

the data providers are holding the same data values over the common attribute AJ . Data providers

are required to match in both the rounds to prove that they have the same score. Since data providers

are holding a different set of records, it is not possible for them to match because of the randomness

introduced in the second round.

Proposition 5.3.2. (Security) Algorithm 3 is secure against covert adversaries as described in

Section 5.3.2.1 by the probabilistic bound of 1− ξ.

Proof. The security of Algorithm 3 depends on the keys derivation in the mutual authentication

protocol and the communication of the cloud server CS and data providers DPn in the verification

process.

• A random challenge E(ksi, ReqAx
′) is secure because of symmetric keys derivation by [45,

140].

• On a given challenge request, if ∃ReqAx′ ∈ PAi, each data provider first computes the

information gain function on its matching attribute GAJ ∈ PAi, and then perturbs the output

by adding noise. This returns a noisy score G′AJ
for which data providers should agree on the

scale for digits after the decimal point. It is secured for privacy protection because each DPi

only exchanges an encrypted G′AJ
message, i.e., ψ, and its keyed hash, i.e., Υ, with the CS in
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both rounds of the protocol, instead of exchanging encrypted individual data records on their

attributes AJ .

• Keyed hash-based message authentication code S(kh, ψ) is a secure PRF according to [32].

It is computationally infeasible for an adversary to find distinct inputs ψ1, ψ2 such that

S(kh, ψ1) = S(kh, ψ2).

• Dishonest data providers cannot modify the outputs, i.e., ψ‖Υ, of the honest providers in any

round of the protocol. They may compute G∗AJ
on their false data and can send their ψ∗‖Υ∗ to

the CS. The CS computes a comparison and detects cheating from a dishonest data provider

with the probability of 1− ξ.

5.3.3.1 Adversary’s inferences

In the following, we estimate the probability of an adversary, i.e., a dishonest data provider, to

correctly guess G∗AJ
on a random challenge attribute ReqA′x. An adversary knows |Dτ |, the number

of records in Dτ , and |Aclsi,Dτ |, the number of records of class Aclsi in Dτ , and computes the entropy

of Dτ by Eq. (25). Next, the adversary may try to compute entropy on AJ by the following equation

because he knows |Ω(AJ )|, the domain size of AJ , and |Dτ |, the number of records in Dτ .

E∗AJ (Dτ ) =

V ′∑
j′=1

|Dτ
j′ |

|Dτ |
× −

C∑
i=1

|Aclsi,Dτ
j′
|

|Dτ
j′ |
× log2

|Aclsi,Dτ
j′
|

|Dτ
j′ |

(31)

There are |Ω(AJ )||Dτ | possible arrangements in which an adversary may try to compute

E∗AJ
(Dτ ). Finally, he computes G∗AJ

having all distinct values by the following equation.

G∗AJ = E(Dτ )− E∗AJ (Dτ ) (32)

This results in ϑ distinct values of G∗AJ
, with the lower bound of ϑ ≈ |Dτ |. The probability of
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correctly guessing G∗AJ
for an adversary in our verification process is

ξ =
1

ϑ
× (

1

ϑ
)α (33)

5.3.3.2 Detecting cheat against varying dishonest providers

Let n denote the number of participating data providers, and let b denote an upper bound on the

number of dishonest data providers who may arbitrarily provide incorrect data in responding to the

CS’s challenge.

• When b < n/2, the verification process guarantees fairness and no honest data providers are

negatively affected by their trust levels.

• When b ≤ n− 2, the verification process guarantees fairness under the arbitrary behavior of

dishonest data providers, where the chance of detecting them is 1− ξ. It is a type of covert

adversarial behavior when the dishonest data providers arbitrarily provide false data on their

data inputs, i.e., they neither would be able to appear in the majority nor would be able to

undermine the reputations of the honest data providers.

• When b > n/2, the verification process does not guarantee fairness on the flip side, i.e., when

the behavior of dishonest data providers is not arbitrary. This would be the case when the

dishonest data providers not only appear in the majority but also organize in a way to undermine

the reputation of the honest data providers. We assume that if a secure set intersection is carried

out by using a trusted mediator (e.g., by computing the function on the data providers input)

between data providers, then the dishonest providers would not be able to determine the total

number of participating data providers in advance. This would restrict them from developing

the organized group; still, there is no remedy if they would try by guessing at random.

5.3.4 Evaluation of learner models

We provide an example of a sample data to evaluate the quality of linear regression, k-nearest

neighbors (kNN), and random forest learner models.
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Example 6. We retrieve the top 1000 records from a real-life Adult1 dataset on attributes age,

education-num, race, sex, income. The attributes age, education-num are of continuous types,

whereas race, sex, income are of categorical types. We develop learner models in RapidMiner2 to

compare the predictive accuracy of linear regression, k-nearest neighbors (kNN), and random forest

methods.

For the linear regression model, we set education-num as a label, which is considered as a

dependent attribute (or variable), and the remaining are considered as independent attributes. We

convert non-numeric type attributes to the numeric type. After running 10-fold cross-validation, the

Root Mean Square Error (RMSE) is found to be 2.438±0.165, which indicates the standard deviation

of the residuals. Furthermore, R2 is found to be 0.127± 0.055, which indicates the goodness of fit

of this regression model. Its value is close to 0, indicating a weak linear correlation.

For the k-nearest neighbors (kNN) model, we set all attributes as nominal and education-num

as a label. After running 10-fold cross-validation when k = 20, the accuracy is found to be

33.90%± 5.59%, which indicates the percentage of correct predictions.

For the random forest model, we set the education-num attribute as nominal and specify the role

as a label. The key parameter ‘number of trees’ is specified as 10, and the ‘gain ratio’ is chosen as a

criterion for splitting attributes. After running 10-fold cross-validation, the accuracy is found to be

32.90%± 0.30%, which indicates the percentage of correct predictions.

There are no significant performance differences found on running these learner models on the

sample dataset. Data providers would use any one or multiple learning methods for missing data

imputation.

5.3.5 Price setting using auction mechanism

An auction mechanism can be defined in many different ways depending upon the design

requirements. The two variants of 2nd price sealed-bid auctions [51] have widely used, namely

Vickrey-Clarke-Groves (VCG) and Generalized Second Price (GSP) mechanisms for multiple items.

The reason for employing the VCG mechanism for determining the pricing on data providers’
1Available at: http://archive.ics.uci.edu/ml/datasets/Adult
2Available at: https://rapidminer.com/products/studio/
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attributes is that truthful bidding is a dominant strategy, and there is no incentive to lie or deviate

from reporting true valuations for a data provider. It maximizes the total valuation obtained by data

providers. One nice property of the VCG mechanism is that it provides a unique outcome, which is

socially optimal, whereas, in the GSP there would be multiple outcomes in terms of Nash equilibrium.

One Nash equilibrium would maximize social welfare but not all of them.

We intend to design an auction mechanism for multiple items. It is assumed that the data

providers intend to set up a matching market using a 2nd price sealed-bid auction for valuation of

their attributes. We formally define the procedure for setting the price as follows:

5.3.5.1 Data providers

Let DP1, . . . , DPn (where i = 1, . . . , n) be the set of data providers who set up a matching

market for valuations of their attributes.

5.3.5.2 Positions

Let P1, . . . , Pn (where j = 1, . . . , n) be the set of positions for which data providers compete.

The higher the position Pj , the more will be its demand rate. The positions should be equal to the

number of data providers. If there are more data providers than positions, we simply add fictitious

positions of demand rate 0. Similarly, if there are more positions than data providers, we add fictitious

data providers of revenue per demand 0.

5.3.5.3 Revenue per demand

Revenue per demand is the expected amount of money that a data provider DPi receives, denoted

by Revi, for every demand on its attribute. The monetary values of Revi are sorted in descending

order.

5.3.5.4 Demand rate

Demand rate is defined as the number of demands requested by a consumer over a period of time,

denoted by Qj . Demand rate varies as per the position Pj . Qj enumerates in descending order.
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5.3.5.5 Data providers’ valuations

Data providers’ valuations are defined as the data provider DPi’s valuation of the position Pj .

It is the product of the revenue per demand Revi and the demand rate Qj , denoted by V ali,j . It is

computed as follows:

V ali,j = Revi ×Qj (34)

5.3.5.6 VCG price

VCG price is defined as the harm or externality caused by data provider DPi to other data

providers in terms of reduction of their valuations due to his presence. It is called VCG price, denoted

by ExPrci,j , which is paid by data provider DPi for position Pj . Formally, it is defined by

ExPrci,j =

Pn∨
DPn−DPi

−
Pn−Pj∨

DPn−DPi

(35)

where

• DPn −DPi is the set of data providers excluding data provider DPi;

• Pn − Pj is the set of positions excluding position Pj ;

•
∨Pn
DPn−DPi is the sum of data provider values of an optimal matching between setsDPn−DPi

and Pn; and

•
∨Pn−Pj
DPn−DPi is the sum of data provider values of an optimal matching between setsDPn−DPi

and Pn − Pj .

5.3.5.7 Data providers’ valuations after payoff

Data providers’ valuations after payoff is defined as the data provider DPi’s valuation on position

Pj after paying off harm to other data providers. It is calculated using the following equation.

V alDPi = maxV ali,j − ExPrci,j (36)
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5.3.5.8 Valuation of an attribute

Valuation of an attribute can be assessed once a data provider DPi acquires a certain position

Pj . The value of each data provider’s attribute per single demand is calculated using the following

equation.

V alAttrDPi =
V alDPi
Qj

(37)

5.3.5.9 Attribute count

The attribute count CntAttrDPi of a data provider DPi represents the number of attributes in a

single record. Each DPi owns a mutually exclusive set of attributes.

5.3.5.10 Price per record

The price per record PrcRecDPi of a data provider DPi represents the unit price of a record.

Naturally, it is the product of the value per attribute V alAttrDPi and the attribute count CntAttrDPi

in a single record. That is,

PrcRecDPi = V alAttrDPi × CntAttrDPi (38)

5.3.5.11 Size of dataset

The dataset of each data provider DPi consists of a collection of records, denoted by |Di|. The

size of a dataset grows as the number of records in the dataset increases.

5.3.5.12 Price of raw dataset

The price of a raw dataset PrcRawDSDPi represents the data provider DPi’s selling price of a

raw dataset in the e-market. The overall pricing of a raw dataset increases as the number of records

or the unit price per record increases. It is computed as follows:

PrcRawDSDPi = |Di| × PrcRecDPi (39)
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5.3.5.13 Total price of raw dataset

The total price of the raw dataset TPrcRawDS is the sum of the pricing of all the contributing

data providers’ raw datasets. It is computed as follows:

TPrcRawDS =

n∑
i=1

PrcRawDSDPi (40)

5.3.5.14 Total monetary value of raw dataset

First, data providers compute baseline accuracy (BA) for classification analysis using the secure

multiple party classifier [49] by maintaining the confidentiality of their raw data. Then they use the

information utility of classifying raw data to derive the monetary value of the raw dataset, denoted

by TMV alueRawDS . It is calculated using the following equation:

TMV alueRawDS = TPrcRawDS ×BA (41)

5.3.6 Anonymization method

In this section, we provide an extension of the two-party Diff erentially private anonymization in

Algorithm 4, which is based on Generalization [128] to differentially integrate multiple private data

tables. This algorithm guarantees ε-differential privacy and security definition under the semi-honest

adversary model (readers may refer to the detailed analysis in [128], Section 6.3). The two major

extensions over the TDS algorithm [59] include: (1) DistDiffGen selects the Best specialization

based on the exponential mechanism, and (2) DistDiffGen perturbs the generalized contingency table

by adding the Laplacian noise to the count of each equivalence group.

Generally, there is no incentive for any data provider who executes the algorithm as the purpose

is merely to synchronize the anonymization process. We assume a trusted data provider, who attains

the highest trust score after running the Algorithm 3, starts the anonymization process. The accepted

data providers, as a result of trust computation by Algorithm 3, attain a mutually exclusive set of

attributes, i.e., PAi ∩ PAj = ∅ for any 1 ≤ i, j ≤ n over the same set of records for integrating

data.
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Initially, all values in the set of attributes PAi = {A1, . . . , Ad} of each data provider are

generalized to the topmost value in their taxonomy trees (Line 1), as illustrated in Fig. 5.1, and

Markκ contains the topmost value for each attribute AJ ∈ PAi (Line 2). Each data provider keeps

a copy of the ∪Markκ and a generalized data table Dg. The attribute AJ can be either categorical

or numerical, but the class attribute is required to be categorical. The split value of a categorical

attribute vc is a generalized value drawn from a pre-defined taxonomy tree of the attribute, whereas

the split value of a numerical attribute vnum is determined by using the exponential mechanism (Line

4). It partitions the domain range of a numerical attribute into successive intervals I1, . . . , Ik. Line 4

preserves ε′|Anum|-differential privacy since the cost of each exponential mechanism is ε′. In Line 5,

a score IGScore is computed for all candidates v ∈ ∪Markκ. At each iteration, the algorithm uses

the secure distributed exponential mechanism (DistExp) as presented in [128] (readers may refer to

the details of the DistExp algorithm) to select a winner candidate w ∈ ∪Markκ for specialization

(Line 7). Different utility functions (e.g., information gain) can be used to calculate the score. If

the winner candidate w is local to DPi, DPi specializes w on Dg by splitting its records into child

partitions, updates its local copy of ∪Markκ, and instructs all the other participating data providers

to specialize and update their local copy of ∪Markκ (Line 8-11). The information gain, denoted

by G̃DP i , accumulates IGScore(x) on the winner’s attribute specializations (Line 12). DPi further

calculates the scores of the new candidates as a result of the specialization (Line 14). If the winner

w is not one of DPi’s candidates, DPi waits for instructions from the other winner data provider

DPj , where i 6= j, to specialize w and to update its local copy of ∪Markκ (Lines 16 and 17). This

process iterates until the specified number of the specializations h is reached. The algorithm perturbs

the output by adding the noisy count at each leaf node (Line 21) using the Laplace mechanism. The

contribution of each data provider is computed according to Eq. (45). Finally, the monetary share of

each data provider is derived according to the Eq. (46).

5.3.7 Quantifying the monetary value

The rationality of quantifying the monetary value is that data providers are the business stake-

holders who collaborate in the data integration process to maximize their profits. The profit generated

by their collaboration is distributed based on each provider’s contribution to information utility and
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Algorithm 4 Monetary Shares for Data Providers using DistDiffGen
Input: Data providers’ attributes valuations V alAttrDPn
Input: Private data tables D1, . . . , Dn, privacy budget ε, and number of specializations h
Output: Monetary shares MShareDPn

1: Initialize Dg with one record containing topmost generalized values in each data provider’s
taxonomy tree;

2: Initialize Markκ to include the topmost value;
3: ε′ ← ε

2(|Anum|+2h) ;

4: Determine the split value for each vnum ∈ ∪Markκ with probability ∝ exp( ε′

2∆uu(D, vnum));
5: Compute the IGScore for ∀v ∈ ∪Markκ;
6: for iter = 1 to h do
7: Determine the winner candidate w by using the DistExp Algorithm [128];
8: if w is local then
9: Specialize w on Dg;

10: Replace w with child(w) in the local copy of ∪Markκ;
11: Instruct all the other participating data providers to specialize and update ∪Markκ;
12: G̃DP i = G̃DP i + IGScore(x);
13: Determine the split value for each new vnum ∈ ∪Markκ with probability ∝

exp( ε′

2∆uu(D, vnum));
14: Compute the IGScore for each new v ∈ ∪Markκ;
15: else
16: Wait for the instruction from the winner data provider;
17: Specialize w and update ∪Markκ using the instruction;
18: G̃DP j = G̃DP j + IGScore(x);
19: end if
20: end for
21: Compute count (CT + Lap(2/ε)) for each leaf node;
22: Compute the contribution of each data provider according to Eq. (45);
23: Compute monetary share of each data provider according to Eq. (46);
24: return MShareDPn

its trustworthiness.

5.3.7.1 Cost of anonymization in integrated data

First, the data providers compute classification accuracy (CA) on the anonymized integrated

data. Then, they quantify the cost of anonymization in integrated data, denoted by CostIntDS , on the

difference between the baseline accuracy (BA) and the classification accuracy (CA). It is computed

as follows:

CostIntDS = TPrcRawDS × (BA− CA) (42)

5.3.7.2 Expected value in integrated data

An expected monetary value in integrated data is what the data providers earn from the infor-

mation utility of classification analysis when trading an anonymized version of integrated data.
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The information utility varies with the valuations of data providers’ attributes and joint privacy

requirements, such as privacy budget ε and specialization level h, for a ε-differential privacy model

in a distributed setup, between the data providers. It is calculated on the difference between the total

monetary value of the raw dataset TMV alueRawDS and the cost of anonymization in integrated

data CostIntDS . It is computed as follows:

EV alueIntDS = TMV alueRawDS − CostIntDS (43)

5.3.7.3 Expected value of an individual data provider

The expected monetary value of an individual data provider, denoted by EV alueIndvDPi , is

determined by the ratio of the number of attributes CntAttrDPi a data provider owns with the total

count of attributes. It is computed as follows:

EV alueIndvDPi = EV alueIntDS ×
CntAttrDP i∑n
i=1CntAttrDP i

(44)

5.3.7.4 Derivation of monetary share

The derivation of a monetary share depends upon the contribution of each data provider and

its trustworthiness. Intuitively, a data provider whose provided data on his attributes result in more

information gain, and whose trust level is higher than the other competitors, can get a proportionally

larger share of the monetary value. The contribution of each data provider DPi is derived from the

expected monetary value EV alueIndvDPi by fairly computing first the accumulative information

gain G̃DP i of each data provider DPi on the anonymized integrated dataset. The information gain

IGScore(x) of the winner candidate w data provider accumulates under the relevant winner w data

provider at each iteration (refer to the Section 5.3.6 for details) for the specified specialization level

h. The contribution of each data provider ContribDP i is calculated using the following equation:

ContribDP i =
G̃DP i∑n
i=1 G̃DP i

× EV alueIndvDPi (45)

Finally, the monetary share of each data provider MShareDPi is derived according to Eq. (30),
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i.e., the aggregated trust score of each data provider, and Eq. (45), i.e., the contribution of each data

provider. Therefore, MShareDPi becomes:

MShareDPi = ContribDP i(1 +
TSDP i∑n
i=1 TSDP i

) (46)

5.4 Limitations

In this section, we discuss how our proposed approach different from secure multi-party compu-

tation (SMPC) [190] and the limitations of our work.

SMPC is a generic cryptographic primitive that enables multiple parties to jointly compute the

intersection of their private data without revealing any additional information to either side [183].

These approaches are suitable for privacy-preserving data mining (PPDM) [117], in which multiple

data custodians compute a function based on their inputs without sharing their data with others. In

this chapter, we focus on privacy-preserving data publishing (PPDP) [61] in a distributed setting,

where the data providers wish to integrate their data with peer data providers over a cloud for better

information utility. However, the data integration in Algorithm 4 necessitates that under the specified

privacy constraints, no data provider should learn any additional information other than necessary

information. One of the limitations of this algorithm is that it guarantees security definition under

the semi-honest adversary model [68]. A detailed analysis of the algorithm is presented in [128],

Section 6.3. It is reasonable to assume that data providers respect the defined protocol as deviating

from the protocol has no direct impact in monetary gain. Besides, if cheating gets detected will lead

to a loss of reputation or business for them. To resist against malicious adversaries, all subprotocols

of the algorithm should be extended to detect deviations from protocols by data providers.

5.5 Comparative analysis and empirical study

In this section, we first provide a comparison of our approach, followed by an empirical study.
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5.5.1 Comparative analysis

We compare our proposed IEB_Trust, an entropy-based trust computation algorithm with the

closely related provenance-based trust method [40]. The provenance-based method computes the

trust scores for data and data providers using similarity functions, but do not consider privacy

protection when evaluating trustworthiness. The fundamental idea of our approach is different. Our

method enables secure trustworthiness assessment and preserves the privacy of the customers’ data

when evaluating the trustworthiness of the participating data providers. For this reason, we are

limiting to the runtime comparison in Fig. 5.3a. We evaluate the performance of our proposed method

on a real-life Adult3 dataset. It contains 45, 222 records with 8 categorical attributes, 6 numerical

attributes, and a binary class attribute Income with two levels, ≤ 50K or > 50K. The distribution

of attributes other than class attribute among 10 data providers is shown in Fig. 5.3b. We generate

10% of data conflicts over randomly chosen attributes. We vary the size of the datasets |Di| from

10K to 50K to study the runtime cost. All experiments are conducted on an Intel Core i7 3.4GHz

PC with 8GB memory.

The running time includes time elapsed in both the initialization phase and the iteration phase.

We observe that the initialization phase of the provenance-based method takes more time to compute

data similarity and data conflict. It has worst-case complexity of O(n2). While the complexity of

our proposed method at the initialization phase is O(CntAttrDPi · |Di| log |Di|). Since each data

provider computes GAJ in a distributed setup, the complexity remains the same in our method. The

iteration phase to compute trust is much faster in both the methods. It takes less than one second to

complete the trust computation. Fig. 5.3a shows that our method is more efficient in running time

over the provenance-based method. Our method is scalable when we need to grow either the number

of attributes, the number of data providers, or both on a dataset.

5.5.2 Empirical study

We first analyze the trustworthiness of each data provider and assess the truthfulness of the

provided data by a trust score metric. Second, we analyze the impact of ε-differential privacy

3Available at: http://archive.ics.uci.edu/ml/datasets/Adult
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(a) Runtime comparison (b) Distribution of attributes

Figure 5.3: Our method improves the runtime efficiency compared to the provenance-based trust
method

requirements along with the aggregated trust score on each data provider’s monetary value. We

evaluate our proposed method, IEB_Trust, with the assumption of having 4 data providers who intend

to verify the correctness of their data before participation in the data mashup. This assumption is

reasonable because we have a limited number of attributes in the dataset to be shared among data

providers.

5.5.2.1 Trust measurement

Our proposed method evaluates the trust of participating data providers based on the following

conditions: (1) A data provider is found as honest and gains a positive score; (2) A data provider is

found as dishonest and is penalized with a negative score; (3) A single data provider of an attribute

that no others own is accepted based on the existing trust score TSDPi ≥ 0 without an increase in

the trust score; and (4) A data provider who does not register for an attribute has no effects on the

trust score.

To demonstrate the effectiveness of our approach, we conduct two cases of experiments that

are independent of each other. This means that for each case data providers hold different sets of

overlapping attributes with their arrival sequences. In each case, we assume γ = 0.5, but it does not

need to be fixed to a specific weight.

Consider the first case with the participating data providers’ attributes and their arrival sequences.
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DP1 7→ A1:st1 , A7:st1 , A8:st1 , A9:st1 , A10:st2 , A11:st1 ; DP2 7→ A2:st2 , A3:st1 , A4:st1 , A5:st2 ,

A7:st2 , A8:st3 , A13:st1 ; DP3 7→ A1:st2 , A4:st2 , A5:st1 , A6:st1 , A8:st2 , A11:st2 , A13:st2 ; and

DP4 7→ A1:st3 , A2:st1 , A5:st3 , A9:st2 , A10:st1 , A11:st3 , A12:st1 . Fig. 5.4a depicts the trust scores

analysis for Case 1 based on the demand of a data consumer on attributes A1, . . . , A13.

It is observed that the DP2 trust score never drops during the verification process in contrast

to the other competing data providers. The flat lines from A2 to A6 at trust score level 0.5, and

A9 to A12 at trust score level 2.5, indicate that those attributes are not submitted by DP1 and DP2,

respectively. This is not always the case; for instance, there are flat lines from A2 to A3 at trust

score level 0.5, A5 to A6 at trust score level 0.5, and A11 to A12 at trust score level 2.0, indicating

that DP2, DP3, and DP4 are the single data providers on those attributes. DP2, DP3, and DP4 are

accepted because they are maintaining an aggregated trust score ≥ 0 at that point of the verification.

However, their trust scores do not increase because they own an attribute that no others own. It is

assumed that DP1 has 5% of missing data on A8 and A11, DP3 has 5% of missing data on A5, and

DP4 has 1% of missing data on A1. They impute missing data by using the kNN imputation method

in order to claim it as original data. Our trust verification approach restricts this dishonest behavior

of data providers; for instance, DP1 at A8 and A11, DP3 at A5, and DP4 at A1, by penalizing them

with negative weight in their trust scores. Fig. 5.5a depicts the aggregated trust scores for Case 1.

DP2 attains the maximum trust score 3.0 in competing with the other data providers, whereas DP1

ends up with the minimum trust score 1.0. There is a tie on aggregated trust scores between DP3

and DP4.

Consider the second case with the participating data providers’ attributes and their arrival

sequences. DP1 7→ A1:st1 , A6:st3 , A7:st1 , A8:st2 , A9:st3 , A10:st2 , A12:st2 ; DP2 7→ A2:st2 ,

A5:st2 , A6:st4 , A7:st2 , A8:st1 , A9:st2 , A11:st1 ; DP3 7→ A3:st1 , A5:st1 , A6:st1 , A8:st3 , A9:st1 ,

A12:st1 , A13:st2 ; and DP4 7→ A2:st1 , A4:st1 , A6:st2 , A9:st4 , A10:st1 , A11:st2 , A13:st1 . Fig. 5.4b

depicts the trust scores analysis for Case 2 based on the demand of a data consumer on attributes

A1, . . . , A13.

It is observed that DP1, DP2, and DP4 maintain their trust scores quite well except for a fall of

0.5 in their trust scores at A9, A5, and A13, respectively. The flat lines from A1 to A5 at trust score

level 0.0, and A3 to A5 at trust score level 0.5, indicate that those attributes are not submitted by
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(a) Case 1 (b) Case 2

Figure 5.4: Trust scores analysis

(a) Case 1 (b) Case 2
Figure 5.5: Aggregated trust scores

DP1 and DP4, except at A1 and A4, respectively. Since DP1 and DP4 are the single data providers

on A1 and A4, their trust scores do not increase. However, they are accepted because they maintain

an aggregated trust score ≥ 0. We observe that DP3 is inconsistent in maintaining its trust level

throughout the verification process. It is worthwhile to note that our trust verification process restricts

the arbitrary behavior of dishonest DP1 and DP3 to undermine the trust levels of DP2 and DP4.

Fig. 5.5b depicts the aggregated trust scores for Case 2. DP2 attains the maximum trust score 2.5 in

competing with the other data providers, whereas DP3 ends up with a negative trust score of -1.0.

This results in the rejection of DP3 from the final selection in the data mashup.
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5.5.2.2 Impact of privacy protection and trust score on DP’s monetary value

In this section, we analyze the impact of ε-differential privacy requirements along with the

aggregated trust score on each data provider’s monetary value. Recall from Section 5.3.5 that

both revenue per demand Revi and demand rate Qj are enumerated in descending order. Suppose

Revi = {$0.6, $0.5, $0.4, $0.3} and Qj = {9, 8, 7, 6} for data providers DP1, DP2, DP3, and

DP4, respectively. The inputs for Revi and Qj do not need to be fixed to a particular value, it is just

assumed here for simplicity.

Case 1 Table 5.4.(a) shows the selection of attributes from each accepted data provider. Baseline

accuracy (BA) on the integrated data of accepted data providers is 85.3% using the secure multiple

party classifier [49] without disclosing their raw data. We vertically partition the Adult dataset

into four partitions V P1, V P2, V P3, and V P4 for data providers DP1, DP2, DP3, and DP4,

respectively. Further, we split the dataset into 30, 162, and 15, 060 records for the training and

testing set, respectively. The valuation of each data provider’s attribute is $0.47, $0.41, $0.36, and

$0.30, representing V alAttrDP1 , V alAttrDP2 , V alAttrDP3 , and V alAttrDP4 by Eq. (37). The

attribute count of each data provider is CntAttrDP1 = 3, CntAttrDP2 = 4, CntAttrDP3 = 3, and

CntAttrDP4 = 3. The size of the dataset for each data provider |Di| = 45, 222.

Table 5.4: Selection of attributes from data providers

DP1 DP2 DP3 DP4

A1 A5 A8 A2

A9 A4 A6 A12

A7 A13 A11 A10

A3

(a) Case 1

DP1 DP2 DP4

A1 A8 A2

A7 A9 A4

A12 A11 A10

A6

(b) Case 2

Fig. 5.6 depicts the impact of privacy protection and trust scores on DP1, DP2, DP3, and DP4’s

monetary value. ε-differential privacy is enforced with privacy parameters ε = 0.2, 0.4, 0.6, and 0.8

and specialization levels 3 ≤ h ≤ 19.

Fig. 5.6a depicts the impact on DP1, DP2, DP3, and DP4’s monetary value when the threshold

is ε = 0.2. We observe that DP4 attains the highest monetary share due to more information utility

and its aggregated trust score. When specialization level h increases from 3 to 7 and 11 to 15,
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(a) ε = 0.2 (b) ε = 0.4

(c) ε = 0.6 (d) ε = 0.8

Figure 5.6: Impact of ε-differential privacy requirements and Trust scores on DP1, DP2, DP3, and
DP4 monetary value (Case 1)

DP1, DP2, and DP3 get increases in their monetary shares, while DP4’s monetary share falls by

approximately $11K, though still achieving a higher share than other data providers. Initially, DP2

has no monetary share when h = 3, but it increases with the increase in the specialization level h

except when h = 19. DP1, DP2, and DP3’s monetary shares become closer to each other when

h = 11.

Fig. 5.6b depicts the impact on DP1, DP2, DP3, and DP4’s monetary value when the threshold

is ε = 0.4. We observe that DP4 attains the highest monetary share because of greater information

utility and its aggregated trust score. Though DP1 does not get the highest share, its monetary

share becomes closer to DP4 at h = 11, 15, and 19 with the difference of approximately $3K to

$5K. Interestingly, DP4’s monetary share exhibits non-increasing monotonicity with the increase in

specialization level h, while DP1’s monetary share increases with the increase in specialization level
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h except when h = 19. We notice that DP3 has no monetary share when h = 7 because of a lack of

information utility for classification analysis. The trust score does not add any monetary value if a

data provider fails to contribute to information utility. The trend on DP2 and DP3’s monetary share

is not obvious with the increase in h.

Fig. 5.6c depicts the impact on DP1, DP2, DP3, and DP4’s monetary value when the threshold

is ε = 0.6. We observe that DP4 gains the maximum value of monetary share when h = 3 and

h = 7, and DP1 gains the maximum value of monetary share when h = 11 and h = 15, whereas

DP2 gains the maximum value of monetary share when h = 19. This is because it has greater

information utility in competing with the other data providers at the indicated levels of specialization.

We observe that DP2’s monetary share increases monotonically as the increase in specialization

level h, whereas DP4’s monetary share falls with the increase in specialization level h, except when

h = 19.

Fig. 5.6d depicts the impact on DP1, DP2, DP3, and DP4’s monetary value when the threshold

is ε = 0.8. We observe that DP4 achieves the highest monetary share because of greater information

utility and its aggregated trust score. We observe that DP1’s monetary share generally increases

as the specialization level h increases, whereas DP4’s monetary share falls with the increase in

specialization level h, except when h = 11. We notice that when h = 15, all data providers’

monetary shares become closer, with a difference of approximately $4K.

Case 2 Table 5.4.(b) shows the selection of attributes from each accepted data provider. Baseline

accuracy (BA) on the integrated data of accepted data providers is 85.4%, using the secure multiple

party classifier [49] without disclosing their raw data. We vertically partition the Adult dataset into

three partitions V P1, V P2, and V P3 for data providers DP1, DP2, and DP4, respectively. Further,

we split the dataset into 30, 162, and 15, 060 records for the training and testing set, respectively.

Since DP3 has dropped from the list of accepted data providers, DP4 acquires the position of

DP3. Now, the valuation of each data provider’s attribute is $0.47, $0.41, and $0.36, representing

V alAttrDP1 , V alAttrDP2 , and V alAttrDP4 by Eq. (37). The attribute count of each data provider

is CntAttrDP1 = 3, CntAttrDP2 = 3, and CntAttrDP4 = 4. The size of dataset for each data

provider |Di| = 45, 222.

Fig. 5.7 depicts the impact of privacy protection and trust scores on DP1, DP2, and DP4’s
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(a) ε = 0.2 (b) ε = 0.4

(c) ε = 0.6 (d) ε = 0.8

Figure 5.7: Impact of ε-differential privacy requirements and Trust scores on DP1, DP2, and DP4

monetary value (Case 2)

monetary value. ε-differential privacy is enforced with privacy parameters ε = 0.2, 0.4, 0.6, and 0.8,

and specialization levels 3 ≤ h ≤ 19.

Fig. 5.7a depicts the impact on DP1, DP2, and DP4’s monetary value when the threshold is

ε = 0.2. We observe that DP4 attains the highest monetary share because of higher information

utility and its trust level, except when h = 19. We observe that DP1’s monetary share increases as

the specialization level h increases, except when h = 7, whereas DP4’s monetary share generally

falls with the increase in specialization level h except when h = 15. DP1 gains the maximum value

of approximately $32K of his monetary share when h = 19.

Fig. 5.7b depicts the impact on DP1, DP2, and DP4’s monetary value when the threshold is

ε = 0.4. We observe that DP4 attains the highest monetary share because of higher information

utility and its trust level, except when h = 19. The trend on DP1, DP2, and DP4’s monetary

share is not obvious with the increase in specialization level h. DP2 gains the maximum value of
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approximately $33K of his monetary share when h = 19.

Fig. 5.7c depicts the impact on DP1, DP2, and DP4’s monetary value when the threshold is

ε = 0.6. We observe that DP4 achieves the highest monetary share because of higher information

utility and its trust level, except when h = 15. DP4’s monetary share drops sharply when h increases

from 3 to 7 and 11 to 15, while DP1 and DP2 have a significant increase in their monetary shares

with this increase in h. DP2 gains the maximum value of approximately $29K of monetary share

when h = 15.

Fig. 5.7d depicts the impact on DP1, DP2, and DP4’s monetary value when the threshold is

ε = 0.8. We observe that DP4 gains the maximum value of monetary share when h = 3, 7, and 11,

whereas DP1 gains the maximum value of monetary share when h = 15 and 19. This is because

they have more information utility in competing with the other data providers at the indicated levels

of specializations. DP2’s monetary share generally increases as the increase in specialization level h,

except when h = 15. DP1 and DP4 do not exhibit monotonicity with the increase in h.

5.6 Summary

In this chapter, we propose a novel entropy-based trust computation algorithm to verify the

correctness of data from untrusted multiple data providers who own overlapping attributes over

the same set of records. We achieve three main benefits in delegating the verification role to the

semi-trusted cloud service provider. First, our method ensures that the cloud service provider

cannot derive customers’ private data from the information collected during the verification process.

Second, the overhead of computation on the cloud server is also reduced because only an encrypted

information gain message and its keyed hash are exchanged between a data provider and the cloud

server, instead of exchanging encrypted individual data records during the verification process. Third,

it also reduces the burden on data consumers to determine which data providers can serve their

demands on requested attributes and what their attained trust scores are. Furthermore, we evaluate the

robustness of our approach when a data provider employs machine learning method for imputation

of missing values on its data. There is no significant difference in perspective to the performance of

the imputation method. It is conditional to what proportion of data is missing and whether the data
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contains repeated patterns. If the prediction of a missing data happens to be as precise data, then it

will be considered as true data. We incorporate the VCG auction mechanism to determine the pricing

on data providers’ attributes. It maximizes the total valuation obtained by data providers since there

is no incentive to lie or deviate from truthful reporting. From the perspective of privacy protection,

the accepted data providers as a result of trust computation set up their joint privacy requirements

for the data mashup. During the data mashup process, every data provider competes with the other

participating data providers to produce more data utility. It is evident from the experiments that an

accepted data provider whose data attributes result in more information gain, and whose trust level is

higher than the other competitors, can get a proportionally larger share of the monetary value.
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Chapter 6

Differentially Private Release of

Heterogeneous Network for Healthcare

Data

6.1 Introduction

In the past decade, heterogeneous information networks (HINs) have gained increasing attention

in various application domains such as social media, communications, energy, and health informatics,

mainly due to its ubiquitousness and capability of representing rich semantics [151]. Many complex

networks are modeled as graphs, where entities are described by nodes and their relationships

are represented by edges. Currently, databases have evolved in order to handle large networks of

connected data. In this chapter, we model a complex de-identified healthcare dataset including

patients’ medical histories, medications, laboratory tests, and demographics, using a heterogeneous

information network that consists of multi-type entities and their multi-type relationships. A network

schema of a heterogeneous health information network (HHIN) is illustrated in Figure 6.1, which is

a graphical representation of real-life health-related data. In the illustrated network schema, Patient,

Disease, Medication, and Lab Test are entities, whereas contracts, uses, and undergoes represent

relationships between entities. We use the terms network and graph interchangeably.
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Figure 6.1: Network schema

Figure 6.2 provides an overview of privacy-preserving data publishing of HHIN. In the presented

scenario a health information custodian (HIC) collects health-related data from multiple data sources

(where a data source is denoted by DS in the figure). The collected data from all sources pertains

to the same set of patients and is maintained in a single repository. The fusion of all the collected

data results in a typical heterogeneous network. The goal of HIC is to publish the collected data to a

data recipient for data analysis without compromising the patients’ privacy. To address this real-life

problem for health-network data and to bring additive advantages to HIC by properly balancing

privacy and utility requirements, we propose a method that converts de-identified health network

data into a differentially private version.

It has been a common practice by the HICs to maintain health-related data in central storage to

facilitate administrative operations, improve healthcare services, and support medical research [84].

Health data contains sensitive information about patients, and HICs must ensure the protection of

patients’ private information during the collection, use, and release of health data as mandated by

law [73]. Many health-service providers follow the practice of obtaining patients’ consent when

sharing their health data [94, 127]. However, HICs have faced increasing privacy breaches of

different natures [7, 8, 94] due to negligence of administrative employees, compliance failures, and

the deployment of weak de-identification methods [23]. Data sharing carries mutual benefits to both

the HIC and the data recipient, but it comes with conflicting requirements on data privacy and data

utility. To bridge the gap between these two conflicting requirements, several privacy models were

proposed in the literature for network or graph anonymization. These models can be apprehended

into two types: syntactic and semantic models.
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Figure 6.2: Privacy-preserving health network data publishing

There is a line of research [20, 119, 191, 192] based on syntactic privacy models that focuses on

preserving structural information in networks. The works in [119, 191] prevent node re-identification,

whereas some other works [20, 38, 192] focus on protecting against both node re-identification

and edge disclosure in the presence of structural background knowledge of an adversary. Most of

these works focus on undirected networks. It is not a good practice to utilize the same methods for

anonymizing directed graphs. Generally, if a directed network is anonymized under syntactic-based

models without considering the direction of edges it may be prone to re-identification attacks [34],

and it also causes a loss of information utility because of the structural properties of the network.

Among all privacy models, the works of [20, 38] are relatively better for privacy protection. They

both are rooted in k-isomorphism. Chen et al. [37] show that an adversary with moderate back-

ground knowledge can identify certain links among nodes on a k-isomorphic graph [38] due to its

deterministic nature. The work in [20] provides (k, δ)-privacy to resist against k-core attacks. It is

also scalable to massive network data, but its application is limited to homogeneous networks, where

nodes and edges are to be of a single type.

Another line of research [33, 37, 42, 76, 92, 173] applies differential privacy (DP) for anonymiz-

ing network data. It is a semantic model that provides strong privacy guarantees to an individual

independently of an adversary’s background knowledge [50]. The two frameworks, namely in-

teractive and non-interactive, are mainly discussed regarding utilization of the privacy budget

ε [37, 50, 185]. The primary difference is that in the interactive framework the data custodian holds

the raw network data, and a data analyst submits a set of queries in real time, for which the data

custodian provides differentially private answers. Each query would utilize a fraction of ε to produce

a noisy answer. When the entire ε has been consumed, a data analyst would not be able to get the
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answer by querying the database. On the other hand, in the non-interactive framework, the data

custodian first anonymizes its raw network data by utilizing the entire privacy budget. Later, the

anonymous data releases to the data analyst, who can perform an analysis without any limitations on

the data usage. This approach, widely known as privacy-preserving data publishing (PPDP) [61], is

more appropriate in many real-life network data-sharing scenarios because of the flexibility for a

data analyst to perform an analysis without specifying a target analysis. Therefore, in this chapter we

focus on the non-interactive framework for network data publishing.

The intuition of differential privacy is that individual information should not be revealed from

the output of the analysis in the anonymized data whether or not the individual opted in to be part of

the database. Node-differential privacy [33, 42, 92] and edge-differential privacy [37, 76, 173] are

the most common formulations for network data anonymization in the literature. In node-DP, two

graphs are neighboring graphs if they differ by at most one node and, by extension, all its edges. In

edge-DP, two graphs are neighboring graphs if they differ by at most one edge. In this chapter we

follow the formulation of edge-differential privacy to tackle the problem of protecting sensitive links

of a patient in the heterogeneous health network. We focus on preventing the disclosure of sensitive

relationships between patient nodes and non-patient nodes from adversarial inbound and outbound

privacy attacks.

Compared with existing work on edge-DP [37], our solution to the problem is different in several

aspects. First, in contrast to homogeneous network solutions, our solution aims to protect sensitive

links of an individual in a heterogeneous network that is characterized by having multiple types

of nodes and edges. Second, our proposed solution takes the direction of edges into account to

maintain the structural properties of the network. Third, our solution extracts the network structural

properties without performing vertex labeling [37] (which is required in order to form dense regions

for effective anonymization) on an input network; thus, our solution is not sensitive to the density of

the input network. Finally, the underlying procedure for anonymization is also different. Our solution

comprises two phases, where each phase provides both indegree and outdegree protection for the

input network. The two phases integrate the exponential mechanism that uses the degree-centrality

function, which yields a real-valued score. For an input network, the first phase protects vulnerable

nodes by picking nodes that are prone to adversarial attacks due to having fewer incoming or outgoing
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connections. In the second phase, we preserve information utility by choosing nodes having higher

scores and connecting them to the nodes that were picked in the first phase to protect their inbound

and outbound connections.

Contributions. This is the first edge-differentially private, non-interactive framework providing a

practical solution to health information custodians (HICs) who wish to release real-life heterogeneous

health-network data. Our contributions are summarized as follows:

• We model complex, de-identified healthcare data as a heterogeneous information network that

consists of multi-type entities along with their directional relationships. Existing solutions [37,

76, 173] consider nodes and edges to each be of a single type and edges to be bidirectional

(or undirected). Thus, these solutions cannot maintain important semantics and structural

information of the heterogeneous network.

• We propose DiffHetNet, a differentially private method to protect patients’ sensitive links in a

health network. Compared with the anonymization method for undirected networks in [37],

our method offers better protection against an adversary’s inbound and outbound attacks

for learning the existence of a patient’s sensitive information. Experimental results suggest

that our method generally yields less information loss and is significantly more efficient in

terms of runtime when compared with related anonymization methods from the literature.

Furthermore, our method effectively extracts the structural properties of an input network, and

it is not sensitive to the density of edges in the network. Our experiments demonstrate the

density-insensitivity feature of our method.

• We evaluate the performance of our proposed method with respect to information utility and

efficiency using different real-life network datasets. In addition, we demonstrate that our

approach is scalable to large network datasets.

The rest of this chapter is organized as follows. In Section 6.2, we define the problem. In

Section 6.3, we present our proposed differentially private algorithm. In Section 6.4, we compare our

proposed method with the existing methods and evaluate the performance in terms of information

utility, efficiency, and scalability. Finally, we provide the summary in Section 6.5.
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6.2 Problem definition

Suppose a HIC wants to publish collected healthcare-network data in a privacy-preserving manner

to a data recipient or a data miner for gaining valuable insights, predicting outbreaks of epidemics,

preventing chronic diseases, reducing the cost of healthcare delivery, and improving outcomes for

patients, etc. The raw data are fused across multiple data sources, resulting in a typical heterogeneous

network, G = (V,E), with a node type-mapping function ϕ : V → E and an edge type-mapping

function ψ : E → R. Each node v ∈ V belongs to one particular node type in the node type

set E : ϕ(v) ∈ E , and each edge e ∈ E belongs to a particular relation type in the relation type

set R : ψ(e) ∈ R. If two edges belong to the same relation type, the two edges share the same

starting node type as well as the ending node type. Figure 6.1 illustrates the network schema of

a heterogeneous health information network (HHIN), where multiple types of nodes |E| > 1 and

multiple types of relations |R| > 1 exist in the network. We illustrate the problem in the following

example.

Example 7. Consider a heterogeneous directed health network illustrated in Fig. 6.3. In this

example, Patient (P ), Disease (D), Medication (M), and Lab Test (LT ) are nodes of different types

in the node type set E , whereas contracts (L(1)), uses (L(2)), and undergoes (L(3)) are the types of

relationships between nodes in the relation type set R. The number of nodes types |E| = 4, and

types of relationships |R| = 3. The total number of nodes |V | = 14, and edges |E| = 26. Below we

discuss potential linkage attacks on a patient’s privacy.

In an indegree linkage attack, an adversary attempts to link structural background knowledge

in the context of incoming connections to a node. For a given two types of nodes U , V and their

relation L(i) in the relation type setR, where u ∈ U and v ∈ V , the set of incoming connections to vi

from ui with relation-type L(i) are the possible candidates for an indegree linkage. In this example,

P2 undergoes LT1, LT2, and LT3. It is safe for P2 because the patient has had multiple lab tests.

However, among the lab tests, LT3 is taken only by P2, and none are taken by the other patients.

Thus, there is a change of indegree linkage attack.

In an outdegree linkage attack, an adversary attempts to link structural background knowledge

in the context of outgoing connections from a node. For a given two types of nodes U , V and their
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Figure 6.3: An example of original health network

relation L(i) in the relation type set R, where u ∈ U and v ∈ V , the set of outgoing connections

from ui to vi with relation-type L(i) are the possible candidates for an outdegree linkage. In this

example, P1, P2, and P3 contract D2. In the context of indegree linkage, D2 is safe because

multiple patients have contracted it, so an adversary may not be confident in relation to which patient

contracted disease D2. However, among the patients, P3 is only contracted with D2 and none of the

other diseases. Thus, there is a chance of outdegree linkage attack.

In this chapter, we propose a method to achieve edge-differential privacy with the goal of

preventing the aforementioned linkage attacks in a heterogeneous network while releasing the data to

a third party for research purposes. It is different from the work based on edge-differential privacy

under correlation [37] for a homogeneous undirected network as detailed in previous sections. We

first present the definition of edge-differential privacy for heterogeneous networks, followed by our

problem statement.

Definition 6.2.1. (Edge-differential privacy of heterogeneous networks). Given a heterogeneous

graph G1 = (V1, E1), where V1 or E1 are of multiple types (as per Definition 2.5.2), a heterogeneous
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graph G2 = (V2, E2) is a neighboring graph to G1 if the difference between G1 and G2 is at most

one edge (i.e., |V1 ⊕ V2|+ |E1 ⊕E2| = 1). A sanitization mechanismM provides edge-differential

privacy if for any two neighboring heterogeneous graphs, and for any possible sanitized graph Ĝ, we

have

Pr[M(G1) = Ĝ] ≤ eε × Pr[M(G2) = Ĝ].

The Laplace mechanism [50] and exponential mechanism [122] are the two most common

mechanisms for achieving ε-differential privacy. These mechanisms depend on the privacy parameter

ε and the sensitivity [50] of a function that maps the input database to real values. The sensitivity of

the function f is defined as follows:

Definition 6.2.2 (Sensitivity). For any function f : G→ Rd, the sensitivity of f is

∆f = max
G,G′
||f(G)− f(G′)||1 (47)

for all G,G′ differing at most by one edge or node (including all its adjacent edges).

Laplace mechanism was introduced by Dwork et al. [50]. It is appropriate when the output of

function f is a real value, and f should return a noisy answer to preserve privacy. The noise is

calibrated based on the privacy parameter ε and the sensitivity of the utility function ∆f . Formally,

the Laplace mechanism takes as inputs a network dataset G, the privacy parameter ε, and a function f

and outputs ˆf(G) = f(G) + Lap(λ), where Lap(λ) is a noise drawn from the Laplace distribution

with probability density function Pr(x|λ) = 1
2λexp(−|x|/λ), where λ = ∆f

ε . The variance of this

distribution is 2λ2, and the mean is 0.

Theorem 1. [50] For any function f : G→ Rd, the algorithmM that adds independently generated

noise with distribution Lap(∆f/ε) to each of the d outputs satisfies ε-differential privacy.

Exponential mechanism was proposed by McSherry and Talwar [122]. It is appropriate when it

is desirable to choose the best response, because adding noise directly to the count can destroy its

value. Given an arbitrary range T , the exponential mechanism is defined with respect to a utility

function u : (G× T )→ R that assigns a real-valued score to every output t ∈ T , where a higher
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score means better utility. The exponential mechanism induces a probability distribution over the

range T and then samples an output t.

Theorem 2. [122] Given a utility function u : (G × T ) → R with sensitivity ∆u = max∀t,G,G′

|u(G, t) − u(G′, t)|, an algorithm M that chooses an output t with probability proportional to

exp( εu(G,t)
2∆u ) satisfies ε-differential privacy.

Sequential composition and parallel composition are the two important composition properties

of differential privacy [121]. The first property stipulates that if a sequence of differentially private

computations take place in isolation on the same input data, then the entire sequence gives the accu-

mulated privacy guarantee. The second property stipulates that if differentially private computations

take place on each chunk separately over the split dataset, where chunks are disjoint, then the privacy

cost does not accumulate, but it depends only on the worst guarantee of all computations.

Theorem 3 (Sequential composition [121]). Let eachMi provide εi-differential privacy. A sequence

ofMi(G) over the network G provides (
∑

i εi)-differential privacy.

Theorem 4 (Parallel composition [121]). Let eachMi provide ε-differential privacy. A sequence of

Mi(Gi) over a set of disjoint networks Gi provides ε-differential privacy.

Problem (Edge-differential privacy in HHIN). Given a heterogeneous health information net-

work G = (V,E), where each node v ∈ V belongs to one particular node type in the node type set

E , and each edge e ∈ E belongs to a particular relation type in the relation type set R, nodes are

of multiple types |E| > 1 and relationships are of multiple types |R| > 1, and privacy budget ε, the

goal is two-fold:

• To publish an anonymized version of network G, denoted by G′, that protects patients’ privacy

by preventing adversarial inference on each incoming and outgoing edge e ∈ E in accordance

with edge-differential privacy.

• To minimize the impact of anonymization on all edges E in G by reducing the errors generated

by the mean absolute error, the average relative error, and the Kullback-Leibler divergence, as

defined in Eqs. 9, 10, and 11, respectively.
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6.3 Proposed solution

In this section, we present an edge-based differentially private solution to protect the sensitive

links of a patient from adversarial inbound and outbound attacks in a heterogeneous health network,

while minimizing information loss inflicted on edges. Our solution addresses the concern of a

health information custodian (HIC) on preserving privacy and the concern of a data recipient on

information utility. Section 6.3.1 presents an overview of our proposed DiffHetNet, an algorithm

based on edge-differential privacy for anonymizing heterogeneous network data. Section 6.3.2

presents the operations for exploring subgraphs favoring lower scores when selecting candidate

nodes. Section 6.3.3 presents the operations for generating noisy counts. Section 6.3.4 presents

the operations for exploring subgraphs favoring higher scores when selecting candidate nodes.

Section 6.3.5 presents the process of edge perturbation in the network. Section 6.3.6 provides privacy

analysis, and Section 6.3.7 provides utility analysis of our proposed algorithm.

6.3.1 Overview

We first provide a high-level description of our proposed method in Algorithm 5, followed by

detailed discussions of each step.

6.3.1.1 High-level description

We study the problem of protecting patients’ privacy when sharing healthcare data. We propose

a privacy-preserving solution to this problem. However, our solution is also applicable to other

network-data publishing scenarios sharing the same privacy and utility concerns. Our proposed

solution is based on edge-differential privacy to anonymize a heterogeneous network. We impose

edge-differential privacy on the relationships between patient nodes and non-patient nodes to prevent

an adversary’s indegree and outdegree linkage attacks, i.e., identifying sensitive relationships. We

provide an illustration of privacy attacks in Example 7. Compared with existing works that preserve

privacy in homogeneous networks [37, 76, 173], our proposed solution not only considers different

types of nodes and edges in a given network, but it also takes into account the direction of edges

in the network. Our solution takes a heterogeneous graph G and a privacy budget ε as inputs and
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outputs a differentially private graph G′.

We observe that nodes with a low number of directed edges are more vulnerable to adversary

linkage attacks than nodes with a high number of edges. Our aim is to identify such nodes, i.e., nodes

with a low number of directed edges. To do so, we consider the following two cases based on the

direction of edges: indegree linkage to identify patients, and outdegree linkage with respect to the

adversary’s confidence about a target patient’s relationship. In the first case, the identified node is a

non-patient node, e.g., a disease or lab test. Consequently, the privacy of patients connected to such a

node is at risk because very few patients have a relationship with this node, e.g., contracted a disease

or received a lab test. In the second case, the identified node is a patient node. The privacy of the

patient node is at risk because the patient’s node is connected to only a few other nodes. A patient

node with a low number of (outdegree) edges results in a high level of an attacker’s confidence with

respect to a particular relationship associated with this node, e.g., a patient contracting a disease.

Based on the above observation, we want to protect vulnerable nodes from identification attacks

by connecting these nodes to less vulnerable ones. Our proposed solution accomplishes this goal

across two phases. The first phase searches the network and identifies nodes with a low number

of directed edges. The second phase preserves information utility by choosing nodes with a high

number of directed edges, since these nodes are less vulnerable to identification attacks. After that,

the second phase connects the nodes picked in this phase to the nodes that were picked in the first

phase to protect their inbound and outbound connections.

6.3.1.2 Algorithm

Algorithm 5 presents the anonymization operations, which we split into two phases. Before

describing the lines of Algorithm 5, we explain how the input privacy budget ε is distributed

throughout the algorithm. The input privacy budget ε is divided into three portions in Line 1. The first

portion, denoted by εslo, is consumed when exploring lower-scoring candidate nodes. The second

portion, denoted by εnc, is utilized when generating a noisy count for each candidate node. The

third portion, denoted by εshi, is consumed when determining higher-scoring candidate nodes. εslo

is allocated to the first phase, and εnc and εshi are allocated to the second phase. We divide ε such

that the summation of εslo and εshi constitutes the majority of ε, and εnc is less than εslo and εshi,
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Algorithm 5 DiffHetNet Algorithm
Input: Original network G = (V,E), privacy budget ε
Output: Anonymous differentially private network G′

1: Allocation of privacy budget ε ← εslo + εnc + εshi; /* for indegree and outdegree of directed
network*/

2: Set αb = dir; // input direction
3: Lower-scoring candidates Cαblo ← exploreSGsInOutDegFavLowScores(αb, ε

αb
slo, G);

4: for ci ∈ Cαblo do
5: εαbnc

′ ← ε
αb
nc

|Cαblo |
;

6: Noisy count Ncαb ← genNoisyCount(ci, αb, ε
αb
nc
′, G);

7: Higher-scoring candidatesCαbhi ← findCandsFavHighScoresProtectInOutDeg(Ncαb , ci, αb, ε
αb
shi, G);

8: Anonymized sub-network G̃αb ← edgePerturbation(∀Cαbhi , Nc
αb , ci, αb, G);

9: end for
10: Generate G′ from G̃αb ;
11: return G′;

respectively. The reason for allocating a larger portion of ε to εslo (phase 1) is because Algorithm 5

in Line 3 will attempt to discover vulnerable candidate nodes (due to having fewer incoming or

outgoing connections). In order to accurately discover nodes that are more prone to adversarial

attacks, differential privacy necessitates allocating a larger portion of privacy budget. Similarly, the

reason for allocating a larger portion of the budget to εshi (phase 2) in Line 5 is because we intend to

preserve more information utility by choosing candidates that are less vulnerable to identification

attacks.

Algorithm 5 in Line 3 explores subgraphs in the input network G and picks candidate nodes

having lower scores, denoted by Cαblo . The score for each candidate is computed using the degree-

centrality function that yields a real-valued score. We design a procedure that uses the exponential

mechanism to favor candidates with lower scores. Next, we generate a noisy count, denoted by

Ncαb , that represents the number of newly-generated edges to be added to each node ci ∈ Cαblo by

using the Laplace mechanism in Line 6. Based on the generated noisy count, Line 7 scans the input

network G and uses the exponential mechanism to pick nodes favoring higher scores, denoted by

Cαbhi . Subsequently, we protect the corresponding inbound and outbound connections of each node

ci by adding edges from Cαbhi , or removing corresponding edges, to have an anonymized version of

sub-network G̃αb in Line 8. Finally, the differentially private sub-networks of both indegree and

outdegree are combined to form an anonymized network G′.
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6.3.2 Selecting candidates favoring lower scores

The rationality of exploring subgraphs in the heterogeneous network G is that nodes having

fewer incoming or outgoing connections are more prone to adversarial attacks. Procedure 1 attempts

to discover vulnerable candidate nodes in the network. It takes a heterogeneous network G, a privacy

budget εαbslo, and the type of degree direction αb = {in|out} as inputs, and it outputs a list of candidate

nodes having lower scores, denoted by Cαblo .

Line 1 allocates a portion of the given privacy budget to each candidate by dividing the given

budget from the total number of nodes under a specified direction. Line 4 computes the score for

each node v using the normalized degree-centrality metric for a directed graph that yields a real-

valued score for each node v under the node type Vτ i in the node type set E and the corresponding

relation-type L(i) in the relation type setR. It is defined as follows:

CD(G, v, Lαb(i)) =
dαb(v)v∈Vτi ,L

αb
(i)
∈R

|V | − 1
(48)

Example 8. We continue from Example 7. Consider the type of degree direction αb = {out}, i.e.,

representing the outgoing connections, the type of node Vτ i = {P}, i.e., representing a patient’s node

label, and the relation-type L(1) = {contracts}, i.e., representing the relationship to the adjacent

node(s) of type Vτ j = {D}, i.e., representing a disease’s node label, in Fig. 6.3. The normalized

degree-centrality scores of nodes {P1, P2, P3} = {0.23, 0.23, 0.08} by Eq. (48), whereas the

number of outgoing connections dout of nodes {P1, P2, P3} = {3, 3, 1}.

DiffHetNet makes novel use of the exponential mechanism in Line 5. In this step, the exponential

mechanism favors lower scores to choose a candidate node v from a set of candidate nodes under

the node type Vτ i . It is presented in Theorem 5. The sensitivity of ∆u is 1, because the addition or

removal of a single edge in G would change CD(G, v, Lαb(i)) by at most 1.

Theorem 5. Choosing a candidate score from a set of candidate scores satisfies ε′-differential

privacy.

Proof. Let Candi be the set of candidate scores from which a single score is to be chosen for lower
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Procedure 1 exploreSGsInOutDegFavLowScores Procedure
Input: Original network G = (V,E)
Input: Privacy budget εαbslo, direction αb
Output: Lower-scoring candidates Cαblo

1: εαbslo
′ ← ε

αb
slo

|V αb
τi
| ;

2: Cαblo ← ∅;
3: for each pair of neighboring vertices vi, vj ∈ V do
4: Compute the score for every v ∈ Vτ i according to Eq. (48);

5: Select v ∈ Vτ i with probability ∝ exp(
ε
αb
slo

′

2∆u · u(G, v, Lαb(i))) favoring lower score;
6: Add v to the list Cαblo ;
7: end for
8: return Cαblo ;

scores. Our algorithm selects a candidate score vi ∈ Candi with the following probability:

exp(
ε
αb
slo

′

2∆u · u(G, vi, L
αb
(i)))∑

v∈Candi exp(
ε
αb
slo

′

2∆u · u(G, v, Lαb(i)))
(49)

where u(G, vi, L
αb
(i)) is a score computed from a utility function according to Eq. (48), and ∆u is

the sensitivity of the utility function u. According to Theorem 2, selecting a score with probability

proportional to exp( ε
′u(G,t)
2∆u ) satisfies ε′-differential privacy.

The scores are inverted for the exponential mechanism to favor lower-scoring candidates. At

each iteration, the lower-scoring candidate selected by the exponential mechanism is added to the list

Cαblo in Line 6. This process runs until equilibrium is reached or there are no more lower-scoring

candidates in the network. Finally, the list of selected lower-scoring candidate nodes is returned by

this procedure.

6.3.3 Generating noisy counts

After obtaining the list of lower-scoring candidate nodes Cαblo , Procedure 2 generates a noisy

count for each candidate ci in the list. A portion of the given budget, denoted by εαbnc
′, is allocated

to each candidate by dividing it from the total number of lower-scoring candidate nodes. Line

1 generates a noisy count Ncαb from the Laplace distribution Lap(1/εαbnc
′). It can be a positive

or negative value. The noise count Ncαb of a selected candidate ci is calibrated according to the

potential connecting candidate c′j of node type Vτ j by considering the set of all possible candidates
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Procedure 2 genNoisyCount Procedure
Input: Original network G = (V,E)
Input: Privacy budget εαbnc

′

Input: Selected candidate ci, direction αb
Output: Noisy count Ncαb

1: Ncαb ← Lap(1/εαbnc
′);

2: if Ncαb < 0 then
3: Ncαb = 0;
4: end if
5: if Ncαb ≥ 1 then
6: if ci ∈ Vτ i then
7: Ncαb = Ncαb mod (ln |UV

τj
|);

8: end if
9: end if

10: return Ncαb ;

that can exist in any network dataset. Formally, it is defined as follows:

Ncαb = Ncαb mod (ln |UV
τj
|) (50)

where |UV
τj
| represents the size of the universal set of all possible nodes under the given node

type that can exist in any network data.

6.3.4 Selecting candidates favoring higher scores

The rationality of selecting nodes with a high number of directed edges in the heterogeneous

network G is to preserve information utility. These nodes are less vulnerable to identification attacks,

and drawing edges from them have a low impact on the overall structure of the network. The

composition of a heterogeneous network entails nodes and edges to be of multiple types, so the

centrality scores for the influential nodes pose different semantics according to their respective types

and the incoming and outgoing directions of their edges.

Procedure 3 takes the network G, a privacy budget εαbshi, a noisy count Ncαb , a candidate node

ci, and the type of degree direction αb as inputs and outputs a list of candidate nodes having higher

scores, denoted by Cαbhi . Line 1 allocates a portion of the given privacy budget to each candidate by

dividing the given budget from the product of the total number of lower-scoring candidate nodes and

the noisy count. Line 5 computes the score for each node v using the normalized degree-centrality

metric for a directed graph by Eq. (51) that yields a real-valued score for each node v under the node
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Procedure 3 findCandsFavHighScoresProtectInOutDeg Procedure
Input: Original network G = (V,E)
Input: Privacy budget εαbshi, Noisy count Ncαb

Input: Selected candidate ci, direction αb
Output: Higher-scoring candidates Cαbhi

1: εαbshi
′ ← ε

αb
shi

|Cαblo |·|Nc
αb | ;

2: Cαbhi ← ∅;
3: while |ci| < |Ncαb | do
4: for each pair of neighboring vertices vi, vj ∈ V do
5: Compute the score for every v ∈ Vτ j according to Eq. (51);

6: Select v ∈ Vτ j with probability ∝ exp(
ε
αb
shi

′

2∆u · u(G, v, α̃b)) favoring higher score;
7: Add v to the list Cαbhi ;
8: end for
9: end while

10: return Cαbhi ;

type Vτ j in the node type set E . α̃b represents the opposite degree direction. The score is computed

as follows:

CD(G, v, α̃b) =
dα̃b(v)v∈V

τj

|V | − 1
(51)

Example 9. We continue from Example 7. Let us assume that Procedure 1 returns {P3 = 0.08} as

one of the lower-scoring outdegree candidate nodes having the relation-type L(1) = {contracts}

with D2. To protect its outbound connection we need to find indegree candidate nodes having

higher scores based on the exponential mechanism. The type of a potential candidate’s degree

direction is α̃b = {in}, i.e., representing the incoming connections, the type of node Vτ j = {D},

i.e., representing a disease’s node label in Fig. 6.3. The potential candidate D1’s centrality score is

computed by Eq. (51) is 0.15.

DiffHetNet makes novel use of the exponential mechanism in Line 6. In contrast to the presented

Theorem 5, this step utilizes the exponential mechanism to choose a candidate node v favoring a

higher score from a set of candidate nodes under the node type Vτ j . At each iteration, the higher-

scoring candidate selected by the exponential mechanism is added to the list Cαbhi in Line 7. This

process repeats until the number of candidate nodes is less than the size of the noisy count. Finally,

the list of selected higher-scoring candidate nodes is returned by this procedure.
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Procedure 4 edgePerturbation Procedure
Input: Original network G = (V,E)
Input: Candidates Cαbhi , Noisy count Ncαb

Input: Selected candidate ci, direction αb
Output: Anonymized network G̃αb

1: if Ncαb == 0 then
2: Remove corresponding edges of ci from network G̃αb ;
3: end if
4: while c′j ∈ C

αb
hi do

5: if ci ∈ V αb
τ i

then
6: Add edge (c′j , ci) or vice versa to network G̃αb ;
7: Set the corresponding relation type L(i);
8: end if
9: end while

10: return G̃αb ;

6.3.5 Edge perturbation

This procedure takes the network G, lower-scoring candidate node ci selected by Procedure 1, a

noisy count Ncαb by Procedure 2, list of higher-scoring candidate nodes Cαbhi by Procedure 3, and

the type of degree direction αb as inputs, and it outputs an anonymized version of sub-network G̃αb .

It protects the corresponding inbound or outbound connections of each candidate node ci in the list

of lower-scoring candidates Cαblo by either removing the corresponding edges from G̃αb or by adding

edges from higher-scoring candidate nodes Cαbhi .

Line 2 removes the corresponding edge pairs (ci, cj) or vice versa of candidate node ci from G̃αb

when the noisy count is 0. Line 5 matches the selected candidate’s node type V αb
τ i

along with the

degree direction αb, and then it adds an edge (c′j , ci) or vice versa (Line 6) if it does not exist already

in the given network G or was added previously in the G̃αb . Next, the corresponding relationship L(i)

is assigned based on the types of source and destination nodes in Line 7. This process repeats for

each potential candidate c′j in the list of higher-scoring candidate nodes Cαbhi . Finally, the anonymized

version of sub-network G̃αb is returned by this procedure.

Example 10. Fig. 6.4 illustrates a possible anonymized version of the example health network.

We continue from Example 7. Let us assume that Procedure 3 returns {D1 = 0.15} as one of the

higher-scoring indegree candidate nodes for the node P3 by Procedure 1. The corresponding edge is

added between P3 and D1, and the relationship L(1) is assigned based on the types of source and

destination nodes. Now consider that Procedure 1 returns {LT4 = 0.15} as one of the lower-scoring
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Figure 6.4: Anonymized version of the example health network

indegree candidate nodes having the relation-type L(3) = {undergoes} with P3 and P4. To protect

its inbound connection, we need to find higher-scoring outdegree candidate nodes based on the

exponential mechanism. Suppose Procedure 3 returns {P1 = 0.15} as one of the higher-scoring

outdegree candidate nodes for the node LT4. The corresponding edge is added between P1 and

LT4, and the relationship L(3) is assigned based on the types of source and destination nodes.

6.3.6 Privacy analysis

In this section, we prove that Algorithm 5 satisfies ε-differential privacy over heterogeneous

network data under the given network schema of Figure 6.1.

Theorem 6. For a given privacy budget ε, Algorithm 5 is ε-differentially private over heterogeneous

network data.

Proof. Algorithm 5 picks lower-scoring candidates from a set of candidate nodes by employing

the exponential mechanism according to Theorem 5 in Line 3. Each candidate is dedicated with a
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privacy budget portion εαbslo
′ =

ε
αb
slo

|V αb
τi
| by leveraging sequential composition property (Theorem 3). A

noisy count is generated for each candidate ci ∈ Cαblo by drawing noise from Laplace distribution

Lap(∆f
ε ) (according to Theorem 1) using a privacy budget portion εαbnc

′ = ε
αb
nc

|Cαblo |
in Line 6. Next, for

each candidate ci, the algorithm picks potential higher-scoring candidate(s) from a set of candidate

nodes using the exponential mechanism in Line 7. Each candidate is dedicated with a privacy

budget portion εαbshi
′ =

ε
αb
shi

|Cαblo |·|Nc
αb | by leveraging sequential composition property. Finally, the

algorithm post-processes [100] the differentially private inputs ci ∈ Cαblo , Ncαb , and Cαbhi to perturb

the network. Hence, Algorithm 5 is ε-differentially private because ε = εslo + εnc + εshi by the

property of sequential composition (Theorem 3).

6.3.7 Utility analysis

We measure the utility loss on the anonymized network with respect to the original network by

mean absolute error, average relative error, and Kullback–Leibler divergence presented in Section 2.8.

Considering the network schema of Figure 6.1, the goal is to generate a sanitized graph G′

so as close to G as possible to minimize the error
∑|V |

i=1|CD(G′, vi) − CD(G, vi)|. When G′

is identical to G,
∑|V |

i=1|CD(G′, vi) − CD(G, vi)| = 0; when G′ is totally different from G,∑|V |
i=1|CD(G′, vi)− CD(G, vi)| = |V αb

τ i
| ·
∑k

j=1 |V
α̃b
τ j
|, where i 6= j.

Discussion

In Section 6.3.1.2 we discuss the distribution of privacy budget ε and its consumption across

all the phases of Algorithm 5. The utility guarantee of our proposed algorithm is dependent on the

privacy parameter ε. Consider s and s̃ are the scores of a node v ∈ V αb
τ i

in G and G′, respectively.

When s̃ < s, it depends on the following conditions: (1) no new edge is added to a node v, and an

existing edge has removed from the node v, and (2) a worst case would be when all existing edges

are removed from the node v; when s̃ = s, it depends on the following conditions: (1) no new edge is

added to or removed from a node v, and (2) an equal number of edges are added and removed from

the node v; when s̃ > s, it depends on the following conditions: (1) a new edge is added to a node v

while maintaining all existing edges of the node v, and (2) a worst case would be when newly added

edges to the node v are reached to the maximum.
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Table 6.1: Statistics of the datasets

Dataset |V | |E| Edge Density
ca-GrQc 5, 242 28, 980 0.001055

wiki-Vote 7, 115 103, 689 0.002049

MIMIC-T1 13, 947 103, 023 0.000530

MIMIC-MultiType 5, 786 183, 795 0.005491

6.4 Experimental evaluation

In this section, we evaluate the performance of our DiffHetNet algorithm in terms of both

information utility and efficiency. We compare our method DiffHetNet with the DER [37] method

and its variant DE and a random graph [38] (referred to as Random). In DE, the step of ArrangeEdge

is simply replaced by randomly inserting edges in each leaf region based on the noisy count. We

use three real-life datasets, namely ca-GrQc1, wiki-Vote1, and MIMIC2 from three different types of

networks. ca-GrQc is an undirected network, extracted from the scientific collaboration network

of arXiv GR-QC (General Relativity and Quantum Cosmology) category, where two authors are

connected if they co-authored at least one paper. wiki-Vote is a directed network extracted from

the Wikipedia adminship voting network, where a Wikipedia user is considered for promotion to

adminship based on the community votes in favor of or against the promotion. MIMIC contains

health-related data from a large number of Intensive Care Unit (ICU) patients. It integrates de-

identified, comprehensive health data of patients admitted to the Beth Israel Deaconess Medical

Center in Boston, Massachusetts. It is accessible to researchers internationally under a data use

agreement. MIMIC-T1 represents a network of a single relation type having nodes that are of

different types, i.e., the number of node types |E| = 2, and types of relationships |R| = 1, whereas

MIMIC-MultiType represents a network of multiple nodes and relations types, i.e., the number of

node types |E| = 4, and types of relationships |R| = 3. The statistics of the datasets are shown in

Table 6.1. All experiments were performed on a PC with Intel Core i7 2.80GHz and 16GB RAM.
1It is publicly available in the Stanford large network dataset collection at: http://snap.stanford.edu/

data/index.html
2Available at: https://mimic.physionet.org
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(a) (b) (c)

Figure 6.5: Mean absolute error by DiffHetNet method under varying ε in (a) and (b), and fixed
ε = 1.0 and varying data size in (c)

6.4.1 Measuring information loss

We measure the information loss on the anonymized network with respect to the original network

by mean absolute error, average relative error, and Kullback–Leibler divergence introduced in

Section 2.8.

6.4.1.1 Mean absolute error

Fig. 6.5 presents the mean absolute error (MAE) by the DiffHetNet method. Fig. 6.5a depicts the

MAE under privacy budget ε varying from 0.6 to 1.0 on the MIMIC-MultiType dataset. It exhibits no

change with the increase in ε. Fig. 6.5b depicts the MAE under privacy budget varying from 0.6 to

1.0 while fixing the data size to be 0.4 × |V | on the ca-GrQc, wiki-Vote, and MIMIC-T1 datasets.

The absolute errors on the ca-GrQc dataset are slightly greater than the other datasets. However, they

remain unchanged with the increase in ε and are consistently small on all datasets. Fig. 6.5c depicts

the MAE under varying data size while fixing the privacy budget to be ε = 1.0 on the ca-GrQc,

wiki-Vote, and MIMIC-T1 datasets. It generally decreases with the increase in size on all datasets.

The results suggest that DiffHetNet well preserves the global structure of the anonymized network.

6.4.1.2 Average relative error

Fig. 6.6 presents the average relative error (ARE) by the DiffHetNet method. Fig. 6.6a depicts the

ARE under privacy budget ε varying from 0.6 to 1.0 on the MIMIC-MultiType dataset. It generally
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(a) (b) (c)

Figure 6.6: Average relative error by DiffHetNet method under varying ε in (a) and (b), and fixed
ε = 1.0 and varying data size in (c)

increases monotonically with the increase in ε. Fig. 6.6b depicts the ARE under varying privacy

budget from 0.6 to 1.0 while fixing the data size to be 0.4 × |V | on the ca-GrQc, wiki-Vote, and

MIMIC-T1 datasets. It exhibits nondecreasing monotonicity with the increase in ε on all datasets.

The relative errors on the ca-GrQc dataset are higher than the other datasets because more vulnerable

candidate nodes are protected in the network. Fig. 6.6c depicts the ARE under varying data size

while fixing the privacy budget to be ε = 1.0 on the ca-GrQc, wiki-Vote, and MIMIC-T1 datasets.

The relative errors generally decrease on ca-GrQc and MIMIC-T1 datasets with the increase in data

size, while on wiki-Vote they first decrease when data size increases from 0.2× |V | to 0.4× |V | and

later increase with the increase in data size. The reason for this non-monotonicity is that the addition

of noise considerably changes the degree-centrality scores for the potentially vulnerable nodes in the

anonymized network.

Fig. 6.7 presents the comparison of different methods on average relative error (ARE). Figs. 6.7a

and 6.7b depict the ARE of DiffHetNet, DER, DE, and Random under varying privacy budget ε from

0.6 to 1.0 while fixing the data size to be 0.4× |V | on ca-GrQc and wiki-Vote datasets. The relative

errors of DER and its variant DE, when k = 1 (static correlation parameter) are smaller on both

ca-GrQc and wiki-Vote datasets. However, their relative errors increase with an increase of k. It is

observed that DiffHetNet performs better than DER when the correlation parameter k = 20, and it is

closer to DE when k = 1 on the wiki-Vote dataset. The relative errors of Random are greater than the

other methods in all settings. Our method DiffHetNet does not specify static correlation parameter k

because of the dynamicity nature of the network. Figs. 6.7c and 6.7d depict the ARE of DiffHetNet
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(a) ca-GrQc (b) wiki-Vote

(c) ca-GrQc (d) wiki-Vote

Figure 6.7: Comparison of DiffHetNet, DER, DE, and Random methods on average relative error
under varying ε in (a) and (b), and DiffHetNet and DER on average relative error under varying data
size in (c) and (d)

and DER under varying data size, while fixing the privacy budget to be ε = 1.0 on ca-GrQc and

wiki-Vote datasets. The relative errors of DiffHetNet decrease on ca-GrQc when data size increases,

while on the wiki-Vote dataset they first decrease when data size increases from 0.2×|V | to 0.4×|V |,

and later increase with the increase in data size. The relative errors of the DER method on both

datasets are small because the correlation parameter is set as low k = 1.

6.4.1.3 Kullback–Leibler divergence

Fig. 6.8 presents the KL-divergence by the DiffHetNet method. Fig. 6.8a depicts the KL-

divergence under varying privacy budget ε from 0.6 to 1.0 on the MIMIC-MultiType dataset. It

130



(a) (b) (c)

Figure 6.8: KL-Divergence by DiffHetNet method under varying ε in (a) and (b), and fixed ε = 1.0
and varying data size in (c)

generally increases monotonically with the increase in ε. When ε = 1.0, it reaches 0.19. Fig. 6.8b

depicts the KL-divergence under varying privacy budget from 0.6 to 1.0 while fixing the data size

to be 0.4 × |V | on the ca-GrQc, wiki-Vote, and MIMIC-T1 datasets. It exhibits nondecreasing

monotonicity with the increase in ε on all datasets. The KL divergences on the ca-GrQc dataset are

higher than the other datasets. The maximum difference on them is 0.19 when ε = 1.0. Fig. 6.8c

depicts the KL-divergence under varying data size while fixing the privacy budget to be ε = 1.0 on the

ca-GrQc, wiki-Vote, and MIMIC-T1 datasets. The KL divergences exhibit decreasing monotonicity

on ca-GrQc and MIMIC-T1 datasets with the increase in data size, while they are not monotonic on

wiki-Vote with the increase in data size.

Fig. 6.9 presents the comparison of different methods on KL-divergence. Figs. 6.9a and 6.9b

depict the KL divergences of DiffHetNet, DER, DE, and Random under varying privacy budget ε from

0.6 to 1.0 while fixing the data size to be 0.4× |V | on ca-GrQc, and wiki-Vote datasets. In Fig. 6.9a,

the KL divergences of DER when k = 1 (static correlation parameter) are small on the ca-GrQc

dataset. However, they increase with an increase of k. It is observed that DiffHetNet performs better

than DER when the correlation parameter k = 20, and closer to DE when k = 1 on the ca-GrQc

dataset. Fig. 6.9b depicts that DiffHetNet outperforms all the other methods on the wiki-Vote dataset.

A significant difference of ' 0.7 in KL divergences can be observed between DiffHetNet and DER

(k = 20) under varying ε. The KL divergences of Random are greater than the other methods in all

settings on both datasets.
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(a) ca-GrQc (b) wiki-Vote

Figure 6.9: Comparison of DiffHetNet, DER, DE, and Random methods on KL-Divergence under
varying ε in (a) and (b)

6.4.2 Efficiency

Fig. 6.10a depicts the runtime of the DiffHetNet method under varying data size |V | while fixing

the privacy budget to be ε = 1.0 on the ca-GrQc, wiki-Vote, and MIMIC-T1 datasets. We observe

that on all three datasets runtime grows with the increase in data size from 0.2 to 1.0. The runtime to

produce anonymization results by DiffHetNet on MIMIC-T1 with 1.0×|V | data size is approximately

16 s. Fig. 6.10b depicts the comparison of DiffHetNet and DER methods on runtime when ε = 1.0

and data size is 1.0× |V | on both ca-GrQc and wiki-Vote datasets. DiffHetNet takes approximately

10 s and 11 s on the ca-GrQc and wiki-Vote datasets, respectively. The results show that our method

is more efficient in running time over the DER method. In Fig. 6.10c, we fix ε to 1.0 and evaluate the

scalability of DiffHetNet using three datasets: ca-GrQc-Plus, wiki-Vote-Plus, and MIMIC-T1-Plus.

The X-axis represents the number of records in thousands, ranging from 100, 000 to 500, 000 records.

An edge going from one node to another node represents a single record. We consider no multiple

edges (no duplicate records). For each 100K records, we add randomly-generated nodes and edges

for ca-GrQc and wiki-Vote to extend their original size. We name these two extended datasets

ca-GrQc-Plus and wiki-Vote-Plus, respectively. As for MIMIC-T1-Plus, this dataset is the result

of extracting 500K records from the MIMIC data table (MIMIC-III v1.4), which contains 651, 047

records representing ICD (International Classification of Diseases) diagnoses for patients. The

runtime of each dataset increases nearly linearly with respect to the increase in the size of the dataset.
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(a) Varying data size with fixed
ε = 1.0

(b) Comparison of DiffHetNet
and DER

(c) Scalability

Figure 6.10: Runtime comparison of DiffHetNet

This result suggests that our method is scalable to large network datasets.

6.5 Summary

In this chapter, we propose a practical solution to health information custodians (HICs) for

publishing collected healthcare data to data recipients or researchers in a privacy-preserving manner.

First, we model a complex de-identified healthcare dataset as a heterogeneous information network

that consists of multi-type nodes and their multi-type edges. Then, we propose an edge-based

differentially private algorithm to protect the sensitive links of patients from inbound and outbound

attacks in the heterogeneous health network. We evaluate the performance of our method in terms

of information utility and efficiency on different types of real-life datasets that can be modeled as

networks. The experimental results suggest that our method generally yields less information loss

and is significantly more efficient in terms of runtime compared to existing network anonymization

methods. It is also evident from the experiments that our method is scalable to large network datasets.
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Chapter 7

Conclusion and Future Directions

With the advancements in digital technology and the proliferation of online services, data is

growing with a dizzying pace. Data has become an integral part of almost every industry such as

finance, retail, travel, communications, healthcare, and government. Data often contains person-

specific information. A data custodian who holds person-specific information must be responsible

for managing the use, disclosure, accuracy and privacy protection of collected data. In this thesis, we

presented three research problems. The first two problems addressed the concerns of stakeholders on

privacy protection, data trustworthiness, and profit distribution in the e-market for trading person-

specific data. The third problem addressed the health information custodians concern on preserving

the privacy of health-network data publishing.

First, we propose a novel privacy-preserving data mashup model that allows the collaboration

of multiple data providers to mashup their data over the cloud and to quantify and compare the

costs and benefits for releasing integrated anonymized over an individual data provider when trading

person-specific information in the e-market. To our knowledge, this is the first data mashup model

that quantifies the costs and benefits of releasing integrated anonymized data in terms of monetary

value. On one side, trading person-specific information comes with a high monetary value, but

on the other side data providers who collaborate in sharing person-specific information need to be

cautious of the risk of privacy breaches and cost of potential damages when integrating data. Our

data mashup model allows the participating data providers to set up their joint privacy requirements

during data mashup by choosing the privacy model along with the anonymization algorithm and
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privacy parameters, and analyze the impact of anonymization on information utility for classification

requirement in terms of monetary value after data mashup. The factors introduced in the model can

help the data providers in defining the overall objective of maximizing net value. Furthermore, in the

data mashup process the contribution of each data provider is derived from the achieved net value

by fairly computing the information gain on the anonymized data. Our model helps data providers

in finding the sub-optimal value by evaluating the benefits of data mashup and impacts of data

anonymization based on the choices of privacy models and data mashup anonymization algorithms.

It is evident from the experiments that the data provider whose data provides more information gain

will get a proportionally higher share in terms of monetary value from the distribution of the achieved

net value.

Second, we propose a novel solution to address the critical issues of data trustworthiness, privacy

protection, and profit distribution for cloud-based data integration services. We present the first

information entropy-based trust computation algorithm that allows a semi-trusted arbitrator to detect

the covert behavior of a dishonest data provider, evaluates the trustworthiness of the participating

data providers by a trust metric, and chooses the qualified providers for data mashup. Compared to

the existing work on data trustworthiness [114, 115, 165], our proposed algorithm not only detects

fabricated or incorrect data from a dishonest data provider during the verification process but also

preserves the privacy of customers’ data owned by a data provider. We achieve three main benefits in

delegating the verification role to the semi-trusted cloud service provider. First, our method ensures

that the cloud service provider cannot derive customers’ private data from the information collected

during the verification process. Second, the overhead of computation on the cloud server is also

reduced because only an encrypted information gain message and its keyed hash are exchanged

between a data provider and the cloud server, instead of exchanging encrypted individual data records

during the verification process. Third, it also reduces the burden on data consumers to determine

which data providers can serve their demands on requested attributes and what their attained trust

scores are. Furthermore, we evaluate the robustness of our approach when a data provider employs

machine learning method for imputation of missing values on its data. There is no significant

difference in perspective to the performance of the imputation method. It is conditional to what

proportion of data is missing and whether the data contains repeated patterns. If the prediction of a
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missing data happens to be precise data, it will be considered as true data. We incorporate the VCG

auction mechanism for the valuation of data providers’ attributes into the data mashup process. It

maximizes the total valuation obtained by data providers since there is no incentive to lie or deviate

from truthful reporting. From the perspective of privacy protection, the accepted data providers as

a result of trust computation set up their joint privacy requirements for the data mashup. During

the data mashup process, data providers compete among themselves for higher data utility. It is

evident from the experiments that an accepted data provider whose data attributes result in more

information gain, and whose trust level is higher than the other competitors, can get a proportionally

larger share of the monetary value. Furthermore, our method provides better runtime efficiency over

provenance-based approaches [40, 114].

Finally, we propose a practical solution to HICs for publishing the healthcare heterogeneous

network data to a data miner or recipient in a privacy-preserving manner. We first model a complex

de-identified healthcare dataset as a heterogeneous information network that consists of multi-type

nodes and their multi-type edges. Then, we propose an edge-based differentially private algorithm to

protect the sensitive links of a patient from inbound and outbound attacks in the heterogeneous health

network, which to our knowledge has never been addressed before. We evaluate the performance of

our method in terms of information utility and efficiency on different types of real-life datasets that

can be modeled as networks. It is evident from the experiments that our method generally yields

less information loss as well as significant efficiency gain in terms of runtime compared to existing

anonymization methods. In addition, our method is scalable to large network datasets.

Broadly, the above-discussed thesis contributions are effective to serve the requirements of

commercial and non-profit organizations that are inspired by the practical and real-world needs of

the stakeholders. This thesis is a one-step towards solving some interesting research gaps in the

literature. However, we find some points that open the doors for further research. We summarize

some future directions as follows.

A future data publishing problem could consider other types of data, such as transaction data [36],

trajectory data [12, 13, 67], and social network data [16, 83] when addressing the real-world chal-

lenges of privacy protection, data trustworthiness, and profit distribution among multiple parties or

agents for integrating data.
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Another research direction could be to consider anonymizing multiple heterogeneous networks

where the challenges are to develop a robust anonymization method that ensures the protection of

private information in a way that the individual information held by one data custodian should not

be revealed to another custodian who is not authorized to acquire such information at any stage of

anonymization. Besides, representation learning techniques [172, 187] can be explored to extract

hidden network properties that can lead to developing a robust method in order to counter the

underlying privacy threats and mitigate the potential risks.
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