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Abstract

Uncertainty Quantification and Estimation on Medical Imaging

Classification Tasks

Sidi Yang

This thesis presents an uncertainty quantification (UQ) system on medical classifica-

tion imaging tasks and its practical use. Deep Neural Networks have shown tremen-

dous success in numerous AI-related fields, for example, object detection, recognition,

and health care. However, despite Deep Neural Networks exhibiting remarkable per-

formance, we usually can not guarantee the modelling predictions to be absolutely

correct. Therefore, estimation and quantification of uncertainty have become an es-

sential parameter in Deep Learning practical applications, especially in medical imag-

ing. Measuring uncertainty can help with better decision making, early diagnosis, and

a variety of tasks.

In this thesis, we explore uncertainty quantification (UQ) approaches and propose

an uncertainty estimation system for general medical imaging classification tasks. In

experiments, we apply the UQ system for three medical imaging databases, including

All-IDB2 (an acute lymphoblastic leukemia database), SARS-CoV2 (a coronavirus

disease 2019 database) and BreaKHis (a breast cancer histopathological imaging

database). Besides, we discuss how to apply UQ methods to obtain more information

on the database and its modelling. We can capture the samples with the uncertainty

values and predict the most uncertain category. We also discover that we can receive

more accurate results than initial modelling results by removing a percentage of data

with higher uncertainty results. In summary, we find great potential for UQ research

on complex medical classification tasks and consider it to become probably one of the

future’s essential research directions.
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Chapter 1

Introduction

1.1 Motivation

Deep Learning (DL) methods have made a revolution in many fields during the past

decade, including bioinformatics [64] [90], natural language processing [18] [106], and

autonomous driving [66] [93]. Despite their success, DL methods still have restric-

tions due to inadequate predictions on some tasks, such as overconfidence on out-of-

distribution data.

A simple example is to feed dogs and cats’ images to a classifier for training;

however, another category of birds’ images also mixes into the test set. The model

will still return predictions, but with low accuracy, since it does not learn birds’

features from the training process. Our task is to let the classifier tell us that it does

not know enough information about the birds’ images. As the classifier only learns

cats and dogs’ knowledge, it cannot recognize birds with good results. In a word, we

need a way to know what our model does or does not know.

Therefore, reliability and safety have become a crucial concentration lately. Over-

confidence can sometimes cause unintended and harmful behaviours [5]. Uncertainty

Quantification (UQ) has been addressed as a vital role in numerous tasks, especially

with high-safety requirements. In particular, here are various uncertainty quantifica-

tion applications in practical:

• Decision making and object detection stability detection in medical diagnosis

[7] [24]

• Forecasting, as a realistic example, prediction on impending financial expenses
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of customers in digital payments [13]

• Guide exploration (concentrate on uncertain fields) to assume deterministic

dynamics [37]

• Removal from noisy data based on uncertainty distribution to improve the ex-

isting system

• Applications on AI safety to prevent problems such as oversight, reward hacking

and other negative side effects [5]

• Automating mechanical technology security concerns [69]

Our goal is to improve and optimize existing systems by estimating and quan-

tifying uncertainty. In this research, we consider accuracy as one of the essential

evaluation components as same as in practical. Accordingly, we combined Transfer

Learning methods and uncertainty quantification approaches to promise reasonable

efficient predictions and feature extractions on medical classification tasks.

1.2 Contributions

This thesis focuses on exploring uncertainty on classification tasks on medical imaging

to optimize automatic diagnosis systems. The experiments consist of two binary

classification tasks on an acute lymphoblastic leukemia database [53], a coronavirus

disease 2019 (COVID-19) database [81] and a multi-classification study on a breast

cancer histopathology imaging database [82].

We first explore and compare the uncertainty quantification (UQ) measures, in-

cluding Monte-Carlo dropout, deep ensembles and ensemble MC dropout on three

databases. Then we propose three UQ applications which would be beneficial for

optimization and development in reality, which includes:

• finding the most uncertain samples;

• predicting the most uncertain category;

• detecting statistics inside a database and improving modelling using UQ results

in a multi-classification problem.
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1.3 Outline

In structure, this thesis is organized into five parts:

• Chapter 1 is the introduction of this thesis. We discuss our motivation and list

the thesis outline.

• Chapter 2 concentrates on background description. We introduce Neural Net-

works, Uncertain Quantification (UQ), and its corresponding measurement ap-

proaches and computation methods.

• Chapter 3 describes the detailed experimental design and implementation mod-

elling methodology. We also introduce three databases utilized in the experi-

ments in this chapter.

• Chapter 4 presents procedures, results, and analysis of three experiments in

specific.

• Chapter 5 concludes the thesis research and discusses the possibilities of future

work.
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Chapter 2

Background

This chapter introduces the thesis’s general background, including Neural Networks

(NNs) in section 2.1, Uncertainty Quantification (UQ) in section 2.2, Uncertainty

Quantification approaches in section 2.3 and uncertainty computation methods in

section 2.4.

2.1 Neural Networks

Before embarking on quantifying the uncertainty, it is crucial to understand what the

Neural Networks (NNs) are. A neural network is an artificial neural network, which

consists of artificial neurons or nodes [36]. Marvin Minsky and Seymour Papert

proposed the first research of machine learning associated with the neural network

in 1969 [65]. In the 1970s, Kunihiko Fukushima developed the neocognitron, the

original convolutional neural networks architecture [91]. In 1989, Yann LeCun et al.

combined neural networks with back-propagation theories and implemented the hand-

written digits recognition [20]. Over recent years, many techniques including support

vector machines [19], gradient-based learning [56], AlexNet [50] have been proposed,

which led the evolution of Deep Learning. The neural network research stagnated

and achieved remarkable performance and applications. For instance, Convolutional

NNs (CNNs) [55] and Residual NNs (RNNs) [31] achieve outstanding performance in

various areas, especially in recent years.

This section addresses two types of NNs used in our uncertainty estimation ex-

periments — Convolutional Neural Networks (CNNs) and Bayesian Neural Networks
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(BNNs).

2.1.1 Convolutional Neural Networks

Deep Learning (DL), as a branch of Machine learning, has shown outstanding perfor-

mance on a wide variety of applications, for example, automatic speech recognition

[34], image restoration [57] [60] and medical image analysis [59] [78] etc. We can find

a definition of Deep Learning from the book “Deep Learning” published by MIT in

2016 [28] :

“Deep learning is a particular kind of machine learning that achieves great

power and flexibility by learning to represent the world as a nested hier-

archy of concepts, with each concept defined in relation to simpler con-

cepts, and more abstract representations computed in terms of less abstract

ones.”

The neural network is one of the most famous architectures which assists the

development of DL. One of the most popular neural network architectures is the

Convolutional Neural Networks (CNNs) in Computer Vision [104], which was intro-

duced by Y. LeCun and Y. Bengio [55] in 1995. Over the last few years, CNN has

become a typical architecture with tremendous contributions in various applications

in real-life, including satellite imaging recognition [2], classifying hand-written char-

acters [17], and Natural Language Processing (NLP) field [18].

CNN is composed of a series of neurons carrying learnable weights and biases.

Each neuron receives inputs, performs a dot product and alternatively follows with a

non-linearity [85]. It consists of three types of basic layers:

• The convolution layer. Convolutional layers extract features in the CNN ar-

chitecture. In mathematics, convolution is defined as an operation on two

functions f and g to produce a new function which describes how one func-

tion is modified from the other one. The computing process and corresponding

results are convolution.

The convolutional layer in a CNN architecture works the same way. It is an

operation to use a matrix (named as filter or kernel) on another matrix. Specif-

ically, the operation is to multiply the values of the image matrix and kernel
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matrix within the corresponding cells. The cells generate with the span of the

filter matrix. We apply this operation to all the cells covered in the image ma-

trix. Then the last step of the convolution layer is to add them together into

another matrix as the output.

Meanwhile, some critical operations during convolution are:

– The padding function adds another row and column at the sides of the

input image with value 0, which can also name as Zero Padding. These

“0”s will not add any extra information but can account for the previously

less-accounted values into the output. The padding function can help with

the model learning completely from the training samples and reducing bias.

– The striding function applies during convolution. Instead of shifting the

filter one-by-one at a time, the striding function can increase the size to 2

or 3 each time. The striding function can efficiently reduce the calculation

cost as well as the size of the output matrix.

– The ReLU (Rectified Linear Unit) activation function. Its mathematical

definition is:

f(x) =

0, for x < 0

x, for x ≥ 0

The ReLU activation functions are applied to the output matrix after the

convolution operations. The primary advantages of using ReLU are to

reduce likelihood of vanishing gradient problem [35] which might stop the

NNs for further training and speed up the computation time.

• The pooling layer. Pooling layers usually extract a particular value from a set

of values. This value could either be the maximum of all the values indicating

the max-pooling, or the average value referring to the average-pooling. The

pooling function helps with reducing the size of the output matrix.

As an example of max-pooling in Figure 1, we take the maximum value of

each 2 × 2 part from the input (left). The output is the maximum value of

each block, as illustrated on the right side. We calculate the average value in

the average-pooling function instead of picking up the max value in the max-

pooling function. For example, the red block result after average-pooling would

be (12 + 20 + 8 + 12)/4 = 13.
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Figure 1: An example of max-pooling layer [100]

Figure 2: The Convolutional Neural Networks (CNNs) architecture

• The Fully-Connected (FC) layer. The FC layer is usually the last layer in a

CNN architecture. It has full connections to all the activations from previous

layer. In classification tasks, the last FC layer is referred as Softmax layer to

decide the final result of each input image.

Combining all the layers and functions discussed so far, we present an example of

a simple common use CNN of a classification task can be summarized as shown in

Figure 2.

The CNN is one of the widely demonstrated architectures in DL. It is the foun-

dation of various state-of-art networks currently proposed. One of the most effective

CNN-based architecture in current classification tasks is Inception Networks, which is

investigated based on CNNs. Therefore, we choose Inception Networks as a starting

point in our experiments. In section 3.3, we discuss Inception Networks architecture

and relevant models in detail.
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2.1.2 Bayesian Neural Networks

Deep Learning methods (e.g., CNNs) have become powerful tools for researchers

and engineers in recent years. However, we still can not always guarantee perfect

results. Namely, NNs are overconfident with their predictions occasionally. Thus,

our motivation is to explore uncertainty distribution science within NNs. Besides,

we often need probabilistic predictions to reflect uncertainty or model confidence in

classification tasks. Bayesian Neural Networks (BNNs) fit into this role as a standard

methodology of quantifying uncertainty.

A BNN consists of a probabilistic model and NNs. In some deep NNs, we already

use probability distributions. For instance, the Dropout layer in NNs as stochastic

computations, generative modelling with a distribution over x. The objective of

BNNs implementation is to combine the strengths of stochastic modelling and neural

networks.

2.1.2.1 Bayesian Probabilistic Modeling

First of all, let us review how to evaluate standard NNs modelling, we have a model

labelling as p(y|x,w) with y as output, x as input and w as weights. Given a dataset

D = {(xn, yn)}Nn=1, N is the size of this dataset and n is its index. Most NNs are

estimated by the Maximum Likelihood Estimation (MLE) as:

−minwΣN
n=1 log p(y|x,w)

where − log p(y|x,w) is the negative log-likelihood. It leads to a squared error in

regression or a cross-entropy error in classification. To avoid overfitting, the regular-

ization function is summed up into the MLE as a prior p(w):

−minwΣN
n=1 log p(y|x,w)− log p(w)

Another useful measure is to apply L2 regularization [68], which can result in

weight decay. Overall, the results of both of them are stochastic gradient estimations.

The points estimates of weights here are obtained, not as random variables. It will

not provide any knowledge underlying uncertainty.

In contrast, Bayesian probabilistic modeling estimates the posterior distribution

over weights to capture uncertainty:

p(w|D) =
p(D|w)p(w)

p(D)
=

p(D|w)p(w)∫
p(D|w)p(w)dw

8



where w is the weight, D as data, P (w) as the prior probability based on w, and

p(D|w) as the likelyhood of the observations. p(w|D) is the posterior probability

which can be used for uncertainty estimation. In other words, we measure uncertainty

over parameters of a model.

Although posterior probability offers the right perspective of viewing probabilistic

science inside modelling to estimate uncertainty, it is challenging to compute the

output numerically of multi-dimensional parameter spaces. Therefore, some efficient

methods are combined to solve this problem when estimating the uncertainty. The

two most common approximation methods in practical are Sampling and Variational

Inference.

2.1.2.2 Sampling

The sampling technique is often used in probability problems, and more broadly, in

Deep Learning problems. For many probabilistic problems, especially when inference

is intractable, we have to resort them to some form of approximation [9]. It is the

regular use of sampling. In other words, samples are drawn randomly from a prob-

ability distribution, then approximate to the desired quantity. The Markov Chain

Monte Carlo family [74] of algorithms is a general class technique for sampling from

random variables. The Monte-Carlo dropout approach for estimating uncertainty is

built based on this technique. We will discuss Monte-Carlo Sampling in detail in

section 2.3.

2.1.2.3 Variational Inference

The primary concept of the Variational Inference (VI) is to translate the inference

of the posterior into an optimization problem, which could either be minimization

or maximization. Mathematically, the posterior p(w|D) can be approximated into a

qθ(w) = qθ(w|D) with a known distribution form and parameters θ. As an example,

q could be a Gaussian distribution. Then we will have the mean and variance based

on this distribution. We can estimate parameter means and variances instead of

maximizing a posterior estimation. Hence, we need to minimize the Kullback-Leibler

(KL) divergence [43] as:

KL(qθ(w)|p(w|D)) = Eqθ(w)

[
log

qθ(w)

p(w|D)

]
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which can be expanded to:

KL divergence︷ ︸︸ ︷
KL(qθ(w)|p(w|D)) = −Eqθ(w)[log p(w|D)] + Eqθ(w)[log qθ(w)] + log(p(D))︸ ︷︷ ︸

Constant

With adding −Eqθ(w)[log p(D|w)] to both sides, it can be simplified to:

−Eqθ(w)[log p(y|x,w)] +KL(qθ(w)|p(w))

where−Eqθ(w)[log p(D|w)] can become−Eqθ(w)[log p(y|x,w)] since we assume the data

is distributed identically and independently. To minimize this equation, we applied

our assumed Gaussian distribution to qθ(w) and p(w), the final equation becomes as:

−KL(qθ(w
(l))|p(w(l))) + ΣL

l=1 log p(y|x,w(l))

where l is the index of L. This is the mathematics concept underlying VI approxi-

mation, which is the core concept of MC dropout uncertainty estimation approach.

After exploring these two approximation methods for estimating posterior proba-

bility, let us look into our main topic of this thesis — Uncertainty Quantification.

2.2 Uncertainty Quantification

Deep Learning has permeated our daily lives and several research fields in recent

years, especially in medical image processing tasks, such as segmentation, classifica-

tion, and object detection. Numerous techniques have been developed every day and

proven state-of-art achievements. For exploration into the unknown black-box work,

uncertainty quantification has become a trendy research field lately in the DL field.

Uncertainty Quantification (UQ) is a science of quantitative depiction and uncer-

tainty reduction in computational and practical applications. When the possibility

of wrong decisions decreases by more training data and more complicated models, it

would be infeasible to cover all possible cases but usually concentrating on the most

crucial problems. Therefore, a model should show its trustworthiness by encountering

an unknown circumstance where it can infer knowledge and emphasizes the outcome

[52]. This process is uncertain. In general words, we know there exist unknown fac-

tors a model does not know and does not learn from training. We are curious to learn

what exactly a model does not know.
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2.2.1 Source of Uncertainty

There are various sources of uncertainty in mathematical models and practical appli-

cations. One way to classify uncertainty sources is [46]:

• Parameter uncertainty is the uncertainty from the model parameters, which

are the inputs to the experiments but unknown to the experimentalists. As an

illustration in a statistical model, we look for approximation methods to infer

the results since the real results can not be inferred directly. This operation

will generate the parameter uncertainty.

• Model inadequacy refers to structural uncertainty due to the lack of knowl-

edge of physics underlying the problem. As we know, the model will lead to

particular predictions during training; thus, the prediction results are not equiv-

alent to actual values. The discrepancy is defined as the model inadequacy.

• Residual variability is the variance yield with the repeated conditions. The

prediction usually generates by the inputs along with the specified conditions.

In reality, if these conditions repeat, this procedure will not always generate the

same value. This type of variation is identified as the residual variability.

• Parametric variability comes from the input parameters unspecified or un-

controlled, and variability of inputs. Parametric variability will generate extra

uncertainty in implementation.

• Observation error is from the variability of actual experimental observations.

Observation error is unavoidable in practical, which adds further uncertainty

to the residual variability at the same time. Typically, they are not easy to

separate during experiments.

• Code uncertainty comes from numerical approximation and errors during the

training process. Because effective models are usually complex, code uncertainty

is inevitable, especially in DL.

There are general sources of uncertainty in practical applications. We will look

into how to categorize uncertainty in deep learning problems in the next section.
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2.2.2 Uncertainty Categories

As the UQ research develops, uncertainty can be modelled into two primary cate-

gories prominently in medical applications [48]: aleatoric uncertainty and epistemic

uncertainty.

• Epistemic uncertainty, on the other hand, is the uncertainty inside the model

[45]. Hence, epistemic uncertainty can also be considered as model uncertainty.

The epistemic uncertainty will decrease with enough training samples. It is

resulting from the limitation of knowledge and data of the system. Some com-

mon causes could be that the model ignores certain effects; measurement is not

accurate.

• Aleatoric uncertainty, which is also known as statistical uncertainty or data

uncertainty. Alea here refers to ”dice” in Latin. The aleatoric uncertainty is

the uncertainty that exists inside the dataset. It captures noise inherent in

the observations [45]—randomness, which arises from the distribution of data.

Unlike epistemic uncertainty, aleatoric uncertainty will not decrease with more

data provided. It is highly dependent on bias and distribution inside the input

data but not the size of training samples.

After exploring what uncertainty, its sources, and the categories are, we will in-

vestigate how we quantify uncertainty in modelling in the next section.

2.3 Uncertainty Quantification Approaches

This section will introduce the approaches for estimating uncertainty in our experi-

ments, which include: Monte-Carlo dropout approach in section 2.3.1, deep ensembles

approach in 2.3.2, and ensemble Monte-Carlo dropout approach in 2.3.3.

2.3.1 Monte-Carlo Dropout Approach

As we discussed from the mathematical concept in section 2.1.2, the standard DL

techniques in medical imaging tasks, such as segmentation and classification, do not

capture uncertainty. We want to learn how to estimate and quantify uncertainty in

DL models. To solve this problem, Gal and Ghahramani [25] proposed an approach

named Monte-Carlo dropout (MC dropout) for estimating uncertainty in 2016.
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2.3.1.1 Monte-Carlo Sampling for Probability

In statistics, Monte-Carlo (MC) methods refer to a broad class of computational algo-

rithms depending on repeated random sampling to receive numerical results. MC

approaches primarily apply in three-class problems [51]: generating draws, optimiza-

tion, and numerical integration from a probability distribution.

MC methods have several developments in computer science-related fields, for

instance:

• Artificial Intelligence. Monte-Carlo Tree Search [15] is an effective algorithm

for the decision process. It is a framework for Game AI, which aims to find the

most promising next moves in a game. The Monte-Carlo Tree Search algorithm

broadly applies in practical games, such as classic board games, modern board

games, and video games.

• Applied Statistics. There are several applications associated with the MC

Method in Applied Statistics Science. For example, In our experiments of the

Monte-Carlo dropout approach, it can provide random samples from the pos-

terior distribution in the Bayesian inference. Additionally, MC methods can

be applied to compare competing statistics between small samples in real data

state [33]. Moreover, MC methods can implement hypothesis tests, which are

more effective than permutation tests and more accurate than asymptotic dis-

tributions.

• Computer Graphics and Computational Biology. In the computer graph-

ics field, an algorithm named Ray Tracing [44], also known as Path Tracing, is

an MC method which renders three-dimensional-scene images. It integrates

over illuminance at a single point on a surface of an object. Global illumination

transformation to reality would be faithful by this algorithm. In the compu-

tational biology area, the MC method applies in various areas; as an example,

Bayesian inference in phylogeny [38], a study in proteins [71] or membranes [63].

In a word, Monte-Carlo Sampling Methods are used in various fields when the

problem correlates to probabilistic interpretation. It can provide the foundation for

a wide range of practical issues. Some DL methods, including ensemble networks,

hyperparameter tuning, and resampling, are related to MC methods.
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2.3.1.2 Monte-Carlo Dropout as a Bayesian Approximation in Neural

Networks

Before we look into the Monte-Carlo dropout approach, let us review what dropout

is. Dropout is a technique proposed by Srivastava et al. in 2014 [84]. It is a generic

regularization technique to avoid overfitting. The key concept of the dropout function

is to randomly drop units and their connections from the NNs during training. It

exists in most types of NNs as a convenient technique of optimization, including

CNNs, Recurrent Neural Networks (RNNs).

The core idea of the MC dropout approach is to propose how to interpret a

regular dropout before every weight layer to be used as a Bayesian approximation

of the Gaussian process [73], which refers to a probabilistic model. We can consider

this probabilistic model as a BNN with the probabilities distributions as the output.

The key component in this model to implement MC dropout approach is the dropout

layer [25]. There are various reasons to make modifications on the dropout layer as

the UQ tool, which includes:

• generalization and convenience of dropout in NNs

• forcing the network to learn redundant and independent features

• saving computation cost.

From the mathematical and statistic side, a dropout interpretation can be approx-

imated to a Bayesian process. With a Bayesian model, we can obtain uncertainty val-

ues from the posterior distributions of weights. The next step is to approximate this

posterior distribution of weights by VI we introduced in section 2.1.2.3. Adapted the

variables from section 2.1 to apply in MC dropout approach, (x, y) as (input,output),

p(w|x, y) as observed data, w as weights, qθ as the distribution to approximate to the

observed data, we need to minimize the equation:

Lθ = −Eqθ(w)[log p(y|x,w)] +KL(qθ(w)|p(w|D))

The best θ can make qθ a good approximation for the posterior is given by the θ which

maximizes the above equation as the lower bound. The next step is to sample ŵ from

q, then the expectation Eqθ(w) can be replaced by log p(y|x, ŵ). Then we have:

L̂θ = log p(y|x, ŵ)−KL(qθ(w)|p(w|D))
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L̂θ is known as an unbiased estimator of Lθ in the applied Bayesian statistics. Then

repeat this process as [25]:

1. sample ŵ to qθ(w)

2. apply one step minimization regarding θ as

L̂θ = log p(y|x, ŵ)−KL(qθ(w)|p(w|D))

Another highlight from this paper is that the authors define qθ as the product of

the weight matrix. A diagonal matrix is built with Bernoulli values on the diagonal

based on the weight matrix. The sampling technique applies to the elements inside

this Bernoulli diagonal matrix. The process is exactly as same as randomly dropping

out units on the dropout layer. It is the mathematics foundation of the MC dropout

approach.

(a) (b)

Figure 3: (a) Standard NNs (b) Applying two neurons dropout

To be specific in our classification tasks, we receive each image’s probability results

to decide its category by Softmax layer. Due to the random characterization of BNN

modelling, we can obtain multiple different predictions for each image in multiple

MC sampling procedures. Eventually, we collect the prediction results and apply

computation measures to receive each image’s uncertainty values. We will describe

the whole overflow in detail in section 3.1.

2.3.2 Deep Ensembles Approach

The deep ensembles method was proposed by Google Deep Mind in 2017 [54]. Deep

neural networks have shown impressive performance in improving accuracy on recent
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medical imaging work. In the last section, we introduce the MC dropout method,

which is positively related to BNNs. Unfortunately, the convenient MC dropout

approach occasionally comes with a high cost, e.g. Markov Chain Monte-Carlo is

expensive. As an alternative method to quantify uncertainty, the deep ensembles

method also yields remarkable predictive uncertainty estimations on experiments.

There are three critical steps in the deep ensembles method:

• Proper scoring rules. Setting up a proper scoring rule is the basis of measur-

ing predictive uncertainty [26]. We assign a numerical score to the prediction

pθ(y|x). In Deep NNs related work, many common loss functions are proper

rules. For example, in multi-classification tasks, the cross-entropy loss function

is a proper scoring rule. A proper rule is a crucial step in deep ensembles,

considering it can measure if a model knows what it should know. As an ex-

ample, after we obtain a network from a training set, we apply the model to a

different type of dataset. The predictive uncertainty results we receive from the

new dataset should be much higher compared with what we received from the

original training set.

• Use adversarial training to smooth the predictive distributions. Adversarial

training is proposed by Szegedy [87] and improved by Goodfellow et al. [27].

This is an optional step in the deep ensembles training process. The adversarial

training in deep ensembles intends to smooth predictive distributions.

• Train an ensemble. There are various ensembles procedures and algorithms in

practical applications, such as decision trees and random forests. Generally,

ensembles methods can be classified as two categories: boosting-based methods

and randomization-based methods. Boosting-based methods indicate sequential

instances in an ensemble. On the other side, randomization-based methods re-

fer to ensemble instances in parallel without connections, which do not require

correlation with a sequence. We concentrate on randomization-based methods

in the deep ensembles approach to deal with parallel uncertainty output dis-

tributions. In most Deep NNs tasks, the models usually perform better with

more data. One of the authors’ essential findings is: when the parameters of

NNs were randomly initialized, it is sufficient to archive better performance in

practice [54].
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Mathematically, we donate a training database S with N i.i.d samples, S =

{xn, yn}Nn=1. Let M donate number of NNs in ensemble with {θ}Mm=1 and l as the

scoring rule. Then the training criterion would be l(θ, x, y). The overall process of

the deep ensembles training procedure summarizes in Algorithm 1 [54]:

Algorithm 1 Pseudocode of deep ensembles method training procedure

1. Let each neural network parameterize a distribution over the outputs, i.e., pθ(y|x).

Use a proper scoring rule as the training criterion l(θ, x, y). Recommended default

values are M = 5 and ε = 1% of the input range of the corresponding dimension.

(e.g., 2.55 if input range is [0,255]).

2. Initialize θ1, θ2, ..., θM randomly

3. for m = 1: M do

Sample data point nm randomly for each net

(Optional) Generate adversarial example using x
′
nm = xnm + εsign(5xnml(θm, xnm,

ynm))

Minimize l(θm, xnm, ynm)) + l(θm, x
′
nm, ynm)) w.r.t. θm

In our experiments, we used M = 5 due to computation time limitation, and it

can yield uncertainty quality improvement with reasonable computational cost [54].

2.3.3 Ensemble MC Dropout Approach

After exploring two UQ techniques, we found that the MC dropout technique applies

to one BNN and the deep ensembles technique on M normal NNs. They all show

outstanding performance in our classification experiments, where the results are in

chapter 4. We are curious to know if combining these two methods would reach

another state-of-art performance. Hence, we look into the ensemble MC dropout

approach.

The ensemble MC dropout approach [80] is a combination of the MC dropout

method and the deep ensembles method. Instead of using normal NNs in deep en-

sembles, we replace them with Bayesian NNs and apply the MC dropout technique.

Hence, with each model’s probability results in the ensembles, we will receive proba-

bilistic predictions of Bayesian NNs with M models.

In this section, we introduce three UQ methods, including the MC dropout method,

deep ensembles method and ensemble MC dropout method. The next step is to apply
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computation metrics to receive the uncertainty results in the convenient numerical

form of these three UQ methods for further comparison. Hence in the next section,

we will look into uncertainty computation methods.

2.4 Uncertainty Computation Measures

This section introduces the computation methods based on the UQ approaches from

the last section. We apply two main categories of computation methods in the ex-

periments: predictive variance and predictive entropy [67].

2.4.1 Prediction Variance

In probability theory and statistics, variance usually measures how a set of values is

distributed. The computation method is the expectation value of a random variable

X is the squared deviation from its mean value, µ. Mathematically, we can calculate

the variance as:

V ar(X) = E[(X − µ)2]

In general, a model passes the output of probabilities between [0.0, 1.0] through the

Softmax function in classification tasks. Then we compare prediction results with the

ground truth by the evaluation measures (e.g., cross-entropy). The prediction vari-

ance computation method is based on these probability results. Regarding which UQ

approach is chosen, we can either apply predictive variance or MC sample variance.

• Predictive variance can be learned directly from the output generated by the

training process, which can be used for the deep ensembles method. We can

collect the prediction results of M models and compute the variance with the

predicted probabilities. The variance results are predictive variances.

• MC sample variance is the computation technique of uncertainty inferred

from the variance of MC samples of the prediction results. It could be either

used in a single Bayesian NN without the MC dropout method or ensemble MC

dropout method. We collect the MC sample size output of each image and then

choose the predictive values which decide the final class from each output to

compute the variance. It is the MC sample variance for a BNN with the MC
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dropout method. Hence, one extra step for ensemble MC dropout is to compute

variance based on M models.

Variance is an effective way for computing uncertainty values. However, as de-

clared in two variance methods, we focus on the predictive values of the chosen class,

which decides the classification results but ignores the prediction values of other

classes. Variance methods are better choices in the segmentation task. In Bayesian

segmentation modelling, each pixel assigns to one probability value. In such a situa-

tion, we can obtain detailed information with variance methods.

We introduce another computation method — predictive entropy in the following

section. It can cover more information in classification tasks, which applies to our

experiments.

2.4.2 Predictive Entropy

Entropy is a measurement method of the randomness in an information system, espe-

cially in Machine Learning (ML) problems. Measuring entropy is a convenient way to

collect chaos. It appears everywhere in the ML area, including decision tree construc-

tion, training NNs. For example, in classification tasks, cross-entropy is a common

loss function to measure the difference between probability distributions for a set of

events or a given variable. The basic mathematical formula of computing entropy is:

Entropy = −
c∑
i=1

pi log pi

where c is a constant, i is the index of c, and pi is the probability distribution. Com-

pared with regular rigid matrices we apply in normal NNs, entropy would be a better

choice on Bayesian NNs due to its stochastic process. Specifically, we approximate the

entropy for input across each MC sample. Afterwards, we collect all the entropy of its

MC samples to obtain the final uncertainty value for each image. The computation of

the ensemble MC dropout method is similar; we only need to collect the uncertainty

values from M models and compute its average uncertainty value. We can compute

the entropy of the prediction outputs with M models for the deep ensembles method

and compute its average value as the final uncertainty value.

We can either collect uncertainty for each category or find the most uncertain

samples based on entropy values for further analysis. In general, a higher entropy
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value refers to more information, which means higher uncertainty. Our experiments

will present these assumptions thoroughly in chapter 4.
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Chapter 3

Methodology and Experiment

Setup

In chapter 3, we describe our methodology and experimental preparation. We present

our experiment system by a flowchart in section 3.1. The datasets exploited descrip-

tion in this thesis are in section 3.2. Then in sections 3.3 and 3.4, we explain Transfer

Learning and Inception Networks applications, which are the foundations for further

uncertainty estimation in our experiments.

3.1 Experiment Workflow

In this section, we describe our experimental workflow in a flowchart. Figure 4 displays

the whole workflow of our experiments. In brief, it can be summarized as two main

stages to obtain uncertainty from a modelling classifier on a dataset:

1. Classification Modeling Task, which includes image pre-processing and train-

ing models to obtain a model with predictive probability outputs. We introduce

the modelling and the related background in sections 3.3 and 3.4.

2. Uncertainty Quantification (UQ) and Estimation, which consists of:

(a) Apply UQ measures at test time, including MC dropout, deep ensembles

and ensemble MC dropout approaches in our experiments.

(b) Apply UQ estimation and computation methods, e.g. predictive variance

or entropy to numerical uncertainty results.
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Figure 4: Experimental workflow
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We also concentrate on how to evaluate and optimize our modelling work after we

gain uncertain results. There are various applications we can accomplish, such as:

• Predicting the most uncertain images as shown in section 4.3.1

• Plotting accuracy vs. retained data based on uncertainty results to evaluate a

database and its modelling as stated in section 4.3.2

• Optimizing models by removing the most uncertain samples as indicated in

section 4.4.2

• Predicting the most uncertain class in a multi-class problem as illustrated in

section 4.4.3

3.2 Databases

There are three databases we explored in our experiments. Firstly, we estimate un-

certainty on the ALL-IDB2 [53] database to classify healthy cells and lymphoblasts

cells. Secondly, to make our work and results more accurate, we apply our uncertainty

methods to a newly released and larger dataset — SARS-CoV2 CT-scan database [81].

We classify CT-Scans to assist with early diagnosis of Covid-19. Lastly, we quantify

uncertainty on the BreaKHis database [82], which comprises eight-category breast

tumour images.

In the following sections, we would briefly introduce these three databases and

their combinations. The experimental results would be shown and analyzed in chapter

4.

3.2.1 ALL-IDB Database

Acute Lymphocytic Leukemia (ALL) also refers to Acute Lymphoblastic Leukemia

as a type of hematic disease resulting in fatally in a short period. Early diagnosis of

this cancer plays a critical role for patients, especially for young children and adults

over 50 [53]. Therefore, we are interested in the classification between standard and

lymphocyte imaging on ALL datasets.

Acute Lymphoblastic Leukemia Image Database for Image Processing (ALL-IDB)

database [53] is a public database of microscopic blood sample images published
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by the Department of Information Technology, Università Degli Studi di Milano in

2011. The ALL-IDB database is composed of two subsets: ALL-IDB1 is mostly for

segmentation test capability and ALL-IDB2 for classification test systems. We focus

on ALL-IDB2 with the binary classification task between healthy cells and probable-

lymphoblasts. The ALL-IDB2 collects cropped areas of interest with normal and blast

cells. Figure 5 presents a few example images contained in the ALL-IDB2 dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Examples of the images contained in ALL-IDB2: (a), (b), (c), (d) are
healthy cells from non-ALL patients, (e), (f), (g), (h) are probable lymphoblasts from
ALL patients.

There are 260 images collected in the ALL-IDB2 dataset, composed of 130 normal

white blood cell images and 130 cell images with lymphoblasts.

3.2.2 SARS-CoV2 CT-scan Database

In 2020, the coronavirus disease 2019 (COVID-19) has spread and affected across

188 countries and territories. The World Health Organization (WHO) declared the

COVID-19 outbreak a Public Health Emergency of International Concern (PHEIC)

[101][8] on January 30, 2020 [102]. As of November 5, 2020, 48.2 million cases were

reported worldwide, with more than 1.22 million deaths [42].

COVID-19 is an infectious disease caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) [62]. Recent research has discovered imaging patterns
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: (a), (b), (c), (d) are images from infected by SARS-CoV-2 category; (e),
(f), (g), (h) are images from non-infected by SARS-CoV-2 category.

in the Computed Tomography (CT) images of patients with coronavirus disease.

Accordingly, CT-scan imaging represents an essential role in COVID-19 diagnosis.

SARS-CoV-2 CT-scan database [81] was published in May, 2020. This database

has been collected CT-scan images from real patients from hospitals in Sao Paulo,

Brazil. Due to ethical concerns, detailed information on patients has been omitted.

SARS-CoV-2 CT-scan dataset contains 2,482 CT-scan images with two categories:

1252 images for patients infected by SARS-CoV-2 and 1230 CT scans for non-infected

by SARS-CoV-2 patients but who presented other pulmonary diseases. Each category

was composed of 60 patients with balanced gender distribution. Table 1 represents a

detailed data description of the SARS-CoV2 CT-scan dataset.

Patient Gender Infected Non-infected Total

Male 32 28 60
Female 28 32 60

Number of Images 1252 1230 2482

Table 1: SARS-CoV-2 CT-scan database description

Figure 6 illustrates some examples of infected and non-infected by SARS-CoV-2

from the database.
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Figure 7: One slide of breast malignant tumor tissue from the same patient with four
different magnifications:(a) 40X, (b)100X, (c)200X, (d) 400X. Highlighted rectangle
was selected manually by pathologist to be used as the next higher magnification
factor [82].

3.2.3 BreaKHis Database

The Breast Cancer Histopathological Image Classification (BreaKHis) database was

published by the Department of Informatics, Federal University of Parana and LITIS

Lab, the University of Rouen in 2016 [82]. The BreaKHis is composed of 9,109 mi-

croscopic biopsy images of 2,480 benign and 5,429 malignant breast tumours. Images

were collected from 82 patients from January 2014 to December 2014 referred to P&D

lab, Brazil, with a clinical indication of BC participation. There are four different

magnifying factors (40X, 100X, 200X, and 400X). Figure 7 shows one slide of breast

malignant tumour tissue from the same patient at four different magnifications.

BreaKHis database contains two main categories: Benign(B) and Malignant(M).

Each category of breast tumours contains four distinct histological subtypes. Four be-

nign tumours subtype adenosis (BA), fibroadenoma (BF), phyllodes tumour (BPT),

and tubular adenoma (BTA), and four malignant tumours are carcinoma (MDC), lob-

ular carcinoma (MLC), mucinous carcinoma (MMC) and papillary carcinoma (MPC).

In total, there are eight types of images in the BreaKHis database. All the images

are 700X460 pixels, 3-channel RGB (8-bit depth in each channel) with PNG format.

Table 2 summarizes the description of BreaKHis.

In current work, binary classification task between Benign and Malignant has
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Magnification Benign Malignant Total

40X 625 1,370 1,995
100X 644 1,437 2,081
200X 623 1,390 2,013
400X 588 1,232 1,820

Total 2,480 5,429 7,909

Number of Patients 24 58 82

Table 2: BreaKHis database description

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Eight subtypes example images from BreakHis database at 40X magnifica-
tion factor: (a) BA, (b) BF, (c) BPT, (d) BTA, (e) MDC, (f) MLC, (g) MMC, (h)
MPC.

archived excellent performance [83] [97]. Therefore, we focus on classification and

uncertainty quantification tasks between eight sub-type images. Figure 8 displays

the example images from eight classes at 40X magnification factor.

3.3 Transfer Learning

Currently, Transfer Learning (TL) has increasingly become a popular approach in

Deep Learning (DL) field. Lorien Pratt first mentioned in a paper that describes

the Discriminability-Based Transfer (DBT) algorithm in 1993. In 2009, the Transfer

Learning approach was formally proposed and described in a research publication by

L. Torrey and J. Shavlikin [77]. In recent years, a variety of TL methods have been

27



Figure 9: Transfer Learning architecture

applied in various tasks. The widespread of supervised learning in computer vision

highlights the importance of TL.

Transfer learning is a research problem in the machine learning field which concen-

trates on storing knowledge while solving one problem and employing the solution to

a different but associated problem [103]. In DL problems, we gained knowledge and

extracted features from the existing trained dataset and correlated weights. Then we

apply them to another new but similar dataset. For example, we can apply the expe-

rience gained from recognizing cats to learn to recognize tigers. Figure 9 represents

the elemental overflow of TL.

Transfer Learning allows us not training models from scratch but reuse previous

experience as a starting point for a new task to increase productivity. Throughout

sharing learned parameters to our new model, we can improve accuracy and optimize

computation efficiency simultaneously.

We can also describe the definition of TL in a mathematical way regarding the

domain and the task. We assume a domain D. The domain D is composed of a

feature space S and a corresponding marginal probability distribution P(X), where

X = {x1,...xn} ∈ feature space S.

Given the condition of D = {S, P (X)}, there is another task T consists of a label

space Y and an object predictive function f(·). In other words, T = {Y, f(·)}. T is

learned from the training pairs composed of {xi, yi}, where xi ∈ X and yi ∈ Y . The

predictive function f(·) can be used to predict target correlated label f(x) [58], which

we refer as Transfer Learning algorithm.

In practice, one of the most popular approaches in recent works is to apply Trans-

fer Learning by loading a pre-trained model. A pre-trained model is a saved model
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previously trained on a large dataset, typically in classification tasks, such as Ima-

geNet [21]. The new model can benefit from not starting from scratch but already

learned some features from previous work. That would be a good start point to re-

ceive better results. Considering we would deal with classification datasets, we decide

to start with TL by loading pre-trained weights. Our model would start from loading

pre-trained models and modify based on them. We receive better outcomes compared

with training a network from scratch.

3.4 Inception Network Models

Inception Networks Model is a landmark in CNNs development, especially in classi-

fication tasks. Before Inception models, most NNs usually just stacked more layers

and bigger datasets to obtain better performance. Along with the networks became

heavy, the computation cost also increased. Another disadvantage of intense neural

networks is its high probability of overfitting.

Some famous members from the Inception networks family frequently used in

classification are Inception-V1 (GoogLeNet), Inception-V3, and Inception-ResNet.

In our experiments, we find Inception-V3 and Inception-ResNet have shown good

performance on both the binary and multi-class classification tasks. We consider

these two Inception models and another residual architecture model – ResNet and

TL approach as appropriate start points for further quantifying uncertainty tasks.

Hence, we will look at the Inception-V1 model to learn how inception module

architecture works in section 3.4.1. Then we will present three primary models used in

our experiments: Inception-V3 in section 3.4.2, ResNet in section 3.4.3, and Inception-

ResNet in section 3.4.4.

3.4.1 Inception-V1

The first version Inception network, known as GoogLeNet (Inception-V1), was pro-

posed by Szegeday, Liu et al. in 2014 [86]. The primary idea of the Inception-V1

model is to make networks “wider” than “deeper.” The implemented modifications

on modules in NNs are in Figure 10.

Instead of adding layers to make the networks deeper with higher computation

cost, the authors filter with multiple sizes on the same level in the näıve inception
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Figure 10: Inception module in GoogLeNet [86]

Figure 11: Inception-V1 architecture [86].

module. The different sizes of filters are 1×1, 3×3, and 5×5 convolutions. Meanwhile,

max-pooling applies. Then we concatenate the outputs and send them to the next

layer.

The second main idea of their proposed architecture is to reduce dimensions. Ac-

cordingly, the number of input channels is limited by adding an extra 1×1 convolution

before the expensive 3 × 3 and 5 × 5 convolutions, as shown in Figure 10 (b). It is

the basic module which builds up the Inception-V1 model.

The entire structure of Inception-V1 is shown in Figure 11 (input at left) [86]. It

is 27 layers deep (counting pooling layers) with nine basic inception modules (black

boxes). A global average pooling layer (red block) and a softmax layer (yellow block)

are at the end of the whole structure.
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3.4.2 Inception-V3

As an upgrade to the Inception-V1 model, Szegeday, Vanhoucke et al. proposed

Inception-V2 and Inception-V3 [88] in 2015.

The two primary updates from Inception-V1 to Inception-V2 are:

• Replacing 5×5 convolution by two 3×3 convolutions in each module. Convolu-

tions with larger size filters are at a higher cost. Especially under the condition

of the same number of filters, a 5× 5 convolution is 2.78 times computationally

expensive than a 3× 3 convolution.

• Replacing n × n by one n × 1 and one 1 × n block. With this two-layer fac-

torization, the computational cost can decrease 33% for the same number of

filters.

Inception-V3, as an upgrade version from Inception-V2, contains fewer parameters

(7 million) than AlexNet [50] (60 million) and VGGNet [79] (≈ 200 million). It has

won the 1st Runner Up in ILSVRC (Large Scale Visual Recognition Challenge) in

2015 [75]. One indispensable mechanism in Inception-V3 is to use auxiliary-classifiers

as regularizers. In Figure 11, pink boxes parts are named as Auxiliary Classifiers from

Inception-V1 [86]. The original purpose of the auxiliary-classifier part is to obtain

better convergence and promote more stable learning. In the Inception-V3 model,

the authors argued the auxiliary-classifier part as a regularizer. The fact supported

is that usually in NNs, the primary classifier performs better if the side branch is

batch-normalization [40] or with a dropout layer.

Another modification is that they applied efficient grid-size reduction instead of

regular downsizing by max pooling. As an example, in Figure 12, 320 feature maps

are received by max pooling, and the other 320 feature maps are convolutions with

stride 2. In total, 640 features concatenate. The model becomes less expensive but

still efficient by this efficient grid-size reduction method.

To achieve the lowest error rates on ImageNet [21], the authors also factorized 7×7

convolutions, applied RMSProp Optimizer, and added label smoothing regularizing

component to loss formula to prevent overfitting in Inception-V3 model. Overall, the

entire architecture of Inception-V3 is shown in Figure 13.
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Figure 12: Grid-size reduction in Inception-V3 module [88] (right) and its detailed
structure (left)

Figure 13: Inception-V3 architecture [88]

.

3.4.3 ResNet

As a prerequisite to digging into Inception-ResNet networks, we would introduce

Residual Network (ResNet) in this section. In particular, we present the residual

block — the most important structural component in ResNet in section 3.4.3.1. Then

in the next subsection, we look into the architecture of ResNet152V2 [32], which we

would apply to our experiments.
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Figure 14: Residual Learning: a building block [31]

3.4.3.1 Residual Block

ResNet was proposed by He, Zhang et al [31] in 2015. The main purpose of ResNet was

the same as Inception networks: optimization on NN’s architecture instead of adding

more layers and data. The most important component of this paper is Residual

Learning, which applies to Inception-ResNet models. Figure 14 presents an example

of a building block with residual learning ideas from the original paper.

We can find the difference in outputs between regular blocks in basic NNs and

ResNet. Residual learning collects both the output and previous inputs as the input

for the next step. This modified connection is named as Skip Connection. Generally

speaking, we can consider two layers as one block. Except for the path following two

convolutional layers to reach the output, this block’s input also directly connects to

the output.

In other words, we can assume x as input, w as weights, F as activation function,

F(x, {w}) as the residual mapping to be learned, and final output y. The mathemat-

ical presentation of a block with skip connection is:

y = x+ F (x, {w})

Considering the case the dimensions of x and F are not equal, we can use a linear

projection ws in last equation to match the dimensions:

y = wsx+ F (x, {w})

which is the mathematics presentation of a residual block. ResNet consists of NNs

and residual blocks. In specific, ResNet used a 34-layer plain network inspired by
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VGG-19 [79] and modified by adding skip connections. It has shown state-of-art

performance on popular public datasets, such as ImageNet [21] and CIFAR [49].

3.4.3.2 ResNet152V2

ResNet152 was proposed in the same paper as Residual Networks [31]. As the name

demonstrated, it is a 152-layer deep Residual Networks. It was the most in-depth

network on ImageNet in 2015, while it has lower computation cost and better perfor-

mance on ImageNet compared with VGG networks [79]. The same authors proposed

ResNet152V2 in the next year after proposing ResNet. The main difference between

the original and V2 is that V2 applies batch normalization before each weight layer.

3.4.4 Inception-ResNet-V2

Inception-ResNet-V1 and Inception-ResNet-V2 were proposed in the same paper [89]

Szegeday, Ioffe et al. in 2016. Inception-V3 and ResNet inspired Inception-Resnet-V1

and V2. Both of them are variations of the Inception-V3 model. The only difference

between Inception-ResNet-V1 and V2 is the hyper-parameter settings. The Inception-

ResNet-V2 model is with a relatively lower computation cost but higher accuracy.

Consequently, Inception-ResNet-V2 became a widespread network for classification

tasks in practical.

Inception-ResNet-V2 is a CNN with 164 layers deep, which trains the ImageNet

database. The hypothesis of the model is a combination of inception blocks archi-

tecture and residual connections. Three Inception-ResNet modules A, B, and C, as

shown in Figure 15, are the fundamental blocks used in Inception-ResNet-V2. They

are similar but simplified from Inception-v3 modules. We can discover convolutional

layers combined with residual connections. These procedures not only reduce com-

putation time but also prevent degradation problems resulting from deep structures.

Another immediate modification in Inception-ResNet-V2 is the pooling operation.

They are replaced by reduction blocks, which still contain max pooling but also

combine with convolutional filers. Meanwhile, the authors applied to scale to residuals

with a value between 0.1 to 0.3 before adding to previous layer activation to avoid

the model “died” and increase stability.

Overall, the compressed view of Inception-ResNet-V2 architecture is shown in

Figure 16 [3].
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(a) (b) (c)

Figure 15: (a) Inception-ResNet-A Module, (b) Inception-ResNet-B Module, (c)
Inception-ResNet-C Module used in Inception-ResNet-v2 Network [89].

Figure 16: Inception-ResNet-V2 architecture compressed view [3].
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Chapter 4

Experiments and Results

Chapter 4 presents the results of three experiments and the practical use of Uncer-

tainty Quantification (UQ). In specific:

• Section 4.1 describes the coding environment, techniques and data pre-processing

preparation for the following experiments.

• Section 4.2 presents UQ of binary classification on the ALL-IDB2 database.

We focus on introducing how to capture uncertainty by three approaches in

classification tasks in this section.

• Section 4.3 shows UQ on another binary classification task on a more extensive

and later dataset — SARS-CoV2 dataset. This section focuses on introducing

how we use uncertainty results to find the most uncertain images. We also

implement the automatic diagnosis system based on the uncertainty results to

show one direction of optimizing and improving current classification modelling

work.

• Section 4.4 proposes UQ on a multi-class classification task — BreaKHis database.

The BreaKHis is a relevant large dataset and composed of images at different

magnifications in eight categories. The classification task on histopathological

images is usually a time-consuming and challenging task due to its complex

nature. We apply UQ measures on BreaKHis and implement UQ applications

(e.g. finding the most uncertain category, removing uncertain data to optimize

modelling work) as a summary of our work to show the practical utility of

Uncertainty Quantification.
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4.1 Data Argumentation and Preparation

Our codes are implemented by programming language Python 3.6.9 [95]. The mod-

elling part is built up under Tensorflow 2.3.0 [1] and Keras 2.4.0 [16] frameworks.

Uncertainty Quantification is mainly achieved by Numpy 1.18.5 [30] and Scipy 1.4.1

[96] libraries. Plots are generated under Matplotlib 3.3.2 [39] and Seaborn [98] li-

braries. Before feeding data to models, we apply some common image pre-processing

procedures in all the experiments, such as random:

• Rescaling. To treat all images simultaneously, we rescale the pixels values by

rescaling factor 1./255. In this case, all the pixels which located in [0, 255] (255

as the maximum value of a pixel) to [0, 1].

• Rotation refers to random rotations with the setup degree range between

[0, 360].

• Height and Width Shift implies shifting the input to the left or right(horizontal)

and up or down (vertical). In pixels in an input image, a shift means to move

all the pixels into one direction.

• Horizontal and Vertical flips indicate randomly flipping inputs horizontally

or vertically. A flip is to reverse columns or rows of pixels regarding a horizontal

or vertical flip, respectively [61]. It is different from the height/width shift.

• Shearing Intensity refers to shear angle (unit in degrees) in counter-clockwise

direction.

• Brightness picks a brightness shift value from the setup range. It can either

randomly darken images (value < 1.0) or brighten images (value > 1.0). When

the shift value equals 1.0, the image keeps the same brightness.

Excluding these general pre-processing techniques, we also apply other measures

depending on the specific characterization. For example:

• Data argumentation. The BreaKHis database is highly unbalanced with

3,451 images in the MDC category but 444 images in the BA category. In this

case, we apply Augmentor [10] image augmentation library to BA category.

The Augmentor framework allows augmenting images automatically (following
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Category Train Validation Test Total

Normal 91 26 13 130
Probable-lymphoblast 91 26 13 130

Total 182 52 26 260

Table 3: ALL-IDB2 database train/validation/test composition description

artificial data generation) to expand databases as inputs in machine learning

algorithms, especially deep learning and NNs.

• Resizing. As we mentioned in Chapter 3, we apply pre-trained Transfer Learn-

ing modelling techniques and relevant weights in the experiments to promise a

reasonable start point. The loaded weights are pre-trained on ImageNet [21].

ImageNet holds more than 14 million images organizing into 1,000 categories.

The default size is 299 × 299 for Inception-V3 and Inception-ResNet V2 and

224× 224. Hence we can adjust our input size to achieve better performance.

4.2 Uncertainty Quantification on ALL-IDB2

This section presents our experiment on measuring the uncertainty of the ALL-IDB2

database via multiple UQ approaches.

As we described in 3.2.1, the All-IDB2 database contains two categories of images

with a ratio of 1: 1, which is a binary classification task between healthy cells and

white blood cells. All the images in ALL-IDB2 are with a size of 256 × 256. We

split the whole database into train, validation and test subsets as the ratio of 7: 2:

1. Table 3 displays the composition of these sets.

4.2.1 Capturing Uncertainty via Three UQ Approaches

This section explains how we obtain uncertainty results by MC dropout, deep en-

sembles, and ensemble MC dropout approaches in the binary classification task on

ALL-IDB2.

We apply three pre-trained models in this experiment, including ResNet, Inception-

V3 and Inception-ResNet. To compare the results between different approaches, we
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keep the variables and hyper-parameters as same as possible. Accordingly, we then

add the same number Dense and regular Dropout layers with regularizers with same

parameters to prevent overfitting. Table 4 shows the hyper-parameter configuration.

Hyper-parameter Value
Batch size 8
Optimizer Adam [47]

Learning rate 0.0001
Loss Function Categorical Cross Entropy

Epoch 50
Dropout (both training and test) 0.5

Table 4: Hyper-parameter configuration in ALL-IDB2 experiment

Before the last Softmax layer to generate probabilities of each image, we add one

activated dropout layer if we use MC dropout and ensemble MC dropout methods,

or one regular dropout layer with deep ensembles method.

After the training process, we obtain models and weights. The next step is to

generate the uncertainty value of each input based on the predicted output. In specific

for each UQ approach:

• MC dropout, as we introduced in section 2.3.1, is a method based on Bayesian

NNs and activated dropout function at inference time. We receive each image’s

predicted probability results from the last layer of the model with softmax

activation. As an example on Image 0, we receive an array [0.3, 0.7]. This

array indicates Image 0 has 0.3 probability of being a healthy-class and 0.7

probability to be a probable-lymphoblast class. Accordingly, our model decides

Image 0 is a probable-lymphoblast since it has higher probability intended be

in this class (0.7 > 0.3). This distribution is how a normal classification model

classifies inputs. By the end, each image will have a prediction as [x, 1 − x]

predicted probability distribution in binary classification tasks.

To explore how we can obtain uncertainty, we need to start with MC sampling.

An MC sample means one-time dropout activation at inference time. Thus, the

MC sample size decides how many times we activate the dropout function at

test time. We use the MC sample size = 30 in this experiment, which means

we can obtain 30× [x, 1 − x] arrays for each image. We choose entropy as the

computation metrics here. Then we compute the entropy of each image based

39



on its probability in each MC sample. Then we calculate the average value of

30 MC samples of each image. The final result is the uncertainty of the MC

dropout method. Mathematically, it is:

Uncertaintymcd = −(
M∑
i=1

c∑
j=1

pj log pj)/Mi

where M is MC sample size, c is the number of classes, i, j are the indexes of

M , c and pi of the probability distribution of each image.

• Deep ensembles method operates in another way, unlike the other two. With

the deep ensembles method, our model is not a BNN with randomness charac-

terization. Therefore, we collect the results of each image trained on five models

and compute the average mean. Then we calculate the entropy of these mean

values as the uncertainty value on each image in deep ensembles methodology.

• Ensemble MC dropout is a combination of MC dropout and deep ensembles.

Instead of one BNNs in the MC dropout method, it contains D = 5 Bayesian

models. Therefore, following the similar way to compute MC dropout but with

the average value of these five model, our formula can be illustrated as:

Uncertaintyens−mcd = −
D∑
k=1

((
M∑
i=1

c∑
j=1

pj log pj)/Mi)/Dk

where D presents how many models in ensemble MC dropout, k, i, j are the

indexes of D, M , c and other variables same as MC dropout uncertainty formula

above.

Then we can receive the uncertainty value of each image following the computation

ways above. This experiment calculates the mean of uncertainty values from all

the images obtained from multiple models and UQ measures. Table 5 presents the

uncertainty mean values of samples in the validation/test sets.

We describe how to compute uncertainty with three UQ approaches separately

in this section. However, we do not usually compare these values (e.g. mean, me-

dian, and variance) directly. In typical cases, we usually combine DL modelling into

the comparison between uncertainty evaluation cases. Fortunately, the evaluation

methods in DL modelling (e.g. accuracy or AUC[12]) can offer another stable and

straightforward way to compare UQ measures more conveniently. In section 4.3, we

will explain it in detail.
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Dataset Validation Test
Model ResNet IncepV3 IncepRes ResNet IncepV3 IncepRes

MC dropout 0.1607 0.1217 0.0919 0.1345 0.1192 0.0572
Deep ensembles 0.1204 0.1146 0.0695 0.0723 0.0782 0.0326

Ensemble MC dropout 0.2235 0.1213 0.1247 0.1108 0.1220 0.0911

Table 5: Uncertainty mean value of samples in the validation/test sets by three UQ
approaches on ALL-IDB2 database

4.2.2 Evaluation and Association between Uncertainty and

Accurateness

From the last section, we learn the uncertainty values of the whole validation/test sets.

Further, we wonder whether the accurateness of a model is related to its uncertainty.

To justify, we demonstrate the comparison of the uncertainty results between wrong-

predicted and right-predicted samples. Table 6 presents the comparison of multiple

models by three UQ approaches on validation/test sets. It also concludes the size of

wrong/right-predicted samples in each experiment.

From the comparison between wrong-predicted and right-predicted samples, one

key finding is that at the most time, the uncertainty of wrong-predicted samples is

higher than right-predicted samples. In other words, the samples with lower accuracy

are more uncertain than samples with higher accurateness. ALL-IDB is a relevant

small database (260 images in total) compared with the later public databases. There-

fore, our next experiment is to apply the Uncertainty Quantification approaches to a

new public, more massive database — SARS-Cov2 database. We will prove the asso-

ciation between uncertainty, efficiency and accuracy and other new findings related

by another method.

4.3 Uncertainty Quantification on SARS-CoV2

In this section, we will explore the uncertainty distribution in the SARS-CoV2 database.

Meanwhile, we will learn the association of uncertainty between accuracy and related

model optimization measures via UQ methods.
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Approach Validation set Test set

MC dropout ResNet IncepV3 IncepRes ResNet IncepV3 IncepRes

Wrong-pred
Unc 0.4873 0.3697 0.2234 0.3972 0.3566 0.3035
Num 2 8 6 3 4 2

Right-pred
Unc 0.1919 0.0745 0.1142 0.0969 0.0762 0.0366
Num 50 44 46 23 22 24

Deep ensembles ResNet IncepV3 IncepRes ResNet IncepV3 IncepRes

Wrong-pred
Unc 0.3735 N/A N/A 0.0528 0.5498 0.0003
Num 3 0 0 2 2 1

Right-pred
Unc 0.1049 0.1146 0.0695 0.0739 0.0389 0.0339
Num 49 52 52 24 24 25

Ensemble MCD ResNet IncepV3 IncepRes ResNet IncepV3 IncepRes

Wrong-pred
Unc 0.6422 0.3304 0.6624 0.3144 0.3282 0.6006
Num 1 4 1 2 2 2

Right-pred
Unc 0.2153 0.1038 0.1142 0.0938 0.1049 0.0486
Num 51 48 51 24 24 24

Table 6: Uncertainty mean value (Unc) and sample size (Num) of wrong-predicted
(Wrong-pred) and right-predicted (Right-pred) samples on validation/test sets by MC
dropout, deep ensemble and ensemble MC dropout UQ methods on ResNet152V2
(ResNet) , Inception-V3 (IncepV3 ) and Inception-ResNet-V2 (IncepRes) models.
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4.3.1 Finding the Most Uncertain Images in SARS-CoV2

Same as the last experiment, we split the train/validation/test sets with a ratio of

7: 2: 1. The specific data distribution is as shown in Table 7. The hyper-parameter

setting is mostly the same as the last experiment. Some modifications apply at the

image pre-processing stage, depending on the categorization of SARS-CoV2 images.

For example, as the size of images in the database is not the same, e.g. for there exist

277 × 210, 321 × 299, 378 × 281 and other sizes in the same folder. Therefore, we

resize all the images to 299× 299.

At the classification task stage, we still use pre-trained models (ResNet152V2,

Inception-V3 and Inception-ResNet-V2) and added Dense and Dropout layers in this

experiment. We still follow the rule to keep as many as hyper-parameters and vari-

ables the same. Lately, at the uncertainty measurement stage, to promise the effi-

ciency of results and computation cost, we still apply M = 5 for deep ensembles and

ensemble MC dropout methods. The size of the MC samples is 100 in this experiment.

Category Train Validation Test Total

Infected by SARS-CoV2 877 249 126 1252
Non-infected by SARS-CoV2 864 244 122 1230

Total 1741 493 248 2482

Table 7: SARS-CoV2 train/validation/test sets composition description

From the uncertainty comparison between wrong and right-predicted samples in

section 4.2.2, we have preliminary knowledge that higher uncertainty will result in

worse accurateness most time. Then we develop how the accuracy will be affected

by removing the most uncertain images from the database. If the accuracy/ROC

improves when we move a few images with the highest uncertainties from the whole

database, we can say that uncertainty and accuracy are positively related. As an

example to justify this assumption, we use the experimental setup of ResNet as a

pre-trained model and MC dropout as the UQ method on the test set here.

After the workflow of applying ResNet to training data to receive a Bayesian

model, feeding test data to the model with M = 5 and 100 times MC sampling to

obtain the uncertainties, and evaluating outputs by the equation from section 4.2.1,

we obtain the uncertainty results and a Bayesian model. The accuracy of this model
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on the test set is 0.9635.

The next step is to move the most uncertain samples out of the test set. We

use entropy as the computation metrics to capture uncertainty in this experiment.

Therefore, the most uncertain samples are the ones with the highest entropy value.

We pick the ten most uncertain samples out of 248 images in the test set. The

mean uncertainty value of the test set is 0.0441, with the value of standard deviation

0.1304. Table 8 displays the index and uncertainty value of the ten most uncertain

samples.

Index 124 189 183 220 122 125 179 123 24 222
Unc 0.425 0.521 0.589 0.622 0.638 0.648 0.656 0.656 0.678 0.687
Pred 0 0 0 1 0 1 0 1 0 1
True 0 1 1 1 0 0 1 0 0 1

Table 8: The indexes (row 1) and uncertainty (row 2) values of ten most uncertain
samples in the SARS-CoV2 database by ResNet model and MC dropout method. The
samples in bold are wrong-predicted found by the model. The prediction outcomes
(row 3) and right labels (row 4) are shown as a comparison.

After removing these ten most uncertain samples, the accuracy has improved

from 0.9635 to 0.9749. In contrast, the accuracy of these removing samples is only

0.5. To evaluate the results more precisely, we can also use the confusion matrices

[92], as shown in Table 9. We categorize the counts of numbers in Table 9 as:

• True Positive (TP) is when predicted class and actual class are both positive,

which refers to predicted and actual outcomes are both infected in this task.

• True Negative (TN) is when predicted class and actual class are both negative,

which refers to predicted and actual outcomes are both non-infected in this

task.

• False Positive (FP) is when the predicted class is positive, and the actual class

is negative, which refers to the predicted outcome is infected, and the actual

outcome is non-infected.

• False Negative (FN) is when the predicted class is negative, and the actual class

is positive, which refers to predicted outcome is the non-infected and actual

outcome is infected in this task.
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Original Test Set Predicted Infected Predicted Non-infected
Actual Infected 123 3

Actual Non-infected 6 116

New Test Set Predicted Infected Predicted Non-infected
Actual Infected 120 1

Actual Non-infected 3 114

Table 9: Confusion matrices of the original test set (top) and new test set with ten
most uncertain images removed (bottom)

where positive usually refers to diseased and negative usually refers to healthy. Hence

in our experiment, we consider infected samples are positive and non-infected samples

are negative.

We can obtain the values of specificity and sensitivity from confusion matrix.

Specificity and sensitivity [105] are statistical evaluation measures widely used in

medical area. The computation equation are:

• Sensitivity is the proportion of positives (infected) which are detected properly.

Mathematically, it can be described as:

Sensitivity =
TP

TP + FN

• Specificity is the proportion of negatives (non-infected) which are detected

properly. Mathematically, it can be described as:

Specificity =
TN

TN + FP

After the computation by the equations, we can find the sensitivity of class

infected has increased from 0.95 to 0.97, and the specificity has increased from

0.98 to 0.99. These comparison results mean this model’s ability to analyze both

infected and non-infected has improved by removing the ten most uncertain images.

To summarize this experiment, we discover five wrong-predicted images (from 9

wrong-predicted images in total) by removing the ten most uncertain images (from

248 images in total). The accuracy, sensitivity, and specificity are all improved.

We can find that using UQ approaches can make our modelling more efficient and

accurate. It can lead the model to extract more specific features by telling the model

which samples are more certain than others. In the next section, we will describe how

modelling can be optimized systemically and practically and display our experimental

results of the SARS-Cov2 database.
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4.3.2 Uncertainty Distribution Quantification on Data Re-

tention

This section explains how to combine uncertainty computation methods into DL

modelling to better evaluate UQ problems in this experiment.

From the last section, we find that the accuracy of the most uncertain data in

the test set is much lower than the rest data (which we can refer them as certain

data). In most research work, we often apply models to evaluate all the images in

the database. However, in practice, we usually have other choices, e.g. ask experts if

we are uncertain. Figure 17 illustrates an example of an automatic diagnosis system

in real-world applications. A probabilistic model accepts the test data X test. Then it

returns the uncertainty results (e.g. σpred, Hpred). There is an uncertainty threshold

of T . The predictions of uncertainty below T will be sent to the model and classified

to return the output ytestpred. Otherwise, it will be transferred to a medical expert.

Figure 17: Automatic diagnosis system [23]

A benchmark of Diabetic Retinopathy Tasks has been proposed in 2019, which

guides a systemic way to present Bayesian Deep Learning (BDL) in medical diagnos-

tics [23]. They detected diabetic retinopathy and selected the most uncertain samples

to an expert for further analysis. Inspired by their work, we compare accuracy with

uncertainty results by setting up different thresholds T to better describe how UQ

can optimize real-world medical applications.

Instead of referring the most uncertain ten images in last experiment, we re-

move uncertain samples by data proportion in this experiment. For examples, we

obtain uncertain values u = {u1, u2, ..., u10} from a database S with ten samples
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S = {S1, S2, ..., S10}. Then we sort them from largest to lowest as:

u8 > u4 > u6 > u9 > u2 > u10 > u1 > u7 > u3 > u5

which means S8 has the highest uncertainty, in other words, is the most uncertain

sample. S4, S6, S9, S2, S10, S1, S7, S3 follows, and S5 is the most certain one of ten

samples.

Next, we need to set up a threshold T. Let us assume T as 80%. We want to

send the most certain 80% data to the model for analyzing and refer the uncertain

rest data to medical experts. It means we need to remove 1− 80% = 20% uncertain

data from modelling work. In the case of database S, we will remove 20% × 10 = 2

samples from all samples. Hence S8 and S4 will be removed since they have the

highest uncertainties. At this point, we have 80% data retained in the database.

We consider these 80% data as uncertain and safe as retained data for further Deep

Learning modelling work.

To apply this system to the SARS-CoV2 database, we compare three UQ method-

ologies with three models for both validation and test sets separately. Figure 18 dis-

plays how accuracy (y-axis) behaves based on how much the retained data (x-axis)

holds.

We can discover some findings from the comparison line graphs. For example:

• Ensemble MC dropout usually achieves better accuracy with the same retained

proportion than deep ensembles and MC dropout on the SARS-CoV2 database.

• Inception-ResNet has a higher accuracy start point than the other two models

for both validation and test sets. We can say Inception-ResNet could be a better

classifier among these three models on the SARS-CoV2 database.

• The start points of accuracy on validation sets are higher than test sets.

There are still some observations we can learn. The most significant discovery in

these experiments is that accuracy keeps improving, along with more uncertain sam-

ples removal. We can notice that after removing 40 ∼ 50% data, most methods can

reach 100% accuracy. Generally, in DL modelling work, we usually use methods, for

example, data argumentation and adding layers to make a model deeper to improve

accuracy. For example, this experiment offers a new method by uncertainty measure-

ment to better extract primary features and make DL models more efficient. It is
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(a) ResNet, Validation (b) ResNet, Test

(c) Inception-V3, Validation (d) Inception-V3, Test

(e) Inception-ResNet, Validation (f) Inception-ResNet, Test

Figure 18: Accuracy vs retained data distribution of three models via three UQ
approaches on validation/test sets. The caption of each plot is named as {model,
dataset}.
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also convenient and useful for further work, e.g. generalization, comparing different

models’ stability.

In reality, it may not be possible to send around half of the uncertain data to

medical experts due to the effectiveness. However, it is still significantly considerable

to send the most uncertain samples with a reasonable threshold T to promise the

safety and accurateness of a DL modelling work.

4.4 Uncertainty Quantification on BreaKHis

Breast cancer is one of the most common causes of cancers for women [14] [70]. Au-

tomatic classification on histopathological images plays an important character in

computer-aided breast cancer prognosis, and diagnosis [4]. The multi-classification

task on breast cancer images mainly refers to identify subordinate categories (e.g. fi-

broadenoma, adenosis). BreaKHis database is a large-scale dataset consisting of eight-

category and four-magnification breast cancer images. In this section, we present our

experiments on the BreaKHis database, summarize the experimental methods we

have explored, and propose another UQ application to analyze uncertainty inside

each category. Overall, our experiment separates into three phases:

1. classification on eight categories at each magnification factor

2. exploration and comparison of uncertainty at different magnifications

3. investigation on predicting the most uncertain category histopathological im-

ages on test sets

Accordingly, we will identify these three phases, display related results and explain

discoveries in the following three sections.

4.4.1 Classification of Eight Categories on BreaKHis

Table 10 describes the detailed image distribution under four magnifications (40X,

100X, 200X, and 400X) of eight categories: benign adenosis (BA), benign fibroade-

noma (BF), benign phyllodes tumour (BPT), benign tubular adenoma (BTA), ma-

lignant carcinoma (MDC), malignant lobular carcinoma (MLC), malignant mucinous

carcinoma (MMC) and malignant papillary carcinoma (MPC).
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Category 40X 100X 200X 400X Total
BA 114 113 111 106 444
BF 253 260 265 237 1,015

BPT 109 121 108 115 453
BTA 149 150 140 130 569
MDC 864 903 896 787 3,450
MLC 156 170 163 137 626
MMC 205 222 195 169 791
MPC 145 142 135 138 560

Total 1,995 2,081 2,013 1,819 7,908

Table 10: BreaKHis detailed description table with eight sub-category and four mag-
nifications

We can notice the imbalance of data distribution from the above table, e.g. MDC

category contains more images than other categories. Imbalanced data may result

in a disproportionate ratio of ignoring some classes’ features, then not representing

results equally. Accordingly, the first step is data augmentation. We split the origi-

nal database with the ratio 7 : 2 : 1 for training/validation/test sets. We apply data

augmentation on the training and validation sets and keep the test set its original

size.

We first explore different modelling with a small amount of data from BreaKHis

and review some baselines on BreaKHis multi-classification researches [4] [76] to de-

cide the valid pre-trained models for this experiment. It shows that Inception-V3 and

Inception-ResNet-V2 models to BreaKHis returns good classification results as well

as acceptable computation cost. Hence, we choose these two pre-trained models as

the start point of the classification task. Similar to the last two experiments, some

adjustments apply to pre-trained models based on histopathology images’ charac-

terization and the large-scale database after augmentation, which includes increasing

epoch size, increased Dense layers. The probability prediction results of images would

be captured, as shown in Figure 19.

Next, the configuration of UQ estimation methods keeps the same as the last

two experiments. One activated dropout layer adds before the last softmax layer at

both the training and test time for MC dropout and ensemble MC dropout. M = 5

has been used for both deep ensembles and ensemble MC dropout. The numerical

uncertainty value on each image computes by predictive entropy.
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(a) 40X, True Label: MPC, Predicted Label:
MPC

(b) 100X, True Label: MDC, Predicted Label:
MDC

(c) 200X, True Label: BF, Predicted Label: BF (d) 400X, True Label: BA, Predicted Label: BF

Figure 19: Example of images at four magnifications with predicted results and true
labels presented
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Table 11 displays the accuracy of validation and test sets using three UQ ap-

proaches with two base models at four magnifications (40X, 100X, 200X and 400X)

separately.

Magnification 40X 100X 200X 400X

Dataset vali test vali test vali test vali test

IncepV3
MCD 0.869 0.843 0.916 0.858 0.874 0.786 0.831 0.769

Deep Ens 0.906 0.899 0.923 0.849 0.913 0.885 0.865 0.785
Ens MCD 0.894 0.883 0.934 0.861 0.912 0.819 0.864 0.781

IncepRes
MCD 0.880 0.847 0.936 0.841 0.894 0.795 0.836 0.794

Deep Ens 0.938 0.882 0.939 0.882 0.905 0.830 0.884 0.794
Ens MCD 0.897 0.907 0.937 0.864 0.912 0.861 0.896 0.825

Table 11: Accuracy on validation/test sets by MC dropout (MCD), Deep ensem-
bles (Deep Ens) and Ensemble MC dropout (Ensemble MCD) UQ approaches with
Inception-V3 (IncepV3 ) and Inception-ResNet-V2 (IncepRes) models at four magni-
fications (40X, 100X, 200X and 400X )

4.4.2 Uncertainty Exploration at Four Magnifications

This section shows the accuracy performance and retained data at four magnifications

on validation and test sets separately to compare the uncertainty outcomes by line

graphs. Each graph contains six plots with the combination of three UQ measures

and two models on one set.

Figure 20 presents performance of accuracy vs. retained data of three UQ ap-

proaches on validation sets. We can find along with removing more uncertain sam-

ples by decreasing threshold T ; the accuracy keeps increasing. All three UQ ap-

proaches perform well as predicted with both Inception-V3 and Inception-ResNet-V2

models on four-magnification sets.

One interesting finding from the modelling aspect is that at the start point, we no-

tice that Inception-ResNet-V2 performs better than Inception-V3 on validation sets

at all four magnifications. However, Inception-V3 can achieve better performance

during the process of applying UQ measures occasionally. Specifically, when we con-

clude the best performed combination of {model, UQ measure}, we find at 200X

{Inception-V3, Ensemble MC Dropout} model (orange line in Figure 20 (c)) is the
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best functioning combination. It also performs as one of the best combinations at

40X. The other two best performed combination at 40X are {Inception-ResNet-V2,

Deep Ensembles} and {Inception-V3, Deep Ensembles}. At 100X and 400X, another

combination {Inception-ResNet-V3, Ensemble MC Dropout} achieves better perfor-

mance than others (purple lines in Figure 20 (b) and (d)). Next, we concentrate on

how UQ approaches perform unknown datasets — test sets.

Figure 21 displays performance of accuracy vs. retained data of three UQ ap-

proaches on test sets. The results and trending plots are not as stable as validation

sets, especially with the deep ensembles approach. Some characterizations of three

UQ methods we can find from the outcomes are:

• Deep ensembles can achieve great performance and accuracy on validation

sets. However, when we apply it to the unknown data, e.g. test set, the out-

comes are not as stable as MC dropout and ensemble MC dropout. For example,

as we can find in Table 11, {Inception-V3, Deep Ensembles} achieves the best

performance at both validation and test at 200X at the start point. However,

we then look into how it performs under the same condition then find the model

not improving when removing uncertain data (green line in Figure 21 (c)). It

is not a good sign for generalization. On the contrary, if we choose {Inception-

ResNet-V2, Ensemble MC dropout } at 200X test instead, the start point of its

performance is not as good as deep ensembles. Nevertheless, we can discover

its performance has improved relative stably (purple line in Figure 21 (c)), and

can even reach to 100% when we set T to 50%.

• As we can learn from Table 11, the accurateness by MC dropout is not as

good as the other two methods. However, the MC dropout method performs

more stable on test set than deep ensembles. It can detect uncertainty and

improve modelling as expected. Another advantage of MC dropout is that it

can save more computation cost since it only needs one model and MC sampling

implementation. Both deep ensembles and ensemble MC dropout are built

upon multiple models. Hence, MC dropout would be the preferred method if

computation cost is limited.

• Ensemble MC dropout performs relevantly stable compared with the other

two UQ measures. We can also find that both inception models’ accuracy is

53



(a) 40X, Validation (b) 100X, Validation

(c) 200X, Validation (d) 400X, Validation

Figure 20: Accuracy vs retained data distribution on validation sets at four mag-
nifications. The captions are named in the form of {Magnification, Dataset}. Each
graph contains six plots presenting the combination of three UQ approaches and two
models by different colors. Each plot is named by the way of {UQ Approach, Model},
which can be found at the corner of each graph.
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(a) 40X, Test (b) 100X, Test

(c) 200X, Test (d) 400X, Test

Figure 21: Accuracy vs retained data distribution on test sets at four magnifications.
The captions are named in the form of {Magnification, Dataset}. Each graph contains
six plots presenting the combination of three UQ approaches and two models by
different colors. Each plot is named by the way of {UQ Approach, Model}, which can
be found at the corner of each graph.
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higher than the other two UQ measures on test sets. Therefore, for accurateness

improvement and potential generalization in the future, we find ensemble MC

dropout would be a suitable choice for detecting uncertainty in the eight-class

classification task on BreaKHis under the condition of reasonable computational

cost.

We set the threshold T as 80 % to keep a balance between modelling and send-

ing uncertain images to medical professionals under the automatic diagnosis system.

Then we compare our results while 80% data retained with currently published ap-

proaches of multi-classification tasks of BreaKHis, as shown in Table 12 and 13.

References Methods
Accuracy at four magnifications
40X 100X 200X 400X

F. Spanhol et al.(2016) [83] CNN + patches 85.6 83.5 83.1 80.8

Z. Han et al. (2017) [29]
AlexNet + aug 70.1 75.8 73.6 84.6

CSDCNN + aug 92.8 93.9 93.7 92.9

D. Bardou et al. (2018) [6]
CNN + aug 83.97 84.48 80.83 81.03

Ensemble CNN model 88.23 84.64 83.31 83.98
H. Erfankhah et al. (2019) [22] LBP 88.3 88.3 87.1 83.4

Y. Jiang et al. (2019) [41] BHCNet-6 + ERF 94.43 94.45 92.27 91.15
S Boumaraf et al. (2020) [11] BW fine-tuned ResNet-18 94.49 93.27 91.29 89.56

Present work (80% retained)

IncepV3 + MCD 95.06 92.54 82.40 79.68
IncepV3 + DE 91.66 95.16 89.82 88.24

IncepV3 + Ens MCD 91.84 94.70 90.75 87.38
IncepRes + MCD 95.80 88.78 86.00 85.50
IncepRes + DE 96.28 96.28 89.57 87.01

IncepRes + Ens MCD 96.45 93.02 89.16 88.73

Table 12: Comparison of the accuracy performance of the eight-class classification on
BreaKHis with the previous work. For the first six references, 100% of testing data
was used.

4.4.3 Finding the Most Uncertain Category

This section proposes another UQ application, which allows us to find the most

uncertain category in a multi-classification task. This application can be accomplished

based on the comparison results of accuracy and retained data from the last section.

We assume the threshold T as 70% and propose one equation for computing removing
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References Magnification AUC Precision Recall F1-measure

D. Bardou et al. (2018) [6]

40X \ 84.27 83.79 83.74
100X \ 84.29 84.48 84.31
200X \ 81.85 80.83 80.48
400X \ 80.84 81.03 80.63

Y. Jiang et al. (2019) [41]

40X 99.76 95.25 95.55 95.39
100X 99.78 94.51 94.64 94.42
200X 99.51 90.71 92.24 91.42
400X 99.30 90.74 91.09 90.75

S Boumaraf et al. (2020) [11]

40X \ 93.81 94.78 94.15
100X \ 92.94 91.59 92.23
200X \ 91.18 88.28 89.47
400X \ 87.97 87.97 87.77

Present work (80% retained)

40X 99.81 97.85 96.46 96.99
100X 99.62 96.28 96.28 96.28
200X 95.64 94.83 94.44 93.99
400X 97.44 91.25 88.74 89.76

Table 13: The evaluation metrics computed from best result of our work at each mag-
nification factor and compare with the previous work. For the first three references,
100% of testing data was used.

percentage, which assists us in finding the most uncertain category:

removing percentage =
# of removed images

# of total images

Removing percentage refers to present how much proportion the removing samples

occupy in the total number of instances of one category. For example, in Figure 21

(a), the most uncertain class we predicted is MLC, with the value of its removing

percentage of 0.625. It means 62.5 % of MLC samples would be selected into the

most uncertain 30 % samples from all eight-category images in the test set. A higher

removing percentage means more images from this category are selected while remov-

ing the most uncertain samples. In other words, this category is more uncertain than

others. The next step is to rank the removing percentage values from maximum to

minimum to present the most uncertain category to the most certain one.

To evaluate our prediction on the most uncertain category, we compute the un-

certainty values directly within the test sets. We also rank them from the maximum

(most uncertain) to the minimum (most certain) and compare these results by rank-

ing the values of removing percentage. If they point to the same most category, this
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means removing percentage can be used to predict the most uncertain type as we

expected.

Figure 22 and 23 present our experiments on test sets with {Inception-ResNet-V2,

Ensemble MC Dropout} at four magnifications. The left plots (blue) are our predicted

removing percentage, and the most uncertain categories are highlighted. The right

plots (green) are the uncertainty values for true labels.

We can find that by computing removing percentage values of each category, we

can find the most uncertain types as expected.

During the experiments, one constraint is that although the most uncertain cate-

gory features are apparent and can be predicted precisely with a reasonable threshold,

the differences between certain varieties are not as noticeable as the uncertain ones.

Hence, one of our future work is to optimize the computation and evaluation of the

most uncertain category in a multi-classification problem.
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(a) 40X, Prediction (b) 40X, True

(c) 100X, Prediction (d) 100X, True

Figure 22: Removing percentage based on uncertainty predictions (left) vs. uncer-
tainty of true labels (right) at magnification 40X and 100X
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(a) 200X, Prediction (b) 200X, True

(c) 400X, Prediction (d) 400X, True

Figure 23: Removing percentage based on uncertainty predictions (left) vs. uncer-
tainty of true labels (right) at magnification 200X and 400X
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Chapter 5

Conclusion and Future Work

In this thesis, we learn what uncertainty is and where it comes from and explore

the uncertainty quantification (UQ) approaches in binary and multi-classification

problems. Meanwhile, we also contribute to exploring how accuracy is related to

uncertainty and building up some UQ applications, such as finding the most uncer-

tain samples or the most uncertain category in a multi-class project. Some potential

future work directions of our research are:

• There are some great contributions already on segmentation tasks uncertainty

quantification. In our work, we went through how to quantify uncertainty in

classification tasks. For future work, we consider evaluating uncertainty on

object detection tasks as a potential topic.

• Another future objective of our research is to compute two categories of

uncertainty separately in multi-classification tasks. Generally speaking,

the uncertainty we calculate is the total uncertainty of the modelling process

and database. One of our future work will be computation on aleatoric uncer-

tainty and epistemic uncertainty separately. Some research on predicting two

categories of uncertainty on segmentation tasks is published [48], which would

be a good start point for us to look into multi-classification studies.

• We also consider the generalization approach of UQ applications. To

achieve the generalization goal, we will have many components to consider, such

as proper thresholds T, cost-effective modelling and computation estimations

depending on the databases.
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• Various uncertainty approaches and evaluation metrics have been proposed re-

cently, such as Deterministic Uncertainty Quantification (DUQ) method [94]

and Mean-Field Variational Inference evaluation metrics [72] [99]. Hence, we

are browsing more approaches to optimize the existing UQ system we

use in this thesis.
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