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Abstract

A Study on Anomaly Detection Using Mixture Models

Yogesh Pawar

With the increase in networks capacities and number of online users, threats of different

cyber attacks on computer networks also increased significantly, causing the loss of a vast

amount of money every year to various organizations. This requires the need to identify and

group these threats according to different attack types. Many anomaly detection systems

have been introduced over the years based on different machine learning algorithms. More

precisely, unsupervised learning algorithms have proven to be very effective. In many

research studies, to build an effective ADS system, finite mixture models have been widely

accepted as an essential clustering method.

In this thesis, we deploy different non-Gaussian mixture models that have been proven

to model well bounded and semi-bounded data. These models are based on the Dirichlet

family of distributions. The deployed models are tested with Geometric Area Analysis

Technique (GAA) and with an adversarial learning framework.

Moreover, we build an effective hybrid anomaly detection system with finite and in-

finite mixture models. In addition, we propose a feature selection approach based on the

highest vote obtained. We evaluated the performance of mixture models with Geometric

Area Analysis technique based on Trapezoidal Area Estimation (TAE) and the effect of

adversarial learning on ADS performance via extensive experiments based on well-known

data sets.
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Chapter 1

Introduction

1.1 Anomaly Detection and Mixture Models

Intrusion Detection System (IDS) plays an essential role in ensuring the security of a net-

work environment and achieving a solid line of defense against cyber intrusions. The pri-

mary purpose of IDS is to monitor host or network activities and detect possible threats by

measuring their violations of confidentiality, integrity, and availability [2, 3]. In the ma-

chine learning context, this can be seen as a classification or novelty detection task that

involves discovering enthralling and rare patterns in network data. IDS methodologies

are grouped into three major categories: Misuse-based (MDS), Stateful Protocol Analysis

(SPA), and Anomaly Detection Systems (ADS) [4]. The majority of ADS methodologies

have been developed using approaches involving data mining and machine learning, ar-

tificial intelligence, knowledge-based, and statistical models. For instance, classification

based approaches rely on building the knowledge base from the normal traffic activity pro-

file and considering activities that deviate from the baseline profile as anomalous. Major

classification-based ADS techniques used in the literature are developed using support vec-

tor machines (SVM) [5], Bayesian networks [6], neural networks [7], and rule-based [8]

approaches. Anomaly Detection Systems have also been developed using statistical tech-

niques where a threshold is defined to raise alarms for anomalous requests.

Different types of techniques have been developed based on statistical learning (e.g.

mixture models) [9], and signal processing [10]. Unfortunately, many of them fail in terms

of detection rate and time trade-off especially in the case of large-scale networks. Over the

past few years, various statistical machine learning models have been proposed to mitigate
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this limitation. The main goal of these models is to distinguish between normal and abnor-

mal network events represented in terms of vectors of features. The task of distinguishing

between an attack profile and a normal one is very challenging [11–13]. A recent study on

ADS has shown that statistical-based mixture models are very effective to detect malicious

network behaviors with significantly low FPR and high detection rate (DR). Finite mixture

models for positive vectors, such as Dirichlet (Dir) [14], inverted Dirichlet (ID) [15], and

generalized inverted Dirichlet (GID) [16] mixtures have proven to be more efficient than

Gaussian mixture model in many real-world applications [17–19]. Indeed, both Dirichlet

and inverted Dirichlet have shown to be more flexible for modeling multivariate data than

the Gaussian, as both allow multiple symmetric and asymmetric modes [20].

With the spread of the Internet-of-Things (IoT) devices in different prime fields like

smart cities, health care, smart home applications, industrial automation, supply chain, and

military applications, a huge amount of data is transmitted everyday [21]. To ensure the

security of user’s privacy as well as Wireless Sensor Networks (WSNs), many supervisory

and data acquisition systems often embed learning algorithms for anomaly detection. Rapid

and accurate anomaly detection is one of the essential requirements to ensure the productive

work of the network. To address different security concerns related to end-users privacy

as well as data integrity, various techniques like fog computing, federated learning, and

differential privacy are adopted in many real-world applications. Currently, due to the

benefits of agility, flexibility, security, scalability, and cost-effectiveness, researchers and

many industrial application service providers are moving towards cloud computing [22]

[23]. Although, cloud computing provides many advantages, it has some limitations like

privacy concerns, high latency, low mobility support, and geo-distribution [23].

Recently, some techniques such as fog computing, federated learning, and differential

privacy have been proposed to overcome issues related to cloud computing. For example,

fog computing, often called edge computing, provides applications, storage, and data to

end-users with less geo-distribution limitations [24]. On the other hand, federated learning

gives the ability to end-users to train different machine learning algorithms on multiple de-

centralized edge devices [25]. Moreover, privacy-related issues can be effectively handled

by differential privacy techniques [26], where any sensitive information is kept secure on

edge devices in such a way that it prevents anyone to be fully able to reverse-engineer the

data to its original form, thus preserving the privacy of end-users as well as data integrity.

Achieving edge computing capabilities from the above techniques give more advantages
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over cloud computing. But, due to different common characteristics of IoT devices such as

size, weak computation capability, and low memory capacity, edge computing techniques

are often found to be vulnerable to various security threats. For example, in anomaly de-

tection systems (ADS), a device that gets compromised by an adversary might affect the

performance of the overall system by injecting malicious data during the training phase of

the learning algorithm. An important problem that we tackle in this thesis is adversarial

learning, wherein training, malicious data are injected as normal data in order to compro-

mise ADS’s performance.

1.2 Contributions

The goal of this thesis is to build and evaluate an anomaly detection system based on

mixture models along with different learning approaches. We propose a feature selection

approach based on the highest vote to achieve high accuracy and detection rate (DR). The

contributions are listed as follows:

☞ An Effective Hybrid Anomaly Detection System Based on Mixture Models.

We propose a feature selection approach based on the highest vote obtained

by different techniques in the literature. We introduce a hybrid ADS system

based on a combination of finite and infinite mixture models with variational

learning for the created sub-datasets based on the attack types in the widely

used UNSW-NB15 dataset. We evaluated the proposed framework using well-

known datasets such as UNSW-NB15 and NSL-KDD and achieved high accu-

racy in detecting all attack types. This contribution has been accepted by the 7th

International Symposium on Networks, Computers, and Communications. [27]

☞ Performance Evaluation of Geometric Area Analysis Technique for Anomaly

Detection Using Trapezoidal Area Estimation.

We evaluate different mixture models within the anomaly detection framework

proposed by [1]. We propose a feature selection approach based on the high-

est vote obtained by different techniques in the literature. We evaluated the

GAA-TAE technique by deploying different mixture models for the widely used

UNSW-NB15 and NSL-KDD data sets. This work has been accepted by the 7th

International Symposium on Networks, Computers, and Communications. [28]

3



☞ Performance Evaluation of Adversarial Learning for Anomaly Detection using

Mixture Models.

We use different statistical mixture models based on variational learning to eval-

uate the performance of ADS considering the effect of adversarial data while es-

timating the model parameters in the training phase. A decision-making method

proposed in [29] is used to create a baseline profile for normal and abnormal

data. We evaluate different variational-based models performances with adver-

sarial learning, wherein training, malicious data were injected as normal data.

This research work has been submitted to the 22nd IEEE International Confer-

ence on Industrial Technology. [30]

1.3 Thesis Overview

The rest of this thesis is organized as follows

❏ Chapter 2 proposes an effective ADS system based on a hybrid of finite and infi-

nite mixture models with maximum likelihood and variational Bayesian inference.

By selecting an appropriate number of clusters using the variational Bayesian infer-

ence technique, as well as selecting the relevant features using the proposed voting

approach, we achieved a significant improvement in the modeling accuracy.

❏ In chapter 3, we evaluate the Geometric Area Analysis technique based on Trape-

zoidal Area Estimation with different mixture models. We evaluated the proposed hy-

brid ADS through extensive experiments involving two well-known datasets, namely,

NSL-KDD and UNSW-NB15.

❏ Chapter 4 describes the performance evaluation of different variational learning mix-

ture models along with adversarial learning cases. We evaluated the ADS through

extensive experiments involving two datasets: NSL-KDD and UNSW-NB15.

❏ In conclusion, we summarize our work and contributions with some remarks for

future works.
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Chapter 2

An Effective Hybrid Anomaly Detection

System Based on Mixture Models

In this chapter, we present the mixture models that we have considered as well as the vari-

ational inference approach deployed for learning. Furthermore, we propose a new hybrid

Anomaly Detection System (ADS) framework to detect both normal and abnormal patterns

of behavior in high-dimensional network data.

2.1 Mixture Model for Multivariate Data

Machine learning algorithms are predominantly organized into two main families: super-

vised or unsupervised learning. In the case of supervised learning, data labels are provided

to train a given model to tackle for instance classification and regression problems. How-

ever, in unsupervised learning, the model is learned without using class labels. Mixture

models have been widely used as a formal approach to unsupervised learning. A mixture

model is a probabilistic statistical model, that identifies a set of clusters within an overall

population. Suppose that we have a set of N D-dimensional vectors X = { ~X1, . . . , ~XN}

where ~Xi = { ~Xi1, . . . , ~XiD} modeled by a finite mixture with M components, then

p( ~Xi|~π,Θ) =
M∑
j=1

πjp( ~Xi|θj) (1)

where Θ = (θ1, . . . , θM), θj is the parameter of the distribution representing component j,

and ~π = (π1, . . . πM) represents the mixing weights which are positive and sum to one.

Finite mixture models for positive vectors, such as Dirichlet (Dir) [14], inverted Dirichlet
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(ID) [15], and generalized inverted Dirichlet (GID) [16] have proven to be more efficient

than Gaussian mixture models in many real-world applications [12, 18, 19]. Indeed, both

Dirichlet and inverted Dirichlet have shown to be more flexible for modeling multivari-

ate data than the Gaussian, as both allow multiple symmetric and asymmetric modes [20].

Many other properties of inverted Dirichlet are described in [31]. However, inverted Dirich-

let has a major limitation since it assumes that the features of a given data vector are posi-

tively correlated, which does not hold for many real-world applications.

In addition, other models such as Generalized Dirichlet (GD) [32], Generalized Inverted

Dirichlet (GID) [33], Beta-Liouville (BL) [34], and inverted Beta-Liouville [20] mixture

models have been recently developed to offer more general covariance structure and flexi-

bility than Dirichlet- and inverted Dirichlet-based models. On the other hand, the grouping

of network data into a finite number of clusters is not the best option in the case of ADS

systems, where new malicious behaviors and new types of attacks may be seen. Thus, we

considered also infinite mixture models, where the number of components M is supposed

to be infinite and dynamically adjusted as data arrive. The detailed explanations and im-

plementations for variational learning of infinite Dir, ID, and GID are given by [33,35,36],

where stick-breaking representation [37] is adopted to construct the infinite model using a

non-parametric Bayesian framework based on the Dirichlet process (DP) [38]. The con-

sidered distributions as well as a variational-based approach to learn their corresponding

mixture models will be presented in the next section.

2.1.1 Model learning

Two approaches have been considered in the literature for training finite mixture models.

First, the widely used technique is to estimate the related parameters using the maximum

likelihood [39] approach through the expectation-maximization (EM) algorithm [40]. De-

tails about the estimation of Dir, ID, and GID finite mixture models using this approach

can be found in [14–16]. Another approach to estimate finite mixture model parameters is

variational learning to handle implicitly uncertainty, which characterizes the anomaly de-

tection problem. The detailed explanations and derivations for variational learning of finite

Dir, ID, and GID are given in [33, 41, 42].

A finite Dirichlet mixture is obtained by considering that p( ~Xi|θj) in Eq. 1 is a Dirichlet
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distribution with its own positive parameters θj = ~αj:

p( ~Xi| ~αj) = Dir( ~Xi| ~αj) =
Γ(
∑D

l=1 αjl)∏D

l=1 Γ(αjl)

D∏
l=1

X
αjl−1

il l (2)

where ~αj = (αj1, . . . , αjD) , D is the dimensionality of ~X and
∑D

l=1 Xl = 1, 0 ≤ Xl ≤ 1.

In the case of an Inverted Dirichlet mixture, we have [43]

p( ~Xi| ~αj) = IDir( ~Xi| ~αj) =
Γ(
∑D+1

l=1 αjl)∏D+1
l=1 Γ(αjl)

D∏
l=1

X
αjl−1

l (1 +
D∑
l=1

Xil)
−

∑D+1

l=1
αjl

(3)

where 0 ≤ Xil and the parameters are now θj = ~αj = (αj1, . . . , αjD).

In the case of Generalized Dirichlet mixture model, p( ~Xi|θj) is the following distribution

with parameter θj = (~αj, ~βj):

p( ~Xi|Θj) = GDir( ~Xi| ~αj, ~βj) =
D∏
l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
X

αjl−1

il

(1−
l∑

K=1

Xik)
γjl

(4)

where ~αj = (αj1, . . . , αjD), ~βj = (βj1, . . . , βjD),
∑D

l=1 Xil < 1 and 0 < Xil < 1 for

l = 1, ...D, αjl > 0, βjl > 0, γjl = βjl − αjl+1 = βjl+1 for l = 1, ..., D − 1, and

γjD = βjD−1.

The next deployed mixture is based on the generalized inverted Dirichlet with positive

parameters θj = (~αj, ~βj) , is defined as

p( ~Xi|Θj) = GID( ~Xi| ~αj, ~βj) =
D∏
l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)

X
αjl−1

il

(1 +
∑l

K=1 Xik)γjl

(5)

where ~αj = (αj1, . . . , αjD), ~βj = (βj1, . . . , βjD), 0 < Xil for l = 1, ...D, αjl > 0, βjl > 0,

γjl = βjl + αjl − βjl+1, l = 1, ..., D with βjD+1 for , and γjD = βjD−1.

Finally, the Beta-Liouville and inverted Beta-Liouville mixtures are obtained using the

following two distributions namely the Beta-Liouville distribution with set of parameters
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θj = (αj1, ..., αjD, αj, βj) and inverted Beta-Liouville distribution with set of parameters

θj = (αj1, ..., αjD, αj, βj, λj)

BL( ~Xi | θj) =
Γ(
∑D

l=1 αjl)Γ(αj + βj)

Γ(αj)Γ(βj)

D∏
l=1

X
αjl−1

il

Γ(αjl)

×(
D∑
l=1

Xil)
αj−

∑D
l=1

αjl(1−
D∑
l=1

Xil)
βj−1

(6)

where
∑D

l=1 Xil < 1 and 0 < Xil < 1 for l = 1, ...D,

IBL( ~Xi | θj) =
Γ(
∑D

l=1 αjl)Γ(αj + βj)

Γ(αj)Γ(βj)

D∏
l=1

X
αjl−1

il

Γ(αjl)

×λβ(
D∑
l=1

Xil)
α−

∑D
l=1

αjl(λ+
D∑
l=1

Xil)
−(α+β)

(7)

where 0 < Xil for l = 1, ...D.

2.1.1.1 Variational learning Approach

One of the most important tasks when deploying mixture models is parameters estima-

tion. The approaches to estimate the parameters can be divided mainly into two types:

deterministic and Bayesian. In the deterministic learning approach, maximum likelihood

(ML) estimation using Expectation-Maximization (EM) [44] [41] algorithm is the most

widely used. Deterministic approaches are very sensitive to initialization and may cause

over-fitting problems. To overcome these limitations, Bayesian learning has been widely

used in real-life applications especially via variatioanl inference. The primary goal of

variational learning is to approximate the posterior distribution by minimizing the Kull-

back–Leibler (KL) divergence between the exact (or true) posterior and an approximating

distribution [41] [45]. Using that inference procedure, along with estimating model param-

eters, the number of components can be automatically determined.

In our case, the goal is to estimate via variational inference the set of parameters Θ

and mixing coefficients ~π for a mixture model by maximizing p(X|~π) given by eq.8. In

most of the cases, conjugate prior for a mixture model is intractable, mainly because of

the difficulty to evaluate the normalization coefficient and thus can not be used directly in

variational inference. Here, we also consider a binary random vector of M dimensions

(latent variable) as ~Zi = {~Zi1, ... ~ZiM} where ~Zij = 1 if ~Xi belongs to jth component and

8



0, otherwise.

p(X|~π) =
∑
Z

∫
p(X , Z, ~θ|~π)d~θ (8)

At this point, the marginalization in above equation is intractable, thus the variational ap-

proach is used to find a tractable lower bound on p(X|~π).

ln p(X|~π) = L(Q)−

∫
Q(θ) ln

p(θ|X , ~π)

Q(θ)
dθ (9)

In the above equation, the lower bound L(Q) is maximized when the KL divergence equals

zero. The posterior distribution Q(θ) can be factorized into disjoint tractable distributions

based on mean-field theory [46] [47].

To maximize L(Q), the distribution of each factor is optimized with L(Q) using the first-

order and second-order Taylor approximations. The detailed variational inferences and

complete learning algorithms for all the deployed mixture models can be found in [42] [33]

[34] [20] [41].

2.2 The Proposed ADS Framework

This work is mainly motivated by two successful approaches recently proposed for intru-

sion detection. Moustafa et al. [48] proposed a scalable framework for building an effective

ADS statistical decision engine based on the DMM for recognizing abnormal behaviors in

network systems. Furthermore, the author in [49] proposed a hybrid IDS system based on

different algorithms used together. The idea is to test different algorithms for each of the

commonly known attack types on the widely used NSL-KDD dataset and the most suitable

algorithm is determined according to the attack type, which has shown to be more efficient

than using a single model. Thus, we propose a novel hybrid ADS based on the combination

of finite and infinite flexible mixture models for non-Gaussian data.

The proposed framework consists of three modules of feature selection, training dif-

ferent models with each attack type and a statistical decision engine with a lower-upper

interquartile range (IQR) [50]. More precisely, we first select the most relevant features in

the dataset by combining the selected attributes using feature selection techniques widely

used in the literature, as done in [49]. Next, we compute the density of non-Gaussian dis-

tributions for the normal profile as the training phase, then the parameters estimated using

variational learning from the training phase are used in the testing phase. The algorithms

9



Figure 1: Proposed hybrid anomaly detection system.

with the highest accuracy, detection rate performance, and lowest error rate for each at-

tack type are determined in the proposed system. Finally, the decision-making method for

identifying anomalies is designed by specifying a threshold of the lower-upper IQR for the

normal profile and considering any deviation from it as an attack as proposed in [48].The

block diagram of the proposed system is shown in Fig.1.

2.2.1 Data pre-processing and Framework

The raw data obtained from the network can not be used directly in data analysis. This raw

data is often incomplete, irreconcilable, and inadequate in certain behaviors or trends, and

is foreseeable that it might contain many errors or null values. Before using the proposed

framework, we performed data pre-processing on the considered widely-used datasets,

namely NSL-KDD and UNSW-NB15, including feature transformation and normalization.

In feature transformation, categorical data such as protocol type,service, and flag

features of NSL-KDD dataset and for UNSW-NB15 dataset proto,state,and service have

been converted into numerical values. The data normalization is then performed in order

to make data compatible with any other observation in the dataset. The data normalization

can be performed using min-max scalar transformation in a range of 0 to 1. Normalization

of data increases the performance of the system by reducing computational time.

The proposed framework involves three main phases, as follows:
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1. Feature selection The high dimensionality of network data makes it even more chal-

lenging to achieve a good performance in identifying normal and abnormal behavior

in network systems. The accuracy of an ADS system is given a high priority, but

along with accuracy, it is also crucial to consider the time required to detect an at-

tack. Having irrelevant features in the dataset may decrease the performance of the

model in terms of both accuracy and time complexity, especially in unsupervised

learning.

In this study, we selected the most relevant features in each considered dataset based

on the voting method. That is, we selected the high deterministic properties by com-

bining attributes based on the highest vote of different feature selection techniques

such as LightGBM, Random forest, RFE wrapper, data variance, feature correlation,

and Chi-2. These techniques consider multiple aspects, including length, variance,

dimensionality, correlation, and mean of the dataset. Each method gives a finite set

of optimal features, and thus we combine the optimal features selected with the high-

est votes among the methods. These selected features are to be used in the training

of the different mixture models. Using the proposed feature selection approach, the

most relevant features obtained are presented in Table 1.

Table 1: Selected features from both datasets

Datasets Selected features

NSL-KDD

dst host srv count, dst host same srv rate, dst host count,

same srv rate, protocol type, logged in, flag, dst host srv diff host rate,

dst host serror rate, dst host same src port rate, count

UNSW-NB15
synack, sttl, sinpkt, dttl, dload, ct srv dst, swin, smean, sload,sbytes,

rate, dur, dmean, dbytes, ct state ttl, ct srv src, ct dst src ltm, ackdat

2. Training of models

After pre-processing and feature selection, we created sub-datasets based on the dif-

ferent attack types, In the NSL-KDD, we grouped different types of attacks into

four major categories described in [49] as DoS, U2R, R2L, and Probe. For UNSW-

NB15, we categorized the attacks into 8 different types including Fuzzers, Analysis,

Backdoors, DoS, Exploits, Generic, Reconnaissance, and Worms. According

to each attack type, the different considered mixture models are evaluated. In the

11



training stage, we initialize the model parameters using K-means and method of the

moment, and these parameters are to be updated using the learning approaches to

fit the datasets. After calculating the responsibility matrix for each data point in a

dataset, IQR for a normal profile is calculated to be used in the testing phase.

3. Tesing and Decision Engine

In the testing phase, parameters obtained from the training data set are used to calcu-

late the probability of each data point that belongs to a particular cluster of the testing

data set. The models with the highest accuracy, detection rate performance, and low-

est error rate are determined according to attack types, and the selected algorithms

are used in system design.

For decision-making, the upper (Q3), lower (Q1), and intermediate (IQR) are cal-

culated using training data of each normal profile to find the outliers/anomalies of

any observed instance. Any new observation falling below (PDF testing < (lower−

w ∗ (IQR))) or above (PDF testing > (upper + w ∗ (IQR))), is considered as an

attack, and as normal otherwise [48]. The interval values [50] w has been chosen

to be between 1.5 and 3 for finite mixture with maximum likelihood and for infinite

variational mixture models. In addition, we chose interval values for finite variational

mixture models between 1.5 and 5. For decision making, we compare PDF testing

or responsibility matrix to IQR value obtained in the training phase of each model.

The selected model, with the best performance, is then used to build hybrid ADS to

increase the accuracy to identify normal and abnormal behaviors in NSL-KDD and

NSW-NB15 datasets.

2.3 Experimental Results

In this section, we evaluated the effectiveness of the proposed hybrid ADS based on finite

and infinite mixture models using two widely used datasets, namely, UNSW-NB151 and

NSL-KDD2. We considered different models and learning approaches as follows:

• Finite mixture models with maximum likelihood learning approach: Dirichlet (Dir) ,

Inverted Dirichlet (ID), Generalized Inverted Dirichlet (GID).

1https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/

ADFA-NB15-Datasets/
2https://www.unb.ca/cic/datasets/nsl.html
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• Finite mixture models with variational learning approach: VDir, VIDir, VGID.

• Infinite mixture models with variational learning approach: InfVDir, InfVIDir, In-

fVGID.

In our experiments, after training the different models using the training data, we use

the estimated model parameters to calculate the posterior probabilities of the testing set.

The best model, according to each attack type, is selected and used in the model design.

Finally, the statistical decision engine is used to detect normal and abnormal behaviors in

the network system.

Figure 2: NSL-KDD: Feature importance computed in Infinite-VGID.

2.3.1 Feature selection approach evaluation

The first set of experiments evaluates the proposed feature selection approach using infinite

VGID to compute the feature importance of our selected optimal features. In the NSL-KDD

data set, we have a total of 41 features. Using the proposed feature selection technique, we

were able to identify the most relevant 14 features to train our ADS and detect different

attack types with high accuracy. We can show the effectiveness of our selected features for

the NSL-KDD data set in Fig.2, where we have added one irrelevant feature at index 1.

It is quite evident that the model accurately identified the irrelevant feature by computing

low feature importance. Similarly, from a total of 47 features in the UNSW-NB15 data set,

we have selected the 16 most relevant features where the adequacy of the selected features

is shown in Fig.3 . For evaluation, we have added one irrelevant feature at index 5, and it
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can be seen clearly in the figure that we have selected the optimal number of features by

assigning low feature importance value stated as feature saliency in [33].

Figure 3: UNSW-NB15: Feature importance computed in Infinite-VGID.

2.3.2 ADS performance evaluation

The performance evaluation of mixture models based on the hybrid ADS framework was

conducted on the selected features from the two datasets, measured by the overall accuracy,

Detection Rate (DR) and False Positive Rate (FPR). Here, we compare the performance of

both datasets for different models used to build hybrid ADS. From Table 3, it can be clearly

inferred that the infinite VGID provides high accuracy and detection rate with low FPR as

compared to other models for the NSL-KDD dataset, while GID, gives more accuracy but

slightly high FPR compared to Infinite VGID. For the dataset UNSW-NB15, the infinite

VDir gives high accuracy and with 0 FPR. Using GID, the overall detection rate and ac-

curacy are higher than other models. For the NSL-KDD data set, after using the decision

engine with different values of w ranging from 1.5 to 5.0, the accuracy of each model in-

creases as the interval increases. From Table 3, we can conclude that all the models in finite

mixtures give excellent results above 90.00%, but GID with variational learning provides

the most accurate result with an accuracy around 94.05% with w = 3.0 compared to the

other mixture models for NSL-KDD dataset.

Similarly, for the UNSW-NB15 data set, the accuracy of each model increases with the

increase in the interval for different values of w from 1.5 to 5.0. By comparing the false

positive rate from Table 9, we observe the same pattern of FPR that decreased abruptly
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Table 2: Overall accuracy for dataset UNSW-NB15.

Model
ACC ACC DR FPR

w/o DE (%) w DE (%) (%) (%)}
Dir 91.66 91.66 96.49 9.2

ID 91.66 91.38 94.73 9.2

GID 94.63 92.75 92.36 7.2

VDir 85.44 87.92 96.42 18.5

VIDir 85.44 87.92 96.42 18.5

VGID 84.51 87.62 92.10 15.2

InfVDir 90.71 90.71 78.57 0.0

InfVIDir 85.44 85.44 96.42 22.9

InfVGID 85.45 90.40 85.79 3.5

InfVGID+FS 87.10 86.12 95.38 20.5

Table 3: Overall accuracy for dataset NSL-KDD.

Model
ACC ACC DR FPR

w/o DE (%) w DE (%) (%) (%)}
Dir 87.35 93.37 91.13 4.6

ID 87.49 93.39 93.01 6.1

GID 93.45 93.30 80.36 5.5

VDir 93.18 93.45 92.54 5.7

VIDir 88.06 91.41 94.66 11.4

VGID 83.29 94.05 89.10 5.4

InfVDir 79.17 89.49 83.03 4.8

InfVIDir 89.94 90.55 81.09 1.0

InfVGID 92.82 88.04 92.12 2.7

InfVGID+FS* 88.71 88.38 85.38 9.4

* Feature selection.

for the w values above 3.0 for finite variational; it’s opposite to infinite, where we observe

high FPR. So for this data set, we can consider the values of (w >= 3.0) for our evaluated

models. We can conclude that the infinite VDir provides excellent performance with an ac-

curacy of 90.71% at w = 3.0, which is higher than the other infinite mixture models. The

column values (A,B,C,D,E,F,G, and H) in Tables 4,5,6, and 7, denotes Worm, Reconnais-

sance, Fuzzers, Generic, Analysis, Exploits, Backdoor, and DoS attack types, respectively.

The next set of experiments evaluates the performance of the proposed model in de-

tecting each type of attack in the UNSW-NB15 dataset. We compare the selected models

based on DR, FPR, AND accuracy with and without using the decision engine. For the

UNSW-NB15 dataset, we divided the dataset according to the type of attack and trained
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Table 4: Accuracy with decision engine for all the attack types in UNSW-NB15 dataset.

Dataset
Attack types (%)

A B C D E F G H

Dir 97.64 97.46 94.88 98.22 89.33 89.33 90.00 96.66
IDir 95.57 95.52 88.00 99.11 88.55 82.66 90.00 91.55
GID 95.30 86.92 94.49 98.22 86.00 88.88 89.77 90.00

VarDir 83.61 70.84 86.40 98.33 74.56 74.60 77.60 80.00

VarIDir 83.33 74.42 89.13 84.13 74.33 76.40 77.46 81.40

VarGID 83.87 82.22 81.11 83.55 78.66 79.11 77.77 80.88

InfVarDir 69.03 75.44 76.00 94.13 75.13 71.86 79.06 85.80

InfiVarIDir 95.98 79.47 78.73 99.20 74.62 74.81 86.76 76.81

InfiVarGID 78.47 89.17 91.25 97.90 98.77 86.37 98.70 90.44

Table 5: Accuracy without decision engine for all the attack types in UNSW-NB15 dataset

Dataset
Attack types (%)

A B C D E F G H

Dir 94.98 97.01 94.44 93.55 81.00 88.00 78.64 89.55

IDir 94.98 93.59 84.88 93.55 85.22 74.66 78.66 89.77

GID 92.01 80.17 80.26 98.44 85.33 66.44 88.66 88.00

VarDir 76.29 74.55 64.26 98.60 72.73 76.06 77.61 79.20

VarIDir 76.29 74.55 69.40 91.46 71.46 75.26 76.73 79.33

VarGID 81.25 73.49 86.19 94.28 78.77 81.24 79.04 79.61

InfVarDir 68.49 77.21 73.94 93.67 74.06 84.40 76.73 79.60

InfiVarIDir 71.42 82.52 66.80 97.71 71.84 68.98 87.96 77.81

InfiVarGID 63.88 89.50 85.65 81.73 96.90 89.03 96.89 73.36

each sub-dataset with the different considered mixture models. Table 4 and 5, present the

comparison of the performance accuracy with and without using the decision engine for

each attack type. Table 6 and 7, show the comparison of the performance test results for

DR and FPR for each attack category.
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Table 6: False Positive Rate for all the attack types in UNSW-NB15 dataset

Dataset
Attack types (%)

A B C D E F G H

Dir 0.6 2.9 4.3 0.0 3.6 14.9 13.2 0.3

IDir 3.7 2.6 17.0 0.0 5.7 20.0 13.5 9.6

GID 4.5 13.7 3.8 0.6 14.2 15.5 9.27 10.5

VarDir 16.2 34.5 16.0 0.0 26.0 27.1 24.8 24.9

VarIDir 16.4 19.8 12.8 23.0 26.2 35.4 24.9 22.8

VarGID 13.3 19.9 15.5 24.1 11.2 19.5 24.2 24.8

InfVarDir 34.0 25.5 22.5 8.4 24.2 20.0 24.8 21.1

InfiVarIDir 1.3 21.2 21.7 0.0 31.6 26.9 9.2 31.6

InfiVarGID 0.2 0.1 8.0 2.6 0.6 12.5 0.5 2.1

Table 7: Detection Rate for all the attack types in UNSW-NB15 dataset

Dataset
Attack types (%)

A B C D E F G H

Dir 85.71 99.11 93.24 94.59 74.91 97.97 96.62 90.54

IDir 90.47 88.00 100.00 97.29 76.94 89.86 97.29 93.91

GID 92.68 89.77 86.98 94.00 86.48 97.97 87.83 91.21

VarDir 81.54 91.12 91.20 95.00 75.40 78.00 82.40 89.80

VarIDir 79.23 52.75 93.00 99.20 74.40 100.00 82.20 89.80

VarGID 69.56 97.05 74.32 99.32 58.10 76.35 81.75 92.56

InfVarDir 90.00 78.87 73.00 99.20 73.80 55.60 86.80 99.60

InfiVarIDir 79.54 81.31 79.85 97.54 87.73 83.79 78.52 94.47

InfiVarGID 86.36 99.70 87.70 99.08 89.95 81.11 86.27 72.29

The overall accuracy of the UNSW-NB15 dataset obtained without using the decision

engine is 88.32%, and with decision engine accuracy increased to 90.64%. In our hybrid

ADS, we achieved an accuracy of 96.58%, which is a significant increase over previous

results obtained. The FPR of hybrid ADS decreased significantly from 0.12% to 0.03%.

The best models to detect each type of attack according to accuracy, DR, and FPR are

highlighted in Table 4.
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Chapter 3

Performance Evaluation of Geometric

Area Analysis Technique Using

Trapezoidal Area Estimation

Previously, we have successfully applied the mixture models as well as the variational infer-

ence approach to estimate model parameters. The performance of models with variational

learning approach was proven to be very effective compared to other described models. In

this chapter, the GAA-TAE technique proposed in [1] is used and integrated into the ADS

framework to detect abnormal data with high accuracy and low FPR.

3.1 Introduction

The main goal of a clustering algorithm is to find patterns and to group similar vectors in

the same cluster. In the case of network data, it is very challenging to differentiate between

normal and abnormal data vectors when both reflect the same pattern. To overcome this

problem, different distance measures have been considered along with model-based clus-

tering algorithms. The GAA technique, presented in [1] is one solution that we will follow

and can be divided into following steps:

3.1.0.1 Normal profile creation

For D-dimensional positive vector ~X representing a network observation, the GAA tech-

nique is applied to calculate its area based on its TAE computed from the Beta mixture
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model (BMM) parameters and distances of records. In this technique normal profile is

constructed from legitimate network data. These legitimate data are first used to estimate

BMM parameters and then used to calculate distances between the mean of normal records

and each record. Finally, for each data vector TAE is calculated using the BMM Probabil-

ity Density Function (PDF) and distance between records [51–53] for training and testing

dataset.

3.1.0.2 TAE estimation

The final PDF of normal record and test record is used to estimate TAE from Eq. 10

area(V ) =
b− a

D
[f(x1) + 2

D−1∑
i=1

f(xi) + f(xD)] (10)

GAA technique is mainly based on trapezoidal rule which is one of the numerical integra-

tion families called Newton-Cotes formulas [54]. When this rule is used for multivariate

data it is called a composite trapezoidal rule. The PDF of each vector is considered as the

area under the curve as shown in Fig. 4. The final normal areas are sorted and divided into

Figure 4: Composite trapezoidal rule. [1]

Ki intervals where each Ki represents a minimum and maximum value (minKi
and maxKi

,

respectively) and used in decision-making step.
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3.1.0.3 Testing and Decision-making

In this step, PDF and area of test data are calculated by using same estimated parameters

from normal profile. Next, the test area is compared with normal area. If the area value

for test data vector falls in between normal min and max range, it is considered a normal

record, otherwise as an attack one.

3.1.1 Mixture Models

3.1.1.1 Beta Mixture Model

Mixture models have been widely used for data modeling. Although Gaussian mixture

model, has proven to be efficient in several applications, it fails to fit the observations accu-

rately especially when the data are clearly non-Gaussian due to its non-convex clustering

properties [55]. BMM, on the other hand, has proven to be more efficient in handling many

real-world applications involving one-dimensional data [56]. BMM can be more efficient

on modeling the distribution of bounded data than the Gaussian mixture [57]. The PDF of

a Beta distribution is given by:

Beta(x|v, w) =
1

beta(v, w)
xv−w(1− x)w−1, v, w > 0 (11)

where x ∈ [0, 1] is the normalized feature, v and w indicate the shape parameters of the

Beta distribution and beta(v, w) is the Beta function given by:

beta(v, w) =
Γ(v) Γ(w)

Γ(v + w)
(12)

where Γ() is the Gamma function.

Let ~X = (x1, . . . , xD) be a D-dimensional vector of independent normalized features sup-

posed to follow Beta distributions described in following Eq 13.

p( ~X|~v, ~w) =
D∏

d=1

Beta(xd; vd, wd) (13)

where ~v = (v1, . . . , vD) and ~w = (w1, . . . , wD). In [1], the authors have considered a finite

mixture model based on the distribution in Eq.13, by normalizing semi-bounded positive

features, given by:

p( ~X|Θ) =
M∑
j=1

p( ~X|~vj, ~wj)pj (14)
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where Θ = {pj, ~vj, ~wj} refers to the entire set of parameters to be estimated, pj are positive

mixing proportions, with
∑M

j=1 pj = 1, p( ~X|~vj, ~wj) is the joint density function for a D-

dimensional positive vector given by Eq.13. These parameters can be learned using the

maximum likelihood approach proposed in [39] or the Bayesian one proposed in [57].

By investigating this mixture model, we can notice a main shortcoming which is related

to supposing that the features are independent which may not be the case. The goal of

this paper is to consider other mixture models to handle this shortcoming. In order to

avoid supposing that the features are independent, we consider the generalized Dirichlet

mixture [58]. The generalized Dirichlet distribution with parameters ~α = (α1, . . . , αD)

and ~β = (β1, . . . , βD) is explained in section 2.1.

As discussed extensively in a series of papers [58, 59] the consideration of the gener-

alized Dirichlet allows the transformation of the data using a geometric transformation in

such a way that the independence between the features becomes a fact and not an assump-

tion. Each original vector ~X is geometrically transformed into a vector ~Y = (y1, . . . , yD)

as: yd = xd if d = 1 and yd =
xd

(1−
∑D−1

l=1
xl)

for d = 2, 3, . . . , D. Hence, each feature yd has a

Beta distribution and the resulting vector ~Y follows the distribution in Eq.13 .

In the following we consider two other techniques. The first one considers a mixture model

based on Inverted Beta Distribution [15, 60] as a replacement to the Beta distribution con-

sidered in the original approach in [1]. The inverted Beta distribution is given by:

iBeta(x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 + x)−(α+β) (15)

where x > 0 and Γ() is the Gamma function. The learning of the resulting mixture model

could be based on the approaches proposed in [15, 60, 61].

However, it is clear that the previous technique supposes that the features are inde-

pendent. A better alternative is the Generalized Inverted Dirichlet (GID) mixture as intro-

duced [16]. The GID distribution is given by [16].

p( ~X|~α, ~β) =
D∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)

x
αd−1

d

(1 +
∑D

l=1 xl)γd
(16)

where γd = βd + αd − βd+1 for d = 1, . . . , D with βD+1 = 0.

As described in [16], we can factorize GID distribution as a product of inverted Beta dis-

tributions by using the following geometric transformation: y1 = x1 and yd =
xd

(1+
∑D−1

d=1
xd)

for d = 2, 3, . . . , D. Thus, each feature yd has an inverted beta distribution with parameters

αd and βd as described in eq.15 . The learning of the parameters of a GID mixture model
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Figure 5: Framework for anomaly detection system.

could be based on the approaches proposed in [15, 33]. The PDFs estimated from above

mixture models will then be used to calculate trapezoid area by applying the composite

trapezoidal rule and uniform-grid property (features of equal length) as described in [62]

and using Eq. 10.

3.2 ADS Framework

In this section, we describe the ADS framework to train the high dimensional vectors to

create the normal profile using estimated parameters, distances between the means of the

records, and normal area using the GAA-TAE method as described in [1]. This module

can be divided into two sub-modules namely- area estimation, and a decision engine to

distinguish between normal and abnormal data instances. The data preprocessing including

dimensionality reduction techniques described in section 2.2.1. The block diagram of the

system is shown in Fig.5.

3.2.1 Area estimation and standard profile creation

To build the ADS, we divided both datasets into training and testing sets. Only normal

data vectors were selected to create a standard profile. Besides, we further divided the

UNSW-NB15 dataset according to attack types, including Fuzzers, Analysis, Backdoors,
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DoS, Exploits, Generic, Reconnaissance, and Worms to evaluate detection of each category

using different models. In the training phase, for every given normal data vector we esti-

mated the parameters of the tested mixture models using Maximum Likelihood (ML) and

Expectation-Maximization (EM) algorithms. The normal profile includes the estimated pa-

rameters, PDFs for normal data vector (PDF normal), absolute distance (calculated using

mean of all the normal records (µ) and mean of each normal record (µn) using following

equations 17 to 19, and mixing weights.

µ = 1/N
N∑
i=1

vi/(vi + wi) (17)

µn = 1/D
D∑

d=1

vnd/(vnd + wnd) (18)

absdistance = |µ− µn| (19)

In testing phase, we use same estimated parameters from normal profile to calculate PDFs

for testing set (PDF testing) and use mean of normal profile (µn) to calculate distance mea-

sure for testing records. After calculating (PDF normal) and (PDF testing), we use the

PDFs to calculate TAE area using eq. 10 to get (areanormal) and (areatesting). Further, we

divided (areanormal) into (Knormal) folds, where each fold contains minimum and maxi-

mum values of normal area for each normal vector. (Knormal) folds can be calculated using

following equation [1]:

Kfolds = [N/2], [(N − 1)/2], [(N − 2)/2], ..., [4/2] (20)

Finally, we use this (Knormal)) fold in the decision engine to classify normal and abnormal

data instances proposed in [1]. Any observation falling in the range of (areatesting >=

minKi
) and (areatesting <= maxKi

) is considered as normal otherwise as abnormal data

vector.

3.3 Experimental Results

In this chapter, we evaluate the performance of the GAA technique using TAE. We de-

ployed two widely used datasets, namely, UNSW-NB15 and NSL-KDD for the following
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models: Beta Mixture Model (BMM), Inverted Beta Mixture Model (IBeta), Generalized

Dirichlet Mixture Model (GDir), and Generalized Inverted Dirichlet (GID) mixture model.

The parameters of these models have been estimated using the maximum likelihood ap-

proach within expectation-maximization framework as detailed in [39], [15], [58], and [16],

respectively.

The first set of experiments evaluates the effectiveness of absolute distance with the

TAE method to detect malicious attack vectors in a network with low FPR. For BMM, Fig.

6a and Fig. 6b represent the areas estimated for normal and abnormal data vectors without

using any distance measure with minimum and maximum range for the normal profile from

0.2 and 0.89, respectively. TAE estimate for abnormal data instance is 0.87, which is under

normal range and produces FPR.

Fig. 6c and Fig. 6d, represent IBeta-TAE for normal and abnormal data vectors. It can

be observed that some abnormal data vectors fit the same as the normal vectors and thus

generate high FPR. We can observe that by adding distance measure, in Fig. 6c and Fig.

6d, the model can distinguish between normal range (0.383 to 0.841) and abnormal data

vectors. In this case, the overall IBeta-TAE value (0.836) is close to the normal range, but

still, some abnormal data are considered as normal.

Fig. 6e and Fig. 6f show the effectiveness of the GID model using TAE technique

and distance measure to detect the same normal and abnormal data vectors very effectively

with a normal profile range from 0.27 to 0.82 and significant change in respective TAE

values for abnormal data vector value as 0.895. Thus, the GID-TAE gives good detection

capability with low FPR as we prove it also in the next set of experiments.

Fig. 6g and Fig. 6h, represent GDir-TAE for normal and abnormal data vectors. Al-

though it can be observed that some abnormal data vectors look like normal ones and thus

reduce the overall accuracy, the model can distinguish between normal range (0.12 to 0.77)

and abnormal data vectors. In this case, the overall GDir-TAE value is (0.86) and generates

less FPR.

In the second set of experiments, the performance evaluation of mixture models was

conducted with selected features, and the principal components using the PCA technique

for both datasets. The overall accuracy of the different models is measured by Detection

Rate and False Positive Rate. Tables 8 and 9 summarize the obtained results for NSL-KDD

and UNSW-NB15 data sets, respectively. The column values (A,B,C,D,E,F,G, and H) in

Table 10, denotes Worm, Reconnaissance, Fuzzers, Generic, Analysis, Exploits, Backdoor,
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Table 8: Overall accuracy for NSL-KDD.

Model
ACC DR FPR

(%) (%) (%)

BMM 92.12 99.16 0.29

IBeta 90.50 97.00 0.29

GID 91.12 94.33 0.18

GDir 87.28 90.60 0.21

Table 9: Overall accuracy for UNSW-NB15.

Model
ACC DR FPR

(%) (%) (%)

BMM 95.86 93.50 0.023

IBeta 96.40 96.00 0.014

GID 96.44 97.50 0.010

GDir 98.85 96.00 0.010

and DoS attack types, respectively.

We evaluated the performance of the proposed model with the TAE technique in detect-

ing each type of attack in the UNSWNB15 dataset in the final set of experiments. Table 10

shows the comparison of the performance test results for accuracy for each attack category

in the UNSW-NB15 dataset. The performance of GID with TAE techniques gives us higher

accuracy in each attack type as compared to other models except the shellcode attack type.

Table 10: Accuracy with TAE technique for all the attack types in UNSW-NB15 dataset

Dataset
Attack types (%)

A B C D E F G H I

BMM 92.93 95.06 94.53 90.80 90.53 91.33 93.46 87.06 89.83

IBMM 88.53 96.80 94.13 92.93 90.00 96.66 93.73 83.20 92.66

GID 91.28 99.57 96.71 100.00 90.85 99.85 97.14 85.71 94.28

GDir 97.57 93.57 96.71 83.85 90.28 99.85 90.10 88.42 96.82
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(a) Normal vector Beta PDF without Dist.

TAE range (0.2-0.89)

(b) Abnormal vector PDF (Beta with Dist.

TAE-0.87)

(c) Normal vector IBeta PDF without Dist.

TAE (0.38-0.84)

(d) Abnormal vector PDF (IBeta with Dist.

TAE-0.83)

(e) Normal vector GID PDF without Dist.

TAE (0.27-0.82)

(f) Abnormal vector PDF (GID with Dist.

TAE-0.89)

(g) Normal vector GDir PDF without Dist.

TAE (0.12-0.77)

(h) Abnormal vector PDF (GDir with Dist.

TAE-0.86)

Figure 6: Normal profile range with TAE values Beta, IBeta, and GID model to detect

abnormal data vector 26



Chapter 4

Performance Evaluation of Adversarial

Learning using Mixture Models

In many cases, attackers mainly use two types of attacks, to compromise learning models,

namely evasion and poisoning attacks [7] [8]. In evasion attacks, an adversary exploits

specific vulnerabilities of the system to use it for future attacks wherein poisoning attacks,

attacks aim to inject malicious data into the training phase of the algorithm in such a way

that the baseline created by the learned model will generate a high false-positive rate and de-

crease the performance of the system to detect abnormality in the network. In this chapter,

we describe the adversarial learning of ADS framework and the learning of the deployed

models using the high dimensional training vectors to create normal profile. This module

can be divided into two modules namely data pre-processing including dimensionality re-

duction, training and testing phases to calculate decision boundary. The block diagram of

the ADS is shown in Fig. 7.

4.1 Mixture Models

Due to its simplicity, the Gaussian mixture model [63], where each p( ~Xi|θj) is supposed

to be a Gaussian distribution, has been widely used in many research works. However, it

fails to discover the true underlying data structure in the case of non-Gaussian data. To

handle non-Gaussian data, other mixture models that we shall investigate in this paper have

been proposed. For instance, the Dirichlet mixture model (DMM) [64] was proposed to

model proportional data while the Inverted Dirichlet mixture model (IDir) [15] was proven
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to be more flexible to model positive vectors. In addition, other models such as Generalized

Dirichlet (GD) [32], Generalized Inverted Dirichlet (GID) [16], Beta-Liouville (BL) [34],

and inverted Beta-Liouville [20] mixture models have been recently developed to offer

more general covariance structure and flexibility than Dirichlet- and inverted Dirichlet-

based models. These distributions as well as a variational-based approach to learn their

corresponding mixture models are presented in the section 2.1.

4.2 Adversarial Learning and ADS Framework

The primary goal of any machine learning algorithm is to identify the hidden pattern and

structure of data using for instance different statistical methods. This process of learning

can be manipulated by an adversary for different malicious reasons. This is often referred to

as adversarial machine learning [65,66]. For example, in ADS, an adversarial attack might

inject malicious data into a machine learning model as it is normal legitimate training data,

thus producing inaccurate training results to circumvent attacks in the future as normal. An

adversary can inject and disturb the performance of a learning model at different stages

of model learning like during data pre-processing, feature extraction, training, and testing.

Mostly in poisoning attacks, data labels are manipulated during training, and in evasion

attacks, it takes place after a model has already been trained by identifying boundaries that

separate normal and abnormal data.

In our analysis, at the training phase, different finite mixture models, learned via vari-

ational inference, were deployed along with two different cases. In the first case, model’s

parameters are estimated with normal observations and in the second case, some malicious

observations are considered as normal as an adversarial attack took place. Estimated pa-

rameters were then used to calculate probability density for each model in the testing phase

and any variation from the estimated baseline is considered as an anomaly.

4.2.0.1 Data pre-processing

To improve model performance, the dataset needs to be pre-processed. At first, categorical

features were converted into numerical values by assigning a unique number for each type

to a feature. In the second step, we applied the same technique to identify the best features

proposed in a previous study that we conducted [28] along with this we applied Principal

Component Analysis (PCA) technique as done for instance in [1]. The data pre-processing
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Figure 7: Framework for anomaly detection system.

and feature selection are explained in section 2.2.1.

4.2.0.2 Training and testing phase

After estimating the parameters of the different mixtures, we determine the normal profile

consisting of upper and lower bound of training data from equations 21 and 22 developed

in [29]:

lowernormal = µ(pdfnormal)− (w ∗ σ(pdfnormal)) (21)

lowernormal = µ(pdfnormal) + (w ∗ σ(pdfnormal)) (22)

This normal profile is then used in the classifier defined in [29] to distinguish normal and

abnormal data as ( pdf testing ≥ lowernormal || pdf testing ≤ uppernormal ). Any data

observation that deviates from the classifier range is considered as an attack, otherwise

normal. We applied the above same procedure with an adversarial learning case where we

inject some malicious data as normal data to determine the best variational mixture model

to handle the adversarial attack.
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4.3 Experimental Results

We have performed different experimental evaluation scenarios to assess the performance

of the various variational mixture models with and without adversarial attacks. Each data

instance in NSL-KDD consists of 41 features with one normal and four attacks labels. In

the UNSW-NB15 dataset, each data instance consists of 47 features with one normal and

nine different attacks categories labels. In our analysis, we have selected data of sample

sizes between 120,000 and 160,000 for NSL-KDD and UNSW-NB15, respectively. As

described in [29], for the first case we have selected legitimate data observation 60-75%

of total data and for the second case, attack data samples are about 10-15% of the entire

dataset. The ADS framework with different variation mixture models was evaluated using

accuracy and false positive rate (FPR) metrics defined as:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(23)

FPR =
(FP )

(FP + TN)
(24)

where, the accuracy is the percentage of all normal and attack records correctly classified,

TP represents true positive, TN represents true negative, FN represents false negative, and

FP represents false positive. Based on our experiments, we initialize the number of mixture

component to 10.

Table 11: FPR of the NSL-KDD dataset for both cases.

Model Case-1 Case-2

(%) (%)

Dir 0.050 0.060

IDir 0.059 0.060

GDir 0.090 0.091

GID 0.070 0.072

BL 0.036 0.039

IBL 0.035 0.038

30



Table 12: FPR of the UNSW-NB15 dataset for both cases.

Model Case-1 Case-2

(%) (%)

Dir 0.070 0.072

IDir 0.060 0.063

GDir 0.050 0.055

GID 0.040 0.047

BL 0.066 0.061

IBL 0.042 0.051

Table 13: Accuracy of the NSL-KDD dataset for both cases.

Model Case-1 Case-2

(%) (%)

Dir 92.98 92.14

IDir 92.91 92.15

GDir 89.99 89.71

GID 91.45 91.16

BL 94.55 94.37

IBL 94.67 94.59

Table 14: Accuracy of the UNSW-NB15 dataset for both cases.

Model Case-1 Case-2

(%) (%)

Dir 94.70 94.10

IDir 93.42 93.09

GDir 94.60 94.38

GID 94.75 94.52

BL 93.21 93.17

IBL 93.65 93.59
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We evaluated the performance of the different variational mixture models while con-

sidering both cases (Case 1: without attacks, Case 2: with attacks). From Tables 13 and

11, it can be inferred that the accuracies of the Beta-Liouville and Inverted Beta-Liouville

models were higher compared to other learning models. Furthermore, the FPRs of both BL

and IBL were lower than the other models in the NSL-KDD dataset. For the UNSW-NB15

dataset, the accuracy of variational GID was highest with lowest FPR as shown in Tables

14 and 12.

Figure 8: Accuracy difference between two cases for NSL-KDD dataset.

Figure 9: Accuracy difference between two cases for UNSW-NB15 dataset.

The absolute differences between accuracies for both cases for the NSL-KDD dataset
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is displayed in Fig. 8. We can notice that IBL, and BL have the lowest difference. Thus,

both models are more robust to handle adversarial attacks than others. Similarly, for the

UNSW-NB15 dataset, according to the absolute differences in Fig. 9, both IBL and BL

have the lowest differences of accuracies for both cases.
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Chapter 5

Conclusion

Computer security concerns have been greatly exacerbated due to the evolution of computer

networks in everyday life, especially internet security. Thus, the detection of malicious

network behaviors has become the highest priority today.

In chapter 2, we have proposed a hybrid ADS and we have shown that it provides

promising results by accurately detecting abnormal network behavior. Moreover, results

indicate that the FPR in the proposed ADS is much less as compared to using a single mix-

ture model. Thus, it can be considered as a powerful tool for analyzing non-Gaussian data.

By selecting an appropriate number of clusters using the variational Bayesian inference

technique, as well as selecting the optimal features using the proposed voting approach, we

achieved a significant improvement in the modeling accuracy.

Then, in chapter 3, we implemented the Geometric Area Analysis technique based on

Trapezoidal Area Estimation with different mixture models. We evaluated the proposed

hybrid ADS through extensive experiments involving two datasets NSL-KDD and UNSW-

NB15. We have shown that the GID and GDir using the TAE technique provide promising

results by accurately detecting abnormal network behavior. Moreover, results indicate that

the FPR in the GID is much less as compared to other mixture models. Thus, it can be con-

sidered to build ADS for a high-speed network to detect malicious activity. By selecting an

appropriate number of folds and selecting the optimal number of features using the voting

approach with the PCA technique for dimensionality reduction, we achieved a significant

improvement in the modeling accuracy.

Finally, we evaluated the performance of different variational learning mixture models

along with adversarial learning cases. We evaluated ADS through two datasets, namely,
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NSL-KDD and UNSW-NB15. We have shown that the Beta-Liouville and the Inverted

Beta-Liouville with adversarial learning provide promising results by accurately detecting

abnormal network behavior. Moreover, results indicate that the FPR in the BL and IBL is

much less as compared to other mixture models.

Future works could be devoted to extending the adversarial learning technique using

infinite mixture models for a high-speed network on edge computing architecture to detect

malicious activity.
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