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Abstract

A Comprehensive Comparison of Human Activity Recognition using Inertial Sensors

Hosein Nourani

Wearables are becoming increasingly popular. Their built-in sensors (e.g., GPS, accelerometer,

gyroscope, light) can provide useful data for Human Activity Recognition (HAR). During the past

few years, many HAR models have been introduced with different accuracies and performance.

These models have been applied in different areas such as health, fitness tracking, entertainment, or

advertisement.

Given that these HAR models run on wearables, which are resource-constrained, factors like

inadequate preprocessing can negatively impact the overall HAR performance. While high accuracy

is essential in some applications, the device’s battery life is highly critical to the end-user.

Prior studies contain a plethora of activity recognition models and pre-processing techniques

that show a very high recognition performance of these models. These results are mostly reported

under a specified study setup different from others, making a fair comparison among them nearly

impossible. Nevertheless, to date, very few studies have conducted a side-by-side performance

analysis in HAR.

Therefore, in this dissertation, we investigate some of the most used HAR techniques to under-

stand their impact when developing an end-to-end HAR model to recognize gym exercises (e.g.,

”treadmill, ”bicep-curl,” ”Russian-twist”). This study allows us to examine the accuracy perfor-

mance yielding from 5 state-of-the-art featuresets in HAR models. Additionally, we focus on fea-

ture selection methods and experiment on data reduction to understand trade-offs between accuracy

levels and data size.
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We find that histogram bins are a valid alternative featureset in HAR, with a significant positive

impact on classification performance and classifier learning rate. Moreover, our finding shows that

the data reduction techniques in the feature selection phase can decrease the data size by 93%

(from 119 features to 8 features) with minimal impact on model performance, resulting in a large

computation saving for the model.
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Chapter 1

Introduction

1.1 Research Problem and Scope

Human Activity Recognition (HAR) using on-body sensing is one of the most prevalent assis-

tive technologies to support older people’s daily life Wang, Cang, and Yu (2019), fall risk assess-

ment Sow, Turaga, and Schmidt (2013), physical fitness monitoring Morris, Saponas, Guillory, and

Kelner (2014), or medical diagnosis González et al. (2015), to name a few. Using wearables (i.e.,

smartphones, smartwatches) is becoming increasingly pervasive. Wearables are small in size, rel-

atively cheap and ubiquitously used, reveal numerous new potentials for HAR systems in research

and industry. As such, in about a decade, extensive researches have been undertaken in this regard

and, in result, several outstanding high-performance HAR models have been proposed in the litera-

ture.

Recognizing human activity leads to learning profound high-level knowledge about individuals’

activity patterns, which contributes to developing a wide range of user-centric applications such as

health, monitoring elder people Dix, Dix, Finlay, Abowd, and Beale (2003), or fitness tracking Mor-

ris et al. (2014). There are potentials in giving contextualized recommendations to the user, such as

suggesting TV shows, places to visit, physical activity to perform or even improve advertisements

by correlating different data results. A HAR system based on wearables allows consistent sensing

without Spatio-temporal limitation since it does not depend on any pre-installed equipment in the
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environment. Also, these systems do not need shared data on a server or cloud that may threaten the

user’s privacy as a result, sensor-based HAR have become more popular and widely used. There-

fore, in this thesis, our primary focus is on HAR approaches using wearables.

However, sensor-based HAR approaches have to cope with fundamental challenges. Wearables

are small in size and inherently resource-constrained; That is, one cannot scale-up their computa-

tional power. Particularly, to design a system operating wearables, crucial challenges such as the

cost of computation, the minimum power required or the storage needed to perform analysis, need

to be addressed. One remarkable solution is the use of pre-processing approaches aiming to opti-

mize the size and quality of the input data. While, during the last few years, extensive studies have

targeted data pre-processing task in HAR, there are still open topics in this phase that require more

investigations.

1.2 Motivation

A typical HAR process starts with recording a movement and convert it to a stream of data

using one or multiple inertial sensors. Next, the recorded stream splits into segments with shorter

lengths (multiple seconds). Through the so-called feature extraction phase, multiple techniques are

applied to each segment to extract the features. The extracted features are filtered during the feature

selection step and fed to a classifier for recognition tasks.

To optimize data in terms of quality and quantity, previous works have mostly focused on two

aspects: i) the feature extraction phase, which includes signal processing methods on sensory data

to determine features that better describe a movement, and ii) the feature selection phase, which

attempts to find the smallest set of features by omitting less informative or redundant features from

all extracted features. Therefore, using these approaches, previous studies have provided a better

quality input data for HAR models, which resulted in better recognition performance.

Several sets of features have been introduced in previous studies, and authors have shown im-

provements in recognition accuracy when using those features. However, a side-by-side comparison

that measures the improvement, cost, and performance of featuresets, which is necessary to be used
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as a benchmark for future works, has not yet been explored. Therefore, the first half of this thesis

addresses this question: Based on a systematic empirical investigation of multiple state-of-the-art

featuresets, we explain the difference in the performance of HAR models using each set of features.

We report and discuss the impact of each featureset per activity and per classifier model. We also

investigate the subject-dependency evaluation of each trained model.

Selecting the most optimal set of features and reducing the size of data in HAR have been

investigated in several studies (Bishop (2006); Mujahid, Sierra, Abdalkareem, Shihab, and Shang

(2017); Nguyen, Fernandez, Nguyen, and Bagheri (2017).) It has been shown that by reducing the

size of data, the cost of execution and required storage decrease; However, feeding a model with

less amount of data also may cause a decrease in the model’s performance. The second part of

this thesis aims to examine the impact of feature reduction on wearable-based HAR. Specifically,

we investigate the correlation between the number of features and the recognition performance and

generality both in the cross-subject evaluation and cross-trial evaluation.

1.3 Thesis Contributions

The major contributions of the thesis are as follows:

• A side-by-side comparison of how state-of-the-art features affect HAR system performance.

• A detailed investigation of the impact of data reduction on HAR system performance and

generality.

• A large dataset of gym exercise activities recorded under real-life conditions publicly avail-

able for future researches on HAR and fitness tracking analysis.

• A publicly available repository of scripts contains approaches to extract 1300 most frequently

used features in HAR, to help the research community to acquire a broader range of informa-

tive characteristics of sensor data.
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1.4 Thesis Overview

This thesis consists of five different chapters, briefly explained below. Chapter 2 provides a

background overview needed to understand different aspects of HAR, namely inertial sensors and

data preprocessing, activity recognition techniques and the tools used in this thesis. This chapter

concludes with a summary of state-of-the-arts studies regarding sensor-based approaches in HAR.

Chapter 3 presents a comprehensive investigation of hand-crafted features, including an empirical

feature analysis through an end-to-end HAR system on gym exercises. Chapter 4 shows our HAR

studies and experiments regarding feature selections and data reduction on a dataset of gait activi-

ties. Similarly to chapter 3, it includes a description, results and conclusions for each experiment.

Chapter 5 presents our conclusions about our studies and suggestions for further research in this

area. Besides, this dissertation includes Appendix A is presenting the catalogue of our dataset for

gym exercises.
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Chapter 2

Human Activity Recognition using

Inertial Sensors

This chapter aims to summarize the different topics related to our study. First, we focus on

a commonly used approach in HAR and its phases, and then we provide an overview of similar

studies to the current dissertation.

2.1 Human Activity Recognition Approach

Wearable HAR systems share a typical workflow Banaee, Ahmed, and Loutfi (2013); Janidarmian,

Roshan Fekr, Radecka, and Zilic (2017); Shoaib, Bosch, Incel, Scholten, and Havinga (2014). See

this approach in Figure 2.1. The procedure starts with capturing an activity into a time-series signal

using inertial on-body sensors (i.e., accelerometer, gyroscope). These recorded samples are stored

as a stream of data into a dataset. Next, the stream splits into successive segments, while each seg-

ment is labelled with the activity performed within that segment. To be used in classification, each

segment is summarized into a feature vector called feature extraction phase, an engineering process

to design a set of dimensions representing data-points in a more distinguishable way - hand-crafted

features plays a crucial step in the HAR process. In recent years, feature extraction approaches

and designing a set of hand-crafted features have been extensively investigated; However, several

spots remain open, subject to research. In the remainder of this section, we summarize the different
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phases of HAR approaches.

Figure 2.1: Typical Work-flow of Human Activity Recognition approaches

Motion Sensors

In the following, we describe the most commonly used inertial sensors and their functionalities

in HAR:

• The accelerometer: responsible for measuring acceleration, typically in 3-axis (x, y, z).

As any human motion in the space inherently changes its speed over time like running and

walking, accelerometer is the most popular sensor for motion detection in space.

• The gyroscope: responsible for measuring the angular velocity in 3-axis. (x, y, z). Its main

goal is to detect the human body’s orientation and rotation in the space.

• The magnetometer: responsible for measuring magnetic fields. Generally, its goal is to find

the direction toward the North. In HAR, it has a complementary role to the gyroscope in

detecting the subject orientation. One of the downsides of this sensor is its sensitivity to iron,

which generates significant noise in real-life applications.

There are other sensors (e.g., proximity or GPS) that have been used in HAR. However, they are not

widely presented in motion detection.

Data Acquisition

In HAR using wearables to capture human activity in time series data, users can wear the

sensors. Nowadays, smartphones and smartwatches are equipped with motion sensors (i.e., ac-

celerometer, gyroscope.) Wearing them (e.g., smartwatches) or keeping them in hand or pocket
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(e.g., smartphone) while their sensors are recording is a common example of HAR data acquisition.

The recorded data is transmitted to a host computer and eventually is stored as a dataset for further

analysis.

Challenges in acquiring data using wearable motions sensors include:

• Choosing the sensor based on the type of activity movements, i.e., a gyroscope, is more

suitable in sensing tilting movements than a magnetometer.

• Choosing a body part to attach the sensor. For example, for a classifier to recognize the

walking activity, sensors fixed to the feet provide more clear data than those fixed to wrists.

• Optimizing the number of sensors. While fewer sensors might negatively impact the recogni-

tion performance, more sensors on the user’s body increase the processing cost and difficulties

in real-life usages.

• Choosing a suitable sampling rate to capture the activity with enough resolution. The faster

an activity is, the higher the sampling rate is required. However, a high sampling rate requires

a more expensive sensor and bigger processing power.

These aspects of data acquisition phase have been investigated in previous studies. Table 2.1 shows

the sensor setup and the target activities in related works.

Feature Extraction

Any distinctive characteristic of activity may spark an intuition in designing a HAR feature. For

example: in Figure 2.2 (a), two states of Triceps Kickback exercise are shown. Each repetition of

this exercise requires the body posture to change between these two states.1 A triaxial accelerometer

is fixed to the wrist to capture the movements towards three axes (shown in Figure 2.2 (b)). The

blue and green points are indicating States A and B, respectively, through several repetitions. The

following basic intuitions might be considered in feature extraction:

• when the wrist position is in the highest point, the rep is done, only one peak in the x-axis in

each rep may lead to using the maximum as a feature
1A complete version of Triceps Kickback instruction includes more considerations about holding the dumbbell, inhale

and exhale
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• each rep contains two minimums and two maximums in the y-axis, which leads to counting

number of peaks as a feature

• the wrist does not move significantly toward z-axis, which leads to less considering this axis

in feature extraction

• The exercise is composed of movements in x and y hyperplane. Therefore, a transformation

from x and y page to a vector space that represents the movements more explicitly can be

considered as a feature.

Figure 2.2: (a) Two states of ”dumbbell triceps dips” while a sensor attached to the wrist. (b) A
triaxial accelerometer recorded the signals during five iterations of dumbbell triceps dips. Red and
green bullets stand for State A and B, respectively. The red circles indicate the maximum peaks in
the x signal. In the feature extraction process, an input like the y-axis signal might be considered as
an intuitive feature such as mean or median to recognize each state of this activity.

Similar approaches - based on the understanding of the movements have been used to design

hand-crafted features in HAR in the literature Khokhlov, Reznik, Cappos, and Bhaskar (2018);

Rosati et al. (2018); Shoaib et al. (2014). From this point of view, feature sets can split into five

categories: 1) statistical features, 2) histogram features, 3) self-similar features, 4) physical features,

5) orientation independent features.

Statistical features. are the most popular features in HAR. The idea is to extract statistical

information from the signal using mathematical formulations. This method has been intensively

investigated in HAR, and are proved to be effective in a wide range of experiments Khokhlov et al.

(2018); Rosati et al. (2018); Shoaib et al. (2014). Shoaib and Bosch Shoaib et al. (2014) setup an

experiment with ten subjects to recognize seven activities from daily life. They extracted two groups
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of statistical features, including six time-domain features (mean, standard deviation, median, zero

crossings, root means square and variance) and two frequency-domain features (Fast-Fourier Trans-

formation (FFT) coefficients and spectral energy). They found that using both groups improves

recognition performance. Khokhlov et al. (2018) pivoted a study on five daily life activities and

seven subjects and four classifiers. they showed that using only the accelerometer sensor and statis-

tical features, an increasing number of features (from 4 to 7) increases the accuracy between 3% to

20% (97.6% with KNN classifier) while adding a gyroscope sensor might increase the recognition

performance by about 0.1%.

Histogram Features. are developed based on the probability distribution function of the sig-

nal of activity during a period (window size) Zardoshti-Kermani, Wheeler, Badie, and Hashemi

(1995). In HAR, because each activity contains a set of small movements (as small as one sample)

with specific acceleration and rotation, histogram bins indicate the difference between activities by

showing the different distributions of those small movements. Xi et al., in Xi, Tang, Miran, and Luo

(2017), used EMG signals in fall detection and gait analysis. They compared 15 individual features,

including statistical features and histogram features on five classifiers and showed the fuzzy neu-

ral network classifier using histogram features provides the highest sensitivity and specificity with

98.70% and 98.59%, respectively. Sarbishei et al. Sarbishei (2019) used histogram features and

Forward Neural Network (FNN) in a low-power real-time HAR system. They showed that while

histogram bins are significantly low cost in terms of required processing time and memory usage,

they are sensitive against the resolution/granularity of bins (count and width of bins). To investi-

gate these unique characteristics of histogram features, we include them in comparison, in this study.

Self-Similar Features. Considering that exercise activity is inherently more repetitive rather

than a non-exercise activity, having a featureset that can capture the repetitive behaviour of signal

is helpful. Morris et al. presented a featureset designed based on the idea of extracting repetitions

forms of signal Morris et al. (2014). These features can be extracted by 1) calculating the convolu-

tion of a signal with a shifted version of itself (auto-correlation) or 2) extracting the components of

the signal in the frequency domain.
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Physical Features. One intuitive idea to design a set of features from sensory data is to consider

the principles of human movements. In 2011, Zhang et al. M. Zhang and Sawchuk (2011) intro-

duced a set of features based on physical parameters of human motion. To have a robust physical

meaning of motion data (e.g., moving forward, backward), they assumed that the sensor position

and direction are known during the experiment. In other words, these types of features are derived

based on the physical interpretations of human motion, called physical features (i.e., the correlation

between the gravity and heading direction). Compared to other featuresets, these features account

for a fusion of multiple sensor inputs rather than just one inputs sensor.

Orientation Independent Features. In contrast to physical features, which depend on the posi-

tion and orientation of sensors, Yurtman et al. Yurtman and Barshan (2017) and Siirtola et al. Siirtola

and Röning (2012) proposed features that do not rely on the variation of sensor orientation. In fact,

in their model, they introduced Orientation-invariant transformations (OITs) that are inspired by the

idea of single value decomposition Moon and Stirling (2000). They compared their model with the

ordinary model - pre-defined sensor orientation, on five different datasets. Although their featureset

did not have a significant impact on performance, it brought an extra added value to the model that

lets it to be more robust against orientation.

Feature Selection.

Employing feature selection is very popular as it has been proved that it could significantly

improve performance. Several studies have shown that a careful selection of features improves

the model’s performance both in accuracy and computational costs Nourani, Shihab, and Sarbishe

(2019); Rosati et al. (2018); Wang et al. (2019). For example, in Nourani et al. (2019), we setup a

study/experiment on time-domain features and used an ensemble feature selection (a combination

of filtering method and wrapper method) and showed an identical performance while using only

10% of features. Similarly, in Yazdansepas et al. (2016), authors showed the same performance

using 20% of the initial dataset.

The ain approaches in feature selection are: 1) the filter Method M. Zhang and Sawchuk (2011), 2)
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the wrapper method Rosati et al. (2018), and 3)the embedded method Nourani et al. (2019). Often,

researchers try different selection approaches on a given set of extracted features and choose the

set providing the highest performance. Therefore, the performance achieved by using a featureset

tightly bounds up both extraction and selection phases. For the same reason, in this study, we inves-

tigate the performance of featuresets as the ultimate products of feature engineering in HAR.

Classification.

In this study, we are dealing with a supervised Machine Learning (ML) task. This category

of ML algorithms requires ground truth data (or labels) for learning a function that maps an input

to an output. In HAR, a supervised ML infers a function (classifier) from labelled training data

consisting of recorded sensory data as input and the human activities as output. A wide range of

machine learning methods has been applied for the recognition of human activities. We conduct

our experiments using machine learning methods including Naive Bayes Rish et al. (2001), Deci-

sion tree (DT) Friedl and Brodley (1997), K-Nearest Neighbors (KNN) , Support Vector Machines

(SVM) , Feed-Forward Neural Network (FNN) , and ensemble of classifiers . The main objective

of implementing different classification techniques is to review, compare and evaluate their perfor-

mance considering the most heterogeneous dataset on gym exercises publicly available.

Naive Bayes. classifiers Rish et al. (2001) is one of the most known classifier models being

studied since the 1950s. In this approach, the primary assumption is the independence between

input features. The conditional likelihood function of each activity can be expressed as the product

of simple probability density functions. Naive Bayes is one of the most popular classifiers in HAR

as it is one of the lightest classifiers in recognizing human activities. Furthermore, to learn a Naive

Bayes classifier, one needs a small amount of data to output results.

Decision Trees. Friedl and Brodley (1997) build a hierarchical tree using a divide-and-conquer

strategy, consisting of splitting the input data into several smaller areas labelled by activity names.

These decision trees are represented with decision and leaf nodes mapped to attributes and values,
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respectively. Decision Tree is an ensemble method that provides an explainable model in classi-

fication. It is suitable for running on mobile phones with reasonable recognition performance as

they require less data preparation and computation resource for recognition Baldominos, Cervantes,

Saez, and Isasi (2019); Mortazavi et al. (2014); M. Shoaib, Bosch, Incel, Scholten, and Havinga

(2016). Baldominos et al. (2019) reported the best recognition performance for decision tree among

a set of classifiers including Naive Bayes, KNN, FNN, and Logistic Regression.

k-Nearest Neighbors. k-Nearest Neighbors (k-NN) Duda, Hart, and Stork (2012) is a super-

vised classification technique that can be seen as a direct classification method because it just re-

quires the whole dataset for recognition-no learning process in advance. K-NN algorithm uses the

principle of similarity (distance) for classification. To classify a new observation, K-NN measures

the distance between classes in the training set and the new observation. The distance measurement

uses a similarity function (i.e., Euclidean distance.) A majority vote technique in k nearest neigh-

bors is employed to assign this new observation to the most common class.

Attal et al. Attal et al. (2015) applied the k-NN classification to recognize twelve activities carried

out by six subjects. They compared four supervised classification techniques, namely, k-Nearest

Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Ran-

dom Forest (RF). Their approach has shown that the k-NN classifier provides the best performance

(94.53% F1) compared to other classifiers (< 90% F1.) Other studies based on k-NN for human

activity recognition have also shown high accuracy and satisfactory segmentation results Shakya,

Zhang, and Zhou (2018); Shakya et al. (2018); Wang et al. (2019,?). It is worth mentioning that, us-

ing this classifier, the computational cost of classification increases as the size of dataset grows Tra-

belsi, Mohammed, Chamroukhi, Oukhellou, and Amirat (2013). To address this issue, in Kose,

Incel, and Ersoy (2012), the authors showed the positive impacts of data reduction techniques on k-

NN performance. They also proved that increasing k improves the performance of the HAR model.

Support Vector Machine. A multi-class Support Vector Machine Suykens and Vandewalle

(1999) (SVM) has been employed extensively in previous studies in HAR to discriminate among

the activities Morris et al. (2014); Rosati et al. (2018); S. Zhang, Rowlands, Murray, Hurst, et al.
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(2012). Assuming each data point is a co-ordinate (support vector) of feature space, Support Vector

Machine (SVM) centers on the construction of a hyperplane in a high or infinite-dimensional space.

SVMs work well when the number of dimensions is greater than the number of instances. Morris

et al. Morris et al. (2014) used SVM to recognize 13 gym exercises in an end-to-end human activity

recognition system. Their results showed, using leave-one-out cross-validation analysis, the SVM

accuracy is 96% (on average).

Ensemble Learning. Ensemble learning Dietterich et al. (2002) is characterized by a combi-

nation of multiple classifiers in order to maximize accuracy. Specifically, first, multiple classifiers

are employed to recognize one versus rest. Next, using a majority voting scheme, the best answer

is taken as the final classification output. Some of those techniques include bagging, boosting or

stacking. While ensemble methods improve accuracy significantly Nourani et al. (2019), their com-

putational cost is relatively higher due to deriving multiple classifiers internally.

Feedforward Neural Network. A Feedforward Neural Network (FNN) is an artificial neural

network with a multilayer wherein the connections between layers do not form a cycle. The FNN

minimizes the error function between the estimated and the desired network outputs, representing

the activity classes in the HAR context. The network’s input (first layer) represents the features ex-

tracted from the sensor signal. The feed-forward architecture in this classifier is based on non-linear

activations for internal layers (hidden layers).

Several studies show that FNN is efficient in non-linear classification problems, including human

activity recognition. The FNN has been applied in several studies for human activity recognition,

such as Baldominos et al. (2019); Z. Chen, Zhang, Cao, and Guo (2018); Zhu and Sheng (2009).

In De Leonardis et al. (2018), authors used FNN to recognize eight different activities, including

sitting, standing, lying down in supine position, level walking, ascending and descending stairs,

uphill and downhill walking. They showed that FNN recognizes activities with 90.7% accuracy in

5-fold cross-validation. In another study Baldominos et al. (2019), using multi-layer perceptron,

achieved 94.44% of classification accuracy in recognizing 13 activities including physical activities
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(walking, jogging, biking, going upstairs and going downstairs), common postures (standing, sit-

ting), working activities (typing, writing), and leisure activities (talking, eating, drinking coffee and

smoking).

2.2 Related works

In this study, we target two aspects of the pre-processing phase in HAR: i) feature extraction

and ii) feature selection. In this section, we review recent works about data reduction in features

selection; and investigate recent studies relevant to a different type of features introduced in HAR.

2.2.1 Hand-Crafted Features In Human Activity Recognition

This section presents some studies related to feature investigation in HAR. All the works pre-

sented in this section perform similar experiments to recognize human activities using wearables.

Also, they repeated the same experiment on multiple featuresets in their comparison.

In Sousa et al. (2017), the authors proposed a feature classification based on the domain of

features, including i) time-domain features, ii) frequency-domain features, iii) discrete-domain fea-

tures. They provide an extensive comparative study between dependent and independent-orientation

features extracted from smartphones inertial sensors. They showed how using Time domain features

makes a featureset dependent on the orientation of the movement. Besides, they proved that a fea-

tureset of time-domain features using accelerometer information provides the best characteristics to

recognize physical activities utilizing data analysis of the smartphone inertial sensors.

Grouping and comparing features based on their inherent characteristics are useful and provide

insights into similarities and differences of features. However, in HAR, featuresets are mostly com-

posed of a combination of multiple feature domains. In this thesis, we provide featuresets designed

based on an understanding of inertial movements of activities. Therefore, knowing the performance

of each featureset in this study goes a long way in deciding a featureset for a future study.

In Shoaib et al. (2014) the authors evaluated the activity recognition performance with four mo-

tion sensors using nine classifiers on five body positions with four featuresets. There were three fea-

turesets based on time-domain features and one featureset on the frequency domain. They showed
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that the performance of featuresets varies based on the types of activity being recognized, the sensor

position and the classification method. In featureset comparison, they concluded the time domain

features always provide more informative input for classifiers than those of frequency domain. They

also showed features extracted from the accelerometer performs slightly better than those from the

gyroscope.

Inspired by this study, we attach multiple sensors on two body positions (wrist and ankle) and ac-

quire data from both the accelerometer and gyroscope. However, in feature comparison, we provide

five developed features with more contrast in characteristics, thereby, more applicable results for

future real-life experiments. Also, the dependency on the subject is an impactful aspect of fea-

tures Jordao, Nazare Jr, Sena, and Schwartz (2018), which is neglected in the literature studies. In

this thesis, we evaluate the performance of featuresets using K-fold, Leave-One-Subject-Out cross-

validation and Leave-One-Trial-Out cross-validation to investigate the impact of subject dependency

on hand-crafted features profoundly.

In a most recent related work, Rosati et al. (2018) have targeted the performance of a real-

time HAR model based on physical features versus its performance on statistical features. To build

the statistical featureset, they applied 37 feature functions, including 20 time-domain functions,

three frequency-domain functions, and 14 time-frequency-domain functions. To build the physical

featureset, they performed a pre-processing phase, in which they highlighted positive and nega-

tive peaks, calculated single and double integration of the acceleration (antero-posterior direction

and medio-lateral direction). Then, they applied 56 feature functions on these processed signals.

They used a Genetic Algorithm (GA) in the feature selection phase and four classifiers, including

KNN, FNN, SVM, and DT, in classification. Their results showed that the highest performance was

achieved by the SVM model (97.1% and 96.7% of accuracy for using statistical features and phys-

ical features, respectively.). Although both featuresets provide a recognition performance above

96%, physical features are easier to be interpreted as their biomechanical meaning can be linked

to the inertial movements of the activity, which results in more understandable features, especial in

more complex activities.

In our experiments, we do not apply any feature-selection method to features compared to their

study. This is essential as it maintains the original information of each featureset, which keeps the
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study setup fair for side-by-side comparison. However, they applied a feature selection process on

their extracted features, which may alter the final comparison results. Besides, they calculated sin-

gle and double integration of acceleration signal to produce velocity and movement of the subject;

however, in M. Zhang and Sawchuk (2011), authors mentioned removing gravity from the linear

acceleration signal is a crucial step to build these physical features. We build on this approach

and remove gravity from the linear acceleration in our physical featureset. Rosati et al. (2018) tar-

geted seven simple activities (i.e., resting, standing, walking), which are not challenging enough

to highlight the performance of featuresets thoroughly. We focused on gym exercises that carried

on at a higher speed rate with more complex movements involved to show the differences more

distinguishable.

2.2.2 Data Reduction in Feature Selection

Comprehensive reviews about the subject of feature reduction are available in the literature.

In Janidarmian et al. (2017), the authors evaluated the performance of 293 classifiers using prin-

cipal component analysis (PCA) as their feature reduction method. They applied PCA on data of

14 public datasets of accelerometer data. Using PCA, not only did they reduce the size of data,

but they also normalized the data recorded from different studies. They extracted features indepen-

dent of x/y/z axes and, consequently, independent from sensor orientation. Similarly, the approach

in Yong, Sudirman, Mahmood, and Chew (2013) uses principal component analysis (PCA) to feed

the classifiers a smaller size of the input. They found that ensemble methods of KNN provides the

best recognition accuracy at the lower size of data, and Decision Tree (DT) provides the worst. They

also showed that, on average, the best and worst positions for attaching sensors are the right thigh

and left lower arm, respectively. Shoaib et al. Shoaib et al. (2014) experimented with ten subjects

and five sensor positions to show the impact of sensor positions on activity recognition. Their re-

sults also confirmed that the right pocket (upper thigh) and wrist are respectively the best and worst

positions. Comparing different featuresets, they also concluded that selecting the best sensor (ac-

celerometer vs gyroscope) to achieve the best performance depends on body position, activity type,

and classifier.
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The authors in Erdaş, Atasoy, Açıcı, and Oğul (2016) extracted three feature-sets, including

time-domain, frequency domain, and wavelet-domain statistics. They employed an ensemble se-

lection on five feature selection methods and showed that their best results were achieved using

time-domain features. M. Zhang and Sawchuk (2011) extracted some self-designed features called

physical features and showed that these features have more contributions rather than time-domain

features to the recognition system. Introducing a multi-layer classifier, they also show that different

featuresets are appropriate for different activities.

More approaches on feature selection methods such as recursive feature selection Nguyen et al.

(2017), correlation-based feature selection (CFS) Maurer, Smailagic, Siewiorek, and Deisher (2006),

Independent Component Analysis (ICA) Mantyjarvi, Himberg, and Seppanen (2001), and Local

Discriminant Analysis (LDA) Ghasemzadeh, Loseu, Guenterberg, and Jafari (2009), targeting HAR,

also exist in the literature. Maurer et al. (2006) introduced CFS approaches that use the intercorre-

lations and feature’s predictive performance to limit the search area for a good subset of features.

In ICA Mantyjarvi et al. (2001), the main idea is to find a linear transformation that minimizes the

statistical dependence between features.

As mentioned above, existing works mostly employ different forms of feature selection to find the

best performance of their model. In this thesis, we investigate feature selection attributes indepen-

dently and concerning the whole model. For the feature selection method introduced in this thesis,

the most relevant previous work is from Ienco et al. Ienco and Meo (2008), who similarly divides

the process into two stages and uses a hierarchical clustering followed by a wrapper method. They

show that their method on various datasets outperforms filter and wrapper methods. Furthermore,

using the dendrogram of features provided by hierarchical clustering gives a semantic view of fea-

ture space. However, they do not explain how much their method can reduce the size of the feature

set and how it affects the generality of the models. In this thesis, we address these aspects as well

as we will have a more in-depth view of the advantages of data reduction on the HAR pipeline.
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2.3 Summary

In this chapter, we introduced the HAR pipeline as a multi-phase approach and highlighted

standard techniques that have been used in each phase. Considering data pre-processing as a crucial

step in the HAR process, we reviewed best practices in feature extraction and feature selection

techniques used in the literature. As the first fold in this study, we conduct a detailed investigation

through feature extraction and hand-crafted features, including our experiments, dataset, and a side-

by-side comparison of the state-off-the-art featuresets, in the next chapter.
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Chapter 3

Comparative Investigation on HAR

Hand-Crafted Features

3.1 Introduction

In HAR, the pre-processing phase plays a crucial role in acquiring the generalizability and per-

formance of the model Schilit, Adams, Want, et al. (1994); M. Shoaib et al. (2016); Soro, Brunner,

Tanner, and Wattenhofer (2019). Specifically, the main task in this phase is to build the feature

vector out of the input raw data. If the features extracted in this phase are less dependent on the

subject and temporal characteristics of an activity (i.e., speed or orientation), the trained model by

these features will be more robust and perform more accurately in recognition. To this aim, there

are several studies targeted at providing features for HAR in the literature. Previous works mainly

focused on introducing new features or providing a selection of features for the recognition model.

While results show that these featuresets are performing significantly well under their study setup,

to the best of our knowledge, there is no study that conducted a side-by-side comparison between

featuresets to show their performance as compared to each other through the same setup. In this

study, we reproduce five state-of-the-art featuresets, including 1300 features and investigate their

performances through an end-to-end HAR system.

Additionally, we investigate the performance of featuresets when they are fed to different classifi-

cation models and also validate different evaluation methods for each model.
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In the following sections first, in Section 3.2, we describe the experiment setup including our

dataset and the method to evaluate featuresets. Then, we report our results through three research

questions, in section 3.3. A brief summary of this chapter is in Section 3.4.

3.2 Methods and Dataset

This section starts with the process of how we build our dataset for HAR. Then, we describe the

details about the methodological framework for comparing the performance of featuresets.

3.2.1 Participants and Activities

We contacted 25 individuals to participate in between 1 and 5 sessions in this study. Sub-

jects were selected randomly from gym members of Concordia University and had read and signed

an informed participation consent form that was approved by Concordia University ethics office.

Participants were asked to fill a form, including their personal information, their background in

practicing gym exercises, and the frequency of repeating each exercise per month. The data of eight

participants were excluded. First, because their activities were uncommon (i.e., too professional or

too personalized (data outlier)), so we could not find multiple subjects to repeat those exercises. The

second reason was due the technical errors such as a device failure or the software bugs that cause

the data to become unreadable. As we wanted to conduct cross-trial validation in evaluating the

models, we also excluded the data of 2 participants who had less than three reps of activities (except

for treadmill). In total, 15 participants (4 female), ages 21-35, carried out 53 sessions including at

least three trials of each 8 exercises (Figure 3.1). Participants varied in level of expertise in gym

exercises (from 1 month to 6 consecutive years of experience).
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25 participants
• Age: 25 ±7 year
• Sex: 15male + 10female
• Session: 1 to 5 sessions
• Activity: 73 gym exercises

17 participants
• Age: 28 ±7
• Sex: 11male + 6female
• Session: 1 to 5 sessions
• Activity: 48 gym exercises

15 participants
• Age: 28 ±7
• Sex: 11male + 4female
• Sessions: 3 to 5 sessions
• Activity: 8 gym exercises

Excluded 8 participants
• Their exercise was too unique so it has not been 

repeated by any other participant (n=5)
• Lost their data due to technical problems (n=3)

Excluded 2 participants
• They participated in less than three sessions
Excluded 40 gym exercises
• These exercises were not repeated by at least 3 

participants, during at least 3 sessions.

Figure 3.1: Recruitment process flowchart

Regarding the activities, we recorded the data of 73 gym exercises. However, 25 exercises,

including body-weight-training and some special movements for warm-up, have been excluded as

they were not common among participants. Besides, any exercise is repeated in less than three

sessions by one subject that has been removed (40 exercises). It is essential to have at least two

sessions (either on the same day or on multiple days) of an exercise to apply the cross-trial evaluation

method. Therefore, finally, we picked 8 activities shown in Table 3.1 that meet all the constraints

required in this study.

We ensured different body parts (upper-body, lower-body) get involved in the exercises as it brings

the need for attaching multiple sensors to the subject’s body. As expected, the exercises are from

beginner to intermediate level as they are more common between participants. That is, collecting

data from more advanced exercises may require recruiting participants at a certain level of expertise.
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Table 3.1: Statistics of the dataset divided by type of exercise along with the experiments that
involve them in. Column Sessions shows the total number of sessions that an exercise appeared in.
Column Subjects shows how many subjects performed an exercise.

Exercise Subjects Sessions Reps Data Point Body Involved Code

Lat Pull Down 6 22 218 14700 Upper A1

Bench Press 6 26 273 23230 Upper A2

Biceps curl 4 13 115 16095 Upper A3

Push-ups 5 16 181 9200 Upper A4

Treadmill 4 5 +1200 68780 Entire A5

Ab crunch machine 4 12 108 10580 Entire A6

Crunch Twist 3 12 98 8760 Lower A7

Russian Twist 3 9 67 8520 Lower A8

3.2.2 Sensors

To record the data, we employed a System-on-Chip (SoC) called Neblina (Figure 3.2 (a)).

Neblina is a miniature-sized box containing three tri-axial motion sensors (accelerometer, gyro-

scope, magnetometer) along with a processor, a flash memory, battery, and a Bluetooth port. Using

a Bluetooth port, it can transmit the result to a host (e.g., cellphone or desktop computer). Neblina is

equipped with all requirements for a real-time HAR system. As compared to a smartphone, Neblina

is much smaller (Figure 3.2) that lets us attach it to a different part of the subject’s body without

making any interrupt in his/her actions de Faria and Vieira (2018) and from a technical point of

view, it is designed specifically for motion tracking purposes. That is, not only does it provide ac-

cess directly to its resources like sensors or memory without OS interference, it shares an interface

for the user to configure the performance (i.e., sample rate, synchronization) of sensors, which is

essential from the research standpoint.
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Figure 3.2: Neblina setup. (a) Compares dimensions of Neblina with a 1 dollar coin and a cellphone
(Samsung Galaxy s9). (b) How Neblina located on foot using a strap. (c) How Neblina located on
wrist using a strap.

Although the device is equipped with all three accelerometers, gyroscope, and magnetometer,

we only store the accelerometer and gyroscope’s input stream. We omit the magnetometer signal as

it is highly affected by iron equipment commonly known in gyms. The frequency rate is fixed on

50Hz as the fastest gym activity is not as fast as 25 reps per second Mazo (1975).

Depending on which body parts are involved in a task (exercise), a HAR system may need to

have one or more sensors to recognize a movement Wang et al. (2019). While using more sensors

provide more comprehensive data for the recognition model, it limits the usability of the system

and causes discomfort to users wanting to wear them de Faria and Vieira (2018); RajKumar, Vulpi,

Bethi, Raghavan, and Kapila (2020). We attach two Neblina modules, one to the right wrist and one

to the right ankle of participants. Two sensors set to cover the motions on upper-body and lower-

body activities. The way that we fixed the modules and the orientation of the module is shown in

Figure 3.2 (b) and (c).

3.2.3 Data Collection Procedures

Prior to the workout sessions, biometric data was recorded for all the participants, including

body height, weight, and body fat percentage. All participants completed questionnaires to assess

their background in each exercise in terms of duration and frequency (per week) of practicing. Based

on these questionnaires, we aim to have a measure of participant experience level. Participants were

informed about the procedure of recording movements using Neblina. They were informed about

the sensor positions (on their wrist and ankle), about the supervisor’s presence during the recording,

and receiving instruction for in case an error occurs during the workout. This instruction aims to
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avoid any irregular interruption during the workout (i.e., if the sensor moves). Two synced sensors

were attached to the subject’s body during the whole session. A supervisor with a stop-watch

clock was recording the start/end of repetitions and the name of each exercise. After finishing each

session, we transfer the data from Neblina to a host computer, where we manually adjusted the

start/end moments of each exercise by visualizing the recorded signals.

In total, the process of labelling includes the following steps: (1) participant: before the session,

each subject was asked to list the exercises that she/he is about to practice, including name, number

of sets and reps, and the weights if applicable. We used this information as an initial draft for

labelling. (2) supervisor: during the session, a supervisor manually records the type of exercise,

the moment of start and stop of sets, and the number of sets. (3) visual signal: after finishing

the session, in order to have our desired accuracy in labelling, we visually trace the signals of the

accelerometer and gyroscope to refine the period assigned to each set. Manually adjusting labels,

we could fix any error missed in previous steps.

Aiming to build a real-life gym exercise dataset, we focused on the following aspects:

(1) Realistic exercise plan: We did not limit subjects to a certain set of activities. So, they were

allowed to do their own exercises at their preferred way. Although this can let subjects to per-

form an activity in a non-identical way, it replicates real-world condition in our data collection

process. In Morris et al. (2014), the authors showed that by changing the environment from

a space-constrained laboratory to a real gym, the segmentation performance for recognizing

gym exercises has dropped by 50%. Therefore, another advantage of keeping the experiment

under real-world conditions is the performance of the HAR model is more close to real-world

experiments.

(2) Realistic null-class activities: In exercise recognition, each segment is labelled with one of

the target activities that the classifier tries to predict. If a segment contains an activity other

than target activities, it is labelled as a null-class activity. Authors in Soro et al. (2019),

asked participants to perform specific actions to reproduce the null-class activities. One of

the most challenging parts of activity recognition is finding the beginning and the end of an

exercise. Recording null-class activities separately and attaching it between activity periods
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cannot correctly replicate the real-life transitions. Therefore, the model performance might be

affected by this limitation. However, in this study, the unknown period or null-class activities

are not artificially performed; instead, subjects were free to do whatever they usually do in

the gym while the sensors were continuously recording their motions.

(3) Effects of fatigue: On some activities like running on a treadmill, the pattern of activity

is significantly affected by the level of fatigue Lee, Youm, Noh, and Park (2020). In gym

exercises, the longer a workout session is, the more tired subject becomes. In order to collect a

more generalized dataset, in this study, each session contains 1 and 2 hours non-stop workout.

Therefore, activities are recorded at different levels of tiredness of subjects.

(4) Impact of subject experience: Gym exercises are performed iteratively over weeks or months.

By repeating an activity, subjects become more comfortable doing it, thereby getting more

consistent. Keeping the consistency in performing an activity makes the activity more recog-

nizable for a HAR model Morris et al. (2014). That is, the recognition accuracy of a HAR

model might vary based on the average level of expertise of the study’s subjects. The more

experienced subject participate, the higher recognition accuracy is expected. However, this is

not the case in real-life applications with a wide range of users (beginners to professionals).

Nevertheless, it has not been addressed in most public HAR datasets Anguita, Ghio, Oneto,

Parra, and Reyes-Ortiz (2013); Shoaib et al. (2014). Therefore, before each session, we asked

participants about their background on doing each exercise. Aiming to observe if there is any

correlation exists between the recognition performance and the level of the subject’s experi-

ence.

3.2.4 Feature Extraction

In this study, we targeted five state-of-the-art featuresets as our case studies. Each featureset

is designed based on a certain aspect of human activities (i.e., self-similarity or orientation depen-

dency) and has been proved to be effective in a separate study in the past. We selected those feature-

sets that provide enough information to reproducibility (i.e., the definition of the feature along with

preprocessing operation required to build them). To make an outlook on each featureset purpose, we
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provide a description-intuition for every single feature function. Table 3.2 3.3 shows these functions

along with their description/intuition.

Shared Preprocessing

The data received from sensors are transformed into a table where the columns represent signal

axes and rows represent the samples. As the sample rate in this study is 50Hz, there are 50 rows per

second recorded in the database. There were two shared preprocessing operations among featuresets

that we applied on all input columns: i) removed rows with missing cells, ii) normalized data per

column using min-max normalization and scaled them between 0 and 1. While these operations are

performed before the segmentation phase, any further preprocessing required by featuresets, carried

out after segmentations. It is worth mentioning that further preprocessing operations apply to each

segment rather than the whole data column.

Set A: Statistical Features (ST Set)

The statistical features have been intensively investigated in previous studies and proved useful

for activity recognition Khokhlov et al. (2018); Rosati et al. (2018); Shoaib et al. (2014). These

features are computed from each sensor axis (i.e., x/y/z of the accelerometer) by applying a statis-

tical function such as mean or variance. As a part of the processing operation to build statistical

features, we calculate the cumulative sum for all 12 input signal columns. Therefore, we have 24

data columns (12 raw data and 12 cumulative sums) to apply 11 feature functions (S1-S11 shown in

Table 3.2) to them. In total, we created a set of (24x11=) 264 features in this featureset.

Set B: Histogram bins Features (HB Set)

The second set of features are histogram bins which differentiate activities based on their in-

tensity subsequences. For example, histogram bins have been proved to achieve consistently high

accuracy to differentiate activities such as running and jogging, as body movements in running are

more intense than that in jogging Oreifej and Liu (2013); Sarbishei (2019). Although these features

are basically statistical, they have been independently studied in previous works Sarbishei (2019)

and showed that they could be replaced with statistical features. Thus, as part of our comparative

27



study, we also consider them a separate set in our experiments. The histogram features’ processing

phase calculates the signal’s magnitude using equation 1 for the accelerometer and gyroscope. As

there are sensors on two positions (wrist and ankle), it includes 4 processed data columns to the first

12 raw data columns. Therefore, we used 16 data columns as input to build the histogram features.

Magnitude = 2
√
x2 + y2 + z2 (1)

To construct features, first, we binned the range of values (between 0 and 1) into 20 consecutive

buckets. So, a bucket accounts for 5% of the value range and contains the total number of intervals

fell into that bin. Histogram bins are indicated with the code HB in Table 3.2. In total, we produce

320 features in this featureset.

Set C: Self-Similar Features (SS Set)

This featureset is designed based on the quality of repetitive movements of an activity (i.e.,

the rising wrist in each interval of bicep curl). To extract these features, there are four processing

operations performed before extracting features. We transformed x/y/z axes of each sensor signal

to 4 processed data columns described as follows: 1) the magnitude of x/y/z axes using equation 1,

2) the first principal component of x/y/z axes of each sensor, 3) the first principal component of x

and z axes, 4) the scaled normalized of the y-axis. Compared with the original study’s setup Morris

et al. (2014), in our study, the y-axis of the sensor is aligned with the user’s arm while it is x in the

original one. This happened due to the difference in the sensor orientation between the two studies.

Built for processed signals per each sensor, we have 16 input columns to extract self-similar features

from them. Therefore, there are 20 functions shown in table 3.2 that we applied to 16 input columns

to build 320 features in self-similar featureset.

Set D: Physical Features (PH Set)

Interpreting physical motions’ trajectory, such as trajectory velocities or trajectory speeds of

human activities, develops the intuition behind physical features. Two mandatory prior knowledge

in extracting physical features are the position and the orientation of sensors placed on the subject’s
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body M. Zhang and Sawchuk (2011). In our study setup, the two sensors (the right wrist and the

right ankle) are placed so that their y-axis is toward gravity direction, and the x-axis is toward

the subject’s heading. The feature extraction, in this group, plays two different roles. First, it

mathematically prepares the required signals for the extraction phase; next, it carries out the sensor

fusion - combining input signals from multiple sensors. The main operations required to build this

featureset composed of:

• the removing the gravity from the accelerometer signal (used in Ph1 and Ph2). We used

gyroscope data as described in Waldron (n.d.) to remove the gravity from the acceleration

signal.

• the Euclidean norm of three axes of each sensor (used in Ph1, Ph12, Ph13)

• the covariance matrix of acceleration data along x, y, and z-axis in each segment. (used in

Ph4)

• the cumulative sum of accelerometer signal on the x-axis (used in PH6)

• the Fast Fourier Transformation (FFT) from each input signal. (used in Ph9, Ph10)

There are 13 feature functions as described in Table 3.3 (codes Ph1-Ph11). We build 46 features

by applying them to the aforementioned processed signals.

Set E: Orientation Independent Features (OI Set)

The main idea in this featureset is providing flexibility in attaching the sensor to the body. As

these features do not depend on the sensor orientation, the sensor can be loosely attached to the

body, improving usability. Besides, they also make the model insensitive to sensor rotation during

human movements. To build this featureset, first, we remove the direction from input data. It is

achieved by projecting every data point from its original x/y/z space to another three-dimensional

space but at the farthest distance between data points Yurtman and Barshan (2017). In this new

space, axes’ direction is defined by the value of the data points, not by x, y or z-direction. Next, we

apply PCA on the transformed data and take the first 30 most informative features Janidarmian et
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al. (2017). In Table 3.3, these type of features are indicated by ”OI” prefix. Therefore, we extracted

30 features to build OI Set.
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Table 3.2: Statical Functions along with the definitions and abbreviations (Statistical features, Self-
Similar features, and Histogram bins features)

Code Function Description/Intuition abbreviation

S1 Minimum The value of the least sample MIN

S2 Maximum The value of the greatest sample MAX

S3, SS8 Mean The average of all samples MEA

S4 Median The middle value of samples MEA

S5 Mean Absolute Deviation The average distance between samples and the mean MAD

S6 Median Absolute Deviation The average distance between samples and the median MAA

S7 Inner Quartile Range The amount of spread in the middle part %50 of the stream IQR

S8 Mean Crossing Rate The rate of passing the mean along the stream MCR

S9, SS9 Standard Deviation how far the samples are from the mean SD

S10, SS10 Variance the average degree of distance between samples and mean VAR

S11, SS11 Root Mean Square The square root of the arithmetic mean of the squares of samples RMS

HB Histogram Bin a 20 bins distribution of data Hbin

(1-20)

SS1 Number of auto-

correlation peaks

The bigger number means non-periodic activity while smaller num-

ber refers to periodic activity

NAcP

SS2 Prominent auto-

correlation peaks

NAcP with an extra condition that the peaks should be greater than

neighbours with at least a certain distance

NAcPP

SS3 Weak autocorrelation

peaks

NAcP with an extra condition that the distance between the peaks

and neighbours should be less than a certain distance

NAcWP

SS4 Maximum autocorre-

lation value

Value of the greatest peak (except for the initial peak at zero lag) MAXAc

SS5 Height of the first au-

tocorrelation peak

less height refers to more fluctuations within the stream (after zero-

crossing)

FAcP

SS6 Power bins (10 bins) A 10 bins distribution of amplitudes of frequencies from 0.2-25Hz Pbin(10)

SS7 Integrated RMS The root-mean-square amplitude of the signal after cumulative

summation

IRMS
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Table 3.3: Statical Functions along with the definitions and abbreviations (Physical features and
Orientation Invariant features)

Code Function Description/Intuition abbreviation

Ph1,

Ph2

Movement Intensity Mean and Variance of the Euclidean norm of acceleration vector MI

Ph3 Normalized Signal

Magnitude Area

The acceleration magnitude summed over three axes within each

window normalized by the window length

SMA

Ph4 Eigenvalues (Domi-

nant Directions)

The eigenvectors of the covariance matrix of the acceleration data

correspond to the dominant directions along which intensive human

motion occurs.

Ph5 Correlation (Gravity

and Heading)

It shows how much the movement is aligned towards gravity direc-

tion.

CAGH

Ph6 Averaged Velocity

(Heading Direction)

The Euclidean norm of the averaged velocities along y and z axes

over the window.

AVH

Ph7 Averaged Velocity

(Gravity Direction)

averaging the instantaneous velocity along the gravity direction at

each time t over the window

AVG

Ph8 Averaged Rotation

Angles (Gravity

Direction)

The cumulative rotation angles around gravity direction ARATG

Ph9 Dominant Frequency The frequency corresponding to the maximum of FFT component

magnitudes of the signal

DF

Ph10 Energy The sum of the squared discrete FFT component magnitudes of the

signal from each sensor axis

ENERGY

Ph12 Averaged Accelera-

tion Energy

The mean value of the energy over three acceleration axes AAE

Ph13 Averaged Rotation En-

ergy

The mean value of the energy over three gyroscope axes. ARE

OI1 Orientation Indepen-

dent

result of applying PCA on Single Value Decomposition of x/y/x

values of the stream

PCASVD(1-

30)
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3.2.5 Activity Recognition

In this study, to automatically recognize human activities, we trained four state-of-the-art classi-

fiers on every featureset. The classifiers are used on various HAR studies Baldominos et al. (2019);

Morris et al. (2014); Rosati et al. (2018): Support Vector Machine, Decision Tree, K-Nearest Neigh-

bour, and Feed-forward Neural Network. The methods and their parameters setting are described in

Table 3.4. We did not optimize the hyper-parameters of classifiers as improving the classification

performance is out of the scope of this study; so, we keep the default values preset in their respective

R package libraries.

Table 3.4: Classifier names along with hyper-parameters in this study

Classifier Hyper-Parameters

SVM kernel = polynomial. degree = 3. gamma = 1/(data dimension)

KNN K = 64. Similarity Method = Euclidean distance

FNN 2 dense layers with total 1000 and 400 units Nair and Hinton (2010). One

dropout layer (rate 60%). Optimizer = Adam. learning rate = 0.0001. decay

= 1e-10. 100 epochs.

DT minimum split = 20, min number of sample in leaves = round(minimum

split/3), maximum depth = 30

3.2.6 Evaluation

To evaluate the performance of the model, we need to split data into training and testing sets.

In 2018, Jordao et al. (2018) conducted an extensive set of experiments to indicate the vulnerable

points in HAR evaluation methods. They showed that the traditional evaluation process (k-Fold)

is susceptible to bias which was mainly because of the method of splitting data. Two other al-

ternatives for k-Folds are Leave-One-Subject-Out Jordao et al. (2018), and Leave-One-Trial-Out

Cross-Validation Sena, Santos, and Schwartz (2018). As evaluation is part of our side-by-side com-

parison process, we employ all three validation methods in this study. The process of evaluation for
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each method is explained as follows:

k-Fold Cross-Validation

The most popular approach to evaluate the performance of the HAR model is k-Fold Cross-

Validation. K refers to the number of folds that the given dataset splits into. We choose k = 10

in this study. Therefore, after the feature extraction phase, we divide the whole dataset into ten

approximately equal size subsets. To ensure all activities are present in both the training set and

test set with equal class distribution- stratified, we divide each activity’s data points separately into

folds. It guarantees that the training set always contains all activities. In this work, we used k-Fold

Cross-Validation to evaluate the performance of all the models. During each turn, we train and

evaluate the model performance on a different fold. The average performance achieved after all

ten turns accounts for the final performance of the model. Although k-Fold is very popular in HAR

studies, two issues make this evaluation method less effective. First, since the data is shuffled before

splitting folds, there is always a chance that the same subject’s data appears in multiple folds; thus,

the result of k-Fold is not subject-independent. Second, shared-data between the train set and the

test set violates the basic assumption-independent folds in k-Fold. It occurs due to generating data

points using the sliding window with an overlap between windows. This way, there is always a

shared part (the overlap part) of data between every consecutive data-points. Although the dataset

splits into the train and test, the shared part inside each data point does not. Two following validation

methods address these issues.

Leave-One-Subject-Out Cross-Validation

Leave-One-Subject-Out (LOSO) Cross-Validation split the data per subject. In each turn of

evaluation, the data from one subject is used as the test set, while the remaining subjects’ data

are used for training. The LOSO Cross-Validation technique reflects a more realistic scenario,

as the model is evaluated on data from totally new subjects, which is the case in real-life HAR

applications. In HAR studies, the performance achieved in this way is called subject-independent

Chung, Lim, Noh, Kim, and Jeong (2019); Jordao et al. (2018). It is important to note that using

LOSO may present a high variance in recognition performance from one subject to another. It
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is because sometimes one activity can be carried out deliberately in different ways by different

subjects. Therefore, using this method, we require a bigger dataset to generalize these kinds of

variations.

Leave-One-Trial-Out Cross-Validation

In Leave-One-Trial-Out (LOTO) Cross-Validation, trials (reps) are matrices to split the dataset.

A trial may contain the data of multiple subjects or only one subject. To use LOTO in HAR, we first

indicate each subject’s repetition with a label. For example, five repetitions of doing an exercise by

a subject are labelled as repetitions 1 to 5. Then, to split the dataset, in each turn, starting from rep

1, we pick all trials with this label (e.g. rep1) for the test set and leave other reps for the train set.

The main advantage of using this method compared to LOSO is that it does not necessarily need

many subjects. However, in this technique, each subject should have several sessions. Although

LOTO does not provide subject-independent evaluation for the model, it ensures there is no shared

data between the train set and the test set, which is not the case for the k-Fold Cross-Validation, as

mentioned in Section 3.2.6.

Performance Measurements. Most commonly used measures to asses the performance of a HAR

model in prior works are: accuracy Brownlee (2018); Mehrang et al. (2017); M. Zhang and

Sawchuk (2011) and F-measure (F1) Nourani et al. (2019); Rosati et al. (2018). These measurement

units determined as follows:

• Accuracy measures how often the classifier is correct. Specifically, it is equal to (TN + TP) /

(TP + TN + FP + FN).

• Precision measures when the classifier detects an activity, how often it is correct. Specifically,

it is equal to TP / (TP + FP).

• Recall measures when a user is doing a certain activity, how often the classifier can detect it

correctly. Specifically, it is equal to TP / (TP + FN). This term is also known as Sensitivity or

True Positive Rate.

• F-Score (F1) measures a weighted average of both Recall and Precision. Specifically, it is

equal to (2 x Precision x Recall ) / (Precision + Recall).
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Where:

• True Positive (FP): These are cases in which we predict an activity, and the user was doing

that activity.

• True Negative (TN): Where we predict a non-activity period, and the user was not doing a

particular activity.

• False Positive (FP): Where we predict a particular activity for a segment of data, however,

the user is doing another specific activity or generally doing something else (out of activity

given list).

• False Negative (FN): Where we predict either a not-activity period or a specific activity,

while it is not the activity that the user is doing that.

F-measure relies on both the precision and recall. So, as compared to accuracy, it is less affected

by imbalanced dataset (in terms of frequency of different activities). In this study, we used both

accuracy and F1 to the performance of models.

3.3 Results

Our study aims to perform a systematic examination of the HAR pipeline (Figure 2.1) through

three crucial steps. First, in RQ1, we compare different featuresets and indicate the one providing

the best recognition performance. Next, using this featureset as input, we examine four classifiers

in the classification phase to find the model with the highest performance (RQ2). Finally, in RQ3,

we target the impact of different evaluation methods on our model’s performance.

3.3.1 RQ1: Which featureset provides the best performance in HAR?

As motivated earlier, choosing an appropriate featureset significantly impacts the model’s recog-

nition performance. Many different featuresets have been presented in previous works. While they

all are reporting remarkable performances on HAR, they can not be compared with each other due

to different experimental setups that those results are achieved. Hence, we aim to investigate five

36



state-off-the-art featuresets when all other factors (i.e., dataset, classifiers) are fixed. Each featureset

is examined by four classifiers, including FNN, KNN, SVM, and DT. To measure the performance,

we used 10-fold Cross-Validation and F1 metric for each experiment.

Table 3.5 shows the performance for each featureset (columns 2-6) on different classifiers (rows

2-5). We highlighted the best performance for each featureset in the Table. It can be seen that

the best performing featuresets are statistical featureset (ST Set) and Histogram bins (HB Set),

achieving approximately 95% of F1. The remaining featuresets have never exceeded 90% of F1.

The highest recognition performance for self-similar featureset, physical featureset, and Orienta-

tion independent featureset are respectively 89.18%, 85.34%, and 78.47%. Providing the highest

recognition performance along with the light computational cost of building it Fushing and

Roy (2018) makes histogram bins an ideal candidate featureset for wearables since they are

limited in resources. On the other hand, Orientation Independent features achieved the lowest

performance (77.44% on average). Although it reached a relatively lower performance among fea-

turesets, it allows for flexibility in how sensors are placed on a subject.

Table 3.5: F1 for each classifier over different feature-sets using 10-fold cross validation

Classifier ST Set HB Set SS Set PH Set OI Set Average

SVM 94.98% 94.55% 89.18% 84.15% 78.47% 87.82%

KNN 91.50% 90.21% 85.61% 81.93% 76,41% 85.50%

FNN 95.31% 95.89% 87.93% 85.34% 77.59% 88.29%

DT 88.64% 89.18% 82.94% 79.37% 74.02% 82.83%

Median 92.36% 92.92% 86.41% 82.70% 77.12% 86.30%

Average 92.74% 93.30% 86.77% 83.04% 77.44% 86.66%

3.3.2 RQ2: Which classifier performs better on gym exercise recognition?

As we saw in RQ1, different classifiers perform differently, even on the same featureset. Hence,

one question that we aim to answer is whether certain classifiers perform better than others. There-

fore, in this research question, we do an empirical comparison between the models’ performance.
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We use four popular classifiers in this experiment, including SVM, KNN, FNN, and DT. It is im-

portant to mention that we leave the models on default configuration since the optimizing hyperpa-

rameters is not a goal of this study. The default configuration of models is mentioned in the 3.2.5

section. From RQ1, we found histogram bins as the most informative featureset. So, in this exper-

iment, we train all models using this featureset. The k-Fold Cross-Validation with ten folds is used

for measuring classification results;

Figure 3.3: Comparison between the performance of classifiers

Figure 3.3 visualizes the distribution of a ten-round performance evaluation for classifiers in a

vioplot diagram. FNN and SVM show similar distribution and performance range between 85% and

99% of F1 (with the mean 95.89% and 94.55%, respectively) over ten trials. On the other hand, DT

(µ = 88.29%) and KNN (µ = 90.21%) show more scattered results over trials and a bigger range,

respectively 67%-98% and 77%-97% of F1. We use the two-sample Wilcoxon test to examine any

significant difference between the model’s performance samples.
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Table 3.6: Effect size (r) of pairwise model comparisons using Wilcoxon rank sum test

FNN DT KNN

DT 0.71 - -

KNN 0.71 0.92 -

SVM 1.0. 0.83 1.0

From the test results (Figure 3.6), a large effect size is detected in all pair model comparisons

(effect size r ≥ 71%, p < 0.057). Therefore, the difference between the classifiers’ performance

is statistically significant. That is, FNN and SVM with 95% ± 1% deliver the highest perfor-

mances, whereas KNN and DT with 90.21% and 88.29 of F1, respectively, provide the lowest

performances.

3.3.3 RQ3: How do different evaluation methods impact the reported HAR perfor-

mance?

k-Fold is one of the most popular methods to evaluate the performance of a HAR model Wang

et al. (2019). However, in an empirical study, Jordao et al. Jordao et al. (2018) showed that the result

of k-fold cross validation can be biased when using sliding windows, a technique that is commonly

used in HAR. Therefore, the focus of this research question is to asses models by two state-of-the-

art evaluation methods namely, Leave-One-Subject-Out (LOSO) cross validation Liu, Gao, John,

Staudenmayer, and Freedson (2011) and Leave-One-Trial-Out (LOTO) Cross validation Jordao et

al. (2018); Sena et al. (2018).

In k-Fold, splitting the dataset (K) is decided by researcher based on the size of dataset as well

as the type of classification problemJordao et al. (2018). Table 3.1 shows how the data is distributed

for each activity. To split the dataset in each validation method based on number of activities and

number of subjects. However, in LOSO and LOTO, it also required to respect to the distribution

of activities among subjects and trials. In fact, an activity should appears at least in two session

performed by the same subject, to be eligible for LOTO Cross-Validation. We excluded the data of

2 subjects because they did not participate in at least 2 trials for all 8 exercises. In this experiment,
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for LOSO we used data from 6 subjects. For LOTO, we have employed the data of 8 sessions while

some sessions belong to same person. For those activities that appeared in more than 8 sessions, we

merged their sessions to each other.

Figure 3.4 compares the performance of models using 10-fold cross validation (in blue), LOTO

(in orange), and LOSO (in grey). As we can see from the Figure, for all featuresets and all classifiers,

the evaluation technique impacts the reported performance. In fact, we see that in general, k-fold

cross validation always provides better results than LOTO and LOSO. As mentioned earlier, due to

the use of sliding windows in HAR, LOTO or LOSO are more realistic evaluation techniques and

than k-Fold Cross-Validation. It can be seen that there is a significant difference between results

of LOTO and LOSO ( 10%). This can be due to differently performing an exercise by different

subjects in LOSO. However, in LOTO, since the model is trained by the data of at least one session

of each subject it returns a better result.

Figure 3.4: Comparison between evaluation methods (10-Fold, LOTO, LOSO)

3.4 Conclusions

Human activity recognition is an important research topic in pattern recognition and pervasive

computing. Choosing the right featureset for a HAR model affects the performance significantly.

The goal of this chapter was to investigate the state-of-the-art hand-crafted featuresets in HAR.
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From our empirical studies, several conclusions can be made. First, by analyzing five feature-

sets and using them in the four most popular classifiers in RQ1, we saw that statistical-features

and histogram-features are bringing the most informative features for classifiers, with orientation-

independent features providing the lowest informative features.

In RQ2, we found that FNN and SVM deliver a superior performance rather than other classi-

fiers apart from which featureset they are using. This confirms the results of the previous studies

in classifier comparison Baldominos et al. (2019); Janidarmian et al. (2017). In addition, from the

experiment, Decision Tree provides the worst recognition performance from the evaluated methods.

In RQ3, we compared the leave-one-trial-out Cross-Validation with two conventional evaluation

methods (k-Fold and LOSO). Results showed that LOTO and LOSO provide a more realistic result

than k-Fold as they are subject independent. However, the overall performance of models using

these two evaluation methods results in less accuracy than that using k-Fold, at the same dataset

size. Besides, using LOTO, we could address an issue left unsolved using LOSO. In LOTO, shared

trials of the same exercise between multiple subjects suppress the negative impact of the inconsis-

tent patterns, which has been mentioned in many previous works Jordao et al. (2018); Lee et al.

(2020); M. Shoaib et al. (2016).

In this chapter, we have successfully demonstrated that applying histogram bins to FNN with

enough data, and using LOTO as the evaluation method can significantly help develop a HAR

model for real-life scenarios. Nevertheless, with a limited amount of resources in a miniature size

wearable device, an alternative featureset should be small enough to become feasible for a HAR

model. Feature selection’s main task in the HAR pipeline is set to play this role. Hence, in the

next chapter, we perform an empirical study to investigate the feature selection phase, particularly

related to the data reduction aspect. We will also design a HAR model built on the ensemble model,

which is used to recognize different types of walking activities in our experiments.
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Chapter 4

The Impact of Data Reduction on

Wearable-Based Human Activity

Recognition

4.1 Introduction

Pervasive sensors that can be conveniently worn and ubiquitously used aim at a wide range of

potential applications, including various individual’s health monitoring, rehabilitation, and intelli-

gent assistance Zhao et al. (2010). These sensors have become increasingly small, more accurate,

and more popular (e.g., Smartphones and wearables) Sprager and Juric (2015), leading to exten-

sive research that improves algorithms inferring meaningful knowledge from sensor data. In recent

years, many studies in Human Activity Recognition (HAR) using wearables have been carried out

that provide promising performance L. Chen, Hoey, Nugent, Cook, and Yu (2012) Banaee et al.

(2013); Janidarmian et al. (2017) Shoaib et al. (2014).

The process of HAR, in the well-known form, is already explained in Chapter 1 including 1) Data

collection, 2) Segmentation, 3) Feature extraction, 4) Classification. First, the data is acquired by

motion sensors in the form of data streams. Next, these streams are segmented using the time win-

dows technique (e.g., a window with a length of 5 seconds shifting every 200ms). In the third phase,
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the data has already been collected and segmented, so the useful features are extracted using feature

extraction schemes described in Chapter 3. At this step, a feature may be considered as relevant if

the classifier improves performance using it; and, conversely, redundant if it does not improve the

performance of the classifier Zhao et al. (2010). Finding a set of features containing the Minimum

Redundant and Maximum Relevant features (mRMR) has to be done before sending these features

to the classifier. Previous studies mostly called this phase as feature selection phase.

In the previous chapter, we studied a wide range of features in HAR. Statistical features, self-

similarity features, histogram bins are some examples of them. To build a HAR model, a straight-

forward solution is to extract and give all these features to the classifier, whether they are relevant

or not. However, collecting and calculating features comes at a computational cost, particularly in

the case of HAR, which is typically done on resource-constrained wearables. Moreover, using more

features than needed could lead to many unwanted side effects, including lower model performance,

overfitting and higher cost and execution time Bishop (2006); Mujahid et al. (2017); Nguyen et al.

(2017). Therefore, we need a procedure to refine and intelligently select the best features.

The goal of this chapter is to examine the impact of feature reduction on wearable-based HAR.

Specifically, we aim at examining the trade-off between feature reduction and model performance

(RQ1), model generalizability (RQ2) and different classifiers (RQ3). We perform our experi-

ments using step (walking, ascending/descending stairs) data collected using the Neblina system-

on-module chip. Generally, our data contains more than 2,000 steps from two different subjects. We

extracted a total of 119 different features from the Neblina, which were used to examine the impact

of feature reduction on HAR.

Our findings showed that feature reduction could reduce the number of features by close to

90%, while only having an impact of 1-2% in model performance. Feature reduction can impact the

performance of the general models (i.e., that are cross-subject); however, which subject a model is

trained on does matter. Feature reduction does not have a considerable impact on most examined

classifiers.

The rest of the chapter is organized as follows. The state of the art data reduction methods

for HAR are presented in Section 4.2. Section 4.3 sets up our case study, providing details about

the dataset, feature extraction & selection and classifiers used. Section 4.4 presents our results.
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Section 4.5 discusses the relation between features and sensors. Section 4.6 concludes the thesis.

4.2 Related Work

Comprehensive reviews about the subject of feature reduction are available in the literature.

In Banaee et al. (2013), the accuracy of 293 classifiers are evaluated using 14 datasets involving

accelerometer sensor data. Similarly, the approach in Yong et al. (2013) uses principal component

analysis (PCA) to feed the classifiers. Since the dataset contains recording data under different se-

tups, using PCA, they extract those features that are independent from x/y/z axes and consequently

independent from sensor orientation. Then, it lets them to treat identically with different datasets.

The authors found the ensemble methods of KNN provide the best recognition rate and Decision

Tree (DT) provides the worst. They also showed, on average, the best and worst positions for attach-

ing sensor are right thigh and left lower arm, respectively. Similarly, Shoaib et al. (2014) performed

an experiment with 10 subjects and 5 sensor positions to show impact of sensor positions on activity

recognition. Their results are also confirmed that right pocket ( upper thigh) and wrist are respec-

tively the best and worst positions. It is worth mentioning that in these studies the main criteria to

evaluate the position of the sensor is the amount of useful information that a sensor in that posi-

tion provides for the model; however, there is another criteria for choosing sensor position called

usability that defines how it is easy for a user to wear a sensor. From this point of view, positions

such as wrist or thigh are very popular as users can wear sensors (i.e., smartwatch or smartphone

in the pocket) Comparing different featuresets, they also concluded that selecting the best sensor

(accelerometer vs gyroscope) to achieve best performance depends on body position, activity type,

and classifier.

The authors in Erdaş et al. (2016) extracted three feature-sets including time-domain, frequency

domain, and wavelet-domain statistics. They employed an ensemble selection on five feature se-

lection methods and showed that the best results are achieved using time domain features. Zhang

et al. M. Zhang and Sawchuk (2011) extracted some self-designed features called physical features
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Figure 4.1: Main approach for Human Activity Recognition. Two red squares show sensor positions
on the thigh and foot of the subject. The green blocks show the feature selection phase.

and showed that these features have more contributions rather time-domain features to the recog-

nition system. Introducing a multi-layer classifier, they also show that different feature-sets are

appropriate for different activities.

More approaches on feature selection methods such as recursive feature selection Nguyen et

al. (2017), correlation based feature selection (CFS) Maurer et al. (2006), Independent Component

Analysis (ICA) Mantyjarvi et al. (2001), and Local Discriminant Analysis (LDA) Ghasemzadeh et

al. (2009), targeting HAR, also exist in the literature.

As mentioned above, existing works mostly employ different feature selection forms to find the

best performance of their model. In this work, we investigate feature selection attributes solely and

their impacts on the whole model. For the feature selection method introduced in this work, the

most relevant previous work was conducted by Ienco et al. Ienco and Meo (2008), who similarly

divides the process into two stages and uses a hierarchical clustering followed by a wrapper method.

They show that their method (is not for HAR) on various datasets outperforms filter and wrapper

methods. Furthermore, using the dendrogram of features provided by hierarchical clustering gives

a semantic view of feature space. However, they do not explain how much their method can reduce

the size of the feature set and its effects on the models’ generality. This work addresses these aspects

and has a deeper view of data reduction advantages in the HAR pipeline.

4.3 Study Setup

Our main approach follows a typical HAR classification solution, as shown in Figure 4.1. The

approach is composed of five main phases described in the following:
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4.3.1 Data Collection

In order to examine the effectiveness of our feature selection method on data reduction, we first

need to collect data of certain activities. Specifically, we selected walking in flat steps, ascending

up stairs and descending down stairs Kwapisz, Weiss, and Moore (2011) as our target activities. We

repeat the experiments over two subjects and two sensor positions.

Sensors. We leveraged Motsai’s Neblina system-on-module (SoM) solution. Neblina is a cus-

tomizable module that is equipped with a tri-axial gyroscope, accelerometer, and magnetometer in

conjunction with a 32-bit processor and 2X256KB of flash memory ProMotion - Motsai Documen-

tation (2020). The data come from Neblina composes of the following features:

• Acceleration data (x/y/z).

• Gyroscope data (x/y/z).

• Magnetometer data (x/y/z).

• Force data, i.e., the acceleration vector minus gravity (x/y/z).

• Euler Angle data (yaw/roll/pitch).

We also calculate cosine for the angle of roll and pitch and call them roll2, pitch2. One column

called Step type, which contains the labels corresponding to each step type. The collected data has

been recorded on Neblina and is later downloaded to a Windows machine. The sampling rate was

set to 50Hz Zhao et al. (2010). Table 4.1 gives the total steps in each trial.

Experiments. We collected data from two male participants ages 25 and 30. Similar to prior studies

M. Zhang and Sawchuk (2011), we attached the sensor to the thigh Aminian and Najafi (2004) and

foot of each participant and performed the trials at various indoor and outdoor locations without

supervision. The sensor was strapped by an elastic belt on the front of the right thigh. Two sensor

positions are shown in Figure 4.1.

4.3.2 Feature Extraction and Selection

To divide the stream into segments corresponding to each step, we leveraged a pedometer Jay-

alath, Abhayasinghe, and Murray (2013). Since the time-domain features have already been shown
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Table 4.1: Total number of steps based on subjects, activity types, and sensor positions.

Sensor Position Thigh Foot
Activity Type Up Down Flat Up Down Flat
Subject A 249 228 420 206 219 386
Subject B 265 250 770 222 242 504

to be quite effective for HAR as opposed to frequency-domain and wavelet features Shoaib et al.

(2014), we have chosen the following time-domain features for our analysis, namely mean, median,

variance, standard deviation, root mean square, mean absolute deviation and median absolute devi-

ation. Then, we build 119 features built by applying seven feature functions to 17 input signals for

each step.

Feature Selection. Many different techniques can be applied to select features. These methods

generally are divided into three major categories, including a) filter methods, b) wrapper methods,

and c) embedded methods Saeys, Inza, and Larrañaga (2007). In this work, we employ an embed-

ded method that is a heuristic approach orientated toward the notion of minimizing redundancy and

maximizing relevancy (mRMR). Explicitly, our method benefits from two inexpensive processing

blocks (green blocks in Figure 4.1) to find an optimum set of features. Firstly, it filters highly cor-

related features out. Next, it ranks them, using General Linear Model (GLM), based on how much

features are statistically significant and takes the top ones. These blocks are explained as follow:

Hierarchical Clustering block. This block is set to find features that have the minimum redun-

dancy between them. More redundant features in a featureset not only do they increase the process-

ing cost, but they also decrease the performance due to the coarse-of-dimensionality for the smaller

size of the dataset. Therefore, this block aims to discover a set of low correlated features. To achieve

that, we use the hierarchical clustering (HC) Murtagh and Contreras (2017) method, and measure

the Spearman correlation coefficient through all features. The outcome of hierarchical clustering

is a hierarchy of features in the form of a so-called dendrogram. It constructs the dendrogram by

dividing features based on the correlation between features, which results in nested groups of fea-

tures. Based on the level of correlation required, one can choose where to define the cut-off line.

Choosing a line closer to the top makes fewer groups at a lower level of correlation and vice versa.

In this work, as in Park (2013), we put the cut-off line on 0.7, and it returns 15 clusters. It means
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Figure 4.2: Ensemble Strategy. Training m models to detect M activities. In voting block, the best
prediction gets selected.

that the correlation among clusters is between -0.3 and +0.3. In the second step, we choose the rep-

resentative feature from each cluster. To aim this, we employ Goodman and Kruskal Davis (1967)

algorithm on features of each cluster. Goodman and Kruskal is a measure that explains how much a

feature can predict the other. The most accurate predictor is considered as the representative of that

cluster. Then, we take these representatives to make the final featureset. Using this method, we end

up with 91 features (out of 118).

General Linear Model block The main goal of this block is to measure the features in terms of

their contribution in predicting response. To that aim, we train a linear model feeding features re-

ceived from the prior block. Using p-value (< 0.05), we take the statistically significant features in

the trained model. Taking features with a p-value less than the significance level, we will have more

certain candidates to be fed with the classifier at the following phase.

4.3.3 Classification Model

In this section, we explain the structure of our classifier. More classifiers are also taken into

consideration in RQ3. Janidarmian et al. (2017) and Oza and Tumer (2008) applied an ensemble
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of classifiers on HAR and showed that it outperforms other conventional classifiers in dealing with

more difficult problems.

Following the state-of-the-art, we used an ensemble of GLMs in this work. Intuitively, instead of

training each classifier for all classes, we assign each class (step type) to one classifier - One-vs-

Rest strategy. Therefore, to predict 3 step types, we train three models (individual models in Figure

4.2). Then, using a voting classifier, which is an ensemble of classifiers method, we combine their

results into one final decision. In this work, we choose the class with the highest score through

the voting block. For example, for certain input data, if individual models predict as following:

Pup = 0.8, Pdown = 0.5, Pflat = 0.2, the voting block infers Up as the final prediction. During

training, each individual model has been provided with an exclusive dataset biased toward a certain

step type.

4.3.4 Performance Evaluation

Adopting a 10-folds cross-validation strategy, we divide our data into ten folds; Nine folds to

train the model and one left to test it, on each round. One step is labelled as unknown if the results of

at least two individual-model are equal (e.g., Pup = Pdown). Since our test set contains no unknown

labelled data, any unknown step prediction is considered as false negative (FN). As there is no non-

step label in the actual observation, the true negative (TN) rate is always zero. The true positive (TP)

rate is composed of all correct step type predictions. In contrast, the false positive (FP) rate is all

incorrect step type predictions. Using the predicted value for each step, we can calculate precision

( TP
Tp+FP and recall ( TP

TP+FN ). In this study, we use Accuracy, F-measure, and Mis-Classification to

evaluate the performance of models.

Accuracy: Measures the rate of correctly classified step and non-steps types over all steps. It is

calculated as TP+TN
TP+FP+TN+FN

F-measure (F1): Presents the harmonic mean between precision and recall. It is calculated as

2 ∗ precision∗recall
precision+recall

Mis-Classification (MC): Measures the rate of incorrectly classified steps and non-steps over all of

steps.
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4.4 Case Study Results

In this section we present the results of our experiments that answer our research questions.

4.4.1 RQ1- How much does our feature reduction impact performance?

As motivated earlier, most wearable devices that are used for HAR are resource-constrained.

Hence, reducing the number of features (and consequently, data to be collected) improves the power

consumption, latency, and memory usage for these wearable devices. Simultaneously, the general

belief is that reducing the number of features fed to a classifier also negatively impacts accuracy

Erdaş et al. (2016). Therefore, the focus of this question is - what is the tradeoff between the

amount of data we can reduce and the performance impact.

Similar to prior work, we use accuracy, F1-measure, and the misclassification rate Deng (1998)

to measure the impact of performance and use the number of features used in the model to measure

the data savings. To compare the two setups, we conduct one experiment using all of the features

available to us and then repeat the same experiment using our reduced set of features. The differ-

ences in performance and data savings between the two experiments are then reported.

Table 4.2 shows the results of our experiments for the two subjects, A and B (results of the

full model are shown in parenthesis). In each Table, the first line is the ensemble model’s result

(considering all steps) followed by results of individual models, i.e., step-up, step-down and walking

on the flat surface. From the Table 4.2, we see that the number of features is reduced by 92%

±1% (from 119 to 8 features), while the classification accuracy is decreased by 1 - 2% for

both subjects. Alternatively, the flat walking model works better after the feature reduction for

both subjects. The step-up model has the lowest accuracy (97%, which is still quite high) among the

models examined. Comparing the results of two subjects at the same level of performance, the total

number of features for subject A is 30% lower than subject B (8 vs. 12 features), which indicates

that the reduction may be subject-specific. Either way, for both subjects, though, the reduction in

features is significant.
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Table 4.2: Impact of data reduction on performance of model. The numbers in parenthesis are
results of base-line model (using 119 features). The model ”All Steps” means that it can classify all
three step types. in the case of all-steps model, while the number of features decreases from 119 to
8, the accuracy changes only 1% (from 99% to 98%)

(Subject A)

Model No. Features Accuracy F1 MC

All Steps (119) 8 (0.99) 0.98 (1.00) 0.99 (0.01) 0.02

Step Up (119) 8 (0.97) 0.95 (0.95) 0.93 (0.03) 0.03

Step Down (119)7 (0.99) 0.99 (0.99) 0.99 (0.0) 0.01

Flat walking (119) 9 (1.00) 1.00 (1.0) 1.00 (0.0) 0.01
(Subject B)

Model No. Features Accuracy F1 MC

All Steps (119) 12 (0.99) 0.98 (1.00) 0.99 (0.01) 0.02

Step Up (119) 11 (0.97) 0.99 (0.95) 0.99 (0.03) 0.03

Step Down (119) 13 (0.99) 0.99 (0.99) 0.99 (0.00) 0.01

Flat walking (119) 12 (1.00) 1.00 (1.00) 0.99 (0.00) 0.01

4.4.2 RQ2- How does the feature reduction impact the generalizability of the model?

As we have seen from the results of RQ1, different individuals do not perform the same HAR

activity in the same way Janidarmian et al. (2017). The pattern of doing the activity depends on

many factors, including the physical body of the subject, his/her level of fatigue, experiences, and so

on. Consequently, a model trained on one subject may not be applicable to another subject Morris

et al. (2014); Shoaib et al. (2014). In our case, we are interested in examining the impact of the

feature reduction on the generality of the model.

Cross-subject validation uses the data from one subject to train the model, then tests the model on

data from another (independent subject). In this thesis, as our target is to examine the impacts of

feature reduction, hence, similar to the case of RQ1, we repeat the cross-subject validation twice,

once with all features that are available to us and once with the reduced set of features.

Table 4.3 shows results for both experiments (results of the full model are shown in parenthesis).

In the top Table, we train on data from subject A and test on subject B’s data and vice versa for the

Table on the bottom. First, we see that the feature reduction does decrease performance, however, its
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performance is comparable. Second, we notice that although the model trained on subject B’s data

has 3 more features (less data reduction) than the model trained using subject A’s data (15 against

12), it does not provide a higher accuracy (81% vs. 80%). Overall, we conclude that although

feature reduction does impact the overall performance when evaluated across subjects, the

impact is not significant. That said, again, which subject you train and test on does impact the

results.

Table 4.3: Cross-subject validation results on two subjects. A vs B means testing model of subject
A on data of subject B.

Subject A v.s. Subject B

Model No. Features Accuracy F1 MC

All Steps (119)12 (0.93)0.80 (0.97)0.89 (0.07)0.20

Step Up (119)15 (0.93)0.86 (0.90)0.81 (0.03)0.09

Step Down (119)10 (0.97)0.87 (0.96)0.82 (0.03)0.17

Flat walking (119)12 (0.97)0.86 (0.96)0.75 (0.15)0.35
Subject B v.s. Subject A

Model No. Features Accuracy F1 MC

All Steps (119)15 (0.96)0.81 (0.98)0.89 (0.04)0.19

Step Up (119)13 (0.95)0.86 (0.92)0.79 (0.05)0.24

Step Down (119)12 (0.97)0.88 (0.96)0.83 (0.02)0.08

Flat walking (119)20 (0.99)0.84 (0.98)0.73 (0.05)0.26

4.4.3 RQ3- How does feature reduction impact different classifiers?

In most related work, the authors evaluate their feature selection method using different clas-

sifiers to identify the best model. However, different classifiers are affected by feature reduction

differently. Prior work examined various different classifiers showed that they deal with feature

dimensionality differently Nabian (2017). However, their setting was slightly different since they

used PCA, which may reduce dimensionality, however it is not guaranteed to reduce the number of

needed features since one PC may be a combination of many features.

Therefore, in this RQ, we investigate the impact of feature reduction on 6 of the most com-

mon classifiers used in HAR. Again, we build a model using all of the features available to use

52



Table 4.4: Impact of data reduction on six classifiers including SVM, GLM, NN, KNN, Random
Forest, and Boosted Tree. The result of base-line model is written in parenthesise behind the num-
ber.

Model N. features Accuracy F1 MC

GLM (119)12 (0.99)0.98 (1.00)0.99 (0.01)0.02

SVM (119)12 (0.98)0.97 (0.99)0.98 (0.02)0.03

NN (119)12 (0.99)0.98 (0.99)0.99 (0.01)0.02

KNN (119)12 (0.98)0.96 (0.99)0.98 (0.02)0.04

Random Forest (119)12 (0.99)0.99 (1.00)0.99 (0.01)0.01

Boosted Tree (119)12 (0.98)0.96 (0.99)0.98 (0.02)0.04

and compare that with a model built using the reduced feature set. We merge the data from both,

subject A and B to perform this analysis. We mostly used the default parameter settings for the

various models, except for the Neural Network model, in which we used a configuration that was

recommended in earlier work O’Shea, Corgan, and Clancy (2016). The NN model used a 5-layer

network utilizing two drop-out layers and three dense fully connected layers. Layers use rectified

linear (ReLU) activation functions except for a Softmax activation on the one-hot output layer.

Table 4.4 shows the results of our experiment. As we can see from the Table, the models perform

very well, with and without feature reduction. In terms of F1-measure, GLM, NN and RF slightly

outperform the SVM, KNN and BT models. That said, all models do not seem to be impacted much

by the feature reduction. In general, the Random Forest model seems to perform the best overall,

and for that model, the feature reduction only impacts the F1-measure by 1%. Overall, we see that

most models are quite robust to the feature reduction.

4.5 Discussion and Future Work

Limitations. One of our contributions is introducing a feature selection method that showed a

significant result in reducing data size. However, this method may not provide the best results as we

did not compare its result with any other conventional feature selection methods. For this reason,

more validation of feature selection method is important future work. In addition, as showed in RQ2,

the result might be affected by certain subject. A wider range of activities beside more number of
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Figure 4.3: contribution of three sensors over different sizes of featureset

subjects are required to decrease the impact of subjects. So, using big enough datasets like Anguita

et al. (2013) will be considered in our future works.

Features vs. Sensors. As we have shown, feature reduction is a viable way to help save the re-

sources of wearables used in HAR. However, there is a key distinction between the features and

sensors used to derive these features. Although reducing the number of features helps save com-

putation resources, a real gain can be obtained if we could reduce the number of active sensors in

a wearable. This is possible if features extracted from a sensor are completely omitted in the data

reduction phase. Therefore, we run an experiment to determine which sensors provided the most

contributing features. The experiment was performed on data from both subjects and included all

steps in our dataset.

Figure 4.3 shows the share of each sensor vs. the total number of features for each of the three

sensors on the Neblina, namely accelerometer, gyroscope and magnetometer. We observe from

the figure that the accelerometer contributes the highest percentage of features, generally making up

close to 50% of the features at any given point. On the other hand, the gyroscope and magnetometer,

have similar contributions, which does not exceed 40%.

These results indicate that for HAR, we have the potential to not only reduce features, but

perhaps do some sensor optimizations to maximize savings of wearable devices. Such optimizations

are beyond the scope of this thesis, however, we plan to develop such methods and examine the

effectiveness in the future.
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4.6 Conclusion

In this thesis, we have investigated the impact of feature reduction on the performance of HAR.

We collected step data using the Neblina system-on-module solution from two subjects and have

answered three research questions related to the impact of feature reduction in terms of performance,

generalizability and varying classifiers. Our findings indicate that feature reduction can have a

significant reduction in using resources while achieving comparable results to a full model. Our

main findings are:

• Feature reduction can reduce the number of features by close to 90%, while only having an

impact of 1-2% in model performance.

• Feature reduction can impact the performance of the general models (i.e., that are cross-

subject), however, which subject a model is trained on does matter.

• Feature reduction does not have a major impact on most classifiers examined.

Our analysis also have showed that the accelerometer contributes most of the features used in

HAR models. In the future, we will be introducing methods that can optimize sensor operation in

order to maximize the resource savings of wearables.
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Chapter 5

Summary, Contribution and Future

Work

This chapter concludes the thesis including a summary of results presented throughout this

thesis, as well as some discussions regarding possible directions for future work.

5.1 Summary

This thesis focuses on the challenges of HAR using wearables. First, we conducted an end-

to-end activity recognition pipeline to understanding the main issues in each phase of developing

HAR systems. Then, we investigated different alternative featuresets, classification models and

evaluation methods under an equal study set up to measure each phase’s impact on the final model

performance. It reveals the advantage of alternatives in each pipeline phase that have mostly been

downplayed in the previous studies, especially in feature selection and feature extraction. Therefore,

we evaluate the impacts of these two phases under a resource constraint condition, as it is part of

the challenge in developing HAR systems in real-life. We propose a technique to reduce the input

data size and show how the HAR model performs consistently under these highly limited resources

conditions.

The following is a summary of the thesis chapters.

Chapter 3 presents a detailed experience of a human activity recognition system while it is

56



focused on a side-by-side comparison between different featuresets and classification method al-

ternatives. In this chapter, we study the state-of-the-art featuresets and the most popular classifiers

in HAR. We conduct a data collection and labelling procedure to collect 71 gym exercises carried

out by 25 subjects and prepare them for quantitative analysis on HAR models. We extract 1300

hand-crafted features and design 20 classification models (combinations of five featuresets and four

classifications) and evaluate them using three evaluation approaches (k-fold, cross-trial, and cross-

subject). We found that: 1) Among featuresets, models using histogram bins or statistical features

are providing the highest recognition performance by far, as compared to orientation-independent

features and physical-features; 2) Models using FNN and SVM classifiers give the most accurate

activity recognition among others, with Decision Tree (DT) recognizing the lowest accuracy level.

3) evaluating HAR models using K-fold cross-validation always yields a higher model performance

than other evaluation methods. That being said, this result is always subject-dependent. On the other

hand, Leave-One-Trial-Out and Leave-One-Subject-Out cross-validation methods show the model

performance relatively lower, respectively. However, these methods leverage subject-independent

validation, which is advantageous as it is the case for most real-life applications. We also con-

trast the performance of the most precise model (FNN using histogram-bins) per each activity and

find out that the same family exercises (Crunch twist and Russian Twist) are the most recognition

challenging for the model. In addition, we compared the convergence rate of FNN over the first

100 epochs for each featureset and show how fast the model with Histogram features can reach the

maximum accuracy (at the 5th epoch.)

Chapter 4 presents the data reduction approaches in the feature selection phase in HAR pro-

cesses. In this chapter, we study a tradeoff between the model’s accuracy and the size of input data

in the context of HAR. Performing under limited processing resources is naturally a HAR model’s

challenge in wearables. We empirically demonstrate the prevalence of data size and the model’s

accuracy rate for a HAR system. We record the data of three types of walking (up-stair, down-stair,

flat walking), present a feature selection approach to reduce the data size and an ensemble model to

recognize those activities. Our findings show that: 1) Only 7% (8 features) of 119 extracted features

are enough for the model to deliver 99% of its original performance (while using all features). This

rate varies between by maximum of 1%. 2) The data reduction insignificantly reduces the model’s
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generality while highly determined by the subject’s data used in the training dataset. 3) The data

reduction makes a relatively equal impact on different classifiers. This range starts with less than

1% decrease in the Random Forest, NN, and SVM; it ends to less than 2% for Boosted Tree, GLM,

and KNN. Furthermore, we show that the more we reduce the dataset size, the more contributions

the accelerometer features make to the featureset. That is, the accelerometer supplies the essential

features for HAR models than two other sensors.

5.2 Contributions

The major contributions of this thesis are as follows:

• A side-by-side comparison of how state-of-the-art features affect HAR system performance.

• A detailed investigation of the impact of data reduction on HAR system performance and

generality.

• A large dataset of gym exercise activities is recorded under real-life conditions and publicly

available for future researches on HAR and fitness tracking analysis.

• A publicly available repository of scripts contains approaches to extract 1300 most frequently

used HAR features to help the research community acquire a broader range of informative

sensor data characteristics.

5.3 Future Work

We believe that our thesis makes a positive contribution towards understanding the challenges

of designing a traditional HAR model. However, there are still many open challenges that need to

be tackled to improve performance. We now highlight some avenues for future work.

5.3.1 Considering other factors related to feature extraction

Throughout our study, we were mainly focused on understanding of a movement and relevant

feature functions, i.e., physical featureset and histogram featureset, as the key factors to extract
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features. We know that other factors are also involved in designing an informative featureset. For

example, a model’s performance changes over a different length of overlapping (sliding window).

In the future, we intend to perform more in-depth studies regarding factors like overlap, noise reduc-

tion, and sampling frequency to explore other ways of measuring the performance of a featureset in

the feature extraction phase.

5.3.2 Providing real-time (online) HAR systems

In our investigation in this thesis, we perform the training and classification jobs offline. In the

sense that the recognition process starts after the data is all recorded. In real-life applications, these

systems called post-workout feedback systems (offline HAR.) However, there is another category

called real-time (online HAR) in which the recognition occurs as the data is being recorded. Models

in this category have to simultaneously deal with multiple tasks, including recording and segmenting

data, extracting features, and recognizing the activity, with the minimum latency to provide a real-

time experience for the user. Besides the accuracy challenge and limited storage and processing

power, online HAR systems should address orientation variation, false peak detection, and latency

tradeoffs. Toward this end, conducting a study that measures these aspects of the feature extraction

phase can positively impact online HAR development.

5.3.3 Extending data reduction in sensor fusion phase

In chapter 4, we showed that the contribution of different types of sensors varies as we decrease

the size of data (the number of features.) In our ensemble model, we noticed that this contribution

is different per individual model/activity. Although omitting features decreases the processing cost,

the sensors are still running and using power even if their data is not going to be used by the model.

Therefore, future work will investigate the benefits of dynamic-sensor-selection to utilize energy

efficiently while achieving the desired activity recognition accuracy.

5.3.4 Extending to our gym exercise dataset

One of the practical contributions of the current thesis is sharing the large dataset of gym ex-

ercises that we collected for our experiments. Although we collected a large dataset, we could not
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use a significant portion of it in the interest of applying LOTO and LOSO in the evaluation phase.

Therefore, we did not have enough samples per-subject and per-trial for each activity to study more

advanced HAR qualifications, such as the impact of the subject’s expertise level or fatigue, for that

matter. So, one absolute future work could focus on collecting more data labelled appropriately and

exploring these features. Meanwhile, collecting a bigger dataset will also provide more generalized

results for future experiments.
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Appendix A

Gym Exercise Dataset

This appendix’s key element involves visually analyzing our gym dataset to glean valuable

insights and understand underlying relationships and patterns that were essential during our analysis.

Figure A.1 shows the activity distribution of our dataset. The more popular exercises are at

larger values (i.e., (1) Treadmill, (2) Dumbbell Bench Press, (3) Lat Pull Down.)
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Figure A.1: The exercise distribution (total samples) in gym dataset. The exercise 0 is null activity
(including any non-exercise activity a person normally does in the gym such as walking, drinking
water, talking.) 62



There are three evaluation methods used in this thesis: 1) Leave-One-Trial-Out (LOTO), 2)

Leave-One-Subject-Out (LOSO), 3) K-Fold Cross-Validation. Whereas K-Fold Cross-Validation

does not need any specific consideration to be respected regarding the distribution of activities

and subjects, two other evaluation methods highly enforce the dataset’s measures. Regarding the

LOSO, as it evaluates the model’s recognition performance across different subjects, it essentially

needs each exercise to be carried out by more than one subject. Figure A.2 gives the number of

participants for each exercise.
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Figure A.2: Total subjects participating in each exercise.

In the LOTO Cross-Validation method, the minimum trial of each exercise matters. Figure ??

shows the number of trials for each exercises.
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Figure A.3: Total trials carried out for each exercise. There is data from 45 exercises recorded in
gym dataset

Part of our experiments was to compare the reported models’ performance using these three

evaluation methods. Aiming to have a fair comparison, we need identical data for all three evaluation

strategies. Therefore, we need exercises that can satisfy the constraints: 1) the minimum-trials and,

2) the minimum-subjects. Figure A.4 shows total trials of each subject for every 45 exercises. From

this Figure, we chose those exercises with at least three subjects who performed at least three trials.

Figure ?? shows total samples recorded instead of the number of trials for each subject.
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Figure A.4: Total trials per subject per exercise. There are 9 subjects and 45 exercises recorded in
gym dataset

A.1 Activities

The following is a list of all considered activities in the current study.

• 1 Treadmill

• 2 ab crunch machine

• 3 Lying leg curl

• 4 Triceps Pushdown Rope

• 5 Dumbbell Bench Press Incline Dumbbell

Press

• 6 barbbell bicep curl

• 7 standing calf raise

• 8 Crunch

• 9 Lat pull down

• 10 cycling

• 11 seated calf raise Calf Press Leg Press

• 12 overhead dumbbell press

• 13 Machine Shoulder (military) Press

• 14 overhead barbell press - behind the neck

• 15 Dumbbell Lateral Raise

• 16 Dumbbell Front Raise

• 17 Dumbbell Reverse Fly On Incline Bench

• 18 Barbell Upright Row

• 19 Austrailian Pull up (inverted row)
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• 20 Standing Biceps Cable Curl

• 21 Lying Barbell Curl On Incline Bench

• 22 concentration dumbbell curl

• 23 Hammer Curl

• 24 Behind The Neck Lat Pull down

• 25 Seated Cable Row

• 26 pullovers machine

• 27 Horizontal bar

• 28 H Machine Row

• 29 T Machine Row - Seated machine row

• 30 Triceps Overhead Ext

• 31 Lying Close-Grip Barbell Triceps Press

To Chin - Lying Triceps Press

• 32 Parallel Bar Dip

• 33 Bench Dips (Triceps Dips) (dumbbell

kickback)

• 34 Lying dumbbell triceps

• 35 Incline Dumbbell Bench

• 37 Barbell Decline Bench Press

• 36 Low Cable Cross over

• 38 Cable High Cross Over

• 39 Push-up

• 40 Reverse Crunch - Flat Bench Lying Leg

Raise

• 41 Russian Twist

• 42 Cable One Arm Lateral-L

• 43 Cable One Arm Lateral-R

• 44 Standing Biceps Curl

• 45 Shrug dumbbell

• 46 Pectoral Fly

• 47 band chest pulls

• 48 ab machine bend

• 49 barbell plate press

• 50 side bent pulls (kettlebell/ dumbblell)

• 51 chin-ups

• 52 Cable Crunch

• 53 Knee Hip Raise On Parallel Bars

• 54 leg extension

• 55 dumbbell fly (bench)

• 56 barbell bent-over row
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