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Abstract

Frobenius Distributions in Short Intervals for Non-CM Elliptic

Curves

Neha Nanda

Let E be an elliptic curve defined over Q. An extremal prime for E is a prime

p of good reduction such that the number of rational points on E modulo p is

minimal or maximal in relation to the Hasse bound, i.e. ap(E) = ±
⌊
2
√
p
⌋
. In

the first case, we say that p is a trailing prime. In the second case, we say that

p is a champion prime. The notion of extremal primes was generalized to primes

such that ap(E)/2
√
p lie in a short interval around c ∈ (0, 1] in [AHJ+18], who

considered the case of curves with complex multiplication.

In this thesis, assuming E does not have complex multiplication, we study the

distribution in short intervals for

ap(E)

2
√
p
∈ (c− f(p), c) (1)

where c ∈ (−1, 1] and f(x) = xδ such that−1/2 ≤ δ < 0. The distribution is differ-

ent if c = 1 or c 6= 1, influenced by the Sato–Tate distribution (see Conjecture 1.1).

We use the techniques of David, Gafni, Malik, Prabhu, and Turnage-Butterbaugh

[DGM+19], who considered the extremal primes for elliptic curves without com-

plex multiplication to get an upper bound for the number of primes such that (1)

holds, under GRH (Theorem 1.4) and unconditionally (Theorem 1.5).
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Chapter 1

Introduction and Notations

Let E be an elliptic curve over Q. For each prime p of good reduction, E

reduces to a curve Ẽ over the finite field Fp. By a theorem of Hasse, we know that

#Ẽ(Fp) = p+ 1− ap(E) where ap(E) ∈ [−2
√
p, 2
√
p]. We start now by giving the

basic definitions:

Definition 1.1. Let E be an elliptic curve defined over the field of rationals Q

and p be a prime. A prime p of good reduction for E is called

(i) an extremal prime of E if |ap(E)| = b2√pc, where bxc is the usual floor

function.

(ii) a champion prime of E if ap(E) = −b2√pc.

(iii) a trailing prime of E if ap(E) = b2√pc.

We also call ap(E) the trace of the Frobenius endomorphism and we remark

that the normalized trace ap(E)/2
√
p belongs to the interval [-1,1]. We will discuss

that in detail in Chapter 2.

The distribution of the normalized traces is given by the Sato–Tate conjec-

ture (now a theorem due to the work of Laurent Clozel, Michael Harris, Nicholas

Shepherd-Barron [HST10], [BGHT11] and Richard Taylor in [Tay08], ).

Theorem 1.1 (Sato–Tate conjecture). Let E be an elliptic curve defined over Q

without complex multiplication. Then, for real numbers −1 ≤ α < β ≤ 1

lim
x−→∞

1

π(x)
#

{
p ≤ x :

ap(E)

2
√
p
∈ (α, β)

}
∼ 2

π

∫ β

α

√
1− t2dt.
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The distribution of extremal primes is a generalisation of the Sato–Tate

conjecture since
ap(E)

2
√
p
∈
(

1− 1

2
√
p
, 1

)
implies that p is an extremal prime.

Extremal primes were studied first by Kevin James, Brandon Tran, Minh-

Tam Trinh, Phil Wertheimer, Dania Zantout in [JTT+16] who gave a conjecture

(refined by James and Pollack [JP17]) for the number of extremal primes in case

of CM and non-CM elliptic curves stated in the following form:

#{p ≤ x : ap(E) = ±b2√pc} ∼


16
(3π)

x1/4

log x
if E is without CM

4
3
x3/4

log x
if E has CM.

as x −→∞. By symmetry a similar conjecture has been stated for the trailing and

champion primes. Notice that for fixed value of ap(E), the Lang-Trotter conjecture

says, as x −→∞,

#{p ≤ x : ap(E) = h} ∼ CE,h

√
x

log x
,

where CE,h is a constant depending on E and h. Assuming holomorphicity and

the GRH for the symmetric power L-functions of E, Rouse and Thorner [RT16]

obtained the following upper bound for the Lang-Trotter conjecture:

#{p ≤ x : ap(E) = h} �E,h
x3/4√
log x

.

Using similar techniques, David, Gafni, Malik, Prabhu, and Turnage-Butterbaugh

proved upper bounds for the number of extremal primes for non-CM elliptic curves:

Theorem 1.2 ([DGM+19], Theorem 1.2). Let E be a non-CM elliptic curve over

Q. Assume holomorphicity and the GRH for the symmetric power L-functions of

E. Then

#{x < p ≤ 2x : ap(E) = [2
√
p]} �E

√
x. (1.1)

We remark that one of the hypothesis in Theorem 1.2 is not necessary anymore,

as it was proven by Newton and Thorne [NT19] that all functions L(s, Symk(E))

are automorphic and have analytic continuation to the entire complex plane for

all k ≥ 1. The GRH for the L(s, Symk(E)) functions is still open.

2



Definition 1.2. Let E/Q be an elliptic curve and p a prime. We say p is

(i) f -nearly extremal for E if |ap(E)| ∈ (2
√
p(1− f(p)), 2

√
p);

(ii) a (c, f)-prime for E if ap(E) ∈ (2
√
p(c − f(p)), 2c

√
p) for some constant

c ∈ (0, 1).

In [AHJ+18] , Agwu et al gave the generalisation for the distributions of

normalized traces in short intervals for elliptic curves with complex multiplication.

Theorem 1.3 ([AHJ+18], Theorem 1.6). Let E be an elliptic curve with complex

multiplication, and let f(x) = o(1) be a convex, differentiable, regularly varying

function. If x−
1
2 � f(x), then the number of f -trailing primes p ≤ x is

∼
√

2

π(2 + α)

√
f(x)

x

log x
,

and the same asymptotic holds for f -champion primes. Moreover, if 1
f(x)

=

o(x0.265/ log x) for sufficiently large x, the number of (c, f)-primes p ≤ x is

∼ 1

2π

1

1 + α

1√
1− c2

f(x)
x

log x
,

where c is some constant in (0, 1) and α is some real number given by Karamata’s

Theorem: f(x) = xαg(x) where g is slowly varying.

In this thesis, we consider nearly extremal primes for elliptic curves without

complex multiplication. We prove an upper bound for the number of such primes

generalising the work of David, Gafni, Malik, Prabhu, and Turnage-Butterbaugh

[DGM+19].

Theorem 1.4. Let E be a non-CM elliptic curve over Q and suppose that the

symmetric power L-functions of E satisfy the Generalized Riemann Hypothesis.

Let f(x) = xδ where −1/2 ≤ δ < 0. Then

#{x < p ≤ 2x :
ap(E)

2
√
p
∈ (1− f(p), 1)} �E xf(x),

and for c ∈ (0, 1),

#{x < p ≤ 2x :
ap(E)

2
√
p
∈ (c− f(p), c)} �E x

√
f(x).

3



We also prove an unconditional bound.

Theorem 1.5. Let E be a non-CM elliptic curve over Q and let f(x) = xδ where

−1/2 ≤ δ < 0. Then, for sufficiently large x,

#{x < p ≤ 2x :
ap(E)

2
√
p
∈ (1− f(p), 1)} �E

x(log(log x))2

(log x)2
,

and for c ∈ (0, 1),

#{x < p ≤ 2x :
ap(E)

2
√
p
∈ (c− f(p), c)} �E

x log(log x)

(log x)
3
2

.

We also present a conjecture for the number of f extremal and (c, f)-primes

in short intervals, and we test it numerically. All the experiments are conducted

using SageMath version 8.8.

Conjecture 1.1. Let E be a non-CM elliptic curve over Q. Let f(x) = xδ where

−1/2 ≤ δ < 0. Then,

#{p ≤ x :
ap(E)

2
√
p
∈ (1− f(p), 1)} ∼ 8

√
2

3π

(f(x))3/2

(3δ + 2)

x

log x
.

and

#{p ≤ x :
ap(E)

2
√
p
∈ (c− f(p), c)} ∼ 2

π

√
1− c2
δ + 1

f(x)
x

log x
.

where c ∈ (−1, 1) be a constant.

This thesis is divided into five chapters.

Following introduction, Chapter 2 gives an introduction to the theory of elliptic

curves over finite fields and the symmetric k-th power L-functions of E. We also

provide the link between L(s, Symk(E)) and Chebyshev polynomials of second

kind.

Chapter 3 discusses explicit distribution, and we prove the Theorem 1.4 and

the Theorem 1.5 in Chapter 4, using those tools.

In Chapter 5, we present the conjecture 1.1 for the distribution of the primes

in short intervals in case of elliptic curves without CM.

4



Chapter 2

L-Functions and Elliptic Curves

In this chapter, we present some basic definitions and results associated with

the theory of elliptic curves over finite fields. Moreover, this chapter explains some

analytic results related to L-functions of elliptic curves, which we will refer later

in the thesis. For more detailed introduction, we suggest the reader to go through

[ST92] along with its advanced version and continuation [Sil09]. Further, [Was08]

gives a very gentle introduction to the theory of elliptic curves. One can also

read the paper by Rouse and Thorner [RT16] to understand the background of

proposition given in last section of this chapter.

2.1 Elliptic Curves over Finite Fields

Definition 2.1. Let K be a field. An elliptic curve E/K (E over K) is given

by generalized Weierstrass equation of the form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where ai ∈ K. Here, (x, y) denotes the set of solutions or set of points of E/K

with an additional “point at infinity” O.

If char(K) 6= 2, 3, (2.1) reduces to equation of the form:

E : y2 = x3 + ax+ b (2.2)

with coefficients a, b ∈ K. We also require that E is non-singular i.e. ∆E =

−16(4a3 − 27b2) 6= 0, where ∆ is the discriminant of E.

5



Let E be an elliptic curve over Q. For each prime p not dividing ∆E (also

called the prime of good reduction) E reduces to an elliptic curve

Ē : y2 = x3 + āx+ b̄

over Fp.

Clearly, the number of solutions of Ē/Fp satisfies

#Ē(Fp) ≤ 2p+ 1.

If we use the model that there is a probability of 50% for a “randomly chosen”

quadratic equation to be solvable in Fp, we have that

#Ē(Fp) ≈ p.

The following result, originally conjectured by Artin in his thesis and later

proved by Hasse in early 1930s shows that the above reasoning is correct.

Theorem (Hasse). Let E be an elliptic curve over Fp and E(Fp) denotes the set

of points (x, y) ∈ Fp × Fp along with the point at infinity. Then,

#Ē(Fp) = p+ 1− ap(E), (2.3)

with |ap(E)| ≤ 2
√
p.

To know more about ap(E), we need to study the endomorphism ring End(E).

Theorem ([Sil09], Corollary 9.4). Let K be any field. The endomorphism ring of

E, denoted by End(E), can be one of the following three type :

End(E) =


Z,

order of an imaginary quadratic field,

an order in a quaternion algebra.

(2.4)

The first two cases occur when char(K) = 0 and the third case is possible only

when char(K) > 0.

6



Let E be an elliptic curve over a field K of characteristic 0. If End(E) = Z, the

elliptic curve E does not have complex multiplication, commonly abbreviated

as non-CM.

If End(E) 6= Z, then End(E) is order of an imaginary quadratic field. The

elliptic curve E in this case is said to have complex multiplication, abbreviated

as CM.

Example. Consider the example as in [ST92], for the elliptic curve

E : y2 = x3 + x.

The endomorphism σ : E −→ E defined by

σ(x, y) = (−x, iy)

satisfies σ2 = [−1].

2.1.1 The Frobenius Endomorphism and Sato–Tate

Conjecture

Definition 2.2. The Frobenius endomorphism of E over Fp is the map

ψp : E −→ E (2.5)

which maps

(x, y) 7→ (xp, yp). (2.6)

Theorem 2.1. ψp defined by (2.5) satisfies the equation

X2 − ap(E)X + p = 0. (2.7)

By the Hasse bound, the roots are the complex conjugate roots βp(E) and βp(E)

such that ap(E) = βp(E) + βp(E) and |βp(E)| = |βp(E)| = √p.

In light of the above theorem, we call ap(E) the trace of Frobenius endomor-

phism. From the Hasse bound, it follows that the normalized trace ap(E)/2
√
p

belongs to the interval (-1,1) and we write

ap(E)

2
√
p

= cos (θp(E)) with 0 ≤ θp(E) ≤ π. (2.8)

7



We also define βp(E) =
√
pαp(E), and we have αp(E) = eiθp(E).

The distribution of the Frobenius traces for non-CM elliptic curves is given

by a conjecture (now a theorem) formally known as Sato–Tate conjecture. The

conjecture was given in early 1960s by Sato and Tate (independently) and proved

later by Richard Taylor et al. ([HST10], [BGHT11], [Tay08]).

Theorem. (Sato–Tate Conjecture). Consider an elliptic curve without complex

multiplication defined over Q. Then, the distribution of the normalized Frobenius

traces ap(E)/2
√
p is given by

lim
x−→∞

1

π(x)
#

{
p ≤ x :

ap(E)

2
√
p
∈ (α, β)

}
∼ 2

π

∫ β

α

√
1− t2dt

with −1 ≤ α < β ≤ 1 and α, β ∈ R.

Observe the following frequency histogram distribution plots of Sato–Tate con-

jecture for increasing prime powers.

Figure 2.1: Frequency histogram distribution of Sato–Tate conjecture for different

prime ranges; the first row shows ap(E)/2
√
p for p ≤ 102, 103, 104 and the second

row for p ≤ 105, 106, 107 respectively for E : y2 + y = x3 − x2 − 10x− 20.

Another invariant associated to elliptic curves which is important for the fur-

ther discussion is the conductor NE of E.

8



Definition 2.3. The conductor NE of E/Q is defined as:

NE =
∏
p

pFp

where the product is over all the primes p and the exponent Fp depends on the

reduction of E at p as

Fp =


0 if E had good reduction at p,

1 if E has multiplicative reduction at p,

2 + γp if E has additive reduction at p.

where, γp is a measure of “wild ramification” in the action of inertia group of Tate-

module as explained in [Sil09] and [ST92]. Note here that γp = 0 for p 6= 2, 3.

2.2 L-functions of elliptic curves

Definition 2.4 (L-function of an Elliptic Curve). Let E be an elliptic curve over

Q with conductor NE. The L-function of E is the Dirichlet series

L(s, E) =
∏
p|NE

(
1− ap(E)

ps

)−1 ∏
p-NE

(
1− αp(E)

ps

)−1(
1− αp(E)

ps

)−1
=
∞∑
n=1

an(E)

ns

where we recall that

#E(Fp) = p+ 1−√p(αp(E) + αp(E)) for p - NE,

and |αp(E)| = |ᾱp(E)| = 1. Also, for the primes of bad reduction, ap(E) = 0,±1

depending on the type of bad reduction.

It is clear from above that L(s, E) converges absolutely for Re(s) > 1 and it

was proven by Wiles that L(s, E) has analytic continuation to the whole complex

plane and satisfy a functional equation relating s to (1− s).

For any integer k ≥ 1, the symmetric k-th power L-functions of E are defined

as:

L(s, Symk(E)) =
∏
p-NE

k∏
j=0

(
1− αp(E)jαp(E)k−j

ps

)−1 ∏
p|NE

Lp(s, Symk(E)) (2.9)

9



where the Euler factors Lp(s, Symk(E)) for p | NE are described in ([DGM+19],

Appendix 1).

A note of Serre gives a relation between the Sato–Tate conjecture and analytic

properties of L(s, Symk(E)) (See section A.2[Ser68]). It was proven by Taylor in

[Tay08], with the difference there that L-functions are not normalized, that all

L(s, Symk(E)) have analytic continuation to Re(s) ≥ 1, and do not vanish on the

line Re(s) = 1, which is enough to prove the Sato–Tate conjecture, but without

any explicit error term.

More recently, it was shown by Newton and Thorne in [NT19] that L(s, Symk(E))

has analytic continuation to the whole complex plane which makes it possible to

obtain effective version of Sato–Tate conjecture without any hypothesis [Tho20].

2.3 Chebyshev polynomials of the Second kind

and L(s,Symk(E))

Please note that throughout this section, we use the notation θp to denote

θp(E). The Chebyshev polynomials of the second kind are defined by the recur-

rence relation of the form :

U0(x) = 1

U1(x) = 2x

Uk(x) = 2xUk−1(x)− Uk−2(x) (2.10)

Now, consider the above relations for x = cos θ and k = 0,1,2,3,......

for k = 0,

U0(cos θ) = 1

for k = 1,

U1(cos θ) = 2 cos θ

for k = 2,

U2(cos θ) = 2xU1(cos θ)− U0(cos θ)

10



= 4 cos2 θ − 1

and so on.

For increasing values of k, the Chebyshev polynomials of second kind satisfy

Uk(cos θ) =
sin ((k + 1)θ)

sin θ
. (2.11)

We denote by ΛSymk(E)(n) the coefficients of Dirichlet L-function

−L′

L
(s, Symk(E)) =

∞∑
n=1

ΛSymk(E)(n)

ns
, (2.12)

The following proposition describes the link between Chebyshev polynomials

of second kind and symmetric k-th power L-functions of E.

Proposition 2.1. ΛSymk(E)(n) = 0 unless n = pm is a prime power, and for primes

p not dividing NE and m ≥ 1

ΛSymk(E)(p
m) = Uk(cos(mθp)) log p,

where k = 0, 1, 2, 3 , ...and so on.

Proof : Consider the symmetric k-th power L-function of E as in (2.9),

L(s, Symk(E)) =
∏
p-NE

k∏
j=0

(
1−

αjp(E)αk−jp (E)

ps

)−1 ∏
p|NE

Lp(s, Symk(E)).

Now, we define, the (partial) k-th symmetric power L-function as

L1(s, Symk(E)) :=
∏
p-NE

k∏
j=0

(
1−

αjp(E)α(k−j)
p (E)

ps

)−1
. (2.13)

Taking logarithmic derivative in (2.13) gives

L
′
1

L1

(s, Symk(E)) =
d

ds
logL1(s, Symk(E))

=
d

ds

−∑
p-NE

k∑
j=0

log
(
1− αjp(E)α(k−j)

p (E)p−s
)

=
d

ds

∑
p-NE

k∑
j=0

∑
m≥1

αjmp (E)α(k−j)m
p (E)

mpms


= −

∑
p-NE

k∑
j=0

∑
m≥1

αjmp (E)α(k−j)m
p (E) log p

pms
,

(2.14)

11



where we have used

log(1− t) = −
∑
m≥1

tm

m

and
d

ds

(
p−ms

m

)
= (−p−ms) log p.

From (2.12), now it is easy to show our result using our computation as in

(2.14) and for increasing values of k.

For instance, comparing (2.12) and (2.14), we have

ΛSymk(E)(p
m) =

k∑
j=0

αjmp (E)α(k−j)m
p (E) log p, m ≥ 1 (2.15)

where explicitly, αp(E) = eiθp , αp(E) = e−iθp and unique θp ∈ [0, π]. For k = 0,

the result follows trivially.

For k = 1,

ΛSym1(E)(p
m) =

1∑
j=0

αjmp (E)α(1−j)m
p (E) log p

= (αmp (E) + αmp (E)) log p

= 2 cos (mθp) log p

= U1 (cos(mθp)) log p

which is the first Chebyshev polynomial of second kind.

For k = 2,

ΛSym2(E)(p
m) =

2∑
j=0

αjmp (E)α(2−j)m
p (E) log p

=
{
α2m
p (E) + α2m

p (E) + αmp (E)αmp (E)
}

log p

=
{

(αmp (E) + αmp (E))2 − αmp (E)αmp (E)
}

log p

=
{

4 cos2 (mθp)− 1
}

log p

= U2 (cos(mθp)) log p

which is the second Chebyshev polynomial of second kind.

12



For k = 3,

ΛSym3(E)(p
m) =

3∑
j=0

αjmp (E)α(3−j)m
p (E) log p

=
{
α3m
p (E) + α3m

p (E) + α2m
p (E)αmp (E) + αmp (E)α2m

p (E)
}

log p

=
{

(αmp (E) + αmp (E))3 − 2αmp (E)αmp (E)
(
αmp (E) + αmp (E)

)}
log p

=
{

8 cos3 (mθp)− 4 cos (mθp)
}

log p

= U3 (cos(mθp)) log p

which is the third Chebyshev polynomial of second kind.

To prove this relation in general, we use the recurrence relation for Chebyshev

polynomial of second kind given by (2.10). Since the result hold for k = 1, 2, 3,

let us suppose by induction that the result holds for all k ≤ (r − 1), i.e.,

ΛSym(r−1)(E)(p
m) =

sin(rmθp)

sin(mθp)
log p = Ur−1 (cos(mθp)) log p (2.16)

i.e. for k = 1, 2, .., (r − 1).

Now, we check if the result for k = r. From (2.10) we have,

Ur (cos(mθp)) = 2 cos(mθp){Ur−1 (cos(mθp))} − Ur−2 (cos(mθp)) . (2.17)

Consider,

2 cos(mθp)
{

ΛSym(r−1)(E)(p
m)
}
− ΛSym(r−2)(E)(p

m). (2.18)

Using the induction step (2.16), the recurrence formula (2.17) and trigonometric

sum-difference formula for sinx, above expression (4.2) becomes

[2 cos(mθp){Ur−1 (cos(mθp))} − Ur−2 (cos(mθp))] log p

=

[
2 cos(mθp)

{
sin(rmθp)

sinmθp

}
− sin((r − 1)mθp)

sinmθp

]
log p

=

[
sin(r + 1)mθp

sinmθp

]
log p

= [Ur (cos(mθp))] log p

= ΛSymr(E)(p
m).

Hence the result is holds for k = r. This implies, (2.16) holds for all values of k.
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So, the result follows, i.e., symmetric k-th power L-functions of E are related

to the Chebyshev polynomial of second kind as

ΛSymk(E)(p
m) = Uk (cos(mθp)) log p, p - NE.
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Chapter 3

Explicit Equidistribution

Let us begin with any sequence (xn) of real numbers. We say that the sequence

(xn) is equidistributed if the sequence {xn} of its fractional parts is equidistributed

in [0, 1], where {xn} = x− [xn] represents the fractional part of a sequence (xn).

Definition 3.1. Let x1, x2, x3,.... be a bounded sequence of real numbers, we say

that this sequence is equidistributed or uniformly distributed (mod 1) if, for

every subinterval [α, β] ∈ [0, 1], we have

lim
N−→∞

#{n ≥ 1 : 1 ≤ n ≤ N, {xn} ∈ [α, β]}
N

= β − α.

The classical definition of equidistribution was given by Hermann Weyl in 1916

who studied the real line modulo integers, R/Z, and gave the celebrated Weyl’s

criterion:

Weyl’s criterion: A sequence {xn} of real numbers is equidistributed modulo 1,

if and only if for m 6= 0,

lim
N−→∞

1

N

N∑
n=1

e(mxn) −→ 0.

Note that e(x) := e2πix.

Example 3.1 (Equidistributed sequence). Let θ be an irrational number. The

sequence xn = {nθ}n≥1 is equidistributed in R/Z i.e. [0, 1].

Proof: Given xn = nθ–[nθ] , n = 1, 2, ... and so on. We apply the Weyl’s criterion

to check the uniform distribution modulo 1.
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N∑
n=1

e(2πim(nθ−[nθ])) =
N∑
n=1

e(2πimθ)
n

=
e2πimθ(e(2πimθ)

N − 1)

e(2πimθ) − 1

≤ 2

|e2πimθ − 1|
,

and the denominator is bounded away from zero for any fixed θ and m, since

θ /∈ Q. We then have

lim
N−→∞

1

N

N∑
n=1

e(2πimnθ) −→ 0,

and the result follows.

Example 3.2. If θ is rational the sequence xn = {nθ}n≥1 is not uniformly dis-

tributed.

Proof. If θ is rational i.e. θ = p/q where p and q are coprime integers. Then,

applying the Weyl’s criteria for m = q,

N∑
n=1

e2πinq(p/q) = N.

So, the Weyl’s criteria fails.

We plot the graphs of above sequence for different irrational values of θ to

observe if the sequence of points are equidistributed or not.

(i) Equidistributed sequence: The sequence is {xn} = (
√

0.4n)Nn=1 where

θ=
√

0.4 is irrational.

16



Figure 3.1: Point and histogram frequency distribution for N = 300, 600 and 1000

points of the sequence (n,
√

0.4n)Nn=1.

(ii) Non-Equidistributed sequence: We consider a sequence which is not

equidistributed, i.e.

{xn} = {p1/p}

Observe the histogram frequency and point distribution of the following sequence

for p ≤ 103 and p ≤ 105 where p is prime.

Figure 3.2: Histogram frequency distribution for N = 103 and N = 105 of the

sequence {p1/p, N}p≤N .

3.1 Explicit Equidistribution

This section gives brief introduction to the effective results of equidistribution,

see ([Mon94], Chapter 1). Let χJ(x) be the characteristic function of the interval

J = [α, β] ⊆ [0, 1]. Then, we can write

χJ(x) = β − α + s(x− β) + s(α− x) (3.1)

17



where s(x) denotes the saw-tooth function given by

s(x) =

{x}−1/2 x /∈ Z,

0 x ∈ Z.

There exists trigonometric polynomials S+
J,M(x) and S−J,M(x) which are good ap-

proximations to χJ(x), defined by

S+
J,M(x) = β − α +B∗M(x− β) +B∗M(α− x) (3.2)

and

S−J,M(x) = β − α−B∗M(β − x)−B∗M(x− α),

where B∗M(x) is the M th order Beurling polynomial defined as

B∗M(x) =
1

M + 1

M∑
k=1

(
k

M + 1
− 1

2

)
∆M+1

(
x− k

M + 1

)
+

1

2π(M + 1)
sin (2π(M + 1)x)− 1

2π
∆M+1(x) sin (2πx)

+
1

2π(M + 1)
∆M+1(x)

and ∆M(x) is the Féjer’s kernel defined as

∆M(x) =
∑
|k|≤M

(
1− |k|

M

)
e(kx)

=
1

M

(
sin (πxM)

sin (πx)

)2

.

We write

χJ(x) =
∑
m∈Z

χ̂J(m)e−mx

where χ̂J(m) is the m-th Fourier coefficient of χJ(x) given by

χ̂J(m) =

∫
J

e−mtdt. (3.3)

According to Vaaler’s lemma, see ([Mon94], Chapter 1), these trigonometric

polynomials S+
J,M(x) and S−J,M(x) satisfy the following properties:

(1) For all x ∈ R,

S−J,M(x) ≤ χJ(x) ≤ S+
J,M(x). (3.4)
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(2) For 0 ≤ |m| ≤M , we have

|Ŝ+
J,M(m)− χ̂J(m)| ≤ 1

M + 1
. (3.5)

Note that since χ̂J(0) = β − α, from (3.3) and (3.5), we have

Ŝ+
J,M(0) = β − α +O

(
1

M + 1

)
. (3.6)

(3) We now require an estimate for |Ŝ+
J,M(m)|. If m 6= 0, equation (3.3) gives

χ̂J(m) =
e−mα − e−mβ

2πim
(3.7)

and

χ̂J(−m) =
emβ − emα

2πim
. (3.8)

Adding (3.7) and (3.8), we have

χ̂J(m) + χ̂J(−m) =
sin (2πmβ)− sin (2πmα)

πm

=
sin (πm(β − α))

πm
.

Hence

|χ̂J(m)| =
∣∣∣∣sin (πm(β − α))

πm

∣∣∣∣ ≤ min

(
β − α, 1

π|m|

)
(3.9)

where m 6= 0.

Combining (3.5) and (3.9), we get, for 1 ≤ |m| ≤M,

|Ŝ+
J,M(m)| ≤ 1

M + 1
+ min

(
β − α, 1

π|m|

)
.

A similar result hold true for S−J,M(x). For a detailed exposition of these prop-

erties, please see ([Mon94], Chapter 1).

3.2 Chebyshev polynomials and the Sato–Tate

measure

Definition 3.2. The sequence of polynomials {fn(x)}n≥0 is called orthonormal,

if

< fm(x), fn(x) >=

∫
I

fm(x)fn(x)µI(dx) =

0 if m 6= n,

1 if m = n.

where µI is the measure defined on the interval I, where I = [α, β].
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Proposition 3.1. The Chebyshev polynomials of second kind {Un(x)}n≥0 form

an orthonormal family with respect to the Sato–Tate measure µST ([α, β]).

Proof. Recall, the Sato–Tate measure µST ([α, β]) is given by

µST ([α, β]) =
2

π

√
1− x2dx,

where [α, β] ∈ [−1, 1].

(i) For m 6= n, from definition and using trigonometric sum-difference formula,

2

π

∫ 1

−1
Um(x)Un(x)

√
1− x2dx =

2

π

∫ 1

−1

sin ((m+ 1) cos−1 x)

sin (cos−1 x)

sin ((n+ 1) cos−1 x)

sin (cos−1 x)

√
1− x2dx

With the change of variable x = cos (θ), the last integral is

−2

π

∫ 0

π

sin ((m+ 1)θ)

sin (θ)

sin ((n+ 1)θ)

sin (θ)
sin2 (θ)dθ

=
1

π

∫ π

0

2 sin((m+ 1)θ) sin((n+ 1)θ)dθ

= 0

(ii) For m = n, using trigonometric sum-difference identities

2

π

∫ 1

−1
Um(x)Un(x)

√
1− x2dx =

2

π

∫ π

0

sin2 ((n+ 1)θ)dθ

=
2

π

∫ π

0

1− cos (2(n+ 1)θ)dθ

2

= 1.

This proves the proposition.

Now, to get the main term as the Sato–Tate measure in the prime counting

function, we need to change the basis and use the Chebyshev polynomials of second

kind which are an orthonormal basis with respect to Sato–Tate measure as shown

in Proposition 3.1. This has been discussed in detail in a paper by Rouse and

Thorner, see ([RT16], Lemma 3.1).

Taking J
′

= J
2π

, i.e., J
′

= [ α
2π
, β
2π

] for an interval J = [α, β] ⊆ [0, π] and

θ ∈ [0, 1]. Define

F±J,M(θ) = S±J ′,M

(
θ

2π

)
+ S±J ′,M

(
− θ

2π

)
The lemma is stated in the following form.
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Lemma 3.1 ([RT16], Lemma 3.1). Let J = [α, β] ⊆ [0, π], and let M be a positive

integer. There exists trigonometric polynomials

F±J,M(θ) =
M∑
m=0

F̂±J,M(m)Um(cos (θ))

that satisfies the following properties:

• For 0 ≤ θ ≤ π, we have

F−J,M(θ) ≤ χJ(θ) ≤ F+
J,M(θ).

• We have

|F̂±J,M(0)− µST (J)| ≤ 4

M + 1
.

• For 1 ≤ m ≤M, we have

|F̂±J,M(m)| ≤ 4

(
1

M + 1
+ min

(
β − α

2π
,

1

πm

))
.

The lemma follows directly from explicit uniform distribution and using the

properties of Beurling Selberg polynomials as discussed in previous section.

The following proposition is the key result which will be used to obtain the

sharper estimate for the Fourier coefficients when J = [0, β].

Proposition 3.2 ([DGM+19], proposition 2.2). Let I = [0, 1
M

] ⊆ [0, π] and

F̂+
I,M(m) is the m-th Fourier coefficient of F+

I,M(x) as defined earlier, then

F̂±I,M(m)� 1

M2
where 0 ≤ m ≤M.
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Chapter 4

Upper bounds for f-extremal

primes and (c, f )-primes

In this Chapter, we prove the Theorem 1.4 and Theorem 1.5. Using the equidis-

tribution tools described in Chapter 3, we write the characteristic function for

cos θp(E) ∈ (α, β)

with the orthonormal basis for the Sato–Tate measure given by the Chebyshev’s

polynomials. We will need the estimates for∑
p≤x

Un(cos θp(E)), (4.1)

for E an elliptic curve over Q and n ≥ 1.

As we proved in Chapter 2,

−L′

L
(s, Symn(E)) =

∑
p=prime,
m≥1

Un(cos(mθp(E)))

pms
log p,

and then (4.1) can be evaluated by writing∑
pm≤x

Un(cos(mθp(E))) log p =
1

2πi

∫
(2)

−L′

L
(s, Symn(E))

xs

s
ds

with Perron’s formula.

To get non-trivial upper bounds, we need to move the integral in the critical

strip. This was done by Rouse and Thorner [RT16] under GRH for L(s, Symn(E)).
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At the time, holomorphicity of L(s, Symn(E)) was proven only for Re(s) ≥ 1 by

Taylor (see [Tay08], Theorem B), and it is an assumption in their theorem which

can now be removed by the work of Newton and Thorne [NT19].

Proposition 4.1 ([RT16], Proposition 3.5). For each n ≥ 0, assume L(s, Symn(E))

are automorphic and satisfy GRH. Then∑
p

Un(cos (θp(E)))gx(p) log p� δn,0x+
√
xn log n

for sufficiently large x and δn,0 = 1 if n = 0 and 0 otherwise. Here, gx(p) is a test

function giving upper bound for the indicator function on [x, 2x] such that

g(y) =

exp
(

4
3

+ 1
(y− 1

2
)(y− 5

2
)

)
if 1

2
< y < 5

2
,

0 otherwise,

and gx(y) = g(y/x).

Using the recent work of Newton and Thorne [NT19] which proves holomor-

phicity of L(s, Symn(E)) for all n ≥ 1 , Thorner [Tho20] obtained the bounds for

(4.1) without GRH.

Proposition 4.2 ([Tho20], Proposition 2.1 ). If 1 ≤ n�
√

log x/
√

log(2NE log x)

and c5 > 0, c6 > 0 absolutely computable constants, then∣∣∣∣∣ ∑
x<p≤2x

Un(cos θp(E))

∣∣∣∣∣� x

log x
n2

(
x−1/c5n + exp

(
−c6

log x

n2 log (2NEn)

)
+ exp

(
−c6
√

log x√
n

))
,

where NE is the conductor of the curve.

4.1 Proof of Theorem 1.4

To estimate the prime counting function

#{x ≤ p < 2x :
ap(E)

2
√
p
∈ (1− f(p), 1)}, (4.2)

we first perform the change of variable ap(E) = 2
√
p cos θp(E). Let Iε be an

interval of the form [0, ε] ⊆ [0, π/2] and I ′ε = [cos(ε), 1] is such that

cos θp(E) ∈ I ′ε ⇐⇒ θp(E) ∈ Iε.
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If ε = ε(x) is such that

cos ε ≤ 1− f(x), (4.3)

then for the primes counted on (4.2), we have

cos ε ≤ 1− f(x) < 1− f(p) <
ap(E)

2
√
p
,

and we obtain the upper bound

#{x ≤ p < 2x :
ap(E)

2
√
p
∈ (1− f(p), 1)} ≤ #{x ≤ p < 2x : cos θp(E) ∈ I ′ε}

= #{x ≤ p < 2x : θp(E) ∈ Iε}

=
∑

x≤p<2x

χIε(θp(E)),

where for any interval I, χI is the characteristic function of the interval.

Let ε = 1
M

so that Iε = [0, 1
M

], where M will be chosen later. Using the first

property of Lemma 3.1 in Chapter 3, we have∑
x≤p<2x

χIε(θp) ≤
M∑
n=0

F̂+
Iε,M

(n)
∑

x≤p<2x

Un(cos θp(E))

≤
M∑
n=0

|F̂+
Iε,M

(n)|

∣∣∣∣∣ ∑
x≤p<2x

Un(cos θp(E))

∣∣∣∣∣ .
(4.4)

From Proposition 4.1, we can bound the sums |Un(cos θp(E))| in the right hand

side of above equation (4.4), we now have

∑
x≤p<2x

χIε(θp(E))� 1

log x

M∑
n=0

|F̂+
Iε,M

(n)|
(
δn,0x+

√
xn log n

)
. (4.5)

We now use Proposition 3.2 to bound the Fourier coefficients F̂+
Iε,M

(n). Doing so,

the right hand side of the above equation is

� 1

M2 log x

(
x+
√
x

M∑
n=1

n log n

)
� 1

M2 log x

(
x+
√
xM2 logM

)
=

x

M2 log x
+

√
x logM

log x

We let

M =
1√

f(x) log x

24



which satisfies (4.3) since

cos

(
1

M

)
= cos(

√
f(x) log x) = 1− log x

2!
f(x) +O(

(f(x) log x)2

4!
) ≤ 1− f(x)

for sufficient large x.

Substituting the value of M ,∑
x≤p<2x

χIε(θp(E))� x

M2 log x
+

√
x logM

log x
� xf(x).

Then, we have

# {x ≤ p < 2x : ap(E) ∈ (1− f(p), 1)} ≤
∑

x≤p<2x

χIε(θp(E))�E xf(x).

We now consider c 6= 1. The proof is identical except that we have a general interval

[α, β] ⊆ [0, π] where α 6= 0. Then, we can not use the bound of Proposition 3.2 for

the Fourier coefficients and we use the weaker bound given by Lemma 3.1.

Let c = cos(ε0), and let Iε be an interval of the form [ε0, ε] ⊆ [0, π/2] and

I ′ε = [cos(ε), c] is such that

cos θp(E) ∈ I ′ε ⇐⇒ θp(E) ∈ Iε.

If ε = ε(x) is such that

cos ε ≤ c− f(x), (4.6)

then using x ≤ p < 2x, we have

cos ε ≤ c− f(x) < c− f(p) <
ap(E)

2
√
p
.

Using this, we obtain the upper bound

#{x ≤ p < 2x :
ap(E)

2
√
p
∈ (c− f(p), c)} ≤

∑
x≤p<2x

χIε(θp(E)).

Let Iε0 = [ε0, ε0 + 1/M ] where M will be chosen later. Using the Lemma 3.1

in Chapter 3, ∑
x≤p<2x

χIε(θp) ≤
M∑
n=0

F̂+
Iε,M

(n)
∑

x≤p<2x

Un(cos θp(E))

≤
M∑
n=0

|F̂+
Iε,M

(n)|

∣∣∣∣∣ ∑
x≤p<2x

Un(cos θp(E))

∣∣∣∣∣
�

M∑
n=0

1

M

∣∣∣∣∣ ∑
x≤p<2x

Un(cos θp(E))

∣∣∣∣∣ .
(4.7)
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Using Proposition 4.1, this gives

∑
x≤p<2x

χIε(θp(E))�E
1

M log x

(
x+
√
x

M∑
n=1

n log n

)

�E
x

M log x
+

√
xM logM

log x
.

(4.8)

We let
1

M
=
√
f(x) log x

which satisfies (4.6) since

cos

(
ε0 +

1

M

)
= cos ε0 −

1

2
cos ε0

(
1

M

)2

+O

((
1

M

)4
)

= c− c

2
f(x) log2 x+O((f(x))2 log4 x)

≤ c− f(x).

for sufficient large x.

We get the result by substituting value of M in (4.8),∑
x≤p<2x

χIε(θp(E))�E
x

M log x
+

√
xM logM

log x
�E x

√
f(x) +

√
x√
f(x)

and since we have
1√
f(x)

�E x
1/4 �E x

1/2
√
f(x)

# {x ≤ p < 2x : ap(E) ∈ (c− f(p), c)} ≤
∑

x≤p<2x

χIε(θp(E))�E x
√
f(x).

where c ∈ (0, 1).

4.2 Proof of Theorem 1.5

In the proof of Theorem 1.4, we are able to take n large in Proposition 4.1 to

get a good bound, the only constraint being (4.3) where ε = 1/M and n ≤M.

If we do not assume GRH and we use Proposition 4.2, then the largest value

of n that we can take is

n =

√
log x√

log log x
.
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This automatically satisfies (4.3) for any f(x) = xδ with −1/2 < δ < 0 as

cos

(
1

M

)
= 1− (log(log x))2

2! log x
+O

(
(log(log x))4

(log x))2

)
≤ 1− xδ.

which is true for any δ < 0.

Using Proposition 3.2 to bound the Fourier coefficients, for c = 1, we have the

bound ∑
x≤p<2x

χIε(θp(E))�E
(π(2x)− π(x))

M2
+

1

M2

M∑
n=1

∣∣∣∣∣ ∑
x<p≤2x

Un cos θp(E)

∣∣∣∣∣ .
Using

M =

√
log x

log(log x)
, (4.9)

and Proposition 4.2, we get

∑
x≤p<2x

χIε(θp(E))�E
(π(2x)− π(x))

M2
+

1

M2

M∑
n=1

∣∣∣∣∣ ∑
x<p≤2x

Un cos θp(E)

∣∣∣∣∣
�E

x

M2 log x
+

x

log x
exp

(
− log x

M2 logM

)
�E

x(log(log(x)))2

(log x)2
+

x

(log x)2
�E

x(log(log(x)))2

(log x)2

and which proves the result for c = 1.

Note here that value of M is smaller than the maximal value allowed in the

Proposition 4.2, because then the bound would be too big.

Now, we consider the case when c 6= 1 and we take any interval [α, β] ⊆ [0, π].

Here again, we use Lemma 3.1 to bound the Fourier coefficients, we get

∑
x≤p<2x

χIε(θp(E))�E
(π(2x)− π(x))

M
+

1

M

M∑
n=1

∣∣∣∣∣ ∑
x<p≤2x

Un cos θp(E)

∣∣∣∣∣
�E

x

M log x
+

Mx

log x
exp

(
− log x

M2 logM

)
Using M as in (4.9) again, we get the result for c 6= 1.
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Chapter 5

Conjectural Formulae and

Numerical Data

We now give conjectures for the Frobenius distributions in short intervals for

non-CM elliptic curves, and support them by providing numerical data. The

conjectures as stated in the introduction (Conjecture 1.1) gives only the main

term of the conjectural asymptotic, but there are secondary terms which affect

significantly the fit with the data. For c = 1, the conjecture is obtained by

summing the conjectural probabilities

Prob

(
ap(E)

2
√
p
∈ (1− f(p), 1)

)
∼ 4
√

2

3π
f(p)3/2 (5.1)

over all p ≤ x. This lead to a main term of order xf(x)3/2/ log x but also to terms

of order xf(x)3/2/ log2 x, xf(x)3/2/ log3 x, etc. We computed the first 3 such terms,

and we see in Tables 5.1 and 5.2 how adding more terms improves the fit with the

data.

Another approximation occurs in the computation of the probabilistic model

(5.1), where the Taylor series of the Sato–Tate measure around c = 1 was used.

Keeping more terms in the Taylor series also improves the fit with the numerical

data.

The same remarks apply to the case c 6= 1. In this case, the Taylor series

around c has secondary terms with a very large constant when c is very close to

1, and those terms affect very significantly the fit with the data. Again, we refer
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the reader to Tables 5.1 and 5.2.

We first state a refinement of Conjecture 1.1 according to the remarks above,

and we then explain the probabilistic model leading to the conjecture.

Conjecture 5.1. Let E be a non-CM elliptic curve over Q. Let f(x) = xδ where

−1/2 ≤ δ < 0. Then,

π+
δ, c=1(x) =

(
8
√

2

3π

f(x)3/2

(3δ + 2)
− 2
√

2

5π

f(x)5/2

(5δ + 2)

)
x

log x

+

(
16
√

2

3π

f(x)3/2

(3δ + 2)2
− 4
√

2

5π

f(x)5/2

(5δ + 2)2

)
x

log2 x

+

(
64
√

2

3π

f(x)3/2

(3δ + 2)3
− 16

√
2

5π

f(x)5/2

(5δ + 2)3

)
x

log3 x

+O

(
x

log4 x

)
Let c ∈ (−1, 1) be a constant. Then

#{p ≤ x :
ap(E)

2
√
p
∈ (c− f(p), c)} =

(
2

π

√
1− c2
δ + 1

f(x) +
c

π
√

1− c2
(f(x))2

2δ + 1

)
x

log x

+

(
2

π

√
1− c2

(δ + 1)2
f(x) +

c

π
√

1− c2
(f(x))2

(2δ + 1)2

)
x

log2 x

+

(
4

π

√
1− c2

(δ + 1)3
f(x) +

2c

π
√

1− c2
(f(x))2

(2δ + 1)3

)
x

log3 x

+O

(
x

log4 x

)
.

(5.2)

5.1 Probabilistic Model for c = 1

We use the Sato–Tate law to construct our conjecture, similar to the authors

of [JTT+16] who use the model

Prob (ap(E) = b2√pc) =
2

π

∫ 1

1− 1
2
√
p

√
1− t2dt

=
2

3π
p−3/4 +O(p−5/4).

(5.3)

We remark that this is a heuristic as the Sato–Tate is not proven in such a

small interval. We do the same for f(p) = pδ and use the model

Prob

(
ap(E)

2
√
p
∈ (1− f(p), 1)

)
=

2

π

∫ 1

1−f(p)

√
1− t2dt
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We will expand the Taylor series of f(t) =
√

1− t2 around t = 1. Substituting

y = 1− t in
√

1− t2 =
√

(1− t)(1 + t), we get√
(1− t)(1 + t) =

√
y(2− y)

=
√

2y

√
1− y

2
.

(5.4)

Here, from y = 1− t, we can see that as y −→ 0, t −→ 1. So, we use the Taylor

series expansion of
√

1− y
2

around the point y −→ 0, i.e.√
1− y

2
= 1− y

4
+O(y2).

So, (5.4) becomes

√
1− t2 =

√
2y
(

1− y

4
+O(y2)

)
=
√

2y − 1

2
√

2
y3/2 +O(y5/2)

=
√

2
√

1− t− 1

2
√

2
(1− t)3/2 +O((1− t)5/2).

Hence,

Prob

(
ap(E)

2
√
p
∈ (1− f(p), 1)

)
=

2

π

∫ 1

1−f(p)

√
1− t2 dt =

2

π

∫ 1

1−f(p)

√
2
√

1− t− 1

2
√

2
(1− t)3/2 +O((1− t)5/2) dt.

(5.5)

Summing the probabilities, we get

#

(
p ≤ x :

ap(E)

2
√
p
∈ (1− f(p), 1)

)
=
∑
p≤x

4
√

2

3π
f(p)3/2 −

√
2

5π
f(p)5/2 +O(f(p)7/2).

We use ∑
p≤x

pδ = π(x)xδ − δ
∫ x

2

π(t)tδ−1dt (5.6)

and

π(t) =

∫
dt

log t
=

t

log t
+

t

log2 t
+ 2!

t

log3 t
+O

(
t

log4 t

)
.

Then∫ x

1

π(t)tδ−1dt =

∫ x

1

[
t

log t
+

t

log2 t
+ 2!

t

log3 t
+ 3!

t

log4 t
+O

(
t

log5 t

)]
tδ−1dt

=

∫ x

1

[
tδ

log t
+

tδ

log2 t
+ 2!

tδ

log3 t
+ 3!

tδ

log4 t
+O

(
tδ

log5 t

)]
dt

(5.7)
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and we compute∫ x

1

tδ

log t
=

1

(δ + 1)

xδ+1

log x
+

1

(δ + 1)2
xδ+1

log2 x
+

2!

(δ + 1)3
xδ+1

log3 x
+

3!

(δ + 1)4
xδ+1

log4 x
+O

(
xδ+1

log5 x

)
;∫ x

1

tδ

log2 t
=

1

(δ + 1)

xδ+1

log2 x
+

2!

(δ + 1)2
xδ+1

log3 x
+

3!

(δ + 1)3
xδ+1

log4 x
+O

(
xδ+1

log5 x

)
;∫ x

1

2!
tδ

log3 t
=

2!

(δ + 1)

xδ+1

log3 x
+

3!

(δ + 1)2
xδ+1

log4 x
+O

(
xδ+1

log5 x

)
;∫ x

1

3!
tδ

log4 t
=

3!

(δ + 1)

xδ+1

log4 x
+O

(
xδ+1

log5 x

)
;

and so on.

Replacing in (5.7), we have∫ x

1

π(t)tδ−1dt =
1

(δ + 1)

xδ+1

log x

+

(
1!

(δ + 1)
+

1!

(δ + 1)2

)
xδ+1

log2 x

+

(
2!

(δ + 1)
+

2!

(δ + 1)2
+

2!

(δ + 1)3

)
xδ+1

log3 x

+

(
3!

(δ + 1)
+

3!

(δ + 1)2
+

3!

(δ + 1)3
+

3!

(δ + 1)4

)
xδ+1

log4 x
...

+

(
(k − 1)!

(δ + 1)
+

(k − 1)!

(δ + 1)2
+

(k − 1)!

(δ + 1)3
+ ...+

(k − 1)!

(δ + 1)k

)
xδ+1

logk x

+O

(
xδ+1

logk+1 x

)
=

n∑
k=1

xδ+1(k − 1)!

logk x

(
1

(δ + 1)
+

1

(δ + 1)2
+ ...+

1

(δ + 1)k

)
+O

(
xδ+1

logn+1 x

)
.

(5.8)

Substituting (5.8) in (5.6), we get

∑
p≤x

pδ = π(x)xδ−δ
n∑
k=1

xδ+1(k − 1)!

logk x

(
1

(δ + 1)
+

1

(δ + 1)2
+ ...+

1

(δ + 1)k

)
+O

(
xδ+1

logn+1 x

)
.

(5.9)

Now, we estimate the first term of (5.5) using (5.9), replacing δ by 3δ/2 in (5.9)

to get that ∑
p≤X

4
√

2

3π
f(p)

3
2 (5.10)
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=
8
√

2

3π

f(x)3/2

(3δ + 2)

x

log x
+

16
√

2

3π

f(x)3/2

(3δ + 2)2
x

log2 x
+

64
√

2

3π

f(x)3/2

(3δ + 2)3
x

log3 x

+O

(
x

log4 x

)
.

(5.11)

We do the same computations with 5δ/2 and we get the conjecture for c = 1.

5.2 Probabilistic Model for c 6= 1

We now consider

Prob

(
ap(E)

2
√
p
∈ (c− f(p), c)

)
=

2

π

∫ c

c−f(p)

√
1− t2dt

when c 6= ±1.

The Taylor series of
√

1− t2 around t = c is given by

√
1− t2 =

√
1− c2 − c(t− c)√

1− c2
+O((t− c)2).

and

2

π

∫ c

c−f(p)

√
1− t2 dt =

2

π

∫ c

c−f(p)

(√
1− c2 − c(t− c)√

1− c2
+O((t− c)2)

)
dt

=
2

π

√
1− c2f(p) +

c

π
√

1− c2
(f(p))2 +O(f(p)3).

(5.12)

To estimate the first term in (5.12), we can follow the same procedure as above

in (5.10), and we have∑
p<x

2

π

√
1− c2f(p) =

2

π

√
1− c2

(
1− δ

δ + 1

)
x

log x
f(x)

+
2

π

√
1− c2

(
1− δ

[
1

δ + 1
+

1

(δ + 1)2

])
x

log2 x
f(x)

+
2

π

√
1− c2

(
1− δ

[
1

δ + 1
+

1

(δ + 1)2
+

1

(δ + 1)3

])
2x

log3 x
f(x)

+O

(
x

log4 x

)
=

2

π

√
1− c2 f(x)

δ + 1

x

log x
+

2

π

√
1− c2 f(x)

(δ + 1)2
x

log2 x

+
4

π

√
1− c2 f(x)

(δ + 1)3
x

log3 x
+O

(
x

log4 x

)
.

(5.13)
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Now, estimating the second term in (5.12) in a similar way, we get∑
p≤x

c

π
√

1− c2
f(p)2

=
c

π
√

1− c2
(f(x))2

2δ + 1

x

log x
+

c

π
√

1− c2
(f(x))2

(2δ + 1)2
x

log2 x
+

2c

π
√

1− c2
(f(x))2

(2δ + 1)3
x

log3 x

+O

(
x

log4 x

)
.

(5.14)

and the conjecture for c 6= 1 follows.

5.3 Numerical Data

We used SageMath to check f(x) = x−1/4 and f(x) = x−1/10 at c = 1, 0.99,

0.9, 0 with x up to 1012, E : y2 + y = x3 − x2 − 10x− 20.

x = 1012 I I+II I+II+III Numerical Data

δ = −1/4

c = 1
1.098356 ∗ 106 1.161947 ∗ 106 1.169310 ∗ 106 1.171319 ∗ 106

δ = −1/10

c = 1
4.00525073 ∗ 108 4.17553931 ∗ 108 4.19001657 ∗ 108 4.19377511 ∗ 108

δ = −1/4

c = 0
3.0707691 ∗ 107 3.2189489 ∗ 107 3.2332497 ∗ 107 3.2333155 ∗ 107

δ = −1/10

c = 0
1.614603578 ∗ 109 1.679530747 ∗ 109 1.684752508 ∗ 109 1.684675291 ∗ 109

δ = −1/4

c = 0.9
1.3432725 ∗ 107 1.4082068 ∗ 107 1.4144902 ∗ 107 1.4169856 ∗ 107

δ = −1/10

c = 0.9
8.22108289 ∗ 108 8.55762016 ∗ 108 8.58522424 ∗ 108 8.45086360 ∗ 108

δ = −1/4

c = 0.99
4.493481 ∗ 106 4.714213 ∗ 106 4.736080 ∗ 106 4.733732 ∗ 106

δ = −1/10

c = 0.99
6.29926217 ∗ 108 6.57278566 ∗ 108 6.59661274 ∗ 108 4.87916384 ∗ 108

Table 5.1: The table shows the conjectural count obtained by taking the first two

terms of the Taylor series f(x)3/2 and f(x)5/2 for c = 1 and f(x) and f(x)2 for

c 6= 1 and only the x/ log x term (I), the first two terms x/ log x and x/(log x)2

(I+II) and the first three terms x/ log x, x/(log x)2 and x/(log x)3(I+II+III).
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x = 1012 I I+II I+II+III Numerical data

δ = −1/4

c = 1
1.098631 ∗ 106 1.162249 ∗ 106 1.169617 ∗ 106 1.171319 ∗ 106

δ = −1/10

c = 1
4.04867796 ∗ 108 4.22106212 ∗ 108 4.23574163 ∗ 108 4.19377511 ∗ 108

δ = −1/4

c = 0
3.0707691 ∗ 107 3.2189489 ∗ 107 3.2332497 ∗ 107 3.2333155 ∗ 107

δ = −1/10

c = 0
1.614603578 ∗ 109 1.679530747 ∗ 109 1.684752508 ∗ 109 1.684675291 ∗ 109

δ = −1/4

c = 0.9
1.3385172 ∗ 107 1.4031073 ∗ 107 1.4093409 ∗ 107 1.4169856 ∗ 107

δ = −1/10

c = 0.9
7.03789383 ∗ 108 7.32090480 ∗ 108 7.34366593 ∗ 108 8.45086360 ∗ 108

δ = −1/4

c = 0.99
4.331853 ∗ 106 4.540886 ∗ 106 4.561060 ∗ 106 4.733732 ∗ 106

δ = −1/10

c = 0.99
2.27767863 ∗ 108 2.36926967 ∗ 108 2.37663587 ∗ 108 4.87916384 ∗ 108

Table 5.2: The table shows the conjectural count obtained by taking only one term

of the Taylor series. Notice that the effect on the fit with the data is particularly

affected when c is very close to 1 due to the constant 1/
√

1− c2 in the second

term of the Taylor series.

34



References

[AHJ+18] Anthony Agwu, Phillip Harris, Kevin James, Siddarth Kannan, and

Huixi Li. Frobenius distributions in short intervals for cm elliptic

curves. Journal of Number Theory, 188:263–280, 2018.

[BGHT11] Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard

Taylor. A family of calabi–yau varieties and potential automorphy

ii. Publications of The Research Institute for Mathematical Sciences,

47(1):29–98, 2011.

[DGM+19] C. David, A. Gafni, A. Malik, N. Prabhu, and Caroline LaRoche

Turnage-Butterbaugh. Extremal primes for elliptic curves without

complex multiplication. Proceedings of the American Mathematical

Society, 148(3):929–943, 2019.

[HST10] Michael Harris, Nick Shepherd-Barron, and Richard L. Taylor. A

family of calabi-yau varieties and potential automorphy. Annals of

Mathematics, 171(2):779–813, 2010.

[JP17] Kevin James and Paul Pollack. Extremal primes for elliptic curves

with complex multiplication. Journal of Number Theory, 172:383–391,

2017.

[JTT+16] Kevin L. James, Brandon Tran, Minh Tam Trinh, Phil Wertheimer,

and Dania Zantout. Extremal primes for elliptic curves. Journal of

Number Theory, 164:282–298, 2016.

35



[Mon94] Hugh L. Montgomery. Ten lectures on the interface between analytic

number theory and harmonic analysis, volume volume 84 of CBMS

Regional Conference Series in Mathematics. Conference Board of the

Mathematical Sciences, Washington, DC; by the American Mathemat-

ical Society, 1994.

[NT19] James Newton and Jack A. Thorne. Symmetric power functoriality for

holomorphic modular forms. arXiv preprint arXiv:1912.11261, 2019.

[RT16] Jeremy Rouse and Jesse Thorner. The explicit sato-tate conjecture

and densities pertaining to lehmer-type questions. Transactions of the

American Mathematical Society, 369(5):3575–3604, 2016.

[Ser68] Jean Pierre Serre. Abelian L-Adic Representations And Elliptic

Curves. 1968.

[Sil09] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in

Mathematics. Springer New York, 2009.

[ST92] Joseph H. Silverman and John T. Tate. Rational Points on Elliptic

Curves. 1992.

[Tay08] Richard Taylor. Automorphy for some l-adic lifts of automorphic

mod l galois representations. Publications Mathématiques de l’IHÉS,
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