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ABSTRACT 

Enhancing Safety on Construction Sites by Detecting Personal Protective Equipment and 

Localizing Workers Using Computer Vision Techniques 

Mohammad Akbarzadeh 

The construction industry is among the world's most dangerous industries, with a high number of 

accidents and fatalities. Following safety guidelines and wearing the required Personal Protective 

Equipment (PPE) is an essential step in mitigating accidents. Safety managers and inspectors are 

responsible for making sure safety regulations are correctly followed. However, safety inspection 

is time-consuming, costly, and is done based on a random basis and for a short period. 

In order to facilitate safety inspection, various research studies are done using different techniques 

and technologies. Detecting PPE using Computer Vision (CV) has gained a lot of interest in 

enhancing construction sites' safety. Nevertheless, detecting PPE on large construction sites and 

generating safety reports is still a big challenge. Additionally, real-world 2D localization of 

workers is critical to monitor workers’ safety based on their location. This research proposes an 

automated framework consists of three modules to enhance the safety of construction sites. 
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The first module of the framework is the PPE Detection (PPED) module, which detects and tracks 

the workers and their PPE on large construction sites based on the frame segmentation technique. 

The second module is the PPE Safety Report Generation (PPESRG), which uses PPED results to 

match workers in two overlapping views and generate technical and practical high-level safety 

reports while protecting workers’ privacy. Finally, the third module of the framework is a Single-

camera Localization (SL) module that uses worker detection results from the PPED module and 

camera calibration parameters to locate workers on 2D real-world coordinate and monitor workers’ 

safety based on their location on the construction site. 

The proposed framework is validated using real-world construction videos, and the experimental 

results of each module demonstrate the practicality and robustness of applying on real-world 

construction sites. Based on different test videos, the PPED module has achieved 99.04% 

precision, 91.61% recall, and 90.77% accuracy. Furthermore, the generated safety reports are 

validated by the safety managers of the project as being practical for safety monitoring on the 

construction sites. Finally, the proposed CL module is validated with an average error of the 

average 1.58 m for locating workers on the construction sites.  

The main contributions of this research are: (1) proposing a nested network based on frame 

segmentation technique that improved the worker and PPE detection rate on large construction 

sites, (2) proposing a safety report generation method, which benefits from PPED results of two 

cameras to generate practical safety reports while protecting workers’ privacy and (3) single-

camera based technique which is fast and easy to implement on large construction sites in order to 

locate workers. Future works will focus on accelerating the detection process, improving CV-

based localization accuracy, and benefitting from other data sources to enhance generated safety 

reports (e.g., schedule, etc.). 
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Chapter 1 INTRODUCTION 

1.1 General Information 

Safety regulations are not always followed on construction sites, which is the main reason for 

accidents. Based on the statistics from the Association of Workers' Compensation Boards of 

Canada (AWCBC) [1] in 2017, 951 workspace fatalities were recorded in Canada, with an increase 

of 46 from the previous year [2].  According to SPI Health and Safety [3], more than 450 workers 

were killed, and over 63,000 workers were injured on construction sites in Canada in 2017. These 

accidents cost nearly $19.8B each year. Getting hit by falling objects and struck-by accidents are 

among the most common accidents on the construction sites [4], and the most important way of 

mitigating accidents is to wear Personal Protective Equipment (PPE). In addition to fatal injuries 

and casualties, there are other consequences of accidents [5]: time loss of project execution, 

damaging the reputation of the firm, mental illness of workers, cost of medical care, cost of 

recruiting and training new workers, compensation cost, cost of repairs and additional supervision, 

productivity loss, and cost of accident investigation. 

The most severe type of struck-by accidents occurs when a worker is struck-by a moving vehicle 

or piece of equipment [6]. Traffic protection devices and plans are used on construction sites to 

prevent struck-by accidents by familiarizing workers who may be exposed to traffic hazards with 

the traffic protection plan. In addition to struck-by accidents, near-miss events are essential to 

consider on construction sites. According to the National Safety Council (NSC) [7], “near-miss is 

an unplanned event that does not result in injury or death, but could have’’. 
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Safety inspectors are also responsible for ensuring that safety regulations are followed by 

contractors to mitigate accidents [8]. Hardhats and safety-vests are the most basic PPE on the 

construction sites. "Employees working in areas where there is a possible danger of head injuries 

from impact, or from falling or flying objects, or from electrical shock and burns, shall be protected 

by helmets" [9]. Also, Canadian Centre for Occupational Health and Safety (CCOHS) emphasizes 

the importance of wearing High Visibility Safety Apparel (HVSA) for different lighting conditions 

and working close to moving vehicles [10]. 

Hardhats must be worn by construction workers all the time while working. Based on the Bureau 

of Labor Statistics (BLS) [11], 84% of construction workers that experienced head injuries were 

not wearing a hardhat. Additionally, BLS reported [11] that 10% of the total 4,340 fatal work 

injuries were caused by being struck-by equipment. Knowing that safety inspection is done 

randomly on construction sites and considering the high number of accidents caused by not 

wearing the required PPE, researchers investigated different tools and techniques for facilitating 

safety inspection on construction sites. 

Existing research studies for detecting PPE on construction sites could be classified into sensor-

based and Computer Vision (CV) based techniques. Sensor-based techniques are based on 

attaching tags to PPE to make sure that safety regulations are correctly followed [12]–[17]. 

However, detecting PPE on construction sites using sensor-based methods have some limitations. 

First, attaching tags is costly for large construction projects. Second, electromagnetic noise may 

affect the accuracy of the locating PPE. Third, the deployment process makes it challenging to 

apply on large construction sites [16]. 

  



3 

 

On the other hand, CV methods do not have the mentioned limitations of sensor-based methods. 

However, due to the nature of the construction industry, detecting workers and their PPE by CV 

techniques from surveillance videos is a challenging task for the following reasons: (1) adverse 

weather conditions, (2) low lighting conditions, (3) low camera resolution, (4) varying camera 

height, (5) narrow Field-of-View (FoV) of the camera, and (6) occlusion [18]. Among these 

challenges, occlusion is the most significant barrier to object detection. Various research studies 

applied CV techniques for detecting workers and PPE on construction sites to facilitate safety 

monitoring. Nevertheless, some challenges have remained, which are: (1) detecting workers and 

their PPE in far-fields, (2) generating safety reports, and (3) real-world localization of workers. 

The existing CV based research studies for PPE detection are mostly focused on near-field, single-

camera detection, and detection results are not post-processed to generate safety reports. 

Additionally, workers and equipment localization are based on their location on the image frame, 

which is no applicable in capturing near-miss events or grouping workers or equipment working 

together in the real-world. In order to address these gaps,  this research presents a novel approach 

for far-field PPE detection and safety report generation from two camera views. The approach has 

three modules: (1) the PPE Detection (PPED) module uses a nested DNN framework based on 

frame segmentation. PPED module detects and tracks workers and their PPE in near, mid, and far-

fields. (2) The  PPE Safety Report Generation (PPESRG) module, in which PPED results from 

two cameras, are post-processed to find potential matching workers and generate accurate and 

practical safety reports. (3) The single-camera Localization (SL) module uses the worker detection 

results and camera calibration parameters to locate workers on the construction sites.  
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1.2 Research Objectives and Scope 

This research's main objective is to propose an automated framework using CV techniques to 

enhance safety on construction sites by detecting workers and their PPE to generate safety reports 

and locate workers in specific zones. Three sub-objectives are defined: 

1. Developing a method for detecting workers and their PPE on large construction sites based 

on frame segmentation.  

2. Generating detailed and summary safety reports based on worker matching and PPE 

detection results of two camera views.  

3. Locating workers in specific zones on the construction sites to monitor workers’ safety 

based on their location. 
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Monitoring workers and generating safety reports about construction workers' safety compliance 

is the final goal of this research. The study considers detecting workers wearing or not wearing 

PPE, generating safety reports, and locating workers in different zones on construction sites. In 

this research, workers and their PPE are detected and tracked under two camera views. Worker 

detection results are then used to match detected workers under two views, and finally, safety 

reports are generated. Additionally, specific zones are also defined to monitor workers' safety 

based on their location on the construction site.  

1.3 Thesis Organization 

General background and research objectives have been introduced in this chapter, and the 

remaining chapters are as follows: 

Chapter 2: Current practices for safety management and technologies applied to facilitate and 

enhance construction sites' safety are reviewed. This chapter ends by specifying the research gaps 

that are addressed in this study. 

Chapter 3: This research proposes a framework for enhancing safety on construction sites by 

generating safety reports of PPE compliance and localizing workers. 

Chapter 4: This chapter describes the proposed method's implementation process, which is 

validated on collected data from real construction sites. The results for each part of the proposed 

framework are shown in this chapter, and it ends up highlighting the main contributions. 

Chapter 5: The research results are discussed, and future research directions are recommended.  
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Chapter 2 LITERATURE REVIEW 

2.1 Introduction 

This chapter introduces the current safety management techniques on construction sites, followed 

by the two main techniques used for enhancing safety on construction sites. The limitations and 

gaps of the existing methods are summarized at the end of this chapter. 

2.2 Workspace Injuries and Safety Management 

Safety training is an essential part of safety management. Training and helping workers become 

familiar with the task and environment where they are supposed to work are considered preventive 

measures for construction workers [19]. The safety inspection ensures there are no potential or 

existing safety hazards on construction sites [20]. Different factors are used to specify how 

frequent inspection must be done, such as the number and size of different work operations, type 

of equipment and work processes, etc. [20]. Due to these factors, visual inspection is time-

consuming, costly, and not very accurate. The five most accidents are shown in Figure 2-1, which 

are: (1) slips, trips and falls causing two-thirds of the 42,000 falls suffered by workers each year, 

(2) Falls from heights causing 18% of fatalities, (3) Struck by moving vehicles which in the past 

ten years caused 13% of the workspace accidents, (4) hit by flying objects or falling objects which 

in 2016 over 50,000 workers were injured 81 died of this matter and (5) electrocution which 

happens less often but is the most fatal [4]. 
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Figure 2-1 Five Most Common Workspace Accidents [4] 

Wearing appropriate PPE can mitigate most of the mentioned common accidents. As an example, 

hardhats prevent fatal accidents that are caused by being hit by falling objects. “Employees 

working in areas where there is a possible danger of head injury from impact, or from falling or 

flying objects, or from electrical shock and burns, shall be protected by protective helmets.” [21]. 

Workers might ignore wearing the hardhat for different reasons, such as discomfort and weather 

temperature, which increase brain injuries. Additionally, struck-by accidents are among the most 

common accidents on construction sites. One of the reasons for this type of accidents is when the 

equipment’s operator cannot see the worker. Various tools and techniques are investigated to 

enhance safety on the construction sites discussed in the following sections. 
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2.3 Sensor-based Methods for Health and Safety Control on Construction Sites  

Behaviour-Based Safety (BBS) is a practical approach for managing safety issues on the 

construction site, which was extended to Proactive Behaviour-Based Safety (PBBS) by [14]. The 

proposed PBBS is composed of traditional BBS management and the Proactive Construction 

Management System (PCMS), which proposes location-based virtual construction through 

integrating Virtual Construction Simulation System (VCS) with a real-time location system 

(RTLS). The pilot study results show 36.07% reduced accidents and 44.7% safety index and 

applied on construction sites. Dong et al. [12] considered a virtual environment of the workspace 

to track workers' locations and generate warnings. The pressure sensor is placed in the hardhat to 

recognize that the worker is using it or not; data coming from the pressure sensors and RTLS are 

used for monitoring the PPEs and generate warnings if they are not worn. 

Ultra-wideband (UWB) was another method used in [15] to monitor the non-compliance of safety 

regulations by placing UWB sensors on the PPE and the equipment. Experimental studies were 

conducted for identifying the unsafe conditions defined based on proximity, location, and 

movements of the tag. The overall procedure is to first smooth the raw data from UWB sensors 

and feed that to a developed motion detector algorithm, which clarifies the status of the tags 

(stationary or in motion), and finally safety violations based on the relative position and condition 

of the tag is detected. Siddiqui et al. [16] studied the UWB application to improve construction 

sites' safety and productivity. UWB application requires a set of cables for the communications 

between the sensors, which may be challenging to install on construction sites. 
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Kelm et al. [22] proposed a Radiofrequency identification (RFID) portal installed at the 

construction site entrance to control the personnel's required PPEs while entering the site. 

However, the proposed method can not identify if the PPE is worn or not, and also, it is limited to 

the entrance, and there is no control after passing the portal. RFID systems were to detect and 

locate the hardhats used by the workers. Recent work by [17] has used the Internet of Things (IoT) 

to detect the Non-hard-hat use (NHU) on the construction site. The proposed system has a 

waterproof and rechargeable RFID trigger, a waterproof and rechargeable NHU detector, an active 

RFID receiver placed in a hardhat, a smartphone app, a web app, and the could server. NHU 

detector has an infrared beam detector and a thermal infrared sensor. If the sensor is inactive, it 

means the worker is not wearing the hardhat.  

RTLS systems on construction sites are an ongoing topic, and it has been studied extensively. 

However, there are still some drawbacks and limitations that make it challenging to adapt to 

construction projects. The RTLS techniques have some limitations for detecting PPE on 

construction sites. First, attaching the tags is costly for large projects. Second, electromagnetic 

noise may affect the accuracy of the location-based systems. Third, the deployment process makes 

it challenging to apply on large construction sites [16]. 

2.4 Computer-Vision Methods for Health and Safety Control on Construction Sites 

Surveillance cameras are installed on construction sites for security reasons and for monitoring the 

progress of the projects. Surveillance videos recorded from the construction sites attracted the 

studies about ongoing activities [23], [24], and safety compliance. Several studies investigated CV 

methods for enhancing safety on construction sites by detecting PPE and capturing near-miss 

events.  
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2.4.1. Computer Vision Based Localization 

Struck-by accidents were studied by Kim et al. [25] using a CV processing module and safety 

assessment module. First, entities (i.e., equipment and workers) are detected and tracked using 

background subtraction and morphological operation. Spatial information of entities is extracted 

and fed into the safety assessment module. The fuzzy system identifies the safety level based on 

proximity and crowdedness information, and a safety alarm is generated. Zhang et al. [26] 

proposed a method for evaluating the collision safety for workers and equipment. The proposed 

method uses the Faster R-CNN model to detect and track workers and equipment. The centers of 

detection bounding boxes are used to calculate the relative pixel distance based on the assumption 

that the construction scene is two-dimensional (2D).  The calculated distance and status are 

analyzed through a fuzzy interface that evaluates the safety level of workers. Yan et al. [27] 

proposed reconstructing 3D bounding boxes from a 2D vision to recognize the 3D relationship 

between workers and equipment. In order to generate 3D bounding boxes, geometric of heavy 

equipment is obtained using the 2D bounding boxes from different sides of the equipment. Finally, 

depth is estimated using a pinhole camera model, and the crowdedness value is calculated based 

on the number of objects within a proximity of 6 m of an object.  
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2.4.2. Ergonomic Pose Detection 

Dangerous behaviours and unsafe movements of the workers are also among the reasons for 

accidents on construction sites. The researchers studied different behaviours and activities of 

workers, which are defined as dangerous behaviour. The framework proposed by Han and Lee 

[28] aims to have an automated observation of workers. The framework consists of: (1) 

identification of unsafe behaviour, (2) collecting relevant motion templates, (3) extraction of the 

3D skeleton, and (4) detecting the unsafe actions using motion templates and skeleton models.  

Behaviour observation is an essential factor in modifying the worker’s behaviour more safely. 

SangUk et al. proposed a collection of motion data using an economical depth sensor to detect 

unsafe behaviour. Motion data are transferred into a 3D space as a preprocess, classification is 

performed to identify a typical prior, and the selected prior is used to detect the same action in the 

test data. Ladder climbing is selected as a case study for proof of concept, and the test results show 

90.91% accuracy for detecting the unsafe action.  

National Instate for Occupational Safety And Health (NIOSH) defines Musculoskeletal Disorders 

(MSDs) as the injuries caused by sudden or sustained exposure to repetitive motion, force, 

vibration, and awkward position [29]. Injuries and illness of the workers' resulting in days away 

from work, are expensive issues for construction organizations. Computer vision techniques were 

investigated by Chunxia and SangHyun to identify non-ergonomic postures and movements. The 

proposed method is to get a 2D skeleton from the image sequence as well as obtaining the 3D 

coordinates and then reconstruct the 3D skeletons for each frame. The obtained 3D skeleton with 

the joints' coordinates can be used to recognize non-ergonomic postures. The occlusion effect on 

the 2D skeleton impacts generating the 3D skeleton, which affects the final classification of the 

non-ergonomic activity. 
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2.4.3. PPE Detection 

The integration of detection and tracking of construction workers was proposed by [30].  Since the 

tracking results are not robust enough for practical applications, detection is used to initialize the 

tracking. The result of the proposed hybrid method is trajectory data that can be used for 

productivity and safety monitoring. In order to detect a worker wearing a safety vest, a 64 × 128 

template from Histogram of Oriented Gradients (HOG), which locates a person in a standing pose, 

and the template-based tracking method were selected to be the most appropriate for construction 

applications. The overall framework starts by initializing the tracker in the first frame. In the next 

frame, the detected worker and a tracked worker are compared in order to be matched.  

The proactive warning system proposed by Zhu et al. [31] detects workers and mobile equipment's 

current positions and predicts their future positions using Kalman filters. The proposed method 

uses two or more cameras installed on the construction site with different angles to record the 

activities. The equipment and workers' position are estimated using the triangulation principle and 

fed to Kalman filters to predict future positions. 

The detection of the entities (e.g., workers, equipment, material, etc.) on a large construction site 

was studied [32]. The proposed method is an automated way of tracking entities where the 

detection of entities initiates tracking. The foreground is first recognized by subtracting the 

background from the frames, then people are detected based on HOG features, which use a 

predefined standing human template. In order to classify the worker from ordinary people, a 

worker is defined as a person wearing a safety vest. In the next step, HSV (Hue, Saturation, Value) 

colour histogram and K-Nearest Neighbors (KNN) are used to classify the workers and non-

workers.  
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The proposed method by Park et al.[33] detects workers and hardhats by two different detectors 

using HOG features. Then, matching was used to make sure that each detected worker is wearing 

a hardhat. The detection technique is also used by Shrestha et al. [34] to detect hardhats and 

workers. The proposed method has two main parts of face detection and hardhat detection. The 

face detection program detects the workers' presence on images; then, the edge detection algorithm 

is used to find the hardhat features at the upper part of the face. Mneymneh et al. [35] proposed a 

motion detection method instead of background subtraction to get the worker's region. The two 

main components of hardhat detection are a cascade object detector applied to the upper region of 

the human and a colour-based classifier to discard wrong detections. 

Fang et al. [36] proposed a deep-learning method using Faster R-CNN for detecting the workers 

not wearing hardhats. The proposed method considered various factors such as weather conditions, 

light conditions, and visual range and postures for detecting workers not wearing a hardhat. Fang 

et al. [37] proposed that the proposed computer vision-based method uses two Convolutional 

Neural Networks (CNN) first to detect a worker's presence and then detect the harness.  Detected 

workers in the first stage are cropped and re-entered to the second neural network to detect the 

harness.  Xie et al. [38] proposed a CNN for real-time detection of workers and hardhats. After 

detecting the worker and the potential hardhat, to ensure that the hardhat is appropriately worn, 

Intersection over Union (IoU) is calculated based on the worker and hardhat bounding boxes. Wu 

et al. [39] applied a deep-learning approach for detecting the hardhats worn by the workers. They 

proposed a one-stage CNN based on the Single Shot multibox Detector (SSD). In order to better 

detect the small-scale hardhats, Reverse Progressive Attention (RPA) was integrated into the SSD 

framework. 
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Nath et al. [40] proposed a real-time approach to detect PPE in order to improve the safety on the 

construction site. Three Deep Neural Networks (DNN) models based on You-Only-Look-Once 

(YOLO) were proposed to identify if workers adequately wear hardhats and safety vests. The 

second proposed approach has achieved the best accuracy and real-time speed.  In this approach, 

the YOLO model detects workers and directly classifies compliance or non-compliance with safety 

regulations. The method proposed by [41] focused on localizing a person's head and classifying it 

to wearing or not wearing a hardhat class. The top-down approach is utilized to enhance the 

extracted features from relatively small objects (i.e., hardhat), and finally, a residual-block-based 

prediction is applied on a multi-scale feature map to detect wearing hardhats. Table 2-4-3-1 

summarizes the CV based method for enhancing safety on the construction sites by detecting PPE. 
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Table 2-1. Overview of the previous CV techniques for PPE detection on construction sites 

Reference Year Method 
Real-

time 

Safety 

report 

Multiple 

cameras 

Far-

filed 

Detecting classes 

Precision 

(%)a 

Recall 

(%)a 
Limitation 
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st 

N
o
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h
a
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n

e
ss 

Park and 

Brilaksi [32] 
2012 

⚫ HOG features 

⚫  HSV colour space  
 

  
 

 

  

 

  - - Limited feature template 

Park et al. 

[33] 
2015 

⚫ HOG features 
⚫ Background subtraction 

 
  

 

  

    94.3 89.4 
Worker's feature might not match the used HOG 
template 

Shrestha et 

al. [34] 
2015 

⚫ Face detection 

⚫ Edge detection 
 

  
 

  

    - - Face detection is not applicable in the far-field 

Mneymneh 

et al. [35] 
2017 

⚫ Motion detection 

⚫ HOG features 
⚫ Colour classifier 

 

  

 

  

    84.97b 84.36b 
Colour based classification under illumination 

effect 

Fang et al. 

[36] 
2018 ⚫Faster R-CNN  

  
 

  

 

   93.7b 92.3b Single PPE class detection 

Fang et al. 

[37] 
2018 

⚫ Faster R-CNN 

⚫ Deep CNN 
 

  
      

 

79.2c 93.1c Limited activities and the effect of harness's 

colour 

Xie et al. 

[38] 
2018 

 ⚫ CNN based hardhat 

detection  

  
 

  

      54.6  
Carried but not worn hardhats generate wrong 

results 

Wu et al. 

[39] 
2019 ⚫ SSD with RPA  

 

  
  

  

   83.89  Limited to near-field workers 

Nath et al. 

[40] 
2020 

⚫ YOLOv3 

⚫ CNN classifier  

  
 

  

 

 

  72.3  Limited to near-field workers 

Wang et al. 

[41] 
2020 

⚫ Mobile net 
⚫ top-down module  

  
  

  

   88.4  Limited to near-field workers 

Present 

study 
2020 

⚫ Frame segmentation 
⚫ Faster R-CNN 

⚫ Safety report generation  

        

`
 

 99.04c 91.61c  

 

a) All methods are validated with different datasets 

b) Far-field results 

c) Combined final results of the nested network 
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2.5 Gaps in Body of Knowledge 

The current literature could be divided into sensor-based and CV-based techniques to monitor 

safety on construction sites. However, sensor-based techniques [12], [14]–[16] have some 

limitations: first, attaching tags is costly for large construction projects. Second, electromagnetic 

noise may affect the accuracy of the locating PPE. Third, the deployment process makes it 

challenging to apply on large construction sites [16]. On the other hand, CV-based techniques do 

not have these limitations. The existing CV-based methods can be divided into two main 

categories: (1) feature-based [30]–[35] and (2) deep learning-based methods [36]–[39], [40, p.], 

[41]. 

The feature-based and motion-based CV methods are limited to detecting moving objects, 

predefined feature templates, and colour histograms. Therefore, detection is limited to moving 

objects, specific features and dependent on illumination conditions. On the other hand, deep 

learning-based CV methods do not have these limitations. However, there are three main 

challenges remained which are: (1) detecting workers and their PPE in far-field views, (2) 

benefiting from multiple cameras to cover large construction sites to generate safety reports, and 

(3) 2D real-world localization of construction workers. This research will address the challenges 

of existing deep learning-based CV methods for PPE detection and 2D real-world localization. 

The objectives of this study are: First, developing a nested network based on frame segmentation 

for detection and tracking workers and their PPE in near, mid, and far-field views. Second, 

generating detailed and summary safety reports based on matching workers in overlapping camera 

views. Third, monitoring workers’ safety based on their location on the construction site. The 

details of the proposed framework are described in the following sections. 
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Chapter 3 RESEARCH FRAMEWORK  

3.1 Introduction 

This chapter introduces the main framework for enhancing construction sites' safety by detecting 

workers and their PPE, generating technical and high-level safety reports for PPE detection, and 

monitoring workers' safety based on their location. The framework consists of three main parts: 

(1) The PPE Detection (PPED) module which detects and tracks workers with PPE in near, mid, 

and far-filed views, (2) PPE Safety Report Generation (PPESRG) which matches PPE detection 

results under two camera views and generates PPE safety reports, and (3) Single-camera 

Localization (SL) module which uses the worker detection results to locate workers on the 

construction sites. The overall of the proposed framework is shown in Figure 3-1. The details of 

the proposed framework are explained in the following sections. 

 

Figure 3-1 The overall proposed framework 
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3.2 PPE Detection (PPED) Module 

Surveillance cameras are usually installed on nearby buildings or poles at height to have a broad 

view of the constriction site and avoid potential occlusions. Installing multiple surveillance 

cameras helps in solving the far-field detection challenge to some extent when far-field workers 

to one camera could be captured in other camera’s near-field, as shown in Figure 3-2(a). Camera 

installation at height results in having a perspective view [42] of the construction site, making 

worker and PPE detection more challenging. Far-filed workers are captured in the upper part of 

the image frame, as shown in Figure 3-2(b), and as will be explained in the implementation section, 

the far-field workers' size is almost 1/3 of the near-field workers. Despite having multiple cameras 

in some cases, workers might only be captured in both cameras' far-field view, which remains a 

challenge for worker and PPE detection models. 

 

Figure 3-2  Two surveillance camera installation and perspective projection 
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The PPED module aims to detect and track workers and PPE classes in near, mid, and far-field 

views. This module is an extended version of [43], a novel frame segmentation technique with a 

nested deep learning-based network to overcome the challenges of detecting workers and PPE 

classes on large construction sites. The proposed nested network consists of two Faster R-CNN 

[44] models to detect workers and PPE classes. The Faster R-CNN model is selected as it has high 

accuracy and sufficient processing time compared to the other exiting detection algorithms (e.g., 

SSD, etc.), which have lower detection accuracy. Faster R-CNN models are custom trained based 

on the transfer learning approach, as will be explained in more detail in the implementation section. 

The proposed PPED module's overall flow is shown in Figure 3-3, which has two main parts of 

the worker and PPE detection models. 

 

Figure 3-3 The overall flow of the proposed nested network based on frame segmentation 
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3.2.1. Worker Detection Model 

As explained, far-field workers are captured smaller than near and mid-field workers because of 

the perspective projection, making the worker and PPE detection more challenging. Therefore, the 

worker detection model aims to detect far-field workers by eliminating the Faster R-CNN model's 

resizing effect and ensuring that segmentation covers all workers. The worker detection model has 

four main steps: (a) frame segmentation, (b) worker detection, (c) refine detections, (d) remove 

duplicated detections, and (e) tracking 

(a) Frame Segmentation 

High Definition (HD) surveillance cameras are commonly used on construction sites with a frame 

size of 1920×1080 pixels. However, the Faster R-CNN model has an input frame size of 1024×600 

pixels with an aspect ratio of 1:7. Therefore, the model resizes all the frames greater than the input 

size in both training and testing stages. Ren et al. [44] considered two factors for resizing images, 

as shown in Equation 3-1 and Equation 3-2. Both factors are applied to frames that do not fit with 

the input dimension, and results are compared with the input dimensions. Priority is with the 

resizing result of large scale factor and will be selected if it fits the input dimensions, otherwise 

resizing the result of small scale factor will be selected.  As an example, a frame with 1920 ×1080 

dimensions will have large and small scale factors of 0.56 and 0.53, respectively. Therefore, using 

the large scale factor, the resized frame will be 1075 × 605 pixels, which does not fit the network 

input dimensions. On the other hand, the resized frame with a small scale factor will be selected 

with a size of 1017 × 572 pixels, which is within the input range of the network. 
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𝑆𝑚𝑎𝑙𝑙 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  

𝑀𝑎𝑥 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑀𝑎𝑥 𝑖𝑚𝑎𝑔𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
 

 

(3-1) 

 
𝐿𝑎𝑟𝑔𝑒 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  

𝑀𝑖𝑛 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑀𝑖𝑛 𝑖𝑚𝑎𝑔𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
 

(3-2) 

 

Due to the perspective view, workers' size on the image plane changes parallel to the frame's 

vertical axis, and the average size remains the same on the horizontal axis. Therefore, for 

simplicity, three main and equal segments are defined parallel to the horizontal axis. Figure 3-4(a) 

shows an example of main segments where, I is the near-field strip where workers are captured in 

the largest size compared to the whole frame, K is where workers are captured in medium-size 

(mid-field) and J, where workers are captured at the smallest size on the image plane (far-field). 

In some cases, workers could intersect with the defined borders of the main segments, which 

results in cutting them into two parts. For example, 𝑊𝑜𝑟𝑘𝑒𝑟𝐵 is intersecting with the borders of 

segments J and I, as shown in Figure 3-4(a). To ensure workers are covered, the K segment is 

defined in a way that it has 50% overlapping with I and J segments and can fully capture 𝑊𝑜𝑟𝑘𝑒𝑟𝐵. 

 

Figure 3-4 Schematic presentation of main and sub-segments  
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Additionally, sub-segments are needed within each main segment to meet the network's input size 

and aspect ratio. Workers' width on the image plane is the smaller dimension of a worker and is 

used to calculate the sub-segments' width. Equations 3-3 and 3-4 are used in order to get the 

number of the sub-segments where N is defined as a number of workers fitting into a sub-segment. 

Different N values and aspect ratios are considered to get the best detection. Similarly, 𝑊𝑜𝑟𝑘𝑒𝑟𝐴is 

intersecting with the cropping lines of sub-segments, as shown in Figure 3-4(b). Overlapping sub-

segments are defined with a 50% overlap to ensure that workers in sub-segment are fully covered. 

 

Number of sub-segments = Ceiling (
Frame width

N × Average width of worker
) 

 

 

(3-3) 

 

Sub-segment width =
Frame width

Number of sub-segments
 

 

 

(3-4) 

(b) Worker Detection 

The results of frame segmentation (sub-segments and overlapping sub-segments) are the inputs to 

the Faster R-CNN worker detection model. The Faster R-CNN model applies a CNN to extract the 

features and generate a feature map, then a Region Proposal Network (RPN) uses anchor boxes on 

top of the feature map to find and assign a score for each potential object. Finally, the RPN and 

Region of Interest (RoI) pooling layer results are merged into a fully connected layer to identify if 

the detected is a worker or not. 
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Transfer learning is often used for custom training of DNN models in order to achieve optimal 

results in a short time [45]. In order to apply the transfer learning technique, a pre-trained model 

on a related dataset is needed to fine-tune the parameters of the network. Large scale datasets are 

publicly available that could be used for training or transfer learning of DNN models [46], [47]. 

One crucial factor for custom training and transfer learning of Faster R-CNN models is adjusting 

the size, scale, and aspect ratios of anchor boxes. As explained in the Faster R-CNN model’s 

architecture, anchor boxes are used for preliminary prediction of objects in feature maps. The 

default configuration of Faster R-CNN has nine anchor boxes with sizes of 128×128, 256×256, 

and 512×512 and aspect ratios of  1:1, 1:2, and 2:1 [44].  

The Faster R-CNN model’s anchor boxes are modified by changing the scales and aspect ratios 

based on the custom training dataset. This research proposes using k-means clustering [48] to 

modify the aspect ratios and scales. Based on the recommendation of [49], worker bounding boxes 

in the training dataset are clustered based on the IoU of bounding boxes. Considering two bounding 

boxes of b1= (w1, h1) and b2 = (w2, h2), where w1 and w2 are the widths of the bounding boxes, and 

h1 and h2 are the height of the bounding boxes, Jaccard index can be calculated as shown in 

Equation 3-5. The Jaccard index return values between 0 and 1, which 1 means that the two 

bounding boxes' size is equal and 0 for not being equal. Implementing k-means is done by 

initializing k random boxes for primary means and then assigning each bounding box to a specific 

cluster. 

Jaccard index(𝑏1,𝑏2) =
𝑚𝑖𝑛(𝑤1, 𝑤2) × 𝑚𝑖𝑛(ℎ1, ℎ2)

((𝑤1 × ℎ1) + (𝑤2 × ℎ2)) − 𝑚𝑖𝑛(𝑤1, 𝑤2) × 𝑚𝑖𝑛(ℎ1, ℎ2)
 (3-5) 
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(c) Refining Detections 

In some cases, small objects similar to workers in far-field views (e.g., traffic cones) might be 

detected as workers, known as False Positive (FP). This study considers an average area of 

bounding boxes of workers within each main segment and removes detected bounding boxes 

smaller than the defined area threshold. Equation 3-6 is used within each main segment to remove 

FP from detection bounding boxes where, A is the defined average area, W and H are the width 

and height of the detected bounding boxes, respectively. 

 𝐹𝑃 = W×H < A 

 

(3-6) 

(d) Removing Duplicated Detections 

Having a worker detected in a sub-segment and overlapping sub-segment results in generating 

redundant bounding boxes. The proposed solution to avoid double counting the workers is first to 

map the bounding box coordinates from the local coordinate system of sub-segments to the whole 

frame coordinate system. After mapping the coordinates, IoU is calculated between every 

detection bounding box. A threshold (T) is defined to remove the bounding boxes that overlap 

above T. Equation 3-7 is used to remove redundant detection bounding boxes and keep one 

bounding box per detected worker. 

 
𝐷𝑢𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠 =  

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑏𝑜𝑥𝑖,𝑏𝑜𝑥𝑗)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛(𝑏𝑜𝑥𝑖,𝑏𝑜𝑥𝑗)
> 𝑇 

 

(3-7) 
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(e) Tracking 

The final detection bounding boxes coordinates are used as input for the multi-object Centroid 

Tracking (CT) algorithm to track workers. The CT algorithm is selected because of three main 

reasons: (1) speed, (2) dealing with low-resolution features, which makes it difficult to use more 

advanced tracking techniques such as DeepSORT [50], and (3) having a reliable worker detection 

model, which makes the tracking task easier. The CT algorithm assigns an ID to each detected 

worker and updates the IDs by the next detection. Tracked bounding boxes and  IDs at time t=0  

are compared with newly detected bounding boxes at t=1. Euclidean distance is calculated 

between the centers of bounding boxes in t=0 and t=1. Finally, based on the calculated Euclidean 

distance, IDs are updated, removed, or new IDs are registered. 

3.2.2. PPE Detection Model 

The second Faster R-CNN model in the proposed nested network is the PPE detection model that 

aims to detect PPE classes within the bounding boxes of detected workers in near, mid, and far-

field views. Detecting PPE classes in the far-field view is more challenging than worker detection 

due to their small sizes on the video frame. Additionally, having a perspective view makes them 

appear even smaller on the frame. The PPE detection model is expected to have better PPE results 

in nearer fields, but the defined segments are continuous with a 50% overlap, and some workers 

can be very close to the border between the main segments with different postures and lighting 

conditions, which may affect the results. 
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A Faster R-CNN model is custom trained for detecting four PPE classes of H (hardhat), V (safety-

vest), NH (no-hardhat), and NV (no-safety-vest); when NH or NV detected, it will be considered 

safety noncompliance behaviour. Moreover, to ensure that PPE is appropriately worn, potential 

regions are defined for each class, which  H and NH must be detected in the upper 1/3 region of 

the detected worker’s bounding box and V and NV in the lower 2/3 region. Besides, this research 

considers the possible conflicting detections caused by the low resolution of far-field workers. The 

PPE detection model might return both H and NH or V and NV at the same time, which is 

considered as conflicting detection results. The proposed solution for conflicting detections is to 

compare the detected classes within each potential zone based on the confidence level of detection 

and eliminate the one with a lower confidence level. The final step of PPED is to save worker and 

PPE detection results with the assigned tracking IDs, which will be used in the PPESRG module. 

3.3 PPE Safety Report Generation (PPESRG) Module 

The purpose of this module is to benefit from the PPED results of two surveillance cameras that 

have overlap in their FoV in order to generate accurate and reliable PPE safety reports considering 

practical and privacy aspects. The overall flow of the proposed PPESRG method is shown in 

Figure 3-5. The proposed module has two main parts of worker matching and safety report 

generation. The worker matching method by [51] is adopted in this study to match the detected 

workers under two camera views. The results from the PPED module and matching are combined 

to generate detailed safety reports. The PPED results for matching workers from each camera view 

are compared, and PPE classes with a higher confidence level of detection are selected. 

Additionally, tacked ID from two camera view is merged into a new unique ID. On the other hand, 

for the nonmatching workers, PPED results and tracking IDs are directly logged into detailed 

safety reports. 
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Figure 3-5 The overall flow of PPESRG module 

The detailed safety reports contain worker IDs, confidence levels of detections, and PPE classes, 

which are not convenient for safety managers to get a prompt understanding of the safety status on 

a specific day on the construction site. Additionally, worker IDs are listed in the detailed safety 

reports, which leads to privacy concerns. Based on the privacy regulations, employers have to 

notify the workers officially that surveillance cameras are installed to monitor the construction 

site, and worker’s faces must not be visible in the videos [52]. In order to have more practical 

safety reports while protecting the privacy of construction workers, summary safety reports are 

generated. The generated summary safety reports are practical for safety managers to get the safety 

status on a specific day instantly while protecting worker’s privacy. However, in some cases, 

authorized employees could access the detailed safety reports to extract more details about a 

specific noncompliance incident. 
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3.4 Single-camera Localization (SL) Module 

The proposed Single camera Localization (SL) module aims to monitor workers' safety based on 

their location on the construction sites. Based on safety regulations or specific conditions on the 

construction sites, some areas are identified as high-risk areas for accidents (i.e., close to mobile 

equipment, etc.). Visual monitoring of workers' presence in specific areas is time-consuming and 

effortful. Therefore, the SL module aims to locate workers on 2D real-world coordinate systems, 

which can be used to find the distance between workers and mobile equipment or identify if a 

worker is in specific zones using a single surveillance camera. The overall of the SL module is 

shown in Figure 3-6. 

 

Figure 3-6 The overall flow of the proposed SL module 

Camera calibration is necessary for the quantitative analysis of video frames. In order to calibrate 

the camera, the proposed method by [53] is used, which uses a checkboard pattern in order to 

extract the features from images. The frames with the pattern are fed into the Matlab camera 

calibration Toolbox by Bouguet [54] to get the camera's intrinsic and extrinsic parameters. Having 

the calibration parameters and workers’ location on the image frame, perspective transformation 

[55] in Equation 3-8 is used to find the world metric coordinate of the workers, where s is the scale 

factor, u and v are the pixel coordinates, M is the camera’s intrinsic parameters, R is the rotation 

matrix of the camera, and t is the translation vector. It is assumed that all the objects (i.e., workers 

or equipment) are at the same height (Zconstant), which is considered the ground with Z=0. 
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The bottom center of the detection bounding boxes is used for locating workers or equipment from 

the image coordinate system to real-world 2D coordinate, as shown in Figure 3-7(a). The location 

of detected workers and equipment in the world coordinate system after perspective transformation 

is shown in Figure 3-7(b). Finally, having the world coordinates, the distance between worker and 

equipment is calculated using Equation 3-9, which identifies the safety status of a worker based 

on the distance to equipment.  

 

Figure 3-7 CV based locating concept 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥𝑤 − 𝑥𝑒)2 + (𝑦𝑤 − 𝑦𝑒)2 (3-9) 

 

  

 𝑠 [
𝑢
𝑣
1

] = 𝑀(𝑅 [
𝑋
𝑌

𝑍𝑐𝑜𝑛𝑠𝑡

] + 𝑡) 

 

 

 

 

(3-8) 
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3.5 Summary 

This section proposed an automated framework for enhancing safety on the construction sites. 

There are three main modules of the proposed framework are (1) PPED module, which proposed 

a novel frame segmentation technique based on the size of workers captured on the image frame. 

Defined segments are inputs to the worker detection model, and then detected workers are used as 

inputs for the PPE detection model. (2) PPESRG module utilizes two cameras' PPE detection 

results and matched workers under two overlapping camera views. Based on worker matching 

results, PPE detections with the highest detection confidence are used to generate more reliable 

safety reports. (3) SL module aims to locate workers on the real-world 2D coordinate system of 

the construction sites. The perspective transformation method uses the camera calibration 

parameters and worker detection results to locate workers on a real-world coordinate system. The 

location of detected workers can be used to capture the near-miss events, group workers, or 

equipment working together and monitor the commuting into a specific zone on construction sites. 
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Chapter 4 IMPLEMENTATION AND CASE STUDIES 

4.1 Implementation Environment and Data Collection 

Three main parts of the proposed framework are implemented and tested in order to validate the 

feasibility and effectiveness. The framework is implemented on the Python platform with the 

support of Tensorflow Object Detection API [56] and OpenCV library [57] that are providing the 

required algorithms and tools for image processing. Validation is done on the Compute Canada 

cluster [58] with six CPUs (Central Processing Unit) and one GPU (Graphical Processing Unit) 

NVIDIA P100 Pascal and 12 GB memory.  Data is collected from a construction site located in 

Montreal, Canada, where Axis P1425-E surveillance cameras with HD resolution (1920×1080 

pixels) were installed on four poles at about 10 m height,  as shown in Figure 4-1 (a). Also, on 

each pole, there are three devices: wireless communication antenna, surveillance camera, and 

RTLS sensors that are used in another research, as shown in Figure 4-1(b). Wireless antennas are 

used for transferring the data to the office, where a receiver antenna is installed to connect with 

the server. Videos are recorded for four months based on the working schedule from Monday to 

Thursday from 7 AM to 5 PM under a variety of weather and lighting conditions. 

 

Figure 4-1 Panoramic picture showing surveillance camera setup 
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4.2 PPE Detection (PPED) 

As explained in Section 3.2, detecting workers and PPE in far-field is a challenging task, and 

therefore, the PPED method is proposed based on the frame segmentation technique in order to 

detect workers and PPE on large construction sites. The proposed method is validated under 

different conditions, and the results are summarized in the following sections. 

4.2.1. Training Dataset and Annotation 

The training for worker detection and PPE detection was created using two primary datasets 

containing 2200 and 1000 images, respectively. In the worker detection dataset, the main object 

of interest is human. PPE detection dataset has four objects to detect, which are (1) hardhat, (2) 

safety-vest, (3) no-hardhat, and (4) no-safety-vest. The worker detection dataset contains images 

extracted from surveillance videos of the same construction site. The gathered images are cropped 

in small segments with a size of 960×540, which has the same aspect ratio of the Faster R-CNN 

network to make sure there is no resizing happening in the training phase.  

The publicly available datasets contain images taken from the street level and close to the workers, 

making them unsuitable for the construction application. Also, the proposed camera setup defined 

in this research can be reused on other construction sites, and therefore, the dataset can be reused. 

Moreover, for long-lasting construction projects adding images from the construction site to a 

training dataset is supposed to improve the detection result, which is considered a positive point.  

  



33 

 

Since the region of interest for the PPE detection model is the human body, the PPE dataset 

contains persons' cropped images. The PPE dataset is created by combining the CUHK01 dataset 

[59] that contains people captured from a high angle of view, as negative examples of workers 

with no PPE, and the image dataset of workers with PPE from the site. The images in both datasets 

are annotated using open-source software [60] using PASCAL (pattern analysis, statistical 

modelling, and computational learning) format [61]. Examples of worker and PPE annotations are 

shown in Figure 4-2(a) and 4-2(b), respectively. 

 

Figure 4-2 Examples of workers and PPE annotations 

4.2.2. Hyperparameters Adjustment 

As explained in Section 3.2.1, the K-means algorithm is used for clustering the training datasets 

for worker and PPE detection. In order to cluster the dataset, only the normalized width and height 

of the boxes are needed.  The input data for the K-means algorithm is normalized by B-W, B-H, 

which are calculated using Equations 4-1, and 4-2 [49], where w and h are the width and height of 

the box, respectively, and (xmin, ymin) and  (xmax, ymax) are the top left and lower right corners of 

annotation bounding boxes. Faster R-CNN network, by default, considers four scales and three 

aspect ratios.  
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The Faster R-CNN Inception Resnet v2 Atrous version model is used for worker and PPE 

detection, which, by default, considers four scales and four aspect ratios for anchor boxes. As a 

result of worker dataset clustering, the aspect ratios and scales for the worker detection model are 

adjusted to (0.40, 0.38, 0.43, 0.48) and (0.15, 0.16, 0.22, 0.32), respectively. Additionally, the PPE 

detection dataset contains cropped worker bounding boxes where PPE classes are relatively small. 

The default Faster R-CNN anchors are defined for detecting general objects such as cars, bicycles, 

cats, etc. Based on the Faster R-CNN model's initial training results on the PPE detection dataset 

with default anchors, the training could not learn PPE classes' features, and the training loss 

continued to increase. The clustering PPE detection dataset with four clusters resulted in four 

aspect ratios and scales that are (0.76, 0.85, 0.92, 1.1) and (0.51, 0.62, 1.2, 1.4), respectively. 

Figures 4-3(a)and (b) illustrate the clusters for worker and PPE detection datasets, respectively. 

 
𝐵 − 𝑊 =  

𝑋𝑚𝑎𝑥 × 𝑋𝑚𝑖𝑛

𝑤
 

 
(4-1) 

 𝐵 − 𝐻 =  
𝑌𝑚𝑎𝑥 × 𝑌𝑚𝑖𝑛

ℎ
 (4-2) 

 

Figure 4-3 Bounding box clustering for worker and PPE detection datasets 
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4.2.3. Case Study 

The three main segments of I, K, and J, are defined with an equal size of 1920×540 parallel the 

horizontal axis of the image frame. However, the main segments' size does not fit with the Faster 

R-CNN network's input size. As explained in Section 3.2.1, in order to find the optimum number 

of sub-segments considering the accuracy and detection time, using Equation 3-3, three values of 

5, 15 and 25 are considered for N. The average widths of workers is measured on the image plane. 

The average width is 55 pixels in segment I, 35 pixels in segment K, and 20 pixels in the main 

segment J. The total number, size, and aspect ratio of sub-segments with different N are 

summarized in Table 4-1. 

Table 4-1 Details of sub-segments based on different N values 

 

N values Specifications Main segment I Main segment K Main segment J 

5 No. sub-segments with overlaps 13 21 39 

W x H (pixels) 274×540 174×540 96×540 

Aspect ratio 0.51 0.32 0.17 

15 No. sub-segments with overlaps 5 7 13 

W x H (pixels) 640×540 480×540 274×540 

Aspect ratio 1.19 0.89 0.51 

25 No. sub-segments with overlaps 3 5 7 

W x H (pixels) 960×540 640×540 480×540 

Aspect ratio 1.78 1.19 0.89 
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(a) Worker Detection Module 

Based on the surveillance camera installation and construction work, Camera 3 is selected as the 

closest camera for detecting workers and PPE, as shown in Figure 4-4(c). Four 5-minute validation 

videos recorded with 30 frames per second are selected from different phases of the project, and 

detection is performed every second. Precision, recall, and accuracy are calculated to evaluate 

detection results. The results are based on assuming the value of 50% for the IoU. Tables 4-2 to 4-

5 show the three test videos' results for the first, second, and third evaluation videos. Additionally, 

custom trained worker detection Faster R-CNN model is tested on the validation videos without 

the frame-segmentation technique (i.e., N=1) to compare the results. 

 

Figure 4-4 Multiple camera views of the construction site 
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Table 4-2 Sensitivity analysis of the different N with 50 percent IoU first evaluation video 

N 

values 

Full-frame 

precision (%) 

Full-frame 

recall (%) 

Full-frame 

accuracy (%) 

Accuracy 

segment I 

(%) 

Accuracy 

segment K 

(%) 

Accuracy 

segment J 

(%) 

Time 

(sec) 

1 90.25 21.77 17.88 N/A N/A N/A 193 

5 99.26 92.33 91.70 92.96 94.23 91.41 9,364 

15 99.53 90.00 89.62 94.56 89.99 87.31 4,029 

25 100 91.59 91.59 97.36 92.26 86.45 2,433 

 

Table 4-3 Sensitivity analysis of the different N with 50 percent IoU second evaluation video 

N 

values 

Full-frame 

precision (%) 

Full-frame 

recall (%) 

Full-frame 

accuracy (%) 

Accuracy 

segment I 

(%) 

Accuracy 

segment K 

(%) 

Accuracy 

segment J 

(%) 

Time 

(sec) 

1 88.85 23.40 22.73 N/A N/A N/A 194 

5 95.67 95.51 91.56 98.33 96.09 92.38 8,546 

15 83.79 97.75 82.21 98.33 91.08 84.45 3,448 

25 96.15 92.83 89.36 100 93.32 90.60 1,932 

 

Table 4-4 Sensitivity analysis of the different N with 50 percent IoU third evaluation video 

N 

values 

Full-frame 

precision (%) 

Full-frame 

recall (%) 

Full-frame 

accuracy (%) 

Accuracy 

segment I 

(%) 

Accuracy 

segment K 

(%) 

Accuracy 

segment J 

(%) 

Time 

(sec) 

1 97.97 51.77 49.90 N/A N/A N/A 187 

5 98.26 96.84 95.20 81.34 99.19 97.24 8,897 

15 96.80 97.76 94.70 99.11 98.85 93.73 3,572 

25 100 99.01 99.01 100 99.88 98.95 1,916 
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Table 4-5 Sensitivity analysis of the different N with 50 percent IoU fourth evaluation video 

N 

values 

Full-frame 

precision (%) 

Full-frame 

recall (%) 

Full-frame 

accuracy (%) 

Accuracy 

segment I 

(%) 

Accuracy 

segment K 

(%) 

Accuracy 

segment J 

(%) 

Time 

(sec) 

1 97.49 44.44 43.94 N/A N/A N/A 193 

5 98.79 93.35 92.29 93.93 92.74 91.16 8532 

15 93.72 95.48 89.74 99.16 98.26 93.71 3446 

25 100 97.09 97.09 99.44 98.25 92.94 1928 

 

Based on the evaluation results of the worker detection model, N=25 has achieved the best 

detection accuracy, where the image frame is divided into a total of 15 sub-segments that fit the 

input dimensions and have an aspect ratio close to the Faster R-CNN model’s input aspect ratio. 

The worker detection model achieved an average precision of 99.04%, an average recall of 

95.13%, and average accuracy of 94.26% based on the full-frame results. Furthermore, each 

section's accuracy is calculated in Tables 4-2 to 4-5. The average accuracies of the far-field 

segment (J), mid-field segment (K), and near-field segment (I) are 99.20%, 95.93%, 92.24%, 

respectively, for N=25. Based on each segment's average accuracy, near-filed has achieved higher 

accuracy than mid and far-field, since more workers' features can be captured in the closer fields, 

making the worker detection easier. 
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(b) PPE Detection Module 

In order to evaluate the PPE detection model, 200 images are selected as a test dataset in which 

half of them are workers wearing PPE and the other half not wearing PPE. The PPE detection 

model is evaluated on the full-datasets and for near, mid, and far-field. The PPE detection results 

for each class are summarized in Table 4-6 based on precision, recall, and accuracy. Based on the 

PPE detection results, the average precision among the four classes has achieved 100%, which 

indicates the effectiveness of the proposed solution for removing conflicting detections. 

Table 4-6 Evaluation metrics for PPE detection results 

Classes 
Full-dataset 

precision (%) 

Full-dataset 

recall (%) 

Full-dataset 

accuracy (%) 

Near-field 

accuracy (%) 

mid-field 

accuracy (%) 

Far-field 

accuracy (%) 

H 100 99.98 99.98 100 97.62 97.22 

NH 100 93.20 93.20 93.93 90.63 94.74 

V 100 99.01 99.01 100 100 97.37 

NV 100 93.00 93.00 87.88 93.33 97.30 

Average 100 96.30 96.30 95.45 95.40 96.66 

The PPE detection model has achieved better results in some further segments compared with 

nearer segments (e.g., NV in mid-field). However, as explained in the methodology, defined 

regions are continuous, and different poses and lighting conditions affect the detection results. An 

example of bad light conditions is shown in Figure 4-5(a), in which the worker is in the near 

segment. The bad light condition results in a lower confidence level for the actual PPE class (i.e., 

NV=60%), and it is considered a conflicting detection, as shown in Figure 4-5(b).  
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Figure 4-5 Example of conflicting PPE detection due to bad light conditions 

Overall, the most critical evaluation criteria for the constriction sites' safety monitoring is the 

recall. Equations  4-3 to 4-5 are used to calculate the precision, recall, and accuracy. As shown in 

Equation 4-4, False Negative (FN) is in the denominator. FN represents the cases where the object 

detection model failed to detect the exiting ground truth class, and an example is a worker with no 

hardhat annotated in the test dataset, which is not detected by the object detection model. 

Additionally, True Positive (TP) shows the detections that are correctly matching the ground truth 

bounding boxes. The worker detection model and PPE detection model results are combined to 

illustrate the overall precision, recall, and accuracy of the proposed PPED module. Therefore, the 

PPED module has an overall 99.04% precision, 91.61% recall, and 90.77% accuracy in detecting 

workers in near, mid, and far-filed with four different classes of PPE. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(4-3) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4-4) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4-5) 

 



41 

 

The worker detection model is custom trained using the video frames with a perspective view of 

the construction site in the training phase. The trained worker detection model is reusable on 

similar construction sites, with cameras installed at the height and workers wearing the full-body 

orange safety vest. On the other hand, the PPE detection model is custom trained using bounding 

boxes of workers captured from a high angle of view. The trained PPE detection model can be 

used for similar PPE detection scenarios to detect if workers are wearing the full-body safety vest 

and hardhat or not. Examples of the worker and PPE training dataset are shown in Appendix E.  

4.3 PPE Safety Report Generation (PPESRG) Module 

Safety reports are used by the safety or project managers to understand construction sites' safety 

status and behaviour. As explained in Section 3.3, in order to generate accurate and practical safety 

reports, the PPESRG method is proposed. The proposed method is validated on the surveillance 

videos from the construction site, and the steps are explained in the following sections. 

4.3.1. Data Collection 

Among the available four surveillance cameras discussed in Section 4.1, Camera 1 and Camera 2 

are selected to validate the proposed method. Figure 4-6 shows examples of video frames from the 

selected cameras. Having overlaps in views is an essential factor in achieving accurate worker 

matching results. The robustness of the matching method under different environmental conditions 

is validated by Zhang et al. [51]. 
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Figure 4-6 Example frames for matching workers in two views 

 

4.3.2. Matching Visual Features 

In order to find the appropriate feature extraction threshold, the matching accuracy of the 

construction workers is tested with different threshold values. The frames of the selected Camera 

1 and Camera 2 are used to investigate the proper threshold value of the feature matching. The 

best worker matching accuracy was achieved at a threshold equal to 0.8. The generated triangle 

meshes for Camera 1 under the 0.8 threshold are shown in Figure 4-7. The centroid of detected 

workers’ bounding boxes is used to locate them on the generated triangle meshes; then potential 

workers are matched using the epipolar information and workers’ location on triangle meshes.  
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Figure 4-7 Triangle meshes generated for Camera 1 at 0.8 threshold 

4.3.3. Case Study 

As discussed in Section 3.3, the detailed and summary safety reports are generated for matching 

and nonmatching workers based on the worker matching and PPE detection results. The PPE 

detection results are compared for each matching worker, and the detected PPE classes with higher 

confidence are logged into the detailed safety report. On the other hand, for nonmatching workers, 

the available PPE detection results from one camera are logged into the detailed safety reports.  

The detailed safety reports are further processed to generate summary safety reports, giving an 

overview of the safety status while protecting workers’ privacy. A short video is used to validate 

the proposed method, where two workers are detected by the PPED module from Camera 1 and 

Camera 2. The detected workers' location on the image frame is then used as input to the worker 

matching technique to find the matching workers in two camera views, shown in the same colored 

circle in Figure 4-8(a). 
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Figure 4-8 An example of PPE detection results combined with worker matching 

Finally, the PPE detection results for nonmatching, and matching workers are logged into the 

detailed safety report. 𝑊1 from Camera 1 and 𝑊0 from Camera 2 are matched correctly. 

Additionally, the worker is located near Camera 1, as shown in Figure 4-8(a), which resulted in 

correctly detecting the safety noncompliance by the PPE detection model, as shown in Figure 4-

9(b). The detailed safety reports are generated in Excel sheets containing the PPED information 

from a single camera or two cameras. However, in order to protect the privacy and have practical 

safety reports for safety managers, detailed safety reports are processed into summary safety 

reports.  Examples of detailed and summary safety reports are shown in Figures 4-9(a) and 4-9(b), 

respectively. The matching colours in Figure 4-9(a) for Camera 1 and Camera 2 indicate the 

matched workers. The summary safety report indicates the number of PPE noncompliances for not 

wearing hardhats or safety vests. The safety managers validated the generated safety reports as 

being practical for safety monitoring on the construction sites. 
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Figure 4-9 An example of technical and high-level safety reports  

4.4 Single-camera Localization (SL) Module 

The surveillance videos are used to validate the proposed method in Section 3.4 for locating 

workers in a real-world 2D coordinate system, and the steps are explained in the following 

sections. 

4.4.1. Data Collection 

In order to validate the proposed module, surveillance video in which workers are closely working 

with equipment is selected. Different equipment types are working at the construction sites (e.g., 

excavators, cranes, etc.), which could be considered potential struck-by accident sources. The 

video is used to detect the workers by the proposed worker detection model explained in Section 

3.2.1 and other available models trained to detect construction sites' equipment [23]. An example 

of the defined condition is shown in Figure 4-10, where workers work close to the equipment. 
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Figure 4-10 An example of workers close to the equipment 

4.4.2. CV Based Localization 

The proposed CV based localization technique must be validated first in order to validate the 

proposed SL module. Validation data is collected by defining and measuring three areas with 

known dimensions (i.e., ground truth) using traffic cones, as shown in Figure 4-11. The pixel 

coordinates of each corner of defined rectangles are selected and transformed into real-world 

measures, and then the distance between the two points is measured and compared to known 

dimensions.  

 

Figure 4-11 The defined rectangle zones on the construction site 
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In order to perform the perspective transformation, the parameters of Equation 3-8 must be 

extracted from the camera. The surveillance camera is calibrated using two check boards shown 

in Figure 4-12 with sizes of 10×10 cm and 20×20 cm and Matlab’s camera calibration toolbox 

[53]. The first step after getting the calibration parameters is to find the scale factor (s). In order to 

calculate the s, a point is selected on the image frame, and knowing that the z=0, s is calculated 

using the last row of the Equation 3-8. 

 

Figure 4-12 Example of image frames with two check boards for calibration 

Finally, having the camera’s parameters and s, pixel coordinates from each corner of defined 

rectangles are transferred into the real-world coordinates, and the distance between them is 

measured and compared with the known distance. For each rectangle, six dimensions (i.e., four 

sides and two diameters) are measured. The average error and standard deviations are 1.58 m and 

1.03, respectively. The standard error of average [62] of the proposed SL module is 0.24 m, which 

indicates how much variation in the average to expect from the ground truth if the experiment were 

to be repeated n times, assuming that the measurements are unbiased. 
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4.4.3. Case Study 

In order to illustrate the potential usage of the proposed SL module, a short video is selected from 

surveillance cameras where workers are working close to the equipment. Workers and equipment 

are detected in the videos, and the bottom center of the detection bounding box is used as the main 

point for localization. The distance between workers and equipment is calculated, and the results 

are summarized in Figure 4-13. 

 

Figure 4-13 Example of captured near-miss event  

4.5 Summary 

The implementation environment, data collection procedure, and evaluation of each proposed 

module are explained in this section. The proposed framework is implemented in Python 

programming language using state-of-the-art deep learning CV algorithms. The evaluation and 

training data is collected from a construction site located in Montreal, Canada. The evaluation 

results of the PPED module illustrates the effectiveness of the proposed frame segmentation 

method in improving the worker and PPE detection result at far-field views of the construction 

sites.  
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Similarly, the PPESRG module is also validated using two cameras with overlapping FoV, and 

evaluation results illustrated the necessity of using multiple cameras for generating reliable safety 

reports. Finally, the SL module is evaluated on surveillance videos of the construction site. The 

results indicated that the average error for locating workers or equipment is 1.58 m, which indicates 

the practicality of the proposed technique in monitoring workers' safety based on their location, 

classifying different groups of workers and equipment working together on construction sites.  

Chapter 5 SUMMARY, CONCLUSIONS AND FUTURE WORK 

This chapter starts with a review of the overall proposed framework, followed by discussion and 

conclusions, and finally, the limitations and recommendations for future works are discussed. 

5.1 Summary and Conclusion of the Proposed Framework 

The proposed framework consists of three main parts of the PPED module, PPESRG module, and 

SL module. The PPED module is a nested network based on the frame segmentation technique, 

aiming to detect workers and their PPE in near, mid, and far-field views. The proposed frame 

segmentation technique divides the video frames into main and then sub-segments based on the 

workers' average width in pixels so that there are more sub-segments defined in the far-field 

segment and fewer in the near-field segment.  The defined sub-segments are fed into the custom 

trained, Faster R-CNN model to detect workers. The CT algorithm tracks the detected workers, 

and the detected workers’ bounding boxes are input to the second custom trained Faster R-CNN 

model, which detects four PPE classes. The PPED results are logged and are further used to 

generate PPE safety reports. 
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The worker detection model in the PPED module is validated on four videos from different 

construction work phases with an average precision of 99.04%, an average recall of 95.13%, and 

average accuracy of 94.26%. Also, the PPE detection model is validated on 200 images with four 

classes of PPE (i.e., hardhat, no-hardhat, safety-vest, no-safety-vest), with an average precision of 

100%, an average recall of 96.30%, and average accuracy of 96.30%. The PPED module has an 

overall precision of 99.04%, a recall of 91.61%, and an accuracy of 90.77%. The results indicated 

that the proposed PPED module overcomes the far-field PPE detection challenge when the workers 

are only captured in a single surveillance camera view. 

In order to generate accurate and practical safety reports, the proposed method by [49] is adopted 

in this study to match workers from two camera views. The results of the PPED module from two 

camera views are used to match the detected workers in synchronized frames, after matching the 

workers, detected PPE classes are compared for matched workers, and the ones with higher 

confidence level are selected. On the other hand, for not matching workers, the available PPE 

detection results from one camera are considered in the PPE safety reports. 
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Detailed and summary safety reports are generated based on the PPE detection and worker 

matching results. Detailed safety reports contain more technical details about detection such as 

frame number, detection confidence level, tracking ID, etc. However, in order to protect workers’ 

privacy and have practical safety reports for safety managers, summary safety reports are 

generated. The summary safety reports give an overview of safety status for a specific day while 

protecting privacy. The PPESRG module is validated using videos of two surveillance cameras 

from the construction site. The test results indicate the proposed module's effectiveness for 

generating accurate and practical safety reports benefiting from two cameras when the workers are 

occluded or far from the other camera view. The safety managers validated the generated safety 

reports as being practical for monitoring safety on the construction sites. 

Construction workers’ safety status can also be identified based on their location on the 

construction site. The proposed SL module uses the detection and tracking results of the PPED 

method and camera calibration results to locate workers from image coordinate to a real-world 2D 

coordinate system. Finally, by having workers' location on a 2D real-world coordinate system, the 

workers’ safety status is identified as the distance to mobile equipment or defined high-risk zones 

on the construction sites. The SL module is validated using surveillance videos in which areas are 

defined with known dimensions. The validation results indicate the average error of 1.58 m in 

locating workers on a real-world 2D coordinate system. The proposed method can locate workers 

or other construction entities in different zones and define a group of workers or equipment 

working together.  
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5.2 Limitations and Future Work 

This research focused on detecting PPE and generating safety reports that can be used by safety 

managers. Test results guide future researchers in improving PPE detection and transferring them 

into more detailed safety reports by benefiting from other data sources. The adopted worker 

matching technique highly depends on the overlaps between the two camera views; therefore, 

having video data with high overlap improves worker matching reliability and generated PPE 

safety reports. In order to achieve more accurate worker localization results, a stereo camera setup 

can be used on the construction site to locate workers and other entities. Additionally, to improve 

safety monitoring in the future, Pan-Tilt-Zoom (PTZ) cameras can be used to have the ability to 

orient the cameras based on the work schedule. Furthermore, investigating the use of more than 

two cameras to overcome the far-field detection challenge and having more overlap between the 

views.  
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Appendices 

Appendix A. Procedure for Running Nested Network Detection 

In order to run the proposed nested network, modifications must be made only in the “main.py” 

script (Appendix B), which initiates the detection. The default setting for the detection are: (1) 

1detection/sec, (2) N=25. The other detection parameters, such as workers’ size on the image 

plane, could be relatively changed in the “nested_detection.py” script. Additionally, the CT 

tracking algorithm is imported in the “nested_detection.py,” which can be downloaded from 

opensource repositories online. The final results of the detection, which are the output video with 

the bounding boxes and detection results as a “jason” file, are stored in the output directory.  
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Appendix B. Python Code of Developed Nested Network (Main.py) 

# Author Mohammad Akbarzadeh 

# https://github.com/mohammadakz 

 

# Importing nested detection class 

import os 

from nested_detection import Nested_Detection 

 

# Model and video file names and path 

CWD_PATH = os.getcwd() 

 

model_name = 'inference_graph_50000_balanced' 

video_name = 'construction.mp4' 

out_put = 'out_put/results_{}.avi'.format(video_name[:-4]) 

label_path = 'label_map_person.pbtxt' 

 

# Performing the detection 

dt = Nested_Detection() 

dt.worker_detection(model_name, label_path, video_name, out_put) 
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Appendix C. Python Code of Nested Detection (nested_detection.py) 

# Author Mohammad Akbarzadeh 

 

# Import packages 

import os 

import sys 

import cv2 

import math 

from shapely.geometry import Polygon 

from pyimagesearch.centroidtracker import CentroidTracker 

import numpy as np 

import tensorflow as tf 

import json 

 

sys.path.append("..") 

 

# Import utilities 

from utils import label_map_util 

from utils import visualization_utils as vis_util 

 

 

class Nested_Detection(): 

 

    def __init__(self): 

        self.NUM_WORKER_CLASSES = 1 

        self.frame_index = 0 

        self.small_worker = 20 

        self.mid_worker = 35 

        self.large_worker = 55 

        self.n_small = 25 

        self.n_mid = 25 

        self.n_large = 25 

        self.skip_frames = 30 

        self.font = cv2.FONT_HERSHEY_PLAIN 

        self.rectangle_bgr = (255, 255, 255) 

        self.detection_results = [] 

        self.track_list = [] 

        self.ct = CentroidTracker() 

        self.util_match_table = {} 

        self.util_detection_results = {} 

 

    def sub_regions(self, img, width, height): 

 

        num_small = int((width / self.small_worker) / self.n_small) + 1 

        self.small_width = int((width / num_small)) 
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        num_mid = int((width / self.mid_worker) / self.n_mid) + 1 

        self.mid_width = int((width / num_mid)) 

 

        num_large = int((width / self.large_worker) / self.n_large) + 1 

        self.large_width = int((width / num_large)) 

 

        # (x,y) # (0,0) till (1920, 540) 

        up_left_small = (0, 0) 

        down_right_small = (width, int((height / 2))) 

 

        # (0,270) till (1920, 810) 

        up_left_mid = (0, int((height / 4))) 

        down_right_mid = (width, height - int(height / 4)) 

 

        # (0,540) till (1920, 540) 

        up_left_large = (0, int((height / 2))) 

        down_right_large = (width, height) 

 

        # (y:y, x:x) 

        main_small_region = img[up_left_small[1]:down_right_small[1], 

up_left_small[0]:down_right_small[0]] 

        main_mid_region = img[up_left_mid[1]:down_right_mid[1], 

up_left_mid[0]:down_right_mid[0]] 

        main_large_region = img[up_left_large[1]:down_right_large[1], 

up_left_large[0]:down_right_large[0]] 

 

        small_sub_regions = [] 

        small_sub_regions_overlap = [] 

 

        mid_sub_regions = [] 

        mid_sub_regions_overlap = [] 

 

        large_sub_regions = [] 

        large_sub_region_overlap = [] 

 

        for i in range(0, width, self.small_width): 

            small = main_small_region[:, i:i + self.small_width] 

            small_sub_regions.append(small) 

 

        for i in range(int(self.small_width / 2), (width - int(self.small_width / 2)), self.small_width): 

            small_overlap = main_small_region[:, i:i + self.small_width] 

            small_sub_regions_overlap.append(small_overlap) 

 

        for i in range(0, width, self.mid_width): 

            mid = main_mid_region[:, i:i + self.mid_width] 
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            mid_sub_regions.append(mid) 

 

        for i in range(int(self.mid_width / 2), (width - int(self.mid_width / 2)), self.mid_width): 

            mid_overlap = main_mid_region[:, i:i + self.mid_width] 

            mid_sub_regions_overlap.append(mid_overlap) 

 

        for i in range(0, width, self.large_width): 

            large = main_large_region[:, i:i + self.large_width] 

            large_sub_regions.append(large) 

 

        for i in range(int(self.large_width / 2), (width - int(self.large_width / 2)), self.large_width): 

            large_overlap = main_large_region[:, i:i + self.large_width] 

            large_sub_region_overlap.append(large_overlap) 

        return small_sub_regions, small_sub_regions_overlap, mid_sub_regions, 

mid_sub_regions_overlap, \ 

               large_sub_regions, large_sub_region_overlap 

 

    def calculate_iou(self, box_1, box_2): 

        poly_1 = Polygon(box_1) 

        poly_2 = Polygon(box_2) 

        iou = poly_1.intersection(poly_2).area / poly_1.union(poly_2).area 

        return iou 

 

    def remove_duplicates(self, detected_workers): 

        duplications = [] 

        i = 0 

        while i <= len(detected_workers): 

            j = i + 1 

            while j < len(detected_workers): 

                iou = self.calculate_iou( 

                    [[detected_workers[i][0], detected_workers[i][2]], [detected_workers[i][1], 

detected_workers[i][2]], 

                     [detected_workers[i][1], detected_workers[i][3]], 

                     [detected_workers[i][0], detected_workers[i][3]]], 

                    [[detected_workers[j][0], detected_workers[j][2]], [detected_workers[j][1], 

detected_workers[j][2]], 

                     [detected_workers[j][1], detected_workers[j][3]], 

                     [detected_workers[j][0], detected_workers[j][3]]]) 

 

                if iou > 0.50: 

                    # or abs(detected_workers[i][0] - detected_workers[j][0]) <= 40 and abs( 

                    # detected_workers[i][2] - detected_workers[j][2]) <= 40 and abs( 

                    # detected_workers[i][1] - detected_workers[j][1]) <= 40: 

                    duplications.append(detected_workers[j]) 

                j += 1 

            i += 1 
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        return [x for x in detected_workers if x not in duplications] 

 

    def area_checking(self, refined_workers): 

        for worker in range(0, len(refined_workers)): 

            height = abs(refined_workers[worker][3] - refined_workers[worker][2]) 

            width = abs(refined_workers[worker][1] - refined_workers[worker][0]) 

            center_x = int(width / 2) + refined_workers[worker][0] 

            center_y = int(height / 2) + refined_workers[worker][2] 

            area = width * height 

            refined_workers[worker].append(area) 

            refined_workers[worker].append(center_x) 

            refined_workers[worker].append(center_y) 

 

        for i in refined_workers: 

            for j in range(len(i)): 

                if j == 2: 

                    if i[j] > 540 and i[-3] < 1200: 

                        refined_workers.remove(i) 

        return refined_workers 

 

    def worker_tracking(self, tracking_list): 

        object_tracker = self.ct.update(tracking_list) 

        for (objectID, centeroid) in object_tracker.items(): 

            text_track = "W {}".format(objectID) 

            cv2.putText(self.frame, text_track, (centeroid[0], centeroid[1] + 60), 

cv2.FONT_HERSHEY_SIMPLEX, 0.75, 

                        (0, 0, 255), 2) 

            cv2.circle(self.frame, (centeroid[0], centeroid[1] + 50), 4, (0, 0, 255), -1) 

 

        for (objectID, centeroid) in object_tracker.items(): 

            worker_match = [] 

            worker_min_distance = 50 

            for worker_location in tracking_list: 

                # distance = math.sqrt( 

                #     ((worker_location[-2] - centeroid[0]) ** 2) + ((worker_location[-1] - centeroid[1]) 

** 2)) 

                # if distance < worker_min_distance: 

                #     worker_min_distance = distance 

                worker_match = worker_location 

 

            self.util_match_table[objectID] = {"worker_location": worker_match} 

        self.util_detection_results[self.frame_index] = self.util_match_table; 

 

    def draw_bounding_box_workers(self, final_refined_workers): 
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        for i in range(0, len(final_refined_workers)): 

            cv2.putText(self.frame, "Person: {}".format(str(len(final_refined_workers))), (10, 20), 

self.font, 2, 

                        (0, 255, 255), 2, 

                        cv2.FONT_HERSHEY_SIMPLEX) 

 

            text = "Person: {}%".format(str(final_refined_workers[i][4])) 

            (text_width, text_height) = cv2.getTextSize(text, self.font, 1, thickness=1)[0] 

 

            box_coords = ( 

                (final_refined_workers[i][0] - 10, final_refined_workers[i][2] - 10), 

                ( 

                    final_refined_workers[i][0] + text_width, 

                    (final_refined_workers[i][2] - text_height - 10))) 

 

            cv2.rectangle(self.frame, box_coords[0], box_coords[1], self.rectangle_bgr, 

cv2.FILLED) 

 

            cv2.putText(self.frame, "Person: {}%".format(str(final_refined_workers[i][4])), 

                        (final_refined_workers[i][0] - 10, final_refined_workers[i][2] - 10), 

                        self.font, 1, 

                        (0, 0, 0), cv2.FONT_HERSHEY_PLAIN) 

 

            roi_person = self.frame_rgb[ 

                         abs(final_refined_workers[i][2] - 10):abs(final_refined_workers[i][3] + 10), 

                         abs(final_refined_workers[i][0] - 10):abs(final_refined_workers[i][1]) + 10] 

 

            self.track_list.append([final_refined_workers[i][0], final_refined_workers[i][2], 

                                    final_refined_workers[i][1], final_refined_workers[i][3]]) 

 

            cv2.rectangle(self.frame, 

                          (abs(final_refined_workers[i][0] - 10), abs(final_refined_workers[i][2] - 10)), 

                          (final_refined_workers[i][1] + 10, final_refined_workers[i][3] + 10), 

                          (0, 255, 0), 1) 

 

    def worker_detection(self, model_name, label_path, video_name, out_put): 

        video = cv2.VideoCapture(video_name) 

        frame_width = int(video.get(3)) 

        frame_height = int(video.get(4)) 

        out = cv2.VideoWriter(out_put, cv2.VideoWriter_fourcc(*'XVID'), 

                              30, (frame_width, frame_height)) 

 

        while video.isOpened(): 

            ret, self.frame = video.read() 

            if ret == True: 

                self.frame_rgb = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB) 
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                if self.frame_index % self.skip_frames == 0: 

                    s_regions, s_regions_overlap, m_regions, m_regions_overlap, \ 

                    l_regions, l_regions_overlap = self.sub_regions(self.frame_rgb, frame_width, 

frame_height) 

 

                    path_to_check = os.path.join(model_name, 'frozen_inference_graph.pb') 

                    categories = label_map_util.convert_label_map_to_categories( 

                        label_map_util.load_labelmap(label_path), 

                        max_num_classes=self.NUM_WORKER_CLASSES, 

                        use_display_name=True) 

                    category_index = label_map_util.create_category_index(categories) 

                    # Load the Tensorflow model into memory. 

                    detection_graph = tf.Graph() 

                    with detection_graph.as_default(): 

                        od_graph_def = tf.GraphDef() 

                        with tf.gfile.GFile(path_to_check, 'rb') as fid: 

                            serialized_graph = fid.read() 

                            od_graph_def.ParseFromString(serialized_graph) 

                            tf.import_graph_def(od_graph_def, name='') 

 

                        sess = tf.Session(graph=detection_graph) 

 

                    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') 

                    detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') 

                    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') 

                    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') 

                    num_detections = detection_graph.get_tensor_by_name('num_detections:0') 

 

                    for idx, subregion in enumerate(s_regions): 

                        frame_expanded_1 = np.expand_dims(subregion, axis=0) 

                        # Perform the actual detection by running the model with the image as input 

                        (boxes, scores, classes, num) = sess.run( 

                            [detection_boxes, detection_scores, detection_classes, num_detections], 

                            feed_dict={image_tensor: frame_expanded_1}) 

 

                        coordinates_1 = vis_util.return_coordinates( 

                            subregion, 

                            self.frame_index, 

                            np.squeeze(boxes), 

                            np.squeeze(classes).astype(np.int32), 

                            np.squeeze(scores), 

                            category_index, 

                            use_normalized_coordinates=True, 

                            line_thickness=8, 

                            min_score_thresh=0.50) 
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                        for coordinate in coordinates_1: 

                            (ymin, ymax, xmin, xmax, acc, classification) = coordinate 

                            self.detection_results.append( 

                                [(xmin + (idx * self.small_width)), (xmax + (idx * self.small_width)), ymin, 

ymax, 

                                 int(acc), 

                                 classification]) 

 

                    for idx, subregion in enumerate(s_regions_overlap): 

                        frame_expanded_1 = np.expand_dims(subregion, axis=0) 

                        # Perform the actual detection by running the model with the image as input 

                        (boxes, scores, classes, num) = sess.run( 

                            [detection_boxes, detection_scores, detection_classes, num_detections], 

                            feed_dict={image_tensor: frame_expanded_1}) 

 

                        coordinates_1 = vis_util.return_coordinates( 

                            subregion, 

                            self.frame_index, 

                            np.squeeze(boxes), 

                            np.squeeze(classes).astype(np.int32), 

                            np.squeeze(scores), 

                            category_index, 

                            use_normalized_coordinates=True, 

                            line_thickness=8, 

                            min_score_thresh=0.50) 

 

                        for coordinate in coordinates_1: 

                            (ymin, ymax, xmin, xmax, acc, classification) = coordinate 

                            self.detection_results.append( 

                                [(xmin + (idx * self.small_width) + (int(self.small_width / 2))), 

                                 (xmax + (idx * self.small_width) + (int(self.small_width / 2))), ymin, ymax, 

int(acc), 

                                 classification]) 

 

                    for idx, subregion in enumerate(m_regions): 

                        frame_expanded_1 = np.expand_dims(subregion, axis=0) 

                        # Perform the actual detection by running the model with the image as input 

                        (boxes, scores, classes, num) = sess.run( 

                            [detection_boxes, detection_scores, detection_classes, num_detections], 

                            feed_dict={image_tensor: frame_expanded_1}) 

 

                        coordinates_1 = vis_util.return_coordinates( 

                            subregion, 

                            self.frame_index, 

                            np.squeeze(boxes), 

                            np.squeeze(classes).astype(np.int32), 
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                            np.squeeze(scores), 

                            category_index, 

                            use_normalized_coordinates=True, 

                            line_thickness=8, 

                            min_score_thresh=0.50) 

 

                        for coordinate in coordinates_1: 

                            (ymin, ymax, xmin, xmax, acc, classification) = coordinate 

                            self.detection_results.append( 

                                [(xmin + (idx * self.mid_width)), (xmax + (self.mid_width * idx)), 

                                 (ymin + int(frame_height / 4)), 

                                 (ymax + int(frame_height / 4)), int(acc), 

                                 classification]) 

 

                    for idx, subregion in enumerate(m_regions_overlap): 

                        frame_expanded_1 = np.expand_dims(subregion, axis=0) 

                        # Perform the actual detection by running the model with the image as input 

                        (boxes, scores, classes, num) = sess.run( 

                            [detection_boxes, detection_scores, detection_classes, num_detections], 

                            feed_dict={image_tensor: frame_expanded_1}) 

 

                        coordinates_1 = vis_util.return_coordinates( 

                            subregion, 

                            self.frame_index, 

                            np.squeeze(boxes), 

                            np.squeeze(classes).astype(np.int32), 

                            np.squeeze(scores), 

                            category_index, 

                            use_normalized_coordinates=True, 

                            line_thickness=8, 

                            min_score_thresh=0.50) 

 

                        for coordinate in coordinates_1: 

                            (ymin, ymax, xmin, xmax, acc, classification) = coordinate 

                            self.detection_results.append( 

                                [(xmin + (idx * self.mid_width) + (int(self.mid_width / 2))), 

                                 (xmax + (idx * self.mid_width) + (int(self.mid_width / 2))), 

                                 (ymin + int(frame_height / 4)), 

                                 (ymax + int(frame_height / 4)), int(acc), 

                                 classification]) 

 

                    for idx, subregion in enumerate(l_regions): 

                        frame_expanded_1 = np.expand_dims(subregion, axis=0) 

                        # Perform the actual detection by running the model with the image as input 

                        (boxes, scores, classes, num) = sess.run( 

                            [detection_boxes, detection_scores, detection_classes, num_detections], 
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                            feed_dict={image_tensor: frame_expanded_1}) 

 

                        coordinates_1 = vis_util.return_coordinates( 

                            subregion, 

                            self.frame_index, 

                            np.squeeze(boxes), 

                            np.squeeze(classes).astype(np.int32), 

                            np.squeeze(scores), 

                            category_index, 

                            use_normalized_coordinates=True, 

                            line_thickness=8, 

                            min_score_thresh=0.50) 

 

                        for coordinate in coordinates_1: 

                            (ymin, ymax, xmin, xmax, acc, classification) = coordinate 

                            self.detection_results.append( 

                                [(xmin + (idx * self.large_width)), (xmax + (self.large_width * idx)), ( 

                                        ymin + int(frame_height / 2)), 

                                 (ymax + int(frame_height / 2)), int(acc), 

                                 classification]) 

 

                    for idx, subregion in enumerate(l_regions_overlap): 

                        frame_expanded_1 = np.expand_dims(subregion, axis=0) 

                        # Perform the actual detection by running the model with the image as input 

                        (boxes, scores, classes, num) = sess.run( 

                            [detection_boxes, detection_scores, detection_classes, num_detections], 

                            feed_dict={image_tensor: frame_expanded_1}) 

 

                        coordinates_1 = vis_util.return_coordinates( 

                            subregion, 

                            self.frame_index, 

                            np.squeeze(boxes), 

                            np.squeeze(classes).astype(np.int32), 

                            np.squeeze(scores), 

                            category_index, 

                            use_normalized_coordinates=True, 

                            line_thickness=8, 

                            min_score_thresh=0.50) 

 

                        for coordinate in coordinates_1: 

                            (ymin, ymax, xmin, xmax, acc, classification) = coordinate 

                            self.detection_results.append( 

                                [(xmin + (idx * self.large_width) + (int(self.large_width / 2))), 

                                 (xmax + (idx * self.large_width) + (int(self.large_width / 2))), 

                                 (ymin + int(frame_height / 2)), 

                                 (ymax + int(frame_height / 2)), int(acc), 
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                                 classification]) 

 

                    if len(self.detection_results) == 0: 

                        print("Workers are not detected!") 

                    else: 

                        refine_workers_detection = self.remove_duplicates(self.detection_results) 

                        refined_area_workers = self.area_checking(refine_workers_detection) 

                        store_refined_detection = refined_area_workers 

                        self.draw_bounding_box_workers(refined_area_workers) 

                        self.worker_tracking(self.track_list) 

                        out.write(self.frame) 

                        del self.track_list[:] 

                        self.frame_index += 1 

                else: 

                    out.write(self.frame) 

                    self.frame_index += 1 

            else: 

                break 

 

        with open("out_put/util_detection{}.json".format(video_name), "w") as file: 

            j = json.dumps(self.util_detection_results) 

            file.write(j) 
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Appendix D. Python Code of Safety Report (safety_report_generation.py) 

# MA 
''' This scripts uses worker matching results and PPE detection log from two cameras to generate 
detailed and summary safety reports ''' 
 
import json 
 
with open('a/util_detection1.mp4.json') as f: 
    camera_1 = json.load(f) 
 
with open('a/util_detection1.mp4.json') as f: 
    camera_2 = json.load(f) 
 
# Worker matching results 
matching_result = [(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5), (6, 6)] 
matching_list = [list(ele) for ele in matching_result] 
c1 = [] 
c2 = [] 
for i in matching_list: 
    c1.append(i[0]) 
    c2.append(i[1]) 
 
# Detailed safety report 
with open("a_safety/Detailed_report.csv", "w") as file: 
    file.write("Date, hour, minutes, seconds, frame_number, worker_ID, H or NH, V or NV \n") 
 
# Summary safety report 
with open("a_safety/Summary_report.csv", "w") as file: 
    file.write("Date, No_of_workers, No_of_no-hardhats, No_of_no-vest \n") 
 
# Safety violences 
NH = 0 
NV = 0 
 
# Time adjustment 
Date = "2020/10/09" 
hour = 7 
minutes = 0 
seconds = 0 
for frame_number in range(0, 120, 30): 
    print(frame_number) 
    if frame_number % 30 == 0: 
        seconds += 1 
        if seconds % 60 == 0: 
            minutes += 1 
            if minutes % 60 == 0: 
                hour += 1 
 
    workers_camera_1 = (camera_1["{}".format(frame_number)]) 
    workers_camera_2 = (camera_2["{}".format(frame_number)]) 
 
    for workers_c1 in c1: 
        for workers_c2 in c2: 
            if workers_c1 == workers_c2: 
                if len((workers_camera_1["{}".format(workers_c1)])["hat_location"]) > 0 and len( 
                        (workers_camera_2["{}".format(workers_c2)])["hat_location"]) > 0 and len( 
                    (workers_camera_1["{}".format(workers_c1)])["vest_location"]) > 0 and len( 
                    (workers_camera_2["{}".format(workers_c2)])["vest_location"]) > 0: 
                    if 
(((workers_camera_1["{}".format(workers_c1)])["vest_location"][5]).split(":")[0]) == "NV": 
                        NV += 1 
                    if (((workers_camera_1["{}".format(workers_c1)])["hat_location"][5]).split(":")[0]) 
== "NH": 
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                        NH += 1 
 
                    if ((workers_camera_1["{}".format(workers_c1)])["vest_location"][4]) >= ( 
                            (workers_camera_2["{}".format(workers_c2)])["vest_location"][4]) and ( 
                            (workers_camera_1["{}".format(workers_c1)])["hat_location"][4]) >= ( 
                            (workers_camera_2["{}".format(workers_c2)])["hat_location"][4]): 
 
                        with open("a_safety/Detailed_report.csv", "a") as file: 
                            file.write(Date + ',' + str(hour) + ',' + str(minutes) + ',' + str(seconds) + ',' + str( 
                                frame_number) + ',' + str(workers_c1) + ',' + str( 
                                (workers_camera_1["{}".format(workers_c1)])["hat_location"][5]) + ',' + str( 
                                (workers_camera_1["{}".format(workers_c1)])["vest_location"][5]) + "\n") 
                    else: 
                        with open("a_safety/Detailed_report.csv", "a") as file: 
                            file.write(Date + ',' + str(hour) + ',' + str(minutes) + ',' + str(seconds) + ',' + str( 
                                frame_number) + ',' + str(workers_c2) + ',' + str( 
                                (workers_camera_2["{}".format(workers_c2)])["hat_location"][5]) + ',' + str( 
                                (workers_camera_2["{}".format(workers_c2)])["vest_location"][5]) + "\n") 
                
############################################################################## 
                elif len((workers_camera_1["{}".format(workers_c1)])["hat_location"]) > 0 and len( 
                        (workers_camera_2["{}".format(workers_c2)])["hat_location"]) > 0 and len( 
                    (workers_camera_1["{}".format(workers_c1)])["vest_location"]) == 0 and len( 
                    (workers_camera_2["{}".format(workers_c2)])["vest_location"]) == 0: 
 
                    if (((workers_camera_1["{}".format(workers_c1)])["hat_location"][5]).split(":")[0]) 
== "NH": 
                        NH += 1 
                    if (((workers_camera_2["{}".format(workers_c2)])["hat_location"][5]).split(":")[0]) 
== "NH": 
                        NH += 1 
 
                    if ((workers_camera_1["{}".format(workers_c1)])["hat_location"][4]) >= ( 
                            (workers_camera_2["{}".format(workers_c2)])["hat_location"][4]): 
                        with open("a_safety/Detailed_report.csv", "a") as file: 
                            file.write(Date + ',' + str(hour) + ',' + str(minutes) + ',' + str(seconds) + ',' + str( 
                                frame_number) + ',' + str(workers_c1) + ',' + str( 
                                (workers_camera_1["{}".format(workers_c1)])["hat_location"][5]) + ',' + str( 
                                "N/A") + "\n") 
                    else: 
                        with open("a_safety/Detailed_report.csv", "a") as file: 
                            file.write(Date + ',' + str(hour) + ',' + str(minutes) + ',' + str(seconds) + ',' + str( 
                                frame_number) + ',' + str(workers_c2) + ',' + str( 
                                (workers_camera_2["{}".format(workers_c2)])["hat_location"][5]) + ',' + str( 
                                'N/A') + "\n") 
                
############################################################################## 
                elif len((workers_camera_1["{}".format(workers_c1)])["hat_location"]) == 0 and len( 
                        (workers_camera_2["{}".format(workers_c2)])["hat_location"]) == 0 and len( 
                    (workers_camera_1["{}".format(workers_c1)])["vest_location"]) > 0 and len( 
                    (workers_camera_2["{}".format(workers_c2)])["vest_location"]) > 0: 
 
                    if 
(((workers_camera_1["{}".format(workers_c1)])["vest_location"][5]).split(":")[0]) == "NV": 
                        NV += 1 
                    if 
(((workers_camera_2["{}".format(workers_c2)])["vest_location"][5]).split(":")[0]) == "NV": 
                        NV += 1 
 
                    if ((workers_camera_1["{}".format(workers_c1)])["vest_location"][4]) >= ( 
                            (workers_camera_2["{}".format(workers_c2)])["vest_location"][4]): 
                        with open("a_safety/Detailed_report.csv", "a") as file: 
                            file.write(Date + ',' + str(hour) + ',' + str(minutes) + ',' + str(seconds) + ',' + str( 
                                frame_number) + ',' + str(workers_c1) + ',' + str("N/A") + ',' + str( 
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                                (workers_camera_1["{}".format(workers_c1)])["vest_location"][5]) + "\n") 
                    else: 
                        with open("a_safety/Detailed_report.csv", "a") as file: 
                            file.write(Date + ',' + str(hour) + ',' + str(minutes) + ',' + str(seconds) + ',' + str( 
                                frame_number) + ',' + str(workers_c2) + ',' + str("N/A") + ',' + str( 
                                (workers_camera_2["{}".format(workers_c2)])["vest_location"][5]) + "\n") 
                
############################################################################## 
                elif len((workers_camera_1["{}".format(workers_c1)])["hat_location"]) > 0 and len( 
                        (workers_camera_2["{}".format(workers_c2)])["hat_location"]) == 0 and len( 
                    (workers_camera_1["{}".format(workers_c1)])["vest_location"]) == 0 and len( 
                    (workers_camera_2["{}".format(workers_c2)])["vest_location"]) > 0: 
 
                    if 
(((workers_camera_2["{}".format(workers_c2)])["vest_location"][5]).split(":")[0]) == "NV": 
                        NV += 1 
                    if (((workers_camera_1["{}".format(workers_c1)])["hat_location"][5]).split(":")[0]) 
== "NH": 
                        NH += 1 
 
                    with open("a_safety/Detailed_report.csv", "a") as file: 
                        file.write(Date + ',' + str(hour) + ',' + str(minutes) + ',' + str(seconds) + ',' + str( 
                            frame_number) + ',' + str(workers_c1) + ',' + str( 
                            (workers_camera_1["{}".format(workers_c1)])["hat_location"][5]) + ',' + 
                                   str((workers_camera_2["{}".format(workers_c2)])["vest_location"][5]) + 
"\n") 
                
############################################################################## 
                elif len((workers_camera_1["{}".format(workers_c1)])["hat_location"]) == 0 and len( 
                        (workers_camera_2["{}".format(workers_c2)])["hat_location"]) > 0 and len( 
                    (workers_camera_1["{}".format(workers_c1)])["vest_location"]) > 0 and len( 
                    (workers_camera_2["{}".format(workers_c2)])["vest_location"]) == 0: 
 
                    if 
(((workers_camera_1["{}".format(workers_c1)])["vest_location"][5]).split(":")[0]) == "NV": 
                        NV += 1 
                    if (((workers_camera_2["{}".format(workers_c2)])["hat_location"][5]).split(":")[0]) 
== "NH": 
                        NH += 1 
 
                    with open("a_safety/Detailed_report.csv", "a") as file: 
                        file.write(Date + ',' + str(hour) + ',' + str(minutes) + ',' + str(seconds) + ',' + str( 
                            frame_number) + ',' + str(workers_c1) + ',' + str( 
                            (workers_camera_2["{}".format(workers_c2)])["hat_location"][5]) + ',' + 
                                   str((workers_camera_1["{}".format(workers_c1)])["vest_location"][5]) + 
"\n") 
    
############################################################################## 
with open("a_safety/Summary_report.csv", "a") as file: 
    file.write(Date + ',' + str(max(max(c1), max(c2))) + ',' + str(NH) + ',' + str(NV) + "\n") 
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Appendix E. Python Code for Worker Detection Evaluation  

# MA 

# This script is for evaluating the worker detection model 

import csv 

import glob 

import xml.etree.ElementTree as ET 

from shapely.geometry import Polygon 

import os 

import cv2 

 

def calculate_iou(box_1, box_2): 

    poly_1 = Polygon(box_1) 

    poly_2 = Polygon(box_2) 

    iou = poly_1.intersection(poly_2).area / poly_1.union(poly_2).area 

    return iou 

 

worker_properties_test = {} 

worker_properties_detection = {} 

with open('Eval_thesis/Eval4_15/Person_Detection_Coordniates_thesis_Eval_4_15.csv', 'r') as 
file: 

    reader = csv.reader(file, delimiter=",") 

    next(reader) 

    for i, row in enumerate(reader): 

        x_min = row[1] 

        x_max = row[2] 

        y_min = row[3] 

        y_max = row[4] 

        # frame_NO = row[0][23:].split(".")[0] 

        frame_NO = row[0].split(".")[0][7:]  # [7:]#[23:] #[0] 

        worker_properties_detection[i] = {'frame_number': int(frame_NO), 'x_min': int(x_min), 

                                          'y_min': int(y_min), 

                                          'x_max': int(x_max), 'y_max': int(y_max)} 

 

with open('Eval_thesis/Eval4_25/GT_labels.csv', 'r') as file: 

    reader = csv.reader(file, delimiter=",") 

    next(reader) 
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    for i, row in enumerate(reader): 

        x_min = row[4] 

        x_max = row[6] 

        y_min = row[5] 

        y_max = row[7] 

        frame_NO = row[0].split(".")[0][3:] 

        worker_properties_test[i] = {'frame_name': int(frame_NO), 'x_min': int(x_min), 'y_min': 
int(y_min),  # [3:] 

                                     'x_max': int(x_max), 'y_max': int(y_max)} 

TP = 0 

FP = 0 

FN = 0 

iou_TP = 0 

 

# Calculating the FP based on height of bounding box 

for no, detection in worker_properties_detection.items(): 

    if detection['y_min'] >= 270: 

        if (abs(detection['y_max'] - detection['y_min']) < 50): 

            FP += 1 

# Calculating TP in the ground truth for getting accuracy in each field 

m = 0 

for k, t in worker_properties_test.items(): 

    if t['y_max'] <= 540:  #Far_field (J) 

    #if t['y_max'] <= 810 and t['y_min']>=270: # Mid_field (K) 

    #if t['y_min'] >= 540:  # Near_field (I) 

        m += 1 

 

print('Field_GT', m) 

 

# Overall validation 

for key, test in worker_properties_test.items(): 

    for no, detection in worker_properties_detection.items(): 

        # print(test) 

        # print(detection) 

 

        if test['frame_name'] == detection["frame_number"]: 
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            iou = calculate_iou( 

                [[test['x_min'], test['y_min']], [test['x_max'], test['y_min']], 

                 [test['x_max'], test['y_max']], 

                 [test['x_min'], test['y_max']]], 

                [[detection['x_min'], detection['y_min']], [detection['x_max'], detection['y_min']], 

                 [detection['x_max'], detection['y_max']], 

                 [detection['x_min'], detection['y_max']]] 

            ) 

 

            if iou > 0.5: # Overall full frame TP 

            #if iou >0.5 and test['y_max'] <= 540:   # Far_field TP (J) 

            # if iou >0.5 and test['y_max'] <= 810 and test['y_min']>=270: # Mid_field TP (K) 

            #if iou > 0.5 and test['y_min'] >= 540:  # Near-field TP (I) 

                iou_TP += 1 

 

 

print("total_test", key + 1) 

print("total_detection", no + 1) 

 

print('TP: ', iou_TP) 

 

print("FN", (key + 1) - iou_TP) 

print("FP", FP) 

 

print("precision", round((iou_TP / (iou_TP + FP) * 100), 2)) 

print("recall", round((iou_TP / (iou_TP + ((key + 1) - iou_TP)) * 100), 2)) 

print("accuracy", round((iou_TP / (iou_TP + ((key + 1) - iou_TP) + FP) * 100), 2)) 
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Appendix F. Python Code for PPE Detection Evaluation  

# MA 

# This script is for evaluating the PPE detection model 

import csv 

import glob 

import xml.etree.ElementTree as ET 

from shapely.geometry import Polygon 

import os 

import cv2 

 

def calculate_iou(box_1, box_2): 

    poly_1 = Polygon(box_1) 

    poly_2 = Polygon(box_2) 

    iou = poly_1.intersection(poly_2).area / poly_1.union(poly_2).area 

    return iou 

 

PPE_test = {} 

PPE_detection = {} 

with open('PPE_Detection_Coordniates_thesis_Eval_4_15.csv', 'r') as file: 

    reader = csv.reader(file, delimiter=",") 

    next(reader) 

    for i, row in enumerate(reader): 

        x_min = row[1] 

        x_max = row[2] 

        y_min = row[3] 

        y_max = row[4] 

        # frame_NO = row[0][23:].split(".")[0] 

        frame_NO = row[0].split(".")[0][7:]  # [7:]#[23:] #[0] 

        PPE_detection[i] = {'frame_number': int(frame_NO), 'x_min': int(x_min), 

                                          'y_min': int(y_min), 

                                          'x_max': int(x_max), 'y_max': int(y_max)} 

 

with open('PPE_GT_labels.csv', 'r') as file: 

    reader = csv.reader(file, delimiter=",") 

    next(reader) 
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    for i, row in enumerate(reader): 

        x_min = row[4] 

        x_max = row[6] 

        y_min = row[5] 

        y_max = row[7] 

        frame_NO = row[0].split(".")[0][3:] 

        PPE_test[i] = {'frame_name': int(frame_NO), 'x_min': int(x_min), 'y_min': int(y_min),  # 
[3:] 

                                     'x_max': int(x_max), 'y_max': int(y_max)} 

TP = 0 

FP = 0 

FN = 0 

iou_TP = 0 

 

# Calculating the FP based on height of bounding box 

for no, detection in PPE_detection.items(): 

    if detection['y_min'] >= 270: 

        if (abs(detection['y_max'] - detection['y_min']) < 50): 

            FP += 1 

 

 

# Overall validation 

for key, test in PPE_test.items(): 

    for no, detection in PPE_detection.items(): 

        # print(test) 

        # print(detection) 

 

        if test['frame_name'] == detection["frame_number"]: 

 

            iou = calculate_iou( 

                [[test['x_min'], test['y_min']], [test['x_max'], test['y_min']], 

                 [test['x_max'], test['y_max']], 

                 [test['x_min'], test['y_max']]], 

                [[detection['x_min'], detection['y_min']], [detection['x_max'], detection['y_min']], 

                 [detection['x_max'], detection['y_max']], 

                 [detection['x_min'], detection['y_max']]] 
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            ) 

 

            if iou > 0.5: 

 

                iou_TP += 1 

 

print("total_test", key + 1) 

print("total_detection", no + 1) 

 

print('TP: ', iou_TP) 

 

print("FN", (key + 1) - iou_TP) 

print("FP", FP) 

 

print("precision", round((iou_TP / (iou_TP + FP) * 100), 2)) 

print("recall", round((iou_TP / (iou_TP + ((key + 1) - iou_TP)) * 100), 2)) 

print("accuracy", round((iou_TP / (iou_TP + ((key + 1) - iou_TP) + FP) * 100), 2)) 
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Appendix G. Examples of Worker and PPE Training Datasets 

Worker detection training dataset 
 

PPE detection training dataset 

 

 Positive samples 

 

     

 

 Negative samples 

 

 

      

 

  

 

 

 


