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Abstract

Identifying and Isolating a Flat Band in 2D Systems

Jun Hyung Bae

Flat band systems are gaining popularity due to special properties. For instance, the strong

correlation of electrons in flat bands leads to realization of unconventional superconductivity.

Typically, such bands are only approximately flat and are engineered by fine tuning Vander-

waal’s structures. On the other hand, systems with perfectly flat bands provide a ground for

studying exotic quasi-particles such as composite fermions in the fractional quantum Hall state.

These flat bands, however, are induced by an external field. Here we explore other systems that

host perfectly flat bands, namely the Kagome lattice and the Lieb lattice. One issue with these

lattices, however, is that their flat bands are degenerate with other bands. This thesis will explore

means to lift the degeneracy while preserving the flatness of the band. It will also demonstrate

that the flatness is robust under certain modifications to the lattice and that, unlike suggested by

past studies, breaking time-reversal symmetry is not sufficient to isolate the flat band. Instead,

we will show that modulating the flux arising from a Chern-Simons type field gaps out the band

without disturbing its flatness.
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1 Introduction

Strongly correlated systems are useful for studying exotic systems such as fractional quan-

tum Hall effect (FQHE) [1, 2], the Wigner crystal [3–5], unconventional superconductivity at

near room temperature [6, 7], and Mott insulator [8, 9]. There are two ways that strong correla-

tion effects can be induced in a lattice. One way is by having a high density of states. When the

product of density of states at the Fermi surface and the Coulomb interactions is greater than 1,

the correlation is considered strong. Another way is having a dominant contribution of potential

energy due to Coulomb interactions over the kinetic energy to the total energy. Kinetic energy is

proportional to the Fermi energy whose range is dependent on the associated bandwidth while

the potential energy is governed by the Coulomb interactions. Kinetic energy can be quenched

by having zero bandwidth in the system. The two scenarios of forming strong correlation effects

can be observed in two different kinds of systems. The high-density-of-states scenario can be

seen in a system with a dispersing (or approximately flat) band whose density of states is high

while the zero-kinetic-energy scenario can be seen in a system with a perfectly flat band.

Twisted bilayer graphene is an example of a system that exhibits an approximately flat

band with strong correlation effects. It is constructed by stacking two sheets of graphene on

top of each other then twisting to the magic angle of 1.1◦ [10]. It is studied in a wide range

of applications. [11–14]. There are, however, areas that can only be studied with systems with

perfectly flat bands such as phenomena involving exotic quasiparticles. For example, Electronic

correlations lead to the emergence of Chern-Simon’s field that leads to the FQHE. The strong

repulsive interaction due to quenching of the kinetic energy induces the localization of sites at

a certain filling fraction of degenerate states (in the FB). The resulting configuration describes

the Wigner crystal.

Due to these interesting applications, there are researchers who seek for methods to engineer

(perfectly) flat band systems. The conventional method of generating a flat band system is

mathematically challenging. It requires solving inverse eigenvalue problems, which is difficult

to do and may not even have a solution in some cases. Often, these proposed flat band systems

are only applicable for long-range hoppings. There is an alternative approach introduced by

Xu and Pu of using Gram matrices [15]. This method, however, is limited only for a specific

number of atoms per unit cell for a given spatial dimension. This is not very ideal in terms

of practicality. In engineering real materials based on theoretical models, it is preferred that

the hoppings are short-range for practicality purposes. One of the meaningful outcomes of this

thesis is the realization of two families of readily constructible flat band systems with nearest-

neighbour hoppings based on the Kagome and Lieb lattices.

Like most other flat band systems, the Kagome and Lieb lattices exhibit perfectly flat bands
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that are degenerate with their adjacent dispersive bands. Degenerate flat bands are disadvanta-

geous in studying the phenomena mentioned above. When a flat band is coupled to a dispersive

band, the strong correlation effects are overshadowed by the dispersion. Thus, it is desirable

to lift the degeneracy to take advantage of the flat band. Additionally, when the degeneracy is

lifted, the topology of the flat band can be studied. Thus, it is worthwhile to explore means to

lift degeneracies in flat band systems. A past study showed that the band touching is protected

by the topological structure [16]. Furthermore, it was demonstrated that when time-reversal

symmetry (TRS) is broken, flat bands are isolated (but it was also pointed out that there is no

proof that breaking TRS is a necessary condition to isolate flat bands) [17]. One of the goals

of this thesis is to show that breaking TRS is not sufficient to isolate and preserve flat bands in

lattices like the Kagome lattice and present an appropriate treatment.

The thesis is constructed in the following order. Chapter 2 will introduce the two lattices that

will be studied throughout the thesis; Kagome lattice and Lieb lattice. Their band structures will

be presented by diagonalizing the Hamiltonians to show that both lattices exhibit a flat band. In

addition, an analytical approach to calculating the energies of the flat bands will be presented.

This analytical approach will also enable us to calculate the energies of the flat bands in modified

lattices.

Chapter 3 will show that breaking TRS by applying an external magnetic field lifts the

degeneracy but does not preserve the flat band in Kagome lattice. The presence of magnetic

field will be reflected in the Hamiltonian by adding appropriate phases with the help of Peierl’s

substitution. By diagonalizing the Hamiltonians for different strengths of magnetic field Hofs-

tadter’s spectrum will be plotted, which will show the bandwidths and gaps of the energy bands

at all possible values of magnetic field. The spectrum will reveal that the degeneracy is lifted

but the flat band becomes dispersive as soon as the external magnetic field takes a non-zero

value. On the other hand, applying an external magnetic field will be shown to be sufficient to

isolate the flat band in the Lieb lattice. The Hofstadter’s spectrum of the Lieb lattice will show

that the flat band remains flat and the degeneracy is lifted in the presence of magnetic field. The

reason for the two different results, the flat band not being preserved in the Kagome lattice and

being preserved in the Lieb lattice, will be explained in Chapter 6.

In the mean time, Chapter 4 will focus on the degeneracy of the flat bands. Two methods of

calculating degeneracy will be presented. The first method equates the eigenvalues associated

with the flat bands to those of the dispersive bands with which they are degenerate. The second

method presents mathematical constraints at the level of Hamiltonian. By applying these con-

straints to the Hamiltonian matrix, the associated degeneracies of the system can be identified.

The constraints will be found for systems with 2,3, and 4 (identical) atoms per unit cell. As

examples, Graphene and extended square lattice in addition to Kagome lattice and Lieb lattice
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will be explored. The advantage of the first approach is that the calculation is relatively simple

once the eigenvalues are found. On the other hand, the advantage of the second approach is that

it does not require the calculation of eigenvalues.

Chapter 5 will discuss the robustness of flat bands, particularly, under lattice modifications.

The purpose of this chapter is to demonstrate that flat band systems can exist for a family of

systems and not just for fine-tuned set of parameters. Three realizable types of modifications

will be considered, two will be shown to fail to preserve the flat bands while the third one

succeed. To be specific, the unit cell of Kagome lattice is chosen to be a parallelogram whose

four vertices together make up one atom, midpoints of two horizontal sides make up one atom,

and midpoints of the slanted vertical sides make up one atom. The first type of modification is

strains along the two diagonal axes of the unit cell. It will be shown that this fails to preserve

the flat band. The second type of modification will make the three kinds of atoms in the lattice

different from one another, which is reflected in the Hamiltonian as the three on-site energies

having different values. The result will be similar to the first one in the sense that the flat band

is not preserved. The last type of modification will group the inter-unit cell bonds and the

intra-unit cell bonds separately and vary the ratio between the two groups, which corresponds

to changing the distance between unit cells. The result will show that the flat band is preserved

and remains unchanged while the dispersive bands go through changes as the ratio varies. This

same type of modification will also be applied to the Lieb lattice whose unit cell is a square with

the four vertices making up one atom and midpoints of each pair of facing sides making up one

atom each. It will be shown that the flat band remains unchanged while the dispersive bands go

through changes just like the case of Kagome lattice. This seeminglyl artificial modification, is

readily achievable in optical lattices or photonic crystals. Our analytic treatment allows us to

parametrize the two families of flat band systems.

Lastly, in chapter 6, the Chern-Simons (CS) field will be introduced. It will be shown that

the presence of a CS field successfully isolates the flat band in the Kagome lattice, which was

not the case when the magnetic field was applied. The main difference between the magnetic

field and the CS field is the distribution of flux in the unit cell. Due to the presence of internal

bonds in the unit cell of Kagome lattice, flux is distributed among three regions. Applying a

magnetic field results in distributing the flux in all three regions proportionally to the respective

areas. On the other hand, the presence of CS field causes the flux to be concentrated in one

region such that the other two regions have zero flux. The effect of CS field on the flat band of

Kagome lattice will be observed in the Hofstadter’s spectrum. It will reveal that the flat band

is preserved and it is gapped out for all possible values of flux per unit cell. Moreover, it will

be discussed that due to the absence of internal structure in the unit cell of the Lieb lattice there

is no difference in the distribution of flux between the magnetic field and the CS field, which

3



implies that the presence of CS field will isolate the flat band of Lieb lattice. To emphasize the

effect of CS field that isolates flat bands, the family of Kagome lattices introduced in Chapter

5 will be examined. The result will confirm that the presence of CS field indeed isolates flat

bands.
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2 Flat Bands

Both Kagome lattice and Lieb lattice exhibit perfectly flat bands which are coupled to dis-

persive bands. Despite the fact that Kagome materials are relatively rare, the Kagome lattice

has gained popularity and is widely studied particularly in relation to quantum spin liquid states

[18, 19]. One example of Kagome material is Fe3Sn2 [20]. This is a 3D material that consists

of a Kagome structure in one of its crystal planes. Furthermore, the Lieb lattice, with its unique

electronic structure, features many interesting physical phenomena such as superconductivity

and ferromagnetism [21, 22]. The Lieb lattice has been realized in optical lattices [23] . In ad-

dition, its material realization has been proposed with synthesized covalent-organic framework

[24, 25].

The following sections will introduce the two lattices in more detail and analytically calcu-

late their flat bands.

2.1 Kagome Lattice

Figure 1: Kagome lattice structure; there are three atoms per unit cell.

Kagome lattice is composed of three atoms per unit cell as shown in Figure (1). With lattice

constant 2a, the Hamiltonian can be written as following.

H = −t

 0 1 + eiR1·k 1 + eiR2·k

1 + e−iR1·k 0 1 + eiR3·k

1 + e−iR2·k 1 + e−iR3·k 0

 (2.1)

where R1 = (−2a, 0), R2 = (−a,−
√

3a), R3 = (a,−
√

3a) are the translation vectors and t is

the hopping amplitude, which is the overlap integral between the two sites in consideration.
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The Hamiltonian can be diagonalized to give three eigenvalues that make up the energy band

structure as shown in Figure (2).

Figure 2: Energy band structure of Kagome lattice; the top band is dispersionless at E
t

= 2.

Observe in the band structure that the top most band is flat at E
t

= 2. This can be calculated

analytically. By representing the Hamiltonian in the following form,

H = −t

 0 α2 α1

α∗2 0 α3

α∗1 α∗3 0

 (2.2)

where αi ≡ 1 + eiRi·k, the characteristic polynomial can be found as

|H − λI| =
(
λ

t

)3

−
(
λ

t

)(
|α1|2 + |α2|2 + |α3|2

)
+ α1α

∗
2α3 + α∗1α2α

∗
3 = 0 (2.3)

Notice that the last two terms are conjugate to each other. Then, the sum can be expressed

as 2Re[α∗1α2α
∗
3]. Thus, the characteristic polynomial can be re-written as(

λ

t

)3

−
(
λ

t

)(
|α1|2 + |α2|2 + |α3|2

)
+ 2Re[α∗1α2α

∗
3] = 0 (2.4)

Now, for a flat band to exist, one of the solutions of the characteristic equations must be

constant (call it λc), independent of k. Define a new variable f in relation to the constant

root f ≡ λc
t

. Furthermore, to make the computations for finding the actual values of f easier,
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perform a gauge transformation on the eigenvectors according to

(v1, v2, v3)→
(
v1, e

ikR1
2 v2, e

ikR2
2 v3

)
(2.5)

Then, the corresponding Hamiltonian is

H = −2t

 0 cos(kR1

2
) cos(kR2

2
)

cos(kR1

2
) 0 cos(kR3

2
)

cos(kR2

2
) cos(kR3

2
) 0

 (2.6)

Then, substitute the values of α’s to get

|α1|2 + |α2|2 + |α3|2 = 6 + 2
3∑
i=1

cos(kRi) (2.7)

2Re[α∗1α2α
∗
3] = 4 + 4

3∑
i=1

cos(kRi) (2.8)

The characteristic polynomial in equation (2.4) becomes

f 3 − f(6 + 2
3∑
i=1

cos(kRi)) + 4 + 4
3∑
i=1

cos(kRi) = 0 (2.9)

⇒ (f − 2)

(
f 2 + 2f − 2− 2

3∑
i=1

cos(kRi)

)
= 0 (2.10)

It can be easily verified that f = 2 (or λc = 2t) solves the above equation. This precisely

corresponds to the flat band at E
t

= 2t.
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2.2 Lieb Lattice

Figure 3: Lieb lattice structure; there are three atoms per unit cell.

Lieb lattice is another system composed of three atoms per unit cell. The Hamiltonian of a

Lieb lattice with lattice constant 2a reads

H = −t

 0 1 + eikR1 1 + eikR2

1 + e−ikR1 0 0

1 + e−ikR2 0 0

 (2.11)

where R1 = (−2a, 0), R2 = (0,−2a) are the translation vectors.

When the Hamiltonian is diagonalized, the band structure is plotted as shown in Figure (4).

Figure 4: Lieb lattice energy dispersion; it has a flat band at E
t

= 0.

Notice the flat band in the centre, E
t

= 0. To have the analytical approach for this flat band,
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first note that the Hamiltonian is of the following form.

−t

 0 α1 α1

α∗1 0 0

α∗2 0 0

 (2.12)

Then, the characteristic polynomial for the eigenvalues is(
λ

t

)3

−
(
|α1|2 + |α2|2

)(λ
t

)
= 0 (2.13)

The constant eigenvalue that corresponds to the flat band can be related to a new variable f

again as λc = ft. Then, the characteristic polynomial can be expressed as

f(|α1|2 + |α2|2) = f 2 (2.14)

It can be easily seen that λc = 0 solves the above equation. This agrees with the flat band at
E
t

= 0 in the band structure. There would have been another flat band if |α1|2 + |α2|2 were

constant (independent of k), but |α1|2 + |α2|2 = 4 + 2cos(akx) + 2cos(aky), which is clearly

dependent on k.
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3 Effect of Magnetic Field on Lattices

It has been demonstrated in a past study that when TRS is broken, degeneracy is lifted.

This chapter will demonstrate that breaking TRS via applying external magnetic field not only

lifts the degeneracy but also disperses the flatness. To begin, consider the usual (Maxwell-

type) magnetic field directed perpendicular to the lattice plane. Let the field lie along the z-axis

and the lattice plane on the x,y-plane. For simplicity, take Landau gauge for vector potential,
~A = B(0, x, 0). The choice of gauge makes calculations simpler due to the fact that the hop-

ping amplitudes that are purely along the x-axis experience no effect by the vector potential.

The presence of field is reflected in the Hamiltonian by adding phases to hopping amplitudes

(that involve displacement along the y-direction) via Peierl’s substitution. By diagonalizing the

Hamiltonian constructed with the help of Peierl’s substitution for a given value of magnetic

field, the appropriate band structure can be calculated. Here, the magnetic field is represented

by the number of flux quanta per unit cell, defined as φ.

Note that the purpose of diagonalizing Hamiltonians at various values of φ in this thesis is

to examine what happens to the degeneracy and the flat band. In other words, the dispersion

of the bands over the k-space is not significant as long as the bandwidths are shown. One tool

that serves the goal perfectly is the Hofstadter’s spectrum. Hofstadter’s spectrum shows the

bandwidths and gaps for all possible values of φ. More detailed presentation will follow in the

subsequent sections.

3.1 External Magnetic Field on Kagome Lattice

In Kagome lattice, there is a total of six directions in which hoppings occur. In the presence

of magnetic field, two hoppings among the six are along the horizontal axis and thus gain no

new phase via Peierl’s substitution. On the other hand, the remaining four require additional

phases. They can be calculated as

2π
e

h

∫ (ma+a,n
√
3a+
√
3a)

(ma,n
√
3a)

Bxdy =
πφ

4

(
m+

1

2

)
2π
e

h

∫ (ma+a,n
√
3a−
√
3a)

(ma,n
√
3a)

Bxdy = −πφ
4

(
m+

1

2

)
2π
e

h

∫ (ma−a,n
√
3a−
√
3a)

(ma,n
√
3a)

Bxdy = −πφ
4

(
m− 1

2

)
2π
e

h

∫ (ma−a,n
√
3a+
√
3a)

(ma,n
√
3a)

Bxdy =
πφ

4

(
m− 1

2

)
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where m and n represent the displacement in the horizontal and vertical direction in unit of a

(related to the lattice constant). The phases added to some of the hoppings are shown in Figure

(5).

Figure 5: Phase assignment by Peierl’s substitution; arrows indicate the direction of hopping
and red texts correspond to the respective phases assigned via Peierl’s substitution, blue texts
indicate the flux through the region calculated by summing the phases along the edges.

With these new phases, the Hamiltonian can be properly constructed to reflect the presence

of external field. By diagonalizing the Hamiltonians for different values of φ and taking the

resultant bandwidths, the Hofstadter’s spectrum can be in Figure (6) [26].

Figure 6: Hofstadter’s spectrum of Kagome lattice; the flat band at φ = 0 and E
t

= 2 becomes
dispersive (bandwidth grows) as φ grows.
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In Figure (6), a horizontal line at a given φ represents the width of a band. The flat band at

φ = 0 (no magnetic field) and E
t

= 2 begins to separate from its neighbouring dispersive band

as φ grows. The white space between the top band (right-most bandwidth in the spectrum) its

neighbouring band (immediately to the left of the right-most bandwidth in the spectrum) in the

region approximately defined by E
t
∈ [2, 2.5] and φ ∈ [0, 1] represents the gap between the two

bands. This implies that the degeneracy is lifted. It should also be noticed that the top band

gains finite width, which implies that the band is no longer flat. This clearly demonstrates that

breaking TRS by applying external magnetic field removes the degeneracy but at the cost of

dispersing the flat band. Furthermore, notice that φ ranges from 0 to 8. φ is periodic and the

periodicity is due to the lattice structure. Kagome lattice has internal structure whose smallest

region bounded by hoppings has a portion of the flux through the entire unit cell. The period

of φ is determined by the number of this original unit cells needed to allow the smallest area to

aquire a flux of 2π.

3.2 External Magnetic Field on Lieb Lattice

Lieb lattice involves four kinds of hoppings, where two are directed along the horizontal

and thus gain no phase via Peierl’s substitution. The other two are calculated as following.

2π
e

h

∫ ma,na+a

ma,na

Bxdy =
mπφ

2

2π
e

h

∫ ma,na−a

ma,na

Bxdy = −mπφ
2

With these phases added to the Hamiltonian, the Hofstadter’s spectrum can be plotted as shown

in Figure (7) [27].
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Figure 7: Hofstadter’s spectrum of Lieb lattice; whenever band has zero width it is indicated
with a point, it is shown that the flat band is preserved at E

t
= 0 for all values of φ and also

isolated.

Figure (7) is plotted by indicating with a dot whenever a band exists but its width is prac-

tically zero because otherwise the zero bandwidth would be reflected with white space in the

plot. Thus, the thickness of the vertical line at E
t

= 0 does not imply that the band has finite

width but it is manually included there to make the flat band visible. It can be easily observed

that this flat band is preserved and isolated from the two neighbouring dispersive bands for all

values of φ 6= 0, 1 (due to periodicity in φ, φ = 0 is essentially identical to φ = 1).

3.3 Summary

So far, it has been shown that applying an external magnetic field lifts the degeneracy in

both Kagome lattice and Lieb lattice. There is, however, a difference between the two lattices.

The flat band is not preserved in the Kagome lattice while it is preserved in the Lieb lattice.

This will be explained further in Chapter 6 with the introduction of Chern-Simons field.
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4 Degeneracy

Notice in both Kagome lattice and Lieb lattice in their band structures that both flat bands are

coupled to dispersive bands as mentioned before. In order to lift the degeneracy, it is essential to

understand what causes it and how to mathematically calculate it. The first part of this chapter

will demonstrate how degeneracy can be computed in Kagome lattice and Lieb lattice. Latter

part of the chapter will present a method to determine the existence of, and also to compute

double and triple degeneracies for more general Hamiltonians. The method suggested is purely

mathematical and it is not sufficient to provide a physical interpretation of the necessary criteria

for the presence of degeneracy.

4.1 Calculation of Degeneracy by Equating Eigenvalues

4.1.1 (Double) Degeneracy in Kagome Lattice

It was found in Chapter 2.1 that the flat band of Kagome lattice is present at E
t

= 2. One

way to find the touching point of the flat band with its neighbouring dispersive band is to equate

the two corresponding eigenvalues and compute the k point where the two are identical. In

order to do this, the eigenvalue of the dispersive band must be calculated first.

Consider the characteristic polynomial in equation (2.4). Given one root f = λc
t

, the polynomial

can be factored by
(
λ
t
− f

)
. In other words, the characteristic polynomial can be written in the

following manner.

(
λ

t
− f

)[(
λ

t

)2

+ f

(
λ

t

)
+ f 2 −

(
|α1|2 + |α2|2 + |α3|2

)]
= 0 (4.1)

This allows the other two roots to be calculated as

λ±
t

=
−f ±

√
4 (|α1|2 + |α2|2 + |α3|2)− 3f 2

2
(4.2)

Again, for the double degeneracy to occur, the constant eigenvalue must be equated to one of

the two dispersive roots. In other words,

f =
λ±
t

=
−f ±

√
4 (|α1|2 + |α2|2 + |α3|2)− 3f 2

2
(4.3)

⇒ 3f 2 = |α1|2 + |α2|2 + |α3|2
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Now, substituting the appropriate values for α1, α2, α3 according to the Hamiltonian of Kagome

lattice as well as f = 2 gives

12 = 6 + 2
3∑
i=1

cos(kRi) (4.4)

⇒ 3 =
3∑
i=1

cos(kRi) (4.5)

The above equality only holds for ~k = (0, 0). Referring to the band structure in Figure (2), it

can be confirmed that the double degeneracy is in fact present at ~k = (0, 0).

4.1.2 (Triple) Degeneracy in Lieb Lattice

Same procedure is followed with the Lieb Lattice. Using the characteristic polynomial, in

equation (2.13), found in the previous chapter, the remaining two roots can be found as

λ±
t

=
−f ±

√
4 (|α1|2 + |α2|2)− 3f 2

2
(4.6)

To have the triple degeneracy as seen in the band structure, the constant root must be equated

to the other two roots. After a simple rearrangement, the condition for the triple degeneracy is

written as

3f 2 = |α1|2 + |α2|2 (4.7)

Substituting the appropriate values for α1, α2 from the Hamiltonian and f = 0 gives

0 = cos2(kx) + cos2(ky) (4.8)

Since both cosine terms are squared, the only time that the sum is zero is when they are both

zero. This implies that both kx and ky are equal to ±π
2
. By observing the band structure it is

also verified that at the four k points indicated, the flat band manifests triple degeneracy.

So far, by calculating the eigenvalues analytically and equating the appropriate eigenvalues

with the one that corresponds to the flat band, it was demonstrated that degeneracy can be

computationally found. The following sections discuss an alternative approach to calculating

degeneracy in a more general manner, without having to cmopute eigenvalues.
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4.2 Alternative Method of Calculating Degeneracy

Imagine an N -by-N Hamiltonian with N eigenvalues. The Schrodinger’s equation writes

HN×NvN×1 = λvN×1. The eigenstate has N number of unknowns given that the Hamiltonian

hasN number of equations. Normalization of v allows us to determine one of the unknowns and

thus the system can have at most N − 1 independent equations. Now, ssume two eigenvalues

are identical, in other words there is double degeneracy. Let the two eigenvectors associated

with the repeated eigenvalue be denoted as v1 and v2. Then, H(v1 + v2) = Hv1 + Hv2 =

λv1 + λv2 = λ(v1 + v2). It can be easily seen that any linear combination of the v1 and v2 is

an eigenvector with the same eigenvalue. Denote an arbitrary linear combination as v. Then,

v = c1v1 + c2v2 = c1

(
v1 + c1

c2
v2

)
. Here, c1 is an overall scale and c1

c2
is unknown. In other

words, one additional unknown parameter is introduced to the problem. Thus, only N − 2

out of N − 1 unknown variables can be determined. This necessarily requires N − 2 linearly

independent equations. Conversely, if the Hamiltonian has N − 2 independent equations it

means that there is double degeneracy. This same argument applies to any degree of degeneracy.

For triple degeneracy, the Hamiltonian would have N − 3 independent equations. Therefore, a

relation between the degree of freedom and the number of independent equations can be defined.

Rank of Hamiltonian− number of independent equations = degree of degeneracy (4.9)

Thus, if a system contains N − 1 independent equations, there is no degeneracy and the situ-

ation corresponds to all the portion of the band structure except the degenerate points. This is

possible because one additional equation is provided from the normalization to determine the

eigenvector. For a similar reason, if all the equations in the system are independent, it is not

solvable.

The following sections in this chapter will discuss the scheme to define conditions that

bear degeneracy in systems of 2,3, and 4 atoms per unit cell (Hamiltonians of dimension 2,3,

and 4). Applying the rule found for each size of Hamiltonian, double and triple degeneracies

in Graphene, Kagome lattice, Lieb lattice, and extended square lattice will be mathematically

derived.
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4.2.1 Double Degeneracy in Hamiltonian of Rank 3

Consider a 3-by-3 Hamiltonian with identical atoms in the unit cell. 0 H12 H13

H21 0 H23

H31 H32 0


ab
c

 = E

ab
c

 (4.10)

⇒


H12b+H13c− Ea = 0

H21a+H23c− Eb = 0

H31a+H32b− Ec = 0

(4.11)

Based on the relation between the degree of degeneracy and number of independent equa-

tions, it can be seen that double degeneracy occurs when there is one independent equation

in rank-3 Hamiltonian (number of independent equation = 3 (rank) - 2 (double degeneracy)).

It implies that all three equations are identical and they can simply be expressed as a scalar

multiple of one another. In other words, the ratios of coefficients must be equal.

− E

H21

= −H12

E
=
H13

H23

− E

H31

=
H12

H32

= −H13

E
(4.12)

One form of Hamiltonian that meets the above conditions is 0 −E −E
−E 0 −E
−E −E 0


ab
c

 = E

ab
c

 (4.13)

The above form of Hamiltonian corresponds to a situation where all the nearest-neighbour (NN)

hopping amplitudes are identical among the three atoms and also that they are equal to the on-

site energies. Thus for a system with double degeneracy for some k in the FBZ, its Hamiltonian

can be reduced to (4.13).

4.2.2 Triple Degeneracy in Hamiltonian of Rank 3

For a rank-3 Hamiltonian to have triple degeneracy, the difference between the rank and the

number of independent equations in the Hamiltonian has to be 3. In other words, there remains

zero equation in this case. Then the Hamiltonian has to be a zero matrix, which gives zero
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energy as well. 0 0 0

0 0 0

0 0 0


ab
c

 = 0

ab
c

 (4.14)

This implies that all the NN hopping amplitudes and on-site energies are made zero and the

triple degeneracy occurs at E
t

= 0.

4.2.3 Example: Kagome Lattice

As an example of system with rank-3 Hamiltonian (lattice consists of three atoms per unit

cell), consider Kagome lattice. The associated Hamiltonian is provided in section 2.1. The

Hamiltonian can be tested for a double degeneracy by comparing it to the form in equation

(4.13). It can be immediately realized that at E
t

= 2 and ~k = 0 (Γ point), double degeneracy

occurs. Furthermore, by substituting appropriate values in condition (4.12), other places where

double degeneracy occurs can be computed.

|H12|2 = |H13|2

⇒ cos(2kx)− cos(kx −
√

3ky) = 0

⇒ −2sin

(
3kx −

√
3ky

2

)
sin

(
kx +

√
3ky

2

)
= 0

⇒ 3kx −
√

3ky = 2n1π or kx +
√

3ky = 2n2π (4.15)

(4.16)

|H13|2 = |H23|2

⇒ cos(kx −
√

3ky)− cos(kx +
√

3ky) = 0

⇒ 2sin(kx)sin(
√

3ky) = 0

⇒ kx = n3π or −
√

3ky = n4π (4.17)

(4.18)

|H12,13,23|2 = E2

⇒ 2 + 2 cos(2kx) = 2 + 2 cos(kx +
√

3ky) = 2 + 2 cos(2kx −
√

3ky) = E2 (4.19)

where n1, n2, n3, n4 ∈ Z.

The last constraint does not impose any restrictions on the value of ~k but it simply identifies the
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value of E
t

. Then, by combining the first two results, double degeneracy can be identified at

kx =
nπ

3
, ky =

nπ√
3

where n ∈ Z.

This precisely coincides with the vertices of the FBZ (K/K’ points) and E = -1.

The results of the calculations above can be compared to the band structure obtained by diago-

nalization in Figure (2). According to the figure, the top two bands are degenerate at ~k = (0, 0)

and E
t

= 2. The bottom two bands have six degenerate points at the vertices of the FBZ, which

are

~k =

(
2π

3
, 0

)
,

(
π

3
,
π√
3

)
,

(
−π

3
,
π√
3

)
,

(
−2π

3
, 0

)
,

(
−π

3
,− π√

3

)
,

(
π

3
,− π√

3

)
Thus, the analytical calculations agrees with the result obtained via diagonalization.

Furthermore, the condition for triple degeneracy, equation (4.14), requires all the entries of the

Hamiltonian to be zero, which cannot be achieved. To see this, equate H12 and H13 to zero.

1 + e−i2kx = 0⇒ kx = −π
2

(4.20)

1 + e−i(−
π
2 )−i

√
3ky = 0⇒ ky = − π

2
√

3
(4.21)

Now, since all elements have to be zero simultaneously, substitute these values in H23 and test

if it can be equated to zero as well.

H23

(
−π

2
,− π

2
√

3

)
= 1 + e

i(−π2 )−i
(
− π

2
√
3

)
(4.22)

This cannot be zero. Thus, there is no triple degeneracy in Kagome lattice.

4.2.4 Example: Lieb Lattice

Lieb lattice is another example of a system with rank-3 Hamiltonian. Refer to the Hamil-

tonian in section 2.2. The triple degeneracy can be tested by using equation (4.14). Recall that

the Hamiltonian of Kagome lattice could not be made zero. But in the case of Lieb lattice,

it is possible by substituting appropriate values for ~k. In fact, the vertices of FBZ (K points,
~k =

(
±π

2
,±π

2

)
) make the Hamiltonian zero and the energy zero.

To test the existence of double degeneracy, substitute appropriate values in equation (4.13).

|1 + e−i2kx|2 = |1 + e−i2ky |2 = 0 = E2 (4.23)
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Therefore,

|1 + e−i2kx|2 = 0⇒ kx = ±π
2

(4.24)

|1 + e−i2ky |2 = 0⇒ ky = ±π
2

(4.25)

Thus at ~k =
(
±π

2
,±π

2

)
, double degeneracy is present with energy 0. But this is precisely

where the triple degeneracy is found. This is expected because a lower-degree degeneracy is a

subspace of a higher-degree degeneracy. These results agree with the band structure plotted by

diagonalizing the Hamiltonian in Figure (4).

4.2.5 Double Degeneracy in Hamiltonian of Rank 2

Whenever zero independent equations are assumed in a Hamiltonian of any rank, the Hamil-

tonian and the energy must be zero. Thus, in the case of double degeneracy in rank-2 Hamilto-

nians, the following must hold. (
0 0

0 0

)(
a

b

)
= 0

(
a

b

)
(4.26)

Again, this corresponds to a situation where all NN hopping amplitudes and on-site energies

are zero and thus results in double degeneracy at E
t

= 0.

4.2.6 Example: Graphene

Figure 8: Graphene lattice; there are two atoms per unit cell.
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Graphene is a popular example of system with rank-2 Hamiltonian. The lattice structure can

be visualized in Figure (8). Consider the Hamiltonian of Graphene.(
0 1 + e−i

3
2
akx+i

√
3

2
aky + e−i

3
2
akx−i

√
3

2
aky

1 + ei
3
2
akx−i

√
3

2
aky + ei

3
2
akx+i

√
3

2
aky 0

)
(4.27)

Notice that the Hamiltonian becomes zero at the vertices of FBZ (K/K’ points),

~k =

(
0,

4π

3
√

3

)
,

(
2π

3
,

2π

3
√

3

)
,

(
2π

3
,− 2π

3
√

3

)
,

(
0,− 4π

3
√

3

)
,

(
−2π

3
,− 2π

3
√

3

)
,

(
−2π

3
,

2π

3
√

3

)
Observe in Figure (9) that the six vertices of FBZ are doubly degenerate as predicted.

Figure 9: Energy dispersion of Graphene; notice the double degeneracy at the K/K ′ points.

4.2.7 Double Degeneracy in Hamiltonian of Rank 4

Consider a general 4-by-4 Hamiltonian (with identical atoms in the unit cell).
0 H12 H13 H14

H21 0 H23 H24

H31 H32 0 H34

H41 H42 H43 0



a

b

c

d

 = E


a

b

c

d

 (4.28)

⇒



H12b+H13c+H14d = Ea

H21a+H23c+H24d = Eb

H31a+H32b+H34d = Ec

H41a+H42b+H43c = Ed

(4.29)
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Assume now that there are two linearly independent equations so that the system manifests

double degeneracy. Without loss of generality, let the first and third equations be identical as

well as the second and the fourth.

H12b+H13c+H14d = Ea⇔ H31a+H32b+H34d = Ec (4.30)

H21a+H23c+H24d = Eb⇔ H41a+H42b+H43c = Ed (4.31)

To make the two equations in each pair identical, the ratio of the coefficients of a,b,c,d must be

set equal. In other words,

− E

H31

=
H12

H32

= −H13

E
=
H14

H34

H21

H41

= − E

H42

=
H23

H43

= −H24

E
(4.32)

Thus, when these conditions are satisfied for some k in the FBZ, the system has double degen-

eracy.

4.2.8 Triple Degeneracy in Hamiltonian of Rank 4

For a rank-4 Hamiltonian to have triple degeneracy, it has to be in the following form, where

all the off-diagonal elements are equal to −E.
0 −E −E −E
−E 0 −E −E
−E −E 0 −E
−E −E −E 0

 (4.33)

This corresponds to a situation where all the on-site energies and NN hopping amplitudes are

made equal to E
t

, the energy at which the degeneracy takes place.
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4.2.9 Example: Extended Square Lattice

Figure 10: Extended square lattice; there are four atoms per unit cell and hopping amplitudes
are allowed to vary.

An example of system with rank-4 Hamiltonian can be pictured with the basis of square

lattice. While removing the atoms at the lattice sites, place four atoms at equidistance in the four

directions along the horizontal and the vertical. Refer to Figure (10) for the lattice structure. the

shortest hoppings amongst the four atoms, which are marked by the dashed lines in the figure,

are defined as tl. The hoppings in the vertical, or y direction, are indexed with subscript y. In

addition, when the hopping is within the unit cell, it is given an additional superscript index

in while for the hopping outside the unit cell it is indexed out. Same argument goes for the

horizontal hoppings (x direction). The Hamiltonian of such system is given as
0 tl tiny + touty e−i

~k·~a2 tl

tl 0 tl tinx + toutx ei
~k·~a1

tiny + touty ei
~k·~a2 tl 0 tl

tl tinx + toutx e−i
~k·~a1 tl 0

 (4.34)

Notice H12 = H32, H14 = H34, H21 = H41, H23 = H43. This means that the equations in (4.32)

reduce to

−E = H31, −E = H24 (4.35)

These conditions imply that ei~k·~a1 and ei~k·~a2 have to be real and the only way that they can be

real is when

~k = (0, 0), (±π,±π), (0,±π), (±π, 0) (4.36)

Double degeneracy can only occur at the above k points. In particular, degeneracy at ~k =

(0,±π), (±π, 0) can only be achieved when tiny + touty = tinx − toutx or tiny − touty = tinx − toutx .
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When these equalities do not hold, degeneracy may occur at the other k points.

To examine the existence of triple degeneracy, consider the form of Hamiltonian in equation

(4.33). All the off-diagonal entries of the Hamiltonian must be equal to one another and to −E.

e−i
~k·~a2 = ei

~k·~a2 ⇒ ~k = (0, 0), (±π,±π) (4.37)

tl = tiny + touty = tinx + toutx (4.38)

This means that under the condition that the last line holds true, the k points in the first line are

triply degenerate.

The results drawn above can be verified by substituting numerical values in the hopping

parameters. To begin, factor out tl in the Hamiltonian so that the new ty’s and tx’s are those of

the original divided by tl. Then, substitute ~a1 = (1, 0) and ~a2 = (0, 1).

H =
1

tl


0 1 tiny + touty e−iky 1

1 0 1 tinx + toutx eikx

tiny + touty eiky 1 0 1

1 tinx + toutx e−ikx 1 0

 (4.39)

As the first example, set all the hoppings to unity.

Figure 11: tinx = 1, toutx = 1, tiny = 1, touty = 1; the three lowest bands are pair-wise doubly
degenerate.

Notice that the condition for the degeneracy at ~k = (0,±π), (±π, 0) is not satisfied. Double

degeneracy is present at ~k = (±π,±π) and the corresponding energy can be obtained as the

negative of element H13 = 0. Moreover, the degeneracy at (0, 0) gives energy -2 based on the

same reasoning.
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Figure 12: tinx = 0, toutx = 1, tiny = 0, touty = 1; the upper three bands are triply degenerate at the
vertices of BZ and also the lower three bands are triply degenerate at the centre.

As a second example, set the hoppings inside the square loop to zero. The condition for

degeneracy at ~k = (0,±π), (±π, 0) is still not satisfied and thus there are no degeneracy at

these points. But the degeneracy at ~k = (±π,±π) is present with energy 1. Also, the condition

for triple degeneracy holds true exactly at ~k = (0, 0), (±π,±π) and it can be observed in the

figure.

Lastly, to observe degeneracy at ~k = (0,±π), (±π, 0), let, for example, tiny +touty +toutx = tinx

by setting all the terms on the left hand side 1 and the right hand side 3 so that there is degeneracy

at ~k = (0,±π).

Figure 13: tinx = 3, toutx = 1, tiny = 1, touty = 1; the bottom two bands are degenerate at points
along the edges of BZ.

As demonstrated in this section, the system can be manipulated to manifest different degrees

of degeneracy.
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4.3 Summary

This chapter demonstrated two approaches for calculating degeneracy. The former of which

requires calculating the eigenvalues and equating them while the latter compares the elements

of Hamiltonian with the conditions found for each rank. The former is more advantageous for

systems whose eigenvalues can be calculated easily but otherwise, the latter can be more useful.

We will demonstrate the consistency of these findings with result in subsequent chapters.
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5 Modified Lattices

This chapter is designed to examine the robustness of flat bands. To be specific, the Hamilto-

nian of Kagome lattice will be modified in three realizable ways. These are realizable because

they will only consist of nearst neighbour hoppings. The first modification mimics applying

strains along the two diagonal axes of the unit cell. The second modification requires making

the three types atoms different from one another, which will result in different on-site ener-

gies in the Hamiltonian. The last modification requires varying the ratio between the hopping

amplitudes within the unit cells and those outside the unit cells (between unit cells). It will

be shown that only the last modification preserves the flat band and thus more suitable to the

purpose of this thesis. Furthermore, real materials of this sort of modification can be fabricated

with artificial growth techniques and also with nano-wires. Similarly for the Lieb lattice, the

Hamiltonian will be modified with the different intra-unit-cell and inter-unit-cell hopping am-

plitudes. Moreover, an additional hopping amplitude will be considered to verify its effect on

the flat band.

5.1 Applying Strains in Kagome Lattice

We consider two types of strains in Kagome lattice. They correspond to stretching the unit

cell in the two diagonal directions. As it is described in Figure (14), in both cases the hopping

amplitudes along the edges of the unit cell are reduced due to the increase in the distance. In

the first case, where the stretching is applied to the longer diagonal of the unit cell, the internal

hopping amplitudes grow in the process. On the other hand, the internal hopping amplitudes

are reduced in the second case.

(a) r ≥ 1 (b) r < 1

Figure 14: Two types of strains on Kagome lattice; the hopping amplitudes along the edges of
the unit cell are defined as t2 and those along the internal bonds are defined as t1.
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In both cases, the hopping amplitudes along the edges of the unit cell will be called t2 and

the internal hopping amplitudes t1. Defining the ratio between the two r = t1
t2

, the Hamiltonian

can be written as

H = −t2

 0 1 + e−i2akx 1 + e−iakx−i
√
3aky

1 + ei2akx 0 r + reiakx−i
√
3aky

1 + eiakx+i
√
3aky r + re−iakx+i

√
3aky 0

 (5.1)

Consider a few values around r = 1, which corresponds to no strain, to see how the band

structures evolve with increasing r.

(a) r=0.5 (b) r=1.5 (c) r=2

Figure 15: Energy dispersion of Kagome lattice with strains; when strains are applied, the flat
band is no longer present.

Figure (15) shows that at r = 1.5, the degeneracies at the K/K ′ and Γ are lifted but instead

the degeneracy at the Γ point is split and pushed outwardly from the centre. Moreover, the top

band is no longer flat as soon as r is made differ from 1. This shows that flatness is not protected

when these strains are applied and also that the degeneracy is moved to different points.

5.2 Different On-Site Energies in Kagome Lattice

Another modification of Hamiltonian that can be tested is introducing different on-site en-

ergies for the three types of atoms. This is always the case when the three atoms in the lattice

are of different kinds. This can be reflected in the Hamiltonian by simply adding diagonal el-

ements, which precisely represent the on-site energies of the three atoms. By letting the two

atoms, which are represented as the first and third element of the Hamiltonian, have different

on-site energies ε1 and ε2, the Hamiltonian can be written in the following manner.

H = −t

 ε1 1 + e−i2akx 1 + e−iakx−i
√
3aky

1 + ei2akx 0 1 + eiakx−i
√
3aky

1 + eiakx+i
√
3aky 1 + e−iakx+i

√
3aky ε2

 (5.2)
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To examine what happens to the flat band, two scenarios will be considered first; ε1 = ε2 and

ε1 = −ε2.

5.2.1 ε1 = ε2

Observe the band structure while paying particular attention to the top flat band as ε = ε1 =

ε2 take a few different values.

(a) ε = 0.5 (b) ε = 1 (c) ε = 1.5

(d) ε = 2 (e) ε = 2.5

Figure 16: Variation of band structure of Kagome lattice when the on-site energies of two atoms
are equal; flat band is not present again.

As it can be seen in Figure 16, the K/K ′ and Γ points are not degenerate anymore. At the

same time, the top flat band becomes dispersive.

5.2.2 ε1 = −ε2

Now, examine what happens when the two on-site energies are made negative to each other.
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(a) ε1 = 0.5 (b) ε1 = 1 (c) ε1 = 1.5

(d) ε1 = −0.5 (e) ε1 = −1 (f) ε1 = −1.5

Figure 17: Band structure of Kagome lattice where two on-site energies are set negative to each
other; flat band is no longer present again.

Observe in Figure (17) that the degeneracies at the K/K ′ and Γ are lifted but the flatness of

the top band is no longer preserved.

5.2.3 ε2 = rε1

Lastly, let ε1 and ε2 be completely different. Let ε2 = rε1 for r any real number. For the

purpose of demonstration, r will take two values 2 and 3.

30



(a) r = 2, ε1 = 0.5 (b) r = 2, ε1 = 1 (c) r = 2, ε1 = 1.5

(d) r = 2, ε1 = 2 (e) r = 2, ε1 = 2.5 (f) r = 3, ε1 = 0.5

(g) r = 3, ε1 = 1 (h) r = 3, ε1 = 1.5 (i) r = 3, ε1 = 2

(j) r = 3, ε1 = 2.5

Figure 18: Band structure of Kagome lattice whose on-site energies are ε2 = rε1; whenever the
three atoms of Kagome lattice are made different from one another the flat band is absent.

Clearly, adding different on-site energies to the Hamiltonian destroys the flatness in Kagome

lattice. This implies that the three types of atoms must be of the same kind. Otherwise, there

the system cannot hold a flat band. For the last type of modification of the Hamiltonian in the

upcoming sections, it will be assumed that the three atoms are of the same kind and thus have

the same on-site energies.
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5.3 Modifying Unit Cell in Kagome Lattice

The last modification to the Hamiltonian we consider requires varying the hopping ampli-

tudes by differentiating those of intra-unit cell from those of inter-unit cell.

To distinguish the two types of hopping amplitudes, define the following variables.

tintra ≡ t(1 + r), tinter ≡ t(1− r) (5.3)

r is defined such that increasing r increases tintra while decreasing tinter and vice versa.

Figure 19: Kagome lattice with varying tinter and tintra

In this way, increasing r weakens tinter and consequently this corresponds to increasing the

distance between the unit cells as depicted in Figure (20).

Figure 20: tinter vs tintra; increasing r results in increasing distance between unit cells.

5.3.1 Varying Hopping Amplitudes for 0 ≤ r < 1

First, consider the case where 0 ≤ r < 1, in other words, tintra ≥ tinter. Here, the effective

inter-hopping range is longer and intra-hopping range is shorter. In other words, the distance

between unit cells is longer. In this case, the system has stronger intra-molecular bonds than

inter-molecular bonds.
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The Hamiltonian then can be written as

H = −t

 0 (1 + r) + (1− r)eikR1 (1 + r) + (1− r)eikR2

(1 + r) + (1− r)e−ikR1 0 (1 + r) + (1− r)eikR3

(1 + r) + (1− r)e−ikR2 (1 + r) + (1− r)e−ikR3 0


(5.4)

With the same gauge transformation as the original Kagome lattice, (2.5), the Hamiltonian can

be expressed as

H = −2t(1 + r)e
α
2

 0 cosh
(
α+ikR1

2

)
cosh

(
α+ikR2

2

)
cosh

(
α−ikR1

2

)
0 cosh

(
α+ikR3

2

)
cosh

(
α−ikR2

2

)
cosh

(
α−ikR3

2

)
0

 (5.5)

where 1−r
1+r

= eα.

Notice that the form of the Hamiltonian is identical to the form of the original Hamiltonian

of Kagome, which is (2.2). Thus, we can follow the precisely the same prescription. If there is

a flat band, its associated eigenvalue must satisfy the characteristic polynomial in (2.4). Define

f ≡ λc

2t(1+r)e
α
2

. Thus, the characteristic polynomial writes

∣∣∣∣cos

(
kR1

2
− iα

2

)∣∣∣∣2 +

∣∣∣∣cos

(
kR2

2
− iα

2

)∣∣∣∣2 +

∣∣∣∣cos

(
kR3

2
− iα

2

)∣∣∣∣2
=

2

f
Re

[
cos

(
kR1

2
+ i

α

2

)
cos

(
kR2

2
− iα

2

)
cos

(
kR3

2
+ i

α

2

)]
+ f 2 (5.6)

To simplify the equation above, use the following identities (proof found in the Appendix).

3∑
n=1

∣∣∣∣cos

(
kRn

2
− iα

2

)∣∣∣∣2 =
3∑

n=1

cos2
(
kRn

2

)
+ 3 sinh2

(α
2

)
(5.7)

2Re

[
3∏

n=1

cos

(
kRn

2
(−1)n+1i

α

2

)]
= 2 cosh

(α
2

) 3∏
n=1

cos

(
kRn

2

)
+ 2 cosh

(α
2

)
sinh2

(α
2

)
(5.8)

3∑
n=1

cos2
(
kRn

2

)
= 2

3∏
n=1

cos

(
kRn

2

)
+ 1 (5.9)
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Then, equation (5.6) reads

2
3∏

n=1

cos

(
kRn

2

)
+ 1 + 3 sinh2

(α
2

)
(5.10)

=
2

f

[
cosh

(α
2

) 3∏
n=1

cos

(
kRn

2

)
+ cosh

(α
2

)
sinh2

(α
2

)]
+ f 2 (5.11)

This equation is solved for a constant value (independent of k) f = cosh
(
α
2

)
. Thus, the flat

band has energy

λ = 2t(1 + r)e
α
2 cosh

(α
2

)
= 2t (5.12)

The other two remaining eigenvalues can also be computed using equation (4.2).

λ±
t

= −1± (1 + r)e
α
2

√√√√8
3∏

n=1

cos

(
kRn

2

)
+ 9 sinh2

(α
2

)
+ 1 (5.13)

Note that the energy of the flat band is identical to the case α = 0 (equivalently r = 0, no

modification in Hamiltonian). Furthermore, the eigenvalue of the flat band, f , is independent

of r. This implies that the existence of the flat band is not affected when r varies. Furthermore,

note that substituting r = 0 in (5.13) restores the two dispersive eigenvalues of the original

Kagome lattice. Hence, we see that there is a family of Hamiltonian parametrized by r.

Now, to see whether the flat band is degenerate with neighbouring bands or not, check con-

dition (4.3).

3 cosh2
(α

2

)
=

3∑
n=1

cos2
(
kRn

2

)
+ 3 sinh2

(α
2

)
(5.14)

3∏
n=1

cos

(
kRn

2

)
= 1 (5.15)

The result implies that either all three cosine terms must be equal to 1 or two of them be -1

while the remaining one is 1. In other words, when each kRn
2

is some integral multiple of π,

the flat band is degenerate. In the FBZ, this condition is yielded at ~k = (0, 0). Moreover, the

condition for degeneracy is also independent of r. In other words, the degeneracy is preserved

with varying r.

The degeneracy can be identified without having to evaluate the eigenvalues based on the

34



previous discussion. It can be achieved by using equation (4.12) where the α’s correspond to

the three elements of the upper triangle in matrix (5.4).

|(1 + r) + (1− r)eikR1|2 = |(1 + r) + (1− r)eikR2,3|2 (5.16)

⇒ (1 + r)2 + (1− r)2 + 2(1 + r)(1− r) cos(kR1)

= (1 + r)2 + (1− r)2 + 2(1 + r)(1− r) cos(kR2,3)

⇒ cos(kR1)− cos(kR2,3) = 0 (5.17)

The last line is exactly the same as the condition of double degeneracy when r = 0 (section

4.2.3), thus gives ~k =
(
nπ
3
, nπ√

3

)
.

Recall that the constraint that equates the mod square of each of the hopping amplitudes

to energy squared did not impose any additional restriction to the ~k value when r = 0. With

r 6= 0, however, this will play a significant role as it will soon be demonstrated. Consider the

constraint.

|H12,23,13|2 = E2 (5.18)

⇒ |(1 + r) + (1− r)eikRn|2 = E2

⇒ (1 + r)2 + (1− r)2 + 2(1 + r)(1− r) cos(kRn) = E2 (5.19)

If the left-hand side is to be real, either cos(kRn) = ±1 or r = 0. r = 0 is again the original

Hamiltonian in section 4.2.3 and thus the vertices of FBZ manifest double degeneracy. On the

other hand, cos(kRn) = ±1 implies that only at ~k = (0, 0) and E
t

= 2 there is degeneracy,

which is independent of r. Thus, it is expected that the six degenerate points at E
t

= −1

disappear as soon as r 6= 0 whereas the degeneracy between the top flat band and the middle

band is preserved regardless of change in r. This means that varying r only influences the

dispersion of the two dispersive bands. The top flat band in Figure (2) remains unchanged and

the middle dispersive band goes through deformation with varying r. This can also be visually

verified in Figure (21).
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(a) r = 0 (b) r = 0.3 (c) r = 0.5

(d) r = 0.7 (e) r = 0.9

Figure 21: Band structures of Kagome lattice for tintra ≥ tinter (r ∈ [0, 1[ ); both flat band and
degeneracy are preserved.

5.3.2 Hopping Amplitudes for r > 1

In order to complete the analysis of the effect of varying r, also consider the case r > 1.

Notice that this case implies tinter = (1−r) < 0 This does not have a physical meaning in solid

crystals but it is realizable in optical lattices, where the coupling between atomic sites can carry

a phase. The corresponding Hamiltonian reads

H = −t

 0 (1 + r) + (1− r)eikR1 (1 + r) + (1− r)eikR2

(1 + r) + (1− r)e−ikR1 0 (1 + r) + (1− r)eikR3

(1 + r) + (1− r)e−ikR2 (1 + r) + (1− r)e−ikR3 0


(5.20)

Factor out (1+r) like before. But this time, 1−r
1+r
6= eα because the left hand side of the equation

is negative. Then, define 1−r
1+r

= eα+iπ such that eα =
∣∣1−r
1+r

∣∣.
With the gauge transformation (2.5) Hamiltonian can be expressed as

H = −2t(1 + r)e
α
2

 0 i cosh
(
α+iπ+ikR1

2

)
i cosh

(
α+iπ+ikR2

2

)
−i cosh

(
α−iπ−ikR1

2

)
0 i cosh

(
α+iπ+ikR3

2

)
−i cosh

(
α−iπ−ikR2

2

)
i cosh

(
α−iπ−ikR3

2

)
0

 (5.21)
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The above Hamiltonian takes the form of the original Kagome lattice again, (2.2). Then, fol-

lowing the same scheme, the characteristic equation of the Hamiltonian is

λ3 − λ
(
|α1|2 + |α2|2 + |α3|2

)
+ 2Re [α∗1α2α

∗
3] = 0 (5.22)

By defining f = λ

2t(1+r)e
α
2

for the flat band, the charactersitic polynomial can be written as

f

3∑
n=1

∣∣∣∣sin(kRn − iα
2

)∣∣∣∣2 = −2Im
3∏

n=1

sin

(
kRn − α(−1)n

2

)
+ f 3 (5.23)

To simplify the equation above, consider the following identities (for r > 1, proof found in the

Appendix).

3∑
n=1

∣∣∣∣sin(kRn − α
2

)∣∣∣∣2 = −1− 2
3∏

n=1

cos

(
kRn

2

)
+ 3 cosh2

(α
2

)
(5.24)

2Im
3∏

n=1

sin

(
kRn − α(−1)n

2

)
= −2 sinh

(α
2

) 3∏
n=1

cos

(
kRn

2

)
+ 2 sinh

(α
2

)
cosh2

(α
2

)
(5.25)

Then, the characteristic polynomial can be rewritten as

f

[
−1− 2

3∏
n=1

cos

(
kRn

2

)
+ 3 cosh2

(α
2

)]

= 2 sinh
(α

2

) 3∏
n=1

cos

(
kRn

2

)
− 2 sinh

(α
2

)
cosh2

(α
2

)
+ f 3 (5.26)

This equation is solvable with f = − sinh
(
α
2

)
, again independent of k. One can immediately

see that the flat band has energy

λ = 2t(1 + r)e
α
2

[
− sinh

(α
2

)]
= 2t (5.27)
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Using equation (4.2), the other two eigenvalues can also be found.

λ±

2t(1 + r)e
α
2

=
− sinh

(
α
2

)√
4
[
−1− 2

∏3
n=1 cos

(
kRn
2

)
+ 3 cosh2

(
α
2

)]
− 3 sinh2

(
α
2

)
2

(5.28)

⇒ λ± = t

−1∓ (1 + r)e
α
2

√√√√−8
3∏

n=1

cos

(
kRn

2

)
+ 9 cosh2

(α
2

)
− 1

 (5.29)

Then for the degeneracy, consider equation (4.3) again.

3 sinh2
(α

2

)
= −1− 2

3∏
n=1

cos

(
kRn

2

)
+ 3 cosh2

(α
2

)
(5.30)

⇒
3∏

n=1

cos

(
kRn

2

)
= 1 (5.31)

The same conclusion is drawn as in the case 0 ≤ r < 1. Note also that based on the method

discussed in the previous chapter, imposing condition (4.12) to the Hamiltonian gives exactly

the same result as the case 0 ≤ r < 1. The degeneracy between the top flat band and the

middle dispersive band is preserved throughout the change in r. The degeneracy between the

middle and the bottom bands disappears as soon as r 6= 0. The inferences agree with the band

structures obtained by brute-force diagonalizing the Hamiltonian in Figure (22).
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(a) r = 1.1 (b) r = 1.5 (c) r = 2

(d) r = 5 (e) r = 50

Figure 22: Band structure of Kagome lattice for tintra < tinter (r > 1); flat band and degeneracy
are protected.

5.3.3 Case r = 1

Consider Figure (21, e) and Figure (22, a) . When r is close to 1 (tinter ≈ 0), the two

dispersive bands seem to flatten out. In particular, the middle band overlaps with the top band

as it becomes flatter. This can be shown mathematically as well. Consider taking a limit of the

eigenvalues of the case 0 ≤ r < 1 first.

lim
r→1−

λ± = lim
r→1−

t

−1± (1 + r)e
α
2

√√√√8
3∏

n=1

cos(
kRn

2
) + 9 sinh2(

α

2
) + 1

 (5.32)
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Here,

lim
r→1−

e
α
2

√√√√8
3∏

n=1

cos(
kRn

2
) + 9 sinh2(

α

2
) + 1 (5.33)

= lim
r→1−

√√√√eα8
3∏
n1

cos(
kRn

2
) + eα9 sinh2(

α

2
) + eα (5.34)

= lim
r→1−

√
9

4
eα
(
e
α
2 − e−α2

)2 (5.35)

= lim
r→1−

3

2

√
e2α − 2eα + 1 (5.36)

= lim
r→1−

3

2

√(
1− r
1 + r

)2

− 2

(
1− r
1 + r

)
+ 1 (5.37)

=
3

2
(5.38)

Thus,

lim
r→1−

λ± = t (−1± 3)

= −4t, 2t

As mentioned before, the eigenvalue corresponding to the top flat band is independent of r

and taking the limit for r still gives the same value 2t. Thus, all three bands end up being flat

with energies -4t, 2t, and 2t. λ+ overlaps with the top band as it was shown in the figures above.

This can also be seen from other the side, r > 1. Consider the eigenvalues and take the appro-

priate limit again.

lim
r→1+

λ± = lim
r→1+

t

−1∓ (1 + r)e
α
2

√√√√−8
3∏

n=1

cos(
kRn

2
) + 9 cosh2(

α

2
)− 1

 (5.39)
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Here,

lim
r→1+

e
α
2

√√√√−8
3∏

n=1

cos(
kRn

2
) + 9 cosh2(

α

2
)− 1 (5.40)

= lim
r→1+

√√√√−eα8
3∏

n=1

cos(
kRn

2
) + eα9 cosh2(

α

2
)− eα (5.41)

= lim
r→1+

3

2

√
eα
(
e
α
2 + e−

α
2

)2 (5.42)

=
3

2
lim
r→1+

√
e2α + 2eα + 1 (5.43)

=
3

2
lim
r→1+

√(
r − 1

r + 1

)2

+ 2

(
r − 1

r + 1

)
+ 1 (5.44)

=
3

2
(5.45)

Thus,

lim
r→1+

λ± = t (−1∓ 3)

= −4t, 2t

Again, the top flat band corresponds to the eigenvalue 2t, which is independent of k.

As presumed, exactly the same results are drawn in both sides. As r approaches 1, all three

bands flatten out. This is because r = 1 means tinter = 0, which implies that the unit cells are

completely isolated from one another. In other words, electrons are trapped by the atoms and

no matter how much momentum the electrons possess, they will be in one of the three orbitals

in the atom. Atomic orbitals, when isolated from a lattice structure, have non-dispersive energy

structure. The energies of these orbitals are precisely where the flat bands are sitting.

5.3.4 Case r < 0

Let r be less than zero. This implies that tintra ≤ tinter. As mentioned previously, decreasing

r implies decreasing the distance between unit cells. r = 0 is the point where the inter-unit-

cell distance is same as intra-unit-cell distance (no distinction between tintra and tinter). When

r > 0, the inter-unit-cell distance is larger than the intra-unit-cell distance and vice versa. It can

be easily seen that the case−1 < r < 0 follows the same calculations and have the same results

as the case 0 < r < 1. Similarly, the case r < −1 is identical to the case r > 1. Figures (21)

and (22) portray the same evolution of the band structure as Figures (23) and (24).
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(a) r = −0.1 (b) r = −0.3 (c) r = −0.5

(d) r = −0.7 (e) r = −0.9

Figure 23: Band structures of Kagome lattice for −1 < r < 0; the band structure evolves in the
same manner as 0 < r < 1.

(a) r = −1.1 (b) r = −1.5 (c) r = −2

(d) r = −5 (e) r = −50

Figure 24: Band structures of Kagome lattice for r < −1; the band structure evolves again in
the same manner as the case r > 1.

In conclusion, increasing tintra at the cost of decreasing tinter in the positive r regime has

the same effect on the lattice as increasing tinter and decreasing tintra in the negative r regime.
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Refer to Figure (25). Increasing tinter in (a) is equivalent to increasing tintra in (b). Taking into

account the fact that both represent the same Kagome lattice, it can be seen that the two actions

have the identical effect on the lattice in terms of energy. Nevertheless, the wavefunction can

carry information about the topology. It is left for a future investigation to study the topological

distinction between the two cases.

(a) r > 0 (b) r < 0

Figure 25: Increasing tintra in r > 0 and increasing tinter in r < 0 have the same effect on the
energy.

5.4 Modifying the Unit Cell in the Lieb Lattice

Just like the case of Kagome lattice, define r in order to differentiate the inter-unit-cell

hopping amplitudes from the intra-unit-cell hopping amplitudes.

tintra ≡ t(1 + r), tinter ≡ t(1− r) (5.46)

Again, increase in r implies increase in tintra and decrease in tinter at the same time as well as

increase in distance between unit cells.

5.4.1 Varying Hopping Amplitudes for 0 ≤ r < 1

Consider the case 0 ≤ r < 1, or tintra ≥ tinter. The Hamiltonian can be expressed as

H = −t

 0 (1 + r) + (1− r)eikR1 (1 + r) + (1− r)eikR2

(1 + r) + (1− r)e−ikR1 0 0

(1 + r) + (1− r)e−ikR2 0 0


(5.47)
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Define eα = 1−r
1+r

such that with the gauge transformation (2.5) the Hamiltonian is written as

−2t(1 + r)e
α
2

 0 cosh
(
α+ikR1

2

)
cosh

(
α+ikR2

2

)
cosh

(
α−ikR1

2

)
0 0

cosh
(
α−ikR2

2

)
0 0

 (5.48)

The flat band is still held at λ = 0 and the other two eigenvalues can be computed also.

λ±

t(1 + r)e
α
2

= ±

√∣∣∣∣2 cosh

(
α + ikR1

2

)∣∣∣∣2 +

∣∣∣∣2 cosh

(
α + ikR2

2

)∣∣∣∣2 (5.49)

⇒ λ± = ±t(1 + r)e
α
2

√
4 cosh(α) + 2 cos(kR1) + 2 cosh(kR2) (5.50)

The system yields degeneracy at the points that satisfy the following condition.

0 =

∣∣∣∣2 cosh

(
α + ikR1

2

)∣∣∣∣2 +

∣∣∣∣2 cosh

(
α + ikR2

2

)∣∣∣∣2 (5.51)

⇒ −2 cosh(α) = cos(kR1) + cos(kR2) (5.52)

Notice that for 0 < r < 1, −2 cosh(α) < −2 and thus the equality above cannot hold. Only

when r = 0, the two sides can be made equal. While the flat band is present independent of r,

the degeneracy is lifted as soon as r 6= 0. In other words, the flat band is successfully isolated

from the neighbouring bands as soon as the intra-unit-cell and inter-unit-cell hopping ampli-

tudes are differentiated. Observe in Figure (26), obtained by diagonalizing the Hamiltonian at

various r, that the degeneracy fades away as soon as r differs from zero while the flat band in

the middle remains unchanged.
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(a) r = 0 (b) r = 0.3 (c) r = 0.5

(d) r = 0.7 (e) r = 0.9

Figure 26: Band structures of Lieb lattice for 0 ≤ r < 1; flat band is protected when r is varied
while degeneracy is lifted as soon as r differs from 0.

5.4.2 Hopping Amplitudes for r > 1

Let r > 1 and define eα = 1−r
1+r

. The Hamiltonian is now

H = −2t(1 + r)e
α
2

 0 i cosh
(
α+iπ+ikR1

2

)
i cosh

(
α+iπ+ikR2

2

)
−i cosh

(
α−iπ−ikR1

2

)
0 0

−i cosh
(
α−iπ−ikR2

2

)
0 0

 (5.53)

It can be easily deduced that the flat band is at λ = 0. The other two eigenvalues are

λ± = ±t(1 + r)e
α
2

√
4 cosh(α)− 2 cos(kR1)− 2 cos(kR2) (5.54)

For degeneracy to be present, the following equality must hold.

0 =

∣∣∣∣i cosh

(
α + iπ + ikR1

2

)∣∣∣∣2 +

∣∣∣∣i cosh

(
α + iπ + ikR2

2

)∣∣∣∣2 (5.55)

⇒ −2 cosh(α) = cos(π + kR1) + cos(π + kR2) (5.56)

In the limit where r approaches infinity, the two sides of the equality can be made equal at -2.

This is achieved at ~k = (0, 0). Figure (27) is obtained by diagonalizing the Hamiltonian at
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various values of r. It can be observed that as r increases the two dispersive bands approach the

flat band at the origin.

(a) r = 1.1 (b) r = 1.5 (c) r = 2

(d) r = 5 (e) r = 50

Figure 27: Band structure of Lieb lattice for r > 1; flat band is still preserved and degeneracy
remains lifted.

It is concluded that the flat band is preserved for all values of r while the degeneracy is

lifted as soon as r becomes finite. But degeneracy is gradually recovered at a different point,
~k = (0, 0), as r approaches infinity. When r approaches infinity, the ratio between tinter and

tintra corresponds to -1. This can be identified as the lattice containing a phase of φ, which gives

a negative sign to the associated hopping amplitude.

5.4.3 Case r = 1

To complete the analysis, consider r = 1. First of all, take the eigenvalues of case r > 1.

λ± = ±t(1 + r)

√
r − 1

r + 1

√
4

(
r2 + 1

r2 − 1

)
− 2 cos(kR1)− 2 cos(kR2) (5.57)

= ±t(1 + r)(±i)
√

1− r
1 + r

(±i)

√
4

(
1 + r2

1− r2

)
+ 2 cos(kR1) + 2 cos(kR2) (5.58)

= ±t(1 + r)

√
1− r
1 + r

√
4

(
1 + r2

1− r2

)
+ 2 cos(kR1) + 2 cos(kR2) (5.59)
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The last line is exactly the same as the solution of case 0 ≤ r < 1. Thus, Regardless of whether

r is greater than 1 or less than 1, the eigenvalues can be found using the same expression.

In order to evaluate the eigenvalues at r = 1, modify the expression slightly.

λ± = ±t(1 + r)

√
1− r
1 + r

√
4

(
1 + r2

1− r2

)
+ 2 cos(kR1) + 2 cos(kR2) (5.60)

= ±t(1 + r)

√
4

(
1− r
1 + r

)(
1 + r2

1− r2

)
+

(
1− r
1 + r

)
[2 cos(kR1) + 2 cos(kR2)] (5.61)

= ±t(1 + r)

√
4

1 + r2

(1 + r)2
+

(
1− r
1 + r

)
[2 cos(kR1) + 2 cos(kR2)] (5.62)

r = 1 can be substituted in the last expression.

λ± = ±4t

√
1

2
= ±2

√
2t ≈ ±2.8284t (5.63)

In fact, this result agrees with Figure (26, e) and (27, a). The two dispersive bands at the top

and bottom asymptotically approach flatness at E
t
≈ ±2.8284.

5.4.4 Case r < 0

It can be easily seen that the case −1 < r < 0 follows the same calculations and have the

same result as the case 0 < r < 1. Similarly, the case r < −1 is identical to the case r > 1.
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(a) r = −0.1 (b) r = −0.3 (c) r = −0.5

(d) r = −0.7 (e) r = −0.9

Figure 28: Band structure of Kagome lattice for−1 < r < 0; the band structures are reflections
of the case 0 < r < 1.

(a) r = −1.1 (b) r = −1.5 (c) r = −2

(d) r = −5 (e) r = −50

Figure 29: Band structure of Kagome lattice for r < −1; the band structures evolve in the same
way as the case r > 1.

Similarly to the case of Kagome lattice, there is no distinction between the cases r > 0 and
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r < 0 as long as the energy is concerned but the wave function may carry information about the

topology which may be distinct in the two cases. This can be visually verified in Figure (30).

(a) r < 0 (b) r > 0

Figure 30: Increasing tintra in r < 0 and tinter in r > 0 have identical effect on energy.

5.5 Additional Hopping Amplitude in Lieb Lattice

In section 5.4.1, when increasing tintra and decreasing tinter, it was assumed that the same

bonds between the nearest neighbours stretched and compressed. At some point, however, the

bond between atoms indexed 2 and 3 becomes no longer negligible compared to tinter. Including

the contribution from this bond, the Hamiltonian can be written as

H = −t

 0 (1 + r) + (1− r)eikR1 (1 + r) + (1− r)eikR2

(1 + r) + (1− r)e−ikR1 0 s

(1 + r) + (1− r)e−ikR2 s 0


(5.64)

where st is the new hopping amplitude. It is worthwhile to study the effect of this new hopping

amplitude on the flat band and its degeneracy. First of all, observe in Figure (31) what happens

to degeneracy as r and s vary.

Figure 31: Energies at K point; the triple degeneracy at (r, s) = (0, 0) (no modification in
Hamiltonian) is lifted as soon as the Hamiltonian is modified.

At (r, s) = (0, 0), K points are triply degenerate as it is expected. Furthermore, the top

two bands remain (doubly) degenerate along a line in rs plane as well as the bottom two bands
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(along a different line). This implies that when (r, s) 6= (0, 0), the triple degeneracy at K points

is either lifted or transforms into double degeneracy.

5.5.1 Effect of New Hopping Amplitude

In order to see if the flat band remains, the band structure at arbitrary values of r and s can

be plotted. Without the loss of generality, r can be fixed at 0.5 while s varies.

(a) (r, s) = (0.5,−1.5) (b) (r, s) = (0.5,−1) (c) (r, s) = (0.5,−0.5)

(d) (r, s) = (0.5, 0.5) (e) (r, s) = (0.5, 1) (f) (r, s) = (0.5, 1.5)

Figure 32: Lieb lattice with new hopping amplitude st at r = 0.5 and varying s; in all cases the
middle band loses its flatness.

It is clear that the Lieb lattice no longer possesses the flat band. In particular, Figure (32, e)

and (32, h) correspond to the occurrence of double degeneracy discussed earlier with the two

lines in Figure (31). Hence, introducing the new hopping amplitude is not helpful in preserving

the flat band. In other words, to keep the flat band while stretching the bonds it has to be

manipulated such that the bond between atoms 2 and 3 remains negligible.

5.6 Summary

This chapter explored various modifications of Hamiltonians of Kagome lattice and Lieb

lattice. The strains applied to Kagome lattice shifted the degeneracy of the flat band as the ratio

between the hopping amplitudes along the edges of the unit cell and those along the internal

bonds vary. It was observed that the flatness is immediately lost when this ratio differs from

1. It was also shown that when the three atoms are made different from one another by giving
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them different on-site energies, the flat band was no longer present. With the last modification of

differentiating tinter from tintra, the flat band was preserved for any ratio between the two types

of hopping amplitudes. A similar result was observed with the Lieb lattice. The modification

by distinguishing tinter from tintra was shown to preserve the flat band. In both cases, varying

the ratio of tinter and tintra produced a family of flat band systems that are practical due to

short-range hoppings.
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6 Chern-Simons Field

Chern-Simons (CS) theory is limited to 2+1 dimensional (2 spatial and 1 temporal) systems

[28]. CS theory,like the Maxwell theory, describes the dynamics of a gauge field. Maxwell

theory, however, is not limited to any dimensions. Moreover, one cannot apply a CS field like

one can apply a magnetic field. CS field seems to arise out of many-body interactions in flat

band systems. The CS-type field emerges if (and only if) time-reversal symmetry or inversion

symmetry is broken given that the system has nontrivial topology. Moreover, CS field seems

to be relevant in systems with perfectly flat band. Thus, systems with isolated flat bands with

broken TRS (or inversion symmetry) and interacting particles are expected to be subjected to

CS-like field. Isolating flat bands will allow us to explore this idea.

When the criteria for the CS field are met, the CS field and the Maxwell field can coexist.

In this case, the CS field turns out to be more dominant. Furthermore, as a consequence of CS

field, magnetic flux is pinned to the charges (electrons). In other words, wherever there is a

charge, there is an associated magnetic flux and vice versa. When the charge travels, the flux

follows along with it.

The CS gauge field and the corresponding magnetic field can be written as following [28].

Ai(~xa) =
e

2πκ

N∑
b 6=a

εij
(xja − x

j
b)

|~xa − ~xb|2
(6.1)

B(~xa) =
ε

κ

N∑
b6=a

δ(~xa − ~xb) (6.2)

Here, N is the number of particles, ~xa is the coordinates of the a-th particle, and κ is known as

CS coupling parameter. κ is precisely what links the magnetic flux to the charge. When 1
κ

is

zero, CS field is absent.

The associated flux can be calculated.

Φ =

∫ N∑
b6=a

e

κ
δ(~x− ~xb)ẑ · d~s (6.3)

=
e

κ

N∑
b6=a

∫ ∫
δ(x− xb)δ(y − yb)dxdy (6.4)

=
e

κ
m (6.5)

where m corresponds to the number of charges in the area defined by
∫ ∫

dxdy. In the second

line, the integral of delta functions is equal to 1 for each charge indexed with b in the area. What
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is implied here is that the flux a charge experiences comes from the mean field approximation

of other charges in the given area where each of these charges contributes an amount of e
κ

. As a

result, the flux depends on the number of charges in the given area and not the area itself. This

is different from the Maxwell field, where the flux is dependent on the covered area.

6.1 CS Field on Kagome Lattice

Returning to the discussion of lattices, the effect of CS field on lattices is redistribution of

flux in the unit cell. In the case of Kagome lattice, CS field modulates the flux such that the flux

is concentrated in one region of the unit cell as described in Figure (33) [29].

Figure 33: Redistribution of flux; (left) flux distribution under Maxwell field, (right) redis-
tributed flux under Chern-Simons field.

The unit cell on the left-hand side of Figure (33) indicates the phases added to the hoppings

by Peierl’s substitution. As indicated in blue text the flux through each of the internal regions

of the unit cell is non-zero. When CS field is present, however, the flux through the small

triangular regions of the unit cell is completely withdrawn and added to the hexagonal region

in the centre as it is shown on the right-hand side of the figure. This flux distribution can be

achieved by assigning phases according to Figure (34).
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Figure 34: Flux phases with Chern-Simons field, red figures correspond to phases and blue to
the values of m; flux through the triangular regions are made zero and all the flux goes through
the hexagon in the centre of each unit cell.

After appropriately adding these phases to the Hamiltonian, the Hofstadter’s spectrum can

be plotted to show what happens to the flat band.

Figure 35: Hofstadter’s spectrum of Kagome lattice in the presence of CS field; notice the flat
band at E

t
= 2, which is indicated by manually marked points. It shows that the flat band is

preserved for all values of φ and also isolated.

Notice the vertical line at E
t

= 2. Again, this was manually included by indicating with a

dot whenever there is a band with zero width. The plot shows that the flat band is preserved for

all values of φ and it is isolated.
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6.2 CS Field on Lieb Lattice

Now, consider the Lieb lattice. The unit cell does not contain any internal structure as shown

in Figure (36).

Figure 36: Flux through unit cell in Lieb lattice; Lieb lattice has no internal structure and thus
the flux cannot be redistributed.

Hence, there cannot be redistribution of flux. In other words, applying CS field makes no

difference from the Maxwell field. As it was seen in a previous chapter, with the Maxwell field,

Lieb lattice preserved the isolated flat band. Thus, in both Kagome lattice and Lieb lattice, the

presence of CS field imposes the protection of flat band while lifting the degeneracy.

6.3 Differentiating tinter from tintra in the presence of CS Field

It was shown previously that modifying the lattice by differentiating tinter from tintra in-

troduced a family of Hamiltonian that preserved the flat band as well as the degeneracy. The

goal of this section is to emphasize the effect of CS field on lattices, lifting degeneracy while

preserving flat band. In particular, it will be tested if applying CS field on the modified Kagome

lattice still preserves the flat band and lifts the degeneracy. This can be done very easily at this

level by introducing coefficients (1+r) and (1−r) to the two kinds of hoppings in the Hamilto-

nian with the additional phases determined by the new flux distribution with the CS field. This

time, instead of Hofstadter’s spectrum, individual plots will be shown because each value of r,

that controls tintra and tinter, gives a different spectrum.
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(a) φ = 1
2 , r = 0.2 (b) φ = 1

2 , r = 0.5 (c) φ = 1
2 , r = 0.8

(d) φ = 1
3 , r = 0.2 (e) φ = 1

3 , r = 0.5 (f) φ = 1
3 , r = 0.8

(g) φ = 2
3 , r = 0.2 (h) φ = 2

3 , r = 0.5 (i) φ = 2
3 , r = 0.8

Figure 37: Energy dispersion of modified Kagome lattice in the presence of Chern-Simons field
at various values of φ and r; notice that the flat band at E

t
= 2 is protected and remains isolated.

The flat band at E
t

= 2 is protected as predicted. The bands are divided in two groups where

the upper group approaches the top flat band as r increases while the lower group approaches

the bottom band. A similar pattern was observed with the modified Kagome lattice without the

CS field.

6.4 Summary

In this chapter, it was demonstrated that the presence of CS field preserves and isolates flat

bands. The effect of CS field at the level of unit cell is the redistribution of flux such that the

flux is concentrated in one region when the unit cell has an internal structure. Since Kagome

lattice has an internal structure, the flux distribution with magnetic field is different from that

of CS field. Thus, the two outcomes are different in the sense that with the flux distribution

of magnetic field the flat band became dispersive, while with that of CS field the flat band is
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preserved. In the case of Lieb lattice, however, the absence of internal structure results in no

distinction between magnetic field and CS field. Thus, even with magnetic field, the flat band is

preserved.
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7 Suggested Ideas for Further Study

Physical Interpretation of Mathematical Constraints for Degeneracy

The second method of calculating degeneracy in Chapter 5 is purely mathematical. This

method can be further investigated to identify associated physical symmetries possibly by mak-

ing a connection with the mathematical constraints presented. Having a physical interpretation

may allow one to determine whether a system has degeneracy or not through simpler obser-

vation of the lattice structure instead of having to go through the calculations. This may also

answer the question of why the modification of hopping amplitudes results in lifting the degen-

eracy in Lieb lattice while preserving that in Kagome lattice.

Study of Topology in Modified Kagome Lattice

Other interesting topics that can be further investigated are related to the modification of

lattices by changing tintra and tinter. Notice in Figures (21) and (22) that as soon as r differs

from zero, gap opens up between the two lower bands of the Kagome lattice, which corresponds

to lifting the degeneracies at the K/K ′ points. It will be worthwhile to study the associated

topology to examine whether the two phases, r > 0 and r < 0, are topologically distinct.

Moreover, as it was discussed in section 5.3.3, the middle band of Kagome lattice asymptotically

approaches the flat band as |r| approaches 1 and at |r| = 1 the two bands completely overlap

with each other. This can be seen as the middle band penetrating through the flat band as |r|
changes around 1. It will be interesting to investigate if the associated topology changes when

this incident occurs. Lastly, applying strains on the Kagome lattice caused the degeneracy of the

flat band to split and relocate as it can be seen in Figure (15). It will be worthwhile to investigate

the topology associated when this occurs.

Topology of Isolated Flat Bands

Studying the topology of a flat band necessarily requires the band to be gapped out. When

it is coupled to a dispersive band like the case of the original Kagome lattice, the topology of

the flat band cannot be identified. But now with the aid of CS field, the topology of isolated flat

bands in the family of modified Kagome lattice (and Lieb lattice also) presented in section 5.3

can be investigated. In addition, since these systems exhibit correlation effects arising from the

perfectly flat bands, they can provide suitable models for studying the FQHE.
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Interplay Between Maxwell Field and CS Field

It is known that quantum Hall effect (QHE) is topological. Moreover, electronic interactions

in QH systems, with flat bands, leads to emergence of CS field. The presence of CS field

causes the formation of composite fermions and as a result, the system exhibits FQH states with

topology of their own. Here, one can study the nature of the FQH state in a flat band system

without magnetic field and also investigate what happens if magnetic field is applyed to the

system.
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8 Conclusion

Throughout the thesis Kagome lattice and Lieb lattice were studied because they both ex-

hibit perfectly flat bands. In attempt to isolate the flat bands, applying an external magnetic

field was considered. The Hofstadter’s spectrum revealed that the degeneracy of the flat band in

Kagome lattice was indeed lifted but at the same time the flat band was no longer flat, it became

dispersive. This consequently demonstrated that breaking TRS is not sufficient to isolate the

flat band in Kagome lattice.

Then, to study the robustness of flat band, three kinds of (realizable) modifications to the

lattice were considered. The first two were applying strains along the two diagonal axes of the

unit cell and making the three types of atoms in the lattice different from one another. Both

resulted in making the flat band dispersive. The third kind of modification grouped the hopping

amplitudes into two; hoppings within the unit cell, defined as tintra, and hoppings between the

unit cells, defined as tinter, then it varied the ratio of tintra and tinter. It was shown that for

any value of this ratio, the flat band is preserved. This provided a family of perfectly flat band

systems.

Returning to the discussion of lifting degeneracy and isolating flat band, CS field was intro-

duced. The difference between CS field and magnetic field on the lattice was the distribution

of flux in the unit cell. While the flux due to magnetic field was spread throughout all three

regions bounded by the bonds inside the unit cell, the flux due to CS field was concentrated in

one region such that the other two regions had zero flux. The Hofstadter’s spectrum based on

the CS flux distribution demonstrated that the flat band is preserved and the degeneracy is lifted

for all possible values of flux per unit cell.

On the other hand, it was observed that applying a magnetic field successfully isolates the

flat band of Lieb lattice. The Hofstadter’s spectrum showed that the flat band remains flat under

the presence of magnetic field. At the same time, it also showed that the flat band gets gapped

out as soon as magnetic field is applied. The different result from the Kagome lattice is due to

the fact that the Lieb lattice has no internal structure in the unit cell. The absence of internal

structure allows the flux to be distributed in a unique way, which makes the effects of magnetic

field and CS field the same.

It is worthwhile to note that the emergence of CS field is a consequence of electronic interac-

tion in flat bands. Other phenomena such as unconventional superconductivity, Mott insulator,

and Wigner crystal also arise due to strong electronic interaction in flat bands. The scope of

this thesis was not focused on studying these specific phenomena but exploring how to make

the basic ingredient, the flat band systems, available for the desired studies.

The same modification that produced a family of Kagome lattice (varying the ratio between
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tintra and tinter) was also applied to the Lieb lattice. It was shown that the flat band is preserved

also for the Lieb lattice, which implied that another family of flat band systems was introduced.

While studying the degeneracy of the two lattices, a method of calculating degeneracy with-

out requiring the calculation of eigenvalues was introduced. By finding the appropriate con-

straints to the Hamiltonians, the degeneracies in Kagome lattice and Lieb lattice as well as

Graphene and extended square lattice were calculated.

Furthermore, a few ideas for further research were proposed. One is connecting the math-

ematical constraints discussed for calculating degeneracy with physical symmetries. Another

is comparing the topology of modified Kagome lattice when the inter-unit cell hopping ampli-

tudes are greater than the intra-unit cell hopping amplitudes with the opposite case. In addition,

when either the inter-unit cell or the intra-unit cell hopping amplitudes become negative, it can

be examined if the topology changes. Last suggestion is studying the topology of flat bands that

are isolated by the help of CS field.

Overall, two results can be emphasized. It was demonstrated that breaking TRS is not

sufficient to isolate and preserve the flat band in Kagome lattice. Instead, it required CS field to

successfully isolate the flat band. Furthermore, it was demonstrated that there is a family of flat

band systems. They are realizable as they involve short-range hoppings.
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9 Appendix

Proof of
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kR2

2
)− 1}+ cosh(

α

2
)− 4cosh(

α

2
)sin2(

α

2
)]
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=
1

2
[cosh(

α

2
){2 cos(

kR2

2
)[cos(

kR1 − kR3

2
) + cos(

kR2

2
)]− 1}

+cosh(
α

2
)− 4cosh(

α

2
)sin2(

α

2
)]

=
1

2
[cosh(

α

2
){4 cos(

kR2

2
) cos(

kR1 − kR3 + kR2

4
) cos(

kR1 − kR3 − kR2

4
)− 1}

+cosh(
α

2
)− 4cosh(

α

2
)sin2(

α

2
)]

=
1

2
[cosh(

α

2
){4 cos(

kR2

2
) cos(

kR1

2
) cos(

kR3

2
)− 1}+ cosh(

α

2
)− 4cosh(

α

2
)sin2(

α

2
)]

=
1

2
[cosh(

α

2
)4 cos(

kR2

2
) cos(

kR1

2
) cos(

kR3

2
)− 4cosh(

α

2
)sin2(

α

2
)]

= 2cosh(
α

2
)

3∏
n=1

cos(
kRn

2
) + 2cosh(

α

2
)sinh2(

α

2
)
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Proof of
∑3

n=1 |sin(
kRn

2
− iα

2
)|2 = −

∑3
n=1 cos

2(kRn

2
) + 3cosh2(α

2
)

3∑
n=1

|sin(
kRn

2
− iα

2
)|2

=
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|sin(
kRn

2
) cos(i

α

2
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2
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α

2
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=
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2
)cosh(

α

2
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kRn

2
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α

2
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2
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α

2
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2
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α

2
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=
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2
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α

2
) + cos2(
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2
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α

2
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=
3∑

n=1

[cosh2(
α

2
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kRn

2
)cosh2(

α

2
) + cos2(

kRn

2
)cosh2(

α

2
)− cos2(

kRn

2
)]

=
3∑

n=1

[cosh2(
α

2
)− cos2(

kRn

2
)]

= −
3∑

n=1

cos2(
kRn

2
) + 3cosh2(

α

2
)

65



References

[1] E. Tang, J.-W. Mei, and X.-G. Wen, “High-Temperature Fractional Quantum Hall States,”

en, Physical Review Letters, vol. 106, no. 23, p. 236 802, Jun. 2011, ISSN: 0031-9007,

1079-7114. DOI: 10.1103/PhysRevLett.106.236802. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevLett.106.236802

(visited on 08/27/2020).

[2] Y.-F. Wang, Z.-C. Gu, C.-D. Gong, and D. N. Sheng, “Fractional Quantum Hall Effect

of Hard-Core Bosons in Topological Flat Bands,” en, Physical Review Letters, vol. 107,

no. 14, p. 146 803, Sep. 2011, arXiv: 1103.1686, ISSN: 0031-9007, 1079-7114. DOI:

10.1103/PhysRevLett.107.146803. [Online]. Available: http://arxiv.

org/abs/1103.1686 (visited on 10/31/2020).

[3] B. Jaworowski, “Wigner crystallization in topological flat bands,” en, New J. Phys., p. 21,

2018.

[4] Z. Liu, F. Liu, and Y.-S. Wu, “Exotic electronic states in the world of flat bands: From

theory to material,” en, Chinese Physics B, vol. 23, no. 7, p. 077 308, Jul. 2014, ISSN:

1674-1056. DOI: 10.1088/1674- 1056/23/7/077308. [Online]. Available:

https://iopscience.iop.org/article/10.1088/1674-1056/23/7/

077308 (visited on 12/09/2020).

[5] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, “Flat Bands and Wigner Crystal-

lization in the Honeycomb Optical Lattice,” en, Physical Review Letters, vol. 99, no. 7,

p. 070 401, Aug. 2007, ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett.

99.070401. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevLett.99.070401 (visited on 12/09/2020).

[6] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero,

“Unconventional superconductivity in magic-angle graphene superlattices,” en, Nature,

vol. 556, no. 7699, pp. 43–50, Apr. 2018, ISSN: 0028-0836, 1476-4687. DOI: 10.1038/

nature26160. [Online]. Available: http://www.nature.com/articles/

nature26160 (visited on 08/27/2020).

[7] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, “Superconductivity and strong cor-
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