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Abstract 

Optimal Electric Vehicle Charging Station Location Allocation using Agent-Based 

Modeling and Simulation: A case study of city of Montreal 

Akhil Raj Kizhakkan 

Widespread acceptance of all electric vehicles faces two major challenges. First being the higher 

price tag compared to a similar utility IC engine vehicle, while giving equal or lesser range. Second 

being the under-developed infrastructure support for refueling. Current trends in Electric Vehicle 

(EV) industry shows an increase in battery capacity and higher charging speed capabilities owing 

to an increased adoption of EVs. This thesis focuses on the second challenge of range anxiety of 

EV users due to lack of enough charging infrastructure compared to their gasoline powered 

counterparts. Public fast charging infrastructure is proposed as the solution to solve range anxiety 

and wider acceptance of EVs by public. As setting up the public charging stations at the initial 

stages of Electric Vehicle (EV) market penetration can be budget demanding, it is therefore crucial 

that the locations chosen should cover maximum demand at least cost and best convenience. 

This thesis discusses the review of research publications focused on optimal placing of Alternative 

Fuel/Electric Vehicle Charging Stations (EVCS), by considering various approaches and models 

they have used. Heuristic methods of solving optimization problems was given an additional focus 

in the review. This thesis addresses the discrete, multi-objective, capacitated location allocation 

problem of electric vehicle charging station, using agent-based modeling. The developed model of 

EV trips in an urban environment and their charging events was fed with real data from city of 

Montreal, allowing the model to replicate real charging demand situations at the charging stations 

at various locations across the city of Montreal. A pareto optimization method is developed using 

a simple evolutionary genetic algorithm to find all the best trade-offs between each objective value. 

The multiple objectives considered are utilization of charger resources, the average reroute 

distance of EVs to reach a charging station and number of infeasible trips and optimization is done 

through running the agent-based model iteratively through the genetic algorithm, evolving its 

solutions in each iteration. Proposed solutions for each optimal objective value and solution with 

the best trade-off between the objectives are discussed.  
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Chapter 1  

Introduction 

1.1 Environmental Impact 

As more and more countries formally commit to reduce their carbon footprint to tackle the climate 

change and global warming crisis, immediate measures need to be taken in all industrial, 

residential and transportation sectors to achieve the common goal. According to the US 

Department of transportation[1] the public transportation contributes to 29% of the total green 

house emissions in USA, among which personal modes of transport(Cars, SUVs and Pickups) 

 

Figure 1.1 Transportation accounts for 29% of U.S Greenhouse Gas Emissions[1] 

 

Figure 1.2 :Estimated CO2 Emissions per Passenger Mile for Transit and Private Autos[1] 
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contribute to 57% as shown in Figure 1.1. As can be seen from Figure 1.2, personal use vehicles 

contribute to significantly higher per head carbon emission than other modes of transport. 

1.2 Growth and Projected Penetration 

Alternative-fuel based vehicles have been recommended as a sustainable way to travel and are 

gaining momentum due to recent popularity of electric vehicles. Statistically situations are still far 

away from the goal, as the global market share of electric vehicles is still under 1%[2] as shown 

in Figure 1.3, while the percentage projected growth of the same is promising as shown in Figure 

1.4. While existing product line of the electric vehicles is close to achieving the desirability and 

 

Figure 1.3 : Total number electric vehicles over the years[2] 

  

Figure 1.4 : Projected growth of Electric Vehicle Penetration (% of total vehicles) [2] 
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practicality in terms of driving range and performance to replace their gasoline counterparts, lack 

of sufficient and accessible charging stations is the foremost reason hindering further market 

penetration of EVs. Lack of accessible fast charging stations on routes leads to range anxiety, 

preventing more users to switch to electric vehicles. 

1.3 EV Charger Classification 

Based on the power and the range of voltages that are supported by EV chargers, they are classified 

into three levels[3]. A) lower than 3.7 kW are Level 1 chargers, B) between 3.7 and 22 kW are 

Level 2 chargers, and C) higher than 22 kW are Level 3 chargers as illustrated in Figure 1.5.  

a. Level 1 Chargers : lower than 3.7kW 

b. Level 2 Chargers : between 3.7kW to 22kW 

c. Level 3 Chargers : higher than 22kW 

1.4 Need for Fast Charging Stations 

Considering the residential parking patterns in Montreal, where only a small proportion of 

population have access to personal garages and most users park their car in available parking slots 

in their respective streets, open space parking lots and nearest available locations, charging the car 

overnight using the in-built Level-1 charger is not an ideal option for every EV owner. Taking into 

account the projected growth of EVs, the only viable solution is to follow the gas station model of 

  

Figure 1.5 Types of chargers and use cases [2] 
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meeting refueling demands similar to conventional cars, by setting up strategically located Fast 

Charging Stations in the different parts of the city to meet the charging demand of near future. 

Figure 1.6 shows current distribution of DC- Fast Charging stations in Montreal (Circuit Electric 

Data 2019). With 52 Fast-DC charging stations spanned across 26 locations. The charging network 

can only cover 35 to 40% of the charging demand. Studies reveal that 83% of the consumers who 

wouldn’t choose an EV over gasoline vehicle cite range anxiety as the primary reason, along with 

battery life concerns. While EV range has been steadily increasing over the years, led by market 

innovations from Tesla, they still lag behind the range offered by gasoline cars and refueling time. 

Availability of easily accessible fast charging stations with short charging times ensures a smooth 

transition to EVs from gasoline cars for all sections of population regardless of their access to the 

residential charging facilities. 

1.5 Problem Statement and Research Objectives 

This thesis addresses the multi-objective deterministic location allocation problem of EV fast 

charging stations. This involves selecting the minimum number of locations from a candidate set 

of slow chargers to install fast charging stations so as to cover the user demand for charging, while 

Figure 1.6: Distribution of DC- Fast Charging Stations in Montreal 
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minimizing the reroute time require to charge. This work stands apart from the existing research 

by two factors: 

1. Using Agent Based Location allocation model for facility allocation and optimization. 

2. Utilization of real population travel data from Autorité Régionale de Transport 

Métropolitain (ARTM) Montreal.  

The agent based model of mobility of passenger cars through city of Montreal is developed by 

treating Cars, charging stations and trip planners as agents interacting in a Geographical 

Information System(GIS) environment. The trip planner agent initiates itself at the specified model 

time of the day and instructs the car agent to move from origin to destination. As the agents are 

inserted to the simulation model at their real departure times, allowing the model to simulate highly 

accurate traffic conditions and charging demand at each candidate solution of charging stations 

over a day.The multiple objectives optimized using this model are charging reroute time, number 

of fast chargers required and number of infeasible trips, while selecting its location in process. 

Simulation software Anylogic 8.6 is used as the modelling tool to verify and optimize the 

objectives. 

The objectives of this thesis are listed below: 

1. To develop an integrated agent-based model of urban mobility focused on electric vehicle 

passenger car trips and their charging events. 

2. To develop a genetic algorithm based pareto optimization to find optimal location and 

number of chargers while minimizing cost of chargers, rerouting distance to charge and 

number of infeasible trips. 

3. To verify the developed model with Anylogic 8.6 to investigate and record the effect of 

change in EV penetration on the proposed solution. 

Design of each objective is discussed in Chapter 3 and the implementation and results are discussed 

in Chapter 4. 

1.6 Thesis Outline 

The major research contributions of this thesis are as follows: 

In Chapter 2, literature review of presently used road traffic and traffic flow based 

optimization, electric grid voltage based stability and voltage regulation based optimization has 
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been discussed. Exact and heuristic solution approaches used to implement these methods are 

analyzed.  

In Chapter 3, the design of the simulation model is presented extensively and discussed via 

UML diagrams. 

In Chapter 4, agent-based definitions and the model simulation with Anylogic 8.4 software is 

demonstrated. 

In Chapter 5, simulation model results are discussed in detail. Conclusion and 

recommendations for future works are presented. 

1.7 Conclusion 

This Chapter discusses the environmental impacts and ongoing developments in EVs and its 

promises for the world’s shift towards sustainable energy and particularly towards reduced 

emission. EVs provide low-cost ownership, low maintenance, higher efficiency, higher fuel 

economy and high reliability leading to a rapid increase in the EV annual sales. Different types of 

charging facilities and its properties are also discussed in detail to show the importance of planning 

and installing more fast charging station in the city of Montreal to cope with the future demands 

of the electric vehicle population in the city and to boost desirability of the electric vehicles over 

gasoline vehicles among public. 

In the next Chapter, a review of research articles focused on the optimal placing of Alternative 

Fuel/Electric Vehicle Charging Stations (EVCS), through various approaches and models are 

analyzed and discussed in detail. The Chapter also discusses the merits of using Agent Based 

Modeling to tackle continuous stochastic problems such as the dynamic facility allocation that 

forms this thesis. 
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Chapter 2  

Literature Review 

2.1  Introduction 

In recent years global automobile industry has taken major strides in transition to Electric Vehicles 

(EVs), to move towards sustainable energy goals and tackle climate change. Rapidly falling battery 

costs and continuously improving charging technologies are bringing EVs on par with 

conventional vehicles regarding practical usage and range. Researchers from electrical and 

transportation industry have been studying optimal ways of distributing the Electric Vehicle 

Charging Stations (EVCS) in the past decade. EVs can be broadly classified as  

a. All-Electric Vehicles , where the battery charging is the only source of refilling, also known 

as Plug-in Electric Vehicles(PEVs) or Battery Electric Vehicles (BEVs). 

b. Plug-in Hybrid Electric Vehicles (PHEVs), where the vehicle can be refueled through 

multiple sources like gasoline and battery charging. 

c. Hybrid Electric Vehicles (HEVs), where the vehicle is propelled using both Electric Motor 

and IC engine, but the battery is charged through regenerative braking or IC engine only. 

d. Fuel-Cell Electric Vehicles (FCEVs) where the energy source is a Hydrogen Fuel Cell and 

the vehicle is powered by electricity produced through a Proton Exchange Membrane 

(PEM) decomposing Hydrogen(H2) fuel through oxidation. 

In this Chapter, all mentions of Electric Vehicles (EVs) is refers to All-Electric Vehicles. 

The transportation research is focused on the cost minimization with accessibility and demand 

coverage considering vehicle movement pattern, user behavior and other constraints imposed by 

the user or the road network. Centralized strategic planning and optimization in EVCS location 

selection is proven to drastically reduce the initial cost required to serve the EV charging demand 

and reduce range anxiety [4]. In literature, it is noticed that multiple modeling approaches and 

problem-solving algorithms were used to optimize the required parameters.  

Optimization is referred to as the process of finding the best feasible values (maxima or minima) 

for some objective functions, while satisfying some given domains and constraints. Location 
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Allocation(LA) problem involves locating an optimal set of facilities to satisfy customer demand 

at minimal transportation cost from facilities to customer or vice versa[5]. LA solution methods 

have been in practice for a number of applications such as location citing for warehouses, gas 

stations, fast food outlets, electric transformers, emergency health care facilities, urban planning, 

etc. 

2.2  Classification of location allocation problem 

There are four components that can forms any location allocation problem. According to Revelle 

and Eiselt [6], these are as follow: 

a) Customers: EV owners present in the Origin Destination Survey 2013 data base from 

ARTM Montreal are the customers in this problem. 

b) Facilities to be located: Here, thesis work intends to use the existing set of Level-I charging 

stations across the city as potential (candidate) solution space to be upgraded to DC-Fast 

Charging Stations (DC-FCS). 

c) Space in which the customers and facilities are located:  This thesis use Anylogic GIS 

enabled Agent Based Model is used simulate the LA problem. 

d) A metric that indicates the distances or times between customers and facilities: This thesis 

use standard metric system, meters and seconds is used. 

Based on these components, any LA problem can be classified into the following main categories: 

2.2.1 Customer demand-based classification 

1. Deterministic: If the customer population value, their locations and demands are 

predetermined and unvarying the model is called deterministic. 

2. Stochastic: If the customer demands, population etc. are modelled with probability 

distributions, the models are called stochastic. 

In this thesis, a data set of customer travel demands with definite departure times in a simulated 

Geographical Information System(GIS) environment, is used. Therefore, it can be termed as 

deterministic. 
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2.2.2 Facilities based classification 

1. Single or Multi-facility: If the facility to be allocated is a single entity, i.e. one facility at 

the most optimal location, the LA problem is a single facility problem. But, if it is a 

population of solution sets, i.e. a collection of facilities at different locations, then it is a 

multi-facility problem. In the contrary case, the number of facilities to be placed may not 

be known in advance. In such case, idea is to find the least number of facilities so that all 

demand points are covered within a prespecified distance standard, also called as location 

set covering problems[7]. 

2. Capacitated or uncapacitated: If the ability of the facility to serve customer demand is 

limited, it is called a Capacitated facility, else Uncapacitated. 

In this thesis, it is aimed to cite multiple DC-FCS in the city of Montreal, each of which capacitated 

to serve a limited number of customers at any given time. Hence, this model is a multi-facility-

capacitated model. 

2.2.3 Physical space or location based classification 

Based on the representation of the space in which the facility citing is done, the LA models can be 

classified into planar problems (d-dimensional real space) and network location problems. Each 

of these can be subdivided into continuous or discrete LA problems[6]. Distances in planar 

problems are measured as a family of distances with a single parameter (Minkowski distances) 

and distances in network problems are measured on the network itself, typically as the shortest 

route between the two points through the network of arcs connecting them. 

The above classifications can be further subdivided into continuous and discrete location problems. 

In continuous locations problems, the facility to be allocated can be placed anywhere in a 

continuous solution space, examples of these are Cellular tower location problems and helicopter 

trauma pick up location problems. In discrete problems[8] the facilities can be located on only 

predetermined eligible points on the plane or network. 

Therefore, this thesis deals with a network based discrete LA problem. 
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2.2.4 Location Objectives based classification 

Typically LA methods are used to allocate or install facilities close to the customer locations to 

obtain better values of the objective function. This involves maximizing the demands served 

(capture problem), minimizing the cost of transportation (median problem) or minimizing the 

maximum distance between the customer and the facility. In this thesis, it is aimed to model the 

problem as maximum flow capture and minimum cost of transportation problem (also called as 

min-sum). 

Considering the above classifications, the optimal location allocation of EVCS problem can be 

termed as Multi-facility, capacitated, deterministic, network based, discrete, maximum capture and 

min-sum problem. 

2.3  Methods for location allocation problem 

There are several algorithms used to solve or optimize the objective function or mathematical 

models. Exact solution methods like branch and bound algorithm, hierarchical clustering methods 

and weighted Voronoi diagram approaches give exact locations of installation to cover the 

charging demand, leaving less room for flexibility for decision makers. Solutions that cannot be 

practically implemented due to the constraints out of the scope of the optimization model can have 

higher impact on the final outcome of the exact solution methods. While numerous earlier studies 

used exact methods, more recent trend shows a growing trend towards using heuristic algorithms 

or a combination of multiple heuristic algorithmic results to render the required result. While it 

takes longer time for the exact solution methods to solve larger and more complex network 

problems, heuristic methods give close to exact solution in less time and computational cost.  

This Chapter discusses EVCS location planning strategies adopted by various researches through 

an extensive literature review and are broadly categorized into the following:  

1. Exact solution methods 

2. Heuristic methods 

Both strategies aim to minimize the cost of installation while maximizing service quality, though 

a variety of different parameter sets and optimization approaches were considered to achieve the 

same. Exact methods give precise points of solution but demands more processing time when the 



11 
 

problem size is large. Heuristic algorithms on the other hand, provide local optima solutions, which 

are found to be very close to the exact solutions. Heuristic solutions can also be used where the 

model cannot have any exact solutions.  

2.4  Exact Solution Methods 

In computer science and operations research, exact algorithms always solve an optimization 

problem to optimality, if the model is in Polynomial Time, i.e it can have an exact optimal solution. 

The main advantage of this method is that it provides the best possible solution to the given 

planning and optimization problem. The exact solution models often provide flexibility of 

incorporating a myriad of constraints relevant to the practical problems but demand mathematical 

expertise and computation time to do so. It should also be noted that not all practical problems can 

be modelled as a linear optimization model due to intangible factors like fairness of a solution, 

plausibility of implementation etc. 

This section discusses various Exact optimization approaches taken into consideration and 

algorithms used to optimize the EVCS location planning. The earliest location planning 

optimization models were based on the exact method approach, giving precise points of 

solution.  (Note that this thesis use the words “refueled,” “recharged,” and “served” 

interchangeably, as well as “tank” or “battery”.)  

2.4.1 Flow Capture Location Methods (FCLM) 

The earliest adaptations of the optimization techniques to plan EVCS locations dealt with long 

distance travel in interstate highways using different forms of Flow Capture Location Methods 

(FCLM)[9] for refueling stations. The limited range of EVs is the major constraint in these models 

and the shortest path Origin-Destination(OD) matrix between the cities/towns was the environment 

in which optimization was conducted [10]. The possibilities of alternate routes and use of midlink 

service stations to cover shorter distance trips are shortcomings of these models. Use of heuristic 

algorithms like Greedy Adding and Greedy Adding with Substitution to solve Mixed-Integer 

Linear Programming (MILP) based FCLM was demonstrated to be faster as the complexity of 

problem increases, while producing suboptimal location values for shorter range values. More 

extensions of OD matrix models were based on the Vehicle-Routing logics [11], battery swapping 

models for short distance recreational park rides [12] etc. Uniform weight distribution of the 



12 
 

different paths of OD matrix resulting in over utilized and under-utilized stations is cited as the 

major drawback of these model solutions. 

Flow based set covering models [7][13] were also proposed to focus on minimizing the cost of the 

installation by treating the location citing as a set covering problem. Flow capture method 

combined with the nearest facility method [14] by taking population into consideration proposes 

allocating charging stations at the freeway exits of densely populated areas through a data driven 

approach. This approach is seen to be widely used to cater the demands of initial EV population 

in urban environments. Researchers have also considered a Flow Interception Facility Location 

problem (FIFLM) [15] optimized using a binary integer linear programming model to analyze the 

flow captured with varying number of fresh installations and possible retrofitting EVCS on 

existing gas station infrastructure. The results showed that installing fresh EVCS has a significant 

coverage than retrofitted ones (85% flows captured with 20 EVCS, while retrofitted ones could 

reach only upto 55%). But considering practical limitations and cost to set up a fresh refueling 

station, it was suggested that retrofitted stations could still be a better alternative in the initial stages 

of electic vehicle deployment. 

2.4.2 Fuel-Travel-Back methods 

Fuel-Travel-Back [16] models promised a unique approach based on the notion “where you travel 

more is more likely you need refueling” arguing that O-D model does not consider short distance 

errand trips or trips with multiple objectives. This model relies on the spatial distribution of the 

Vehicle Miles Travelled (VMT) data to minimize the total fuel-travel-back travel time – defined 

as the distance for the fuel burned along the road to travel back to the nearest station. Therefore, 

VMT provides a heatmap of the fuel consumption density, which can then be used to determine 

the refueling locations. Probabilities of any random vehicle needing to refuel and its associated 

travel time is considered by the frequency of travel and the routes used, giving this model a more 

practical approach than the OD pair-based approach. The model assumes an average fuel-travel-

back time to optimize the minimize the number of charging stations required to satisfy the same. 

While this solution appears very practical oriented for a city planning problem, collecting VMT 

data for an entire city road network is costly and complex. This approach also suffers from the lack 

of consideration for EV range. 
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2.4.3 Voronoi Diagram 

Apart from the mathematical models, geometrical models are also employed in determining the 

optimal locations. Voronoi diagrams are the partitioning of a plane with n points into convex 

polygons such that each polygon contains exactly one generating point and every point in a given 

polygon is closer to its generating point than to any other. A Voronoi diagram is also known as a 

Dirichlet tessellation. The cells are called Dirichlet regions, Thiessen polytopes, or Voronoi 

polygons. In location optimization problems, modified Voronoi diagram approaches to consider 

weights and range of each cell has been used. 

Liu [13] proposed a model to assess the impact of incorporating three types of charging 

infrastructure, namely fast charging public stations, home charging posts and battery swapping 

stations and analyze its effects on the cost, charging time and impact on the distribution grid. This 

paper also considers retrofitting of existing gas stations with EVCS, considering their proximity 

from the electric distribution grid as a constraint for the selection. The location was determined 

based on the charging demand data through Thiessen Polygon (aka Voronoi diagram), due to the 

large geographical area to be covered (Figure 2.1). This paper also defined logical upper limits for 

workplace, public and residential parking area chargers to limit the maximum allowed distribution 

of these economical alternatives, compared to the costlier fast charging and battery swapping 

stations. Therefore, the faster alternatives are concentrated on the freeways for long-distance flows. 

While this approach gives practical results for a definite set of population with limited data on 

Figure 2.1 Voronoi Diagram method to find prospective locations for new EVCS [13] 
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actual mobility available, scaling the consumer base is a challenge and results tend to have high 

sensitivity compared to other traffic flow based approaches. 

2.4.4 The p-Median Model 

The p-median model is a location/allocation model [17], which locates p facilities among n demand 

points and allocates the demand points to the facilities. Several location planning models have 

used this approach and its extended versions [18] to calculate optimal locations considering various 

factors like user charging behaviors and EV range. The objective is to minimize the total demand-

weighted distance between the demand points and the facilities. Basic formulation for a p-median 

problem can be expressed as below: 

  where, 

min ∑ ∑ 𝑤𝑖𝑑𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

  

s.t     ∑ 𝑥𝑖𝑗

𝑛

𝑗=1
= 1       ∀𝑖, 

 xij ≤  yj ∀𝑖,̇ 𝑗, 

 ∑ 𝑦𝑗

𝑛

𝑗=1
= 𝑝. 

 xij = 0 or 1 ∀𝑖,̇ 𝑗, 

 yj = 0 or 1  ∀𝑗, 

n = total number of demand points, 

𝑥𝑖𝑗 = {
1    𝑖𝑓 point i is assigned to facility located at point j,
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                                                       

 

𝑦𝑗 = {
1    𝑖𝑓 𝑎 facility located at point j,
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                  

 

wi = demand at point I, 

dij = travel distance between points i and j, wi =demand at point i,  

p = number of facilities to be located. 



15 
 

This is an uncapacitated facility location model where each demand point is served by one facility 

and trips to the demand points are not combined. 

2.5  Heuristic Methods 

Research studies till 2010s mostly focused on the simpler and the exact optimization models, 

which are efficient at solving small scale data and providing exact solutions. But as the size of the 

problem and the number of parameters to be considered increases, these approaches tend to be less 

efficient in terms of computation time and problem-solving methods. Heuristic algorithms are 

developed to solve a problem quicker when classical methods are either too slow or fail to give an 

exact solution. This is achieved by letting the algorithm approximate the accurate solution, hence 

compromising the optimality, accuracy or precision for speed. A heuristic function ranks its 

solutions at each branching step based on the available information to decide which branch to 

follow. They are used to solve real life complex systems due to reasonable computation time 

demands and ability to handle large scale models without significant compromise in the accuracy 

of the solution. Also heuristic algorithms does not require a pre-generated data set with the all the 

possible combinations of the refueling stations that can serve a particular flow, which consumes 

more computation time than solving the MILP itself, thereby allowing heuristic based optimization 

techniques to provide solutions to complex real-life models within a reasonable time frame. 

2.5.1 Greedy Adding and Greedy Adding with Substitution 

In one of the firsts Kuby et.al [19] developed and applied three heuristic algorithms -greedy adding, 

greedy adding with substitution and genetic algorithm- to solve FLRM problems. It was shown to 

be much effective and efficient in solving complex models compared to exact approaches like 

mixed-integer linear programming (MILP). First proposed by Daskin M.S [20] the greedy 

algorithm first finds the facility locations that optimizes the objective, add this to the set, then 

select the next facility-which when added to the already selected-set will optimize the objective. 

This process of selecting and dding continues till the required number of facilities are selected. 

Starting with the set of fixed facilities specified by the user, the additional facilities selected should 

complement the fixed facilities to maximize the objective. It is known as greedy because it selects 

a facility at each iteration without looking ahead for the optimal set.[19] Greedy Adding with 

Substitution is an extension to Greedy adding algorithm, which tries to substitute the facilities from 
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the selected set with the unselected set after each selection has been made. If a substitution 

improves the optimality of the selected set, then the substitution is kept. The substitution loop runs 

after each facility is selected in the greedy adding loop. It is proven to be a great tool to solve 

maximum-covering, set-covering or FCLM problems and was found that over sufficient iterations, 

the accuracy never fell below 99.4% of the optimal solution.  

2.5.2 Genetic Algorithms 

Genetic algorithms which are modeled after the natural evolution process work in an entirely 

different way. The algorithm starts with the multiple sets of randomly generated solution sets, 

known as chromosomes. The algorithm mimics the natural interaction between subjects in an 

evolution set and comes up with a newer and generally better solution after each iteration. At each 

iteration, a specific number of solutions that best fit to the fitness function are selected (known as 

parents) from the set and used them to create the next set of solutions (known as children). The 

next set of candidate solutions can be considered diverse if the average length between the 

solutions is large. Having a diverse set of solutions is important to explore the required solution 

landscape. Proposed in early 70s by (Holland, 1975[21] and Mitchell, 1998[22]) it was first used 

to solve a P-median model problem [8] by encoding chromosomes as a binary string of the 

candidate location length (n), representing whether it is selected to locate a facility or not. To 

ensure the number of facilities chosen, they also introduced a penalty constraint. Later on [23] 

devised an extension to the previous model by encoding the chromosome to contain only the 

number of facilities to be selected (p) and using greedy-deletion heuristic to generate the child 

solution or chromosome. This approach has proven to be used for solving p-median, fixed charge, 

centroid, max-covering problems and FLRM problems. 

Genetic algorithm with mutations were found to give minor improvements in results with much 

higher computation time and in some cases mutation allowed solutions to escape local optima 

solutions. Comparison of the three approaches showed that genetic algorithm approach was able 

to obtain marginally better results than the greedy adding and greedy adding with substitution 

algorithms, but at the expense of computation time [19]. 
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2.5.3 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization(PSO) is a relatively new addition in the population based 

optimization algorithms, where the particles or the objects fly through the multidimensional search 

space looking for a solution. The particle adjusts its position after each iteration, according to its 

personal best solutions and global solution of the whole swarm. For a D-dimensional search space, 

the position of the ith particle is represented as Xi = (xi1, xi2, xi3,…………, xiD) and the position of 

previous personal solution best for each particle is represented as PBest-i = (pi1, pi1, pi1,……, piD). 

The best position among all is represented by PGBest = (pG1, pG1, pG1,……, pGD). The velocity of 

each particle is represented as Vi = (vi1, vi2, vi3, vi4,……, viD) and is determined as a combination of 

its current velocity vector. The direction of personal and global best from the current position as 

shown in (2.1). The position of the particle at each iteration can be determined from the previous 

position and current velocity as expressed in (2.2). 

vid = a vid + b r1 (pid - xid ) + c r2 (pGd - xid )   (2.1) 

xiD = xiD + vid       (2.2) 

In (2.1), the first part represents the inertia component, ‘a’ being inertia constant fixed by the user. 

This value determines the extend to which the particle explores the search landscape or exploit the 

information from the personal and global bests, hence, is often dynamically varied through the 

search process. The second and third part represents contributions from the directions of the 

personal best and global best, with ‘b’ and ‘c’ as the acceleration constants fixed by the user, while 

‘r1’ and ‘r2’ uniformly generated random numbers in the range of [0,1]. 

Taboo Mechanism based Binary Particle Swarm Optimization (TM-BPSO) [24] is another 

advanced heuristic method, which uses a list to store previous solutions and prevent visiting them 

again during further search. In this case, certain aspiration criteria are also used to prevent the risk 

of rejecting a solution that hasn’t been generated yet. 

2.5.4 Agent Based Modeling (ABM) 

Agent-Based Modelling (ABM) technique is an in-depth simulation method that has found various 

applications in the industry in the recent years. ABMs are able to mimic any real world complex 

system composed of autonomous components (agents), interaction between the components 
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(behaviors) and the changes in behavior of agents to the stimuli in their environment. ABM’s 

conceptual depth is derived from its ability to model emergent behavior that may be counter 

intuitive and its ability to discern a complex behavioral system that is greater than the sum of its 

parts. ABMs inherent randomness or stochasticity lets the model proceed every practical way 

possible, which may not be explicitly visible to the modeler. 

The simplicity of the model makes use of the current higher computational capabilities to model a 

real world system where each element (Agent) autonomously behaves according to the certain set 

of rules that defines them and interacts with other agents in the system doing it. This continuous 

and repetitive interaction derives desired results through computing all the possible scenarios.  

2.5.4.1 Agents 

Agents in an ABM can represent a variety of objects such as human beings, equipment, vehicles, 

companies or their projects, ideas, countries, etc. To  ensure practicality of the systems modeled 

with the ABMs, an agent’s fundamental characteristics described by Macal et al. [25] are as 

follows: 

• An agent is an independent, modular, and identifiable individual. The modularity need 

implies that an agent has limitations. It means that one can easily specify whether 

something is a part of an agent or not or maybe is a shared and common attribute. Agents 

have attributes that allow the agents to be differentiated from and identified by other agents.  

• An agent is autonomous and self-directed. An agent can work independently in its 

environment and in its interactions with other agents. An agent has behaviours, which 

connect information perceived by the agent to its decisions and actions. An agent’s 

information is processed and notified through interactions with other agents and with the 

environment. An agent’s behaviour can be clearly described by simple rules to the extent 

of abstract models, such as neural networks or genetic programs that relate agent inputs to 

outputs through adaptive mechanisms.  

• An agent has a state that changes over time. It means that a system has a state consisting 

of the collection of its state variables. Besides an agent has a state that shows the crucial 

variables associated with its current condition. An agent’s state contains of a set or subset 

of its attributes. The state of an agent-based model is the collective states of all the agents 
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along with the state of the environment. In an agent-based simulation, the state at any time 

is all the information required to move the system from that point forward. 

• An agent is social having dynamic interactions with other agents that influence its behavior. 

Agents have protocols for interaction with other agents, such as for communication, 

movement and contention for space, the capability to respond to the environment, and 

others. Agents have the ability to recognize and distinguish the traits of other agents. 

Additionally, agents may have extended characteristics as below : 

• An agent may be adaptive, for example, by having rules or more abstract mechanisms that 

modify its behaviors. An agent may have the ability to learn and adapt its behaviors based 

on its accumulated experiences. Learning requires some form of memory. 

• An agent may be goal-directed, having objectives to achieve with respect to its behaviors. 

This allows an agent to compare the outcome of its behaviors relative to its goals and adjust 

its responses and behaviors in future interactions. 

• Agents may be heterogeneous. Agent simulations consider the full range of agent diversity 

across a population. Agent characteristics and behaviors can be different in their extent and 

complexity.  

The agents for this Chapter are identified and described later in section 3.2.1 in Chapter 3. 

2.5.4.2 Simulation software platform 

This thesis model the Optimal Location Allocation of EV Charging Stations as an Agent-Based-

Modeling problem using Anylogic 8.6 University Researcher Edition. Anylogic [26] is a 

multimethod simulation modeling tool developed by The Anylogic Company. It supports Agent 

Based, discrete Event and System Dynamics simulation methodologies. Anylogic was chosen over 

SUMO and MATSIM to model the problem discussed in this thesis due to the following reasons: 

1. Built-in native java environment as well as support for extensibility using custom library 

codes and external sources. 

2. Extensive support for GIS based ABMs including the shortest path routing and inbuilt 

functions for calculating the distance and time taken for each route. 

3. Support for state chart and UML based process modeling. 

4. Ability to dynamically create and simulate agents loaded from a database. 
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5. Data visualization support to analyze and present results. 

6. Capability to use all CPU and GPU resources in a computer system to run optimization 

problems compared to other urban mobility simulators. 

 

2.6  Conclusion 

The discussion on studies based on literature review in EVCS location optimization shows that 

simpler exact methods of optimization are not viable for real world systems with multiple 

objectives to optimize and large complex data sets. Heuristic approaches on the other hand do not 

give the ideal accurate solution but provide reasonably accurate solutions in a fraction of time. A 

majority of exact solution approaches requires OD distance matrix, which require intensive 

computation resources to calculate the shortest distance between every combination of points. 

Heuristic approaches calculate the required distance values on the go, as only a fraction of the total 

combinations of OD distances may be required to model a scenario. Heuristic methods like ABM 

and Particle Swarm Optimization (PSO) offers great options to explore a highly diverse data set to 

find optimal solutions for single objective and multi-objective solutions with modified versions 

[27]. While Agent Based Modeling simulation offers a simplified modeling approach relying on 

the computational power while exploring the randomness of the real world system, it also offers a 

unique upper hand compared to other modeling solutions by queue implementation, which lets the 

modeler control and simulate waiting periods at each facility. 

As the problem at hand – the pareto optimal location allocation of EVCS – is a Multi-facility, 

capacitated, deterministic, network based, discrete, maximum capture and min-sum problem, 

Agent Based Modeling on a GIS road network platform is the best method to deliver an optimal 

solution. 
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Chapter 3  

Solution Approach 

3.1  Introduction 

Location Allocation (LA) problems have high relevance in the operations research field due to 

their wide spectrum of practical applications in shipping logistics, industrial management, urban 

planning, transportation infrastructure planning, etc. Owing to its stochastic and complex nature 

most of these problems are categorized as NP-hard problems, motivating the search for heuristic 

and approximated algorithms to solve them. Geographical Information System (GIS) based 

solutions are currently widely used to represent LA and other spatial problems. GIS plays the role 

of a practical tool capable of dealing with problems that are not easy to model and whose data is 

are available through various data management systems. This Chapter discusses the methodology 

adopted by this thesis to solve the LA problem of optimal EVCS through ABM. 

3.2  Agent-Based Model for Location Allocation 

Agent Based Modeling (ABM) is a fairly recent alternative to the mathematical modeling of the 

systems whose behaviors are concurrently distributed, complex, and heterogeneous. Like in the 

case of the LA problem discussed in this thesis – a spatially distributed discrete search space of 

the solutions that has the inherently complex nature of utilization factors owing to the complexity 

of urban mobility. ABM  forms an effective tool to enhance the capabilities of the complex spatial 

analytic problems using GIS by minimizing the computation requirement to feed the optimization 

problem while providing a flexible, visual, and responsive representation of the problem itself 

[28]. 

In this thesis, the location planning of Fast Charging Stations (FCS) is modeled as a multi-objective 

optimization to maximize the utilization of charging stations, minimize the reroute time required 

to access the proposed solution of FCS and minimize the number of infeasible trips. The objectives, 

utilization factor and reroute factor are computed through ABM implementation. This thesis use 

Anylogic 8.6 to model the mobility of EVs in the city of Montreal by making use of a solution set 

of Charging Stations (CSs) to complete their commute. The Car Agents are moved from their 
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origin to destination through the shortest path provided by the Anylogic Router. The utilization 

factor of CSs is computed by considering the amount of time each charger was used and its 

convenience factor is computed considering the reroute time of each vehicle, which utilized that 

CS. 

3.3  Overview of the datasets used 

To enable the most accurate representation of the mobility of EVs in the city of Montreal, Montreal 

Origin-Destination (OD) survey (2013) data is used to model the Car Agent population in ABM. 

Charging Stations are plotted according to the information available on the website of Electric 

Circuit – Hydro-Quebec’s public charging network – collected as of January 2020. At the time of 

data download, there were 6 locations with Level-3 (50kW) charging stations in the City of 

Montreal. For the sake of simplicity, all Level-2 and Level-3 charging station locations are 

assumed to be the candidate locations for future 120kW FCS 

A brief overview of the Montreal OD Survey-2013 is discussed below. 

3.3.1 Origin-Destination Survey 2013 

The 2013 Origin-Destination survey is a joint achievement of the Agency Metropolitan Transport 

(AMT), the Association Québécoise du Transport Intermunicipal and Municipal (AQTIM), the 

Montreal Metropolitan Community(CMM), the Ministère des Transports du Québec (MTQ), the 

Réseau de Transport de Longueuil (RTL), the Secretariat for the Metropolitan Region (SRM), the 

Société de Transport de Laval (STL) and the Société de Transport de Montréal (STM), prepared 

and published by Secretariat for the Origin-Destination survey. This extract represents a sample of 

78,800 households. 

The 2013 OD survey was conducted in the fall of 2013 in the Montreal metropolitan area. This is 

a survey carried out through telephonic interviews that is among the most important in Quebec. It 

aims to draw a faithful portrait of all trips carried out by residents of the region during an average 

weekday, for all modes of transport used. Carried out approximately every five years since 1970, 

OD surveys cover an increasingly large, which spans the entire metropolitan area, major cities of 

Montreal, Laval, and Longueuil, passing through the north and south crowns. 
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The population targeted by the 2013 OD survey corresponds to all the people occupying private 

dwellings in each of the municipalities in the survey area. For people aged 4 years and under, no 

travel information is collected. The results of the survey refer to trips made on working days in the 

period between September 3 and December 20, 2013, inclusive. Interviews, carried out with some 

78,700 households, made it possible to describe the characteristics of some 410,700 trips made by 

the 188,700 people who make up these households. The sampling covered in this survey is 

calculated to be about 3% of the total population of the Metropolitan area of Montreal. 

Trip information collected, relevant to this thesis includes: 

1. Household number 

2. Person number 

3. Reason 

4. Origin 

5. Destination 

6. Time of departure  

7. Mode of transport used. 

Source : Enquête Origine-Destination 2013 de la région de Montréal, version 13.2b 

Utilized by : Prof. Anjali Awasthi, Akhil Raj Kizhakkan. 

3.4  Assumptions and constraints 

Constraints faced in implementing an ABM using any software are many. Though Anylogic is a 

strong simulation modeling tool, there is a lack of technical documentation to help explore the 

advanced properties of the software. Implementing a highly specific model for an LA problem 

requires extensive use of programmable entities, knowledge of how to use them, and their inter-

compatibilities in the Anylogic context, which is time-consuming to gather. The complexity of the 

software aside, the biggest computational requirement for any mobility model is to decide the route 

between two points through the GIS space. Anylogic offers the shortest route calculation as a part 

of its GIS module, by accessing its routing servers online. Though it takes several hours to learn 

all the required routes over the network, they are saved to a cache for easier and faster access in 

the subsequent runs. This eliminates the computational complexity involved from the system in 

which the model is run and thereby decreasing the model run time. This also means that mobility 
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between two points in GIS space is always through the shortest route obtained, which may not be 

the case practically. 

The OD data obtained is considered as the base for all mobility events modeled in this thesis. As 

they are limited to only the Fall season (September-December) the model does not give an accurate 

picture of the seasonal variations in traffic over a whole year. As September to December notes 

the most change in climate and outdoor activities involved for the City of Montreal, it can be 

argued that for a 3-month survey aimed at representing the general mobility pattern of Montreal, 

the Fall season would be the best candidate. 

Considering the projected growth of EVs (Figure 1.4), it can be found that EV population is 

currently at about 1% of the total vehicle population and is expected to reach 3-4% by the year 

2025. From the sample of population covered in the OD Survey-2013 data, it can be seen that 

about 3% of the target population participated in the survey, and trips are defined for commute 

made by them using personal and public transports. This thesis assume that all the trips listed in 

the OD Survey-2013 are made using personal EVs so that the model has an accurate representation 

of charging demand for upcoming years. 

As Montreal residential areas parking works on a sector parking system, this thesis assume that 

the bulk of the future EV owners will not have a facility to charge their EVs residentially overnight, 

as they may often have to park the car away from their home. Therefore, this thesis assumes that 

future EV charging demand rely on public charging stations to satisfy their re-charging needs. To 

facilitate shorter waiting periods for charging and to make EVs more acceptable to the broader 

public, Fast Chargers(~100kW) are required to be commonly accessible. Therefore, this thesis 

proposes a solution wherein total demand for charging is to be covered by Fast Charging Stations 

(FCS) only. 

To eliminate infeasible solutions of locations to install an FCS, the sample set of solutions is 

gathered as the current Level-2 charging station locations. The final solution to the LA problem 

may be used to upgrade these Level-2 stations to an FCS of proposed capacity. 

As the Vehicle Agent movement is modeled according to the departure time listed in the trips data, 

the peak hour of charging demand is accurately modeled in this solution. However, the model does 

not consider the general road traffic due to non-EVs and hence the travel times of Car Agents are 
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not accurately modeled in this thesis. It can be argued that, as all the agents face the same traffic 

constraints to travel, this assumption does not impact the final solution of the location of charging 

stations to be upgraded to FCS. 

This thesis assumes that each EV owner will follow instructions from a higher-level decision 

maker to charge the car when instructed during a trip, given the origin and destination is provided 

to the decision-maker. This system is currently in use in several EVs where a central console 

provides the navigation details to the destination and informs the driver on estimated battery level 

upon arrival at destination. The system also urges the user to visit a charging station on-route if 

the estimated level is less than a certain tolerance. This thesis model considers the tolerance to be 

35%. 

The EVs available in Canada have a wide range of battery capacities available ranging from 16kW 

(Mitsubishi i-MIEV) to 100kW (Tesla Model S, Model X). For the sake of computational 

simplicity, this thesis assumes 3 values of battery capacities [25kW, 50kW, 75kW] are evenly 

distributed among the Car Agents. Also, the consumption of charge by different sizes of EVs are 

assumed to be very similar around 259Wh/mi or 161Wh/km, except for a few outliers (Jaguar i-

Pace, Tesla’s performance version cars, etc.) [29] 

To summarize, the constraints are as follows: 

a. Vehicle mobility through the shortest path only. 

b. Limited data are available to model seasonal demand changes. 

c. Only current Level-2 charging station locations are considered in solution space. 

d. Real traffic congestion data not involved to reduce complexity. 

The assumptions made are summarized below: 

a. All trips from the database made by EVs. 

b. All charging events through public FCS only. 

c. Car Agents adherence to charging instruction from decision-maker 

d. Generalized battery capacities and uniform consumption across all EVs 
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3.5  Modeling by Unified Modeling Language (UML) 

The use of graphical designs to represent and explain the properties and flow of a model has always 

been in use. In the case of ABMs, most researchers agree that the natural way to program their 

models is to adopt Object-Oriented (OO) practices like abstraction, encapsulation, and inheritance. 

Among the OO analysis and design techniques applicable to ABMs, UML is the most favorable. 

This thesis adopts the integration of OO, ABM, and UML for modeling the simulation-based LA 

problem optimized using the Genetic Algorithm. ABM with OO design has inherent advantages 

of balancing visibility and confidentiality through encapsulation. Inheritance provides a hierarchy 

structure that makes the design highly reusable, extendible, and easy to understand. Systems 

modeled with OO based ABM is more adaptive to changes over time while reducing the risk of 

building complex systems as they can evolve from fundamentally basic systems. 

Unified Modeling Language (UML) proposes a set of well-defined and standardized diagrams 

(independent of any programming language or computer platform) to naturally describe and 

resolve problems based on high-level concepts inherent to the formulation of the problem. UML 

is a graphical tool that provides a highly communicative way of representing both static and 

dynamic aspects of a system. It is comprised of 13 basic diagrams that encourage users to focus 

on the end-to-end logical modeling of their solution methods, before diving into the technicalities 

of implementation.  

The first and most important step in ABM with OO problem solving is the construction of a model. 

The model forms an abstract version of the relevant details from the usually complex real-world 

problem. The model in this thesis should facilitate a simple, comprehensible version of mobility 

in the city of Montreal, taking into account its major actors – EVs, Charging Stations, and the trips 

that direct them. 

UML effectively represents the static elements and the dynamic nature of the LA problems. In our 

case, the Class Diagram gives an insight into the static definitions of each element in the system, 

while the sequence diagram gives a deeper insight into the flow of processes at different points of 

the simulation. While the state diagram defines the properties of each Agent state, the activity 

diagram defines the logical flow of triggers that result in achieving different states. The diagrams 



27 
 

work together to depict and describe different aspects of the system. Hence, UML diagrams are 

effective as a model design tool to be used for ABMs. 

In the case of ABMs, it is found that 4 types of diagrams namely Class Diagram, Sequence 

Diagram, State Diagram, and Activity Diagram can almost accurately represent any ABMs.[30] 

Class diagrams are composed of classes and the multiple types of relationships among them, 

namely inheritance, composition, and association. This section defines all the major aspects of the 

model – agents, their physical sites, the resources they may consume, and their properties. Then 

each element is connected with the others depending on how they are related to each other or how 

one uses the other. 

The sequence diagram is the second most common UML diagram for ABM developers. It 

represents how objects interact and exchange messages over time. This allows developers to trace 

the program while it executes and to follow the way objects interact in memory. UML is constantly 

evolving by adding more functionalities to these diagrams that make it closer to adapting any kind 

of software or modeling system. 

State diagram gives all the possible states an agent can be in and all possible transitions between 

the states, mostly based on some conditions. This diagram always starts with an initial state and a 

final state, typically represented as Agent entering and leaving the ABM model. This allows 

perception of Agent behaviors as states and state-transitions, providing a convenient way to 

modularize the model code into behavioral blocks. 

Activity diagrams are very similar to traditional flow charts, wherein it represents the procedural 

flow of code. Activity diagrams are considerably helpful in debugging the model for errors and 

issues, letting the developer visualize the behaviors of collaborating elements. The activity 

diagram gives a deeper insight into the state and sequence diagram. 

For the purpose of modeling the LA optimization problem as an ABM, this thesis employs these 

4 types of diagrams to model the static elements and dynamic behaviors of the system. The coming 

sections discuss the choice of such elements and behaviors to best represent the model through the 

4 diagrams in sections 3.5.1 through 3.5.4 
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3.5.1 Class Diagram 

The first step of an OO based model is to identify the classes involved to develop a library of 

agents and their related objects. In UML, class diagrams are used to represent the agents and their 

related objects. Once the agents and objects are identified, they can be organized into a hierarchy 

structure indicating their relationships. The broadness and depth of the modeling environment for 

specific cases are defined using the object definitions and agent relationships. 

This thesis defines classes according to the real-world entities each element represents. The ‘main 

agent’ acts as the base of the model, within which all other objects and Agents lie and interact with 

each other. Hence the GIS map and the road network upon which the population of trip, car, and 

charging station agents interact are present in the main agent. From Figure 3.1, it can be noted that 

the Main Agent is composed of Car Agent, Trip Planner Agent, and Charging Station Agent, 

Figure 3.1 Agent Classes 
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indicated by  1 to many relationships. Similarly Charging Station Agents (CSAs) is composed of 

Charger Agents (CGAs) and Car Agents (CAs) are composed of Battery Agents by a 1 to 1 

relationship. In these cases, an agent is contained inside another agent using composition relation, 

when the second object leaves the model memory the contained agent also ceases to exist. In our 

case, the Main Agent (MA) takes the responsibility of creating and initializing all the agents inside 

that drives the simulation. At the disappearance of the MA object, the contained agents, objects, 

and resources are taken out of the simulation as well. 

Trip Planner Agent (TPA) is related to the CSA in a 1 to 1 association, as each trip can only have 

one nearest charging station on the route. But TPA is related to the CA as many to 1, as multiple 

trips entries can call the same CA to complete the trip. Significant agents present in this class 

diagram are described as follows: 

1. Main Agent (MA)  

The Main Agent forms the environment in which the Agents of this model interact. The 

shortest path router algorithm is part of the GIS map in this agent, which lets Car Agent 

move from origin to destination through an accurate road network and give necessary 

distance data to make trip decisions. 

2. Trip Planner Agent (TPA) 

This Agent is responsible for the details of each trip Car Agents have to make in the model. 

Hence it is associated with both the Car Agent population and Charging Station Agent 

population. Each trip agent becomes active only at the departure time of the respective trip. 

Once active it fetches the corresponding Car Agent and proceeds through a decision-

making process to complete the trip. The process flow detailing this decision-making 

process is discussed in the next section.  

3. Car Agent (CA) 

Car Agents are the only non-static agent in this model. It moves according to the 

instructions from the trip Agent, through the path provided by the shortest path router. It 

dynamically consumes the battery resources as they move and keep a track of the average 

distance travelled a day. The car agent is composed on a Battery agent that monitors the 

battery state and sets a flag indicating charging required when the battery is low. 

4. Charging Station Agent (CSA) 
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This agent hosts the charger agents at the desired location and allocates incoming Car 

agents with one Charger agent from its pool, with a facility of keeping up to one car in the 

queue. The resource pool and queue implementation of chargers ensure that each charging 

station is met with realistic charging demand according to the number of chargers present 

in them. 

3.5.2 State Transition Diagram 

A State Transition Diagram shows the flow from one state to another within an agent. It illustrates 

all possible states an agent can be in and all possible transitions between those states, which can 

result from an event based on some conditions if any. State transition diagram, in some cases also 

known as Activity diagram, always starts from an initial state – indicated by a black disc – and 

ends at a final state – indicated by a black disc inside a white disc. Each round-corner box includes 

an execution of a statement or activity and the arrow from the box leads to the next step of 

activities. The transition between the states provides important perspectives to sophisticated 

operations. 

The next sections discuss the State transition diagrams of agents in this model. 

3.5.2.1 Trip Agent State Transition Diagram 

The diagram in Figure 3.2 details the end-to-end process flow of the simulation model, as trip 

events are initiated from the Trip agent. Once the trips population in the Main agent is initialized 

from the database, the Trip agent stays idle until the departure time is provided with the trip event. 

As the model time approaches the departure time, the trip details are pushed to the Car Agent’s 

trip-queue to be executed as soon as the Car Agent is released from its past trip. This ensures a Car 

Agent is not called into the trip process flow while it is active in another process flow. During the 

trip process, the feasibility of reaching the destination with a 30% battery left in the car is checked 

and the car is sent to the charging station on-route if it is not satisfied. Trip Agent calculated the 

fitness and convenience factors for Charging Station agents in use and pass it on to the Charging 

Station Agent. If the Car Agent does not have the required energy to travel to the nearest Charging 

Station, that trip is marked as infeasible and moved on to the next trip.  
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3.5.2.2 Car Agent State Transition Diagram 

Car agent has a relatively simpler State Transition diagram (Figure 3.3) in this model, as it follows 

the decision made by TPA for its commute destination. The Car Agent is idle until there is an entry 

in the trip-queue. Upon receiving a trip object, the Car Agent calls for its trip process flow and 

Figure 3.3 Car Agent State Transition Diagram 

Figure 3.2 Trip State Transition Diagram 
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moves while updating its distance traveled and battery charge level through the Battery Agent. The 

CA is taken out of the simulation if at any point the energy level in the battery reaches zero. 

3.5.2.3 Battery Agent State Transition Diagram 

Battery Agent continuously monitors the state of the battery charge and sets the charge required 

flag dynamically, as the vehicle moves and energy in the battery is consumed. When the charge 

required flag is set, the battery agent interacts with the CGA in charging station to determine the 

time required to charge and updates the battery level accordingly (Figure 3.4). 

3.5.2.4 Charging Station Agent State Transition Diagram 

The charging Station agent stays idle until a CA arrives. A CGA is assigned from the resource 

pool of chargers to the Car Agent. Once the charging process is done at the CGA, the CA is passed 

back to the TPA to continue with the trip. The TPA also passes data required for assessing the 

fitness and convenience factor of the Charging Station agent (Figure 3.5). 

Figure 3.4 Battery State Transition Diagram 

Figure 3.5 Charging Station State Transition diagram 
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3.5.2.5 Charger Agent State Transition Diagram 

The charger agent is responsible for the actual charging process of the battery agent composed in 

the CA received by the Charging Station. It calculates the energy demand and corresponding 

charging time of the charging process. The charger agent limits the maximum charging time to 20 

minutes as this thesis is modeling how FCS can serve the EV user demand as close to a 

conventional car refueling process (Figure 3.6) 

3.5.3 Use Case Diagram 

Use case diagrams are mainly employed in modeling the behavior of a system, a subsystem, or a 

class. They are useful in visualizing, specifying, and documenting the behavior and dependencies 

of an element of a system. 

To model the EV Charging Station Location Allocation problem through Agent-Based 

methodology, the Agents and its behaviors must be clarified. Through UML use case diagrams, 

one can represent the scenarios or cases of using each agent class. The use case diagram can explain 

and indicate needs in the scenarios. Therefore, use case diagrams gather the behaviors and 

functional requirements of each system and define its associations with other external agents. 

Figures 3.7 through 3.12 show the use case diagram for the complete model through its various 

agents. 

Figure 3.6 Charger State Transition diagram 
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Figure 3.7 Main Agent Initialization Process Use Case Diagram 
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Figure 3.8 Trip Agent process use case diagram 
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Figure 3.9 Car Agent Process Use Case diagram 

 

Figure 3.10 Battery Charging Process Use Case diagram 
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Figure 3.11 Charging Station Operation use case diagram 

 

Figure 3.12 Charging Process Use Case diagram 
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3.5.4 Sequence Diagram 

Sequence Diagram is the second most common UML diagram used by the developers and 

modelers, owing to its adaptability to multiple design strategies and clear representation of the 

process flow, incorporating all the major elements of the model/software. It shows the message 

exchange between objects/agents by delineating each of them in a vertical line. The messages 

between agents can be function calls, parameter exchange, or command messages and are 

represented by horizontal arrows. It can be noted that in the sequence diagram, time is represented 

along the vertical line progressing downwards and it can be both physical and logical. 

The sequence diagram for agent-based modeling of LA problem of Charging Stations is shown in 

Figure 3.13. There are 6 agents involved in the process. The model starts from the MA, which 

initializes the population of TPA, CSA, and CA from their respective database values. Among 

these three main agents, only CSA has a static physical location in the GIS space. Hence CSA 

agents are placed in the GIS map environment permanently. TPA are then assigned with their 

corresponding CA according to their database values. Since TPA are an abstract agent that does 

not have a physical representation in real life, no symbolic icon or GIS location is assigned to 

them. CA on the other hand are mobile and is a physical entity in the GIS space, therefore, they 

are represented by a ‘car’ icon in the GIS map whenever they are actively participating in a TPA 

process flow. 

After the initialization process, each TPA corresponds to one instance of a trip with an origin, 

destination, Time of Departure (ToD), and the instance of CA that should execute this trip. TPA 

stays idle till model time reaches ToD. At ToD TPA sends this instance of the trip as an object to 

the corresponding CA’s trip-queue and instructs CA to check trip-queue. At CA if the ‘current 

trip’ parameter is empty, then it is made equal to this trip object and calls for process flow for trip 

execution in TPA. The TPA then places the CA at the origin, calculates the distance from the origin 

to destination, and checks the energy required to complete the trip by calling the 

‘batteryLeftWOCharging()’ function from the CA, which returns the expected battery level of CA 

once the trip is completed. If the return value is less than 30% of total battery capacity, the 

‘chargeReqFlag’ is set, indicating that the CA should recharge its battery first by visiting the 

nearest CSA before proceeding to its destination. Now at TPA, the process flow forks into two 

depending on whether ‘chargeReqFlag’ is true or false. If ‘chargeReqFlag’ is false, the TPA 
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instructs its CA to move to the destination point. If ‘chargeReqFlag’ is true, the TPA finds the 

nearest CSA from the available population of CSA, adds it to its CSA variable, and calculates the 

distance between origin to CSA. If the energy required to travel to CSA is higher than the current 

battery level, this instance of the trip is marked as infeasible and TPA exits the process flow. If the 

trip to CSA is feasible, then the CA is instructed to move to the assigned CSA. When CA reaches 

CSA, CA leaves the TPA process flow and joins the charging process flow in CSA. As the CA 

enters CSA, CSA finds an available Charger Agent (CGA) from its resource pool of chargers and 

assigns it to the CA. CSA calculates the Energy demand of CA and the time required to complete 

charging and pass it on to CGA. CGA interacts with the Battery Agent (BA) in the CA to execute 

the charging process for the required time. Once the charging process is done, CSA informs the 

CA and releases it to the TPA process flow. TPA updates the CSA convenience factor according 

to the reroute distance and increments the fitness factor by one to indicate the CSA utilization. 

TPA then instructs the CA to move towards its destination. 

When CA reaches its destination, TPA updates its total distance run and looks for the next trip in 

its trip-queue. If there is a trip waiting in the queue, TPA instructs the CA to start the next trip and 

exits its process flow. If there is no trip pending, TPA sends the message ‘end’ to make CA return 

to its idle state and exits the process flow. 
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Figure 3.13 Sequence Diagram 
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3.6  Multi-objective optimization of ABM using Pareto Optimization 

ABMs are widely used to simulate real-world systems. They act as a virtual laboratory where 

questions can be prompted and results analyzed, without the need for physical implementation and 

its associated costs and consequences. When the objective of simulation modeling is to determine 

the best combinations of input to achieve specific best results, they turn into an optimization 

problem. In general optimization problems refer to varying values of certain parameters to obtain 

the best values for an objective function. Hence, it should be noted that in this context, optimization 

refers to the optimal choice of a sequence of external inputs to achieve a specific goal[31]. This 

thesis makes use of the Pareto Optimization technique to arrive at the best set of Charging Station 

locations that will serve the EV user population of Montreal with the best convenience and 

minimum cost, while minimizing the number of infeasible trips. The objectives of convenience, 

cost, and infeasibility of trips are discussed in the next section. 

One of the key factors of ABM models is its stochasticity. Hence, observations have to be made 

to examine how data changes over longer model times. In this thesis case, it was observed that 

most Car agents participating in the model had to go for at least one charging event within an 

average of 5 model days when started with an initial battery level, uniformly distributed between 

35% to 75% of their battery capacity. Therefore, the model time required to run for optimization 

is determined as 5 days. 

Scaling is an important concept in ABM simulation. Treating the original size and scope of the 

problem as true, it refers to the extent to which a model can be reduced without altering its pertinent 

dynamics. It is most often done to substantially reduce the run time of the ABM models and reduce 

the computational requirements for solving optimization problems. Thereby allowing access to a 

wider range of analytical tools to tackle the problem at hand[31]. For the purpose of optimal 

control, it is important to determine the extent to which models can be reduced while ensuring that 

the model is a faithful representation of the original problem. As the diversity in trips made by 

users is the most important in determining the significance of a charging station location, this thesis 

uses the total dataset provided for modeling. Significant reduction is made in fixing the model 

units to minutes instead of second and keeping model time accuracy to 10e-4. Both these changes 

result in only minor changes in model objectives calculation. 
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It is important to note that not all ABMs can be reduced by methods like Cohen’s weighted ‘k’ 

method [32] and therefore, reduction of this model is very limited to the simulation controls used 

and the number of model days to be run. 

3.6.1 Pareto Optimization 

Heuristic methods are perhaps the most explored methods to optimize an ABM. Considering that 

in an ABM based LA problem, enumeration of solution space is infeasible, heuristic methods can 

be employed to perform a guided search through the solution space, to identify locally optimal 

controls. Several heuristic algorithms have been in use for ABM based optimization problems, 

including extensions of Simulated Annealing[33], Tabu Search[34], Squeaky Wheel 

optimization[35], Ant Colony Optimization, and Genetic Algorithm(GA)[36]. This thesis focuses 

on solving the optimization problem through a variation of GA called Simulation-based Multi-

Objective Genetic Algorithm (SMOGA) to find the set of solutions for the LA problem through a 

Pareto optimal front based evolution.  

Control problems with multiple objectives can be solved by assigning weights to each objective 

and treating the total of the weighted objectives as a single objective function. Single objective 

functions can then be solved using any appropriate method. Choosing the right amount of weights 

a priori becomes highly significant in this case and is up to the decision-maker to select the weights. 

Appropriate weights may be unknown to the decision-maker initially and multiple iterations of 

analysis may be required to fine-tune the weights to achieve a certain goal. It can be seen that 

valuable solutions and time may be lost in the process of choosing the right weights and repeating 

the experiment if the results are not satisfactory. Hence, treating the multi-objective problem in its 

original form takes advantage in choosing the desired solution from the set of solutions arrived 

after the analysis. 

Pareto Optimization is a heuristic method that focuses on delivering multiple solutions, each with 

its own merits and demerits, instead of focusing on one set of solutions. Candidate solutions in the 

Pareto optimal front represent the solutions that are superior to the rest of the candidates in the set 

in at least one objective. Therefore, they cannot be improved upon an objective without sacrificing 

in another. Thus, giving the choice to the decision-maker to choose the right set of solutions from 
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the set, after the search is concluded[31]. The pseudo-code of the algorithm used is presented 

below in Algorithm 3.1: 

❖ Generate initial population of charging stations (location, 
n_fastChargers) // from the dataset 

❖ while currentGeneration < maxGenerations do 
➢ Run ABM and evaluate fitness factor and convenience factor for each 

-> current_pop 
➢ In current_pop determine Pareto frontier -> current_frontier 
➢ Add current_frontier to next_pop 
➢ while size(next_pop) < maxGenerationSize do // After the first 

iteration, reduce the maximum generation size by 5% 
▪ Choose 2 parents: 

• Repeat 

 rand_set = randomly select 5 solutions from current_pop 
//roulette wheel 

 if exactly one candidate is Pareto dominant over others 
then 
➢ Pareto dominant candidate becomes parent 

 else if 
➢ Dominant candidate with fewer neighbors in solution 

space becomes parent 
// give preference to isolated solutions (diversity) 

 else 
➢ Select a candidate at random to be parent 

 end if 

• Until 2 parents are chosen 
▪ Breed two new solutions A and B from parents: 

• for all parameters in parents do 

 Select parameter from random parent //roulette wheel 

 Add this parameter to A 

 Add corresponding parameter from other parent to B 

• end for 

• set mutation_rate = 0.20 * ((maxGenerations – 
currentGeneration)/ maxGenerations) 

• for n_fastCharger component in A and B do 

 change component with probability = mutation_rate 

• end for  
▪ Add A and B to next_pop 

➢ end while 
➢ increase currentGeneration by 1 

❖ end while 

Algorithm 3.1 
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The initial population is composed of 10 candidate solution sets (chromosomes), which are 

locations of Charging Stations represented through their ID number and the number of chargers in 

each. Each Charging Station can have 0, 2, 4 or 6 number of fast chargers. Having 0 number of 

chargers make any specific Charging Station inactive from the model run. So each gene in the 

candidate solution will have 2 parameters. 610 such genes would represent the total population of 

unique candidate locations for Charging Stations, both active and inactive, forming a candidate 

solution set or chromosome. The 10 chromosomes in the initial population are generated by the 

uniform distribution of the number of chargers among the entire solution set of charging stations. 

Figure 3.14 represents an example of the initial population of candidate solutions. 

By inputting the candidate solutions one by one to the ABM model and simulating them over the 

desired period of 5 model days, the fitness and convenience factor of each CS is calculated and the 

combined data is considered as the current population. Example of the current population 

representation is shown in Figure 3.15. This current population is searched for Pareto solutions and 

they are selected to be added straight to the next population set. In the next step, 5 candidate parents 

Figure 3.14 Gene representation of candidate solutions 
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are selected at random through roulette wheel randomization of their fitness factor. Giving 

preference to Pareto dominant solutions and then diversity among the 5 solutions, 2 parents are 

chosen to crossover. The crossover mechanism produces two new solutions A and B, by randomly 

exchanging the number of chargers parameter among the two parents using a 4 point crossover. 

The crossover points are determined randomly from 1 to 609. The solutions formed A and B are 

then subjected to mutation with a probability of 0.2 to randomly change the number of chargers in 

20% of the Charging Stations. The mutated child solutions A and B are then added to the next 

population. This process of choosing parents and producing child solutions is repeated till 10 

solutions are obtained for the next population set. Once the number of solutions in the next 

population reaches the population size. Each time a new population is generated the steps are 

repeated from simulating the model with each new solution set and calculating their fitness and 

convenience factors until there is no improvement. 

The simulation model and results from this optimization experiment are discussed in the next 

chapter. 

  

Figure 3.15 Population representation 



46 
 

Chapter 4  

Simulation Model Implementation and Results 

4.1 Introduction 

In this Chapter, the Agent-Based Modeling (ABM) of Electric Vehicle (EV) mobility through city 

of Montreal is implemented and discussed using Anylogic 8.6 simulation software, with emphasis 

on the UML models discussed in section 3.5. All the constraints and the assumptions detailed in 

section 3.4 are considered while constructing the simulation model. The agents in the model are 

created according to the Class diagram designed in section 3.5.1 and initialized with the initial 

data. The dynamic elements of the model design and the optimization experiment is discussed in 

the next sections. 

4.2 Elements of simulation model and concepts 

Agent based models can represent a complex system with high level of detail, due to its inherent 

encapsulated behavior-based design, which incorporates inheritance properties. Therefore, 

Objected Oriented Programming (OOP) languages can best represent them. Among the wide 

variety of OOP language available, Java tends to be the most popular in ABM implementation due 

to its compatibility to simulation based modeling and wide acceptance. As a result, Anylogic 

simulation software is also built on a Java development platform and provides features such as 

abstraction, polymorphism, encapsulation and inheritance. Similar to Java classes, Agents are 

implemented as Agent Classes in Anylogic. Any agent class may contain parameters and functions 

that define their characteristics and behaviors, state charts and process-flows that define their 

decision-making process and connections to other classes that interact with them. 

While ABM is great at implementing the natural flow of processes from the perspective of 

individual objects or agents, the decision-making processes of the larger system may be the best 

represented by a Discrete Event (DE) process flow. DE modeling is the most efficient when the 

behavior of system under discussion is a sequence of operations, such as Trip planning operations 

in this case. As Anylogic supports the combination of both modeling strategies in a single platform, 

both process flow charts and statecharts are used to model the system in this thesis. 
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To better understand the process of ABM using Anylogic software in this thesis context, some 

important concepts are discussed in the next sections. 

4.2.1 Anylogic Modeling elements 

4.2.1.1 Statechart 

A statechart in Anylogic is an extended version of UML state diagram. It provides a visual design 

element to define the event and time dependent behaviors of agents in the simulation. Though it is 

majorly used in ABMs, it works well with the process flow based and system dynamics based 

models. Statecharts are composed of states and transitions. According to A.Borshchev “A state 

can be considered as a ‘concentrated history’ of the agent and also as a set of reactions to external 

events that determine the agent’s future. The reactions in a particular style are defined by 

transitions exiting that state. Each transition has a trigger, such as a message arrival, a condition, 

a timeout, or the agent arrival to the destination. When a transition is taken (‘fired’), the state may 

change and a new set of reactions may become active. State transition is atomic and 

instantaneous”(37). 

Anylogic supports a version of UML state diagram or state machine that supports composite states 

(states that contains other states), history states, transition branching and internal transitions. While 

orthogonal states are not supported, it is possible to define multiple statecharts in the same agent 

to work in parallel. 

4.2.1.2 Flowchart 

Flowchart is a widely adopted graphical representation of processes. A process flowchart in 

Anylogic combines the properties of UML sequence diagram and activity diagram. As the trip 

planning and execution is a sequence of operations that controls the Car Agent and Charging 

Station Agent states, the Trip Planner Agent is designed as a Discrete Event (DE) process flow. A 

process flow is a graphical representation of processes that the entities of simulation is subjected 

to. In this thesis context, the entities are agents: Car Agents and Charging Station Agents, which 

interact with the process flow in the Trip Planner Agent. Use of process flowcharts enable us to 

accurately represent the trip planning decisions than using a state chart to do the same. 
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4.2.1.3 Agent parameters 

In ABMs, parameters represent the inherent characteristics of the agent or object. For a large class 

of agents, like Car Agents, it is their parameters that distinguish from one to another. Agent 

parameters are defined according to the design provided by the class diagram of model design. 

According to Anylogic, a parameter is used to describe the static characteristics of an agent or an 

object. It is normally considered constant over a complete simulation and is changed to change the 

behavior or outcome of the simulation by the modeler. But it can also be noted that all parameters’ 

values are visible and changeable dynamically throughout the simulation model and hence, can be 

updated during runtime to adjust the model.  

In the next section, model design implementation of each major agent is discussed. 

4.2.2 Main Agent Modeling 

Main Agent (MA) is where all the agents in the model interact (Figure 4.1) and it is the first agent 

that is initialized during model execution. It is comprised of a GIS space where the CSAs are 

placed in their respective longitude and latitude and the CAs move from origin to destination. The 

function f_OnStartup initializes the TPAs, CAs and CSAs. Destination Agents (DAs) are 

populated dynamically during model execution.  

The static parameters of MA include 

1. kWh_PerKilometer, which decides the battery charge consumption of EVs per distance run 

2. p_batteryLevelThreshold_ForCharging, which decides the minimum expected battery charge 

percentage level required after a trip is complete, so that there is enough battery charge left for 

the next trip or to visit a charging station before the next trip. 

3. carSpeed provides the average speed of movement of cars through the GIS space. 

The dynamic parameters of MA are 

1. current_Population_CS holds the set of solutions that belong to the current 

generation of solutions and is initialized by the optimization algorithm. It is of type 

Java class type Population and holds solutions as an array of Java class Candidates 

both discussed in section 4.2. 

2. candidate_num depicts the individual solution that is assessed by the model at 

any moment. It acts as an index number to a single set of charging stations and 

their capacities from the current_Population_CS for model execution. 
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Variables num_infeasibleTrips and totalChargingEvents are dynamically populated during 

runtime. 

Function update_CS_dataset populated the final values of fitness, convenience and locations of 

each charging station from the solution set to the data sets fitness_data, convenience_data and 

location_data. Functions calcFitness and calcConvenience are used to calculate the fitness factor 

and convenience factor of a candidate solution after each run from the dataset of individual fitness 

and convenience. 

Figure 4.1 Main Agent model 
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4.2.3 Trip Planner Agent Modeling 

Trip Planner Agent (TPA) is the starting point of the model processes (Figure 4.2). Trip Agent 

parameters are initialized from the trips database, which is discussed in detail in Section 3.3. Each 

TPA is responsible for a single instance of trip (movement from origin to destination). The TPA 

acts as the decision maker of this ABM, by directing the states of both Car Agents (CA), Charging 

Station Agents (CSA) and their corresponding extensions, Battery Agent (BA) and Charger Agent 

(CA). Trip agent is defined by its parameters as follows: 

1. tripID – unique value representing each trip 

2. orilon – origin location longitude value 

3. orilat – origin location latitude value 

4. deslon – destination location longitude value 

5. deslat – destination location latitude value 

6. depDateTime – the time of day at which this trip should start 

7. carID – unique carID that corresponds to the person/vehicle this trip belongs to 

Figure 4.2 Trip Planner Agent Model 
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Apart from parameters, the TPA also has variables that holds dynamic values/objects during the 

run time. All variables are initially null or zero and are assigned values during runtime. The 

variables used in TPA are as follows: 

1. tripCar – Car Agent reference object to corresponding carID 

2. trip_CS – Charging Station Agent reference object to the selected Charging Station 

3. destination – destination Agent (GIS location entity) 

4. distance – distance between origin to destination without charging reroute 

5. distance_w_charging – distance between origin to destination with charging reroute 

6. availableCS – collection of Charging Stations that has charger slots currently unused 

The process flow is initiated using an event element eventStartTrip that triggers the Trip process 

flow only at the specified departure time from depDateTime parameter and repeats the trigger in 

one day interval. Once triggered the eventStartTrip checks if the Car Agent is completing another 

trip at the moment and adds this trip to its queue. If the Car Agent is idle, then it initiates the Trip 

Process flowchart by passing the tripCar to ‘enter’ block of the flowchart. The flow chart then 

executes the process flow designed in section 3.5.2.1 as a discrete event. Functions calcDistance, 

addRemoveDestination, startTripProcess and findActiveCS used appropriately through the 

flowchart depicts the behaviors of the TPA. Underlying java code that defines each of these 

functions are provided in Appendices. 

4.2.4 Car Agent modeling 

CAs are the mobile agents in this model and their characteristics are defined by a statechart present 

inside the agent. The composite state of ‘Car Active’ from section 3.5.2.2 is modeled into the CA 

state ‘moving’, while keeping the ‘charging’ state outside the composite state. The state transitions 

are triggered through messages from the TPA, which operates this CA at any moment and the 

looping back state transition on the ‘moving’ state is triggered per minute to reduce batteryLevel 

as the CA moves through the GIS space (Figure 4.3). 

The parameters that define a CA are as follows: 

1. carID – unique identifier of an individual CA 

2. batteryCap – battery Capacity of this CA 

3. batteryLevel – current battery level of this CA 
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Variables used in the CA are as follows : 

1. coll_TripsToDo – It is a array list of TPAs that are waiting to be executed by the CA, as the CA 

completes an earlier trip. This feature is included to make sure that the CAs are not forced to be 

part of two TPA process flows simultaneously. 

2. curTrip – holds the currently in progress trip that utilizes this CA 

3. chargeReqFlag – if true, indicates that the battery charge level is low to make another trip and 

forces the TPA to direct the CA for re-charging 

4. distanceRun – holds the total distance travelled by the CA. It is populated by the TPA. 

Function calcBatteryLeftWOCharging calculates the energy demand(charge required) of the trip 

and sets the chargeReqFlag to true, if the expected battery charge level after the trip would be 

less than p_batteryLevelThreshold_ForCharging. 

Function checkChargingFeasibility checks if the CA has enough energy to reach the nearest CSA 

to recharge before continuing to the destination and instructs the TPA to mark the trip as infeasible 

if there is not enough energy left to make the trip. Underlying java code that defines each of these 

functions are provided in Appendices. 

Figure 4.3 Car Agent model 
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4.2.5 Battery Agent modeling 

BA is modeled as an extension of CA and its behavior is dictated by the state transition messages 

triggered from state transitions from the CA. BA keeps track of the battery charge level in each 

idle, moving and charging state and updates the CA battery charge level, accordingly (Figure 4.4). 

4.2.6 Charging Station Agent modeling 

CSA (Figure 4.5) is initialized by the optimization experiment algorithm by randomly assigning 

number of chargers to each candidate Charging Station location. However, the chargingLevel 

parameter of CSA is initialized from the MA. CSA is modeled using the process flow chart block 

that enables the modeler to include functionalities of seize the resource (CA), execute charging 

action and update the fitness and convenience value together into on ‘service’ block in Anylogic. 

Function calcChargingTime is responsible to calculate the energy demand of the CA that arrives 

at the CSA and determine the charging time required. Since this thesis aims to make EV recharging 

process as close to a gas station refueling process, it is assumed that any EV user would not want 

Figure 4.4 Battery Agent model 



54 
 

to spend more than 20 minutes at the charging station and hence, caps the chargingTime to 20 

minutes. 

Function updateAvailableChargers keeps track of the FCS capacity, by monitoring the expected 

number of cars to arrive at the station, current queue of cars waiting for charging and number of 

available chargers. It sets the chargers_available according to the formula below as a measure of 

how many more cars it can accommodate at that moment. 

chargers_available = (number of idle chargers) + (queue capacity)  

– (current queue size) – (number of incoming cars) 

4.2.7 Charger Agent modeling 

Charger agent is modeled as an extension to the Charging station agent with parameters 

chargingSpeed, which provides its peak charging rate and busyFlag, which if set true initiates the 

Charger statechart as defined in section 3.5.2.5 

Figure 4.5 Charging Station model 
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4.3 Optimization experiment 

The optimization process to find the best solutions of FCS locations and their capacities is 

implemented using Java classes and custom experiments developed specifically for this model. 

The design of optimization experiment follows algorithm 3.1, with the use of separate java classes 

for Candidate solution, population of solutions in a given generation and Genetic Algorithm (GA) 

implementor class to aggregate the evolutionary behaviors of GA. The individual components of 

this process are discussed in the coming sections in the order of lowest level of encapsulation. 

4.3.1 Candidate Java class 

A candidate solution is a set of charging stations mapped to its exact location through the database, 

whose number of chargers are determined by a roulette wheel randomizer. The number of chargers 

can be 0,2,4,6 or 8 in each of the FCS. Any FCS with zero number of chargers would indicate that 

this particular charging station is not in service and hence, not a part of the solution. Apart from 

the number of chargers, other parameters of each candidate solution set include a candidate id, 

fitness factor, convenience factor, total number of infeasible trips and number of neighbors (other 

candidate solutions with similar objective values). 

Java code implementation of this class is provided in appendices for further detail. 

4.3.2 Population Java class 

A population is a collection of Candidate solutions that forms a generation of solutions. The 

population class implements the characteristic behaviors of the population such as initialize 

population, check for dominance between two candidate solutions, finding Pareto front candidates 

out of the solution, find neighbors of each candidate solution etc. 

The java code implementation of this class is provided in appendices for further detail. 

4.3.3 Multi-objective Genetic Algorithm (MultiObjGA) Java class 

This class incorporates the Candidate and Population class. It performs the evolutionary Multi 

objective optimization process by implementing the procedures from algorithm 3.1. It includes 

population crossover (process of selecting parent candidates and producing child candidates) and 

mutating a population (introducing random parameters in a new child population to increase 

exploration of search space). 
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The java code implementation of this class is provided in appendices for further detail. 

4.3.4 Optimization experiment driver Java code 

Custom experiment is a feature of Anylogic that lets the modeler write custom Java code that can 

modify, execute and iterate the simulation model. In this thesis, the ABM simulation implemented 

in Anylogic following modeling procedure in section 4.1 is subjected to iterative optimization 

using the custom experiment.  

Each generation of solutions, i.e each ‘Population’ is evaluated by running the simulation model 

with each Candidate solution in the population to determine its objective values, i.e., average 

utilization of chargers, average distance of reroute to re-charge and number of infeasible trips. 

Once an entire generation of candidate solutions are evaluated, that population is subjected to the 

evolution. Evolution is composed of crossover of population to generate new candidate solutions 

and mutating them with a pre-determined probability to introduce randomness to the solution. 

The java code implementation of this class is provided in appendices for further detail. 

4.4 Model execution (Runtime) 

In this section the model execution at runtime is described step by step. The complete list of Main 

Agent parameters and their corresponding values is given in Table 4.1. 

Table 4-1 Runtime Parameter values 

Parameter Value 

kWh_perKilometer 0.161 kWh/km 

P_BatteryLevelThreshold_ForCharging 0.35 => 35% of battery capacity 

carSpeed 40kmph 

current_Population_CS null 

candidate_num 0 

chargingSpeed 120kW 

Population of Destination Initially null 

Population of Trips Initialized from database 

Population of Cars Initialized from database 

Population of Charging Stations Initialized from database 
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TPA and CA are initialized from database, with constant random values of battery capacity and 

initial battery level for Car Agents.  

The simulation model is initially run for the required amount of model time, which is 5 days and 

2 hours to model the traffic of a typical working weekdays. The additional 2 hours are allocated to 

let all vehicles who started their journey close to the midnight to reach their destinations. This is 

done using routes fetched from network, which allows caching of routing data to enable faster run 

times in the subsequent runs. For this purpose, all candidate charging station locations are enabled 

and the simulation is run with the complete set of trips data (Figure 4.6 Simulation model runtime view). 

Once the required number of routes are learned and stored in cache, CSA is initialized through 

roulette wheel randomizer from Candidate java class and optimization experiment is conducted 

iteratively. The pareto frontier solutions from each generation are sorted for the best solutions and 

a maximum of half the population size of pareto front solutions are carried to the next generation. 

At the end of each generation, a generation output file complete details of all candidates from the 

Figure 4.6 Simulation model runtime view 
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solution is generated and saved. A summary of the fitness, convenience and trip-drop factor of 

each Candidate solution is saved to another file for complete summary. 

4.5 Results of Optimization experiment model 

Matlab 2019R is used to plot the summary of results from the optimization experiment in an 

isometric plot (Figure 4.7). The axis for the Fitness factor is reversed to negative direction so as to 

comprehend the plot easily. With the reversed direction of the fitness factor, the direction of 

optimization is towards the negative direction in each axis. Hence the solution points plotted 

towards the origin of the cube are better than the points farther away from the origin. 

The generation of solutions is distinguished by the color of the dots as given by the legend. It can 

be seen that as the model proceeds to higher generation, the solution converges towards the axes 

and forms a boundary of pareto front. It may be noticed that a few lower generation solutions are 

also close to the pareto front. This occurs due to the limit set on the number of pareto front solutions 

that get to be forwarded to the next generation, causing some good solutions to be lost in selection. 

Figure 4.7 Optimized solutions Isometric view 
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Figure 4.8 2-Dimensional view of TripDrops VS Fitness Factor 

Figure 4.9 2-dimensional view of Fitness VS Convenience factor 
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The optimality of the last generation solutions can be visualized by viewing the isometric plot from 

either of the planes Trip Drops Vs Fitness or Fitness vs Convenience Figure 4.8, Figure 4.9 and 

Figure 4.10 gives the 2-dimensional plots between 2 objective values. The pareto front is marked 

by connecting the solution points from the last generation by a bright green line. It can be observed 

that the higher generation points dominate the boundary of the pareto front and give the best trade 

offs between the two objective values each plot. 

From the final generation of solutions, 3 candidate solutions with the best individual fitness values 

can be plotted. As the pareto front retains the best feasible solutions from each objective value, the 

decision maker can choose from any available solution present in the final pareto front to decide 

the optimum trade-off between the 3 objective values, as per the requirement.  

Figure 4.11 provides the solution set of charging station locations with their respective number of 

chargers for the most optimal trip drops factor. Implementing this solution predicts only 711 trips  

Figure 4.10 2-Dimensional view of Trip Drops VS Convenience factor 
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being dropped due to infeasible charging station distances. This solution, however, trades-off to 

Fitness and Convenience factor by 7.03% and 4.37%, respectively from the optimal solution. 

Figure 4.12 provides the solution set of charging station locations and number of chargers in each 

station for the optimal convenience factor. By implementing this solution, the EV users are 

expected to travel only an average of 10.85 km to recharge their EV. However, the tradeoffs in 

Trip drop factor and Fitness factor of this solution to the optimal values are 4.7% and 20.4% 

respectively. 

Figure 4.13 provides the solution set of charging station locations and their respective number of 

chargers for the optimal fitness factor. By implementing this solution, average charging event per 

day is maximized to 7.36 times per charger. The trade offs in this solution can be found as 9.13% 

deviation of convenience factor and 3.93% deviation in trip drops from the optimal values. 

Figure 4.11 Locations of Charging Station for minimum trip drops 
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Figure 4.12 Locations of Charging Station for optimal convenience 

Figure 4.13 Locations of Charging Station for maximum utilization of chargers 
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In addition to finding the individual solutions of the most optimal objective values, pareto 

optimization lets a decision maker choose from the best trade offs among the possible solutions by 

choosing candidate solutions from the pareto front. For example, from Figure 4.10 it can be found 

that a solution exists above the most optimal solution that carries objective values show in Table 

4-2 from Generation 14, candidate 12. Its devation from optimal convenience and trip drops are 

marginal while delivering a reasonable devation in fitness value. For a decision maker who wants 

to cover most trips with the least drops and the best convenience, can choose this solution with a 

reasonable increase in the cost of installation. The locations for the same solution is plotted in 

Figure 4.14. 

Table 4-2 Example pareto optimal solution 

Objective Value Deviation from optimum 

Fitness 6.35122 13.7% 

Convenience 10.96712 1.07% 

Trip Drops 715 0.56% 

Figure 4.14 Example Pareto optimal solution 
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4.6 Comparison of results 

This thesis implemented an ABM optimized through elitist pareto optimization GA to find pareto 

optimal solutions for the locating new fast charging stations in the city of Montreal. In this section, 

this approach is compared with other Location allocation methods in use qualitatively considering 

the parameters involved and assumptions made. 

Exact solution-based methods like FCLM and Fuel-Travel back methods required a OD-Distance 

matrix, that required high computation resources to calculate the shortest distance between each 

origin and destination points, considering all combinations. Using ABM, this model could 

minimize the OD-Distance calculation to only the required routes, during the simulation is 

performed, thereby minimizing the computational requirement and time taken to run the model. 

ABM provides superior accuracy in demand modeling by simulating the travel of each EV through 

the road network and their charging demands in model time. This allows a more practical approach 

to decide the capacities of each charging station, depending on charging demand. 

Table 4-3 Comparison with different LA methods 

Method FCLM Voronoi 
Diagram 

Fuel-Travel-
Back 

TM-BPSO GA-ABM 

Input Data OD Distance 
Matrix 

Traffic flow 
Density ∨ 

Population 
Density 

Traffic flow 
Heatmap 

OD Pair data OD Pair data 

Computational 
intensity 

Medium Low High Medium Medium 

Demand 
Modeling 

Aggregate Approximate 
Aggregate 

Averaged over 
time  

Dynamic  Dynamic 

Queue 
Support 

NA NA NA NA Queue with 
wait time limit 

GIS Based No Yes Yes Yes Yes 

Portability Yes Limited Limited Limited Yes 
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ABM also stands apart from many Heuristic algorithms that offer dynamic demand modeling, by 

its support for queue implementation. This thesis models CA and CSA with their corresponding 

queues, that accepts trip requests and charging requests respectively. The trip queue in CA allows 

each EV in the model to execute one trip after another, even if the first trip did not finish in 

expected time (due to traffic delays, charging event delays etc.). The charging demand queue in 

CSA allows an accurate depiction of how many EVs can be charged at a time and how many EVs 

can be kept waiting depending on a maximum wait time tolerance. This allows a realistic 

management of peak time charging demand, ensuring that EVs will not search for far away CS 

with immediately available charger, rather than waiting a few minutes to charge at a nearby CS. 

The summary of these comparisons is listed in Table 4-3. 

As no other research has conducted Location allocation problem analysis in the context of 

Montreal with similar objectives, a quantitative comparison of results is not possible between 

different methods. 

4.7 Conclusive remarks 

This Chapter discusses about the elements present in the simulation model, their concepts and 

implementation. The discussion of simulation model is emphasized on Anylogic modeling 

software as it allows multi-method modeling. The model was implemented according to the UML 

designs discussed in Chapter 3. Implementation of optimization algorithm through the custom 

experiment and Java classes in Anylogic is discussed in detail as well. Further, the important 

runtime parameters are provided and briefly discussed the process of running the model.  

The results proved that the optimization algorithm is capable of converging random initial 

solutions to optimal final solutions through simulation modeling and pareto optimization. Results 

are plotted to provide detailed information on deriving meaningful conclusions. 

Analysis from this Chapter achieved an integration of UML, agent-based modeling and 

evolutionary algorithm-based optimization through simulation modeling to solve the problem of 

optimal location allocation of capacitated charging stations in the city of Montreal. 
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Chapter 5  

Conclusions and Future works 

This Chapter discusses the conclusions derived from designing and implementing the optimal 

Location Allocation (LA) problem of EV charging stations using real traffic data from the city of 

Montreal. The chapter also proposes future works in the area of Agent Based Modeling 

optimization for LA problems. 

5.1 Conclusions 

This thesis reviewed current status of research in LA methods concerning EV charging station 

allocation and general trends in location allocation problems-based research. Special focus was 

made on heuristic algorithms based LA optimization problems and their superior performance 

compared to exact solution methods. Agent based modeling was discussed in detail along with the 

optimization methodology adopted to solve the LA problem under discussion using ABM.  

The design for modeling the EV mobility through urban environments is explained with the help 

of UML diagrams. A clear and concise pictorial representation of the decision-making model is 

delivered by UML diagrams. The diagrams make it easier to develop, implement and maintain 

complex systems such as the problem discussed in this thesis, while allowing it to be 

comprehendible for users who are not experts in modeling. UML diagrams also saves time and 

effort in implementation on platforms where UML based modeling and development is supported. 

Anylogic was chosen to conduct the research as it supports a wide variety of applications for ABM 

with its Object-Oriented design and implementation. Anylogic stands apart from other ABM 

modeling software due to its support for multi-method modeling, which was utilized by this thesis. 

The model design discussed through UML diagrams is implemented in Anylogic. The model was 

made more efficient in computation and practical by implementing the Trip Planner Agent’s 

activity sequence through a Discrete Event (DE) process flow utility.  

A simple genetic evolutionary algorithm is adopted and implemented to suite the need for a 

heuristic optimization algorithm that is adapted to be used in ABM. The logic that drives the 
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optimization algorithm to obtain the optimal pareto set of solutions is explained in detail and 

implemented using Anylogic’s custom Java classes and Custom experiment fields. 

Using the developed ABM for urban mobility and using real data of vehicle user’s travels in the 

city of Montreal, this system was able to model the EV traffic through the city, during different 

times of the day with great accuracy. The ABM also models the internal battery states of each car 

as it travels according to its assigned trips and its charging events as and when required. The model 

reflects the charging demand in each charging station by limiting the number of vehicles that can 

remain in queue to charge. The trip planner agent assigns utilization values based on the number 

of times a charger is used and convenience values based on the reroute distance to reach the 

location to each charging station. The ABM model was able to successfully simulate the traffic 

cyclically for 5 days to model energy demand of cars over a working week, which is translated as 

charging demand in the optimization experiment. 

The optimization experiment was run using 20 Candidate solutions over 25 generations and was 

proven to be converging to the optimal values. The results of the optimization algorithm were 

plotted to discuss the convergence properties and pareto front was obtained in an isometric plot 

with the three objectives. Pareto front solutions were also demonstrated using the 2-dimensional 

plots between pairs of objective values. Solutions for optimal trip drops case, convenience case 

and fitness case were plotted in the map of Montreal to show the exact locations provided by the 

solution along with their respective number of suggested chargers value. 

5.2 Contributions 

The model developed in this thesis is one of the first attempts at utilizing ABM in an optimization 

problem. Use of ABM and real traffic data of the city of Montreal makes this model highly accurate 

in predicting the expected charging demand of EVs in the city of Montreal. Pareto optimization 

based genetic algorithm was used to find the optimal solution sets of charging station locations 

and capacities with a wide variety of trade offs between each objective. Therefore, the results 

discussed in this thesis may be adopted by City of Montreal to implement planned upgrades to 

FCS from the existing Level-2 charging stations. 

The developed model may also be utilized by EV fleet owners to asses the charging demands of 

their EVs using their origin – destination data. 
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5.3 Future works 

While the results achieved are well defined and practical and reflects a general trend towards the 

selection of charging station locations and number of chargers in different scenarios, some of the 

assumptions made in selecting the traffic data may make the real world solution different from the 

suggested solution. Below are a few improvements and advancements that can be done to make 

the results of the model closer to accurate real world solution. 

1. Cost of installation of power input to the Fast Charging Stations are not considered in this 

thesis and may vary in a non-linear fashion compared to the cost of chargers itself. A hybrid 

approach to location allocation problem by ranking the Charging Station location according 

to its installation cost and proximity to high energy electricity distribution can improve the 

results towards better cost estimation. 

2. All trips in the OD survey data was assumed to be an EV trip, to cover a broader range to 

future EV users. More targeted OD data for specific use cases can be modelled using the 

same design to derive solutions for the certain use cases. 

3. For more choices in candidate locations, existing gas stations locations may be included as 

possible solutions for Fast Charging Stations as suggested by M.Nicholas[14] 

4. Currently a single simulation run takes over one week to learn all the routes from network 

server and store it cache for optimization through iterative simulation, as Anylogic 

currently does not support caching locally computed routes. This time constraint is a major 

bottleneck in using computers with higher computation power to model a system from the 

scratch. Anylogic is expected to release this feature in early 2021 and can be used to model 

larger systems on better computers/servers. 

5. Larger systems with higher number of candidate solutions and agents will also need higher 

candidate population and generations of solutions to converge on to the optimal pareto 

front. A larger population of candidates in each generation can make results from this 

thesis’s model much more distinguishable between pareto front solutions and dominated 

solutions. 
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Appendices 

Java Code implementation 

Trip Planner Agent 

calcDistance 

double distance = tripCar.distanceByRoute(agent)/1000; 
return distance; 

addRemoveDestination 

if (action == "add") { 
destination = main.add_destinations(deslat, deslon); 
destination.latitude = deslat; 
destination.longitude = deslon; 
destination.jumpTo(deslat,deslon); 
} else if (action == "remove") { 
main.remove_destinations(destination); 
 

startTripProcess 

tripCar.curTrip = this; 
tripCar.coll_TripsToDo.remove(this); 
tripCar.car.setVisible(true); 
 
tripCar.jumpTo(orilat, orilon); 
addRemoveDestination("add"); 
distance = calcDistance(destination); 
traceToDB("trip" + this.getIndex() +" - " + distance + "km @" + date()); 
if(distance > 150) { 
traceToDB("Distance too long to be in-city travel.. Skipping this trip !!"); 
} else { 
tripCar.calcBatteryLeftWOCharging(distance); 
enter.take(tripCar); 
} 
 
 

findActiveCS 

int i =0; 
for(chargingStation cs: main.chargingStations) { 
 cs.updateAvailableChargers(); 
 if(cs.availableChgs > 0) { 
  availableCS.add(i,cs);  
  i++; 
 } 
} 
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Car Agent 

calcBatteyLeftWOCharging 

double expectedLevel = batteryLevel; 
 
expectedLevel = expectedLevel - distance * main.kWh_PerKilometer; 
double expLevelPercent = (expectedLevel/batteryCap); 
if (expLevelPercent < main.p_BatteryLevelThreshold_ForCharging) 
{ 
 chargeReqFlag = true; 
} 

checkChargingFeasibility 

double expectedLevel1 = batteryLevel - distance1 * main.kWh_PerKilometer; 
double expLevelPercent1 = (expectedLevel1/batteryCap); 
if (expLevelPercent1 < 0) 
{ 
 traceToDB("Car" + this.getIndex() + " Trip" + curTrip.getIndex() + " Time " + 
date()); 
 traceToDB("Not enough charge to reach nearest Charging Station !"); 
 traceToDB(" Trip" + curTrip.getIndex() + " Added to infeasible trips"); 
 return false; 
} else { 
 return true; 
} 

  



75 
 

Candidate Java Class 

import java.util.Random; 
public class Candidate implements Serializable { 
 
 int[] cs_id; 
 int[] gene; 
 double fitness; 
 double convenience; 
 int tripDrops; 
 int totCE; 
 int neighbors; 
 boolean newCandidate = true; 
 boolean newCandidateFlag = true; 
 //int num_genes = GA_Driver.numCS; 
  
    public Candidate(int num_genes) { 
     this.gene = new int[num_genes]; 
     this.cs_id = new int[num_genes]; 
  this.fitness = 0.0; 
  this.convenience = 0.0; 
  this.tripDrops = 0; 
  this.totCE = 0; 
  this.neighbors = 0; 
  this.init_Candidate(); 
    } 
     
    public Candidate init_Candidate() { 
     Random r = new Random(); 
     //initialise the candidate population with random proportions of number of 
chargers 
     int numzeros = r.nextInt(100); 
     int numtwos = r.nextInt(100); 
     int numfours = r.nextInt(100); 
     int numsixs = r.nextInt(100); 
     int numeights = r.nextInt(100); 
     int numTotal = numzeros + numtwos + numfours + numsixs + numeights; 
     double zeroFraction = 100.0 * numzeros/numTotal; 
     double twoFraction = 100.0 * (numzeros + numtwos)/numTotal; 
     double fourFraction = 100.0 * (numzeros + numtwos + numfours)/ numTotal; 
     double sixFraction = 100.0 * (numzeros + numtwos + numfours + numsixs)/ 
numTotal; 
     int[] rouletteWheel = new int[100]; 
     for (int i=0; i<100; i++ ) { 
      if ( i < zeroFraction) { 
       rouletteWheel[i] = 0; 
      } else if ( i < twoFraction) { 
       rouletteWheel[i] = 2; 
      } else if ( i< fourFraction) { 
       rouletteWheel[i] = 4; 
      } else if ( i< sixFraction) { 
       rouletteWheel[i] = 6; 
      } else { 
       rouletteWheel[i] = 8; 
      } 
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     } 
  for (int i =0;i < cs_id.length; i++) { 
   cs_id[i] = i; 
   gene[i] = rouletteWheel[r.nextInt(100)]; // randomly assign 
number of chargers 0,2,4,6,8 
  } 
  return this;  
    } 
     
    public Candidate getCandidate () { 
     return this; 
    } 
     
    public List<Integer> printCandidate() { 
     List<Integer> geneList = new ArrayList(); 
     for(int g: gene) geneList.add(g); 
     return geneList; 
    } 
     
    public int numActiveChargers() { 
     int count = 0; 
     for(int numChg: gene) { 
      if (numChg !=0) count++; 
     } 
     return count; 
    } 
     
    public void setRandomObjectiveVals () { 
     Random r = new Random(); 
     this.fitness = r.nextDouble(); 
     this.convenience = r.nextDouble(); 
     this.tripDrops = r.nextInt(50); 
     this.newCandidate = false; 
    } 
     
    public void printCandidateSummary() { 
  System.out.println("Number of active CS: " + this.numActiveChargers()); 
  System.out.println("Fitness Factor: " + this.fitness); 
  System.out.println("Convenience Factor: " + this.convenience); 
  System.out.println("Trips Drop Factor : " + this.tripDrops); 
  System.out.println("Neighbors : " + this.neighbors); 
  //System.out.println(this.printCandidate()); 
    } 
 
 
 /** 
  * This number is here for model snapshot storing purpose<br> 
  * It needs to be changed when this class gets changed 
  */  
 private static final long serialVersionUID = 1L; 
 
} 
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Population Java Class 

/** 
 * Population 
 */  
import java.util.ArrayList; 
import java.util.List; 
public class Population implements Serializable { 
 
 Candidate[] candidates; 
    //int populationSize = GA_Driver.popSize; 
     
    public Population(int populationSize) { 
     this.candidates = new Candidate[populationSize]; 
    } 
     
    public Population init_population(int numG) { 
     for (int i =0; i< candidates.length ; i++) { 
      candidates[i] = new Candidate(numG).init_Candidate(); 
     } 
     return this; 
    } 
     
    public Candidate[] getParetoFront() { 
     //initialise pareto front with whole population 
     List<Candidate> paretoFront = new ArrayList<>(Arrays.asList(candidates)); 
     List<Candidate> ndCandidates = new ArrayList<Candidate>(); 
      
     //find non-dominated solutions 
     for (Candidate c1 : candidates) { 
      for (Candidate c2 : candidates) { 
       if (c1 != c2 ) { 
        if(checkDominance(c1,c2)) ndCandidates.add(c2); 
       } 
      } 
     } 
      
     //substract non-dominated solutions from population 
     for(int i=0; i < ndCandidates.size(); i ++) { 
      for(int j =0; j<paretoFront.size(); j++) { 
       if(paretoFront.get(j).equals(ndCandidates.get(i))) 
paretoFront.remove(j); 
      } 
     } 
      
     List<Candidate> rank_fitness = sortDescending(paretoFront, p -> p.fitness); 
     List<Candidate> rank_convenience = sortAscending(paretoFront, p -> 
p.convenience); 
     List<Candidate> rank_tripDrops = sortAscending(paretoFront, p -> p.tripDrops); 
     List<Candidate> rank_aggregate = paretoFront; 
     rank_aggregate.remove(rank_fitness.get(0)); 
     rank_aggregate.remove(rank_convenience.get(0)); 
     rank_aggregate.remove(rank_tripDrops.get(0)); 
     rank_aggregate = sortAscending(rank_aggregate, p -> (p.tripDrops/700 - 
p.fitness/5 + p.convenience/10)); 
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     List<Candidate> sortedPareto = new ArrayList<Candidate>(); 
     sortedPareto.add(rank_fitness.get(0)); 
     if (!sortedPareto.contains(rank_convenience.get(0))) { 
      sortedPareto.add(rank_convenience.get(0)); 
     } 
     if (!sortedPareto.contains(rank_tripDrops.get(0))) { 
      sortedPareto.add(rank_tripDrops.get(0)); 
     } 
     for(Candidate c: rank_aggregate) { 
      if (!sortedPareto.contains(c)) { 
          sortedPareto.add(c); 
         } 
     } 
     if (sortedPareto.size() != paretoFront.size()) { 
      System.out.println("Sorted pareto front length doesn't match with real 
pareto front"); 
     } 
     Candidate[] paretoF = new Candidate[sortedPareto.size()]; 
     for (int i= 0; i < sortedPareto.size(); i++) { 
      paretoF[i] = sortedPareto.get(i); 
     } 
      
     return paretoF; 
    } 
     
    public boolean checkDominance(Candidate c1, Candidate c2) { 
     boolean checkFitness = (c1.fitness >= c2.fitness); 
  boolean checkTripDrops = (c1.tripDrops <= c2.tripDrops); 
  boolean checkConvenience = (c1.convenience <= c2.convenience); 
  if (checkFitness && checkConvenience && checkTripDrops) { 
   //check for dominance 
      boolean domFitness = (c1.fitness > c2.fitness); 
   boolean domTripDrops = (c1.tripDrops < c2.tripDrops); 
   boolean domConvenience = (c1.convenience < c2.convenience); 
   if (domFitness || domConvenience || domTripDrops) { 
    return true; 
   } else { 
    return false; 
   } 
  } else { 
   return false; 
  } 
    } 
     
    public void setNeighbors () { 
     for (int i =0; i < candidates.length; i++) { 
      candidates[i].neighbors = 0; 
      for (int j=0; j < candidates.length; j++) { 
       boolean fitness_n = (Math.abs(candidates[i].fitness - 
candidates[j].fitness) < 0.1) ; 
       boolean convenience_n = (Math.abs(candidates[i].convenience - 
candidates[j].convenience) < 0.1) ; 
       boolean tripDrops_n = (Math.abs(candidates[i].tripDrops - 
candidates[j].tripDrops) < 0.1) ; 
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       if (fitness_n && convenience_n && tripDrops_n) { 
        candidates[i].neighbors++; 
       } 
      } 
     } 
    } 
     
    public Candidate[] getPopulation() { 
     return candidates; 
    } 
 
 public void printPopulationSummary () { 
  System.out.println("----------------------------------------"); 
  for (int i=0; i< candidates.length; i++) { 
   System.out.println("Candidate[" + i + "]" ); 
   System.out.println("Number of active CS: " + 
candidates[i].numActiveChargers()); 
   System.out.println("Fitness Factor: " + candidates[i].fitness); 
   System.out.println("Convenience Factor: " + 
candidates[i].convenience); 
   System.out.println("Trips Drop Factor : " + 
candidates[i].tripDrops); 
   System.out.println("Neighbors : " + candidates[i].neighbors); 
   System.out.println(candidates[i].printCandidate()); 
  } 
 } 
  
 public void setRandomPopVals() { 
  for(Candidate c: candidates) { 
   if (c.newCandidate) c.setRandomObjectiveVals(); 
  } 
 } 
 
  
  
 /** 
  * This number is here for model snapshot storing purpose<br> 
  * It needs to be changed when this class gets changed 
  */  
 private static final long serialVersionUID = 1L; 
 
} 
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MultiObjGA Java Class 

public class MultiObjGA implements Serializable { 
 
    public static final int populationSize = 10; 
    public MultiObjGA() { 
    } 
 
 @Override 
 public String toString() { 
  return super.toString(); 
 } 
 
 public static Population init_GA_experiment (int numC, int numG) { 
  Population newPop = new Population(numC).init_population(numG); 
  return newPop; 
 } 
  
 public Population crossover (Population population) { 
  int numCandidates = population.candidates.length; 
  int numCS = population.candidates[0].gene.length; 
  int num_elites = roundToInt(numCandidates / 2.0); 
  Population newPopulation = new 
Population(numCandidates).init_population(numCS); 
  List<Candidate> nextGenCandidates = new ArrayList<Candidate>(); 
  Candidate[] paretoPop = population.getParetoFront(); 
  if (paretoPop.length < num_elites) { 
   num_elites = paretoPop.length; 
  } 
  //add Candidates in the pareto front to next generation 
  for (int i =0; i < num_elites; i++) { 
   nextGenCandidates.add(paretoPop[i]); 
  } 
   
  //add children candidates until population size 
  while (nextGenCandidates.size() < numCandidates) { 
    
   //choose 2 parents to crossover 
   Candidate[] parents = new Candidate[2]; 
   for (int i = 0; i <2 ; i++) { 
    //select 5 random candidates from the current population 
    Population crossoverPop = new Population(5); 
    Random r = new Random(); 
    for (int j=0; j < 5; j++) { 
     int indx = r.nextInt(10); 
     crossoverPop.candidates[j] = 
population.candidates[indx]; 
    } 
     
    //check for dominant solutions 
    Candidate[] paretoFront = crossoverPop.getParetoFront(); 
     
    if(paretoFront.length == 1) { 
     parents[i] = paretoFront[0]; 
    } else { 
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     Candidate diverseCandidate = paretoFront[0]; 
     for (int j = 1; j<paretoFront.length; j++) { 
      if(diverseCandidate.neighbors > 
paretoFront[i].neighbors) diverseCandidate = paretoFront[i]; 
     } 
     parents[i] = diverseCandidate; 
    } 
   } 
    
   Random r = new Random(); 
   Candidate childA = new Candidate(numCS); 
   Candidate childB = new Candidate(numCS); 
   /* 
   // Random crossover 
   for (int i =0; i < numCS; i++) { 
    boolean pSelect = r.nextBoolean(); 
    if (pSelect == true) { 
     childA.gene[i] = parents[0].gene[i]; 
     childB.gene[i] = parents[1].gene[i]; 
    } else { 
     childA.gene[i] = parents[1].gene[i]; 
     childB.gene[i] = parents[0].gene[i]; 
    } 
   } 
   */ 
   //2 point crossover 
   int point1 = roundToInt(numCS/3.0); 
   int point2 = roundToInt(numCS/1.5); 
   for(int i =0; i< point1 ; i ++) { 
    childA.gene[i] = parents[0].gene[i]; 
    childB.gene[i] = parents[1].gene[i]; 
   } 
   for (int i = point1; i <point2; i++) { 
    childA.gene[i] = parents[1].gene[i]; 
    childB.gene[i] = parents[0].gene[i]; 
   } 
   for (int i = point2; i< numCS; i++) { 
    childA.gene[i] = parents[0].gene[i]; 
    childB.gene[i] = parents[1].gene[i]; 
   } 
    
   nextGenCandidates.add(childA); 
   if(nextGenCandidates.size() != population.candidates.length) 
nextGenCandidates.add(childB); 
  } 
   
  for (int i =0; i < population.candidates.length; i++ ) { 
   newPopulation.candidates[i] = nextGenCandidates.get(i); 
  } 
   
  return newPopulation; 
 } 
  
 public Population mutate (Population population, double p_mutation) { 
  Random r = new Random(); 
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  Population mutatedPopulation = population; 
  for (Candidate c: mutatedPopulation.candidates) { 
   if(c.newCandidate) { 
    for(int g=0; g< c.gene.length; g++ ) { 
     double mFlag = r.nextDouble(); 
     if (mFlag < p_mutation) { 
      c.gene[g] = Math.abs((r.nextInt(5)) *2); 
     } 
    } 
   } 
  } 
  return mutatedPopulation; 
 } 
  
 public Population evolve (Population population, double p_mutation) { 
  return mutate(crossover(population), p_mutation); 
 } 
  
 
 /** 
  * This number is here for model snapshot storing purpose<br> 
  * It needs to be changed when this class gets changed 
  */  
 private static final long serialVersionUID = 1L; 
 
} 
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Custom Optimization Experiment Java Code in Anylogic 

int popSize = 30; 
int numCS = 731; 
double p_mutation = 0.2; 
int num_generations = 10; 
TextFile textFile = null; 
TextFile EGA_Data = null; 
TextFile EGA_Data_gen = null; 
 
Population currentPop = new Population(popSize).init_population(numCS); 
MultiObjGA ga = new MultiObjGA(); 
 
int generationNum = 0; 
while (generationNum < num_generations) { 
 //Run simulation for all Candidate solutions in population 
 traceln("#####################################################################
##"); 
 traceln("###################   Generation "+ generationNum + "   
#####################"); 
 traceln("#####################################################################
##"); 
 for (int i = 0; i < popSize; i++) { 
  traceln("-------------------------------------------------------------
"); 
  traceln ("Experiment GA_loop Generation: "+ generationNum + " Candidate: 
" + i); 
  traceln("-------------------------------------------------------------
"); 
  // Create Engine, initialize random number generator: 
  Engine engine = createEngine(); 
  engine.setTimeUnit( MINUTE ); 
  // Fixed seed (reproducible simulation runs) 
  engine.getDefaultRandomGenerator().setSeed( 1 ); 
  engine.setStartTime( 0.0 ); 
  engine.setStartDate( toDate( 2020, SEPTEMBER, 14, 0, 0, 0 ) ); 
  // Set stop time: 
  engine.setStopDate( toDate( 2020, SEPTEMBER, 15, 2, 0, 0 ) ); 
  // Create new root object: 
  Main root = new Main( engine, null, null ); 
  // TODO Setup parameters of root object here 
  root.setParametersToDefaultValues(); 
  // root.kWh_PerKilometer = 123; 
  // ... 
  root.current_Population_CS = currentPop; 
  if(i==0) { 
   //root.current_Population_CS = currentPop; 
   root.current_Population_CS.printPopulationSummary(); 
   traceln("##########   Generation "+ generationNum +"   
############"); 
   textFile = new TextFile( root, null, TextFile.WRITE, "out"+ 
generationNum +".csv", null, null ); 
   textFile.println("Candidate 
Number,CS_ID,num_chargers,fitness,convenience,latitude,longitude"); 
   if (generationNum == 0) { 
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    EGA_Data = new TextFile( root, null, TextFile.WRITE, 
"Evolution_data.csv", null, null ); 
   
 EGA_Data.println("Generation,Candidate_Num,ActiveChargers,Fitness,Convenience,
TripDrops,Total_charging_events,newCandidateFlag"); 
   } 
   EGA_Data_gen = new TextFile( root, null, TextFile.WRITE, 
"Evolution_data"+ generationNum +".csv", null, null ); 
  
 EGA_Data_gen.println("Generation,Candidate_Num,ActiveChargers,Fitness,Convenie
nce,TripDrops,Total_charging_events,newCandidateFlag"); 
  } 
  
  if (currentPop.candidates[i].newCandidate) { 
   root.candidate_num = i; 
    
   // Prepare Engine for simulation: 
   engine.start( root ); 
   // Start simulation in fast mode: 
   engine.runFast(); 
   // TODO Process results of simulation here 
   // traceToDB( "chargingStations:" ); 
   // traceToDB( inspectOf( root.chargingStations ) ); 
   // ... 
   root.update_CS_dataset(); 
   traceln("Candidate"+ i + " done"); 
   for (int j = 0 ; j<root.fitness_data.size() ; j++) { 
    textFile.println(i+","+ root.fitness_data.getX(j) +"," + 
root.convenience_data.getX(j) +","+root.fitness_data.getY(j) + "," + 
root.convenience_data.getY(j) + "," + root.location_data.getX(j) + "," + 
root.location_data.getY(j)); 
   } 
  } else { 
   traceln("Candidate Solution already simulated, skipping !!"); 
  } 
  //write contents of dataset of current run: 
   
  currentPop.candidates[i] = root.current_Population_CS.candidates[i]; 
  currentPop.candidates[i].printCandidateSummary(); 
  //currentPop = root.current_Population_CS; 
  // Destroy the model: 
  engine.stop(); 
 } // end of for(candidates) 
 traceln("Generation "+ generationNum +" File written"); 
 textFile.close(); 
 for(int c=0; c < currentPop.candidates.length; c++) { 
  Candidate ca = currentPop.candidates[c]; 
  EGA_Data.println(generationNum+","+ c +","+ ca.numActiveChargers() +","+ 
ca.fitness +","+ ca.convenience +","+ ca.tripDrops +","+ ca.totCE +","+ 
ca.newCandidateFlag); 
  EGA_Data_gen.println(generationNum+","+ c +","+ ca.numActiveChargers() 
+","+ ca.fitness +","+ ca.convenience +","+ ca.tripDrops +","+ ca.totCE +","+ 
ca.newCandidateFlag); 
  ca.newCandidateFlag = false; 
 } 
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 EGA_Data_gen.close(); 
 currentPop.setNeighbors(); 
 currentPop.printPopulationSummary(); 
 currentPop = ga.evolve(currentPop, p_mutation); 
 generationNum++; 
} // end of while(generation) 
EGA_Data.close(); 
traceln("Simulation Completed, Evolution Data file written"); 
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