
Optimal Electric Vehicle Charging Station Location

Allocation using Agent-Based Modeling and Simulation:

A case study of city of Montreal

Akhil Raj Kizhakkan

A Thesis

In the Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Electrical and Computer Engineering)

at Concordia University

Montreal, Quebec, Canada.

December 2020

© Akhil Raj Kizhakkan, 2020

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Akhil Raj Kizhakkan

Entitled: Optimal Electric Vehicle Charging Station Location Allocation using Agent-Based

Modeling and Simulation: A case study of city of Montreal

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

Complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 __ Chair

 __ Examiner

 __ Examiner

 __ Co-Supervisor

Dr. Akshay Kumar Rathore

 __ Co-Supervisor

Dr. Anjali Awasthi

Approved by: ___

 Dr. Yousef R. Shayan, Chair

 Department of Electrical and Computer Engineering

December 17th, 2020 ___________________________________

Date of Defence Dr. Mourad Debbabi, Interim Dean

 Gina Cody School of Engineering and Computer Science

iii

Abstract

Optimal Electric Vehicle Charging Station Location Allocation using Agent-Based

Modeling and Simulation: A case study of city of Montreal

Akhil Raj Kizhakkan

Widespread acceptance of all electric vehicles faces two major challenges. First being the higher

price tag compared to a similar utility IC engine vehicle, while giving equal or lesser range. Second

being the under-developed infrastructure support for refueling. Current trends in Electric Vehicle

(EV) industry shows an increase in battery capacity and higher charging speed capabilities owing

to an increased adoption of EVs. This thesis focuses on the second challenge of range anxiety of

EV users due to lack of enough charging infrastructure compared to their gasoline powered

counterparts. Public fast charging infrastructure is proposed as the solution to solve range anxiety

and wider acceptance of EVs by public. As setting up the public charging stations at the initial

stages of Electric Vehicle (EV) market penetration can be budget demanding, it is therefore crucial

that the locations chosen should cover maximum demand at least cost and best convenience.

This thesis discusses the review of research publications focused on optimal placing of Alternative

Fuel/Electric Vehicle Charging Stations (EVCS), by considering various approaches and models

they have used. Heuristic methods of solving optimization problems was given an additional focus

in the review. This thesis addresses the discrete, multi-objective, capacitated location allocation

problem of electric vehicle charging station, using agent-based modeling. The developed model of

EV trips in an urban environment and their charging events was fed with real data from city of

Montreal, allowing the model to replicate real charging demand situations at the charging stations

at various locations across the city of Montreal. A pareto optimization method is developed using

a simple evolutionary genetic algorithm to find all the best trade-offs between each objective value.

The multiple objectives considered are utilization of charger resources, the average reroute

distance of EVs to reach a charging station and number of infeasible trips and optimization is done

through running the agent-based model iteratively through the genetic algorithm, evolving its

solutions in each iteration. Proposed solutions for each optimal objective value and solution with

the best trade-off between the objectives are discussed.

iv

Acknowledgements

Hereby, I would like to express my gratitude to several people for making this thesis work possible.

This work and successful completion would not have been possible without their help.

I would like to thank the Gina Cody School of Engineering and Computer Science for giving me

this opportunity to pursue my education at Concordia University. I would like to thank all the staff

and faculty members of the ECE and CIISE department and School of Graduate Studies for their

kindness and support.

I would like to express my deepest gratitude towards my supervisors Dr. Akshay Kumar Rathore

and Dr. Anjali Awasthi for their guidance, hard work, expert suggestions and their continual

support towards the successful completion of this thesis. Their patience, diligence and

encouragement will motivate me throughout my life.

I would also like to thank my parents Rajan K and Praseetha K for their support and

encouragement, along with other members of my family for always supporting me in my career

endeavors. Without their everlasting emotional and moral support, this hard work would not have

been possible.

I am very grateful to Pierre-Arbor Foundation for their assistance to my research efforts with

scholarship and their continual support by providing valuable research insights and collaborations

from their scholars, alumni and experts.

A special thanks to Stephanie Whitehouse and Emily Fjeldsted from the Student Success Center

at Concordia for their continual support and motivation throughout my academic life at Concordia

University.

I am thankful to Anylogic support team for their technical assistance and suggestions in debugging

the Anylogic modeling software.

Last but not the least, I wish to offer special thanks to my friends and colleagues Karan Pande,

Abhinandan Dixit, Mohsen Amoei, Ujjval Khanna, Safwan Ahmed, Amar Fayyad, Swati Tandon,

Koyel Khatun and Negar Ghodsi for their constructive suggestions and ideas throughout my period

of work.

v

Contents

List of figures ... viii

List of Tables ... ix

List of Abbreviations .. x

Chapter 1 Introduction ... 1

1.1 Environmental Impact .. 1

1.2 Growth and Projected Penetration.. 2

1.3 EV Charger Classification .. 3

1.4 Need for Fast Charging Stations .. 3

1.5 Problem Statement and Research Objectives ... 4

1.6 Thesis Outline .. 5

1.7 Conclusion .. 6

Chapter 2 Literature Review .. 7

2.1 Introduction .. 7

2.2 Classification of location allocation problem... 8

2.2.1 Customer demand-based classification ... 8

2.2.2 Facilities based classification .. 9

2.2.3 Physical space or location based classification ... 9

2.2.4 Location Objectives based classification .. 10

2.3 Methods for location allocation problem ... 10

2.4 Exact Solution Methods ... 11

2.4.1 Flow Capture Location Methods (FCLM) .. 11

2.4.2 Fuel-Travel-Back methods.. 12

2.4.3 Voronoi Diagram .. 13

2.4.4 The p-Median Model .. 14

2.5 Heuristic Methods .. 15

2.5.1 Greedy Adding and Greedy Adding with Substitution ... 15

2.5.2 Genetic Algorithms ... 16

2.5.3 Particle Swarm Optimization (PSO) ... 17

2.5.4 Agent Based Modeling (ABM) ... 17

vi

2.6 Conclusion .. 20

Chapter 3 Solution Approach... 21

3.1 Introduction .. 21

3.2 Agent-Based Model for Location Allocation ... 21

3.3 Overview of the datasets used .. 22

3.3.1 Origin-Destination Survey 2013 ... 22

3.4 Assumptions and constraints .. 23

3.5 Modeling by Unified Modeling Language (UML) .. 26

3.5.1 Class Diagram ... 28

3.5.2 State Transition Diagram .. 30

3.5.3 Use Case Diagram... 33

3.5.4 Sequence Diagram .. 38

3.6 Multi-objective optimization of ABM using Pareto Optimization 41

3.6.1 Pareto Optimization .. 42

Chapter 4 Simulation Model Implementation and Results .. 46

4.1 Introduction .. 46

4.2 Elements of simulation model and concepts .. 46

4.2.1 Anylogic Modeling elements .. 47

4.2.2 Main Agent Modeling ... 48

4.2.3 Trip Planner Agent Modeling ... 50

4.2.4 Car Agent modeling .. 51

4.2.5 Battery Agent modeling .. 53

4.2.6 Charging Station Agent modeling .. 53

4.2.7 Charger Agent modeling ... 54

4.3 Optimization experiment .. 55

4.3.1 Candidate Java class ... 55

4.3.2 Population Java class .. 55

4.3.3 Multi-objective Genetic Algorithm (MultiObjGA) Java class 55

4.3.4 Optimization experiment driver Java code ... 56

4.4 Model execution (Runtime) ... 56

4.5 Results of Optimization experiment model .. 58

vii

4.6 Comparison of results... 64

4.7 Conclusive remarks .. 65

Chapter 5 Conclusions and Future works .. 66

5.1 Conclusions .. 66

5.2 Contributions .. 67

5.3 Future works ... 68

References ... 69

Appendices .. 73

Java Code implementation .. 73

Trip Planner Agent .. 73

Car Agent .. 74

Candidate Java Class... 75

Population Java Class ... 77

MultiObjGA Java Class .. 80

Custom Optimization Experiment Java Code in Anylogic ... 83

viii

List of figures

Figure 1.1 Transportation accounts for 29% of U.S Greenhouse Gas Emissions[1] 1

Figure 1.2 :Estimated CO2 Emissions per Passenger Mile for Transit and Private Autos[1] 1

Figure 1.3 : Total number electric vehicles over the years[2] .. 2

Figure 1.4 : Projected growth of Electric Vehicle Penetration (% of total vehicles) [2] 2

Figure 1.5 Types of chargers and use cases [2] .. 3

Figure 1.6: Distribution of DC- Fast Charging Stations in Montreal ... 4

Figure 2.1 Voronoi Diagram method to find prospective locations for new EVCS [13] 13

Figure 3.1 Agent Classes .. 28

Figure 3.2 Trip State Transition Diagram ... 31

Figure 3.3 Car Agent State Transition Diagram ... 31

Figure 3.4 Battery State Transition Diagram .. 32

Figure 3.5 Charging Station State Transition diagram ... 32

Figure 3.6 Charger State Transition diagram .. 33

Figure 3.7 Main Agent Initialization Process Use Case Diagram .. 34

Figure 3.8 Trip Agent process use case diagram .. 35

Figure 3.9 Car Agent Process Use Case diagram ... 36

Figure 3.10 Battery Charging Process Use Case diagram .. 36

Figure 3.11 Charging Station Operation use case diagram... 37

Figure 3.12 Charging Process Use Case diagram ... 37

Figure 3.13 Sequence Diagram ... 40

Figure 3.14 Gene representation of candidate solutions ... 44

Figure 3.15 Population representation .. 45

Figure 4.1 Main Agent model ... 49

Figure 4.2 Trip Planner Agent Model ... 50

Figure 4.3 Car Agent model.. 52

Figure 4.4 Battery Agent model.. 53

Figure 4.5 Charging Station model ... 54

Figure 4.6 Simulation model runtime view .. 57

Figure 4.7 Optimized solutions Isometric view .. 58

file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931648
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931649
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931650
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931651
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931652
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931653
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931654
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931655
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931656
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931657
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931658
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931659
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931660
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931667
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931668
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931669
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931670
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931671
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931672
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931673
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931674
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931675
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931676

ix

Figure 4.8 2-Dimensional view of TripDrops VS Fitness Factor ... 59

Figure 4.9 2-dimensional view of Fitness VS Convenience factor .. 59

Figure 4.10 2-Dimensional view of Trip Drops VS Convenience factor 60

Figure 4.11 Locations of Charging Station for minimum trip drops .. 61

Figure 4.12 Locations of Charging Station for optimal convenience ... 62

Figure 4.13 Locations of Charging Station for maximum utilization of chargers 62

Figure 4.14 Example Pareto optimal solution... 63

List of Tables

Table 4-1 Runtime Parameter values .. 56

Table 4-2 Example pareto optimal solution .. 63

Table 4-3 Comparison with different LA methods ... 64

file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931677
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931678
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931679
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931680
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931681
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931682
file:///C:/Users/pgeorgem/Downloads/MASc_Akhil_RK_F2020.docx%23_Toc57931683

x

List of Abbreviations

BEVs Battery-operated electric vehicles

EV Electric vehicles

ARTM Autorité Régionale de Transport Métropolitain

GIS Geographical Information system

EVCS Electric Vehicle Charging Stations

PEVs Plug-in Electric Vehicles

BEVs Battery Electric Vehicles

PHEVs Plug-in Hybrid Electric Vehicles

HEVs Hybrid Electric Vehicles

FCEVs Fuel-Cell Electric Vehicles

PEM Proton Exchange Membrane

LA Location Allocation

DC-FCS DC-Fast Charging Stations

GIS Geographical Information System

FCLM Flow Capture Location Methods

OD Origin Destination

MILP Mixed-Integer Linear Programming

FIFLM Flow Interception Facility Location Problem

VMT Vehicles Miles Travelled

MILP Mixed-integer linear programming

PSO Particle Swarm Optimization

ABM Agent Based Modelling

UML Unified modelling language

CS Charging Stations

CMM Montreal Metropolitan Community

RTL Réseau de Transport de Longueuil

MTQ Ministère des Transports du Québec

STM Société de Transport de Montréal

STL Société de Transport de Laval

xi

SRM Secretariat for the Metropolitan Region

AQTIM Association Québécoise du Transport Intermunicipal and Municipal

AMT Agency Metropolitan Transport

OO Object Oriented

CSA Charging Stations Agents

TPA Trip planner agents

CA Car agents

ToD Time of Destination

GA Genetic Algorithm

SMOGA Simulation-based Multi-Objective Genetic Algorithm

1

Chapter 1

Introduction

1.1 Environmental Impact

As more and more countries formally commit to reduce their carbon footprint to tackle the climate

change and global warming crisis, immediate measures need to be taken in all industrial,

residential and transportation sectors to achieve the common goal. According to the US

Department of transportation[1] the public transportation contributes to 29% of the total green

house emissions in USA, among which personal modes of transport(Cars, SUVs and Pickups)

Figure 1.1 Transportation accounts for 29% of U.S Greenhouse Gas Emissions[1]

Figure 1.2 :Estimated CO2 Emissions per Passenger Mile for Transit and Private Autos[1]

Electric Power

Industry

33%

Agricultural

7%

Commercial

6%

Residential

5%

U.S Territories

1%

Industrial

19%

Cars,SUVs and

Pickups

16%

Freight

Trucks

6%
Airlines

4%

Others

3%

Transportation

29%

SOURCES OF GREENHOUSE GAS EMISSIONS

0.96
0.64

0.22 0.36 0.33 0.22
0.45

0

0.5

1

1.5

Private Auto

(SOV)

Bus Transit Heavy Rail

Transit

Light Rail

Transit

Commuter

Rail

Van Pool Transit

Average

Pounds of CO2 per Passenger Mile

2

contribute to 57% as shown in Figure 1.1. As can be seen from Figure 1.2, personal use vehicles

contribute to significantly higher per head carbon emission than other modes of transport.

1.2 Growth and Projected Penetration

Alternative-fuel based vehicles have been recommended as a sustainable way to travel and are

gaining momentum due to recent popularity of electric vehicles. Statistically situations are still far

away from the goal, as the global market share of electric vehicles is still under 1%[2] as shown

in Figure 1.3, while the percentage projected growth of the same is promising as shown in Figure

1.4. While existing product line of the electric vehicles is close to achieving the desirability and

Figure 1.3 : Total number electric vehicles over the years[2]

Figure 1.4 : Projected growth of Electric Vehicle Penetration (% of total vehicles) [2]

0

100000

200000

300000

400000

500000

2012 2013 2014 2015 2016 2017

N
u
m

b
er

 o
f

E
V

s

Australia Canada Chile China Finland France

Germany India Japan Korea Mexico Netherlands

New Zealand Norway Portugal South Africa Sweden Thailand

United Kingdom United States Others

0

2

4

6

8

10

12

14

2000 2005 2010 2015 2020 2025 2030

EV
s

as
 %

 o
f

to
ta

l v
eh

ic
es

3

practicality in terms of driving range and performance to replace their gasoline counterparts, lack

of sufficient and accessible charging stations is the foremost reason hindering further market

penetration of EVs. Lack of accessible fast charging stations on routes leads to range anxiety,

preventing more users to switch to electric vehicles.

1.3 EV Charger Classification

Based on the power and the range of voltages that are supported by EV chargers, they are classified

into three levels[3]. A) lower than 3.7 kW are Level 1 chargers, B) between 3.7 and 22 kW are

Level 2 chargers, and C) higher than 22 kW are Level 3 chargers as illustrated in Figure 1.5.

a. Level 1 Chargers : lower than 3.7kW

b. Level 2 Chargers : between 3.7kW to 22kW

c. Level 3 Chargers : higher than 22kW

1.4 Need for Fast Charging Stations

Considering the residential parking patterns in Montreal, where only a small proportion of

population have access to personal garages and most users park their car in available parking slots

in their respective streets, open space parking lots and nearest available locations, charging the car

overnight using the in-built Level-1 charger is not an ideal option for every EV owner. Taking into

account the projected growth of EVs, the only viable solution is to follow the gas station model of

Figure 1.5 Types of chargers and use cases [2]

4

meeting refueling demands similar to conventional cars, by setting up strategically located Fast

Charging Stations in the different parts of the city to meet the charging demand of near future.

Figure 1.6 shows current distribution of DC- Fast Charging stations in Montreal (Circuit Electric

Data 2019). With 52 Fast-DC charging stations spanned across 26 locations. The charging network

can only cover 35 to 40% of the charging demand. Studies reveal that 83% of the consumers who

wouldn’t choose an EV over gasoline vehicle cite range anxiety as the primary reason, along with

battery life concerns. While EV range has been steadily increasing over the years, led by market

innovations from Tesla, they still lag behind the range offered by gasoline cars and refueling time.

Availability of easily accessible fast charging stations with short charging times ensures a smooth

transition to EVs from gasoline cars for all sections of population regardless of their access to the

residential charging facilities.

1.5 Problem Statement and Research Objectives

This thesis addresses the multi-objective deterministic location allocation problem of EV fast

charging stations. This involves selecting the minimum number of locations from a candidate set

of slow chargers to install fast charging stations so as to cover the user demand for charging, while

Figure 1.6: Distribution of DC- Fast Charging Stations in Montreal

5

minimizing the reroute time require to charge. This work stands apart from the existing research

by two factors:

1. Using Agent Based Location allocation model for facility allocation and optimization.

2. Utilization of real population travel data from Autorité Régionale de Transport

Métropolitain (ARTM) Montreal.

The agent based model of mobility of passenger cars through city of Montreal is developed by

treating Cars, charging stations and trip planners as agents interacting in a Geographical

Information System(GIS) environment. The trip planner agent initiates itself at the specified model

time of the day and instructs the car agent to move from origin to destination. As the agents are

inserted to the simulation model at their real departure times, allowing the model to simulate highly

accurate traffic conditions and charging demand at each candidate solution of charging stations

over a day.The multiple objectives optimized using this model are charging reroute time, number

of fast chargers required and number of infeasible trips, while selecting its location in process.

Simulation software Anylogic 8.6 is used as the modelling tool to verify and optimize the

objectives.

The objectives of this thesis are listed below:

1. To develop an integrated agent-based model of urban mobility focused on electric vehicle

passenger car trips and their charging events.

2. To develop a genetic algorithm based pareto optimization to find optimal location and

number of chargers while minimizing cost of chargers, rerouting distance to charge and

number of infeasible trips.

3. To verify the developed model with Anylogic 8.6 to investigate and record the effect of

change in EV penetration on the proposed solution.

Design of each objective is discussed in Chapter 3 and the implementation and results are discussed

in Chapter 4.

1.6 Thesis Outline

The major research contributions of this thesis are as follows:

In Chapter 2, literature review of presently used road traffic and traffic flow based

optimization, electric grid voltage based stability and voltage regulation based optimization has

6

been discussed. Exact and heuristic solution approaches used to implement these methods are

analyzed.

In Chapter 3, the design of the simulation model is presented extensively and discussed via

UML diagrams.

In Chapter 4, agent-based definitions and the model simulation with Anylogic 8.4 software is

demonstrated.

In Chapter 5, simulation model results are discussed in detail. Conclusion and

recommendations for future works are presented.

1.7 Conclusion

This Chapter discusses the environmental impacts and ongoing developments in EVs and its

promises for the world’s shift towards sustainable energy and particularly towards reduced

emission. EVs provide low-cost ownership, low maintenance, higher efficiency, higher fuel

economy and high reliability leading to a rapid increase in the EV annual sales. Different types of

charging facilities and its properties are also discussed in detail to show the importance of planning

and installing more fast charging station in the city of Montreal to cope with the future demands

of the electric vehicle population in the city and to boost desirability of the electric vehicles over

gasoline vehicles among public.

In the next Chapter, a review of research articles focused on the optimal placing of Alternative

Fuel/Electric Vehicle Charging Stations (EVCS), through various approaches and models are

analyzed and discussed in detail. The Chapter also discusses the merits of using Agent Based

Modeling to tackle continuous stochastic problems such as the dynamic facility allocation that

forms this thesis.

7

Chapter 2

Literature Review

2.1 Introduction

In recent years global automobile industry has taken major strides in transition to Electric Vehicles

(EVs), to move towards sustainable energy goals and tackle climate change. Rapidly falling battery

costs and continuously improving charging technologies are bringing EVs on par with

conventional vehicles regarding practical usage and range. Researchers from electrical and

transportation industry have been studying optimal ways of distributing the Electric Vehicle

Charging Stations (EVCS) in the past decade. EVs can be broadly classified as

a. All-Electric Vehicles , where the battery charging is the only source of refilling, also known

as Plug-in Electric Vehicles(PEVs) or Battery Electric Vehicles (BEVs).

b. Plug-in Hybrid Electric Vehicles (PHEVs), where the vehicle can be refueled through

multiple sources like gasoline and battery charging.

c. Hybrid Electric Vehicles (HEVs), where the vehicle is propelled using both Electric Motor

and IC engine, but the battery is charged through regenerative braking or IC engine only.

d. Fuel-Cell Electric Vehicles (FCEVs) where the energy source is a Hydrogen Fuel Cell and

the vehicle is powered by electricity produced through a Proton Exchange Membrane

(PEM) decomposing Hydrogen(H2) fuel through oxidation.

In this Chapter, all mentions of Electric Vehicles (EVs) is refers to All-Electric Vehicles.

The transportation research is focused on the cost minimization with accessibility and demand

coverage considering vehicle movement pattern, user behavior and other constraints imposed by

the user or the road network. Centralized strategic planning and optimization in EVCS location

selection is proven to drastically reduce the initial cost required to serve the EV charging demand

and reduce range anxiety [4]. In literature, it is noticed that multiple modeling approaches and

problem-solving algorithms were used to optimize the required parameters.

Optimization is referred to as the process of finding the best feasible values (maxima or minima)

for some objective functions, while satisfying some given domains and constraints. Location

8

Allocation(LA) problem involves locating an optimal set of facilities to satisfy customer demand

at minimal transportation cost from facilities to customer or vice versa[5]. LA solution methods

have been in practice for a number of applications such as location citing for warehouses, gas

stations, fast food outlets, electric transformers, emergency health care facilities, urban planning,

etc.

2.2 Classification of location allocation problem

There are four components that can forms any location allocation problem. According to Revelle

and Eiselt [6], these are as follow:

a) Customers: EV owners present in the Origin Destination Survey 2013 data base from

ARTM Montreal are the customers in this problem.

b) Facilities to be located: Here, thesis work intends to use the existing set of Level-I charging

stations across the city as potential (candidate) solution space to be upgraded to DC-Fast

Charging Stations (DC-FCS).

c) Space in which the customers and facilities are located: This thesis use Anylogic GIS

enabled Agent Based Model is used simulate the LA problem.

d) A metric that indicates the distances or times between customers and facilities: This thesis

use standard metric system, meters and seconds is used.

Based on these components, any LA problem can be classified into the following main categories:

2.2.1 Customer demand-based classification

1. Deterministic: If the customer population value, their locations and demands are

predetermined and unvarying the model is called deterministic.

2. Stochastic: If the customer demands, population etc. are modelled with probability

distributions, the models are called stochastic.

In this thesis, a data set of customer travel demands with definite departure times in a simulated

Geographical Information System(GIS) environment, is used. Therefore, it can be termed as

deterministic.

9

2.2.2 Facilities based classification

1. Single or Multi-facility: If the facility to be allocated is a single entity, i.e. one facility at

the most optimal location, the LA problem is a single facility problem. But, if it is a

population of solution sets, i.e. a collection of facilities at different locations, then it is a

multi-facility problem. In the contrary case, the number of facilities to be placed may not

be known in advance. In such case, idea is to find the least number of facilities so that all

demand points are covered within a prespecified distance standard, also called as location

set covering problems[7].

2. Capacitated or uncapacitated: If the ability of the facility to serve customer demand is

limited, it is called a Capacitated facility, else Uncapacitated.

In this thesis, it is aimed to cite multiple DC-FCS in the city of Montreal, each of which capacitated

to serve a limited number of customers at any given time. Hence, this model is a multi-facility-

capacitated model.

2.2.3 Physical space or location based classification

Based on the representation of the space in which the facility citing is done, the LA models can be

classified into planar problems (d-dimensional real space) and network location problems. Each

of these can be subdivided into continuous or discrete LA problems[6]. Distances in planar

problems are measured as a family of distances with a single parameter (Minkowski distances)

and distances in network problems are measured on the network itself, typically as the shortest

route between the two points through the network of arcs connecting them.

The above classifications can be further subdivided into continuous and discrete location problems.

In continuous locations problems, the facility to be allocated can be placed anywhere in a

continuous solution space, examples of these are Cellular tower location problems and helicopter

trauma pick up location problems. In discrete problems[8] the facilities can be located on only

predetermined eligible points on the plane or network.

Therefore, this thesis deals with a network based discrete LA problem.

10

2.2.4 Location Objectives based classification

Typically LA methods are used to allocate or install facilities close to the customer locations to

obtain better values of the objective function. This involves maximizing the demands served

(capture problem), minimizing the cost of transportation (median problem) or minimizing the

maximum distance between the customer and the facility. In this thesis, it is aimed to model the

problem as maximum flow capture and minimum cost of transportation problem (also called as

min-sum).

Considering the above classifications, the optimal location allocation of EVCS problem can be

termed as Multi-facility, capacitated, deterministic, network based, discrete, maximum capture and

min-sum problem.

2.3 Methods for location allocation problem

There are several algorithms used to solve or optimize the objective function or mathematical

models. Exact solution methods like branch and bound algorithm, hierarchical clustering methods

and weighted Voronoi diagram approaches give exact locations of installation to cover the

charging demand, leaving less room for flexibility for decision makers. Solutions that cannot be

practically implemented due to the constraints out of the scope of the optimization model can have

higher impact on the final outcome of the exact solution methods. While numerous earlier studies

used exact methods, more recent trend shows a growing trend towards using heuristic algorithms

or a combination of multiple heuristic algorithmic results to render the required result. While it

takes longer time for the exact solution methods to solve larger and more complex network

problems, heuristic methods give close to exact solution in less time and computational cost.

This Chapter discusses EVCS location planning strategies adopted by various researches through

an extensive literature review and are broadly categorized into the following:

1. Exact solution methods

2. Heuristic methods

Both strategies aim to minimize the cost of installation while maximizing service quality, though

a variety of different parameter sets and optimization approaches were considered to achieve the

same. Exact methods give precise points of solution but demands more processing time when the

11

problem size is large. Heuristic algorithms on the other hand, provide local optima solutions, which

are found to be very close to the exact solutions. Heuristic solutions can also be used where the

model cannot have any exact solutions.

2.4 Exact Solution Methods

In computer science and operations research, exact algorithms always solve an optimization

problem to optimality, if the model is in Polynomial Time, i.e it can have an exact optimal solution.

The main advantage of this method is that it provides the best possible solution to the given

planning and optimization problem. The exact solution models often provide flexibility of

incorporating a myriad of constraints relevant to the practical problems but demand mathematical

expertise and computation time to do so. It should also be noted that not all practical problems can

be modelled as a linear optimization model due to intangible factors like fairness of a solution,

plausibility of implementation etc.

This section discusses various Exact optimization approaches taken into consideration and

algorithms used to optimize the EVCS location planning. The earliest location planning

optimization models were based on the exact method approach, giving precise points of

solution. (Note that this thesis use the words “refueled,” “recharged,” and “served”

interchangeably, as well as “tank” or “battery”.)

2.4.1 Flow Capture Location Methods (FCLM)

The earliest adaptations of the optimization techniques to plan EVCS locations dealt with long

distance travel in interstate highways using different forms of Flow Capture Location Methods

(FCLM)[9] for refueling stations. The limited range of EVs is the major constraint in these models

and the shortest path Origin-Destination(OD) matrix between the cities/towns was the environment

in which optimization was conducted [10]. The possibilities of alternate routes and use of midlink

service stations to cover shorter distance trips are shortcomings of these models. Use of heuristic

algorithms like Greedy Adding and Greedy Adding with Substitution to solve Mixed-Integer

Linear Programming (MILP) based FCLM was demonstrated to be faster as the complexity of

problem increases, while producing suboptimal location values for shorter range values. More

extensions of OD matrix models were based on the Vehicle-Routing logics [11], battery swapping

models for short distance recreational park rides [12] etc. Uniform weight distribution of the

12

different paths of OD matrix resulting in over utilized and under-utilized stations is cited as the

major drawback of these model solutions.

Flow based set covering models [7][13] were also proposed to focus on minimizing the cost of the

installation by treating the location citing as a set covering problem. Flow capture method

combined with the nearest facility method [14] by taking population into consideration proposes

allocating charging stations at the freeway exits of densely populated areas through a data driven

approach. This approach is seen to be widely used to cater the demands of initial EV population

in urban environments. Researchers have also considered a Flow Interception Facility Location

problem (FIFLM) [15] optimized using a binary integer linear programming model to analyze the

flow captured with varying number of fresh installations and possible retrofitting EVCS on

existing gas station infrastructure. The results showed that installing fresh EVCS has a significant

coverage than retrofitted ones (85% flows captured with 20 EVCS, while retrofitted ones could

reach only upto 55%). But considering practical limitations and cost to set up a fresh refueling

station, it was suggested that retrofitted stations could still be a better alternative in the initial stages

of electic vehicle deployment.

2.4.2 Fuel-Travel-Back methods

Fuel-Travel-Back [16] models promised a unique approach based on the notion “where you travel

more is more likely you need refueling” arguing that O-D model does not consider short distance

errand trips or trips with multiple objectives. This model relies on the spatial distribution of the

Vehicle Miles Travelled (VMT) data to minimize the total fuel-travel-back travel time – defined

as the distance for the fuel burned along the road to travel back to the nearest station. Therefore,

VMT provides a heatmap of the fuel consumption density, which can then be used to determine

the refueling locations. Probabilities of any random vehicle needing to refuel and its associated

travel time is considered by the frequency of travel and the routes used, giving this model a more

practical approach than the OD pair-based approach. The model assumes an average fuel-travel-

back time to optimize the minimize the number of charging stations required to satisfy the same.

While this solution appears very practical oriented for a city planning problem, collecting VMT

data for an entire city road network is costly and complex. This approach also suffers from the lack

of consideration for EV range.

13

2.4.3 Voronoi Diagram

Apart from the mathematical models, geometrical models are also employed in determining the

optimal locations. Voronoi diagrams are the partitioning of a plane with n points into convex

polygons such that each polygon contains exactly one generating point and every point in a given

polygon is closer to its generating point than to any other. A Voronoi diagram is also known as a

Dirichlet tessellation. The cells are called Dirichlet regions, Thiessen polytopes, or Voronoi

polygons. In location optimization problems, modified Voronoi diagram approaches to consider

weights and range of each cell has been used.

Liu [13] proposed a model to assess the impact of incorporating three types of charging

infrastructure, namely fast charging public stations, home charging posts and battery swapping

stations and analyze its effects on the cost, charging time and impact on the distribution grid. This

paper also considers retrofitting of existing gas stations with EVCS, considering their proximity

from the electric distribution grid as a constraint for the selection. The location was determined

based on the charging demand data through Thiessen Polygon (aka Voronoi diagram), due to the

large geographical area to be covered (Figure 2.1). This paper also defined logical upper limits for

workplace, public and residential parking area chargers to limit the maximum allowed distribution

of these economical alternatives, compared to the costlier fast charging and battery swapping

stations. Therefore, the faster alternatives are concentrated on the freeways for long-distance flows.

While this approach gives practical results for a definite set of population with limited data on

Figure 2.1 Voronoi Diagram method to find prospective locations for new EVCS [13]

14

actual mobility available, scaling the consumer base is a challenge and results tend to have high

sensitivity compared to other traffic flow based approaches.

2.4.4 The p-Median Model

The p-median model is a location/allocation model [17], which locates p facilities among n demand

points and allocates the demand points to the facilities. Several location planning models have

used this approach and its extended versions [18] to calculate optimal locations considering various

factors like user charging behaviors and EV range. The objective is to minimize the total demand-

weighted distance between the demand points and the facilities. Basic formulation for a p-median

problem can be expressed as below:

 where,

min ∑ ∑ 𝑤𝑖𝑑𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

s.t ∑ 𝑥𝑖𝑗

𝑛

𝑗=1
= 1 ∀𝑖,

 xij ≤ yj ∀𝑖,̇ 𝑗,

 ∑ 𝑦𝑗

𝑛

𝑗=1
= 𝑝.

 xij = 0 or 1 ∀𝑖,̇ 𝑗,

 yj = 0 or 1 ∀𝑗,

n = total number of demand points,

𝑥𝑖𝑗 = {
1 𝑖𝑓 point i is assigned to facility located at point j,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑦𝑗 = {
1 𝑖𝑓 𝑎 facility located at point j,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

wi = demand at point I,

dij = travel distance between points i and j, wi =demand at point i,

p = number of facilities to be located.

15

This is an uncapacitated facility location model where each demand point is served by one facility

and trips to the demand points are not combined.

2.5 Heuristic Methods

Research studies till 2010s mostly focused on the simpler and the exact optimization models,

which are efficient at solving small scale data and providing exact solutions. But as the size of the

problem and the number of parameters to be considered increases, these approaches tend to be less

efficient in terms of computation time and problem-solving methods. Heuristic algorithms are

developed to solve a problem quicker when classical methods are either too slow or fail to give an

exact solution. This is achieved by letting the algorithm approximate the accurate solution, hence

compromising the optimality, accuracy or precision for speed. A heuristic function ranks its

solutions at each branching step based on the available information to decide which branch to

follow. They are used to solve real life complex systems due to reasonable computation time

demands and ability to handle large scale models without significant compromise in the accuracy

of the solution. Also heuristic algorithms does not require a pre-generated data set with the all the

possible combinations of the refueling stations that can serve a particular flow, which consumes

more computation time than solving the MILP itself, thereby allowing heuristic based optimization

techniques to provide solutions to complex real-life models within a reasonable time frame.

2.5.1 Greedy Adding and Greedy Adding with Substitution

In one of the firsts Kuby et.al [19] developed and applied three heuristic algorithms -greedy adding,

greedy adding with substitution and genetic algorithm- to solve FLRM problems. It was shown to

be much effective and efficient in solving complex models compared to exact approaches like

mixed-integer linear programming (MILP). First proposed by Daskin M.S [20] the greedy

algorithm first finds the facility locations that optimizes the objective, add this to the set, then

select the next facility-which when added to the already selected-set will optimize the objective.

This process of selecting and dding continues till the required number of facilities are selected.

Starting with the set of fixed facilities specified by the user, the additional facilities selected should

complement the fixed facilities to maximize the objective. It is known as greedy because it selects

a facility at each iteration without looking ahead for the optimal set.[19] Greedy Adding with

Substitution is an extension to Greedy adding algorithm, which tries to substitute the facilities from

16

the selected set with the unselected set after each selection has been made. If a substitution

improves the optimality of the selected set, then the substitution is kept. The substitution loop runs

after each facility is selected in the greedy adding loop. It is proven to be a great tool to solve

maximum-covering, set-covering or FCLM problems and was found that over sufficient iterations,

the accuracy never fell below 99.4% of the optimal solution.

2.5.2 Genetic Algorithms

Genetic algorithms which are modeled after the natural evolution process work in an entirely

different way. The algorithm starts with the multiple sets of randomly generated solution sets,

known as chromosomes. The algorithm mimics the natural interaction between subjects in an

evolution set and comes up with a newer and generally better solution after each iteration. At each

iteration, a specific number of solutions that best fit to the fitness function are selected (known as

parents) from the set and used them to create the next set of solutions (known as children). The

next set of candidate solutions can be considered diverse if the average length between the

solutions is large. Having a diverse set of solutions is important to explore the required solution

landscape. Proposed in early 70s by (Holland, 1975[21] and Mitchell, 1998[22]) it was first used

to solve a P-median model problem [8] by encoding chromosomes as a binary string of the

candidate location length (n), representing whether it is selected to locate a facility or not. To

ensure the number of facilities chosen, they also introduced a penalty constraint. Later on [23]

devised an extension to the previous model by encoding the chromosome to contain only the

number of facilities to be selected (p) and using greedy-deletion heuristic to generate the child

solution or chromosome. This approach has proven to be used for solving p-median, fixed charge,

centroid, max-covering problems and FLRM problems.

Genetic algorithm with mutations were found to give minor improvements in results with much

higher computation time and in some cases mutation allowed solutions to escape local optima

solutions. Comparison of the three approaches showed that genetic algorithm approach was able

to obtain marginally better results than the greedy adding and greedy adding with substitution

algorithms, but at the expense of computation time [19].

17

2.5.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization(PSO) is a relatively new addition in the population based

optimization algorithms, where the particles or the objects fly through the multidimensional search

space looking for a solution. The particle adjusts its position after each iteration, according to its

personal best solutions and global solution of the whole swarm. For a D-dimensional search space,

the position of the ith particle is represented as Xi = (xi1, xi2, xi3,…………, xiD) and the position of

previous personal solution best for each particle is represented as PBest-i = (pi1, pi1, pi1,……, piD).

The best position among all is represented by PGBest = (pG1, pG1, pG1,……, pGD). The velocity of

each particle is represented as Vi = (vi1, vi2, vi3, vi4,……, viD) and is determined as a combination of

its current velocity vector. The direction of personal and global best from the current position as

shown in (2.1). The position of the particle at each iteration can be determined from the previous

position and current velocity as expressed in (2.2).

vid = a vid + b r1 (pid - xid) + c r2 (pGd - xid) (2.1)

xiD = xiD + vid (2.2)

In (2.1), the first part represents the inertia component, ‘a’ being inertia constant fixed by the user.

This value determines the extend to which the particle explores the search landscape or exploit the

information from the personal and global bests, hence, is often dynamically varied through the

search process. The second and third part represents contributions from the directions of the

personal best and global best, with ‘b’ and ‘c’ as the acceleration constants fixed by the user, while

‘r1’ and ‘r2’ uniformly generated random numbers in the range of [0,1].

Taboo Mechanism based Binary Particle Swarm Optimization (TM-BPSO) [24] is another

advanced heuristic method, which uses a list to store previous solutions and prevent visiting them

again during further search. In this case, certain aspiration criteria are also used to prevent the risk

of rejecting a solution that hasn’t been generated yet.

2.5.4 Agent Based Modeling (ABM)

Agent-Based Modelling (ABM) technique is an in-depth simulation method that has found various

applications in the industry in the recent years. ABMs are able to mimic any real world complex

system composed of autonomous components (agents), interaction between the components

18

(behaviors) and the changes in behavior of agents to the stimuli in their environment. ABM’s

conceptual depth is derived from its ability to model emergent behavior that may be counter

intuitive and its ability to discern a complex behavioral system that is greater than the sum of its

parts. ABMs inherent randomness or stochasticity lets the model proceed every practical way

possible, which may not be explicitly visible to the modeler.

The simplicity of the model makes use of the current higher computational capabilities to model a

real world system where each element (Agent) autonomously behaves according to the certain set

of rules that defines them and interacts with other agents in the system doing it. This continuous

and repetitive interaction derives desired results through computing all the possible scenarios.

2.5.4.1 Agents

Agents in an ABM can represent a variety of objects such as human beings, equipment, vehicles,

companies or their projects, ideas, countries, etc. To ensure practicality of the systems modeled

with the ABMs, an agent’s fundamental characteristics described by Macal et al. [25] are as

follows:

• An agent is an independent, modular, and identifiable individual. The modularity need

implies that an agent has limitations. It means that one can easily specify whether

something is a part of an agent or not or maybe is a shared and common attribute. Agents

have attributes that allow the agents to be differentiated from and identified by other agents.

• An agent is autonomous and self-directed. An agent can work independently in its

environment and in its interactions with other agents. An agent has behaviours, which

connect information perceived by the agent to its decisions and actions. An agent’s

information is processed and notified through interactions with other agents and with the

environment. An agent’s behaviour can be clearly described by simple rules to the extent

of abstract models, such as neural networks or genetic programs that relate agent inputs to

outputs through adaptive mechanisms.

• An agent has a state that changes over time. It means that a system has a state consisting

of the collection of its state variables. Besides an agent has a state that shows the crucial

variables associated with its current condition. An agent’s state contains of a set or subset

of its attributes. The state of an agent-based model is the collective states of all the agents

19

along with the state of the environment. In an agent-based simulation, the state at any time

is all the information required to move the system from that point forward.

• An agent is social having dynamic interactions with other agents that influence its behavior.

Agents have protocols for interaction with other agents, such as for communication,

movement and contention for space, the capability to respond to the environment, and

others. Agents have the ability to recognize and distinguish the traits of other agents.

Additionally, agents may have extended characteristics as below :

• An agent may be adaptive, for example, by having rules or more abstract mechanisms that

modify its behaviors. An agent may have the ability to learn and adapt its behaviors based

on its accumulated experiences. Learning requires some form of memory.

• An agent may be goal-directed, having objectives to achieve with respect to its behaviors.

This allows an agent to compare the outcome of its behaviors relative to its goals and adjust

its responses and behaviors in future interactions.

• Agents may be heterogeneous. Agent simulations consider the full range of agent diversity

across a population. Agent characteristics and behaviors can be different in their extent and

complexity.

The agents for this Chapter are identified and described later in section 3.2.1 in Chapter 3.

2.5.4.2 Simulation software platform

This thesis model the Optimal Location Allocation of EV Charging Stations as an Agent-Based-

Modeling problem using Anylogic 8.6 University Researcher Edition. Anylogic [26] is a

multimethod simulation modeling tool developed by The Anylogic Company. It supports Agent

Based, discrete Event and System Dynamics simulation methodologies. Anylogic was chosen over

SUMO and MATSIM to model the problem discussed in this thesis due to the following reasons:

1. Built-in native java environment as well as support for extensibility using custom library

codes and external sources.

2. Extensive support for GIS based ABMs including the shortest path routing and inbuilt

functions for calculating the distance and time taken for each route.

3. Support for state chart and UML based process modeling.

4. Ability to dynamically create and simulate agents loaded from a database.

20

5. Data visualization support to analyze and present results.

6. Capability to use all CPU and GPU resources in a computer system to run optimization

problems compared to other urban mobility simulators.

2.6 Conclusion

The discussion on studies based on literature review in EVCS location optimization shows that

simpler exact methods of optimization are not viable for real world systems with multiple

objectives to optimize and large complex data sets. Heuristic approaches on the other hand do not

give the ideal accurate solution but provide reasonably accurate solutions in a fraction of time. A

majority of exact solution approaches requires OD distance matrix, which require intensive

computation resources to calculate the shortest distance between every combination of points.

Heuristic approaches calculate the required distance values on the go, as only a fraction of the total

combinations of OD distances may be required to model a scenario. Heuristic methods like ABM

and Particle Swarm Optimization (PSO) offers great options to explore a highly diverse data set to

find optimal solutions for single objective and multi-objective solutions with modified versions

[27]. While Agent Based Modeling simulation offers a simplified modeling approach relying on

the computational power while exploring the randomness of the real world system, it also offers a

unique upper hand compared to other modeling solutions by queue implementation, which lets the

modeler control and simulate waiting periods at each facility.

As the problem at hand – the pareto optimal location allocation of EVCS – is a Multi-facility,

capacitated, deterministic, network based, discrete, maximum capture and min-sum problem,

Agent Based Modeling on a GIS road network platform is the best method to deliver an optimal

solution.

21

Chapter 3

Solution Approach

3.1 Introduction

Location Allocation (LA) problems have high relevance in the operations research field due to

their wide spectrum of practical applications in shipping logistics, industrial management, urban

planning, transportation infrastructure planning, etc. Owing to its stochastic and complex nature

most of these problems are categorized as NP-hard problems, motivating the search for heuristic

and approximated algorithms to solve them. Geographical Information System (GIS) based

solutions are currently widely used to represent LA and other spatial problems. GIS plays the role

of a practical tool capable of dealing with problems that are not easy to model and whose data is

are available through various data management systems. This Chapter discusses the methodology

adopted by this thesis to solve the LA problem of optimal EVCS through ABM.

3.2 Agent-Based Model for Location Allocation

Agent Based Modeling (ABM) is a fairly recent alternative to the mathematical modeling of the

systems whose behaviors are concurrently distributed, complex, and heterogeneous. Like in the

case of the LA problem discussed in this thesis – a spatially distributed discrete search space of

the solutions that has the inherently complex nature of utilization factors owing to the complexity

of urban mobility. ABM forms an effective tool to enhance the capabilities of the complex spatial

analytic problems using GIS by minimizing the computation requirement to feed the optimization

problem while providing a flexible, visual, and responsive representation of the problem itself

[28].

In this thesis, the location planning of Fast Charging Stations (FCS) is modeled as a multi-objective

optimization to maximize the utilization of charging stations, minimize the reroute time required

to access the proposed solution of FCS and minimize the number of infeasible trips. The objectives,

utilization factor and reroute factor are computed through ABM implementation. This thesis use

Anylogic 8.6 to model the mobility of EVs in the city of Montreal by making use of a solution set

of Charging Stations (CSs) to complete their commute. The Car Agents are moved from their

22

origin to destination through the shortest path provided by the Anylogic Router. The utilization

factor of CSs is computed by considering the amount of time each charger was used and its

convenience factor is computed considering the reroute time of each vehicle, which utilized that

CS.

3.3 Overview of the datasets used

To enable the most accurate representation of the mobility of EVs in the city of Montreal, Montreal

Origin-Destination (OD) survey (2013) data is used to model the Car Agent population in ABM.

Charging Stations are plotted according to the information available on the website of Electric

Circuit – Hydro-Quebec’s public charging network – collected as of January 2020. At the time of

data download, there were 6 locations with Level-3 (50kW) charging stations in the City of

Montreal. For the sake of simplicity, all Level-2 and Level-3 charging station locations are

assumed to be the candidate locations for future 120kW FCS

A brief overview of the Montreal OD Survey-2013 is discussed below.

3.3.1 Origin-Destination Survey 2013

The 2013 Origin-Destination survey is a joint achievement of the Agency Metropolitan Transport

(AMT), the Association Québécoise du Transport Intermunicipal and Municipal (AQTIM), the

Montreal Metropolitan Community(CMM), the Ministère des Transports du Québec (MTQ), the

Réseau de Transport de Longueuil (RTL), the Secretariat for the Metropolitan Region (SRM), the

Société de Transport de Laval (STL) and the Société de Transport de Montréal (STM), prepared

and published by Secretariat for the Origin-Destination survey. This extract represents a sample of

78,800 households.

The 2013 OD survey was conducted in the fall of 2013 in the Montreal metropolitan area. This is

a survey carried out through telephonic interviews that is among the most important in Quebec. It

aims to draw a faithful portrait of all trips carried out by residents of the region during an average

weekday, for all modes of transport used. Carried out approximately every five years since 1970,

OD surveys cover an increasingly large, which spans the entire metropolitan area, major cities of

Montreal, Laval, and Longueuil, passing through the north and south crowns.

23

The population targeted by the 2013 OD survey corresponds to all the people occupying private

dwellings in each of the municipalities in the survey area. For people aged 4 years and under, no

travel information is collected. The results of the survey refer to trips made on working days in the

period between September 3 and December 20, 2013, inclusive. Interviews, carried out with some

78,700 households, made it possible to describe the characteristics of some 410,700 trips made by

the 188,700 people who make up these households. The sampling covered in this survey is

calculated to be about 3% of the total population of the Metropolitan area of Montreal.

Trip information collected, relevant to this thesis includes:

1. Household number

2. Person number

3. Reason

4. Origin

5. Destination

6. Time of departure

7. Mode of transport used.

Source : Enquête Origine-Destination 2013 de la région de Montréal, version 13.2b

Utilized by : Prof. Anjali Awasthi, Akhil Raj Kizhakkan.

3.4 Assumptions and constraints

Constraints faced in implementing an ABM using any software are many. Though Anylogic is a

strong simulation modeling tool, there is a lack of technical documentation to help explore the

advanced properties of the software. Implementing a highly specific model for an LA problem

requires extensive use of programmable entities, knowledge of how to use them, and their inter-

compatibilities in the Anylogic context, which is time-consuming to gather. The complexity of the

software aside, the biggest computational requirement for any mobility model is to decide the route

between two points through the GIS space. Anylogic offers the shortest route calculation as a part

of its GIS module, by accessing its routing servers online. Though it takes several hours to learn

all the required routes over the network, they are saved to a cache for easier and faster access in

the subsequent runs. This eliminates the computational complexity involved from the system in

which the model is run and thereby decreasing the model run time. This also means that mobility

24

between two points in GIS space is always through the shortest route obtained, which may not be

the case practically.

The OD data obtained is considered as the base for all mobility events modeled in this thesis. As

they are limited to only the Fall season (September-December) the model does not give an accurate

picture of the seasonal variations in traffic over a whole year. As September to December notes

the most change in climate and outdoor activities involved for the City of Montreal, it can be

argued that for a 3-month survey aimed at representing the general mobility pattern of Montreal,

the Fall season would be the best candidate.

Considering the projected growth of EVs (Figure 1.4), it can be found that EV population is

currently at about 1% of the total vehicle population and is expected to reach 3-4% by the year

2025. From the sample of population covered in the OD Survey-2013 data, it can be seen that

about 3% of the target population participated in the survey, and trips are defined for commute

made by them using personal and public transports. This thesis assume that all the trips listed in

the OD Survey-2013 are made using personal EVs so that the model has an accurate representation

of charging demand for upcoming years.

As Montreal residential areas parking works on a sector parking system, this thesis assume that

the bulk of the future EV owners will not have a facility to charge their EVs residentially overnight,

as they may often have to park the car away from their home. Therefore, this thesis assumes that

future EV charging demand rely on public charging stations to satisfy their re-charging needs. To

facilitate shorter waiting periods for charging and to make EVs more acceptable to the broader

public, Fast Chargers(~100kW) are required to be commonly accessible. Therefore, this thesis

proposes a solution wherein total demand for charging is to be covered by Fast Charging Stations

(FCS) only.

To eliminate infeasible solutions of locations to install an FCS, the sample set of solutions is

gathered as the current Level-2 charging station locations. The final solution to the LA problem

may be used to upgrade these Level-2 stations to an FCS of proposed capacity.

As the Vehicle Agent movement is modeled according to the departure time listed in the trips data,

the peak hour of charging demand is accurately modeled in this solution. However, the model does

not consider the general road traffic due to non-EVs and hence the travel times of Car Agents are

25

not accurately modeled in this thesis. It can be argued that, as all the agents face the same traffic

constraints to travel, this assumption does not impact the final solution of the location of charging

stations to be upgraded to FCS.

This thesis assumes that each EV owner will follow instructions from a higher-level decision

maker to charge the car when instructed during a trip, given the origin and destination is provided

to the decision-maker. This system is currently in use in several EVs where a central console

provides the navigation details to the destination and informs the driver on estimated battery level

upon arrival at destination. The system also urges the user to visit a charging station on-route if

the estimated level is less than a certain tolerance. This thesis model considers the tolerance to be

35%.

The EVs available in Canada have a wide range of battery capacities available ranging from 16kW

(Mitsubishi i-MIEV) to 100kW (Tesla Model S, Model X). For the sake of computational

simplicity, this thesis assumes 3 values of battery capacities [25kW, 50kW, 75kW] are evenly

distributed among the Car Agents. Also, the consumption of charge by different sizes of EVs are

assumed to be very similar around 259Wh/mi or 161Wh/km, except for a few outliers (Jaguar i-

Pace, Tesla’s performance version cars, etc.) [29]

To summarize, the constraints are as follows:

a. Vehicle mobility through the shortest path only.

b. Limited data are available to model seasonal demand changes.

c. Only current Level-2 charging station locations are considered in solution space.

d. Real traffic congestion data not involved to reduce complexity.

The assumptions made are summarized below:

a. All trips from the database made by EVs.

b. All charging events through public FCS only.

c. Car Agents adherence to charging instruction from decision-maker

d. Generalized battery capacities and uniform consumption across all EVs

26

3.5 Modeling by Unified Modeling Language (UML)

The use of graphical designs to represent and explain the properties and flow of a model has always

been in use. In the case of ABMs, most researchers agree that the natural way to program their

models is to adopt Object-Oriented (OO) practices like abstraction, encapsulation, and inheritance.

Among the OO analysis and design techniques applicable to ABMs, UML is the most favorable.

This thesis adopts the integration of OO, ABM, and UML for modeling the simulation-based LA

problem optimized using the Genetic Algorithm. ABM with OO design has inherent advantages

of balancing visibility and confidentiality through encapsulation. Inheritance provides a hierarchy

structure that makes the design highly reusable, extendible, and easy to understand. Systems

modeled with OO based ABM is more adaptive to changes over time while reducing the risk of

building complex systems as they can evolve from fundamentally basic systems.

Unified Modeling Language (UML) proposes a set of well-defined and standardized diagrams

(independent of any programming language or computer platform) to naturally describe and

resolve problems based on high-level concepts inherent to the formulation of the problem. UML

is a graphical tool that provides a highly communicative way of representing both static and

dynamic aspects of a system. It is comprised of 13 basic diagrams that encourage users to focus

on the end-to-end logical modeling of their solution methods, before diving into the technicalities

of implementation.

The first and most important step in ABM with OO problem solving is the construction of a model.

The model forms an abstract version of the relevant details from the usually complex real-world

problem. The model in this thesis should facilitate a simple, comprehensible version of mobility

in the city of Montreal, taking into account its major actors – EVs, Charging Stations, and the trips

that direct them.

UML effectively represents the static elements and the dynamic nature of the LA problems. In our

case, the Class Diagram gives an insight into the static definitions of each element in the system,

while the sequence diagram gives a deeper insight into the flow of processes at different points of

the simulation. While the state diagram defines the properties of each Agent state, the activity

diagram defines the logical flow of triggers that result in achieving different states. The diagrams

27

work together to depict and describe different aspects of the system. Hence, UML diagrams are

effective as a model design tool to be used for ABMs.

In the case of ABMs, it is found that 4 types of diagrams namely Class Diagram, Sequence

Diagram, State Diagram, and Activity Diagram can almost accurately represent any ABMs.[30]

Class diagrams are composed of classes and the multiple types of relationships among them,

namely inheritance, composition, and association. This section defines all the major aspects of the

model – agents, their physical sites, the resources they may consume, and their properties. Then

each element is connected with the others depending on how they are related to each other or how

one uses the other.

The sequence diagram is the second most common UML diagram for ABM developers. It

represents how objects interact and exchange messages over time. This allows developers to trace

the program while it executes and to follow the way objects interact in memory. UML is constantly

evolving by adding more functionalities to these diagrams that make it closer to adapting any kind

of software or modeling system.

State diagram gives all the possible states an agent can be in and all possible transitions between

the states, mostly based on some conditions. This diagram always starts with an initial state and a

final state, typically represented as Agent entering and leaving the ABM model. This allows

perception of Agent behaviors as states and state-transitions, providing a convenient way to

modularize the model code into behavioral blocks.

Activity diagrams are very similar to traditional flow charts, wherein it represents the procedural

flow of code. Activity diagrams are considerably helpful in debugging the model for errors and

issues, letting the developer visualize the behaviors of collaborating elements. The activity

diagram gives a deeper insight into the state and sequence diagram.

For the purpose of modeling the LA optimization problem as an ABM, this thesis employs these

4 types of diagrams to model the static elements and dynamic behaviors of the system. The coming

sections discuss the choice of such elements and behaviors to best represent the model through the

4 diagrams in sections 3.5.1 through 3.5.4

28

3.5.1 Class Diagram

The first step of an OO based model is to identify the classes involved to develop a library of

agents and their related objects. In UML, class diagrams are used to represent the agents and their

related objects. Once the agents and objects are identified, they can be organized into a hierarchy

structure indicating their relationships. The broadness and depth of the modeling environment for

specific cases are defined using the object definitions and agent relationships.

This thesis defines classes according to the real-world entities each element represents. The ‘main

agent’ acts as the base of the model, within which all other objects and Agents lie and interact with

each other. Hence the GIS map and the road network upon which the population of trip, car, and

charging station agents interact are present in the main agent. From Figure 3.1, it can be noted that

the Main Agent is composed of Car Agent, Trip Planner Agent, and Charging Station Agent,

Figure 3.1 Agent Classes

29

indicated by 1 to many relationships. Similarly Charging Station Agents (CSAs) is composed of

Charger Agents (CGAs) and Car Agents (CAs) are composed of Battery Agents by a 1 to 1

relationship. In these cases, an agent is contained inside another agent using composition relation,

when the second object leaves the model memory the contained agent also ceases to exist. In our

case, the Main Agent (MA) takes the responsibility of creating and initializing all the agents inside

that drives the simulation. At the disappearance of the MA object, the contained agents, objects,

and resources are taken out of the simulation as well.

Trip Planner Agent (TPA) is related to the CSA in a 1 to 1 association, as each trip can only have

one nearest charging station on the route. But TPA is related to the CA as many to 1, as multiple

trips entries can call the same CA to complete the trip. Significant agents present in this class

diagram are described as follows:

1. Main Agent (MA)

The Main Agent forms the environment in which the Agents of this model interact. The

shortest path router algorithm is part of the GIS map in this agent, which lets Car Agent

move from origin to destination through an accurate road network and give necessary

distance data to make trip decisions.

2. Trip Planner Agent (TPA)

This Agent is responsible for the details of each trip Car Agents have to make in the model.

Hence it is associated with both the Car Agent population and Charging Station Agent

population. Each trip agent becomes active only at the departure time of the respective trip.

Once active it fetches the corresponding Car Agent and proceeds through a decision-

making process to complete the trip. The process flow detailing this decision-making

process is discussed in the next section.

3. Car Agent (CA)

Car Agents are the only non-static agent in this model. It moves according to the

instructions from the trip Agent, through the path provided by the shortest path router. It

dynamically consumes the battery resources as they move and keep a track of the average

distance travelled a day. The car agent is composed on a Battery agent that monitors the

battery state and sets a flag indicating charging required when the battery is low.

4. Charging Station Agent (CSA)

30

This agent hosts the charger agents at the desired location and allocates incoming Car

agents with one Charger agent from its pool, with a facility of keeping up to one car in the

queue. The resource pool and queue implementation of chargers ensure that each charging

station is met with realistic charging demand according to the number of chargers present

in them.

3.5.2 State Transition Diagram

A State Transition Diagram shows the flow from one state to another within an agent. It illustrates

all possible states an agent can be in and all possible transitions between those states, which can

result from an event based on some conditions if any. State transition diagram, in some cases also

known as Activity diagram, always starts from an initial state – indicated by a black disc – and

ends at a final state – indicated by a black disc inside a white disc. Each round-corner box includes

an execution of a statement or activity and the arrow from the box leads to the next step of

activities. The transition between the states provides important perspectives to sophisticated

operations.

The next sections discuss the State transition diagrams of agents in this model.

3.5.2.1 Trip Agent State Transition Diagram

The diagram in Figure 3.2 details the end-to-end process flow of the simulation model, as trip

events are initiated from the Trip agent. Once the trips population in the Main agent is initialized

from the database, the Trip agent stays idle until the departure time is provided with the trip event.

As the model time approaches the departure time, the trip details are pushed to the Car Agent’s

trip-queue to be executed as soon as the Car Agent is released from its past trip. This ensures a Car

Agent is not called into the trip process flow while it is active in another process flow. During the

trip process, the feasibility of reaching the destination with a 30% battery left in the car is checked

and the car is sent to the charging station on-route if it is not satisfied. Trip Agent calculated the

fitness and convenience factors for Charging Station agents in use and pass it on to the Charging

Station Agent. If the Car Agent does not have the required energy to travel to the nearest Charging

Station, that trip is marked as infeasible and moved on to the next trip.

31

3.5.2.2 Car Agent State Transition Diagram

Car agent has a relatively simpler State Transition diagram (Figure 3.3) in this model, as it follows

the decision made by TPA for its commute destination. The Car Agent is idle until there is an entry

in the trip-queue. Upon receiving a trip object, the Car Agent calls for its trip process flow and

Figure 3.3 Car Agent State Transition Diagram

Figure 3.2 Trip State Transition Diagram

32

moves while updating its distance traveled and battery charge level through the Battery Agent. The

CA is taken out of the simulation if at any point the energy level in the battery reaches zero.

3.5.2.3 Battery Agent State Transition Diagram

Battery Agent continuously monitors the state of the battery charge and sets the charge required

flag dynamically, as the vehicle moves and energy in the battery is consumed. When the charge

required flag is set, the battery agent interacts with the CGA in charging station to determine the

time required to charge and updates the battery level accordingly (Figure 3.4).

3.5.2.4 Charging Station Agent State Transition Diagram

The charging Station agent stays idle until a CA arrives. A CGA is assigned from the resource

pool of chargers to the Car Agent. Once the charging process is done at the CGA, the CA is passed

back to the TPA to continue with the trip. The TPA also passes data required for assessing the

fitness and convenience factor of the Charging Station agent (Figure 3.5).

Figure 3.4 Battery State Transition Diagram

Figure 3.5 Charging Station State Transition diagram

33

3.5.2.5 Charger Agent State Transition Diagram

The charger agent is responsible for the actual charging process of the battery agent composed in

the CA received by the Charging Station. It calculates the energy demand and corresponding

charging time of the charging process. The charger agent limits the maximum charging time to 20

minutes as this thesis is modeling how FCS can serve the EV user demand as close to a

conventional car refueling process (Figure 3.6)

3.5.3 Use Case Diagram

Use case diagrams are mainly employed in modeling the behavior of a system, a subsystem, or a

class. They are useful in visualizing, specifying, and documenting the behavior and dependencies

of an element of a system.

To model the EV Charging Station Location Allocation problem through Agent-Based

methodology, the Agents and its behaviors must be clarified. Through UML use case diagrams,

one can represent the scenarios or cases of using each agent class. The use case diagram can explain

and indicate needs in the scenarios. Therefore, use case diagrams gather the behaviors and

functional requirements of each system and define its associations with other external agents.

Figures 3.7 through 3.12 show the use case diagram for the complete model through its various

agents.

Figure 3.6 Charger State Transition diagram

34

Figure 3.7 Main Agent Initialization Process Use Case Diagram

35

Figure 3.8 Trip Agent process use case diagram

36

Figure 3.9 Car Agent Process Use Case diagram

Figure 3.10 Battery Charging Process Use Case diagram

37

Figure 3.11 Charging Station Operation use case diagram

Figure 3.12 Charging Process Use Case diagram

38

3.5.4 Sequence Diagram

Sequence Diagram is the second most common UML diagram used by the developers and

modelers, owing to its adaptability to multiple design strategies and clear representation of the

process flow, incorporating all the major elements of the model/software. It shows the message

exchange between objects/agents by delineating each of them in a vertical line. The messages

between agents can be function calls, parameter exchange, or command messages and are

represented by horizontal arrows. It can be noted that in the sequence diagram, time is represented

along the vertical line progressing downwards and it can be both physical and logical.

The sequence diagram for agent-based modeling of LA problem of Charging Stations is shown in

Figure 3.13. There are 6 agents involved in the process. The model starts from the MA, which

initializes the population of TPA, CSA, and CA from their respective database values. Among

these three main agents, only CSA has a static physical location in the GIS space. Hence CSA

agents are placed in the GIS map environment permanently. TPA are then assigned with their

corresponding CA according to their database values. Since TPA are an abstract agent that does

not have a physical representation in real life, no symbolic icon or GIS location is assigned to

them. CA on the other hand are mobile and is a physical entity in the GIS space, therefore, they

are represented by a ‘car’ icon in the GIS map whenever they are actively participating in a TPA

process flow.

After the initialization process, each TPA corresponds to one instance of a trip with an origin,

destination, Time of Departure (ToD), and the instance of CA that should execute this trip. TPA

stays idle till model time reaches ToD. At ToD TPA sends this instance of the trip as an object to

the corresponding CA’s trip-queue and instructs CA to check trip-queue. At CA if the ‘current

trip’ parameter is empty, then it is made equal to this trip object and calls for process flow for trip

execution in TPA. The TPA then places the CA at the origin, calculates the distance from the origin

to destination, and checks the energy required to complete the trip by calling the

‘batteryLeftWOCharging()’ function from the CA, which returns the expected battery level of CA

once the trip is completed. If the return value is less than 30% of total battery capacity, the

‘chargeReqFlag’ is set, indicating that the CA should recharge its battery first by visiting the

nearest CSA before proceeding to its destination. Now at TPA, the process flow forks into two

depending on whether ‘chargeReqFlag’ is true or false. If ‘chargeReqFlag’ is false, the TPA

39

instructs its CA to move to the destination point. If ‘chargeReqFlag’ is true, the TPA finds the

nearest CSA from the available population of CSA, adds it to its CSA variable, and calculates the

distance between origin to CSA. If the energy required to travel to CSA is higher than the current

battery level, this instance of the trip is marked as infeasible and TPA exits the process flow. If the

trip to CSA is feasible, then the CA is instructed to move to the assigned CSA. When CA reaches

CSA, CA leaves the TPA process flow and joins the charging process flow in CSA. As the CA

enters CSA, CSA finds an available Charger Agent (CGA) from its resource pool of chargers and

assigns it to the CA. CSA calculates the Energy demand of CA and the time required to complete

charging and pass it on to CGA. CGA interacts with the Battery Agent (BA) in the CA to execute

the charging process for the required time. Once the charging process is done, CSA informs the

CA and releases it to the TPA process flow. TPA updates the CSA convenience factor according

to the reroute distance and increments the fitness factor by one to indicate the CSA utilization.

TPA then instructs the CA to move towards its destination.

When CA reaches its destination, TPA updates its total distance run and looks for the next trip in

its trip-queue. If there is a trip waiting in the queue, TPA instructs the CA to start the next trip and

exits its process flow. If there is no trip pending, TPA sends the message ‘end’ to make CA return

to its idle state and exits the process flow.

40

Figure 3.13 Sequence Diagram

41

3.6 Multi-objective optimization of ABM using Pareto Optimization

ABMs are widely used to simulate real-world systems. They act as a virtual laboratory where

questions can be prompted and results analyzed, without the need for physical implementation and

its associated costs and consequences. When the objective of simulation modeling is to determine

the best combinations of input to achieve specific best results, they turn into an optimization

problem. In general optimization problems refer to varying values of certain parameters to obtain

the best values for an objective function. Hence, it should be noted that in this context, optimization

refers to the optimal choice of a sequence of external inputs to achieve a specific goal[31]. This

thesis makes use of the Pareto Optimization technique to arrive at the best set of Charging Station

locations that will serve the EV user population of Montreal with the best convenience and

minimum cost, while minimizing the number of infeasible trips. The objectives of convenience,

cost, and infeasibility of trips are discussed in the next section.

One of the key factors of ABM models is its stochasticity. Hence, observations have to be made

to examine how data changes over longer model times. In this thesis case, it was observed that

most Car agents participating in the model had to go for at least one charging event within an

average of 5 model days when started with an initial battery level, uniformly distributed between

35% to 75% of their battery capacity. Therefore, the model time required to run for optimization

is determined as 5 days.

Scaling is an important concept in ABM simulation. Treating the original size and scope of the

problem as true, it refers to the extent to which a model can be reduced without altering its pertinent

dynamics. It is most often done to substantially reduce the run time of the ABM models and reduce

the computational requirements for solving optimization problems. Thereby allowing access to a

wider range of analytical tools to tackle the problem at hand[31]. For the purpose of optimal

control, it is important to determine the extent to which models can be reduced while ensuring that

the model is a faithful representation of the original problem. As the diversity in trips made by

users is the most important in determining the significance of a charging station location, this thesis

uses the total dataset provided for modeling. Significant reduction is made in fixing the model

units to minutes instead of second and keeping model time accuracy to 10e-4. Both these changes

result in only minor changes in model objectives calculation.

42

It is important to note that not all ABMs can be reduced by methods like Cohen’s weighted ‘k’

method [32] and therefore, reduction of this model is very limited to the simulation controls used

and the number of model days to be run.

3.6.1 Pareto Optimization

Heuristic methods are perhaps the most explored methods to optimize an ABM. Considering that

in an ABM based LA problem, enumeration of solution space is infeasible, heuristic methods can

be employed to perform a guided search through the solution space, to identify locally optimal

controls. Several heuristic algorithms have been in use for ABM based optimization problems,

including extensions of Simulated Annealing[33], Tabu Search[34], Squeaky Wheel

optimization[35], Ant Colony Optimization, and Genetic Algorithm(GA)[36]. This thesis focuses

on solving the optimization problem through a variation of GA called Simulation-based Multi-

Objective Genetic Algorithm (SMOGA) to find the set of solutions for the LA problem through a

Pareto optimal front based evolution.

Control problems with multiple objectives can be solved by assigning weights to each objective

and treating the total of the weighted objectives as a single objective function. Single objective

functions can then be solved using any appropriate method. Choosing the right amount of weights

a priori becomes highly significant in this case and is up to the decision-maker to select the weights.

Appropriate weights may be unknown to the decision-maker initially and multiple iterations of

analysis may be required to fine-tune the weights to achieve a certain goal. It can be seen that

valuable solutions and time may be lost in the process of choosing the right weights and repeating

the experiment if the results are not satisfactory. Hence, treating the multi-objective problem in its

original form takes advantage in choosing the desired solution from the set of solutions arrived

after the analysis.

Pareto Optimization is a heuristic method that focuses on delivering multiple solutions, each with

its own merits and demerits, instead of focusing on one set of solutions. Candidate solutions in the

Pareto optimal front represent the solutions that are superior to the rest of the candidates in the set

in at least one objective. Therefore, they cannot be improved upon an objective without sacrificing

in another. Thus, giving the choice to the decision-maker to choose the right set of solutions from

43

the set, after the search is concluded[31]. The pseudo-code of the algorithm used is presented

below in Algorithm 3.1:

❖ Generate initial population of charging stations (location,
n_fastChargers) // from the dataset

❖ while currentGeneration < maxGenerations do
➢ Run ABM and evaluate fitness factor and convenience factor for each

-> current_pop
➢ In current_pop determine Pareto frontier -> current_frontier
➢ Add current_frontier to next_pop
➢ while size(next_pop) < maxGenerationSize do // After the first

iteration, reduce the maximum generation size by 5%
▪ Choose 2 parents:

• Repeat

 rand_set = randomly select 5 solutions from current_pop
//roulette wheel

 if exactly one candidate is Pareto dominant over others
then
➢ Pareto dominant candidate becomes parent

 else if
➢ Dominant candidate with fewer neighbors in solution

space becomes parent
// give preference to isolated solutions (diversity)

 else
➢ Select a candidate at random to be parent

 end if

• Until 2 parents are chosen
▪ Breed two new solutions A and B from parents:

• for all parameters in parents do

 Select parameter from random parent //roulette wheel

 Add this parameter to A

 Add corresponding parameter from other parent to B

• end for

• set mutation_rate = 0.20 * ((maxGenerations –
currentGeneration)/ maxGenerations)

• for n_fastCharger component in A and B do

 change component with probability = mutation_rate

• end for
▪ Add A and B to next_pop

➢ end while
➢ increase currentGeneration by 1

❖ end while

Algorithm 3.1

44

The initial population is composed of 10 candidate solution sets (chromosomes), which are

locations of Charging Stations represented through their ID number and the number of chargers in

each. Each Charging Station can have 0, 2, 4 or 6 number of fast chargers. Having 0 number of

chargers make any specific Charging Station inactive from the model run. So each gene in the

candidate solution will have 2 parameters. 610 such genes would represent the total population of

unique candidate locations for Charging Stations, both active and inactive, forming a candidate

solution set or chromosome. The 10 chromosomes in the initial population are generated by the

uniform distribution of the number of chargers among the entire solution set of charging stations.

Figure 3.14 represents an example of the initial population of candidate solutions.

By inputting the candidate solutions one by one to the ABM model and simulating them over the

desired period of 5 model days, the fitness and convenience factor of each CS is calculated and the

combined data is considered as the current population. Example of the current population

representation is shown in Figure 3.15. This current population is searched for Pareto solutions and

they are selected to be added straight to the next population set. In the next step, 5 candidate parents

Figure 3.14 Gene representation of candidate solutions

45

are selected at random through roulette wheel randomization of their fitness factor. Giving

preference to Pareto dominant solutions and then diversity among the 5 solutions, 2 parents are

chosen to crossover. The crossover mechanism produces two new solutions A and B, by randomly

exchanging the number of chargers parameter among the two parents using a 4 point crossover.

The crossover points are determined randomly from 1 to 609. The solutions formed A and B are

then subjected to mutation with a probability of 0.2 to randomly change the number of chargers in

20% of the Charging Stations. The mutated child solutions A and B are then added to the next

population. This process of choosing parents and producing child solutions is repeated till 10

solutions are obtained for the next population set. Once the number of solutions in the next

population reaches the population size. Each time a new population is generated the steps are

repeated from simulating the model with each new solution set and calculating their fitness and

convenience factors until there is no improvement.

The simulation model and results from this optimization experiment are discussed in the next

chapter.

Figure 3.15 Population representation

46

Chapter 4

Simulation Model Implementation and Results

4.1 Introduction

In this Chapter, the Agent-Based Modeling (ABM) of Electric Vehicle (EV) mobility through city

of Montreal is implemented and discussed using Anylogic 8.6 simulation software, with emphasis

on the UML models discussed in section 3.5. All the constraints and the assumptions detailed in

section 3.4 are considered while constructing the simulation model. The agents in the model are

created according to the Class diagram designed in section 3.5.1 and initialized with the initial

data. The dynamic elements of the model design and the optimization experiment is discussed in

the next sections.

4.2 Elements of simulation model and concepts

Agent based models can represent a complex system with high level of detail, due to its inherent

encapsulated behavior-based design, which incorporates inheritance properties. Therefore,

Objected Oriented Programming (OOP) languages can best represent them. Among the wide

variety of OOP language available, Java tends to be the most popular in ABM implementation due

to its compatibility to simulation based modeling and wide acceptance. As a result, Anylogic

simulation software is also built on a Java development platform and provides features such as

abstraction, polymorphism, encapsulation and inheritance. Similar to Java classes, Agents are

implemented as Agent Classes in Anylogic. Any agent class may contain parameters and functions

that define their characteristics and behaviors, state charts and process-flows that define their

decision-making process and connections to other classes that interact with them.

While ABM is great at implementing the natural flow of processes from the perspective of

individual objects or agents, the decision-making processes of the larger system may be the best

represented by a Discrete Event (DE) process flow. DE modeling is the most efficient when the

behavior of system under discussion is a sequence of operations, such as Trip planning operations

in this case. As Anylogic supports the combination of both modeling strategies in a single platform,

both process flow charts and statecharts are used to model the system in this thesis.

47

To better understand the process of ABM using Anylogic software in this thesis context, some

important concepts are discussed in the next sections.

4.2.1 Anylogic Modeling elements

4.2.1.1 Statechart

A statechart in Anylogic is an extended version of UML state diagram. It provides a visual design

element to define the event and time dependent behaviors of agents in the simulation. Though it is

majorly used in ABMs, it works well with the process flow based and system dynamics based

models. Statecharts are composed of states and transitions. According to A.Borshchev “A state

can be considered as a ‘concentrated history’ of the agent and also as a set of reactions to external

events that determine the agent’s future. The reactions in a particular style are defined by

transitions exiting that state. Each transition has a trigger, such as a message arrival, a condition,

a timeout, or the agent arrival to the destination. When a transition is taken (‘fired’), the state may

change and a new set of reactions may become active. State transition is atomic and

instantaneous”(37).

Anylogic supports a version of UML state diagram or state machine that supports composite states

(states that contains other states), history states, transition branching and internal transitions. While

orthogonal states are not supported, it is possible to define multiple statecharts in the same agent

to work in parallel.

4.2.1.2 Flowchart

Flowchart is a widely adopted graphical representation of processes. A process flowchart in

Anylogic combines the properties of UML sequence diagram and activity diagram. As the trip

planning and execution is a sequence of operations that controls the Car Agent and Charging

Station Agent states, the Trip Planner Agent is designed as a Discrete Event (DE) process flow. A

process flow is a graphical representation of processes that the entities of simulation is subjected

to. In this thesis context, the entities are agents: Car Agents and Charging Station Agents, which

interact with the process flow in the Trip Planner Agent. Use of process flowcharts enable us to

accurately represent the trip planning decisions than using a state chart to do the same.

48

4.2.1.3 Agent parameters

In ABMs, parameters represent the inherent characteristics of the agent or object. For a large class

of agents, like Car Agents, it is their parameters that distinguish from one to another. Agent

parameters are defined according to the design provided by the class diagram of model design.

According to Anylogic, a parameter is used to describe the static characteristics of an agent or an

object. It is normally considered constant over a complete simulation and is changed to change the

behavior or outcome of the simulation by the modeler. But it can also be noted that all parameters’

values are visible and changeable dynamically throughout the simulation model and hence, can be

updated during runtime to adjust the model.

In the next section, model design implementation of each major agent is discussed.

4.2.2 Main Agent Modeling

Main Agent (MA) is where all the agents in the model interact (Figure 4.1) and it is the first agent

that is initialized during model execution. It is comprised of a GIS space where the CSAs are

placed in their respective longitude and latitude and the CAs move from origin to destination. The

function f_OnStartup initializes the TPAs, CAs and CSAs. Destination Agents (DAs) are

populated dynamically during model execution.

The static parameters of MA include

1. kWh_PerKilometer, which decides the battery charge consumption of EVs per distance run

2. p_batteryLevelThreshold_ForCharging, which decides the minimum expected battery charge

percentage level required after a trip is complete, so that there is enough battery charge left for

the next trip or to visit a charging station before the next trip.

3. carSpeed provides the average speed of movement of cars through the GIS space.

The dynamic parameters of MA are

1. current_Population_CS holds the set of solutions that belong to the current

generation of solutions and is initialized by the optimization algorithm. It is of type

Java class type Population and holds solutions as an array of Java class Candidates

both discussed in section 4.2.

2. candidate_num depicts the individual solution that is assessed by the model at

any moment. It acts as an index number to a single set of charging stations and

their capacities from the current_Population_CS for model execution.

49

Variables num_infeasibleTrips and totalChargingEvents are dynamically populated during

runtime.

Function update_CS_dataset populated the final values of fitness, convenience and locations of

each charging station from the solution set to the data sets fitness_data, convenience_data and

location_data. Functions calcFitness and calcConvenience are used to calculate the fitness factor

and convenience factor of a candidate solution after each run from the dataset of individual fitness

and convenience.

Figure 4.1 Main Agent model

50

4.2.3 Trip Planner Agent Modeling

Trip Planner Agent (TPA) is the starting point of the model processes (Figure 4.2). Trip Agent

parameters are initialized from the trips database, which is discussed in detail in Section 3.3. Each

TPA is responsible for a single instance of trip (movement from origin to destination). The TPA

acts as the decision maker of this ABM, by directing the states of both Car Agents (CA), Charging

Station Agents (CSA) and their corresponding extensions, Battery Agent (BA) and Charger Agent

(CA). Trip agent is defined by its parameters as follows:

1. tripID – unique value representing each trip

2. orilon – origin location longitude value

3. orilat – origin location latitude value

4. deslon – destination location longitude value

5. deslat – destination location latitude value

6. depDateTime – the time of day at which this trip should start

7. carID – unique carID that corresponds to the person/vehicle this trip belongs to

Figure 4.2 Trip Planner Agent Model

51

Apart from parameters, the TPA also has variables that holds dynamic values/objects during the

run time. All variables are initially null or zero and are assigned values during runtime. The

variables used in TPA are as follows:

1. tripCar – Car Agent reference object to corresponding carID

2. trip_CS – Charging Station Agent reference object to the selected Charging Station

3. destination – destination Agent (GIS location entity)

4. distance – distance between origin to destination without charging reroute

5. distance_w_charging – distance between origin to destination with charging reroute

6. availableCS – collection of Charging Stations that has charger slots currently unused

The process flow is initiated using an event element eventStartTrip that triggers the Trip process

flow only at the specified departure time from depDateTime parameter and repeats the trigger in

one day interval. Once triggered the eventStartTrip checks if the Car Agent is completing another

trip at the moment and adds this trip to its queue. If the Car Agent is idle, then it initiates the Trip

Process flowchart by passing the tripCar to ‘enter’ block of the flowchart. The flow chart then

executes the process flow designed in section 3.5.2.1 as a discrete event. Functions calcDistance,

addRemoveDestination, startTripProcess and findActiveCS used appropriately through the

flowchart depicts the behaviors of the TPA. Underlying java code that defines each of these

functions are provided in Appendices.

4.2.4 Car Agent modeling

CAs are the mobile agents in this model and their characteristics are defined by a statechart present

inside the agent. The composite state of ‘Car Active’ from section 3.5.2.2 is modeled into the CA

state ‘moving’, while keeping the ‘charging’ state outside the composite state. The state transitions

are triggered through messages from the TPA, which operates this CA at any moment and the

looping back state transition on the ‘moving’ state is triggered per minute to reduce batteryLevel

as the CA moves through the GIS space (Figure 4.3).

The parameters that define a CA are as follows:

1. carID – unique identifier of an individual CA

2. batteryCap – battery Capacity of this CA

3. batteryLevel – current battery level of this CA

52

Variables used in the CA are as follows :

1. coll_TripsToDo – It is a array list of TPAs that are waiting to be executed by the CA, as the CA

completes an earlier trip. This feature is included to make sure that the CAs are not forced to be

part of two TPA process flows simultaneously.

2. curTrip – holds the currently in progress trip that utilizes this CA

3. chargeReqFlag – if true, indicates that the battery charge level is low to make another trip and

forces the TPA to direct the CA for re-charging

4. distanceRun – holds the total distance travelled by the CA. It is populated by the TPA.

Function calcBatteryLeftWOCharging calculates the energy demand(charge required) of the trip

and sets the chargeReqFlag to true, if the expected battery charge level after the trip would be

less than p_batteryLevelThreshold_ForCharging.

Function checkChargingFeasibility checks if the CA has enough energy to reach the nearest CSA

to recharge before continuing to the destination and instructs the TPA to mark the trip as infeasible

if there is not enough energy left to make the trip. Underlying java code that defines each of these

functions are provided in Appendices.

Figure 4.3 Car Agent model

53

4.2.5 Battery Agent modeling

BA is modeled as an extension of CA and its behavior is dictated by the state transition messages

triggered from state transitions from the CA. BA keeps track of the battery charge level in each

idle, moving and charging state and updates the CA battery charge level, accordingly (Figure 4.4).

4.2.6 Charging Station Agent modeling

CSA (Figure 4.5) is initialized by the optimization experiment algorithm by randomly assigning

number of chargers to each candidate Charging Station location. However, the chargingLevel

parameter of CSA is initialized from the MA. CSA is modeled using the process flow chart block

that enables the modeler to include functionalities of seize the resource (CA), execute charging

action and update the fitness and convenience value together into on ‘service’ block in Anylogic.

Function calcChargingTime is responsible to calculate the energy demand of the CA that arrives

at the CSA and determine the charging time required. Since this thesis aims to make EV recharging

process as close to a gas station refueling process, it is assumed that any EV user would not want

Figure 4.4 Battery Agent model

54

to spend more than 20 minutes at the charging station and hence, caps the chargingTime to 20

minutes.

Function updateAvailableChargers keeps track of the FCS capacity, by monitoring the expected

number of cars to arrive at the station, current queue of cars waiting for charging and number of

available chargers. It sets the chargers_available according to the formula below as a measure of

how many more cars it can accommodate at that moment.

chargers_available = (number of idle chargers) + (queue capacity)

– (current queue size) – (number of incoming cars)

4.2.7 Charger Agent modeling

Charger agent is modeled as an extension to the Charging station agent with parameters

chargingSpeed, which provides its peak charging rate and busyFlag, which if set true initiates the

Charger statechart as defined in section 3.5.2.5

Figure 4.5 Charging Station model

55

4.3 Optimization experiment

The optimization process to find the best solutions of FCS locations and their capacities is

implemented using Java classes and custom experiments developed specifically for this model.

The design of optimization experiment follows algorithm 3.1, with the use of separate java classes

for Candidate solution, population of solutions in a given generation and Genetic Algorithm (GA)

implementor class to aggregate the evolutionary behaviors of GA. The individual components of

this process are discussed in the coming sections in the order of lowest level of encapsulation.

4.3.1 Candidate Java class

A candidate solution is a set of charging stations mapped to its exact location through the database,

whose number of chargers are determined by a roulette wheel randomizer. The number of chargers

can be 0,2,4,6 or 8 in each of the FCS. Any FCS with zero number of chargers would indicate that

this particular charging station is not in service and hence, not a part of the solution. Apart from

the number of chargers, other parameters of each candidate solution set include a candidate id,

fitness factor, convenience factor, total number of infeasible trips and number of neighbors (other

candidate solutions with similar objective values).

Java code implementation of this class is provided in appendices for further detail.

4.3.2 Population Java class

A population is a collection of Candidate solutions that forms a generation of solutions. The

population class implements the characteristic behaviors of the population such as initialize

population, check for dominance between two candidate solutions, finding Pareto front candidates

out of the solution, find neighbors of each candidate solution etc.

The java code implementation of this class is provided in appendices for further detail.

4.3.3 Multi-objective Genetic Algorithm (MultiObjGA) Java class

This class incorporates the Candidate and Population class. It performs the evolutionary Multi

objective optimization process by implementing the procedures from algorithm 3.1. It includes

population crossover (process of selecting parent candidates and producing child candidates) and

mutating a population (introducing random parameters in a new child population to increase

exploration of search space).

56

The java code implementation of this class is provided in appendices for further detail.

4.3.4 Optimization experiment driver Java code

Custom experiment is a feature of Anylogic that lets the modeler write custom Java code that can

modify, execute and iterate the simulation model. In this thesis, the ABM simulation implemented

in Anylogic following modeling procedure in section 4.1 is subjected to iterative optimization

using the custom experiment.

Each generation of solutions, i.e each ‘Population’ is evaluated by running the simulation model

with each Candidate solution in the population to determine its objective values, i.e., average

utilization of chargers, average distance of reroute to re-charge and number of infeasible trips.

Once an entire generation of candidate solutions are evaluated, that population is subjected to the

evolution. Evolution is composed of crossover of population to generate new candidate solutions

and mutating them with a pre-determined probability to introduce randomness to the solution.

The java code implementation of this class is provided in appendices for further detail.

4.4 Model execution (Runtime)

In this section the model execution at runtime is described step by step. The complete list of Main

Agent parameters and their corresponding values is given in Table 4.1.

Table 4-1 Runtime Parameter values

Parameter Value

kWh_perKilometer 0.161 kWh/km

P_BatteryLevelThreshold_ForCharging 0.35 => 35% of battery capacity

carSpeed 40kmph

current_Population_CS null

candidate_num 0

chargingSpeed 120kW

Population of Destination Initially null

Population of Trips Initialized from database

Population of Cars Initialized from database

Population of Charging Stations Initialized from database

57

TPA and CA are initialized from database, with constant random values of battery capacity and

initial battery level for Car Agents.

The simulation model is initially run for the required amount of model time, which is 5 days and

2 hours to model the traffic of a typical working weekdays. The additional 2 hours are allocated to

let all vehicles who started their journey close to the midnight to reach their destinations. This is

done using routes fetched from network, which allows caching of routing data to enable faster run

times in the subsequent runs. For this purpose, all candidate charging station locations are enabled

and the simulation is run with the complete set of trips data (Figure 4.6 Simulation model runtime view).

Once the required number of routes are learned and stored in cache, CSA is initialized through

roulette wheel randomizer from Candidate java class and optimization experiment is conducted

iteratively. The pareto frontier solutions from each generation are sorted for the best solutions and

a maximum of half the population size of pareto front solutions are carried to the next generation.

At the end of each generation, a generation output file complete details of all candidates from the

Figure 4.6 Simulation model runtime view

58

solution is generated and saved. A summary of the fitness, convenience and trip-drop factor of

each Candidate solution is saved to another file for complete summary.

4.5 Results of Optimization experiment model

Matlab 2019R is used to plot the summary of results from the optimization experiment in an

isometric plot (Figure 4.7). The axis for the Fitness factor is reversed to negative direction so as to

comprehend the plot easily. With the reversed direction of the fitness factor, the direction of

optimization is towards the negative direction in each axis. Hence the solution points plotted

towards the origin of the cube are better than the points farther away from the origin.

The generation of solutions is distinguished by the color of the dots as given by the legend. It can

be seen that as the model proceeds to higher generation, the solution converges towards the axes

and forms a boundary of pareto front. It may be noticed that a few lower generation solutions are

also close to the pareto front. This occurs due to the limit set on the number of pareto front solutions

that get to be forwarded to the next generation, causing some good solutions to be lost in selection.

Figure 4.7 Optimized solutions Isometric view

59

Figure 4.8 2-Dimensional view of TripDrops VS Fitness Factor

Figure 4.9 2-dimensional view of Fitness VS Convenience factor

60

The optimality of the last generation solutions can be visualized by viewing the isometric plot from

either of the planes Trip Drops Vs Fitness or Fitness vs Convenience Figure 4.8, Figure 4.9 and

Figure 4.10 gives the 2-dimensional plots between 2 objective values. The pareto front is marked

by connecting the solution points from the last generation by a bright green line. It can be observed

that the higher generation points dominate the boundary of the pareto front and give the best trade

offs between the two objective values each plot.

From the final generation of solutions, 3 candidate solutions with the best individual fitness values

can be plotted. As the pareto front retains the best feasible solutions from each objective value, the

decision maker can choose from any available solution present in the final pareto front to decide

the optimum trade-off between the 3 objective values, as per the requirement.

Figure 4.11 provides the solution set of charging station locations with their respective number of

chargers for the most optimal trip drops factor. Implementing this solution predicts only 711 trips

Figure 4.10 2-Dimensional view of Trip Drops VS Convenience factor

61

being dropped due to infeasible charging station distances. This solution, however, trades-off to

Fitness and Convenience factor by 7.03% and 4.37%, respectively from the optimal solution.

Figure 4.12 provides the solution set of charging station locations and number of chargers in each

station for the optimal convenience factor. By implementing this solution, the EV users are

expected to travel only an average of 10.85 km to recharge their EV. However, the tradeoffs in

Trip drop factor and Fitness factor of this solution to the optimal values are 4.7% and 20.4%

respectively.

Figure 4.13 provides the solution set of charging station locations and their respective number of

chargers for the optimal fitness factor. By implementing this solution, average charging event per

day is maximized to 7.36 times per charger. The trade offs in this solution can be found as 9.13%

deviation of convenience factor and 3.93% deviation in trip drops from the optimal values.

Figure 4.11 Locations of Charging Station for minimum trip drops

62

Figure 4.12 Locations of Charging Station for optimal convenience

Figure 4.13 Locations of Charging Station for maximum utilization of chargers

63

In addition to finding the individual solutions of the most optimal objective values, pareto

optimization lets a decision maker choose from the best trade offs among the possible solutions by

choosing candidate solutions from the pareto front. For example, from Figure 4.10 it can be found

that a solution exists above the most optimal solution that carries objective values show in Table

4-2 from Generation 14, candidate 12. Its devation from optimal convenience and trip drops are

marginal while delivering a reasonable devation in fitness value. For a decision maker who wants

to cover most trips with the least drops and the best convenience, can choose this solution with a

reasonable increase in the cost of installation. The locations for the same solution is plotted in

Figure 4.14.

Table 4-2 Example pareto optimal solution

Objective Value Deviation from optimum

Fitness 6.35122 13.7%

Convenience 10.96712 1.07%

Trip Drops 715 0.56%

Figure 4.14 Example Pareto optimal solution

64

4.6 Comparison of results

This thesis implemented an ABM optimized through elitist pareto optimization GA to find pareto

optimal solutions for the locating new fast charging stations in the city of Montreal. In this section,

this approach is compared with other Location allocation methods in use qualitatively considering

the parameters involved and assumptions made.

Exact solution-based methods like FCLM and Fuel-Travel back methods required a OD-Distance

matrix, that required high computation resources to calculate the shortest distance between each

origin and destination points, considering all combinations. Using ABM, this model could

minimize the OD-Distance calculation to only the required routes, during the simulation is

performed, thereby minimizing the computational requirement and time taken to run the model.

ABM provides superior accuracy in demand modeling by simulating the travel of each EV through

the road network and their charging demands in model time. This allows a more practical approach

to decide the capacities of each charging station, depending on charging demand.

Table 4-3 Comparison with different LA methods

Method FCLM Voronoi
Diagram

Fuel-Travel-
Back

TM-BPSO GA-ABM

Input Data OD Distance
Matrix

Traffic flow
Density ∨

Population
Density

Traffic flow
Heatmap

OD Pair data OD Pair data

Computational
intensity

Medium Low High Medium Medium

Demand
Modeling

Aggregate Approximate
Aggregate

Averaged over
time

Dynamic Dynamic

Queue
Support

NA NA NA NA Queue with
wait time limit

GIS Based No Yes Yes Yes Yes

Portability Yes Limited Limited Limited Yes

65

ABM also stands apart from many Heuristic algorithms that offer dynamic demand modeling, by

its support for queue implementation. This thesis models CA and CSA with their corresponding

queues, that accepts trip requests and charging requests respectively. The trip queue in CA allows

each EV in the model to execute one trip after another, even if the first trip did not finish in

expected time (due to traffic delays, charging event delays etc.). The charging demand queue in

CSA allows an accurate depiction of how many EVs can be charged at a time and how many EVs

can be kept waiting depending on a maximum wait time tolerance. This allows a realistic

management of peak time charging demand, ensuring that EVs will not search for far away CS

with immediately available charger, rather than waiting a few minutes to charge at a nearby CS.

The summary of these comparisons is listed in Table 4-3.

As no other research has conducted Location allocation problem analysis in the context of

Montreal with similar objectives, a quantitative comparison of results is not possible between

different methods.

4.7 Conclusive remarks

This Chapter discusses about the elements present in the simulation model, their concepts and

implementation. The discussion of simulation model is emphasized on Anylogic modeling

software as it allows multi-method modeling. The model was implemented according to the UML

designs discussed in Chapter 3. Implementation of optimization algorithm through the custom

experiment and Java classes in Anylogic is discussed in detail as well. Further, the important

runtime parameters are provided and briefly discussed the process of running the model.

The results proved that the optimization algorithm is capable of converging random initial

solutions to optimal final solutions through simulation modeling and pareto optimization. Results

are plotted to provide detailed information on deriving meaningful conclusions.

Analysis from this Chapter achieved an integration of UML, agent-based modeling and

evolutionary algorithm-based optimization through simulation modeling to solve the problem of

optimal location allocation of capacitated charging stations in the city of Montreal.

66

Chapter 5

Conclusions and Future works

This Chapter discusses the conclusions derived from designing and implementing the optimal

Location Allocation (LA) problem of EV charging stations using real traffic data from the city of

Montreal. The chapter also proposes future works in the area of Agent Based Modeling

optimization for LA problems.

5.1 Conclusions

This thesis reviewed current status of research in LA methods concerning EV charging station

allocation and general trends in location allocation problems-based research. Special focus was

made on heuristic algorithms based LA optimization problems and their superior performance

compared to exact solution methods. Agent based modeling was discussed in detail along with the

optimization methodology adopted to solve the LA problem under discussion using ABM.

The design for modeling the EV mobility through urban environments is explained with the help

of UML diagrams. A clear and concise pictorial representation of the decision-making model is

delivered by UML diagrams. The diagrams make it easier to develop, implement and maintain

complex systems such as the problem discussed in this thesis, while allowing it to be

comprehendible for users who are not experts in modeling. UML diagrams also saves time and

effort in implementation on platforms where UML based modeling and development is supported.

Anylogic was chosen to conduct the research as it supports a wide variety of applications for ABM

with its Object-Oriented design and implementation. Anylogic stands apart from other ABM

modeling software due to its support for multi-method modeling, which was utilized by this thesis.

The model design discussed through UML diagrams is implemented in Anylogic. The model was

made more efficient in computation and practical by implementing the Trip Planner Agent’s

activity sequence through a Discrete Event (DE) process flow utility.

A simple genetic evolutionary algorithm is adopted and implemented to suite the need for a

heuristic optimization algorithm that is adapted to be used in ABM. The logic that drives the

67

optimization algorithm to obtain the optimal pareto set of solutions is explained in detail and

implemented using Anylogic’s custom Java classes and Custom experiment fields.

Using the developed ABM for urban mobility and using real data of vehicle user’s travels in the

city of Montreal, this system was able to model the EV traffic through the city, during different

times of the day with great accuracy. The ABM also models the internal battery states of each car

as it travels according to its assigned trips and its charging events as and when required. The model

reflects the charging demand in each charging station by limiting the number of vehicles that can

remain in queue to charge. The trip planner agent assigns utilization values based on the number

of times a charger is used and convenience values based on the reroute distance to reach the

location to each charging station. The ABM model was able to successfully simulate the traffic

cyclically for 5 days to model energy demand of cars over a working week, which is translated as

charging demand in the optimization experiment.

The optimization experiment was run using 20 Candidate solutions over 25 generations and was

proven to be converging to the optimal values. The results of the optimization algorithm were

plotted to discuss the convergence properties and pareto front was obtained in an isometric plot

with the three objectives. Pareto front solutions were also demonstrated using the 2-dimensional

plots between pairs of objective values. Solutions for optimal trip drops case, convenience case

and fitness case were plotted in the map of Montreal to show the exact locations provided by the

solution along with their respective number of suggested chargers value.

5.2 Contributions

The model developed in this thesis is one of the first attempts at utilizing ABM in an optimization

problem. Use of ABM and real traffic data of the city of Montreal makes this model highly accurate

in predicting the expected charging demand of EVs in the city of Montreal. Pareto optimization

based genetic algorithm was used to find the optimal solution sets of charging station locations

and capacities with a wide variety of trade offs between each objective. Therefore, the results

discussed in this thesis may be adopted by City of Montreal to implement planned upgrades to

FCS from the existing Level-2 charging stations.

The developed model may also be utilized by EV fleet owners to asses the charging demands of

their EVs using their origin – destination data.

68

5.3 Future works

While the results achieved are well defined and practical and reflects a general trend towards the

selection of charging station locations and number of chargers in different scenarios, some of the

assumptions made in selecting the traffic data may make the real world solution different from the

suggested solution. Below are a few improvements and advancements that can be done to make

the results of the model closer to accurate real world solution.

1. Cost of installation of power input to the Fast Charging Stations are not considered in this

thesis and may vary in a non-linear fashion compared to the cost of chargers itself. A hybrid

approach to location allocation problem by ranking the Charging Station location according

to its installation cost and proximity to high energy electricity distribution can improve the

results towards better cost estimation.

2. All trips in the OD survey data was assumed to be an EV trip, to cover a broader range to

future EV users. More targeted OD data for specific use cases can be modelled using the

same design to derive solutions for the certain use cases.

3. For more choices in candidate locations, existing gas stations locations may be included as

possible solutions for Fast Charging Stations as suggested by M.Nicholas[14]

4. Currently a single simulation run takes over one week to learn all the routes from network

server and store it cache for optimization through iterative simulation, as Anylogic

currently does not support caching locally computed routes. This time constraint is a major

bottleneck in using computers with higher computation power to model a system from the

scratch. Anylogic is expected to release this feature in early 2021 and can be used to model

larger systems on better computers/servers.

5. Larger systems with higher number of candidate solutions and agents will also need higher

candidate population and generations of solutions to converge on to the optimal pareto

front. A larger population of candidates in each generation can make results from this

thesis’s model much more distinguishable between pareto front solutions and dominated

solutions.

69

References

[1] T. Hodges, “Public Transportation’s Role in Responding to Climate Change,” U.S. Dep.

Transp., no. January, p. 20, 2010.

[2] IEA, Global EV Outlook 2018. 2018.

[3] S. Deb, K. Kalita, and P. Mahanta, “Review of impact of electric vehicle charging station

on the power grid,” Proc. 2017 IEEE Int. Conf. Technol. Adv. Power Energy Explor. Energy

Solut. an Intell. Power Grid, TAP Energy 2017, vol. 1, pp. 1–6, 2018.

[4] Z. Lin, J. Ogden, Y. Fan, and C.-W. W. Chen, “The fuel-travel-back approach to hydrogen

station siting,” Int. J. Hydrogen Energy, vol. 33, no. 12, pp. 3096–3101, Jun. 2008.

[5] R. F. Love, J. G. Morris, and G. O. Wesolowsky, Facilities Location: Models & Methods.

North-Holland, 1988.

[6] C. S. ReVelle and H. A. Eiselt, “Location analysis: A synthesis and survey,” Eur. J. Oper.

Res., vol. 165, no. 1, pp. 1–19, 2005.

[7] Y.-W. Wang and C.-C. Lin, “Locating road-vehicle refueling stations,” Transportation

Research Part E: Logistics and Transportation Review, vol. 45, no. 5. pp. 821–829, Sep-

2009.

[8] C. M. Hosage and M. F. Goodchild, “Discrete space location-allocation solutions from

genetic algorithms,” Ann. Oper. Res., vol. 6, no. 2, pp. 35–46, 1986.

[9] M. J. Hodgson, “A Flow-Capturing Location-Allocation Model,” Geogr. Anal., vol. 22, no.

3, pp. 270–279, 2010.

[10] M. Kuby and S. Lim, “The flow-refueling location problem for alternative-fuel vehicles,”

Socio-Economic Planning Sciences, vol. 39, no. 2. pp. 125–145, Jun-2005.

[11] Y.-W. Wang and C.-R. Wang, “Locating passenger vehicle refueling stations,”

Transportation Research Part E: Logistics and Transportation Review, vol. 46, no. 5. pp.

791–801, Sep-2010.

[12] Y.-W. Wang, “Locating battery exchange stations to serve tourism transport: A note,”

70

Transportation Research Part D: Transport and Environment, vol. 13, no. 3. pp. 193–197,

May-2008.

[13] Y.-W. Wang, “An optimal location choice model for recreation-oriented scooter recharge

stations,” Transportation Research Part D: Transport and Environment, vol. 12, no. 3. pp.

231–237, May-2007.

[14] M. A. Nicholas, “Driving demand: What can gasoline refueling patterns tell us about

planning an alternative fuel network?,” Journal of Transport Geography, vol. 18, no. 6. pp.

738–749, Nov-2010.

[15] A. Shukla, J. Pekny, and V. Venkatasubramanian, “An optimization framework for cost

effective design of refueling station infrastructure for alternative fuel vehicles,” Computers

& Chemical Engineering, vol. 35, no. 8. pp. 1431–1438, 2011.

[16] Z. Lin, J. Ogden, Y. Fan, and C. W. Chen, “The fuel-travel-back approach to hydrogen

station siting,” Int. J. Hydrogen Energy, vol. 33, no. 12, pp. 3096–3101, 2008.

[17] Charles S. ReVelle Ralph W. Swain, Central Facilities Location; Geographical Analysis.

1970.

[18] J. Li, X. Sun, Q. Liu, W. Zheng, H. Liu, and J. A. Stankovic, “Planning electric vehicle

charging stations based on user charging behavior,” Proc. - ACM/IEEE Int. Conf. Internet

Things Des. Implementation, IoTDI 2018, pp. 225–236, 2018.

[19] S. Lim and M. Kuby, “Heuristic algorithms for siting alternative-fuel stations using the

Flow-Refueling Location Model,” European Journal of Operational Research, vol. 204,

no. 1. pp. 51–61, 2010.

[20] D. M.S., Network and Discrete Location: Models, Algorithms and Applications, 1995th ed.

New York: John Wiley and Sons, Inc., 1995.

[21] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control and Artificial Intelligence. Cambridge, MA, USA: MIT

Press, 1992.

[22] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press,

71

1998.

[23] O. Alp, E. Erkut, and Z. V. I. Drezner, “An Efficient Genetic Algorithm for the p -Median,”

pp. 21–42, 2003.

[24] H. Xu, S. Miao, C. Zhang, and D. Shi, “Optimal placement of charging infrastructures for

large-scale integration of pure electric vehicles into grid,” International Journal of

Electrical Power & Energy Systems, vol. 53. pp. 159–165, Dec-2013.

[25] C. M. MacAl and M. J. North, “Tutorial on agent-based modelling and simulation,” J.

Simul., vol. 4, no. 3, pp. 151–162, 2010.

[26] Wikipedia contributors, “AnyLogic --- {Wikipedia}{,} The Free Encyclopedia.” 2020.

[27] A. Awasthi, K. Venkitusamy, S. Padmanaban, R. Selvamuthukumaran, F. Blaabjerg, and

A. K. Singh, “Optimal planning of electric vehicle charging station at the distribution

system using hybrid optimization algorithm,” Energy, vol. 133, pp. 70–78, Aug. 2017.

[28] D. G. Brown, R. Riolo, D. T. Robinson, M. North, and W. Rand, “Spatial process and data

models: Toward integration of agent-based models and GIS,” J. Geogr. Syst., vol. 7, no. 1,

pp. 25–47, 2005.

[29] M. Kane, “Electric Car Energy Consumption (EPA) Compared – April 1, 2019,” InsideEVs,

2019. [Online]. Available: https://insideevs.com/reviews/343702/electric-car-energy-

consumption-epa-compared-april-1-2019/. [Accessed: 21-Oct-2020].

[30] H. Bersini, “UML for ABM,” J. Artif. Soc. Soc. Simul., vol. 15, no. 1, p. 9, 2012.

[31] M. Oremland and R. Laubenbacher, “Optimization of Agent-Based Models: Scaling

Methods and Heuristic Algorithms,” J. Artif. Soc. Soc. Simul., vol. 17, no. 2, p. 6, 2014.

[32] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled disagreement or

partial credit.,” Psychological Bulletin, vol. 70, no. 4. American Psychological Association,

US, pp. 213–220, 1968.

[33] M. Pennisi, R. Catanuto, F. Pappalardo, and S. Motta, “Optimal vaccination schedules using

simulated annealing,” Bioinformatics, vol. 24, no. 15, pp. 1740–1742, 2008.

[34] T. Wang and X. Zhang, “3D protein structure prediction with genetic Tabu search algorithm

72

in off-lattice AB model,” 2009 2nd Int. Symp. Knowl. Acquis. Model. KAM 2009, vol. 1, pp.

43–46, 2009.

[35] J. Li, A. J. Parkes, and E. K. Burke, “Evolutionary Squeaky Wheel Optimization: A New

Framework for Analysis,” Evol. Comput., vol. 19, no. 3, pp. 405–428, 2011.

[36] M. Oremland, “Optimization and Optimal Control of Agent-Based Models,” pp. 1–66,

2011.

[37] A. Borshchev, “The big book of simulation modeling : multimethod modeling with

AnyLogic 8,” in TA - TT -, [Lisle, IL] SE - 612 pages : illustrations (some color) ; 25 cm:

AnyLogic North America, 2019, p. “Designing state-based behavior: statecharts.”

73

Appendices

Java Code implementation

Trip Planner Agent

calcDistance

double distance = tripCar.distanceByRoute(agent)/1000;
return distance;

addRemoveDestination

if (action == "add") {
destination = main.add_destinations(deslat, deslon);
destination.latitude = deslat;
destination.longitude = deslon;
destination.jumpTo(deslat,deslon);
} else if (action == "remove") {
main.remove_destinations(destination);

startTripProcess

tripCar.curTrip = this;
tripCar.coll_TripsToDo.remove(this);
tripCar.car.setVisible(true);

tripCar.jumpTo(orilat, orilon);
addRemoveDestination("add");
distance = calcDistance(destination);
traceToDB("trip" + this.getIndex() +" - " + distance + "km @" + date());
if(distance > 150) {
traceToDB("Distance too long to be in-city travel.. Skipping this trip !!");
} else {
tripCar.calcBatteryLeftWOCharging(distance);
enter.take(tripCar);
}

findActiveCS

int i =0;
for(chargingStation cs: main.chargingStations) {
 cs.updateAvailableChargers();
 if(cs.availableChgs > 0) {
 availableCS.add(i,cs);
 i++;
 }
}

74

Car Agent

calcBatteyLeftWOCharging

double expectedLevel = batteryLevel;

expectedLevel = expectedLevel - distance * main.kWh_PerKilometer;
double expLevelPercent = (expectedLevel/batteryCap);
if (expLevelPercent < main.p_BatteryLevelThreshold_ForCharging)
{
 chargeReqFlag = true;
}

checkChargingFeasibility

double expectedLevel1 = batteryLevel - distance1 * main.kWh_PerKilometer;
double expLevelPercent1 = (expectedLevel1/batteryCap);
if (expLevelPercent1 < 0)
{
 traceToDB("Car" + this.getIndex() + " Trip" + curTrip.getIndex() + " Time " +
date());
 traceToDB("Not enough charge to reach nearest Charging Station !");
 traceToDB(" Trip" + curTrip.getIndex() + " Added to infeasible trips");
 return false;
} else {
 return true;
}

75

Candidate Java Class

import java.util.Random;
public class Candidate implements Serializable {

 int[] cs_id;
 int[] gene;
 double fitness;
 double convenience;
 int tripDrops;
 int totCE;
 int neighbors;
 boolean newCandidate = true;
 boolean newCandidateFlag = true;
 //int num_genes = GA_Driver.numCS;

 public Candidate(int num_genes) {
 this.gene = new int[num_genes];
 this.cs_id = new int[num_genes];
 this.fitness = 0.0;
 this.convenience = 0.0;
 this.tripDrops = 0;
 this.totCE = 0;
 this.neighbors = 0;
 this.init_Candidate();
 }

 public Candidate init_Candidate() {
 Random r = new Random();
 //initialise the candidate population with random proportions of number of
chargers
 int numzeros = r.nextInt(100);
 int numtwos = r.nextInt(100);
 int numfours = r.nextInt(100);
 int numsixs = r.nextInt(100);
 int numeights = r.nextInt(100);
 int numTotal = numzeros + numtwos + numfours + numsixs + numeights;
 double zeroFraction = 100.0 * numzeros/numTotal;
 double twoFraction = 100.0 * (numzeros + numtwos)/numTotal;
 double fourFraction = 100.0 * (numzeros + numtwos + numfours)/ numTotal;
 double sixFraction = 100.0 * (numzeros + numtwos + numfours + numsixs)/
numTotal;
 int[] rouletteWheel = new int[100];
 for (int i=0; i<100; i++) {
 if (i < zeroFraction) {
 rouletteWheel[i] = 0;
 } else if (i < twoFraction) {
 rouletteWheel[i] = 2;
 } else if (i< fourFraction) {
 rouletteWheel[i] = 4;
 } else if (i< sixFraction) {
 rouletteWheel[i] = 6;
 } else {
 rouletteWheel[i] = 8;
 }

76

 }
 for (int i =0;i < cs_id.length; i++) {
 cs_id[i] = i;
 gene[i] = rouletteWheel[r.nextInt(100)]; // randomly assign
number of chargers 0,2,4,6,8
 }
 return this;
 }

 public Candidate getCandidate () {
 return this;
 }

 public List<Integer> printCandidate() {
 List<Integer> geneList = new ArrayList();
 for(int g: gene) geneList.add(g);
 return geneList;
 }

 public int numActiveChargers() {
 int count = 0;
 for(int numChg: gene) {
 if (numChg !=0) count++;
 }
 return count;
 }

 public void setRandomObjectiveVals () {
 Random r = new Random();
 this.fitness = r.nextDouble();
 this.convenience = r.nextDouble();
 this.tripDrops = r.nextInt(50);
 this.newCandidate = false;
 }

 public void printCandidateSummary() {
 System.out.println("Number of active CS: " + this.numActiveChargers());
 System.out.println("Fitness Factor: " + this.fitness);
 System.out.println("Convenience Factor: " + this.convenience);
 System.out.println("Trips Drop Factor : " + this.tripDrops);
 System.out.println("Neighbors : " + this.neighbors);
 //System.out.println(this.printCandidate());
 }

 /**
 * This number is here for model snapshot storing purpose

 * It needs to be changed when this class gets changed
 */
 private static final long serialVersionUID = 1L;

}

77

Population Java Class

/**
 * Population
 */
import java.util.ArrayList;
import java.util.List;
public class Population implements Serializable {

 Candidate[] candidates;
 //int populationSize = GA_Driver.popSize;

 public Population(int populationSize) {
 this.candidates = new Candidate[populationSize];
 }

 public Population init_population(int numG) {
 for (int i =0; i< candidates.length ; i++) {
 candidates[i] = new Candidate(numG).init_Candidate();
 }
 return this;
 }

 public Candidate[] getParetoFront() {
 //initialise pareto front with whole population
 List<Candidate> paretoFront = new ArrayList<>(Arrays.asList(candidates));
 List<Candidate> ndCandidates = new ArrayList<Candidate>();

 //find non-dominated solutions
 for (Candidate c1 : candidates) {
 for (Candidate c2 : candidates) {
 if (c1 != c2) {
 if(checkDominance(c1,c2)) ndCandidates.add(c2);
 }
 }
 }

 //substract non-dominated solutions from population
 for(int i=0; i < ndCandidates.size(); i ++) {
 for(int j =0; j<paretoFront.size(); j++) {
 if(paretoFront.get(j).equals(ndCandidates.get(i)))
paretoFront.remove(j);
 }
 }

 List<Candidate> rank_fitness = sortDescending(paretoFront, p -> p.fitness);
 List<Candidate> rank_convenience = sortAscending(paretoFront, p ->
p.convenience);
 List<Candidate> rank_tripDrops = sortAscending(paretoFront, p -> p.tripDrops);
 List<Candidate> rank_aggregate = paretoFront;
 rank_aggregate.remove(rank_fitness.get(0));
 rank_aggregate.remove(rank_convenience.get(0));
 rank_aggregate.remove(rank_tripDrops.get(0));
 rank_aggregate = sortAscending(rank_aggregate, p -> (p.tripDrops/700 -
p.fitness/5 + p.convenience/10));

78

 List<Candidate> sortedPareto = new ArrayList<Candidate>();
 sortedPareto.add(rank_fitness.get(0));
 if (!sortedPareto.contains(rank_convenience.get(0))) {
 sortedPareto.add(rank_convenience.get(0));
 }
 if (!sortedPareto.contains(rank_tripDrops.get(0))) {
 sortedPareto.add(rank_tripDrops.get(0));
 }
 for(Candidate c: rank_aggregate) {
 if (!sortedPareto.contains(c)) {
 sortedPareto.add(c);
 }
 }
 if (sortedPareto.size() != paretoFront.size()) {
 System.out.println("Sorted pareto front length doesn't match with real
pareto front");
 }
 Candidate[] paretoF = new Candidate[sortedPareto.size()];
 for (int i= 0; i < sortedPareto.size(); i++) {
 paretoF[i] = sortedPareto.get(i);
 }

 return paretoF;
 }

 public boolean checkDominance(Candidate c1, Candidate c2) {
 boolean checkFitness = (c1.fitness >= c2.fitness);
 boolean checkTripDrops = (c1.tripDrops <= c2.tripDrops);
 boolean checkConvenience = (c1.convenience <= c2.convenience);
 if (checkFitness && checkConvenience && checkTripDrops) {
 //check for dominance
 boolean domFitness = (c1.fitness > c2.fitness);
 boolean domTripDrops = (c1.tripDrops < c2.tripDrops);
 boolean domConvenience = (c1.convenience < c2.convenience);
 if (domFitness || domConvenience || domTripDrops) {
 return true;
 } else {
 return false;
 }
 } else {
 return false;
 }
 }

 public void setNeighbors () {
 for (int i =0; i < candidates.length; i++) {
 candidates[i].neighbors = 0;
 for (int j=0; j < candidates.length; j++) {
 boolean fitness_n = (Math.abs(candidates[i].fitness -
candidates[j].fitness) < 0.1) ;
 boolean convenience_n = (Math.abs(candidates[i].convenience -
candidates[j].convenience) < 0.1) ;
 boolean tripDrops_n = (Math.abs(candidates[i].tripDrops -
candidates[j].tripDrops) < 0.1) ;

79

 if (fitness_n && convenience_n && tripDrops_n) {
 candidates[i].neighbors++;
 }
 }
 }
 }

 public Candidate[] getPopulation() {
 return candidates;
 }

 public void printPopulationSummary () {
 System.out.println("--");
 for (int i=0; i< candidates.length; i++) {
 System.out.println("Candidate[" + i + "]");
 System.out.println("Number of active CS: " +
candidates[i].numActiveChargers());
 System.out.println("Fitness Factor: " + candidates[i].fitness);
 System.out.println("Convenience Factor: " +
candidates[i].convenience);
 System.out.println("Trips Drop Factor : " +
candidates[i].tripDrops);
 System.out.println("Neighbors : " + candidates[i].neighbors);
 System.out.println(candidates[i].printCandidate());
 }
 }

 public void setRandomPopVals() {
 for(Candidate c: candidates) {
 if (c.newCandidate) c.setRandomObjectiveVals();
 }
 }

 /**
 * This number is here for model snapshot storing purpose

 * It needs to be changed when this class gets changed
 */
 private static final long serialVersionUID = 1L;

}

80

MultiObjGA Java Class

public class MultiObjGA implements Serializable {

 public static final int populationSize = 10;
 public MultiObjGA() {
 }

 @Override
 public String toString() {
 return super.toString();
 }

 public static Population init_GA_experiment (int numC, int numG) {
 Population newPop = new Population(numC).init_population(numG);
 return newPop;
 }

 public Population crossover (Population population) {
 int numCandidates = population.candidates.length;
 int numCS = population.candidates[0].gene.length;
 int num_elites = roundToInt(numCandidates / 2.0);
 Population newPopulation = new
Population(numCandidates).init_population(numCS);
 List<Candidate> nextGenCandidates = new ArrayList<Candidate>();
 Candidate[] paretoPop = population.getParetoFront();
 if (paretoPop.length < num_elites) {
 num_elites = paretoPop.length;
 }
 //add Candidates in the pareto front to next generation
 for (int i =0; i < num_elites; i++) {
 nextGenCandidates.add(paretoPop[i]);
 }

 //add children candidates until population size
 while (nextGenCandidates.size() < numCandidates) {

 //choose 2 parents to crossover
 Candidate[] parents = new Candidate[2];
 for (int i = 0; i <2 ; i++) {
 //select 5 random candidates from the current population
 Population crossoverPop = new Population(5);
 Random r = new Random();
 for (int j=0; j < 5; j++) {
 int indx = r.nextInt(10);
 crossoverPop.candidates[j] =
population.candidates[indx];
 }

 //check for dominant solutions
 Candidate[] paretoFront = crossoverPop.getParetoFront();

 if(paretoFront.length == 1) {
 parents[i] = paretoFront[0];
 } else {

81

 Candidate diverseCandidate = paretoFront[0];
 for (int j = 1; j<paretoFront.length; j++) {
 if(diverseCandidate.neighbors >
paretoFront[i].neighbors) diverseCandidate = paretoFront[i];
 }
 parents[i] = diverseCandidate;
 }
 }

 Random r = new Random();
 Candidate childA = new Candidate(numCS);
 Candidate childB = new Candidate(numCS);
 /*
 // Random crossover
 for (int i =0; i < numCS; i++) {
 boolean pSelect = r.nextBoolean();
 if (pSelect == true) {
 childA.gene[i] = parents[0].gene[i];
 childB.gene[i] = parents[1].gene[i];
 } else {
 childA.gene[i] = parents[1].gene[i];
 childB.gene[i] = parents[0].gene[i];
 }
 }
 */
 //2 point crossover
 int point1 = roundToInt(numCS/3.0);
 int point2 = roundToInt(numCS/1.5);
 for(int i =0; i< point1 ; i ++) {
 childA.gene[i] = parents[0].gene[i];
 childB.gene[i] = parents[1].gene[i];
 }
 for (int i = point1; i <point2; i++) {
 childA.gene[i] = parents[1].gene[i];
 childB.gene[i] = parents[0].gene[i];
 }
 for (int i = point2; i< numCS; i++) {
 childA.gene[i] = parents[0].gene[i];
 childB.gene[i] = parents[1].gene[i];
 }

 nextGenCandidates.add(childA);
 if(nextGenCandidates.size() != population.candidates.length)
nextGenCandidates.add(childB);
 }

 for (int i =0; i < population.candidates.length; i++) {
 newPopulation.candidates[i] = nextGenCandidates.get(i);
 }

 return newPopulation;
 }

 public Population mutate (Population population, double p_mutation) {
 Random r = new Random();

82

 Population mutatedPopulation = population;
 for (Candidate c: mutatedPopulation.candidates) {
 if(c.newCandidate) {
 for(int g=0; g< c.gene.length; g++) {
 double mFlag = r.nextDouble();
 if (mFlag < p_mutation) {
 c.gene[g] = Math.abs((r.nextInt(5)) *2);
 }
 }
 }
 }
 return mutatedPopulation;
 }

 public Population evolve (Population population, double p_mutation) {
 return mutate(crossover(population), p_mutation);
 }

 /**
 * This number is here for model snapshot storing purpose

 * It needs to be changed when this class gets changed
 */
 private static final long serialVersionUID = 1L;

}

83

Custom Optimization Experiment Java Code in Anylogic

int popSize = 30;
int numCS = 731;
double p_mutation = 0.2;
int num_generations = 10;
TextFile textFile = null;
TextFile EGA_Data = null;
TextFile EGA_Data_gen = null;

Population currentPop = new Population(popSize).init_population(numCS);
MultiObjGA ga = new MultiObjGA();

int generationNum = 0;
while (generationNum < num_generations) {
 //Run simulation for all Candidate solutions in population
 traceln("###
##");
 traceln("################### Generation "+ generationNum + "
#####################");
 traceln("###
##");
 for (int i = 0; i < popSize; i++) {
 traceln("---
");
 traceln ("Experiment GA_loop Generation: "+ generationNum + " Candidate:
" + i);
 traceln("---
");
 // Create Engine, initialize random number generator:
 Engine engine = createEngine();
 engine.setTimeUnit(MINUTE);
 // Fixed seed (reproducible simulation runs)
 engine.getDefaultRandomGenerator().setSeed(1);
 engine.setStartTime(0.0);
 engine.setStartDate(toDate(2020, SEPTEMBER, 14, 0, 0, 0));
 // Set stop time:
 engine.setStopDate(toDate(2020, SEPTEMBER, 15, 2, 0, 0));
 // Create new root object:
 Main root = new Main(engine, null, null);
 // TODO Setup parameters of root object here
 root.setParametersToDefaultValues();
 // root.kWh_PerKilometer = 123;
 // ...
 root.current_Population_CS = currentPop;
 if(i==0) {
 //root.current_Population_CS = currentPop;
 root.current_Population_CS.printPopulationSummary();
 traceln("########## Generation "+ generationNum +"
############");
 textFile = new TextFile(root, null, TextFile.WRITE, "out"+
generationNum +".csv", null, null);
 textFile.println("Candidate
Number,CS_ID,num_chargers,fitness,convenience,latitude,longitude");
 if (generationNum == 0) {

84

 EGA_Data = new TextFile(root, null, TextFile.WRITE,
"Evolution_data.csv", null, null);

 EGA_Data.println("Generation,Candidate_Num,ActiveChargers,Fitness,Convenience,
TripDrops,Total_charging_events,newCandidateFlag");
 }
 EGA_Data_gen = new TextFile(root, null, TextFile.WRITE,
"Evolution_data"+ generationNum +".csv", null, null);

 EGA_Data_gen.println("Generation,Candidate_Num,ActiveChargers,Fitness,Convenie
nce,TripDrops,Total_charging_events,newCandidateFlag");
 }

 if (currentPop.candidates[i].newCandidate) {
 root.candidate_num = i;

 // Prepare Engine for simulation:
 engine.start(root);
 // Start simulation in fast mode:
 engine.runFast();
 // TODO Process results of simulation here
 // traceToDB("chargingStations:");
 // traceToDB(inspectOf(root.chargingStations));
 // ...
 root.update_CS_dataset();
 traceln("Candidate"+ i + " done");
 for (int j = 0 ; j<root.fitness_data.size() ; j++) {
 textFile.println(i+","+ root.fitness_data.getX(j) +"," +
root.convenience_data.getX(j) +","+root.fitness_data.getY(j) + "," +
root.convenience_data.getY(j) + "," + root.location_data.getX(j) + "," +
root.location_data.getY(j));
 }
 } else {
 traceln("Candidate Solution already simulated, skipping !!");
 }
 //write contents of dataset of current run:

 currentPop.candidates[i] = root.current_Population_CS.candidates[i];
 currentPop.candidates[i].printCandidateSummary();
 //currentPop = root.current_Population_CS;
 // Destroy the model:
 engine.stop();
 } // end of for(candidates)
 traceln("Generation "+ generationNum +" File written");
 textFile.close();
 for(int c=0; c < currentPop.candidates.length; c++) {
 Candidate ca = currentPop.candidates[c];
 EGA_Data.println(generationNum+","+ c +","+ ca.numActiveChargers() +","+
ca.fitness +","+ ca.convenience +","+ ca.tripDrops +","+ ca.totCE +","+
ca.newCandidateFlag);
 EGA_Data_gen.println(generationNum+","+ c +","+ ca.numActiveChargers()
+","+ ca.fitness +","+ ca.convenience +","+ ca.tripDrops +","+ ca.totCE +","+
ca.newCandidateFlag);
 ca.newCandidateFlag = false;
 }

85

 EGA_Data_gen.close();
 currentPop.setNeighbors();
 currentPop.printPopulationSummary();
 currentPop = ga.evolve(currentPop, p_mutation);
 generationNum++;
} // end of while(generation)
EGA_Data.close();
traceln("Simulation Completed, Evolution Data file written");

	Abstract
	Acknowledgements
	Contents
	List of figures
	List of Tables
	List of Abbreviations
	Chapter 1
	1.1 Environmental Impact
	1.2 Growth and Projected Penetration
	1.3 EV Charger Classification
	1.4 Need for Fast Charging Stations
	1.5 Problem Statement and Research Objectives
	1.6 Thesis Outline
	1.7 Conclusion

	Chapter 2
	2.1 Introduction
	2.2 Classification of location allocation problem
	2.2.1 Customer demand-based classification
	2.2.2 Facilities based classification
	2.2.3 Physical space or location based classification
	2.2.4 Location Objectives based classification

	2.3 Methods for location allocation problem
	2.4 Exact Solution Methods
	2.4.1 Flow Capture Location Methods (FCLM)
	2.4.2 Fuel-Travel-Back methods
	2.4.3 Voronoi Diagram
	2.4.4 The p-Median Model

	2.5 Heuristic Methods
	2.5.1 Greedy Adding and Greedy Adding with Substitution
	2.5.2 Genetic Algorithms
	2.5.3 Particle Swarm Optimization (PSO)
	2.5.4 Agent Based Modeling (ABM)
	2.5.4.1 Agents
	2.5.4.2 Simulation software platform

	2.6 Conclusion

	Chapter 3
	3.1 Introduction
	3.2 Agent-Based Model for Location Allocation
	3.3 Overview of the datasets used
	3.3.1 Origin-Destination Survey 2013

	3.4 Assumptions and constraints
	3.5 Modeling by Unified Modeling Language (UML)
	3.5.1 Class Diagram
	3.5.2 State Transition Diagram
	3.5.2.1 Trip Agent State Transition Diagram
	3.5.2.2 Car Agent State Transition Diagram
	3.5.2.3 Battery Agent State Transition Diagram
	3.5.2.4 Charging Station Agent State Transition Diagram
	3.5.2.5 Charger Agent State Transition Diagram

	3.5.3 Use Case Diagram
	3.5.4 Sequence Diagram

	3.6 Multi-objective optimization of ABM using Pareto Optimization
	3.6.1 Pareto Optimization

	Chapter 4
	4.1 Introduction
	4.2 Elements of simulation model and concepts
	4.2.1 Anylogic Modeling elements
	4.2.1.1 Statechart
	4.2.1.2 Flowchart
	4.2.1.3 Agent parameters

	4.2.2 Main Agent Modeling
	4.2.3 Trip Planner Agent Modeling
	4.2.4 Car Agent modeling
	4.2.5 Battery Agent modeling
	4.2.6 Charging Station Agent modeling
	4.2.7 Charger Agent modeling

	4.3 Optimization experiment
	4.3.1 Candidate Java class
	4.3.2 Population Java class
	4.3.3 Multi-objective Genetic Algorithm (MultiObjGA) Java class
	4.3.4 Optimization experiment driver Java code

	4.4 Model execution (Runtime)
	4.5 Results of Optimization experiment model
	4.6 Comparison of results
	4.7 Conclusive remarks

	Chapter 5
	5
	5.1 Conclusions
	5.2 Contributions
	5.3 Future works

	References
	Appendices
	Java Code implementation
	Trip Planner Agent
	calcDistance
	addRemoveDestination
	startTripProcess
	findActiveCS

	Car Agent
	calcBatteyLeftWOCharging
	checkChargingFeasibility

	Candidate Java Class
	Population Java Class
	MultiObjGA Java Class
	Custom Optimization Experiment Java Code in Anylogic

