
REINFORCEMENT LEARNING FRAMEWORKS FOR

SERVER PLACEMENT IN MULTI-ACCESS EDGE

COMPUTING

Anahita Mazloomi

A thesis

in

The Department

of

Concordia Institute of Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Quality Systems

Engineering

Concordia University

Montréal, Québec, Canada

December 2020

© Anahita Mazloomi, 2021

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Anahita Mazloomi

Entitled: Reinforcement Learning Frameworks for Server Place-

ment in Multi-Access Edge Computing

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Quality Systems Engineering

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Roch Glitho Chair

Dr. Olga Ormandjieva Examiner

Dr. Rachida Dssouli Examiner

Dr. Jamal Bentahar Supervisor

Approved
Dr. Mohammad Mannan Graduate Program Director

2020

Dean of Gina Cody School of Engineering and Computer Science

Abstract

Reinforcement Learning Frameworks for Server Placement in

Multi-Access Edge Computing

Anahita Mazloomi

In the IoT era and with the advent of 5G networks, an enormous amount of data

is generated, and new applications require more and more computation power and

real-time response. Although cloud computing is a reliable solution to provide com-

putation power, the real-time response is not guaranteed. Thus, the multi-access edge

computing (MEC), which consists of distributing the edge servers in the proximity

of end-users to have low latency besides the higher processing power, is increasingly

becoming a vital factor for the success of modern applications.

Edge server placement and task offloading play a crucial role in the efficient design

of MEC architecture. There is a finite discrete set of possible solutions, and finding

the optimal one is known to be an NP-hard combinatorial optimization problem.

Heuristics, mixed-integer programming, and clustering algorithms are among the most

widely used approaches to solve this problem.

Recently, researchers have investigated reinforcement learning (RL) to solve com-

binatorial optimization problems, which has shown promising results. In this thesis,

we propose novel RL-frameworks for solving the joint problem of edge server place-

ment and base station allocation. There are a few studies that have used RL in

placement optimization. In our investigation, the focus is on the modeling part to

make the Q-learning applicable for a large scale real-world problem.

Therefore, in this research, Q-learning is examined and applied in the edge server

placement while considering two significant and striking perspectives. The first one

is about minimizing the cost of network design by reducing the delay and the number

of edge servers. The second perspective is the placement of K-edge servers to create

K-fair-balanced clusters with minimum network delay.

Despite the impressive results of RL, its application in real-world scenarios is

highly challenging. Throughout our modeling, the faced issues are explained, and

iii

our solutions are provided. Besides, the impact of state representation, action space,

and penalty function on the convergence is discussed. Extensive experiments using

a real-world dataset from Shanghai demonstrate that in the light of efficient penalty

function, the agent is able to find the actions that are the source of higher delayed

rewards, and our proposed algorithms outperform the other benchmarks by creating

a trade-off among multiple objectives.

iv

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisor,

Prof. Jamal Bentahar, for allowing me to pursue my passion while gently guiding me

with his constructive comments and valuable advice through each stage of this study.

Thank you for your amazing support during my whole graduate program.

I would like to extend my gratitude to my lovely parents and my family for their

continuous support and encouragement. I also want to give a special thanks to my

dear uncle for his warm support during these years. You are all a constant source of

inspiration.

Last but not least, a bunch of thanks to my beloved husband for accompanying

me through this journey with his endless love.

Thank you all!

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Objectives and Contributions . 4

1.4 Thesis Outline . 5

2 Background and Literature Review 7

2.1 Reinforcement Learning . 7

2.2 Edge Server Placement and Computation Offloading in MEC 10

2.2.1 Computation Offloading . 10

2.2.2 Reinforcement Learning for Computation Offloading 11

2.2.3 Edge Server Placement and Task Offloading 12

2.3 Reinforcement Learning for the Placement Optimization 14

2.4 Discussion . 15

3 Edge Server Placement Modeling and RL-Frameworks 16

3.1 System Model and Problem Definition 16

3.2 Edge Server Placement Formulations 18

3.2.1 First Model: Minimizing the Cost of MEC 18

3.2.2 Second Model: K-edge Server Placement 20

3.3 Modeling the Placement as an RL Problem 22

3.3.1 RL Framework for Minimizing the Cost of MEC 22

vi

3.3.2 RL Framework for K-edge Server Placement 29

3.4 Summary . 34

4 Results and Discussion 35

4.1 Dataset . 35

4.2 Minimizing the Cost of MEC . 38

4.2.1 Implementation Results . 38

4.2.2 Performance Evaluation . 39

4.3 K-edge Servers Placement . 48

4.3.1 Implementation Results . 48

4.3.2 Performance Evaluation . 48

4.4 Summary . 59

5 Conclusion and Future Work 60

vii

List of Figures

2.1 The reinforcement learning framework. 8

3.1 Edge-server placement in MEC. 17

4.1 The workload distribution/the number of tasks of all the base stations

and a range of base stations to see more details. 36

4.2 Implementing Q-learning to find minimum edge servers for different

number of base stations . 41

4.3 Performance of our proposed algorithm by considering different ac-

cepted network delays . 42

4.4 Performance of our proposed algorithm by considering different com-

putation capacity for the edge servers 43

4.5 Results comparison in terms of network delay. 44

4.6 Comparison the four algorithms with respect to the distance constraint

for 300 base stations . 46

4.7 Average network delay with respect to the edge servers computation

capacity . 47

4.8 Implementing QPAK for the K-edge servers placement by considering

different number of base stations. 50

4.9 Implementing CQPAK for the K-edge servers placement by considering

different number of base stations. 51

4.10 Implementing K-means for the K-edge servers placement by consider-

ing different number of base stations. 55

4.11 The workload balancing (min) (Eq. 29) of the edge servers considering

different number of base station. 56

4.12 Edge server placement and base station allocation for n = 10. 56

4.13 The total cost value for the four algorithms respect to the number of

the base stations. 57

viii

4.14 Comparing the placement and allocation of the four algorithms for 20

base stations. 58

ix

List of Tables

3.1 Notations. 19

4.1 The number of selected edge servers with respect to the number of base

stations . 44

4.2 The number of selected edge servers with respect to the edge servers

computation capacity . 47

4.3 The communication delay (km) (Eq.27) considering different number

of base station . 53

4.4 The fairness (km) of the network considering different number of base

station . 57

x

Chapter 1

Introduction

This chapter begins with presenting the context of this research, which is about server

placement in multi-access edge computing networks. The motivations behind using

reinforcement learning (RL) for the edge server placement and base station allocation

are then explained. After stating the main objectives and based on the discussed

challenges, our contributions are stated. Finally, the outline of this thesis is given.

1.1 Context

Over recent years, the popularity of smart mobile devices has noticeably increased

due to their applications in different areas, such as reading news, entertainment, so-

cial networks, and learning [1]. These applications with the development of IoT and

5G networks have changed and become resource-intensive. For instance, more com-

putation power and real-time response are needed for applications such as augmented

reality, multiplayer games [19], image processing for facial recognition, natural lan-

guage processing for real-time translation systems [2] and data transferring among

IoT devices in the internet of vehicles (IoV) [16]. However, mobile devices are limited

in terms of central processing unit (CPU), memory, storage, and processing power.

First, mobile cloud computing (MCC) [4, 53] was offered as a solution to overcome

those constraints of handheld devices. In MCC, heavy tasks are offloaded to the

remote cloud-based data centers with more computation resources. This centralized

infrastructure receives all the data or requests from different users and provides high

processing power, CPU, and storage [37]. Task offloading to the remote cloud results

1

in significant energy savings and better battery life for mobile devices [52, 21, 2].

Although cloud computing is a reliable solution to provide computation power,

the real-time response is not guaranteed. By sending requests to the cloud, as it is

typically far from the users, the network experiences more delay that is not desirable

[19]. Furthermore, by the development of IoT and 5G networks, the amount of

produced data by a large number of mobile devices increases dramatically. Therefore,

the cloud will be subjected to a tremendous amount of data that increases the delay

further. Hence, the limitations of this centralized solution arise the need for a new

structure. We need a network that can handle numerous requests in real-time.

The next solution was a cloudlet-based structure. In [40], the authors have de-

scribed the cloudlet as a group of powerful computers that are connected to the

internet. In their proposed architecture, a mobile user by using virtual machine tech-

nology can offload tasks to the nearby cloudlet over a Wi-Fi access point. The cloudlet

has less computation power in comparison with the cloud. Moreover, because of the

small coverage areas, it is not scalable [49]. A detailed comparison of the cloud-based

structure and cloudlet-based structure is given in [41].

Finally, the mobile edge computing, currently known as multi-access edge com-

puting (MEC) network was offered as a novel network to mitigate the cloudlet short-

comings. It brings the computation power close to the end-users at the edge of the

network, in a distributed manner [2]. Thus, besides having more process power, the

delay is decreased because of the computation source proximity. In the MEC, the cov-

erage area increases to the range of radio access network (RAN), and the MEC nodes

or servers are usually co-located with the base stations. More details are provided

in [11] where the authors have compared different edge computing implementations,

including cloudlet and MEC.

1.2 Motivation

MEC is attracting considerable interest due to real-time response for the computation-

intensive tasks. The edge servers play a significant role in the MEC architecture. The

mobile or IoT devices send a massive amount of requests to the edge servers, but there

is a limited number of edge servers because of the budget and energy consumption.

Thus, the optimal locations for a limited number of edge servers among a large number

2

of potential places should be found to have the minimum network delay. Moreover,

the computation power of the edge servers is not unlimited. Hence, discovering the

dominant area of each edge server is required as each of these servers can only handle

a certain number of requests. It seems to select the closest base stations for each edge

server has the minimum delay for the network, but it can overload the edge servers.

Overloading results in more delay, compared to sending the requests to a farther

server [19]. Additionally, this assignment may result in having idle edge servers,

which increases the cost of the network. The energy consumption of an idle edge

server is about 60% higher than a fully-loaded edge server [23]. Therefore, strategic

placement and optimal base station assignment are necessary to have high quality of

service (QoS) and quality of experience (QoE).

Several studies have investigated MEC due to its growing importance, for instance,

for smart cities applications. Most of these proposals have focused on task offloading

assuming the edge servers’ locations are known. In recent years, some researchers have

studied the edge server placement problem, but a number of them have considered

the placement and task offloading together [28]. It is worth noting that the place of

servers is not always known in advance. Thus, the edge server placement problem is

about finding the optimal places to add the edge servers. As it is assumed that servers

are co-located with the base stations, it can be seen as selecting a limited number of

base stations as the location for the edge servers. The optimal locations are the nodes

that guarantee, after defining their dominant area, that the access/communication

delay is minimized. Thus, in the placement optimization, the task offloading needs to

be considered as well. The task/computation offloading is the process of sending the

users requests received by the base stations to a server to be computed. It is assumed

that each base station can offload its computations to a specific edge server while a

server is covering many base stations. Therefore, discovering the optimal clusters of

servers and connected base stations is crucial in order to have a minimum access delay

besides minimum waiting time in each network. The minimum communication/access

delay is achieved by minimizing the distance between the base stations and edge

servers, and the workload balancing helps to reduce the waiting time.

Edge server placement and resource allocation are NP-hard combinatorial opti-

mization problems, and by considering both of them simultaneously, the problem be-

comes more challenging [28]. Algorithms such as mixed-integer programming (MIP),

3

heuristics, and clustering algorithms are used to solve this problem. Combinatorial

optimization consists of searching and finding the optimal option among a limited set

of discrete possible solutions. Recently, reinforcement learning (RL) [45] has shown

promising results in this domain where the combinatorial problems are defined as a

sequential decision problem. Examples of these problems include traveling salesman

to find the shortest path, mixed-integer linear programming, graph coloring problem,

and Knapsack problem [27]. Moreover, there are a few studies that have considered

the use of RL for placement optimization [30, 31, 33, 46].

Although Q-learning is a powerful RL algorithm, in many real-world problems,

finding the optimal solution is hard, especially when there is a large state or action

space [27, 14]. Considering the gap in the literature review and Q-learning challenges

for real-world problems, providing an efficient RL framework to model the edge servers

placement and base stations allocation is our focus in this thesis. We are considering

two views for MEC design. The first one is aiming to minimize the cost based on

given constraints, including maximum accepted delay for the network and maximum

workload capacity for edge servers. Due to the nature of the MEC, which is delay

reduction, minimizing the network delay is a vital factor that should be considered as

well as minimizing the number of edge servers for having an optimal design. Another

view is when a fixed number of edge servers based on the budget is determined.

Therefore, the optimal placements should be found to have a high QoS, which can be

achieved by creating K-fair-balanced clusters.

1.3 Objectives and Contributions

The main objective of this thesis is to provide efficient RL frameworks for these

combinatorial optimization problems to have an optimized MEC design. The output

can be seen as different clusters of edge servers and their connected base stations.

In the first model, explained in Chapter 3, the aim is to minimize the cost of the

MEC architecture under specified constraints. The considered objectives are:

1. Minimizing the number of edge servers as adding each edge server increases the

deployment cost.

2. Reducing the network delay as the main objective in MEC, which increases the

QoS.

4

For the second model, also described in Chapter 3, the following objectives are

aimed to be achieved:

1. Minimizing the delay for task computation having a real-time response, which

is the main object of the MEC.

2. Minimizing the difference of clusters delay to have the fair allocation and the

same QoS in all areas of the network.

3. Minimizing the difference of edge servers workloads, which is equal to the total

workload of the connected base stations, by assuming identical edge servers in

a homogeneous network.

Using RL for placement is highly challenging and the number and distribution of

the base stations, the constraints, and the properties of edge servers are the factors

that increase the difficulty [14]. Moreover, applying RL in real problems is not trivial;

efficient modeling is needed to overcome the RL limitations for the problems with

large and variable action space [14, 13]. Furthermore, in our problem, there is not a

fixed situation as a goal for the agent, thus the reward value cannot be backtracked.

However, there are different research efforts that have considered the RL challenges,

but there are a few studies that have considered different challenges in one algorithm

[13]. Hence, the contributions of our research are as follows:

• Providing a novel RL framework for the joint problem of edge server placement

and workload allocation.

• Combining Q-learning with K-means and top-K to improve the results.

• Defining the state space, action space, and penalty function for multi-objective

problems without a fixed end-goal.

• Adopting the base reinforcement learning algorithm for a real-world problem

for a large number of base stations.

1.4 Thesis Outline

The remaining parts are organized as following. In Chapter 2, after having an

overview of RL and Q-learning, we review the most relevant papers related to our work

5

in the MEC design and the RL application for combinatorial optimization problems.

In Chapter 3, our two mathematical models are proposed. Then, our RL frame-

works for edge server placement and computation offloading are explained in detail.

The issues and limitations of Q-learning implementation and the offered solutions are

clarified. Chapter 4 gives extensive experiments, performance evaluations, and dis-

cussions after describing the real-world dataset. Moreover, the other methods which

are used for performance comparison are explained. Finally, in Chapter 5, a summary

of the research and some directions for future work conclude the thesis.

6

Chapter 2

Background and Literature Review

This chapter consists of four main sections. First, since Q-learning is adopted to

solve our placement optimization problem as a sequential decision making problem,

an overview of reinforcement learning and then Q-learning is given in Section 2.1.

Next, Section 2.2 provides a review of proposals in the MEC design with respect

to the edge server placement and computation offloading. This section starts by

discussing some studies that have only considered task offloading, then the solutions

that have applied RL in this area. In Section 2.3, different approaches using RL for

the placement optimization are discussed. Finally, in Section 2.4, a discussion of the

reviewed work highlighting some gaps and limitations is given.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning with a learner called

agent. The agent makes decisions by interacting with its surrounding, which is called

the environment. The environment sends the reward or penalty signal and the new

state to the agent after taking each action (Fig. 2.1). Through that, the agent learns

to map situations to the actions.

Generally, RL problems are formulated based on Markov Decision Processes (MDPs).

Thus, in RL problems, state-space, action space, reward, state transition probability,

and discount factor should be defined through the MDP tuple ⟨S,A,R, γ, P ⟩.

• Set of states S. The situation at each time step, it can be discrete or continuous.

7

Figure 2.1: The reinforcement learning framework.

• Set of actions A. The choices of the agent in each state that could have an

impact on the immediate reward, next state, and future rewards.

• Reward R. A numerical value that is received from the environment to motivate

the agent for taking optimal actions including immediate reward and delayed

reward.

• Discount factor γ. A value in [0, 1] to define the importance of delayed reward

versus immediate reward that helps avoid infinitive cumulative reward.

• State transition probabilities P . The probability of transitioning from one state

to another state.

Recently, RL has been successfully used to solve real and complex network prob-

lems such as resource scaling of containers in fog clusters [39] and scheduling federated

learning tasks on IoT devices [38]. In RL, the agent’s objective is to maximize the cu-

mulative reward, which shows the effect of all actions in a sequence. It means that the

agent needs to find the optimal policy that maximizes the expected rewards, where

a policy is a function π that specifies the action π(s) that the agent will choose when

in state s. Besides exploiting the learned policy, the agent also needs explorations

because there is a possibility of finding actions with more rewards. The exploration-

exploitation dilemma is still an open question in RL, however, different methods like

epsilon-greedy, upper-confidence bound, and optimistic initial values are widely used.

The RL methods are divided into two categories: model-based and model-free. In

the model-based methods, the environment and the transition probabilities should be

known, or at least be easy to learn; but in model-free methods, the agent’s information

8

is gathered through trial-and-error. On the other hand, the RL algorithms can be

on-policy or off-policy. In on-policy algorithms, the focus is to approximate the

policy, but in the latter one, the value function is approximated. The value function

measures the performance of the policy function. The environment can be episodic,

and after a specified number of iterations, the environment restarts. Moreover, it can

be continuous where considering the γ value is necessary to avoid infinitive rewards.

Q-Learning

Q-learning [50] is one of the first major RL algorithms, which is a model-free, off-

policy algorithm defined by the following Bellman equation:

Q(St, At)← Q(St, At) + α× [Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]. (1)

The Q-values represent the quality of actions in each state, and α is the learning rate

that has a value between 0 and 1. Rt+1 is the value of the immediate reward after

taking each action.

Q-learning is known as a temporal difference (TD) learning method. It updates

the policy by bootstrapping from the current estimate of Q-value, Q(St, At). It solves

the Bellman equation by sampling from the environment and iteratively applying the

Bellman optimality equation. In other words, it updates the Q-value over iterations

in order to minimize the TD or Bellman error, [Rt+1+γmaxaQ(St+1, a)−Q(St, At)].

Q-learning is an off-policy algorithm because the behavioral policy (πb) is different

from the target policy (π∗). The behavioral policy represents the way that the agent

acts. The target policy, as its name implies, is the optimal one that needs to be

discovered. For πb, the agent employs the exploration-exploitation dilemma, while

for the π∗, it acts greedily. It should be mentioned that by using the Q-learning

Eq. 1, there is no need for transition probability because the next action is the one

that maximizes the next state’s Q-value. To record the calculated Q-values from

Eq. 1, a matrix, called Q-table, is created. It consists of states in rows and actions in

columns. The agent uses this look-up table for selecting the optimal actions to reach

Q∗(S,A).

9

2.2 Edge Server Placement and Computation Of-

floading in MEC

Mobile Edge Computing or Multi-access Edge Computing (MEC) is a new computing

paradigm where servers are located close to the end devices, within the mobile access

network [49]. These servers are located at the edge of the Internet to process a

large amount of data in a distributed manner, and thanks to this proximity, latency

decreases while responsiveness increases [43, 36, 2]. In fact, MEC plays a vital role

in the development of the 5G network. Additionally, it is a necessary platform in the

IoT era since IoT devices generate a tremendous amount of data that needs to be

processed locally [17].

Base stations equipped with server or cloudlet are known as the edge servers,

and the mobile users, IoT devices, or sensors offload their tasks to these servers [36].

Edge servers, as a critical part of MEC, have received attention among researchers

in recent years. As mentioned earlier, we classify the studies about edge servers into

two categories. The first category only considers the computation offloading, while

the second category studies the service placement and computation offloading as a

joint problem.

2.2.1 Computation Offloading

Wei et al. [51] state that papers in the task offloading focus on two main objectives:

reducing the execution delay and decreasing the energy consumption in mobile de-

vices. Furthermore, determining which tasks should be offloaded and where are the

two major decisions needed to be made [51]. The execution delay comprises the time

for sending out the data to the servers, processing time, and time of receiving the

processed data [26]. For energy consumption, the computation offloading increases

the battery life of mobile devices because the tasks are not processed locally. On the

other hand, there is energy consumption in transmitting the data and receiving the

results [26]. In [20], the goal is to reduce the average energy consumption of mobile

devices by considering the delay constraints. The authors modeled the problem as

a constrained MDP, and they examined two strategies. The first one is using online

learning, and the network adapts to the changes in mobile devices dynamically. The

second strategy is using the partial network’s knowledge after specified time intervals.

10

Their results show that the pre-calculated offline approach, despite having imperfect

information, has better performance.

A power-constraint problem to minimize the delay for a single user is studied

in [25]. The mobile device decides whether to process the task locally or offload

it to the server based on a stochastic policy. The experiments demonstrate that the

proposed MDP modeling outperforms when compared to the situations when all tasks

are computed locally, or all of them are sent to the server, or when the mobile device

makes a greedy decision. The authors in [34] have offered a two-phased approach to

reduce the complexity of the problem. In the first step, the mobile device searches

its Wi-Fi region to discover available cloudlets, and in the second step, based on

the task’s requirements, the cloudlet is selected. Some studies, such as [32], have

considered the multi-cloudlet environment where reducing the power consumption

and latency are the main factors for choosing the optimal cloudlet.

Some studies have investigated the trade-off between the two mentioned objec-

tives: delay and energy consumption. For example, in [9], the investigators have

considered one user with independent tasks, and like [25], there is a binary offloading

decision. There is one more assumption that if the task is not computed locally, there

is another binary decision, which can be MEC or remote cloud. The goal is mini-

mizing the cost, which consists of energy computation and delay, by using a heuristic

algorithm. The near-optimal performance was attainable after a few randomization

iterations.

2.2.2 Reinforcement Learning for Computation Offloading

In [10], Q-learning is used to find the optimal offloading policy where the objective

is to reduce energy consumption with a fixed maximum delay as a constraint. After

modeling the offloading as an MDP, the reward is calculated based on the time and

energy consumption that should be minimized. Sen and Shen [42] also used Q-learning

with only three actions in each state. The arrival task can be processed on the edge,

fog, or cloud. After the convergence of the Q-value, the Q-table is used for task

allocation in edge servers. The authors showed that their approach could reduce

execution time and energy consumption. Moreover, the decisions are made in near

real-time.

For the joint optimization of task offloading and bandwidth allocation, in [18,

11

54], a deep-Q network is used to learn the offloading policy where the objective is

minimizing both the latency and energy consumption. In [54], a neural network, based

on receiving data from the environment, is trained and then modeled to predict the

action in each state. For the bandwidth allocation, the authors have separated each

task into two parts: a part that is computed locally and a part that is sent to the

server. Then, the server is selected, and their algorithm finds the optimal percentage

of the task that should be offloaded.

All the previous investigations are based on Q-learning, which is an off-policy ap-

proach. An on-policy reinforcement learning algorithm called SARSA (State-Action-

Reward-State-Action) is used in [2] to reduce the energy consumption and execution

delay. The state at each time step consists of the uploading and downloading band-

width. There are three possible actions: selecting the nearest edge server, the adjacent

edge server, or the remote cloud.

2.2.3 Edge Server Placement and Task Offloading

To find the minimum number of cloudlets while covering the largest number of mobile

users, Peng et al. [35] used an improved affinity propagation algorithm. In their

clustering, they considered the user movement and load balancing. They divided the

density of mobile users before and after moving into three clusters: sparse, discrete,

and dense. The place of cloudlets would be changed by the density to cover more users.

To define the optimal number of cloudlets to have a trade-off between the QoS and the

cost for the service provider, they used affinity propagation based on the preference

value of nodes. Finally, a directed acyclic graph shows the new place of cloudlets, and

the number of new cloudlets would be adjusted. The number of covered users and

the difference in the number of mobile users in each cluster were used, respectively,

to evaluate the coverage and load balancing. The authors generated a dataset for

different numbers of mobile users, and their algorithm outperformed K-means and

mini-batch K-means.

The authors in [19] have modeled the problem of cloudlet placement and user to

cloudlet allocation in wireless metropolitan area networks as a queuing network to

reduce the average waiting time while maintaining a balanced workload. They used

the heaviest-AP first algorithm with the density-based clustering by the assumption

that the number of cloudlets is given. Then, K-median is used to find the cloudlet

12

places with the minimum delay. Their simulation environment is created based on

the dataset of the wireless network in Hong Kong for 18 distinct areas (nodes). In

their modeling, each cloudlet is known as a set of homogeneous servers connected to

the cloud. Part of the tasks can be offloaded to the remote cloud when one of the

cloudlets is overloaded. They also have assumed the cloud has adequate computation

power for all the offloaded tasks, and there is no queue time.

The focus of the two previous studies was on the cloudlet placement. Wang et

al. [49] have proposed the first study for the edge server placement. The authors

used mixed integer programming (MIP) for edge servers placement and base station

allocation by considering the access delay and load balancing as the two objectives

for their formulation. It is considered that the fixed number of identical edge servers

is given. Their results, on Shanghai Telecom’s dataset, are compared with the K-

means, top-K, and random approaches for different numbers of base stations on a large

scale, for 300 to 3000 base stations. Although their experiments showed K-means has

less delay and top-K creates a more balanced cluster, in total, their approach has

better results. In [15], for the same dataset, they have used the MIP and K-means

combination for 20 to 200 base stations. In one of their investigations, they have

increased the number of edge servers for the fixed number of base stations. In the

case of 5 edge servers for 200 base stations, the top-K outperforms their model, but

for the other experiments, they have improved the results. Also, for the same dataset,

reducing the total energy consumption, by assuming the linear relation between CPU

utilization and energy consumption, is studied [24]. Particle swarm optimization is

adopted for up to 1300 base stations. The results were compared with random and

top-k algorithms for the edge servers with different coverage areas. A particle swarm

optimization algorithm is adopted, and the results were compared with random and

top-k algorithms for up to 1300 base stations by considering different coverage area

for edge servers.

Cao et al. [6] emphasize that in addition to minimizing the response time, the

heterogeneity and response time fairness need to be considered. In their two-stage

method, in the offline stage, integer linear programming is used to find an optimal

placement strategy for the edge servers. Then, in the online one, a game theory-based

method is adopted to consider the workload fluctuation of the base stations.

13

2.3 Reinforcement Learning for the Placement Op-

timization

The edge server placement and resource allocation is a constrained combinatorial

optimization problem. The combinatorial optimization problem (COP) is searching

and finding the optimal option among a limited set of discrete possible solutions.

The exact methods and heuristics can be used to find it. Moreover, in terms of

machine learning methods, supervised and reinforcement learning have been used [12].

Different types of combinatorial problems are: Traveling salesman, Mixed-Integer

Linear Program (MILP), generation, and enumeration [27].

This survey [27] shows that the combination of RL and COP can be a promising

method for solving combinatorial problems. However, one of the main difficulties in

CO is the state-space explosion [7].

Despite that, there are a few studies that have applied RL for the placement.

Mirhoseini et al. [31] proposed a deep RL algorithm to find the optimal placement

for different operations of neural networks onto hardware devices that can be CPU

or GPU. They used the square root of the execution time as a reward, and they

demonstrated a reduction in the single-step running time as well as the total training

time compared to the heuristics and traditional methods. Addanki et al. [46] have

studied the same problem, but using the graph embedding method has helped to

generalize and improve the algorithm to be applicable for different neural networks

rather than only a specific one. The algorithm’s output is policy instead of places for

operations. This learned policy is transferable for the unseen neural networks of the

same family. In both [31, 46], before implementing the RL, they have grouped the

same operations and forced the algorithm to place them in the same device, which

reduces the placement actions.

Mirhoseini et al. [30] proposed using RL for chip placement. The performance of

their algorithm improves over time by having more experience. Same as [46] their

algorithm can be used for unseen blocks, even with the bigger size. Unlike the [46],

in this study, the placement policy completes incrementally after each state until

reaching the terminal. The reward for each step is zero, except for the final one. To

consider all the objectives, they used a weighted sum in a single reward function,

which is computed by a neural network. This neural network is made by a rich state

14

representation and a large dataset to train it in a supervised manner. They have

noticeably improved the placement time while outperforming other methods.

2.4 Discussion

In this chapter, we provided a review of the relevant studies to our work for MEC

design, considering the computation offloading, placement optimization, and RL ap-

plication for the placement optimization. The demand for real-time processing for

computation-intensive tasks has led to the emergence of the MEC paradigm. In the

reviewed studies for computation offloading, the action-space is limited. Most of these

solutions have not analyzed the problem of which server should be selected if a task

is offloaded to the edge. In other words, their modeling does not include the detail of

the task allocation when the edge is elected as a destination for offloading.

To find the optimal placement and resource allocation in MEC, various approaches

are investigated, including mainly: clustering [35], top-K [19], MIP [49], combination

of MIP and K-means [15], heuristics [24], ILP and game theory [6]. The proposed

models are implemented on different numbers of base stations, going from 18 to 3000,

on a real-world or generated datasets.

As mentioned earlier, to the best of our knowledge, in the current literature, ap-

plying RL for the edge server placement has not been investigated yet. Furthermore,

most proposals on applying RL to other placement optimization have examined the

problems which need a real-time response. In our problem, the edge server placement

optimization is different from the studies in Section 2.3 because we have to choose

fixed places that do not vary over time. This is like the famous maze problem that

the agent, after enough iterations, needs to find the optimal policy to reach the goal.

However, unlike maze, there is no fixed points to achieve as a goal and minimizing

the path’s penalty is the objective. Our agent needs to find the optimal nodes as

edge servers. Therefore, in this thesis, a novel Q-learning-based approach is exam-

ined and applied to design MEC with regard to optimized placement of edge servers

while considering the deployment and delay cost either as a variable to be minimized

or a constraint to find optimal places for K-edge servers.

15

Chapter 3

Edge Server Placement Modeling

and RL-Frameworks

This chapter starts by describing the problem and demonstrating the MEC model

in Section 3.1. Next, in Section 3.2, the mathematical formulations of two different

points of view in designing MEC concerning the optimal edge servers placement are

provided. Then, our proposed RL-frameworks for these sequential decision making

problems and the steps to solve the encountered issues are explained in detail in

Section 3.3. Finally, Section 3.4 presents a summary and comparison of our solutions.

3.1 System Model and Problem Definition

MEC is composed of users/mobile devices, base stations, and servers (Fig. 3.1). There

are many users/mobile devices distributed through the city which are connected to the

base stations with limited coverage area to process the data. Edge servers with more

computation power are added to the network to process computation-intensive tasks.

Base stations offload the received tasks from the users to the edge servers instead

of sending them to a remote centralized cloud. Thus, equipping the network with

servers close to the end-users leads to the principal purpose of the MEC paradigm,

namely the real-time response.

MEC can be shown by a set of n base stations BS = {bs1, bs2, . . . , bsn} and a set

of K edge servers ES = {es1, es2, . . . , esK}, (K < n). Edge server placement in 5G

network can be shown by an undirected graph G = (V,E), where V = BS
⋃︁
ES and

16

Figure 3.1: Edge-server placement in MEC.

E is the representation of the connections between base stations and edge servers.

Usually, for simplicity purposes, it is assumed the edge servers are co-located with

the existing base stations [49, 35].

In Fig. 3.1, the bigger base stations illustrate the equipped base stations with

servers. For example, es1 is the edge server that covers base stations bs6, bs7, bs8,

and the co-located base station bs9. The workload of es1 is the total workload of all

connected base stations. The connections among base stations or the edge servers are

not included in our modeling.

Adding the edge servers increases the computation power and decreases the la-

tency, but then it subjects the network design to some restrictions. First, edge servers

are limited in number because of the deployment cost and their energy consumption.

Second, each of these servers covers a limited number of base stations based on their

workload capacity. These limitations make the design of the MEC architecture a

complex challenge.

In order to have an optimal network design, two models are discussed in this

thesis. In both models, the following assumptions are considered:

• Each edge server is co-located with one of the existing base stations.

• Each edge server covers many base stations while each base station is only

17

connected to one edge server, and the selected edge servers should cover all the

base stations.

• The distance between the base station and its edge server represents the delay.

There are two main objectives for both models. The first objective is about

finding the optimal placement for the edge servers. The second objective is finding

the optimal assignment of the base stations to the edge servers by creating the optimal

clusters. These two problems are known to be NP-hard [49]. This thesis introduces a

reinforcement learning-based approach to reach the aforementioned objectives thanks

to its promising results in combinatorial optimization problems [27].

Our study does not include the connections between users and base stations as

well as edge servers and the cloud. Moreover, in this thesis, the MEC design refers

to finding the optimal edge server placement and base station allocation/workload

offloading by using the historical data from a dataset. This data, explained in Chapter

4, is gathered from users’ connections to the base stations over days. The key variables

used in our formulations and modeling are shown in Table 3.1.

3.2 Edge Server Placement Formulations

3.2.1 First Model: Minimizing the Cost of MEC

In our first model, finding the optimal MEC design with minimum cost is investigated.

Deployment of new edge servers increases the cost of the network. Moreover, since the

principal purpose of MEC and 5G networks is to bring the computation power near

the end devices in order to have a real-time response, striving to have a minimum

delay is one of the most vital objectives that should be considered. In fact, as argued

in [2], the long execution time is one of the main concerns in the design of MEC.

Therefore, minimizing the network’s cost relies on two parts: minimizing the num-

ber of edge servers K (Eq. 2), and minimizing the network delay DN (Eq. 3). This

problem is modeled as follows:

18

Symbol Meaning

BS set of all the base stations in the network

bsi base station i in the network, 1≤ i ≤ n

ES set of all the edge servers in the network

esj edge server j in the network, 1≤ j ≤ K

G mobile edge computing network

K number of edge servers

DN Network delay

n number of base stations

|nj| number of base stations in cluster j

D set of average distances of all clusters

Dj average distances of base stations, in cluster j, from the jth edge server

DTH distance threshold

dij distance of base station i from edge server j

Λ set of all edge servers’ workloads in the network

Λj workload of edge server j in the network

λ set of all base stations’ workloads in the network

λi workload of base station i in the network

xij binary variable, xij = 1 if base station i is connected to the edge server j

Lbsi location of the base station i

latbsi latitude of a base station i

lonbsi longitude of a base station i

absi action space of bsi

α learning rate

γ discount factor

DoFi number of connected nodes, degree of freedom

ne1bsi 1th neighbor of bsi with respect to the distance

wlES dictionary of the edge servers’ workloads

wlj workload of each edge server j

z binary variable if selected base station is a new edge server z = 1

Pri priority of bsi

Table 3.1: Notations.

19

O1 : min(K) (2)

O2 : min(DN) (3)

subject to the following constraints:

Λj ≤ Λmax (∀j, 1 ≤ j ≤ K) (4)

K∑︂
j=1

(xijdij) ≤ DTH (∀i, 1 ≤ i ≤ n) (5)

K∑︂
j=1

xij = 1 (∀i, 1 ≤ i ≤ n) (6)

xij ∈ {0, 1} (∀i, 1 ≤ i ≤ n and ∀j, 1 ≤ j ≤ K) (7)

To find the optimal placement and the optimal clusters, some constraints are applied

to the model that needs to be satisfied. First, each edge server has a limited com-

putational power, thus it can handle a limited workload. An upper bound, Λmax,

is considered for the edge servers as the processing capability (Eq. 4). Second, a

maximum acceptable delay is considered in the constraints (Eq. 5). As the distance

represents the delay, DTH is used to represent the distance threshold. It is worth to

note that, although an acceptable constraint for the latency is considered (Eq. 5), as

mentioned above in Eq. 3, still our goal is always to further minimize the delay. Fi-

nally, each base station is connected to just one edge server while all the base stations

are covered (Eq. 6) and xij is a binary variable (Eq. 7) and xij = 1 if base station i is

connected to the edge server j; otherwise, xij = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ K.

3.2.2 Second Model: K-edge Server Placement

In the second model, the placement of K-servers, and base station allocation are

studied. It is assumed that the service provider, based on the budget limitation,

gives the number of edge servers, K. Moreover, latency reduction is one of the main

objectives of MEC, and the distance between the base station and the edge server

shows the access/communication delay. Thus, in this model, the best dominant area

20

for each edge server should be defined to have the minimum latency. Finally, because

finding the optimal base station allocation should be investigated, the ultimate results

would be K clusters of the edge servers and their connected base stations.

Similar to studies in [15, 24, 49], it is assumed that all the edge servers have the

same computation power (a homogeneous network). Therefore, the clusters should

have a balanced workload which prevents the overloaded, under-loaded, or idle edge

servers. Moreover, minimizing the difference between the clusters’ average delay is

necessary to have fair allocation [6] and the same QoS in all areas. The model of this

multi-objective problem is as follows.

O1 : min

K∑︂
j=1

n∑︂
i=1

(dij × xij)

n
= min

K∑︂
j=1

Dj

K
(8)

O2 : min{max(Λ)−min(Λ)} (9)

O3 : min{max(D)−min(D)} (10)

subject to the following constraints:

K∑︂
j=1

xij = 1 (∀i, 1 ≤ i ≤ n) (11)

xij ∈ {0, 1} (∀i, 1 ≤ i ≤ n and ∀j, 1 ≤ j ≤ K) (12)

The average distance between edge servers and their covered base stations is con-

sidered as latency, and Eq. 8 is defined to have minimum communication delay. By

considering a homogeneous network Eq. 9 is applied to have balanced clusters, where

Λ is a set of edge servers’ workloads Λ = {Λ1,Λ2, . . . ,ΛK}. The workload of each edge

server is equal to the total workload of all the connected base stations. For example,

for cluster K:

ΛK =
n∑︂

i=1

(λi × xiK) (13)

λi is the workload of base station i.

21

D in Eq. 10 is a set of average distances in each cluster, D = {D1, D2, . . . , DK}.
Each element of this set represents the average distance of the base stations from the

edge server in each of the K clusters.

Dj =

n∑︂
i=1

(dij × xij)

|nj|
(14)

and

xij =

⎧⎨⎩1, if bsi is in the cluster j

0, otherwise
(15)

where 1 ≤ j ≤ K. The distance of base station i from edge server j is dij and |nj| is
the number of base stations in cluster j. Eq. 10 by decreasing the difference in the

cluster’s delay creates a fair allocation in the network. Similar to the previous model,

the constraint (Eq. 11) demonstrates that each base station is only connected to one

edge server, while all the base stations are covered. And similar to our previous model

xij is a binary variable (Eq. 12) for all 1 ≤ i ≤ n and 1 ≤ j ≤ K.

3.3 Modeling the Placement as an RL Problem

The joint problem of finding the optimal placement and workload offloading is mod-

eled as an RL problem. As RL is based on MDP, defining the state space, action

space, and the reward function are the fundamental steps.

Moving forward from one base station to the other one, from 1 to n, is the path

in each episode. At each time step, the agent is in the location of one of the base

stations. Then, the agent takes action for the base station and receives the result

in the form of a penalty. This procedure continues until the agent moves through

all the base stations. After enough iterations and experiencing different interactions

with the environment, the agent could be able to find the actions with the minimum

penalty for the path.

3.3.1 RL Framework for Minimizing the Cost of MEC

First, the state space is defined and the agent moves forward from one base station

to the next one. Thus, the state-space is a set of locations of all base stations because

22

the agent locates in the place of one of them at each time step. This location has two

geographical coordination: latitude and longitude. The initial state and the location

are formalized as follows:

Initial State set = [Lbs1 , Lbs2 , . . . , Lbsn]

Lbsi = [latbsi , lonbsi]

Second, by considering the predefined distance threshold based on the delay bud-

get, the action space is defined. We create an adjacency matrix of zeros and ones for

our network. It is a square matrix where rows and columns show the base stations. In

this symmetric matrix, the entries are zero unless their value in the distance matrix is

less than the threshold. The distance matrix has the same dimension, but the values

show the distance between the adjacent base stations. Therefore, the action space for

each base station is limited to the nodes with value one in the adjacency matrix (i.e.,

the neighbors). The joint action space of all base stations is:

A = {abs1 , abs2 , . . . , absn}
absi = [ne1bsi , ne2bsi , . . . , neNbsi

];

where absi shows the action space of base station i which is limited to its neigh-

bors and ne1bsi is the first neighbor of base station i. The size of this action space

varies for each node, and it is equal to the number of the neighbors (N) of each base

station. Variable action space is a challenging situation in deep reinforcement learn-

ing [5, 8]. This issue arises when function approximation should be used. Hence, It

is preferred to model the problem in a way that can be solved by Q-table.

Next, the environmental signal, which is sent to the agent as the penalty (P),

is determined. This signal leads the agent toward taking the optimal actions in the

given states. The objective is minimizing the cost, which consists of delay and the

number of base stations.

We align the standard Q-learning formula to our objective function as follows:

Q(St, At)← Q(St, At) + α× [Pt+1 + γminaQ(St+1, a)−Q(St, At)] (16)

P represents the penalty, and the agent’s policy based on minaQ(St+1, a) is minimizing

the penalty, instead of maximizing the reward. We considered α = 0.4 and γ = 0.9

23

for our algorithm.

Goldie and Mirhoseini [14] assert that penalty/reward calculation for the place-

ment problems when the action space is not completed (partial placement) is very

difficult. Further, for multi-objective problems, it is usually hard to determine a sin-

gle penalty value. And to evaluate the policy, it is crucial to consider the performance

of the algorithm for each objective separately [13].

Distance (Eq. 26), as the first factor, was used in calculating the penalty because it

represents the delay in our modeling. By having this penalty function, after iterations,

the action in each base station (state) is choosing itself as the destination. In this

situation, the distance is zero, which minimizes the penalty. This result is in contrast

with the other objective (Eq. 2). Therefore, a balance between the two goals is needed.

To address the above issue, a fixed value, after having a new edge server, is added

to the penalty. Setting this value is challenging and should be defined based on the

model’s constraints. In our algorithm, it should be higher than the distance threshold.

Otherwise, the agent would add extra edge servers to the network while it could select

one of the existing ones in the accepted distance. For example, when our distance

threshold was 9 km, this fixed value was considered 10. This motivated the agent to

select existing edge servers within 9 km of the current base station rather than adding

a new edge server because of receiving less penalty.

Although adding this value helps the agent take better actions, it is not enough

for our algorithm to converge to the minimum cost. It is because of the actions’

dependency and the lack of a static final goal. For example, as mentioned in Chapter

2, in the maze problem, there is a point when reached, it brings a high reward. Then

the agent can learn the optimal policy by backtracking the reward value. However,

in our problem, there is no such a point. When the agent reaches the base station

n, the episode finishes, but it is not the final goal. Therefore, the agent is not able

to find a systematic rule to select the optimal action based on Q-values changes and

thus, convergence is not guaranteed.

Moreover, as the length of the path increases, the agent faces the credit assignment

problem (CAP) [29]. The agent is not able to define which action is resulting in a

higher penalty because, in our problem, the lower penalty in the current state does

not guarantee the minimum cost (penalty) for the completed path or even in the next

episode.

24

To address the two aforementioned issues: lack of end goal and CAP, a list of

previously taken actions in each episode is added to the state definition at each time

step. In other words, the list of edge servers up to the current time step is appended

to the state space as follows:

Modified Statet = [Lbst , [as1 , as2 , . . . , ast−1]]

For completing the penalty function after a precise definition of state and action

space, constraints should be considered. Penalizing the actions that do not satisfy

the constraints with a high penalty is a possible solution. In this case, the agent

could be trapped, if there are numerous infeasible actions. Additionally, there might

be a probability of not satisfying the constraints, and it needs more time and more

iterations to reach the optimal value. The other method that can be applied is to

prevent the agent from taking forbidden actions by setting some rules. In our study,

the latter approach is chosen.

For the distance constraint, as explained previously, the action space is limited to

the neighbors. For the workload constraints, a dictionary of the current edge servers

and their workloads is added to the state definition (wlES), which gets updated after

each action. Therefore, our complete state definition at time step t is:

Final Modified Statet = [Lbst , [as1 , as2 , . . . , ast−1], {es1 : wl1, es2 : wl2, . . . }]

This definition simplifies the penalty calculation, shrinks the action space further,

and keeps the agent away from taking infeasible actions.

There is another situation that the agent should avoid. For instance, if the agent

in bs5 selects bs10 as the destination for offloading, it cannot map the other base

stations to bs5. For this reason, a list of forbidden actions (FA) is created. As the

agent moves forward, the list expands, and the action space becomes smaller, but

it causes variable action space for each state in each episode, which, as mentioned

earlier, is a highly challenging problem for a deep Q-network. Hence, our priority is

using the Q-table.

Though our modeling solves the mentioned difficulties, namely: large and variable

action space, penalty calculation, CAP, and lack of exact end goal, when using the

25

Q-table, we face a large state-space. In the Q-table, the states are the rows, and

the actions are columns. In our state definition, there is a fixed part that is the

base station location, which is the same in all the episodes. The other components

vary based on different actions. In our Q-table, only the fixed part is considered as

the state for being fitted in the look-up table (Algorithm 1. line 5). Finally, the

goal is to have the best action for each base station, and this method helps us have

the average Q-value for each state in different situations. It should be noted that

in different episodes, the agent uses the other parts to calculate the penalty and for

taking the actions. Thus, the variable parts function as a memory for our agent in the

decision-making process because the fixed section is not able to represent the whole

information of each state. Therefore, the n × n matrix is created as our Q-table.

Initially, it is filled out with a high value of 1000. Then, the entries with value one in

the adjacency matrix change to zero (Algorithm 1. line 1). These initial action values

motivate the agent for exploration, and the possible actions would be tried several

times before the convergence [45].

Having completed the model, the remaining issue is that the actions are dependent

on the node orders. For example, the agent always selects the first node as an edge

server. If the order of nodes changes, the edge servers will change as well. To tackle

this problem, a priority value, Pr, is created for each node. It can partially show the

importance of nodes for being selected as the edge server. For example, selecting a

node with a higher workload is preferred because it reduces the workload transferring,

which results in less delay. Also, if a node is in a dense area, it is a more suitable

place for adding the edge servers. The priority Pri of the base station i is expressed

as follows:

Pri = (λi +DoFi)/average distancei; (∀i, 1 ≤ i ≤ n) (17)

where λi is the workload of base station i. DoFi is the degree of freedom that shows the

number of neighbors situated in the accepted distance. DoF represents the directions

that each base station can transfer its computation or receive tasks from other nodes.

average distancei is the average distance of N(= 15) nearest nodes from the base

station i. The inverse of the Pr expression is the penalty of selecting each node, which

helps the agent make decisions regarding the importance of the nodes not based on

their orders.

26

Therefore, the penalty function is:

P = distance(Lbsi , Labsi
) + fixed value× z + 1/Prabsi (18)

where the distance is calculated based on Eq. 26, which will be explained in the next

chapter. The input of distance function is the location of the current node, Lbsi , and

the location of the selected node for computation offloading. The action of the current

state is also a base station, and its location (Labsi
) should be used in Eq. 18. The

fixed value is added if the selected node has not been in the list of the edge servers

(ES) which is the reason for considering the z as a binary variable. The last part is

the inverse of the priority of the selected destination.

So far, the fundamental parts for creating the efficient classic Q-learning algorithm

are explained. An additional step is needed to make this efficient modeling applicable

to our problem. In each episode, a list of possible actions (PA) for each state is

created. Initially, the list is empty, and as the agent passes the states, it fills based on

the actions. For example, in each state, this list is a subset of the current edge servers

that are within the current state’s acceptable distance. Then, based on the ϵ-greedy

policy, the agent in each state selects the actions from the possible-action list or the

action space that was defined for the classic Q-learning algorithm. The parameter ϵ,

which represents the probability of selecting a random action, is calculated as follows:

ϵ = 9/(T + 100) (19)

where T is the number of episodes. In the first iterations, the action selection is

rather based on exploration. After some iterations, the agent relies on exploiting

the best-offered actions based on the Q-value. Consequently, the possible-action list,

based on this policy, is improved as well.

Algorithm 1 represents our proposed Q-learning framework for minimizing the cost

(QMC). ResetEnvironment() refers to the process of updating the edge servers

list in each episode (ES = []), updating the workload dictionary of the selected edge

servers (wles = { }) and updating the forbidden action’s list (FA = []). Lines 6 and

7 force the agent to follow the mentioned rule that a node cannot be both sender and

receiver.

27

Algorithm 1: QMC Framework

1 Initialize Q(s, a) to 1000 except adjacent nodes for each state to 0, and

Q(terminal, .) = 0

2 for episode ← 1 to MAX do

3 ResetEnvironment()

4 for i ← 1 to n do

5 si ← Lbsi

6 if si in ES then

7 absi ← bsi, obtain P , si+1 ← Lbsi+1
, update Q, update ES, update

wlES

8 else

9 PA ← GetPossibleActions()

10 Q PA ← GetQvaluesofPA()

11 if |PA| > 0 then

12 Choose absi for si using ϵ-greedy policy from Q PA

13 take action absi , obtain P , si+1 ← Lbsi+1
, update Q,

UpdateEnvironment()

/* UpdateEnvironment(): update ES, update wlES and update

FA */

14 else

15 Nei ← GetNeighbors()

16 Q Nei ← GetQvaluesofNei()

17 Choose absi for si using ϵ-greedy policy from Q Nei

18 take action absi , obtain P , si+1 ← Lbsi+1
, update Q,

UpdateEnvironment()

/* UpdateEnvironment(): update ES, update wlES and update

FA */

In summary, basic Q-learning is adopted to solve the placement and allocation

problem. Then, by considering some rules to select the actions and adding the history

of actions to the state space, the search tree became smaller. Next, the possible-action

vector that is built up through each episode is added as an additional step to our

28

algorithm. These steps, besides an effective definition of the penalty function, made

the Q-learning applicable to our large scale problem.

3.3.2 RL Framework for K-edge Server Placement

For this problem, the initial state space was defined as a set of all base stations’

locations consisting of latitude and longitude as follows:

Initial State set = [Lbs1 , Lbs2 , . . . , Lbsn]

This state definition cannot help the algorithm converge to the optimal value. The

reason is that taking a particular action in a specific state does not have the same

result in all the episodes. As the action in each state is dependent on the others

and there are many possible combinations, the agent is not able to find the optimal

action.

The state definition needs to be modified to tackle the above issue. A list which

shows the action of each base station is added to the state definition (Algorithm 2,

line 5). Thus, the state apace at each time step is:

Statet = [Lbst , [abs1 , abs2 , . . . , abst−1 , . . . , absn]]

where 1 ≤ t ≤ n, and the actions for the base stations before time step t are the

updated actions while the others are the pre-assumed allocations. In our work, an

initial list of actions is created by assuming that each agent has selected itself as the

edge server (Algorithm 2, line 3) as follows:

Action0 = [bs1, bs2, . . . , bsn]

However, this is far from the optimal action. It will result in a high penalty, but

along the path after taking action for each base station, the better decision replaces

the initial allocation. Over iterations, the optimal actions will be discovered by the

agent.

All the base stations including the current base station where the agent is lo-

cated could be considered as the action space. Each of these base stations have the

29

chance to be selected as the edge server. The issue here is facing a large action

space specially when the number of base stations increases. This huge action space

decreases the efficiency of RL-agent performance because the agent has to explore

more, which increases the computation, or it has to ignore some of the actions and

rely on exploitation.

To reduce the action space in our problem, the nodes which are not part of the

optimal solution are eliminated. Although there is not a distance threshold as a

constraint, for a large number of base stations, just the neighbors are considered. For

example, for base station 1, there are some base stations close to it, for instance,

within 15 km. These nodes are better actions for being taken compared to the nodes

outside of this vicinity, as the main objective is reducing the latency. Determining

this value is dependent on the base station’s closeness. This value should be increased

when the base stations are not located close to each other in order to have feasible

actions. Otherwise, the action space becomes empty for some base stations. Same as

the previous model, we face a variable action space for each state.

The penalty function should be defined in a way to lead the agent to accomplish the

objectives because the agent takes actions that minimize its cumulative penalty. As

the agent should achieve three different objectives, the penalty function is composed

of different parts.

For the delay, the second part of state space is used. The distance of each node

to its action is calculated based on the geographical location of the nodes (Eq. 26).

For example for 4 nodes, if the second part of the state is [bs1, bs1, bs3, bs3] and the

order of the nodes that the agent is passing through is [bs1, bs2, bs3, bs4], the distance

penalty is:

PDis = [scaled distance(Lbs1 , Lbs1) + scaled distance(Lbs2 , Lbs1)

+ scaled distance(Lbs3 , Lbs3) + scaled distance(Lbs4 , Lbs3)] / 4

Here, the agent tends to select the K first base stations because the delay is

zero. Consequently, the actions are dependent on the node orders. To address this

issue, a value called average-distance, for each node, is calculated. This is the average

distance of each node to its neighbors by using the scaled distances. The neighbors

are considered the N nearest nodes. As it is considered K = n/10 like the work

30

in [49], N is 10 based on the following Equation:

N = (number of base stations)/K = n/K (20)

Then, Eq. 9 for having fairness, and Eq. 10 for having a balanced workload are

added to the penalty function.

Two kinds of action spaces are not accepted: the one with more or fewer than K

edge servers and the other one when a base station is both sender and receiver in an

episode. In a path in each episode, a base station is a sender if the agent chooses

another base station for offloading. Then, the selected base station is the edge server

and is the receiver. The agent will be penalized (Psr) if there is a node with the

mentioned condition.

Therefor, the final penalty function is:

Pabst
= (average distance)abst + {max(Λ)−min(Λ)}+ {max(D)−min(D)}

+ (
n∑︂

i=1

((distance(Lbsi , Labsi
))))/n+ w × (Psr)

(21)

where w is a binary variable and is equal to 1 if a node is both sender and receiver. It

should be noted that in calculating the penalty the scaled value of the distance and

workload is used.

For ensuring that there is only K servers, in the beginning, the agent is allowed

to take different actions (Algorithm 2, from line 11 to 14), but after having K edge

servers, the action space will become limited to that K nodes (Algorithm 2, from line

8 to 10).

In our algorithm, a Q-dictionary is created rather than the Q-table because the

states are not known in advance. In our Q-dictionary, the string of state is the ”key”

at each time step. A list filled with high values (1000) is the ”value” for each new

state, except the neighbors’ entries that are initialized to zero (Algorithm 2, lines 6-7

and lines 15-16). This optimistic initialization besides the ϵ-greedy policy motivates

the agent to explore possible actions over iterations [45].

Based on Eq. 16, the Q-dictionary values update over iterations. The γ = 0.3 and

α = 0.5, for the first experiment for 20 nodes. As mentioned, a higher value for γ

represents the importance of actions in the future states. By considering our penalty

function and the action selection limitations, the immediate and recent penalties are

more important. Besides, if the nodes are far, their actions do not affect each other.

31

For each node, the action space is limited to its neighbors. Therefore, the neighbors’

actions need to be considered, not the action of all the remote nodes. As the number

of base stations increases and the network becomes dense, reducing the γ and the

threshold distance is necessary. Otherwise, we face the infinity value for the cost.

The following example gives an overview of our Q-learning algorithm (Algo-

rithm 2) for the placement and optimal allocation for K-edge servers (QPAK). The

RL-agent starts its path from the first base station, and the state is: {[a1, a2, . . . , an],
1}. As mentioned earlier, in the first state, it is assumed each base station has selected

itself as the edge server for offloading, hence the state is: s1 = {[bs1, bs2, . . . , bsn], 1}.
Then, the agent will take an action based on the rules and limitations. For exam-

ple, bs5 is selected as the destination for the first node. Then, the new state will be

s2 = {[bs5, bs2, . . . , bsn], 2}. It shows the agent has moved to the second node (2).

Then the penalty based on Eq. 21 will be calculated. The agent receives the numeric

value as the result of that action. It continues until passing all the base stations

and assigning them to an edge server. After enough iterations for exploring different

possibilities based on the epsilon value and optimistic initialization, after converging

the cost, the action in each state is determined.

In QPAK, the action space is limited to the node’s neighbors. However, as the

agent should consider offloading as well as placement, it still causes large action

space. Thus, many explorations for different combinations are needed. In this situa-

tion, the computation time increases, and more iterations are needed for convergence.

Therefore, in addition to QPAK for adopting Q-learning, to further reduce the action

space, our second algorithm, named CQPAK1 (Algorithm 3), which combines the

Q-learning with Top-K and K-means is offered. In this approach, the action space is

limited to the selected nodes as the edge server for those two models (K-means and

Top-K). However, it might reduce the efficiency by not exploring the other nodes, but

it might also increase the efficiency by having a smaller action space through receiving

the potential nodes for the edge server placement. Top-K offers the nodes with the

heaviest workload, and for K-means, in each cluster, the node with the highest prior-

ity (Eq. 17) is selected. These nodes are the action space in our CQPAK algorithm,

while the other steps of the algorithm are the same as QPAK.

1The letter C stands for Combined.

32

Algorithm 2: QPAK Framework

1 for episode ← 1 to MAX do

2 ResetEnvironment()

3 Initialize action space in a way that each base station selects itself as edge

server

4 for i ← 1 to n do

5 si ← [action space, bsi]

6 if si not in Q then

7 Initialize Q(s, a) to 1000 except adjacent nodes for each state to 0

8 if |ES| = K then

9 QK ← GetQofK()

10 Choose absi for si using ϵ-greedy policy from QK

11 else

12 QN ← GetQofNeighbors()

13 Choose absi for si using ϵ-greedy policy from QN

14 take action absi , obtain P , observe new action space, si+1 ← [new

action space, Lbsi+1
]

15 if si+1 not in Q then

16 Initialize Q(s, a) to 1000 except adjacent nodes for each state to 0

17 update Q

18 action space ← new action space

33

Algorithm 3: CQPAK Framework

1 AS = []

2 Implement K-means

3 HPNC ← GetHighPriorityNodesofeachCluster()

4 AS ← AS.append(HPNC)

5 Implement Top-K

6 NHW ← GetNodeswithHighestWorkload()

7 AS ← AS.append(NHW)

8 for episode ← 1 to MAX do

9 ResetEnvironment()

10 Initialize action space in a way that each base station selects a random

node from AS as edge server

11 Follow line 4 to line 18 of QPAK Algorithm

3.4 Summary

In this chapter, two points of view for the design of MEC are proposed. In the first

one, the goal is minimizing the cost while maintaining the high QoS. After defining

the state space, action space and penalty function in a way to address the faced

issues, new steps as rules have been to the classical Q-learning algorithm to make it

applicable to our problem.

In the second view, it is assumed that the number of edge servers is given and

the goal is having an optimal design to achieve the minimum access delay, having fair

and balanced clusters. In addition, an approach based on the top-K and K-means

as a first step, before employing the Q-learning is suggested. In the first view, the

placement policy is created gradually and over episodes by passing each state, but in

the second view our algorithm is used a pre-assumed policy and it is improved over

iterations. In these two solutions, the RL difficulties including state space explosion,

dealing with large action space, variable action space, lack of static end goal and

defining an efficient penalty function for multi-objective problems are discussed and

efficient solutions are provided.

34

Chapter 4

Results and Discussion

This chapter introduces the dataset used in our simulations along with its features in

Section 4.1. To validate the proposed RL-frameworks presented in Chapter 3, exten-

sive experiments for different numbers of base stations considering various conditions

are discussed in Sections 4.2 and 4.3. The results of implementing our algorithms

are compared to other benchmarks to examine the performance of our approaches.

Finally, Section 4.4 concludes this chapter.

4.1 Dataset

To evaluate the performance of our proposed algorithms, a dataset from Shanghai

Telecommunication [49, 48, 15, 47] in China is used. It comprises the information

related to 3233 base stations and the connected users over 30 days, in June of 2014.

Each row/record indicates a request from a user sent to a particular base station.

There are five columns, and the first column shows the date of the requests/tasks,

which varies from 1 to 30. The start time and end time of the tasks are, respectively,

in the second and third column. The fourth column shows the location of base stations

in the latitude/longitude format. Finally, the last column is the user ID of devices

that have sent requests to the base stations. After reading the data in Python from

an excel file that contains two sheets, the workload of each base station is calculated,

which can be quantified in different ways.

In our first model, the number of requests is used for workload calculation. The

number of all the requests from different users that are directed to each base station

35

(a) All the base stations.

(b) 100 base stations (500-600).

Figure 4.1: The workload distribution/the number of tasks of all the base stations

and a range of base stations to see more details.

36

every day represents the base station’s workload. After computing this value for

each of the base stations over 30 days, the maximum value is the base station’s

workload, λ = {λ1, λ2, . . . , λn}. Thus, in the workload calculation, the worst situation

is considered because the maximum workloads may not happen concurrently. The

reason is that the placement of selected nodes as edge servers does not change over a

short period of time. Moreover, because of the fast growth of the number of mobile

and IoT devices, this conservative workload calculation is preferred. Then, based on

the capacity limitation of the edge servers, the maximum workload that each edge

server can handle was considered 150 requests per day similarly to the setup in [22].

Considering the base stations’ workload distribution (Fig. 4.1), some of them with

higher workloads were omitted from our dataset.

Since the information of the GPU consumption is not included in the dataset, in

our second model, the total duration of the tasks indicates the base stations’ workload.

However, it should be noted that the performance of the algorithms is not dependent

on the method of the workload calculation, and they can be used interchangeably.

As mentioned in Chapter 3, distance represents the delay. The distance matrix is

created using the geographical locations in the dataset. For that, the fourth column

of the dataset is divided into two separate columns. Instead of Euclidean distance

that is the length of a straight line between two points, the following equations are

used to have more precise distances:

dlon = lon2− lon1 (22)

dlat = lat2− lat1 (23)

a = (sin(dlat/2))2 + cos(lat1)× cos(lat2)× (sin(dlon/2))2 (24)

c = 2× atan2(sqrt(a), sqrt(1− a)) (25)

d = R× c (26)

where lon and lat represent the longitude and latitude of each node in radians, re-

spectively. Eq. 24 is the haversine formula that computes the great-circle distance

37

between two points in Eq. 25 [44]. This distance is the shortest path between the

two points on the surface of the sphere. The atan2(x, y) is the arctangent that gives

the radians angle between x and y. And R is the radius of the earth that is equal to

6371 km. In the last step, the base stations which have fewer than five neighbors in

their 3 km distance are known as the outliers and are removed from the dataset.

4.2 Minimizing the Cost of MEC

One of our primary purposes was to model the joint problem of edge placement

and computation offloading as a sequential decision making. After presenting this

modeling in the previous chapter, in this section, extensive experiments are conducted

to get a view of the model’s performance. First, to ensure that the results are not

dependent on the location or workload of selected base stations, and second, to analyze

the effect of pre-defined constraints, the following actions have been taken:

• Implementing algorithms for different number of base stations, including: 100,

300, 500, 700, 1000, 1400, 1700, 2000, 2400, 2798 base stations.

• Changing the maximum capacity of the edge server to evaluate the performance

of the algorithm by considering different workload constraints.

• Changing the distance threshold to evaluate the performance of the algorithm

by considering different delays.

After monitoring and validating the model’s performance in various situations,

the other objective is to see if our algorithm is able to have competitive results in

comparison to the other benchmark methods in terms of cost. Therefore, the three

popular approaches in the literature, Top-K, Top-DoF, and Random methods are

selected for the performance evaluation.

4.2.1 Implementation Results

In our constrained MDP, two constraints of maximum workload and maximum dis-

tance need to be defined before implementation. The maximum capacity of each edge

server is considered equal to 150 requests per day, and the maximum acceptable delay

38

for our network is 0.03 ms. To satisfy the delay constraint, the distance between the

edge server and the dominated base stations should be within 9 km [22].

Based on our proposed algorithm, the agent could find the near-optimal actions

for different numbers of base stations, and the convergence is guaranteed after enough

iterations (Fig. 4.2). The cost, the y-axis, represents the completed path’s penalty in

each episode. Fluctuations in the cost value in the first iterations show the learning

process of the agent through trial and error. When the number of base stations

increases, the action space expands, and consequently, more iterations are needed to

reach the optimal actions.

Although only the fixed part of our state definition is used in creating the Q-

table, the state-action values have converged. Interestingly, our algorithm worked for

large number of base stations (Fig. 4.2f-4.2j) with Q-table without the help of neural

networks by keeping a memory of the actions and their results in each episode.

Fig. 4.3 demonstrates the convergence of our algorithm while the distance thresh-

old varies from 3 km to 11 km. It means the maximum accepted latency varies

between 0.01 ms and 0.036 ms. This experiment is done for 300 base stations, and

the maximum workload is considered 150 requests per day. By increasing the distance

threshold, more iterations are needed because the action space is increasing, as well.

In the other experiment, the convergence of the model is shown for 300 base

stations and the maximum acceptable delay of 0.03 ms, while the workload’s limit

changes between 100 to 200 requests per day (Fig. 4.4). Increasing the workload

capacity does not necessarily increase the convergence time (comparing Fig. 4.4b

and 4.4c), and it is dependent on the node’s position and the number of neighbors.

4.2.2 Performance Evaluation

Two performance indicators are used to illustrate the performance of our algorithm,

the number of selected edge servers and the average distance, that represent the

communication or access delay. It is supposed that the processing time is negligible,

and by following the workload condition, there is no queue, and consequently, there

is no waiting time. Thus, the access delay represents the network delay.

In Top-K, the nodes based on their workloads are sorted, and the first one, with

the highest workload, is selected as the edge server. Then the neighbors of the selected

edge server are defined. It includes all the nodes that their distance is less than the

39

(a) 100 base stations (b) 300 base stations

(c) 500 base stations (d) 700 base stations

(e) 1000 base stations (f) 1400 base stations

(g) 1700 base stations (h) 2000 base stations

40

(i) 2400 base stations (j) 2798 base stations

Figure 4.2: Implementing Q-learning to find minimum edge servers for different num-

ber of base stations

pre-defined threshold. The neighbor nodes offload their computation to the elected

edge server until reaching the maximum capacity of the server. This cluster of the

edge server and its connected base stations is removed from the initial set of base

stations. Then the remaining nodes are again sorted based on their workloads, and

the algorithm is repeated until all the base stations are assigned to an edge server.

The other two algorithms have the same structure, but the edge servers selecting

criteria are different. In Top-DoF, the nodes are sorted based on the number of their

neighbors. The node with the most neighbors is selected as the edge server. In the

Random algorithm, the first node as the edge server is picked randomly. In both, then

the adjacent nodes (neighbors) are mapped to the selected node until reaching the

maximum accepted workload. This procedure continues till all nodes are allocated to

an edge server.

Figure. 4.5 and Table. 4.1 illustrate the performance of four algorithms for dif-

ferent number of base stations, from 100 to 2798. As the number of base stations

increases (for more than 2000 base stations), the Top-DoF outperforms the Top-K

(Fig. 4.5). The performance of the Random is interesting, and in most cases, it has

some striking similarities to the performance of the Top-K in terms of network de-

lay. Our Q-learning algorithm for having the minimum cost (QMC) has the best

performance with considerably less delay (Fig. 4.5). The delay in our algorithm is,

on average, 47.7% less than Top-K, 49.25% less than Top-DoF, and 47.64% less than

Random.

41

(a) Distance threshold = 3km (b) Distance threshold = 5km

(c) Distance threshold = 7km (d) Distance threshold = 9km

(e) Distance threshold = 11km

Figure 4.3: Performance of our proposed algorithm by considering different accepted

network delays

42

(a) Computation capacity = 100re-

quests/day

(b) Computation capacity = 120re-

quests/day

(c) Computation capacity = 150re-

quests/day

(d) Computation capacity = 170re-

quests/day

(e) Computation capacity = 200re-

quests/day

Figure 4.4: Performance of our proposed algorithm by considering different compu-

tation capacity for the edge servers

43

Figure 4.5: Results comparison in terms of network delay.

n QMC Top-K Top-DoF Random

100 17 19 18 18

300 59 63 63 64

500 109 114 112 114

700 171 176 172 175

1000 224 230 228 230

1400 285 290 288 292

1800 318 323 324 328

2000 360 363 364 365

2400 428 433 435 443

2798 509 512 517 521

Table 4.1: The number of selected edge servers with respect to the number of base

stations

44

Table. 4.1 shows an approximately similar performance of diffident algorithms. How-

ever, in all cases, our algorithm has found fewer edge servers. In contrast to the

algorithm’s performance with respect to the network delay, concerning the number

of edge servers, for more number of nodes, Top-K compared to Top-DoF has better

results. It means that for 100 to 1400 base stations, Top-DoF has found fewer edge

servers, while for 1800 to 2798 base stations, Top-K has better performance.

In the other experiment, the number of base stations is 300, and the maximum

computation capacity of edge servers is 150 requests per day (Fig. 4.6). These two

factors are fixed, and the distance constraint varies. The performance of four algo-

rithms is compared in terms of the number of edge servers (K) in Figure. 4.6b, and

in terms of network delay (DN) in Figure. 4.6a, which represents the quality of the

Network.

Less delay, as an integral feature of the MEC, results in higher QoS and customer

satisfaction. It is clear that increasing the distance constraint results in higher latency

for all the algorithms. However, the gap between our proposed algorithm and the

others is transparent, especially when the distance threshold increases (Fig. 4.6a).

The network delay of QMC is, on average, 28.88% less than Top-K, 36.38% less than

Top-DoF, and 30.17% less than Random.

The number of selected edge servers decreases as the delay increases, except in

one case for the Random algorithm. The random algorithm has exceptional results

compared to Top-K and Top-DoF, and it outperforms in some situations (Fig. 4.6b).

In our last experiment, the effect of workload constraint is investigated. Similar

to the previous one, 300 base stations are considered when the maximum accepted

delay is 0.03 ms, but here different edge servers capacities are examined.

Concerning the network delay, as in the other experiments, our proposed algorithm

noticeably outperforms the others benchmark approaches (Fig. 4.7). The Random

algorithm in this experiment, on average, has a better performance compared to the

Top-K and Top-DoF. To find the minimum number of edge servers, as the capacity

increases, the number of edge servers decreases, and relatively similar performance

for all the algorithms is observed (Table. 4.2). As the table shows, QMC has found

more edge servers compared to the three other approaches for 100 nodes. The reason

is in the penalty function’s definition because it utilizes the same weights for the two

objectives. As shown in Figure 4.7, the agent has acted in a way for receiving the

45

(a) Average network delay

(b) Number of selected edge servers

Figure 4.6: Comparison the four algorithms with respect to the distance constraint

for 300 base stations

46

Figure 4.7: Average network delay with respect to the edge servers computation

capacity

Computation capacity QMC Top-K Top-DoF Random

100 93 91 91 92

120 75 75 76 79

150 59 63 63 64

170 54 58 54 64

200 47 48 47 61

Table 4.2: The number of selected edge servers with respect to the edge servers

computation capacity

47

minimum penalty in total. While it has found one or two more servers, the delay has

significantly decreased. It is worth noting that in our algorithm, it is possible to add

different weights for goals based on their importance or consider a higher value as the

penalty of adding each edge server.

4.3 K-edge Servers Placement

4.3.1 Implementation Results

In this section, the aim is to demonstrate the performance of our two proposed al-

gorithms when there is a fixed number of edge servers. The investigation for this

problem is done for different numbers of base stations: 10, 20, 30, 40, 50, 60, 70, 80,

90, 100. These base stations are chosen randomly from those where latitude > 31.18

and longitude > 121.5, in order to consider a dense area.

Similar to [47], the number of edge servers is assumed as 1/10 number of base

stations. However, this ratio is dependent on the available budget. Increasing the

number of edge servers due to more budget usually results in better performance,

especially from the delay point of view.

Figure. 4.8, and 4.9 demonstrate the convergence of the Q-learning for placement

and optimal allocation for K-edge servers (QPAK) and the combination of Q-learning

with K-means and Top-K (CQPAK) algorithms for the different number of base

stations. CQPAK converges sooner compared to QPAK. For example, in Fig. 4.8j,

selecting ten edge servers from 100 base stations QPAK needs about 13000 iterations

to reach the near-optimal value, while the CQPAK converges before 8000 iterations

(Fig. 4.9j). These results reveal the effect of action space on the computation time,

and as the number of base stations increases, the difference becomes more evident.

4.3.2 Performance Evaluation

After validating the offered algorithms, their results are compared to the other bench-

mark methods. Based on the mentioned objectives in Eqs. 8, 9, and 10, three perfor-

mance indicators are defined. For calculating the communication delay, the average

48

(a) Selecting 1 edge server. (b) Selecting 2 edge servers.

(c) Selecting 3 edge servers. (d) Selecting 4 edge servers.

(e) Selecting 5 edge servers. (f) Selecting 6 edge servers.

(g) Selecting 7 edge servers. (h) Selecting 8 edge servers.

49

(i) Selecting 9 edge servers. (j) Selecting 10 edge servers.

Figure 4.8: Implementing QPAK for the K-edge servers placement by considering

different number of base stations.

(a) Selecting 1 edge server. (b) Selecting 2 edge servers.

(c) Selecting 3 edge servers. (d) Selecting 4 edge servers.

50

(e) Selecting 5 edge servers. (f) Selecting 6 edge servers.

(g) Selecting 7 edge servers. (h) Selecting 8 edge servers.

(i) Selecting 9 edge servers. (j) Selecting 10 edge servers.

Figure 4.9: Implementing CQPAK for the K-edge servers placement by considering

different number of base stations.

51

distance between base stations and their edge server is used as follows:

Dcommunication =

K∑︂
j=1

n∑︂
i=1

(distance(bsi, esj)× xij)

n
(27)

where xij is a binary variable which shows if the base station is assigned to that edge

server as follows:

xij =

⎧⎨⎩1, if bsi is connected to esj

0, otherwise
(28)

Workload balancing is a factor for MEC performance evaluation [36]. To show the

workload balancing the standard deviation was used. By assuming having K edge

servers the workload balancing was calculated as follows:

WB =

⌜⃓⃓⃓
⎷⃓

K∑︂
j=1

(wlj − wlES)
2

K
(29)

wlES =

n∑︂
i=1

λi

K
(30)

Eq. 30 is the average workload of all base stations over K edge servers. Eq. 29

computes how far we are from the ideal condition for workload balancing, so the

smaller value shows the better offloading policy for a homogeneous network.

To show the fairness of our assignments in the network, for each cluster, the

average delay same as the previous Eq. 27 is calculated calledDj. Then same as Eq. 29

the standard deviation is used for the cluster delays. The smaller value represents

higher fairness. It means that users in different areas who are connected to the

network are experiencing the same quality of service.

In addition to our two algorithms described in Chapter 3 for this problem, the

K-means and Top-K are also used as base models to compare the performance of

different approaches. K-means is one of the most common unsupervised clustering

algorithms. For using this algorithm, K should be determined in advance, which

is equal to the number of clusters. This algorithm partitions the dataset in a way

52

that within distance in each cluster is minimized while the distance between clusters

is maximized. The K-means algorithm is sensitive to centroid initialization. K-

means++ [3] is used as it applies a smarter initialization method. Fig. 4.10 illustrates

the K-means clustering, based on the base stations’ geographical location, which does

not consider the workload of the base stations.

In Top-K, the K heaviest base stations in terms of the workload are selected as

the edge servers. Then the other base stations are assigned to their nearest edge

server until all of them are mapped to a particular edge server.

For comparing the performance of these four algorithms, three objectives were

defined. One of the targets is to have a balanced network in terms of workload. As

Fig. 4.11 represents CQPAK, QPAK have relatively similar performance better than

the other two algorithms. In most cases, K-means has a more balanced workload

compared to Top-K.

n Top-K K-means QPAK CQPAK

10 4.37 2.29 2.24 2.24

20 1.62 1.49 1.72 1.72

30 1.54 1.15 1.71 1.66

40 1.64 1.45 2.19 2.15

50 1.36 0.82 1.29 1.30

60 2.02 0.94 1.69 1.08

70 1.14 0.87 1.34 1.35

80 1.18 0.77 1.29 1.13

90 1.04 0.78 1.32 0.99

100 1.13 0.66 0.92 0.97

Table 4.3: The communication delay (km) (Eq.27) considering different number of

base station

Table. 4.3 shows the communication delay where K-means outperforms the other

models, except the first row, where the number of base stations is equal to 10. First,

the reason for the better performance of K-means is that our models are designed

to find the optimal locations and allocations based on the trade-off among three

objectives, not just one. Second, the reason for the better performance of our models

53

(a) Selecting 1 edge server. (b) Selecting 2 edge servers.

(c) Selecting 3 edge servers. (d) Selecting 4 edge servers.

(e) Selecting 5 edge servers. (f) Selecting 6 edge servers.

(g) Selecting 7 edge servers. (h) Selecting 8 edge servers.

54

(i) Selecting 9 edge servers. (j) Selecting 10 edge servers.

Figure 4.10: Implementing K-means for the K-edge servers placement by considering

different number of base stations.

when there is just one edge server/cluster is that the agent focuses only on minimizing

the communication delay because the penalty value for the other two objectives is

similar in all iterations. The edge server placement and base stations’ allocation for

these ten nodes is graphically illustrated in Fig. 4.12. Unlike our methods and Top-

K, as can be seen in Fig 4.12a, K-means adds a new location for the placement of

the edge server. It is worth mentioning that K-means could perform better than our

methods in some other random ten node selections due to the added node that might

reduce the delay. However, based on our different experiments, in most cases, QPAK

and CQPAK have better results. Therefore, the result in this specific case where only

one edge server is considered is highly dependent on the nodes’ placement.

Although Table. 4.4 shows that K-means works well in creating the fair clusters,

this performance is dependent on the nodes’ locations and their closeness. For exam-

ple, for 20 and 30 nodes, the other algorithms have better results.

After scaling all the values for different parts of the objectives, the sum of these

values is calculated. This sum shows the cost of each decision based on the three

goals. Fig. 4.13 demonstrates the performance of the four mentioned methods by

considering the different number of base stations when the number of edge servers is

fixed, and it is equal to 1/10 of the total number of base stations.

Our algorithms outperform the other two algorithms (Fig. 4.13). As we mentioned

in Chapter 3, using CQPAK might improve the performance because it reduces the

action space, for example, for 40 to 80 nodes. On the other hand, it might affect the

performance as the agent cannot have enough explorations, and it might pass over

55

Figure 4.11: The workload balancing (min) (Eq. 29) of the edge servers considering

different number of base station.

(a) K-means. (b) Top-K (c) QPAK / CQPAK.

Figure 4.12: Edge server placement and base station allocation for n = 10.

56

n Top-K K-means QPAK CQPAK

20 0.074 0.293 0.028 0.028

30 0.119 0.191 0.065 0.060

40 0.564 0.192 0.735 0.502

50 0.631 0.290 0.430 0.580

60 0.878 0.191 0.607 0.404

70 0.436 0.181 0.384 0.445

80 0.295 0.225 0.654 0.435

90 0.376 0.217 0.347 0.329

100 0.580 0.166 0.207 0.292

Table 4.4: The fairness (km) of the network considering different number of base

station

Figure 4.13: The total cost value for the four algorithms respect to the number of the

base stations.

57

(a) K-means. (b) Top-K.

(c) QPAK and CQPAK.

Figure 4.14: Comparing the placement and allocation of the four algorithms for 20

base stations.

some better decisions like for 30, 90, and 100 nodes. In total, these two algorithms

have relatively similar performance, while CQPAK needs less computation power and

time. The performance of Top-K and K-means varies for the different number of nodes

based on the workload distribution and nodes’ location.

The detailed performance of our proposed algorithms, in comparison to the others,

is illustrated in Fig. 4.14, which is a graph view for 20 base stations. The size of the

nodes represents their scaled workload. In Fig. 4.14a nodes 20 and 21 are the locations

that are added to the network by K-means for the edge server placement. As can

be seen, the workloads are not considered because the K-means partitions the nodes

based on their geographical location. Although for this experiment, in Top-K and our

58

models, the opted nodes for the edge server placement are the alike (Fig. 4.14b, 4.14c),

the results are dissimilar because of the different allocations. By considering all three

objectives, our model has mapped nodes 7 and 16 to node 2. However, this decision

results in a more average communication delay but increases the load balancing that

consequently decreases the delay caused by the queue. Besides, it increases fairness

in clustering, which is the third objective that needs to be considered. The above

example shows how our agent is trying to create a balance between objectives.

4.4 Summary

In this chapter, we demonstrated the convergence of our proposed RL-frameworks

for the two problems we address in this thesis: minimizing the cost of MEC design

and finding the optimal placement of the K-edge servers by considering different

conditions. For each of our two models, the performance indicators, based on the

objectives, were defined to evaluate different approaches. Our algorithms showed

better results compared to other benchmark methods when all the goals are considered

jointly. Moreover, while the total performance of Top-K, top-DoF, Random, and K-

means varies based on the base stations’ location and nodes’ workload, our RL-agent

can find the trade-off by discovering where improvements are needed in order to have a

better total performance for all different situations. Therefore, based on the obtained

results, in the light of efficient penalty function and precise state-space, our RL-based

frameworks are able to handle multi-objective problems even for large-scale problems.

59

Chapter 5

Conclusion and Future Work

MEC is a computing paradigm that is highly promising for the emerging 5G applica-

tions that require real-time response. Defining the optimal placement for edge servers

and optimally assigning the users or base stations to the edge servers are key points

toward a better performance of the network. After assessing the literature review and

witnessing the promising results of RL for the placement optimization, in this study,

the main goal was to define an efficient RL-framework for this joint problem.

Therefore, in this thesis, we developed new RL-based algorithms by adapting the

classic Q-learning for jointly optimizing the placement and computation offloading.

We considered two key perspectives, minimizing the cost and finding the optimal

MEC design with respect to placement and allocation for K-edge servers. In addition

to having convergence for our proposed algorithms, which is a difficult challenge in

RL, we have obtained promising results demonstrating that RL-based solutions have

better performance compared to other benchmark methods.

The challenges of conducting this research are the limitations of RL when used for

real-world applications including the consideration of variable action space, difficulty

in penalty definition for multi-objective problems, lack of a specific static end goal and

curse of dimensionality caused by massive action space and state-space explosion. Our

solutions for this specific joint problem and for these mentioned issues are explained.

Despite the mentioned challenges, the key to Q-learning application for this large

scale real-world problem is a precise and efficient definition of the state space, action

space, and penalty function.

60

In the first problem, to find the optimal design with the minimum cost, the con-

straints are added to the algorithm as rules for limiting the branching, and then a

new step is considered for offering the possible actions based on the previous decisions

in each episode. In the second problem, K-edge server placement, after having an ef-

ficient Q-learning based algorithm, for reducing the computation time, we offered the

combination of K-means and top-K with Q-learning.

In summary, we have been able to model the joint problem of the placement and

base station allocation as an RL problem solvable by employing the Q-table. As

future work, we will investigate the use of deep RL algorithms for the second model

and analyse the convergence, complexity, and efficiency issues. The other way to

extend this work is to eliminate the assumption that each base station can only be

connected to one edge server and consider the situation where the edge servers are

shareable. Each edge server can be considered as a smart agent that communicates

with the other servers. This becomes a multi-agent game where the edge servers can

collaborate with each other to increase the performance.

One limitation of our algorithms is that the agent needs to perform the exploration

process repeatedly and needs to be retrained for every new placement problem includ-

ing increasing the number of base stations or changing the constraints. The ability

of generalizing the algorithms for larger and unseen networks might be achieved by

defining the MEC as a graph and then deploying and training a graph neural network

to represent the state space.

Besides setting the rules and using the information in the state definition for re-

ducing the action space, the next step can be training a neural network and using it

for classifying different actions, which might increase the efficiency of the RL algo-

rithms to reach better results. As we are dealing with a sequential decision-making

problem, a recurrent neural network can also be used to help the RL-agent take better

actions.

61

Bibliography

[1] Ejaz Ahmed, Abdullah Gani, Mehdi Sookhak, Siti Hafizah Ab Hamid, and Feng

Xia. Application optimization in mobile cloud computing: Motivation, tax-

onomies, and open challenges. Journal of Network and Computer Applications,

52:52–68, 2015.

[2] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino. Task of-

floading and resource allocation for mobile edge computing by deep reinforcement

learning based on sarsa. IEEE Access, 8:54074–54084, 2020.

[3] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful

seeding. Technical report, 2006.

[4] Paramvir Bahl, Richard Y. Han, Li Erran Li, and Mahadev Satyanarayanan.

Advancing the state of mobile cloud computing. In Proceedings of the Third

ACM Workshop on Mobile Cloud Computing and Services, MCS ’12, page 21–28,

New York, NY, USA, 2012. Association for Computing Machinery.

[5] Craig Boutilier, Alon Cohen, Amit Daniely, Avinatan Hassidim, Yishay Man-

sour, Ofer Meshi, Martin Mladenov, and Dale Schuurmans. Planning and learn-

ing with stochastic action sets. arXiv preprint arXiv:1805.02363, 2018.

[6] Kun Cao, Liying Li, Yangguang Cui, Tongquan Wei, and Shiyan Hu. Exploring

placement of heterogeneous edge servers for response time minimization in mobile

edge-cloud computing. IEEE Transactions on Industrial Informatics, PP:1–1, 02

2020.

[7] Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Pr’emont-

Schwarz, and André Ciré. Combining reinforcement learning and constraint

programming for combinatorial optimization. ArXiv, abs/2006.01610, 2020.

62

[8] Yash Chandak, Georgios Theocharous, Blossom Metevier, and Philip S Thomas.

Reinforcement learning when all actions are not always available.

[9] Meng-Hsi Chen, Ben Liang, and Min Dong. A semidefinite relaxation approach

to mobile cloud offloading with computing access point. In 2015 IEEE 16th Inter-

national Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), pages 186–190. IEEE, 2015.

[10] Boutheina Dab, Nadjib Aitsaadi, and Rami Langar. Q-learning algorithm for

joint computation offloading and resource allocation in edge cloud. In 2019

IFIP/IEEE Symposium on Integrated Network and Service Management (IM),

pages 45–52. IEEE, 2019.

[11] K. Dolui and S. K. Datta. Comparison of edge computing implementations:

Fog computing, cloudlet and mobile edge computing. In 2017 Global Internet of

Things Summit (GIoTS), pages 1–6, 2017.

[12] Iddo Drori, Anant Kharkar, William R. Sickinger, Brandon Kates, Qiang Ma,

Suwen Ge, Eden Dolev, B. Dietrich, David P. Williamson, and Madeleine Udell.

Learning to solve combinatorial optimization problems on real-world graphs in

linear time. ArXiv, abs/2006.03750, 2020.

[13] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-

world reinforcement learning. arXiv preprint arXiv:1904.12901, 2019.

[14] Anna Goldie and Azalia Mirhoseini. Placement optimization with deep reinforce-

ment learning. In Proceedings of the 2020 International Symposium on Physical

Design, pages 3–7, 2020.

[15] Yan Guo, Shangguang Wang, Ao Zhou, Jinliang Xu, Jie Yuan, and Ching-Hsien

Hsu. User allocation-aware edge cloud placement in mobile edge computing.

Software: Practice and Experience, 50(5):489–502, 2020.

[16] Ahmad Hammoud, Hani Sami, Azzam Mourad, Hadi Otrok, Rabeb Mizouni,

and Jamal Bentahar. AI, blockchain, and vehicular edge computing for smart

and secure IoV: Challenges and directions. IEEE Internet of Things Magazine,

3(2):68–73, 2020.

63

[17] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.

Mobile edge computing—a key technology towards 5G.

[18] Liang Huang, Xu Feng, Cheng Zhang, Liping Qian, and Yuan Wu. Deep re-

inforcement learning-based joint task offloading and bandwidth allocation for

multi-user mobile edge computing. Digital Communications and Networks,

5(1):10–17, 2019.

[19] Mike Jia, Jiannong Cao, and Weifa Liang. Optimal cloudlet placement and user

to cloudlet allocation in wireless metropolitan area networks. IEEE Transactions

on Cloud Computing, 5(4):725–737, 2015.

[20] M. Kamoun, W. Labidi, and M. Sarkiss. Joint resource allocation and offload-

ing strategies in cloud enabled cellular networks. In 2015 IEEE International

Conference on Communications (ICC), pages 5529–5534, 2015.

[21] R. Kemp, N.O. Palmer, T. Kielmann, and H.E. Bal. Cuckoo: a computation

offloading framework for smartphones. In 2nd Int. Conf. on Mobile Computing,

Applications, and Services (MobiCASE 2010), 2010.

[22] S. Lee, S. Lee, and M. K. Shin. Low cost MEC server placement and associ-

ation in 5G networks. In 2019 International Conference on Information and

Communication Technology Convergence (ICTC), pages 879–882, 2019.

[23] Y. Li and S. Wang. An energy-aware edge server placement algorithm in mobile

edge computing. In 2018 IEEE International Conference on Edge Computing

(EDGE), pages 66–73, 2018.

[24] Yuanzhe Li and Shangguang Wang. An energy-aware edge server placement

algorithm in mobile edge computing. In 2018 IEEE International Conference on

Edge Computing (EDGE), pages 66–73. IEEE, 2018.

[25] Juan Liu, Yuyi Mao, Jun Zhang, and Khaled B Letaief. Delay-optimal compu-

tation task scheduling for mobile-edge computing systems. In 2016 IEEE In-

ternational Symposium on Information Theory (ISIT), pages 1451–1455. IEEE,

2016.

64

[26] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architec-

ture and computation offloading. IEEE Communications Surveys & Tutorials,

19(3):1628–1656, 2017.

[27] Nina Mazyavkina, Sergey I. Sviridov, Sergei V. Ivanov, and Evgeny Bur-

naev. Reinforcement learning for combinatorial optimization: A survey. ArXiv,

abs/2003.03600, 2020.

[28] J. Meng, C. Zeng, H. Tan, Z. Li, B. Li, and X. Li. Joint heterogeneous server

placement and application configuration in edge computing. In 2019 IEEE 25th

International Conference on Parallel and Distributed Systems (ICPADS), pages

488–497, 2019.

[29] Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE,

49(1):8–30, 1961.

[30] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori,

Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae,

et al. Chip placement with deep reinforcement learning. arXiv preprint

arXiv:2004.10746, 2020.

[31] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen,

Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff

Dean. Device placement optimization with reinforcement learning. arXiv preprint

arXiv:1706.04972, 2017.

[32] A. Mukherjee, D. De, and D. G. Roy. A power and latency aware cloudlet

selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud

Computing, 7(1):141–154, 2019.

[33] Kevin E Murray and Vaughn Betz. Adaptive fpga placement optimization via

reinforcement learning.

[34] Dilay Parmar, A. Kumar, Ashwin Nivangune, P. Joshi, and U. Rao. Discov-

ery and selection mechanism of cloudlets in a decentralized MCC environment.

2016 IEEE/ACM International Conference on Mobile Software Engineering and

Systems (MOBILESoft), pages 15–16, 2016.

65

[35] K. Peng, X. Qian, B. Zhao, K. Zhang, and Y. Liu. A new cloudlet placement

method based on affinity propagation for cyber-physical-social systems in wireless

metropolitan area networks. IEEE Access, 8:34313–34325, 2020.

[36] Kai Peng, Xiaolong Xu, Lixin Zheng, Jiabin Wang, and Qingjia Huang. A survey

on mobile edge computing: Focusing on service adoption and provision. Wireless

Communications and Mobile Computing, 2018, 10 2018.

[37] Gaith Rjoub, Jamal Bentahar, and Omar Abdel Wahab. Bigtrustscheduling:

Trust-aware big data task scheduling approach in cloud computing environments.

Future Gener. Comput. Syst., 110:1079–1097, 2020.

[38] Gaith Rjoub, Omar Abdel Wahab, Jamal Bentahar, and Ahmed Saleh Bataineh.

A trust and energy-aware double deep reinforcement learning scheduling strategy

for federated learning on IoT devices. In Eleanna Kafeza, Boualem Benatallah,

Fabio Martinelli, Hakim Hacid, Athman Bouguettaya, and Hamid Motahari,

editors, Service-Oriented Computing - 18th International Conference, ICSOC

2020, Dubai, United Arab Emirates, December 14-17, 2020, Proceedings, volume

12571 of Lecture Notes in Computer Science, pages 319–333. Springer, 2020.

[39] Hani Sami, Azzam Mourad, Hadi Otrok, and Jamal Bentahar. Fscaler: Auto-

matic resource scaling of containers in fog clusters using reinforcement learning.

In 16th International Wireless Communications and Mobile Computing Con-

ference, IWCMC 2020, Limassol, Cyprus, June 15-19, 2020, pages 1824–1829.

IEEE, 2020.

[40] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based

cloudlets in mobile computing. IEEE Pervasive Computing, 8(4):14–23, 2009.

[41] Mahadev Satyanarayanan. Mobile computing: The next decade. In Proceed-

ings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social

Networks and Beyond, MCS ’10, New York, NY, USA, 2010. Association for

Computing Machinery.

[42] Tanmoy Sen and Haiying Shen. Machine learning based timeliness-guaranteed

and energy-efficient task assignment in edge computing systems. In 2019 IEEE

66

3rd International Conference on Fog and Edge Computing (ICFEC), pages 1–10.

IEEE, 2019.

[43] Weisong Shi, George Pallis, and Zhiwei Xu. Edge computing [scanning the issue].

Proceedings of the IEEE, 107(8):1474–1481, 2019.

[44] Roger W Sinnott. Virtues of the haversine. S&T, 68(2):158, 1984.

[45] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

2018.

[46] Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, Mohammad Al-

izadeh, et al. Learning generalizable device placement algorithms for distributed

machine learning. In Advances in Neural Information Processing Systems, pages

3981–3991, 2019.

[47] Shangguang Wang, Yan Guo, Ning Zhang, Peng Yang, Ao Zhou, and

Xuemin Sherman Shen. Delay-aware microservice coordination in mobile edge

computing: A reinforcement learning approach. IEEE Transactions on Mobile

Computing, 2019.

[48] Shangguang Wang, Yali Zhao, Lin Huang, Jinliang Xu, and Ching-Hsien Hsu.

Qos prediction for service recommendations in mobile edge computing. Journal

of Parallel and Distributed Computing, 127:134–144, 2019.

[49] ShangguangWang, Yali Zhao, Jinlinag Xu, Jie Yuan, and Ching-Hsien Hsu. Edge

server placement in mobile edge computing. Journal of Parallel and Distributed

Computing, 127:160–168, 2019.

[50] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-

4):279–292, 1992.

[51] Yifei Wei, Zhaoying Wang, Da Guo, and F. Yu. Deep q-learning based compu-

tation offloading strategy for mobile edge computing. Computers, Materials &

Continua, 59:89–104, 01 2019.

[52] Yuan Zhang, Hao Liu, Lei Jiao, and Xiaoming Fu. To offload or not to offload:

An efficient code partition algorithm for mobile cloud computing. In 2012 IEEE

67

1st International Conference on Cloud Networking (CLOUDNET), pages 80–86,

2012.

[53] Xinwen Zhang, Anugeetha Kunjithapatham, Sangoh Jeong, and Simon Gibbs.

Towards an elastic application model for augmenting the computing capabilities

of mobile devices with cloud computing. Mob. Networks Appl., 16(3):270–284,

2011.

[54] Rui Zhao, Xinjie Wang, Junjuan Xia, and Liseng Fan. Deep reinforcement learn-

ing based mobile edge computing for intelligent internet of things. Physical Com-

munication, 43:101184, 2020.

68

	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Objectives and Contributions
	Thesis Outline

	Background and Literature Review
	Reinforcement Learning
	Edge Server Placement and Computation Offloading in MEC
	Computation Offloading
	Reinforcement Learning for Computation Offloading
	Edge Server Placement and Task Offloading

	Reinforcement Learning for the Placement Optimization
	Discussion

	Edge Server Placement Modeling and RL-Frameworks
	System Model and Problem Definition
	Edge Server Placement Formulations
	First Model: Minimizing the Cost of MEC
	Second Model: K-edge Server Placement

	Modeling the Placement as an RL Problem
	RL Framework for Minimizing the Cost of MEC
	RL Framework for K-edge Server Placement

	Summary

	Results and Discussion
	Dataset
	Minimizing the Cost of MEC
	Implementation Results
	Performance Evaluation

	K-edge Servers Placement
	Implementation Results
	Performance Evaluation

	Summary

	Conclusion and Future Work

