
A heuristic to repartition large multi-dimensional arrays with

reduced disk seeking

Timothée Guédon

A thesis

in

The Department

of

Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of science in computer science

Concordia University

Montréal, Québec, Canada

December 2020

© Timothée Guédon, 2021

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Timothée Guédon

Entitled: A heuristic to repartition large multi-dimensional arrays

with reduced disk seeking

and submitted in partial fulfillment of the requirements for the degree of

Master of science in computer science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. Essam Mansour

Examiner

Dr. Essam Mansour

Examiner

Dr. Hovhannes Harutyunyan

Supervisor

Dr. Tristan Glatard

Approved by
Dr. Leila Kosseim, Graduate Program Director

December 17, 2020

Mourad DEBBABI, Ph.D., Computer Science, Dean

Faculty of Engineering and Computer Science

Abstract

A heuristic to repartition large multi-dimensional arrays with reduced

disk seeking

Timothée Guédon

Multi-dimensional arrays have become critical scientific data structures, but their

manipulation raises performance issues when they exceed memory capacity. In par-

ticular, accessing specific array regions can require millions to billions of disk seek

operations, with important consequences on I/O performance. While traditional ap-

proaches to address this problem focus on file format optimizations, we are searching

for algorithmic solutions where applications control I/O to reduce seeking. In this

thesis, we propose the keep heuristic to minimize the number of seeks required for the

repartitioning of large multi-dimensional arrays. The keep heuristic uses a memory

cache to reconstruct contiguous data sections in memory. We evaluate it on arrays of

size 85.7 GiB with memory amounts ranging from 4 to 275 GiB. Repartitioning time

is reduced by a factor of up to 2.5, and seeking is reduced by four orders of magnitude.

Due to the effect of asynchronous writes to memory page cache enabled by the Linux

kernel, speed up is only observed for arrays that exceed the size of working memory.

The keep heuristic could be applied in platforms that manipulate large data arrays,

as is commonly the case in scientific imaging.

iii

Acknowledgments

I would like to thank Professor Tristan Glatard, my supervisor, for his invaluable sup-

port during my master’s degree. First of all, I would like to thank him for giving me

the opportunity to join his laboratory and do a thesis under his supervision. I would

also like to thank him for his help and guidance throughout the thesis. I would then

like to thank Valérie Hayot-Sasson for her help as a collaborator on my thesis, but

also for her support in academic life at Concordia University. She gave me valuable

advice and was always willing to give me a critical and informed opinion on my work.

Finally, I wish to thank Christelle Bardelli, my partner in life who gave time and

energy to help me reformulate my ideas, practice my speaking skills and get through

difficult times.

The computing platform was obtained with funding from the Canada Foundation

for Innovation.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 3

2.1 Multidimensional arrays storage . 3

2.1.1 Storing arrays in one file . 3

2.1.2 Multidimensional array chunking 4

2.2 File formats . 7

2.3 Multidimensional array processing frameworks 8

2.4 The Python programming language 9

2.4.1 Dask . 9

2.5 Sequential algorithms for optimizing multidimensional arrays manipu-

lation . 10

2.6 Example use case of the repartitioning task 11

2.7 The Region Of Interest Extraction Problem 12

3 The keep heuristic for repartitioning multidimensional arrays 14

3.1 Problem definition and baseline . 15

3.1.1 The re-partitioning problem 15

3.1.2 Baseline . 18

3.2 The keep heuristic . 21

3.2.1 Overview . 21

3.2.2 Candidate read shapes . 21

v

3.2.3 Block order . 23

3.2.4 Creation of write blocks . 23

3.2.5 Peak memory . 25

3.2.6 Number of generated seeks . 26

3.2.7 Implementation . 26

3.3 Experiments . 27

3.3.1 Seek model validation . 27

3.3.2 Experiment conditions . 29

3.3.3 Results . 29

3.4 Discussion . 34

3.4.1 Relevant extensions . 34

3.4.2 Implementing sequential optimization algorithms into Dask . . 35

4 Conclusion 38

4.1 Future work . 39

vi

List of Figures

1 Illustration of commonly used space-filling curves [15] 5

2 Ordering of 3D array elements in files in C order. The first stored

element is colored in green, the last one is in blue. Seeking to the red

elements is required when extracting the 3D block with plain borders. 15

3 Overlapping of write and output blocks in the plan (X1,X2), showing

cuts (red lines) and matches (green lines) 20

4 Division of a read block into write blocks. F0, the write block repre-

sented in blue, is the output block containing the origin of the read

block. F1-F7 are the intersections of the read block with the neigh-

boring output blocks. Following this division, write blocks are merged

using the scheme in Table 2. 25

5 Repartitioning results for the small array (85.75 GiB). Averages on 5

repetitions. (a) Compared to baseline, the keep heuristic reduces the

number of seeks by four orders of magnitude. (b) The keep heuristic

provides speed-up factors of up to 2.5 (configuration 4). 30

6 Results in terms of processing time for the keep and baseline algo-

rithms. From left to right, the results are presented for 256, 8 and

4GB of available main memory. 33

7 Results in terms of seeks for the keep and baseline algorithms. From

left to right, the results are presented for 256, 8 and 4GB of available

main memory. 34

8 Optimization of a task graph using the clustered strategy. 37

vii

List of Tables

1 Notations . 16

2 Recursive merging of the initial write blocks. The first column identifies

a sub-block of a read block (i.e., an initial write block), and the second

column identifies the sub-block(s) of the neighboring read block(s) that

are merged with the sub-block of the first column. For instance, sub-

block F1 is merged with sub-block F0 of the neighboring read block in

dimension X2. 24

3 Input and output blocks shapes . 28

4 Read block shapes and peak memory estimates selected by the keep

heuristic to repartition the small image. 32

viii

Chapter 1

Introduction

Scientific research and applications produce massive amounts of data, generally rep-

resented as multidimensional arrays [4]. Some scientific domains manipulating mul-

tidimensional arrays include astrophysics, biology, linguistics and economy [10]. For

example, images and physical phenomena are two types of data represented as ar-

rays. Since 2012, the amount of stored and treated data has exploded, resulting in

a new numeric era called Big Data [21, 22]. Big Data not only refers to the massive

amount of data produced but also to the diversity and size of such data [22]. The Big

Data era has been enabled by diverse factors such as the increased capacity to store

data, new acquisition techniques and new hardware for efficient data processing [21].

Manipulating files that are too big to fit in main memory is also considered Big Data.

BigBrain [3], for instance, is a human brain model represented as a big image of size

1TB. Big Brain provides microscopic data at the resolution of 20 micrometres that

comes in the form of many 3D blocks.

The predominance of multidimensional arrays in science in the Big Data era has

made multidimensional array processing a major challenge nowadays. In particular,

the unordered model used by traditional relational databases have become inefficient

at processing a large amount of scientific data optimally [21]. Moreover, scientific

datasets are often too big in size to fit on a single computer and must be stored

and processed on clusters or in the cloud [21]. Although it exists since the ’90s, the

research on multidimensional array processing remains active and regularly produces

new innovations [21, 13, 19].

1

Multidimensional array chunking is a common practice to split a big array into

several files for efficient storage and processing [21]. Previous work showed that it is

possible to optimize array splitting (in regular chunks) and merging by reducing the

number of seeks using sequential algorithms [11]. In this master thesis, we focused

on the optimization of sequential multidimensional array re-chunking/resplitting from

chunks of a given shape into chunks of another shape. We call this problem the repar-

titioning problem. In particular, we present the keep heuristic, an algorithm that re-

duces the number of seeks created when repartitioning large multi-dimensional arrays

in blocks of arbitrary but regular shape. Repartitioning may be triggered either by

application requirements or for performance reasons, to improve memory usage and

I/O efficiency. In this study we focus on repartitioning 3D arrays, even though our

work can be extended to N dimensions. Our motivating use case was to enable faster

processing of big 3D or 4D arrays in the neuroscience field.

The keep heuristic leverages a memory cache to read and write data as contigu-

ously as possible, similarly to the “clustered” and “multiple” algorithms described

in [11]. The storage order of array elements on disk is assumed to be known to

the application, but unconstrained. Implementations based on our algorithm could

therefore use arbitrary file formats. We focus on sequential algorithms, assuming that

arrays are stored on a single device and accessed by single-threaded I/Os. Extensions

to parallel environments are part of our future work. Although in practice seek times

depend on various factors, such as the distance between the initial and target drive

positions, we focus on minimizing seek numbers, for simplicity. Likewise, the effects of

I/O optimizations such as page caching or readahead will be discussed experimentally

but not modelled.

Chapter 2 presents the necessary background to understand the challenges in ar-

ray storage and processing and the need for repartitioning tools. Chapter 3 then

presents our work, the repartitioning problem and our solution, the “keep” heuristic.

Finally, the conclusion chapter summarizes our work and main results, together with

future work.

2

Chapter 2

Background

In this chapter we present common ways to store and manipulate multidimensional

arrays. We then discuss common solutions and how optimizing array partitioning can

be useful.

2.1 Multidimensional arrays storage

The survey in [21] provides an excellent summary of array storage, which we summa-

rize in this section.

2.1.1 Storing arrays in one file

The easiest way to store arrays is in a single file, on disk. When part of the array is

needed for computations, the required part is read from the whole array. The reading

time depends on how contiguously the data part is stored on the disk together with

the type of disk [21]. Indeed, if the data to be retrieved are scattered in the file, the

computer will have to seek, i.e. move the reading head between each data part, which

will introduce delays.

If the file is stored on a hard disk drive (HDD), this delay in moving the read

head will quickly become significant, whereas if the file is stored on a solid state drive

(SSD) it will take more seeks to make a significant difference in the array processing.

In particular, the delay introduced depends on the way the data is written on disk

and on the query shape [21]. Indeed, although the array is multidimensional, the data

3

is still linearly written on disk. For example, the cells indexed (0, 0, 0) and (0, 0, 1) in

3D could be written linearly at index 0 and 1 on the disk.

The two main ways to store data on the disk are the “row-major” and “column-

major” orders [21]. The row-major storage order for example consists in writing a

matrix on the disk starting with the dimension that evolves the fastest, i.e. in the

order (i, j, k) in 3D, with i, j and k the first, second and third dimensions of the array,

respectively. The column-major order consists in writing a matrix in the reverse order

(k, j, i).

When a multidimensional array is too large to fit in memory, one can use “memory

mapping” which consists in creating a virtual object representing the data array in

main memory but which will only read the data from the disk when these data are

required for the calculation [2]. Although memory mapping allows to process arrays

that are too large to fit in memory, the program still has to read the data from the

disk each time, which makes it an expensive process.

2.1.2 Multidimensional array chunking

Multidimensional arrays are rarely stored in a single file, but are rather divided into

subparts called chunks, such that all the chunks form a partition of the original ar-

ray [21]. This storage mode allows many optimizations such as parallel processing,

simultaneous reading of several data parts, storage redundancy or faster query re-

sponse [5].

Several questions arise when one decides to do chunking [21]:

• What size, in terms of the number of cells, should we assign to the chunks?

• What shape should we choose for the chunks, i.e. the size of each chunk in each

dimension?

• What function is used to match each cell to its chunk ?

• How do we write data into each chunk?

4

Although in the early uses of chunking, chunks used to be of the size of a page

of the file system (so that a chunk would not be scattered due to disk partitioning),

we now find chunks of increasingly larger sizes, nowadays ranging from the megabyte

to a hundred megabytes [21, 19]. There are two ways to index the chunks in relation

to each other: the implicit way consists in using a formula that will transform the

position of the chunk in space into a 1-dimensional position, i.e. into a linear index,

while the explicit method makes each position in space correspond to a “hard-coded”

linear index. The row-major and column-major orders and their N-dimensional ex-

tensions are among the simplest functions. Space-filling curves are a slightly more

sophisticated method of indexing in space. A space-filling curve has the property

of passing through all the points of a multidimensional space without ever crossing

itself [21, 15, 29]. Commonly used space-filing curves are shown on Figure 1. It is a

method for indexing data points in space (chunks here) such that data points that are

close in space have close indices. In particular, it can be used for faster data reading:

Good indexing methods can reduce the number of chunks read, on average, for any

given query polyhedral shape.

Figure 1: Illustration of commonly used space-filling curves [15]

Apart from arbitrary chunking in which one decides of a unique and uniform shape

for the chunks, aligned on the axes of the array, there is a statistical way to find an

optimal chunk shape. This method called “workload-based chunking” was developed

in response to the observation that access patterns to a chunked array depend on

the application, which means that it is not possible to find a configuration of the

chunks that would be optimal for all applications. The principle of workload-based

5

chunking is to minimize the number of chunks accessed for the majority of queries [21].

Finally, if the storage medium is a cluster (several machines clustered together

whose resources are usually distributed for different incoming tasks and users by a

scheduler), once the chunking process is defined, a decision must be made on how to

distribute the chunks on the different disks, which is called de-clustering [21]. The

optimal way to store chunks seems to be to separate the chunks that are usually

required at the same time, in order to optimize bandwidth and improve parallel com-

puting [21]. To do so, several strategies exist, including the round robin method,

range-based partitioning and pseudo-randomization. The round robin method as-

signs a chunk to each disk and then starts again, the slice method works in the same

way but distributes blocks of consecutive chunks instead of one chunk at a time, and

the pseudo-random method randomly distributes the chunks on the different disks.

More advanced methods can be used too, such as methods based on graph theory.

The idea is to represent each chunk by a node in a complete graph, i.e. each node

is connected to all the others. The edges are weighted by the probability that the

nodes they join are requested at the same time. From this graph, we then cut the

graph into subgraphs containing chunks that have low probability to be retrieved to-

gether. This problem is equivalent to the max-cut/min-cut problem in graph theory.

This problem being NP complete, the solutions are therefore heuristics as there is no

absolute solution.

As noted by [21], although the minimum part to be recovered from the disk is

an entire chunk, when the chunk is in memory the cell(s) of interest still need to be

accessed. Even if the main bottleneck is the read/write time from/to disk, repeated

searches in RAM can also become significant [21]. An example of optimization for

the storage of cells within a chunk is the storage of a sparse array by key/value pairs.

We call recursive chunking the application of the same strategies used for chunking

within the chunks themselves [21]. For example, one could store data in the file in an

indexed way using space-filling curves.

6

2.2 File formats

To store and manipulate arrays, a multitude of file formats have emerged. For ex-

ample, the NumPy [10] and the HDF5 [9] file formats are specialized file formats

for storing multidimensional arrays. Some scientific fields also have their own file

formats: NIfTI, MINC and DICOM are some examples of file formats used to store

medical images [28]. The multitude of existing file formats can be explained in part

by the specific needs of each field, which for example have specific requirements for

storing metadata, by the lack of standards, or by attempts to optimize processing

times by storing files in an intelligent way [28].

The HDF5 (Hierarchical Data Format version 5) file format is an example of a

specialized file format for processing arrays [9]. Storage is simple because it follows

the hierarchical structure of a file system. Two types of objects can be created from

the root; Datasets or Groups. A Group contains one or more Groups/Datasets,

while Datasets contain data [28, 9]. HDF5 allows parallel array processing and array

chunking. As HDF5 also supports compression, one can choose to losslessly com-

press/decompress a target chunk instead of the whole array.

MINC2.0 is an example of a specialized file format for a scientific field [28]. It is

an open source file format based on HDF5. It defines the use of HDF5 file format so

that researchers follow a standard for storing their data. MINC2.0 was developed for

neuroscientists, in the context of human brain mapping, but is now also used in many

medical applications. The features sought during the development of MINC include;

an extensible header to store all the metadata related to an experiment, the ability

to support data in an arbitrary number of dimensions, and the portability of the

format. In addition, the first widely used file formats stored metadata in unnamed

fields. For example, the patient’s name was stored in the x number field. The goal of

MINC was to be able to name the fields explicitly so that we did not need a manual

to understand the data in the file, as was the case with the proprietary DICOM file

format, for example. Each MINC2.0 file must store all its data within the “minc-2.0”

group located directly at the root of an HDF5 file. Within this main group are the

metadata of the experiment and a folder to store the data at different resolutions

(in dedicated subfolders). Among the mandatory metadata are the history of use

7

and creation of the file, the version of MINC used to create the file and a unique

identifier [28].

2.3 Multidimensional array processing frameworks

As explained, arrays can be processed on a single machine or on a cluster of machines.

Especially in the case of large datasets the data cannot fit on a single machine and

can be processed on a cluster in order to make the data processing time reasonable.

To do this, there are two main data containers that can be used: a file system, or a

database [14]. Distributed file systems allow data to be efficiently stored on a clus-

ter and make it accessible to distributed computing environments such as Spark or

Dask. Spark [24] and Dask [19] are two distributed computing environments, while

SciDB [25] is a database that specializes in processing arrays of data. More than a

database, SciDB also contains a toolbox that is optimized for processing and querying

arrays. These three environments arose from the observation that traditional rela-

tional databases were not well suited for storing and processing multi-dimensional

data. Although plugins were designed to make them work, they were complicated

to implement and were ultimately sub-optimal compared to systems designed specif-

ically for multi-dimensional arrays. SciDB aims at storing the data efficiently so that

it can be analyzed using queries or specialized tools. Spark and Dask are specialized

in designing complex algorithms and for batch processing [14, 8].

The distributed processing systems presented above all work with three main

components: client nodes, a master node and slave nodes. The principle is as follows:

the client nodes send work to the master node, which distributes the tasks in an

optimized way to the slave nodes. Once the slave nodes have completed their work,

they send the results in the opposite direction: first to the master node, which then

sends the results to the client node. The great advantage of these systems is that

they generally do not require an expensive infrastructure; the idea is to be able to

replace the nodes when they fail, transparently. In addition, distributed storage makes

information systems more resilient by replicating data, for example, so that data is

not lost if a machine crashes [8, 24].

8

2.4 The Python programming language

The Python programming language has become the reference for data processing [13].

It is widely used in the scientific field because it is easy to use and allows scientists to

focus on their algorithms rather than on syntax or code optimization. In particular,

it benefits from a rich ecosystem of libraries to manipulate data, create ready-to-use

graphs in scientific publications and manipulate specialized file formats. At the heart

of this ecosystem are SciPy and Numpy, which are toolboxes respectively specialized

in engineering and the manipulation of multidimensional arrays [13, 10]. Another

library largely responsible for Python’s success in data science is the Pandas library,

specialized in tabular data processing. More recently, xarray, built on top of several

libraries, has been added to the many libraries that handle multidimensional data

tables. It simplifies the use of arrays whose dimensions are indexed by name while

allowing to use the power of other specialized libraries such as Dask which allows to

make parallel calculations on multidimensional arrays.

With the advent of Deep Learning, which has become one of the most active areas

of scientific research today, Python seems to be on its way to maintain its leadership

position in the field of data processing as evidenced by the success of the Pytorch and

Tensorflow libraries, the two most popular libraries for training neural networks. In

addition to being domain-specific, these libraries allow calculations to be easily ported

to graphics cards (GPUs) and tensor processing units (TPUs), which can drastically

accelerate calculations [10]. Finally, although a high-level Python language is capable

of being very fast, it allows many optimizations thanks to compiled languages such

as Cython or Numba [10].

2.4.1 Dask

Dask is a popular Python package, part of the SciPy ecosystem (the scientific ecosys-

tem of Python), enabling parallel and out-of-core computations [19].

Dask represents computations as task graphs that are dynamically executed by

one of several schedulers including the single-threaded, the multi-threaded, the multi-

process, and the distributed schedulers. Custom schedulers can also be implemented.

9

Dask graphs can be used out-of-the-box or through built-in APIs. A Dask graph

is implemented in plain Python as a dictionary with any hashable as keys and any

object as values. More precisely, a “Value” is any object different than a task and

a “Task” is a tuple with a callable as first element. Examples of APIs/collections

include dask.array, a parallel and out-of-core Numpy clone, and dask.dataframe, a

Pandas clone. dask.array is a data structure designed for multi-dimensional array

processing using blocked algorithms, hence leveraging chunking.

Dask was an inspiration for this thesis, as it offers faster IO and array processing,

transparently. Moreover, it enables such optimizations on both local computer and

distributed infrastructure. Nevertheless, it also suffers from excessive seeking in some

cases, which made us wonder if our work could be integrated into Dask to enable a

vast user base to benefit our algorithms.

2.5 Sequential algorithms for optimizing multidi-

mensional arrays manipulation

Used in all fields of science to represent and process data, multidimensional array

processing is an important part of the work of scientists. Array storage involves sev-

eral levels of complexity: choice of infrastructure, file format, storage type (chunked

or not), and layout on disk. In any case, array parts are stored on disk or in memory,

therefore, most scientific processing is subject to seeking. As explained in [21], repo-

sitioning the read head to read multiple data parts inside a file causes an important

overhead. Finally, chunking requires tools to be able to manipulate arrays efficiently.

The advantage of optimizing the read/write of files is that it is independent of the

application and common non compressed file formats. Finally, [19] reminds us that

the use of data clusters and powerful hardware is not always required, as it requires

some computer knowledge and that PCs have acquired enough power to handle some

Big Data applications. Input/output optimization also makes sense in this context

where one wants to manipulate data that is too large to fit into RAM, directly on

one’s computer.

Previous work in [11] showed that naive algorithms to split an array into several

10

chunks or merge array chunks into one output file do not perform well due to millions

of seeks occurring on disk. Two types of sequential algorithms were introduced: the

clustered and the multiple strategies. The clustered strategy aims at reading each

chunk only once but seeks into the original image, while the multiple strategy con-

sists in minimizing seeks in the reconstructed image, seeking into the chunks instead.

For example, for the split (or “chunking”) task, clustered strategies reads as much

contiguous chunks as possible into main memory before writing them without seeks

into the output files, whereas the multiple strategy reads contiguous columns of data

on disk without seeks, but seeks into the output files, writing the different parts of

the loaded buffer into different chunks [11]. The “merge” task is shown to be the

reverse process. No strategy has proven better than the other overall, but they both

have preferred use cases. Experiments showed that such sequential algorithms are 5

to 10 times faster than naive algorithms, which is promising.

The present study is focused on sequential algorithms for repartitioning multidi-

mensional arrays, letting the parallel and distributed cases as future work, although

they are relevant, too. To the best of our knowledge, the array repartitioning problem

as defined in this study has not been studied.

2.6 Example use case of the repartitioning task

One important domain of application of the repartitioning task could be fMRI time

series processing. fMRI time series processing is used in functional neuroimaging, for

connectomics studies for example. Functional neuroimaging consists in using neu-

roimaging technology to study how the brain work, how brain regions are related

to each other or to understand the relationships between brain regions and mental

functions for example. It is used in cognitive neuroscience and neuropsychology [1].

We call connectomics the “Big Data approach for analyzing the massive datasets pro-

duced by [...] brain imaging” [26]. Functional neuroimaging includes searching for

inter- and intra-subject correlations and finding correlations between aggregated time

series [23]. For example, studies like [23] perform inter-subject correlation analysis to

find brain activation patterns in people watching movies.

11

Datasets usually consists in a set of initial images [7]. These images represent brain

slices, ordered by time [7]. At first, some preprocessing is required at the image-level

to remove noise or perform realignment and slice time correction for example [23].

Then, specific computations are applied on the time-series like Fast Fourier Trans-

forms (FFTs) [18, 23] or Pearson correlations [23]. For these applications however, the

data is processed as pixel time series or as voxel regions time series [18, 23]. Therefore,

we may need to process the data as 2D slices first, then as 1D or 3D cuboids. Instead

of searching for 1D or 3D parts from the initial 2D images of the dataset, it may be

faster to repartition the data between the computations.

This example application has been mentioned by Matthew Rocklin, foundator of

Dask, who gave a tutorial on how to process a connectomics dataset on his blog [18].

The dataset processed in the tutorial consists in drosophilia brain slices and is pre-

processed as such. The author explains that it is then necessary to “rearrange [the]

data from being partitioned by time slice, to being partitioned by pixel” to apply

FFTs on the time series [18].

2.7 The Region Of Interest Extraction Problem

ROI extraction stands for Region Of Interest extraction [17, 27]. One can divide med-

ical images in regions of interest (ROI) and background areas [27]. From a clinical

point of vue, medical images can be divided into lesion areas of interest and non lesion

areas, which may occupy much of the image. Removing unuseful data by extracting

the ROIs can speedup computations and data transfer [27].

As explained in [17], ROI extraction is an important component of fMRI images

processing: “A common approach to the analysis of fMRI data involves the extrac-

tion of signal from specified regions of interest (or ROI’s)”. In fMRI analysis in

particular, ROIs can be used for data exploration, statistical control and functional

specification [17]. For data exploration for example, ROIs can be useful for studying

the activity of a specific brain area under different experimental conditions or by se-

lecting only some variables of interest.

12

Extracting ROIs from an image, either stored into one file or chunked into several

files, may produce important disk seeking, hence a big processing time overhead. Ac-

cording to [17], the “most common approach for exploratory ROI analysis is to create

small ROIs (usually spheres) at the peaks of activation clusters”.

Minimizing disk seeking in tasks like the repartioning task could enable to find

efficient disk seeking minimization strategies and speedup common tasks like the ROI

extraction problem.

13

Chapter 3

The keep heuristic for

repartitioning multidimensional

arrays

This chapter presents the keep heuristic, an algorithm to reduce the number of

seeks created when repartitioning large multi-dimensional arrays in blocks of arbi-

trary shape. Repartitioning may be triggered either by application requirements

or for performance reasons, to improve memory usage and I/O efficiency. For in-

stance, the Python HDF5 library h5py recommends a chunk size “between 10 KiB

and 1 MiB” [6], while the Dask parallel processing framework [19] suggests a chunk

size greater than 100 MB [20].

The keep heuristic leverages a memory cache to read and write data as contigu-

ously as possible, similarly to the “clustered” and “multiple” algorithms described

in [11]. The storage order of array elements on disk is assumed to be known to

the application, but unconstrained. Implementations based on our algorithm could

therefore use arbitrary file formats. We focus on sequential algorithms, assuming that

arrays are stored on a single device and accessed by single-threaded I/Os. Extensions

to parallel environments are part of our future work. Although in practice seek times

depend on various factors, such as the distance between the initial and target drive

positions, we focus on minimizing seek numbers, for simplicity. Likewise, the effects of

I/O optimizations such as page caching or readahead will be discussed experimentally

14

but not modelled.

X2
X0

X1
0

1
4

5
8 12

19 23 27

35 39 43

51 55 59

31

47

63

2

3

6

7

10

11

14

15

9 13

28
29

30
44

45
46

60
61

62

Figure 2: Ordering of 3D array elements in files in C order. The first stored element

is colored in green, the last one is in blue. Seeking to the red elements is required

when extracting the 3D block with plain borders.

3.1 Problem definition and baseline

For the sake of clarity and without loss of generality, we assume that files are written

in row-major order (Fig. 2, a.k.a. C order), where the fastest moving dimension in

the file is the last dimension of the array, and the slowest moving dimension in the

file is the first dimension of the array. This convention is, for instance, the one used

in the HDF5 format [9].

Accessing data from an array stored on disk generates seeks in two situations: (1)

when an array block is opened for reading or writing, and (2) when the reading or

writing process moves to a different address within the block.

3.1.1 The re-partitioning problem

We focus on 3D arrays for simplicity. Consider a 3D array A of shape A = (Ai, Aj, Ak),

partitioned in uniformly-shaped input blocks of shape I = (Ii, Ij, Ik) stored on disk.

Our goal is to re-partition the input blocks into uniform output blocks of shape

O = (Oi, Oj, Ok), where O 6= I. Notations are summarized in Table 1.

15

Table 1: Notations

Mono-space fonts are used for array partitions

A 3D array to repartition

inBlocks set of input blocks

outBlocks set of output blocks

readBlocks set of read blocks

writeBlocks set of write blocks

Square capitals are used for block shapes

A = (A0, A1, A2) shape of A

I = (I0, I1, I2) shape of input blocks

O = (O0, O1, O2) shape of output blocks

R = (R0, R1, R2) shape of read blocks

W = (W0, W1, W2) shape of write blocks

Round capitals are used for block end coordinates

I = (I0, I1, I2), Id ⊂ N input block end coordinates

O = (O0, O1, O2), Od ⊂ N output block end coordinates

R = (R0, R1, R2), Rd ⊂ N read block end coordinates

W = (W0, W1, W2), Wd ⊂ N write block end coordinates

nX are used for block numbers

nI = number of input blocks

nO = number of output blocks

nR = number of read blocks

nW = number of write blocks

16

We formalize the re-partitioning problem as in Algorithm 1. A re-partitioning

algorithm takes a list of input blocks inBlocks, a list of output blocks outBlocks,

and the amount of memory m available for the algorithm. Subject to m, the algorithm

determines (1) readBlocks, a list of uniformly-shaped blocks of shape R to be read

from the input blocks, and (2) writeBlocks, a list of blocks, usually not uniformly-

shaped, to be written to output blocks (line 10). If read blocks and input blocks have

a different shape, then reading read blocks requires more than one seek. Similarly,

if write blocks and output blocks have a different shape, then writing write blocks

requires more than one seek. Input, output, read and write blocks all form a partition

of the 3D array A. The main loop of the algorithm (line 12) loads one read block at

a time (line 13), inserts it into a cache (line 14), and writes write blocks from the

cache when they are complete (lines 15 – 20). Function write is assumed to open

each output block only once, and to write the required elements of data in it.

It should be noted that blocks are passed to the algorithm by reference, not by

data. Only variables data (lines 13, 17) and cache (line 14) hold actual data, con-

tributing to the consumed memory.

Since read and write blocks both represent a partition of A, all the elements in

inBlocks are read exactly once and written exactly once too. Other problem formal-

izations may allow for input elements to be read and discarded, to reduce seeking.

Exploring such a trade-off between seeks and redundant reads could be an interesting

extension to this problem.

Our goal is to minimize the number of seeks done by the algorithm, which occurs

during reads (line 13) and writes (line 18). The re-partitioning problem is therefore

to find readBlocks and writeBlocks that minimize the number of seeks done by the

algorithm, subject to the memory constraint m.

Solutions of this problem materialize as implementations of function getReadWriteBlocks

(Alg. 1, line 10). A lower bound on the number of seeks for the repartitioning problem

is nI + nO, with nI the number of input blocks and nO the number of output blocks.

Indeed, input and output blocks all have to be opened at least once, which requires

17

a seek.

For simplicity, we require that all blocks in readBlocks have the same shape R.

We also equate the size of an array in memory as its number of elements. To the best

of our knowledge, no algorithm has been proposed for the repartitioning problem.

Algorithm 1 General re-partitioning algorithm

1: Inputs

2: inBlocks: input blocks of shape I, stored on disk

3: outBlocks: output blocks of shape O, to be written

4: m: memory available

5:

6: Outputs

7: none (outBlocks are written)

8:

9: Algorithm

10: readBlocks, writeBlocks ← getReadWriteBlocks(I , O, m)

11: initialize(cache)

12: for readBlock in readBlocks do

13: data ← read(readBlock, inBlocks)

14: cache.insert(data)

15: for writeBlock in writeBlocks do

16: if readBlock ∩ writeBlock 6= ∅
and cache.isComplete(writeBlock) then

17: data ← cache.pop(writeBlock)

18: write(data, outBlocks)

19: end if

20: end for

21: end for

3.1.2 Baseline

Our baseline algorithm for the repartitioning problem loads one input block at a time

(R=I), and directly writes it to the appropriate output blocks (W=R). It assumes

18

that input blocks fit in memory. The number of generated seeks sb depends on how

write blocks overlap with output blocks in each dimension (Fig. 3). To determine sb,

we defineWd and Od, the sets of write and output block end coordinates in dimension

d:

∀d ∈ {1, 3},

Wd =
{
iWd, i ∈ {1, Ad/Wd}

}
and Od =

{
iOd, i ∈ {1, Ad/Od}

}
(1)

We then define the cuts of the ith output block along dimension d as follows:

∀i ∈ {1, Ad/Od},

Ci,d = Ci,d (Wd,Od) =
{
w ∈ Wd, (i− 1)Od < w < iOd

}
The number of output block pieces along dimension d is then:

cd = cd (Wd,Od) =

Ad/Od∑
i=1

|Ci,d (Wd,Od) |+ 1− δ|Ci,d(Wd,Od)|,0

where | . | is the cardinality operator and δ is the Kronecker delta. The number of

matches between block endings is:

md = md (Wd,Od) = |Wd ∪ Od| − cd

Finally, the number of seeks created by the baseline algorithm is:

sb = A0A1c2 + A0c1m2 + c0m1m2 + nI + (m0 + c0)(m1 + c1)(m2 + c2) (2)

with (m0 + c0)(m1 + c1)(m2 + c2) the number of output block openings.

As can be seen from Equation 2, cuts along dimension 2 generate O(A0A1) seeks,

which is prohibitive when A is large, cuts along dimension 1 generate O(A0) seeks and

cuts in dimension 0 generate O(1) seeks. The keep heuristic described in the next

section aims at avoiding cuts primarily in dimension 2, and if possible in dimension

1 and 0. An experimental verification of the model will be provided in Section 3.3.

19

A2

W2 O2

O1

W1

A1

Figure 3: Overlapping of write and output blocks in the plan (X1,X2), showing cuts

(red lines) and matches (green lines)

20

3.2 The keep heuristic

As mentioned previously, the baseline strategy empties the cache at each iteration,

which generates many seeks when input and output blocks have different shapes.

Instead, the proposed keep heuristic keeps in cache the array elements that cannot

be written contiguously to the output blocks.

3.2.1 Overview

The keep heuristic (Alg. 2) is a brute-force search of the best read shape among

a list of candidates (line 11). For each candidate read shape, it creates a list of

write blocks (line 15), determines the memory consumed by this solution (line 16),

and provided that the memory constraint is respected, computes the number of seeks

created by the solution (line 24). Finally, the algorithm selects the read shape that

minimizes the number of seeks (lines 25-27).

The keep heuristic uses the following functions, described in the remainder of

this section: candidateReadShapes (line 11), blocks (line 14), createWriteBlocks

(line 15), peakMemory (line 16), and generatedSeeks (line 24).

3.2.2 Candidate read shapes

Read shape candidates are generated as to avoid cuts along dimension 2 during reads

and writes, as they are the most costly. Ideally, the read shape would cover an exact

number of input blocks, to avoid seeks during reads, and would include at least one

output block, to avoid seeks during writes. In practice, this might not be possible

due to memory limitations, since at each iteration the parts of the read block that

are not written must remain in cache.

To generate candidate read shapes, we first define a shape r̂ such that in each

dimension d, r̂d is the smallest multiple of Id that is greater or equal to Od:

∀d ∈ {1, 2, 3},

r̂d = Id

(
1 +

⌊
Od

Id

⌋)

21

Algorithm 2 keep heuristic (implements getReadWriteBlocks)

1: Inputs

2: inBlocks: input blocks of shape I, stored on disk

3: outBlocks: output blocks of shape O, to be written

4: m: memory available

5:

6: Outputs

7: readBlocks: a list of read blocks

8: writeBlocks: a list of write blocks

9:

10: Algorithm

11: readShapes = candidateReadShapes(I , O, A)

12: minSeeks = None

13: for R in readShapes do

14: readBlocks = blocks(R, A)

15: writeBlocks = createWriteBlocks(readBlocks, outBlocks)

16: mc = peakMemory(R)

17: if mc > m then

18: continue {Memory constraint cannot be fulfiled}
19: end if

20: if R == r̂ then

21: bestReadBlocks = readBlocks

22: break {r̂ fulfills memory constraint}
23: end if

24: s = generatedSeeks(I , R, writeBlocks, O)

25: if minSeeks == None or s < minSeeks then

26: minSeeks, bestReadBlocks = s, readBlocks

27: end if

28: end for

29: return bestReadBlocks, writeBlocks

22

Using r̂ as read shape minimizes seeking in the input blocks, as in this situation

each iteration reads input blocks completely, requiring a single seek per input block.

If there is enough memory to use write blocks of shape O, then this solution also

minimizes the seeks in the output blocks, as output blocks can be written in a single

seek too.

Function candidateReadShape returns the following shapes:{
(C0, C1, r̂2) ∈ N3 / ∀i ∈ {0, 1}, ∃ki ∈ N, Ai = kiCi and Ci ≤ r̂i

}
The third coordinate of all read shapes is set to r̂2, to guarantee that no cuts along

dimension 2 will be made during reads. This assumes that m ≥ r̂2, i.e., a block of

shape (1, 1, r̂2) fits in memory, which seems reasonable. It also assumes that r̂2 is a

divisor or A2. The other two coordinates are set to divisors of A0 and A1 which are

less than or equal to r̂0 and r̂1 respectively.

The candidate shapes are sorted first by decreasing C1 values, then by decreasing

C0 values. The first tested read shape is therefore r̂. While r̂ is the optimal read

shape, leading to a single seek per input or output block, there is no obvious relation

between the other candidate shapes and the number of seeks that they generate since

this number depends on how input, read, write, and output blocks are arranged.

For this reason, the keep heuristic returns if r̂ respects the memory constraint (line

20-23), but it otherwise evaluates all the other read shapes.

3.2.3 Block order

Creating uniform blocks from a block shape is straightforward, but the order in which

they are read impacts the amount of data stored in cache and therefore the peak

memory consumption. For simplicity, function block returns read blocks in the order

used for array elements on disk (C order in this paper).

3.2.4 Creation of write blocks

Function createWriteBlocks returns write blocks created from read and output

blocks as follows. For each read block, eight write blocks are first created, defined as

23

the Fi blocks in Figure 4. The coordinates of F0 are computed as follows: The upper-

left coordinates are (0, 0, 0) in the referential of the read buffer, and the bottom-right

coordinates are defined to be the first output block’s end coordinates encountered.

The Fi blocks with i ∈ [[1; 7]] are then divided into smaller write blocks by the end

coordinates of the output blocks it crosses i.e. the output blocks which will contain

the read block’s data. Each smaller write block in the F0 block (Figure 4) is assigned

type F0, each write block created from the F1 block is assigned type F1 etc. Finally,

the write blocks are merged recursively with sub-blocks of neighboring read blocks,

following the rules in Table 2. For example, Table 2 tells the algorithm to fuse write

blocks of type F2 in the X1 direction, as the read block cuts an output block in the

X1 direction. In fact, the Fi, i ∈ [[1; 7]] write blocks are fused with F0 write blocks

from neighboring read blocks. By fusing neighboring write blocks together, the keep

heuristic forces the general algorithm (Alg. 1) to write contiguous output block parts

at once.

Table 2: Recursive merging of the initial write blocks. The first column identifies a

sub-block of a read block (i.e., an initial write block), and the second column identifies

the sub-block(s) of the neighboring read block(s) that are merged with the sub-block

of the first column. For instance, sub-block F1 is merged with sub-block F0 of the

neighboring read block in dimension X2.

Sub-block Merged with

(sub-block, neighbor direction)

F0 –

F1 (F0, X2)

F2 (F0, X1)

F3 (F1, X1), (F2, X2)

F4 (F0, X0)

F5 (F1, X0), (F4, X2)

F6 (F2, X0), (F4, X1)

F7 (F3, X0), (F5, X1), (F2, X2)

24

X2

X0

X1

F0

F2

F1 F3

F6

F7F5

F4

Figure 4: Division of a read block into write blocks. F0, the write block represented

in blue, is the output block containing the origin of the read block. F1-F7 are the

intersections of the read block with the neighboring output blocks. Following this

division, write blocks are merged using the scheme in Table 2.

3.2.5 Peak memory

To determine the peak memory used by a particular combination of read and write

blocks, one needs to determine the amount of data in the cache at each iteration,

which depends on how read and write blocks overlap. Since we were only able to find

an analytical upper bound of the peak memory usage, which in fact largely overes-

timates it, we instead simulate each iteration of the keep heuristic to measure the

cache size.

The simulation requires |readBlocks| iterations. It assumes that (1) read blocks

are in the order used for array elements on disk (C order in this paper), consistently

with function blocks and (2) write blocks are defined as described in the previous

section. The cache size is computed for each read buffer and its max across all

iterations is returned as the peak memory consumption.

25

3.2.6 Number of generated seeks

Similar to the baseline, seeks generated by the keep heuristic happen during reads

(line 13 in Alg. 1) and during writes (line 18). To count the seeks generated during

reads, we note that the read process is dual to the write process: writing in-memory

blocks with end coordinates M to disk blocks with end coordinates D generates the

same number of seeks as reading disk blocks with end coordinates D to in-memory

blocks with end coordinates M. We can determine this number using Equation 2

without the last term:

seeks (M,D) = A0A1c2 (M,D) +

A0c1 (M,D)m2 (M,D) +

c0 (M,D)m1 (M,D)m2 (M,D)

Function seeks does not assume that M or D relate to blocks of uniform shape.

Therefore, it can be applied to the keep heuristics where write blocks are not nec-

essarily of uniform shape. The number of seeks generated by the keep algorithm is

given by:

sk = seeks (R, I) + seeks (W ,O) + c0 (R, I) c1 (R, I) c2 (R, I) + nW (3)

The first term represents the number of seeks required to read input blocks of

end coordinates I into read blocks of end coordinates R whereas the second term

represents the number of seeks required to write write blocks of end coordinates W
into output blocks of end coordinates O. The two last terms represent the number

of input blocks openings and output blocks openings.

Function generatedSeeks is a direct implementation of Equation 3.

3.2.7 Implementation

We implemented the baseline and keep heuristic in Python 3.7. The project reposi-

tory is available at https://github.com/big-data-lab-team/repartition_experiments.

It includes documentation on how to install the package and its dependencies. The

code used for the experiments is also available in the same repository. The imple-

mentation supports the HDF5 file format, but the code is modular enough to accom-

modate other formats in the future.

26

https://github.com/big-data-lab-team/repartition_experiments

To reduce the time requirements of brute-force search, we limit the testing of can-

didate read shapes as follows in the implementation: starting from r̂ = (r̂0, r̂1, r̂2),

we evaluate candidate read shapes sorted by decreasing X1 values, then by decreasing

X0 values. We stop the search if the best number of seeks (minSeeks in Alg. 2) does

not decrease for 10 iterations.

We could have passed the data from the read buffers to the cache by reference

which would have saved us the time of copying the data. However, keeping a ref-

erence to the read buffers prevented them to be freed and therefore increased the

maximum amount of memory used drastically. Therefore, we found that copying the

data into the cache enabled us to stay below the maximum memory consumption

that we predicted at the buffer selection time. This is the main limit of our current

implementation, preventing us to experiment with very large images, as explained in

the results section.

3.3 Experiments

3.3.1 Seek model validation

We tested our models against lighter implementations of the baseline and keep al-

gorithms. We tested each model on 1,000 randomly generated cases. To that aim,

we first generate a random original array by multiplying 4 numbers randomly drawn

from 2, 3, 5, 7, putting each number to the power 1 or 2 (again, randomly) and mul-

tiplying them: r̂ = (r, r, r) with r = (xp00 x
p1
1 x

p2
2 x

p3
3). We then compute the divisors

of r and take two of them for the shapes of I and O. We create 5 cases by picking

5 buffer shapes from the possible buffer shapes given the configuration (r̂, I, O). We

do the same after exchanging I with O. This gives us 10 configurations for a given

randomly created r̂. We repeat the process until 1,000 cases have been randomly

generated. Then, for each case, we run our model to compute the number of seeks

that the algorithm should do, and compare it to the real number of seeks computed

by running a light version of the algorithm.

27

Table 3: Input and output blocks shapes
A = (3500, 3500, 3500)

inBlocks outBlocks

Config I nI size O nO size

(MiB) (MiB)

0 (875,875,875) 64 1277 (875,1750,875) 32 2,555

1 (700,875,700) 100 818

2 (350,350,350) 1,000 82 (500,500,500) 343 238

3 (250,250,250) 2,744 29

4 (175,175,175) 8,000 10 (250,250,250) 2,744 29

5 (350,875,350) 400 204 (500,875,500) 196 417

6 (350,500,350) 700 116

A = (8000, 8000, 8000)

inBlocks outBlocks

Config I nI size O nO size

(MiB) (MiB)

0 (2000,2000,2000) 64 15,258 (2000,4000,2000) 32 30,518

1 (1600,1600,1600) 125 8,766

2 (800,800,800) 1000 977 (1000,1000,1000) 512 1,907

3 (500,500,500) 4096 238

4 (200,200,200) 64000 15 (250,250,250) 32768 30

5 (160,160,160) 125000 8

6 (400,400,400) 8000 122 (500,500,500) 4096 238

7 (250,250,250) 32768 30

28

3.3.2 Experiment conditions

The experiments were run on a DELL-EMC PowerEdge C6420 server with CentOS

Linux release 8.1.1911 (Core), kernel release 4.18.0 − 147.5.1.el8 1.x86 64, 250GB of

RAM, 6 × SSDs Intel SSDSC2KG480G8R (480 GB, xfs), 2 × Intel Xeon Gold 6130

CPUs @ 2.10GHz (16 cores/CPU, 2 threads/core). The server was accessed through

the SLURM batch manager.

We repartitioned two arrays of 2-byte elements (float 16): a ”small” one (85.75 GiB)

of shapeA = (3500, 3500, 3500) and a ”large” one (1024 GiB) of shape A = (8000, 8000, 8000).

We used the input and output block shapes in Table 3. We repartitioned the small

array with m=275 GiB (256 GB), 8.6 GiB (8 GB) and 4.3 GiB (4 GB), to bench-

mark the baseline and keep algorithms with different memory constraints. For the

large array we used m=256 GB only. The memory was controlled through SLURM’s

cgroup-based memory requirement, which means that m was the total amount of

RAM allocated to the repartitioning task, including anonymous memory and cache.

Swapping was disabled.

A single disk was used when processing the small array. However, for the large

array, the 6 disks available on the server were used as the capacity of a single disk

was not enough to accommodate the input or the output blocks. We used the disks

in round-robin.

The page cache was flushed at the beginning of each run of an algorithm.

3.3.3 Results

Small array (85.75 GiB)

Results are shown in Figure 8. By design, the number of seeks is drastically reduced

by the keep heuristic compared to baseline (Fig. 5a), by a factor of 90,000 on aver-

age. In configurations 1 to 5 in particular, baseline requires up to 108 seeks while the

keep heuristic only requires up to 104.

This reduced seeking translates to important reductions of the repartitioning time

29

(a) Number of seeks (log scale)

100 102 104 106 108

Number of seeks

#0

#1

#2

#3

#4

#5

#6

Co
nf

ig
ur

at
io

n

4.3 GiB

100 102 104 106 108

Number of seeks

8.6 GiB

100 102 104 106 108

Number of seeks

275 GiB
Inblock openings Inblock seeks Outblock openings Outblock seeks Keep (solid colors) Baseline (transparent colors)

(b) Processing time

0 200 400 600 800 1000 1200 1400 1600
Processing time (s)

#0

#1

#2

#3

#4

#5

#6

Co
nf

ig
ur

at
io

n

4.3 GiB

0 200 400 600 800 1000 1200 1400 1600
Processing time (s)

8.6 GiB

0 200 400 600 800 1000 1200 1400 1600
Processing time (s)

275 GiB
Read Write Search Overhead Keep (solid colors) Baseline (transparent colors)

Figure 5: Repartitioning results for the small array (85.75 GiB). Averages on 5 rep-

etitions. (a) Compared to baseline, the keep heuristic reduces the number of seeks

by four orders of magnitude. (b) The keep heuristic provides speed-up factors of up

to 2.5 (configuration 4).
30

(Fig. 5b). Compared to baseline, the keep heuristic provides speed up factors of up

to 1.4 for m=275 GiB, 1.9 for m=8.6 GiB, and 2.2 for m=4.3 GiB. Speed-up is only

observed when baseline requires O(108) seeks, which occurs in configurations 1 to 5:

lower amounts of seeks don’t seem to have an effect on I/O time. Speed-up is mostly

coming from write time reduction, since baseline read complete input blocks without

seeking.

The baseline performances improve drastically with the amount of memory al-

located to the repartitioning. For m=275 GiB, repartitioning times of baseline and

keep are on par for all configurations except configuration 4. This is most likely due

to the use of asynchronous write back to disk through the Linux page cache. In our

experiments, the ratio of ”dirty” data, the cache data waiting to be written to disk,

was set to 40%, a common value for compute nodes, which means that the small array

entirely fit in memory for m=275 GiB. The keep strategy is mostly useful for arrays

that do not fit in page cache memory.

The overhead of the keep heuristic consists of search time (Alg. 2) and cache

management (data copy to/from cache in Alg. 1). While search time is negligible,

cache management is substantial except for configuration 0 where the total number

of blocks is limited.

Table 4 shows the read block shapes selected by the keep heuristic. The optimal

shape r̂ was used for all configurations with m = 275 GiB.

31

Table 4: Read block shapes and peak memory estimates selected by the keep heuristic

to repartition the small image.

Config m=4.3 GiB m=8.6 GiB m=275 GiB

0 (875, 1750, 875)* (875, 1750, 875)* (875, 1750, 875)*

2.8 GiB 2.8 GiB 2.8 GiB

1 (700, 875, 875) (700, 875, 875) (875, 875, 875)*

1.8 GiB 1.8 GiB 15.3 GiB

2 (500, 700, 700) (500, 700, 700) (700, 700, 700)*

2.1 GiB 2.1 GiB 12.2 GiB

3 (250, 350, 350) (350, 350, 350) (350, 350, 350)*

0.45 GiB 5.5 GiB 5.5 GiB

4 (250, 350, 350) (350, 350, 350)* (350, 350, 350)*

0.45 GiB 5.5 GiB 5.5 GiB

5 (500, 875, 700) (500, 875, 700) (700, 875, 700)*

1.0 GiB 1.0 GiB 11.5 GiB

6 (350, 875, 350)* (350, 875, 350)* (350, 875, 350)*

1.2 GiB 1.2 GiB 1.2 GiB

* selected read

block shape was r̂

Large array

Given the 250 GB RAM available, the read buffer shapes tested were always equal

to the input aggregates’ shapes. Globally, one can see on Figure 6 that apart from

run 2 the keep strategy and baseline are pretty equivalent, and for 5 runs over 8 the

keep strategy is slightly faster. There is no important improvement, however, which

is mainly due to 3 bottlenecks:

• the overhead time

• the preprocessing time

• the read time

It seems logical to get an overhead time that explodes, especially in run 2, as it

was already important on the small array. As it is mostly due to cache manipula-

tions, a bigger array implies bigger data transferred during these cache manipulations.

32

Interestingly, the preprocessing time can be very large. The preprocessing time

includes the computation of the write buffers and the computation of a Python dictio-

nary associating each buffer with the output blocks it intersects. The latter operation

can be very expensive when there are a lot of buffers.

The experiment on a big array was worth it as it clearly shows a limit of the keep

strategy: We can see on Figure 6 that for runs 2 to 4, the write time (in green) has

been tremendously reduced, but at the cost of an increase in read time.

Finally, one can see on Figure 7 that in this experiment, too, the keep strategy

succeeded in reducing the number of seeks significantly. Once again, the reduction in

processing time is also non-linear with the reduction in seeking.

The outcomes and potential benefits of experiments on large arrays such as 1TB in

size are difficult to predict because of the keep algorithm overhead time. The overhead

time is mainly due to copying data from read buffers to the cache as explained earlier.

0 1 2 3 4 5 6 7
run reference

0

5000

10000

15000

20000

25000

30000

Pr
oc

es
si

ng
 ti

m
e

(s
)

Processing time of the baseline and the keep algorithms with m=256GB (distributed mode)

read time (baseline)
write time (baseline)
preprocessing time (baseline)
overhead time (baseline)
read time (keep)
write time (keep)
preprocessing time (keep)
overhead time (keep)

Figure 6: Results in terms of processing time for the keep and baseline algorithms.

From left to right, the results are presented for 256, 8 and 4GB of available main

memory.

33

0 1 2 3 4 5 6 7
run reference

102

103

104

105

106

107

108

109

nu
m

be
r

of
 s

ee
ks

Number of seeks produced by the algorithms (log scale)

outfile_openings (baseline)
outfile_seeks (baseline)
infile_openings (baseline)
infile_seeks (baseline)
outfile_openings (keep)
outfile_seeks (keep)
infile_openings (keep)
infile_seeks (keep)

Figure 7: Results in terms of seeks for the keep and baseline algorithms. From left

to right, the results are presented for 256, 8 and 4GB of available main memory.

3.4 Discussion

The keep heuristic can reduce the number of seeks required to repartition an array

from millions to thousands compared to the baseline algorithm. As a result, write

time is drastically reduced and speed-up factors of up to 2.5 are observed. Speed-

up factors are expected to increase with the size of the repartitioned array; in 3D,

speed-up is proportional to A0A1 when enough memory is available to avoid cuts in

dimension 2. Speed-up factors are also expected to increase with the dimension of

the repartitioned array; in dimension d, speed-up is proportional to the product of

the first d-1 Ai when enough memory is available. Therefore, the keep heuristic is

adapted to the repartitioning of large multi-dimensional arrays in the current context

of growing data volumes.

3.4.1 Relevant extensions

Allocating only reasonable amounts of working memory, 4.3 GiB for an array of

85.75 GiB in our experiments, seems to be sufficient to remove most of the seeks re-

quired for the repartitioning. This is consistent with the fact that the keep heuristic

only stores partial output blocks in cache, until they can be combined into complete

34

output blocks. In the future, it would be interesting to derive an upper bound of

the peak memory consumption, to generalize this observation beyond the particular

input and output block shapes tested in our experiments.

The memory page cache provided by the Linux kernel plays a significant role in the

repartitioning problem when the amount of memory increases. When repartitioning

a 85.75 GiB array with 275 GiB of working memory, all the output blocks are written

to memory and asynchronously flushed to disk, bringing the baseline algorithm on

par with the keep heuristic. This is not surprising given the importance of page

cache for I/O intensive applications [12]. The Linux kernel provides other relevant

I/O strategies such as readahead and clustered writes that may interfere with the

keep heuristic. Incorporating awareness of kernel I/O strategies into the repartition-

ing algorithm may further enhance performance.

Most applications would process large multi-dimensional arrays in parallel, on a

multi-core computer or on an HPC cluster. The keep heuristic is directly applicable

to multi-core environments, assuming sequential I/Os. The case of HPC clusters,

however, it would have to be extended to consider network data transfers. In ad-

dition, HPC clusters would most likely store input blocks on a parallel file system

such as Lustre where files are striped across multiple disks and nodes. An extended

formulation of the repartitioning problem would be required in this context. It would

be interesting to integrate such an extension in the Dask engine, a popular paral-

lelization framework of the SciPy ecosystem [19]. In particular, the keep heuristic

would interface nicely with the dask.array API.

3.4.2 Implementing sequential optimization algorithms into

Dask

As explained in the Background chapter, Dask reaches an important part of the sci-

entific community, enabling users to perform data analysis locally and on distributed

environments. In particular, it allows to efficiently process multidimensional arrays

using the dask.array API, which represents computations using task graphs. We have

done some early work in the implementation of the sequential algorithms presented

in this thesis into the dask.array API to see if such algorithms could optimize the IO

35

parts of Dask graphs.

We implemented the clustered algorithm for splitting and merging arrays into

Dask. Figure 8b shows the result of applying the clustered algorithm to a task graph

representing a “split” task (Figure 8a). At first the task graph is designed to read

four subarrays from the original array and split it into four different files (Figure 8a).

This task graph has to be read from bottom to top. The read tasks are named

“array-getitem” and the write tasks are named “store”. We can see on Figure 8b that

after applying the clustered strategy a new task has been added to the graph, forcing

Dask to first load a big contiguous buffer into memory, before splitting it for parallel

processing. That way, parallel processing is still possible, while reading input data

without excessive seeking. Note that although Dask uses different tasks to do parallel

processing, reading and writing to disk is still sequential. This work shows promising

results and will be continued in the future.

36

(a) Task graph for splitting an array into sev-

eral files, generated by Dask.

(b) A first task has been created to force Dask

to read a contiguous buffer into memory, and

then split it into different tasks.

Figure 8: Optimization of a task graph using the clustered strategy.

37

Chapter 4

Conclusion

Multidimensional array chunking is a routine for scientists nowadays. That is why

efficiently processing such arrays is of major importance in the big data era.

Previous work showed that splitting and merging arrays can be optimized by re-

ducing disk seeking. We applied a similar strategy to the re-partitioning problem.

This problem consists in efficiently re-writing a chunked array to change the chunks’

shape. We formally defined the re-partitioning problem together with a baseline al-

gorithm to solve it. We also presented the keep heuristic to reduce the number of

seeks produced during the re-partitioning and hopefully reduce the processing time

of such task. The keep heuristic reduces the number of seeks by (1) constraining the

read buffers shape to minimize the read time, and (2) leveraging a cache to minimize

the write time.

Although the re-partitioning problem is more complex than splitting/merging

chunks, we proved that it can be optimized and that it is possible to reduce the

processing time significantly. Surprisingly, however, the baseline algorithm has been

found to perform pretty well when there is a lot of memory available as it leverages

the page cache to speedup computations without reducing the number of seeks. For

now, the keep algorithm may be more interesting than the baseline algorithm only

when the memory constraint is important (m small compared to the array size).

38

Some cases cannot be solved by our algorithms for now, like repartitioning non-

regularly chunked arrays and cases where r̂2 is not a divisor of A2. Also, the baseline

algorithm assumes that there is enough main memory available to store one input

block in memory.

Please note that due to implementation limitations we decided not to publish our

work for the moment. We consider that further experiments with bigger datasets are

required before publishing our results.

4.1 Future work

Our first goal is to publish our results, which requires us to find a way to remove the

processing time overhead of the keep heuristic. It would also enable to use the keep

heuristic for arrays of size 1TB or more.

This study was mainly a proof of concept to show that the repartitioning problem

could be optimized by reducing the amount of seeks produced. Many improvements

can be imagined for the keep heuristic alone, such as removing limitations due to

assumptions like using read buffers of uniform shape. Indeed, the removal of this lim-

itation would enable us to apply the keep heuristic to irregular chunking. Further

processing speed could also be gained by using a different read buffer order than the

naive one used in this study.

In the future, the algorithm performances may be improved by finding a variant

to the keep algorithm that also reduce the read time significantly, identifying and

focusing on reducing the most expensive seeks, and finally, finding parallel and/or

distributive versions of the keep algorithm.

We think that solving the repartition problem could enable us to solve other

problems subject to disk seeking. The Region Of Interest (ROI) extraction problem

is such a problem and is very common for scientists. A solution using chunking has

been introduced in [16]. The authors define an array partitioned into chunks of equal

shapes and then define a query as an arbitrary subarray of the input, chunked, array.

They define the optimal chunking problem as finding the optimal chunk shape such

39

that the expected number of chunks retrieved to answer the query is minimal. In

our opinion, the solution in [16] is limited due to the need of historical or theoretical

workload and the necessity to repartition the input array into an “optimal” chunk

shape. We would prefer letting the application choose the appropriate chunk shape

regarding its needs and not needing to estimate the processing workload.

Finally, we would like to make our algorithms accessible to scientists by imple-

menting it into commonly used Big Data engines like Dask. As discussed previously,

we did some promising experiments, that will surely be continued in the future.

40

Bibliography

[1] ScienceDaily reference terms - functional neuroimaging. https://www.

sciencedaily.com/terms/functional_neuroimaging.htm. Accessed: 2020-

12-21.

[2] Memory-mapped files. https://docs.microsoft.com/en-us/dotnet/

standard/io/memory-mapped-files, Mar 2017. Accessed: 2020-09-27.

[3] Katrin Amunts, Claude Lepage, Louis Borgeat, Hartmut Mohlberg, Timo

Dickscheid, Marc-Étienne Rousseau, Sebastian Bludau, Pierre-Louis Bazin,

Lindsay B. Lewis, Ana-Maria Oros-Peusquens, Nadim J. Shah, Thomas Lippert,

Karl Zilles, and Alan C. Evans. Bigbrain: An ultrahigh-resolution 3d human

brain model. Science, 340(6139):1472–1475, 2013.

[4] Spyros Blanas, Kesheng Wu, Surendra Byna, Bin Dong, and Arie Shoshani.

Parallel data analysis directly on scientific file formats. In Proceedings of the

2014 ACM SIGMOD international conference on Management of data, pages

385–396, 2014.

[5] Dhruba Borthakur et al. Hdfs architecture guide. Hadoop Apache Project, 53(1-

13):2, 2008.

[6] Andrew Collette. Datasets. http://docs.h5py.org/en/stable/high/

dataset.html, 2014. Accessed: 2020-09-27.

[7] Nivedita Daimiwal and Revati Shriram. Power spectral density analysis of time

series of pixel of functional magnetic resonance image for different motor activity.

Biomedical and Pharmacology Journal, 12(3):1193–1200, 2019.

[8] Khoa Doan, Amidu O Oloso, Kwo-Sen Kuo, Thomas L Clune, Hongfeng Yu,

Brian Nelson, and Jian Zhang. Evaluating the impact of data placement to

41

https://www.sciencedaily.com/terms/functional_neuroimaging.htm
https://www.sciencedaily.com/terms/functional_neuroimaging.htm
https://docs.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files
https://docs.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files
http://docs.h5py.org/en/stable/high/dataset.html
http://docs.h5py.org/en/stable/high/dataset.html

spark and scidb with an earth science use case. In 2016 IEEE International

Conference on Big Data (Big Data), pages 341–346. IEEE, 2016.

[9] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson.

An overview of the hdf5 technology suite and its applications. In Proceedings of

the EDBT/ICDT 2011 Workshop on Array Databases, pages 36–47, 2011.

[10] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gom-

mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-

tian Berg, Nathaniel J Smith, et al. Array programming with numpy. Nature,

585(7825):357–362, 2020.

[11] V. Hayot-Sasson, Y. Gao, Y. Yan, and T. Glatard. Sequential algorithms to

split and merge ultra-high resolution 3d images. In 2017 IEEE International

Conference on Big Data (Big Data), pages 415–424, Dec 2017.

[12] Valérie Hayot-Sasson, Shawn T Brown, and Tristan Glatard. Performance

evaluation of big data processing strategies for neuroimaging. In 2019 19th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID), pages 449–458. IEEE, 2019.

[13] Stephan Hoyer and Joe Hamman. xarray: Nd labeled arrays and datasets in

python. Journal of Open Research Software, 5(1), 2017.

[14] Fei Hu, Mengchao Xu, Jingchao Yang, Yanshou Liang, Kejin Cui, Michael M

Little, Christopher S Lynnes, Daniel Q Duffy, and Chaowei Yang. Evaluating

the open source data containers for handling big geospatial raster data. ISPRS

International Journal of Geo-Information, 7(4):144, 2018.

[15] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering

properties of the hilbert space-filling curve. IEEE Transactions on Knowledge

and Data Engineering, 13(1):124–141, Jan 2001.

[16] E. J. Otoo, Doron Rotem, and Sridhar Seshadri. Optimal chunking of large

multidimensional arrays for data warehousing. In Proceedings of the ACM Tenth

International Workshop on Data Warehousing and OLAP, DOLAP ’07, page

25–32, New York, NY, USA, 2007. Association for Computing Machinery.

42

[17] Russell A Poldrack. Region of interest analysis for fmri. Social cognitive and

affective neuroscience, 2(1):67–70, 2007.

[18] Matthew Rocklin. Distributed numpy on a cluster with dask arrays. http://

matthewrocklin.com/blog/work/2017/01/17/dask-images. Accessed: 2020-

12-21.

[19] Matthew Rocklin. Dask: Parallel computation with blocked algorithms and task

scheduling. In Kathryn Huff and James Bergstra, editors, Proceedings of the 14th

Python in Science Conference, pages 130 – 136, 2015.

[20] Matthew Rocklin and James Bourbeau. Best practices. https://docs.dask.

org/en/latest/array-best-practices.html, May 2019. Accessed: 2020-09-

27.

[21] Florin Rusu and Yu Cheng. A survey on array storage, query languages, and

systems. arXiv preprint arXiv:1302.0103, 2013.

[22] S. Sagiroglu and D. Sinanc. Big data: A review. In 2013 International Conference

on Collaboration Technologies and Systems (CTS), pages 42–47, 2013.

[23] Ralf Schmälzle, Martin A Imhof, Clare Grall, Tobias Flaisch, and Harald T

Schupp. Reliability of fmri time series: Similarity of neural processing during

movie viewing. 2017.

[24] Apache Spark. Apache spark. Retrieved January, 17:2018, 2018.

[25] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. The ar-

chitecture of scidb. In International Conference on Scientific and Statistical

Database Management, pages 1–16. Springer, 2011.

[26] Michael E. Sughrue. Chapter 3 - novel approaches to brain mapping in the era of

functional magnetic resonance imaging. In Michael E. Sughrue and Isaac Yang,

editors, New Techniques for Management of ’Inoperable’ Gliomas, pages 11 – 18.

Academic Press, 2019.

43

http://matthewrocklin.com/blog/work/2017/01/17/dask-images
http://matthewrocklin.com/blog/work/2017/01/17/dask-images
https://docs.dask.org/en/latest/array-best-practices.html
https://docs.dask.org/en/latest/array-best-practices.html

[27] Shanshan Sun and Runtong Zhang. Region of interest extraction of medical

image based on improved region growing algorithm. In 2017 International Con-

ference on Material Science, Energy and Environmental Engineering (MSEEE

2017). Atlantis Press, 2017.

[28] Robert D Vincent, Peter Neelin, Najmeh Khalili-Mahani, Andrew L Janke,

Vladimir S Fonov, Steven M Robbins, Leila Baghdadi, Jason Lerch, John G

Sled, Reza Adalat, et al. Minc 2.0: a flexible format for multi-modal images.

Frontiers in neuroinformatics, 10:35, 2016.

[29] Pan Xu, Cuong Nguyen, and Srikanta Tirthapura. Onion curve: A space filling

curve with near-optimal clustering. CoRR, abs/1801.07399, 2018.

44

	List of Figures
	List of Tables
	Introduction
	Background
	Multidimensional arrays storage
	Storing arrays in one file
	Multidimensional array chunking

	File formats
	Multidimensional array processing frameworks
	The Python programming language
	Dask

	Sequential algorithms for optimizing multidimensional arrays manipulation
	Example use case of the repartitioning task
	The Region Of Interest Extraction Problem

	The keep heuristic for repartitioning multidimensional arrays
	Problem definition and baseline
	The re-partitioning problem
	Baseline

	The keep heuristic
	Overview
	Candidate read shapes
	Block order
	Creation of write blocks
	Peak memory
	Number of generated seeks
	Implementation

	Experiments
	Seek model validation
	Experiment conditions
	Results

	Discussion
	Relevant extensions
	Implementing sequential optimization algorithms into Dask

	Conclusion
	Future work

