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Abstract

Algorithms for Tracking Single Maneuvering and Multiple Closely-Spaced Targets

Mohamed Nabil Abdelghaffar Eltoukhy, Ph.D.

Concordia University

Target tracking is crucial in monitoring and controlling air traffic in civilian and military

applications. Target tracking is a process of estimating the current position and predict the

future position of one or more targets using the measurements received by a radar system.

One of the major challenges in tracking a single target is when it performs a maneuver

and the angle of maneuver is not known. The interacting multiple model (IMM) algorithm

is the most commonly-used algorithm for tracking a maneuvering target with an a priori

knowledge of the target turn rate, since it provides a very good tracking performance with

moderate complexity. However, the tracking performance of such an algorithm deteriorates

or may even fail when the target performs a maneuver with a turn rate larger than that

assumed in the design of the algorithm. A few methods have been reported to overcome

this limitation of an assumed turn rate by actually estimating it adaptively. Two of such

algorithms use nonlinear filters that leads to a large complexity, and one of them uses linear

filters and models providing good tracking performance, but only for mild maneuvers.

For tracking multiple targets, several algorithms have been proposed, among which the

joint probability data association (JPDA) algorithm is considered to be the best algorithm,

since it provides good tracking performance when the targets are widely spaced. However,

the tracking performance of this algorithm deteriorates, and coalescence of the tracks may

occur, when the targets are closely spaced. Some efforts have been made to overcome the

problem of tracking closely spaced targets by ignoring the target identity, but at the expense

of very large complexity.

The work of this thesis is carried out in two parts. In the first part, two algorithms within

the IMM framework are proposed to track a single maneuvering target, when the target turn
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rate is not known a priori. In both the algorithms, the turn rate is dynamically estimated

using noisy measurements. In the first algorithm, the turn rate at each time instant k is

estimated based on the target speed and the radius of the circle formed by the measurement

at that instant and the two previous consecutive noisy measurements, (k − 1) and (k − 2).

The segment of this circle covered by these three noisy measurements is used to model the

true track of the target at the instant time k. In the second algorithm, the accuracy of the turn

rate estimated in the first algorithm is improved using the information on the level of the

measurement noise.

In the second part of the thesis, a systematic study on the impact of the spacing between

the targets as well as when the targets make abrupt turns with sharp angles on the track-

ing performance of the JPDA algorithm is conducted. Then, a new algorithm for tracking

multiple targets based on the spatial distribution of the measurements for determining the

weights for measurement-target association is proposed within the JPDA framework. The

proposed algorithm for multiple target tracking is designed to deal with the problems of

closely spaced targets and their abrupt sharp turns more effectively.

Effectiveness and superiority of the algorithms proposed for tracking single and multiple

targets are demonstrated through extensive experiments with a wide variety of different

scenarios for target motions.
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Chapter 1

Introduction

1.1 General

Target tracking is crucial in monitoring and controlling air traffic in civilian and military

applications. Target tracking is a process of determining the position of a moving target

as a function of time. Radar systems are used to search for the existence of targets in its

region of coverage by providing a set of measurements on the target’s position in space [1].

A radar system basically consists of a transmitter that transmits an electromagnetic wave,

which travels through the space to the target. The radar antenna receives reflected signals

from targets of interest as well as undesired signals, termed as clutters [2], reflected from

buildings, ground, or sea. These reflected signals are sent to the receiver of the radar for

processing [3]. The output of the receiver is a set of position measurements displayed on the

radar display, and sent to a data processor for further processing in determining the tracks

of the targets of interest using a tracking algorithm [4].

In order to design a tracking algorithm using radar measurements, we have to estimate

the target kinematics such as position, velocity, and acceleration [5]. The coordinate system

used in the tracking algorithm can be either Cartesian or polar. The former allows the use of

linear filters such as Kalman filter (KF) [6–8], or nonlinear filters such as extended Kalman

filter (EKF) [9–11], unscented Kalman filter (UKF) [12–14], cubature Kalman filter (CKF)

[15–17], or particle filter (PF) [18–20], depending on whether the motion model used linear

or nonlinear. On the other hand, the polar coordinate system requires to the filters to be

nonlinear [21]. It is to be noted that the linear models and filters are preferred in view of
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its lower computational time. In the next section, a brief review of the existing single and

multiple target tracking algorithms is discussed.

1.2 A Review of Tracking Algorithms

Many algorithms have been proposed in the literature for target tracking. In this section, we

first review the algorithms that have been proposed for tracking single target, and then for

the multiple targets.

There are two main approaches to track a single maneuvering target. The first approach

uses a maneuver detector [22–24] employing a statistical test [25]; the detector determines

the times at which a maneuver starts and ends. An algorithm in this approach uses a sin-

gle filter for tracking. The algorithm starts to track the target in a non-maneuvering mode,

and switches to the maneuvering mode when the beginning of maneuver is detected, and

switches back to the non-maneuvering mode when the maneuver ends. One of the algo-

rithms in this approach is the one in [26] that employs a constant velocity (CV) motion model

in its filter in which a low-level noise is used for non-maneuvering mode and a high-level

noise for maneuvering mode. Another algorithm in this approach is the variable dimen-

sion (VD) algorithm [27]. This algorithm also uses a single filter, but employs two motion

models, the CV model for the non-maneuvering mode, and the constant acceleration (CA)

model for the maneuvering mode. Two other algorithms in this approach, namely those

in [28] and [29], also use a single filter by employing a CV motion model for both the modes,

but switch from Cartesian to polar coordinates for the maneuvering mode. In general, the

algorithms in this approach have high peak position error at the beginning of a maneuver,

and this error may become even higher than that obtained using the raw measurement data.

The second approach in target tracking is the one in which no maneuver detector is used.

In this approach, a number of filters, each using a different motion model, are used in par-

allel. The outputs of these filters are weighted to obtain the overall output state estimate for

the target of interest. The weight assigned to an individual filter output is proportional to the

probability of its likelihood to estimate the target states accurately [30]. In this approach, the
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problem of peak position error that appears at the beginning of the target maneuver using

the algorithms of the first approach is overcome. In this approach, several algorithms have

been proposed, such as the first order generalized pseudo-Bayesian (GPB1) algorithm [31],

the second order GPB (GPB2) algorithm [32], and the interacting multiple model (IMM) al-

gorithm [33]. The IMM algorithm provides better performance compared to that of GPB1,

but with a slightly higher complexity. On the other hand, it has significantly lower com-

plexity than GPB2 and with a comparable tracking performance [34]. The implementation

of the IMM algorithm with larger number of filters does not necessarily improve the perfor-

mance proportionally, despite its increased complexity [35]. The IMM algorithm provides

a good performance when it employs three filters, one of which uses the constant veloc-

ity (CV) model and the other two use the coordinated turn (CT) model with known turn

rates [36, 37]. However, the tracking performance deteriorates when the turn rates deviate

from the maneuver performed by the target [38].

There exist a few methods for determining the turn rate when the turn rate is not known a

priori. The first method obtains the turn rate by estimating the target acceleration and speed

[39]. In general, the estimated accelerations are not precise and may cause an estimation of

the turn rate, which is biased. In the second method, the state vector is augmented with the

turn rate, which is estimated along with other components of the state vector [40, 41]. This

results in a nonlinear CT model, which is computationally more expensive for estimating

the state vector. In the recent years, it has been shown that the range rate information can be

used for a better estimation of the turn rate [42–46]. However, this information may not be

available in all radar types [38].

If clutters are taken into consideration, steps known as gating and data association are

required in the algorithm to track a single target [47, 48]. Gating in a tracking algorithm

refers to an area around the predicted position of the target at a time instant such that only

the measurements received at that time instant falling inside that area are taken into consid-

eration. Data association is the task of assigning each of the gated measurements a weight,

which represents the probability of the measurement being associated with the target. The

assigned measurements are then used to estimate the updated position of the target in the
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current time instant. For this purpose, the nearest neighbor (NN) and probabilistic data as-

sociation (PDA) techniques have been used. In the algorithm that uses NN technique [49],

the measurement whose position is nearest to the predicted position of the target is the se-

lected to estimate the position of the target and the remaining measurements are simply

ignored. In the algorithm using the PDA technique [50,51], for each gated measurement, the

estimate of the target position is first individually computed. Then, the overall estimate of

the target position is computed as a weighted sum of all the individual estimates, in which

a weight represents the probability of associating a measurement to the target. The tracking

algorithm using PDA gives a tracking performance better than that of using NN in a heavy

clutter environment [52]. It should be pointed out that these algorithms assume that the

target is non-maneuvering. In order to track a maneuvering target in clutter, a combination

of the PDA and IMM algorithms has been used in [53]. However, in this algorithm the turn

rate assumed to be known.

In tracking multiple targets, all the target tracks need to be updated simultaneously. As

in the case of single target tracking in the presence of clutters, gating and data association are

essential steps of the tracking algorithm. In the literature, there exist different algorithms for

tracking multiple targets. The simplest algorithm [54] uses the nearest neighbor technique

in which the measurement within the gate of a target that is closest to the predicted position

of the target is associated with it and the remaining measurements are ignored. However,

the tracking performance of this algorithm degrades or may even fail when the clutter is

heavy [55]. Another multiple target tracking algorithm is the one that uses multiple hypoth-

esis tracking (MHT) technique [56,57], which employs the measurements received in all the

scans up to the current one to construct all the possible hypotheses for target-measurement

assignment. This technique exhibits a very good tracking performance even in the case of

heavy clutter environment, but at the expense of a much larger computational complex-

ity [58].

Another algorithm for multi-target tracking, known as the joint probability data associa-

tion (JPDA) algorithm, with a complexity much lower than that of MHT, has been proposed

in [59]. This algorithm computes the predicted position of the targets at a time instant using
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the output estimate from the previous time instant, and creates a gate around the predicted

position for each of the targets to find the gated measurements. The position estimate of

a given target is first obtained individually for all the measurements falling inside its gate.

Then, the overall position estimate for the target is computed as a weighted sum of all the

individual estimates for the target [60], in which a weight represents the probability of asso-

ciating a particular measurement to the target. The JPDA algorithm exhibits a good track-

ing performance when targets are widely spaced. When the targets are closely spaced, not

only the performance of the JPDA algorithm deteriorates, but also even the tracks may co-

alesce [61, 62]. Many researchers have attempted to overcome this problem by proposing

algorithms such as Kullback-Leibler set JPDA (KLSJPDA), Set JPDA (SJPDA) [63, 64] and

multi-objective JPDA (MOJPDA) [65]. However, in addition to suffering from high compu-

tational complexity, these algorithms are not capable of preserving the identity of the targets.

The above multi-target tracking algorithms assume that the targets are non-maneuvering.

In order to track multiple maneuvering targets, a combination of the JPDA and IMM algo-

rithms has been used in [66]. However, this algorithm uses a nonlinear CT model, which is

computationally more expensive for estimating the position of the target.

From the above review of the literature in target tracking, it is seen that that the methods

proposed for both single and multi-target tracking have certain limitations and disadvan-

tages. In the case of single target tracking, most of the algorithms have been designed for

specified turn rate for target maneuvering, and the performance of such algorithms dete-

riorates, and may even fail when the target maneuvers with a turn rate that is larger than

that for which the algorithm has been designed. Even in algorithms in which the turn rate

is estimated rather than being specified in advance, they cannot deal effectively for large

values of the turn rate, or require the use of non-linear filters that adds to the complexity of

the algorithm.

The most effective algorithm for multi-target tracking is JPDA, which provides very good

tracking performance when the targets are widely spaced and the angles of sudden turns of

the targets are not very large. No study has been undertaken of the impact on the perfor-

mance of multi-target tracking algorithms, when the targets are closely spaced and/or when
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the target sudden turns are large.

1.3 Objectives and Organization of the Thesis

Objectives of this thesis are to develop efficient algorithms for single target tracking, in

which the turn rates of the target maneuver are not prespecified, and for multi-target track-

ing when the tracks of the targets are closely spaced as well as when the angles of sudden

turns of the targets are large. In the first part of the thesis, two algorithms within the IMM

framework are proposed to track a single maneuvering target, when the target turn rate is

not known a priori. In both the algorithms, the turn rate is dynamically estimated using

noisy measurements. In the first algorithm, the turn rate at each time instant k is estimated

based on the target speed and the radius of the circle formed by the measurement at that

instant and the two previous consecutive noisy measurements, (k − 1) and (k − 2). The

segment of this circle covered by these three noisy measurements is used to model the true

track of the target at the instant time k. In the second algorithm, the accuracy of the turn

rate estimated in the first algorithm is improved using the information on the level of the

measurement noise. In the second part of the thesis, a new multiple target tracking algo-

rithm within JPDA framework is proposed that addresses the problems resulting from close

spacing between the target tracks or sudden large turn angles, and is based on the spatial

distribution of the gated measurements.

The thesis is organized as follows. In Chapter 2, the background material necessary

for the development of the proposed schemes, is presented. In Chapter 3, an algorithm is

proposed for tracking a single maneuvering target, when the turn rate is estimated without

an a priori knowledge of the turn rate. Extensive experiments are performed under different

scenarios of the target track to evaluate the performance of the algorithm and to compare

its performance with that of the existing algorithms. The effect of the change in the level of

measurement noise on the tracking performance is also studied. In Chapter 4, an algorithm

is proposed in order to improve the accuracy of the estimated turn rate using the information

on the level of the measurement noise. The impact on the tracking performance of this
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algorithm, when the measurement noise level rises over the specified one for which the

algorithm has been designed, is studied. In Chapter 5, a new algorithm for tracking multiple

targets within the JPDA framework, is proposed. A systematic study on the performance of

this algorithm as a function of the spacing between the targets as well as the turning angles

of the targets is carried out. Experiments are performed to illustrate the effectiveness of the

proposed scheme using various scenarios of target tracks and compare its performance with

that of the existing JPDA algorithm. Finally, Chapter 6 represents some concluding remarks

on the work carried out in this thesis and some possible research directions in target tracking

are suggested.
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Chapter 2

Background

Target tracking is essentially a process of following the evolution of the target motion with

time. This process is generally represented by a state space model, which has two parts. The

first part gives the evolution of the target state over time, whereas the second part relates

the target state with the measurement. Since moving targets may have different kind of

motions, these motions have to be modeled in order to accurately follow the evolution of

the target state. In this chapter, the state space model is first described, and then some of the

target motion models used in target tracking are presented. Finally, metrics to evaluate the

performance of a tracking algorithm are briefly discussed.

2.1 State Space Model

Despite the fact that a real target is not a point in the space, it is conventionally treated

as a point object without a shape in tracking applications [67]. For modeling the target

movement over time and relate the target state with the measurement, the state space model

with additive noise is used. We first introduce the state vector x(k) of a target, given by

x(k) = [ξ(k), ξ̇(k), η(k), η̇(k)]t (2.1)

where ξ(k) and η(k) represent the position components of the target in the x and y directions,

respectively, ξ̇(k) and η̇(k) are the velocity components of the target in the x and y directions,

respectively, (·)t denotes the transpose, and k is the time step. The state space model consists
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of two parts. The first part is the dynamic equation, in which the evolution of the target state

with respect to time is computed. The dynamic equation is given by [68]

x(k) = Fx(k − 1) + Γb (2.2)

where F is the state transition matrix that relate the previous state vector to the current

state vector, Γ is the disturbance matrix, and b is a vector containing the x and y components

of a zero-mean Gaussian noise with a covariance matrix Q. The matrices Γ and Q are given

by [67]

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.5T2 0

T 0

0 0.5T2

0 T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.3)

and

Q =

⎡⎢⎣σ2
Q 0

0 σ2
Q

⎤⎥⎦ (2.4)

where T is the sampling period and σQ is the standard deviation of the process noise in the

x and y directions. Generally, 2D-radar systems provide the measurements in polar coordi-

nates, that is, in terms of azimuth and range. However, tracking using polar coordinates is

not as accurate as tracking using Cartesian coordinates and hence the latter is recommended

with a suitable measurement conversion [69, 70]. Therefore, using a suitable conversion of

the polar measurement such as used in [71], we can track the target in Cartesian coordinates

for better tracking performance. Therefore, most of the algorithms that have been proposed

for target tracking assume that suitable conversion has already been made of the polar mea-

surement to Cartesian coordinates [37,39,72,73]. We have also followed the same practice as

others have done. The radar assumed to provide only the positions information, i.e, range

rate information is not provided. Then, the second equation of the state space model that is
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the measurement equation, given by [74]

z(k) = Hx(k) + m (2.5)

where z(k) is the measurement received, H is the measurement matrix that relate the current

state vector to the current received measurement, and m is the measurement noise, assumed

to be zero-mean Gaussian with a covariance matrix U. The matrices H and U given by [75]

H =

⎡⎢⎣1 0 0 0

0 0 1 0

⎤⎥⎦ (2.6)

and

U =

⎡⎢⎣σ2
s 0

0 σ2
s

⎤⎥⎦ (2.7)

where σs is the specified standard deviation (STD) of the measurement noise in the x and y

directions that is assumed to be equal to the actual STD, σa of the measurement noise. It is

to be noted that both the process noise and the measurement noise are independent.

2.2 Target Motion Models

An aircraft has two types of motion: straight-line motion and maneuvering motion [76]. The

straight-line motion can be modeled using a constant velocity (CV) model, the maneuver

motion is customarily modeled using a coordinated turn (CT) model [77] or a three com-

ponents turning rate (3CTR) model [39]. The selection of the motion model is based on the

design of the tracking algorithm, i.e., the tracking algorithm is designed to track only targets

with non-maneuvering motion or targets may perform maneuvers as well.
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2.2.1 Constant velocity model

This model assumes that the target has a straight-line motion with a constant velocity in a

two-dimensional space. The state transition matrix F = FCV of this model, given by [67]

FCV =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.8)

2.2.2 Coordinated turn model with known turn rate

This model assumes that the target moves at a constant speed and is preforming a maneuver

with a constant turn rate ω in a two-dimensional space. The state transition matrix F = FCT

of this model, given by [77]

FCT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 sin(ωT)
ω 0 −1−cos(ωT)

ω

0 cos(ωT) 0 − sin(ωT)

0 1−cos(ωT)
ω 1 sin(ωT)

ω

0 sin(ωT) 0 cos(ωT)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.9)

where ω is the target turn rate. When the sign of ω is positive, the model account for the left

turning motion. Conversely, when the sign of ω is negative, the model account for the right

turning motion [78]. In case the turn rate of the target is not known a priori and estimated,

the turn rate varies each time step based on the estimation scheme and becomes ω(k).

2.2.3 Three component turn rate model

This model assumes that the target performs the maneuver motion with a constant turn rate

in a 2D plane and use the target’s position, velocity and acceleration to estimate the target
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position. In this case, the state vector x(k) is expressed as

x(k) = [ξ(k), ξ̇(k), ξ̈(k), η(k), η̇(k), η̈(k)]′ (2.10)

where ξ̈(k) and η̈(k) are the acceleration components in the x and y directions, respectively.

The state transition matrix F3CTR of this model is given by [39]

F3CTR =

⎡⎢⎣A f 0

0 A f

⎤⎥⎦ (2.11)

where

A f =

⎡⎢⎢⎢⎢⎣
1 ω−1 sin(ωT) ω−2(1 − cos(ωT))

0 cos(ωT) ω−1 sin(ωT)

0 −ω sin(ωT) cos(ωT)

⎤⎥⎥⎥⎥⎦ (2.12)

and its corresponding disturbance matrix denoted as

Γ f =

⎡⎢⎢⎢⎢⎣
0.167T3 0

0.5T2 0

T 0

⎤⎥⎥⎥⎥⎦ (2.13)

2.3 Metrics for Performance Evaluation

To evaluate the performance of a tracking algorithm, Monte-Carlo simulations are used, and

the following subsections show the metrics used for performance evaluation.

2.3.1 Tracking accuracy

To measure the tracking accuracy of a single or multiple target tracking algorithm, the root

mean square error (RMSE) is used, which is given by [79]

RMSE(k) =

⌜⃓⃓⎷ 1
M

M

∑
m=1

(ξ̂m(k)− ξm(k))2 + (η̂m(k)− ηm(k))2 (2.14)
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where M is the total number of Monte-Carlo simulations, ξm(k) and ξ̂m(k) are, respectively,

the true and estimated positions in the x direction, and ηm(k) and η̂m(k) are, respectively,

the corresponding positions in the y direction, in the mth run of the Monte-Carlo simulation.

The estimator performance is acceptable at the time step k, if the value of RMSE is less than

the error obtained from the raw measurement of the radar, given by [72]

ETH = σs
√

2 (2.15)

2.3.2 Consistency test

This test checks whether the state vector error is compatible with the estimated state co-

variance matrix of the estimator or not, and the state vector error defined as the difference

between the true and estimated state of the target. The test is performed by calculating the

average normalized estimation error squared (ANEES) and commonly used for the evalua-

tion of a single target tracking algorithm [26]. The ANEES at the kth time step is given by

ANEES(k) = 1
Mnx

M
∑

m=1
(xm(k)− x̂m(k))

t(P̂m(k))−1(xm(k)− x̂m(k)) (2.16)

where xm(k), x̂m(k), and P̂m(k) are the true, the estimated state vector, and the error covari-

ance matrix of the target at the time step k on the mth Monte Carlo run, respectively, and nx

is the dimension of the state vector. The logarithmic ANEES (LANEES) is given by

LANEES(k) = log10 (ANEES(k)) (2.17)

is more expressive in terms of displaying the results [80]. When the value of LANEES test is

equal or less than zero, the estimator is said to be consistent.
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2.4 Summary

In this chapter, a brief review on the background material necessary for the development of

the work in this thesis has been presented. The state space model used for target tracking

has been introduced. Some of the target motion models that exist in the literature are also

presented for a maneuvering target. Finally, the metrics generally used for the evaluation of

the tracking performance have been presented.
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Chapter 3

The First Proposed Algorithm for Tracking

a Single Maneuvering Target

3.1 Introduction

To track a maneuvering target with an efficient tracking performance, the tracking algorithm

has to precisely identify, when the target starts the maneuver motion, when the target ends

that motion, and to be able to track the target during the maneuvering period. Moreover,

the adopted motion models have to accurately match the predicted motion of the target and

provide an accurate predicted kinematics as possible [21].

Two main approaches exist to track a maneuvering target; one of which use a maneu-

ver detector and the other does not. The maneuver detector is a statistical test, which is

formulated to decide whether the target maneuver has begun or not. Same framework is

used to test whether the maneuver has ended or not [22]. In general, the algorithms in the

first approach show a high peak position error at the beginning of the maneuver motion,

which may be higher than the error obtained from the raw measurement data [27]. The

other approach uses a number of filters that works in parallel. This approach overcomes the

drawback in the first approach. The best tracking algorithm in this approach is achieved

by the interacting multiple model (IMM) algorithm when it utilizes the CV and CT mod-

els with a prior knowledge about the target turn rate. However, when a target performs a

maneuver with a turn rate that is larger than that of the one used in the design of the IMM
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algorithm, the performance deteriorates, and track loss may happen. Turn rate estimation

is an approach to overcome this problem. The only algorithm that estimates the turn rate

using linear motion models and filters is the one given in [39]. In this algorithm, the IMM

framework is used and the turn rate of the target is calculated from the estimated velocity

and acceleration at each time step as the magnitude of the acceleration divided by the speed

of the target. However, this algorithm shows accurate performance for only mild maneu-

vers due to the error in the calculated acceleration of the target when the maneuver is not

mild. Another problem with the algorithm in [39] that needs to be pointed out is that the

level of the actual measurement noise of the radar system may not remain the same as the

ones used in the design of the algorithm. No study has been undertaken on the impact of

the change in the level of the measurement noise from the specified one used in the design

of the algorithm on the tracking performance.

In this chapter, we first review the framework of an IMM algorithm [36]. Then, we pro-

pose an algorithm within the IMM framework to track a single maneuvering target in which

the turn rate is dynamically estimated. The turn rate is estimated at each time instant based

on the target speed and the radius of the circle formed by the measurement at that instant

and the two previous consecutive noisy measurements [81]. Extensive simulations are car-

ried out to evaluate the performance of the proposed algorithm and compare it with that of

the other algorithms designed in the IMM framework. Finally, we study the impact of the

change in the level of the measurement noise on the tracking performance of the algorithm

in [39] and that of the proposed algorithm.

3.2 IMM Algorithm

The IMM algorithm is quite effective in tracking a maneuvering target, wherein the target

maneuver is modeled as a combination of different motion models. The output at each time

step is a combination of the outputs of all the filters weighted by the corresponding mode

probability, the mode probability being defined as the probability of the model matching

the target motion. At each time step, the algorithm decides as to which model is suitable
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to predict the motion of the target (non-maneuvering or maneuvering motion) based on the

mode probability. The block diagram of a single cycle of the IMM algorithm, which uses

two Kalman filters each using a different motion model, is shown in Fig. 3.1 [36].

The predicted state vector x̃j(k) for a Kalman filter j is given by [7]

x̃j(k) = Fx̂oj(k − 1) (3.1)

where x̂oj(k − 1) is the input state vector for the filter j. The predicted error covariance

matrix, P̃j(k), is given by

P̃j(k) = FP̂oj(k − 1)Ft + ΓQΓt (3.2)

where P̂oj(k − 1) is the error covariance matrix of the input state vector for the filter j. The

predicted position of the target, z̃j(k) is given by

z̃j(k) = Hx̃j(k) (3.3)

The measurement innovation or the residual of the filter βj(k)

βj(k) = z(k)− z̃j(k) (3.4)

where z(k) is the received measurement vector. The innovation error covariance matrix,

Sj(k), is given by

Sj(k) = HP̃j(k)Ht + U (3.5)

The Kalman gain Kj(k) is defined as

Kj(k) = P̃j(k)Ht(Sj(k))−1 (3.6)

The output state estimate x̂j(k) of the Kalman filter j and its error covariance matrix P̂j(k)

are expressed as

x̂j(k) = x̃j(k) + Kj(k)βj(k) (3.7)
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P̂j(k) = [I − Kj(k)H]P̃j(k) (3.8)

where I is the identity matrix.

Assuming the IMM algorithm to contain only two Kalman filters, each of which is used

to find the output state estimate of the target according to a specific type of motion (e.g.

non-maneuvering, referred to as mode 1, and maneuvering mode, referred to as mode 2).

The algorithm starts with initial values for the mode probabilities µ1(k − 1) and µ2(k − 1).

In addition, a fixed matrix Ptr is assumed, whose (i, j)th element, pij, i, j = 1, 2, is the prob-

ability of transition from mode i to mode j, wherein the sum of the elements of each row in

this matrix is unity. The mode probabilities as well as the transition probabilities are used

to calculate the mixing probabilities µi|j(k − 1) where i, j = 1, 2. These mixing probabilities

along with the filter outputs x̂j(k − 1), j = 1, 2 of the previous cycle are utilized to calculate

the inputs to the filters, x̂oj(k − 1), j = 1, 2. In other words, each filter input is calculated as a

weighted sum of all the filter outputs of the previous cycle. When the new measurement z(k)

is received, each filter updates its output state, x̂1(k) and x̂2(k). Then, the likelihood proba-

bilities of the filters, Λ1(k) and Λ2(k), are computed from the measurement innovation β(k),

and the corresponding covariance matrix S(k) for each filter. Next, the mode probabilities

are updated to µ1(k) and µ2(k), using Λ1(k) and Λ2(k), µ1(k − 1) and µ2(k − 1), and Ptr.

Finally, the output state estimate x̂(k) is computed as a weighted sum of the outputs of the

filters using the weights of the updated mode probabilities, µ1(k) and µ2(k). The outputs of

the filters and the updated mode probabilities are set as the initial data for the next cycle.

More details about the IMM algorithm can be found in [82]. The steps of the IMM algorithm

with j filters are as follows

1. State interaction: In this step, the previous state estimates and their covariance ma-

trices are mixed using the calculated mixing probabilities µi|j(k − 1). The input state

vector of the jth filter, x̂oj(k − 1) and its covariance matrix P̂oj(k − 1) are calculated as

x̂oj(k − 1) =
r

∑
i=1

x̂i(k − 1)µi|j(k − 1) i, j = 1, · · · , r (3.9)
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Figure 3.1: One cycle of the IMM algorithm when r = 2 [36].

and

P̂oj(k − 1) =
r

∑
i=1

µi|j(k − 1)[P̂i(k − 1) + [x̂i(k − 1)− x̂oj(k − 1)]

[x̂i(k − 1)− x̂oj(k − 1)]t], i, j = 1, · · · , r (3.10)

where

µi|j(k − 1) =
1
ēj

pijµi(k − 1), i, j = 1, · · · , r (3.11)

with the normalization constant

ēj =
r

∑
i=1

pijµi(k − 1), i, j = 1, · · · , r (3.12)

2. Mode probability update: when the measurement z(k) is received, each Kalman filter

uses its input state and its error covariance matrix to calculate its output state x̂j(k)

and its error covariance matrix P̂j(k). Moreover, both the innovation βj(k) and its error

covariance matrix Sj(k) [7] are used to calculate the likelihood of each filter, which is
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given by

Λj(k) =
1√︂

2πSj(k)
exp[−0.5(βj(k))

t(Sj(k))(βj(k))], j = 1, · · · , r (3.13)

Then, the mode probability update for the jth filter is computed as

µj(k) =
1
G

Λj(k)ēj, j = 1, · · · , r (3.14)

and

G =
r

∑
j=1

Λj(k)ēj (3.15)

3. Fusion of the outputs: The output state estimate x̂(k) and its error covariance ma-

trix P̂(k) are computed as a fusion of all the filter output states and their covariance

matrices weighted by the updated mode probabilities, respectively.

x̂(k) =
r

∑
j=1

x̂j(k)µj(k) (3.16)

and

P̂(k) =
r

∑
j=1

µj(k)[Pj(k) + [x̂j(k)− x̂(k)][x̂j(k)− x̂(k)]t] (3.17)

3.3 First Proposed Algorithm

To avoid the calculation of the target acceleration, there exist another formula to calculate

the turn rate of the target can be used. This formula considers that the target is moving in a

circular path around a fixed center at a speed v(k) in a 2-D space and requires the knowledge

of the radius R(k) of this circular path. The turn rate ω(k) formula is given by [83, 84]

ω(k) =
v(k)
R(k)

(3.18)
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The speed v(k) of the target can be calculated at each time step from the estimated velocity

components in the output state estimate vector given by

v(k) =
√︂

ξ̇
2
(k) + η̇2(k) (3.19)

where ξ̇(k) and η̇(k) are the velocity components in the x and y directions. Therefore, our

aim is to estimate the radius R(k) of the turn.

3.3.1 Determination of the radius of the turn

The idea behind the proposed scheme for dynamically estimating the turn rate of a target is

depicted in Fig. 3.2. This figure shows an example of the actual track along with the noisy

measurements. In order to estimate the track at each time instant k, we model the actual

track by the segment of a circle formed by using the noisy measurements at time instant k

and the two previous noisy measurements at time instants (k − 1) and (k − 2). The radius

of the circle being very large, ideally infinite, is an indication that the target is moving in a

straight-line segment. On the other hand, when it is finite and relatively much smaller, it is

an indication that the target is performing a maneuver. In order to find the center and the

radius of the circle at the time step k, we use the following equation.

R(k − 2) = R(k − 1) = R(k) (3.20)

Then, construct two equations such as

R(k − 2) = R(k − 1) (3.21)

R(k − 1) = R(k) (3.22)
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Figure 3.2: An illustration of the scheme used for dynamic estimation of the turn rate
using noisy measurements.

From (3.22) we get

(ξ(k)− oξ(k))2 + (η(k)− oη(k))2 = (ξ(k − 1)− oξ(k))2 + (η(k − 1)− oη(k))2 (3.23)

or

oξ(k) =
(ξ2(k − 1)− ξ2(k)) + (η2(k − 1)− η2(k))− 2oη(k)(η(k − 1)− η(k))

2(ξ(k − 1)− ξ(k))
(3.24)

Similarly, from (3.21) we can derive that

oξ(k) =
(ξ2(k − 2)− ξ2(k − 1)) + (η2(k − 2)− η2(k − 1))− 2oη(k)(η(k − 2)− η(k − 1))

2(ξ(k − 2)− ξ(k − 1))
(3.25)

Hence, from (3.24) and (3.25) we get

oη(k) =
(ξ2(k−2)−ξ2(k−1)+η2(k−2)−η2(k−1))(ξ(k−1)−ξ(k))−(ξ2(k−1)−ξ2(k)+η2(k−1)−η2(k))(ξ(k−2)−ξ(k−1))

2((η(k−2)−η(k−1)))(ξ(k−1)−ξ(k))−2((η(k−1)−η(k)))(ξ(k−2)−ξ(k−1))

(3.26)
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Therefore, from (3.24) and (3.26), we get the center position (oξ(k), oη(k)). We now calculate

the radius R(k) using (oξ(k), oη(k)) and (ξ(k), η(k)) as the last received information about

the target.

R(k) =
√︂
(ξ(k)− oξ(k))2 + (η(k)− oη(k))2 (3.27)

3.3.2 Development of the algorithm

The block diagram of the first proposed tracking is shown in Fig. 3.3. The algorithm uses

three Kalman filters, first of which uses the CV model to account for the straight-line motion

of the target, and the second and third filters, denoted by CTL and CTR filters, use the CT

model to account for the left turning and right turning motions, respectively. For left turns,

the estimated turn rate takes a positive sign, while negative values are used for the right

turns [78]. A multiplier is located at the input of the CTR filter to change the sign of the

turn rate provided to the CT model in that filter to account for the right turn. The three

measurements z(k), z(k − 1), and z(k − 2) are fed to the block that calculates the radius

R(k) at the current time step, as shown in Fig. 3.3. Furthermore, the speed of the target is

calculated from the output state estimate of the algorithm. This output state vector contains

the estimated components for both the position and velocity of the target, where the target

speed is calculated using (3.19). The output of the last two mentioned blocks, R(k) and v(k),

are then used to calculate the turn rate ω(k) as in Algorithm 1, which in turn is used in the

next time step of the algorithm.

Algorithm 1 Determination of the turn rate ω(k)

1: Input : (ξ(k − 2), η(k − 2)), (ξ(k − 1), η(k − 1)), (ξ(k), η(k)), and (ξ̇k, η̇k)
2: Find : ω(k)
3: begin
4: Obtain oξ(k) using (3.24)
5: Obtain oη(k) using (3.26)
6: Obtain R(k) using (3.27)
7: Obtain v(k) using (3.19)
8: Obtain ω(k) using (3.18)
9: end
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Figure 3.3: Block diagram of the first proposed tracking algorithm

ωCTL(k) = ω(k) (3.28)

ωCTR(k) = −ω(k) (3.29)

where ωCTL(k) and ωCTR(k) are the left and right turn rates, respectively. Once ωCTL(k) and

ωCTR(k) have been determined and the new measurement z(k) is received, the measure-

ment z(k − 2) is discarded, and the other two previous measurements z(k − 1) and z(k) are

retained as z(k − 2) and z(k − 1), respectively, and the process is repeated. The complete

algorithm is given as Algorithm 2.
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Algorithm 2 The first proposed tracking algorithm

1: Input : PPA1
tr , Γ, Q, U, µ(o), ωCTL(o), ωCTR(o), N, and z(k)

2: Find : x̂(k) and P̂(k)
3: Initialization : using z(1) and z(2), find x̂(o) and P̂(o) ∀ KF from (3.32) and (3.33)
4: At k=3, Set :

x̂1(k − 1) = x̂2(k − 1) = x̂3(k − 1) = x̂(o)

P̂1(k − 1) = P̂2(k − 1) = P̂3(k − 1) = P̂(o)
µ(k − 1) = µ(o)
ωCTL(k − 1) = ωCTL(o)
ωCTR(k − 1) = ωCTR(o)

5: begin the process at k = 3 to N
6: for j=1:3 do
7: Obtain ēj and µi|j(k − 1) using (3.12) and (3.11)
8: Obtain x̂oj(k − 1) and P̂oj(k − 1) using (3.9) and (3.10)
9: Obtain x̂j(k) and P̂j(k) using (3.7) and (3.8) with ωCTR(k − 1)

and ωCTL(k − 1)
10: Obtain βj(k) and Sj(k) using (3.4) and (3.5)
11: Obtain Λj(k) using (3.13)
12: Obtain G and µj(k) using (3.15) and (3.14)
13: end for
14: Compute x̂(k) and P̂(k) using (3.16) and (3.17)
15: Compute ω(k) using Algorithm 1
16: Compute ωCTL(k) and ωCTR(k) using (3.28) and (3.29)
17: end the process

3.4 Performance Evaluation

In this section, the performance of the proposed algorithm as well as that of the existing

linear IMM algorithms are compared and evaluated using the mentioned metrics in Section

2.3.
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3.4.1 Simulation parameters

For all the algorithms, let the first two consecutive received measurements be z(1) and z(2)

given by

z(1) = [zξ(1), zη(1)]
t (3.30)

z(2) = [zξ(2), zη(2)]
t (3.31)

where zξ(1) and zξ(2) are the measured positions in the x direction at time k = 1, 2, respec-

tively, while zη(1) and zη(2) are the measured positions in the y direction at time k = 1, 2,

respectively. The Kalman filters for these algorithms are initialized by the difference between

z(1) and z(2) [38]. Then, the initial estimate state vector x̂(o) is given by

x̂(o) =
[︃

zξ(2),
zξ(2)− zξ(1)

T
, zη(2),

zη(2)− zη(1)
T

]︃t

(3.32)

where T is the sampling period. The initial error covariance matrix P̂(o) is given by

P̂(o) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
s σ2

s /T 0 0

σ2
s /T 2σ2

s /T2 0 0

0 0 σ2
s σ2

s /T

0 0 σ2
s /T 2σ2

s /T2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.33)

where σs is the standard deviation of the measurement noise. Assuming that the target

moves nearly in a straight-line at the beginning of the tracking process, the initial mode

probability is given by [39]

µ(o) =

⎧⎪⎪⎨⎪⎪⎩
0.6 striaght line motion

0.4
r−1 other motions

(3.34)

where r is the total number of filters in each of the four IMM algorithms under consideration.
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Monte-Carlo simulations of 100 runs is performed assuming the noise for all the algo-

rithms to be the same, for fair comparison. The sampling period T is 1 second and the

standard deviation σs of the measurement noise to be 10 m. All the experiments in this and

other chapters are carried out in MATLAB R2018a using a PC with 4.3 GHz processor and

16 GB RAM.

The three algorithms that are used in the comparison are described below

The first algorithm, which we denote by A1, is an IMM algorithm that employs three

filters; one of the filters uses the CV model and the other two the CT model with known turn

rates of ±2.5◦/s. The standard deviation for the process noise for all the filters is assumed

to be 0.003 m/s2. The transition probability matrix of the algorithm is assumed as

PA1
tr =

⎡⎢⎢⎢⎢⎣
0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9

⎤⎥⎥⎥⎥⎦ (3.35)

The second algorithm, which we denote by A2, is the same as A1 except for the turn rates

of the CT models that is assumed to be ±3.5◦/s.

The third algorithm [39], which we denote as A3, is also an IMM algorithm but employs

only two filters; one uses a CV model, and the other use 3CTR model. The initial value of

the turn rate is assumed to be 0.2◦/s. The standard deviation for the process noise for both

the filters that employ the CV model and the 3CTR model is assumed to be 0.1 m/s2 and

10.5 m/s2, respectively, and the transition probability matrix of the algorithm to be [39]

PA3
tr =

⎡⎢⎣0.98 0.02

0.02 0.98

⎤⎥⎦ (3.36)

For the proposed algorithm, which we henceforth denote by PA1, the standard deviation

for the process noise for all the filters is assumed to be 0.003 m/s2. After having consid-

ered a number of probability transition matrices, it has been found that the best transition
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probability matrix from the point of view of both RMSE and LANEES is given by

PPA1
tr =

⎡⎢⎢⎢⎢⎣
0.9 0.05 0.05

0.1 0.8 0.1

0.1 0.1 0.8

⎤⎥⎥⎥⎥⎦ (3.37)

For details regarding the above choice, see Appendix A. We choose the initial values of the

turn rates of the two CT models to be 0.2◦/s and −0.2◦/s.

3.4.2 Experimental results

The comparison of the proposed algorithm with that of the existing algorithms are carried

out under seven different scenarios, in which the target performs various maneuvers. These

scenarios along with the corresponding performance results in terms of RMSE and consis-

tency, as measured by LANEES, are shown in the sub-figures (a), (b), and (c), respectively,

in Fig. 3.4 to Fig. 3.10. The target moves at a speed of 100 m/s with White Gaussian noise

having zero mean and standard deviation of 0.1 m/s2 in both the x and y directions.

(i) Scenario 1

In this scenario, the target starts with a straight-line motion for 15 seconds, then per-

forms the first maneuver to the left with a turn rate of 1.5◦/s for 15 seconds. Af-

terwards, it moves again in a straight-line motion for 10 seconds, and then performs

another turn to the left with a turn rate of 2.5◦/s for 30 seconds. Finally, it goes in a

straight-line motion for a further 10 seconds. This target trajectory of this scenario is

shown Fig. 3.4(a). The initial state vector is assumed to be

x(o) = [12500 m, −70.5 m/s, 10000 m, −70.5 m/s]t (3.38)

It is seen from Fig. 3.4(b) that all the four algorithms exhibit acceptable performance in

terms of RMSE. However, as expected, A1 exhibits the best performance, particularly

at the second maneuver in view of the fact that the algorithm design matches the target
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Figure 3.4: Results of scenario 1 for a target that performs turns of 1.5◦/s, and 2.5◦/s.
(a) Actual target trajectory of scenario 1. (b) RMSE. (c) LANEES.

maneuver. In addition, it is seen from Fig. 3.4(c) that throughout the tracking period,

LANEES value is always negative for all the algorithms and hence, the algorithms are

consistent, except for A3, which has a positive value at the beginning of the second

maneuver.

(ii) Scenario 2

This scenario is the same as scenario 1 except that the second turn rate of the target

is increased to 3◦/s. This scenario is depicted in Fig. 3.5(a). From Fig. 3.5(b), it is ob-

served that the proposed algorithm and A2 exhibit acceptable performance throughout

the tracking period. The performance of A1 deteriorates, as expected, compared to its
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Figure 3.5: Results of scenario 2 for a target that performs turns of 1.5◦/s, and 3◦/s. (a)
Actual target trajectory of scenario 2. (b) RMSE. (c) LANEES.

performance in the previous scenario, since the turn rate of the target is outside the

range for which the algorithm is designed. Algorithm A2 provides the best perfor-

mance, as expected, since the turn rate of the target is covered in the region for which

the algorithm is designed. The performance of A3 and PA1 are acceptable throughout

the tracking period. As seen from Fig. 3.5(c), the consistency of A1 is not acceptable

during the second maneuver, as is to be expected. The other algorithms are consistent,

but A3 again has a positive value at the beginning of the second maneuver.
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Figure 3.6: Results of scenario 3 for a target that performs turns of 1.5◦/s, and 3.5◦/s.
(a) Actual target trajectory of scenario 3. (b) RMSE. (c) LANEES.

(iii) Scenario 3

In this scenario, the second turn rate is increased to 3.5◦/s. This scenario is shown in

Fig. 3.6(a). It is seen from Figs. 3.6(b) and 3.6(c) that A1 cannot track the second ma-

neuver. As expected, A2 gives the best performance, since the turn rate of the target

matches with one of the turn rates for which the algorithm has been designed. The

performance of A3 as well as that of PA1 in terms of RMSE and LANEES are accept-

able; however, as in the previous scenarios, A3 exhibits positive value for LANEES at

the beginning of the second maneuver.
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Figure 3.7: Results of scenario 4 for a target that performs turns of 1.5◦/s, and 4◦/s. (a)
Actual target trajectory of scenario 4. (b) RMSE. (c) LANEES.

(iv) Scenario 4

In this scenario, the second turn rate is increased to 4◦/s. This scenario is shown in

Fig. 3.7(a). As expected, A1 is unable to track the target during the second maneuver,

as seen in Figs. 3.7(b) and 3.7(c) for the reason pointed out in the previous scenario.

Again, as expected the performance of A2 in terms of RMSE is worse than its perfor-

mance in the previous scenario, since the turn rate of the second maneuver is outside

the range for which the algorithm is designed. Moreover, its performance in terms

of LANEES is not acceptable during the second maneuver. Algorithms A3 and PA1

give acceptable performance in terms of both the metrics; however, as in the previ-

ous scenarios, A3 exhibits positive value for LANEES at the beginning of the second
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Figure 3.8: Results of scenario 5 for a target that performs turns of 1.5◦/s, and 4.5◦/s.
(a) Actual target trajectory of scenario 5. (b) RMSE. (c) LANEES.

maneuver.

(v) Scenario 5

This scenario is the same as scenario 4 except that the turn rate of the second maneuver

is 4.5◦/s. This scenario is depicted in Fig. 3.8(a). It is seen from Figs. 3.8(b) and 3.8(c)

that both A1 and A2 fail to track the target, since the turn rate of the target is outside

the range for which these algorithms are designed; moreover, the performance of these

algorithms in terms of LANEES is not acceptable during the second maneuver. Both

A3 and PA1 show satisfactory performance in terms of the two metrics; however, as in

the previous scenarios, A3 exhibits positive value for LANEES at the beginning of the

33



6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
Position in x direction (m) 103

3

4

5

6

7

8

9

10

11

P
os

it
io

n 
in

 y
 d

ir
ec

ti
on

 (
m

)

103

0s

15s

30s40s

70s

(a)

0 10 20 30 40 50 60 70 80
Time(s)

0

5

10

15

20

R
M

SE

0o/s -3o/s 0o/s 2o/s 0o/s

A1
A2
A3
PA1

0 10 20 30 40 50 60 70 80
Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

L
A

N
E

E
S

0o/s -3o/s 0o/s 2o/s 0o/s

A1
A2
A3
PA1

(b) (c)

Figure 3.9: Results of scenario 6 for a target that performs turns of −3◦/s, and 2◦/s. (a)
Actual target trajectory of scenario 6. (b) RMSE. (c) LANEES.

second maneuver.

(vi) Scenario 6

In this scenario, the target performs two maneuvers the first to the right at a turn rate

of −3◦/s and the second to the left at a turn rate of 2◦/s. This scenario is shown in Fig.

3.9(a). From Fig. 3.9(b), it is seen that the performance of both A1 and A2 is better than

that of A3 and PA1. As is to be expected, the performance of A1 is the best during the

second maneuver, since the target turn rate is close to one of the turn rates employed in

the design of the algorithm. However, the performance of A2 is the best during the first

maneuver because the target turn rate is close to one of turn rates used in the design
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Figure 3.10: Results of scenario 7 for a target that performs turns of −4.5◦/s, and 4.5◦/s.
(a) Actual target trajectory of scenario 7. (b) RMSE. (c) LANEES.

of this algorithm. Both A3 and PA1 exhibit acceptable performance in terms of RMSE;

however, A3 has error value more than the error obtained from the raw measurement

data for RMSE at the beginning of the first maneuver. It is seen from Fig. 3.9(c) that

all the algorithms have acceptable consistency, except that A1 and A3 have positive

values for LANEES at the end and the beginning of the first maneuver, respectively.

(vii) Scenario 7

This scenario is the same as scenario 6 except that the turn rate of the first maneuver

is −4.5◦/s and that of the second is 4.5◦/s. This scenario is depicted in Fig. 3.10(a).

From Figs. 3.10(b) and 3.10(c) it is seen that, as expected, both A1 and A2 are unable
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to track the target for either of the maneuvers, since the target turn rate is outside the

ranges for which these algorithms are designed. Both A3 and PA1 show satisfactory

performance in terms of the two metrics. However, A3 exhibits a positive value for

LANEES at the beginning of both maneuvers, whereas the proposed algorithm has

acceptable consistency throughout the tracking process.

It is noticed from these scenarios that the algorithms A1 and A2 exhibit a performance

better than that of A3 or PA1 the proposed algorithm, when the target turn rate is covered

in the region for which these algorithms have been designed. However, when the turn rate

is outside the range, then their performance may not be acceptable or they may even fail

to track the target. Further, it is observed that A3 and PA1 exhibit acceptable performance

in all the scenarios. But, the performance of PA1 is always better than that of A3 during

all the scenarios in terms of both RMSE and the consistency, whereas the consistency of A3

may have a positive value at the beginning of a maneuver, when the turn rate is outside the

range of ±2◦/s. Based on these results, the proposed algorithm PA1 represents a promis-

ing performance in realistic scenarios, where prior information about the target turn rate is

rarely available.

3.4.3 Effect of an increased level of the measurement noise on the track-

ing accuracy

In the previous subsection, it was shown that both A3 and PA1 provide good tracking per-

formance when the target turn rate is unknown, with the latter exhibiting a superior per-

formance. This comparison was made under the assumption that the actual measurement

noise level is the same as the one specified in the design of the algorithms. In this subsec-

tion, we study the effect on the performance of these two algorithms, when the standard

deviation σa of the actual measurement noise rises over the specified standard deviation σs

by 20%. The study is conducted for three values of σs, namely, σs = 10 m, σs = 50 m and

σs = 100 m, each under three different scenarios of the target track.
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Figure 3.11: Performance of A3 and PA1 with σs = 10 m for scenario 8, when σa = 10 m
and 12 m. (a) LANEES. (b) RMSE.

(ix) Scenario 8

This scenario is similar to scenario 7, and it is depicted in Fig. 3.10(a).

Case 1: σs = 10 m and σa = 12 m. The performance of each of the two algorithms, for

both σa = 10 m and σa = 12 m, in terms of LANEES is shown in Fig. 3.11(a). It is

seen from this figure that PA1 is remains consistent when σa rises from 10 m to 12 m,

whereas A3 is not consistent for both the values of σa, since its LANEES has positive

values at the beginning of the two maneuvers. The tracking accuracy of A3 and PA1 in

terms of RMSE is shown in Fig. 3.11(b). It is seen from this figure that the performance

of PA1 is still acceptable when σa rises to 12 m, whereas the performance of A3 does not

remains so, since RMSE values become larger than the threshold value ETH = 14.14 m

during both the maneuvers.

Case 2: σs = 50 m and σa = 60 m. The performance of each of the two algorithms, for

both σa = 50 m and σa = 60 m, in terms of LANEES is shown in Fig. 3.12(a). It is

seen from this figure that PA1 still remains consistent when σa rises from 50 m to 60 m,

whereas A3, as in case 1, is not consistent for both the values of σa of this case during

the two maneuvers. As a matter of fact, the consistency of A3 becomes worse than in

case 1. The tracking accuracy of A3 and PA1 in terms of RMSE is shown in Fig. 3.12(b).

It is seen from this figure that even though the performance of PA1 for σa = 60 m is
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Figure 3.12: Performance of A3 and PA1 with σs = 50 m for scenario 8, when σa = 50 m
and 60 m. (a) LANEES. (b) RMSE.
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Figure 3.13: Performance of A3 and PA1 with σs = 100 m for scenario 8, when σa =
100 m and 120 m. (a) LANEES. (b) RMSE.

not as good as for σa = 50 m, it is still remains acceptable. The performance of A3

for σa = 50 m is acceptable, however, it is not remains so for σa = 60 m, since RMSE

values become much larger than the threshold value ETH = 70.71 m during the two

maneuvers. It also to be noted that for A3, the rise of RMSE values above the threshold

value is now much larger than in case 1.

Case 3: σs = 100 m and σa = 120 m. The performance of each of the two algorithms, for

both σa = 100 m and σa = 120 m, in terms of LANEES is shown in Fig. 3.13(a). It is

seen from this figure that PA1 remains consistent when σa rises by 20% even at such a
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Figure 3.14: Performance of A3 and PA1 with σs = 10 m for scenario 9, when σa = 10 m
and 12 m. (a) Actual target trajectory of scenario 9 (b) LANEES. (c) RMSE.

high level of measurement noise, whereas A3 in this case now exhibits inconsistency

almost for the entire tracking period for both the values of σa. The tracking accuracy of

A3 and PA1 in terms of RMSE is shown in Fig. 3.13(b). It is seen from this figure that

even though the performance of PA1 for σa = 120 m is not as good as for σa = 100 m, it

is still remain acceptable for this high level of measurement noise. On the other hand,

the performance of A3 is not acceptable neither for σa = 100 m nor σa = 120 m during

the second maneuver, since RMSE values are greater than ETH = 141.42 m.
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Figure 3.15: Performance of A3 and PA1 with σs = 50 m for scenario 9, when σa = 50 m
and 60 m. (a) LANEES. (b) RMSE.

(x) Scenario 9

This scenario is similar to scenario 8 except that the turn rate of the first maneuver is

−3◦/s and that of the second is 2◦/s. This scenario is depicted in Fig. 3.14(a).

Case 1: σs = 10 m and σa = 12 m. The performance of each of the two algorithms, for

both σa = 10 m and σa = 12 m, in terms of LANEES is shown in Fig. 3.14(b). It is

seen from this figure that PA1 is remains consistent when σa rises from 10 m to 12 m,

whereas A3 is not consistent for both the values of σa, since its LANEES has positive

values at the beginning of the two maneuvers. The tracking accuracy of A3 and PA1 in

terms of RMSE is shown in Fig. 3.14(c). It is seen from this figure that the performance

of PA1 is still acceptable when σa rises to 12 m, whereas the performance of A3 does not

remains so, since RMSE values become larger than the threshold value ETH = 14.14 m

during both the maneuvers.

Case 2: σs = 50 m and σa = 60 m. The performance of each of the two algorithms, for

both σa = 50 m and σa = 60 m, in terms of LANEES is shown in Fig. 3.15(a). It is

seen from this figure that PA1 still remains consistent when σa rises from 50 m to 60 m,

whereas A3, as in case 1, is not consistent for both the values of σa of this case during

the two maneuvers. As a matter of fact, the consistency of A3 becomes worse than in

case 1. The tracking accuracy of A3 and PA1 in terms of RMSE is shown in Fig. 3.15(b).
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Figure 3.16: Performance of A3 and PA1 with σs = 100 m for scenario 9, when σa =
100 m and 120 m. (a) LANEES. (b) RMSE.

It is seen from this figure that even though the performance of PA1 for σa = 60 m is

not as good as for σa = 50 m, it is still remains acceptable. The performance of A3

for σa = 50 m is acceptable, however, it is not remains so for σa = 60 m, since RMSE

values become much larger than the threshold value ETH = 70.71 m during the two

maneuvers. It also to be noted that for A3, the rise of RMSE values above the threshold

value is now much larger than in case 1.

Case 3: σs = 100 m and σa = 120 m. The performance of each of the two algorithms, for

both σa = 100 m and σa = 120 m, in terms of LANEES is shown in Fig. 3.16(a). It is

seen from this figure that PA1 remains consistent when σa rises by 20% even at such a

high level of measurement noise, whereas A3 in this case now exhibits inconsistency

almost for the entire tracking period for both the values of σa. The tracking accuracy of

A3 and PA1 in terms of RMSE is shown in Fig. 3.16(b). It is seen from this figure that

even though the performance of A1 for σa = 120 m is not as good as for σa = 100 m, it

is still remain acceptable for this high level of measurement noise. On the other hand,

the performance of A3 is not acceptable neither for σa = 100 m nor σa = 120 m during

the second maneuver, since RMSE values are greater than ETH = 141.42 m.

(xi) Scenario 10

This scenario is similar to scenario 8 except that the turn rate of the first maneuver is
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Figure 3.17: Performance of A3 and PA1 with σs = 10 m for scenario 10, when σa = 10 m
and 12 m. (a) Actual target trajectory of scenario 10. (b) LANEES. (c) RMSE.

−2.5◦/s and that of the second is 3.25◦/s. This scenario is depicted in Fig. 3.17(a).

Case 1: σs = 10 m and σa = 12 m. The performance of each of the two algorithms, for

both σa = 10 m and σa = 12 m, in terms of LANEES is shown in Fig. 3.17(b). It is

seen from this figure that PA1 is remains consistent when σa rises from 10 m to 12 m,

whereas A3 is not consistent for both the values of σa, since its LANEES has positive

values at the beginning of the two maneuvers. The tracking accuracy of A3 and PA1 in

terms of RMSE is shown in Fig. 3.17(c). It is seen from this figure that the performance

of PA1 is still acceptable when σa rises to 12 m, whereas the performance of A3 does not

remains so, since RMSE values become larger than the threshold value ETH = 14.14 m
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Figure 3.18: Performance of A3 and PA1 with σs = 50 m for scenario 10, when σa = 50 m
and 60 m. (a) LANEES. (b) RMSE.

during both the maneuvers.

Case 2: σs = 50 m and σa = 60 m. The performance of each of the two algorithms, for

both σa = 50 m and σa = 60 m, in terms of LANEES is shown in Fig. 3.18(a). It is

seen from this figure that PA1 still remains consistent when σa rises from 50 m to 60 m,

whereas A3, as in case 1, is not consistent for both the values of σa of this case during

the two maneuvers. As a matter of fact, the consistency of A3 becomes worse than in

case 1. The tracking accuracy of A3 and PA1 in terms of RMSE is shown in Fig. 3.18(b).

It is seen from this figure that even though the performance of PA1 for σa = 60 m is

not as good as for σa = 50 m, it is still remains acceptable. The performance of A3

for σa = 50 m is acceptable, however, it is not remains so for σa = 60 m, since RMSE

values become much larger than the threshold value ETH = 70.71 m during the two

maneuvers. It also to be noted that for A3, the rise of RMSE values above the threshold

value is now much larger than in case 1.

Case 3: σs = 100 m and σa = 120 m. The performance of each of the two algorithms, for

both σa = 100 m and σa = 120 m, in terms of LANEES is shown in Fig. 3.19(a). It is

seen from this figure that PA1 remains consistent when σa rises by 20% even at such a

high level of measurement noise, whereas A3 in this case now exhibits inconsistency

almost for the entire tracking period for both the values of σa. The tracking accuracy of
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Figure 3.19: Performance of A3 and PA1 with σs = 100 m for scenario 10, when σa =
100 m and 120 m. (a) LANEES. (b) RMSE.

A3 and PA1 in terms of RMSE is shown in Fig. 3.19(b). It is seen from this figure that

even though the performance of PA1 for σa = 120 m is not as good as for σa = 100 m, it

is still remain acceptable for this high level of measurement noise. On the other hand,

the performance of A3 is not acceptable neither for σa = 100 m nor σa = 120 m during

the second maneuver, since RMSE values are greater than ETH = 141.42 m.

Based on these observations, we can draw the following conclusions.

(i) The performance of A3, in terms of the two metrics, is acceptable only when σa = σs

does not have a very high value, i.e., only when σa = σs = 10 m or 50 m. Its perfor-

mance becomes unacceptable both when σs is very large, i.e., when σs = 100 m, or

when regardless of the value of σs, σa rises over that of σs by 20%.

(ii) Algorithm PA1 performs very well, in terms of both the metrics, for σa = σs irre-

spective of the three values of σs considered, even though its performance somewhat

deteriorates for higher values of σs. When σa rises over σs by as much as 20%, PA1

remains consistent and its RMSE values remain lower than the acceptable threshold

value irrespective of the three values of σs. However, the performance of PA1 in terms

of RMSE becomes lower, when the value of σa rises by 20% over that of σs.
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3.5 Summary

In this chapter, we have proposed an algorithm to track a single maneuvering target, when

the information on the target turn rate is not known a priori and the radar provides only

information on the position of the target using noisy measurements. The turn rate is ob-

tained dynamically using these noisy measurements. A detailed study has been carried out

to choose an appropriate transition probability matrix for better tracking performance. A

comparison of the proposed algorithm with two existing algorithms has been carried out.

One of these two algorithms assumes that the target turn rate is known and the other one

estimates it during the tracking process. Based on a number of scenarios with various target

turn rates, it has been shown that the proposed algorithm exhibits satisfactory performance

in all of the scenarios considered, and its performance is superior to that of the adaptive al-

gorithm. Further, when an unexpected maneuver is performed by the target, and the target

turn rate is not covered by the algorithms that have been designed with a prior information

on the target turn rate, the performance of these algorithms deteriorates or the algorithms

may even fail to track the target, whereas the proposed algorithm always exhibits a satisfac-

tory performance.

Finally, we have studied the performance of the proposed algorithm as well as on that

of the algorithm in [39] in situations when the value of the actual standard deviation of the

measurement noise rises, due to some reason, over that of the specified one for which these

algorithms have been designed. It has been shown that the performance of both the algo-

rithms deteriorates, particularly for large values of σs. However, the proposed algorithm still

exhibits acceptable performance, whereas the performance of the other algorithm becomes

unacceptable from the point of view of the consistency and/or in terms of RMSE for large

values of σs.
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Chapter 4

The Second Proposed Algorithm for

Tracking a Single Maneuvering Target

4.1 Introduction

In Chapter 3, we proposed an algorithm for tracking a single maneuvering target in the

IMM framework by introducing a scheme for estimating the turn rate of the target dynam-

ically. The turn rate at each instant of time was estimated by using three consecutive noisy

measurements. In this chapter, we develop a scheme to estimate the target turn rate more

accurately using the information of the level of the measurement noise, and employ this

scheme in the algorithm for target tracking proposed in Chapter 3 in an effort to achieve

a better performance [85]. The performance of this algorithm is evaluated and compared

with that of the algorithm proposed in Chapter 3. The performance of the algorithm is also

studied when the level of the measurement noise exceeds the level used in the design of the

algorithm.

4.2 Second Proposed algorithm

4.2.1 Development of the algorithm

We have seen in Chapter 3 that the received measurement data do not lie exactly on the true

target track, the reason for this being that these measurements are noisy. In the algorithm
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of Chapter 3, we modeled the true track of the target dynamically at each time instant by

a segment of the circle formed by the noisy measurement received at that instant and the

two previous consecutive measurements. Note that the curvature of the circle at that time

instant is larger than that of the true track in view of the scatteredness of the measurement

data around the true track. The result of this larger curvature affects the estimated radius as

well as the estimated target speed. Thus, the estimated value of the target turn rate is always

larger than the actual turn rate of the target. In order to compensate for the inaccuracy that

results from a higher value of the estimated turn rate, we refine the estimated turn rate by

introducing a multiplying factor α as

ωimp(k) = ω(k)α, 0 < α < 1 (4.1)

where wimp(k) is the refined value of the estimated turn rate. The block diagram of this

algorithm is shown in Fig. 4.1, which is the same as Fig. 3.3 in Chapter 3, except for the

introduction of a multiplier with its inputs being the multiplying factor α and ω(k). The

output ωimp(k) of the multiplier is used in the next iteration of the algorithm. Henceforth,

this algorithm is referred to as PA2.

In the next subsection, we empirically determine the value of the multiplying factor α

used in this algorithm, designed for a specified value of the standard deviation of the mea-

surement noise and compare its performance with that of the algorithm of Chapter 3, PA1.

4.2.2 Experimental results and performance evaluation

In this subsection, experiments are performed to find the optimal value of α for PA2 for a

radar system with a specified measurement noise standard deviation σs. For this purpose,

we assume that the actual value of the standard deviation, σa, is the same as σs that is used

in the design of the algorithm. We vary the value of α in the range 0.05 to 0.95 in steps of 0.05

and obtain the performance of the algorithm in terms of the two metrics that are mentioned

in Section 2.3, namely LANEES and RMSE.

47



Turn rate 
estimation

Interaction / Mixing

Filter 3
CTR

Filter 2
CTL

Mode probability 
update & mixing 

probability 
calculation

Target speed 
calculation

Filter 1
CV

State estimate & covariance combination

Radius 
of the turn
calculation

𝑣 𝑘

𝝁 | 𝑘 − 1

x 𝑘 − 1 x 𝑘 − 1 x 𝑘 − 1

x 𝑘 − 1 x 𝑘 − 1 x 𝑘 − 1
𝒛 𝑘

𝛬 𝑘 𝛬𝟐 𝑘 𝛬𝟑 𝑘

x 𝑘 x 𝑘 x 𝑘 𝝁 𝑘

𝝁 𝑘 − 1

𝑅 𝑘
𝒛 𝑘

𝒛 𝑘 − 1

𝒛 𝑘 − 2
𝜔 𝑘

𝜔 𝑘

𝜔 𝑘
X
𝜔 𝑘

-

-1

Figure 4.1: Block diagram of the second proposed algorithm

The value of α that satisfies the consistency condition and gives the best performance in

terms of RMSE is chosen as the optimal value of α at this specified measurement noise level.

For a given value of the specified standard deviation, σs, of the measurement noise, ex-

periments are carried out under three different scenarios to find the optimal value of α. In

this study, we examine three different radar systems each with a different value for the spec-

ified standard deviation of the measurement noise, σs = 10 m, σs = 50 m, and σs = 100 m.

Scenario 1

In this scenario, the target moves with a constant speed of 100 m/s with white Gaussian

process noise having a zero mean and standard deviation of 0.1 m/s2 in both the x and y

directions. The initial position and velocity of the target are assumed to be (12.5, 10)Km

and (−70.5,−70.5)m/s, respectively. The target starts with a straight-line motion, then per-

forms a right maneuver of −4.5◦/s. Afterwards, the target returns to a straight-line motion,

followed by a left maneuver of 4.5◦/s and finally returns to a straight-line motion. The du-

rations of the five segments of the motion, are respectively, 15 s, 15 s, 10 s, 30 s, and 10 s. This
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Figure 4.2: Actual target trajectory of scenario 1.
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Figure 4.3: Performance of PA2 with different values of α compared to PA1 for scenario
1, when σs = 10 m. (a) LANEES. (b) Zoomed version of (a) around LANEES=0. (c)

RMSE.
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Figure 4.4: Performance of PA2 with different values of α compared to PA1 for scenario
1, when σs = 50 m. (a) LANEES. (b) RMSE.

scenario is depicted in Fig. 4.2.

Case 1: σs = 10 m. Fig. 4.3(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. Fig. 4.3(b) shows a zoomed version of Fig. 4.3(a) around

the value of LANEES equal to zero. From Figs. 4.3(a) and 4.3(b), it is observed that the

range of α for which PA2 is consistent is from 0.7 to 0.95. The tracking accuracies, in terms

of RMSE, of PA2 with this range of α and of PA1 are shown in Fig. 4.3(c). It is seen from this

figure that PA2 in this range of α provides an accuracy better than that provided by PA1 and

the best tracking accuracy is achieved when α = 0.7.

Case 2: σs = 50 m. Fig. 4.4(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. It is observed from this figure that the range of α for which

PA2 is consistent is from 0.25 to 0.95. The tracking accuracies, in terms of RMSE, of PA2 with

this range of α and of PA1 are shown in Fig. 4.4(b). It is seen from this figure that PA2 in

this range of α provides an accuracy better than that provided by PA1 and the best tracking

accuracy is achieved when α = 0.25.

Case 3: σs = 10 m. Fig. 4.5(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. It is observed from this figure that the range of α for which

PA2 is consistent is from 0.15 to 0.95. The tracking accuracies, in terms of RMSE, of PA2 with

this range of α and of PA1 are shown in Fig. 4.5(b). It is seen from this figure that PA2 in
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Figure 4.5: Performance of PA2 with different values of α compared to PA1 for scenario
1, when σs = 100 m. (a) LANEES. (b) RMSE.
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Figure 4.6: Actual target trajectory of scenario 2.

this range of α provides an accuracy better than that provided by PA1 and the best tracking

accuracy is achieved when α = 0.15.

Scenario 2

This scenario is the same as scenario 1 except that the first and second turn rates in the

former are −3◦/s and 2◦/s, respectively. This scenario is depicted in Fig. 4.6. As in scenario

1, we again examine three different radar systems each with a different value for the speci-

fied standard deviation of the measurement noise, σs = 10 m, σs = 50 m, and σs = 100 m.
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Figure 4.7: Performance of PA2 with different values of α compared to PA1 for scenario
2, when σs = 10 m. (a) LANEES. (b) Zoomed version of (a) around LANEES=0. (c)

RMSE.

Case 1: σs = 10 m. Fig. 4.7(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. Fig. 4.7(b) shows a zoomed version of Fig. 4.7(a) around

the value of LANEES equal to zero. From Figs. 4.7(a) and 4.7(b), it is observed that the

range of α for which PA2 is consistent is from 0.7 to 0.95. The tracking accuracies, in terms

of RMSE, of PA2 with this range of α and of PA1 are shown in Fig. 4.7(c). It is seen from this

figure that PA2 in this range of α provides an accuracy better than that provided by PA1 and

the best tracking accuracy is achieved when α = 0.7.

Case 2: σs = 50 m. Fig. 4.8(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. It is observed from this figure that the range of α for which

52



-30 -20 -10 0 10 20 30 40 50 60 70 80
Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
L

A
N

E
E

S

0o/s -3o/s 0o/s 2o/s 0o/s

PA1
 = 0.95
 = 0.90
 = 0.85
 = 0.65
 = 0.60
 = 0.55
 = 0.50
 = 0.45
 = 0.40
 = 0.35
 = 0.30
 = 0.25
 = 0.20
 = 0.15
 = 0.80
 = 0.75
 = 0.70
 = 0.10
 = 0.05

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

20

-30 -20 -10 0 10 20 30 40 50 60 70 80
Time(s)

30

40

50

60

70

80

90

100

R
M

SE

0o/s 0o/s0o/s -3o/s 2o/s

PA1
 = 0.95
 = 0.90
 = 0.85
 = 0.80
 = 0.75
 = 0.70
 = 0.65
 = 0.60
 = 0.55
 = 0.50
 = 0.45
 = 0.40
 = 0.35
 = 0.30
 = 0.25

0 20 40 60 80

40

50

60

70

80

90
PA1
PA2 (  = 0.25)

(a) (b)

Figure 4.8: Performance of PA2 with different values of α compared to PA1 for scenario
2, when σs = 50 m. (a) LANEES. (b) RMSE.
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Figure 4.9: Performance of PA2 with different values of α compared to PA1 for scenario
2, when σs = 100 m. (a) LANEES. (b) RMSE.

PA2 is consistent is from 0.25 to 0.95. The tracking accuracies, in terms of RMSE, of PA2 with

this range of α and of PA1 are shown in Fig. 4.8(b). It is seen from this figure that PA2 in

this range of α provides an accuracy better than that provided by PA1 and the best tracking

accuracy is achieved when α = 0.25.

Case 3: σs = 10 m. Fig. 4.9(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. It is observed from this figure that the range of α for which

PA2 is consistent is from 0.15 to 0.95. The tracking accuracies, in terms of RMSE, of PA2 with

this range of α and of PA1 are shown in Fig. 4.9(b). It is seen from this figure that PA2 in
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Figure 4.10: Actual target trajectory of scenario 3.

this range of α provides an accuracy better than that provided by PA1 and the best tracking

accuracy is achieved when α = 0.15.

Scenario 3

This scenario is the same as scenario 1 except that the first and second turn rates in the

former are −2.5◦/s and 3.25◦/s, respectively. This scenario is depicted in Fig. 4.10. As in the

previous two scenarios, we again examine three different radar systems each with a different

value for the specified standard deviation of the measurement noise, σs = 10 m, σs = 50 m,

and σs = 100 m.

Case 1: σs = 10 m. Fig. 4.11(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. Fig. 4.11(b) shows a zoomed version of Fig. 4.11(a) around

the value of LANEES equal to zero. From Figs. 4.11(a) and 4.11(b), it is observed that the

range of α for which PA2 is consistent is from 0.7 to 0.95. The tracking accuracies, in terms

of RMSE, of PA2 with this range of α and of PA1 are shown in Fig. 4.11(c). It is seen from

this figure that PA2 in this range of α provides an accuracy better than that provided by PA1

and the best tracking accuracy is achieved when α = 0.7.

Case 2: σs = 50 m. Fig. 4.12(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. It is observed from this figure that the range of α for which

PA2 is consistent is from 0.25 to 0.95. The tracking accuracies, in terms of RMSE, of PA2 with

this range of α and of PA1 are shown in Fig. 4.12(b). It is seen from this figure that PA2 in
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Figure 4.11: Performance of PA2 with different values of α compared to PA1 for scenario
3, when σs = 10 m. (a) LANEES. (b) Zoomed version of (a) around LANEES=0. (c)

RMSE.

this range of α provides an accuracy better than that provided by PA1 and the best tracking

accuracy is achieved when α = 0.25.

Case 3: σs = 10 m. Fig. 4.13(a) shows the performances, in terms of LANEES, of PA2 for

different values for α and of PA1. It is observed from this figure that the range of α for which

PA2 is consistent is from 0.15 to 0.95. The tracking accuracies, in terms of RMSE, of PA2 with

this range of α and of PA1 are shown in Fig. 4.13(b). It is seen from this figure that PA2 in

this range of α provides an accuracy better than that provided by PA1 and the best tracking

accuracy is achieved when α = 0.15.

From the above results, we observe that the values of α for the best tracking performance
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Figure 4.12: Performance of PA2 with different values of α compared to PA1 for scenario
3, when σs = 50 m. (a) LANEES. (b) RMSE.
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Figure 4.13: Performance of PA2 with different values of α compared to PA1 for scenario
3, when σs = 100 m. (a) LANEES. (b) RMSE.

of PA2 are 0.7, 0.25, and 0.15, respectively, for the three cases of the specified standard de-

viation values of the measurement noise, namely, σs = 10 m, σs = 50 m, and σs = 100 m,

irrespective of the scenarios used in our experiments. In other words, the value of α for the

best performance of PA2 depends on the value of σs and it does not depend on the scenario

used. Consequently, we chose the optimal values of the correction factor α to be 0.7, 0.25,

and 0.15 for σs = 10 m, σs = 50 m, and σs = 100 m, respectively. In addition, in all the

experiments the performance of PA2 is found to be superior to that of PA1.

In Table 4.1, we present the mean RMSE values for the target position obtained from
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Table 4.1: Mean RMSE for the three scenarios individually and over all the scenarios
considered together when σs = 10 m

. Mean
RMSE for

Mean
RMSE for

Mean
RMSE for

Mean RMSE value av-
eraged over the means

scenario 1 scenario 2 scenario 3 of all the scenarios
PA1 11.0146 10.6704 10.7414 10.8088
PA2(α = 0.7) 10.6414 10.5293 10.5366 10.5691
Percentage reduc-
tion in RMSE

3.39% 1.32% 1.91% 2.2%

Table 4.2: Mean RMSE for the three scenarios individually and over all the scenarios
considered together when σs = 50 m

. Mean
RMSE for

Mean
RMSE for

Mean
RMSE for

Mean RMSE value av-
eraged over the means

scenario 1 scenario 2 scenario 3 of all the scenarios
PA1 50.3493 47.4176 48.9359 48.9009
PA2(α = 0.25) 46.8720 44.1363 45.4655 45.4913
Percentage reduc-
tion in RMSE

6.91% 6.92% 7.09% 6.97%

both PA1 and PA2 ( with α = 0.7) for each of the three scenarios individually, as well as

the mean RMSE value averaged over all the scenarios for the case of σs = 10 m. The mean

RMSE value for a given scenario is obtained as the sum of the RMSE values at the various

sampling instants divided by the total number of samples over the tracking period. The

mean RMSE value averaged over the three scenarios is obtained as the average of the mean

RMSE values for the three scenarios. The last row in the table gives the percentage reduction

in RMSE resulting from taking the measurement noise into account in the estimation of the

turn rate. This percentage is calculated as the difference between the mean RMSE value

for PA1 and PA2 divided by the former mean RMSE value. Tables 4.2 and 4.3 give the

Table 4.3: Mean RMSE for the three scenarios individually and over all the scenarios
considered together when σs = 100 m

. Mean
RMSE for

Mean
RMSE for

Mean
RMSE for

Mean RMSE value av-
eraged over the means

scenario 1 scenario 2 scenario 3 of all the scenarios
PA1 93.4634 91.8183 92.0903 92.4573
PA2(α = 0.15) 82.8196 79.0223 79.4214 80.4211
Percentage reduc-
tion in RMSE

11.39% 13.94% 13.76% 13.03%

57



-30 -20 -10 0 10 20 30 40 50 60 70 80
Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
L

A
N

E
E

S

0o/s -4.5o/s 0o/s 4.5o/s 0o/s

=10m
PA1

=10m
PA2

=12m
PA1

=12m
PA2

-30 -20 -10 0 10 20 30 40 50 60 70 80
Time(s)

0

5

10

15

20

25

30

35

40

45

50

R
M

SE

0o/s -4.5o/s 0o/s 4.5o/s 0o/s

=10m
PA1

=10m
PA2

=12m
PA1

=12m
PA2

(a) (b)

Figure 4.14: Performance of PA1 and PA2 for scenario 1, when σa = 10 m and 12 m. (a)
LANEES. (b) RMSE.

corresponding results when σs = 50 m and 100 m, respectively. It is seen from results of the

three tables that there are reductions in the RMSE values both for individual scenarios and

for all the scenarios taken together irrespective of the value of the standard deviation, σs,

of the measurement noise. However, this reduction becomes more substantial as the value

of σs increases. In other words, a significant improvement in the tracking accuracy can be

achieved by using PA2 with a value of α suitably determined, particularly when the value

of σs is large.

4.3 Impact of the Actual Measurement Noise Level Rising

above the Specified Level

In this section, we study the impact of an increase in the value of σa over that of σs on the

tracking performance of PA2. The same three cases of σs, namely, σs = 10 m, σs = 50 m, and

σs = 100 m are considered for the same three scenarios, when σa rises above σs by 20%.
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Figure 4.15: Performance of PA1 and PA2 for scenario 1, when σa = 50 m and 60 m. (a)
LANEES. (b) RMSE.

Scenario 1

Case 1: σs = 10 m and σa = 12 m. For this case, PA2 is used with σs = 10 m, for which

the value of α was determined to be 0.7 in Section 4.2. The performance of PA2 in terms of

LANEES and RMSE for σa = 12 m is shown in Figs. 4.14(a) and 4.14(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 10 m and PA1 corresponding to σs = 10 m and σa = 12 m. It is

seen from Fig. 4.14(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.14(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 12 m, as it did for σa = 10 m.

Case 2: σs = 50 m and σa = 60 m. For this case, PA2 is used with σs = 50 m, for which

the value of α was determined to be 0.25 in Section 4.2. The performance of PA2 in terms

of LANEES and RMSE for σa = 60 m is shown in Figs. 4.15(a) and 4.15(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 50 m and PA1 corresponding to σs = 50 m and σa = 60 m. It is

seen from Fig. 4.15(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.15(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 60 m, as it did for σa = 50 m. The improvement in the mean value of
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Figure 4.16: Performance of PA1 and PA2 for scenario 1, when σa = 100 m and 120 m.
(a) LANEES. (b) RMSE.

RMSE in this case is larger than that in Case 1 for the same 20% increase in the value of σa

over that of σs.

Case 3: σs = 100 m and σa = 120 m. For this case, PA2 is used with σs = 100 m, for which

the value of α was determined to be 0.15 in Section 4.2. The performance of PA2 in terms of

LANEES and RMSE for σa = 120 m is shown in Figs. 4.16(a) and 4.16(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 100 m and PA1 corresponding to σs = 100 m and σa = 120 m. It is

seen from Fig. 4.16(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.16(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 120 m, as it did for σa = 100 m. The improvement in the mean value of

RMSE in this case is even larger than that in Case 2 for the same 20% increase in the value of

σa over that of σs.

Scenario 2

Case 1: σs = 10 m and σa = 12 m. For this case, PA2 is used with σs = 10 m, for which

the value of α was determined to be 0.7 in Section 4.2. The performance of PA2 in terms of

LANEES and RMSE for σa = 12 m is shown in Figs. 4.17(a) and 4.17(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 10 m and PA1 corresponding to σs = 10 m and σa = 12 m. It is
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Figure 4.17: Performance of PA1 and PA2 for scenario 2, when σa = 10 m and 12 m. (a)
LANEES. (b) RMSE.
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Figure 4.18: Performance of PA1 and PA2 for scenario 2, when σa = 50 m and 60 m. (a)
LANEES. (b) RMSE.

seen from Fig. 4.17(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.17(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 12 m, as it did for σa = 10 m.

Case 2: σs = 50 m and σa = 60 m. For this case, PA2 is used with σs = 50 m, for which

the value of α was determined to be 0.25 in Section 4.2. The performance of PA2 in terms

of LANEES and RMSE for σa = 60 m is shown in Figs. 4.18(a) and 4.18(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 50 m and PA1 corresponding to σs = 50 m and σa = 60 m. It is
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Figure 4.19: Performance of PA1 and PA2 for scenario 2, when σa = 100 m and 120 m.
(a) LANEES. (b) RMSE.

seen from Fig. 4.18(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.18(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 60 m, as it did for σa = 50 m. The improvement in the mean value of

RMSE in this case is larger than that in Case 1 for the same 20% increase in the value of σa

over that of σs.

Case 3: σs = 100 m and σa = 120 m. For this case, PA2 is used with σs = 100 m, for which

the value of α was determined to be 0.15 in Section 4.2. The performance of PA2 in terms of

LANEES and RMSE for σa = 120 m is shown in Figs. 4.19(a) and 4.19(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 100 m and PA1 corresponding to σs = 100 m and σa = 120 m. It is

seen from Fig. 4.19(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.19(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 120 m, as it did for σa = 100 m. The improvement in the mean value of

RMSE in this case is even larger than that in Case 2 for the same 20% increase in the value of

σa over that of σs.

Scenario 3

Case 1: σs = 10 m and σa = 12 m. For this case, PA2 is used with σs = 10 m, for which

the value of α was determined to be 0.7 in Section 4.2. The performance of PA2 in terms of
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Figure 4.20: Performance of PA1 and PA2 for scenario 3, when σa = 10 m and 12 m. (a)
LANEES. (b) RMSE.
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Figure 4.21: Performance of PA1 and PA2 for scenario 3, when σa = 50 m and 60 m. (a)
LANEES. (b) RMSE.

LANEES and RMSE for σa = 12 m is shown in Figs. 4.20(a) and 4.20(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 10 m and PA1 corresponding to σs = 10 m and σa = 12 m. It is

seen from Fig. 4.20(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.20(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 12 m, as it did for σa = 10 m.

Case 2: σs = 50 m and σa = 60 m. For this case, PA2 is used with σs = 50 m, for which

the value of α was determined to be 0.25 in Section 4.2. The performance of PA2 in terms
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Figure 4.22: Performance of PA1 and PA2 for scenario 3, when σa = 100 m and 120 m.
(a) LANEES. (b) RMSE.

of LANEES and RMSE for σa = 60 m is shown in Figs. 4.21(a) and 4.21(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 50 m and PA1 corresponding to σs = 50 m and σa = 60 m. It is

seen from Fig. 4.21(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.21(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 60 m, as it did for σa = 50 m. The improvement in the mean value of

RMSE in this case is larger than that in Case 1 for the same 20% increase in the value of σa

over that of σs.

Case 3: σs = 100 m and σa = 120 m. For this case, PA2 is used with σs = 100 m, for which

the value of α was determined to be 0.15 in Section 4.2. The performance of PA2 in terms of

LANEES and RMSE for σa = 120 m is shown in Figs. 4.22(a) and 4.22(b), respectively. For

the sake of comparison, these figures also include the performance results of PA1 and PA2

corresponding to σa = σs = 100 m and PA1 corresponding to σs = 100 m and σa = 120 m. It is

seen from Fig. 4.22(a) that both the algorithms are consistent throughout the tracking period.

It is seen from the RMSE plot in Fig. 4.22(b) that the tracking accuracy of PA2 benefits from

the use of α for σa = 120 m, as it did for σa = 100 m. The improvement in the mean value of

RMSE in this case is even larger than that in Case 2 for the same 20% increase in the value of

σa over that of σs.
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Table 4.4: Mean RMSE for the three scenarios individually and over all the scenarios
considered together, when σs = 10 m and σa = 12 m

. Mean
RMSE for

Mean
RMSE for

Mean
RMSE for

Mean RMSE value av-
eraged over the means

scenario 1 scenario 2 scenario 3 of all the scenarios
PA1 13.2750 12.1387 12.1570 12.5236
PA2(α = 0.7) 12.9456 11.9376 11.9252 12.2695
Percentage reduc-
tion in RMSE

2.48% 1.66% 1.91% 2.2%

Table 4.5: Mean RMSE for the three scenarios individually and over all the scenarios
considered together, when σs = 50 m and σa = 60 m

. Mean
RMSE for

Mean
RMSE for

Mean
RMSE for

Mean RMSE value av-
eraged over the means

scenario 1 scenario 2 scenario 3 of all the scenarios
PA1 60.9185 59.1473 59.5658 58.8772
PA2(α = 0.25) 55.8272 53.9228 54.5296 54.7599
Percentage reduc-
tion in RMSE

8.36% 8.83% 8.45% 8.55%

The above analysis of the performance results of PA2 with three different scenarios shows

that the use of α improves the RMSE performance while still preserving its consistency even

in the case when the value of the standard deviation, σa, of the actual measurement noise

rises over the value of the standard deviation, σs, of the specified measurement noise of the

radar system by as much as 20%, irrespective of the three values of σs considered.

In Table 4.4, we present the mean RMSE values for the target position obtained from

both PA1 and PA2 (with α = 0.7) for each of the three scenarios individually, as well as that

averaged over all the scenarios for the case when the level of σa is 20% higher than σs = 10 m.

Tables 4.5 and 4.6 give the corresponding results when the level of σa is 20% higher than

Table 4.6: Mean RMSE for the three scenarios individually and over all the scenarios
considered together, when σs = 100 m and σa = 120 m

. Mean
RMSE for

Mean
RMSE for

Mean
RMSE for

Mean RMSE value av-
eraged over the means

scenario 1 scenario 2 scenario 3 of all the scenarios
PA1 109.9822 109.6458 109.5877 109.7386
PA2(α = 0.15) 94.0818 92.2254 92.8827 93.0633
Percentage reduc-
tion in RMSE

14.46% 15.89% 15.24% 15.20%
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σs = 50 m and σs = 100 m, respectively. It is seen from the results of these three tables that

there are reductions in RMSE values both for individual scenarios and for all the scenarios

taken together irrespective of the value of the standard deviation, σs, of the measurement

noise. However, this reduction becomes more substantial as the value of σs increases. In

other words, a significant improvement in the tracking accuracy can be achieved by using

PA2 with a value of α suitably determined even when the value of σa becomes larger than

that of σs by 20%, particularly when the value of σs is large.

4.4 Summary

In this chapter, an algorithm has been developed within the IMM framework for tracking

a single maneuvering target that takes into account the level on the measurement noise in

estimating the target turn rate by augmenting the estimated turn rate using a multiplying

factor. It has been shown that this algorithm provides a tracking performance that is much

superior to that provided by the algorithm of Chapter 3, since the estimated value of the

turn rate is more accurate for a given level of the measurement noise. It has also been shown

that this algorithm can handle an increase in the measurement noise level better than the

algorithm of Chapter 3 does.

The algorithm proposed in this chapter is well suited in real life situations in which the

turn rate of the target is generally not known a priori, and the level of the measurement noise

may rise above the level for which the algorithm is designed.
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Chapter 5

Tracking Closely-Spaced

non-Maneuvering Multiple Targets

5.1 Introduction

In an algorithm for tracking multiple targets, a track is constructed for each of the targets

based on the previous measurements and suitably updated after the arrival of new mea-

surements [86, 87]. At a given time instant k, the algorithm stars with finding the predicted

position of each target using a motion model and its estimated position in the previous time

instant. Since at a given time instant, a number of measurements are received, each measure-

ment needs to be suitably assigned to the various targets. This task is called measurement

assignment, which is performed in two steps, a gating step and a data association step. Gat-

ing at time instant k refers to specifying for each target an area centered at the predicted

position of the targets so that only those measurements received at time instant k and fall

inside the gates are used by the algorithm [88]. Data association is the task of assigning each

of the gated measurements the probability of being associated with the various targets [89].

The assigned measurements are then used to estimate the updated position of the targets in

the current time instant. These estimates of the target positions are used to find the predicted

position of the targets for the next time instant [90].
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The most used algorithm to track a number of targets known as the joint probability

date association (JPDA) [59]. This algorithm provides a very good tracking performance

when targets are widely spaced; however, the tracking performance deteriorates and coa-

lescence may occurs when the targets are closely spaced. It is to be noted that when the

targets are closely spaced, the spatial distribution of the measurements is such that one or

more measurements lie in the overlapped regions of the target gates. The JPDA algorithm

allocates weights to the measurements by finding the probability of all possible hypotheses

for measurement-target association regardless of a measurement falling inside or outside of

the overlapped regions of the gates.

In this chapter, we conduct a systematic study on the impact of the spacing between

the targets as well as when the targets make abrupt turns with sharp angles on the track-

ing performance of the JPDA algorithm. Then, we propose a new multiple target track-

ing algorithm within the JPDA framework to track the targets no matter whether they are

widely or closely-spaced based on the spatial distribution of the measurements within a tar-

get gate [91]. Extensive experiments are performed and demonstrate the effectiveness of the

proposed algorithm over the conventional JPDA algorithm.

5.2 Problem Formulation

In this section, the problem of tracking multiple targets in a clutter environment is formu-

lated in a two-dimensional space, assuming the number of targets is known a priori. The

radar system is assumed to provide only the position measurements, and that each target

can generate only one measurement per sampling period. The target state and the corre-

sponding measurement for the time step k are modeled using the state space model, as

mentioned in section 2.1. The receiver detects each measurement with a probability of de-

tection PD. These received measurements originate not only from the targets but also from

the clutter. The clutter is assumed to have a Poisson distribution with intensity λ over the

surveillance region with an area A. These clutters are uniformly distributed over A . The
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average number of clutters C per scan is given by [65]

C = λA (5.1)

For the time step k, the measurements that fall inside the gates of the targets are denoted by

z1(k), z2(k), · · · , zJk(k), where Jk is their total number.

5.3 Proposed Algorithm for Tracking Multiple Targets

In the JPDA algorithm of [59], a weight is assigned to each of the measurements falling

within the gate of a target in order to associate this measurement to the target. When the

targets are closely spaced, one or more of the measurements may lie inside an overlapped

region of the gates. In this case, a measurement that lies inside the overlapped region needs

to be associated with more than one target, i.e., with all the targets forming the overlapped

region. This is different from a non-overlapped measurement, which is associated with only

one target, i.e., with the target of the gate in which this measurement falls. However, in

the JPDA algorithm, the same procedure is used for determining the weights for all the

measurements within the gate regardless of whether a measurement lies in an overlapped

region or not, that is, the procedure of finding the probabilities of all possible hypotheses

for the measurement-target association under consideration and adding them up to find the

value of the weight of this measurement-target pair. Since a measurement that is closer to

the predicted position of the target is more likely to have been resulted from this target, by

assigning a larger weight for the association of this measurement-target pair can improve

the tracking performance. However, in the JPDA algorithm the spatial distribution of the

measurements falling inside the gate with respect to the predicted position of the targets is

not taken into consideration for determining the weight values for the measurement-target

pairs.

In this section, we propose an algorithm for tracking multiple targets within the JPDA

framework, in which the notion of distance between a measurement and the predicted

69



position of the target is incorporated in the method of determining the weights for the

measurement-target pairs so that a higher weight is assigned to the measurement that is

closer to the predicted position of the target. This can reduce the tracking error, which is

extremely important, when the targets become closely spaced and the estimated tracks tend

to merge. The proposed algorithm for tracking multiple targets is now described below.

1. Finding gated measurements: As in the JPDA algorithm [92], the output state of the

ith target is used from the previous time step to find its predicted position in the kth

time step, z̃i(k). Then, a gate around the predicted position of each of the targets is

formed to find the gated measurements for each of the targets. The gating is based

on Mahalanobis distance [93] between the predicted target position z̃i(k) and the mea-

surement position zj. A measurement zj is considered to be gated for the target i when

it satisfies the gate test given by [38]

(ϵij(k))
t(Si(k))−1ϵij(k) ≤ γ (5.2)

z1

ǁ𝑧1 ǁ𝑧2

z2

z3

𝑧𝑗
ǁ𝑧𝑖

The jth gated measurement

The predicted position of the target i

d11
d12

d22

d23

d𝑖𝑗 The distance between 𝑧𝑗 and ǁ𝑧𝑖

Fig. 5.1: Two overlapped gates and four gated measurements.
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where ϵij(k) is the difference between a received measurement and the predicted posi-

tion of the target i , Si(k) is the innovation covariance matrix of the target i at the time

step k, and γ is the gate threshold. This gating process is performed for each of the

targets.

In order to illustrate the gating procedure, we consider a case of two targets and four

measurements, as shown in Fig.5.1, where the gates are overlapping. Note that in this

example it is assumed that the measurements z1 and z3 lie in the two different regions,

whereas z2 is in the overlapped region.

2. Distance calculation: For each target i we track, we compute the Mahalanobis dis-

tance dij(k), between the predicted position z̃i(k) of the target i and each of its gated

measurements zj, given by

dij(k) =
√︂
(zj(k)− z̃i(k))

t(Si(k))−1(zj(k)− z̃i(k)) (5.3)

The various distances are marked in Fig.5.1. The distances between z̃1(k) and its gated

measurements z1 and z2 are d11 and d12, respectively, whereas the distances between

z̃2(k) and its gated measurements z2 and z3 are d22 and d23, respectively.

3. Construction of validation matrix: A validation matrix Ω(k) of order J × (I + 1),

where the rows 1, · · · , J correspond to the gated measurements z1, z2, · · · , zJ , and

the first column corresponds to the clutters and the columns 2, · · · , (I + 1) correspond

to the targets 1, · · · , I. The elements ρji, j = 1, · · · , J; i = 0, · · · , I (i = 0 corresponds to

"no target", i.e., clutters) of the matrix Ω(k) are defined as follows.

ρji =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 when i = 0

1 when measurment j is associated with target i

0 otherwise

(5.4)
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For the case considered in Fig.5.1, the validation matrix is given by

Ω(k) =

⎡⎢⎢⎢⎢⎣
1 1 0

1 1 1

1 0 1

⎤⎥⎥⎥⎥⎦ (5.5)

4. Hypotheses generation: All possible hypotheses hl for measurement-target associa-

tion are enumerated, where l = 1, · · · , L, and L is the total number of the hypotheses.

Each hypothesis is a binary matrix, where the rows correspond to the measurements

1, · · · , J and columns to targets i = 0, 1, · · · , I, where i = 0 refers to "no target", i.e.,

clutters, that satisfies two constraints. The first constraint is that each row must have

one and only one non-zero element. The second constraint is that each column can

have only one non-zero element except for the first column, which must have at least

one non-zero element in order to account for the possibility that more than one of

the gated measurements may have resulted from clutters. For the case considered in

Fig.5.1, there are 8 hypotheses, and these are given below.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

1 0 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ h2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0

1 0 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ h3 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ h4 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 0 1

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

h5 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ h6 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ h7 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ h8 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0

0 0 1

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

(5.6)

5. Probability computation for the generated hypotheses: To compute the probability

Prhl
for each hypothesis hl, we introduce two binary indicators, ε li and τl j. The indi-

cator ε li is given a value of 1 or 0 depending on whether or not to target i any of the
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measurements has been assigned. The indicator τl j is given a value 1 or 0 depending

on whether the measurement j is assigned to any target. The number of the gated mea-

surements that are not assigned to any of the targets is denoted by φl = J − ∑J
j=1 τl j.

The probability of the hypothesis hl is given by [59]

Prhl
=

φl !
Aφl

J

∏
j=1

(Λij)
τl j

I

∏
i=1

(PD)
ε li(1 − PD)

1−ε li (5.7)

where

Λij =
1√︁

2πSi(k)
e−

1
2 (βij(k))

tSi(k)βij(k) (5.8)

and βij(k) is the residual between the measurement zj(k) and the predicted position

z̃i(k) of the target i. For the example considered in Fig. 5.1, the probability of the

hypothesis h7 is given by

Prh7 =
1
A

Λ11Λ23(PD)
2 (5.9)

The normalized probability Prhln
for the hypothesis hl is

Prhln
=

Prhl

∑L
l=1 Prhl

(5.10)

6. Allocation of measurement weights: The weight ϖij of the gated measurement zj(k)

assigned to target i is computed as the sum of the normalized probabilities of all those

hypotheses in which their ρji elements are unity, and it is given by

ϖij(k) = ∑
l s.t. ρji=1

Prhln
(5.11)
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Since the sum of all the normalized weights must equal unity, the remaining weight

ϖic(k) is assigned to the clutters and is given by

ϖic(k) = 1 −
J

∑
j=1

ϖij(k) (5.12)

For the example considered in Fig.5.1, for instance, the measurement z2 is assigned to

target 1 only in two out of the eight hypotheses, namely, h5 and h6.Thus, the weight

ϖ12 is given by

ϖ12(k) = Prh5n + Prh6n (5.13)

7. Computation of modified weights: The tracking performance of a target i depends

on the positions of the various measurements associated with this target. The weight

ϖij(k) as computed in Step 5 does not take this point into consideration, namely, how

near or how far the position of the measurement zj(k) is from the predicted position

of the target i. In order to take this factor into consideration, we define the parameter

δij(k) to be the inverse of dij(k) so that a heavier weight is attached when the measure-

ment zj(k) is closer to the predicted position of the target z̃i(k), that is

δij(k) =
1

dij(k)
(5.14)

For a given target i, the value of the parameter δij(k) depends on zj(k). The value of

the parameter δij(k) is made dimensionless by normalizing it over all the values of this

parameter for a given target i. The normalized value δijn(k) is given by

δijn(k) =
δij(k)

∑j δij(k)
(5.15)

Each weight ϖij(k) is multiplied by its corresponding parameter δijn(k) to obtain the

modified weight as

wij(k) = ϖij(k)δijn(k) (5.16)
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The modified value of the weight ϖic(k) is given by

wic(k) = 1 −
J

∑
j=1

wij(k) (5.17)

Finally, the normalized modified weights are given by

wijn(k) =
wij(k)

wic(k) + ∑j wij(k)
(5.18)

wicn(k) =
wic(k)

wic(k) + ∑j wij(k)
(5.19)

8. Output state estimation: To find the output state estimate x̂i(k) of the target i, we first

find the output state estimate x̂ij(k) individually for each measurement j falling inside

the gate of the target i. Then, the output state estimate x̂i(k) of target i is a weighted

sum of x̂ij(k), given by

x̂i(k) = wicn(k)x̃i(k) +
J

∑
j=1

wijn(k)x̂ij(k) (5.20)

where x̃i(k) is the predicted state of the ith target at the kth time step.

9. Output covariance matrix: To find the output covariance matrix P̂i(k) of the target i,

we first find the output covariance matrix P̂ij(k) individually for each measurement j

falling inside the gate of the target i. Then, the output covariance matrix P̂i(k) of target

i is given by

P̂i(k) = wicn(k)(P̃i(k) + [x̃i(k)− x̂i(k)][x̃i(k)− x̂i(k)]
t])

+
J

∑
j=1

wijn(k)[P̂ij(k) + [x̂ij(k)− x̂i(k)][x̂ij(k)− x̂i(k)]
t] (5.21)

where P̃i(k) is the predicted covariance matrix of the ith target at the kth time step.
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The output state x̂i(k) and the covariance matrix P̂i(k) are used to find the predicted state

x̂i(k + 1) and covariance P̂i(k + 1) of the ith target for the next time step (k + 1).

5.4 Rational Behind the Functioning of the Proposed Algo-

rithm

As the targets become close to one another, so do the respective gates and eventually the

gates overlap. The number of measurements falling inside the overlapped region represents

the degree of overlap. These measurements are of special significance, since such measure-

ments need to be associated to more than one target. The way the measurements are asso-

ciated with a target affects the computation of the weights, since the estimated output is a

weighted sum of the state estimates resulting from the individual measurements falling in-

side the gate. The relative values of the different weights impact the tracking performance of

a JPDA-based algorithm, specially when the targets are close to one another. In this section,

we explain as to how the proposed method of weight computation incorporating the infor-

mation on spatial distribution of the measurements can significantly improve the tracking

performance of the proposed algorithm over that of JPDA [59], when the targets are closely

spaced.

The performance of a JPDA-based algorithm depends very much on the residual between

the predicted target position and the corresponding measurements. The idea behind such

an algorithm is to obtain an estimate of the target position so that this new estimate is closer

to the measurements than the predicted target position. Specifically, in the JPDA algorithm

of [59], the computation of the weight ϖij, using relevant hypotheses, involves the residual

between the predicted position of target i and the position of measurement j. Overlapped

gates add more uncertainty to the system, since an overlapped measurement can result from

any of the targets involved in the formation of the overlapped region, in addition to being

resulted from the clutter. In this case, an overlapped measurement is used to find the out-

put state estimate for all the targets involved in the overlap. Hence, a method that uses
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solely the probabilities of the hypotheses for the computation becomes less accurate when

the gates overlap, that is, when the targets are closely spaced. Since that particular target

among the targets involved in the overlap that is closer to the overlapped measurement has

a greater likelihood of originating this particular measurement, the weight allocated to this

measurement for computing the estimate of the position of this target should have a larger

weight. It is for this reason that in the computation of the weights in the proposed scheme,

the weights are adjusted by suitably modifying the hypothesis probabilities based on the

spatial distribution of the measurements. However, this is done individually for each target

involved in the overlap so that the constraint of all the hypothesis probabilities adding up

to unity as well as the sum of the modified weights being unity is not violated. The use of

the weights so modified effectively reduces the adverse impact of the gate overlaps.

We now illustrate as to how the tracking performance of the JPDA algorithm is impacted

as the targets become closely spaced and how the proposed scheme reduces this adverse

impact by taking an example of tracking two targets. Figure 5.2(a) shows the case in which

the two targets are far apart. Since in this case, overlap of the gates will not occur, i.e., there

is no common measurement between the two targets, both the JPDA algorithm in [59] and

the proposed one will provide a very similar good tracking performance. The gates of the

two targets overlap when the spacing between them is reduced below a certain level. Figure

5.2(b) shows the tracking performance of the JPDA algorithm. It is seen from this figure that

at the time step k, there are two measurements z2 and z3 that lie in the overlapped region,

and therefore, shared between the two targets. This causes larger errors in the estimated

positions, ẑ1 and ẑ2, of the two targets than in the case of no overlap, and thus, brings

these two estimates closer to each other. The tracking performance of the algorithm will get

worse in the succeeding time steps and may eventually result in the coalescence of the two

estimated tracks. Figure 5.2(c) shows the tracking performance of the proposed algorithm. It

is seen from this figure that even though at the time step k, there are still two measurements

that fall in the overlapped region, in view of the modified weights, the estimated positions

of the two targets have smaller errors and each estimated track is closer to its actual track.

As a result, the estimated tracks of the two targets have very little tendency of getting closer,
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Figure 5.2: (a) Tracking of two widely-spaced targets using the JPDA algorithm of [59]
or the proposed algorithm. Tracking of two closely-spaced targets using (b) JPDA algo-

rithm [59] and (c) proposed algorithm.
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Figure 5.3: (a) Tracking of two targets with a spacing of D between them using the JPDA
algorithm of [59] or the proposed algorithm. Tracking of two targets when one target
approaches the other at an angle θ and then continues in parallel with the other one with
a spacing of D between them using (b) JPDA algorithm [59] and (c) proposed algorithm.

79



and therefore, successfully avoid the coalescence of the two estimated tracks.

Next, we demonstrate how the performance of the JPDA algorithm is also affected when

one or more of the targets take a sharp turn. We illustrate this again be considering an

example of two targets. Figure 5.3(a) shows two targets moving in parallel with a spacing D

between them. It is assumed that the spacing D is large enough as not to cause an overlap of

the gates of the two targets. Hence, in this case both the JPDA and the proposed algorithms

will track the targets satisfactorily. Now, let us assume that initially target 2 is approaching

target 1 at an angle θ, and then takes a sharp turn at the time step k when the spacing

between the two targets becomes D; then from that point on, target 2 continues to move

in parallel to the track of target 1. In a JPDA-based algorithm, the gate for the target at

the time step k is constructed based on the target state at the time step (k − 1). Hence, the

gate is constructed with the assumption that target 2 will still be moving with an angle θ.

Consequently, the gates of the two targets will necessarily overlap if the angle θ has a large

value and the spacing D is not too large. It is because of this overlap, the performance of

the JPDA algorithm deteriorates and eventually coalescence between the two tracks may

occur in the succeeding time steps as shown in Fig.5.3(b). On the other hand, the proposed

algorithm will be able to handle this situation effectively, and thus, avoid coalescence of the

two tracks, as seen from Fig.5.3(c). However, it should be pointed out that if the spacing D

is further reduced but without causing overlap, then the proposed algorithm will still work

if the angle θ is smaller, even in those cases where the JPDA algorithm will fail to track the

targets satisfactorily.

Finally, it must to pointed out that in a situation when the two targets become very close

to each other, most if not all the measurements, will fall in the overlapped region. The

method of obtaining the weights based on the spatial distribution of the measurements will

not help, since the distributions of the measurements with respect to both the targets will

be almost identical. Hence, in the case when the targets are very closely spaced, even the

proposed algorithm will fail to track the targets.
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5.5 Performance Evaluation

In this section, the performance of the proposed algorithm is evaluated and compared with

that of the JPDA algorithm of [59] by considering the example of two targets being tracked.

The performance of both the algorithms is evaluated using the root mean square error metric

as mentioned in Section 2.3.1.

5.5.1 Simulation parameters

In all our experiments, we assume that the two targets are moving at a constant speed of

100 m/s. Further, it is assumed that the sampling period T = 1 s, the measurement noise

standard deviation, σs = 10 m, the probability of detection PD = 0.9, and the gate threshold

parameter γ = 16. Clutter is generated by assuming it to have a Poisson distribution with

the intensity parameter λ = 2 × 10−4 m−2, over the surveillance region with an area A =

140 × 103 m2. The standard deviation σQ of the process noise is assumed to be 35 m. Mote-

Carlo simulations with M = 100 runs are carried out to obtain the estimates of the target

states.

5.5.2 Experimental results

The performance of the algorithms is organized in four categories. In the first category, ex-

amples are considered to illustrate the impact of the spacing between the two targets, which

are moving in parallel. In the second category, examples are considered in which the targets

are moving in straight lines but not in parallel. The examples in the third category illustrate

the impact of one target approaching at a certain angle the other one moving in a straight-

line, and then taking a sudden turn to move in parallel with the other. In the last category,

a number of examples are taken by considering scenarios with various combinations of the

examples in the three categories.

In all the figures depicting the tracking performance, part (a) of the figures shows the

true target motion and estimated tracks using the JPDA algorithm of [59], part (b) the true
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target motion and estimated tracks using the proposed algorithm, parts (c) and (d) RMSEs

of the positions of targets 1 and 2, respectively, for both the algorithms.

5.5.2.1 Category 1

In this category, the two targets move in parallel for a period of 40 s with different values of

the spacing D between them.

(i) Example 1

In this example, the spacing between the two targets is taken to be D = 150 m. From

Fig. 5.4, it is seen that for this spacing both the algorithms provide very good and

similar performance.

(ii) Example 2

In this example, the spacing between the two targets is reduced by 5 m to 145 m. Al-

though the JPDA algorithm was providing a very good performance when D was

150 m, it seen form Fig. 5.5(a) that when the spacing is reduced only by 5 m, the perfor-

mance of the JPDA algorithm gets severely deteriorated and coalescence occurs. On

the other hand, it is seen from Fig. 5.5(b) that the proposed algorithm continues to

exhibit a very good tracking performance. From Figs. 5.5(c) and 5.5(d), it is observed

that for both the targets the RMSE values obtained from JPDA exceed the threshold

value, and hence, its performance is unacceptable. On the other hand, the RMSE val-

ues obtained from the proposed algorithm for both the targets are below the threshold

value, resulting in very good tracking performance.

(iii) Example 3

In this example, the spacing between the two targets is set to 70 m. Form Figs. 5.6(a)

and 5.6(b), it is observed that, when the spacing is reduced from 145 m to 70 m, as ex-

pected, the performance of the JPDA algorithm severely deteriorates and coalescence

occurs, whereas the proposed algorithm still provides a very good tracking perfor-

mance. From Figs. 5.6(c) and 5.6(d), it is observed that for both the targets the RMSE
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Figure 5.4: Tracking of two targets moving in parallel with D = 150 m. True and esti-
mated tracks using (a) JPDA algorithm and (b) proposed algorithm. Position RMSEs for

(c) target 1 and (d) target 2.

values obtained from JPDA are higher than the threshold value, thus causing its per-

formance to become unacceptable. On the other hand, in the case of the proposed

algorithm, the RMSE values for either of the two targets remain below the threshold

value, thus indicating that the performance of the proposed algorithm is still accept-

able.

(iv) Example 4

In this example, the spacing between the two targets is further reduced by 2 m to 68 m.

Form Figs. 5.7(a) and 5.7(b), it is observed that, as expected, the performance of the

JPDA algorithm continues to be deteriorated along with the coalescence of the two
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Figure 5.5: Tracking of two targets moving in parallel with D = 145 m. True and esti-
mated tracks using (a) JPDA algorithm and (b) proposed algorithm. Position RMSEs for

(c) target 1 and (d) target 2.

tracks, whereas the proposed algorithm does not suffer from any coalescence. From

Figs. 5.7(c) and 5.7(d), it is observed that for both the targets the RMSE values obtained

from JPDA as well as from the proposed algorithm exceeds the threshold value, thus

causing their performance to become unacceptable. It is to be pointed out that even

though the performance of the proposed algorithm is not acceptable, coalescence of

the tracks does not occur.

We can conclude from the results of the above experiments that the effect of the spacing

between the targets on the performance of the two algorithms. The two algorithms exhibit

very good performance when the spacing is large. However, both the algorithms have their
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Figure 5.6: Tracking of two targets moving in parallel with D = 70 m. True and esti-
mated tracks using (a) JPDA algorithm and (b) proposed algorithm. Position RMSEs

for (c) target 1 and (d) target 2.

own minimum spacing below which they fail to perform satisfactorily. This minimum spac-

ings for the proposed algorithm is much lower than that for the JPDA algorithm. In other

words, the performance of the proposed algorithm is much less sensitive to the spacing be-

tween the targets, in that the proposed algorithm continues to perform satisfactorily even

for small values of the spacing between the targets, whereas the JPDA algorithm fails to

provide satisfactory tracking performance even for much larger values.
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Figure 5.7: Tracking of two targets moving in parallel with D = 68 m. True and esti-
mated tracks using (a) JPDA algorithm and (b) proposed algorithm. Position RMSEs

for (c) target 1 and (d) target 2.

5.5.2.2 Category 2

In this category, we consider examples in which the targets are moving in straight lines with

an angle ψ between the two tracks.

(vi) Example 5

In this example, the two targets are moving with an angle ψ = 60◦ between their

tracks. From Figs. 5.8(a) and 5.8(b), it appears that the tracking performance of both

the algorithms is satisfactory. However, from Figs. 5.8(c) and 5.8(d), it is noted that

the RMSE values of JPDA exceed the threshold value in an appreciable region around

the point where the two tracks intersect. On the other hand, the RMSE values of the
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Figure 5.8: Tracking of two targets moving with an angle ψ = 60◦ between the tracks.
True and estimated tracks using (a) JPDA algorithm and (b) proposed algorithm. Posi-

tion RMSEs for (c) target 1 and (d) target 2.

proposed algorithm are less than the threshold value even in the intersecting region,

thus exhibiting a very good tracking performance throughout the tracking period of

the targets.

(vii) Example 6

In this example, we reduce the angle ψ from 60◦ to 30◦. From Fig. 5.9(a), it is seen that

the tracking performance of the JPDA algorithm gets severely deteriorated beyond

the point of intersection of the two targets, when ψ is decreased to 30◦, whereas the

proposed algorithm continues to exhibit an acceptable tracking performance, as seen

in 5.9(b). Form Figs. 5.9(c) and 5.9(d), it is noted that the RMSE values of JPDA exceed
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Figure 5.9: Tracking of two targets moving with an angle ψ = 30◦ between the tracks.
True and estimated tracks using (a) JPDA algorithm and (b) proposed algorithm. Posi-

tion RMSEs for (c) target 1 and (d) target 2.

the threshold value around the point of intersection. On the other hand, the RMSE

values of the proposed algorithm are less than the threshold value throughout the

tracking period, thus exhibiting a very good tracking performance.

However, it can be shown that the proposed algorithm would also fail to track the

targets satisfactorily when ψ is decreased below 17◦.

In summary, regardless of the value of the intersection angle ψ, the RMSE values of JPDA

exceeds the threshold value in the neighborhood of the point of intersection and the region

of this violation widens as the value of ψ is reduced. The JPDA algorithm completely fails

to track the targets beyond the point of intersection for an angle ψ below a certain value,
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say ψ1. On the other hand, the RMSE values of the proposed algorithm never exceed the

threshold value throughout the tracking period for a value of ψ that is larger than a value,

say ψ2, which is much smaller than ψ1.

5.5.2.3 Category 3

In this category, one target approaches the other at an angle θ for a period of 10 s, and then

takes a sudden turn to continue to move in parallel with the other one for a period of 30 s

with a spacing D between them. Since both the algorithms provide a very good tracking

performance when D is 150 m, we set D to this value for all the examples in this category,

whereas the angle θ is varied in order to study the effect of varying the angle θ on the per-

formance of the algorithms.

(viii) Example 7

In this example, target 2 approaches target 1 at an angle θ of 30◦. From Fig. 5.10, it

clear that both the algorithms exhibit very good tracking performance.

(ix) Example 8

In this example, the angle θ is increased to 45◦. It is clear from Fig. 5.11(a) that this in-

crease in the angle adversely affects the tracking performance of JPDA in that it leads

to severe deterioration and track coalescence. On the other hand, the proposed algo-

rithm provides a very good tracking performance throughout the tracking period, as

seen from Fig. 5.11(b). It is observed from Figs. 5.11(c) and 5.11(d) that the RMSE

values for JPDA abruptly exceed the threshold value by a large amount, after the true

tracks of the two targets become parallel, thus leading to its unsatisfactory tracking

performance. On the other hand, the RMSE values for the proposed algorithm do not

exceed the threshold value and the performance is satisfactory.

(x) Example 9

In this example, the angle θ is further increased to 90◦. It seen from Figs. 5.12(a), 5.12(c)

and 5.12(d) that, as expected, JPDA badly fails to track the targets. It seen from Figs.

5.12(b), 5.12(c) and 5.12(d) that the proposed algorithm still provides very satisfactory
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Figure 5.10: Tracking of two targets when one target approaches the other at an angle
θ = 30◦ and then moving in parallel with D = 150 m. True and estimated tracks using
(a) JPDA algorithm and (b) proposed algorithm. Position RMSEs for (c) target 1 and (d)

target 2.

tracking performance even though the RMSE value for target 2 momentarily exceeds

the threshold value at the turning point of its track.

Although the performance of both the algorithms have been satisfactory when the

targets move in parallel to each other with a spacing of 150 m, JPDA fails to track

the targets properly when target 2 approaches target 1 at an angle θ that is θ = 45◦

or higher, and moves in parallel to target 1 for the same spacing of 150 m, as in the

case when the two targets moving in parallel throughout. This is due to the fact that

the gates of the two targets at the turning points overlap for this value of the angle.
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Figure 5.11: Tracking of two targets when one target approaches the other at an angle
θ = 45◦ and then moving in parallel with D = 150 m. True and estimated tracks using
(a) JPDA algorithm and (b) proposed algorithm. Position RMSEs for (c) target 1 and (d)

target 2.

On the other hand, even though the gates of the two targets overlap in the case of the

proposed algorithm also, the tracking performance continues to be satisfactory in view

of the modified weights introduced in the proposed algorithm.

It can be concluded from the results of the experiments in this category that for both the

algorithms, as the angle of approach θ of target 2 increases, the spacing between the targets

needs to be increased accordingly for satisfactory performance of the algorithms. However,

for a given spacing between the targets for which the two targets moving in parallel are

capable of performing satisfactorily, the proposed algorithm can handle a larger angle θ than
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Figure 5.12: Tracking of two targets when one target approaches the other at an angle
θ = 90◦ and then moving in parallel with D = 150 m. True and estimated tracks using
(a) JPDA algorithm and (b) proposed algorithm. Position RMSEs for (c) target 1 and (d)

target 2.

JPDA, and for a given angle θ, the minimum spacing needed by the proposed algorithm is

much lower than that required by JPDA for satisfactory performance.

5.5.2.4 Category 4

In this category, we consider a number of examples having various combinations of the

examples taken in categories 1, 2, and 3.

(xi) Example 10

This example is the same as Example 7, except that target 1 also is approaching target 2
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at the same angle, i.e., 30◦. It is observed from Fig. 5.13(a) that coalescence of the tracks

occurs at the turning point and continues beyond in the case of JPDA. It is to be pointed

out that even though JPDA was performing satisfactorily when only one target was

approaching the other at an angle of 30◦ with D = 150 m, as in Example 7, it now fails

to track properly when the other target also is approaching at the same angle. This has

happened in view of the fact that overlap of the gates necessarily occurs at the turning

point. On the other hand, the proposed algorithm gives a very good performance

throughout the tracking period, as seen from Fig. 5.13(b). It is observed from Figs.

5.13(c) and 5.13(d) that the RMSE values for JPDA abruptly exceed the threshold value

by a large amount, after the true tracks of the two targets become parallel, thus leading

to its unsatisfactory tracking performance. On the other hand, the RMSE values for

the proposed algorithm do not exceed the threshold value at any point throughout the

tracking period, just as in Example 7.

It can be easily shown that when D is increased from 150 m to 200 m, JPDA will also

function satisfactorily.

(xii) Example 11

This example is the same as the previous one but with the spacing D decreased by

50 m to 100 m. Form Figs. 5.14(a) and 5.14(b), it is observed that, as expected, the

performance of the JPDA algorithm continues to be deteriorated coupled with the co-

alescence of the two tracks, whereas the proposed algorithm does not suffer from any

coalescence. From Figs. 5.14(c) and 5.14(d), it is observed that for both the targets the

RMSE values obtained from JPDA as well as from the proposed algorithm when the

targets move in parallel exceeds the threshold value, thus causing their performance

to become unacceptable during this period. It is to be pointed out that even though

the performance of the proposed algorithm is not acceptable, coalescence of the tracks

does not occur during the parallel motion of the targets.

From Examples 10 and 11, it can be concluded that even when JPDA algorithm preforms
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Figure 5.13: Tracking two targets each approaching at an angle θ = 30◦ and then moving
in parallel with D = 150 m. True and estimated tracks using (a) JPDA algorithm and (b)

proposed algorithm. Position RMSEs for (c) target 1 and (d) target 2.

well in the case of only one of the targets taking a sudden turn and then moving in par-

allel with the other, it fails to track the targets properly when each of the targets takes a

turn simultaneously. Even though the same conclusion can be drawn for the proposed algo-

rithm, it happens for a spacing that is much lower than in the case of JPDA. Further it can

be conclude that for a given spacing for which both the algorithm perform satisfactorily if

they were to move in parallel, the proposed algorithm can sustain a much sharper angle of

approach than the JPDA algorithm can, before the performance becomes unsatisfactory.

(xiii) Example 12

In this example, the two targets approach each other, each at an angle 30◦ for 10 s, then
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Figure 5.14: Tracking two targets each approaching at an angle θ = 30◦ and then moving
in parallel with D = 100 m. True and estimated tracks using (a) JPDA algorithm and (b)

proposed algorithm. Position RMSEs for (c) target 1 and (d) target 2.

move in parallel with D = 140 m, and finally, at 30 s one of them suddenly diverges

with an angle of 30◦. From Fig. 5.15(a), as expected, the coalescence of the tracks of

the two targets occurs for JPDA during the parallel part of the tracks and this coa-

lescence continues even after target 2 makes another turn at 30 s. On the other hand,

as seen from Fig. 5.15(b), the proposed algorithm provides a very good performance

throughout the tracking period. It is seen from Figs. 5.15(c) and 5.15(d) that the RMSE

values for JPDA, as expected, abruptly exceed the threshold value by large amounts

at 10 s and continue with such large errors during the parallel part of the tracks. At

30 s, when target 2 takes a turn, the RMSE value experiences another abrupt increase
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Figure 5.15: Tracking two targets each approaching at an angle θ = 30◦, and then mov-
ing in parallel with D = 140 m, and target 2 diverging at θ = 30◦. True and estimated
tracks using (a) JPDA algorithm and (b) proposed algorithm. Position RMSEs for (c)

target 1 and (d) target 2.

and the two estimated tracks remain almost merged for the remainder of the track-

ing period. However, the RMSE values for the proposed algorithm do not exceed the

threshold value at any point throughout the tracking period.

(xiv) Example 13

In this example, the two targets are approaching each other at an angle 30◦ for 10 s, then

continue to move in parallel with D = 140 m, and finally, at 30 s they suddenly diverge

with an angle of 30◦. From Fig. 5.16(a), as expected, the coalescence of the tracks of
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Figure 5.16: Tracking two targets each approaching at an angle θ = 30◦, and then mov-
ing in parallel with D = 140 m, and each diverging at θ = 30◦. True and estimated
tracks using (a) JPDA algorithm and (b) proposed algorithm. Position RMSEs for (c)

target 1 and (d) target 2.

the two targets occurs for JPDA during the parallel part of the tracks; however, mis-

identity of the targets takes place beyond the parallel part. On the other hand, the

proposed algorithm gives a very good performance throughout the tracking period,

as seen from Fig. 5.16(b). From Figs. 5.16(c) and 5.16(d), it seen that the RMSE values

for JPDA, as expected, abruptly exceed the threshold value by a large amount during

the parallel part, but now they get much worse beyond the parallel part of the tracks,

thus leading to its complete failure in tracking the targets after 10 s. On the other hand,

the RMSE values for the proposed algorithm do not exceed the threshold value at any

point throughout the tracking period.
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For JPDA, if the performance is unsatisfactory during the parallel part, it is seen from

Examples 12 and 13 that it becomes worse when one or both the targets diverge, in the sense

that the tracking errors get much worse along with the coalescence or mis-identity problem.

On the other hand, the proposed algorithm continues to perform satisfactorily for the same

divergence angle for which the JPDA algorithm fails. However, the problem encountered

by JPDA would eventually occur for a spacing much smaller, or the divergence angle much

larger than in the case of JPDA.

It is to be noted that the proposed algorithm for multiple target tracking is equally applicable

in case of no clutter exists.

5.6 Summary

In this chapter, we have made a systematic and thorough study on the limitation of the

JPDA algorithm with regard to the impact of the spacing between the targets as well as that

of the abrupt turning angles of the targets on its tracking performance. In addition, we have

proposed a new algorithm for the tracking of multiple targets within the JPDA framework

based on the spatial distribution of the measurements falling inside the gate of a target.

It has been shown that by considering the spatial distribution of the measurements, more

appropriate values to the weights for the measurement- target association can be obtained.

This has led to an enormously improved tracking performance of the proposed algorithm

even when the targets are much more closely spaced and make much sharper turns, the

cases in which the existing JPDA algorithm fails. A number of examples using two targets,

with varied scenarios of different spacing between them and their turn angles, have been

considered to demonstrate the effectiveness of the proposed algorithm and its superiority

over the JPDA algorithm.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Target tracking is crucial in monitoring and controlling air traffic in civilian and military

applications. One of the challenges in tracking single targets is during its maneuvering

segments. Most of the algorithm that have been designed under the assumption that the

maneuvering angles are known, and their performance deteriorates or may even fail when

the angle of maneuver exceeds the assumed angle. In tracking multiple targets, tracking

closely-spaced targets and keeping their identities is a major challenge.

This thesis has been concerned with the problems of accurately tracking single maneu-

vering targets when the target turn rates are not known and tracking multiple targets when

they are closely spaced and/or make abrupt turns with large angles. These two problems

have been investigated in two parts.

In the first part of the thesis, two algorithms have been proposed for tracking a single

maneuvering target, when the information on the target turn rate is not known a priori, in

an interacting multiple model (IMM) framework. In both the algorithms, the turn rate has

been estimated dynamically using noisy measurements. In the first algorithm, the turn rate

of the target has been estimated based on the target speed and the radius of a circle formed

by three consecutive noisy measurements. It has been shown that this algorithm provides a

more accurate value of the turn rate compared to that provided by the only other algorithm

existing in the literature, and thus, yields a better tracking performance.It has also been

shown that the performance of this algorithm is less sensitive than the existing algorithm to
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increases in the levels of the measurement noise over the specified one used in the design of

the algorithms. In the second algorithm, the accuracy of the estimated turn rate is improved

by using the information on the level of the measurement noise. It has been shown that the

tracking performance of this second algorithm is substantially superior to that of the first

one, particularly when the measurement noise level is high.

In the second part of the thesis, the problem of tracking closely-spaced targets, while

preserving their identities has been considered. A systematic and thorough study on the

limitations of the JPDA algorithm in tracking closely spaced targets as well as when the

targets make sudden turns with large angles has been conducted. A new algorithm for

tracking multiple targets in a JPDA framework based on the spatial distribution of the mea-

surements falling inside the gates of the targets has been proposed. It has been shown that

by taking the spatial distribution of the target measurements into consideration, more ap-

propriate weights can be assigned to the target-measurement associations, and hence, the

tracking performance of the algorithm can be improved significantly.

This thesis has made important contributions in developing methods for accurately es-

timating the target turn rate for tracking single target and in developing a new method

for computing weights for the target-measurement associations for multiple target tracking.

The methods developed have been used to provide very good performance in some specific

situations of target tracking. However, it can be expected that these methods are sufficiently

general for them to be used in other realistic scenarios of target tracking.

6.2 Future Work

In this thesis, a number of algorithms for tracking single and multiple targets have been

proposed based on new ideas for estimating the angles of target maneuvers in the case of

single target tracking and measurement-target associations in the case of multiple target

tracking. Based on these new ideas, there is scope for further investigation in target tracking.

• The algorithm for tracking a single maneuvering target proposed in Chapter 4 determines
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empirically the multiplying factor for each measurement noise level. It would be worth-

while to develop a scheme for determining this multiplying factor adaptively rather than

empirically.

• The algorithms for tracking a single maneuvering target proposed in Chapters 3 and 4

assume that there is no clutter. Hence, it is of interest to investigate if these algorithms

can be extended to track a single maneuvering target in a clutter environment.

• A new multiple target tracking algorithm to track multiple targets, whether they are

widely or closely spaced, has been proposed in Chapter 5; however, the algorithm as-

sumes that the targets are non-maneuvering. This assumption may not hold good in real

life situations, since the targets may perform maneuvers. Hence, it should be of great in-

terest to study the tracking of multiple maneuvering targets, particularly when they are

closely spaced.
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Appendix A

Determination of the State Transition

Matrix

As mentioned earlier, the target has three modes of motion, namely, straight-line motion

(SL), left turning motion (LT), and right turning motion (RT), which will be referred to as

modes 1, 2, and 3, respectively. The element pij, i ̸= j in the transition probability matrix Ptr

represents the probability of the target transiting from mode i to mode j, while pii represents

the probability of the target continuing to be in mode i. It has been found in [26] that pii

should be between 0.8 and 0.98 for good tracking results.

We assume that p22 and p33 should have values less than p11 in view of the fact that we

adaptively estimate ω and the predicted position by the CT models are not precise. The

other elements of this matrix are adjusted such that the sum of the elements in each row is

equal to unity. A number of different transition matrices and various scenarios with different

maneuvers have been considered, and it has been found that the best performance in terms

of both RMSE and LANEES metrics is given by

P1
tr =

⎡⎢⎢⎢⎢⎣
0.9 0.05 0.05

0.1 0.8 0.1

0.1 0.1 0.8

⎤⎥⎥⎥⎥⎦ (A.1)
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Figure A.1: Results of scenario 1 for a target that performs turns of −2.5◦/s, and 3.25◦/s.
(a) Actual target trajectory of scenario 1. (b) RMSE. (c) LANEES.

For purpose of illustration, we consider the following two other transition matrices

P2
tr =

⎡⎢⎢⎢⎢⎣
0.95 0.025 0.025

0.2 0.8 0

0.2 0 0.8

⎤⎥⎥⎥⎥⎦ (A.2)

and

P3
tr =

⎡⎢⎢⎢⎢⎣
0.95 0.025 0.025

0.15 0.8 0.05

0.15 0.05 0.8

⎤⎥⎥⎥⎥⎦ (A.3)
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Figure A.2: Results of scenario 2 for a target that performs turns of 3◦/s, and −2◦/s. (a)
Actual target trajectory of scenario 2. (b) RMSE. (c) LANEES.

and compare their performance with that of P1
tr under two different scenarios.

The first scenario is shown in Fig.A.1(a). The target starts with a straight-line motion for

15 seconds, then performs the first maneuver to the right with a turn rate of −2.5◦/s for

15 seconds. Afterwards, it moves again in a straight-line motion for 10 seconds, and then

performs another maneuver to the left with a turn rate of 3.25◦/s for 30 seconds. Finally, it

goes in a straight-line motion for a further 10 seconds. The initial state vector used is

x(o) = [12500 m, −70.5 m/s, 10000 m, −70.5 m/s]t (A.4)

The algorithm with P1
tr shows a better tracking performance during the maneuvers in terms
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of RMSE, as shown in Fig.A.1(b), compared to that of the algorithm with P2
tr or P3

tr. It is clear

from Fig.A.1(c) the algorithm with P1
tr preserves its consistency throughout the tracking

period, while the other two do not in the sense that LANEES for these two becomes positive

during the maneuvers.

The second scenario is the same as the first one except for the maneuvering turn rates;

the first maneuver is performed to the left with a turn rate of 3◦/s and the second maneuver

to the right with a turn rate of −2◦/s, as shown in Fig.A.2(a). It is see from Figs.A.2(b) and

A.2(c) that the conclusions made regarding RMSE and consistency of the algorithm with P1
tr,

P2
tr and P3

tr for the previous scenario hold good for the present scenario also.

From the above two scenarios, it is clear that the performance of the algorithm in terms

of both RMSE and LANEES is better with P1
tr as the transition probability matrix than with

P2
tr or P3

tr. Similar performance of P1
tr has been observed in other scenarios and with other

transition probability matrices, but are not reported here. In view of these findings, we

choose P1
tr as the proposed transition probability matrix and denote it by PPA1

tr .
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