
AN ANALYSIS OF SECURITY VULNERABILITIES IN
CONTAINER IMAGES FOR SCIENTIFIC DATA

ANALYSIS

Bhupinder Kaur

A thesis
in

The Department
of

Computer Science and Software Engineering (CSSE)

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science

Concordia University
Montréal, Québec, Canada

January 2021
© Bhupinder Kaur, 2021

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Bhupinder Kaur
Entitled: An Analysis of Security Vulnerabilities in Container Im-

ages for Scientific Data Analysis

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining commitee:

Chair
Examiner
Examiner
Examiner
Supervisor

Approved
Chair of Department or Graduate Program Director

20
Rama Bhat, Ph.D.,ing., FEIC, FCSME, FASME, Interim
Dean
Faculty of Engineering and Computer Science

Dr. Aiman Hanna and Dr. Tristan Glatard

Dr. Emad Shihab
Dr. Dhrubajyoti Goswami

Dr. Leila Kosseim

Abstract

An Analysis of Security Vulnerabilities in Container Images for
Scientific Data Analysis

Bhupinder Kaur

Software containers greatly facilitate the deployment and reproducibility of scientific
data analyses on high-performance computing clusters (HPC). However, container
images often contain outdated or unnecessary software packages, which increases the
number of security vulnerabilities in the images and widens the attack surface of the
infrastructure. This thesis presents a vulnerability analysis of container images for
scientific data analysis. We compare results obtained with four vulnerability scanners,
focusing on the use case of neuroscience data analysis, and quantifying the effect of
image update and minification on the number of vulnerabilities. We find that con-
tainer images used for neuroscience data analysis contain hundreds of vulnerabilities,
that software updates remove about two thirds of these vulnerabilities, and that re-
moving unused packages is also effective. We conclude with recommendations on how
to build container images with a reduced amount of vulnerabilities.

iii

Acknowledgments

I would like to thank both my supervisors, Dr. Tristan Glatard and Dr. Aiman
Hanna, for their unwavering guidance, support, valuable feedbacks, and patience
throughout my thesis. I am glad and consider myself lucky that I have such experi-
enced, motivated, and organized professors. I would also like to extend my gratitude
to Mathieu Dugré for his help, efforts, and valuable inputs. I also had great pleasure
of working with all my lab members, specially, Martin, Valérie, and Ali, you guys
are so helpful and great colleagues. Many thanks to my family and friends for giving
their emotional support and believing in me. Finally, big thanks to the Concordia
University for providing me the chance to work with such supportive and knowledge-
able supervisors, and giving me all the facilities and infrastructure to complete this
work.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Containers . 1

1.1.1 Docker . 2
1.1.2 Singularity . 3

1.2 Thesis Outline . 4

2 Security Review of Containers 6
2.1 Related Work . 6
2.2 Container’s Internal Security . 12

2.2.1 Process Isolation . 13
2.2.2 Filesystem Isolation . 13
2.2.3 Device Isolation . 13
2.2.4 Inter-Process Communication (IPC) Isolation 14
2.2.5 Network Isolation . 14
2.2.6 Limiting of Resources . 16
2.2.7 Vulnerabilities in Container Images 16

2.3 Security provided by Kernel . 17
2.3.1 Linux Capabilities . 17
2.3.2 Linux Security Modules . 18

2.4 Conclusion . 20

v

3 Image Analysis 21
3.1 Image Scanning . 21

3.1.1 Container Images . 21
3.1.2 Image Scanners . 22
3.1.3 Vulnerability Databases used by Scanners 25

3.2 Detected Vulnerabilities . 26
3.3 Differences between Scanners . 29

3.3.1 Ubuntu Vulnerability Databases 31
3.3.2 Discrepancy Reasons . 33

3.4 Approaches to Reduce Vulnerabilities 35
3.4.1 Image Update . 36
3.4.2 Image Minification . 36
3.4.3 Effect of image update . 36
3.4.4 Effect of minification . 37
3.4.5 Combined effect of image update and minification 38

4 Conclusions 40
4.1 General Conclusions . 40
4.2 Contributions . 43
4.3 Future Work . 43

vi

List of Figures

1 Number of vulnerabilities detected in tested container images. Number
of vulnerabilities by container image and severity, showing hundreds of
detected vulnerabilities per image. Images s*,t*,u*,v*,w* and x* are
Singularity images scanned by Stools and others are Docker images
scanned using Anchore. 29

2 Differences between vulnerabilities detected by the different scanners.
The Jaccard coefficients between the sets of detected vulnerabilities
are quite low, showing important discrepancies between the scanners:
Jaccard(Anchore, Clair) = 0.63, Jaccard(Anchore, Vuls) = 0.59, Jac-
card(Vuls, Clair) = 0.80. Two Ubuntu 17.04 images weren’t included
in this comparison as they cannot be scanned by Vuls. 30

3 Example of a CVE representation in Ubuntu Launchpad Database . 33
4 Number of vulnerabilities by number of packages, showing a strong

linear relationship. 37
5 Effect of image minification and package update on 5 container images,

showing that both techniques are complementary. 39

vii

List of Tables

1 Some disabled capabilities in Docker containers [1]. 18
2 List of images scanned. Image with asterisk (*) mark are Singularity

image and others are all Docker images. 23
3 Vulnerability databases used by scanners for different OS distributions.

All scanners also refer to the National Vulnerability Database (NVD)
for vulnerability metadata. 26

4 Number of vulnerabilities detected by four different scanners. Singu-
larity Images are only scanned with Stools. 28

viii

Chapter 1

Introduction

Containers are very lightweight, flexible, and more resource-efficient than virtual ma-
chines. They provide an operating system (OS) level virtualization, which removes
the overhead of having an extra OS layer. However, containers tightly integrate with
the host due to the sharing of the kernel, which raises security concerns. In this
chapter, we provide a brief introduction of containers, mainly discussing two popular
containerization techniques Docker and Singularity.

1.1 Containers

OS-level virtualization initially started in 1979 when Chroot was introduced. Chroot
is a Unix system call, which changes the root directory of a process and its children
processes. A chrooted process cannot access files outside the designated directory. As
the time passed, this virtualization got evolved and took different forms of FreeBSD
jails, Linux VServer project, and Solaris containers. However, in 2008, with the in-
troduction of Linux containers (LXC), OS-level virtualization reached to an another
level of popularity. LXC gained advantage over other Linux-based projects due to
the integration of virtualization features into the upstream Linux kernel, which re-
moved the need of applying patches to the Linux kernel and recompilation [2]. LXC
relies on Linux kernel’s control groups (cgroups) and namespaces. Cgroups control
the usage of system resources (memory, CPU, network, etc) among a group of pro-
cesses. Namespaces define what a process can see by providing an isolated view of

1

the operating system. For example, PID namespace isolate processes running in a
container [3].

1.1.1 Docker

Docker was introduced in 2013 and has gained popularity since then. Docker is built
on top of LXC. It automates application deployment, in addition to providing isolated
environment. Docker allows software engineers to develop an application only once,
on one system, and then use it on other systems without much effort. With the help of
Docker, developers pack the application with all its dependencies, libraries, and tools,
which can be run on any Linux server later. However, Docker containers share boot
file-system and kernel with the host, which raises security concerns. Another issue
is that Docker is not supported by traditional high-performance computing (HPC)
resources. This is mainly due to the default configuration of Docker, which runs
containers as root. Consequently, it becomes hard for system administrators to keep
a record of which user is doing what [4, 5].

Docker Daemon

Docker engine is known as Docker daemon. It is a service that runs on the host
operating system and is responsible for managing all Docker containers. It also allo-
cates the host’s resources to Docker containers. Like LXC, Docker daemon also uses
cgroups and namespaces of Linux, and hence only support Linux operating system.
Docker daemon requires root access to operate, and every container run by Docker
is spawned as a child of root-owned Docker daemon. Therefore, users can gain es-
calated privileges by coercing Docker daemon, which creates serious security risks
in shared environments. As a consequence, Docker is not supported in multi-user
environments.

Docker Images

A Docker image is a package which contains an application along with all required
dependencies and libraries. All the steps of creating a particular image can be saved
in a Docker file. Using Dockerfile, there are two ways to create a Docker image. The
first is to use an existing Docker image as a base image and then build a new image

2

from that one, by making changes in the filesystem, which is saved as a new layer
of the Docker image. The second way is to build a new Docker image from scratch.
Docker images are organized as a series of layers which are stacked on top of each
other. Each layer consists of a filesystem diff that is introduced due to the changes
made on the layer below it. All layers of the Docker image are identified by unique
layerIDs. All these layers stacked together gives a unified and complete view of a
Docker image. These layers are compressed into a single image and can be pushed to
the Docker Hub.

Docker Hub

Docker Hub is a repository used by Docker to keep all Docker images in one central
place. Docker images on Docker Hub can be private or public. Docker Hub also
proposes automated builds and webhooks. Docker webhook is an HTTP call-back
triggered by a push on external code repository. Automated builds, also known as
autobuilds, automatically build Docker images from the source code located on exter-
nal code repository (e.g. GitHub, BitBucket, etc.) and then host them automatically
on Docker Hub. During the setup of Docker automated builds, a list of branches and
tags, that the user wants to build into Docker images is created. When source code
is pushed to a code repository (like GitHub) for these listed image tags, push uses
Docker webhook to build a new Docker image [6]. The created image is then auto-
matically pushed to Docker Hub. After the automated build, Docker sends HTTP
request to a reachable Docker host on the Internet to notify it about the availability
of new image, which pulls the built image and restarts container on the new image
through Docker webhooks [7, 8].

1.1.2 Singularity

Singularity was introduced in 2016. It offers mobility of compute by facilitating
portable environments through a single image file, which makes Singularity containers
different from Docker’s layered containers. Once a Singularity image is created, it is
hashed by using SHA256 hashing. Hence, it cannot be changed once it is created,
consequently, it can be used for reproducing the results of scientific experiments.
Singularity was introduced with the main goal of providing support for multi-user
environment [9], where Docker failed to provide such support. Main features provided

3

by Singularity are mobility of compute and reproducibility.

Mobility of compute is defined as creating and maintaining a workflow on a
local machine that can be easily ported on other hosts, Linux distributions, and/or
cloud service providers. To achieve this, Singularity packs everything that is required
for the application to run in a distributable image. Then that image can be copied,
archived, and shared. Moreover, Singularity containers are easily portable across
different versions of the C library and different kernel implementations [10].

Same features of Singularity, which are used for mobility of compute, fa-
cilitate reproducibility as well. Hash of the image is also stored along with the im-
age [10].

Singularity Images

Singularity takes snapshot, locks, and archives the developed application, which is
known as Singularity image [11]. Due to image hashing, Singularity does not contain
image layers, unlike Docker images. While publishing experimental results, authors
can also publish Singularity image along with its hash, which allow other researchers
to verify results.

Singularity Hub

Singularity Hub is a central repository provided by Singularity to keep Singularity
images and their hash. It is designed to facilitate reproducible research and pub-
lications. Singularity Hub can be easily cited in the publications and hence other
researchers can easily replicate conducted experiments. Singularity Hub connects
with GitHub for automatic builds of Singularity images from the source code present
at GitHub.

1.2 Thesis Outline

This thesis consists of four main parts divided into chapters. Chapter 2 provides
literature survey on the security of containers. In accordance with that, it provides a
list of security requirements that every OS-level virtualization technique should ful-
fill, and hence based on these requirements it investigates security of containers. This

4

chapter also points out strong features and security weaknesses of containers. Chap-
ter 3 presents various experiments done to analyze security of Docker and Singularity
images used in two containerization frameworks used in neuroscience. Here, neuro-
science is just a use case and this work is not only limited to this field. Additionally,
Chapter 3 provides results of these experiments. Finally, Chapter 4 concludes this
thesis and highlights the future work.

5

Chapter 2

Security Review of Containers

In spite of the popularity of containers, there are various security concerns as well.
Here, we focus our investigation on the security of Singularity and Docker containers
because of three reasons. First, they are popular among containers. Second, security
becomes a barrier in the adoption of containers in production. Third, both are already
used in various environments, so it is easy to practically investigate their security. In
this chapter, we first discuss the related work in this area and study a set of security
requirements, that each OS-level virtualization solution should provide. Later, this
chapter investigates how these requirements are fulfilled by Singularity and Docker
containers, and list their security implications. For this study, we categorize security
into two broad categories: internal security provided by containers, and external
security provided by the Linux operating system.

2.1 Related Work

The existing research work on containers focuses mainly on the security of containers.
This focus is justified by the fact that containers expose the host’s resources (e.g., file
system/ IPC) to the guest system. This feature raises a confidentiality threat for the
applications running on the same host.

Reshetova et al., 2014 [2] analyzed security of various OS-level virtualization
technologies according to a set of security requirements. According to this study, an

6

OS-level virtualization technique should satisfy some requirements which are process
isolation, filesystem isolation, device isolation, IPC isolation, network isolation and
limiting of resources inside containers. Based on these requirements, they analyzed
security of FreeBSD Jails, Linux-VServer, Solaris-Zones, OpenVZ, LxC, and Cells/-
Cellrox.

A study by Thanh Bui [12] in 2015 used these security requirements to
analyze the security of Docker containers. The Author selected Docker for analysis
due to its popularity as a container-based approach. In this study, two main areas of
security are considered for analysis:
(1) Internal security of Docker, which is analyzed according to the set of security
requirements given by Reshetova et al., 2014 [2].
(2) How Docker interacts with the external security features provided by Linux Kernel
such as SELinux and AppArmor.

We also use these requirements to analyze the security of Docker and Sin-
gularity containers, which will be discussed in next section of this chapter.

A study by Gummaraju et al., 2015 [13] states that over 30% of official im-
ages in Docker Hub contain high priority security vulnerabilities and more than 64%
official images contain high or medium priority vulnerabilities. These numbers are
troublesome because these images are downloaded the most. Authors also investi-
gated the official images created in the year of the study and found out that 75% of
those images contain vulnerabilities that can be easily exploited with a potentially
high impact. Focussing on the images with the latest tag, authors discovered that
vulnerabilities are less in the images that are kept more up-to-date. As the volume
and velocity of creating new containers are high, it easily cause old images to get ne-
glected. The overall vulnerability figures for community images are higher than the
offcial images. 40% of community images contain high priority vulnerabilities. These
are the images, which are pushed to Docker Hub by Docker users and are not identi-
fied by any authority. This percentage hovers between 30-40% for the images which
were recently created or had the latest tag. At the time of this study, there were
75 official repositories containing 960 unique images and 95,000 general repositories
having hundreds of thousands of unique images on Docker Hub. This study takes all
official images and randomly select 1700 general images for the analysis.

7

Another study by Shu et al., 2017 [14] also studied the state of security
vulnerabilities in Docker Hub images. Authors built DIVA (Docker Image Vulnera-
bility Analysis) framework for analyzing the vulnerabilities in the images of docker
Hub. This process involved discovering the community images, downloading and ex-
tracting the meta data and finally analyzing the vulnerabilities in the images. The
community images were discovered using keyboard search. After getting the list of
images, they adopted stream based parallel image analysis where different subsets
of images discovered were downloaded on different host and analyzed their vulner-
ability using Clair (https://github.com/quay/clair), which is open source tool from
coreOS for identifying vulnerabilities in images. From the metadata received after
extraction process, Clair found the insecure packages in the images by comparing
with the CVE and similar databases. Clair report includes details, such as time of
analysis, vulnerability ID, severity ranking, description of CVE, associated packages
and layer ID of the vulnerable image. This study’s dataset consisted a total of 86,066
repositories, out of which 98 were official repositories having a total of 356,218 images
in both repositories. With the DIVA framework, authors found out that there are
180 vulnerabilities on average in both official and community images. There exists
at least one type of severe vulnerability in both official and community images. 50%
of both official and community images have not been updated for 200 days which
are intuitively more likely to contain more vulnerabilities. Then, the authors did an
inter-image dependency analysis and found that vulnerability propagates from the
parent image to the child image. A child image inherits 80 or more vulnerabilities on
average from parent image and child image frequently introduces new vulnerabilities
because maintainer do not apply updates while installing new softwares. A directed
graph G = <V,E> is generated, where V is the set of vertices representing layer
IDs and E is the set of edges representing child and parent relationship. The meta
data extraction process gave details like image ID, image name, last updated time,
layer ID and commands used to build the image. Further, authors found out that
5 out of 98 official repositories and 10,435 out of 85,968 community repositories do
not have latest tag. From the Clair report authors investigated the packages that
cause vulnerabilities in images more frequently and found that glibc package is the
most frequent offender causing vulnerabilities in 80% of the images. Packages like
util-linux, shadow, perl etc. also appear in each category of vulnerability. So, authors

8

https://github.com/quay/clair

suggested that if these packages are targeted specifically then security of Docker Hub
ecosystem can be improved.

Combe et al., 2016 [15] and Martin et al., 2018 [7] investigated the security of
the Docker ecosystem. In this study, authors primarily reviewed security from three
main factors: isolation, host hardening and network security. For isolation, Docker
relies on Linux kernel features like namespaces, cgroups, hardening and capabilities.
The default isolation configuration is strict; only flaw is the shared network bridge
which is vulnerable to ARP attacks between containers on the same host. There
are options for increasing and lowering security levels while launching containers and
the Docker daemon, which is a serious security concern. Host hardening is done
by loading profiles in containers, such as SELinux and AppArmor. However, these
profiles are generic and protect the host from containers but not container from an-
other container. So, writing container-specific profiles can address this issue. Docker
uses network to remotely control Docker daemon and to distribute images. While
downloading images from Docker Hub the connection is made over TLS and remote
repository is verified with the hash. Moreover, starting from version 1.8, developers
can sign images while pushing them to the Docker Hub using timestamps for expi-
ration and preventing replay attacks, but the signing keys are shared among every
entity needing to issue an image which is an issue. The Docker daemon is remotely
controlled through UNIX socket. Access to this socket will give attacker the full
freedom to pull and run containers in privileged mode giving root access. There-
fore, connection should be TLS secured. Authors further discussed three use cases
of Docker. First is recommended use-case given by Docker officials suggesting micro-
service approach. Second is wide-spread use, where developers use Docker as a way of
delivering virtual environment. So, embedding more software than the designed pay-
load of containers makes container management very complex and increases attack
surfaces. Attacks such as privilege escalation can happen because of the increased
communication channels between co-located containers and the host. Last use case
is CaaS (cloud as a service), where cloud providers, such as Amazon Web Services,
Google Container Engines, and Microsoft Azure provide support for Docker. Authors
then discussed two categories of adversary model, i.e. direct adversary targeting pro-
duction environment directly and indirect adversary who leverages Docker ecosystem
to reach production environment. Authors identified five vulnerability categories, as

9

follows:

Insecure configuration: Use of options given at the starting of Docker daemon
and while launching of the container makes it insecure. For mitigation of these at-
tacks the center for internet security realized a Docker benchmark providing two list
of options to use, and not to use, while running containers as isolated applications.

Vulnerabilities in image distribution process: Vulnerabilities include storing,
processing potentially untrusted code performed by Docker daemon. Code can be
tampered during transfer or at the source. If an attacker is able to control some part
of the network between the host and the repository, Denial-of-Service (DoS) attacks
are possible. For instance, as images are compressed, the attacker can download an
image containing a huge file filled with gibberish data. When this image is extracted,
it can fill the whole storage of the host. Other possible attacks are code injection
or replay attacks. For mitigation of these attacks, Docker introduced content trust
which allowed signing images before pushing to Docker Hub. But the problem is that
this content trust can be disabled and thus disabling image signature check. Another
issue is with automated build and webhooks where compromised Github account can
lead to the execution of malicious code within 5 minutes and 30 seconds. Content
trust provides environment where single entity is trusted but in this case trust is
divided among several external entities.

Vulnerabilities inside images: According to Gummaraju et al., 2015 [13], 36%
official images contain high-priority CVE, and 64% official images contain high to
medium priority CVE. Docker introduced Docker security scanning which traverses
each layer of image and reports any vulnerabilities. However, this solution is limited
to private repositories only due to its cost and it can take 1 to 24 hours for the scan.

Vulnerabilities directly linked to Docker: There is a room for improvement
for security profiles making them container specific instead of generic profiles giving
full access to network system, file system of host.

Vulnerabilities of Linux kernel: As containers are sharing kernel with the host,

10

having root privileges inside the container can make attacker break out of the con-
tainer and attack host.

Zerouali et al., 2019 [16] concluded that outdated packages lead to bugs and
severity vulnerabilities in Docker images. This study analyzed a total of 7,380 official
and community Docker Hub images. Images based on Debian Linux distribution
only were selected for this study because of Debian’s maturity and widespread use
in Docker images. Authors found out that presence of vulnerabilities in containers is
related to the presence of outdated packages inside them. Additionally, authors found
out that 96% of all the containers contain all types of vulnerabilities with a mean
value of 1,336 vulnerabilities and a median value of 601 per container. Interestingly,
only 12.2% of all the installed packages caused these vulnerabilities. Authors of this
study used the concept of technical lag, which estimates the difference between the
software version present inside the container and the most up-to-date version of that
software.

Sultan et al., 2019 [17] did a comprehensive survey on container’s security
and identified main security threats due to containers, images, registeries, orchestra-
tion, and host OS. Primarily, this study proposed four use cases to explain security
requirements within the host-container level. These use cases include:

Protecting the container from applications inside it: Applications running
inside the containers can be honest, semi-honest, or malicious. Some of these appli-
cations can require root privileges for running. If an application can gain control of
the container manager, it might attack the host as well as the other containers. For
example, if untrusted image is used, it might contain a preinstalled backdoor inside
them, image used might contain vulnerabilities such as ShellShock for remote code
execution, etc. Authors suggested to use trusted/verified images and to periodically
scan images for vulnerabilities.

Protecting one container from another container: In this case, authors as-
sumed that some containers are semi-honest or malicious. Applications running inside
these containers can also be malicious or semi-honest. However, in this case, authors

11

assumed that applications running inside honest containers remain honest. A semi-
honest or malicious container can access confidential data of other containers, can
consume the host resources that are dedicated to other containers, or learn resource
usage pattern of other containers. Most common attacks that affect containers are
Meltdown and Spectre. Both of these attacks pose a serious threat to containers. Au-
thors suggested that containers should be monitored for vulnerabilities and updated
periodically.

Protecting the host from containers: In this case, authors assumed that at
least one container is semi-honest or malicious within the host. A malicious container
can gain access to the confidential information of the host, target host’s availability
by consuming its resources, or target host’s integrity. For example, Shocker exploit or
Dirty Cow vulnerabilities allow containers to escape out and attack the host. These
types of vulnerabilities can also be avoided through applying periodic updates and
vulnerability scanning.

Protecting the container from the malicious host: In this case, authors as-
sumed that containers are honest, however, the host is semi-honest or malicious. A
semi-honest or malicious host can gain confidential information of the containers or
target the integrity of the containers. Therefore, running containers on untrusted
host should be avoided.

2.2 Container’s Internal Security

We examine the security of Docker and Singularity containers based on the require-
ments given by Reshetova et al., 2014 [2] for comparing the security of a number of
OS-level virtualization techniques. According to this research, an OS-level virtualiza-
tion technique should satisfy the following requirements: process isolation, filesystem
isolation, device isolation, IPC isolation, network isolation and limiting of resources
inside containers. Apart from that, in this section, we discuss about vulnerabilities
that are added to containers by container images [13,18].

12

2.2.1 Process Isolation

The main goal of process isolation is to prevent one container process from seeing or
interfering with another container process. In other words, it limits the permissions
and visibility of a container process to processes running in other containers. Con-
tainers achieve this goal through the use of namespaces in the Linux kernel. For this
purpose, Docker uses PID namespaces which isolate a process with a particular pro-
cess ID from the host and other containers. Provided that, it becomes difficult for an
attacker to see processes running in other containers, hence harder to attack them [12].
In contrast to Docker, the default configuration of Singularity does not isolate PID
namespaces of containers from the host. It is because Singularity’s main goal is not
isolation, instead it focuses on providing mobility of compute and reproducibility.
However, this configuration can be changed to separate the PID namespaces either
by using a command line or environment variable setting.

2.2.2 Filesystem Isolation

Filesystem isolation is required to prevent illegitimate access to filesystems of the
host and containers. Docker uses filesystem namespaces, also called mount names-
paces, for achieving this goal. Filesystem namespaces hide filesystems of the host
and containers from other containers. However, some of the kernel filesystems are
not namespaced, so Docker containers mount them for operation. For example, /sys,
/proc/sys, /proc/sysrq - trigger, /proc/irq, and /proc/bus are not namespaced [19].
This causes security concerns as Docker containers are directly able to access host
filesystems. Consequently, Docker provides two filesystem protection mechanisms.
First, Docker gives read-only permissions to containers for these filesystems. Second,
containers are not allowed to remount any filesystem within containers. Additionally,
Docker offers a copy-on-write filesystem mechanism, which allows containers to write
to their specific filesystems and changes are not visible to other containers. Similarly,
files in Singularity containers are also isolated using filesystem namespaces.

2.2.3 Device Isolation

Applications and kernel access devices through special files known as device nodes.
It is very crucial to limit the set of devices nodes that containers can access. This

13

is primarily important because an attacker can own the whole system by gaining
access to some important device nodes, such as /dev/mem, /dev/sd*, or /dev/tty.
Docker uses the Device Whitelist Controller [20] feature of control groups to limit
the set of devices that a Docker container can see and use. Additionally, Docker
starts containers with nodev which prevents the use of already created device nodes
inside the image. Furthermore, Docker does not allow containers to create new device
nodes. However, some of the important device nodes cannot be namespaced, such
as /dev/mem or /dev/sd*, and kernel modules. Direct access to these device nodes
by containers possess serious security concerns. Besides that, if a Docker container is
executed in privileged mode then it gets access to all devices. Conversely, in default
configuration of Singularity, all host devices are visible inside the container because
the user is the same inside and outside the container.

2.2.4 Inter-Process Communication (IPC) Isolation

IPC is a set of objects through which processes communicate with each other, such as
shared memory segments, semaphores, and message queues. IPC isolation is needed
to prevent containers from accessing or modifying data belonging to other containers,
which is transmitted through these objects. Docker utilizes IPC namespaces to assign
an IPC namespace to each container. Process in one IPC namespace cannot read
or write IPC resources of another IPC namespace. The default configuration of
Singularity does not provide IPC isolation.

2.2.5 Network Isolation

Isolation of container’s network is very important in order to prevent network-based
attacks, such as address resolution protocol (ARP) spoofing and Man-in-the-Middle
(MitM) Attack [21]. ARP spoofing is an attack which associates the attacker’s Media
Access Control (MAC) address with the Internet Protocol (IP) address of another
host. ARP is a stateless protocol, hence hosts save all ARP replies even if they had
not sent any ARP request for it [22], which becomes a source of attack. So, the host
that has spoofed ARP response is not able to verify whether it belongs to legitimate
host or attacker, and hence it starts sending packets at attacker’s MAC address. In
Singularity, by default, the container shares the network with the host. This is because

14

Singularity tries to virtualize ”as few as possible” namespaces. Whereas, Docker uses
network namespaces [23] to isolate the network of Docker containers. Therefore, each
Docker container has its different IP address, IP routing tables, network devices, etc.
Consequently, Docker containers interact through the network interfaces with each
other as well as with the host [24]. On the contrary, all containers share the same
network bridge, which makes Docker vulnerable to ARP spoofing attack. In addition
to that, bridge of Docker network forwards all incoming packets without any kind of
filtering, which makes it vulnerable to Mac flooding [12]. In Docker, the network is
used for two purposes: (i) to control Docker daemon remotely, and (ii) to distribute
images, which include pulling and saving images on Docker Hub.

Docker Daemon Remote Control

Docker daemon is controlled remotely through a socket (which is by default a Unix
socket but can be changed to TCP socket), so Docker commands can be performed
from another host remotely [15]. By accessing this socket, an attacker can pull and
run containers in privileged mode, hence getting root access to the host.

Vulnerable Image Distribution Process

Docker images are present in compressed format on Docker Hub. So, Docker dae-
mon pulls, uncompresses, and then runs containers from these images. Here, Docker
daemon can be related to the package manager and Docker Hub to the software
repository. Hence, Docker daemon also has an attack surface similar to the package
manager. Vulnerabilities include storing, processing potentially untrusted code in
Docker images by Docker daemon. The source code can be tampered during transfer
or at the source. If some part of the network is compromised, an attacker can replace
an image with malicious image, and that image gets downloaded on the host. As the
image is in a compressed format, the attacker can cleverly craft the image (i.e. all
zeros). If so, it has the potential of filling whole storage on the host after decompres-
sion, hence causing denial-of-service (DoS) attack. Other possible attacks are code
injection or replay attacks. Additionally, the malicious image can be uploaded to the
Docker Hub by an adversary. That image can be downloaded by millions of users
infecting millions of machines.

15

For mitigation of these attacks, Docker introduced content trust which al-
lows signing images before pushing to Docker Hub. However, this content trust can
be disabled and thus disabling image signature check. Another issue is related to
automated build and webhooks, where compromised GitHub account can lead to the
execution of a malicious code. According to the experiment performed in [7] the ma-
licious code was put in production in a very short time, i.e. within 5 minutes and
30 seconds of commit on GitHub. The content trust provides an environment where
a single entity is trusted but in this case, trust is divided among several external
entities.

2.2.6 Limiting of Resources

A DoS attack occurs when intended users are not able to use the system or network
resources [25]. To launch DoS, the attacker floods targeted host or network traffic
with superfluous requests to overload systems. Consequently, the target crashes or its
resources get exhausted, hence disrupting normal execution of the system. To solve
this issue, both Docker and Singularity use cgroups. Cgroups restrict the amount of
resources (CPU, memory, and disk I/O) that are used by containers, thus not allowing
one container to consume all resources.

2.2.7 Vulnerabilities in Container Images

There can be vulnerabilities present inside the image itself when it is downloaded from
the image repository. According to [14] over 30% official Docker images had high-
priority common vulnerabilities and exposures (CVE) identifiers (IDs) and around
64% had high or medium level CVE vulnerabilities at the time of this work. This
research work also states that Docker images with the latest tag also had vulnerabil-
ities. These vulnerabilities are due to outdated packages contained in images, which
may be a consequence of the use of old base image or due to pulling of outdated code
during build.

Docker introduced Docker security scanning through which users can scan
images to check whether they contain vulnerability or not. However, this scanning is
limited to only private repositories and it is a paid service. The scan traverses all layers
of the image and then identifies software packages in those layers. Further, it checks

16

vulnerabilities in these software components by taking their Secure Hash Algorithms
(SHAs) and then comparing against a standard list of CVEs. This scan can take
up to 24 hours depending on image sizes. Additionally, this scanning technique does
not detect malware, virus, or vulnerabilities which are not mentioned in the standard
CVE database [26].

2.3 Security provided by Kernel

Out-of-the-box security provided by the Linux kernel, which secures the host from
containers, is known as host hardening. Linux provides Linux capabilities and Linux
Security Modules (LSM) to harden the security of the host system. Linux capa-
bilities divide the privileges of superuser into pieces, and assign a subset of these
capabilities to specific processes. Whereas, LSM provides a framework for Linux to
support various security modules. Currently, three security modules are officially in-
tegrated with Linux kernel which includes SELinux, AppArmor, and Seccomp. Out
of these three, only the first two are supported by Docker. Docker only integrates
with Seccomp if LXC are used. Below, we provide the details of these host hardening
techniques.

2.3.1 Linux Capabilities

According to the official documentation of Linux [27], Unix systems traditionally
categorized processes as privileged processes and unprivileged processes. Privileged
processes are root users with zero User ID (UID), whereas unprivileged users are
normal users with nonzero UID. Privileged processes are exempted from permission
check, whereas unprivileged processes are liable to full permission checks. Linux di-
vides privileges of superuser into different pieces, known as capabilities, which can
be independently enabled or disabled. As a result, Docker can disable some of the
capabilities of containers, thus improving the security of the system. As Docker con-
tainers share the kernel with the host, most of their tasks are done by the host. As
a consequence, disabling some of the capabilities in Docker containers do not affect
their functionality. For example, CAP NET ADMIN capability allows configuration
of the network, which can be disabled in Docker containers because all network con-
figurations are handled by Docker daemon. By default, most of Linux capabilities

17

are disabled when Docker container is started in order to secure the host system from
attackers [1]. Table 1 lists some of the capabilities that are disabled in Docker con-
tainers.

Capability Description
CAP SETPCAP Modify process capabilities
CAP SYS MODULE Insert/Remove kernel modules
CAP SYS RAWIO Modify kernel memory
CAP SYS PACCT Configure process accounting
CAP SYS NICE Modify priority of processes
CAP SYS RESOURCE Override resource limits
CAP SYS TIME Modify the system clock
CAP SYS TTY CONF IG Configure tty devices
CAP AUDIT WRITE Write the audit log
CAP AUDIT CONTROL Configure audit subsystem
CAP MAC OVERRIDE Ignore kernel MAC policy
CAP MAC ADMIN Configure MAC configuration
CAP SYSLOG Modify kernel printk behavior
CAP NET ADMIN Configure the network
CAP SYS ADMIN Catch all

Table 1: Some disabled capabilities in Docker containers [1].

2.3.2 Linux Security Modules

Below, we provide details of two LSMs that are currently supported by Docker.

SELinux

SELinux is security enhancement to the Linux system, which integrates Mandatory
Access Control (MAC). MAC strongly separates all applications, which in turn de-
creases potential damage if an application is compromised. SELinux classifies active
users or processes as subjects, and all system resources as objects. Everything in

18

SELinux is controlled by labels [28]. System administrator writes SELinux policies,
which control accesses of system objects by processes. These policies are of three
types: Type Enforcement (TE), Multi-Category Security (MCS), and Multi-Level
Security (MLS). Out of these three, Docker uses only the first two types of poli-
cies [12]. Using TE, Docker protects the host from containers, by forcing container
processes to read/write content that has a specific label [12]. MCS is used to protect
containers from other containers. To achieve that, each container is assigned a unique
MCS label. All the files that belong to a container are also labelled with the same
MCS label. Therefore, kernel does not allow a container process to read/write to a
file that have different MCS label. Hence isolating all containers.

AppArmor

Like SELinux, AppArmor is another MAC solution for enhancing security of Linux
systems. It uses the concept of file system paths instead of labels. AppArmor men-
tions the file path in the binary of the application along with the allowed permissions
on that file. Two modes are supported by AppArmor: enforcement mode and com-
plain/learning mode [12]. Enforcement mode is used to enforce policies that are de-
fined in the AppArmor profile, whereas complain/learning mode also allows violations
of the profile policies. However, these violations are logged, and may be used later
for developing new profiles. Docker provides an interface to systems that support
AppArmor. This interface is used to load AppArmor profile for containers. Con-
sequently, when containers are launched, a pre-defined AppArmor profile is loaded
automatically, if administrator does not specify an AppArmor profile. These security
profiles are loaded in enforcement mode by default, to make sure that the policies
defined in the profile are enforced. Therefore, the important files of the host such as
/sys/fs/cgroups/ and /sys/kernel/security/ remain protected from containers.

Limitations of LSMs

Security provided by these modules is limited due to the generic nature of profiles
provided by these security modules [7]. For example, default SELinux profile assigns
same domain to all Docker containers, which helps in protecting host from containers,
but not containers from containers. Similarly, default AppArmor profile provide full
access of network system and capabilities to Docker containers. To improve the

19

security of the host, a potential solution is to write container-specific profiles.

2.4 Conclusion

In this chapter, we examine various security threats that containers are prone to. We
focus our investigation on the security of Docker and Singularity containers because
of their popularity. In that context, we study a list of security requirements that ev-
ery OS-level virtualization should fulfill. Later, we investigate security of Docker and
Singularity containers based on these requirements. We broadly categories security of
containers into two types: internal security provided by containers, and external secu-
rity provided by the Linux kernel. Internal security includes process isolation, device
isolation, IPC isolation, network isolation, limiting of resources in containers, and
vulnerabilities in images. We then highlight solutions provided by containers to pro-
vide internal security, and later, we discuss how efficient these solutions are. Further,
we discuss external security, which is security provided by the Linux kernel to protect
the host from containers, or containers from containers. External security includes
Linux capabilities and LSM framework. Linux capabilities can be disabled/enabled as
needed, and LSM framework is used to define various security profiles for containers.
Inspite of all these efforts, it is clear that there is still a need of security enhancement
in containers.

20

Chapter 3

Image Analysis

In this chapter, we analyze container images, which are used in two neuroscience
frameworks. In accordance with that, these images are scanned using four popular
scanners. Additionally, two different approaches, image update and image minifica-
tion are followed in order to see their effect on the security vulnerabilities. Finally,
this chapter discusses the results of these experiments.

3.1 Image Scanning

Image scanning is a technique to detect image vulnerabilities, which reduces the risk
of vulnerability exploitation inside containers. Scanning refers to the practice of
collecting all information about a container image, investigating it for vulnerabilities,
and finally producing a report to summarize the scanning results. These reports can
be used for security assessments.

3.1.1 Container Images

We scan all container images available at the time of this study on two containerization
frameworks used in neuroscience: BIDS apps [29] (26 images) and Boutiques [30] (18
images), totalling 44 container images (Table 2). At the time of the study, BIDS
apps had 27 images, out of which one wasn’t available on DockerHub. Boutiques had
49 images; however, only 23 unique images were listed, out of which 3 couldn’t be

21

retrieved and 2 were already included in BIDS apps. All the final 26 images from
BIDS apps were Docker images, whereas the 18 Boutiques images contained 12 Docker
images and 6 Singularity images.

3.1.2 Image Scanners

We use four container image scanners: Anchore, Vuls, and Clair to scan Docker
images, and Singularity Container Tools (Stools) to scan Singularity images.

Anchore

Anchore is an end-to-end, open-source container security platform. It analyzes con-
tainer images and lists vulnerable OS packages, non-OS packages (Python, Java,
Gem, and npm), and files. In our experiments, we use Anchore Engine version 0.5.0
through Docker image anchore/anchore-engine:v0.5.0, and Anchore vulnerability
database version 0.0.11.

Abbrv Image Distribution
k bids/hyperalignment ubuntu:16.04
l bids/niak ubuntu:16.04
h bids/fibredensityandcrosssection ubuntu:14.04
g bids/ndmg ubuntu:14.04
f bids/ndmg:v0.1.0 ubuntu:14.04
j bids/oppni:v0.7.0-1 ubuntu:14.04
Q bids/brainiak-srm ubuntu:16.04
e bids/tracula:v6.0.0-4 ubuntu:14.04
H bids/rs signal extract:0.1 ubuntu:16.04
d bids/example ubuntu:14.04
i bids/cpac:v1.0.1a 22 ubuntu:16.04
S bids/mindboggle:0.0.4-1 debian:8
F bids/nipypelines:0.3.0 debian:8
N bt5e/ants:latest centos:7
a poldracklab/fmriprep:1.2.3 ubuntu:16.04
Z bids/hcppipelines:v3.17.0-18 debian:8

22

https://github.com/anchore/anchore-engine

b poldracklab/fmriprep:unstable ubuntu:16.04
c bids/dparsf:v4.3.12 ubuntu:14.04
Y poldracklab/mriqc:0.15.0 ubuntu:16.04
x* shots47s/bids-fmriprep-1.2.3 ubuntu:16.04
R gkiar/dwipreproc fsl-5.0.11 minified ubuntu:16.04
U bids/freesurfer ubuntu:14.04
I bids/antscorticalthickness:v2.2.0-1 ubuntu:17.04
V bids/mrtrix3 connectome ubuntu:18.04
O bigdatalabteam/hcp-prefreesurfer:exec-centos7-

fslbuild-centos5-latest
centos:7

P bigdatalabteam/hcp-prefreesurfer:exec-
centos7.freesurferbuild-centos4-latest

centos:7

v* aces/cbrain-containers-recipes:fsl v6.0.1 ubuntu:16.04
D bids/broccoli:v1.0.0 centos:6
w* shots47s/bids-freesurfer-6.0 ubuntu:14.04
s* c3genomics/genpipes centos:7
W bids/spm ubuntu:14.04
X bids/aa:v0.2.0 ubuntu:14.04
E mcin/docker-fsl:latest centos:7
K mcin/ica-aroma:latest centos:7
G bids/baracus ubuntu:14.04
T camarasu/creaphase:0.3 centos:7
M mcin/qeeg:latest centos:7
L bids/magetbrain ubuntu:18.04
u* MontrealSergiy/BEst ubuntu:16.04
J bids/afni proc ubuntu:17.1
C gkiar/mask2boundary:v0.1.0 alpine:3.9.0
t* bioinformatics-group/aqua-singularity-recipe debian:9
A gkiar/onevoxel:v0.3.0rc2 alpine:3.7.1
B bids/rshrf:1.0.1 alpine:3.8.4

23

Table 2: List of images scanned. Image with asterisk (*) mark are Singularity image
and others are all Docker images.

Vuls

Vuls is an open-source vulnerability scanner for Linux and FreeBSD. It offers both
static and dynamic scanning, and both local and remote scanning. In our experi-
ments, we use Vuls 0.9.0, executed through Docker image vuls/vuls:0.9.0 in remote
dynamic mode.

Clair

Clair is an open-source and extensible vulnerability scanner for Docker and appc
container images, developed by CoreOS (now Container Linux), a Linux distribution
to deploy container clusters. Clair has a client-server architecture, in which the
server scans Docker images layer by layer and maintains a database of vulnerabilities.
We used Clair through Clair-scanner, a tool to facilitate the testing of container
images against a local Clair server. Clair-scanner scans the image, prepares a list of
vulnerabilities, compares that list against a whitelist, and flags vulnerabilities that
are not present in the whitelist. In our experiments, we do not use a whitelist to
filter scanning results in order to make a fair comparison between scanners. Clair-
scanner maintains a Docker image with the up-to-date vulnerability database from a
set of different sources. We use Clair version 2.0.6, executed through Docker image
arminc/clair-local-scan:v2.0.6. For the vulnerability database, we use Docker
image arminc/clair-db:latest, last updated on 2019-09-18.

Stools

Singularity Tools (Stools) are an extension of Clair for Singularity images. Stools ex-
ports Singularity images to tar.gz format, acting as a single layer Docker image to cir-
cumvent the Docker-specific requirements in the Clair API. In our experiments, we use
Singularity Tools version 3.2.1 through Docker image vanessa/stools-clair:v3.2.1.
Since Stools uses Clair internally for scanning, vulnerability databases used by Stools
are the same as mentioned for Clair. To scan Singularity images, we follow the steps
mentioned in the Stools documentation.

24

https://github.com/future-architect/vuls
https://github.com/quay/clair
https://github.com/arminc/clair-scanner
https://github.com/singularityhub/stools
https://github.com/singularityhub/stools

3.1.3 Vulnerability Databases used by Scanners

Scanners refer to two types of vulnerability databases (Table 3). The first one is the
Open Vulnerability and Assessment Language (OVAL) database, an international
open standard that supports various OS distributions including Ubuntu, Debian and
CentOS but not Alpine. The second one are vulnerability databases from specific
OS distributions, such as Alpine-SecDB, Debian Security Bug Tracker, Ubuntu CVE
Tracker, or Red Hat Security Data. In these databases, OS distributions often assign
a status to each vulnerability, to keep track of required and available security fixes in
different versions of the distribution. Vuls uses OVAL databases for all distributions
except Alpine, whereas Anchore uses OVAL only for CentOS. On the contrary, Clair
exclusively refers to distribution-specific databases, as distribution-specific databases
are assumed to be more complete. It is also worth noting that there is no vulnerability
data for Ubuntu 17.04 and 17.10 distributions in the OVAL database, since these
distributions have reached end of life, meaning that images with these distributions
cannot be scanned with Vuls. For CentOS images, Anchore and Clair give scanning
results using Red Hat Security Advisory (RHSA) identifiers, whereas Vuls uses the
Common Vulnerabilities and Exposures (CVE) identifiers used in OVAL. We map
RHSA identifiers to corresponding CVE identifiers, to allow for a comparison between
scanners. Also, all these scanners refer to National Vulnerability database (NVD),
which is a vulnerability database launched by the National Institute of Standards and
Technology (NIST), in order to get additional information about the vulnerabilities
(e.g., its severity scores, its fix information, and its impact ratings).

Different vulnerabilities may be reported by scanners if scanning experiments
take place on different dates. To avoid such discrepancies, we freeze the vulnerability
databases used by these scanners as of 2019-09-25.

25

OS Anchore Vuls Clair
Alpine Alpine-SecDB Alpine-SecDB Alpine-SecDB
CentOS Red Hat OVAL

Database
Red Hat OVAL
Database and Red
Hat Security
Advisories

Red Hat Security
Data

Debian Debian Security
Bug Tracker

Debian OVAL
Database and
Debian Security
Bug Tracker

Debian Security
Bug Tracker

Ubuntu Ubuntu CVE
Tracker

Ubuntu OVAL
Database

Ubuntu CVE
Tracker

Table 3: Vulnerability databases used by scanners for different OS distributions. All
scanners also refer to the National Vulnerability Database (NVD) for vulnerability
metadata.

3.2 Detected Vulnerabilities

Table 4 shows results of scanning BIDS and Boutiques images with four scanners.
An important amount of vulnerabilities were found in the tested container images,
with an average of 460 vulnerabilities per image and a median of 321. Moreover, a
significant fraction of detected vulnerabilities are of high severity (CVSS score <=
7.0) and a few of them are of critical severity (CVSS >= 9.0). These vulnerabilities
exist either in installed applications of the image or their dependencies (direct or
transitive). Additionally, they are of different software vulnerability types, e.g., buffer
overflow, injection flaws, leakage of confidential information, issues with libraries
and dependencies, etc. Figure 1 shows the number of vulnerabilities detected in
each image. Remote attackers could possibly exploit these vulnerabilities to execute
arbitrary code in the container, by crafting responses to specific network requests.
Images based on the Alpine distribution had the lowest numbers of vulnerabilities,
but no significant difference in the numbers of vulnerabilities detected in Ubuntu,
Debian or CentOS distributions was observed.

26

https://www.first.org/cvss/specification-document

Unsurprisingly, a strong linear relationship is found between the number of
detected vulnerabilities and the number of packages present in the image. This is
illustrated by the correlation coefficient r in Figure 4. On average, 1.7 vulnerabili-
ties are introduced for each new package installation. This observation motivates a
systematic review of software dependencies by application developers, to avoid unnec-
essary packages in container images. This is also an argument in favor of lightweight
distributions such as Alpine. Compared to Ubuntu and Debian distributions, Cen-
tOS images seem to have a lower number of vulnerabilities by package on average,
although data is too scarce to conclude.

All the collected data are available in our GitHub repository at https://

github.com/big-data-lab-team/container-vulnerabilities-paper with a Jupyter
notebook to regenerate the figures.

Abbrv Anchore Clair Vuls Stools
k 1717 1327 1433 None
l 1482 1366 1420 None
h 1086 849 868 None
f 934 758 782 None
g 934 757 782 None
j 913 698 723 None
Q 897 484 503 None
e 874 664 683 None
H 867 454 473 None
d 838 663 683 None
i 698 524 535 None
S 671 955 569 None
F 641 878 451 None
N 592 600 336 None
a 591 441 447 None
Z 526 873 620 None
b 516 355 393 None
c 507 750 757 None
Y 432 328 332 None

27

https://github.com/big-data-lab-team/container-vulnerabilities-paper
https://github.com/big-data-lab-team/container-vulnerabilities-paper

R 391 258 263 None
U 353 215 192 None
I 289 27 None None
V 275 157 158 None
O 257 266 157 None
P 257 266 157 None
D 203 203 117 None
W 191 246 235 None
X 189 244 233 None
E 178 178 201 None
K 178 178 202 None
G 172 238 216 None
T 148 148 186 None
M 121 121 142 None
L 112 117 126 None
J 67 16 None None
C 15 11 11 None
A 5 2 2 None
B 5 3 3 None
x* None None None 421
v* None None None 206
w* None None None 203
s* None None None 197
u* None None None 105
t* None None None 7

Table 4: Number of vulnerabilities detected by four different scanners. Singularity
Images are only scanned with Stools.

28

0 500 1000 1500
Number of vulnerabilities

k
l

h
g
f
j

Q
e
H
d
i

S
F
N
a
Z
b
c
Y
x*
R
U
I

V
O
P
v*
D
w*
s*
W
X
E
K
G
T
M
L
u*
J

C
t*
A
B

Co
nt

ai
ne

r i
m

ag
e

(1)
(1)

(1)

(1)
(1)

(1)
(1)

(7)

(1)

(1)

(1)
(1)

OS distribution
Centos
Ubuntu
Alpine
Debian

Severity
Unknown Negligible Low Medium High Critical (n)

Figure 1: Number of vulnerabilities detected in tested container images. Number of
vulnerabilities by container image and severity, showing hundreds of detected vulner-
abilities per image. Images s*,t*,u*,v*,w* and x* are Singularity images scanned by
Stools and others are Docker images scanned using Anchore.

3.3 Differences between Scanners

Important discrepancies in scanners are illustrated in Figure 2, in particular between
Anchore and the other two scanners, for which Jaccard coefficients as low as 0.6 were
found, meaning that scanning results only overlapped by 60%. Vuls and Clair appear
to be in better agreement, with a Jaccard coefficient of 0.8. The question arises why

29

these scanners report different number of vulnerabilities. How their logic differs, and
what exactly is making these results different than each other!

We discuss these discrepancy reasons later in this section. Before that, we
discuss Ubuntu Vulnerability Databases that are needed to understand the discrep-
ancy reasons.

4453
 (1)

1678
 (2)

699
 (3)

657
 (4)

11978
 (5)

2220
 (6)

536
 (7)

Anchore Clair

Vuls
Figure 2: Differences between vulnerabilities detected by the different scanners. The
Jaccard coefficients between the sets of detected vulnerabilities are quite low, showing
important discrepancies between the scanners: Jaccard(Anchore, Clair) = 0.63, Jac-
card(Anchore, Vuls) = 0.59, Jaccard(Vuls, Clair) = 0.80. Two Ubuntu 17.04 images
weren’t included in this comparison as they cannot be scanned by Vuls.

30

3.3.1 Ubuntu Vulnerability Databases

Through our experiments, we find that image scanners report vulnerabilities differ-
ently depending on the different Linux release types. So, it is important to provide an
overview of these Linux releases types. BIDS app and Boutiques images in our exper-
iments have diverse Linux distributions, such as Ubuntu, Centos, Debian, and Alpine.
Further, a particular distribution has different releases in general. To illustrate, we
here examine Ubuntu as an example, since it is heavily utilised in our experiments.
However, other distributions also have similar release trend. Ubuntu releases can be
of two types: Regular or Long Term Support (LTS). Regular release is supported
only for 9 months, whereas LTS is supported for 5 years. Once LTS support reaches
End-Of-Life (EOL), Ubuntu decides whether to provide extended security support
or not, which comes in the form of Extended Security Maintenance (ESM) release.
ESM is a paid service that can be requested from Ubuntu to get security updates even
after the EOL of a particular Ubuntu release. ESM and LTS releases of a particular
Ubuntu distribution have different vulnerability databases, because after EOL of a
release, a vulnerability is fixed only in packages of ESM; however, it still exists in
LTS.

As an example, Ubuntu has ended support for some releases, such as 14.04
LTS, 17.04, and 17.10, as they reached EOL. However, Ubuntu decided to provide
optional extended support for Ubuntu 14.04. To use this extended support, users
have to purchase ESM release for Ubuntu 14.04. The images in our experiments have
Ubuntu 14.04 LTS, so scanners should refer to LTS release only while collecting data
from the vulnerability databases. More interestingly, scanners are able to refer to
ESM release vulnerability database even without purchase, however, this may lead to
discrepancies in results. Further, if an image is using a Linux release where EOL has
been reached that image may turns to be vulnerable as it is not possible to retrieve
any updates.

Ubuntu maintains its vulnerability database in the Ubuntu Launchpad or
the Ubuntu CVE Tracker. For a given CVE, there is an entry for all ubuntu releases.
Ubuntu releases are listed with the package name in which vulnerability exists and are
entitled a status (https://git.launchpad.net/ubuntu-cve-tracker/plain/README), which
is encoded in the following form:

31

https://git.launchpad.net/ubuntu-cve-tracker/plain/README

<release>_<source-package>: <status> (<version/notes>)

For a given release, the status can be any one of the following:

DNE (Does Not Exist): The package does not exist in the archive.

needs-triage: The vulnerability of this package is not known, and hence evaluation
is needed.

not-affected: The package, while related to the CVE in some way, is not affected
by the issue. The <notes> should provide detailed information, if needed. For
instance, if the given status is not-affected (1.14.6-1.1) then this indicates that
this specific package version is not affected.

needed: The package is vulnerable to the CVE and needs to be fixed.

active: The package is vulnerable to the CVE, needs fixing, and is actively being
worked on.

ignored: The package, while related to the CVE in some way, is being ignored for
some reason. The <notes> should provide that reason. For instance, if status looks
like ignored (reached end-of-life), this means that the given Ubuntu release
already reached end-of-life, so this CVE is ignored by Ubuntu. However, if there is
extended security support for this release then this CVE will be handled in ESM
release.

pending: The package is vulnerable and has been fixed but an update has not been
yet uploaded or published. The <version> is given to indicate the particular version
where the fix has been done.

deferred: The package is vulnerable, but its fix has been deferred for some reason.
The <notes> should provide further details. If a date is mentioned, e.g. deferred

(2015-02-02), the given date specifies the date when the CVE was deferred.

released: The package was vulnerable, but an update has been already uploaded
and published, e.g. released (1.2.3), <version> indicates the first version where
the fix was applied.

32

released-esm: The package was vulnerable and an update has been already uploaded
and published. However, this update is published in the Ubuntu ESM release only
and not in LTS. The fixed version of such packages is appended by either +esm or
˜esm, indicating that this package version is available only via ESM.

Figure 3 illustrates how the information of a CVE is represented in the Ubuntu
launchpad database.

Figure 3: Example of a CVE representation in Ubuntu Launchpad Database

3.3.2 Discrepancy Reasons

According to our investigation of these results precisely, below are some of the reasons
of getting different results from these scanners. These reasons include bugs in scan-
ner’s logic, some scanners ignoring vulnerabilities in a particular package, referring to
different databases, how frequently they are updating their database, etc. We have
explained these differences below in detail.

1. Sub-packages vulnerabilities- Some vulnerabilities in region 1 are found in
sub-packages of vulnerable packages: They are correctly reported by Anchore
and missed by Vuls and Clair.

33

2. Linux-libc-dev Package- Anchore is detecting vulnerabilities in the develop-
ment package of the C library (linux-libc-dev in Ubuntu and Debian). Clair
is only detecting Debian vulnerabilities in linux-libc-dev, whereas Vuls is not
detecting vulnerabilities in linux-libc-dev at all. This is the reason behind
vulnerabilities in region 1 and region 2 of Figure 2.

3. Vulnerabilities in ESM- These are the vulnerabilities which are present in
Ubuntu 14.04 ESM release. These vulnerabilities are incorrectly missed by
Anchore and Vuls: they have been detected in ESM but were already present
in LTS. This reason is the main reason for vulnerabilities in the region 3 of
Figure 2.

4. Database difference- Clair is using a Docker image for database. So it is not
updated everyday. We use the latest updated container for scanning images.
For example, CVE-2019-5094 was not updated in Clair container that time.
This reason adds to region 3 of Figure 2.

5. Vulnerabilities not in ESM- Vulnerabilities, which are not present in Ubuntu
14.04 ESM, are not detected by Clair but they affect Ubuntu 14.04 LTS, which
is present in the image. This is the main reason behind region 4 of Figure 2.

6. Epoch bug- There is a bug in the Anchore logic due to which some vulnera-
bilities are not detected by Anchore. This bug gets triggered when package’s
version have epoch (1:3.3.9-1ubuntu2.3) in it. This is one of the major reasons
behind region 6 of Figure 2.

7. Debian’s minor vulnerabilities- Vulnerabilities marked minor by Debian
are ignored by Anchore. However, it is reported by Clair and Vuls. This is also
one of the major reasons behind region 6 of Figure 2 in addition to epoch bug.

8. Out of standard support bug- There is another bug in Anchore due to which
it is not able to detect some vulnerabilities. Due to this bug Anchore does
not detect vulnerabilities which have a status as ignored (out of standard

support) in Ubuntu 14.04 LTS. This is also one reason behind region 6 of
Figure 2.

34

9. Ignored (reached end-of-life)- Some vulnerabilities have status as ignored

(reached end-of-life) so Anchore checks the last status of these vulnerabil-
ities whether OS package was vulnerable to the cve prior to the end-of-life. If
it was vulnerable, only then Anchore reports it. However, Clair may or may
not detect it depending on its vulnerability status in ESM release. If the vul-
nerability status is DNE(Does Not Exist) in ESM, Clair does not detect it.
Accordingly, this reason adds vulnerabilities to the region 6 and 3 of Figure 2.

10. Rejected CVEs- There are some CVEs that are rejected because they are
duplicate copies of another CVEs. Only Vuls is reporting these rejected vul-
nerabilities. This is one of the reasons behind vulnerabilities in the region 7 of
Figure 2.

11. Debian’s Temporary vulnerabilities- Vulnerabilities that are flagged tem-
porary by the Debian distribution are reported by Vuls but not by Anchore or
Clair. This is also one of the reasons that adds to the region 7 of Figure 2.

12. Misses by Clair and Anchore- Clair and Anchore are missing vulnerabilities
in Centos images. According to our investigation, these vulnerabilities are in-
correctly missed by Clair and Anchore. This is the major reason behind region
7 of Figure 2.

3.4 Approaches to Reduce Vulnerabilities

In comparison to tested images, no vulnerabilities are found in latest updated base
Docker images ubuntu:20.04 and centos:7. So we decide to update these images
and see the effect on the number of vulnerabilities. Updating an image involves
updating all software packages that are inside that image. However, this option
effects the reproducibility of the image, which means that the image cannot be used
to verify research findings of other scientists. An alternative approach can be to trim
unnecessary packages from images, which in turn reduces the number of vulnerabilities
present in images. Therefore, in this section, we discuss these two approaches and
their effect on vulnerabilities.

35

3.4.1 Image Update

A first approach to reduce the number of vulnerabilities in container images is to
update their packages to the latest version available in the OS distribution. To study
the effect of such updates, we develop a script (available here) to identify the package
manager in the image, and invoke it to update all OS packages. We update images
on 2019-11-05.

3.4.2 Image Minification

A second approach to reduce the number of vulnerabilities in the images is to remove
unnecessary packages; an operation potentially specific to each analysis. We use the
open-source ReproZip tool [31] to capture the list of packages used by an analysis.
ReproZip first captures the list of files involved in the analysis, through system call
interception, then retrieves the list of associated software packages, by querying the
package manager. We extend this list with a passlist of packages required for the
system to function, such as coreutils and bash, and with all the direct and transitive
dependencies of the required packages, retrieved using Debtree. Repoquery could be
used in RPM-based distributions instead. Our minification script, available here,
installs ReproZip in the image to minify, runs an analysis to collect a ReproZip
trace, and finally deletes all unnecessary packages. We used the Neurodocker tool
initially, but it did not affect the detected vulnerabilities as it was removing unused
files without using the package manager.

Using this approach, we minify five Debian- or Ubuntu-based BIDS app
images, using basic analysis examples found in the applications documentation.

3.4.3 Effect of image update

Updating container images reduces the number of vulnerabilities by package by a
factor of 3 on average, resulting in only 0.6 extra vulnerabilities by package. Figure 4
shows more details. We test this approach on 38 Docker images. Out of these images,
six could not be updated due to various issues with the package manager. In spite of
the associated reproducibility challenges, updating packages therefore appears to be
an efficient way to avoid vulnerabilities. It is not an ultimate solution though, as a

36

https://github.com/big-data-lab-team/container-vulnerabilities-paper/blob/master/Scripts/update
http://manpages.ubuntu.com/manpages/xenial/man1/debtree.1.html
https://linux.die.net/man/1/repoquery
https://github.com/big-data-lab-team/container-vulnerabilities-paper/tree/master/Scripts/minification
https://github.com/ReproNim/neurodocker

substantial number of vulnerabilities remain.

0 100 200 300 400 500 600 700 800 900
Number of packages

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f v
ul

ne
ra

bi
lit

ie
s

y=1.7x-108.8
r=0.82

Before update

0 100 200 300 400 500 600 700 800 900
Number of packages

0

200

400

600

800

1000

1200

1400

1600

y=0.6x-37.1
r=0.81

After update

Figure 4: Number of vulnerabilities by number of packages, showing a strong linear
relationship.

3.4.4 Effect of minification

Another approach to reduce the number of vulnerabilities involves deleting unnec-
essary packages from the container images. It is a tedious operation, as it requires
running an actual data analysis in the container image to identify the packages re-
quired by the application. In addition, the resulting container image is only valid
for the specific type of analysis used in the minification process, as other executions
might require a different set of packages.

Using the ReproZip-based approach described previously, we minify 5 dif-
ferent images covering the spectrum of detected vulnerabilities as shown in Figure 5.
We find that minification reduces the number of vulnerabilities, albeit less systemati-
cally than package update. For some container images, such as image S, minification
removes more than 70% of the detected vulnerabilities. For other images, such as
image g, it only reduces the number of vulnerabilities by less than 1%. The effect of
minification stems from the number of packages that can be removed, which varies
greatly across images. For instance, images g and a have a large number of packages,
but the last majority of them is required by the analysis, which makes minification

37

less useful. In other cases, a limited number of unnecessary packages contain a signif-
icant number of vulnerabilities, which makes minification very impactful. This was
the case in images d, S and U, where removing compilers and kernel headers reduced
a significant number of vulnerabilities.

3.4.5 Combined effect of image update and minification

Package update and image minification remove different types of vulnerabilities. The
former is efficient against vulnerabilities that have been fixed by package maintainers,
while the latter targets unused software. In two of the five tested images (images S
and U), we find that combining update and minification further reduces the number
of vulnerabilities compared to using only one of these processes, which is illustrated
in Figure 5.

38

0 500 1000 1500
Number of vulnerabilities

g

d

S

a

U

Co
nt

ai
ne

r i
m

ag
e

Operation applied
None Update Minification Update & Minification

Figure 5: Effect of image minification and package update on 5 container images,
showing that both techniques are complementary.

39

Chapter 4

Conclusions

This chapter discusses the general conclusions, contributions, and the future work.

4.1 General Conclusions

We conclude that there is a widespread issue with security vulnerabilities in container
images used for neuroimaging analyses, and it is likely to impact other scientific
disciplines as well. As shown in our results, it is common for container images to hold
hundreds of vulnerabilities, including several of critical severity. Container images
are impacted regardless of the type of analyses that they support, and the main
OS distributions, such as Ubuntu, Debian, and CentOS are all affected. This issue
can be addressed by the application software developers by: (1) minifying container
images, by using lightweight OS distributions and reducing software dependencies,
and (2) applying regular security updates, which requires using OS distributions with
long-term support.

Software updates remove about two-thirds of the vulnerabilities found and
should certainly be considered the primary solution to this problem. However, in
neuroimaging as in other disciplines, software updates are generally discouraged be-
cause they can affect analysis results by introducing numerical perturbations in the
computations [32,33]. We believe that this position is not viable from an IT security
perspective, and that it could endanger the entire Big Data processing infrastructure,

40

starting with the HPC centers. Instead, we advocate a more systematic analysis of the
numerical schemes involved in data analyses, which, coupled with software testing,
would make the analyses robust to software updates. As a first step, the packages
impacting the analyses could be specifically identified and the remaining packages
could be updated, which would largely remove vulnerabilities.

Ultimately, software updates should even occur at runtime rather than when
the container image is built. Indeed, it is likely that container images used for scientific
data analyses be built only occasionally, perhaps every few weeks when a release be-
comes available, which may not be compatible with the frequency of required security
updates. In fact, there is no definite reason for the application software release cycle
to be synchronized with security updates, and security updates shouldn’t be depen-
dent on application software developers. Instead, we believe it would be relevant for
analytics engines to (1) systematically apply security updates when containers start,
and (2) run software tests provided by application developers, including numerical
tests, before running analyses.

Implementing such a workflow, however, requires a long-term endeavour to
evaluate broadly the stability of data analysis pipelines, and to develop the associated
software tests. For the shorter term, we identify the following recommendations for
application developers to reduce the number of security vulnerabilities in container
images:

1. Introduce software dependencies cautiously. Software dependencies come with a
potential security toll that is often neglected. For instance, it can be tempting
to add a complete toolbox to implement a relatively minor operation in a data
analysis pipeline, such as a data format conversion, while the same functionality
might be available in the existing dependencies of the pipeline, albeit in a less
convenient way.

2. Use base image wisely. Choosing a base image wisely in containers helps to
reduce security vulnerabilities. For example, if the scientific data analysis in the
image does not require a lot of additional packages to be installed in the image,
choosing a lightweight base image like Alpine Linux would be a good choice.
It is also great to use Alpine as a base image when all packages required in

41

the image are available in the Alpine repository. However, some scientific data
analyses require additional packages to be installed in the image and if they
are not present in the Alpine repository, developers have to build on their own.
Packages that are not installed through the package manager remain unscanned.
Hence, vulnerabilities in those packages remain undetected. Therefore, in such
cases, base images that have rich package repository are useful.

3. Use OS releases with long-term support. Security updates are not provided for
OS distributions that reached end of life. When a given release of a data analysis
pipeline is expected to be used over a long period of time, typically several years
as it is common in neurosciences, the life cycle of the distribution release should
be considered when choosing a base container image. OS distributions have
very different life cycle durations, as long and short life cycles serve different
purposes. For instance, among RedHat-based distributions, Fedora release a
new version every 6 months and provide maintenance for about a year, while
CentOS release every 3-5 years and provide maintenance for 10 years. Similarly,
Ubuntu LTS (long-term support) distributions provide free security updates for
5 years, and Debian stable releases are maintained for 3 years.

4. Install packages, not files. Vulnerability scanners such as Anchore, Clair or Vuls
detect vulnerabilities from the list of packages installed in a container image.
Therefore, vulnerabilities contained in software tools installed through direct
file download rather than through the package manager would go completely
undetected. Domain-specific distributions such as NeuroDebian or NeuroFedora
in neuroimaging are useful in this respect.

5. Minify container images. The automated minification process that we use in
our study is unwieldy for a routine use, as it requires capturing execution traces
with ReproZip to reconstruct the graph of package dependencies required for
the analysis. In practice, it would be more practical for software developers
to identify and remove unnecessary dependencies when they build containers,
based on their knowledge of the application.

6. Run image scanners during continuous integration. Scanning container images
can be a cumbersome process that could be asynchronously executed during

42

http://neuro.debian.net
https://docs.fedoraproject.org/en-US/neurofedora/overview/

continuous integration (CI), through tools such as Travis CI or CircleCI. In-
cluding security scans in CI also allows developers to identify vulnerabilities
quickly, before new software versions are released.

4.2 Contributions

All the collected data in this study are available in our GitHub repository at https://

github.com/big-data-lab-team/container-vulnerabilities-paper with a Jupyter
notebook to regenerate the figures. We believe that this study is the first of its
kind to analyze the container images to see the effect of image update and im-
age minification. We provide recommendations on how to build container images
with a reduced amount of vulnerabilities. This work is submitted and accepted
in the GigaScience journal with pending minor revisions. Also, this work is ref-
erenced in the Dark Reading article at https://www.darkreading.com/application-
security/containers-for-data-analysis-are-rife-with-vulnerabilities/d/d-id/1339372

4.3 Future Work

Specific attacks that would exploit vulnerabilities in container images against HPC
systems should be studied. We believe that such attacks are likely to exist, although
attacking HPC systems through containers is challenging due to their relative isolation
from the host system. First, under the assumption that legitimate HPC users can
be trusted, attackers would have to be remote to the container, either in the same
network or on a remote network. Two main types of attacks can be envisaged in
these conditions: network-based attacks, exploiting vulnerabilities in network clients
installed in the container, and data-based attacks, exploiting vulnerabilities through
the processing of malicious data injected through third-party systems.

Several types of escalation attacks could be envisaged once remote attackers
gain access to the container. In particular, attacks related to (1) using the resources
allocated to the container for malicious use resulting in denial of service for the user
running the container and possibly for other HPC users, and (2) attacking a host
network service, for instance a scheduler or a file system daemon. Exploits in the
host kernel to break out of the container are always possible but unlikely, assuming

43

https://travis-ci.org/
https://circleci.com/
https://github.com/big-data-lab-team/container-vulnerabilities-paper
https://github.com/big-data-lab-team/container-vulnerabilities-paper
https://www.darkreading.com/application-security/containers-for-data-analysis-are-rife-with-vulnerabilities/d/d-id/1339372
https://www.darkreading.com/application-security/containers-for-data-analysis-are-rife-with-vulnerabilities/d/d-id/1339372

that the host system is maintained by professional system administrators.

44

Bibliography

[1] Daniel J Walsh. Bringing new security features to docker. https://opensource.

com/business/14/9/security-for-docker. Accessed: 2019-03-04.

[2] Elena Reshetova, Janne Karhunen, Thomas Nyman, and N Asokan. Security of
os-level virtualization technologies. In Nordic Conference on Secure IT Systems,
pages 77–93. Springer, 2014.

[3] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE
Cloud Computing, 1(3):81–84, 2014.

[4] containers: real adoption and use cases in 2017. http://i.dell.com/sites/

doccontent/business/solutions/whitepapers/en/Documents/Containers_

Real_Adoption_2017_Dell_EMC_Forrester_Paper.pdf. Accessed: 2019-02-11.

[5] Charles Anderson. Docker [software engineering]. IEEE Software, 32(3):102–c3,
2015.

[6] Set up automated builds. https://docs.docker.com/docker-hub/builds/.
Accessed: 2019-02-25.

[7] Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro. Docker
ecosystem–vulnerability analysis. Computer Communications, 122:30–43, 2018.

[8] Docker hub webhooks. https://docs.docker.com/docker-hub/webhooks/.
Accessed: 2019-02-25.

[9] Singularity : a ”docker” for hpc environments. https://dev.to/grokcode/

45

https://opensource.com/business/14/9/security-for-docker
https://opensource.com/business/14/9/security-for-docker
http://i.dell.com/sites/doccontent/business/solutions/whitepapers/en/Documents/Containers_Real_Adoption_2017_Dell_EMC_Forrester_Paper.pdf
http://i.dell.com/sites/doccontent/business/solutions/whitepapers/en/Documents/Containers_Real_Adoption_2017_Dell_EMC_Forrester_Paper.pdf
http://i.dell.com/sites/doccontent/business/solutions/whitepapers/en/Documents/Containers_Real_Adoption_2017_Dell_EMC_Forrester_Paper.pdf
https://docs.docker.com/docker-hub/builds/
https://docs.docker.com/docker-hub/webhooks/
https://dev.to/grokcode/singularity--a-docker-for-hpc-environments-i6p
https://dev.to/grokcode/singularity--a-docker-for-hpc-environments-i6p

singularity--a-docker-for-hpc-environments-i6p. Accessed: 2019-01-07.

[10] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. Singularity: Scien-
tific containers for mobility of compute. PloS one, 12(5):e0177459, 2017.

[11] Gregory M Kurtzer et al. Singularity, 2016.

[12] Thanh Bui. Analysis of docker security. arXiv preprint arXiv:1501.02967, 2015.

[13] Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner. Over 30% of official
images in docker hub contain high priority security vulnerabilities. In Technical
Report. BanyanOps, 2015.

[14] Rui Shu, Xiaohui Gu, and William Enck. A study of security vulnerabilities on
docker hub. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, CODASPY ’17, pages 269–280, New York,
NY, USA, 2017. ACM.

[15] Theo Combe, Antony Martin, and Roberto Di Pietro. To docker or not to docker:
A security perspective. IEEE Cloud Computing, 3(5):54–62, 2016.

[16] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona.
On the relation between outdated Docker containers, severity vulnerabilities,
and bugs. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 491–501. IEEE, 2019.

[17] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Container security: Issues,
challenges, and the road ahead. IEEE Access, 7:52976–52996, 2019.

[18] Justin Cappos, Justin Samuel, Scott Baker, and John H Hartman. A look in the
mirror: Attacks on package managers. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 565–574. ACM, 2008.

[19] Daniel J Walsh. Are docker containers really secure? https://opensource.

com/business/14/7/docker-security-selinux?extIdCarryOver=true&sc_

cid=701f2000001OH7EAAW. Accessed: 2019-02-20.

[20] Device whitelist controller. https://www.kernel.org/doc/Documentation/

46

https://dev.to/grokcode/singularity--a-docker-for-hpc-environments-i6p
https://dev.to/grokcode/singularity--a-docker-for-hpc-environments-i6p
https://opensource.com/business/14/7/docker-security-selinux?extIdCarryOver=true&sc_cid=701f2000001OH7EAAW
https://opensource.com/business/14/7/docker-security-selinux?extIdCarryOver=true&sc_cid=701f2000001OH7EAAW
https://opensource.com/business/14/7/docker-security-selinux?extIdCarryOver=true&sc_cid=701f2000001OH7EAAW
https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt

cgroup-v1/devices.txt. Accessed: 2019-02-15.

[21] Andrew Lockhart. Network Security Hacks. ” O’Reilly Media, Inc.”, 2004.

[22] Vivek Ramachandran and Sukumar Nandi. Detecting arp spoofing: An active
technique. In International Conference on Information Systems Security, pages
239–250. Springer, 2005.

[23] Linux network namespaces. http://www.opencloudblog.com/?p=42.

[24] Docker: Network configuration. https://docs.docker.com/network/. Ac-
cessed: 2019-02-02.

[25] Understanding of denial-of-service attacks. https://www.us-cert.gov/ncas/

tips/ST04-015. Accessed: 2019-02-24.

[26] Docker security scanning. https://docs.docker.com/v17.12/docker-cloud/

builds/image-scan/. Accessed: 2019-03-04.

[27] Linux capabilities. http://man7.org/linux/man-pages/man7/capabilities.

7.html. Accessed: 2019-02-26.

[28] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing selinux as a
linux security module. NAI Labs Report, 1(43):139, 2001.

[29] Krzysztof J Gorgolewski, Fidel Alfaro-Almagro, Tibor Auer, Pierre Bellec, Mi-
hai Capotă, M Mallar Chakravarty, Nathan W Churchill, Alexander Li Cohen,
R Cameron Craddock, Gabriel A Devenyi, et al. Bids apps: Improving ease
of use, accessibility, and reproducibility of neuroimaging data analysis methods.
PLoS computational biology, 13(3):e1005209, 2017.

[30] Tristan Glatard, Gregory Kiar, Tristan Aumentado-Armstrong, Natacha Beck,
Pierre Bellec, Rémi Bernard, Axel Bonnet, Shawn T Brown, Sorina Camarasu-
Pop, Frédéric Cervenansky, et al. Boutiques: a flexible framework to integrate
command-line applications in computing platforms. GigaScience, 7(5):giy016,
2018.

[31] Rémi Rampin, Fernando Chirigati, Dennis Shasha, Juliana Freire, and Vicky

47

https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
http://www.opencloudblog.com/?p=42
https://docs.docker.com/network/
https://www.us-cert.gov/ncas/tips/ST04-015
https://www.us-cert.gov/ncas/tips/ST04-015
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan/
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

Steeves. Reprozip: The reproducibility packer. Journal of Open Source Software,
1(8):107, 2016.

[32] Ed HBM Gronenschild, Petra Habets, Heidi IL Jacobs, Ron Mengelers, Nico
Rozendaal, Jim Van Os, and Machteld Marcelis. The effects of freesurfer version,
workstation type, and macintosh operating system version on anatomical volume
and cortical thickness measurements. PloS one, 7(6):e38234, 2012.

[33] Tristan Glatard, Lindsay B Lewis, Rafael Ferreira da Silva, Reza Adalat, Nat-
acha Beck, Claude Lepage, Pierre Rioux, Marc-Etienne Rousseau, Tarek Sherif,
Ewa Deelman, et al. Reproducibility of neuroimaging analyses across operating
systems. Frontiers in neuroinformatics, 9:12, 2015.

48

	List of Figures
	List of Tables
	Introduction
	Containers
	Docker
	Singularity

	Thesis Outline

	Security Review of Containers
	Related Work
	Container's Internal Security
	Process Isolation
	Filesystem Isolation
	Device Isolation
	Inter-Process Communication (IPC) Isolation
	Network Isolation
	Limiting of Resources
	Vulnerabilities in Container Images

	Security provided by Kernel
	Linux Capabilities
	Linux Security Modules

	Conclusion

	Image Analysis
	Image Scanning
	Container Images
	Image Scanners
	Vulnerability Databases used by Scanners

	Detected Vulnerabilities
	Differences between Scanners
	Ubuntu Vulnerability Databases
	Discrepancy Reasons

	Approaches to Reduce Vulnerabilities
	Image Update
	Image Minification
	Effect of image update
	Effect of minification
	Combined effect of image update and minification

	Conclusions
	General Conclusions
	Contributions
	Future Work

