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Abstract

Comparing Vascular Visualization Techniques with Gamification

Andrey Titov

One of the bottlenecks of visualization research is the lack of volunteers for studies

that evaluate new methods and paradigms. However, with the technological advance-

ment in mobile hardware and the availability of online marketplaces, it has become

possible to perform user studies using the gamification paradigm. Furthermore, the

possibility of implementing volume rendering, a computationally expensive method,

on mobile devices opened the door to the use of gamification in the context of medical

image visualization studies.

In this thesis, we describe a gamified study that we performed with the goal of

comparing several cerebrovascular visualization techniques. The study was imple-

mented in the form of a mobile game, ”Connect Brain”, that was developed and

distributed on both Android and iOS platforms. Connect Brain features two mini-

games, one of which asks the player to make decisions about the depth of different

vessels, and the second one that has them determine if two vessels are connected.

The gameplay data was sent to a server and analyzed to determine the most effective

visualization techniques.

The results of our study confirmed that fog, chroma-depth and pseudo chromdepth

are among the most effective depth perception cues, similar to previous studies. How-

ever, our results differed for the edge enhancement cue, which we found to be one of

the worst in terms of depth perception. The gamification paradigm, which allowed us

to collect more data samples from more participants than similar studies, had more

similar results to the larger studies. This suggests the importance of having a large

number of subjects and trials when evaluating visualization paradigms.

Although gamification presented some challenges, we believe that this technique

has great potential for future studies in not only medical image visualization but for

the other clinical tasks.
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Chapter 1

Introduction

With the advancement of display technologies, computer and graphics hardware, and

interaction devices, the visualization of complex, multimodal, and high dimensional

images has become more preeminent across a variety of devices. Today, smartphones

and tablets allow for real-time rendering using modern graphic APIs such as OpenGL

ES 1, Vulkan 2 and Metal 3. While the performance of these mobile devices is still sig-

nificantly lower than that of desktop machines, they nevertheless offer many modern

GPU features such as 3D texturing and compute shaders.

One of the application areas of computer graphics that requires significant com-

putational power is the field of medical imaging. This field concentrates on the visu-

alization of data acquired from medical scans, such as computed tomography (CT)

or magnetic resonance (MR) [1]. Volume rendering can be used to create 3D anatom-

ical models of these scans for diagnostic purposes, surgical planning, and surgical

guidance. Unlike indirect rendering, which only focuses on rendering the surfaces

of an object, volume rendering is a direct technique where the volumetric data set,

obtained through sampling, simulation or modelling techniques, is reconstructed into

a three–dimensional model [2]. Over the last years, volume rendering has gained

more widespread acceptance from the medical community and clinicians have begun

to welcome 3D visualization [3].

One type of medical image used for diagnosing abnormalities in the vasculature

of the brain or for planning neurosurgical procedures is cerebral angiography [4].

1https://www.khronos.org/opengles/ (Last visited December 1, 2020)
2https://www.khronos.org/vulkan/ (Last visited December 1, 2020)
3https://developer.apple.com/metal/ (Last visited December 1, 2020)
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Here, the blood vessels inside of the brain are imaged using X-ray, MR or CT [5].

Due to the inherent complex nature of the cerebral blood vessels, visualizing them

in a way so that allows for intuitive three-dimensional and depth understanding has

been a focus of much research [4, 5, 6]. Multiple techniques have been developed

to visualize this type of data and multiple studies have been performed with the

goal of comparing different visualization techniques to determine their strengths and

weaknesses [7, 4, 8, 5, 9, 10, 11, 12]. Traditionally, such studies were performed in

a lab environment where subjects were completing specific experimental tasks (e.g.

determining which of two vessels was closer or further) under the supervision of the

researcher. However, this type of study has certain drawbacks including, a small pool

of participants [13] and a high time and/or monetary cost per participant [14].

With the improvements of mobile GPUs, progress has been made at implementing

volume rendering on mobile devices. Some optimization techniques such as the ones

presented by Alcocer et. al. [15] and Noguera et. al. [16] focused on generally

reducing the number of samples to achieve better framerates, while other techniques

such as the one presented by Mobeen et. al. [17] focused more on reducing the

number of rendering passes. Other algorithms, such as the one presented by Hachaj

et. al. [18] explored a client-server approach, where rendering was done on a more

powerful machine and the final image was then sent to the mobile device.

The focus of the research described in this dissertation was to explore the use

of gamification [14] to collect data from a large and diverse population in order to

compare the effectiveness of different volume visualization techniques in the context

of cerebral vascular imaging. In order to do this, we took advantage of modern mobile

device hardware and the accessibility of the current app marketplaces. Specifically,

we developed ”Connect Brain”, a mobile App that renders the cerebral vasculature

(captured using CTA) and distributed the game in Google Play 4 and the App Store
5. The game play data was analyzed and the results compared to previous studies in

this field.

4Google Play link:
https://play.google.com/store/apps/details?id=ca.andreytitov.connectbrain
(Published May 2020)

5App Store link:
https://apps.apple.com/us/app/id1524359191
(Published Aug 2020)
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1.1 CT Angiography Visualization

In this thesis, we focus on the visualization of vascular structures that come from

computed tomography angiography (CTA) scans. Such scans are created by injecting

a contrast substance into the blood stream of a patient [5] and then performing a series

of 2D CT scans that can then be assembled into a single 3D volumetric dataset. The

resulting 3D CTA data can be used for diagnostic purposes, surgical planning, and

surgical guidance [5]. Yet, the visualization of the CTA data needs to be considered as

multiple factors can hinder the depth and spatial understanding of the CTA dataset.

These include: (1) the complex branching, (2) the anatomical difference between

patients and (3) the set of visualization techniques and technologies that may be used

to overcome these challenges might be limited due to specific hardware requirements

or the limitations of the clinical environment[4, 19].

In order to have a good spatial understanding of a 3D CTA, volume rendering

can be used. However, a simple volume rendered image of the 3D CTA lacks depth

information (Figure 1), thus multiple visualization techniques have been developed or

explored to overcome the aforementioned challenges and improve three-dimensional

perception of these medical images. These methods include, using perceptual cues [4,

5, 11], illustrative techniques [12, 7, 9, 10], and general-purpose shading techniques

such as Blinn-Phong [20], chromadepth [21] and edge enhancement [22].

(a) No Cue (b) Blinn-Phong (c) Fog + Blinn-Phong

Figure 1: Comparison between a visualization with no cues (a), Blinn-Phong shading

(b) and fog cue and Blinn-Phong combined (b)
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1.2 Gamification

Gamification is the process of adding game play elements to a non-game context in

order to make a rather boring task more interesting [14]. The core idea of using gam-

ification for user studies is to make the experimental task a game that is fun to play

and may encourage more users to participate and thus allow for more data collection.

The game can be distributed online, which results in a higher number of participants

and higher diversity between the participants than in a lab setting [13]. Also, the

time and/or financial cost per participant is lower. In this sense, gamification is very

similar to crowdsourcing [23], which allows distribution of a study online, but without

game elements. The advantage that gamification has over crowdsourcing is that in

an environment which is not controlled by the researcher, it may allow for a higher

quality of data as players are motivated to perform well, while in crowdsourcing,

participants might only be interested in monetary incentives [13]. Gamification also

has a number of disadvantages compared to both crowdsourcing and a traditional lab

study, such as the fact that not every study can be transformed into a game and that

adding game elements requires additional development time [14].

1.3 Contributions

In this research, we explored the use of mobile gamification to perform a study on the

comparison of specific cerebrovascular visualization techniques. The game ”Connect

Brain” was distributed on Google Play and in the App Store. Players of the game are

presented with vessel structures shaded with different volume rendered visualization

techniques, and they have to perform simple tasks such as deciding upon the depth

relationship or the connectivity between different vessels (See Figure 2). The volume

rendering approach used in the game was described by Kruger et. al. [24]. To

achieve real-time rendering on mobile devices, we employed the 3D Chamfer distance

algorithm [25]. Gameplay data related to, if the player completed the task correctly,

the decision time and the (x, y, z) distance between the points, was collected. All

this information was then sent to a server, and was later analyzed. In the course of

conducting the research the following was determined:

1. Aerial perspective, chromadepth and pseudo chromadepth result in the best

4



Figure 2: Screenshots from our published game, Connect Brain. Phone mockup

source: http://www.freepik.com, Designed by zlatko plamenov / Freepik

relative depth perception between vessels and the best decision time, while for

connectivity, the vessel visualization techniques doesn’t significantly alter the

results (the correctness or the decision time).

2. The gamification paradigm allows for the collection of more data samples from

more participants. Our results were more similar to the larger studies, sug-

gesting the importance of having a large number of subjects and trials when

evaluating visualization paradigms.

3. The biggest drawback of using mobile gamification in the domain of medical

image visualization is the long development time. It is due both to the limita-

tions of the mobile hardware, requiring additional optimizations, as well as the

challenge of adding fun game mechanics to the experiment.

4. Implementation of volume rendering on mobile devices still requires significant

optimization for real-time rendering, with the biggest bottleneck being the tex-

ture lookups. The optimization often refers to either reducing the number of

5
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texture samples or by employing parallelization (both on the CPU and the

GPU).

5. In terms of game design, having a competitive element (e.g. a leaderboard) and

allowing players to understand their mistakes increases player’s interest in the

game and encourages the user to play for a longer time.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we describe volume

rendering, a subfield of computer graphics that concentrates on the visualization of

discretely sampled data and is extensively used in medical visualization. In Chapter

3, we present the related work on vascular volume visualization, the development of

the ”Connect Brain” game, and the analysis of the results of the captured game play

data. Finally, in Chapter 4, we conclude the thesis and describe avenues of future

work that could be pursued, specifically in regards to improving and adding features

to the developed game.
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Chapter 2

Volume Rendering

In the following chapter, we describe the theory behind volume rendering, as well as

describe the most popular volume rendering methods.

Volume rendering is a technique that is used to visualize three-dimensional data

by projecting it into a two-dimensional image [26]. This technique is often used in

medical image visualization since it allows rendering patient-specific data obtained

from, for example, computed tomography (CT), magnetic resonance imaging (MRI)

or X-ray scans [5]. These scans consist of a series of stacked 2D slices (with samples

along each line of the slice) that combined create a 3D array of data [8], i.e. the

volume or 3D texture (Figure 3). Each individual sample in this aggregated volume

is called a voxel. The data represented in a voxel depends on the type of imaging, for

example, in CT, the voxel at position (x, y, z) stores the X–ray absorption coefficient

which is measured in Hounsfield units [27]. Rather than visualizing each slice of the

volume individually, volume rendering allows for 3D visualization of the anatomy

that can be rotated and seen from any viewpoint, thus providing more contextual

information and spatial understanding.

The volume rendering pipeline (Figure 4), which allows for reconstruction of a

volume, was described in the context of medical image visualization by Preim et

al. [28, p. 138]. The authors outline the steps used to render a medical dataset into

a 2D image as follows:

1. Filtering: The data may be filtered to enhance the image quality, for example,

by denoising or smoothing the volume.

2. Segmentation: The goal of this step is to select certain regions of interest of the

7



Figure 3: Volumetric data comprises of a three–dimensional array of voxels. A typical

volume in medical imaging can come from computed tomography (CT) scans.

volume and delineate them from other regions. Segmentation can be done using

such methods as manual segmentation, thresholding, region growing, watershed

segmentation and live-wire segmentation [28, pp. 95-104].

3. Selection: This step consists of limiting the number of rendered voxels. This

is usually done by clipping or cropping the dataset.

4. Classification: This step consists of defining a transfer function that will de-

termine for any point in the dataset what the resulting color will be.

5. Normal Computation: The goal of this step is to calculate the normal vectors

for the surfaces in the volume that are needed for lighting and shading (if used).

6. Indirect or Direct Volume Rendering: This step projects the 3D dataset

into a 2D image and it shades the pixels on the final image depending on the

transfer function and calculated normals.

2.1 Direct Volume Rendering Theory

With indirect volume rendering (IVR) the data is converted into a mesh using, for ex-

ample, skeletonization [29] or a polygonal mesh extracting algorithm such as Marching

Cubes [30]. In contrast, in direct volume rendering (DVR) rays sample the volume,

and every sample of the volume is mapped to a color and an opacity using a transfer

8



(1) Filtering (2) Segmentation (3) Selection

(4) Classification (5) Normal Computation (6) Indirect or Direct VR

Figure 4: Illustration of the steps of the volume rendering pipeline.

function. Figure 5 gives an example depicting the difference between surface render-

ing, which is an indirect volume rendering technique, and direct volume rendering.

In this chapter, we focus on direct volume rendering as it has many advantages over

the indirect version [1] [2]. First, DVR doesn’t require the data to be transformed

into an intermediate form (such as a mesh), and thus during runtime the quality

of the visualization is not limited by the quality of the intermediate data format.

Second, DVR is much better at dealing with semi-transparency and coloring on a

per-voxel basis, allowing significantly more control over how each pixel on the screen

is shaded. Third, DVR allows more flexibility, making it possible to incrementally

switch between different interesting features by modifying the transfer function at

runtime. One disadvantage of DVR is that it is computationally expensive, however,

this issue has been for the most part resolved due to faster GPUs (i.e. graphical

processing units)[1].

9



(a) IVR (b) DVR

Figure 5: Comparison between (a) surface rendering and (b) direct volume rendering

(b). Note that the image created in (a) could easily be implemented using DVR,

while (b) would be much harder to implement using IVR. Figure adapted from [1] c©
[2008] IEEE

2.1.1 Optical Model

We perceive the world when light rays, interacting with the objects around us, enter

the eye and are transformed into a 2D image on our retinas. Direct volume rendering

algorithms are based on this same principle, they take into account the physical way

in which light rays interact with a ”participating medium” [31], i.e. an object that

affects the transport of light through its volume. Using this principle, in 1995, Max

[31], defined a volume as a particle-filled slab of width ∆s, through which a light ray,

r, is cast in the direction of the viewer (Figure 6). The light interacting with the

participating medium can be absorbed, emitted and scattered [31] (see Figure 7).

Absorption

Particles in a participating medium absorb light rays r travelling through it, resulting

in a reduction of the light intensity. Where s denotes different locations along the

length of the ray passing through the participating medium, τ(s) is the probability

per unit distance of the light being absorbed at location s or simply the probability

density. Thus, τ(s) is proportional to the particle density along the ray r at r(s).

10



Figure 6: Ray r traverses a participating medium of width ∆s. I(0) represents the

intensity of the ray before it enters the participating medium, while I(t) represents

the intensity of the ray after it exits the participating medium.

(a) Absorption (b) Emission (c) Scattering

Figure 7: There are three types of interaction of a ray with the particles of a partici-

pating medium: (a) absorption, (b) emission, and (c) scattering.

Given the intensity of light, I(s), when traversing a distance of ∆s, the change of the

intensity of the light is equal to ∆I and a fraction τ(s)∆s of I(s) is absorbed over a

distance ∆s such that:

∆I = −τ(s)I(s)∆s (1)

An expression for the light intensity leaving the volume at position t considering the

corresponding expression using infinitesimal quantities dI and ds in place of ∆I and

∆s is then calculated as:

dI = −τ(s)I(s)ds (2a)

⇒ dI

ds
= −τ(s)I(s) (2b)

11



To determine the cumulative intensity change resulting when the ray leaves the volume

at position t, the following differential equation should be solved, giving:

I(t) = I0e
−

∫ t
0 τ(s)ds (3)

where I0 is the intensity of the light ray before it enters the volume.

Emission

Emission is the opposite phenomenon to absorption. When light traverses a partici-

pating medium in which the particles diffusively emit light, the intensity of the light

may increase [31]. Given τ(s) (the probability per unit distance of the light being ab-

sorbed at position s), let C(s) represent the glow or intensity of the light per particle

at position s. The amount of emitted light after traversing a distance of ∆s within

the participating medium is:

∆I = τ(s)C(s)∆s (4)

The term τ(s)C(s) represents the source, which can be thought of as the color that

is emitted at position s. For simplification, this term will be replaced by g(s), giving:

∆I = g(s)∆s (5)

When infinitesimal values for ∆I and ∆s are used, then they could be replaced by

dI and ds giving the following formula:

dI = g(s)ds (6a)

⇒ dI

ds
= g(s) (6b)

After solving this differential equation, the intensity of the light after traversing a

distance of t within the participating medium becomes:

I(t) = I0 +

∫ t

0

g(s)ds (7)
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Scattering

Particles can scatter light by deflecting incident light [31]. This can produce a blurring

effect and may even change the color of surrounding objects, for example in the case

of color bleeding. However, since the goal medical volume rendering is to convey in-

formation in a clear and unambiguous manner, scattering is not usually implemented,

thus we do not describe it here.

2.1.2 Volume Rendering Integral

Taking into account only absorption (i.e. attenuation by the particles) and emission

(i.e. the source term), we get the following differential equation 1:

dI

ds
= g(s)− τ(s)I(s) (8)

Solving this differential equation gives:

I(t) = I0e
−

∫ t
0 τ(u)du +

∫ t

0

g(s)e−
∫ t
s τ(u)duds (9)

The equation can then be approximated using a Riemann sum [31]. Assuming that

the integral is separated into n pieces of length ∆s = t
n
, then e(−

∫ t
0 τ(u)du) it can be

rewritten as:

e(−
∑n

i=1 τ(i∆s)∆s) =
n∏
i=1

e−τ(i∆s)∆s (10)

Similarly,
∫ t

0
g(s)e(−

∫ t
s τ(u)du)ds can be rewritten as:

n∑
i=1

g(i∆s) ∗∆s ∗ e(−
∫ t
i∆s τ(u)du) (11a)

≈
n∑
i=1

g(i∆s) ∗∆s ∗ (
n∏

j=i+1

e−τ(j∆s)∆s) (11b)

Thus, the discrete volume rendering integral is represented as:

I(t) ≈ I0

n∏
i=1

e−τ(i∆s)∆s +
n∑
i=1

g(i∆s) ∗∆s ∗ (
n∏

j=i+1

e−τ(j∆s)∆s) (12)

1Equations derived from [31] by Max, N.
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where e−τ(i∆s)∆s represents the opacity of the ith segment and can be replaced by αi

for simplification. At the same time, g(i∆s) ∗∆s represents the emission of light at

the ith segment and can be replaced by gi. Thus, the formula can be simplified to:

I(t) ≈ I0

n∏
i=1

αi +
n∑
i=1

gi

n∏
j=i+1

αj (13)

This function gives a discrete estimate of the volume rendering equation. The

source term gi indicates the color of the sample at position r(i∆s), which is calcu-

lated by applying the transfer function on r(s). The opacity term αi is used when

compositing multiple samples. Transfer functions and compositing are further de-

scribed in 2.2.2.

2.2 Volume Rendering Implementations

Although a number of different direct volume rendering methods exist, including

splatting [32], shear-warp [33], ray casting [34] and texture mapping [35], here, we

focus on the latter two as these are currently the most commonly used in practice.

2.2.1 Ray Casting

Ray casting is a direct volume rendering algorithm where rays are sent from the

viewer position through the volume [24], i.e. from I(t) to I(0). For each pixel of the

view plane (the plane where the final image will be created) at least one ray is sent

throughout the volume, which is represented in the form of a 3D grid. Samples are

taken along the ray, r, at small steps, ∆s, inside the volume (Figure 8). The steps

are typically of a fixed size although some adaptive-step algorithms such as the one

described by Zuiderveld et al. [25] may be used. As we can see in Figure 9, the step

size will impact the quality of the rendered image, with larger steps leading to more

artefacts, and conversely smaller calculation time and smaller steps lead to a higher

image quality with less artefacts, but a higher calculation time.

At each step, the volume is sampled using some interpolation technique. Then, a

transfer function is applied on the sample to create an RGBA color. All the calculated

RGBA colors from all samples of the ray are then composited together until the ray
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Figure 8: The volume is sampled along all rays, r, n times, while performing a step

of length ∆s between each sample.

(a) Step = 0.25 (b) Step = 0.50 (c) Step = 1.0 (d) Step = 1.5

Figure 9: Comparison of images rendered with different step sizes. These images were

generated using the fixed-step algorithm. A 224 × 212 × 102 texture was visualized

using the chromadepth visualization cue.

exits the volume. In the next sections, we describe sampling, the commonly used

interpolation methods, the transfer function and the compositing process.

Sampling

To create the rendered image, the volume is sampled along all rays, r and the accumu-

lated color and opacity are computed based on Equation 13. To ensure smoothness,

the values of the samples along a ray are interpolated. This is typically done using

nearest-neighbor or trilinear interpolation although more complex algorithms such as

triquadratic or tricubic interpolation may be used [28, pp.16-17].

In the case of nearest neighbor, the sampled value is equal to the value of the
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closest voxel. In the case of trilinear interpolation [28, p.15], a linear interpolation

is performed along all three axes (x, y and z). Assume that there exists a 3D cell

that represents the internal space between 8 voxels, creating a cube. Let V000, ..., V111

denote the values of these 8 voxels (Figure 10). Given a volume f , f(x, y, z) is a

R3 → R function such that x, y, z ∈ [ 0, 1] maps the the location of the sampling

point at position x, y, z inside the volume so that f(0, 0, 0) samples the value of the

voxel V000 and f(1, 1, 1) samples the value of the voxel V111. Then for tri-linear

interpolation, four linear interpolations are performed for the X axis, giving four

temporary variables:

t00 = (1− x) ∗ V000 + x ∗ V100

t01 = (1− x) ∗ V001 + x ∗ V101

t10 = (1− x) ∗ V010 + x ∗ V110

t11 = (1− x) ∗ V011 + x ∗ V111

(14)

Secondly, two linear interpolations are performed for the Y axis using the temporary

variable calculated previously, giving two more temporary variables:

t0 = (1− y) ∗ t00 + y ∗ t10

t1 = (1− y) ∗ t01 + y ∗ t11

(15)

Lastly, the interpolated value is calculated by performing a linear interpolation along

the Z axis:

f(x, y, z) = (1− z) ∗ t0 + z ∗ t1 (16)

An example of a volume sampled with nearest neighbor and trilinear interpolation

is presented in Figure 11. As can be seen in the figure, trilinear interpolation results

in a much smoother surface because it considers the values of the 8 surrounding voxels

which are weighted according to their distance from the sampling point, unlike nearest

neighbor which only considers the value of the closest voxel.

2.2.2 Transfer Function and Classification

After obtaining the sampled values, a transfer function, which maps the sampled data

of the volume to optical properties, i.e. RGB color and opacity (A or alpha), is used
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Figure 10: Trilinear Interpolation. The result of the interpolation is stored in

f(x, y, z).

(a) Nearest Neighbor (b) Trilinear Interpolation

Figure 11: A 224× 212× 102 texture sampled using two different interpolation tech-

niques. Blinn-Phong shading was used for both images.

[8]. A transfer function can take as an input, data related to the current ray position,

such as the sampled intensity, the current depth of the ray or the gradient (i.e. the

orientation of local surfaces within the volume). The samples can then be colored

and illuminated based on the surface orientation and the lighting in the scene using
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an illumination model such as Blinn-Phong [20], which will be described in Section

2.2.5.

The transfer function can be used to emphasize interesting features and to classify

different parts of the volume [36]. Transfer functions are usually implemented using

a texture lookup table that is sampled in the fragment shader, however some simpler

transfer functions can be computed programmatically. In Figure 12, we show how

the transfer function is used to accentuate different parts of a CTA volume.

Figure 12: Examples of transfer functions created using the Intraoperative Brain

Imaging System (http://ibisneuronav.org/). Transfer functions can emphasize

different aspects of the volume. In the left image the color pertains to the flow of

blood through the vessels, on the right edges are added using the transfer function.

Compositing

Every sample along the ray has to be composited onto the accumulated color and

opacity to give the final color value for the current pixel through which the ray is

being sent [1]. This process is called compositing or alpha blending, and it is usually

performed using the discrete volume rendering (Equation 13). Using this formula, the

final color of the pixel can be calculated using a recursive function. Assume that the

starting color of the ray before it enters the participating medium is I0 and that the

ray performs n steps of equal size within the volume before exiting the participating
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medium and reaching the view plane. Then, the accumulated color after i steps is

defined in the following way [28, p.190]:

Ii = Ii−1 ∗ αi + Ci, i ∈ N ∩ [1, n] (17)

where αi is the opacity of the volume at the ith step for the current ray.

Equation 17 is considered to be performing back to front composition since the

ray enters the volume at the back of the volume and ends close to the view plane.

Conversely, there also exists front to back composition that performs the calculations

in the opposite order, starting from the end of the ray (close to the view plane).

Assume that In = Cn is the starting color and on = αn is the starting opacity of the

ray entering the volume. Then, the resulting color and opacity will be stored in I0

and o0 using the following formulas [28, p.190]:

Ii−1 = Ii ∗ Ci + oi, i ∈ N ∩ [0, n− 1]

oi−1 = αi ∗ oi, i ∈ N ∩ [0, n− 1]
(18)

A number of other compositing algorithms exist that emphasize or visualize dif-

ferent parts of the volume [28, p.190]. First Hit is a compositing algorithm that ter-

minates the ray cast at the first sample that is above a certain fixed threshold, which

produces a result similar to isosurface rendering. Averaging traverses the whole vol-

ume and calculates the average between all samples. Maximum Intensity Projection

finds the sample with the biggest intensity and discards all the other samples.

Alpha Blending

Alpha blending (also called alpha compositing) is used for compositing different sam-

ples in texture mapping or ray casting where multiple semi-transparent sampled values

have to be blended together [1]. As described above, in ray casting alpha blending

is used to composite the voxel colors from back to front when rays are cast through

a given pixel. In texture mapping, alpha blending is used to composite the slices of

the volume.

Specifically, alpha blending refers to combining a translucent foreground color

with that of a background color [37]. The opacity of a certain surface or object

is usually denoted by the letter A or α. Thus, the color of an object in computer
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graphics is often stored as RGBA where RGB corresponds to the visible colors red,

blue and green and A indicates how opaque it is. Although A does not represent

any color, it comes into play when colored surfaces are blended together. The most

widely used blending technique is called alpha blending. If src represents the color

in the foreground and dst represent the color in the background, then the formula to

alpha-blend these colors is the following2:

RGBout = RGBsrc ∗ Asrc + (1− Asrc) ∗RGBdst (19)

2.2.3 Texture Mapping

Volume rendering using ray casting is computationally expensive and depending on

the size of the volume and other factors may not allow for real-time rendering. An

alternative method is to use texture maps and exploit modern graphics hardware, i.e.

graphical processing units (GPUs)[24]. Texture Mapping [38] is a volume rendering

method that takes advantage of hardware acceleration. In this case, the volume is

uploaded to GPU memory as a set of stacked 2D slices where it is interpreted as

a 3D texture and can be sampled using the built-in trilinear interpolation function,

and the slices can be blended together using hardware acceleration [39]. During

rendering, slices of this texture are sampled at an equal distance between each other.

In older hardware that didn’t support 3D textures, the slices were object-aligned

(Figure 13a), that is, they were stored three times aligned along the x, y and z axes,

and the dataset whose slices were the most aligned with the view plane was used [35].

On newer hardware that supports 3D texturing, the slices are independent of the

object space, and are calculated instead in image space [38]. The slices are positioned

parallel to the view plane, i.e. the normal vector of the slices/planes points towards

the viewer (Figure 13b). Each slice is computed by performing hardware-accelerated

trilinear interpolation at the desired locations of the slicing plane, which map to pixel

locations when projected on the view plane. It should be noted that the distance

between different slices has a major impact on the quality of different images, with

bigger distances resulting in a staircase effect [28, p.213].

2https://www.opengl.org/archives/resources/code/samples/advanced/advanced97/notes/node111.html
(Accessed on October 13, 2020)
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a) Object-Aligned Slices b) Viewer-Aligned Slices

Figure 13: Comparison between object-aligned (a) and viewer-aligned (b) slices in

texture mapping. Figure adapted from [40] c© [2015] IEEE

All the sampled values from different slices are then combined together by per-

forming compositing or alpha blending. Because of the nature of alpha blending, the

slices are blended starting from the furthest from the viewer to the closest.

2.2.4 Two-Pass Volume rendering algorithm

One of the most popular ray casting algorithms is the two-pass algorithm described

by Kruger et al. [24]. This method allows the dataset to be viewed from any angle,

but unlike texture mapping, it doesn’t require any resampling within the 3D texture.

The algorithm consists of two passes, where the first determines the starting and

ending position within the volume that the ray has to traverse and the second pass

performs ray casting within the determined range.

During the first pass, a colored rectangular prism representing the bounding box

of the volume is rendered twice to two different textures. The prism is colored so

that the RGB color with each component within the range [0, 1] corresponds to

a (x, y, z) normalized coordinate in 3D space. One of the vertices is colored with

solid black color, while the opposite vertex is colored in white (as demonstrated in

Figure 14), marking the minimum and maximum (x, y, z) values within the 3D space.

Other vertices are colored with intermediate colors and the color on the faces of the

prism between different voxels is calculated using bilinear interpolation. The prism

is rendered first with only the front faces visible (Figure 14a), and then with only the

back faces visible (Figure 14b).
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a) Front Faces b) Back Faces

Figure 14: The colored cube used to determine the start and the end position of the

ray for each pixel

During the second pass, a ray is cast for every pixel, performing standard ray

casting (Equation 13). The two textures from the first pass are used to determine for

every pixel the starting and ending positions where the ray should be cast. The ray

performs small steps of constant size and samples the volume with trilinear interpo-

lation at each step.

2.2.5 Blinn-Phong Reflection Model

Illumination models are used to improve and make the visual appearance of an object

more realistic. The most popular illumination models are the Phong [41] and the Blinn

[20] reflection model (also known as the Blinn-Phong reflection model [42, p. 257]).

These illumination models work by approximating how light illuminates an object

in the real world and how an object that is exposed to one or more light sources is

perceived by the human eye[41].

Specifically, these models describe the way a surface reflects light as a combina-

tion of three independent light components: ambient, diffuse and specular [20], as

demonstrated in Figure 15. These components are calculated for every pixel that

displays a fragment of the illuminated object. Thus, the final color of these pixels is

calculated as the sum of these three intermediate components. These models assume

that it is possible to determine the normalized vector for any point on the surface of

the volume. As the normal vector is not explicitly defined for every point, it has to
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be calculated by linearly interpolating between the neighboring points for which the

normal was calculated explicitly [41].

Figure 15: Components of Phong shading

Source: https://learnopengl.com/Lighting/Basic-Lighting by Joey de Vries

(https://twitter.com/JoeyDeVriez), licensed under CC BY 4.0 (https://

creativecommons.org/licenses/by/4.0/)

Although the Phong and Blinn-Phong illumination models are very similar, the

Blinn illumination improves over the original Phong model [42, p. 257] in terms of the

specular component (the ambient and diffuse components are the same). The details

about the difference between these two models are discussed in Section 2.2.5.

Ambient Component

One of the assumptions of the Phong or Blinn-Phong model is that in addition to the

explicitly defined light sources that illuminate an object, there is also light present in

the scene coming from indirect bounces of light [42, p. 295]. Thus, ambient light can

be viewed as a very simplified version of global illumination; without it, any surface

that is not directly illuminated by a source of light (i.e. is within a shadow) would

be completely black. The intensity of ambient light, Ia, is defined as a constant such

that it illuminates the surface of the object equally from all directions and the object

reflects this light equally in all directions [20]. If only the ambient component is

considered, the same point on an object would have the same color regardless of the

viewpoint.
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Diffuse Component

The diffuse component represents the light that comes from a defined light source

and that is reflected equally in all directions by the surface of the object [42, p. 106].

Unlike the ambient component, the diffuse light that the object reflects comes from

a specific direction [42, p. 295]. For this component, the Blinn and Phong models

assume a Lambertian surface[42, p. 240], i.e. a surface that reflects light equally in

all directions. Thus only the direction of the light source and the normal vector of

the surface affect the color of a point while the viewing angle has no impact [43].

The intensity of the diffuse component, Id, is calculated as:

Id = max(0, N̂ · L̂) (20)

where N is the interpolated normal vector of the surface and L is the vector towards

the light source.

Specular Component

The specular component is used to represent the highlights that appear on the surface

of the object, giving a ”glossy” look to the object. This is unlike the diffuse component

that gives a ”matte” look. The specular highlights appear when the surface is located

so that it reflects or mirrors the light source towards the viewer. For this component,

the light direction, the normals of the surface and the viewer direction are taken into

account.

As mentioned above, the specular component, Is, is the only component that is

calculated differently in the Phong and the Blinn-Phong models. The Phong model

performs a dot product between the reflected light and the vector towards the viewer:

Is = max(0, R̂ · V̂ )s (21)

where R is the direction that a mirror-reflected ray from the light will point to and

V is the vector towards the viewer.

The following equation is used to calculate R, the normalized direction that a

mirror-reflected ray from the light will point to:

R = 2(L̂ · N̂) · N̂ − L̂ (22)
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Figure 16: The cut-off problem in Phong shading and its fix in Blinn-Phong shading

Source: adapted from https://learnopengl.com/Advanced-Lighting/

Advanced-Lighting by Joey de Vries (https://twitter.com/JoeyDeVriez),

licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

where N and L are as defined above.

One drawback of the Phong model is that if the angle between V and L is less

than 90 degrees, then the angle between V and R could become more than 90 degrees,

resulting in an intensity of 0 for the specular component [42, p. 252]. This results in a

very sudden color cut-off for the rendered object which is not physically accurate, as

demonstrated in Figure 16 a). The Blinn-Phong reflection model uses the dot product

between the normal N of the object and the the halfway vector H so that the angle

between the N and H is never bigger than 90 degrees, thus removing the cut-off

problem (see Figure 16 b)). The updated Blinn formula for the specular component,

Is, is as follows:

Is = max(0, N̂ · Ĥ)s (23)

As mentioned above, H, the halfway vector, represents the average vector between

the vector towards the light and the vector towards the viewer. It can be calculated

for any point on the surface of the object using the following formula:

H =
L̂+ V̂

‖L̂+ V̂ ‖
(24)
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Shading Function

Given, the three lighting components, the final color of any given pixel, C, is calcu-

lated by adding the ambient, Ia, diffuse, Id, and specular, Is, components. Blinn [20]

described the formula for the final color (with the assumption that the light is white)

as:

C = paIac+ pdIdc+ psIs (25)

where pa is the proportion of the ambient reflection, pd is the proportion of the diffuse

reflection, ps is the proportion of the specular reflection and c is the color of the object.

2.3 Limitations

Understanding the spatial layout or depth between different elements in a complex

3D volume may be difficult depending on the rendering technique used and if the

volume is rendered on a 2D display. In the next chapter, we explore different volume

visualization techniques to improve spatial and depth understanding of medical data,

and specifically angiography data. Further, we describe a game that was developed

to evaluate the effectiveness of these techniques.
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Chapter 3

Connect Brain: A mobile game to

study the efficacy of vascular

volume visualization techniques

A version of this chapter was submitted to IEEE Transactions on Visualization and

Computer Graphics:

Titov A., Kersten-Oertel, M. Connect Brain: A mobile game to study the

efficacy of vascular volume visualization techniques. Submitted to IEEE

Transactions on Visualization and Computer Graphics.

3.1 Introduction

In the field of medical imaging, angiography is used to visualize vascular structures

inside the body. This is typically done by injecting a contrast substance into a patient

and imaging the patient with X-ray, Magnetic Resonance (MR), Computed Tomog-

raphy (CT) [5]. For 3D X-ray, MR or CT angiography, the result is a 3D volumetric

representation of the scanned patient’s vascular anatomy. This 3D volume can be

visualized using such methods as volume rendering, maximum intensity projection

(MIP) or surface rendering [7].

Cerebral angiography, specifically, depicts the blood vessels inside the brain. The

goal of this type of angiography is to help radiologists and surgeons understand the
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cerebral vasculature and detect abnormalities such as stenosis, arteriovenous mal-

formations (AVMs) and aneurisms [4]. However, visualizing angiography data in a

manner so that it is well understood spatially presents certain challenges [4, 5, 6].

First, cerebral vasculature is very complex, with intricate branching and many over-

lapping vessels, hindering the understanding of the data in 3D [5]. Second, due to

variations in anatomy, from patient to patient, surgeons may not always be able to

rely on past experience to understand a new dataset [5]. Third, depending on the

environment (e.g. the operating room), not all visualization methods can be used

to render the data. For example, 3D viewing requires specialized equipment (e.g.

stereoscopic display or augmented reality glasses), which are not always available.

Perspective rendering, may also be inconvenient to use when displaying the data as

surgeons may want to perform measurements on the angiographic image, so most

commonly orthographic projection is used for medical image visualization.

To improve depth perception and spatial understanding of vascular volumes, nu-

merous perceptually-driven vessel visualization methods have been developed [7, 4,

9, 10, 11, 12]. In addition, shading techniques that are not specific to medical visu-

alization [41, 20, 21, 22] have also been tested. In all of these works, user studies to

determine the effectiveness of the different visualization techniques were performed

in a laboratory environment under the supervision of a researcher [13]. This type

of laboratory study has a number of disadvantages: the lack of diversity between

the participants (which are often young college students) [13] and a limited pool of

participants or conversely a high monetary cost for studies which have many partici-

pants [14].

To address these issues, we used the gamification paradigm to collect data on the

effectiveness of different perceptually-driven vascular volume visualization techniques.

Building on previous work [5, 8, 4], we developed a mobile app, Connect Brain 1 2,

with two different games (distributed on the App Store and on Google Play). The

purpose of this app, was not only to determine the effectiveness of differing vessel

visualization techniques and general purpose shading techniques in understanding

1Google Play link:
https://play.google.com/store/apps/details?id=ca.andreytitov.connectbrain
(Published on May 2020)

2App Store link:
https://apps.apple.com/us/app/id1524359191
(Published on Aug 2020)
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the spatial and 3D layout of cerebral vasculature volumes but also to see how well

the results of small laboratory studies generalize to a larger population.

3.1.1 Gamification

Gamification is similar to crowdsourcing and shares its advantages [13]. Crowdsourc-

ing is a method of conducting user studies which distributes a given task to a larger

network of participants [13]. One example of a platform for crowdsourcing is the

Amazon Mechanical Turk (AMT) [23], which has been used in studies for a variety

of topics such as perceptual effectiveness of line drawings to depict shapes [44], nat-

ural language processing [45] and audio transcription [46]. Crowdsourcing enables

a larger study population in comparison to traditional studies because the task can

be distributed online. In addition to this, the subject pool becomes more diverse

since the study is no longer limited to a physical environment (e.g. a university lab).

Finally, crowdsourcing is less time consuming for each individual subject and allows

a lower per-participant cost [23]. This model also has some disadvantages, the main

one being a lower data quality because researchers don’t have as much control over

the unfolding of the experiment and because participants may only be motivated by

the monetary gain [14, 13].

The main difference between gamification and crowdsourcing is that gaming el-

ements are added to the study [13]. With gamification a study is transformed into

a game that is fun to play, and the gameplay data is collected and analyzed. The

most important advantage of gamification is that users are motivated to perform

well, which consequently may increase the quality of the collected data compared to

crowdsourcing. Further, players are motivated to perform well not because of mone-

tary incentives, but because they enjoy playing the game [14]. As gamification scales

well with a high number of participants (since players download and play the games

on their own devices) these types of studies have an even lower runtime cost than

crowdsourcing [14]. However, there are several disadvantages, firstly not every study

can be transformed into a game that is fun to play. Furthermore, developing and

publishing a game requires more time and effort, above and beyond, creating an ex-

perimental study. Lastly, for success, the researcher should develop interesting game

mechanics that follow the rules of game design [14].
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3.2 Implemented Visualizations

In this section, we describe the specific vascular volume visualization techniques (Fig-

ure 17) that were implemented in our game, Connect Brain.

Figure 17: All implemented vessel visualization techniques: (a) Shading (Blinn-

Phong), (b) Chromadepth, (c) Pseudo Chromadepth, (d) Aerial Perspective, (e) Edge

Enhancement, (f) VSS Chromadepth, (g) VSS Pseudo Chromadepth

3.2.1 Edge Enhancement

Edge enhancement has been used to emphasize the occlusion depth cue, where a

viewer determines the relative depth between different objects due to the way they

overlap [47]. In vessel visualization, the contours of vessels are emphasized, typically

by rendering dark lines around the edges of the vessels [22] (see Figure 17(e)). This

cue is especially helpful when the transfer function produces a translucent result. In

this case, the highly-contrasted black silhouettes occlude the silhouettes of the vessels

that are further away from the viewer, thus giving a better understanding of the depth

ordering of vessels.

Following, the work of Drouin et al. [47], in our implementation edge enhancement

was combined with Blinn-Phong shading. To do this, the volume is rendered using

Blinn-Phong shading and the pixels that form the silhouette are darkened based on
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the interpolated normal vector for each pixel. Pixels with a normal that is almost

perpendicular to the viewer are considered as being part of the silhouette. Drouin et

al. [47] described the formula to calculate the intensity of the edge enhancement for

a given pixel as:

α = smoothstep(stepMin, stepMax, ‖ ~N‖ · (1− | ~N · ~V |))

where α is the intensity of the edge enhancement factor, ~N is the gradient (normal

vector) of the surface, ~V is the direction of the ray (from the volume towards the

viewer) and stepMin and stepMax are user defined parameters.

3.2.2 Aerial Perspective

Aerial perspective is a monocular depth cue caused by the atmosphere and the way

in which light scatters. Specifically, the further the distance between an object and a

viewer, the less contrast there is between that object and the background. With this

technique, the vessels that are closer to the viewer appear as more saturated and more

contrasted while further vessels fade into the background [5, 6] (see Figure 17(d)). By

comparing the saturation of two vessels, it is possible to deduce which one is closer

and which one is further away.

To render a dataset with aerial perspective cue, the pixels representing the color

should be correctly blended with the background. Ebert et al. [48] described the

formula for distance color blending:

C = (1− d) · co + d · cb

where d is the depth of the volume at the current pixel in the range of [0, 1], co

is the color of the object and cb is the color of the background. Preim et al. [6]

noted, the relationship between depth of the projected vessel and the saturation of

the pixel does not need to be linear but can rather be exponential (by replacing d with

an exponential function). In order to ensure, the visualization of the entire volume

(such that no vessels are blended completely into the background), Kersten et al.

[19] determined that the best upper bound for d was between 0.75 and 0.85. In our

implementation, we used the original linear formulation with values d = 0.8.
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3.2.3 Chromadepth

Chromadepth, a technique developed by Richard Steenblik [49], encodes depth using

colour. Specifically, the colour of the pixels in depth follows the colors of the visible

light spectrum, starting from red, orange, yellow, green, cyan, to blue [21]. Thus

for a vascular volume, the closest vessels are red, the furthest ones blue and the

ones in between have a color that is linearly interpolated between these values (see

Figure 17(b)).

Bailey et al. [21] described the chromadepth transfer function. Given, a one-

dimensional texture containing all the colors (from red to blue), s is defined as the

sampling parameter. Where D1 and D2 are parameters defined by the viewer such

that D1 ≥ 0, D2 ≤ 1 and D1 < D2, then, for any depth d such that d ∈ [0, 1], the

transfer function is defined as:

if d < D1, then the color of the pixel is red

if d > D2, then the color of the pixel is blue

else, the parameter s is calculated such that s = d
D2−D1

− D1

D2−D1
.

3.2.4 Pseudo Chromadepth

Ropinski et al. [4] noted that one of drawbacks of chromadepth is that the large num-

ber of hues presented in a chromadepth image can distract from the understanding

of the depth. To alleviate this issue, pseudo chromadepth, which uses only two colors

(red and blue) instead of the full color spectrum can be used [4] (see Figure 17(c)).

Red and blue colors are used because of the visual phenomena of chromostereopsis,

which is caused by light of different colors refracting into different parts of the retina

in eye depending on the wavelength [50]. Chromostereopsis can be used to make red

objects appear closer in depth then blue ones.

When using pseudo-chromadepth for vasculature, the closest vessels are red, the

farthest are blue, and for any intermediate depth, the color of the pixel is calculated

by interpolating between red and blue. Thus, using the pseudo-chromadepth depth

cue, a depth comparison between two shaded objects can be simplified to a simple

comparison of the hue, with warmer hues representing closer objects and colder hues

representing further ones.
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The pseudo-chromadepth cue was implemented in the same way as chromadepth,

with the only difference being that the 1D rainbow-like texture was replaced by one

where the color is linearly interpolated between red and blue colors.

3.2.5 Void Space Surface

Void Space Surface (VSS), a technique used in vessel visualization, was developed

by Kreiser et al. [12] (see Figure 17(f,g)). Unlike many other vessel visualization

techniques that are based on shading the vessels in a certain manner, VSS concentrates

on shading the area around the vessels; the background is coloured to indicate the

relative depth of surrounding vessels. Therefore, to understand the relative depth of

a certain vessel, one looks at the color of the background that surrounds this vessel.

The motivation behind VSS is that in the more traditional depth rendering methods

there is a lot of unused empty space. Therefore, instead of being limited by the area

that vessels take on the screen, the entirety of the screen can be used, allowing the

vessel pixels to represent any other information that may be deemed necessary.

To determine the color of each pixel, a weighted average of the depths of the

surrounding border pixels are calculated. In order to do this, a rendered image of a

vessel structure in the form of a depth map on which the filled pixels (representing

the volume) can be distinguished from the empty ones (representing the background)

is needed. The Suzuki [51] border following algorithm is then executed on the depth

map, creating a hierarchy of borders of the depth map. This hierarchy indicates

what border pixels contribute to what part of the background. After this is done,

the interpolated depth for each background pixel is calculated using Inverse Distance

Weighting [52]:

Depth =

∑N
i=1w(pi) · d(pi)∑N

i=1w(pi)

where Db is the calculated depth of the background pixel, pi is the i-th border pixel

whose depth is used in the weighted average calculation, N is the total number of

border pixels which affect the depth of pb, w(pi) is the weight of the border pixel pi

and d(pi) is the depth of the border pixel pi.

The weight w(pi) of a border pixel pi is calculated in the following way:
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w(pi) =
1

m(pb, pi)s

where pb is the background pixel for which the depth calculation is performed, pi is the

i-th border pixel whose depth is used in the weighted average calculation, m(pb, pi) is

the magnitude of the vector between the position of the pixel pb and pi, and s is a user-

defined smoothing parameter that results in closer border pixels giving exponentially

more weight.

After calculating the depth of every background pixel, a transfer function is then

applied to the depths transforming them into a color. Usually, chromadepth (see

Figure 17(f)) and pseudo-chromadepth (see Figure 17(g)) are used [12]. In addition

to this, VSS implements an approximated version of global illumination in the form of

Screen Space Directional Occlusion (SSDO) [53]. SSDO darkens some regions of the

generated VSS that may be occluded from the light by neighboring parts of the VSS

and performs an indirect light bounce. Finally, isolines are generated on the surface

of the VSS in the form of black lines to improve understanding of the generated shape

by the VSS.

In our case, because of the hardware limitations of mobile devices, we used Screen

Space Ambient Occlusion (SSAO) instead of SSDO, which doesn’t include the indirect

bounce.

3.3 Related Work

Multiple user studies have been done to compare the effectiveness of different perceptually-

driven and illustrative vessel visualization techniques [6]. An overview of the most

related studies and their results is presented in Table 1.

Ropinski et al. [4] performed a user study where 10 subjects were to determine, be-

tween two indicated points on the vasculature of a liver, which was closer to them. A

number of different visualization techniques were explored: standard rendering, stere-

oscopy, chromadepth, pseudo chromadepth, depth of field, a combination of depth of

field and pseudo chromadepth, as well as multiple techniques related to edges (over-

laid, blended, perspective edges and edge shading). The results of the study showed

that overall pseudo chromadepth was the most effective cue, although it was tied

with the depth of field cue in terms of accuracy (M = 93%), it generally had the
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Reference Visualizations Subjects

Trials /

Sample

Points

Goal Result

Ropinski et

al. [4]

Phong, Stereo,

Chroma, Pseudo

Chroma, Overlaid,

Blended, &

Perspective Edges,

Edge Shading, DoF,

DoF + Pseudo

Chroma

14 50 x 14 = 700

Depth Comparison

Metrics:

Correctness, Time,

and User feedback

• Pseudo chroma better than chroma and best

overall

• Edge best in terms of %correct

• Stereo least effective overall

User feedback:

• Pseudo Chroma got highest score

• DoF got the lowest score

Kersten et

al. [5]

No cue, Kinetic,

Stereo, Edge, Pseudo

Chroma, Fog +

combined cues (for

novice experiments

only)

2 studies:

13 novice

& 6

experts

160x13= 2080

(Novice)

6 x 50 = 300

(Expert)

Depth Comparison

Metrics:

Correctness, Time,

and User feedback

Single cues:

• Pseudo Chroma best overall

• Edge cue more helpful to experts

Combined cues:

• Best cues overall are Pseudo Chroma + Stereo

and Pseudo Chroma + Stereo + Edge.

All cues:

• Large xy and large z (depth) difference

between points increased %correct

User feedback:

• Novices: Pseudo Chroma ranked best

• Experts: Fog ranked best

Kreiser et

al. [12]

Phong, Chroma,

Pseudo Chroma, VSS

Chroma, VSS Pseudo

Chroma

19
150 x 19 =

2850

Depth Comparison

Metrics:

Correctness, Time

• VSS and Direct: higher %correct than Phong

• VSS and direct have similar %correct.

• In terms of time, Direct better than Phong,

but VSS worse than Phong

• Pseudo Chroma generally not better than

Chroma.

Abhari et

al. [8]
Shading, Edge 10 60 x 10 = 600

Connectivity

Metrics:

Correctness, Time

and Expert

Feedback

• Edge generally better than shading

• Response time directly proportional to the xy

distance between points

Expert feedback:

• Shading better at allowing to understand

lesions

• Edge better at allowing to understand vessel

continuity

Drouin et

al. [11]

Shading, Pseudo

Chroma, Fog,

Dynamic Shading,

Dynamic Pseudo

Chroma, Dynamic Fog

20 80 x 20 = 1600

Target-

ing/Reaching

Metrics:

Correctness, Time,

Pointer-Target

Distance and User

Feedback

• Dynamic cues helped understanding local

structures, but not global ones

• Dynamic pseudo chroma and dynamic Fog

higher decision time than static version

User feedback:

• Pseudo chroma preferred cue for both static

and dynamic rendering

• Subjects said that dynamic cues allowed to

perform better in terms of time, not confirmed by

experiment

• High rating for dynamic shading despite poor

results

• Lower rating for dynamic fog despite better

results than with dynamic shading

Table 1: Table with the related works on volume rendering vascular visualization tech-

niques. Short forms used in table: Stereo = Stereoscopy, Chroma = Chromadepth, Pseudo

Chroma = Pseudo Chromadepth, DoF = Depth of Field, Overlaid = Overlaid Edges,

Blended = Blended Edges, Kinetic = Kinetic Depth, Edge = Edge Enhancement, VSS

= Void Space Surface, Direct = Directly Applied Cues, Base = Baseline
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fastest decision time (M = 2.1s). The authors also found that stereoscopic rendering

with an autostereoscopic display was the least effective cue with the highest decision

time (M = 3.9s) and the worst accuracy (M = 72%). Additionally, a was survey

conducted after the study asking subjects to rate the perceived effectiveness of each

depth cue using a Likert scale. Subjects gave the highest rating to pseudo chro-

madepth and the lowest one to depth of field cue, despite good results in terms of

accuracy in the experiment. The authors posited that the low score could be caused

by subjects feeling the depth of field images were out of focus.

Kersten et al. [5] performed a similar user study with a slightly larger pool of

participants: 13 novices and 6 experts (e.g. neurosurgeons). The subjects performed

an analogous experiment to that described by Ropinski et al. [4], looking at the

following depth cues: no cue, kinetic depth, edges, pseudo chromadepth, fog, and

some combination of the cues (only in the case of novices). The results showed that

pseudo chromadepth and fog were some of the best in terms of both time and the

correctness, for the novices (MPChroma−%Correct = 90.4%, MPChroma−T ime = 4.83s,

MFog−%Correct = 78.3%, MFog−T ime = 4.76s) and experts (MPChroma−%Correct =

88.3%, MPChroma−T ime = 7.36s, MFog−%Correct = 85.0%, MFog−T ime = 5.96s) alike.

However, for these cues the task of determining depth is a simple hue and/or color sat-

uration comparison, thus it does not necessarily reflect that subjects spatially under-

stood the 3D volume. The stereoscopic (M%Correct−Novices = 64.8%, MT ime−Novices =

6.50s) and the kinetic depth (M%Correct−Novices = 44.3%, MT ime−Novices = 6.53s) cues

yielded poor results, with low accuracy and the highest decision times. For the com-

bined cues none performed significantly better than the single cues. The authors also

looked at the relation between the distance of the selected points and found that hav-

ing a larger z difference (depth) and a larger xy difference (pixel position) increased

accuracy. Finally, experts took more time to make a decision than novices. In terms

of subjective results, novices rated pseudo chromadepth and kinetic depth received

a relatively high rating too despite its poor performance. Among the experts, the

aerial perspective cue received the highest rating.

Kreiser et al. [12] introduced the Void Space Surface (VSS) cue and performed

a study comparing it with other vessel visualization techniques. Twenty subjects

participated in the study, but one was excluded because of high error rates. The

experimental task was the same as the one used in Ropinski et al. [4] and Kersten et
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al. study [5]. The authors compared VSS to cues applied directly to the volume and

found that VSS achieved a similar accuracy (MV SS−CD = 92%, MV SS−PCD = 89%)

to directly applied cues (MCD = 91%, MPCD = 95%), and both performed better

than the standard shading (M = 73%) in terms of accuracy. However, in terms

of response time, while directly applied depth cues performed better than shading,

VSS performed worse. The authors stated that this may be caused by the indirect

nature of the VSS cue. Unlike the study performed by Ropinski et al. [4], Kreiser et

al. [12] could not confirm that pseudo chromadepth is more effective than full-color

chromadepth. It was also noted that isolines were very helpful when the difference

between the points was small and the points shared the same void space surface.

Abhari et al. [8] performed a study where the goal was to determine the connectiv-

ity between two vessels rather than their depth relationship. Specifically, the partici-

pants were presented with volume-rendered images on which two points were selected

and the subject had to determine if there exists a path using the visible vessels that

connects the two points. The reasoning behind this type of task is that in the context

of surgery or preoperative planning, clinicians may want to trace the blood vessels

inside of a medical dataset to better understand it. In the study, the visualizations

were limited only to shading (non-enhanced visualization) and edge enhancement.

It was determined that edge enhancement improves accuracy (MShading = 75.60%,

MEE = 84.00%) and response time (MShading = 13.4s, MEE = 11.17s). The results

also showed that the response time is directly proportional to the xy distance between

the selected points. In addition to the user study, a neurosurgeon provided feedback

on the effectiveness of the depth cues when conducting pre-operative planning using

the provided cues. The surgeon found that shading was better for understanding the

lesions in the presented vessel data, while edge enhancement was better for under-

standing the continuity of the vessels. Further, stereoscopic rendering was better in

both cases than monoscopic.

Drouin et al. [11] introduced dynamic rendering methods in which the viewer

could use a pointer (instead of a keyboard or a mouse) to interact with the visualized

vascular data. For the chromadepth and the aerial perspective cues, subjects could

changing the location of the planes between which the color or the transparency is

interpolated. For the Blinn-Phong shading [20], subjects could modify the location of

the point light that illuminates the object, which dynamically changed the shading
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of the volume. A study with 20 subjects was done to compare the effectiveness of the

static and dynamic versions of pseudo chromadepth, aerial perspective and Blinn-

Phong shading. The task of the user was to move a handheld pointer device so

that its tip is as close as possible to one of the two select points that looks closer

to them in terms of depth. It was determined that generally, both Chroma and Fog

result in a significantly better accuracy (in terms of mm length to the target 3D

point) than Shading (chroma was 5.8mm closer than shading, fog was 6.6mm closer

than shading), but there was no significant difference between the cues in terms of

correctness. When it comes to the comparison between static and dynamic version of

the cues, dynamic cues allowed for better understanding of the local structures of the

volume, but they didn’t help or hinder the understanding of the global structure. In

terms of the time taken, dynamic chromadepth and aerial perspective took more time

compared to their static version, while for shading there was no difference. Subjective

ratings showed that pseudo chromadepth was favored under both the static and the

dynamic rendering condition. Subjects also felt that dynamic cues allowed them to be

faster and more accurate, but this was not confirmed by the quantitative measures.

Although we did not consider any illustrative techniques in our study, a number

of groups have looked at how these methods can be used for visualizing vascular

data. These types of techniques included, hatching, shadows, and anchors. Ritter

et al. [7] proposed a vessel visualization technique that consists of drawing hatching

strokes and shadows on the volume. This method conveys the shape of the vessels as

well as the connectivity between them; hatching strokes indicate how fast the depth

is changing on the surface of the vessel structure, while the thickness of shadows

indicates the relative depth between vessels. In a study on the effectiveness of these

two cues for depth perception the authors found that the distance-encoded shadows

allowed for a significant decrease in the decision time compared to Gouraud shading,

while hatching didn’t show any improvement upon Gouraud shading.

Lawonn et al. [9] proposed three depth cues for better understanding of vessel

structures: illustrative shadows, supporting lines and depth-dependent contours. In

a study, where the combination of these three techniques was compared to pseudo-

chromadepth and Phong shading, the authors found that their illustrative technique

resulted in a higher accuracy and higher confidence, with pseudo chromadepth having

the second best result for both criteria. However, in terms of decision time, pseudo
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chromadepth performed the best (M = 10.95s), followed by Phong shading (M =

13.21s) and then the illustrative technique (M = 14.04s). In another study, Lawonn et

al. [10] presented another illustrative technique in the form of anchors that indicate the

relative depth of some visible vessels on the screen. In this study, the results were very

similar to the illustrative shadows, supporting lines and depth-dependent contours

technique. The illustrative technique resulted in the best accuracy (M = 0.84%)

and best confidence (M = 3.85/5), followed by pseudo chromadepth (M = 0.54% for

accuracy, M = 2.60/5 for confidence) and then by Phong (M = 0.26% for accuracy,

M = 2.78/5 for confidence). For the decision time, pseudo chromadepth resulted

in the fastest answers (M = 9.38s), followed by Phong (M = 10.65s) and then the

illustrative technique (M = 11.39s).

3.4 Methodology

Connect Brain was developed using the Unity engine 3 for the Android and iOS

platforms and published on Google Play and in the App Store in Aug 2020. The

visualizations described in Section 3.3, in addition to Blinn-Phong [20] which was

used as the base case, were implemented using using real-time direct volume rendering

(DVR). Note that all visualizations are also shaded using the Blinn-Phong shading

model on top of the specified method.

3.4.1 Direct Volume Rendering on the Mobile Device

To visualize the volumes, the DVR technique described by Drouin et al. [47], which

is based on a well-known two pass rendering algorithm described by Kruger et al. [24]

was used. This technique describes a real-time ray casting algorithm that consists of

two rendering passes. In the first pass, the front and the back faces of a colored cube

representing the bounding box of the volume are rendered into two different textures.

The RGB color encodes the start and end positions (as 3D coordinates) of the ray for

each pixel. In the second pass, for each pixel, a ray is sent through the volume and

the opacity is accumulated while sampling the volume using trilinear interpolation.

The ray stops and the traveled distance of the ray is recorded into a third texture.

3Unity Engine: https://unity.com/
(Last accessed on November 11, 2020)
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Next a compute shader scans the third texture to determine the smallest and the

highest nonzero depths of the texture, such that the visible interval of the volume

inside the 3D texture is known. Finally, in the last pass, the final image of the volume

is rendered using the recorded pixel depths, which are adjusted using the minimum

and maximum values calculated previously, so that the whole range of depth values

(from 0 to 1) lies within the visible part of the volume. A transfer function maps

the adjusted depth values to the RGBA color for each pixel. This transfer function

is encoded as a one-dimensional texture that is passed to the shader.

As mobile device GPUs are typically slower compared to their desktop equivalents,

additional optimizations were made to allow for real-time rendering. First, the ray

casting algorithm was simplified so that instead of accumulating opacity, the ray stops

immediately when the sampled value in the volume reaches a given threshold. Second,

the ray casting algorithm was modified to reduce the frequency at which the volume

is sampled. To do this, the 3D Chamfer distance approach described by Zuiderveld

et al. [25] was used. This method speeds up ray casting without compromising the

quality of the rendered image by determining for every voxel, the distance to the

closest non-zero voxel and storing it in a 3D texture. The distance corresponds to the

number of voxels that have to be traversed to create a path in 3D space, assuming a

26-cell cubic neighborhood. Here, a small threshold value was defined to distinguish

the ”empty” voxels from the non-empty ones. When performing ray casting, the value

from the Chamfer distance 3D texture, which indicates the distance that the ray could

safely travel without missing any interesting voxels, is used. Thus, empty areas of the

volume are traversed faster. It should be noted, that although the algorithm doesn’t

compromise the quality of the volume, it requires more space to store the additional

volume.

Lastly, to save the battery life of the mobile device and also have a smoother

user interface, when the volume is not being rotated, it is rendered once to a texture

and then displayed in future frames. In addition, when the volume is rotated, we

reduce the number of ray casts that have to be performed by downscaling and then

scaling back up during the rendering to the visible frame buffer. The intensity of

the downscaling is directly proportional to the speed of the rotation of the volume,

making the downsampling less perceptible to the viewer.

Using these optimizations, real-time rendering was achieved on the mobile devices
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tested, for all cues except Void Space Surfaces. Despite attempts to improve the cal-

culation time of VSS, only rendering times of a few seconds/per frame were achieved.

As a result a static version of VSS that can’t be interacted with was used in Connect

Brain.

3.4.2 Connect Brain Game Play

Connect Brain consists of two mini-games: (1) the ”Near-Far Game”, a game where

players compare the relative depth between indicated vessels and (2) the ”Blood Cir-

culation Game”, a game where the player must understand the connectivity between

different points in the vascular volume (see Figure 18). Both mini-games are sepa-

rated into a tutorial level that teaches the player the basics of the mini-game and

11 levels that can be played in any order after the completion of the tutorial. Each

level is defined by four parameters: the computed tomography angiography (CTA)

data, the threshold, the depth of the near and far planes, and the number of points

selected on the volume (2 or more). Three CTA volumes were used in the game, for

each each level one volume is used, however it is randomly rotated. Furthermore, to

increase the variety between the levels different threshold values, cutting planes and

number of selected points were used. Thus a slightly different dataset is presented in

each round due to the fact that different parts of the volume are visible or invisible.

The cutting of the plane was implemented by modifying the colored cube as de-

scribed above. Parts of the final volume were clipped by simply slicing parts from

the colored cube mesh, filling the empty spaces with new faces and then coloring the

faces in the correct color. To do this, the Unity ProBuilder4 tool was used.

Each level in the game consists of 14 rounds in total, with each round showing a

single visualization randomly from the 7 ones that were implemented. To reduce the

player confusion, but also to avoid any biases, we decided to show each visualization

twice in a row, for two consecutive rounds.

Depth Game

The “Near-Far Game” focuses on understanding the relative depth between vessels.

This game is based on the experimental task that was described and used by Ropinski

4https://unity3d.com/unity/features/worldbuilding/probuilder (Accessed on September 24,
2020)

41



et al. [4], Kersten et al. [5] and Kreiser et al. [12]. The typical experimental task

involves subjects determining the nearest vessel between two selected vessels rendered

with a given visualization technique. The depth game in our app uses this same

principle, but introduces some game play elements to make it more fun for players.

Players are presented with a CTA dataset on which two points are selected. The

task of the player is to connect, using their finger, the point that looks closer to

them with the one that looks further away in terms of the depth. The selected

points are indicated on the volume with a contrasting color that is not present in

the current visualization. Because these points are small and could be difficult to

see, a black and white circle is placed around the selected point (see Figure 18(a)).

This circle also indicates the region where the player can touch the screen to select

the point. To further help indicate the positions of the points, arrows appear on the

screen indicating the location of the points during the first second of the round. The

selected points are randomly chosen, and recall that the rotation at each round is

also random, meaning the player can’t simply learn the correct answers. This makes

replaying a level more interesting as the player will always have new data to view and

interact with. Despite the points on the vessels being randomly chosen, a number

of rules are applied. The chosen points are always clearly visible from to the player

perspectives and always have a small minimum depth difference between them. The

points also have a minimum xy pixel position difference between them equal to the

diameterb&wcircle × 1.5 to avoid the overlapping of two indicator circles.

By connecting the indicated vessels in the correct order, the player can gain score

points and additional bonus points for doing it quickly. The amount of bonus points is

calculated by applying a reciprocal function to the round time. However, if the player

makes an incorrect decision, the bonus is subtracted from their current score. This

gives players an incentive to complete rounds as fast as possible, while simultaneously

motivating them to be accurate in these decisions. Further, the score accumulates

through the rounds and is saved in a global leaderboard where players can compare

their score to others.

Some levels have rounds where more than two points are indicated to the player.

In these rounds, the player can connect any number of points at once. The goal in

that case is that all the connected points are selected in the ascending depth order,

starting from the closest point in terms of the depth (similar to the work of Ritter et.
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al. [7]). However, if a point with a bigger depth is selected before one with a smaller

depth, then the whole selection is considered to be incorrect and the player loses the

bonus time points. If all points are connected in the right order, the player will receive

significantly more points than if they connected each pair of points individually. Thus,

selecting multiple points at once is a high-risk, high-reward strategy.

During game play, players can rotate the volume with an offset of up to 45 degrees

from the initial position. If x and y are the rotation in degrees around the x− and

y − axis from the initial, then the rotation of the volume always follows the formula√
x2 + y2 <= 45. To discourage rotation (as we want players to understand the

data using the given visualization technique), players lose score points for rotating

the volume. The amount of points lost is directly proportional to the rotation of the

volume in degrees.

In a preliminary in-lab study with Connect Brain, we learned that some users

wanted to know how they were wrong when they made an incorrect decision. Thus, if

the feedback feature is enabled for the game, at the end of each incorrectly completed

round, the volume is rotated by 90 degrees around the x − axis so that the points

that were closer to the viewer are position on the bottom of this view and the points

that were further are positioned on the top. Vertical lines are then drawn like a ruler

to demonstrate the relative depth between the points (Figure 18(b)).

Connectivity Game

The ”Blood Circulation Game” focuses on the connectivity between different vessels

in the vascular volume. This game is an adaptation of the experiment that was

described by Abhari et al. [8] where subjects were presented with static 2D images

and were asked to determine if a path between two selected points on the vessel

structure exists. We built on this experiment, adding motivating game play features

to it.

As in the ”Near-Far Game”, players are presented with two or more points selected

on the vascular volume. However, the goal in this game is to determine which points

are directly connected, in other words does a path between the two vessels exist.

As each selected point on the 2D image is associated to a specific voxel in the 3D,

connectivity thus refers to the path between the two voxels inside the 3D volume.

When the player finds two connected points, they link them with their finger in any
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Figure 18: Screenshots from the mobile game: (a) Gameplay of the depth game, (b)

Feedback for the depth game, (c) Gameplay of the connectivity game, (d) Feedback

for the connectivity game

order. However, if no two points seem to be connected with each other, players should

press the ”No Connected Points” button that is located on the bottom of the screen

(see Figure 18(c)).

As described in the first game, the initial rotation of the volume at the beginning

of each round and the selection of the points are performed randomly. This means

that we need to compute at runtime if two voxels are connected with each other. To

to this, the A* search algorithm [54], which determines the path (if it exists) between

two voxels inside the 3D texture, was used. A* is an informed search algorithm, which

takes into account both the distance traversed so far and an estimation (heuristic)

of the remaining path, allowing it to perform very quickly and find the optimal path

in the case that the heurisitc function is admissible (never overestimates the cost to

reach the goal). This algorithm requires a priority queue data structure to function,

and we chose the Fiboancci Heap [55] owing to its efficient performance.

The score system works in the same way as in the ”Near-Far Game”, with points

awarded for correct decisions about whether a path exists and for fast decision re-

sponse times. The rotation of the volume also works in the same manner, resulting

in points being lost.

The connectivity game also features a feedback system; if the player decides that
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two points are connected, but in fact they are not, the feedback view shows the

minimum distance that separates two independent parts of the vessel structure (see

Figure 18(d)). Conversely, if the player decides that no points are connect with each

other, but some of them are, then this view demonstrates the path between the two

points.

The connectivity between neighboring voxels presents an ambiguity problem; even

if two neighboring voxels are above a certain threshold, they are not necessarily

visually connected. This is a well-known problem that was studied in the context

of implementation of the marching cubes algorithm [56] [57]. We solve the face

ambiguity problem using the asymptotic decider described by Nielson et al. [56].

For the internal ambiguity, we solve the problem iteratively by casting a high number

of distinct Bezier splines throughout the ”cube” between the two opposing vertices

for which we perform the calculation. Each spline samples the intensity of the volume

throughout its length, recording the smallest intensity that it could sample. After

this, splines are aggregated by finding the biggest value among all smallest values

that each spline could sample. This value then represents the minimum threshold

that can be used during segmentation for the voxels to be connected.

3.5 Results

Correctness and response time were measured and analyzed using an analysis of

variance (ANOVA) and post-hoc Tukey honestly significant difference (HSD) tests

using the IBM SPSS Software v. 26 5.

At the time of our analysis (Nov 1), a total of 78 subjects (49 male, 27 female,

2 other) had downloaded and played the mobile game. In addition to the 78 sub-

jects that played the game, 14 others downloaded it but did not play. Over half the

participants (59%) played on Android and the remainder on iOS. Due to the regula-

tion for iOS apps age was only collected from Android version where the age range

of participants was between 16-62 (M=31, SD=10). Of our participants, 40% had

experience with medical visualization, 26% were familiar with angiography and 28%

had experience with vessel visualization techniques. All 78 users participated in the

depth game, completing on average 44 rounds (SD=71), but only 40% of the players

5https://www.ibm.com/analytics/spss-statistics-software (Last visited on Nov 12, 2020)
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participated in the connectivity game, completing on average 47 rounds (SD=54).

Similar to Kersten et al. [5] and Lawonn et al. [9], for both games in addition to

correctness and response time, we looked at the effect of both the distance of the

indicated vessels on the screen (xy-distance) and the distance in depth between the

indicated vessels (z-distance). Both xy and z distances were equally divided into three

categories ”near”, ”medium” or ”far” measured in Unity’s world coordinate space.

For the xy variable, the ranges are defined in the following way: near [0.162, 0.305],

medium [0.305, 0.447], and far [0.447, 0.950]. For the z variable, they are defined as:

near [0.021, 0.076], medium [0.076, 0.147], and far [0.147, 0.792].6

Due to a lack of control over the timing and how the game was played (e.g. a

person might get interrupted during the game increasing time) we removed all extreme

outliers equal to Q3 + 3 ∗ IQR, where Q3 represents the value at the third quartile

and IQR represents the inter-quartile range, equal to Q3 −Q1.

3.5.1 Depth Game

A three-way repeated measures ANOVA was used to examine the main effects, as

well as, the interactions of visualization method, xy-distance, and z-distance as they

relate to correctness.

Correctness

A total of 4935 entries were collected for the depth game correctness analysis. Cor-

rectness was represented by either 1 (correct) or 0 (incorrect) determined by whether

the connection between between points was done in the right order. In the case where

multiple points (3 or 4) were connected at the same time, each individual pair of con-

nected points is treated as an individual entry. The mean correctness and standard

error for each visualization method is shown in Figure 19(left).

The ANOVA showed that the visualization method had a significant effect on

correctness (F (6, 4872) = 19.483, p < 0.0005). A Tukey post hoc test showed that

pseudo chromadepth (M = 83%, SE = 1.4%), aerial perspective (M = 81%, SE =

1.5%) and chromadepth (M = 81%, SE = 1.5%) allowed for significantly better

6Note that z distances are distributed in this way because the close and the far clipping planes in
some levels greatly limit the total depth range of the volume, resulting in a smaller possible depth
distances.
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Figure 19: Mean correctness (left) and decision time (right) for for the depth game,

depending on the visualization that was being used. The error bars represent the

standard error.

depth perception than VSS chromadepth (M = 73%, SE = 1.7%), VSS pseudo-

chromadepth (M = 73%, SE = 1.7%), shading (M = 67%, SE = 1.8%) and edge

enhancement (M = 66%, SE = 1.8%). Although both VSS versions performed better

than shading and edge enhancement, only the difference with edge enhancement was

found to be statistically significant.

We found a significant main effect of z-distance on correctness (F (2, 4872) =

18.807, p < 0.0005). A Tukey post hoc test showed that a near z-distance (M =

70%, SE = 1.2%) resulted in significantly worse correctness compared to both a far

(M = 78%, SE = 1.0%) and medium (M = 76%, SE = 1.1%) z-distances. The

difference between a medium and a far z-distances was not significant.

We found no main effect of the xy distance on correctness (F (2, 4872) = 0.792, p =

0.453). Also, there was no significant two-way interaction between xy-distance and

visualization method on correctness (F (12, 4872) = 1.246, p = 0.245). Nor was there

a significant two-way interaction between z-distance and visualization on correctness

(F (12, 4872) = 1.164, p = 0.303), or between the xy and z distances (F (4, 4872) =

0.230, p = 0.922).

A significant 3-way interaction was found between the variables (F (24, 4872) =

1.570, p = 0.038). An interesting pattern was found where for every visualization, at

each individual xy distance level, a high z distance produced a better correctness than

a low z distance, with the only exception being the aerial perspective visualization
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technique, where for a medium xy distance, a near z distance produced a result of

M = 85% and a far z distance produced a result of M = 79%. Another interesting

pattern was found for a near z distance, where a medium xy distance resulted in

significantly worse results than low or high xy distances for pseudo chromadepth

M = 67% and for VSS chromadepth M = 59%. At the same time, aerial perspective

M = 85% and chromadepth M = 84% had significantly better results for medium xy

distances than low or medium ones at a near z distance.

Decision Time

A total of 4436 decision time entries were collected for the depth game. There are

fewer time entry points (in comparison to correctness) as the tutorial levels could not

be used as they had no time limit. The mean decision time and standard error for

each visualization method is shown in Figure 19(right).

The decision time for levels with two points corresponds to the interval between

the moment when the round started T0 and the moment when the finger of the player

reached the second point T2. When more than two indicated vessels (i.e. n) are

connected in the same level, the time for connecting n − 1 with n is calculated as

Tn = T1 + Tn − Tn−1. Thus, we consider the time to touch the first indicated vessel,

which we consider the time the player is making decisions about the spatial layout of

the vasculature as a whole, plus the time interval to connect the two indicated vessels

n− 1 and n.

A three-way repeated measures ANOVA was used to examine the main effects and

interactions of visualization methods, xy-distance and z-distance on decision time.

The ANOVA showed that the visualization method had a significant effect on

response time (F (6, 4373) = 6.948, p < 0.0005). A post-hoc Tukey test showed aerial

perspective (M = 4.75s, SE = 0.123s), pseudo-chromadepth (M = 4.78s, SE =

0.123s) and chromadepth (M = 4.91s, SE = 0.119s) resulted in the fastest decision

times and performed significantly better than VSS chromadepth (M = 5.59s, SE =

0.153s) and VSS pseudo chromadepth (M = 5.50s, SE = 0.148s). However, only

aerial perspective performed significantly better than shading (M = 5.32, SE =

0.140s), which had the third worst decision time. Edge enhancement (M = 5.01, SE =

0.125s) was significantly faster than VSS pseudo chromadepth, but not VSS chro-

madepth.
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There was a significant main effect of xy-distance (F (2, 4373) = 4.914, p = 0.007)

on decision time. A Tukey HSD test determined that a far xy-distance (M =

5.34s, SE = 0.088s) resulted in significantly longer decision times than medium

(M = 5.04s, SE = 0.090s) or near (M = 4.97s, SE = 0.085s) distances. There

was no significant difference between near and medium distances.

There was a significant main effect of z-distance (F (2, 4373) = 6.754, p = 0.001)

on decision time. A Tukey HSD test found that a far xy-distance (M = 4.88s, SE =

0.080s) resulted in a significantly longer decision time than medium (M = 5.17, SE =

0.091s) and near (M = 5.32s, SE = 0.091s) distances. There was no significant

difference between near and medium distances.

There was no significant two-way interaction between the visualization method

and the xy distance (F (12, 4373) = 0.556, p = 0.878), the visualization method and

the z distance (F (12, 4373) = 1.512, p = 0.112), the xy distance and the z dis-

tance (F (4, 4373) = 1.516, p = 0.194). There was also no three-way interaction

(F (24, 4373) = 0.790, p = 0.753).

3.5.2 Connectivity Game

A three-way repeated measures ANOVA was used to examine the main effects, as

well as, the interactions of visualization method, xy-distance, and z-distance as they

relate to correctness and response time for the Connectivity game.

Correctness

The total number of entries collected was 1680. Correctness in this game corresponds

to whether the player correctly identified the indicated vessels as connected or not.

The mean correctness and standard error for each visualization method is shown in

Figure 20(left).

The ANOVA showed that there was a significant effect of xy-distance on correct-

ness (F (2, 1617) = 4.526, p = 0.011). A Tukey HSD test determined that a medium

xy distance had the lowest correctness (M = 79%, SE = 1.7%) and performed sig-

nificantly worse than both the far xy-distance (M = 85%, SE = 1.5%) and the near

xy-distances (M = 84%, SE = 1.6%). However, the Tukey post-hoc test found no

significant difference between the near and the far xy distance.
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Figure 20: Mean correctness (left) and decision time (right) for for the connectivity

game, depending on the visualization that was being used. The error bars represent

the standard error.

There was no main effect of the visualization technique (F (6, 1617) = 0.950, p =

0.458) or z-distance (F (2, 1617) = 0.542, p = 0.582) on correctness. Furthermore,

there was no significant two-way interaction between visualization method and xy

distance (F (12, 1617) = 0.767, p = 0.686) and visualization method and z distance

(F (12, 1617) = 1.104, p = 0.352).

The ANOVA showed a significant three-way interaction between the visualiza-

tion method, xy and z-distances (F (24, 1617) = 2.449, p < 0.0005). A pattern was

found that a combination of far xy distance and far z distance resulted in the highest

correctness for 5 of the 7 visualization techniques: shading M = 100%, edge enhance-

ment M = 94%, pseudo-chromadepth M = 95%, VSS chromadepth M = 100% and

VSS pseudo chromadepth M = 93%. Another interesting pattern was observed for

the near z distance. For all the non-VSS visualization techniques, a near xy distance

resulted in a higher correctness: shading M = 93%, edge enhancement M = 86%,

aerial perspectiveM = 84%, chromadepthM = 94%, pseudo chromadepthM = 94%.

However, for both VSS techniques, a near xy distance caused the lowest correctness

among near z distances: M = 73% for VSS chromadepth (while medium and far

xy distances both had an correctness of M = 88%) and M = 73% for pseudo-

chromadepth (while medium and far xy distances have accuracies of M = 83% and

M = 81% correspondingly).
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Decision Time

The number of entries collected for statistical analysis of decision time for the connec-

tivity game is 1680. The mean decision time and standard error for each visualization

method is shown in Figure 20(right).

There was no significant main effects of visualization method (F (6, 1617) = 1.246, p =

0.280), xy distance (F (2, 1617) = 0.793, p = 0.453) or z distance (F (2, 1617) =

2.551, p = 0.078) on decision time. No significant two-way interactions were found

for the visualization technique and the xy distance (F (12, 1617) = 0.581, p = 0.859)

nor for the visualization technique and the z distance and (F (12, 1617) = 0.479, p =

0.751). Finally, no three-way interaction was found (F (24, 1617) = 1.225, p = 0.208).

3.6 Discussion

The results of our study showed that the aerial perspective, chromadepth and pseudo

chromadepth allow for the best relative depth perception. These techniques led to

the most correct responses and the quickest times. For vessel connectivity no cue

performed significantly better than the others.

Similar to the study done by Kersten et al. [5], we found that for depth perception,

the aerial perspective and pseudo-chromadepth visualization techniques performed

very well for both the correctness and the decision time. However, unlike Kersten et

al. [5] and Ropinski et al.[4] who found pseudo-chromadepth to be significantly better

that chromadepth, we found no difference between the cues. This is however, inline

with the results reported by Kreiser et al. [12], who also found no difference between

these two cues.

For the VSS cues, we found that they performed slightly worse compared to the

results obtained by Kresier et al. [12]. Although VSS chromadepth and VSS pseudo

chromadepth resulted in a higher accuracy than shading, we did not determine that

this difference was statistically significant. Also, rather than having an accuracy

similar to non-VSS versions of chromadepth and pseudo-chromadepth, we found the

accuracy of the VSS counterparts to be worse. However, both VSS versions performed

significantly better than edge enhancement (which was not studied by Kresier et al.).

In terms of the decision response time, a similar result was found; VSS had longer

times in comparison to directly applied visualization methods. This is expected due
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to the indirect nature of this vessel visualization technique. The correctness results

may be explained by the fact that the visualized vasculature is complex and on small

devices (e.g. smartphones) there is a limited amount of background, which is needed

for VSS. In addition to this, because of the hardware limitations of mobile devices,

VSS was the only cue that was not being adjusted in real time when the player was

rotating the volume. Also, as the study was not done in a laboratory setting, it

is possible some players did not take the time to understand the VSS visualization

technique properly during the tutorial levels.

Edge enhancement was not found to be an effective cue. In terms of depth per-

ception, it resulted in the lowest correct responses, similar to shading. In terms of

decision response times, it was only significantly better than VSS chromadepth, and

VSS techniques are known for taking a significant amount of time to understand. In

terms of vessel connectivity understanding, unlike Abhari et al. [8], edge enhancement

did not improve the accuracy or the decision time. In fact, visualization technique had

no significant impact on either correctness or response time in terms of understand-

ing vessel connectivity. We posit this is the case because we tended to demonstrate

simpler vessel structures in the connectivity game, which was achieved by using closer

cutting planes to avoid having all vessels connected with each other. The negative

side-effect of this was that accuracy was high across all visualizations, and the de-

cision times were generally similar. We posit that the similarities in time could be

explained by the fact that players were rotating the volume with their finger, but after

removing all entries where players rotated the volume, still no effect was observed on

the decision time.

In terms of distances between the indicated vessels, as expected having a far or

medium z distance between the vessels improves relative depth perception. Although

xy distance had no effect on accuracy, it did have an effect on the decision response

times, with bigger xy distances resulting in a higher decision time. This may be

caused by the fact for higher xy distances players had to perform a longer gesture

when connecting the indicated vessels. On the other hand, in the connectivity game

where players had to perform a similar gesture, no link was found between the xy

distance and the decision time, which could mean that the hand gesture doesn’t have

a big impact on the decision time and that a bigger xy actually affects the decision

time. This may because players may look back and forth between indicated vessels
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more often in case of bigger distances.

For the connectivity game, medium distances resulted in the lowest correctness.

This may be explained by the fact that most vessels near in xy distance were con-

nected, which is easy to discern, and most vessels far in xy distance were disconnected,

which was also easy to discern. Therefore, only points located at a medium distance

present a challenge.

3.7 Conclusion

In this chapter, we described the results of a study related to the comparison of the

effectiveness of cerebral blood vessel visualization techniques which was conducted

using a mobile game, rather than in a traditional lab setting.

Similar to previous works, we found that aerial perspective, chromadepth and

pseudo chromadepth allow for the best relative depth perception. In terms of deter-

mining the connectivity between two vessels, we found that the visualization method

did not affect the result.

What differentiates our study from related works is the gamification paradigm

that was used to conduct the study. Rather than having subjects perform an ex-

periment in a lab, we created a mobile game that was distributed using mobile app

distribution platforms. The main advantage of gamification is that it allowed us to

have more participants than a usual lab study, and the cost of performing the study

was independent of the number of participants. The participants that we got were

also highly diverse, with a wide range of ages and different backgrounds. However,

gamification presented some important disadvantages too, both during the develop-

ment of the game and with the data collection. First, transforming the experiment

into a game that is fun to play required more development time and required addi-

tional research to create interesting game mechanics. Second, implementing volume

rendering so that it allows real-time rendering on mobile devices required additional

optimizations to the rendering code. Third, ensuring the game worked on different

devices and operating systems, GPUs, resolutions and aspect ratios also required ad-

ditional development. And even though we tested our game on a variety of Android

and iOS devices, we still couldn’t guarantee that our game worked perfectly on all

hardware configurations, as we got feedback from one participant that one of the
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rendering techniques crashed on their device.

The lack of a controlled environment may also have impacted the collected data.

As we could not observe how the game was played, we cannot be sure if players were

motivated to try and do their best. At the same time, we think that by adding a com-

petitive element to the study in the form of a leaderboard, did indeed motivate most

players to perform well, which should have resulted in a higher quality of collected

samples. We also had little control over the credibility of the data that users filled

when creating their account and we could not create a detailed pre-test or post-test

questionnaire on iOS due to privacy concerns. But even if this wasn’t the case, having

a detailed questionnaire could possibly lead to a player abandoning the game before

they even start to play.

Despite some of the drawbacks of gamification, using this paradigm allowed us to

collect more data samples than many similar studies [4, 5, 12, 8, 11]. Furthermore, it

showed that our results were more similar to studies with more samples and subjects

(2380 for Kersten et. al. [5] and 2850 for Kreiser et. al. [12]) than those with less

samples (700 for Ropinski et. al. [4] and 600 for Abhari et. al. [8]).

Gamification is a promising technique for collecting large samples of data, however,

it is important to have fun games that users will continue to play. We found that

some players played many levels while others were perhaps not as interested in this

type of game and only did the tutorial. In the future, we could improve our study by

randomizing the order of the games and also by adding some illustrative techniques

such as hatching [7], illustrative shadows [9] or anchors [10]. Furthermore, these

games may be ported to mixed reality environments which may also attract more

players.
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3.8 Postfix: Statistical Analysis

Here, we define the terms relating to the statistical analysis that were used in this

chapter. This analysis was done in order to determine not only if there were differences

between the tested visualization techniques, but also to see if the xy and/or z distance

between the vessels had an impact on depth or connectivity perception.

When describing the definitions of the related statistical measures, we assume

there are N discrete numerical samples. The definitions and formulas are based on

those given in Tabachnick et al. [58].

3.8.1 Variance

Variance measures the spread of the numerical values from their mean. It is defined

as the average of squared differences:

σ2 =

∑
(xi − x̄)2

N

This formula measures the variance of N values. However, if N represents the

number of samples of a larger population, then N − 1 is used in the denominator to

account for the fact that in a smaller list of samples, values are too close to their own

mean. This value is called the sample variance and is calculated as follows:

s2 =

∑
(xi − x̄)2

N − 1

3.8.2 Standard Deviation

The standard deviation measures how, on average, the entries are different from their

mean. Unlike variance which gives the sum of squared differences, standard deviation

additionally applies the square root to the variance. This is done to obtain the

answer in the original units since all the differences were squared during the variance

calculation:

σ =

√∑
(xi − x̄)2

N

Similarly, the sample standard deviation is defined in the following way:
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s =

√∑
(xi − x̄)2

N − 1

3.8.3 Standard Error

The standard error of the mean (SEM , or sometimes simply SE) represents an esti-

mate of the standard deviation of the distribution of sampled means. It is calculated

by dividing the standard deviation of the sample mean by the square root of the

number of entries:

SEM =
s√
N

The fundamental difference between standard deviation (SD) and standard error

(SE) is that SD measures the dispersion of the data samples (meaning, how well the

mean represents the sample data), while SE gives the accuracy of the sample mean.

Thus, assuming uniform sampling, with a higher number of samples, SE will always

approach 0, meaning that the sample mean gives a more accurate representation of

the population mean. However, in the case of a sample standard deviation, with a

higher number of samples, the sample SD will approach more and more the SD of

the population.

Therefore, in our study, when talking about the mean decision time or mean

correctness, we always indicated SE to show how accurately our obtained sample

mean represents the population mean.

We used the standard deviation only in places where we wanted to demonstrate

how dispersed the data was, such as when we indicated the age of the subjects or the

number of rounds played in each game. In these cases, we were more interested in

demonstrating the age diversity between the participants and how much they played

the game.

3.8.4 Hypothesis Testing with Probability Density Functions

Hypothesis testing is a procedure that can be done on sampled data, where two or

more mutually exclusive statements (hypotheses) about a dataset are made. The two

hypothesis used with PDF functions are the following:
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• The null hypothesis, which states that samples from a certain group come from

a certain precise population.

• The alternative hypothesis, which states that the samples come from a different

population than the one that we thought about initially.

In our case, the null hypothesis was that the time or correctness of different

visualization techniques or different xy or z distances are equal, which means that

those variables (or a combination of them) do not affect the correctness or the decision

time. The alternative hypothesis was that the not all visualization technique were

equal and that different visualization techniques and/or xy or z differences would

produce better or worse results in terms of depth and spatial perception of the vessels.

In the case of statistical analysis, hypothesis testing is used with probability den-

sity functions (PDFs). These type of functions indicate how a certain sample statisti-

cal variable is distributed in multiple groups of samples. For example, if a population

is uniformly sampled multiple times and the sample mean is calculated for each group

of samples, then the sample means would be distributed using the normal distribu-

tion, but if we consider the variance of multiple groups of samples instead, then these

variances will be distributed using the Chi-square distribution.

The key idea behind hypothesis testing with probability density functions is that

if a certain statistical variable produces a result that is very unlikely to happen when

looking at its PDF, then it can be concluded that the samples were not taken from

the same population.

A value associated with hypothesis testing is the significance level denoted by α.

α represents the probability of committing a Type I error, that is, deciding that the

null hypothesis is false when it is actually true. A closely related value, called the

significance level, is calculated as C = (1− α).

The confidence level is chosen by the researcher, although most often, a 95%

confidence level is used with probability density functions. The compromise with the

confidence level chosen is that while increasing the level of significance decreases the

chance of committing a Type I error, it also results in sometimes accepting the null

hypothesis incorrectly.
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3.8.5 F-test

One may want to determine, given two populations x and y, if these populations

have the same variance. This procedure is used in an analysis of variance (ANOVA)

(described in Section 3.8.6) to determine if three or more populations are significantly

different. For the F-test, the null hypothesis is that two populations have the same

variance, while the alternative hypothesis states that they have a different variance.

To determine this, an F-test with a given confidence level C (usually 95%) can be

performed. Multiple samples are taken from both populations and the sample vari-

ances, s2
x and s2

y, are calculated. Having these two sample variances, the F-ratio can

be calculated as:

F =
s2
x

s2
y

Note that the bigger sample variance is always located in the numerator of the

formula and the smaller one is always located in the denominator.

After this, the two degrees of freedom (DoF) for the F-function are calculated for

samples of both populations. The degrees of freedom correspond to the number of

samples whose value could vary, when calculating a statistic, before the value of the

last sample gets fixed. Assuming that Nx and Ny are the number of samples obtained

for populations x and y correspondingly, the degrees of freedom are then calculated as

d1 = Nx−1 and d2 = Ny−1. The number of degrees of freedom is calculated because

as it changes the Chi-square distribution of variances depending on the number of

samples.

Using these degrees of freedom and a specific level of significance α = (1−C), it is

then possible to find the critical value using an F-distribution. The F-distribution rep-

resents the ratio of two chi-square distributions. Since the distribution of sample vari-

ances for the same population follows the chi-square distribution, the F-distribution

is used to represent the distribution for the F-ratio. However, because the formula of

the F-distribution is complex and contains a non-elementary integral, an F-table can

be used instead with pre-calculated critical values.

The critical value gives the boundary of confirmation or rejection of the hypothesis

that both populations have the same variance, using the F-ratio. If the F-ratio is

smaller than the critical value, both populations x and y are considered to have the

same variance. Conversely, if the F-ratio is bigger than the critical value, populations
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x and y are considered to have a different variance.

3.8.6 ANOVA

An analysis of variance (ANOVA) is a statistical test that is used to determine whether

a significant difference is present among three or more sample means. Thus, it tests

the null hypothesis: µ1 = µ2 = µ3 = ... = µM where µi corresponds to the population

mean of group i and M corresponds to the total number of groups.

The general idea of an ANOVA is to perform an F-test using the variance between

different groups and the variance within each individual group.

First, the nominator of the variance between different groups, called Sum of

Squares Between (SSB) is calculated. Assuming there are M groups with a total

of T entries in all groups combined, SSB is calculated in the following way:

SSB =
M∑
i=1

(x̄i − x̄)2

where x̄i represents the mean of the samples of group i and x̄ represents the mean of

all samples from all groups combined.

Second, the nominator of the variance within each individual group called Sum of

Squares Within (SSW ) is calculated:

SSW =
M∑
i=1

Ni∑
j=1

(xi,j − x̄i)2

where the number of samples in each group is noted by Ni and that the sample at

index j in the group i is noted by xi,j.

The denominators for the variance, which will be referred to as the number of

degrees of freedom, are calculated as dfb = T −M for the ”between” variance and

dfw = M − 1 for the ”within” variance. The between variance corresponds to the

variance between different groups, while the within variance corresponds to the vari-

ance between samples in each group. Generally speaking, ANOVA results in rejecting

the null hypothesis when the ”between” variance is high and the ”within” variance

is low, because this means that values in every group are close to each other, but the

groups themselves have very different values, which means that the groups don’t have

the same means.
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Having this information, we can calculate the ”between” variance called Mean

Squares Between (MSB) as:

MSB =
SSB

dfb

and the variance ”within” called Mean Squares Within (MSW ) as:

MSW =
SSW

dfw

With these two values, the F-ratio can be calculated as

F =
MSB

MSW

Next, the F-test is calculated on the obtained F-ratio to see if the groups have

the same variance. If the variances differ, it can be deduced that at least one of the

groups has samples that come from a different population.

In a one-way ANOVA, each sample belongs to a certain group defined by a discrete

independent variable (DIV or simply IV) stored with each sample. However, it is

possible for the samples to be partitioned in a number of alternative ways using

multiple different IVs. In this case, for each independent variable, the sample stores

the group to which it belongs within the IV. It is then possible to perform an ANOVA

while partitioning the data in a multitude of ways. This type of analysis is called

an N -way ANOVA, where N corresponds to the number of independent variables.

A three-way ANOVA was performed in our analysis where our discrete independent

variables were the vessel visualization technique, the xy and the z distance between

the vessels.

In an N -way ANOVA, in addition to performing the analysis for each independent

variable individually, it is also possible to combine some IVs together to create a

bigger number of smaller groups that can also be compared between each other. Such

combination of IVs is called an interaction. Combining M independent variables

results in performing an M -way interaction.

3.8.7 Tukey’s HSD Test

If is determined using an ANOVA that at least one of the groups has samples that

don’t come from the population, a Tukey’s HSD Test can be used to determined which
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groups precisely are different from other groups in a statistically significant manner.

This test is performed pairwise on all combinations of groups. The calculation is as

follows:

HSD =
x̄1 − x̄2

SE

Where x̄1 and x̄2 are means of the two groups, and SE is the standard error of

all the samples of all groups, using the previously calculated values in the ANOVA,

the standard error is:

SE =

√
MSW

T

After the HSD value is calculated, it is compared with the level of significance α.

If HSD is smaller than α, the difference between the groups is statistically significant

and the samples of each group come from different populations. If HSD is bigger

than α, then the difference is not statistically significant and samples of both groups

come from the same population.

For example, the results of our ANOVA showed that there were differences between

visualization methods, and to determine which methods were significantly different,

a pairwise comparison using Tukey’s HSD test was performed.
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Chapter 4

Conclusion

Advances in commodity computer graphics hardware have provided new opportu-

nities for developing and studying visualization techniques in medical imaging. We

have leveraged these advances to study the use of different vascular visualization

techniques in the human perception of 3D CT angiography images. Specifically, in

this thesis, we explored the use of gamification to determine the effectiveness of cer-

tain cerebral vessel visualization techniques. We developed ”Connect Brain”, a game

for both Android and iOS platforms that allowed us to collect gameplay data that

was related to the effectiveness of the varying visualization techniques on spatial and

depth understanding of CTA data. The visualization techniques were compared in

terms of both accuracy and decision time for both deciding upon the relative depth

relationship and the connectivity between two or more vessels.

Prior to publishing the game on Google Play and in the App Store, we ran a

preliminary study in a supervised environment. This allowed us to gather feedback

from players on what interesting game mechanics we could use to encourage longer

game play. Based on these preliminary results, we added a leaderboard at the end of

each level to have players compete between each other and we also added a feedback

view at the end of each incorrect round so that the player could visualize the correct

answer.

After analyzing the data collected data from the ”Connect Brain” app, we found

that for determining the depth relationship between vessels, aerial perspective, chro-

madepth and pseudo chromadepth performed the best, both in terms of the cor-

rectness and the decision response time. Conversely, shading and edge enhancement
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performed the worst, resulting in the lowest accuracies and mediocre decision times.

VSS cues performed slightly worse than expected, with VSS chromadepth and VSS

pseudo chromadepth performing worse than their non-VSS counterparts. For the

connectivity game, we found that the visualization technique that was used had no

significant impact on either the correctness or the decision time.

In terms of how are results compare to other studies, in general, we found that

they were more similar to studies that also had a significant number of participants

and samples points (like the studies by Kersten et. al. [5] and Kreiser et. al. [12])

rather than studies with few participants and samples (Abhari et. al.[8] and Ropinski

et. al.[4]). This suggests the importance of having an appropriate number of subjects

and trials when evaluating visualization paradigms.

4.1 Future Work

Using gamification in the context of medical visualization has significant potential,

and with the improvements of mobile device hardware and the accessibility of modern

app marketplaces, these kind of studies will be increasingly easier to perform and more

effective to gather research data.

In the future, we could improve the game by making it more appealing to a

broader audience, rather than only the people interested in medical imaging. Sound

and music could be added and in general the graphical assets and special effects could

be improved. Another, idea would be to introduce some concept of currency that the

player accumulates by playing the game, which could then be use to unlock temporary

”cheats” in the game. An advertisement campaign could also be used to promote the

app more broadly and encourage more players to download the game.

Regarding the study itself, in the future, illustrative techniques could be added

to compare an even higher number of visualizations. Some good candidates are the

hatching and distance-encoded shadows technique described by Ritter et al. [7], the

illustrative shadows, supporting lines and contours technique described by Lawonn et

al. [9] and the anchors technique also described by Lawonn et al. [10]. Furthermore,

visualizing other types of medical images for spatial and depth understanding could

also be explored.

Additionally, we could incorporate the capabilities of the gyroscope and/or the
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accelerometer sensors, available on modern smartphones and tablets by. For example,

instead of rotating the volume with their finger, players could try and rotate the

device itself. Alternatively, we could transform the input system so that instead of

selecting the points with the finger in the depth game, players would rather have to

tilt their phone in the direction of the points that looks further away in terms of

depth. Additionally, we could take advantage of the camera of the mobile device and

create some mixed reality visualizations.

As mobile hardware continues to improve, we believe performing gamified studies

would become easier and common, even in the context of computationally costly

domains such as medical imaging. The results of these types of studies can not only

be used to inform what the most appropriate medical visualization techniques are in

general but also to tailor more specific clinical studies (e.g. clipping an aneurysm)

with domain experts (e.g. neurosurgeons).

64



Bibliography

[1] Steven P. Callahan, Jason H. Callahan, Carlos E. Scheldegger, and Claudio T.

Silva. Direct volume rendering: A 3d plotting technique for scientific data.

Computing in Science and Engineering, 10(1):88–91, January 2008.

[2] Dirk Bartz and Michael Meiner. Voxels versus polygons: A comparative approach

for volume graphics. 01 2000.

[3] Bernhard Kainz, Rupert H Portugaller, Daniel Seider, Michael Moche, Philipp

Stiegler, and Dieter Schmalstieg. Volume visualization in the clinical practice.

In Workshop on Augmented Environments for Computer-Assisted Interventions,

pages 74–84. Springer, 2011.

[4] Timo Ropinski, Frank Steinicke, and Klaus Hinrichs. K.h.: Visually supporting

depth perception in angiography imaging. pages 93–104, 07 2006.

[5] Marta Kersten-Oertel, Sean J. Chen, and D. Louis Collins. An evalua-

tion of depth enhancing perceptual cues for vascular volume visualization in

neurosurgery. IEEE Transactions on Visualization and Computer Graphics,

20(3):391–403, March 2014.

[6] Bernhard Preim, Alexandra Baer, Douglas Cunningham, Tobias Isenberg, and

Timo Ropinski. A survey of perceptually motivated 3d visualization of medical

image data. In Computer Graphics Forum, volume 35, pages 501–525. Wiley

Online Library, 2016.

[7] F. Ritter, C. Hansen, V. Dicken, O. Konrad, B. Preim, and H. Peitgen. Real-

time illustration of vascular structures. IEEE Transactions on Visualization and

Computer Graphics, 12(5):877–884, 2006.

65



[8] Kamyar Abhari, John S. H. Baxter, Roy Eagleson, Terry Peters, and Sandrine

de Ribaupierre. Perceptual enhancement of arteriovenous malformation in MRI

angiography displays. In Craig K. Abbey and Claudia R. Mello-Thoms, editors,

Medical Imaging 2012: Image Perception, Observer Performance, and Technol-

ogy Assessment, volume 8318, pages 70 – 77. International Society for Optics

and Photonics, SPIE, 2012.

[9] Kai Lawonn, Maria Luz, Bernhard Preim, and Christian Hansen. Illustrative

visualization of vascular models for static 2d representations. In Medical Image

Computing and Computer-Assisted Intervention – MICCAI 2015, pages 399–406,

10 2015.

[10] Kai Lawonn, Maria Luz, and Christian Hansen. Improving spatial perception of

vascular models using supporting anchors and illustrative visualization. Com-

puters & Graphics, 63:37 – 49, 2017.

[11] Simon Drouin, Daniel DiGiovanni, Marta Kersten-Oertel, and Louis Collins.

Interaction driven enhancement of depth perception in angiographic volumes.

IEEE Transactions on Visualization and Computer Graphics, PP:1–1, 12 2018.

[12] Julian Kreiser, Pedro Hermosilla, and Timo Ropinski. Void space surfaces to

convey depth in vessel visualizations. arXiv: Graphics, 2018.

[13] Kristen Dergousoff and Regan L. Mandryk. Mobile gamification for crowdsourc-

ing data collection: Leveraging the freemium model. In Proceedings of the 33rd

Annual ACM Conference on Human Factors in Computing Systems, CHI ’15,

page 1065–1074, New York, NY, USA, 2015. Association for Computing Ma-

chinery.

[14] Nafees Ahmed and Klaus Mueller. Gamification as a paradigm for the evaluation

of visual analytics systems. pages 78–86, 11 2014.
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