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Abstract

Large-Scale Modeling and Optimization of Routing, Modulation and Spectrum
Assignment Problems in Optical Networks

Adham Mohammed

One of the crucial decisions in managing flexible optical fiber networks is the provisioning

of connection requests, known as the Routing and Spectrum Assignment (RSA) problem,

and its extension: Routing, Modulation and Spectrum Assignment (RMSA) problem. Such

problems are becoming more and more challenging everyday with the steadily increasing

demand in optical networking. Therefore, considerable research effort has been exerted in

developing models and algorithms to efficiently solve larger problem instances. Yet, there

still exists a gap between the problem sizes that can be solved thanks to the previous research

efforts and the realistic problem sizes. This work is one step forward towards reducing this

gap.

In this thesis, we propose decomposition models for the RSA and RMSA problems based

on lightpath configurations. The proposed models are Integer Linear Programs (ILPs) with

an exponential number of configuration variables. Therefore, we have developed nested

column generation algorithms to exactly solve both problems. Furthermore, Lagrangian

Relaxation is used to compute valid upper bounds on the Integer Linear Programming

(ILP) optimal objective values, in order to compute a measure of solution quality: the

relative optimality gap.

The proposed algorithms are able to efficiently solve instances with sizes beyond what

has been so far published in literature, and more importantly, with considerably higher

quality, i.e., narrower relative optimality gaps.
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Chapter 1

Introduction

1.1 Background

With the rapidly growing demand in the optical networking sector, it has become more

and more challenging to efficiently use the frequency spectrum already existing the optical

layer. Research efforts to develop new technologies, that allow such efficient utilization, go

hand in hand with the research efforts dedicated to develop efficient algorithms to solve the

network planning problems based on these technologies.

One of these technologies is the Orthogonal Frequency Division Multiplexing (OFDM)

[Saeki, 1999], which has given birth to the crucial network planning problems: the Routing

and Spectrum Assignment (RSA) problem, and its extension, the Routing, Modulation and

Spectrum Assignment (RMSA) problem.

1.2 Motivation

Our motivation in this research is to go one step further towards reducing the gap between

the sizes of the RSA and RMSA problems that can be solved using the existing algorithms

and the realistic problem sizes. In other words, to introduce decomposition models and

develop exact algorithms capable of solving larger instances than what have been already

solved in literature.
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1.3 Contribution

In this research, we propose decomposition models for the RSA and RMSA problems

based on lightpath configurations. As the proposed models have an exponential number

of variables, we propose a nested column generation algorithm to efficiently solve each

problem. Furthermore, we compute valid upper bounds using Lagrangian Relaxation in

order to provide a measure of solution quality, which is the relative optimality gap.

Compared to the decompositions and algorithms in previous literature, the

proposed decomposition and NCG algorithm efficiently produce higher-quality solutions.

Furthermore, we were able to solve larger problem sizes than those already solved in

literature.

1.4 Thesis Outline

In this thesis, the manuscripts of two publications are included. Chapter 2 is the manuscript

of the first publication on solving the RSA problem, while Chapter 3 is the manuscript of

the publication on solving the RMSA problem. Chapter 4 concludes the research presented

in this thesis.
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Chapter 2

Nested Column Generation

Algorithm for the Routing and

Spectrum Assignment Problem in

Flexgrid Optical Networks

2.1 Introduction

The introduction of Orthogonal Frequency Division Multiplexing (OFDM) [Saeki, 1999]

has opened the door to more efficient utilization of optical networks [Gerstel et al., 2012].

Yet, the same door has welcomed the new challenge of exploiting the full potential of such

technology through the optimal provisioning of requested connections, known as the Routing

and Spectrum Assignment (RSA) problem.

The outcome of the considerable research efforts put into developing algorithms for

solving this problem can be classified into two main categories: heuristics and exact

algorithms. Heuristics, e.g., [Christodoulopoulos et al., 2011, Alaskar et al., 2016], provide

a fast solution, but this usually comes with no measure of solution quality. On the other

hand, although early Integer Linear Programming (ILP) models, e.g., [Christodoulopoulos

et al., 2010], were able to provide exact solutions, they had major scalability issues. This
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has led to the exploration of decomposition models.

Ruiz et al. [2013] proposed an early decomposition model based on lightpaths. They

developed a column generation algorithm as a solution scheme. Although they were able to

efficiently solve small instances of the Spain network (21 nodes, 35 links) with 40 frequency

slots and 64 requests, for larger instances of 96 slots and 180 requests, in the same network,

the time limit of 10 hours was reached. Klinkowski et al. [2014] improved the formulation of

Ruiz et al. [2013] with the use of valid inequalities. However, they could not go significantly

beyond what was achieved in Ruiz et al. [2013].

Klinkowski et al. [2016] attempted to solve large instances using a branch-and-price

algorithm, in which they used pre-computed paths. Hence, the proposed algorithm is not

exact, and the optimal objective value of the Linear Programming (LP) relaxation is not a

valid bound to asses the quality of the obtained ILP solution. Jaumard and Daryalal [2016]

introduced a decomposition based on a subset of lightpaths having the same starting slot,

called a lightpath configuration. They used two formulations for the pricing problem: one

using pre-computed paths, and another link-formulation one to search thoroughly for the

most improving configuration. However, the latter had scalability issues. More recently,

Enoch and Jaumard [2018] improved the results of Jaumard and Daryalal [2016], with a

shortest-path pricing problem and fine-tuning of the algorithm and its implementation,

e.g., removing the columns with reduced cost coefficients less than a certain threshold,

among other measures. They could reach higher-quality and more efficient solutions than

in Jaumard and Daryalal [2016].

In this work, we use the same decomposition, based on a subset of lighpaths, as in

Jaumard and Daryalal [2016], however with a different formulation. Furthermore, we

propose a nested column generation algorithm to implicitly consider all possible lightpaths

and all possible subsets of lightpaths.

2.2 Problem Statement

A flexible optical network can be represented by a directed graph G = (V,L), with an

optical node set V and a link set L. The bandwidth is sliced into a set of slots S. The

4



traffic is defined by a set of requests K, with every request having a source-destination node

pair (vs, vd)k ∈ SD and a rate r ∈ R represented by a number of slots, where SD is the set

of source-destination node pairs, and R is the set of rates.

Given this network, the problem can be formally stated as finding, for every request, a

routing path and a spectrum assignment such that the network throughput is maximum,

while satisfying continuity and contiguity constraints. The continuity constraint requires

that a request is assigned the same frequency slots along its entire path, while the contiguity

constraint requires that the assigned frequency slots are contiguous, i.e., adjacent to each

other, in the frequency domain.

2.3 Mathematical Model

We propose a decomposition scheme based on a lightpath configuration, which is a subset of

requests having the same starting slot – hence, a configuration is indexed by s ∈ S. Figures

2.1 and 2.2 show illustrations of two different configurations starting at the slots si and sj ,

respectively.

Figure 2.1: Network Spain with five arbitrary requests.
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Figure 2.2: Illustration of two configurations provisioning the requests in Fig. 2.1.

2.3.1 Master Problem

Let Kr
sd be the set of requests with the source-destination node pair (vs, vd) ∈ SD and rate

r ∈ R, and Dr
sd = |Kr

sd|.

We introduce the decision variables: yrsd, which is the number of requests with the

source-destination node pair (vs, vd) ∈ SD and rate r ∈ R that have been granted; and zc,

which is equal to 1 if the configuration c ∈ C is granted, and to 0 otherwise.

The parameter ack is equal to 1 if the configuration c ∈ C contains the request k ∈ K,

and to 0 otherwise; while the parameter δcsl is equal to 1 if the slot s ∈ S on the link l ∈ L

is occupied by the configuration c ∈ C, and to 0 otherwise.

The mathematical model of the master problem can then be written as follows:

max
∑

(vs,vd)∈SD

∑
r∈R

r yrsd (1)

6



subject to:

∑
c∈Cs

zc ≤ 1 s ∈ S (2)

yrsd ≤
∑
c∈C

∑
k∈Kr

sd

ackzc (vs, vd) ∈ SD, r ∈ R (3)

yrsd ≤ Dr
sd (vs, vd) ∈ SD, r ∈ R (4)∑

c∈C
δcslzc ≤ 1 s ∈ S, l ∈ L (5)

zc ∈ {0, 1} c ∈ C (6)

yrsd ∈ Z+ (vs, vd) ∈ SD, r ∈ R. (7)

By relaxing the integrality in the constraints (6) and (7), this problem can be solved using

column generation with a pricing problem that generates, at every iteration, the most

improving configuration for every starting slot σ ∈ S.

2.3.2 Higher-Level Pricing Problem

The Higher-Level Pricing Problem (HLPP) is the configuration generator, indexed by the

starting slot σ ∈ S.

Let Pk be the set of routing paths for request k ∈ K. βkp is a decision variable that is

equal to 1 if the path p ∈ Pk is selected to route the request k ∈ K, and to 0 otherwise. The

parameter δlp is equal to 1 if the path p ∈ Pk contains the link l ∈ L, and to 0 otherwise.

We denote by u(2)
σ , u(3)

sd,r and u
(5)
s′l the values of the dual variables associated with the master

problem’s constraints (2), (3) and (5).

The mathematical model of the HLPP can be written as follows:

max −u(2)
σ +

∑
(vs,vd)∈SD

∑
r∈R

∑
k∈Kr

sd

∑
p∈Pk

( u(3)
sd,r −

∑
l∈L

σ+rk∑
s′=σ

u
(5)
s′l δ

l
p ) βkp (8)

7



subject to:

∑
k∈K

∑
p∈Pk

δlpβ
k
p ≤ 1 l ∈ L (9)

∑
p∈Pk

βkp ≤ 1 k ∈ K (10)

βkp ∈ {0, 1} p ∈ Pk, k ∈ K (11)

The correspondence between the variables of the HLPP and the parameters of the master

problem is as follows:

ak =
∑
p∈Pk

βkp k ∈ K (12)

δs′l =
∑

k∈K:s′∈[σ,σ+rk]

∑
p∈Pk

δlpβ
k
p l ∈ L, s′ ∈ S (13)

By relaxing the integrality in the constraint (11), this problem can also be solved using

column generation as a master problem to a lower-level pricing problem that will generate,

at every iteration, the most improving routing path for every request k ∈ K.

2.3.3 Lower-Level Pricing Problem

The Lower-Level Pricing Problem (LLPP) is the path generator, indexed by the starting

slot σ ∈ S and the request k ∈ K.

Denoting by u(9)
l and u(10)

k the values of the dual variables associated with the HLPP’s

constraints (9) and (10), respectively, and introducing the decision variable δl, which is equal

to 1 if the link l ∈ L is selected as part of the path being generated, and to 0 otherwise, the

mathematical model of the LLPP can be written as follows:

min
∑
l∈L

(
σ+rk∑
s′=σ

u
(5)
s′l + u

(9)
l ) δl − u

(3)
sd,r + u

(10)
k (14)

8



subject to:

∑
l∈δ+(vs)

δl −
∑

l∈δ−(vs)
δl = 1 (15)

∑
l∈δ−(vd)

δl −
∑

l∈δ+(vd)
δl = 1 (16)

∑
l∈δ+(i)

δl −
∑

l∈δ−(i)
δl = 0 i ∈ V \ {vs, vd} (17)

δl ∈ {0, 1} l ∈ L (18)

This is a shortest path problem that can be solved exactly using an efficient algorithm,

e.g., Dijkstra’s algorithm.

2.4 Solution Scheme

2.4.1 Nested Column Generation

We propose a nested column generation algorithm which consists of two levels. In

the Higher-Level Column Generation (HLCG), in Figure 2.3, the HLPP generates the

configuration that will produce the largest improvement in the master problem’s objective

value. This level terminates when no more improving configurations can be generated.

At every iteration of the HLCG, the HLPP is solved through the Lower-Level Column

Generation (LLCG), in Figure 2.4, in which the HLPP is the master problem to the LLPP

which generates at every iteration the path that will produce the largest improvement

in HLPP’s objective value, and this level terminates when no improving paths can be

generated.

2.4.2 Accuracy

Starting from the LLPP, this shortest path problem can be solved exactly using an exact

algorithm, e.g., Dijkstra’s algorithm. Therefore, when the LLCG terminates, the Linear

Programming (LP) objective value of the HLPP is a valid upper bound on its Integer Linear

Programming (ILP) optimal objective value, and hence the HLPP solution is an ε-optimal

9



Figure 2.3: Higher-Level Column Generation.

Figure 2.4: Lower-Level Column Generation.
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solution. As for the HLCG, since the HLPP’s solution is ε-optimal, the LP objective value

of the master problem, upon the termination of the HLCG, is not a valid bound on its ILP

optimal objective value. Consequently, to calculate the ε′ relative optimality gap for the

master problem, a valid upper bound has to be computed—we compute the Lagrangian

Relaxation (LR) bound.

Following Vanderbeck and Wolsey [1995] and Pessoa et al. [2018], a valid upper-bound

for the master problem can be computed at every iteration τ of the HLCG using Lagrangian

Relaxation as follows:

L(uτ , xRC?)master = umaster
τ b+ RC?,τ(HLPP)

ILP ≤

umaster
τ b+ RC?,τ(HLPP)

LP = zτLR ≥ z
τ(master)
LP (19)

Where RC? is the reduced cost coefficient, umaster
τ is the vector of the dual variables

associated with the master problem’s constraints at iteration τ of the HLCG, and b is the

vector of the right-hand side of the master problem’s constraints.

Since the LR bound is not monotonically improving [Pessoa et al., 2018], the best LR

bound, i.e., the minimum throughout all the iterations, should be selected. Furthermore,

since the LP optimal objective value can never exceed the offered load, this offered load is

also a valid upper bound. Hence, the best possible upper bound should be computed as

follows:

zLP = min {min
τ
zτLR , Offered Load } (20)

2.5 Experimental Results

For the experimentation purposes, we solve four different groups of datasets. The first group

is the same datasets solved by both Jaumard and Daryalal [2016] and Enoch and Jaumard

[2018] for the network Spain (21 nodes, 35 links). Table 2.1 summarizes the comparison

of these datasets’ solutions. Although the solution quality of the proposed algorithm is

11



comparable to Enoch and Jaumard [2018] for this group of datasets, the running time is

actually not. This is because the implementation of Enoch and Jaumard [2018] has much

fine tuning, including fine tuning of the CPLEX parameters, which are not practical to fine

tune for every problem instance.

In addition to the CPU time, we use the relative optimality gap (ε), defined in (21), and

the Grade of Service (GoS), defined in (22), as comparison measures.

ε = zLP − zILP
zILP

× 100% (21)

GoS = Granted Bandwidth
Requested Bandwidth = zILP

Offered Load × 100% (22)

12



Table 2.1: Comparison of RSA Experimental Results with Previous Studies

Problem Instance Current Study Study of Jaumard and Daryalal [2016] Study of Enoch and Jaumard [2018]
Load |K| |S| zLP zILP zLR

GoS ε′ CPU
zLP zILP

GoS ε CPU
zLP zILP

GoS ε CPU
(Tbps) (%) (%) (sec.) (%) (%) (sec.) (%) (%) (sec.)
3.7 35 50 3.7 3.7 4.0 100 0.0 2.9 3.7 3.2 86 16 50 3.7 3.7 100 0.0 0.3
4.8 45 60 4.8 4.8 5.1 100 0.0 3.6 4.8 4.2 88 14 86 4.8 4.8 100 0.0 0.4
6.8 60 75 6.8 6.8 7.9 100 0.0 6.0 6.8 5.8 85 18 147 6.8 6.8 100 0.0 0.7
7.5 64 85 7.5 7.5 8.5 100 0.0 7.4 7.5 6.0 80 24 176 7.5 7.5 100 0.0 1.3
7.4 70 100 7.4 7.4 8.2 100 0.0 9.2 7.4 6.2 84 20 263 7.4 7.4 100 0.0 1.7
9.7 80 120 9.7 9.7 10.8 100 0.0 14.0 9.7 8.2 85 19 323 9.7 9.7 100 0.0 2.5
7.5 35 80 7.5 7.5 8.6 100 0.0 6.9 7.5 6.7 89 11 134 7.5 7.5 100 0.0 0.9
9.8 45 110 9.8 9.8 11.3 100 0.0 12.1 9.8 8.8 90 11 177 9.8 9.8 100 0.0 2.0
10.7 60 156 10.7 10.7 11.3 100 0.0 25.4 10.7 9.5 89 13 261 10.7 10.7 100 0.0 3.1
15.5 64 170 15.5 15.5 16.2 100 0.0 40.6 15.5 13.0 84 20 630 15.5 15.5 100 0.0 4.7
15.1 70 236 15.1 15.1 16.2 100 0.0 53.5 15.1 13.1 87 15 1342 15.1 15.1 100 0.0 7.8
16.9 80 256 16.9 16.9 19.5 100 0.0 66.7 16.9 14.5 86 17 1419 16.9 16.9 100 0.0 10.3
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The second group is of larger datasets for the Spain network, i.e., with larger offered

load and larger number of slots. The results of this second group are summarized in Table

2.2.

Table 2.2: RSA Experimental Results of Larger Spain Datasets

Problem Instance
zLP zILP zLR

GoS ε′ CPULoad |K| |S| (%) (%) (min.)(Tbps)
8.1 100 300 8.1 8.1 9.3 100 0.0 1.3
9.6 120 300 9.6 9.6 10.4 100 0.0 1.4
11.2 140 380 11.2 11.2 14.3 100 0.0 2.1
13.3 160 380 13.3 13.3 14.2 100 0.0 2.5
21.9 100 380 21.9 21.9 24.0 100 0.0 3.4
25.6 120 380 25.6 25.6 29.2 100 0.0 4.2
29.7 140 380 29.7 29.7 33.0 100 0.0 4.6
33.7 160 380 33.7 33.7 36.5 100 0.0 4.7

The third group of datasets is for the USA network (24 nodes, 86 links), and their results

are summarized in Table 2.3.

Table 2.3: RSA Experimental Results of USA Datasets

Problem Instance
zLP zILP zLR

GoS ε′ CPULoad |K| |S| (%) (%) (min.)(Tbps)
21.9 100 380 21.9 21.9 26.3 100 0.0 7.1
29.7 140 380 29.7 29.7 34.5 100 0.0 11.5
43.1 160 380 43.1 43.1 50.9 100 0.0 15.0
59.7 220 380 59.7 59.7 65.9 100 0.0 15.2
72.3 276 380 72.3 72.3 82.2 100 0.0 20.9
76.7 276 380 76.7 76.7 85.0 100 0.0 23.1
85.3 276 380 85.3 85.3 96.9 100 0.0 21.3
90.9 276 380 90.9 90.9 100.0 100 0.0 19.5

For the larger instances of Spain and USA networks, the proposed algorithm produces

higher-quality solution than Enoch and Jaumard [2018] which had an average of 10%

optimality gap and 90% GoS, compared to 0% and 100%, respectively, in our case for

similarly-sized datasets.

The fourth group is of larger instances for the USA network, with offered load up to

double that in Enoch and Jaumard [2018] and in our third group of datasets. As Table 2.4

shows, the results has high-quality solutions, i.e., small relative optimality gap; high GoS;
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and reasonable efficiency, i.e., less than an hour for this planning problem.

Table 2.4: RSA Experimental Results of Larger USA Datasets

Problem Instance
zLP zILP zLR

GoS ε′ CPULoad |K| |S| (%) (%) (min.)(Tbps)
143.8 524 380 139.0 139.0 173 97 3.5 31.8
145.0 524 380 139.3 139.3 143 96 2.6 31.3
146.3 524 380 141.2 141.1 145 96 2.6 58.2
151.9 552 380 142.6 142.6 157 94 6.5 32.6
160.6 607 380 149.4 149.4 151 93 0.7 31.8
161.4 607 380 153.4 153.4 164 95 5.2 34.4
168.7 635 380 157.7 157.7 168 93 6.6 34.5
179.6 690 380 161.5 161.0 178 90 10.8 36.0

2.6 Conclusion

In this paper we have proposed a formulation and a nested column generation algorithm to

solve the Routing and Spectrum Assignment problem in flexible optical networks. Compared

to recent studies, our algorithm produces high-quality solutions quite efficiently.
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Chapter 3

Nested Column Generation for

Large-Scale Routing, Modulation

and Spectrum Assignment in

Flexible Optical Networks

3.1 Introduction

The steadily growing demand in the optical networking sector is challenging both service

providers and researchers to develop new technologies for efficient utilization of the frequency

spectrum of the optical layer. However, the full potential of these new technologies would not

be reached without developing efficient algorithms to solve the network planning problems

based on these new technologies. In this paper, we consider the Orthogonal Frequency

Division Multiplexing (OFDM) generation of optical networks and the crucial planning

problem introduced by this technology: the Routing, Modulation and Spectrum Assignment

problem.
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3.1.1 Technical Background

The introduction of Orthogonal Frequency Division Multiplexing (OFDM) [Saeki, 1999]

has opened the door to more efficient utilization of the frequency spectrum in optical fiber

networks. Its modulation technique has enabled finer allocation of the optical spectrum

with granularity smaller than wavelength [Gerstel et al., 2012], providing a flexible grid in

contrast to a fixed grid. Figure 3.1 illustrates how efficiently the optical spectrum is used

in the case of a flexible grid compared to a fixed grid.

Figure 3.1: Flexible vs. Fixed Grid Optical Networks.

Although such technology allows more efficient utilization of the frequency spectrum, it

made the problem of provisioning connection requests more challenging; giving birth to the

Routing, Modulation and Spectrum Assignment (RMSA) problem.

3.1.2 Literature Review

The RMSA is one of the problems widely addressed in literature, with and without the

modulation aspect – the variant without the modulation aspect is the Routing and Spectrum

Assignment (RSA) problem. The algorithms proposed in the previous research are mostly

either heuristics or exact algorithms, with machine learning techniques recently being

explored.
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Although heuristics, e.g., [Christodoulopoulos et al., 2011, Alaskar et al., 2016], provide

efficient solutions, they usually come with no measure of solution quality, i.e., how far the

obtained solution is from the optimal solution. An example of a recent machine learning-

based method for the RMSA problem can be found in Chen et al. [2018], which uses

reinforcement learning to solve dummy to small-sized networks. However, in this paper,

we focus on exact algorithms and decomposition models.

While early Integer Linear Programming (ILP) models, e.g., [Christodoulopoulos et al.,

2010], could provide exact solutions, they had major scalability issues. This has encouraged

the investigation of decomposition models.

Ruiz et al. [2013] proposed a first lightpath-based decomposition model along with a

column generation algorithm. For the Spain network (21 nodes, 35 links), they were able

to solve small instances of 40 frequency slots and up to 64 requests in less than 30 seconds.

However, for larger instances of up to 96 slots and 180 requests, the running time reached

the limit of 10 hours. Klinkowski et al. [2014] improved the formulation of Ruiz et al.

[2013] with the use of valid inequalities, but did not go significantly further than in Ruiz

et al. [2013]. In an attempt to solve large instances, Klinkowski et al. [2016] proposed a

Branch-and-Price algorithm. However, the resulting algorithm is not an exact algorithm

and the optimal objective value of the Linear Programming (LP) relaxation is not a valid

bound to assess the quality of the obtained ILP solutions. This is because the authors used

pre-computed paths, and consequently did not consider, neither explicitly nor implicitly,

all possible lightpaths. Jaumard and Daryalal [2016] proposed a decomposition based on a

subset of lightpaths having the same starting slot, known as a lightpath configuration. They

used two formulations for the pricing problem: one using pre-computed paths, and another

link-formulation one to search thoroughly for the most improving configuration. However,

the latter had scalability issues. More recently, Enoch and Jaumard [2018] improved the

results of Jaumard and Daryalal [2016], with a shortest-path pricing problem and fine-

tuning of the algorithm and its implementation, e.g., removing the columns with reduced

cost coefficients less than a certain threshold, among other measures. They could reach

higher-quality and more efficient solutions than in Jaumard and Daryalal [2016].
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3.1.3 Contribution

In this paper, we employ the same decomposition as in Jaumard and Daryalal [2016],

based on a light path configuration, but with a new formulation. The proposed model has

an exponential number of lightpath configuration variables, therefore we propose a nested

column generation algorithm to implicitly consider all possible lightpaths and all possible

subsets of lightpaths. Furthermore, we use Lagrangian Relaxation to compute a valid upper

bound on the ILP optimal objective value, in order to compute the relative optimality gap

to assess the quality of the obtained solutions.

Compared to the decompositions and algorithms in the previous literature, the proposed

decomposition and nestd column generation algorithm efficiently produce higher-quality

solutions. Furthermore, we were able to solve larger problem sizes than those already

solved in literature.

3.1.4 Paper Organization

In the next section, we formally define the RMSA problem. In section 3, we present the

proposed decomposition model, which consists of a Master problem and two levels of sub-

problems. In section 4, we propose the nested column generation algorithm and explain

the computation of the valid upper bound using Lagrangian Relaxation. In section 5, we

present the experimental results obtained using the proposed model and algorithm. And in

the last section, we conclude the work presented in this paper.

3.2 Problem Statement

The topology of a flexible optical fiber network can be represented by a directed graph

G = (V,L), where V represents the set of optical nodes, and L represents the set of optical

fiber links. The optical spectrum on each fiber link is sliced into a set S of frequency

slots of equal width w. The network traffic is defined by the set of connection requests K,

where every request k ∈ K is characterized by the following: a source-destination node pair

(vs, vd)k ∈ SD, where vks ∈ V is the source node of request k ∈ K, vkd ∈ V is the destination

node of request k ∈ K, and SD is the set of source-destination node pairs; and a rate rk ∈ R
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in Giga bit per second (Gbps), where R is the set of rates. Furthermore, we have the set M

of modulations where every modulation m ∈M is characterized by the following: a spectral

efficiency cm, and a maximum reach dm, which is the maximum distance in kilometer that

a request can be routed through using modulation m ∈M .

According to the previous description, the RMSA problem can be formally defined as

follows: finding for every request k ∈ K a routing path, a modulation and a frequency

assignment that would maximize the network throughput while respecting the continuity

and contiguity constraints. A routing path is simply a subset of links leading from the

source node vks ∈ V to the destination node vkd ∈ V . The spectrum assignment is the set of

frequency slots assigned to the request k ∈ K, according to the selected modulation m ∈M ,

with a total number of Dk. The network throughput is the total granted bandwidth, which

is the total rate of all granted requests. The continuity constraint states that a request

k ∈ K is assigned the same frequency slots along it routing path, while the contiguity

constraint requires that these assigned frequency slots are contiguous, i.e., adjacent to each

other, in the frequency spectrum.

3.3 Mathematical Formulation

We propose a mathematical formulation that is a decomposition model with an exponential

number of variables intuitively, i.e., we did not start from a compact formulation, that has a

polynomial number of variables, and then applied Dantzig-Wolfe reformulation, see Dantzig

and Wolfe [1960].

3.3.1 Lightpath Configuration-Based Decomposition

Our decomposition model is based on a lightpath configuration. A lightpath is defined

as a combination of a routing path and a frequency spectrum assignment, so, e.g., two

different requests having the same exact routing path but different frequency spectrum

assignment are simply routed through two different lightpaths. We then define a lightpath

configuration c ∈ C as a set of lightpaths having the same starting slot σ ∈ S, where C is

the set of lightpath configurations which is of exponential cardinality.
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To further illustrate what a lightpath configuration is, Figure 3.2 shows an arbitrary five

requests in the Spain network, which are then provisioned through two different lightpath

configurations in Figure 3.3. We can see that the lightpath configuration of slot si is the

set of lightpaths provisioning the red, blue and green requests, and that all of the three

light paths start at the same starting slot si. The same applies to the other example of the

starting slot sj with the orange and violet requests.

Figure 3.2: Spain network with five arbitrary requests.

3.3.2 Mater Problem

We introduce the following:

Sets and parameters:
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Figure 3.3: Illustration of two configurations provisioning the requests in Fig. 3.2.

Kr
sd The set of requests with the source-destination node pair (vs, vd) ∈ SD and rate

r ∈ R.

Kr
sd The number of requests with the source-destination node pair (vs, vd) ∈ SD and

rate r ∈ R.

ack a parameter equal to 1 if the request k ∈ K is provisioned through the lightpath

configuration c ∈ C,

is equal to 0 otherwise.

δcsl a parameter equal to 1 if the frequency slot s ∈ S on the link l ∈ L is occupied by

the lightpath configuration c ∈ C,

is equal to 0 otherwise.

Decision variables:
yrsd The number of requests with the source-destination node pair (vs, vd) ∈ SD and

rate r ∈ R that have been granted.

zc a decision variable equal to 1 if the lightpath configuration c ∈ C is granted,

is equal to 0 otherwise.
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The mathematical model of the Master problem can then be written as follows:

max
∑

(vs,vd)∈SD

∑
r∈R

r yrsd (23)

subject to:

∑
c∈Cs

zc ≤ 1 s ∈ S (24)

yrsd ≤
∑
c∈C

∑
k∈Kr

sd

ackzc (vs, vd) ∈ SD, r ∈ R (25)

yrsd ≤ Dr
sd (vs, vd) ∈ SD, r ∈ R (26)∑

c∈C
δcslzc ≤ 1 s ∈ S, l ∈ L (27)

zc ∈ {0, 1} c ∈ C (28)

yrsd ∈ Z+ (vs, vd) ∈ SD, r ∈ R. (29)

The objective function (23) maximizes the total granted bandwidth. Constraint (24)

makes sure that no more than one configuration is granted for the same starting slot.

Constraint (25) implies that the granted bandwidth is bounded by the total bandwidth

that can actually be granted. Constraint (26) ensures that no more bandwidth than what

is requested is granted. Constraint (27) restricts the use of every frequency slot on every

link to at most one configuration. Finally, constraints (28) and (29) define the domain of

the decision variables zc and yrsd, respectively.

By relaxing the integrality in the constraints (28) and (29), this problem can be solved

iteratively using column generation, as it will be presented in the next section of the paper,

with the Higher-Level Pricing Problem (HLPP) generating the best lightpath configuration

at every iteration.
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3.3.3 Higher-Level Pricing Problem

The HLPP is the configuration generator: it is indexed by the starting slot σ ∈ S and it

generates at every iteration, for every slot, the lightpath configuration that will produce the

largest improvement in the objective value of the Master problem.

To formally define the HLPP, we introduce the following:

Sets and parameters:
Pk The set of routing paths for request k ∈ K.

δlp a parameter equal to 1 if the path p ∈ Pk contains the link l ∈ L,

is equal to 0 otherwise.

u
(24)
σ the value of the dual variable associated with the Master problem’s constraint (24).

u
(25)
sd,r the value of the dual variable associated with the Master problem’s constraint (25).

u
(27)
s′l the value of the dual variable associated with the Master problem’s constraint (27).

Decision variable:
βkp a decision variable equal to 1 if the routing path p ∈ Pk is selected for routing the

request k ∈ K,

is equal to 0 otherwise.

The mathematical model of the HLPP can then be written as follows:

max −u(24)
σ +

∑
(vs,vd)∈SD

∑
r∈R

∑
k∈Kr

sd

∑
p∈Pk

( u(25)
sd,r −

∑
l∈L

σ+rk∑
s′=σ

u
(27)
s′l δ

l
p ) βkp (30)

subject to:

∑
k∈K

∑
p∈Pk

δlpβ
k
p ≤ 1 l ∈ L (31)

∑
p∈Pk

βkp ≤ 1 k ∈ K (32)

βkp ∈ {0, 1} p ∈ Pk, k ∈ K (33)

The objective function (30) maximizes the reduced cost coefficient to generate the most
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improving lightpath configuration. Constraint (31) ensures that all the selected routing

paths, for all the requests, are disjoint. Constraint (32) limits the routing of every request

to at most one routing path. Finally, constraint (33) defines the domain of the decision

variable βkp .

By relaxing the integrality in the constraint (33), this problem can be solved iteratively

using column generation by being a master problem to the Lower-Level Pricing Problem

(LLPP) which will generate the most improving routing path for every request along with

selecting a modulation for this request.

The parameters of the Master problem are related to the decision variables of the HLPP

as follows:

ak =
∑
p∈Pk

βkp k ∈ K (34)

δs′l =
∑

k∈K:s′∈[σ,σ+rk]

∑
p∈Pk

δlpβ
k
p l ∈ L, s′ ∈ S (35)

3.3.4 Lower-Level Pricing Problem

The LLPP is the path generator: it is indexed by the starting slot σ ∈ S and the request

k ∈ K, and it generates at every iteration the routing path for this request k ∈ K that will

produce the largest improvement in the objective value of the HLPP of the starting slot

σ ∈ S. Furthermore, it selects the modulation used to provision the request k ∈ K.

To formally define the LLPP, we introduce the following:

Additional parameters:
u

(31)
l the value of the dual variable associated with the HLPP’s constraint (31).

u
(32)
k the value of the dual variable associated with the HLPP’s constraint (32).

Decision variable:
δl a decision variable equal to 1 if the link l ∈ L is selected in the path being generated,

is equal to 0 otherwise.

The mathematical model of the LLPP can then be written as follows:
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min
∑
l∈L

(
σ+Dk∑
s′=σ

u
(27)
s′l + u

(31)
l ) δl − u

(25)
sd,r + u

(32)
k (36)

subject to:

∑
l∈δ+(vs)

δl −
∑

l∈δ−(vs)
δl = 1 (37)

∑
l∈δ−(vd)

δl −
∑

l∈δ+(vd)
δl = 1 (38)

∑
l∈δ+(i)

δl −
∑

l∈δ−(i)
δl = 0 i ∈ V \ {vs, vd} (39)

δl ∈ {0, 1} l ∈ L (40)

This is a shortest path problem, with the objective function (36) minimizing the weight

of the path to generate the most improving one to the objective of the HLPP. Constraints

(37) and (38) ensure that the path starts at the source node vs ∈ V and ends at the

destination node vd ∈ V , respectively. Constraint (39) implies the continuity of the path.

Finally, constraint (40) defines the domain of the decision variable δl.

For every request, the selected modulation is the one that will produce the minimum-

weight path using the minimum number of slots while respecting the modulation maximum

reach. This is obtained by solving the LLPP as a shortest-path problem with resource

constraints. Given the rate rk of request k ∈ K, the spectral efficiency cm of modulation

m ∈ M , and the width w of the frequency slots, the number of slots Dk for every request

k ∈ K and every modulation m ∈M can be computed as follows:

Dk =
⌈( rk

cm
)

w

⌉
(41)

3.4 Nested Column Generation

To solve the RMSA with the proposed decomposition model, we use column generation,

introduced in Dantzig and Wolfe [1960], but with a nested structure: nested column
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generation. The proposed nested column generation algorithm has two levels, which we

call the Higher-Level Column Generation (HLCG) and the Lower-Level Column Generation

(LLCG). The HLCG consists of the LP relaxation of the Master problem and the HLPP

as its column generator, while the LLCG consists of the LP relaxation HLPP as a master

problem to its column generator, which is the LLPP. The proposed nested column algorithm

is illustarted in Figure 3.4, and is further explained in the following subsections.

Figure 3.4: Nested column generation algorithm.

3.4.1 Higher-Level Column Generation

In the HLCG, the Master problem selects the lightpath configurations to be granted in order

to maximize the granted bandwidth while respecting the previously discussed constraints.

This problem is solved iteratively with the HLPP generating at every iteration a lightpath
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configuration, for every starting slot, that will produce the largest improvement in the

Master problem objective value. In other words, at every iteration, a set of lightpath

configurations are generated, one for every starting slot, that will result in the maximum

increase in the granted bandwidth. The iterations of the HLCG keep running as long as

there still exists at least one improving lightpath configuration, which is determined by the

reduced cost coefficient, i.e., the HLPP objective value. This HLCG terminates when no

more improving columns can be generated, and then the Master problem ILP is solved with

the set of generated configuration columns.

3.4.2 Lower-Level Column Generation

In the LLCG, the HLPP (indexed by the starting slot σ ∈ S) selects one path for every

request that will produce the largest improvement in the HLPP objective value, i.e., the

reduced cost coefficient, so that the HLPP can then produce the most improving lightpath

configuration to the Master problem. Similar to the HLCG, the LLCG is solved iteratively,

with the LLPP (indexed by the request k ∈ K and the starting slot of its corresponding

HLPP, σ ∈ S) generating at every iteration one routing path column to be added to the

HLPP. The LLCG keeps iterating as long as there still exists at least one improving path

column to be added to the HLPP. The LLCG terminates when no more improving path

columns can be generated, and then the HLPP ILP is solved with the set of generated

path columns. A full LLCG, for every starting slot σ ∈ S, runs until termination in every

iteration of the HLCG.

3.4.3 Accuracy

To evaluate the accuracy of the proposed algorithm, we start from the lowest level and

move upwards. The LLPP is a shortest path problem, which is solved exactly. Hence, the

LP objective value of the HLPP is a valid upper bound on its ILP optimal objective value.

Therefore, the obtained ILP solution for the HLPP is an ε-optimal solution, where ε is the

relative optimality gap, calculated as follows:
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ε = zLP − zILP
zILP

× 100% (42)

In the HLCG, for the LP objective value of the master problem to be a valid upper

bound on its ILP optimal objective value, the HLPP has to be solved exactly, i.e., using a

branch-and-price algorithm, which is not the case, but rather an ε-optimal ILP solution is

obtained. Consequently, the LP objective value of the master is not a valid upper bound on

its ILP optimal objective value. This leads to the need of computing a valid upper bound

on the ILP optimal objective value of the Master problem in order to compute its relative

optimality gap, ε′. We therefore use Lagrangian Relaxation [Fisher, 1981] to compute this

valid upper bound.

3.4.4 Lagrangian Relaxation for Valid Upper Bound

Following Vanderbeck and Wolsey [1995] and Pessoa et al. [2018], Lagrangian Relaxation

can be used to obtain a valid upper bound on the optimal ILP objective value of the master

problem, at any iteration of the column generation algorithm, by using the values of the dual

variables of the master problem as the Lagrangian multipliers in the Lagrangian function.

Introducing the following notation:
uM the vector of the dual variables values of the Master problem.

bM the vector of the constraints right-hand side of the Master problem.

cM the vector of the objective function coefficients of the Master problem.

AM the constraints coefficients matrix of the Master problem.

RCHLPP the reduced cost coefficient, i.e., the objective value of the HLPP

The Lagrangian function of the Master problem can then be written as follows:

LR(uM , x) = max
x∈X

L(uM , x) = uMbM + (cM − uMAM )x︸ ︷︷ ︸
RCHLPP(uM ,x)

 (43)

At every iteration τ of the HLCG:
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xRC? = arg max
x∈X

L(uτ , x) = arg max
x∈X

RC(uτ , x) (44)

= arg max
i∈I

RC(uτ , xi) = arg max
x∈XHLPP

RC?(uτ , x), (45)

where xi, i ∈ I denote the extreme points of X, see Nemhauser and Wolsey [1988],

Section II.3.6.

In the HLPP, xRC? is known since we solve the LLPP exactly. Indeed RC?,τ(HLPP)
ILP ≤

RC?,τ(HLPP)
LP , where RC?,τ(HLPP)

ILP and RC?,τ(HLPP)
LP are the optimal objective values of

the ILP and the LP relaxation of the HLPP, respectively, at iteration τ of the HLCG.

Consequently:

L(uτ , xRC?)master = uMτ b+ RC?,τ(HLPP)
ILP ≤ uMτ b+ RC?,τ(HLPP)

LP = zτLR > z
τ(master)
LP (46)

Since the Lagrangian Relaxation bound is not monotonically improving [Pessoa et al.,

2018], the best LR bound, i.e., the minimum throughout all the iterations, should be selected

as follows:

zLR = min
τ
zτLR (47)

Since the total granted bandwidth cannot exceed the total requested bandwidth, i.e.,

the Offered Load, then the Offered Load is also a valid upper bound on the ILP optimal

objective value of the Master problem. Therefore, the best upper bound should be computed

as follows:

zLP = min { zLR , Offered Load } (48)

Figure 3.5 shows the relative positions of the discussed values. We use tilde for feasible

values, the star for optimal values and the overline for an upper bound. Regardless of the

positions of the unknown ILP and LP optimal objectives values, the LP optimal objective
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value is always an upper bound to the ILP optimal objective value, and the computed upper

bound in (48) is always an upper bound to the LP optimal objective value, and hence, to

the ILP optimal objective value.

Figure 3.5: Illustration of the computed upper bound.

3.5 Experimental Results

In our experimentation, we considered four modulations: BPSK, QPSK, 8QAM and

16QAM. Table 3.1 summarizes the spectral efficiency as well as the maximum reach of

these modulations, based on Huawei [2016].

Table 3.1: Modulation data

Modulation Spectral efficiency (bit/sec/Hz) Maximum reach (km)
BPSK 2 more than 4,000
QPSK 4 1,200 – 4,000
8QAM 6 600 – 1,200
16QAM 8 less than 600

We have experimented with different groups of datasets, starting with datasets for the

Spain network (21 nodes, 35 links) similar in size and requests distribution to those solved

in Jaumard and Daryalal [2016] and Enoch and Jaumard [2018], but of course, we consider

the modulation aspect as well, while it was not considered in those two publications. Table

3.2 summarizes the results of these datasets.

We also compute the Grade of Service (GoS), which is defined as the ratio of the granted

bandwidth to the total requested bandwidth, so the GoS can be calculated as follows:

GoS = zILP
Offered Load × 100% (49)
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Table 3.2: RMSA Experimental Results of Small-Medium Spain Datasets

Problem Instance
zLP zILP zLR GoS ε′ CPU

Name Offered Load |K| |S| (Tbps) (Tbps) (Tbps) (%) (%) (min.)(Tbps)
SPAIN35-50 3.7 35 50 3.7 3.7 3.7 100 0.0 0.06
SPAIN45-60 4.8 45 60 4.8 4.8 4.8 100 0.0 0.11
SPAIN60-75 6.8 60 75 6.8 6.8 7.2 100 0.0 0.2
SPAIN64-85 7.5 64 85 7.5 7.5 8.7 100 0.0 0.28
SPAIN70-100 7.4 70 100 7.4 7.4 7.7 100 0.0 0.29
SPAIN80-120 9.7 80 120 9.7 9.7 10.8 100 0.0 0.54
SPAIN35-80 7.5 35 80 7.5 7.5 7.7 100 0.0 0.27
SPAIN45-110 9.8 45 110 9.8 9.8 11.5 100 0.0 0.31
SPAIN60-156 10.7 60 156 10.7 10.7 14.3 100 0.0 0.58
SPAIN64-170 15.5 64 170 15.5 15.5 17.3 100 0.0 0.6
SPAIN70-236 15.1 70 236 15.1 15.1 16.0 100 0.0 1.22
SPAIN80-256 16.9 80 256 16.9 16.9 21.0 100 0.0 1.73

The second group of datasets is also for the Spain network but with larger offered load,

larger number of requests and larger number of slots. Their results are summarized in Table

3.3.

Table 3.3: RMSA Experimental Results of Large Spain Datasets

Problem Instance
zLP zILP zLR GoS ε′ CPU

Name Offered Load |K| |S| (Tbps) (Tbps) (Tbps) (%) (%) (min.)(Tbps)
SPAIN100-300 8.1 100 300 8.1 8.1 9.7 100 0.0 2.37
SPAIN120-300 9.6 120 300 9.6 9.6 10.9 100 0.0 2.9
SPAIN140-380A 11.2 140 380 11.2 11.2 12.5 100 0.0 4.17
SPAIN160-380A 13.3 160 380 13.3 13.3 15.1 100 0.0 4.99
SPAIN100-380 21.9 100 380 21.9 21.9 23.0 100 0.0 4.45
SPAIN120-380 25.6 120 380 25.6 25.6 29.3 100 0.0 3.54
SPAIN140-380B 29.7 140 380 29.7 29.7 33.0 100 0.0 4.47
SPAIN160-380B 33.7 160 380 33.7 33.7 36.5 100 0.0 3.82

The third group of datasets is for the USA network (24 nodes, 86 links), with medium

to large offered loads, numbers of requests and numbers of slots. In this group, we could

solve instances as large as Enoch and Jaumard [2018], with quite higher solution quality

and GoS. The results of these datasets are summarized in Table 3.4.

The last group is of larger instances for the USA network, with offered load up to

double that in Enoch and Jaumard [2018]. As Table 3.5 shows, the obtained solutions are
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Table 3.4: RMSA Experimental Results of Medium-Large USA Datasets

Problem Instance
zLP zILP zLR GoS ε′ CPU

Name Offered Load |K| |S| (Tbps) (Tbps) (Tbps) (%) (%) (min.)(Tbps)
USA100-380 21.9 100 380 21.9 21.9 26.4 100 0.0 6.68
USA120-380 25.6 120 380 25.6 25.6 29.1 100 0.0 8.13
USA140-380 29.7 140 380 29.7 29.7 37.7 100 0.0 11.7
USA160-380A 33.7 160 380 33.7 33.7 39.2 100 0.0 9.09
USA160-380B 43.1 160 380 43.1 43.1 51.0 100 0.0 10.84
USA180-380 49.3 180 380 49.3 49.3 54.4 100 0.0 11.25
USA200-380 54.7 200 380 54.7 54.7 60.4 100 0.0 12.25
USA220-380 59.7 220 380 59.7 59.7 74.4 100 0.0 14.93
USA276-380A 63.8 276 380 63.8 63.8 64.6 100 0.0 19.8
USA276-380B 61.0 276 380 61.0 61.0 69.6 100 0.0 12.87
USA276-380C 72.3 276 380 72.3 72.3 82.2 100 0.0 15.32
USA276-380D 76.7 276 380 76.7 76.7 77.6 100 0.0 23.4
USA276-380E 85.3 276 380 85.3 85.3 97.1 100 0.0 15.68
USA276-380F 90.9 276 380 90.9 90.9 100.1 100 0.0 14.55

of high quality, i.e., small relative optimality gap, and also with reasonable efficiency, as the

maximum recorded running time is 41 minutes.

Table 3.5: RMSA Experimental Results of Larger USA Datasets

Problem Instance
zLP zILP zLR GoS ε′ CPU

Name Offered Load |K| |S| (Tbps) (Tbps) (Tbps) (%) (%) (min.)(Tbps)
USA524-380A 143.8 524 380 139.3 139.0 139.6 96.7 0.4 31.21
USA524-380B 145.0 524 380 140.3 139.9 150.3 96.5 3.6 31.52
USA524-380C 146.3 524 380 142.3 141.5 144.4 96.7 2.1 30.66
USA552-380 151.9 552 380 143.7 143.0 150.4 94.1 5.2 31.94
USA607-380A 160.6 607 380 150.6 149.9 157.7 93.3 5.2 35.05
USA607-380B 161.4 607 380 154.6 153.8 157.0 95.3 2.1 41.01
USA635-380 168.7 635 380 158.8 157.9 173.9 93.6 6.8 33.71
USA690-380 179.6 690 380 163.2 162.0 166.7 90.2 2.9 37.5

3.6 Conclusion

In this paper we proposed a decomposition model for the Routing, Modulation and

Spectrum Assignment problem based on lightpath configurations. We have also proposed a

nested column generation algorithm as a solution scheme. Furthermore, we used Lagrangian

Relaxation to compute a valid upper bound on the optimal ILP objective value, and hence
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compute the relative optimality gap as a measure of solution quality.

The obtained solutions, compared to those in the literature, are of higher quality and

comparable efficiency. We were also able to solve data instances up to double the size of

what has been already published.
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Chapter 4

Conclusion

In this thesis, we proposed decomposition models for the RSA and RMSA problems

based on lightpath configurations. As the proposed models have an exponential number

of variables, we proposed a nested column generation algorithm to efficiently solve each

problem. Furthermore, we compute valid upper bounds using Lagrangian Relaxation in

order to provide a measure of solution quality, which is the relative optimality gap.

Compared to the decompositions and algorithms in previous literature, the proposed

decomposition and nested column generation algorithm efficiently produce higher-quality

solutions. Furthermore, we were able to solve larger problem sizes than those already solved

in literature.
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Appendix

Traffic Distributions for the RMSA

Experiments

Figure A.1: Requests Distribution of RMSA Dataset SPAIN35-50.
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Figure A.2: Requests Distribution of RMSA Dataset SPAIN45-60.

Figure A.3: Requests Distribution of RMSA Dataset SPAIN60-75.

Figure A.4: Requests Distribution of RMSA Dataset SPAIN64-85.
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Figure A.5: Requests Distribution of RMSA Dataset SPAIN70-100.

Figure A.6: Requests Distribution of RMSA Dataset SPAIN80-120.

Figure A.7: Requests Distribution of RMSA Dataset SPAIN35-80.
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Figure A.8: Requests Distribution of RMSA Dataset SPAIN45-110.

Figure A.9: Requests Distribution of RMSA Dataset SPAIN60-156.

Figure A.10: Requests Distribution of RMSA Dataset SPAIN64-170.
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Figure A.11: Requests Distribution of RMSA Dataset SPAIN70-236.

Figure A.12: Requests Distribution of RMSA Dataset SPAIN80-256.

Figure A.13: Requests Distribution of RMSA Dataset SPAIN100-300.

42



Figure A.14: Requests Distribution of RMSA Dataset SPAIN120-300.

Figure A.15: Requests Distribution of RMSA Dataset SPAIN140-380A.

Figure A.16: Requests Distribution of RMSA Dataset SPAIN160-380A.
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Figure A.17: Requests Distribution of RMSA Dataset SPAIN100-380.

Figure A.18: Requests Distribution of RMSA Dataset SPAIN120-380.

Figure A.19: Requests Distribution of RMSA Dataset SPAIN140-380B.
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Figure A.20: Requests Distribution of RMSA Dataset SPAIN160-380B.

Figure A.21: Requests Distribution of RMSA Dataset USA100-380.

Figure A.22: Requests Distribution of RMSA Dataset USA120-380.
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Figure A.23: Requests Distribution of RMSA Dataset USA140-380.

Figure A.24: Requests Distribution of RMSA Dataset USA160-380A.

Figure A.25: Requests Distribution of RMSA Dataset USA160-380B.
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Figure A.26: Requests Distribution of RMSA Dataset USA180-380.

Figure A.27: Requests Distribution of RMSA Dataset USA200-380.

Figure A.28: Requests Distribution of RMSA Dataset USA220-380.
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Figure A.29: Requests Distribution of RMSA Dataset USA276-380A.

Figure A.30: Requests Distribution of RMSA Dataset USA276-380B.

Figure A.31: Requests Distribution of RMSA Dataset USA276-380C.
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Figure A.32: Requests Distribution of RMSA Dataset USA276-380D.

Figure A.33: Requests Distribution of RMSA Dataset USA276-380E.

Figure A.34: Requests Distribution of RMSA Dataset USA276-380F.
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Figure A.35: Requests Distribution of RMSA Dataset USA524-380A.

Figure A.36: Requests Distribution of RMSA Dataset USA524-380B.

Figure A.37: Requests Distribution of RMSA Dataset USA524-380C.
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Figure A.38: Requests Distribution of RMSA Dataset USA552-380.

Figure A.39: Requests Distribution of RMSA Dataset USA607-380A.

Figure A.40: Requests Distribution of RMSA Dataset USA607-380B.
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Figure A.41: Requests Distribution of RMSA Dataset USA635-380.

Figure A.42: Requests Distribution of RMSA Dataset USA690-380.
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