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Abstract 

Investigating Thermal Performance of Residential Buildings in Cold Climates 

Aya Doma 

At least 65% of the existing residential building stock will still be in use by 2050, thus retrofitting 

existing buildings will be critical to reduce energy consumption. Prioritizing these retrofits typically 

requires thorough evaluation of the envelope’s thermal performance, and the traditional methods to undergo 

such evaluation (e.g. energy audits) can be cost prohibitive, especially if it aims to cover hundreds or 

thousands of buildings. To this end, this study presents a novel data-driven approach to investigate the 

thermal performance of existing buildings using data collected from smart thermostats. The study focused 

on more than 60,000 houses across North America and relied on real-time indoor and outdoor temperature 

measurements at 5-minute intervals over a period of four years. Two grey-box modelling approaches 

namely, least-squares fitting of 1) decay curves, and 2) numerically integrated thermal energy balance 

equations were used to estimate a thermal time constant for each house. This time constant represented the 

time it takes for a house to achieve a new thermal equilibrium in response to changes in its internal and 

external thermal conditions. The resulting time constant values from both models were used to estimate 

lower and upper bound effective R-values for the entire envelope of each house. These results were also 

analysed with respect to ASHRAE climate zones, building-age, building-style, and floor-area. Finally, a 

classification model was developed to identify the time constant range for houses based on their attributes. 

The classification model indicated that floor area and ASHRAE climate zone were the most influential 

factors on time constant values obtained using both methods. By using a large sample size covering 

thousands of buildings nationwide, results of this research can be used to prioritize retrofits for existing 

buildings and can provide inputs for urban-scale energy simulations. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

Recent projections anticipated 50% increase in the global energy consumption by 2050, 65% 

of which accounts for the residential and commercial buildings’ energy consumption [1]. 

Moreover, the united nations projects that by 2050, at least 65% of the current residential building 

stock will still be in use [2]. Therefore, the need to put in action strategies to design energy-efficient 

buildings and prioritize retrofits for existing buildings is essential. Analyzing the thermal 

performance of existing buildings and identifying the attributes that influence such performance 

are key factors in identifying targeted retrofits in existing buildings. Typically, such analysis 

requires detailed knowledge of the building components’ thermal properties such as their thermal 

resistance values which is identified using energy audits that may include onsite measurements. 

For example, Biddulph et al. used heat flux meters and thermistor temperature sensor to collect 

data from 93 occupied residential building in England. The collected data were then used to 

quantify the correlation between the heat flux and the difference between indoor and outdoor 

temperatures and estimate the building envelop thermal transmittance (U-value) [3]. Moreover, 

Aznar et al. collected data using surface temperature sensors at different layers of the building 

envelope within a residential building in Spain. This data along with indoor and outdoor 

temperature measurements was then used to train a deep learning model to describe the thermal 

behavior of this building [4]. Despite the accuracy of these techniques, they are time and cost 

intensive which is why they are typically limited to a number of buildings with sample sizes that 

may not be representative of the building stock.  

With the increased adoption of advanced metering infrastructure (AMI) and the Internet of 
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Things (IoT) including smart thermostats in buildings, new opportunities arise to use data-driven 

approaches to investigate the thermal performance of existing buildings at a much larger scale. 

Unlike energy audits or onsite measurements, these datasets include measurements of indoor and 

outdoor conditions of a wide range of buildings which allows for a significantly quicker analysis 

of the thermal behaviour of large numbers of buildings. Furthermore, these datasets include other 

information about building attributes such as building age, building size, location, the number of 

occupants etc. These attributes can be then used to group buildings into different clusters and 

analyze their thermal behaviour in more detail.  

1.2 Problem statement  

Developing an effective policy to retrofit the existing building stock requires detailed 

information on the thermal performance of existing buildings. To this end, data-driven approaches 

can be used to estimate building thermal properties using smart thermostat data at a large scale 

(i.e., covering tens of thousands of buildings). Although different approaches have been introduced 

to analyze smart thermostat datasets, research on applying these approaches to derive indicators of 

buildings’ thermal performance remains limited. Furthermore, the relationship between building 

physical attributes and their thermal performance at such scale has rarely been investigated. Such 

analysis can be beneficial for code officials and policymakers to confirm the effect of previous 

code changes on the building stock and can inform the development of new energy codes and 

retrofit programs. Results can also be used to represent the thermal properties of the existing 

building stock in urban scale energy simulations to investigate the effect of different retrofit 

scenarios on urban and regional energy consumption.   
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1.3 Scope and Objectives  

The goal of this research is to investigate data-driven approaches to characterize the thermal 

performance of residential buildings in the colder climate (i.e. ASHRAE climate zone 4 to 8) in 

North America in relation to their attributes. The analysis relies on smart thermostat readings at 5-

minute intervals from over 60,000 residential buildings across Canada and the United States for a 

period of up to four years, with the following specific objectives: 

i. Estimate a time constant (RC) for each house, which represents the time it takes for 

a building to achieve a new thermal equilibrium in response to changes in its internal 

and/or external environmental conditions. Two different methods are investigated to 

identify the best method to estimate reliable results for more houses. 

ii. Use the obtained RC values to estimate the corresponding R-value range for each 

house.  

iii. Investigate the relationship between the estimated RC values and building’s 

attributes such as age, style, area, and climate zone, and ranking the importance of 

these attributes on the identified RC values. 

iv. Develop a classification model to predict the RC ranges for houses based on their 

attributes. 

1.4 Thesis Organization  

This research is composed of five chapters as follows. Chapter 1 provides the introduction 

and a summary of this thesis objectives. Chapter 2 contains a review of the literature to identify 

the main approaches used for whole-building thermal energy modelling, as well as the different 

approaches for estimating the thermal properties for existing buildings. Chapter 3 provides a 
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description of the dataset used in this analysis as well as the detailed methods used to achieve the 

research objectives. Chapter 4 provides the results of this analysis as well as well as the 

performance evaluation of the prediction models. Finally, Chapter 5 provides the summary and the 

conclusions, lessons learnt and recommendations for future research. 
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Chapter 2: Literature Review 

This chapter provides a review of the different approaches used to model the thermal energy 

in buildings and the advantages and challenges for each approach. This is followed by describing 

the different techniques used to estimate the thermal properties of existing buildings, especially 

focusing on those that can be applied to smart thermostat data.   

2.1 Building Thermal Energy Modelling  

Building thermal energy models are used to predict the thermal response of a building. Based 

on the objective and the goal of each model, the whole building can be modelled, or the models 

can focus only on the critical components of the buildings system such as the photovoltaic systems 

[5], solar thermal systems [6-8], heat pumps [9], air handling units [10], radiant floor slabs [9], 

boilers [11,12], etc. This section focuses on whole building thermal energy modelling using two 

main approaches, the forward modelling approach (white-box models) and data-driven modelling 

approach. 

2.1.1 Forward Modelling Approach (White-box Models) 

The forward modelling approach or the white-box modelling approach uses detailed physics-

based equations to model building components (e.g. walls, windows, roof, etc.) and systems (e.g. 

HVAC system, lighting system, etc.) to predict the whole buildings dynamic thermal behaviour, 

such as the energy consumption and indoor comfort [13].  
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Figure 1: The general outline of the White-box model procedure and the main steps to detailed 

simulation [14]. 

The general outline for white box modelling is summarized in Figure 1. In this approach, 

inputs should first be identified then fed into the simulation engine which is a group of 

mathematical and physics equations that simulate the building operation and calculate the building 

energy consumption [14]. The inputs of the model can be categorized in five groups, the 

parameters for weather condition, the building description, the occupant’s profiles, the system 

description and the equipment description. The weather conditions include the dry and wet bulb 

temperatures of outdoor air, solar radiation intensity, wind speed, etc. The building description 

mainly include data describe the location, design, construction materials, thermal zones, and 

infiltration. The occupant’s profiles include the occupancy schedule and level of activity, usage 

profiles, internal heat gains, lighting and HVAC schedules etc. For the building system description, 
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the system types and sizes, as well as the requirements for each system are required. Finally, the 

building equipment description addresses the HVAC components including the equipment types 

and sizes, performance characteristics, load assignments and auxiliary equipment [15]. Many of 

the building energy simulation software are based on the previous outline of the forward energy 

modelling (e.g., EnergyPlus, TRNSYS, DOE-2, ESP-R, etc.) [13].   

2.1.2 Data-driven Modeling Approach (Black-box Models) 

Instead of relying on detailed physics equations which require a high-level of knowledge 

about the building thermal properties, data-driven approaches use statistical methods to model the 

thermal behaviour of the buildings with no information about the building thermal properties. 

Black-box models need data over a certain period of time to train the models to be able to 

predict the building operation under different conditions. Neural networks [16], [17- 19], time 

series models such as AutoRegressive models with eXogenous inputs (ARX) [20-22], and machine 

learning models [23, 24] such as linear regression, random forest and supportive linear regression 

models have been used to predict buildings’ energy consumption. For example, Xu et al. trained 

artificial neural network model to predict multi-building energy use. To train their model, they 

used three years of monthly energy use data from seventeen buildings in China. The selected 

buildings covered four types of buildings, office buildings, educational buildings, laboratory 

buildings and residential buildings [19]. On the other hand, Kontokosta and Tull used dataset from 

20,000 buildings in New York city to train machine learning predictive models including linear 

regression, random forest and support vector regression to predict building-level energy usage and 

energy use intensity for different building types (e.g. residential, industrial, etc.) [23]. 

Black box models are easy to build and computationally efficient, however, they require a 
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large training data with wide range of operational conditions to avoid forecasting errors [13]. 

Moreover, they have poor generalization capabilities if the training dataset did not cover different 

types of buildings at different conditions.  

2.1.3 Hybrid Modeling Approach (Gray-box models) 

In some cases, detailed white-box modelling inputs that describe building envelopes and 

building systems may not be available, especially at a large scale in the context of urban-scale 

energy simulation [25]. Even if these inputs are available, the computational power needed for 

detailed white-box modelling at the urban scale can be challenging. Black-box models can 

overcome these issues; however, they do not entail any information on buildings’ physical 

characteristics, which is problematic especially for investigating retrofit scenarios or buildings’ 

flexibility for demand response programs. To address the limitations of black-box as well as white-

box models, hybrid modelling approaches using simplified and reduced order models are typically 

investigated to represent building characteristics with less inputs [16]. The lumped parameter 

thermal network is the most commonly used simplified model in building thermal energy 

modelling. In this model, the building components are modelled as an electrical circuit equivalent. 

The construction materials for each building components are modelled using thermal resistances 

(R-value) and thermal capacitances (C), if it has a thermal mass. The lumped parameters thermal 

network models each element in the building components as temperature-uniform element [26]. 

In the first order models, the entire thermal mass of the building is lumped to a single 

capacitance and no distinction is made between the structural mass and the indoor air mass. Second 

order models considered this difference by including a second capacitance, while third order 

models include three different capacitances for the envelope, the internal walls, and the indoor air, 
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respectively. The fourth order models extended the third order by including a separate capacitance 

for the floor, while fifth order models have an additional capacitance for the roof [27]. Previous 

studies showed that reduced order models can capture the thermal dynamics of buildings and 

perform well in terms of short-term energy prediction [27, 28].  

2.2 Estimating Existing Buildings Thermal Properties 

To estimate the parameters of hybrid or gray-box models, different methods can be used 

depending on the order of magnitude of such models and available data. Table 1 provides a 

summary of these methods, the type of data they require, and the model parameters they can be 

used to estimate.  

Table 1: Overview of the main methods used to identify buildings' thermal characteristics.  

Estimation method Required Data Estimated Parameters 

The Energy Signature 

(Balance point) 

Heating system duty cycle, and 

outdoor temperature.  

Resistance- Heating Power 

averaged for entire building 

(RK)  

Degree Days Energy consumption, indoor 

temperature, and outdoor 

temperature  

Energy loss rate (Ɛ), and 

Thermal capacity for the 

entire building (C) 

Decay Curves Indoor and outdoor temperatures  The Thermal Time Constant 

for the whole building (RC) 

Energy Balance Heating system duty cycle, indoor 

and outdoor temperatures. 

RC and RK  

In the energy signature (balance point) method, the energy use of a single building is 

correlated to outdoor temperature. No dynamic behaviour can be captured with this method as it 

is assumed that the indoor temperature does not vary over the course of the day. Data from a single 

building is plotted on a graph, each point represents total energy load vs. mean outdoor temperature 

for a specific time period (daily is the most common). The reason this method is also called the 

balance point method is because most of such graphs show a distinct linear correction over a given 

temperature range, increasing with decreasing temperature during the heating season, and 
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increasing with increasing temperature during the cooling season as shown in Figure 2.  The 

temperature at which the heating load starts to rise is the heating balance point, and the temperature 

at which the cooling load starts to rise is the cooling balance point. In between these two 

temperatures is a temperature range over which energy use is relatively insensitive to outdoor 

temperature, because neither heating nor cooling is required to maintain a comfortable indoor 

temperature. The thermal resistance-heating power (RK) of a building can be approximated from 

the slopes of the lines on the graph, though the capacitance cannot be since no dynamic behaviour 

is captured within this method [29]. 

 

Figure 2: Typical Balance Point Graph [30]. 

The Degree Days method is commonly used to identify the heating and cooling energy 

requirements based on the integrated difference between base temperature and outdoor 

temperature. By using energy consumption data and the measured indoor temperature as the base 

temperature, the degree days method can quantify the correlation between energy consumption 

and the difference between the outdoor and indoor temperatures. By quantifying this correlation 

for time periods with heating inputs and an upward trend in the indoor temperature, the heating 

loss rate (Ɛ) and the whole building thermal capacity (C) can be estimated. The loss rate provides 
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an indication of the insulation level and the building envelope tightness with a higher loss rate 

signifying a potential need for an envelope upgrade [31, 32].  

The decay curve method can only be applied on free-floating periods (i.e. HVAC system is 

off) with the outdoor temperature is relatively constant, no solar gains, and minimal internal gains. 

For these specific periods, a thermal time constant can provide a proxy for how fast the building 

will achieve a new thermal equilibrium in response to changes in its internal and external thermal 

conditions (i.e. in the heating season, to cool from the prior setpoint to the setback setpoint). This 

method provides a measure that characterizes a building’s ability to retain heat and represents the 

effects of the thermal inertia of building mass, which can be used to determine resistance-

capacitance (RC) [29, 33]. 

To address the limitations of the decay curves method, the energy balance method can be 

implemented for outdoor air temperature variations and for the assumption that the building is not 

free-floating (i.e. building is in heating mode). However, filters must be applied to ensure that 

sufficient variations in the heating and indoor temperature are occurring at a given interval. For 

the filtered time periods, the Euler’s method for numerical integration is used to solve the thermal 

energy balance equation for buildings and predict the indoor temperature over the specific period. 

The RC and RK parameters can then be estimated by minimizing the difference between the 

predicted indoor temperature values from the model and the measured temperatures using non-

linear least-square optimization [29, 34]. Since the effect of internal gains and solar radiation as 

well as the lag in heating system response can significantly reduce the model’s ability to properly 

estimate the RC and RK parameters, the numerical solution using Euler’s method for numerical 

integration is used to drive the parameters.  
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2.2.1 Using temperature measurements in existing buildings to estimate model 

parameters 

For many of the above-described methods, indoor and outdoor temperature measurements 

are needed to estimate the parameters of hybrid models. For example, Tabatabaei et al. and Van 

der Ham et al. used smart meter and thermostat data to estimate the heat loss rate and the thermal 

capacity of 99 and 67 residential buildings, respectively [31, 32]. They then used the heat loss rate 

to estimate thermal capacity and evaluate the thermal performance of residential buildings. The 

analysis showed that newer houses have lower heating loss rate, and the thermal capacity of the 

building envelope had a positive correlation with the size of the house. It is important to mention 

that this analysis used a small sample size and thus generalized conclusions could not be drawn.  

John et al. used a dataset from smart thermostats to identify the thermal performance of 

approximately 10,000 buildings across North America using the decay curve method. They 

characterized seasonal variations of RC values and identified a significant correlation between RC 

values and building age [33]. Baasch et al. compared the energy balance and the decay curve 

method to estimate RC values from smart thermostats datasets by applying these methods on 2000 

residential buildings in Canada and the US [29]. However, further validation of these methods and 

the relationship between RC values estimated using different methods for the same houses is 

needed across a larger sample of buildings. Furthermore, the effect of building attributes including 

their age, location and typology on estimated RC values was not investigated. 
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Chapter 3: Methodology 

3.1 Data Description 

The data used for this study was obtained from smart thermostat users who agreed to 

anonymously share their thermostat usage under the ‘Donate Your Data (DYD)’ program 

administered by ecobee Inc. [35]. The Dataset consists of five-minute interval data measured from 

the thermostat and sensors around the house, and users-reported metadata which describe the house 

characteristics. Outdoor weather data from the nearest weather station is also provided for each 

house at the same granularity as thermostat real-time data (i.e., 5-minute intervals). Table 2 

provides details about DYD dataset. 

Table 2: Ecobee Dataset Description 

Attribute Description 

House ID Anonymous unique ID of each user 

HVAC mode Indicates whether the HVAC system is off, heat, cool, auto, 

auxiliary heat 

Indoor temperature (°F) Measurement from ecobee thermostats 

Outdoor temperature (°F) Measurement from the nearest local weather station 

Equipment runtime 

(seconds) 

Measurement from ecobee thermostats 

Country User input (US, CA, etc.,) 

Province/ State User input (QC, ON, CA, FL, etc.,) 

City User input (Montreal, Toronto, New York, etc.,) 

Building style User input (Detached, Apartment, Row-House, others, etc,) 

Floor area (ft2) User input (500, 1000, 1500, etc.,) 

Number of Floors User input (1, 2, etc.,) 

Age of the house (years) User input (10, 20, etc.,) 

The data were collected from 95,215 houses across Canada and US between November 2015 

and December 2019. The ASHRAE climate zone was identified for each house according to its 

geographical location. This study focused on investigating the thermal behaviour of residential 

buildings in colder climates, where the outdoor temperature is much lower than the indoor 

temperature and heating is required to maintain the indoor conditions at a comfort state. For that 
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reason, the analysis focused on ASHRAE climate zones 4 to 8 (mixed, cool, cold, very cold, and 

subarctic\arctic) which include 60,003 houses. Figure 3 shows the available thermostat data for 

each ASHRAE climate zone. According to the figure, most of the houses belonged to climate zone 

5 (57%) and climate zone 4 (27%). Climate zone 8 was not considered in this analysis since it only 

had five houses, which would not be representative.    

 

 

Figure 3: Insights on data availability in terms of ASHRAE climate zones. 
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Figure 4 shows the data availability with respect to building style. Around 53% of the data 

came from detached houses, while another 10.4% came from rowhouses, 6.4% from apartments 

and condos, and 2.2% from semi-detached houses.  It is important to note that “building style”, 

“floor area”, and “building age” are user inputs, thus many users did not report this information or 

may have used inaccurate values which cannot be verified. In fact, approximately 26% of the 

houses did not contain information regarding “building style” as shown in Figure 4. Similarly, 

“floor area” and “building age” of each house were not provided for 12% and 21% of the houses, 

respectively. Approximately 2.5% of users entered very large floor areas (exceeding 5000 sq.ft), 

which we considered a user error (e.g., possibly representing the area of entire MURBs rather than 

individual units), thus they were excluded from the analysis.   

 

Figure 4: Insights on data availability in terms of building-styles. 

3.2 Investigating Thermal Performance Using Grey-box Modelling Approaches  

The main goal of this study is to investigate the thermal performance of residential buildings 

using the temperature readings from smart thermostat dataset. The time constant (RC value) is one 

the building’s thermal characteristics that can be estimated from the thermostat readings. This RC 
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value is a measure that characterize the building ability to retain heat by quantifying the time the 

building takes to achieve a new thermal equilibrium after any change in its internal and/or external 

environmental conditions.  

To estimate the buildings’ time constants, the analysis focused only on periods at which the 

outdoor temperature was lower than the indoor temperature, no solar heat gains were expected, 

and other internal heat gain were minimal. These restrictions were necessary to ensure that 

fluctuation in indoor temperature were dominated by the indoor-outdoor temperature differential 

and/or the supplied heat from the heating system. Therefore, only night periods in colder months 

were considered, which were defined as periods between 8:00 pm to 5:00 am between October to 

April. These periods had a relatively larger difference between indoor and outdoor temperature, as 

well as a lower likelihood for additional disturbances such as opening windows in cold climates. 

Two different gray box modelling approaches were then used to estimate the time constant for 

each house: 

i. The exponential decay curves of the indoor temperature. 

ii.  The numerical integration of the thermal energy balance equation.  

The thermal energy balance in a building (expressed in equation 1) is the base of the physics 

equations used in both models.  

 
𝐶

𝑑𝑇𝑖𝑛

𝑑𝑡
 (𝑡) =  𝑄̇𝑖𝑛(𝑡) + 𝑄̇ℎ(𝑡) + 𝑄̇𝑠𝑜𝑙(𝑡) − 

1

𝑅
 (𝑇𝑖𝑛(𝑡) − 𝑇𝑒𝑥𝑡(𝑡)) −  𝑄̇𝜐𝑒𝑛(𝑡) 

(1) 

Where: 

• 𝑻𝒊𝒏 is the indoor temperature measurement. 
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• dt is the time step. 

• 𝑻𝒆𝒙𝒕 is the outdoor temperature. 

• 𝑸̇𝒊𝒏  is the internal heat gains. 

• 𝑸̇𝒉  is the heat flow supplied by heating system. 

• 𝑸̇𝒔𝒐𝒍  is the solar radiation gains. 

• 𝑸̇𝝊𝒆𝒏 is the heat flow due to ventilation. 

• C is the lumped building capacitance. 

• R is the lumped building thermal resistance. 

However, since this analysis only consider night periods with no solar gains and with the 

assumption that the internal heat gain is minimum at night which makes the heat flow dominated 

by the heat supplied by the heating system and the heat flow due to the indoor and outdoor 

temperature difference, thus the thermal balance equation was rewritten as: 

 
𝐶

𝑑𝑇𝑖𝑛

𝑑𝑡
 (𝑡) =  𝑄̇ℎ(𝑡) −  

1

𝑅
 (𝑇𝑖𝑛(𝑡) −  𝑇𝑒𝑥𝑡(𝑡)) 

(2) 

The heat flow supplied by heating system 𝑄̇ℎ can be expressed as: 

𝑄̇ℎ(𝑡) =  𝛿𝑜𝑛 (𝑡) × 𝐾 (3) 

Where: 

• 𝜹𝒐𝒏 is the duty cycle for the heating system. 

• K is the heating power. 
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The thermal energy balance therefore becomes: 

 𝑑𝑇𝑖𝑛

𝑑𝑡
 (𝑡) =  

1

𝑅𝐶
 (𝑇𝑒𝑥𝑡(𝑡) − 𝑇𝑖𝑛(𝑡)) +  𝛿𝑜𝑛 𝑅𝐾  

(4) 

Where: 

• RC is the Resistance- Thermal capacitance for the entire building or the thermal time 

constant. 

• RK is the Resistance- Heating Power averaged for entire building. 

3.2.1 Least-squares Fitting of Decay Curves 

The decay curve method assumes no heat input (i.e., HVAC is off) and that outdoor 

temperature is much lower than indoor temperature. At these times, the indoor temperature will 

decay towards the outdoor temperature at an exponential rate, which can be described by equation 

(5). 

 
𝑇𝑖𝑛(𝑡) = (𝑇𝑜 −  𝑇𝑒𝑥𝑡)𝑒

−𝑡
𝑅𝐶 +  𝑇𝑒𝑥𝑡 

(5) 

Where: 

• 𝑻𝒐 is the initial indoor temperature. 

• 𝑻𝒆𝒙𝒕 is the long-term final indoor temperature. 

• t is the time elapsed in hours. 

The RC parameter in this case represents the time it takes for a building’s indoor temperature 

to realize 63.2% of the total change in its initial temperature given a constant outdoor temperature 

that is lower than the indoor temperature, while no (substantial) internal source of heat are active, 
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as shown in Figure 5 [34].  

 

Figure 5: Conceptual representation of the time constant and decay curve adapted from [32]. 

Given the assumptions of the decay curve methods, time periods with free-floating 

conditions (i.e. when the HVAC is off and outdoor temperature is relatively constant) were first 

identified for each house where applicable. The analysis was then restricted to periods in which 

the difference between indoor and outdoor temperature was at least 5 ºF. Other filtering methods 

were also applied, which are summarized in Table 3.  

Table 3: Filters applied to identify decay curves. 

Filter Value 

The HVAC mode is off.   

Minimum drop in the internal temperature. 1 ⁰F  

Minimum indoor-outdoor temperature difference.  5 ºF 

Maximum change in the Outside temperature. 1 ºF 
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Based on these filters, over 55% of the houses did not have any eligible periods for the decay 

curve analysis method, while 14% of houses only had one decay curve (which were excluded since 

a minimum of two decay curves were deemed necessary to validate the estimated RC values). 

Figure 6 shows the frequency distribution of the number of decay curves found for each house. 

After the decay curves were identified, the initial temperature 𝑇𝑜 and the time constant RC were 

estimated based on equation 1 using a non-linear least-square curve fitting approach. The average 

and standard deviation of RC values for each house was also calculated to remove unreliable 

values, which were deemed as those with a standard deviation higher than 25% of the mean. 

3.2.2 Least-squares Fitting of the Numerically Integrated Thermal Energy Balance 

Equation 

Another approach was investigated by solving a simplified energy balance equation (6) using 

Euler’s method for numerical integration to estimate the parameters RC and RK as follows. 

 
𝑇𝑖𝑛,𝑖+1 = 𝑇𝑖𝑛,𝑖  +  ∆𝑡 [ 

1

𝑅𝐶
 ((𝑇𝑒𝑥𝑡,𝑖− 𝑇𝑖𝑛,𝑖) + 𝛿𝑜𝑛,𝑖  𝑅𝐾)] 

(6) 

Where Δt is the timestep at which a change in the indoor temperature is detected. 

Figure 6: The distribution of identified decay curves per house. 
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This model was used to estimate RC and RK values to predict indoor temperature over 

specific time periods. Non-linear least-square optimization was then used to identify RC and RK 

values that minimize the differences between predicted values and measured indoor temperatures.  

This method was implemented to overcome the limitations of the decay curves approach in which 

the analysis was restricted to periods of constant outdoor temperature and no heating input in the 

system. The filters used for this method intended to identify periods in which heating was on for 

at least 5% of the time, and indoor temperature changed while outdoor temperature was 

consistently lower than indoor temperature by at least 2 ⁰F. Other filters are summarized in Table 

4, while Figure 7 shows the frequency distribution of the identified number of periods per house. 

To fit the model, ten periods were randomly selected for each house and fitted into the model to 

estimate RC and RK values. This process was repeated ten times followed by calculating the 

average RC values and the standard deviation for each house, and finally the unreliable results 

were removed (also defined as those with a standard deviation higher than 25%). The average RC 

values derived from each method for the same houses were then tested for correlation and plotted 

against each other. 

Table 4: Filters applied to identify periods for the energy balance analysis method. 

Filter Value 

The HVAC mode is ‘heating’    

Minimum variance in the internal temperature 0.2 ⁰F 

Minimum indoor-outdoor temperature difference.  1 ⁰F 

Heating Duty cycle minimum. 5%  
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Figure 7: The distribution of identified periods per house for energy balance analysis. 

3.2.3 Models Performance Evaluation 

For the decay curve model, the R-squared was calculated for each identified period using 

equation (7). This R-squared values represent the goodness of fit for the predicted vs.  actual indoor 

temperatures.  

 
𝑅2 = 1 −

∑ (𝑇𝑓𝑖𝑡̂ −  𝑇𝑎𝑐𝑡)2𝑛
𝑖=1

∑ (𝑇𝑎𝑐𝑡 − 𝑇̅)2𝑛
𝑖=1

 
(7) 

Where: 

• 𝑻𝒊̂ is the fitted indoor temperature. 

• 𝑻𝒂𝒄𝒕 is the actual indoor temperature reading. 

• 𝑻̅ is mean of the indoor temperature reading. 

The average R-squared for the identified decay curves was 0.98, which indicates high 

accuracy in the fit of the curve to the actual indoor temperature readings. Figure 8 shows an 
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example of the fitted curve versus the actual temperature measurements.  

Figure 8: Fitting the indoor temperature for one decay curve. 

On the other hand, the performance of the energy balance model was evaluated by comparing 

the predicted and the actual indoor temperatures for ten periods randomly selected and calculate 

the sum of squares of the residuals. The actual indoor temperature ranged from 285 to 295⁰K 

across the houses and the average sum of the squares was 6.3⁰K per period. Figure 9 shows the 

predicted values compared to the actual indoor temperature for one period as an example. 
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Figure 9: Comparing the predicted and the actual temperatures for one period from the energy 

balance model. 

3.3 Estimating the Thermal Resistance (R-value) from the Estimated Time Constants 

The obtained RC values were used to estimate corresponding R-values after making 

additional assumptions. First, RC-averaged values for each house were divided by a thermal 

capacitance C value of 10,000 and 20,000 Wh/K (which approximately represent the range of 

thermal mass of lightweight to heavyweight constructions [29], [36-41]). Results were then 

multiplied by the buildings’ exposed surface areas, which were assumed to be 100, 200, 500, 1000 

m2 for apartments, row-houses, semi-detached and detached houses, respectively. Since the ecobee 

dataset did not include information on the thermal mass of the envelopes of each house nor the 

exposed surface areas, these assumptions were made based on existing literature references and 

typical dimensions of different house styles. Results of this analysis provided an approximate 

upper and lower bound of R-values (m2K/W) for each house.  

A benchmark for these R-values was also calculated based on ASHRAE 90.2 requirements 
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which focus on the energy-efficient design of low-rise residential buildings. Assuming 14% 

window to wall ratio which is prescribed in the ASHRAE standard, a roof surface area covering 

25% of total exposed area, and walls’ surface area representing the remaining 75%, the effective 

envelope R-values based on the code requirements were found to range between 13.1 – 15.3 

m2K/W for climate zones 4 – 8. Assuming additional heat losses due to infiltration at a rate of 0.25 

L/s.m2, the effective code-compliant R-values would range between 7.7 – 9.0 m2K/W for climate 

zones 4 – 8.  

For further investigation, another benchmark was calculated for the Canadian houses based 

on part 9 of the Canadian National Building Code (NBC) which focus on low-rise residential 

buildings requirements. The effective envelope R-values based on code requirement were found 

to range between 12.2 – 14.7 m2K/W for climate zones 4 – 8. Assuming additional heat losses due 

to infiltration at a rate of 0.25 L/s.m2, the effective code-compliant R-values would range between 

7.4 – 8.3 m2K/W for climate zones 4 – 8. However, it must be noted that these estimated effective 

R-values represent the latest code requirements, thus actual effective R-values estimated using the 

ecobee dataset can be significantly lower due to poor craftsmanship, as well as in older houses 

which do not adhere to the latest ASHRAE and NBC requirements. 

3.4 Investigating the Relationship between the Estimated Time-constants and Buildings’ 

Attributes 

The effect of building-age, floor-area, building-style, number of floors and ASHRAE climate 

zones on the identified RC values for each house was analyzed. First the houses were grouped with 

respect to the attributes reported in the metadata. For building age, each group represented a decade 

(ten years bins) while for the floor area, bins of 1000 ft2 were used. Additionally, buildings were 
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grouped according to their style (apartment, row-house, semi-detached, and detached) and 

ASHRAE climate zones 4-7 (mixed, cool, cold and very cold). For this analysis, groups with less 

than 50 houses were not considered. Since the identified RC values for different houses did not 

follow a normal distribution according to Sharpio-Wilk’s normality test (p < 0.05), non-parametric 

statistical tests were used throughout this analysis. The Kruskal-Wallis H test was used to 

investigate if there is any significant difference among the groups. If statistically significant 

differences were shown, pairwise comparisons using the Dunn procedure with a Bonferroni 

correction was applied [42].  

3.5 Developing a Multi-class Classification Model to Predict the RC Range for 

Residential Buildings Using the Buildings’ Attributes   

The estimated RC values from the decay curve and the energy balance methods were 

grouped into categories (classes) using fifteen-hour bins. As a result, eleven classes were generated 

for all the houses with the higher class being more than 150 hours. Different approaches were then 

used in order to develop a classification model to predict the RC range for each house based on its 

attributes. The proposed methodology to develop the multi-class classification model is illustrated 

in Figure 10. The building’s attributes used in this section are the building-style, building age, 

floor-area, ASHRAE climate zone, and number of floors. This methodology was applied to the 

RC values obtained from the decay curve and the energy balance methods separately. In the next 

subsections, each step of the workflow is explained in detail.  
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Figure 10: The workflow of the developing the multi-class classification model of RC values 

based on building attributes 

3.5.1 Unsupervised Clustering of the Estimated Time-constants 

The RC values estimated from the decay curve and the energy balance methods were 

clustered using the K-means method. This type of clustering is called the unsupervised clustering 

since no label was given to the clustering algorithm in order to use it to define the structure of 

clusters. The optimal number of clusters was found by using the Elbow method with respect to the 

within cluster sum of squares (WCSS). The WCSS can be calculated using equation 8.  

 

𝑊𝐶𝑆𝑆 =   ∑ ∑ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑖 , 𝐶𝑡𝑘)2

𝑑𝑚

𝑑𝑖𝑖𝑛 𝐶𝑖

𝐶𝑛

𝐶𝑘

 

(8) 

Where: 

• Ct is cluster centroid. 
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• d is the data point in each cluster. 

The WCSS will keep decreasing with the increase of the number of clusters till it reached 

zero when the number of clusters is equal to the number of datapoints in the dataset. The goal of 

the elbow method is to find the lower number of clusters that minimize the WCSS. Figure 11 

shows the elbow method using the RC values from the decay curve and the energy balance 

methods. As shown in the figure, the optimal number of clusters, which can be seen as the 

inflection point in the curve, is four clusters for both the decay curve and the energy balance RC 

values. After finding the optimal number of clusters, the K-means method was applied to find the 

right cluster for each house. Table 5 shows the description of the clusters in terms of the RC classes 

in each cluster.  

 

(a) 

(b) 
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Table 5: Description of the clusters. 

Decay Curve 

Cluster  Number of classes in each cluster RC Classes in each cluster 

1 2 0-15 and 16-30 

2 2 31-45 and 46-60 

3 3 61-75, 76-90, and 91-105 

4 4 106-120, 121-135, 136-150, and 

more than 150 

Energy Balance 

Cluster  Number of classes in each cluster RC Classes in each cluster 

1 3 0-15, 16-30, and 31-45 

2 1 46-60 

3 2 61-75 and 76-90 

4 5 91-105, 106-120, 121-135, 136-

150, and more than 150 

 

3.5.2 Data Preprocessing 

3.5.2.1 Encode the Categorical Data 

All Machine learning algorithms (ML) requires numerical data, thus, the first step in data 

pre-processing was to encode the categorical features (i.e. building styles) into numerical values 

using the one hot encoding technique. One hot encoding transforms a single variable with n 

observations and d distinct values, to d binary variables with n observations each. Each observation 

indicating the presence (1) or absence (0) of the dichotomous binary variable.   

3.5.2.2 Feature Scaling     

The second step in data pre-processing was feature scaling of the numerical features (i.e. 

building age, floor area, and number of floors) using the normalization technique. The numerical 

features used to describe the building’s attributes have a different dynamic range. Thus, feature 

normalization was required to approximately equalize ranges of the features such that they have 

Figure 11: The Elbow method for: (a) the decay curve RC values, and (b) the 

energy balance RC values. 



30 

 

 

approximately the same effect in the predictions process.  

3.5.2.3 Feature Selection 

To select the optimal number of features (i.e. the independent variables) for the classification 

model, the importance of the building-style, building-age, floor-area, ASHRAE climate zone, and 

number of floors in predicting the range of the RC value for each house was ranked using the 

importance factors from the Adaptive boosting algorithm (AdaBoost). The AdaBoost algorithm 

was proposed by Yoav Freund and Robert Shapire in 1995 for generating a strong classifier from 

a set of weak classifiers (i.e. base learners) [43]. For this study, a total of fifty random forest 

classifiers (RF) were used to predict the RC range for each house. The AdaBoost algorithm started 

by assigning equal weights to each house in the dataset. These weights can be calculated using 

equation 9. 

 
𝑊𝑖 =   

1

𝑁
  

(9) 

Where: 

• 𝑾𝒊 is the initial weight given to each house in the dataset. 

• N is the number of the houses in the dataset. 

The RF classifiers were then fitted on the dataset sequentially. Based on the performance of 

each classifier the weights assigned to the houses were adjusted by decreasing the weights for the 

correctly classified houses and increasing the weights for the incorrectly classified houses. With 

this weight’s adjustment, the subsequent classifier can focus more on the difficult data sample (i.e. 

the houses with higher weights). After fitting all the RF classifiers, the importance factors of each 

building attributes were examined. The importance feature is computed as the normalized total 

reduction of the criterion brought by that attribute. The higher the factor is the more influence the 
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attribute has on predicting the RC range. Table 5 shows the ranking of the building attributes based 

on the importance factors for the decay curve and the energy balance results. As seen in the table, 

the importance factors of the building’s attributes were relatively close in both methods. As a 

result, the five attributes were used as the independent variables to predict the RC ranges. For the 

RC values obtained using the decay curve method, floor area and ASHRAE climate zone was 

found to be the most influential attributes on predicting the RC ranges. While for RC values from 

the energy balance methods, ASHRAE climate zone and building age were the most influential 

attributes.  

Table 6: Ranking of Building Attributes based on importance. 

Rank  Building’s Attributes  Importance Factor 

Decay Curve 

1  Floor area  0.296 

2 ASHRAE climate zone 0.287 

3  Number of floors 0.256 

4 Building age 0.233 

5 Building Style 0.221 

Energy Balance 

1  ASHRAE climate zone 0.161 

2 Building age 0.143 

3  Number of floors 0.139 

4 Floor area 0.134 

5 Building Style 0.124 

 

3.5.2.4 Generating the Training and Validation Datasets 

The last step in data pre-processing was splitting the dataset into training and validation 

subsets. The records for each subset were chosen randomly from the entire data set. The training 

subset was populated using 75% of the data, while the remaining 25% were used for validation. 

The training subset included all the eleven RC classes, however, the number of houses in 

some of the classes (i.e. the minority classes) was much lower than other classes (i.e. the majority 
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classes), which might cause imbalance training subset. To avoid this problem, another training 

subset were generated by applying resampling techniques on the original training datasets. Two 

resampling techniques were applied in this study namely, 1) the under-sampling technique and 2) 

the synthetic minority oversampling technique (SMOTE). In the SMOTE technique, the minority 

classes were oversampled by finding the K-nearest-neighbours (KNN) for randomly chosen 

observations (i.e. houses) to generate similar ones, while randomly chosen observations were 

deleted from the majority classes in the under-sampling technique. The distribution of the training 

datasets before and after resampling can be found in Appendix 14.  

It is important to mention that the four training subsets from before and after resampling of 

the decay curve and energy balance results were used to train the multi-class classification model 

separately.       

3.5.3 The Two-step Multi-class Classification Model 

The prediction of the RC ranges was made on two steps, first by training the model to predict the 

cluster of the house using the building’s attributes. After this step, the cluster number and the 

building’s attributes were used to predict the RC range. These steps are illustrated in Figure 12.  

The ML algorithm used for the two-step classification models was the AdaBoost algorithm with 

RF as base learner. A total of fifty RF models were used, each consisting of fifty decision trees. 

This structure was found to be the optimum structure after multiple trials. Using more RF models 

or decision trees caused the model to be overfitted, while using fewer models decreased the 

accuracy of the model predictions.   
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Figure 12: The workflow of the two-step multi-class classification model for: (a) the decay curve results, and (b) the 

energy balance results 

(a) 

(b) 
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3.5.4 Evaluating the performance of the Multi-class Classification Model  

The accuracy of the two-step multi-class classification model was evaluated by making 

predictions against the validation subset. Accuracy was measured by comparing the predicted RC 

range from the model to the actual RC range of each house in the validation subset, then providing 

a confusion matrix. The confusion matrix was then analysed to estimate the accuracy and 

misclassification rate. Moreover, the relationship between the actual values of RC range in the 

validation subset and the predicted values was assessed using the Kolmogorov–Smirnov test (KS 

test). The KS test reported the maximum difference between the distributions of the actual and 

predicted values. Based on the KS results, the influence of resampling the training subsets on the 

accuracy of the model predictions was examined.   
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Chapter 4: Results and Analysis 

4.1 The Time Constant (RC values) Results 

For the decay curves method, 2112 houses with reliable results were found. The median of 

the identified RC values for these houses was 52 hours, and the mean was 58 hours, while 90% of 

the values ranged between 11– 80 hours. On the other hand, the energy balance model had 21,921 

houses with reliable results. The median of identified RC values for these houses was 51 hours, 

and the mean was 55 hours, while 90% of the values ranged between 11 – 110 hours. Figure 13 

shows the frequency distribution of the identified RC values from both models, while a full 

descriptive statistic of the RC values from both methods with respect to the building’s attributes 

can be seen in appendix 1- 4. 

4.2 The R-value Results 

To gain a better understanding of these estimated RC values, equivalent minimum and 

maximum R-values were calculated for each house based on the methodology described in section 

3.3. These estimated minimum R-values had a median of 2 m2K/W for the decay curve and the 

energy balance results, with more than 85% of the values ranging between 0.5 to 4 m2K/W.  

On the other hand, the median for estimated maximum R-values was 4 m2K/W for the decay 

(a) (b) 

Figure 13: The distribution of RC values identified using: (a) the decay curves model, (b) the energy balance 

model. 
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curve and the energy balance results. More than 85% of the values form both methods ranged 

between 1 to 14 m2K/W. The distributions of both minimum and maximum R-values are shown 

in Figure 14, while the distribution with respect to the building’s attributes can be seen in appendix 

5- 8.  

The benchmark range of code-compliant R-values calculated in the previous section was 

13.1 -15.4 m2K/W and 7.7 -9.0 m2K/W after accounting for infiltration. Although the estimated 

R-values were relatively lower for the majority of the houses than the estimated code benchmark, 

this could be due to poor workmanship in actual buildings. Furthermore, many houses in the 

ecobee dataset were likely built to older (and less stringent) code requirements and their envelopes 

likely deteriorated over time, which resulted in a lower thermal performance. 

 

 

 

 

 

 

 

 

4.2.1 R-value Results for Canadian Houses 

The estimated minimum R-values for the Canadian houses had a median of 2 m2K/W for the 

decay curve and 3 m2K/W the energy balance results, with more than 80% of the values ranging 

(a) (b) 

Figure 14: The distribution of the estimated minimum and maximum R-values based on: (a) the decay curve model, 

(b) the energy balance model 
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between 0.5 to 4 m2K/W.  

Furthermore, the median for estimated maximum R-values was 5 m2K/W for the decay curve 

and the energy balance results. More than 80% of the values form both methods ranged between 

1 to 7 m2K/W. The distributions of both minimum and maximum R-values are shown in Figure 

15. Comparing to the NBC-code-compliant R-values which ranged from 7.4 to 8.3 m2K/W after 

accounting the inflation, the estimated R-values for the majority of the Canadian houses were 

lower than the code benchmark.    

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 15: The distribution of the estimated minimum and maximum R-values for the Canadian houses based on: (a) the 

decay curve model, (b) the energy balance model 
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4.3 Models Comparison  

Results from both the decay curves and energy balance methods were compared against each 

other. The number of houses with eligible periods for each method, as well as the percentage of 

excluded (unreliable) houses are compared in Table 7.  

Table 7: Comparison between the decay curves and energy balance methods. 

Method  Result 

Decay curve  Total number of houses 

identified 

26,862 

Percentage of unreliable 

results 

92.14% 

Median RC value 52 hours 

Energy balance  Total number of houses 

identified 

52,683 

Percentage of unreliable 

results 

58.39% 

Median RC value 51 hours 

Further analysis of the differences between both methods entailed comparing RC values for 

the subset of houses in which estimates were made using both methods, as shown in Figure 16. 

This analysis only focused on 1014 houses, (which were those for which suitable periods were 

identified to estimate RC values using both methods). A statistically significant positive correlation 

was found between the RC values obtained using both methods (r2 = 0.4, p<0.05). This observation 

supports the reliability of results obtained using both models but highlights some of their 

discrepancies given that both only relied on statistical inference only to estimate a proxy for 

thermal performance. 
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Figure 16: Linear correlation between RC values calculated using the decay curves and the 

energy balance models. 

4.4 Investigating the Relationship between RC-values and Building Attributes  

The Kruskal-Wallis H test showed a significant difference in median RC values obtained 

from both methods among the different building-ages, building-styles, and the ASHRAE climate 

zone groups as shown in Figure 17. The results of the Kruskal-Wallis H test and the Dunn pair-

comparison can be seen in appendix 9- 13.  

Figure 17a indicates that newer buildings (age <31) had the highest median RC values 

estimated from the energy balance model as they tend to have a better insulation level, while the 

middle-aged buildings (31-60) had the lowest median RC value. The decay curve RC values 

showed a similar result with the newer buildings (age<11) having the highest RC median and the 

older houses showing a decreasing trend. However, it is important to note some of the 
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inconsistencies observed between RC values obtained using each method with respect to building 

age. Since a different set of houses was identified as applicable for each method, the sub-samples 

for each of decade included different houses for each method (e.g., for the energy balance method, 

10,460 applicable houses were built 11-30 years ago compared to only 921 for the decay curve 

method, which may have skewed their median estimated RC values). Nevertheless, general 

observations regarding houses’ thermal performance relative to building attributes were identified 

through this analysis. It is also worth mentioning that the results from some studies showed that 

older houses can have a slower change rate in the indoor temperature due to a better thermal mass 

than the newer houses [44], this observation aligned with the results from the energy balance 

method where the older houses have a high RC median. However, the results from the decay curve 

method can be due to material deterioration with aging. 

Moreover, RC values obtained from both methods showed relatively similar trends with 

respect to other building attributes. For example, RC values generally increased in larger buildings 

as shown in Figure 17b, which was expected as a result of the greater thermal mass of these 

buildings. Another expected increasing trend could be seen based on climate zone using the energy 

balance and the decay curve results, confirming better thermal performance in colder climates as 

shown in Figure 17c. Finally, Figure 17d showed a decreasing trend in median RC values as the 

building’s exposed area increased based on building style (i.e., highest RC values identified for 

apartments in the energy balance results and the rowhouses in the decay curve and lowest for 

detached houses). Since apartments typically have one surface area exposed to the outside and 

rowhouses typically have two, it is expected from these styles to retain heat longer than the 
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detached houses with all surfaces exposed.    

(a) 

(b) 

(c) 

(d) 

Figure 17:Estimated RC values based on the decay curve and energy balance methods for different: (a) building 

ages, (b) floor areas, (c) ASHRAE climate zones, and (d) building-styles. 
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4.4.1 Investigating the Distribution of the RC-values with respect to Building-style

The distribution of the building styles in the RC range categories is shown in Figure 18 for 

the decay curve and the energy balance RC values. From the figure, it can be seen that in the decay 

curve results the percentage of the detached houses was the highest when the RC values ranged 

between 81 and 90 hours. However, their percentage dropped when the RC values were more than 

100 hours. Similar pattern was seen in the energy balance results, where the highest percentages 

of the detached houses were found in the RC categories between 31 to 60 hours followed by 

decreasing in the percentages for the categories with higher RC values. On the other hand, the 

percentage of the apartments was lower in the categories with lower RC values, and reached the 

highest level when the RC values were more than 130 and 120 hours in the decay curve and the 

energy balance results respectively. These observations validate the lower RC values for the 

houses with more exposed surface area to the outside (i.e. detached houses) and the higher RC for 

houses with less exposed surface area (i.e. apartments).  

 

(a) (b) 

Figure 18: The distribution of each RC range category with respect to the building-style for: (a) the decay curve 

RC-values and (b) the energy balance RC-values. 



43 

 

 

4.4.2 Investigating the Distribution of the RC-values with respect to Building-age 

Figure 19 shows the distribution of the building age groups in the RC ranges categories form 

the decay curve and the energy balance methods. For the energy balance results, an increasing 

trend can be seen in the percentages of the newer houses (age<11) reaching the highest percentage 

at the category with RC values ranged from 101 to 110 hours, which was also the highest category 

in the percentage of the newer houses in the decay curve results. This support the observation from 

the previous section, that newer houses tend to have higher RC values.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: The distribution of each RC range category with respect to the building-

age for: (a) the decay curve RC-values and (b) the energy balance RC-values. 

(b) 

(a) 
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4.4.3 Investigating the Distribution of the RC-values with respect to Floor-area 

The distribution of the floor-area groups in the RC range categories from the decay curve 

and the energy balance results is shown in Figure 20. For smaller houses (area <1000 ft2), the 

highest percentage was found in categories with RC values ranged from 131 to 140 hours for the 

decay curve results. However, for the energy balance results, the highest percentage of the smaller 

houses was in the category with 20 hours or less RC values. The larger houses (area >4000 ft2) on 

the other hand had the highest percentage in the category with the RC values ranged from the 131 

to 140 hours for the decay curve results and more than 130 hours for the energy balance results.  

 

 

 

 

 

 

 

 

 

    

(b) 

(a) 
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4.4.4 Investigating the Distribution of the RC-values with respect to ASHRAE Climate 

Zone 

Figure 21 shows the distribution of the ASHRAE climate zones in each RC range category 

for the decay curve and the energy balance results. A decreasing trend can be seen in the 

percentages of the mixed zone (zone 4) while the percentages of the colder zones (zone 6 and 7) 

had an increasing trend especially in the energy balance results. These trends align with the code 

requirements of having higher thermal insulation for the houses in the colder climate zones which 

will lead to higher RC values than the houses in the warmer ones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: The distribution of each RC range category with respect to the floor areas for: (a) the decay curve RC-

values and (b) the energy balance RC-values. 

(b) 

(a) 
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Figure 21: The distribution of each RC range category with respect to ASHRAE climate zone 

for: (a) the decay curve RC-values and (b) the energy balance RC-values. 

4.5 The Two-step Multi-class Classification Model Results 

To train the two-step multi-class classification model, four training subsets were used; Two 

without resampling the decay curve and the energy balance RC results, and two with resampled 

subsets. The Trained models were then evaluated using the validation subsets, which had 300 

houses for the decay curve model and 4022 houses for the energy balance model. A summary of 

the evaluation results reported from the confusion matrixes and the KS test can be seen in Table 

8, while the full confusion matrices can be seen in appendix 15- 18. 

Recall that the two-step multi-class classification model aims to predict residential buildings’ 

RC value within a range (15-hour bins) based on five attributes. Validating this model using the 

validation subset with the decay curve results indicated that 79% of the houses were either 

correctly classified into their 15-hour bin range or misclassified by only one bin. For the energy 

balance subset, this percentage decreased to 61% of houses. 

Using the re-sampling method explained in section 3.5.4.2 to reduce imbalance within the 

training dataset resulted in decreasing the percentage of houses correctly classified into their 15-

hour bin range or misclassified by only one bin to 71% for the decay curve subset, and 60% for 

the energy balance subset. However, the KS test results showed that resampling the training 

subsets significantly minimized the differences between the actual values and the predicted values 

distributions as shown in Table 8 and the confusion matrices shown in the appendix. These results 

suggest that re-sampling of the training dataset would be preferred for the proposed two-step multi-

class classification model. 
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Table 8: The evaluation of the two-step multi-class classification model. 

Training subsets Classified into 

the same class 

Misclassified by only one 

class 

KS test results 

Decay Curve 

Before resampling  31% 48% 0.25 

After resampling 17% 54% 0.03 

Energy Balance 

Before resampling 38% 23% 0.16 

After resampling 27% 32% 0.05 
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Conclusion and Future Works 

In this study, two methods were used to estimate the thermal time constant (RC value) for 

more than 60,000 houses across Canada and US using ecobee smart thermostat dataset. The results 

from the decay curve method reported a median of 52 hours with 90% of the houses having RC 

values ranging from 11 to 80 hours. The energy balance results reported a median of 51 hours with 

90% of the houses having RC values ranging from 11 to 110 hours. A positive linear correlation 

was found between the RC values obtained from the two methods. The RC values were then used 

to estimate the lower and the upper bound R-values for each house and compare it to benchmark 

R-values estimated from the latest version of the ASHRAE 90.2 code requirements. The estimated 

bounds for the R-values were lower than the ASHRAE-compliant R-values which can be due to 

the poor craftmanship or that the older houses followed less stringent energy codes. 

Furthermore, the estimated RC values were analyzed with respect to the building’s attributes. 

The results showed higher RC medians for larger houses and for the houses in the colder climate 

zones, while a decreasing trend was seen in the RC medians of smaller buildings, especially row 

houses and apartments. Finally, a two-step multi-class classification model was developed to 

predict the RC range for the houses based on their attributes, whose results suggested that re-

sampling of the training datasets to reduce imbalance can minimize the differences between the 

distributions of actual and predicted values. The classification models were also used to rank the 

importance of the building’s attributes on the predictions of the RC range. The floor area and 

ASHRAE climate zone had the highest influence on RC range predictions based on the decay 

curve model, while the energy balance model ranked the ASHRAE climate zone and building age 

as the highest attributes. The building style had the lowest impact on the RC range prediction based 
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on the decay curve and the energy balance models.   

By using a large-scale dataset, the results from this study can be very beneficial to prioritize 

existing buildings for retrofits as well as providing inputs for urban-scale simulations and 

generating renovation scenarios for different buildings clusters. However, they are subjected to 

some limitations and require further development. In the ecobee dataset, which was the core of 

this study, many building attributes such as age, floor area, and number of floors were user-based 

inputs which are prone to errors. This limitation was addressed in the data cleaning process and 

identified the outliers with respect to each reported building’s attribute.  

Another limitation of the used dataset is that the sample of buildings from which data was 

collected may not be representative of the entire building stock, despite its large size, given the 

relatively high price point of smart thermostats. In this respect, more data are required from the 

wider building stock to enhance the generalization and the accuracy of the results. Furthermore, 

the outdoor temperature readings in the dataset were approximated from nearby weather stations 

which could differ from microclimates at the exact building site. Since these measurements were 

used to estimate the RC value for each house, the proposed methodology to develop a model to 

predict the house thermal performance based on its attributes focused on predicting the RC ranges 

rather than the exact value.  

In terms of the potential limitation of the decay curve and the energy balance methods, these 

methods assume that heat gains were attributed to the heating system only. Although specific 

periods were filtered out to ensure solar and occupant heat gains were minimized, internal heat 

gains may have still influenced recorded temperatures used to fit each model. To overcome this 

limitation, more detailed dataset is required which include the solar radiation and occupancy 
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schedule. This can help to incorporate the solar and occupant heat gains in the estimation of the 

building’s thermal performance process.   

A combination between the thermostat datasets and the energy usage data can also be 

discussed in future work. This combination could help estimating the building thermal capacitance 

(C) and the thermal resistance (R-value) as independent values instead of the RC values. Moreover, 

further research will also focus on exploring other data-mining techniques and approaches other 

than the proposed in this study to increase the accuracy of identifying the correlation between the 

building’s attribute and the thermal performance which could help improve the performance of the 

classification model.   
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Appendix 

Appendix 1: Descriptive statistics of the RC values estimated from the energy balance and the 

decay curve method for different building-style.   

Energy Balance Results     

Building styles Mean Standard Deviation Median  Number of Houses 

Apartment 64.46 31.46 55.82 751 

Row House 59.79 23.25 79.33 2014 

Semi-Detached  60.85 22.26 70.10 592 

Detached 54.00 20.60 58.41 13,548 

Others  53.68 21.53 52.19 5016 

Total 

  

   21,921 

Decay Curve Results     

Building styles Mean Standard Deviation Median  Number of Houses 

Apartment 68.60 53.45 79.09 101 

Row House 64.78 37.21 68.16 222 

Semi-Detached  72.43 49.34 61.43 69 

Detached 56.51 31.97 58.11 1135 

Others  54.92 32.75 55.73 585 

Total      2112 

Appendix 2: Descriptive statistics of the RC values estimated from the energy balance and the 

decay curve method for different floor-area.   

Energy Balance Results     

Floor area Mean Standard Deviation Median Number of Houses 

1-1000 53.64 25.95 48.87 739 

1001-2000 53.87 21.68 49.56 7982 

2001-3000 54.42 20.68 50.37 7046 

3001-4000 57.17 21.19 53.14 2880 

4001-5000 59.28 22.01 54.68 971 

Total 

  

   19,618 

Decay Curve Results     

Floor area Mean Standard Deviation Median Number of Houses 
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1-1000 61.70 50.20 49.04 102 

1001-2000 56.54 34.09 50.17 824 

2001-3000 57.08 32.67 51.18 600 

3001-4000 62.30 32.46 55.91 215 

4001-5000 66.74 34.47 62.33 91 

Total      1832 

Appendix 3: Descriptive statistics of the RC values estimated from the energy balance and the 

decay curve method for different building-age.   

Energy Balance Results     

Building age Mean Standard Deviation Median  Number of Houses 

1-10 61.02 23.78 54.67 4252 

11-20 55.12 21.52 54.24 3838 

21-30 52.53 17.52 54.47 2370 

31-40 51.76 18.71 46.81 1914 

41-50 51.53 19.21 47.21 1520 

51-60 51.11 18.39 46.27 1405 

61-70 51.74 18.87 50.53 896 

71-80 50.88 19.41 51.51 411 

81-90 50.86 20.44 50.89 654 

91-100 51.81 21.73 58.24 398 

101-110 53.09 21.38 65.38 254 

111-120 52.60 24.88 65.73 407 

Total 

  

   18,319 

Decay Curve Results     

Building age Mean Standard Deviation Median  Number of Houses 

1-10 58.89 33.12 56.91 354 

11-20 58.18 32.44 51.15 365 

21-30 61.65 39.07 49.18 202 

31-40 53.26 30.63 47.78 166 

41-50 53.60 35.55 47.75 129 

51-60 56.74 36.35 48.66 138 

61-70 52.97 26.62 48.19 97 

71-80 54.78 21.48 47.40 47 

81-90 57.32 33.23 45.995 81 
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91-100 58.18 28.20 47.06 45 

101-110 67.98 27.03 49.75 29 

111-120 68.41 44.93 47.097 43 

Total    1696 

Appendix 4: Descriptive statistics of the RC values estimated from the energy balance and the 

decay curve method for different ASHRAE climate zones.   

Energy Balance Results     

ASHRAE Climate Zone Mean Standard Deviation Median Number of Houses 

Mixed 50.13 19.62 46.42 4410 

Cool 53.22 20.53 49.18 12247 

Cold 62.79 23.93 58.28 3419 

Very cold 67.40 23.84 63.31 481 

Total 

  

   20,559 

Decay Curve Results     

ASHRAE Climate Zone Mean Standard Deviation Median Number of Houses 

Mixed 51.92 33.76 46.42 481 

Cool 57.47 34.43 51.33 1225 

Cold 71.02 37.62 64.43 292 

Very cold 57.48 33.91 47.3 29 

Total   

 

2027 
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Appendix 5: The distribution of the estimated minimum R-values from the decay curve model 

with respect to the building’s attributes. 

 

(b) 

(c) (d) 

(a) 
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Appendix 6: The distribution of the estimated minimum R-values from the energy balance model 

with respect to the building’s attributes. 

 

(a) (b) 

(c) (d) 
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Appendix 7: The distribution of the estimated maximum R-values from the decay curve model 

with respect to the building’s attributes. 

 

(a (b) 

(c (d) 
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Appendix 8: The distribution of the estimated maximum R-values from the energy balance model 

with respect to the building’s attributes. 

 

Appendix 9: The results of the Kruskal Wallis test for the energy balance and the decay curve RC-

values.   

Kruskal Wallis test Results     

Energy balance Results      

Attributes  H-value P-value Degree of freedom  Chi-squares  

Building- styles 296.02 1.58x10-63 4 9.488 

Building-age 656.81 9.67x10-134 11 19.675 

Floor area  144.92 2.5x10-30 4 9.488 

ASHRAE’ climate zone 1094.86 4.75x10-237 3 7.815 

Number of Floors 20.20 4.099x10-05 2 5.991 

Decay Curve Results     

Attributes  H-value P-value Degree of freedom  Chi-squares  

Building- styles 20.21 0.0005 4 9.488 

Building-age 21.45 0.03 11 19.675 

(a) (b) 

(c) (d) 
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Floor area  17.755 0.0014 4 9.488 

ASHRAE’ climate zone 69.39 5.75x10-15 3 7.815 

Number of Floors 148.625 5.33x10-33 2 5.991 

Appendix 10: The p-value results of the Dunn pair-comparison test for the energy balance and the 

decay curve RC-values for different building-style. 

Dunn pair-comparison test      

Decay Curve Results       

Apartment  Row-House Semi-Detached Detached  Other  

Apartment  -1 0.99996 0.99996 0.99996 0.41327 

Row-House 0.99996 -1 0.99996 0.03238 0.00265 

Semi-Detached 0.99996 0.99996 -1 0.12016 0.03120 

Detached  0.99996 0.03238 0.12015 -1 0.66231 

Other  0.41327 0.00265 0.03120 0.66231 -1 

Energy Balance       

Apartment  Row-House Semi-Detached Detached  Other  

Apartment  -1 0.99996 0.99996 0.99996 0.41327 

Row-House 0.99996 -1 0.99996 0.03238 0.00265 

Semi-Detached 0.99996 0.99996 -1 0.12016 0.03120 

Detached  0.99996 0.03238 0.12015 -1 0.66231 

Other  0.41327 0.00265 0.03120 0.66231 -1 

Appendix 11: The p-value results of the Dunn pair-comparison test for the energy balance and the 

decay curve RC-values for different floor-area. 

Dunn pair-comparison test      

Decay Curve Results       

1-1000 1001-2000 2001-3000 3001-4000 4001-5000 

1-1000 -1.00 1.00 1.00 0.35 0.15 

1001-2000 1.00 -1.00 1.00 0.03 0.03 

2001-3000 1.00 1.00 -1.00 0.12 0.08 

3001-4000 0.35 0.03 0.12 -1.00 1.00 

4001-5000 0.15 0.03 0.08 1.00 -1.00 

Energy Balance       

1-1000 1001-2000 2001-3000 3001-4000 4001-5000 
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1-1000 -1 0.168554756 0.019 3.36E-08 7.32E-12 

1001-2000 0.17 -1 0.01 2.26E-17 2.11E-17 

2001-3000 0.01853219 0.01 -1 4.91E-09 7.90E-12 

3001-4000 3.36E-08 2.26E-17 4.91E-09 -1 0.014 

4001-5000 7.32E-12 2.11E-17 7.90E-12 0.014 -1 
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Appendix 12: The p-value results of the Dunn pair-comparison test for the energy balance and the decay curve RC-values for different 

building-age. 

 
Dunn Pair-comparison Test Results  

Decay Curve Results 

 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110 111-120 

1-10 -1 1 1 1 1 1 1 1 1 1 1 1 

11-20 1 -1 1 1 1 1 1 1 1 1 1 1 

21-30 1 1 -1 1 1 1 1 1 1 1 1 1 

31-40 1 1 1 -1 1 1 1 1 1 1 0.38 1 

41-50 1 1 1 1 -1 1 1 1 1 1 0.27 0.75 

51-60 1 1 1 1 1 -1 1 1 1 1 0.95 1 

61-70 1 1 1 1 1 1 -1 1 1 1 1 1 

71-80 1 1 1 1 1 1 1 -1 1 1 1 1 

81-90 1 1 1 1 1 1 1 1 -1 1 1 1 

91-100 1 1 1 1 1 1 1 1 1 -1 1 1 

101-110 1 1 1 0.38 0.27 0.95 1 1 1 1 -1 1 

111-120 1 1 1 1 0.75 1 1 1 1 1 1 -1 

Energy Balance 

 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110 111-120 

1-10 -1 

8.68E-35 

5.81E-

50 

4.75E-60 1.16E-

55 

3.71E-

52 

9.57E-

33 

2.29E-

21 

1.31E-

35 

5.61E-

20 

1.16E-08 1.64E-19 

11-20 8.68E-

35 -1 

0.002 2.13E-08 5.88E-

09 

2.54E-

08 

0.0003 0.0004 8.66E-

08 

0.001 1 0.003 

21-30 5.81E-

50 0.002 

-1 1 0.3 0.4 1 0.9 0.04 1 1 1 

31-40 4.75E-

60 2.13E-08 

1 -1 1 1 1 1 1 1 1 1 

41-50 1.16E-

55 5.88E-09 

0.3 1 -1 1 1 1 1 1 1 1 

51-60 3.71E-

52 2.54E-08 

0.4 1 1 -1 1 1 1 1 1 1 

61-70 9.57E-

33 0.0003 

1 1 1 1 -1 1 1 1 1 1 

71-80 2.29E-

21 0.0004 

0.9 1 1 1 1 -1 1 1 1 1 

81-90 1.31E-

35 8.66E-08 

0.04 1 1 1 1 1 -1 1 1 1 



65 

 

 

 91-100 5.61E-

20 0.001 

1 1 1 1 1 1 1 -1 1 1 

101-110 1.16E-

08 1 

1 1 1 1 1 1 1 1 -1 1 

111-120 1.64E-

19 0.002614 

1 1 1 1 1 1 1 1 1 -1 
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Appendix 13: The p-value results of the Dunn pair-comparison test for the energy balance and the 

decay curve RC-values for ASHREA’s climate zones. 

Dunn pair-comparison test     

Decay Curve Results      

mixed cool cold very cold 

mixed -1 0.002 1.18E-15 1 

cool 0.002 -1 1.19E-09 1 

cold 1.18E-15 1.19E-09 -1 0.095 

very cold 1 1 0.095 -1 

Energy Balance      

mixed cool cold very cold 

mixed -1 8.86E-21 1.13E-178 2.72E-74 

cool 8.86E-21 -1 1.06E-136 3.12E-52 

cold 1.13E-178 1.06E-136 -1 1.77E-05 

very cold 2.72E-74 3.12E-52 1.77E-05 -1 

Appendix 14: Number of the houses in each class in the training datasets before and after 

clustering. 

Decay Curve training dataset distribution  

 0-15 16-

30 

31-45 46-60 61-70 71-90 91-105 106-120 121-135 136-150 More than 150 

Before 

resampling  

63 156 237 243 187 100 75 21 27 6 22 

After 

resampling  

243 243 243 243 243 243 243 243 243 243 243 

Energy Balance training dataset distribution 

 0-15 16-30 31-45 46-60 61-

70 
71-90 91-105 106-120 121-135 136-150 More than 150 

Before 

resampling   

16 712 4013 3930 1983 811 310 148 70 23 47 

After 

resampling 

100 500 500 500 500 500 500 100 100 100 100 
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Appendix 15: Confusion matrix for the decay curve model without resample the training subset. 

 

predicted value 

0-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 121-135 136-150 more than 

150 

Total number of 

houses 

Actual 

value 

0-15 0.11 0.00 0.53 0.26 0.05 0.05 0.00 0.00 0.00 0.00 0.00 19 

16-30 0.02 0.15 0.49 0.22 0.05 0.00 0.05 0.02 0.00 0.00 0.00 41 

31-45 0.01 0.03 0.70 0.22 0.03 0.00 0.00 0.00 0.00 0.00 0.00 67 

46-60 0.02 0.09 0.41 0.41 0.06 0.00 0.00 0.02 0.00 0.00 0.00 66 

61-75 0.00 0.07 0.41 0.32 0.14 0.02 0.02 0.02 0.00 0.00 0.00 44 

76-90 0.00 0.06 0.39 0.32 0.00 0.13 0.06 0.03 0.00 0.00 0.00 31 

91-105 0.00 0.00 0.27 0.27 0.47 0.00 0.00 0.00 0.00 0.00 0.00 15 

106-120 0.25 0.00 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 

121-135 0.00 0.25 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 

136-150 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1 
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Appendix 16: Confusion matrix for the decay curve model After resample the training subset. 

more than 

150 
0.00 0.13 0.75 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8 

 

predicted value 

0-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 121-135 136-150 more than 

150 

Total number of 

houses 

Actual 

value 

0-15 0.05 0.10 0.14 0.38 0.05 0.05 0.10 0.05 0.05 0.05 0.00 19 

16-30 0.06 0.15 0.31 0.15 0.17 0.08 0.04 0.02 0.00 0.00 0.02 41 

31-45 0.04 0.23 0.21 0.22 0.15 0.07 0.02 0.01 0.01 0.00 0.02 67 

46-60 0.04 0.18 0.16 0.31 0.13 0.13 0.01 0.01 0.01 0.01 0.00 66 

61-75 0.09 0.12 0.26 0.23 0.11 0.11 0.05 0.04 0.00 0.00 0.00 44 

76-90 0.10 0.18 0.13 0.23 0.18 0.13 0.00 0.03 0.03 0.03 0.00 31 

91-105 0.06 0.06 0.00 0.28 0.39 0.06 0.00 0.00 0.06 0.06 0.06 15 

106-120 0.00 0.36 0.18 0.09 0.18 0.00 0.00 0.09 0.00 0.00 0.09 4 

121-135 0.20 0.20 0.00 0.40 0.20 0.00 0.00 0.00 0.00 0.00 0.00 4 
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Appendix 17: Confusion matrix for the energy balance model without resample the training subset. 

136-150 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 1 

more than 

150 
0.00 0.00 0.44 0.33 0.11 0.00 0.00 0.00 0.00 0.00 0.11 8 

 

predicted value 

0-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 121-135 136-150 more than 

150 

Total number of 

houses 

Actual 

value 

0-15 0.20 0.00 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

16-30 0.10 0.01 0.72 0.12 0.01 0.00 0.01 0.03 0.00 0.00 0.00 249 

31-45 0.06 0.01 0.67 0.22 0.01 0.00 0.00 0.02 0.00 0.00 0.00 1314 

46-60 0.04 0.01 0.60 0.31 0.01 0.00 0.00 0.01 0.00 0.00 0.00 1301 

61-75 0.33 0.07 0.26 0.20 0.09 0.01 0.01 0.01 0.00 0.00 0.00 676 

76-90 0.03 0.00 0.50 0.41 0.02 0.00 0.00 0.02 0.00 0.00 0.00 271 

91-105 0.02 0.00 0.48 0.39 0.06 0.00 0.03 0.01 0.00 0.00 0.00 121 

106-120 0.02 0.00 0.40 0.48 0.05 0.00 0.00 0.05 0.00 0.00 0.00 51 
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Appendix 18: Confusion matrix for the energy balance model after resample the training subset. 

121-135 0.00 0.00 0.33 0.50 0.08 0.00 0.00 0.08 0.00 0.00 0.00 15 

136-150 0.00 0.00 0.64 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13 

more than 

150 
0.00 0.00 0.75 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6 

 

predicted value 

0-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 121-135 136-150 more than 150 Total number of 

houses 

Actual 

value 

0-15 0.00 0.20 0.20 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

16-30 0.00 0.22 0.38 0.25 0.06 0.04 0.02 0.00 0.01 0.00 0.00 249 

31-45 0.00 0.13 0.31 0.33 0.15 0.04 0.03 0.01 0.00 0.00 0.00 1314 

46-60 0.00 0.11 0.26 0.33 0.20 0.04 0.03 0.01 0.01 0.00 0.00 1301 

61-75 0.00 0.08 0.22 0.34 0.22 0.06 0.02 0.01 0.02 0.01 0.00 676 

76-90 0.01 0.09 0.23 0.31 0.20 0.08 0.04 0.02 0.01 0.00 0.00 271 

91-105 0.00 0.09 0.20 0.31 0.24 0.09 0.02 0.01 0.02 0.00 0.01 121 

106-120 0.02 0.12 0.24 0.25 0.20 0.06 0.04 0.02 0.04 0.02 0.00 51 

121-135 0.00 0.00 0.20 0.27 0.27 0.13 0.00 0.00 0.13 0.00 0.00 15 
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136-150 0.00 0.08 0.23 0.15 0.23 0.15 0.15 0.00 0.00 0.00 0.00 13 

more than 

150 
0.00 0.00 0.17 0.33 0.17 0.17 0.00 0.17 0.00 0.00 0.00 6 


