BRIDGING THE DIVIDE BETWEEN API USERS AND
API DEVELOPERS BY MINING PUBLIC CODE
REPOSITORIES

MAXIME LAMOTHE

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE)
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2020
© MaXIME LAMOTHE, 2020

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Maxime Lamothe

Entitled: Bridging the Divide Between API Users and API Devel-
opers by Mining Public Code Repositories

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. Liangzhu Wang

External Examiner

Dr. Daniel German

External to Program
Dr. Yan Liu

Examiner

Dr. Yann-Gaél Guéhéneuc

Examincr

Dr. Juergen Rilling

Thesis Supervisor

Dr. Weiyi Shang

Approved by

Dr. Leila Kosseim, Graduate Program Director

Deccember 16, 2020

Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Bridging the Divide Between API Users and API Developers by
Mining Public Code Repositories

Maxime Lamothe, Ph.D.

Concordia University, 2020

Software application programming interfaces (APIs) are a ubiquitous part of Software
Engineering. Their evolution requires constant effort from their developers and users
alike. API developers must constantly balance keeping their products modern and
attractive whilst preserving their value and backward compatibility. Meanwhile, API
users must continually be on the lookout to adapt to changes that could break their
applications. In this thesis, we study existing literature to identify the state-of-the-art
in APT evolution research. We then use our findings to establish practical and scalable
APT evolution guidelines and tools to bridge knowledge gaps between API users and
API developers. We base these guidelines and tools on public code repositories and use
them to perform four empirical studies to further our understanding of API cvolution.

To motivate this thesis, we first conduct a systematic literature review of the state-
of-the-art in API evolution research. We find that there are a variety of unsolved
challenges within the field, and that in particular, public code repositories have yet
to be fully leveraged to aid both API users and API developers.

We then present three empirical studies that focus on helping API users deal with
API knowledge gaps. We find that: (1) even if Android API documentation can help
Android API users understand what to migrate from one API version to another, it
does not often address how to do so; (2) although Android API migration knowledge
is not always present in documentation, automated techniques can be created to
mine this knowledge from existing public code repositories and automatically leverage
it to help other API users; and (3) API misuse detection approaches can benefit
from automatic example generation to reduce their false positive detection rates and
improve their usefulness for APT users.

Finally, we present an empirical study that uncovers general reasons why API

users inquire about API workarounds and the solutions that are generally given to

il

them. Using this information, we develop three API workaround implementation pat-
terns that can be used to detect instances of API workarounds in user code. We find
that the knowledge contained within these detected instances of API workarounds
can be fed back to API developers as opportunities to improve their APIs. Other
API evolution research directions do exist; some are briefly covered in this thesis, for
example identifying and using common API usage patterns, leveraging API migra-
tion patterns to inform API development, and API migration between programming
languages; others still may yet be undiscovered. However, this thesis shows that it is
possible to leverage existing knowledge contained in open-source repositories to help
API users and API developers alike. This thesis opens the door to future research in
the field of API evolution and demonstrates that it is possible to bridge knowledge
gaps between API developers and API users for API migration, API misuse detection,

and API workarounds usage.

iv

Acknowledgments

I would first like to thank my supervisor Dr. Weiyi Shang for all of his advice and
support throughout my Ph.D. I can unequivocally say that without him, this would
not have been possible. Thank you for giving me this opportunity, and for all of the
guidance you have given me throughout, I could not have asked for a better mentor.

I would like to thank all of my lab mates and collaborators throughout this journey,
Muhammad Moiz Arif, Guilherme Bicalho de Padua, Jinfu Chen, Hetong Dai, Zishuo
Ding, Mchran Hassani, Mostafa Jangali, Zhenhao Li, Lizhi Liao, Nian Liu, Sophia
Quach, Yuanjie Xia, Kundi Yao, Yi Zeng, Haonan Zhang, Dr. Tse-Hsun Chen, and
Dr. Heng Li, it was an absolute privilege to have worked alongside you. I would
also like to take this opportunity to thank everyone in the Concordia SE Group,
professors and students, for the great presentations and stimulating conversations
during my Ph.D.

I'm grateful for the support of my Ph.D. committee Dr. Yann-Gaél Guéhéneuc,
Dr. Yan Liu, and Dr. Juergen Rilling for helping to guide me during this adventure.

I would also like to extend thanks to the members of my examination committee
which includes my Ph.D. committee as well as Dr. Daniel German, for taking the
time to evaluate my work.

To my family, thank you for always supporting me in my decisions and for believing
in me, I would not be where I am today without you. To my friends, thank you for
being there for me when I was available and for understanding when I wasn’t.

I would like to extend a special thanks to Dirk Dubois for encouraging me to
embark upon this journey and supporting me throughout. Finally, thank you to the

love of my life, my fiancée, Erin, for your devotion and endless support.

I dedicate this thesis to my friends and family.

Related Publications

The work presented in this manuscript was published or submitted, with the author

of this thesis as primary author and researcher, as listed below:

e Bridging the Divide Between API Users and API Developers by Min-
ing Public Code Repositories (Chapter 1). Maxime Lamothe. In Proceed-

ings of the 42nd International Conference on Software Engineering (ICSE 2020).

e Exploring the Use of Automated API Migrating Techniques in Prac-
tice: An Experience Report on Android (Chapter 3). Maxime Lamothe,

Weiyi Shang. In Proceedings of the 15th International Conference on Mining
Software Repositories (MSR 2018), pp. 503-514.

e A3: Assisting Android API Migrations Using Code Examples (Chap-
ter 4). Maxime Lamothe, Weiyi Shang, Tse-Hsun Peter Chen. IEEE Transac-
tions on Software Engineering (TSE 2020).

e Assisting Example-based API Misuse Detection via Complementary

Artificial Examples (Chapter 5). Maxime Lamothe, Heng 1i, Weiyi Shang.

Submitted to the International Conference on Software Engineering Technical
Track (TSE 2021) in August 2020. Under Review

e When APIs are Intentionally Bypassed: An Exploratory Study of
API Workarounds (Chapter 6). Maxime Lamothe, Weiyi Shang. In Pro-
ceedings of the 42nd International Conference on Software Engincering (ICSE
2020).

vi

Contents

List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Context e 4
1.1.1 Definition of an API 4
1.1.2 APl Evolution. 5
1.2 Research Hypothesis 6
1.3 Thesis Overview 7
1.3.1 Chapter 2: Literature Review 7

1.3.2 Chapter 3: What are the Challenges Associated with API Mi-
gration? L. 7

1.3.3 Chapter 4: Using Existing API User Knowledge as API Migra-
tion Aid L 8
1.3.4 Chapter 5: Improving Misuse Detection Approaches 9
1.3.5 Chapter 6: Guiding API Development by Using APT Workarounds 10
1.4 Thesis Contributions, 11
1.5 Thesis Organization 11
I Literature Review 13
2 Systematic Literature Review of API Evolution Research 14
2.1 Introduction 15
2.2 Methodology 17
2.2.1 Research questions 17

vii

2.2.2 Literature repository selection 18

2.2.3 Litcraturc scarch and sclection 19
2.2.4 Data extraction and collection 20
2.2.5 Overview of primary studies 20
2.3 The Evolution of API Evolution Research 26
2.3.1 API evolution research goals 26
2.3.2 Evaluating API evolution experiments 30
2.3.3 API subjects used for research evaluation 35
2.4 State-of-the-Art in API Evolution Research 36
2.4.1 Recent and seminal publications 37
2.5 Current and Future Challenges 46
2.5.1 Research on API evolution 47
2.5.2 New tools and techniques 49
2.5.3 Empirical studieso oo 50
2.5.4 Datasets 51
2.6 Chapter Summary 52
IT Aiding API Users 53
3 What are the Challenges Associated with API Migration? 54
3.1 Introduction 55
3.2 Android API Migration 59
3.2.1 Avreallifeexample, 60
3.3 An Experience Report 62
3.3.1 Step 1: Leveraging documentation in API migrations 63
3.3.2 Step 2: Leveraging historical code-change information in API
migrations 69
3.3.3 Step 3: API migration in FDroid apps 73
3.4 Threat to Validityo 7
3.5 Chapter Summary 78

4 Using Existing API User Knowledge as Android API Migration Aid 79

4.1
4.2

Introduction 80
A Motivating Exampleo 82

4.3 Approach 84
4.3.1 Lcarning API migration patterns from code examples 85
4.3.2 Applying learned API migration patterns to API calls in the

source code 88
4.4 Evaluationo 91
4.4.1 Research questions 91
4.4.2 Dataacquisitiono 92
4.5 Evaluation Results 0o 94
4.6 Threat to Validity o 105
4.7 Chapter Summary 106
5 Improving Misuse Detection Approaches 108
5.1 Imtroduction o 109
5.2 Background and a Motivating Example 111
5.2.1 Background: Example-based API misuse detection 111
5.2.2 A motivating example 112
5.3 Qualitative Study on Missing API Usage Examples 114
5.3.1 Qualitative study setup L. 114
5.3.2 Qualitative study process. L. 115
5.3.3 Qualitative study results 117
5.3.4 Summary of the qualitative study results. 117
5.4 Patterns of Complementary Artificial Examples 118
5.5 Assisting Example-based API Misuse Detection 125
5.5.1 Experimental subjectso 125
5.5.2 Experimental processo oo 125
553 Results. o 127
5.6 Threats to Validity oo 128
5.7 Chapter Summary 129
IIT Aiding API Developers 131
6 Guiding API Development by Using API Workarounds 132
6.1 Introduction 133

6.2 Motivating Exampleo o000 134

X

6.3 API Workarounds: A Qualitative Study
6.3.1 Collecting API workaround related posts
6.3.2 Qualitative analysis of posts
6.3.3 Measuring coder agreement in our qualitative study
6.3.4 Qualitative study results

6.4 Patterns for Implementing API Workarounds

6.5 Reporting API Workarounds to Developers
6.5.1 Identifying API workarounds in real-life projects . .
6.5.2 Results and discussion

6.6 Threats to Validity

6.7 Chapter Summary

IV Conclusions and Future Work

7 Contributions and Future Research
7.1 Thesis Contributions
7.2 Future Research L.
7.2.1 API Development Theory
7.2.2 API Migration Patterns
7.2.3 API Misuses to Inform API Development

7.2.4 Identifying Common API Usage Patterns to Inform API Devel-

opment Lo
Appendices

A Java APIs Commonly Used for API Research Evaluation

List of Figures

© 00 1 O Ut B~ W NN

—_ =
= O

12

13
14

15
16

17
18
19

API research topics
Publication selection process
APT evolution publications from Sept 19th 1994 to Dec 31st 2018

APT evolution publication venues
API Maintenance and Usability subtopic publication trends
API evaluation metrics
API cvaluation trends L
Example of methods that are linked through commit history.
API migration extraction strategies.
getColor(int) source code snippet presents a migration pathway. . .
Android framework commit message 343fh33, presents a migration
pathway.
Android online documentation for method fromHtml, presents a mi-
gration pathway.
API migration mapping example
An API migration example of the getColor API, in the GridltemPre-

senter class of androidtv-Leanback project in commit 6a96ads.

20
21

80

An overview of our approach, named A3, that assists in API migration 84

Example of applying a migration from an example to Android app
source code
Overview of chapter 5 study setup, data collection, and experiments .
An example of a falsely detected API misuse.
An example of a developer requesting access to data that exists in the
Roslyn API but appcars unaccessible o0
Example of an API developer answering an API workaround request

for data that exists in the Roslyn API but appears unaccessible

X1

90
110

135

Functionality extension API workaround pattern example
Dcep copy API workaround pattern example

Multi-version API workaround pattern example

Xil

List of Tables

© 00 1 O Ut B~ W NN

— = =
W N = O

14
15
16
17
18

19
20

Publications found by search engine, after filtering 18
Data extracted for our research questions 21
Top Co-authors on the subject of API evolution 22
Geographical distribution of papers 23
APT publication by typeo 23
APT publication contributions 23
APIs used most commonly as cvaluation subjects 35
State-of-the-art solutions to existing API evolution challenges 37
Open challenges in APl research 47
Findings and implications on Android API migrations 56
Findings and implications on Android API migrations cont. o7
Android API modifications per API version 63
Android API suggestions automatically found, compared to manually

confirmed migrations.o L 68
API migration mapping version A 72
Android API methods found in FDroid projects. 74
API migrations identifiedo 94
Classified API migration patterns identified by our approach 95
Automated migration results based on migration patterns learned from

three different sources 98
Comparison with LASE [165] 100

Results of A3 user-study: comparing the time needed to migrate An-

droid APT usage examples (measured in seconds) with help from A3 and

location-based APT migration tools [52,296]. 103
Main differences and novelty provided by the A3 approach when com-
pared to related work. Lo 104

[NORE N (V)
= W N

Patterns of complementary artificial API usage examples. 119
Qualitative study reliability cocfficient (Krippendorff’s o) 139
Categories of questions derived from Stack Overflow posts on API

workarounds Lo 140

Categories of answers derived from Stack Overflow posts on API workarounds143

Xiv

Chapter 1
Introduction

Open-source software and software as a service led to the proliferation of application
programming interface (APIs) development and usage. From millions of Android
packages (APKs), to millions of open-source packages hosted by package managers
such as Maven, PyPI, and npm, APIs have become an integral part of software de-
velopment. APIs are used by millions of user applications to rapidly obtain existing
functionality. Like traditional softwarc, softwarc APIs cvolve and suffer from this
evolution with documentation mismatches, misuses, unknown usage constraints, and
performance and security issues. Meanwhile, user applications must also evolve to
adapt to API changes. The current trends of software as a service and open public
APIs present increasing opportunities and needs for developers to rely on externally
maintained software. However, as a consequence, software developers become depen-
dent on frameworks and public application program interfaces (APIs) [186].
Because the API users are typically independent from the development of an API,
APT users are at the mercy of the evolution of the interface. The development benefits
provided by APIs come at a price. By relying on APIs, users inevitably couple some
of their functionality to APIs over which they have little control [30]. This coupling
can be a challenge to users as they are forced to deal with ever-evolving APIs [66].
Furthermore, knowledge gaps have been shown to exist between API developers and
APT users [54]. Often, API developers communicate about their APIs through one
sided documentation channels such as wikis, manuals, tutorials, or API code ex-
amples [54]. API users have limited access to API developers and few channels to

communicate their feedback. Some APIs even require knowledge of internal politics

to reliably get patches accepted [30]. Without a direct feedback channel, situations
arisc where API developers must rely on repeated user complaints to become awarce
of existing problems [54]. All too often, when users have issues with an API, for
example needing a new feature or experiencing a run-time problem, users may choose
to intentionally modify or work around the API [30]. These workarounds allow API
users to obtain their desired functionality quickly and without going through poten-
tially arduous communication with API developers. However, these workarounds are
not without consequence. On the one hand, these workarounds are created by API
users as temporary solutions, these workarounds become technical debt, endangering
code quality and increasing future maintenance cost [216]. On the other hand, these
API workarounds are potentially missed opportunities for API developers to improve
their APIs (e.g., fixing bugs in the API).

In this thesis we propose to bridge the knowledge divide between API users and
APT developers by leveraging public code repositories. Therefore, whilst we seek to
further existing research to provide aid to API users in adapting to API changes,
we also seek to keep the API developers in the communication loop. Numerous API
usages exist on public code repositories, and although some are erroneous, others
arc primc cxamples of quality APT development and APT usage. We belicve that
API users and developers alike can benefit from the knowledge ingrained in public
code repositories. To overcome the divides that exist between API users and API
developers we propose tools, techniques, and user studies to help API users and
API developers. We seek to help API users adapt to changes to APIs (e.g., API
migrations). Meanwhile we also seek to help API developers keep up with the ever-
increasing demands from their users by finding examples of potential improvements
hidden in APT user code (e.g., API workarounds).

Prior research has produced tools that attempt to use existing documentation or
historical code-change information to aid API developers’ efforts to provide necessary
information to API users [4,48,186]. We believe that public code repositories still
contain vast untapped sources of knowledge to assist API users and API developers
alike.

In this thesis, we first present a literature review of API evolution research. The
information gathered in the literature review is used throughout the thesis to guide

our research within the realm of APT evolution. For example, prior research has had

success using public code repositories to learn more about APT evolution. We therefore
leverage public open-source software repositorics to study and proposc solutions to
API evolution challenges faced by API users. Finally, we further leverage public
open-source software repositories to study and propose solutions to API evolution
challenges faced by API developers.

This chapter consists of the following parts: Section 1.2 presents the research
hypothesis of this thesis. Section 1.3 presents an overview of the thesis. Section 1.4
briefly summarizes the contributions of this thesis. Section 1.5 presents the overall

organization of the thesis.

1.1 Context

This section briefly presents the concept of APIs and presents an introduction to API

evolution.

1.1.1 Definition of an API

To the best of our knowledge, the term application programming interface appeared
for the first time in 1968 within the context of providing a remotely accessed, in-
teractive computer graphics system [49]. Application programming interfaces (APT)
are varied and can encompass different concepts. For example, when the concept of
information hiding was first coined by Parnas [204] in 1972, it was bascd on interfaces
between modules, which today would likely fall under the umbrella of API.

Prior work has defined APIs as “the interface to a reusable software entity used
by multiple clients outside the developing organization, and that can be distributed
separately from environment code” [229]. Although the term ‘API’ can be used as a
general term for an interface between software components, there exists nomenclature
to refer to certain types of APIs. For example, software libraries [21,32, 45,61, 62,
81,86,89,101, 121,122,170, 180, 220, 269, 304, 313], software frameworks [50,51,62,65,
66,90, 110,111,166, 184,246,264, 293-295,297, 302, 312, 323], and Web services either
RESTful [44, 157, 215, 248, 249, 286] or SOAP [249] have all been interchangeably
been referred to as APIs because they all allow pieces of software to communicate,
albeit in different ways. However, API terminology can sometimes be nuanced. For
example, object-oriented languages, such as Java and C#, have specific keyword
concepts to define interfaces [171,203]. These interfaces are not necessarily APIs,
however, according to the definition of an API presented by prior research [229].
Only if these interfaces are used by multiple clients (i.e., more than one APT user
application) outside of the developing organization, may they be considered APIs. In
this paper, we use this API definition but also consider interfaces that may be used by
multiple clients within a developing organization as APIs. An API within the context
of this thesis would therefore be the interface to a reusable software entity used by

multiple clients, and that can be distributed separately from environment code.

1.1.2 API Evolution

Prior studics have shown that APIs cvolve for various rcasons such as incrcasing
complexity [161], and continuous change [64,139]. However, due to their nature as a
connection point between software modules, API evolution is not without side-effects.
Many studies have shown the effects of API changes not only on the API itself [64],
but also on its clients [162]. APIs may therefore change differently from traditional
software artifacts. For example, Sun Microsystem preferred introducing the new
interface java.awt. LayoutManager? rather than change the java.awt. LayoutManager
because changing the latter would have broken existing code [250].

The evolution of APIs induces a variety of problems and challenges for API users
and API developers alike [136].

On the one hand, as predicted by Lehman, continuing change [139] means that
API developers must determine ways to keep their APIs useful, cutting edge, and
competitive with other pieces of software [135] and APT users must adapt to these API
changes and new APT releases. API version migration (i.e., the process by which API
users modify their code to satisfy changes made from one API version to another while
preserving behavior) can induce code modifications for API users because members
of the APT such as APT classes, API methods, or API fields have been modified
or removed. These modifications can render cxisting APT user functionality non-
functional. Because API changes can affect their users, the migration from one API
version to another can require that users change API class invocations and usages,
modify API method calls, and change how they use API fields. Prior work has found
that field and method changes account for more than 80% of API migration cases [48].

On the other hand, conservation of familiarity [139] or existing API usages con-
strain the evolution of an API to avoid breaking changes while improving the API
(e.g., security or performance improvements). API deprecation is one mechanism by
which API developers can temporarily avoid breaking changes and inform their users
that a specific API call will eventually be illegal as its functionality is slated to be
removed from the API. This can give time to API users to migrate away from the
deprecated functionality. The evolution of APIs therefore involves a balancing act
of constant improvement and maintaining existing functionality. Maintaining exist-
ing functionality requires in-depth knowledge of use cases and architectural foresight

and flexibility, while keeping up with rapid release cycles requires modifications to

user applications as well as learning about new APIs and changes to existing APIs.
Thercfore, when gathering literature for this thesis and its accompanying system-
atic review, we not only include work that directly studies APIs and their evolution,
we also consider work that focuses on finding solutions to problems caused by API

evolution.

1.2 Research Hypothesis

By decoupling and bundling useful functionality, APIs provide unequivocal benefits
to software engineering practices. However, through this very accomplishment, APIs
also introduce a coupling between their users and developers. Although this coupling
allows API users and developers to share an interface, it does not promote commu-
nication between them. Therefore, knowledge gaps can form between API users and
API developers. These knowledge gaps can obfuscate how to properly use an API for
users and prevent API developers from understanding what their users expect from
their API.

Thesis Statement: The knowledge gaps between API users and API developers

are an important part of API evolution issues. Public code repositories can be

leveraged to bridge the knowledge gaps between API users and API developers

and mitigate these issues.

The goal of this thesis is therefore to help with the usage, and development of APIs.
We believe that we can leverage open-source software through data-mining practices
to better understand the nature of the problems introduced by APT evolution, and
to uncover solutions to mitigate the problems faced by both API users and API
developers. This thesis presents evidence that it is indeed possible to leverage public
code repositories to aid API developers, particularly with Android API migration,
APT misuse detection in Java, and API workarounds. This thesis is divided into two
parts, the first part aims to help with API usage through: 1) an cmpirical study
of the challenges of API migration, 2) an approach to help API users with the API
migration process, and 3) an approach to improve API misuse detection; the second
part of this thesis aims to support API development by uncovering why and how API
users use API workarounds, and how these workarounds can be leveraged to improve

APIs.

1.3 Thesis Overview

This section presents a brief overview of this thesis.

1.3.1 Chapter 2: Literature Review

In Chapter 2, we present a systematic literature review of API evolution literature.
We systematically uncover publication trends, from the most popular API evolution
subtopics, to the most popular APIs used to evaluate API evolution research. We
identify the state-of-the-art in various subtopics of API evolution research such as
dealing with breaking changes, reducing API misuses, and improving APT usability.
Furthermore, we also identify current and future challenges within the field of API
evolution. In particular we find that leveraging and mastering the feedback systems
involved in APT cvolution [140] is the next hurdle to overcome to attain proper API
engineering. We use the findings uncovered in this literature review to motivate the
work in the rest of this thesis. In particular, we help API users and API developers
by providing tools to aid them leverage feedback systems to aid with Android API

migration, Java API misuse detection, and API workarounds.

1.3.2 Chapter 3: What are the Challenges Associated with
API Migration?

In Chapter 3, we present an exploratory of API evolution on the Android API. We
namely concentrate on documentation and historical code-changes and their involve-
ment in Android API migration. These artifacts are prime examples of official com-
munication channels between API users and API developers. The Android API doc-
umentation is the primary source of official information for API users that seek to
understand the API and historical code-change information provided by API devel-
opers can also allow API users to determine how an API might be used, should
documentation prove insufficient. As a first step, we opt to leverage the Android
documentation because prior work has shown the importance of documentation in
API evolution [233]. As a second step, we leverage the official Android historical
code change information (e.g. commits) to determine their corroboration with the
results of the Android API migration pathways obtained from documentation in the

previous step. In a third step we use free and open source apps and manually migrate

7

them using the identified migration pathways; we leveraged the Android API migra-
tion suggestions that we automatically recovered from both documentation (including
official online documentation, commit message, and code comments) and historical
code change information.

We find that the information needed to identify replacement API methods for
Android API migrations often resides explicitly in online documentation and the offi-
cial Android API repository commits as natural language text. Our findings indicate
that although not all migrated methods can be found in the official Android online
documentation, information needed to assist in API migration can be also found in
other forms of documentation, such as code commit messages and code comments.
Therefore, in the case of the Android API, the challenge of API migration is not
to determine what the API user must migrate, because that information is usually
available within official communication channels.

Furthermore, although API documentation has been generally reported as incom-
plete or outdated [52], Android APT users should still consider the official documen-
tation of the Android API as their primary source of information. Our results show
that current practices can allow API users to obtain adequate migration information
from Android API developers to understand what to migrate. However, there arc still

problems in bridging an understanding on how to migrate APIs.

1.3.3 Chapter 4: Using Existing API User Knowledge as API
Migration Aid

In Chapter 4 we propose an approach, named A3, that mines and leverages source
code examples to assist API users with understanding “how” to apply Android API
migrations. We focus on Android API migrations due to Android’s wide adoption and
fast evolution [162]. Our approach automatically learns the API migration patterns
from code examples taken from available code repositories, thereby providing varied
example patterns. Afterwards, our approach matches the learned API migration
patterns to the source code of the Android apps to identify API migration candidates.
If migration candidates are identified, we apply the learned migration patterns to
the source code of Android apps, and provide the resulting migration to developers
as a potential migration solution. Our approach is particularly beneficial to less

knowledgeable APT users who might benefit from API migration data that can be

obtained from domain experts. Our approach can automatically identify 83 migration
patterns with 96.1% precision in Android APIs, and obtains a rccall of 97% using
a seeded repository. Based on 80 migrations candidates in 32 open source apps,
our approach can generate 14 faultless migrations, 21 migrations with minor code
changes, and 36 migrations with useful guidance to developers. Through a user study
with 15 participants and 6 API migration examples, we show that our approach
provides, on average, a 29% migration time improvement and is seen as useful by
our participants. Our approach can be adopted by Android app developers to reduce
their API migration efforts to cope with the fast evolution of Android APIs. Our
approach also exposes the value of using the knowledge that resides in code examples

to provide assistance to API users with API evolution.

1.3.4 Chapter 5: Improving Misuse Detection Approaches

In Chapter 5, to further aid API users, we conduct an exploratory study of API
misuses identified by a state-of-the-art API misuse detection tool [4]. Current API
misuse detection tools are meant to be used by API users to automatically detect
instances where they might have misused an APT in their code [5]. However, these
tools currently present high false-positive detection rates [4], which hampers their
usefulness to API users. We therefore particularly concentrate on falsely detected
misuses to uncover reasons for their detection. Through our manual study of real
examples of falsely detected API misuses, we uncover 108 cases where correct API
usages were falsely identified as API misuses out of 384 manually verified cases. We
classify these cases as alternate but correct API usages. From these alternate correct
APT usages, we discover five patterns that can be used to transform cxisting API
usage examples into artificial API usage examples. These artificial examples can be
used to cover the knowledge gaps caused by undiversified API usage examples, and
thereby decrease the false-positive detection of API misuses. We find that using these
artificial API usage examples does not reduce the recall of existing state-of-the-art

misuse detectors, and allows for the removal of some falsely identified API misuses.

1.3.5 Chapter 6: Guiding API Development by Using API

Workarounds

In Chapter 6, to enhance feedback channels from API users to API developers, we
conduct an exploratory study of API workarounds requested and implemented by
API users. We manually examined 400 posts from Stack Overflow, where we found
that API users request API workarounds for a variety of reasons, such as depen-
dency issues, missing functionality, and runtime problems. These reasons are valu-
able for API developers because gaining access to these workarounds could improve
their APIs. Furthermore, we identified answers accepted by API users who request
API workarounds. By studying these answers, we found that carrying out such API
workarounds may not be a trivial task. In particular, a majority of API workaround
solutions require special implementations to bypass the API. Therefore, because API
users are willing to go through the trouble of using special cases to obtain their de-
sired functionality, we can assume that the functionality must be of some value to
them, and might therefore benefit from the evaluation of the API developers.

To follow up on our cxploratory study, we study workaround implementations
that are suggested in the Stack Overflow posts, and we observe three API workaround
patterns. The knowledge contained in the implementation of these patterns can help
API developers improve their API by adding desirable features, fixing unexpected
behavior, and improving backwards compatibility.

Because our API workaround patterns were uncovered using forum questions and
answers, we seek to confirm their existence in real-life API user code and confirm their
usefulness with API developers using five open-source APIs. We confirmed the exis-
tence of the three patterns of API workarounds that we had previously identified, in
open-source GitHub projects. Finally, we submitted and observed 12 feature requests
to developers based on the API workarounds to improve the APIs. Among these re-
quests, five are already closed, and six more have been confirmed by API developers
as bugs or missing features. Our study and findings highlight the value of studying
API workaround usages as a means to bridge the gap between API developer and
APT users to assist API evolution. In particular our results show that it is possible
to use API usage data to help API developers understand some of the features that

users would like, or bugs that could be fixed.

10

1.4 Thesis Contributions

This thesis demonstrates that public code repositories provide valuable untapped
potential sources of knowledge for both API users and developers. We propose ap-
proaches to leverage public code repositorics to extract both APT user and APT devel-
oper knowledge and find that this knowledge bridges divide between API users and
developers and can help assuage problems such as API migration for Android API
users, high rates of false positives in API misuse detection, and API workarounds.

In particular our contributions are:

1. We demonstrate that when migrating from one Android API version to another,
understanding what to migrate does not necessarily help APT users understand

how to migrate.

2. We propose an approach that extracts API migration knowledge from existing
Android app public code repositories to help less knowledgeable Android API

users migrate their applications.

3. We show that it is possible to uncover and leverage general API usage patterns

to improve API misuse detection for Java APIs.

4. We show that API developers can use API user public code repositories to
understand why API users use workarounds and to leverage this information to

improve APIs.

1.5 Thesis Organization
The rest of this thesis is organized into four main parts:

e Part I: Contains Chapter 2 which presents a systematic literature review of

APT evolution research.
e Part II: Contains research aimed at helping API users. Namely:

— Chapter 3 presents an exploratory study of Android API migration and

identifies challenges to API migration.

11

— Chapter 4 presents an approach, motivated by Chapter 3, to extract API
migration knowledge from cxisting public code repositorics to help less

knowledgeable API users migrate their applications.

— Chapter 5 presents API usage example patterns to complement and im-

prove existing state-of-the-art API misuse detection approaches.
e Part III: Contains research aimed at helping API users. Specifically:

— Chapter 6 concentrates on API developers, and presents an empirical
study into API workarounds and provides approaches to leverage API

workarounds to improve APIs.

e Part IV: Contains Chapter 7 which concludes this thesis and highlights the

major contributions of this thesis as well as avenues for future work

12

Part 1

Literature Review

13

Chapter 2

Systematic Literature Review of
API Evolution Research

API evolution has been extensively studied in prior research and many challenges to
both the development and usage of APIs have been uncovered. While plenty of these
challenges have been studied, many still remain. However, to the best of our knowl-
edge, these challenges are scattered in the literature, which hides advances but also
cloaks important, remaining challenges. In this chapter, we provide a systematic re-
view of existing APT evolution literature. Within this review we uncover publications
trends in the field of APT evolution, as well as trending subtopics within the field. We
uncover common research goals within APT evolution research as well as common eval-
uation methods, metrics, and subjects. We highlight the current state-of-the-art in
APT evolution research and provide an overview of known existing challenges for API
evolution research as well as new challenges that were uncovered during this literature
review. We conclude that the main remaining challenges related to API evolution are
to automatically identify and leverage factors that drive API changes, create and use
uniform benchmarks for API research evaluation, and to understand the sweeping im-
pacts of API evolution with respect to API developers, API users, and with respect
to various programming languages. Within the context of this thesis, we concentrate
on the impacts of API evolution that can create knowledge gaps for API users and
developers such as API migration, and API misuses. We also leverage factors that
could drive APT changes (e.g., API workarounds). We rely on the information uncov-

ered in this systematic literature review to create tools and approaches that remedy

14

to some the challenges that we uncovered. Some of the challenges uncovered in this

chapter remain open to future work.

2.1 Introduction

Software application programming interfaces (APIs) allow their users to save time
and cffort by relying on pre-made functionality [192]. It is thercfore no surprise that
APIs that provide desirable functionality are often used by software developers and
that their usage is highly recommended to promote software quality while reducing
development effort. For example, the Android API allows over 8 million APKs [88]
in the Google Play store alone, to run on mobile devices across the world.

APIs are by definition interfaces and meant to be used as entry points to reusable
software entities [229]. They are not independent, single software entities but are
instead packaged with and offered by software libraries [62], frameworks [111], or web
services [248].

The ease with which APIs can be discovered and used has grown in line with the
advent of software as a service [135] and the growth of open-source software reposi-
tories like GitHub. For example, jUnit, a popular unit testing framework, has been
used by over 20,000 applications in a 42,000 application sample [242], and is often
adopted by users migrating away from other test frameworks (e.g., testng) [56]. APIs
are endowed with an undeniable potential to impact software development. Under-
standing, mitigating, and leveraging the impacts of APIs on software development is
therefore crucial to effectively design and use software APIs [232].

For the last few decades, interest in APIs has grown rapidly in the software re-
search community. As interest grew, so did the number of publications related to
APIs. We only identified one work published in 1994 with a relation to API evo-
lution. Meanwhile, we identified 49 works related to API evolution in 2018. Re-
searchers explored a variety of aspects of APIs, from API usability and misuses, to
API maintenance, migration, documentation, recommendation and more. Software
API research showed that APIs are not simple useful artifacts, nor can they easily
be used and forgotten. APIs, like other software artifacts, evolve over time or suffer
consequences [161]. In this thesis we provide a systematic review of the literature re-

lated to API evolution and the impacts and challenges imposed by that evolution. To

15

the best of our knowledge, these challenges are scattered in the literature, which hides
advances but also cloaks important, remaining challenges.

Because APIs are inherently software artifacts, they are not immune to Lehman’s
laws [139]. To remain useful and competitive, APIs must change and therefore evolve.
API evolution can cause various issues for both their users and their developers [135,
161,192,231]. We found many papers related to API evolution, which we study and
present in the rest of this paper. Due to both the breadth and depth of research related
to API evolution, it is difficult to determine the extent of prior research, for example,
which problems were uncovered, and which solutions were proposed. Therefore a
survey of prior work between 1994 and 2019 (i.e., 25 years) related to API evolution
would benefit the software research community as well as software developers, by
highlighting existing research into API evolution, presenting the current state-of-the-
art solutions to challenges that were uncovered, and by enumerating challenges that
have yet to be solved.

Prior research has produced many empirical studies [24,111,116,162], new tools
and techniques [168,229,232], and datasets [3,19,242] to uncover and solve the issues
caused by API evolution. In this thesis we seek to define and decipher the state
of the ficld of APT rcscarch. We study prior rescarch to uncover and summarize
the motivation, methodology, evaluation, and results of prior API evolution research.
We also summarize the current state-of-the-art in API evolution research to aid fu-
ture research development and comparison. Furthermore, we also uncover unresolved
challenges in prior research and present future research avenues in the field of API
evolution.

Section 1.1 defines APIs and API evolution for this paper. Section 2.2 presents the
methodology used to find the papers selected for this literature review. Section 2.3
highlights the various goals, tools, and evaluations that have evolved in API evo-
lution research. Section 2.4 presents the state-of-the-art in API evolution research.
Section 2.5 presents open API evolution challenges that remain either partially or

completely unsolved by current research. Finally, Section 2.6 concludes the paper.

16

APl Evolution Research |
|

¥ (2 3
- Maintenance | [Usability h(Other |

API Documentation Performance

Security
—P{ Adapting to API changes

Testing
=1 | Verification
Integration

API Examples

API Deprecation | e

)
—{)
—P[API Migration J
—{)

API Reuse patterns

{
{ API Misuse
[

)

)
B —

)

[API Recommendation |«

Figure 1: API research topics
2.2 Methodology

We used a well-defined, structured and systematic approach to produce a survey on
API evolution. The approach followed was inspired by guidelines from Kitchenham
et al. [129] and Petersen et al. [207].

2.2.1 Research questions

The goal of this systematic literature review is to provide a structured and categorized
aggregate of existing API evolution research to uncover the state of API research. This
knowledge will hopefully allow insight into the current state-of-the-art research and
provide a quick reference into existing practices and currently unsolved challenges for
future research. To achieve this goal, we designed the following research questions

(RQs):
— RQ1: How has the field of API evolution research evolved?

We explore papers related to API evolution, we provide an overview of
these paper, categorize them, identify their goals, and investigate strategies
used by API evolution researchers to evaluate their findings and discuss

evaluation trends. We present our findings for this RQ in Section 2.3.

— RQ2: What is the current state-of-the-art in API evolution research?

We present state-of-the-art approaches and tools proposed to deal with

problems related to API evolution. We present our findings in Section 2.4.

17

Table 1: Publications found by search engine, after filtering

Search Engine Publications Cross-Referenced
ACM Digital Library 157 45
Elsevier Science Direct 12 10
IEEE Xplore Digital Library 27 26
Springer Online Library 29 27
Wiley Online Library 3 3
Google Scholar 847 111
Total (duplicates removed) 964 111

— RQ3: What are the current and future challenges related to engineering APIs?

Finally, we uncover current and future challenges left to solve for future
API research. We select the tools and studies presented in this thesis solve

challenges from this list. We present our findings in Section 2.5.

2.2.2 Literature repository selection

We used prior state-of-the-art software engineering literature reviews [113, 119] to
obtain our selection criteria for online literature repositories. Our original selection

of papers came from the following technical publishers:

e ACM Digital Library

Elsevier Science Direct

IEEE Xplore Digital Library

Springer Online Library

Wiley Online Library

We augmented our paper selection by performing a search in the Google Scholar
database with “APT evolution” as a search string. This was done to supplement the
selection of papers from technical publishers and to ensure the widest possible search
scopc for our survey. Furthermore, we mined the references of the papers in our
original selection, using forward and backward snowballing, to find cited works that

contained abstracts that appeared to present work within the scope of API evolution.

18

2.2.3 Literature search and selection

Using our predefined literature repositories, we performed scarches using the “API
evolution” search phrase!. We further constrained the search to the fields of computer
science and software engineering for the Springer, Wiley, and Elsevier online libraries.
The results obtained are presented in Table 1. The results highlight the absolute
number of publications found in each library, as well as the number of publications
that were cross-referenced and available in multiple libraries. After accounting for all
duplicate publications, we found a total of 964 publications (1075 before removing
duplicates). We then filtered the results of this search, keeping only results which

met the following criteria:

1. Document must be written in English

2. Document must be related to the field of computer science or software engineer-

ing
3. Document should have a relation to API evolution
4. Document must not be a Master or PhD thesis
5. Document must be fully available from one or more online library

A flowchart of our publication selection process can be found in Figure 2. Based
on our filtering process, we obtained 108 publications. After checking the references
of the chosen papers, we added a further 183 publications to the survey. These
papers were likely missing in the initial library search due to nomenclature differences
(i.e. Framework evolution instead of API evolution). Therefore, using the results of
our initial search, along with any references that matched our filtering criteria, we
obtained a total of 291 publications (or primary studies) with which to conduct this
survey.

While we concede that it is unlikely that we managed to find and present all of the
papers linked to the topic of API evolution in this study, we believe that the sample
of publications choscn for this study is representative of the state of the art in the
field of API evolution. We are confident that the majority of published works in the
field of API evolution are present in this study and that the trends and findings in

this work are the state-of-the-art.

I'The latest search was conducted on September 2nd, 2019.

19

&

A 4
Search - . tar
. Online libraries Filter:
“API Evolution”
/ ((1075 papers) é -Language
/ 02-09-2019 _Domsin

-Paper type
108 seed et | -Availability
papers -Duplicate
I I -Title and abstract
l l, appear related to subject
Perform citation based search Perform reference extraction
(forward snowballing) (backward snowballing)
,\ | |
<I/+ 183 papers Filter:
-Language
> 291 papers Y Domain
| | Full text review | | -Paper type
-Availability
-Duplicate
-Title and abstract
appear related to subject

Figure 2: Publication selection process

2.2.4 Data extraction and collection

To answer our research questions, we carefully examined and extracted information
from each of the 291 publications selected for this study. We paid particular attention
to the motivation, contributions, methodologies and tooling, results, and challenges
presented in the publications. To present concise and practical information, we cat-
egorized our findings into abstract categories whenever possible. The types of data
extracted from each publication and their relevance to each research question are
presented in Table 2. We did not include the year 2019 in the yearly trends presented
in Section 2.2.5 because the year was not fully complete during the writing of this
study, and therefore would not have presented a fair comparison to previous years.
However, all papers that met our filtering criteria and were officially published as of

September 2nd, 2019 were included in the other parts of this study.

2.2.5 Overview of primary studies

To answer RQ1, we categorize the topics of our selected publications, determine
publication trends in the field of APT evolution, and uncover publication patterns

in API evolution research. We look at which researchers and organizations publish

20

Table 2: Data extracted for our research questions

RQ Type of Data Extracted

Title, author information (names and affiliations),

publication information (type, year, and location),

names and sources of systems under test, types of evaluations performed,
evaluation metrics, study motivation, methodology, and paper type

RQ2 Paper type, primary contribution, challenges uncovered and solved

RQ3 Unresolved questions, future research avenues

RQ1

most in the ficld, how often papers arc published, in which type of venue they arc
published, and with which type of work they are most related. We also categorize
API evolution papers into five contribution types Datasets, Empirical studies, New

tools and techniques, Proposals and reports, and Surveys.

Publication trends

Publications in API evolution are trending upwards. As shown in Figure 3, the
number of publications with topics related to APT evolution more than doubled from
2017 to 2018. Furthermore, we can also observe an exponential increase in the number
of cumulative publications per ycar. API evolution is not only an active rescarch topic,

but is also a growing research field.

50 300
45 275

40

w
3]
S

w
o
f publicati
2
(9]

Number of publications
o xn o a 388
2005 m—
2006 m—
2007 m—
2008 S—
0 —
0 ——
1 ——
2 —
3 —
4 ——
5 —
6 E—
7 —
Number of public:
o888 8
]
2006 m—
2007 —
2008 S—
0 E—
0 T—
1 ——
2 —
3 —
4
5

o e KDRRRRRRRRRNRRRL % .. aannll
T O OMNDO0DHO - NOMT @ T O OMNWONO -~ NOT W0 © N~ o
$8838888888 SScocos5ooo $§88388588583388388 8cSocSooooo
FFFFFF N AN NN AN N AN N ANANNNNNN - T e T - AN NN NN N N NN ANANNNNNN
Year Year
(a) Publications per year (b) Cumulative publications per year

Figure 3: API evolution publications from Sept 19th 1994 to Dec 31st 2018

21

Researchers and Organizations

Table 3 presents the top 8 rescarchers by publications related to APT cvolution (Top
5 positions including ties). The authors considered in Table 3 are either primary
authors or co-authors of papers in our sample of 291 papers. Tien N. Nguyen is the
most frequent contributor to API evolution research followed by Martin P. Robillard,
and Anh Tuan Nguyen. The top co-authors of API evolution research are for the
most part affiliated with universities in the U.S.A, with the notable exceptions of
Martin P. Robillard who is affiliated with McGill University in Canada, Marco Tulio
Valente from Federal University of Minas Gerais in Brazil, and Romain Robbes with
the Free University of Bozen-Bolzano in Italy. Leading researchers in the field of API

evolution are globally distributed, with a particular concentration in the U.S.A.

Geographical Distribution of Publications

To determine the geographical location of publications, we considered the country of
the institution affiliated with the first author of each work. As shown in Table 4, we
can see that the USA, with 35.4% of publications, is the country with the primary
number of works in the field of API evolution, followed by Canada and China with
17.2% and 8.6% of publications respectively.

Most Common Publication Venues

The publications studied in this paper are spread over a variety of venues, some are
more popular than others. Amongst the reviewed publications, the most common
venue for journal paper publications is IEEE’s Transactions on Software Engineering

(TSE) with 8 journal publications, followed by Empirical Software Engineering with 6

Table 3: Top Co-authors on the subject of API evolution

Name Affiliation Country Publications
Nguyen, Tien N. University of Texas at Dallas US.A 22
Robillard, Martin P. McGill University Canada 17
Nguyen, Hoan Anh Iowa State University US.A 12
Valente. Marco Tulio Federal University of Minas Gerais Brazil 12
Nguyen, Anh Tuan Towa State University U.S.A 11
Robbes, Romain Free University of Bozen-Bolzano Italy 11
Dig, Danny Oregon State University and University of Illinois U.S.A 10
Kim, Miryung University of California, Los Angcles US.A 10

22

Table 4: Geographical distribution of papers

No. Country or Region Papers No. Country or Region Papers
1 USA 103 16 Spain 3
2 Canada 50 17 Sweden 3
3 China 25 18 Chile 2
4 Germany 20 19 Japan 2
5 Brazil 13 20 New Zealand 2
6 Netherlands 10 21 Austria 1
7 Australia 8 22 Denmark 1
8 Switzerland 7 23 Ethiopia 1
9 Cgzech Republic 7 24 Hong Kong 1
10 Belgium § 25 India 1
11 Italy 5 26 Norway 1
12 France 4 27 Portugal 1
13 South Korea 4 28 Russia 1
14 Finland 3 29 Singapore 1
15 Greece 3 30 United Arab Emirates 1
31 United Kingdom 1
Table 5: API publication by type Table 6: API publication contributions

Publication Type Papers Main contribution Papers

Conference 196 New Tools and Techniques 175

Journal 66 Empirical Studics 100

Workshop 27 Proposals and Reports 8

Book 2 Surveys 5

Datasets 3

API evolution journal publications. The most common conference is the International
Conference on Software Engineering (ICSE) with 42 publications. The most common
workshop is the Workshop on API Usage and Evolution (WAPI) with 12 publications
(All of the publications published at WAPT).

As shown in Figure 4 we can see that the majority of publications in API evolution
are conference papers, followed by journal papers and workshops, with only a slim
minority (2) of books being published. We can also see that workshop papers appear
to be increasing in nuibers starting in 2017. This increase in workshop publications is
likely due to the founding of the International Workshop on API Usage and Evolution
(WAPT) in 2017. However, WAPI did not occur in 2019 or 2020, and trends might

therefore experience a shift in those years as a result.

23

® Conference ™ Journal ™ Workshop ®=Book

1%

240

o
&35
Q
=30
=1
825
220
3
€15
210
; i
o = 1 s.annll
TLWONODO—NMILONODDO—NMT DN O
NN NN O OOOD D000 O T - - - v — =T o
DIDDPPDPOOOOO0O000000OOROO OO
—————— SRSV SR S A Sl S SR SR SR SR S S S ISR SR SR SRS
Year
Workshop Papers m Journal Papers ® Conference and Symposium Papers
(a) Overall venue distribution (b) Yearly venue distribution

Figure 4: APT evolution publication venues

Publication Topics

We classified the 291 publications into various topics through the use of keywords
provided by the authors within the papers themselves, keywords provided by the
publisher (e.g., IEEE Keywords), or through the use of our judgment in cases where
we could not recover relevant keywords.

We first employed closed card sorting to sort papers into three blanket cate-
gorics, API Maintenance which contains 130/291 publications, API Usability which
contains 150/291 publications, and Other which contains 11 publications. We then
used a second round of closed card sorting to further subdivide each blanket category
as shown in Figure 1. Since the Other category only contains 11 publications of vari-
ous topics, it was not subdivided into subcategories. The evolution trend of the three
categories and their subcategories can be observed in Figure 5. The state-of-the-art,
inception, and trends of the various topics of API research are further discussed in

Section 2.4.

Publication Contribution Types

We also classified our sample of 291 publications into five publication contribution
types using an open cart sorting approach. We rely on the judgement of the reviewers
to extract the primary contribution of each paper. It is possible for a paper to present
more than one contribution, and we sometimes must rely on human judgement to
identify the primary or main contribution. Similarly to the research topic classification

in Section 2.2.5, we created the contribution type categories by using author and

24

w
&
=

30 14
“ 12
225 ®
2 k<]
S 8"
=20 £
=3 =1
a o s
‘5 S
$15 =
o 26
= :
Z 10 z
4
T CELLIaEd NN | | |||||| | |||||| ‘
SN0 O 0O = NOT N OO DNO — N T OO N~ 0 T D O NN O DO - NS OO N0 DHDO —N®M T W0 O~ 0
D N0 OO0 0000000 T T T T T T v DD RDDDNDO OO0 Q00000 QO T T T YT T T T
O DO DO 00000000000 00000 o0Q 00O 0000 00000000 00000000 OO
rrrrrr NN N NN NNNNNNNNNNNNNN - v e v - = NN NN NN NNNNNNNNNN N NN
mAPI| usability papers ® AP maintenance papers Other mReuse patterns @ Deprecation = Migration mAdapting to changes

(a) API Maintenance and Usability publica- (b) API Maintenance subtopic publications
tion trends per year

6

Number of Publications
o

, L1

T N O NN D DO - N T N ONNODHO - N® TN O~

DD Q0000000 0O T T YT LYY

0O 0O 000000000000 o0 oo

vvvvvv N NN NN NNNNNNNNNNNNNN
m Usage Examples Recommendation mMisuses

(c) API Usability subtopic publications per
year

Figure 5: API Maintenance and Usability subtopic publication trends

publisher keywords, while also relying on publication venue information when it was
relevant. These sources of information were combined with our best judgement to
classify each publication after reading it. We obtained the following five contribution
types: New Tools and techniques, Empirical studies, Proposals and reports, Surveys,
and Datasets. The overall classification of the publications we studied can be found
in Table 6.

25

2.3 The Evolution of API Evolution Research

2.3.1 API evolution research goals

We continue to answer R(QQ1 by presenting the various goals that we uncovered when
surveying API evolution literature. API evolution presents various avenues for re-
search. For example, it is possible to empirically observe the impact of API changes on
API users [135], otherwise known as the effect of perceived complexity on users [139].
These studies can then provide motivation and insight to develop software tooling [52].
For example, within this thesis, we observe that Android API users have a hard time
understanding how to migrate from one API to another, while they are not as chal-
lenged when attempting to determine what to migrate. In order to better understand
the trends in API evolution research, we use our publication contribution classification
of the 291 papers. We divide this section using the five contribution types identified in
Section 2.2.5, namely, Datasets, Empirical Studies, Proposals and Reports, Surveys,
and New Tools and Techniques to uncover which primary contributions align with

which research goals.

New Tools and Techniques

As shown in Table 6, the majority of the papers present new tools and techniques to
help with API evolution. These tools and techniques vary in scope and purpose, some
attempt to reduce complexity [232], others attempt to help conserve familiarity [233],
and others attempt to help organize changes [139,245]. However, they all seek to
resolve problems caused by API evolution through the intervention of either a tool or
a new technique. We use existing surveys on API property inference techniques [229],
recommendation systems [232], and software merging [168] as well as some of our own
categorizations to label our dataset into API research topics presented in Section 2.2.5
of this survey (i.e., adapting to API changes, documentation, deprecation, examples,

misusc, migration, reccommendation, rcuse patterns, usage, and other).

Tools and new techniques related to API evolution typically seck to present tools
and techniques to help with API evolution by resolving problems that API evolu-
tion can cause for API users (e.g., API migration tools), or even to help reduce
the development burden on API developer (e.g., automatic API documentation

tools).

26

Empirical studies

The sccond largest category of API cvolution publications arc presented as cmpirical
studies. The empirical studies we observed within our dataset can largely be divided
into three sub-categories. Data-mining empirical studies, that make use of data from
several projects or non-human sources, empirical case studies, which target specific
projects and often provide in-depth results for a few specific non-human sources, and

finally user studies which make use of human participants.

Data-Mining studies: Data-mining studies concentrate on using large sources of
data to provide evidence for the existence of problems and to determine their impact.
For cxample, mobile apps and the android APT cvolves quickly [162]. Thercfore,
many questions arose about the impact of the rapid evolution on clients [162], app

categories [96], compatibility problems [98|, and more [24,39].

Case studies: Case studies study a few (e.g., fewer than 10) systems. Compar-
atively to data-mining studies, the results of case studies are specific to the studied
systems. These studies present a range of goals, from determining the impact of API
evolution on APT users [111], determining whether IDEs influence the usability of
dynamic and static APIs [208], determining the factors that support the long term

success of frameworks [184], and many more [16,288,289].

User studies: We classified eight of the papers reviewed for this systematic lit-
erature review as user studies. These papers rely on human responses to answer
their research questions, which have a strong usability component. Therefore, we
surmise that user studies are particularly well suited for API usability studies. The
papers determine learning barriers in end-user systems [116], analyze the APT usage
of an IDE [38], understand developers’ deprecation needs [241] understand how API
documentation fails [276], evaluate the usability of the factory pattern in APIs [73],
determine what makes APIs hard to learn [228], explore the pitfalls of unfamiliar
APIs [69], and study API usability [211].

27

Empirical studies related to API evolution typically employ large data, case stud-
ies, or user studies to provide evidence of existing problems, the impacts of API
evolution, or potential solutions to existing problems. These problems are a su-
perset of the problems that are covered by the tools and solutions presented in this

thesis.

Proposals and Reports

Proposals and reports within our dataset are papers that seek to highlight existing
concerns in the ficld, and provide potential approaches to resolving the problem.
These papers are categorized differently than other because they present a particular
paper structure. These proposals and reports highlight issues that have been found
in prior work (e.g., most API breaking changes are caused by refactorings [65]), and
propose potential solutions to these problems (e.g., automatically detect API refac-
torings and replay them for clients [65]). However, these papers are proposals and do

not provide complete solution details, nor do they evaluate the proposed solution.

Proposals and reports related to API evolution typically seek to highlight existing
concerns in the field, and provide potential approaches to resolving these problems.
We leverage some but not all of these concerns and findings as a basis for the

approaches and tools presented in this paper.

Surveys

Surveys of existing literature seek to present a fair evaluation of a research topic by
using a rigorous methods [129]. The surveys presented in this paper typically start
with a research topic and observe existing literature to provide a view of the topic at
hand. Our dataset contains five surveys related to API evolution.

In his 2016 survey on software ecosystems research, Manikas [159] seeks to pro-
vide updated evidence to determine and document evolution in the field of software
ecosystems. The survey shows that the evolution of software ecosystems draws the
attention of numerous papers [159)].

As part of a book by Robillard [232], Mens and Lozano produced a chapter on
Source Code-based Recommendation Systems [167], and Kim and Meng [232], on

28

Automating Repetitive Software Changes. These chapters can be independently ob-
tained through the Springer archives, and we consider them to be two scparate sur-
veys of specific areas of recommendation systems because they are presented as such
in Recommendations Systems in Software Engineering. Both of these chapters seek
to provide state-of-the-art insight into specific recommendation Systems. Kim and
Meng provide a general view of five source code-based recommendation systems and
the in-depth design of one system to provide insight into the design decisions that are
made when creating source-code based recommendation systems [232]. The chapter
by Mens and Lozano seek to present state-of-the-art approaches that can be used to
automate repetitive software changes [167].

In their survey of automated API property inference techniques, Robillard et
al. [229], seek to provide an overview of API property inference techniques to present
properties inferred, mining techniques, and empirical results of API property inference
techniques [229].

In his survey on software merging, Mens [168], seeks to present a comprehensive
analysis of available software merging approaches. The finding presented in this
survey are directly applicable to API evolution topics such as API migration tools

where merging techniques can be used to help automate APT migration [165].

Survey papers, like this systematic literature review, typically seek to present an
overview of a subject using existing literature to provide clarity for their given sub-
ject and allow for effective stepping-stones for future research. The survey papers
we reviewed consider subject matters related to API evolution without concentrat-

ing on API evolution itself. We used these papers as a basis for some of our card

sorting, as well as some of the terminology used in this thesis.

Datasets

Out of the 291 papers investigated for this study, we uncovered three papers that
we labeled as dataset papers. Which concentrate on building a dataset related to
some aspect of API evolution (e.g., Linux system calls [19]). The datasets are pro-
duced to conduct further studies [19], advance the state-of-the-art [3], and improve

reproducibility of research [242].

29

2.3.2 Evaluating API evolution experiments

We continue to answer our RQ1, to determine how APT cvolution rescarch is typically
evaluated. API evolution research often requires more than manually observing an
API. Studies rely on distinct evaluation methods and make use of various Software
metrics (e.g., precision and recall) to evaluate their results. Details for the various
types of evaluations performed in API evolution are provided in Appendix A.

We identify four major means of evaluation used for API evolution research. Em-
pirical evaluation, where quantitative metrics like LOC (lines of code) or precision
and recall are used for evaluation over multiple subject systems. Case studies, where a
single subject systems is used to obtain subject related metrics and results. User stud-
ies, that employ survey techniques and interviews with developers or users. Finally,
qualitative evaluation that relies on subjective interpretations. Figure 7a presents the
evolution trends of these four evaluation means. We concentrate on five paper types
(i.e., New Tools and techniques, Empirical studies, Proposals and reports, Surveys,
and Datasets) and identify the evaluation methods and the metrics that are used in
these papers.

We identified 31 different evaluation metrics used in our publication sample. We
assembled the metrics that occurred fewer than five times and were not known statis-
tical propertics (c.g., AUC, Confidence interval) into more global metric types, such
as absolute value metrics, qualitative metrics and other. With those classifications we
obtained 9 metric types. Their yearly trends can be found in Figure 6a.

Using the data we uncovered, we can see that although more rigorous evaluation
metrics such as precision, recall, AUC, and F'1 score appear to be gaining in popularity,
a large percentage of papers still use a variety of non-standard absolute value metrics.
A wide range of absolute value metrics are used to evaluate experiments and tools such
as method parameter count, method changes, popularity, community size, project
maturity, number of years active, fix rate, number of restarts [15,92,134]. None of
these metrics are particularly flawed or bad, however the lack of standardization in
the field makes it difficult to compare similar experiments and determine if progress

is being made.

30

100

90

80

70

60

50

40

30

20

Percentage of metrics used for evaluation

Percentage of metrics used for evaluation

Empirical Case study User study

3885338883 885882ccyefeegree m Absolute values mLOC = Accuracy
@mmm@mooooggggg

fffffff LU < mp-value m Precision&Recall mQualitative metrics
mAbsolute values mLOC m Accuracy mF1 score mAUC m Other
Hp-value H Precision&Recall ®Qualitative metrics
=1 score mAuC Other (b) Metrics used for different evaluation-
(a) Evolution of evaluation metrics types

Figure 6: APT evaluation metrics

New tools and techniques

As presented in Section 2.3.1 the majority of the papers fall within the scope of new
tools and techniques. A surprising number of API evolution tools and techniques do
not formally evaluate their tool, although this trend appears to be declining based
on the last decade. In most of these cases, the tools appear to have been evaluated
by the authors of the paper, however no formal evaluation is provided, e.g., when the
tool is presented as part of a short paper, and is evaluated as part of a second paper.
This is the case for the SemDiff tool by Dagenais et al. [51,52].

Most API evolution tools are evaluated for their accuracy. In older papers, this
accuracy was simply reporting the true positive rate [31,163,219,260]. Recent papers
reported precision, recall, F1-score, and the area-under-the-curve (i.e., AUC) [42,112,
280, 282,301]. Using Figure 6a we can scc that in the last decade publications have
begun to use more standardized metrics to evaluate their experiments.

In some cases it is not possible to ascertain the recall of a measure (e.g., in the
case of mined framework usage changes [246]), then authors normally concentrate
on providing precision metrics instead [50, 246, 259, 291, 303], which is particularly
prevalent for data mined from large repositories for which it is impossible to manually
determine if any instances were missed by the approach. It would be possible to
remedy to this situation with high quality open-source datasets manually vetted by

experts.

31

N N w
S a S
w
A

Number of Publications
> o
Number of Publications

(a) Type of evaluation used over time (b) Language used for evaluation over time

Figure 7: API evaluation trends
Empirical studies

All of the empirical studies relied on some quantitative analysis to evaluate their
results. The metrics evaluated depend on the API study, ranging from changes in
APIs (e.g., addition, modification, removal) [146], changes in lines of code [162], code
swmells [96], API popularity [34], errors [180]. The most pervasive API evaluation
criteria is absolute changes in API methods (e.g., changes to numbers of deprecated
API methods, API methods added, API methods removed, APT methods modified).

Case studies

As shown in Figure 6b, case studies present a variety of evaluations. Some case
studies [134] compare absolute numbers of various metrics such as added APIs, dep-
recated APIs, removed APIs. Quantifying API changes through added/modified/re-
moved APIs [76,134,227] appears to be a common evaluation methodology for API
evolution case studies.

However, although most API case studies do consider and quantify API changes,
some also rely on qualitative evaluations [22,55,226]. For example, one study [55]
identifies six promises and seven perils of visualization tools, such as promising to pro-
vide feedback about errors. This qualitative information must be manually extracted
by the authors throughout the case study.

Case studies appear to be well suited to uncover new evaluation metrics for APIs
and to uncover previously unknown information, such as visualization tools [55], ripple

effects caused by changes in software ecosystems [226], and API migration issues [22].

32

It is therefore expected that case studies present more uncommon absolute value
mctrics and other metrics, since these studics might be attempting to identify new
metrics. The information uncovered through case studies can later be used in larger
scale empirical studies of various APIs for example to determine the impact of API

migration issues on various APIs [315].

Survey

We observe two types of survey papers related to API evolution. The first type
concentrates on existing literature, for example Robillard et al. [229] surveys existing
techniques and provides a summary of these techniques. Surveys of this type do
not appcar to rcly on metrics to cvaluate the papers presented in their findings.
These papers instead rely on the evaluation presented in each of the papers surveyed.
Furthermore, each survey of this type identifies a particular scope and specific criteria
that must be respected throughout the study, criteria which are manually evaluated
by the author(s). Similarly, in this systematic literature review, we also rely on
the evaluations presented in our sampled papers. However, we also use quantitative
information to uncover publishing and evaluation trends, as well as determine the
emergence of API evolution sub-fields.

The second survey type provides the results of questions used to extract data
from participants. These papers present quantifiable data that can be evaluated
in various ways. For example, one paper [228] provides raw data for responses to
survey questions within the related paper. The responses to the survey questions
are quantitatively evaluated by the author [228]. Meanwhile, other works [73] survey
the behavior of APT users to specific tasks. This behavior can be quantified through
statistical measures, such as standard deviation, Z-score, and p-values [73]. Current
evaluation methodologies appear to be tailored to specific papers with no standardized
datasct or cvaluation mecthodology used for API cvolution surveys. This lack of
standardized evaluation methodology should be addressed by the community because
it hampers comparison and makes it difficult to determine when and where progress
has been made. Care was taken during this thesis to compare our approaches to
existing tools and practices whenever possible. For example our migration tool, A3,
was compared to an existing approach (LASE [165]) and our approach to aid with

API misuse detection was compared using a standardized benchmark [3].

33

Proposals and reports

Reports from talks or cxpert pancls of API evolution concentrate on coarse grained
issues and challenges that plague the field of software APIs. These papers concentrate
on abstracted problems taken from existing literature. Most papers that concentrate
on future research avenues [27,123| and paradigm shifts [233] do not present evaluation
criteria.

However, some exceptions exist. A report on Web APIs, concentrates on chal-
lenges in the field, but also suggests looking into metrics, like latency, to benchmark
performance [290]. Similarly, papers on recommended practices concern specific soft-
ware metrics that could be improved through developer knowledge (e.g., reducing
coupling) [137]. Finally, a tool proposal contains an evaluation for the tool through

accuracy metrics, and a user study [65].

Datasets

We found three papers that concentrate on presenting empirical datasets. Datasets
related to API evolution, are proposed to stimulate research [242] and improve the
state-of-the-art [3].

Datasets are not always fully evaluated because verifying large datasets requires
a heavy manual cost. Therefore, some datasets do not present any immediate evalu-
ation [242], some datasets are fully manually verified by multiple individuals [3], and
some datasets are evaluated through manual verification of a statistically significant

sample [19].

Evaluation in API evolution studies has not yet converged to specific styles and
metrics. A surprising number of API evolution tools and techniques do not
present a formal evaluation while some evaluate precision, recall, fl-score, and
AUC. Meanwhile, API evolution empirical studies rely on various metrics with
absolute changes in API methods appearing most often, but not always. Case
studies, survey papers, proposals and reports, and dataset papers, all similarly

present a variety of evaluation criterion.

34

Table 7: APIs used most commonly as evaluation subjects

API Frequency

Java API 39 API Frequency
Android 30 JUnit 7

Toy systems 20 JFreeChart 7

Eclipse 16 Hadoop 6
JHotDraw 12 Lucene 6

Log4;j 11 Pharo 6

Struts (1&2) 9 Proprietary systems 6

Guava 7 Spring 6

Hibernate 7 Net API 5

2.3.3 API subjects used for research evaluation

In this section, we finish answering our RQ1 by providing further insight into API
evolution evaluation by presenting the APIs that are most commonly used as evalu-
ation subjects. We concentrate on APIs used as evaluation systews in at least five
different studies within our sample set. The frequency of API under evaluation in
our sample set is presented in Table 7. While comparing the frequency of the various
APIs used as evaluation subjects by prior work, we highlight benefits and reasons for
choosing specific APIs as evaluation subjects.

We find that the majority (270) of the studies in our dataset employ at least one
APIT to evaluate their hypotheses. 98 of these 270 studies employ multiple APIs to
genceralize results across multiple systems or multiple programming languages.

25 out of 291 publications either do not present or do not use an API. The lack
of evaluation APIs may be due to the nature of the publication. For example, sur-
vey papers concentrate on summarizing the state of prior work [159, 167, 168, 229].
Similarly, book chapters [232|, papers about general programming practices [137],
future research proposals [70,233], and hypotheses about the future of software engi-
neering [123] do not employ APIs. Some tool papers do not provide any tests when
presenting the tool [62,65, 86,190, 196, 256, 258,299]. Similarly, exploratory research
with theoretical findings does not always provide evaluations [1,27,290]. Finally, some
research uses theoretical proofs to ascertain their results, and prove the validity of
their approach without tests [40, 145, 236,288,293].

When considering that the Android API is primarily Java, and that most toy

35

systems (12/20) used within our sample are created using the Java programming lan-
guage, we find that APT cvolution rescarch is heavily skewed towards the Java pro-
gramming language. As shown in Figure 7b, 190/270 papers are exclusively evaluated
with Java systems between 1994 and 2019. The second most common programming
language is C with 11 papers exclusively using C APIs to evaluate their findings.
Figure 7b presents the evolution trends of programming languages used in the eval-
uation of API research. Furthermore, we only include programming languages that
were used for more than two publications within our sample. Table 7 presents APIs

that are used as test in more than five different research papers.

API evolution evaluation is heavily skewed towards the Java programming lan-
guage, 190/270 papers that used API systems for some evaluation used exclusively
Java APIs. Although Java is a popular programming language this representa-
tion 1s abnormal given recent programming trends. This presents opportunilies
for replication studies as well as potential avenues for future research with other
programming languages which differ from Java in various ways, such as Python
or Javascript. Unfortunately comparing new tools and approaches often requires

a perpetuation of this problem. The work in this thesis unfortunately suffers from

a Java bias because of this very issue.

2.4 State-of-the-Art in API Evolution Research

To answer our sccond rescarch question (RQ2), we present the statc-of-the-art in
API evolution. We first present publication trends within the state-of-the-art in API
research. We then concentrate on the most recent and seminal concepts and research
in the field. We chose these seminal works based on the novelty of their content and
the number of works that present similar ideas and build on these seminal works.
We divide this section by publication contribution type as in Section 2.3.1. Table 8
presents a list of common API evolution challenges and state-of-the-art solutions
proposed to resolve these challenges.

API Research State-of-the-art Publication Trends: As presented in Sec-
tion 2.2.5 and as shown in Figure 1, we identified three primary API research top-
ics, API Maintenance, API Usability, and Other. Figure 5a shows that both API

usability and maintenance papers grew through the years. However, it appears that

36

Challenge Proposed State-of-the-Art Solution
Document acceptable usages [289)]

APT bundles [161]

Automated API migration [36,89]

Extracting migration knowledge from clients [136, 245]
Local interactiou patterns [101]

Usability patterns [321]

APT selection criteria [184]

Digital assistants [27]

Automated API tips [282]

Automated documentation [2,112,151,233,278|
Example mining [91,182,272]

API recommendation algorithms [20, 152,195, 304]
Reducing APT misuses Misuse detectors [4,5.16]

Dealing with breaking API changes

Improving APT usability

Table 8: State-of-the-art solutions to existing API evolution challenges

since 2011 the API research community has started to favor usability papers, with
almost twicc as many APT usability than maintcnance papers (31 vs. 17) in 2018.
Looking at the subtopics for API maintenance and usability in Figure 5, we can see
that the API Usage research subtopic appears to be growing rapidly in recent years.
This growth can likely be attributed to tools and empirical research to uncover what
makes API hard to use [321], and uncovering usage patterns to help developers [289].
The growth in popularity for these topics might be linked to the growth in available
API usage data on open-source repositories and forums such as GitHub and Stack
Overflow, which were both launched in 2008. API migration research appears to be
one of the more steady research subtopics with three to four publications per year
since 2003. Meanwhile, the API misuses and recommendation subtopics appear to be
gaining popularity in recent years. Although the first API misuse paper in our sample
was published in 2001 [75], recent years have shown a steady stream of papers related
to the topic, with three papers published in 2018 [5,16,223], and two in 2019 [4,287].
The topic of API recommendation started gaining recognition in 2009 [212] and has

been steadily gaining ground ever since.

2.4.1 Recent and seminal publications
Surveys

Surveys highlight seminal concepts and state-of-the-art work by design. As previously
mentioned in Section 2.3.1, we found five survey papers pertaining to API evolution
using the methodology highlighted in Section 2.2.

The survey papers highlight the state-of-the-art in recommendation systems that

37

pertain to APT evolution [167,232], software ecosystems [159], API property inference
techniques [229], and softwarc merging techniques [168]. We use the metrics, classifi-
cations, and challenges uncovered by prior surveys to reinforce our own findings, in
particular to categorize empirical studies as well as tools and techniques employed in
API evolution studies into publication types in Sections 2.4 & 2.5.

The survey papers also highlight some open problems and future research direc-
tions in their respective domain. Some of the open-questions have been solved since
the publication of the surveys. However, some challenges are still open, and we re-

iterate these along with our own findings in Section 2.5.

Surveys associated to API evolution tend to highlight the state-of-the-art in re-

search as well as current research challenges and future research directions.

Empirical studies

We uncover two main subjects in the state-of-the-art API evolution empirical studies,
those that concentrate on API usability and those that concentrate on API mainte-

nance.

API usability

Many papers look into various aspects of API usability to reduce complexity [139].
These papers concentrate on issues such as breaking changes, integration problems,
how API are used and what makes APIs hard to use, API standards, API misuses,
and APT documentation.

Current empirical studies in breaking API changes suggest that there is a grow-
ing need to document acceptable usages for APIs [289]. Furthermore, non-atomic
refactoring patterns used by APT developers can reduce APT migration burdens [289).
Non-atomic refactorings in this case are defined as refactorings introducing a new
API and changing the existing API piecemeal until there is no more use of the old
API [289]. It is also possible to unbundle software APIs in different ways to vary the
uniqueness of API bundles [161] allowing users to obtain bundles of features that suit
their needs without breaking features that they would not use.

It has also be determine that, on average, dominant topics on forums can cover
at least of 50% of questions pertaining to Web API integration [279)].

Finding good names, relations between API types, knowing the impact of API

38

flexibility, and accurate documentation are all needed for good APT usability [211].
APT uscrs claim that discovering allowable types is difficult, thus tools to suggest
allowable types could benefit users [69]. APIs do present meaningful local interac-
tion patterns that can be used for future recommendations [101]. Developers have
a hard time understanding reflections API, and only produce tests after a bug is
reported [214]. Developers use examples to understand how APIs work. They also
need to understand the general idea of how an API works [228]

Recent papers have uncovered 22 patterns that determine what makes an API less
usable [321]. Programming language [316] as well as tools, information, and boundary
resources such as community are very important when selecting an APT [184].

Issues pertaining to API standards [143, 179, 288] affect the usability of Web
APIs [76]. Deprecation in particular has been found to vary mechanism, support, and
implementation and fail to fully address the needs of developers [241]. Performance
issues in mobile apps has been studied and carefully designing storage, limiting the
MVC pattern, and limiting widgets are all factors that improve app performance [149].

Various works have studied APT misuses [16,124]. 11 different types of API fault
cases have been identified [16]. Most cases have been attributed to missing data [16].
However, a lack of semantic awarcness and correct usage ecxamples Icad to many false
positives in API misuse detectors [5].

Many papers concentrate on API documentation motivated by incomplete docu-
mentation [74], the challenge of producing good documentation [206], and the shift of
API documentation to more social sources [205]. A case study with Github and Stack
Overflow to locate information from 10 popular APIs found that Github and Stack
Overflow are often used by Google to document new functionalities [267]. An empir-
ical study that combines API patterns extracted from GitHub projects to determine
if Stack Overflow posts present faulty API code, found that up to 31% of posts may
have potential APT violations [309]. This indicates that users should be careful when
using code from Stack Overflow. Languages with static typing and documentation
are much easier to use than dynamic languages, with or without documentation [74].
This thesis mostly employs the Java programming language. The API issues pre-
sented in this thesis still arise even with a static programming language such as Java.
If Java is to be considered much easier to use, this therefore indicates that there

is still much work to be done for API usage in dynamic programming languages.

39

Documentation incompleteness and ambiguity plague developers in a user-study to
determine what causes developers to use other APIs [276]. Almost all usage con-
straints are present in API source code but not in documentation [238]. An empirical
study of automatic knowledge extraction techniques to extract knowledge from API
documentation found that SVM and deep-learning methods can be complementary

when attempting automatic knowledge extraction [87].

Papers on API usability typically pertain to challenges such as breaking changes,
integration problems, how API are used and what makes APIs hard to use, API

standards, API misuses, and API documentation.

API maintainability

A large number of ecmpirical studics rclated to APT evolution concentrate on the
maintainability of APIs to conserve familiarity as APIs evolve [139]. More precisely,
papers mainly concentrate on deprecation, reuse patterns, the speed at which APIs
change, and the effects of propagating these changes.

A user study found that developers who use unstable Eclipse APIs often do not
read documentation and therefore do not know which API are deprecated [38]. Em-
pirical studies have been conducted to determine how effective documentation is at
solving deprecation problems. Most documentation does not cover alternative APIs
and code examples are very rarely documented [130]. However, in the case of the
Android API, deprecated entities are removed in a timely manner, and the Android
API recommends alternatives; yet most deprecated APIs in Android are in popular
libraries [146] therefore users are still affected. Another empirical study determined
that there is no major effort to update deprecation messages in most projects and
that deprecated messages depend on the size and community of the project [35].
They found that only 64% of API elements that are deprecated have documented
replacements, and that there is no effort to improve this over time [34]

Empirical studies have been conducted to detect reuse patterns and software clones
to improve maintainability [120]. Patterns of API reuse have been identified in various
code samples (e.g., opening and closing files) [170]. A decline of popularity appears
to indicate that something is wrong with an API [172]. Some studies have shown
that over 80% of breaking changes in API are due to refactoring [66], however other

studies have since disputed this claim [48]. Refactoring APIs has however shown a

40

tendency to increase the speed at which bugs are fixed [126].

Empirical studics that concentrate on the side cffects of rapid API cvolution
found that using new APIs that are highly touted may be a counter-productive prac-
tice [218]. Although the potential for problems to occur due to developers updating
to newer library versions without modifying any of their source code is high, these
problems tend not to occur on a wide scale in practice [61]. 28% of Android refer-
ences are out of date. 22% of outdated API usages eventually upgrade to newer API
versions but this takes about 14 months [162]. Mostafa et al. [180] found that most
API incompatibilities are not well documented, and 67% of client bugs linked to back-
wards incompatibility can be fixed through simple client changes [180]. Furthermore,
over 88% of Android apps follow the same workaround pattern to fix Android version
issues, and this pattern can sometimes lead to incorrect behavior [98]. This pattern
can be categorized as an instance of the multi-version workaround pattern presented
in Chapter 6 of this thesis. Studies have suggested that developers believe there is a
direct relationship between adopted APIs and user ratings [24]. Web services follow
a spike and calm cycle of maintenance, an empirical study into Amazon services de-
termined recommendations to make the most of spike and calm cycles from an API
developer point of view [305].

API evolution empirical studies have been used to determine different patterns of
evolution for Web APIs [144]. APIs change due to needing more functionality and
usability [95]. Most API developers appear to introduce breaking changes to simplify
the API and introduce new functionality [33]. Meanwhile, library maintainers are
less likely to break API classes used by many clients [133]. API users rarely update
API versions and only use deprecated entities less than 20% of the time. Most users
do not react to deprecation, but will remove API references when something does get
deleted from the API [244]. 14.78% of API changes break compatibility and impact
2.54% of clients [298]. Systems with higher break frequencies are usually larger and
more popular [298]. Another empirical study similarly finds that about half of API
changes cause reactions in only 5% of clients and that the overall reaction time is
slow [107].

Studies have shown that mobile development questions increase when new ver-
sions of Android are released, and these questions appear to concentrate on deleted

methods [150]. Meanwhile, mobile devs rarely update their apps, and when they do,

41

it is likely with respect to GUIs [239]. APT updates are ignored due to poor awareness
of benefits and high cost [239].

The results of these empirical studies lead to the recommendation of semantic
versioning, self-documenting APIs, publishing customized change-logs with discussion
forums for changes [249]. Furthermore, Web APIs should not change too often, old
versions should not linger, API developers should keep usage data, blackout tests

should be used, and providing examples is useful to users [78].

Papers on API maintenance typically concentrate on challenges such as depreca-

tion, reuse patterns, the speed at which APIs change, and the effects of propagat-

1ng these changes.

Proposals and reports

The proposals and reports primarily concentrate on highlighting an existing prob-
lem and proposing potential solutions for future work. API evolution proposals and
reports concentrate on the future of API evolution research. The more recent pro-
posals highlight the need to differentiate between Web APIs and library APIs [290]
and to develop digital assistants to map user intent to ever more numerous APIs [27].
Furthermore, one particular proposal concentrates on a vision of automated devel-
oper documentation [233]. Tt highlights challenges such as establishing precise links
between artifacts, capturing document request context, and the summarizing and
synthesis of documents [233]. These proposals arc particularly uscful to understand

the current demands of researchers and developers.

State-of-the-art proposals and reports related to API evolution concentrate on

future research such as differentiating between Web and library APIs, automated

documentation, and automatically linking software artifacts.

New tools and techniques

Over the years a varicty of tools and techniques have been developed to case the bur-
dens caused by API evolution. In general we find that tools and techniques appear to
primarily concern themselves with Lehmans law of Conservation of Familiarity while
other laws such as Continuing Change, Increasing Complezity, and Invariant Work

Rate serve as challenges to the Conservation of Familiarity [139]. We separate API

42

evolution tools and techniques into general topics such as documentation [53], exam-
ples [299], misuse [5], migration [66], recommendation [167], usage [229], and other.
As presented in Section 2.2.5, these tool topics were either identified in prior sur-
veys [159,167,168,229,232|, or by using publication keywords, titles, abstracts as well
as our own judgement. We provide a general overview of the state-of-the-art for each
tool topic.
API documentation tools

API documentation has been described as large and cumbersome [58], lacking and
difficult to produce [88], but instrumental to success [230]. State-of-the-art tools and
techniques use Stack Overflow posts to supplement documentation and determine a
match for lexical queries [112], augment documentation by automatically detecting
APIs in the documentation [278], employ dynamic specification mining to improve
decaying documentation [2], identify misuses in documentation to warn users [143],
generate high quality source code summaries [151], and employ neural networks to
produce high-quality text-to-code [188], code-to-text and code-to-code retrieval [194].
API examples tools

APT examples have been touted as helpful to understand how APIs work [163,174,
176]. Approaches such as MAPO [318] and Jungloid [158] minc API examples from
existing code. Approaches such as Examplore [91] employ relational topic models to
produce API examples that span multiple files. Techniques using bytecode analy-
sis [163], framework extension points [50], and software visualization [37] have also
been used to identify API examples.
API misuse tools

API misuse tools primarily attempt to identify unfavorable API uses that could
lead to future problems [4]. Approaches use machine learning [223], mutation anal-
ysis [287], specification mining [217], and API-usage-graphs [4], to attempt to detect
misuses.
A PI migration tools

CatchUp! [62,100] was one of the original approaches to deal with the problem
of API migration. It captures API refactorings produced by API developers and
synthesizes an edit script that can be replayed on API user code. Similar approaches
were created where edit scripts could be manually created by the API developers [21]

rather than recorded.

43

JDiff [12] is one of the first tools to synthesize a report of API changes between
two versions of an application. It presents additions, removals, and modifications
to any API. This information can be used to automatically track changes made to
APIs. Similarly, ACUA [294] analyzes the binary code of both frameworks and client’s
programs written in Java to identify API changes, generating a report to estimate
migration workload.

SemDiff [52] was one of the first approaches to use call dependency analysis to
map APIs between two versions and determine a migration path between two or
more migrated APIs. AURA [295] combines call dependency and text similarity
analyses to identify APT change rules between two versions. HiMa [166] uses revision
control to create framework-evolution rules, which are then used to migrate user
applications, outperforming both SemDiff and AURA. Approaches such as LASE [165]
create a context-aware edit script from two or more examples and use the script to
automatically identify edit locations and transform code. Recent API migration tools
and techniques employ abstraction layers [89], knowledge extracted from API clients
evolution [245], and syntactic changes [32] to improve API migration techniques.

Tools and techniques have also been proposed to migrate across programming
languages rather than application version [36]. The statc-of-the-art in this domain
currently employs generative adversarial networks to produce high quality API map-
pings across languages such as Java and C# [36].

API recommendation tools

Identifying useful APIs can be a challenge for API users [186]. API recommen-
dation attempt to ease the burden of selecting the most appropriate API by auto-
matically recommending potentially useful API [221]. Various tools and techniques
have been proposed to recommend useful API methods [42,71,212], and parame-
ters [14,308]. Current state-of-the-art approaches rely on converting English text
queries and documentation to API elements [20, 195], ranking existing API recom-
mendations by leveraging API usage path features [152], version history and Stack
Overflow posts [17,304].

API usage mining tools

Most of the tools and techniques are primarily targeted at API users. However,

APT usage mining tools are particularly suited to APT researchers and APT developers.

These tools attempt to uncover various API usage metrics from API user projects

44

and examples. These tools and techniques are meant to determine API usage for
a varicty of rcasons. These rcasons range from determining the most uscful API
methods [256], to improving the productivity of API users [182]. We identified tools
that automatically identify refactoring with high precision and recall [67,272]|. Tools
that can automatically identify API that will be made public in the future [109], and
tools that can extract fine-grained API usage [243].

Learning to use APIs appropriately is challenging [70]. Several attempts have
been made at easing the learning curve of APIs by automatically improving on-
line question/answer forums either through automatic answers [237], or by providing
more information about the APTs themselves [210]. Other approaches use of machine
learning approaches to extract and provide API tips to users [282]. There are also
techniques that infer structured descriptions of Web APIs from Web examples [261].
Other API tools

Not all tools fit in the categories presented above. Some tools present solutions
to niche problems to help verify the impact of APIs on program correctness [258,
284,291, 292], software security [99,114,219,319], and software quality [29]. We also
found papers that detect deprecated APIs [320] and API reuse patterns or code
clones [103,193,264,317] to identify uscful patterns for APT users and APIs to improve
for API developers. Finally, tools have been created to apply standards to REST
API [141], test cloud APIs [15], and develop adapters for Web services [28].

State-of-the-art tools related to API evolution seek to improve API usage, provide
API recommendation, reduce API misuse, provide automated API migration, and

better API documentation and examples.

Datasets

Papers that primarily concentrate on datasets are oriented towards replication, and
future studies. In the three datasets in our study, the data presented is recent (2015-
2018) and available online to be kept up to date and relevant to API evolution studies.
We identified a dataset constructed from the observation of a decade of Linux sys-
tem calls [19]. This dataset presents 8,870 classified system call related changes. An-
other dataset presents 1,482,726 method invocations related to 5 Java APIs (Guava,
Guice, Spring, Hibernate, EasyMock) created by mining 20,263 projects on GitHub [242].

Both of these datasets target research in software APIs to improve the state-of-the-art

45

in future API studies.

The final datasct specifically concentrates on API misuses [3]. This datasct con-
tains 89 API misuses collected from 33 projects and a survey. The primary goal of the
benchmark is to evaluate API-misuse detectors, which will then allow fair comparison
between various approaches [3].

We only consider three papers that present datasets as primary contributions.
However, papers listed under different primary contributions (e.g., Empirical studies)
could have a dataset as secondary contributions. For example, there are papers
that contribute approaches [243], or empirical studies [96] but also include datasets.

Making research datasets open-source is becoming more popular.

State-of-the-art datasets are vetted, open-source sources of data that allow repli-
cations. Datasets of Linuz system calls [19], API misuses [3], and API invoca-

tions [242] are all available for future research in API evolution.

2.5 Current and Future Challenges

Although API research has grown rapidly in the last decades, and several avenues of
research have shown promising results and tools, there are still many unsolved chal-
lenges related to API evolution. To answer RQ3, namely “What are the current and
future challenges related to engineering APIs?”, in this section, we identify existing
APT evolution research challenges and also uncover new ones. Table 9 presents an
overview of the challenges that we found during this systematic literature review and
for which we could not identify clear solutions. These challenges were scattered in the
literature, which hides advances but also cloaks important, remaining challenges. We
discuss each challenge in detail in this section. We number the challenges in Table 9
as existing challenges (EC-1 through EC-17) and challenges uncovered in this review
(CU-1 through CU-15). We identify existing challenges for research on API evolution,
new tools and techniques and empirical studies. We also uncover new challenges for
API evolution, new tools and techniques and empirical studies, and API evolution
datasets. We did not identify or uncover any particular challenges for proposal or
surveys, nor did we identify any existing challenges for datasets during our review,
therefore we omit these from this section. Based on our findings, we believe that

Lehman’s 8th law, namely Feedback System [140], poses the largest hurdle to future

46

Challenge type Publication contribution type | Challenge

EC-1 Cowbining textual merging with syntactic and semantic approaches [168]

FEC-2 Providing a commercially viable API migration solution [32.52]

EC-3 Incorporating domain specific information into tools [168]

EC-/ Using systematic evaluation methodologies in empirical evaluations [229]

EC-5 Producing more specific and less abstract theories [159]

EC-6 Reducing the variability of software API studics [159)]

EC-7 Finding input examples for APT migration through examples [232]

New t00ls 4 sechimiques > 2 : B
ew Tools and eclmiques EC-8 Tmproving the granularity of API migration approaches [232]

EC-9 Validation and correction of APT migration edit scripts [232]

kixisting challenges (KC) FEC-10 More tools to help with Web APIs [290]

[EC-11 Using cxisting library API rescarch as stepping stones for Web APTs [290]

EC-12 Combining both APT side learning with cliens side learning [215]

KEC-13 Dealing with oul-of-vocabulary problems [36]

[C-14 Defining best fit APIs [307]

EC-15 Automatically identifying factors shas drive API changes [95. 111,305]
Empirical studics EC-16 Dcaling with API semantics and dependencies [3]

EC-17 Deploying bug fixes to multiple APT versious [249]

CU-1 Using uniform benchmarks for APT tool evaluation

CU-2 Reducing the context sensitive nature of API migration tools

C'T-3 Tuproving performance of API tooling to levels acceptable for user adoption
CU-4 Dealing with fuzzy and ambiguous developer intent

CU-5 Reducing the knowledge gap between API users and developers

CU-6 Tools that mine usage data help APT developers inprove APTs

CU-7 Keeping API users in the loop for APl recommendation systems

CT-8 Generalizing APT tools to languages other than Java

CU-9 Tools to Lelp APT developers deal with APT migration, not just users
CU-10 Reducing API misusc from the API development side

CU-11 Understanding the coupling between APT studies and programming languages
CU-12 Determining the impact of APT migration

Empirical studics and the helplulness of API rccommendation systems

across languages and AP ecosysteins

CU-18 Generalizing API empirical studies to languages other than Java.

CU-14 Comparing the cvolution of various APIs

Datasets CU-15 Generate and verify large scale APT wigration and recommendation datasets

New tools and techniques

Challenges uncovered

i this review (CU)

Table 9: Open challenges in API research

API evolution research.

2.5.1 Research on API evolution

Existing challenges:

In his survey on software merging [168], Mens highlights the need for tools that
combine textual merging with syntactic and semantic approaches (EC-1). This was
attempted in API migration tools like SemDiff [52] and APIDiff [32]. However, these
tools have yet to provide a widely available commercially viable solution (EC-2).
Mens further highlights the need to incorporate domain specific information, which
has also been attempted by various API migration tools, with various levels of success
(EC-3). However, current solutions appear context sensitive.

Robillard et al. [229] found that the empirical evaluation of API properties is lack-
ing in systematic evaluation methodology (FC-4). Although their survey determines
a foundation to compare API property inference techniques, this methodology has

yet to rise. It is unclear why this foundation has yet to take hold. Perhaps due to

47

a lack of exposure, or because there are hurdles imposed by the proposed system-
atic cvaluation methodology. We hope to bring attention to this challenge amongst
others, to improve the exposure of existing proposed evaluation methodologies, and
guide future research into more systematic and comparable evaluations. In particular
in this thesis we use existing tools (in Chapter 4) and benchmarks (in Chapter 5) to
evaluate our results.

Manikas et al. [159] posit that theories about software ecosystems and the APIs
they involve can often be either too general (EC-5) or too abstract. Manikas high-
lights that it is difficult to study software ecosystems due to the high variability in
the field, APIs which are part of these ecosystems are therefore similarly impacted
by high variability (EC-6).

Robillard et al. [232] highlight several open challenges with respect to automating
repetitive software changes. Finding input examples to automate software changes
remains an open problem (EC-7). Integrating testing with code recommendation and
dealing with various levels of code granularity (EC-8) for API recommendations and
migrations also remain open challenges. Current recommendation tools rely on human
intervention to determine the correctness of the recommendation (EC-9). Tools such
as MAPO [318] attempted to automate APT example gathering, but no tool currently
fully solved this challenge. Work remains to extract code examples relevant to user
queries, and to determine whether multiple examples are similar.

Uncovered challenges:

Currently, API property inference techniques do not appear to use uniform bench-
marks to test their performance. The results of these techniques are therefore at the
mercy of the dataset and evaluation methodologies chosen by their authors which
prevents comparisons between techniques. Future research should seek to use a stan-
dard evaluation such as the one provided by Robillard et al. [229] to improve the ease
of comparison between various approaches (CU-1). Current solutions appear context
sensitive, and it has been proposed to incorporate domain specific information into
tools to remedy to this problem. Yet, it is unclear how to reduce the context sensitive
nature of API migration tools and how these approaches would perform on different
datasets (CU-2) or how their usage might affect API evolution feedback loops.

We posit that although there are some studies that attempt to generate theories
about software APIs [101,149,211,321], most tools and studies appear to be either

48

dependent on, or linked to, factors such as API ecosystems and programming lan-
guages of the APT (CU-11). Few studics attempt to determine whether the severity of
various API evolution problems such as API migration and API recommendation are
present across all programming languages (CU-12). Systematic studies to determine
the impact of API migration and the helpfulness of API recommendation systems are
required to understand whether such aid is universally required or language depen-

dent.

2.5.2 New tools and techniques

Existing challenges:

Most of the tools presented in this report concentrate on library APIs, and very
little effort has been done on Web APIs [290] (EC-10). Web API users must concern
themselves with quality of service, weak specifications, and a lack of comprehensive
listings for Web APIs [290]. Web APIs similarly suffer from API migration, API
documentation, and API example problems. Researchers should therefore use existing
research, such as existing API migration approaches [12,32,36,52,89,165,245,294,295],
high quality code summary generation [151], misuse identification [143], and using
relational topic models for examples [91] as stepping stones to improve Web API
tooling (EC-11).

State-of-the-art migration techniques should consider hybrid approaches (EC-12)
to combine both API side learning with client side learning [245] and consider the use
of domain adaptation methods (EC-13) to deal with out-of-vocabulary problems [36].

APT migration, API recommendation, and API misuse detectors still have room
for improvement. These challenges require keeping the APT users in the loop, because
they are ultimately the ones most impacted by these problems. Furthermore, tools
that attempt to aid with these problems should aim to support more programming
languages and Web APIs.

Uncovered challenges:

Many tools and techniques have been created to deal with API evolution chal-
lenges. However, most tools concentrate on a small range of challenges and do not
fully consider feedback loops involved in API evolution. Although individual tools
show promising results, none can claim to be 100% effective at solving their target

problem. It remains unclear whether current approaches are good enough for user

49

adoption, or if performance should still be improved before users can start using these
tools (C'U-3). Fuzzy and ambiguous intent (CU-4) as well as the rapid evolution of
software services that employ APIs, such as IoT devices, are challenges that concern
evolving APIs [27|. Effective API engineering must find solutions to deal with tech-
nical problems caused by APIs, and to reduce ambiguity of APIs and the knowledge
gap between API developers and users (CU-5). New tools are needed to help API
developers create APIs that are easy to use by API users (CU-6), just like better
techniques are required to help API users understand how to use APIs (CU-7). Both
of these challenges are dependent on researchers understanding what constitutes a
“good” API, and why API users select one API over another.

Many tools want to expand to more programming languages [108,112,182,282,303].
However, most are still developed for Java. Figure 7b shows no discernible shift to
other programming languages in recent years. Therefore, it remains to be seen how
effectively APT evolution tools would translate to other programming languages (CU-
8).

APT migration received a great deal of attention in APT evolution research. How-
ever, it is still an open problem. Most existing approaches concentrate on the client
side, with the premise that APT migration is the burden of APT users. Little rescarch
has been done to determine if it would be more efficient to transfer some of the burden
to API developers (CU-9), and then develop tools to improve API engineering such
that API migration efforts are reduced on the client side.

Several tools have been developed to extract API misuses and API usage (e.g., API
call frequency). Little research concentrated on using usage and misuse information
to create a feedback loop to help API developers improve their APIs (CU-10). Most
of the API research conducted in the last two decades concentrated on API users
rather than API developers.

2.5.3 Empirical studies

Existing challenges:

Various empirical studies uncovered the need for future studies on API developers
and API development for supporting the evolution of APIs [77,226,227], defining
best fit APIs [307] (EC-14), and automatically identifying factors that drive API
changes [95,111,305] (EC-15).

50

In their study on APT misuse detectors, Amann et al. [5] highlight the need for
futurc studics into program semantics and dependencies (EC-16), as well the need
for tools that properly handle alternative patterns for the same API.

The need for tools to deploy bug fixes to several versions of an API at once (EC-
17) has been proposed by Sohan et al. [249].

Uncovered challenges:

Most (66%) API evolution empirical studies concentrate on APIs written in the
Java programming language. Other languages such as C, C++, C#, JavaScript,
Python are only covered by a small percentage (< 5% each) of empirical studies.
Future studies should generalize to languages other than Java (CU-13).

A great number (74%) of empirical studies do not rely on any statistical tests to
evaluate their results. The majority of these studies present metrics such as lines-of-
code (LOC) or the numbers of field/method/class changes, but there is no current
way to normalize these results to compare them across studies or APIs (CU-14). It
remains an open challenge to compare the evolution of various APIs, particularly

across programming languages.

2.5.4 Datasets

Uncovered challenges:

We identified three papers on datasets. Although it has become more popular
in recent years to publish datasets (all four datasets presented in this paper were
published after 2015), the field suffers from a lack of accepted and up-to-date datasets.
For example, 13 papers concentrate on API migration tools and techniques, however,
we could not identify any common datasct or APT to dircctly compare migration tools
or studies.

The field of API evolution would greatly benefit from more datasets, particularly
with respect to API migration and API recommendation (CU-15). However, it re-
mains challenging to generate and particularly to verify these datasets, because some

API migrations and recommendations can be subjective and context sensitive.

51

2.6 Chapter Summary

In this chapter, we presented a survey of existing APT evolution literature. We un-
cover the publication trends as well as common questions and goals of research papers
rclated to API cvolution. We find that there are five general types of rescarch pa-
pers within the scope of this paper. We find and highlight various state-of-the-art
approaches and findings within sub-areas of API evolution such as API usability,
API maintenance, API migration, API recommendation, API misuses, and API doc-
umentation. Furthermore, we also present various methods and popular subject APIs
used to evaluate API evolution research. We highlight some drawbacks of existing
evaluation methods and present some potential future challenges that could be under-
taken by future research. We also highlight important, remaining challenges within
the scope of API evolution, and present some novel challenges that were uncovered
during this literature review. Although we find that continuing change increasing
complexity, conservation of familiarity, continuing growth, and declining quality all
pose worthy challenges to API evolution, we believe that the next hurdle will be
leveraging and mastering the , feedback systems involved in API evolution [140]. In
this thesis we contribute to API feedback systems by leveraging API user and API
developer data and feeding it back to them in contextually relevant situations such
as during API migration, and by reporting interesting API workarounds as potential
APT improvements to API developers. We hope that this chapter can act as a refer-
ence for existing work within the scope of API evolution, as well as present challenges
to guide the future of API evolution research. Furthermore, we used the information
presented in this chapter to shape the overall direction of this thesis. Although we
do not attempt to solve all of the challenges presented in this section, we do attempt
to solve challenges that were presented in this section. We also rely on existing API

evolution research that was presented in this chapter as a basis for our work.

52

Part 11

Aiding API Users

53

Chapter 3

What are the Challenges
Associated with API Migration?

In recent years, open-source software libraries have allowed developers to build ro-
bust applications by consuming freely available application program interfaces (APT).
Studies on API migration often assume that software documentation lacks explicit in-
formation for migration guidance and is impractical for API consumers, however the
Android API appears to go against this trend. Past research has shown that it is possi-
ble to present migration suggestions based on historical code-change information. On
the other hand, research approaches that rely on the existence of API documentation
have also observed positive results. Yet, the assumptions made by prior approaches
have not been evaluated on large scale practical systems, leading to a need to affirm
their validity. This chapter reports our recent practical experience migrating the use
of Android APIs in FDroid apps when leveraging approaches based on documenta-
tion and historical code changes. Our experiences suggest that migration through
historical code-changes presents various challenges and that APl documentation is
undervalued. In particular, the majority of migrations from removed or deprecated
Android APIs to newly added APIs can be suggested by a simple keyword search in
the documentation. More importantly, during our practice, we experienced that the
challenges of API migration lie beyond migration suggestions, in aspects that require

knowing how to migrate, such as coping with parameter type changes in new API.

H4

3.1 Introduction

The current trends of mobile computing and software as a service present an increas-
ing need for developers to rely on externally maintained software rather than consume
their valuable development time [148]. However, as a conscquence, software devel-
opers become dependent on frameworks and public application program interfaces
(APIs) when developing their applications [48,175,186]. When programming with an
API, consumers must either use available documentation or code examples, in order
to guide them in consuming the targeted API [162, 186].

As of 2016, the Google Play application store presents over 2.2 million appli-
cations [240]. All of these applications rely on the Android API to access device
information and drivers. Released in September 2008 [178], the Android API is cur-
rently in its 28" version. This API provides a large number of varied functionalities
for its consumers exposing more than 19,000 public methods. With over 1.5 million
daily activations of Android devices, the use of the Android API is expected to keep
growing in the coming decade [252].

Because the development of the API is typically independent from the consump-
tion of the API, the consumers are at the mercy of the evolution of the API. Finding
ways to ease the API migration burden by introducing documentation and guides
to help with API migrations, or API migration pathways, is therefore a boon to
APT users. Prior research has concentrated on recommending or producing spe-
cialized tools to provide suggestions for consumers pursuing API migrations [14,
48,51, 66, 198,201, 253]. These tools use various inputs, such as code documenta-
tion [12,253] and historical code-change information when producing API migration
suggestions [51,63,100]. Yet there exists no large-scale study to assess the usefulness
of these approaches in real-world API migrations. The popularity and the importance
of the Android API makes it an ideal subject to conduct such a study.

In this chapter we report our experiences with Android API migration using strate-
gies described by prior research, namely those based on documentation and historical
code-changes. Our findings are summarized in Tables 10 & 11.

As a first step, we opt to leverage the Android documentation [9], due to the
important role of documentation claimed by prior research [12, 18,177,205, 233,268,
301]. We find that although not all migrated methods can be found in the official

Android online documentation, information needed to assist in API migration can be

%)

Leveraging documentation (Sec-
tion 3.3.1)

Implications

1) For 26% of the deleted or deprecated
Android API methods, we could not find
any replacements in our manual exami-
nation of the API.

Developers of migration tools and API
consumers should be aware that not all
modified methods have migration path-
ways. This might mean supporting an
old version of the API or changing func-
tionality.

2) Android documentation, including
the online documentation, code com-
ments, and commit messages often con-
tains useful textual information for
method migrations as well as informa-
tion for their deprecation, addition, and
removal per API version.

Android app developers should leverage
such effective documentation as it allows
them to understand and plan their API
uses and migrations around the modifi-
cations to the APIL.

3) Migration pathways in documenta-
tion are often explicit. Links between
methods are declared, and replacements
are identified with method signatures for
easy recognition.

Android app developers could recover
Android API migration links by simple
keyword search, instead of exploiting so-
phisticated techniques.

4) The Android official documenta-
tion [9] effectively presents migration
pathways. Based on documentation
alone, with naive text matching, we were
able to automatically determine most of
our manually identified migration paths.

Due to the high quality and the ease
of access of the Android documentation,
suggesting Android API migrations may
not be a challenging task. Instead, mi-
gration research should concentrate on
other tasks, such as handling different
migration types.

Table 10: Findings and implications on Android API migrations

also found in other forms of documentation, such as code commit messages and code
comments. Still, the official documentation contributes the majority (75.3%) of the
information to suggest API migrations.

In a second step, we leverage historical code change information (e.g., commits)
to improve the results of the API migration suggestions from the previous step. In
particular, prior approaches [51,225,253] that are based on this information typically
assume that API migration information can be found in the source-code commits, i.e.,
if a method is removed, a replacement method should be added promptly, and can
therefore be found in historically close code commits. Therefore, we first examined

this assumption in order to understand whether the techniques that are proposed in

56

Leveraging historical code changes
(Section 3.3.2)

Implications

5) Historical code data, such as com-
mits, only yields a few undocumented
migration pathways and a fraction of mi-
gration pathways contained in documen-
tation.

API migration researchers should em-
ploy historical code data as a backup
when documentation is lacking, and not
as a primary migration pathway source.

6) In the Android API, replacement
mcthods can be introduced carlier or
later than the existing method, with
a large time gap. This breaks some
history-based automated API migration
assumptions.

Android app developers should verify
the assumptions of automated migration
tools before exploiting them in practice.

API migrations in FDroid apps
(Section 3.3.3)

Implications

7) Actual modified API usage centres
around a few API calls. Most API users
only require support for few modified

API methods.

Android app developers and Android
API architects could mine API usage
data to prioritize their migration efforts.

8) API migrations often require further
code modifications than simple renames
or parameter changes, e.g. object in-
stantiation.

Future research on API migration
should investigate automated support to
suggest code modifications examples for
APT migration.

Table 11: Findings and implications on Android API migrations cont.

prior research can be leveraged in migrating APIs in practice. We found that most
of removed /deprecated methods and newly introduced API methods for migration
do not change in the same code commit. 30.4% of the new Android API methods
are not even introduced in the same version as the removed/deprecated Android API
methods. Furthermore, historical code change information only provides 42.7% of
the necessary migration suggestions, and 90.5% of those are already indicated in the
documentation.

To test the effectiveness of identified migration pathways, in a third step, we
leveraged the API migration suggestions that we automatically recovered from both

documentation (including official online documentation, commit message, and code

57

comments) and historical code change information for some FDroid apps.! We ex-
perience that only a small subset of the removed /deprecated API methods and APIT
migrations are used by FDroid apps.

Our results and experiences imply that even though documentation is often re-
ported as incomplete or outdated [51], developers should still consider the official
documentation of the Android API as their major source of information. Moreover,
before using any sophisticated techniques for API migration, developers should first
verify the assumptions of those techniques before exploiting them in practice. On the
other hand, developers could reduce and prioritize their efforts to a small subset of
API methods, which are used in practice.

Our experience agrees with prior research [12,51,100,198,253,259] and shows that
it is feasible to provide suggestions when migrating API methods to new versions.
However, more importantly, after we successfully performed API migrations on three
apps from one version of Android to the next, we found that implementing API mi-
gration code changes is much more challenging than identifying what modification
should be done to migrate from one API to another. Challenges such as migrating
multiple related-APIs as well as changing object types present changes that would
often require extensive knowledge and cffort. We document these challenges in this
experience report so that further research on API migration can investigate and pro-
pose automated solutions to assist API migration in practice. In this thesis we provide
one such tool in Chapter 4.

The contributions of this chapter include:

o We evaluate the use of documentation and historical code change information

in API migration in a large scale subject.

e We find that the information needed to identify replacement API methods for
migrations often resides explicitly in online documentation and repository com-

mits as natural language text.

e We find that prior research-based sophisticated migration techniques may fail

because particular assumptions are not met in practice.

'Our automated script to recover Android API migration pathways is hosted online at
https://github.com/LamotheMax/MSR_2018_Android_API_Study

58

e We documented our experiences and the challenges that we encountered when
migrating the use of Android APIs in FDroid apps to benefit both practitioners

and researchers.

e We documented the solutions we employed for our challenges, and presented

our unsolved challenges as open challenges for future research.

The rest of the chapter is organized as follows: Section 3.2 provides a background
on API migration practices and past research. Section 3.3 presents the methodology
followed in our study and reports our experiences the challenges we encountered.

Finally, Sections 3.4 and 3.5 outline threats to validity and a summary of this chapter.

3.2 Android API Migration

Android app development heavily depends on the availability of Android APIs. In
the most recent version of Android, “Oreo”, there currently exist 3,354 API classes
and 33,560 API methods. However, such APIs are updated every 6 to 12 months
when Android releases a new version. A prior study by McDonnell et al. showed that
on average 115 Android APIs are updated per month [162]. Such APT updates would
cause around 28% of APT references to become outdated in a median lagging time of
16 months, while upgrading these updated APIs takes about 14 months [162]. Prior
research shows that Android app developers seek to update their API usage, however
their migrations are slower than the APT updates [162]. Therefore, efficient migration
techniques are essential to help Android app developers.

Android architects maintain an open online documentation to share information
on available APT and to communicate APT deprecations in each version [9]. However,
knowing that an API is deprecated may not give the consumer enough information
on the cxistence of a replacement APT or which new API is needed to replace any
loss in functionality.

For example, the Android API has been releasing new versions since September
23, 2008 [178]. The Android project provides a number of resources to help consumers
keep track of changes in the API. However, even with its well maintained documen-
tation, it is sometimes required for an API consumer to look at the API source code

to determine how to migrate a removed API method as presented in Section 3.2.1.

59

Figure 8: Example of methods that are linked through commit history.

APl 23 API 24
() e ~
........................ FéeomTc::iatl J

createAnd
per sl [ManageUser()

K) Commit _ Y,

343fb33 27ee334 |
| Time

In the Android project, behaviour changes of API methods are sometimes docu-

mented and presented with new API releases. This documentation can be used to
locate method substitutions directly, and this has been used in this research in order
to check the results of our links. However, not all versions of the API provide this
documentation. We assume this documentation is rarely done due to the resource
requirements of maintaining such a list. Having a tool to do this automatically, or at
the very least to check the list for errors, would be a welcome boon for maintenance

efforts.

3.2.1 A real-life example

API Documentation alone is sometimes insufficient to determine the migration of a re-
moved method. For instance, the API method createAndInitiallizeUser from an-
droid.os.UserManager was removed between Android APT versions 23 and 24. The
method was replaced by a new method, createAndManageUser. Since the method
was removed, no information on the methods is henceforth available in the most re-
cent Android official online documentation. However, it is possible to find the removal
of the method in the change documentation of the API [9].

In order to determine the genuine evolution of the method, one needs to look

60

at the revision history of the framework. Due to the open source nature of the
Android framework, the APIT version control repository is available online. Official
online documentation of the createAndInitiallizeUser method does not provide
useful information for the migration. However, by looking at repository commits,
it is possible to see that the createAndInitiallizeUser method was replaced by
the createAndManageUser method in commit 343033 as shown in Figure 8. The
information can also be found in the internal code comments and commit messages.
Moreover, by looking at other commits during the history of the Android version,
we find another method createUser that is co-changed with createAndInitial-
lizeUser, while having no other documentation about the removal. This requires
creativity and research on the part of the user in order to find a substitute. However,
by looking at the commit history, and carefully parsing the commit comments, it
is possible to determine that the createAndInitiallizeUser and createUser are
interlinked through removals, modifications, comments, and Java class, but they are
never explicitly linked. Therefore, a user that wishes to update their use of the cre-
ateUser method should also take a careful look at the createAndInitiallizeUser.

This example is particularly interesting because it shows that:

e Not all methods that have replacement methods present the information in

official documentation.

e Consumers of methods such as these are expected to put in the effort to find

the replacement themselves.
e API migrations can involve multiple API methods.

Examples such as these are the primary motivations for this work. Ideally, with a
complete mapping of all methods and their relationships to other methods, developers
should be able to get an understanding of migrations with a simple glance. There-
fore, in this paper, we aim to evaluate the applicability and usefulness of existing

approaches on automated Android API migration.

61

3.3 An Experience Report

In this section, we aim to explore the use of existing automated API upgrading tech-
niques to migrate the Android API. In particular, we explore the use of documenta-
tion and historical code change information based techniques to assist in migrating
removed or deprecated Android API methods. In order to evaluate the use of exist-
ing automated API migration techniques, we first need to extract all the changes to
Android API including additions, deletions, deprecations, or modifications to existing
API in each version of Android. In particular, we select the most recent six versions
of Android (21 to 26). We first leverage JDiff to identify all added, removed, dep-
recated and modified APIs between every two Android versions. The Android API
changes are summarized in Table 12. In particular, we consider the total amount of
removed or deprecated API as the upper bound of all possible API migrations, since
they would suggest or even force developers to change their source code in order to
adapt to new APIs.

Figure 9: API migration extraction strategies.

Data
(manually verified)

Official Doc.

+

Leveraging Documentation

Internal Documentation

Commit Messages

Android
Repository

Migration
Links

| Source Code|

(ommits §, _TTTTTTTTT

Verified
Migration Links

Leveraqging Historical Code
Data

In the rest of this section, we report our experiences during the migration of APIs
uses in Android apps. We discuss our experiences in three steps. For each step,

we discuss its motivation, our approach, and the outcome of the step as well as the

62

Table 12: Android API modifications per API version

Class Method Field
API Version Release Date Added Changed Removed | Added Changed Removed | Added Changed Removed
16 2012-07-09 57 211 0 381 151 20 171 46 4
17 2012-11-13 41 111 2 150 37 19 155 69 3
18 2013-07-24 61 108 36 155 44 4 131 25 1
19 2013-10-31 78 180 0 268 26 5 391 6 0
20 2014-06-25 10 25 0 32 5 1 45 2 0
21 2014-11-12 147 360 0 770 117 29 1150 5 2
22 2015-03-09 4 439 0 73 128 3 53 1 13
23 2015-10-05 119 257 36 541 132 38 466 89 83
24 2016-08-22 M7 133 3 877 127 13 585 31 5
25 2016-10-04 5 38 0 50 1 0 53 0 0
26 2017-08-21 145 349 4 795 139 18 572 69 0
Min 4 25 0 32 1 0 45 0 0
Max 147 439 36 877 151 38 1150 89 83
Mean 57 155 4 266 58 10 254 35 8

For the purposes of this study we concentrated on the six most recent versions (API
Versions: 21-26)

challenges that we faced.

3.3.1 Step 1: Leveraging documentation in API migrations

Motivation

Due to the high dependence between Android apps and Android APIs, ideally, all
removed and deprecated APIs should be properly documented, such that consumers
can opt to adopt other APIs to sustain the functionality of their apps. In addition,
previous research has shown that documentation can be used to determine migration
pathways in changing API [253]. Therefore, in this step, we seek to determine whether
the Android API documentation can be leveraged when assisting with API migrations.
Approach

In order to automatically recover API migration suggestions from documentation,
we consider three readily available sources of data as documentation: 1) code com-
ments in JavaDoc format in the source code, before the declaration of each method,
2) code commit messages and 3) official Android online APT documentation.

Code comments in JavaDoc. We first obtain all the source code for each
version of Android. We then use srcML [46] coupled with python scripts to extract
all the JavaDoc code comment for each Android API. For each code comment, we
use the API name as keywords, and automatically search whether the name of a

changed (added, deleted, or deprecated) API is mentioned in the comment. For

63

example, as shown in Figure 10, in API version 23, android.content.res .Re-
sources.getColor (int) was dcprecated and obtained a JavaDoc link to its migrated

method: android.content .res.Resources.getColor(int, Theme).

Figure 10: getColor (int) source code snippet presents a migration pathway.

* @return A single color value in the form 0xAARRGGBB.

* @deprecated Use {@link #getColor(int, Theme)} instead.

%k /

@ColorInt

@Deprecated

public int getColor(@ColorRes int id) throws NotloundException {
return getColor(id, null);

Code commit messages. We extract all code commits and their commit mes-
sages between every two consecutive versions of Android from the git repository [10].
Similarly to code comments, we automatically search whether the name of a changed
APIT is mentioned in the code commit message. For example, as presented in section
3.2.1, and in Figure 11, createAndInitiallizeUser presented a link to createAnd-
ManageUser in commit message 343fb33.

Official Android API documentation. The Android API documentation con-
tains a list of added, deleted, or deprecated APIs in each version [9]. By checking
the online documentation of each deleted or deprecated API, we manually examine
whether the official documentation provides a replacement for the deleted or depre-
cated APIs. For example, android.text.Html.fromHtml(String) appears in the
online documentation as shown in Figure 12. It is also possible to mine the documen-
tation from JavaDoc links in the historical code-data information. The createAn-
dInitiallizeUser method and its migration also appeared in online documentation,
however only in the framework repository documentation [10].

Results

The majority of replacements for deleted or deprecated APIs can be re-
covered from the explicit wording in documentation. For the six studied
versions, we were able to determine between 51% and 98.4% of the deleted or dep-
recated APIs through documented replacements. We then manually examined the

APIs for which we could not recover a replacement, in order to understand whether

64

Figure 11: Android framework commit message 343fb33, presents a migration path-
way.

Add new API function createAndManageUser

This 1s a reduced version of the (deprecated) function
createAndInitializeUser, that allows the device owner to create a
new user and pass a bundle with information for initialization. The
new version of the function has the same functionality, but the
profile owner of the new user is always the device owner.

A flag can be specified to skip the setup wizard for the new user.

The new user is not started in the background, as opposed to how
createAndInitializeUser did it. Instead, the bundle with
mitialization information 1s stored and will be broadcast when the
user 1s started for the first time.

Bug: 25288732, 25860170
Change-Id: [4elaea6d2b7821b412c131e88454df15934192aa

those APIs do not have a replacement or whether we missed a documented replace-
ment. For 26% of the deleted or deprecated APIs, we cannot find a replacement at
all (possible removal of functionality). For example, all of the methods present in the
PskKeyManager class were removed without replacement when the class was removed

due to incompatibilities with TLS 1.3.

Experience #1: For 26% of the deleted or deprecated Android API methods, we

could not find any replacements in our manual examination of the APIL

We also found an extra 21.5% of replacement APIs which exist, but we were
unable to recover them explicitly from the documentation. Some knowledge of the
project had to be combined with the documentation. For example, if method func-
tionality had been migrated to a different class, which existed prior to the studied
release, we were unable to provide a replacement automatically. This was particu-

larly prevalent when methods migrated from using static methods to classes which

65

Figure 12: Android online documentation for method fromHtml, presents a migration
pathway.

This method was deprecated in API level 24.
use fromHtm1(String, int) instead.

produced similar results through new objects. Externally maintained replacements
as part of the java.lang.Math package account for 8 of the 29 replacements which
were not found for API version 23. One of the undiscovered replacements was a Java
wrapped C method which proved difficult to link. However, we were able to link a
similar method in API version 24 through its documentation links. Out of the 15
other undiscovered replacements, all of them referred to another class to replace the

lost functionality.

Ezxperience #2: Android documentation, including the online documentation,
code comments, and commit messages often contains useful textual information
for method migrations as well as information for their deprecation, addition, and

remowval per API version.

Experience #3: Migration pathways of APIs in documentation are often very

explicit. Links between methods are clearly stated in the documentation, and

replacements are identified with complete method signatures for easy recognition.

The official documentation of Android API is the main source of data
for suggesting API migrations. Android provides a rich documentation from
the official documentation website [9], and from the framework commits [10]. We
find that the documentation of Android API provides more migration links than any
other sources. By manually inspecting all the sources of information of the removed or
deprecated APIs, we find that only 5 out of our 469 studied APIs had migration paths

that were not presented in the official online documentation. However, as presented in

66

challenge #2, not all previous documentation is readily available in the latest online
index [9], and some of it must be mined from the JavaDoc in the repository [10].

Our results show that identifying replacements for the removed or deprecated
Android APIs may not compose a challenging task, since developers may not need
sophisticated techniques to analyze documentation in order to detect the API replace-
ment, while simple keyword searching on the API names may recover the majority
of the API replacement. More importantly, the majority of the replacements can
be recovered from the official documentation. Compared with the code comments
and the commit messages, the online Android official documentation is the easiest to
access and to analyze by consumers. This finding also implies that developers may
not need sophisticated techniques nor access to the software repositories to migrate
Android APIs.

Ezperience #/: The Android official documentation [9] effectively presents mi-
gration pathways. Based on documentation alone, with simple text matching, we

were able to automatically determine most of our manually identified migration

paths.

Challenges

Challenge #1: Associating documentation to APIs.

Description: Source code documentation is not always favourably located in order
to determine the targeted source code artifacts. During this research we noticed that
sometimes documentation provided at the top of a Java class can give migration or re-
moval information about a method in the class. However, linking this documentation
requires foresight of its existence.

Our solution: Since our method of using naive text matching worked well for mi-
gration suggestions, we determined that in the case of the Android API we could also
apply text matching to documentation found throughout a given class (cf. Table 13).
After identifying the removal of a method in a given API we suggest looking at all
unlabelled documentation in its class for text matches, and attempting to identify
any other method mentioned.

Challenge #2: Missing historical information of API documentation.

Description: All references to removed methods are expunged in the official An-

droid documentation. Therefore, when a method finally gets removed, it is no longer

67

possible to find its information on the Android developer Website [9]. Likewise, the
JavaDoc for the project is not provided for removed API methods. This likely pre-
vents the misuse of inaccessible methods, however it makes it more challenging to
find migration paths for removed methods.

Our solution: Although the documentation for removed methods is not directly
accessible from the Android developer site, it is accessible in the source code repos-
itories JavaDoc. Therefore, it is possible to mine the source code history for docu-
mentation information which was removed, in order to build a complete migration
picture. It could help slow adopters if Android built this information into the website
as a removed section to help them migrate very old app versions.

Open Challenge #1: N-to-N API methods migrations

Description: Using the current approaches, it is difficult to assist in the migration
between two sets of multiple APIs as a whole, i.e., N-to-N migration scenarios. First
of all, with current techniques it is difficult to determine if a migration search is
returning multiple results because of false positives or due to multiple migration paths.
Secondly, understanding the relationship between the multiple APIs is challenging.
Current approaches concentrate on one-to-one migration scenarios and shy away from
automatically crcating new source codce that consists of multiple new migrated APIs.
Challenging migrations are prime candidates for helping API users because of the
challenges they bring. In this thesis we attempt to use existing developer knowledge
to bring potential solutions to these N-to-N migration scenarios to Android API users

in Chapter 4.

Table 13: Android API suggestions automatically found, compared to manually con-
firmed migrations.

Only methods with replacements are presented here.

API Version | Found Replace- | Missed Replace-
ment ment

22 5 1

23 31 29

24 25 3

25 1 0

26 62 1

68

3.3.2 Step 2: Leveraging historical code-change information

in API migrations

Motivation

In the previous research step, we found that a large portion of API upgrades
can be recovered by searching simple keywords in documentation; only 4% of API
upgrades were unrecoverable by only analyzing documentation. On the other hand,
prior studies leverage software development history, such as code change per commit,
when assisting in recovering API migrations [51]. For example, SemiDiff identified
code changes within a commit to determine API method replacements [51].

We do not directly test any specific tool as many of them have not been maintained
or require modification to run on our chosen project. Since modifying the tools
could introduce errors or a bias for certain methods, we chose to test the underlying
assumptions of API migration techniques in an effort to determine whether these
underlying assumptions and theories hold in practice.

These techniques often assume that the removal of an existing APT and the ad-
dition of an upgraded APIs cxist within a short period of time (i.c. within a few
commits) [51, 63,100, 186]. Since such an assumption is heavily depended upon, yet
never validated in practice, the assumption can lead to uncertainly in the usefulness
of automated API upgrading techniques. Therefore, we aim to leverage historical
information to recover Android API upgrades.

Approach

We first leverage code change history in the implementation of the removed or
deprecated API methods. If two methods change implementation in the same commit,
it is likely that their implementations are linked in some way. The more often two
methods present simultaneous implementation changes, the more likely they are to
share implementation details. This can allow us to determine which methods provide
similar features and make links between features that would not be available by
looking at release snapshots.

We collect all commits in the g¢it repository of Android. For each commit, we
identify the Android APIs that are changed. Since git diff would only provide textual
based differences in a commit, we use srcML [46] as an intermediary to provide XML
representations of Abstract Syntax Tree (AST) of the source code. By comparing

sreML output of cach source code file before and after a commit, we arc able to identify

69

which method is changed in the commit. We then track all APT implementations that
arc co-changed with the API implementation that is removed, modified or deprecated
in the Android release. Although not all co-changes present migrations, most, if not
all, migrations should present co-changes. We study whether these co-changed APIs
can provide useful information for recovering API upgrades [183].

Second, for each of the known API upgrades (see Section 3.3.1), we examined the
time span between its deprecation (if present), the removal of the existing API and
the introduction of a new API.

Results

Over all the Android API versions studied, source code change history
provides a total of 53 migration pathways. Out of these pathways, only
5 are uniquely identified by commit information. However, documentation
with basic text matching identifies 119 suggestions. The Android API documentation

suggestions include 90.5% of the migrations found through source code change history.

Experience #5: Historical code data, such as commits, only yields a few undoc-

umented migration pathways and a fraction of maigration pathways contained in

documentation.

Existing APIs are not always deprecated, removed, or modified in the
same commit as new APIs are introduced. Bascd on our manually identified
replacements, we found that for 57.3% of them, we could not identify any commit
migration pathways between the outgoing API and any replacement API.

Newly introduced APIs are often added into source code earlier than
the removal or the deprecation of the existing APIs. Table 14 presents the
API version difference between the appearance of a replacement method and the
removal, deprecation, or change of the original method. In the studied system, 59.5%
of modified methods have a replacement which appears in the same version as the
modification. 10.1% of modifications have replacements outside of the Android API,
and the rest of replacements are spread over the entire evolution of the API. For
example, the method getCellLocation() was deprecated in API version 26, and was
given a documented migration pathway to API method getA11CellInfo (). However,
getAllCellInfo () was introduced in API version 17. Therefore, no clear migration

pathway exists in API version 26 other than documentation.

70

In three cases, the Android API method replacement was provided in
future releases. This makes it impossible to determine a replacement functionality
at deprecation time for these methods, as it does not exist yet. It also makes it im-
possible to use commit based links since the methods clearly are modified in different
releases. However, with constant monitoring of the project, it may be possible to
determine a replacement through documentation and commit messages. Similarly,
migration paths that appear multiple releases before deprecation time, may not be
linkable through commits. Therefore, we must depend on documentation to tell us
when links are created.

There are many deprecated methods left in the source code without
removal. In the Android API versions studied, deprecated APIs outnumber re-
moved APIs by a factor of 2.94. Through our research of migration methods and
their emergence, we determined that there are more deprecations (244) than re-
moved (83) and changed (142) methods in the versions studied. This presents us
with an interesting finding. Only a fraction of deprecated methods was removed.
This presents a contrast to Zhou and Walker [320] who show that removed API
outnumber deprecated API significantly. This is not the case for the most recent
Android versions. We did notice that some methods were undeprecated, such as an-
droid.app.Notification.Builder.SetNumber (int), however only a few such out-

liers were found in the versions studied.

Experience #0: Some assumptions of history-based automated API migration are

not met for the Android API, since a replacement method can be introduced earlier

or later than the existing method, with o large time gap.

Challenges

Open Challenge #2: Identify the time gap between the addition and
removal of APIs

Description: Our findings indicate that many API methods use migration paths
that are introduced in a different version than the deprecation or removal of the
targeted method. This makes it difficult to use commit based methods to identify a
migration path between two methods. Table 14 shows that a large amount of modified
methods have a replacement introduced earlier than their removal/deprecation. By

widening the search for a migration path to a wider release cycle, it may be possible

71

to identify these migration paths without documentation. However, our experience
shows that widening the scarch increases the amount of false positives. Thercfore, we
believe developers should minimize the use of broad time-spans when searching for
method replacements and instead determine ways to optimize their historical data

search through documentation informed time spans.

New Migration

Method Introduced
A Version

v

<
<

Old Method Introduced Old Method Modified

Figure 13: API migration mapping example

Table 14: API migration mapping version A

Negative A implies migration introduction before modification.
Positive A implies migration introduction after modification.
A Version | Modified Methods
-25
-23
-22
-18
-14
-13

1
N
LS RS L S R I RO R B R

72

3.3.3 Step 3: API migration in FDroid apps

Motivation

In the previous research steps, we recovered API migration information using both
documentation and historical code change information. However, such information
may not be enough nor beneficial at all when migrating API usage in real-life Android
apps. Therefore, in this step, we seek to determine how these links should be used to
facilitate API usage in open-source Android apps from FDroid [79].

Approach
Android API usage in FDroid Applications

FDroid Android applications are open-source Java applications that call the An-
droid API to interact with an Android end user. Prior studies have been done on
the FDroid dataset [96]. With knowledge of the available Android API methods, it
is possible to mine the FDroid applications for their API uses. We first mined the
FDroid database for FDroid projects which had multiple versions and had download-
able source code. We then used a list of removed Android methods to determine the
usage of removed Android methods in these FDroid projects. The list of removed
methods is maintained by the Android project as part of their public framework
repository [10]. Finding the usage of removed methods is done by parsing all files
in all 415 FDroid projccts for uses of the removed methods. We counted how many
times a removed method was used, which file it was used in, and in which version of
each project. We then use this information to determine the popularity of removed
methods, and to find which methods are preventing an app from targeting a higher
API level.

To determine whether the links produced by our approach could be useful to de-
velopers, we looked at the links between removed methods and their replacements.
We gathered the uses of removed methods from a sample of 415 open source Android
applications. We concentrated on Android API versions 21-25, as 66.4% of applica-
tions targeted these versions. Although Android API version 26 was used during this
study, we did not have any FDroid projects with uses of the API and it is therefore
not present in this research step. Since Android API version 25 only deprecated one
method we do not present data related to it for clarity.

Migrating API usage in FDroid Applications

To test our suggestions in a more rigorous fashion, we use three applications which

73

are blocked from changing API versions due to removed methods. Using our list of
FDroid application method uses, we identified three applications, Tasks, Forrunners,
and Poet-Assistant to test our migration suggestions and attempt to migrate the ap-
plications from one version API version to the next. These applications were chosen
because they presented multiple app releases (6-167), they were prevented from ac-
cessing Android API 24 due to their use of methods which were removed after API 23,
and had included test suites in their development packages. We manually migrated
the apps by using our suggested migration methods and ran their test suites to see if
any tests were broken by our changes. We also successfully ran the apps in the An-
droid Studio’s development environment simulator as a safeguard against defective
or lenient tests. We specifically attempted to target the modified functionality in the

simulator, and did not experience any crashes.

Table 15: Android API methods found in FDroid projects.

API Version | Changed API | Found in | Can Migrate
Methods FDroid

22 128 5 3

23 157 28 20

24 56 22 11

APT levels 25 and 26 are not presented here for clarity.

Results

Only a small sample of APIs are used in FDroid projects and a small
number of APIs account for the majority of the removed APIs. Not all
methods which were removed by the Android development team were sampled in our
study of 415 FDroid projects. Table 15 shows that between 4% and 39% of removed
APIT mcthods were sampled in the FDroid projects. Thercefore, not all removed meth-
ods bear the same migration weight. This implies that API architects can focus on a

small amount of APIs to prioritize API migration efforts.

Ezxperience #7 Actual modified API usage is heavily centred around a few API
calls. Most API users only require support for few modified API methods.

API migrations may vary in scope. Not all migrations are equal in scope [66].

In the versions of the Android API studied we found multiple migration types.

74

Some migrations require the removal of one or more parameters such as an-
droid.hardware.usb.UsbRequest.queue(Bytebuffer, int) which beccame queue(
Bytebuffer) in API version 26. The removal of a parameter could mean reworking
some code if old parameters were joined.

Other migrations require the addition of one or more parameters, such as an-
droid.text.Html.fromHtml (String) which was changed to android.text.fromHtml
(String, int). The int argument was added as a way to return different flags from
the fromHtml method. If the user wanted to keep the same functionality as the pre-
vious version of the method, the int could simply be set to a value of 0. Therefore,
although inconvenient, this change is relatively simple to develop.

Similarly, some methods were simply refactored to a different class, the FrameLay-
out class getForeground() methods were migrated to the View class. For methods
like these, simple refactoring could allow these methods to be migrated [66]. This is
not a problem as long as the classes were not delegated outside the Android repository
which happened to the FloatMath Android expressions which were relegated to the
java.lang.Math package.

Comparatively, the WebViewClient method shouldOverrideUrlLoading(WebView,
String) changed paramcter typc and migrated to shouldOverrideUrlLoading (We-
bView, WebResourceRequest), and contained a very different migration strategy.
The API consumer now has to learn how the new WebResourceRequest works and
properly instantiate the object. This is a slightly more difficult task for a developer.
A machine would almost assuredly require code examples from which to map the
changes. Giving the maximum amount of available information to the API consumer
in these cases allows them to determine if the migration is worthwhile. If they de-
termine that the migration cost is acceptable, they then have access to links which

could help them understand the new functionality.

Experience #8 API migrations often require further code modification than a

simple rename or parameter change, e.g. object instantiation.

Developers may migrate APIs while keeping support for the old API
version. In two cases, we identified applications which were using migration meth-
ods as expected and the migrations were done without any problems. However, in

the case of Poet-Assistant we discovered that the developers were already aware of

1)

the migration of these methods. The developers had put in conditional statements
to determine the APT level of the user in order to determine which APT call to make.
Therefore, the developers had two solutions in place for every use of the fromHtml
method. this allowed us to determine that our suggested method was the appropriate
migration method for this situation. It also presented new information that we had
not anticipated. Some developers are willing to support multiple versions of the An-
droid API simultaneously. Although Poet-Assistant developers had gone through the
effort of making the migration to API 24, they had kept the backwards compatibility
functionality for previous API levels.

Challenges

Challenge #3: Ranking migrations suggestions

Description: Using naive text matching alone, or historical source code data alone,
provides multiple false positives, such as similar method names, for migration paths.
Therefore, it is often challenging to rank migration suggestions in a way that makes
them usable to an end user.

Our solution: By coupling both approaches we produce more accurate migration
suggestion rankings. We used both approaches independently and ranked migrations
bascd on a coupled answer from both sources of information. Morc accurate methods
for both documentation mining and source code mining could be developed, but
coupling both sources of information will lead to more accurate results than having
them separate.

Open challenge #3: Identifying the existence of API replacements.

For the Android API versions studied we found that many (66.3%) API modifi-
cations did not contain migrations. It is possible that we missed migration pathways
in our manual examination. However, in practice it makes little difference if there is
no replacement or if the replacement is too difficult to find. Either way the API con-
sumer does not obtain a replacement and will assume one does not exist. Therefore,
we open a challenge to develop an approach to determine a gold-standard to identify
the existence of migration pathways. Currently, we have no way to ascertain whether
a method migration exists without documentation or architecture information, and

it is possible for these sources of information to fail.

76

3.4 Threat to Validity

The following section aims to address the various threats to validity present in our
research and how these problems were mitigated.
Construct validity.

It is possible that due to improper maintenance, documentation and source code
are not representative of one another. Since all the information in this research was
mined from documentation and source code history, this would cause the information
in this project to be ineffective at showing the links between various methods. Any
links created from unsynchronized documentation and code, would tend to arbitrary
directions. We believe this to be unlikely for multiple reasons. The Android project is
popular and used to support millions of apps. These millions of apps rely on and ex-
pect a high quality API as service to their businesses. It is likely that inconsistencies
in documentation and source code are rapidly reported and fixed. The links pro-
duced in this study have been tested as migration links through manual inspection of
both the Android framework and its documentation. No inconsistencies were noticed
during this research. Our suggested method links were also tested on three differ-
ent projects and the suggestions provided have been shown to compile and produce
working applications.

External validity.

Since Android and Android applications were the only case studies done for this
work, it is possible that the findings determined in this report arc not common to
other projects. Therefore, these results might not generalize to other projects. We
attempt to mitigate the drawbacks of this threat by making our findings as general
as possible and looking at general trends in our project sample.

We also cannot claim that the findings in this report can generalize to other
programming languages. The study done in this report requires Java tooling and
Java files. Therefore, it is possible that the findings in this report are only indicative
of Java APIs. However, since documentation and source code repositories are not
unique to the Java programming language, we believe that our findings have the
potential to apply to APIs from any programming language.

Internal validity.
The findings in this report are all based on documentation that was accepted by

the Android development team. This might present a bias, as it is possible that the

7

Android development team uploads only documentation that is favourable to them
and removes older documentation to hide any mistakes or risks causcd by crroncous
documentation. We did not observe documentation maintained outside of the source
code repository. This was mitigated by looking at all available commits, which should
present all changes in documentation. If any inconsistencies in documentation exist,
they should appear in the committed changes to the documentation, and none were
noticed. If the Android development team only presents filtered commits which have
perfect documentation, we must accept the available information at face value as we

have no other sources of information about the API.

3.5 Chapter Summary

In this chapter, we presented our experience in using Android API source-code repos-
itory coupled with documentation to provide suggestions for Android API migration.
During our practice, we find that although a portion of the removed or deprecated API
methods do not have a replacement, and that identifying a replacement using docu-
mentation or historical code change information is not a challenging task for Android
API users. In particular, Android official online documentation provides valuable
information and enables the use of simple keyword searches to find a replacement
for removed or deprecated API methods. Existing tools such as ARENA [227] could
mine this information. However, when we applied API method replacements to mi-
grate Android API methods in FDroidApps, we experienced other challenges, which
are more time consuming to address, such as initializing new parameter types. We
document these challenges so that future rescarch can investigate them and propose
automated techniques to assist in API migration. This thesis attempts to propose a
technique to remedy some of these challenges. The proposed technique is presented
in Chapter 4 of this thesis.

This chapter highlights some failings of current API migration techniques and pro-
vides opportunities to improve the understanding of API evolution, particularly API
migration. Several challenges to be tackled by future research have been presented

based on our experience with the Android API and FDroid apps.

78

Chapter 4

Using Existing API User
Knowledge as Android API
Migration Aid

The fast-paced evolution of Android APIs has posed a challenging task for Android
app developers. To leverage Androids frequently released APIs, developers must
spend considerable effort on API migrations. Prior research and Android official
documentation typically provide enough information to guide developers in identifying
the API method calls that must be migrated and the corresponding API calls in an
updated version of Android (what to migrate). But developers lack the knowledge
of how to migrate the API method calls. There exist code examples, such as Google
Samples, that illustrate the usage of APIs. We posit that by analyzing the changes
of API method call usage in Android code examples, we can learn API migration
patterns to assist developers with API method call migrations.

In this chapter, we propose an approach that learns Android API migration pat-
terns from code examples, applies these patterns to the source code of Android apps
for API method call migration, and presents the results to users as potential API
method call migration solutions. To evaluate our approach, we migrate API method
calls in open-source Android apps by lcarning API migration patterns from code ex-
amples. We find that our approach can successfully learn Android API migration
patterns and provide Android API migration assistance in 71 out of 80 cases where

Android apps require API method call migration. Our approach can either migrate

79

Android API method calls with little to no extra modifications needed or provide
guidance to assist with the migrations. Through a uscr study, we find that adopting
our approach can reduce the time spent on migrating Android APIs, on average, by
29%. Moreover, our interviews with app developers highlight the benefits of our ap-
proach when migrating APIs. Our approach demonstrates the value of leveraging the

knowledge contained in software repositories to facilitate API migrations.

4.1 Introduction

Existing migration recommendation techniques [52,100, 186, 296] typically focus on
identifying what is the replacement of a deprecated API (e.g., one should now be
using methodB instead of methodA), instead of how to migrate the APT calls for the
replacement (e.g., how to change the existing code to call methodB). However, a recent
experience report shows that all too often, Android API official documentation clearly
states what to replace for a deprecated API, while actually performing API migrations
is still challenging and error prone [135].

There exist many publicly-available code examples online illustrating APT usages.
As an example, Google provides a set of sample Android projects on the Google
Samples repository [93]. Developers often study these sample projects and other
code cxamples (c.g., code from open-source Android apps) to help them with API
migration [150, 268, 279, 281]. Nevertheless, studying the code examples to know
the changes needed for API migrations is a manual and time-consuming process.
Furthermore, identifying where and how to apply migration changes puts an extra

burden on developers during software maintenance.

view.setFocusableInTouchMode (true) ;

- view.setBackgroundColor (mFrag.getresources () .getColor (R.color.default_background)) ;

+ view.setBackgroundColor (mFrag.getresources () .getColor (R.color.default_background, null));
view.setTextColor (Color.WHITE) ;

Figure 14: An API migration example of the getColor API, in the GriditemPresenter
class of androidtv-Leanback project in commit 6a96ads.

In this chapter, we propose an approach, named A3, that mines and leverages
source code examples to assist developers with API migration. We focus on Android
API method call migrations, due to Android’s wide adoption and fast evolution [162].

Our approach automatically learns the API migration patterns (i.e., pairs of ASTs

80

before and after an APT method call migration of the same piece of code) from code
examples taken from available code repositorics, thereby providing varied cxample
patterns. Afterwards, our approach matches the learned API migration patterns to
the source code of the Android apps to identify suitable learned API call migration
candidates. If migration candidates are identified, we apply the learned migration
patterns to the source code of Android apps, and provide the resulting API method
call migration to developers as a potential migration solution.

To evaluate our approach, first A3 learns Android API method call migration
patterns from three sources of code examples: 1) official Android code examples
provided by Google Samples [93], 2) migration patterns that are learned from the
development history of open-source Android projects i.e., FDroid [79] and 3) API
migration examples that are manually produced by a sample of Android API users.
Our approach then applies Android API migration patterns to open-source Android
apps from FDroid and we leverage their test suites and manually run the apps to
validate the correctness of the migration. Furthermore, we compared our approach
to LASE [165], a tool meant to apply code edits learned from examples. Moreover,
we carry out a user study to determine the actual and perceived usefulness of our

approach. In particular, we answer three rescarch questions.

RQ1 Can we identify API migration patterns from public code examples?

Our approach can automatically identify 80 migration patterns with 96.7% pre-
cision in Android APIs used in public code examples, and obtains a recall of

97% using our seeded repository.

RQ2 To what extent can our approach provide assistance when migrating APIs?

Based on 80 migrations candidates in 32 open-source apps, our approach can
generate 14 faultless migrations, 21 migrations with minor code changes to the
API user application, and 36 migrations with useful guidance to developers.
Furthermore, interviews with four developers highlight a positive developer re-

sponse to our Android API method call migration patterns.

RQ3 How much time can our approach save when migrating APIs?

Through a user study with 15 participants and 6 API migration examples, we
show that our approach provides, on average, a 29% migration time improve-

ment and is seen as useful by developers.

81

Previous research has proposed approaches such as Sydit [164] and LASE [165]
to help developers with API migration; however, these approaches must be manually
pointed towards pre-migration examples without the ability to automatically retrieve
or identify them [232]. Furthermore, the effectiveness of code examples on migration
is affected by the context of the examples, whereby examples with closer contexts will
waste less developer time by reducing time spent testing barely related cases [232].
Therefore, by considering multiple examples from different contexts our approach
generates well-fitted migration solutions.

Our approach can be adopted by Android app developers to reduce their API
migration efforts to cope with the fast evolution of Android APIs. Our approach also
exposes the value of learning the knowledge that resides in rich code examples to
assist in the various tasks of API related software maintenance.

Chapter Organization. Section 4.2 provides a real-life example of an API mi-
gration to motivate this study. Section 4.3 describes our automated approach, A3,
that assists in Android APT migration. Section 4.4 presents the design of the ex-
periments used to evaluate our approach and Section 4.5 presents the results of our
experiments. Section 4.6 describes threats to the validity of this study. Finally,

Scction 4.7 concludes the chapter.

4.2 A Motivating Example

In this section, we present an example, which motivates our approach based on learn-
ing migration patterns from code examples to assist in API migration.

In Android API version 23, the Resources.getColor API method (as shown in
Listing 4.1) was deprecated and replaced (as shown in Listing 4.2). In fact, the dep-
recation and replacement (what to migrate) are clearly shown in the official Android
documentation [8]. However, even with the help from the documentation, the addition
of a new parameter provides new challenges to the Android app developers. Because
they may not have the knowledge necessary to retrieve the Theme information nor to
initialize a new object for the Theme to make the new API call. Moreover, since the
old API call does not require any Theme, even if developers can provide a Theme,

there is no information on how to preserve backward compatibility.

82

On the other hand, there exists open source example projects on Google Sam-
ples [93], i.c., androidtv-Leanback, a project on Github that presents several uses of
the Resources.getColor method. With the introduction of a new Android API ver-
sion, these code examples were also updated. By looking at an example, we find
that it clearly demonstrates how to call the Resources.getColor APl method (see
Figure 14). From the changes to the code example, we can see that to maintain back-
ward compatibility, developers can simply pass a null value to the API. Without such
an example, figuring out that a null value preserves backward compatibility would
require trial and error from developers. By learning such a migration pattern in the
code examples, the effort of the challenging task of how to migrate an API method

call can be reduced for developers.

Listing 4.1: Resources.getColor API method before migration

public class Resources extends Object {
public int getColor (int id)

Listing 4.2: Resources.getColor API method after migration

public class Resources extends Object {

public int getColor(int id, Resources.Theme theme)

However, finding these migrations on Google Samples is a laborious endeavor.
First of all, the code examples do not index their usage of APIs. Developers may must
search for the API usage of interest from a large amount of source code. Second, even
with the API usage in the code examples, developers need to go through the code
history to understand the API migration pattern, i.e., how to apply these changes,
which can be much more complex than the aforementioned example. Finally, even
with the migration pattern, developers need to learn how to apply the migration on
their own source code, which can be a challenging task [135].

Taking the aforementioned API method Resources.getColor as an example, we
can detect a total of 1,626 places where the Resources.getColor Android API method
is called in its deprecated form on a sample of 1,860 open source Android apps from
FDroid [79]. Migrating Resources.getColor to Android API version 23 or later for all

of those apps requires a significant amount of effort. Automating the above-described

83

migration approach and providing the information of the learned pattern to developers

can significantly reduce the required migration cffort.

4.3 Approach

Code example

source code examples

Alist of 5
all available APls One API migration pattern
API call before API call after J
migration migration

(a) Step 1: Learning API migration patterns from code examples

version control Searching AP calls API calls in N\ - n
API repository > the code APl calls AP;?E::;IO” B

Extracting APIs

API
documentation

User app
source code

Alist of Searching possible
all available APls migration candidates _| Migration
candidates
API migrationﬁ) Allthe AP
call examples
patterns before migration for each

andidate

One migration candidate
AST from API call
examples before

AST from APl call in
the app source code L
migration
Matched AST nodes
for the API call

A

AST from APl call in

the app source code Matched AST nodes Applying migration from
for the API call the example to the
AST from API call
source code APIcall | yiigrated AST call for

examples before
the app source code

|

migration

Matched AST nodes
AST from AP call for the API migration
examples after
migration

(b) Step 2: Applying learned API migration patterns to API calls in the source code

Figure 15: An overview of our approach, named A3, that assists in API migration

Our approach (A3) consists of two steps: 1) identifying APT migration patterns
from code examples and 2) applying the migration pattern that is learned from the
example to the source code of the Android apps. An overview of our approach is shown

in Figure 15 and an implementation of our approach is publicly available online!.

!The repository which contains the tool and data presented in this paper can be found at:
https://github.com/LamotheMax/A3.

84

4.3.1 Learning API migration patterns from code examples

In the first step of our approach, we minc recadily available code examples to lcarn APIT
migration patterns. Such code examples can be found through online code repositories
such as GitHub and FDroid [79]. Our approach also supports self-made examples,
which allows users to produce their own migrated stubs, or use their own projects as

data to feed forward into other projects.

Extracting APIs

We automatically extract all the Android APIs for every Android version that is
available from the official Android API documentation. However, the Android doc-
umentation may have discrepancics to the APIs in their source code?. For cvery
version of Android, we obtain the Android source code and parse the source code us-
ing Eclipse JDT AST parser [25]. We identify a list of all public methods as available
APIs.

Searching API calls from code examples

Input : Code example repository exRepo and available API list apiList
Output: Migration example
/* First do basic lexical matching */
foreach api wn apiliist do
apiCallData < api.get(call Data)
apiParams < apiCall Data.getParamCount()
apiName < apiCallData.getName()
potential Migrations <— null
foreach commit in exRepo do
| potential Migrations < commit.getAPlcalls(apiName, apiParams)

end
/x Selective check for all potential migrations x/
foreach call in potential Migrations do

callAST « call.buildAST()

if call AST .matches(apiCallData) then

| saveExample(call)

end

end

Algorithm 1: Our algorithm for searching API migration examples.

2We reported two discrepancies between the Android API documentation and the code repository.

85

In this step, we identify the API calls that are available in the code examples.
A pscudocode algorithm of this step is presented in Algorithm 1. We may design
an approach that builds AST for all available code examples as well as the targeted
Android app source code. Afterwards, we could use the ASTs to match the API calls
in the source code to the code examples. However, such an approach would be time
consuming due to the fact that 1) building ASTs is a time-consuming endeavor, 2)
the complexity of AST matching is non-negligible and 3) the number of Android APIs
that are available is large.

To reduce the time needed to identify API calls, and thereby reduce the challenges
faced by developers who seek to migrate APIs, we first use basic lexical matching to
limit the scope of needed AST building and matching. We first search all the files
in the code example for strings that match API names. This technique allows us
to quickly get a preliminary list of potential API calls. These files are then selected
for further processing as potential matches. Although the basic lexical matching can
lead to false positives, the goal is reducing the search space and the following AST
matching can remove these false positives. For example, in Figure 14 we specifically
search for the keyword getColor, although it is possible for this basic search to falsely
identify a similar post-migration API as a migration target, once the refined check
with AST matching is complete, i.e., these getColor false positives would be filtered
out if they did not have exactly one integer parameter, the right return type, and all
other discernible AST properties for getColor.

After the basic lexical matching, we apply AST matching on the files with potential
matches. This allows us to scope down the previously identified results to obtain high
precision findings without sacrificing too much performance. We leverage JDT [25] to
parse the source code in the code examples to generate their corresponding ASTs. For
each method invocation in the AST, we compare with the APIs that are potentially
matched from the lexical search. If the AST can be fully built, we aim to obtain the
perfect matches between method invocation and API declaration. In particular, a
perfect match requires matching the method invocation name to an API declaration
as well as having perfectly matched types for all parameters. In some cases, the
code examples may not be fully complete (e.g., missing some external source code
files or dependencies), leading to partially built ASTs. With the partially built file

level ASTs, we consider a match if there exist the correct import statement of the

86

API, the correct method name, and the correct number of parameters. All method
instances arc saved, along with their invocation string. This data can quickly be
reviewed by a developer to determine if a false positive was detected, making our
approach transparent and understandable. Developers interviewed in RQ2 presented
in Section 4.5, were presented and reviewed the migration instances that were related

to their familiar app and confirmed our results.

Learning API migration patterns

In this step, we search API calls for every version of the code examples. For instance,
if code examples such as Google Samples [93], or FDroid projects [79] are hosted in
version control repositorics, we detect AP calls in every commit of the repository.

Searching every commit for a multitude of projects requires surmounting the chal-
lenge imposed by the large scale of available data from API user projects. We sur-
mount the challenge imposed by the large amount of data available by leveraging the
basic diff in the version control system (like Git) to determine in which commits a
specific string is modified to collect commits that contain changes to API calls.

Commit level migrations allow us to reduce the amount of code modifications that
could obfuscate an API migration. If we reduce the search scope to a granularity
coarser than commit level we might miss certain migrations. Similar to the lexical
search from the last step, the use of a diff tool is merely scoping down our search
space. For the commits that potentially impact API calls, we parse the AST of the
changed files in the commit. We compare the ASTs generated from the source code
before and after the commit. If the API invocations in the AST are modified in
the commit, we consider the commit as a potential API migration pattern. Hence,
each API migration pattern consists of an AST built from the example before the
migration and an AST built after the migration.

For the code examples that arc hosted as text files outside of repositorics, we apply
a text diff on each two consecutive versions of the example instead of using commits
to scope down the search space. The secondary AST matching step on these text files

is identical to that from the version control repositories.

87

4.3.2 Applying learned API migration patterns to API calls

in the source code

In our second step, we collect all the API migration patterns from the first step and

try to apply these patterns to the API calls in the Android app source code.

Searching possible migration candidates

Similar to our first step, to resolve the challenges imposed by the scale of the problem
at hand, we reduce the scarch space, our approach first uses API names to lexi-
cally search for API calls with available migration patterns in the source code of the
targeted Android app.

Migrations can be dependent on the context of surrounding code, we cannot as-
sume that one migration example will suit all possible use cases. For example, API
such as Resouces.getColor(int) can be present in a variety of use cases. To match
valid migration patterns, we must not only match API calls, but also determine if an
example matches a user’s usage of the API before migration, in order to determine
if we can migrate it. We leverage data-flow graphs to match the API calls in the
migration patterns and the targeted Android app sources. We construct a data-flow
graph from the API call example “before” the migration in the migration patterns.
We also construct data-flow graphs in the API calls in the Android app source code.
Only if the data-flow graph from the example is a subgraph of a potential API call
in the Android app source code do we then consider this a migration candidate. This
allows us to assume that the example API being used as a migration pattern has a

similar use case to the API call in the targeted Android app.

Applying the migration from the example to API calls in the source code

Existing API migrations can contain implementation details that cause incompat-
ibilities with other projects. Therefore, our approach must mitigate the challenges
imposed by implementation details and allow developer interaction. We employ data-
flow graphs, rely on the large number of migration examples provided by open-source
projects to obtain our migration examples, and let the developer have final say at
every step of the approach.

If any migration candidate is found, we then attempt the migration. We first

88

Input : Migration mapping mapped DF'G and client data-flow graphs
client DFG

Output: Migrated data-flow graph

/* Traverse all data — flow graphs x/

foreach DFG in client DFG do

DFGMap <+ mappedDFG .get(DFQ)

changedAPIs < DFGMap.getChangedAPI()

/x Migrate all migrateable APIs */

foreach changedAPI in changedAPIs do
changedNodes < DFGMap.getDatalinks(changed APT)
missingNodes < DFGMap.getNodesToAdd(changedAPT)
/% Adjust the data — flow graph */
DFG.addNewNodes(missingNodes)
DFG migrateDFG(migrateableNodes)

end

end

Algorithm 2: Our algorithm for migrating code.

compute the migration mappings by comparing the examples before and after API
migration. This mapping contains any changes that must be made to cxisting code
statements, obtained by comparing the names and types of each code statement in
the data-flow graph. The migration mapping also contains any new code statements
that are present in the “after” migration example but were missing in the “before”
migration example.

In order to obtain an accurate migration mapping between the “before” and “af-
ter” examples (i.e., changes that were made to migrate the API), we need to eliminate
the changes on AST that are not related to the API migration. We achieve this by
relying on the data-flow graphs that are built from the examples. We first remove all
the nodes in the data-flow graph where all the associated nodes are perfectly matched
between the “before” and “after” examples. Because they are perfect copies of one
another, those nodes cannot contribute to a migration. We keep the nodes in the
data-flow graphs that remain unmatched and are associated with the node that is
of interest to the API call. Finally, we compare the nodes that are kept to find the
matched data-flow graph for the APT call in the Android app after migration.

Once we obtain the most likely migrated data-flow graph in the “after” API
migration example, we produce a backward slice of the data-flow graph starting from
the APT call. In other words, we only look at nodes that give data to the APT call.

89

Based on our sliced data-flow graph, we then map each node in the “before” example
to the most closcly matched node in the “after” example. Any unmatched data linked
nodes are considered to be new nodes and are saved to be added during migration.
Finally, we use the migration mapping to transform the project source code into
the “after” API migration example. Pseudocode of our migration algorithm can
be found in Algorithm 2. The transformation also looks for any object types that
are matches between the “before” example and the project source code to infer the
names used in the Android app source code, to prevents the introduction of new
variable names. Our approach can produce migrations that are interprocedural and
intraprocedural. However, we limit the migration scope of our approach to single files
because prior work has found that field and method changes account for more than
80% of migration cases [48]. Adding migration across multiple files would increase
the chance of making mistakes, both when mining and applying migration patterns,

and only account for a minority of migration cases.

public Object Methoddeclaration(Object foo, Object bar){ public Object Methoddeclaration(Object foo, Object bar){
int b = foo.getDefault();

inta = changeDefault(b);
Object x = bar.getColor(a, null);

int a = foo.getDefault();
Object x = bar.getColor(a);

return x; retum x ;

Sample Android app source code Betore migration example After migration example

: l doetned '—mo—)! foo.getDefault() o '—mo—>| fo0.getDefault()
[|—100—P| b

foo.getDefault()] bar o bar
a

| v ¥
bar — :,|> { bar.getColor(a, nuII)]1—a—|changeDe1ault(b)|
Original match |
, !
+ Replacement match +

New node addition

" Other method : ""Other method
; > return statement ; " > return statement
i declaration : H H i declaration : B i

Legend <":|,> |:|,> [Nodeo{ interes(] ’ Matched node l Irrelevant node I New node I

Exact Match Migration

Figure 16: Example of applying a migration from an example to Android app source
code

To better explain our approach, Figure 16 illustrates an example of applying a
migration from an example to an API call. The before and after migration examples
illustrate potential example code obtained from sample projects. We can see that

methods that are exact matches are seen as irrelevant because they add no information

90

to the migration. Similarly, we can see that nodes after the migration node of interest,
in this casc a rcturn statcment, arc also scen as irrclevant nodes. This is because it
does not matter what the user does with their code after the API call (i.e., not related
to the usage of the API). Other nodes are then matched between before and after
examples to determine which node is most likely the migration. Any nodes that
do not obtain a match are considered new nodes required for migration and will be
added in user projects, as denoted by the color blue in our example. Once a match
is produced between migration examples, the migration mapping can be applied to
the user example, as presented by the arrows in Figure 16 and as explained by the

pseudocode in Algorithm 2.

4.4 Evaluation

To determine the extent to which our approach, A3, can be used to assist with
API migration, we conducted a series of experiments. We first present the research
questions to evaluate our approach. Then, we present our data acquisition approach

for Android apps and code examples.

4.4.1 Research questions

We evaluate our approach by answering three research questions. We present our
research questions and their motivations in the rest of this subsection.
RQ1 Can we identify API migration patterns from public code examples?

Our approach uses code examples to automatically learn API migration patterns.
Therefore, the availability of migration code examples is very important to our ap-
proach. In this RQ, we study how many API migration patterns we can find in pub-
licly available code examples and calculate the precision of our approach. We also
enlisted the help of 20 volunteer developers to produce a sample migration dataset in
order to obtain a known number of migration examples and determine the recall of
our approach.

RQ2 To what extent can our approach provide assistance when migrating APIs?

In this RQ, we use the publicly available and user produced examples to automat-

ically learn and apply migration patterns. We evaluate and quantify the extent to

which our approach, A3, can leverage these examples to assist developers in migrating

91

APT calls, though comparisons with an existing approach and through testing and
manual cvaluation of Android app migrations.
RQ3 RQ3: How much time can our approach save when migrating APIs?

In this RQ, we enlisted 15 developers to participate in a user study to evaluate
the time savings provided by A3. We timed the participants while they migrated an
amalgamation of six API examples, for which they randomly received help from A3.

The participants were also asked to rate the usefulness of our approach.

4.4.2 Data acquisition

We present the Android apps that we want to migrate and the sources of our code

examples.

Android apps for migration

We selected our Android apps through the free and open source repository of Android
apps: FDroid [79]. We clone all the git repositories of FDroid apps that are hosted
on GitHub and implemented in Java. In total, we obtained 1,860 apps. From thesc
apps, we chose the ones that are still actively under development, since they are more
likely to benefit from migrating to the most recent Android APIs. Therefore, we
only selected apps that had code committed in the six months prior to our study. In
order to assist in later verifying the success of the migration, we selected only apps
that contained available tests. Because we could not ascertain that the tests would
guarantee that the migrated API code would be tested, we only selected the apps that
could be built with the official Android build system, Gradle, so that we could verify
the functionality of apps after migration. We focused the evaluation of our approach
for API migration on the 10 latest versions of the Android API because they account
for 95.6% of Android devices in the world [7]. Therefore, we selected the apps that
target the 10 latest versions (API versions 19-28) of the Android API. This allowed
us to collect a sample of 164 FDroid apps on which to test our migrations. All the

other apps (1,696) were used to extract API migration examples.

92

Sources of public code examples

Our approach rclics on code cxamples to lcarn API migration patterns. In the cval-
uation of our approach, we focus on two sources of public code examples: 1) official
Android examples, i.e., Google Samples [93] and 2) FDroid app development his-
tory. We also use Android API usage patterns extracted from our FDroid sample to
construct the original examples given to our user study participants.

Google Samples. The Android development team provides code samples to assist
app developers understand various use cases of the Android APIs. This code sample
repository, aptly named Google Samples, contains 234 sample projects, 181 of which
are classified as Java projects [93]. We mined the Google Samples repository, hosted
on GitHub, for Android API migration examples.

FDroid app development history. Due to the widely available open source
projects, if one open source project migrates a deprecated API in their source code,
other developers may leverage that migration as an example. With the publicly avail-
able development history of FDroid, we can leverage the API migrations that exists

in the FDroid apps as code examples.

Source of private code examples

It is impossible to determine how many migrations have been produced and can
therefore be recovered from mining public repositories, therefore we cannot use this
data to test the recall of our approach. We therefore produced a sample migration
dataset with the help of volunteer developers. This dataset was used in RQ1 to
determine the recall of our approach when mining for migration examples.

We developed a dataset with the help of 20 participants (14 graduate students and
six professional developers) to create migration examples for Android API methods
that had known migrations. Based on our study of the FDroid repositories, we
selected the 30 Android APIs most frequently called but without public examples
of migration in FDroid apps. We manually crecated stub classes based on multiple
examples of existing code taken from FDroid apps to reduce the amount of code our
volunteers had to read. We then presented these classes to our participants as files
sampled from real apps that needed migration. The participants were each given five
files, selected at random from our pool of 30 Android APIs that needed migration, in

order to guarantee multiple samples of successful migrations for each API. Therefore,

93

each APT had at least three participants attempt the migration. The participants
were told which API to migrate for cach file, and were allowed to usc the official
documentation or any other source of information they deemed necessary to create
suitable migrations. We manually verified the results of the participants and randomly
selected working examples to seed our sample repository of 30 real migration code

examples that were created by real developers and sampled from real projects®.

4.5 Evaluation Results

In this section, we present the results of our evaluation by answering three research
questions.

RQ1: Can we identify API migration patterns from public code examples?

We focus on two sources of examples in this RQ: 1) official Android examples,
i.e., Google Samples [93] and 2) FDroid app development history. We measure the
prevalence of API migration examples by determining the number of API migration
examples that we can mine from our example sources. We only consider the APIs with
migrations that have officially been documented by Android developers to validate
our results.

In the 10 latest versions of Android (versions 19-28), we were able to manually
identify 262 APIs which had documented migrations. Out of all the Android APIs

with migrations, only 125 of those occurred in our sources of examples.

Table 16: API migrations identified

Data sources API identified
FDroid API migrations 79
Google Samples API migrations 10
Total distinct API migrations found 80
Total APT uses found in apps 125
Total possible 262

By searching for API migrations (c.f. Step 1 in our approach in Section 4.3.1) in
the Google Samples [93] and the development history of FDroid apps, our approach

3The 30 code examples, and their migrations, are available as part of our replication package

94

can automatically identify 10 and 79 API migration examples out of 125 APT occur-
rences, respectively. Among those migration examples from Google Samples, only
one API is not covered in the FDroid examples, giving us a total of 80 distinct API
migrations found (see Table 16). However, we note that the nine other examples from
Google Samples that overlap with other sources are still useful due to the possible
minor variations in ASTs that can occur when migrating. Some examples may pro-
vide a more suitable migration with less needed human effort from developers (c.f.
RQ2 & RQ3). We manually analyzed all examples mined and determined that our
approach was able to find migration patterns with 100% precision in Google Samples
(i.e., 10/10 examples correctly identified), and 96.3% precision in FDroid apps (i.e.,
79/82 examples correctly identified), giving a total precision of 96.7%. Some exam-
ples are migration false positives due to user modifications that can be mistaken an
migrations, we discuss examples that are not migrations in detail in RQ2.

To calculate the recall of our approach, we used the manually created sample
of 30 Android migration examples that was created by volunteer developers (c.f.
Section 4.4.2). Our approach was able to successfully extract 29 out of 30 migration
examples from the seeded repository, giving us a recall of 97%. The example which
could not be extracted was duc to linc-breaks within the APT call. Tt would be possible
to fix this corner case either by preprocessing all commits to remove line-breaks, or

modify our API search to allow for arbitrary line-breaks.

Table 17: Classified API migration patterns identified by our approach

Migration difficulty | Type Frequency
Encapsulate 6

EASY Move method 4
Remove parameter 1

Rename 7

Consolidate 7

MEDIUM Expose implementation 10
Add contextual data 23

HARD Change type 15
Replaced by external API 7

We manually classified the 80 distinct migration patterns identified by our ap-
proach according to pre-established API migration classifications [48]. Table 17
presents our classified patterns. As can be seen in Table 17, the majority (45/80)

95

of the migrations we identified are considered hard to automate [48]. This implies
that our approach can surmount hard technical challenges, as well as find casy-to-
migrate examples. The easy difficulty migration implies that the migration patterns
can normally be completed by most IDEs such as Eclipse [48]. For example, in API
version 26, Notification. Builder.setPriority was moved and renamed to Notification-
Channel.setImportance and CookieSyncManager.startSync is no longer useful since
it was encapsulated by the WebView class in API version 21 and is now automat-
ically done by that class. Medium difficulty migrations (i.e., migrations previously
considered partially automatable) were also found. We identified examples of API
consolidation such as NetworkInfo.get TypeName which was consolidated into the Net-
workCapabilities class in API version 28 and must now instantiate that class and call
a different method hasTransport new with constants. We also identified cases where
implementation was exposed to give more control to the API users. For example the
Notification. Builder.setDefaults method started allowing users to enable vibration,
enable lights and set sound separately in API version 26 rather than be done as part
of one method, as it was done before API version 26. This means that our approach
must be able to find code to instantiate all of these new functionalities. As previously
mentioned, our approach also identifics hard to automatc migration pattcrns. We
identify patterns such as added contextual data in methods like Hmtl.toHtml where
new parameters were added in API version 24 to allow for more options and user
control. In most of these cases a default value for new parameters is allowed, which
our approach can mine from existing projects to allow users to migrate their project.
Changed types such as faced when migrating to Message.getSenderPerson from Mes-
sage.getSender, in API version 28, can be handled by our approach by following the
control flow graph of calls and modifying the calls appropriately based on previous
migrations. Finally, APIs replaced by external APIs such as the FloatMath APIs in
API version 22 cos, sin, sqrt can be changed to their new library format, and the
import statement can be created. The user then only has to make sure that the new

API library is included in their project.

Our approach can automatically identify 80 migration patterns with 96.7% preci-

sion in Android APIs used in public code examples, and obtains a recall of 97%

using our seeded repository.

RQ2: To what extent can our approach provide assistance when migrating

96

APIs?

In this RQ, we cxamine whether our approach can provide assistance to API
migration in Android apps. In particular, we apply our approach to migrate 80
API calls in 32 FDroid apps (based on both the migration patterns learned from
public code examples and user generated examples). In order to examine whether a
migration is successful, we leverage the tests that are already available in the apps
and collect the ones that can exercise the migrated API calls. In order to avoid tests
that are already failing before the migration, we run all the tests before the migration
of the apps and only keep apps with passing builds. The apps that we selected had
an average of 10 tests, with a minimum of 6 tests and a maximum of 52. Afterwards,
we try to build the migrated apps. For the apps that can be successfully built, we
run the collected tests again to check whether the migration is completed successfully.
Furthermore, we also manually install and run the migrated apps to ascertain that
the migration does not cause the app to crash. Furthermore, we provide comparisons
with prior approaches such as LASE [165].

Previous studies have shown that producing exact automated migrations is a

difficult task [48]. We consider this fact and attempt to mitigate it through the use
of our approach. Howcever, in cascs where it is possible to present an exact migration
to a user, such a task should be attempted to save development time. Therefore,
in the best case scenario we attempt to provide an exact and automatic migration
to users. Table 18 summarizes the results of our migrations. Our approach can
provide assistance in 71 out of 80 migrations through faultless migrations, migrations
with minor modifications, and through the examples we suggest when we experience
unmatched guidance or unsupported cases. The following paragraphs discuss each
different type of result in detail.
Faultless migration. If all the tests are passed, and the app runs, without any
further code modification, we consider the migration as exact. We succeeded at
giving users an exact migration in 14 cases. Nine of these migrations were learned
from the manually produced code examples from the examples manually created by
participants. However, we were able to use five examples from FDroid app develop-
ment history to produce faultless migrations. Such a result tells us that given a rich
example, it is possible to provide fully automated working migrations.

Migration with minor modifications. In cases where an app, after the migration,

97

Table 18: Automated migration results based on migration patterns learned from
three different sources

Google Volunteer
FDroid developer

Samples

sample

Faultless migration 5 0 9
Migrated with minor mod. 5 4 12
Unmatched guidance 18 1 9
Falsc positive 0 0 3
Ex. was not a migration 6 0 0
Unsupported cases 7 0 1
Total migrations 41 5 34
Distinct API 21 4 15

does not build and run, or does not pass the tests, we manually checked the error
message. In such cases, the migration pattern may be correct, yet our automatically
generated migration may need minor modifications to build and run the app and
pass the tests. For each case, we determined a way for the migration to succeed
with minimal code modification. An example of such modification can be adjusting
a variable name. We were able to provide 21 migrations with minimal modifications.
We consider the number of tokens that must be changed for the migration to be
successful. The number of tokens changed was determined by post-modifications
performed by the first author, who manually went through failed automated migration
cases, modified the app’s code to make the migration successful and measured the
size of the modification. We use the absolute number of tokens changed rather than a
percentage of tokens matched since the automatically matched tokens do not require
any effort. We consider any modifications to a code token as a token modification.

We found that the modifications nceded for an imperfect but successful migration
requires modifying between one to seven tokens (3.65 tokens on average). We consider
the amount of effort needed on such modifications rather small, especially since they
are mostly simple renames and the addition or removal of keywords. The brunt of
the work, namely finding a migration candidate, finding a migration pattern, and
matching this pattern, is provided by our approach, A3. Therefore, the user can
simply “glue” any unattached pieces of example code into their application.

We examined the different scenarios that require minor modification to qualita-

tively understand the effort needed for such modifications. In total, we identify four

98

reasons for such modifications: vartable renaming, missing the keyword this, wrongly
erasing casting, and removing API calls.

As a design choice, we opt to conservatively not remove any API calls for mi-
gration, since mistakenly removing API calls may cause large negative impact to
developers. Instead, our approach tells the users that a change must be made
to the API, and the API call must then be manually removed. Although this
may require the manual modification of removing several tokens, the effort of the
change is minimal. We experienced three removing API call cases. For example
the View.setDrawingCacheQuality(int) method was made obsolete in API 28 due to
hardware-accelerated rendering [9]. This means that old code referring to drawing
cache quality can be simply deleted, as the OS now handles this through hardware.
Unmatched guidance. It is possible for our approach to fail to match an example
to a known migration (see Section 4.3.2-1). These cases exist due to the nature of
our example matching. Since we consider the data-flow surrounding a migration,
our examples must contain a similar data-flow graph to the Android app considered
for migration. We conservatively opt for such an approach to reduce the number of
falsely generated migrations, since they may introduce more harm to developers than
assistancc. As a result, if the Android app instantiates their API call in a different
way than our examples, our approach will not attempt to automate the migration.
For example, if the user uses nested method calls inside an API call and we cannot
reliably map the return types of the nested method calls, we will not consider the
code to match. Examples that contain unmatched but similar API migrations will be
presented to the user, and they can choose the correct migration and manually apply
it afterwards.

For the 28 migrations for which none of our examples contained a match, 18
of these are from FDroid development history. This implies that the FDroid API
usage is more often tailored for the apps’ needs and is not often coded in a general
manner. Future research may investigate automatically generalizing the usage of API
to address this issue.

False positives. We consider a migration to be a false positive when our approach
presents an unnecessary migration. This would occur if a migration example were
erroneously matched to a non-migrateable method invocation in Android app code.

This only occurred three times in our tests and the occurrences were all from the

99

manually produced examples. We believe this to be the case due to the simplicity
of the manually produced cxamples. Since the examples are simplified and contain
very little context code, the corresponding data-flow graphs are often simple. This
allows the examples to be used in a wider range of situations than the mined code
samples. However, this leads to false positives as a trade-off, especially if method
names are commonly used and few parameters are used (e.g. setContent()). These
false positives can be caught at compile time since they would not compile, and can
therefore be corrected or discarded by the developer without harm to the app.
Example was not a migration. As previously mentioned, since we obtain our
migration examples through automated tool assistance (c.f. RQ1), it is possible for
our approach to present faulty migration examples. This normally occurs when a
deprecated API call is modified, but not migrated to the updated version of the API.
An example of such a modification would be to rename the variables in the API call.
This change would be mistakenly identified by our approach as a modification to an
APT call. Therefore, if such an example were to be used to attempt a migration, we
would present a migration with no effect, and therefore cause no harm to the Android
app. We experienced six such instances in the FDroid examples. However, we did
not cncounter these in our Google Samples nor the manually produced cxamplcs.
Unsupported. There exist a few unsupported corner cases that our approach would
not support. For example, we cannot automatically produce migrations if the API
call is spread across a try catch block, or within a loop declaration or conditional
statement declaration. As with unmatched guidance cases, we provide the user with
migration examples that may be relevant to their migration, instead of attempting to
provide automated migration on their code, therefore no harm is done to the code.

We experienced eight such cases.

Table 19: Comparison with LASE [165]

A3 LASE
Total Migrations Possible 17
Migration map successfully created | 17 15
Migration point successfully found 9 1
Migration faultlessly applied 7 1

100

Comparison with other approaches. To the best of our knowledge, there cur-
rently exists no other approach that can automatically identify API migration cxam-
ples and automatically suggest and apply them to app code. Tools such as SEMD-
IFF [52], and AURA [296] find migration locations, but do not provide example-based
automatic migrations. We find 97% of migration locations based on our examples,
which is close to the upper bound of what these approaches can achieve. We selected
LASE [165] as a more direct comparison for our approach since LASE resembles the
automatic migration of our approach while needing to be provided compilable exam-
ples. Due to LASE’s need for compilable examples, we had to use A3 to first obtain
migration examples to feed into LASE. Furthermore, LASE does not automatically
determine a match between examples and must be manually pointed to paired exam-
ples through manually edited configuration files, which we had to produce for each
example set. Due to the high degree of manual effort when manually producing con-
figuration files for LASE, we chose a subset of 10 of the 32 apps used for RQ2 to
compare with LASE. The apps were selected at random, and contained a total of
17 migration possibilities comprised of 13 distinct APIs. The results can be seen in
Table 19.

LASE can build a rcfactoring map for 15 (88%) migrations compared to 17/17
for A3. However, only 1/17 migrations were automatically mapped to migration
points in the apps and subsequently applied to the apps. LASE appears to be highly
dependent on the quality of the example and their similarity to the app code when
compared to A3. We also find that LASE highly depends on complete matches in
method AST. For example, if app code is inside an if statement or ¢ry block when
the example code is not, if app code is instantiated differently than example code, or
part of a method argument chain is in a different order to the example code, the AST
sub-trees of the code will appear to be different. The differences in the sub-trees may
lead to mis-detections between the primary example and the app code by LASE. We
believe that since LASE was not designed for our use cases, it is intuitive that LASE
is not optimal for our API migration task. On the other hand, A3 is designed to
mine examples from the online code example, and hence is less sensitive to factors
such as as complete AST-alignment and therefore can more often provide migration
links when examples are loosely aligned.

We conducted four semi-structured interviews concerning three open source apps

101

from FDroid (Antennapod, K9Mail, and Wikipedia). We presented each developer
with migration candidates from the app they were familiar with. We also allowed
them to search the web, and ask any clarifying questions if they had any. We then
provided one example of a migration of the same API call done in another app, mined

by our approach. We asked four developers the following questions:

1. “Do you think our approach correctly identified the migration candidate?”
2. “How confident would you be when migrating this API?”

3. “How do you feel about the examples provided by our approach to help you

migrate?”
4. “Do you think there are limitations or potential improvements to our approach?”

In all cases, the developers said that we had indeed found useful migration candi-
dates. The migrations were judged to be easy, but time consuming. In all cases the
developers said that our examples were “extremely useful” or “very very useful”, and
that they would reduce the time to complete a migration from “a few minutes, down
to a few seconds”.

Onc developer said that “/...] where a new parameter is introduced it’s hard to
tell if the default value will do the trick, so I would likely have to do a decent amount
of research before I felt secure in my choice [...]”.

One developer identified a potential improvement when providing before/after
examples rather than a complete migration, “When you provide before/after files for
a migration it would be nice to have a quick summary of the maigration, like did you
add a parameter? Otherwise I have to look at the documentation to make sure I'm
looking at the right thing, and takes a little bit of extra time.”.

In one case a developer said that, “Small examples are nice, but sometimes you
want more context, so maybe having the whole file is better”, on the other hand another
developer said that, “I prefer when I can only see the migration and a little surrounding
code, if there’s too much code, it’s harder to see exactly what’s going on.”. From these
interviews we believe that there is an element of developer preference when looking at
examples, and perhaps future research can look at the kinds of examples developers
like, and create tools that can determine how much of data-flow and control flow is

shown based on developer preference.

102

Table 20: Results of A3 user-study: comparing the time needed to migrate Android
API usage examples (measured in seconds) with help from A3 and location-based
API migration tools [52,296).

Avg. Avg. Time Avg.

Example time time Improvement example
w/o. A3 w. A3 (%) usefulness

1 304.9 266.8 12.5 4.2

2 150.0 115.8 22.8 4.5

3 265.5 174.6 34.2 4.8

4 d72.8 3726 34.9 3.9

5 1524 129.9 14.8 4.8

6 179.8 81.4 b4.7 3.8
Total: 270.9 190.2 29.0 4.3

A3 can provide API migration assistance in 71/80 cases. We can automatically
generate 14 faultless migrations, 21 migrations with minor code changes, and 36
magrations with useful guidance to developers. The effort needed to post-modify
our generated API migration is low, an average of 3.65 tokens require modifica-

tion.

RQ3: How much time can our approach save when migrating APIs?

In this RQ, we present the design and results of a user study involving the assis-
tance provided by our approach. We conduct the user study to evaluate the usefulness
of migration suggestions provided by our approach. The user study involves 15 partic-
ipants (6 professional developers and 9 graduate students). In particular, we compare
the time used for API migration by using our approach, and by only using location-
based API migration tools, such as SEMDIFF [52], and AURA [296]. We do not
compare to LASE [165] in this section since LASE cannot identify migration cites or
examples without developer input. Table 21 shows the major differences between our
approach and prior studies. Therefore, comparing A3, which automatically identifies
a migration location, and automatically identifies potential migration examples, to
LASE which can only migrate manually identified migration locations with manually
identified examples, would not be a fair comparison of time saved. Rather, we seek
to determine how much time can be saved by an approach that can automatically

find migration examples and migration candidates when compared to approaches that

103

only identify migration candidates.

We extracted six API migration tasks from the out-of-date Android APT uscs from
FDroid projects. Each participant was given three tasks with the help of migration
suggestions provided by A3, and three other examples with the help of location-based
API migration tools, such as SEMDIFF [52], and AURA [296]. We randomized the
order of the tasks for each participant. These tasks were part of the dataset used in
RQ1 and RQ2 and had been detected by A3 as APIs which needed migration. The
tasks were chosen randomly from our sample to avoid bias and we manually ensured
that each task did need migration. We used the approach presented in Section 4.3.2
to obtain a migration suggestion for each of the six tasks.

Each participant was given six source files that presented code with old versions
of the Android API. The participants were told that they should attempt to modify
the source code in each task to migrate to the latest version of the Android API.
For the tasks that receive the help by A3, we provide the code that is generated
by A3 after migration. For the tasks that only received the help from location-based
APT migration tools, the participants were informed of which API call to migrate and
what is the new version of the API to migrate. We also provide the hyper-links to
the Android developer website pages necessary to understand the API calls and their
migrations were also given to the participants. We note that we did not directly run
SEMDIFF [52] or AURA [296] to obtain above information, but directly provide the
ground truth information to the participants, as if SEMDIFF [52] or AURA [296]
generate perfect results. Furthermore, the participants were told that we provided
potential solutions in the form of migration suggestions for some examples, and that
they should attempt to use them if they could. This was done to minimize the noise
in the measured time from other activities to concentrate on the migration of API

calls themselves.

Related Work Novelty provided by A3
CatchUp! [100] Our approach docs not require recording of API modifications.
SemDiff & AURA [52.296] Our approach uses APT usage examples rather than internal APT modifications to obtain migration patterns.
EXAMPLORE [91] Our approach antomatically obtains and applies relevant example code as patterns for migration.
Svdit & LASE [164,165] Our approach autowatically obtains matched code examples, does not require fully compilable projects.
LibSync [191] Our approach gives [ully migrated code. and does not require (ully compilable projects.

Table 21: Main differences and novelty provided by the A3 approach when compared
to related work.

The participants were timed to determine how long each migration took. They

104

were also asked to rank the usefulness of the migration examples whenever possible.
The rank is on a scale of 1 to 5, where 1 was considered as uscless, and 5 was considered
extremely useful. The results of our user study are presented in Table 20.

Overall, our approach provides an average time improvement of 29% with a p-value
of 0.015 in a two-tailed Mann-Whitney U test. Professional developers improved by
45.9% while graduate students by 22.7%. We have therefore shown that automati-
cally providing migration examples to users using a technique like A3 can improve
migration times. As shown in Table 20, the developers involved with our user-study
also found the assistance from A3 useful, ranking it an average of 4.3 out of 5 in
usefulness. Therefore, our approach not only provides migration aid that can reduce

migration time, but the examples provided are also judged as useful by developers.

Our approach provides, on average, a 29% improvement in API migration speed

compared with location-based API migration tools. Users ranked the help provided

by A3 an average of 4.3 out of 5 on a uscfulness scale.

4.6 Threat to Validity

Construct validity. We assess the validity of our API migrations by building and
running the apps as well as running the test suites of the migrated Android apps.
Although we focus on the tests that exercise the migrated API calls, and attempt to
exercise as much functionality as possible when running the apps, it is still possible
that defects introduced by the migration are not identified by our tests. User studies
and interviews with developers may complement the evaluation of our approach.
In our study, there are still cases where our approach cannot migrate faultlessly.
Although our approach can provide migration guidelines to developers, as an early
attempt of this line of research, our approach can be further complemented by other
techniques such as code completion to achieve better assistance in API migration.
Furthermore, we concentrate on the majority of cases through file level migrations. If
a large number of migrations occur across multiple files, our approach is not currently
able to help.

Ezxternal validity. Since this entire study was tested on the Java API of the Android
ecosystem, it is possible that the findings in this chapter will not generalize to other
programming languages. However, while it is true that the approach presented in

this chapter was tested specifically on a Java based API, all of the approaches are

105

built upon assumptions that are true in other popular programming languages such
as C#.

Internal validity. Our findings are based on the Android project and code exam-
ples mined and produced for its API. It is possible that we only found a subset of all
migrations. It is also possible for the time gap between the release of new API and
the update to examples to be larger in other sources. We attempted to mitigate these
threats through mining official samples, open source projects, and having participants
produce examples for frequently used APIs. We found that Google Samples updated
deprecated API as soon as one month after the release of a new API version, which
should allow developers to regularly update their apps. Our participant created ex-
amples were new and useful API migration examples, showing that the premise of
using examples to help automate API migrations is functional and likely dependent

on the sample size of examples.

4.7 Chapter Summary

In this chapter, we proposed an approach that assists developers with Android API
migrations by learning API method call migration patterns from code examples mined
dircctly from available code repositorics. We cvaluate our approach by applying
automated API migrations to 32 open-source Android apps from FDroid and through
a user-study. We find that our approach can automatically extract API method
call migration patterns from both public code example and manually produced API
examples that are created with minimal effort. By learning API migration patterns
from these examples, our approach can provide either automatically generated API
migrations or provide useful information to guide the migrations. Our user-study
showed that the examples provided by our approach allow users to migrate Android
APIs, on average, 29% faster and are seen as useful by developers, who ranked them
an average usefulness of 4.3 out of 5.

This chapter makes the following contributions:

e We propose a novel approach that learns Android API migration patterns from

code examples taken directly from available code repositories.

e Our novel approach can automatically assist in Android API migration based

on the learned API migration patterns.

106

e We produce a user study and conduct semi-structured interviews that conclu-
sively shows that migration cxamples arc both desirable and uscful to develop-

ers.

Our approach illustrates the rich and valuable information in code examples that
can be leveraged in API related software engineering tasks. In particular we show
that it is possible to use existing public code repository data to reduce the knowledge
gaps between API users and API developers by using knowledgeable APT user data
(either directly from the Android development team, or from standard Android API
users) to help with Android API method call migrations.

107

Chapter 5

Improving Misuse Detection

Approaches

API migration is not the only issue faced by API users that can benefit from a
reduction of knowledge gaps between API users and developers. If API users do not
adequately understand an API, they can misuse it, to their detriment. Tools do exist
to help API users uncover API misuses in their code. However, without a varied
dataset of API usage examples, it is challenging for the example-based API misuse
detectors to differentiate between infrequent but correct APT usages and API misuses.
Such mistakes lead to false positives in the API misuse detection results, which was
reported in a recent study as a major limitation of the state-of-the-art. To tackle
this challenge and reduce another knowledge gap between API users and developers,
we first undertake a qualitative study of 384 API misuses randomly selected after
using a state-of-the-art misuse detection tool on open-source software projects. We
find that around one third of the false-positives are due to missing alternative correct
API usage examples. Based on the knowledge gained from the qualitative study, we
uncover five patterns to generate artificial examples for complementing existing API
usage examples and avoid false API misuse detection.

To evaluate the usefulness of the generated artificial examples, we apply a state-
of-the-art example-based API misuse detector on 50 open-source Java projects. We
find that our artificial examples can complement the existing API usage examples
by preventing the detection of 55 falsely detected API misuses. Furthermore, we

use a state-of-the-art experiment dataset with an automated API misuse detection

108

benchmark (MUBench), to evaluate the impact of generated artificial examples on
recall. We find that the API misusc detector covers the same true positive results
with and without the artificial example, i.e., obtains the same recall of 94.7%. Our
findings highlight the potential for improving API misuse detection by pattern-guided

source code transformation techniques.

5.1 Introduction

Due to their ubiquity, determining how APIs are being used and misused is an im-
portant task in software development [23,136,142,309]. Indeed, prior research has
investigated how to improve API usability for API users [112,156,181,257]. Even with
the existence of various studies and tools to improve API usability [84,91,185,232],
APIs still suffer from misuses [5]. APIs provide interfaces to existing functionality,
these interfaces can be misunderstood and make it difficult for users to determine
the correct way to invoke the underlying functionality [102,229]. While API recom-
mendation tools can provide a prescriptive way to address the misuse problem, they
cannot address cases where a misuse already exists in a code base. API misuse detec-
tors have therefore been created to uncover cases where APIs were used in potentially
incorrect ways [5].

API misuse detectors, particularly those that employ API usage examples to un-
cover potential misuses, are at the mercy of the numbers of examples per API usage.
A lack of usage examples was recently reported as one of the biggest challenges in
APT misuse detection [5]. In particular, uncommon API usages and alternative cor-
rect APT usages have been found to make up 53.5% of false positive misuses [5]. An
obvious solution to reduce the incidence false positives is to have a greater diversity
of correct API usages examples. To achieve this goal, recent API misuse detectors,
such as MuDetect, mine multiple projects to collect API usage examples [4], however
the resulting false positive rate still has room of improvement [138].

In this chapter, we examine the challenge of missing correct API usage examples
from a different perspective. Instead of mining source code from more projects to
obtain more examples, we propose to generate artificial examples based on the existing
correct API usage examples. The overview of our study is shown in Figure 17. We

first undertake a qualitative study of API misuses identified by a state-of-the-art API

109

Patterns of complementary artificial examples

API
i False positive . Patterns of
misuse l?detectio Alternative correct id l\'/i‘anu?l f complementary
o : 1 usage examples| identification o P
APl usage categories transformation artificial examples
examples patterns

Apply

Run | . ' Run : Complementary (€ transformations
€| MuDetect | j E < +—artificial examples y
Manually ' ; Manually [€- MuDetect E
results ' i
MuDetect | . ' results 1< Run < MUBench
1 MuDetect (€—— L/ l
For each project i |For each project : 1

MUBench API
usage examples

Figure 17: Overview of chapter 5 study setup, data collection, and experiments

misuse detector MuDetect in 818 open source projects. Through our study, we aim
to discover patterns of opportunities where adding more API usage examples may
reduce the false positive detection of API misuses. Thus, we identify five patterns to
generate artificial APT usage examples. Such artificial examples can then complement
the existing API usage examples used in API misuse detection.

We evaluate the usefulness of these artificial examples using projects from another
set of 50 open source projects and the MUBench dataset. Our evaluation shows that
all five of our patterns can gencerate relevant examples that incrcase the precision of
static API misuse detection approaches. Thus, we could eliminate 55 false-positives
from the API misuse detection. In addition, through a pre-designed experiment in
MUBench, we find that the artificial examples do not reduce true API misuse detec-
tion by the API misuse detector, i.e., the recall remains at 94.7%. The contributions

of this chapter are:

e This chapter tackles the challenge of missing correct API usage examples from

a different direction from prior research.

e Through a qualitative study, we identify five patterns of alternative correct API

usages which can be used to generate artificial API usage examples.

e The artificial API usage examples can complement existing API usage examples
to reduce the false positive detection of API misuses while keeping all true

positives.

110

Our findings highlight the potential of generalizing correct and incorrect API
usages based on pattern-guided source code transformations. We show that it is
possible to use existing knowledge contained in public code repositories to increase the
precision of API misuse detection approaches to reduce the knowledge gaps between
API users and developers.

Chapter organization. Section 5.2 presents the background of example-based API
misuse detection and a motivating example for our study. Section 5.3 presents our
qualitative study on the false positive examples in API misuse detection. Section 5.4
presents the five patterns that can be used to generate artificial examples in order
to complement the existing ones. Section 5.5 evaluates the usefulness of the gener-
ated complementary artificial examples. Section 5.6 discusses the threats to validity.

Finally, Section 5.7 summarizes the chapter.

5.2 Background and a Motivating Example

We present the background of our study as well as an example to motivate our study.

5.2.1 Background: Example-based API misuse detection

Studies have demonstrated the advantages of example-based static misuse detec-
tion [5,200]. While rule-based or constraint-based API misuse detection requires
the existence of vetted knowledge of an API to codify usage rules that can then be
used to detect misuses, example based detectors can rely on existing API usages to
extract the knowledge needed for their detection [5,200,224].

Example-based static API-misuse detectors, such as MuDetect [4], extract real
usages of APIs to indentify misuses. They are dependent on the samples of correct
APT usages, and their sizes. In a systematic evaluation of static API-misuse detectors,
it was determined that over 53.5% of false positives of misuse detectors are due to
uncommon or alternative correct ways to use an API [5]. This occurs even in cases
where API-misuse detectors are trained in a cross-project setting, which provides
morc cxamples [4].

MuDetect is the state-of-the-art in example-based API-misuse detection, by de-

fault, it uses a minimum-pattern-support to allow examples with a minimum number

111

of examples to qualify as potential API usage examples. Potential API usage exam-
ples arc greedily explored and clustered according to isomorphic pattern candidate
extensions [4]. While clustering and extending example candidates, code semantics
are also observed, in a graph form, for data and control nodes that could have side-
effects or are oddly linked to the API example (e.g., only linked because of usage
order, but not actually linked through any control action). Ounly if all nodes suc-
cessfully pass through its heuristics does MuDetect consider a potential API usage
example. These heuristics were designed in an attempt to prevent flagging uncom-
mon usages as misuses [4]. In spite of these safeguards, false positive detection still
occurs [4].

False positives are particularly hurtful to API misuse detectors by causing an over-
reporting of misuses, which in-turn can overwhelm the users of these misuse detectors.
Based on the 33.0% precision of state-of-the-art approaches such as MuDetect [4], it
can be understood that example-based static API-misuse detectors would benefit from

new ways to augment their sample of API usage examples.

5.2.2 A motivating example

Prior research suggests that a majority of false positive API misuse detection is due
to a lack of less frequent API usage examples [5]. However, little is known about
the nature of less frequent APIT usage examples. By observing falsely detected API
misuses perhaps it is possible to determine some patterns of less frequent API usages
and find new ways to help reduce the mistakes in API misuse detection. For example,
in Figure 18 we can see an example of a falsely detected API misuse and the API
usage cxample that was used for its detection. Based on the example presented, we
can see that the API misuse detector falsely detects that it is a mistake to have the
put API method in the if block rather than have it in a missing else block as it is in
the API usage example used for detection. The API misuse detection tool does not
recognize that the conditional statement that determined whether the key is already
contained in the map has been inverted in the wrongly detected API misuse.

This lack of knowledge stems from a lack of varied API usage examples. Current
state-of-the-art approaches attempt to remedy this problem by mining API usage
examples from large inter-project data sources [4]. However, although this does im-

prove the performance of API misuse detectors, the problem persists. If patterns

112

public void fieldEofResponse(byte[] header, List<byte[> fields, byte[] eof) {
//... extra code was removed for brevity
Map<String, ColMeta> columTolndx = new HashMap<String, ColMeta>(fieldCount);
for (int1 =0, len = fieldCount; 1 < len; ++1) {
_....__!1... fieldName instantiation was removed forbrevity
if (columTolndx != null && [icolumTolndx.containsKey(fieldName)) {
//... extra code was removed for brevity

columTolndx.put(fieldName, colMeta);

(a) An API usage falsely detected as an API misuse

public void pattern(Map<String, Object> m, String key, Object value) {
//... extra code was removed for brevity
if (m.containsKey(key)) {
/...
} else {
/...
m.put(key, value);

i

(b) The APT usage example used for APT misuse detection

Figure 18: An example of a falsely detected API misuse.

of common cases of wrongly detected API usage examples exist, such examples can
potentially be directly generated based on the patterns without needing to search for
all possible API usages. For example, to address the issue in Figure 18 if a comple-
mentary exainple existed in which the put method call was located in an if statement
with inverted logic, i.e., lcontainsKey(), the API usage shown in Figure 18a would
not be falsely detected.

Therefore, in the next section we conduct a qualitative study in an effort to uncover

patterns of missing API usage examples.

113

5.3 Qualitative Study on Missing API Usage Ex-

amples

In this section, we first conduct a qualitative study to gain understanding of the

missing correct API usage examples.

5.3.1 Qualitative study setup

Although work has been done to determine the caveats and problems with exist-
ing misuse detection techniques, work remains to be done to determine strategies to
handle infrequent API usages and alternative usages for the same API [5]. We there-
fore seek to systematically determine patterns of alternative API usages and how to
leverage them to reduce false-positives in API misuse detection. We first present the
projects and tools used to conduct our preliminary study.

Subject projects. We use a readily available dataset [136] from a recent API
research work that includes 3,099 Java projects available on Github. Although
the datasct was originally assembled to study five open-source Java APIs (Guava,
Hibernate-ORM, Jackson, JUnit, and Log4j), the projects in this dataset are not
limited to using only these five APIs and therefore present a rich source of varied API
usage. We intentionally do not select an existing API misuse dataset (like MUBench)
for this qualitative study in order to avoid the bias (positive or negative) of existing
knowledge in the benchmarks of API usage examples.

To conduct our experiments, we selected a sub-sample of 1,000 projects, randomly
selected from the original sample. Out of these 1,000 projects, we discovered that 132
were incompatible with MuDetect due to compilation errors. Our final sample size
was therefore 868 projects. We reserved 50 of those projects for our final evaluation
and the rest was used for our manual study. The names and download links for the
projects used for this study, as well as the results of our experiments can be found in
our replication package®.

API misuse detection. To study the cases where valid API examples are missing,
we use an automated tool to detect API misuses, and further examine the false
positives in the detection results. We opt to use MuDetect [4] as an API misuse

detector because it is a vetted API misuse detector that has shown state-of-the-art

the replication package can be found at: https://github.com/senseconcordia/API-Workarounds

114

results. More importantly, MuDetect has the ability to uncover API usage examples
against which it can mcasurc potential APT misuses [4]. This automatic mining of
frequent API usage examples allows us to leverage the large scale of open-source
repositories to mine usage examples from a wide variety of APIs and obtain varied
samples of examples of API usages that could be qualified as odd or misused.

We ran MuDetect in its intra-project mode. We did not opt for its inter-project
mode because running the inter-project mode on a sample of 818 projects is pro-
hibitively time consuming due to the explosion of misuse patterns that occurs. Fur-
thermore, using the intra-project mode allows us to obtain a “worst-case” real usage
scenario that serves our goal of studying missing API usage examples.

MuDetect uses multiple heuristics to identify frequent API usages. The first
heuristic is based on the frequency of API usage patterns. MuDetect has a minimum-
pattern-support variable which allows any API with more usages than the set thresh-
old to qualify as a potential API usage pattern. For the automatic extraction of API
usage examples used in our qualitative study, we set the minimum-pattern-support
to its default value to allow patterns with a minimum number of examples to qualify
as potential API usage patterns. We used this value because it was successfully used
in the MUBench datasct for its cvaluation [4]. Furthermore, a lower threshold would
allow for more false positive API usage patterns and increase the already non-trivial
detection time.

MuDetect saves API call information on a per-misuse basis. The location (i.e.,
file, line number, calling method) of API misuses as well as the locations of API usage
examples used for detection are recorded as part of the MuDetect tool process. We

therefore use this information to manually observe real instances of potential misuses.

5.3.2 Qualitative study process

We obtain 206,302 potential API misuses. To understand the API misuses that are
detected due to the lack of API usage examples, three reviewers conducted a manual
study on a statistically representative sample of 384 detected API misuses (with a
95% confidence level and a 5% confidence interval). Our final goal of the quantitative
study is to uncover patterns of missing API usage examples that cause false positive
API misuse detection.

Our study process makes use of Krippendorff’s «, which can be used to determine

115

a quantitative agreement between coders of typically unstructured data [132].
Krippendorff’s a provides a value between zero and onc to indicate the observed
disagreement between coders. If coders agree perfectly then a=1. In the case where
coders present an agreement equivalent to random chance then a=0. Therefore,
reliable data is represented as an o« — 1, and should be far from a=0. Krippendorft’s

« takes the form of:

where D, is the observed disagreement between coders and D, is the disagreement
expected by chance. Details related to the calculation of Krippendorff’s v can be
found in [131].

In this step, we first study the false positives in the detection results to identify
the ones that may be caused by missing API usage examples. For each detected API
misuse, the reviewers also observe five API usage examples that were leveraged by
MuDetect to detect the misuse. The five API usage examples can help the reviewers
understand why an API misuse was detected. The manual study includes four steps.
Step 1. We first start by manually examining a sample of 174 detected API misuses.
Each of the three reviewers was given 116 random potential misuscs to categorize as
they saw fit (i.e., open card sorting). Each misuse was examined and categorized by
two of the three reviewers.

Step 2. Once all of the 174 misuses were categorized, the three reviewers discussed
their categories and settled on a base classification schema.

Step 3. All reviewers reexamined their categorization results using the newly agreed
schema. Once all of the 174 detected API misuses were classified according to the
same schema, we measured the agreement ratio using Krippendorft’s o [13,131,132].
The calculated agreement ratio was 0.744, i.e., a substantial agreement for consen-
sus. Afterwards, all the three reviewers discuss the cases of disagreement, until final
categorization of the 174 misuses were made.

Step 4. Due to the substantial agreement ratio achieved in the last step, a further
sample of 210 misuses (for a total of 384 categorized potential misuses) was therefore
manually classified by three reviewers without the need of overlapping, unless nec-
essary (e.g., if a reviewer felt unsure about the classification). Whenever a reviewer
believed that a new category was identified during this step, all three reviewers dis-

cussed the particular case.

116

5.3.3 Qualitative study results

After the four steps, we put the 384 detected API misuscs into a total of four cate-
gories.

Alternative correct usage: (108 instances) This category is used to describe API
usages that are similar to the ones in the API usage examples that were used for
detection. However, although similar, these falsely detected API usages use some
alternative means of working with the API that could potentially have been detected
by an API usage example complementary to the ones used for detection. API usages
categorized in this category are used for further inquiry into potential transformation
patterns to create complementary artificial examples.

Different usage scenarios: (155 instances) This category is used to describe API
usages that were used in different scenarios. Contrarily to usages categorized as
alternative correct usages, we could not identify how these usages could have been
detected with complementary API usage examples, since these APIs are used to
service different proposes. Therefore, these API usages require completely different
APT usage examples to the existing ones.

Correct misuse: (13 instances) Some of the examples that were selected for manual
review were correctly identified by MuDetect as misuses, therefore we categorized
these examples as such.

Not sure: (108 instances) If the reviewers could not identify why an API usage was
targeted as an API misuse by MuDetect or whether the API usage was a misuse or

not, we categorized the API usage as “Not sure”.

5.3.4 Summary of the qualitative study results.

Around one third of the overall results of our qualitative study are “alter-
native correct usages”. These manually identified alternate API usages that were
falsely identified as API misuses present opportunities for us to identify which alter-
nate correct usages cause confusion in API misuse detection. The found prevalence
of alternative correct usages provides an opportunity to identify general patterns of
alternative correct API usages. Through these general patterns we can transform the
existing frequent API usage examples into less frequent alternative correct examples,
in order to address the challenging of missing API usage examples. Such examples

would later help reduce the rate at which those API usages are falsely detected as

117

API misuses.

5.4 Patterns of Complementary Artificial Exam-
ples

Section 5.3 shows that a considerable amount of API misuse detection results are
actually due to missing correct API usage examples that represent the alternative
correct usages of an API. If more usage examples of these correct API usages were
available to complement the existing examples, they may significantly reduce the false
positives in API misuse detection.

Therefore, in this section, all reviewers discuss each API misuse detection results
that were classified as “alternative correct usage” in the qualitative study (cf. Sec-
tion 5.3), to uncover patterns of the neceded complementary examples that can be used
to reduce the false positive detection results. For each of the patterns, the authors
further discuss whether an artificial example can be automatically generated based on
transforming existing API usage examples. The discovered pattern can later be used
to generate artificial API usage examples to complement the existing examples to
identify correct API usages and reduce falsely detected misuses. In total, we discover
five such patterns.

In the rest of this section, we discuss each of our five manually identified patterns
in the following template:

Description: Description to the pattern of complementary API usage examples.

Example: Discussion of a concrete example that is presented in Table 22.

Detection strategy: Our strategy to detect possible API usage example candi-
dates for the pattern.

Transformation approach: Our approach to generating artificial API usage

examples based on the transformation of an existing API usage example.

Pattern 1: Pipelines.

Description. This pattern is built primarily around APIs that can be used in
stages on the same object, also known as the pipeline pattern [60]. Using the pipeline
pattern requires that an API method return the same object type as the calling object

type. This pattern is particularly useful because developers sometimes pipeline a few

118

Table 22: Patterns of complementary

artificial API usage examples.

Pattern 1: Pipelines

Pattern 2: Alternative iterators

public class Pipelines {

! StringBuilder sb= new StringBuilder("Hello");
sb.append(" ");
{ sb.append("World!");
1 System.out.println(sb.toString());

v public void complementaryExample() { !
StringBuilder sb= new StringBuilder("Hello"); H
sb.append(" ") .append(" World!"); E
! System.out.println(sb.toString()); H

public class Altemnativelterators {

! Collection<IinvokedMethod> invokedMethods = suite.getAlllnvokedMethods();
i [for (IlnvokedMethod iim : invokedMethods) { E
E ITestNGMethod tm = iim.getTestMethod(); !

do something with tm

3 public void complementaryExample() {
i Collection<IInvokedMethod> invokedMethods = suite.getAllInvokedMethods();
Iterator<IInvokedMethod> i = invokedMethods.iterator();
while (i.hasNext()) {
ITestNGMethod tm = i.next().getTestMethod();

do something with tm

Pattern 3: Complementary imports

Pattern 4: Inverted conditions

Import static org junit.Assert.assertNotNull;
Import org.junit. Assert;

C

Imports are interchangeable

(code changes needed)

@Test

public class Complementarylmports {

i—puhlic void example(SimpleObject result) throws Exception { '

Assert.assertNotNull(result); !
1

key was set before

\

1} else { i
key was not set before

m.put(key, value);

; public void complementaryExample(Map<String, Object> m, String key, Object val) {;
if (!m.containsKey(key)) {
key was not set before
m.put(key, value);

} else {

key was set before

statement is inverted (1)

Pattern 5: Intermediates

this.rootNode.addDependency(dependencyGraph.rootNode.key());

dependencyGraph.parentDAGs.add(this);

(
this.rootNode.addDependency(dependencyGraph.rootNode.key());

public void complementaryPart2(DAGraph<DataT, NodeT> dependencyGraph) {

complimentaryPart1(dependencyGraph)
dependencyGraph.parentDAGs.add(this);

119

APT call stages, and sometimes they use individual stages, one at a time.

Example. As shown in the example in Table 22 (Pattern 1), a string builder can
be used to append new string to the end of an existing string. The string builder can
call the API method append multiple times, separately, to append different strings
to its end. On the other hand, the API method append returns a reference to the
original string builder to enable the method to be called in a pipeline. Hence, it
is semantically equivalent to either call append twice in separate, or in a pipeline.
Therefore, it is possible to artificially generate a complementary API usage example,
if such an API is called repetitively either separately or in a pipeline.

We would like to mention that the number of strings that can be appended is
not defined ahead of time, and therefore cannot be inferred. In our example only
two strings (" 7, and "World!”) are being appended for brevity. However, one could
append many more, or none at all, while still being a correct API usage. However,
since we cannot produce all possible numbers that an API is repetitively called, we
opt to only generate the complementary example with the same number of calls.

Detection strategy. The Pipelines pattern requires an APIT that is called on,
and returns, the same object. This can be ascertained via abstract syntax tree (AST)
analysis with sourcc bindings or through infcrence if a collapsed form pipcline is
available (e.g., the sb.append “”).append(” World!”); in the complementaryExample ()
method in Table 22). However, there are exceptions to this rule, for example Java
Streams present a pipeline-like pattern, but they cannot be broken up into different
stages. Java Streams stages must be done in a single pipeline, otherwise a new Stream
must be created [47].

In some cases it might not be possible to fully collapse the stages of otherwise
pipeline-able code. In our example of Pattern 1 in Table 22, if the string “World!”
was assigned dynamically after having started the StringBuilder (e.g., by requesting
user input). In that case, we would have to determine if the dynamic assignment could
be moved outside of the pipeline pattern. In cases where intermediate instantiating
of variables occurs between otherwise pipeline-able API calls, we must determine
if moving those intermediate variables would change the semantics of the method.
This analysis can be done by using control-flow and data-flow analysis. However,
even in cases of unmovable intermediate variables, if there are many pipeline-able

stages, it might still be possible to partially collapse some stages (e.g., all stages

120

before an intermediate variable appears), which can be done to produce a possible
complementary correct usage.

Transformation approach. If starting from the top method (example()), the
stages of the pipeline can be collapsed after the first API call (in this case .ap-
pend(“”)). The pipeline stages can then be considered as a single statement. The
reverse is also possible. It is possible to transform the pipeline form presented in
complementaryEzample() into its non-collapsed version in ezample(). This can be
done by determining the return type of a pipeline stage (in this case .append(“”)). If
the return type matches the type of the original object (in this case StringBuilder),
then we can separate the stage by calling it on the original object in a new statement

(semi-colons must be adjusted). The original order should be preserved.

Pattern 2: Alternative iterators.

Description. This pattern arises from the different loops that are allowed a
programming language (e.g., Java in our study). During our manual study we noticed
that some examples of API usages were being falsely identified as APT misuses because
their control-flow was directed by different types of loops (e.g., for loop, while loop
and foreach loop). We arc particularly interested in loops that can made into other
types without changing the behavior of the program, or the API call under inspection.

Example. Table 22 (Pattern 2) presents an example of a for loop that was
transformed into an equivalent while loop using an iterator. In this example, the
getTestMethod() API call can still be used to obtain the same effect. However, the
syntax of the context of the API call has changed. Different programmers appear to
have different preferences for using different types of loops. Perhaps the legibility of
code differs for developers based on their proficiency with various loops. The fact that
different developers can use different loops to achieve the same effect is important.
Developers seldom work alone on software projects, and therefore it is possible for
different types of loops to appear with the same API call. If one type of loop is not
frequent enough, it may be mistaken as a misuse when compared to examples with
other loop types.

Detection strategy. The Alternative iterators pattern requires that an APT call
be affected by a loop (either by data or control-flow). If an APT call is inside a loop but
is not affected by the loop, it should be possible to construct a sub-graph of the usage

121

that can cover any loop scenario [5]. In such cases, the loop itself does not impact
the correctness of the API call. Furthermore, for us to produce a transformation it
should be possible to transform a loop into another type only by referring to method
calls available in the Java standard library. If an example requires code modification
outside of the Java standard library, we do not attempt the transformation to limit
the introduction of defects.

Transformation approach. As shown in Pattern 2 in Table 22, we can easily
transform a foreach Java loop into a while loop by introducing an intermediate iter-
ator and the hasNezt and next methods on this iterator. The same can be achieved
in reverse. Similarly, it is also possible to transform a standard Java for loop into
either of these types with the introduction of some intermediate variables that can be
inferred from bindings in the existing code example. If we cannot infer all bindings,

we do not attempt the transformation.

Pattern 3: Complementary imports.

Description. In our manual study, we uncovered cases where developers had
imported static API methods and used them directly. In other cases, the same API
was statically called from the owner class.

Example. This can be seen in Pattern 3 of Table 22 where the assertNotNull
API call occurs in both example methods. However, one of them is called explicitly
by the Assert class; while the other one relies on the import statement. If one of
these usages is missing from the examples, it is possible to mistake the missing one
as a misuse.

Detection strategy. To detect this pattern, an API call must use a static
method. Furthermore, it should be possible to import this static method indepen-
dently from the class itself, as shown in the Import static org.junit. Assert.assertNotNull
statement in Pattern 3 of Table 22. In-depth binding analysis could be used to detect
this pattern. However, in-depth binding analysis can be computationally expensive,
or even impossible in malformed projects, and could slow down already non-trivial
APT misuse detection times if done for every occurrence. To address this, we use a
heuristic based on typical Java naming convention where the name of a class should
start with a capital letter. Therefore, we can obtain a list of imported static method

calls in the tmport statements and the calls to the static method calls in the source

122

code.

Transformation approach. As shown in the method in Pattern 3 of Table 22,
the Assert. class call in the example method can be removed as shown in the comple-
mentaryBrample method. The corresponding static import to the target API method
must be determined and added to allow the new syntax. The reverse is also possible.
If a static method import is in use with a direct import, the corresponding import
to the target class must be determined and added, and the static method must be

modified to be called on the imported class.

Pattern 4: Inverted conditions.

Description. Similarly to our Alternative iterators pattern, different developers
appear to use different orders for their conditional statements. Although good prac-
tices [160] suggest using logic and naming conventions that make sense with respect
to chosen names and reduce the number of double negatives (e.g., !doesNotContain
instead of contains), it is still possible for situations to arise where two (or more)
equivalent correct code expressions exist.

Example. In the Pattern 4 example in Table 22, we present a simplified example
of this pattern. In this example we can sce that reversing the logic inside the con-
ditional if statement changes the logic of the overall method. The put API call is
therefore moved from the if block to the else block when the condition is inverted.
As shown in the example, this pattern can work in either direction.

Detection Strategy. First, this pattern requires the use of a conditional state-
ment (if statement) to gatekeep API usage. In Pattern 4 of Table 22 this API call
is the put method. Currently we only consider cases with single if /else statements,
we do not apply the patter if any else if statements are involved. Afterwards, we
investigate the possibility of switching the order of conditional statements. Similarly
to Patter 3, it is less computationally expensive to determine an equivalent loop once
for a known API usage example to create a complementary usage example, than it is
to determine the equivalence of every loop analyzed by an API misuse detector.

We have also seen and considered cases where a complementary example could be
produced by exchanging an if/else statement with a try/catch clause. However, it was
not readily apparent how this particular version of the pattern could be generalized

safely, while remaining certain that we would not introduce undesirable side-effects.

123

However, we present this strategy here since we did find instances of these false
positive API misusc identification in our manual study.

Transformation approach. The pattern first requires the inversion of the con-
ditional logic in an if statement. After the conditional logic has been inverted, the
functionality that was originally in the if block can be transferred to the else block,
and vise-versa. If multiple conditions are present in the if statement care must be
taken to either invert the all conditions separately without fail or invert the complete
statement as one piece. The inversion of the logic inside the if statement in its sim-

plest form can stem either from the removal or addition of the “not” operator (i.e.,!).

Pattern 5: Intermediates.

Description. This pattern allows more flexibility in the expression of API usage
examples by parameterizing intermediate functionalities. Existing functionality that
is related to an API usage can be extracted to a new method and replaced with a
method call.

Example. A simplified example is presented in Table 22 (Pattern 5) where the
complementaryPart] method replaces functionality originally in the example method.
This cxample is trivial since it docs not reduce the number of statecments in the
complementaryPart2 method. However, the transformation can be expanded to more
complex forms that would apply some separation of concerns.

Detection strategy. This pattern requires the possibility of extracting function-
ality, abstracting this functionality to an intermediate method and either invoking it
in the original method or introducing it to the original method as a parameter. We
require that the control and data-flows of a method be separable before or after an
API call. If the method statements are heavily coupled, this transformation cannot
be applied.

Transformation approach. The control and data flows of the original method
must then be analyzed to determine where a proper method extraction could occur.
The transformation approach is similar to an extract method in refactoring [271].
However, there exist infinite possibilities to extract new intermediate methods from
an existing program. Therefore, in our heuristics we only extract statements adjacent,
i.e., right before or after, to the target API call. Once an intermediate method has

been introduced, the original method must be modified to remove the functionality

124

that was extracted, and instead call the intermediate method, with its appropriate

paramcters.

5.5 Assisting Example-based API Misuse Detec-
tion

In this section, we evaluate the usefulness of our generated artificial API examples
that are based on the five patterns discovered in Section 5.4. In particular, we perform
an experiment that detect API misuses in open source projects, with and without the
use of the artificial API usage examples. In the rest of this section, we present the

subjects of the experiment, the experimental process, and the experimental results.

5.5.1 Experimental subjects

We use the existing API usage examples in the MUBench dataset [3] as the API
usage examples for the API misuse detection tool. The MUBench dataset provides a
baseline of known and vetted API misuses in a variety of real projects. To test our
complementary examples, we specifically rely on already known API usage examples
that have been used to identify misuses in the MUBench datasct. The MUBench
dataset comes with a prepared benchmark named FSE18-Extension that contains
107 known misuses, each with a single known API usage example.

There may exist other API usage scenarios that the data in the MUBench dataset
does not cover. Therefore, as mentioned in Section 5.3, we use 50 open source Java
projects from a prior study that mined these projects from Github [136]. To avoid
bias, we make sure that none of the 50 projects were included in our qualitative study
where the patterns were discovered (cf. Section 5.3 and Section 5.4). All of these
projects are used in prior API-related research and had at least 17 months of history
and had an average of 26K lines of code (minimum: 1.4K, maximum: 225K). Due to
the limited space, we cannot present the details of all 50 projects, the details can be

found in our replication package identified in Section 5.3.

5.5.2 Experimental process

In particular, our experimental process is designed to answer two research questions:

125

e RQ1: Can artificial examples reduce false positives from the API misuse de-

teetion results?

e RQ2: Would artificial examples negatively impact the detection of any true

API misuse?

Experimental process to answer RQ1. We obtain the existing API usage
examples that are provided by MUBench. We then detect API misuses using the
state-of-the-art API misuse detection tool, i.e., MuDetect, on our 50 open-source
projects with the existing examples as a baseline. We then generate artificial API
usage examples to complement the existing API usage examples from MUBench,
based on the five patterns shown in Section 5.4. With the artificial examples, we
rerun MuDetect on the 50 subject projects.

By default, MuDetect would consider every combination of examples to attempt
to detect API misuses. In order to observe the value of the artificial examples in
complementing existing examples, we therefore force MuDetect to consider our com-
plementary artificial API usage examples immutably paired to the original APT usage
examples. Note that, we do not aim to use the artificial examples to replace the
existing ones. Instead, the role of the artificial example is only for complementary
purposes. Finally, we examine the results of both runs to answer the first research
question.

Experimental process to answer RQ2. We would like to cnsure that our
complementary examples do not negatively impact the overall power of API misuse
detectors. However, our experimental process for RQ1 cannot serve for this goal since
there exists no ground truth on all of the true API misuses in the 50 open source
projects. On the other hand, there exists a specially designed experiment, i.e., the
exl experiment in MUBench, which particularly serves the goal of calculating a recall
upper bound for a given API misuse detectors with known API usage examples. We
therefore run this experiment with only the original API usage examples. We then run
the experiment again, having the existing examples complemented by the artificial
examples. We compare our results to determine the effect of our complementary API
usage examples on the recall of an API misuse detector. In particular, for each rumn,
we follow the same evaluation approach as Amann et al. [5] and record a positive

identification of an API misuse if any detection proves to be positive.

126

5.5.3 Results

All five of our patterns are applicable to complement the existing API
usage examples in MUBench. Out of all 107 API usage examples in MUBench,
only one example does not meet the detection strategy of any pattern. This API usage
example was created for a synthetic Java survey, and contained a single statement
composed of five Java stream stages. Since we strategically do not consider streams
to avoid potential mistakes (cf. Pattern 1, Pipeline in Section 5.4), we were unable
to generate any complementary API usage examples for this particular API usage
example.

In particular, we were able to improve three existing API usage examples with

complementary API usage examples using the Pipelines pattern, eight using the Al-
ternative iterators pattern, 22 using the Complementary imports pattern, eight using
the Inverted conditions pattern, and 65 using the Intermediates pattern. Although
we were able to express all five of our patterns on this dataset, the Intermediates
pattern stands out as the most popular pattern in this case. This dataset contained
methods where further separation of concerns could be introduced, which allowed for
a greater expression of our Intermediates. A different dataset could perhaps present
different pattern frequencies. However, because our patterns were generated on a
completely separate datasct, and yet all five of our patterns could be used in the
MUBench dataset, we are confident that our patterns present potential for general
complementing of existing API usage patterns.
The artificial examples can assist API misuse detection by reducing false
positives. In total, we find 55 cases of API misuse detection results that were
detected with the original examples but were not detected when complemented by
our artificial examples. We then manually go through each of those 55 examples to
determine if they were API misuses or not, and which of our transformation patterns
was used to disable their detection. We find that all 55 API usages were correctly
identified when using complementary artificial examples, and that they were originally
mistakenly labelled as API misuses.

We find that 43/55 (81.8%) of the mistakenly identified API misuses that were
corrected by our complementary artificial examples used some kind of conditional
statements. This shows that it is particularly important to have a well-rounded

sample of APT usage examples that contain various types of conditional statements

127

because their detection appears sensitive to their format. The second most common
mistakenly identified APT usage type used iterators (6/55), this can also be used as a
suggestion for future API misuse datasets to carefully consider various types of loops
or use complementary artificial examples to enhance them. Finally, we report 3/55
wrongly identified API misuses with intermediate methods, 2/55 with pipelines, and
1/55 with static imports. Although these cases are less prevalent, we still encourage
the use of their transformation patterns because they still provide a reduction in false

positive.

Answer to RQ1: 55 falsely detected API misuses were prevented by complemen-
tary artificial examples. Complementary artificial API usage patterns can there-

fore successfully be used to reduce the incidence of false positive API misuse de-

tection on real world projects.

The artificial examples do not prevent the detection of true API misuses.
Due to build errors in the MUBench dataset we were able to obtain results for 95/107
API misuses in the dataset. MuDetect was able to successfully detect 90/95 of these
misuses (94.7% recall) both with and without our complementary examples. All
90 correctly identified misuses were the same for both experiments (i.e., with and
without our complementary examples). Therefore, we do not find any case where
using complementary artificial API usage examples reduce the overall recall of API

misuse detectors.

Answer to RQ2: Our findings on the MuBench dataset indicate that using com-
plementary artificial API usage examples does not reduce the overall recall of API

misuse detectors (94.7% recall with €& w/o our complementary ezamples).

5.6 Threats to Validity

Construct validity. We do not claim to have found all API misuses, falsely detected
API misuses, or API usage patterns pertaining to the APIs in this study. However, we
believe that the projects and tools used in this work are adequate to produce results
that give insight into the problem at hand. Although we diligently attempted to
confirm the results presented in this chapter by searching application documentation,

online forums, by using existing state-of-the-art tools, by labelling unsure findings as

128

such, and by using existing and vetted datasets it is still possible that some of the
results presented were misidentified. We do not claim to be cxperts for any of the
user applications that we studied nor for any of the APIs that we studied.
External validity. Since the API misuses, workarounds, and frequent pattern in-
stances in this study were detected for Java APIs in Java user applications, it is
possible that the findings in this chapter do not generalize to other programming
languages. However, although the results presented in this chapter were obtained
from Java APIs, the results were obtained by mining hundreds of user applications
for API misuses without discriminating against any particular APIs. We therefore be-
lieve that although we cannot prove that our results generalize to other programming
languages, the results presented should generalize to Java APlIs.

Internal validity. The patterns presented to produce complementary artificial API
usages, the suggestions presented for future API misuse detectors, and the findings
from our qualitative study might not be fully indicative of API misuses and could
present internal experiment bias. We attempted to mitigate these threats by having
multiple reviewers for the API misuses that we presented in this work, and having
these reviewers reach consensus on discussions pertaining to the patterns and sug-
gestions that we present in this chapter. Furthermore, we usc completely different
samples to obtain and to test the patterns presented in this work. Although the sam-
ple size of our qualitative study is statistically significant (384), it is possible that our
findings only generalize to the MuDetect tool. However, MuDetect uses a published
and general misuse detection approach that has been shown to be the current-state-
of-the-art in example based static API misuse detection. Therefore, we believe that

our results can contribute to improving the current state-of-the-art.

5.7 Chapter Summary

In this chapter, we conducted a qualitative study on the falsely detected API misuses
obtained by using a state-of-the-art example-based API misuse detection approach
on a large sample of projects. By manually studying real examples of falsely detected
API misuses, we uncover 108 cases of alternate but correct API usages that were
falsely identified as API misuses. Through a manual investigation by three reviewers,

we discover five patterns, which can be used to transform existing API usage examples

129

into artificial API usage examples. Such artificial examples can cover the knowledge
gaps causcd by a lack of diversified existing APT usage examples. We provide detailed
discussions and simplified examples to explain these five patterns, as well as our
strategies to detect these patterns in the source code, and approaches to transform
existing API usage examples with these patterns.

We evaluate the usefulness of the complementary artificial API usage examples
through the use of 50 open-source Java projects and through the MUBench misuse
benchmark. We find that using the artificial examples does not reduce the recall
of API misuse detection but does allow for the removal of falsely identified API
misuses. Our findings highlight the potential of generalizing API usage examples
through pattern-guided source code transformations and reduce the dependence of
example-based API misuse detection on haphazardly mining large samples of user
projects. Our findings can be used to improve the precision of API misuse detection

approaches and therefore reduce API user knowledge gaps that cause API misuses.

130

Part 111

Aiding API Developers

131

Chapter 6

Guiding API Development by
Using API Workarounds

Although issues such as API migration and API misuses show that API users suffer
from gaps in their knowledge of APIs, API developers are not immune to knowledge
gaps between them and API users. Knowing if and when API users are not fully
satisfied with an API can allow API developers to improve their APIs and remain
relevant to their users. APIs are not guaranteed to contain every desirable feature,
nor are they immune to software defects. Therefore, API users will sometimes be
faced with situations where a current API does not satisfy all of their requirements
but migrating to another API is costly. In these cases, due to the lack of communica-
tion channels between API developers and users, API users may intentionally bypass
an existing APIT after inquiring into workarounds for their API problems with on-
line communities. This mechanism takes the API developer out of the conversation,
potentially leaving API defects unreported and desirable API features undiscovered.

In this chapter we explore API workaround inquiries from API users on Stack
Overflow. We uncover general reasons why API users inquire about API workarounds,
and general solutions to API workaround requests. Furthermore, using workaround
implementations in Stack Overflow answers, we develop three API workaround imple-
mentation patterns. We identify instances of these patterns in real-life open source
projects and determine their value for API developers from their responses to feature

requests based on the identified API workarounds.

132

6.1 Introduction

All too often, when users have issues with an API, for example needing a new fea-
ture or experiencing a run-time problem, users may choose to intentionally modify
or bypass the API [30]. We define APT workarounds as source code produced by
API users, without official support from API developers, for the intentional modifi-
cation or bypassing of official APIs. These workarounds allow API users to obtain
their desired functionality quickly and without going through potentially arduous
communication with API developers. However, the introduction of API workarounds
presents a dilemma for API developers and users. On the one hand, because these
workarounds are created by API users as temporary solutions, they become technical
debt [216], endangering code quality and increasing future maintenance cost [306].
On the other hand, these workarounds may become a vehicle for the API developers
to gain feedback from APT users, to improve the APIs (e.g., fixing defects in the APT).

We conduct an exploratory study of API workarounds requested and implemented
by API users. To start our exploration, we manually examine 400 posts from Stack
Overflow, where we found that API users request API workarounds for a variety
of reasons, such as dependency issues, missing functionality, and runtime problems.
These reasons illustrate inherent value for APT developers to improve their APTs. Fur-
thermore, we identified answers accepted by APT users who request API workarounds.
By studying these answers, we found that carrying out such API workarounds may
not be a trivial task. In particular, a majority of API workaround solutions rcquire
previously unknown implementations to bypass the API.

To follow up on our exploratory study, we study workaround implementations
that are suggested in the Stack Overflow posts, and we observe three generalized
API workaround patterns. The knowledge contained in the implementation of these
patterns in API user projects can help API developers improve their API by adding
desirable unsupported features, fixing unexpected behavior, and improving backwards
compatibility.

because the three API workaround patterns were uncovered using forum questions
and answers, we seek to confirm their existence in real-life API user code and confirm
their usefulness with API developers. Using five open-source APIs, we detect these
three patterns of API workarounds in open-source GitHub projects. Finally, we sub-

mit and observe 12 feature requests to developers based on the API workarounds to

133

improve their APIs. Among these requests, five are already closed, and six more have
been confirmed by API developers as defeets or missing features.

Our study and findings highlight the value of studying the usage of APIs from
API users as a means to bridge the knowledge gap between API developers and API
users in order to assist in the development and maintenance of APIs.

Chapter Organization. Section 6.2 provides real examples of API workarounds
requested on Stack Overflow to motivate this study. Section 6.3 contains a qualitative
study on API workarounds. Section 6.4 presents three generalized API workaround
patterns extracted from API workaround implementations in Stack Overflow answers.
Section 6.5 presents an empirical study conducted to find and report instances of three
API workaround patterns. Section 6.6 describes threats to the validity of this study:.

Finally, Section 6.7 summarizes the chapter.

6.2 Motivating Example

Roslyn SyntaxTree Diff

Asked 3 years, 7 months ago Active 3 years, 6 months ago Viewed 641 times

Let's say | have two syntaxTree s A and B,
where B has been produced by applying changes to A.

1'would Tike to get the following information:
1

1
1
1
1 o SyntaxNodes & Tokens that have been removed from A to produce B ! Feature Request
1
. ¢ SyntaxNodes & Tokens that have been added to A to produce B :

]
Is there an API for this?
If not, how can this be efficiently computed?

This information must be available to Roslyn,
since unchanged GreenNode S are shared between the trees.

.One solution | can think of is to use syntaxTree.GetChangedSpans()
rand then lookup the intersecting tokens.

"However that fesls ke & hack and 'm not sure If i is aiways. a'c'carate
A small text change might have a large impact on a syntaxTree :

(e.g. replacing * with + in an expression might change its order/precedence)

! Proposed Workaround

syntax diff abstract-syntax-tree roslyn roslyn-code-analysis

Figure 19: An example of a developer requesting access to data that exists in the
Roslyn API but appears unaccessible

134

Figure 19 presents a question (Stack Overflow id: 34945023) in which the poster
(APT uscr) inquires about working around the Roslyn API. The API user requires
access to data that appears to exist in the Roslyn API; while such data cannot be
externally accessed by the API users. The API user provides a short example of their
desired functionality, and asks if this functionality already exists in the API. The
API user explains why they would like the feature, and why they believe the feature
should already exist as part of the API. Finally, the API user provides a potential
workaround solution to obtain the desired data, but still expresses a desire for direct
support from the API.

The accepted answer post, presented in Figure 20, was provided by one of the
APT’s developers. This post provides insight into a direct information exchange be-
tween an API user requesting an API workaround, and an APT developer.

The API developer confirms that, the feature requested by the user is indeed
available internally, but was not exposed to the public, it can be considered an imple-
mentation detail. The APT developer claims that there is no specific reason for that
API to be hidden. The API developer also mentions that they could not think of a
motivating scenario for this feature.

From this example, we can sce that: 1) Scenarios of how APIs arc used by uscrs
may be unforeseen by API developers, 2) The effort needed and challenges encoun-
tered by API users to make API workarounds may not be trivial; while the requested
feature/information may already exist internally in the API, or require much less
effort for API developers to accomplish than the API users, and 3) API workarounds
provide valuable information for API developers in order to understand the needs

from the API users and to improve their APIs.

1 intentionally didn't expose green nodes directly because that's an |mplementat|on detall
Confirmation that the feature is not available
There's no specific reason that API couldn't be public. | think when this one came around we were
worried about how one actually specs what the behavior is, or what's a minimal "goodness" you can
V expect from the diff. That, and we didn't have a motivating scenario to actually make sure our work
was useful.

Figure 20: Example of an API developer answering an API workaround request for
data that exists in the Roslyn API but appears unaccessible

This example shows that a disconnect can exist between API developers and users.

135

On the one hand, users sometimes prefer to use public forums to request functionality
rather than having direct communication with the API developers. On the other
hand, not all API inquiries lead to responses from API developers, who may miss
these opportunities and fail to obtain outstanding sources of knowledge from their
API users, which they could use to improve their API. Therefore, in this chapter we

explore API workarounds and the knowledge that they contain.

6.3 API Workarounds: A Qualitative Study

We present a qualitative study on Stack Overflow posts where API users inquire
about workarounds for APIs. More specifically, we would like to uncover reasons why

developers request API workarounds and their solutions.

6.3.1 Collecting API workaround related posts

As presented in Section 6.2, we know that there exist Stack Overflow posts that inquire
about API workarounds. Example posts, like the one presented in Figure 19, show
that API users can request workarounds to request extra functionality. Prior work has
shown that API users can use workarounds to bypass API defects [245]. There may
exist multiple reasons for API users to seek API workarounds. However, the reasons
why API users request workarounds have not been clearly established. We therefore
seek to systematically determine the various reasons why API users request API
workarounds to understand how they could be prevented. Furthermore, we also seek
to determine how API workaround requests are answered to determine whether all
API workaround requests actually require API workarounds as answers. To determine
why API workarounds are requested, and how these requests are answered, we conduct
a search on a Stack Overflow post dataset that was released on 5 Jun 2018 [251]. The
dataset consists of over 40M Stack Overflow questions and answers.

There are over 252 thousand posts in the Stack Overflow dataset that contain
the keywords “APT”, “library”, “framework”, or “interface”. Therefore, it is not
feasible to manually scarch all Stack Overflow posts to discover API workaround
posts, some automation must be used to simplify the task. An n-gram classification
approach was chosen for its comprehensibility and high classification rate [41]. We

found that unigrams and bigrams that contained the words “workaround” or “hack” in

136

our dataset were very rigid and produced limited results when compared to trigrams.
Using unigrams and bigrams also provided too many posts unrclated to the topic at
hand. For example, the word “hack” appears in many contexts unrelated to API
workarounds; this provides many false positives without the context provided by
trigrams. Finally, we settled on using trigrams after first attempting to use unigrams
and bigrams unsuccessfully.

To obtain a manageable number of posts for manual examination, we followed the
process outlined below:
Step 1: Preprocessing. Using the open source Python natural language toolkit
(NLTK) [202], we removed all punctuation and xml markup and made all strings
lowercase. We further preprocessed the data by removing all stop-words (e.g., and,
or, the) using NLTKs predefined list of English stop-words.
Step 2: Topic filter. We filtered out all posts that did not contain any one of the

bb

“api”, “library”, “framework”, or “interface” keywords.

Step 3: Trigram frequency. Using NLTK, we built a dataset of all trigrams found
in our topic-filtered dataset and ordered them by frequency of occurrence.

Step 4: Selection of relevant trigrams. Based on our list of frequent trigrams
we manually sclected trigrams that contained a logical leap to posts relevant to API
workarounds, and that had a frequency higher than one and contained the keywords:
“workaround” or “hack”.

Step 5: Filter posts by trigram. Finally, we collected all posts in the topic filtered
list (obtained in Step 2) that contained instances of the trigrams selected in Step 4.
We manually selected 11 trigrams in Step 5, for example: “workaround, could, use”.
These 11 trigrams were frequent and only accepted if they were logically sound to all
of the authors .

We obtained 1,846 posts by using the filtration steps outlined above. The score
of a Stack-Overflow post is meant to be a marker of popularity and hence an indirect
indicator of value to Stack Overflow users, we chose to rank the posts by score. Finally,
we selected the top 400 scoring posts as a subset to use for our manual study. We
chose to use top scoring posts, instead of randomly selecting posts, since high scoring
posts are the most likely to have an impact on users, and therefore give us insight on

the types of API workaround questions and answers that users consider valuable. We

LA complete list of the trigrams used to filter posts can be found in our replication package
https://github.com/senseconcordia/API-Workarounds.

137

consider question and answer pairs as API workaround inquiries.

6.3.2 Qualitative analysis of posts

Our goal is not to find the root causes of each of our selected Stack Overflow posts. In-
stead, we aim to understand developers’ motivations when asking for API workarounds.
Furthermore, we also seek to understand what kind of answers are commonly accepted
by API uscrs. Thercfore, for cach workaround-related post, we examince the title, ques-
tion post, accepted answer or highest rated answer, as well as any comments related
to the question or answer. Investigating an API workaround post is a non-trivial task,
since each post requires the investigator to understand the context, considerations,
and concerns of the API users.

To reach a generalizable understanding of API workarounds, we followed a system-
atic process to analyze each question and answer in our dataset. We chose to use open
card sorting, a commonly used sorting practice [153] that allows the sorting of posts
into categories while also allowing the generation of the categories [235,322]. More
specifically, the authors of this paper performed the coding process defined below:
Step 1: Deriving base coding. A sample of 40 posts (10% of our final sample)
was selected at random and given to all of the authors to code to the best of their
ability. No particular constraints were set, and codes could be added at will. This
step took a few days for the coders to finish.

Step 2: Discussion after code derivation. After the authors finished indepen-
dently deriving their base codes, a meeting was held to discuss coding conflicts and
reach consensus on a base coding that could be used for the rest of the sample. The
meceting took onc to two hours.

Step 3: Refining post coding. Each author independently coded another 40 posts,
after which we held another meeting to discuss disagreements and refine any coding
misunderstandings. Coding the posts took a few days for the coders to finish and the
refinement meeting took about an hour.

Step 3: Complete coding of posts. Using our refined coding, each author inde-
pendently coded the final 320 posts and revisited their prior coding. We measured
our inter-coder agreement (see Section 6.3.3) after this step.

Step 5: Resolve disagreements. We discussed every conflict in the coding results

until a consensus was reached for each disagreement. Conflicts were resolved by

138

revisiting each issue together and discussing the reasoning behind each author’s coding
until a conscnsus could be recached. Conflicts were resolved in three one-hour conflict
resolution meetings.

To encourage the replication of our results and allow further studies related to API
workarounds, we have made our compiled Stack Overflow API workaround questions

and answers data publicly available as part of a replication package.

6.3.3 Measuring coder agreement in our qualitative study

To ensure that the coding derived in Section 6.3.2 is reliable we must have a quanti-
tative evaluation of reliability, we chose to use Inter-coder agreement, a metric that
can be used as a measure of reliability for coding results [13,132]. Coder agreement is
important for trust and reproducibility. Low agreement may lead to non-reproducible
results.

We used Krippendorff’s « [13,131,132] to measure the inter-coder agreement of
our qualitative study since it is a general and standard reliability measure [97].

Krippendorff’s « requires a single value to be assigned to each coded item [132].
Since our coding schema allows posted answers to be simultaneously coded into mul-
tiple categories, we must modify the way we calculate Krippendorft’s « slightly. We
consider each category for each coded item as a separate coding unit. Coder agree-
ment is then considered on a per-unit basis, which allows us to consider posts that

have multiple coded categories. >

6.3.4 Qualitative study results

Table 23: Qualitative study reliability coefficient (Krippendorft’s «)

Krippendorft’s «

Question categories coding 0.848
Answer categories coding 0.810

A Krippendorff’s a@ > 0.800 demonstrates reliable agreement [132]. As shown in
Table 23 the Krippendorft’s a for our question coding is 0.848, and the Krippendorff’s

2The total frequencics for categorized answers exceeds the total number of posts since posts can
be placed into multiple categories (e.g. Not supported/Use another API).

139

a for our answer coding is 0.810. Therefore, based on Krippendorftf’s a the results
of our qualitative study are reliable.

The coding and categorization process described in Section 6.3.2, allowed us to de-
termine four general API workaround question types and two general API workaround

answer types used by API users on Stack Overflow.

Why do API users ask for API workarounds?

Through our manual evaluation of Stack Overflow posts we uncover and categorize
reasons why API developers request API workarounds. Three of the four general API
workaround question types contain more specific types. All of the question categorics

are detailed below and examples for each category can be found in Table 24.

Question Type Quote Frequency
Help with API dependencies “I’'m wanting to use the python-amazon-product-api wrap- 10
per to access the Amazon API [...] Unfortunately it relies
on Ixml which is not supported on Google Appengine.”
Missing desired functionality 150
Data/information “In .NET Framework, we can use [...] to get the systew 21
directory [...], but that property does not exist in the current
versions of NET Standard or .NET Core. Is there a way to
get that folder in a .NET Standard”
Feature “Is there an equivalent to getLineNumber() for Streams in 121
Java 87 T want to search for a word in a textfile and return
the line number as Integer.”
Interface “Is this somehow not what the APT is meant for? Anyone 8
know a workaround, or some kind of extra parameter(s) I
could send to make it work?”
Requesting an improvement to the API 28
Functional “Is there a better way to do this? T wish I could add my mock 19
instances to the Laravel IoC container and let it create the
commands to test with cverything properly sct. I'm afraid
my unit tests will break easily with newer Laravel versions”

Non-Functional “But I'm curious if anyone else knows of [a more] efficient 9
way to to a bulk insert using EF Code First?”

Runtime problems while using the API 159

Backwards incompatibility “All this works great in MVC3 (test again today, it really 20

works) but it seems that the ExecuteCore in BaseController
is not fired any more in MVC 4 beta.”
Unexpected behavior “Previously, I have a set of Google Drive API code, which 139
works fine in the following scenarios [...] Few days ago, I
encounter scenario 2 no longer work [...], whereas other sce-
narios still work without problem.”
Unusable 53
Uscless (Unrelated to APT workarounds) 53

Table 24: Categories of questions derived from Stack Overflow posts on API
workarounds

Help with API dependencies. Users sometimes seek help with API dependencies,

140

for example when two APIs have dependency conflicts, users might ask if a replace-
ment cxists, or if there is a way to work around the conflict. These inquirics can
involve multiple libraries and build systems. This category, while infrequent could be
used by API developers to determine potential compatibility problems.

Missing desired functionality. API users can have broad expectations for APlIs.
Users sometimes expect APIs to provide functionality that they believe should be
provided by the API or that they have seen in other APIs. API users request three
general types of functionality, access to extra data or information (Missing Data/infor-
mation), new or missing features (Missing Feature), and they sometimes also request
another interface to deal with more or fewer parameters (Missing Interface). Miss-
ing desired features are the second most common question category in our dataset.
Furthermore, they appear to present common answer patterns when they require the
implementation of a workaround.

Requesting an improvement to the API. API users do not always request new or
missing functionality. There are cases where users are aware of existing functionality
but desire some improvements. In some cases, the improvement is functional, like
when a user requests an extension point for existing functionality. In other cases, the
desired improvement is non-functional, like when a user requests better performance
or improved security.

Runtime problems while using the API. Runtime problems present the most
common API workaround question category. However, most runtime problems ex-
press themselves as general unexpected behavior. Unexpected behavior is a broad
category that spans from defects to ambiguous documentation. Unexpected behavior
questions present themselves when a user experiences behavior that is unexpected
to them and asks for a workaround to avoid the APIs unexpected behavior. Any
behavior that is unexpected by the API user falls into this category, therefore it
should be no surprise that 10/13 “User is confused” answers are in response to un-
expected behavior questions. Some runtime problems are more specific and can be
narrowed down to backwards incompatibility. API version issues and the migra-
tion between API versions is a well-known problem that has been studied exten-
sively [48,128, 135,198,209, 260].

141

API workarounds contain wvaluable knowledge for API developers. The
workarounds indicate API users’ needs, such as adding features, accessing in-

formation, and bypassing runtime problems.

How are API workaround inquiries answered?

Through our manual evaluation of Stack Overflow posts we also uncover and catego-
rize how API developers answer API workaround inquiries. We observed three main
categorics of answers to API workaround questions. These three main categories can
be further divided into a total of eight API workaround answer categories. The answer
categories were manually determined as shown in Section 6.3.2 using the post selected
as an answer by the original poster. If no answer had been selected by the questions
author, we selected the highest scoring answer as the best answer. Furthermore, the
total frequency of answers is greater than 400 since answer posts can fit into multiple
answer categories.

Already supported by the API. 28.9% (111/384) of the useful answers we ex-
tracted suggested that the posted API workaround inquiry was already supported by
the API in some way. In most cases the user had to make a small adjustment to their
implementation. In 24 cases, the API could be used “as is” and addresses the inquiry
without any modification. Finally, in nine cases, the inquiry could be answered by
using the API, but the user had to change their current implementation to fit the
APT requirements.

Not currently supported by the API. In most cases, API user inquiries present
a need that cannot currently be addressed with support from the API. In such cases,
the API users will have to produce some extra code to implement a workaround.
Suggested workarounds vary in scopc but follow gencral patterns to add features,
access information, and work around runtime problems. In 80 cases, accepted answer
posts suggest using another API to address the API user inquiry. In some cases, a
solution to the inquiry is available or will be available soon, but only in the form
of an update or patch. In 38 cases the inquiry is simply not supported by the API
by design. Finally, in three cases an answer could be provided, however the posted
answer did not recommend using a workaround.

User is confused. In 13 cases we encountered answers that suggested that the

142

Answer Type Quote Frequency

Already supported by the API 111
Change your current implementation “I have found the solution. I switched the direction of this 9
mapping”
Use API as is “As others have said, there’s nothing wrong with using |...]” 24
You will need small adjustients “The simplest way is to just append [...] to the end of your 78
cornand”
Not currently supported by the API 260
Need to implement a workaround “One possible workaround is to write ”setter/getter-like” 107
wethods. that uses a singleton to save the variables [...] or
— of course — write a custom class |...]”
Not supported/No solution “The rcason you can’t do this is becausc it is specifically 38
forbidden in the Cf language specification”
Not recommended “This is asscrted as “by design” [...]. Consider a post- 3
processing step that hacks the paths the way you want
them.”
Use another API “Do you absolutely have to use java.util.Date? I would thor- 80

oughly recommend that you use Joda Time or the java.time
package from Java 8 instead.”

Wait for/apply new version/patch “I think you are experiencing a likely symptom of [...]. This 32
bug cxists in 3.2 and higher and was only fixed recently
(4.2).”
User is confused “Don’t hack somcthing together using JavaScript, as soon 13

as Twitter makes an update to their widget, that’s it, you’re
screwed. Use a server-side language and do it properly as
per their documentation.”

Unusable 73
No answer 20
Useless (Unrelated to API workarounds) 53

Table 25: Categorics of answers derived from Stack Overflow posts on API
workarounds

user was either misusing an APT or following bad practices that were hindering their
progress. As previously mentioned, most (10) of these users believed that they were
experiencing unexpected behavior, when in fact the behavior should have been ex-

pected given their misuse of an API.

Unusable inquiries

Due to the nature of the heuristics we used to filter the Stack Overflow post dataset [251],
we expected some false positives to make it through. Therefore, as part of our
coding process we also categorized any posts we deemed to be unrelated to API
workarounds as useless. 53 posts out of 400 were ultimately identified as unrelated
to API workarounds. Many of these posts were either asking for opinions on APIs

or focused on tools. Although these inquiries can be useful to the community, we

143

ultimately determined that they did not provide additional knowledge to help un-
derstand why API uscrs scck workarounds, or the kinds of workarounds they usec.
Furthermore, since we separated the coding of questions from their answers this al-
lowed us to consider the knowledge imparted by a question even if no answer existed

at the time of our study (20 cases).

Addressing the needs of API users often requires producing some extra code to

implement a workaround. The suggested workarounds vary in scope but follow

general patterns.

6.4 Patterns for Implementing API Workarounds

Section 6.3 shows that a considerable number of API workaround requests require
extra implementation from the API users. Therefore, we would like to identify
workaround implementation patterns to show API developers how their APIs are
used in unexpected ways. These patterns can then be used to inform the future API
development decisions of API developers.

We read every post in the “need to implement a workaround” API answer cat-
cgory from Table 25 and found three gencralized APT workaround patterns. The
three patterns were manually determined by the authors from recurring similarities
in workaround answers. Similar questions were amalgamated into the general pat-
terns found in this section. More patterns could likely be extracted from the data;
however, our goal was not to extract every possible pattern, but to conduct an ex-
ploratory study of likely API workarounds. Therefore, we present three patterns that
were manually developed based on real examples of API workaround requests by the
authors of this paper. These three patterns are not an exhaustive list of patterns
that could be derived from our dataset. For each workaround pattern we provide
a description of the pattern, the motivation of the API users that implement such
a workaround, and more importantly, the benefit of knowing such patterns for API
developers. In addition, we present a code example of each pattern (presented in
Figures 21, 22, & 23).

Workaround Pattern 1: Functionality extension

144

public static class PortofinoGetGeneratedKeysDelegateIE&%EHEEEGetGeneratedKeysDelegate implements

InsertGeneratedIdentifierDelegate {

@Overrlde

public Serializable execNExrct(PreparedStatement i, SessionImplementor s) throws SQLException {
s.getTransactionCoordinator().getJdbcCoordinator().getResultSetReturn().executeUpdate(i);
ResultSet rs = null;

try {
rs = i.getGeneratedKeys();
return IdentifierGeneratorHelper.getGeneratedIdentity(rs,
unquotedIdentifier(persister.getRootTableKeyColumnNames()[@]),
persister.getIdentifierType());
} finally {
if (rs != null) {
s.getTransactionCoordinator().getJdbcCoordinator().release(rs, i);

13}
protected String unquotedIdentifier(String identifier) { //This is a hack.

return identifier.substring(1, 1dent1f1er.1ength() - 1);
}

return identifier;

3}

Figure 21: Functionality extension API workaround pattern example

Description: This pattern presents itself when API users extends the existing be-
havior of an API to add functionality that does not currently exist as part of the API,
or to modify existing behavior to work as they desire.

Example: The example in Figure 21 shows an extension of the Hibernate ORM API
to support functionality for Postgres databases, that require an unquoted primary key
column name. Standard behavior is therefore modified to unquote the identifier to
work around the different behavior required by Postgres.

Motivation: This pattern appears when users desire an unavailable functionality
from an API. This workaround pattern allows API users to circumvent existing func-
tionality without removing or breaking any of the existing functionality. This allows
API users to keep all existing API functionality and have their desired workaround
included as well.

Detection strategy: To detect this pattern we attempt to determine the frequency

145

of API class extensions, as well as the frequency of method overrides. We can compare
this data to a basclinc of non-extended APT class invocations, and non-override API
method invocations. Abstract classes should be ignored since they are designed to
allow flexibility for the user to create whatever they want

The intuition behind this pattern is that if a class or method is more often extended
or overridden than it is invoked, then the functionality of the class or method is not
offered in the way most often desired by the API users. Therefore, the data for this
pattern should present cases of functionality improvements for API developers. Clone
detection approaches can also be used to check if common functionality can be found
between projects.
Benefit to API developers: Instances of this pattern can present API developers
with real scenarios for desirable features, and hints to implement them, without di-
rect communication with users. Therefore, API developers can use instances of this

pattern to determine what desirable functionality is missing from their API.

Workaround Pattern 2: Deep copy

@Override
public String getText(){

JsonToken t = _currToken;

return _getText2(t);

Keep interface the same, but modify existing information

protected String _getText2(JsonToken t){

switch (t) {
case FIELD_NAME:
return _parsingContext.getCurrentName();
case VALUE_NUMBER_FLOAT:

return _textBuffer.contentsAsString();

}

return t.asString();

Figure 22: Deep copy API workaround pattern example

146

Description: This pattern presents itself when a user attempts to copy API data
to usc a copy locally rather than directly usc the APT functionality. This can be done
to add or modify functionality or to work around a software defect.

Example: The Jackson API includes parsers for several data formats (ex. Avro,
CSV, XML, YAML). However, it does not contain a parser for BSON or Rison,
therefore users must create their own parser to support these data formats by pro-
viding a new interface that copies existing functionality but provides Rison or BSON
compatible outputs. The example presented in Figure 22 shows a method that access
existing information in the API modifies it and provides the information through the
usual APIL.

Motivation: This pattern specifically looks at cases where a user wants to use the
data provided by the API rather than the methods provided by the APIL. In this
pattern, API users extract internal API information to add or modify API function-
ality in their application. This allows the users to maintain complete control of the
functionality in their application while relying only on the APIT’s data.

Detection strategy: To detect this pattern in Java applications we can look at
the API fields and API getter method usage in GitHub projects. We believe that
looking at ficlds and getters that arc often called by APT uscers can give insight into
the usage patterns of these API users. This insight coupled with an understanding
of the API architecture can explain where new interfaces could be created. We also
look at classes that use a high number of distinct fields and getters to determine how
and why users are using the API data.

Benefit to API developers: This pattern tells API developers that their API
contains desirable data, but that functionality to use this data is missing or defective.

Therefore, interfaces should be modified or added to provide desired functionality.

Workaround Pattern 3: Multi-version

Description: This pattern manifests when API users attempt to use two or more
versions of an API to work around a runtime problem (e.g., bug) or introduce func-
tionality found in separate API versions.

Example: The Log4j and Log4j2 APIs allow the user to set logger context, however
some early versions of the Log4j2 APT experienced some issues with exception logging.

By using a classLoader and a JAR of Log4j it was possible to dynamically load and

147

private Set<String> resProps(Map<String, PropertyContext> pCon){

cLdr = getLoader(getStrOrArrayLitteral(pCon.beanValue()));
URI log4dUri = null; _ _ _ _ _ _ _ _ _ _ _

TogaJuri = gefLittéral(pCon.beanvalue(),

I -> i.stringlLiteral().getText(),
j->{H

Url for Log4j config

}

if (log4JUri != null) {
InputStream is = log4JUri.toURL().openStream());
int toread = 0;
while ((toread = is.available()) != @) {is.skip(toread);}
LoggerContext ctx = LogManager.getContext(cLdr, true);
:_ct_x .setConfiglocation(logdJuri);

FTOTTTTR V'\" """"

} Dynamically set/load Log4j config rather than use current Log4j2 config

Figure 23: Multi-version API workaround pattern example

usc the log4j logger context to circumvent cxception logging issucs cxpericnced by
Log4j2. This is presented in the example?® in Figure 23.

Motivation: Nany workarounds are requested to deal with defects in APIs, we found
a wide range of solutions for this problem in our Stack Overflow dataset. However,
we found some cases where users are encouraged to use an older or newer version of
the API to resolve an issue (i.e. bug).

Detection strategy: To detect this pattern we can attempt to determine when
users use two or more versions of an API in a given project. In the case of Java, it is
not normally possible to statically load two versions of the same library because the
class paths would conflict. However, it is possible to dynamically load two (or more)
JAR files using class loaders at runtime and then use the functionality from any or
all of the loaded JARs as desired. We can therefore attempt to determine instances
of this pattern by detecting when a given class or method shows support for more
than one version of an API.

By storing various versions of each library (in JAR format), and by looking at all
APIT method invocations for each project we can determine multiple version usage.
Most APIs keep functionality the same across multiple versions, however some APIs
will change. Therefore, if we detect that a method invocation maps to a specific API

version, but the rest of the project maps to different API versions, we can flag this

3This problem has since been resolved in Log4j2, however onc of the user projects we encountered
still maintains a workaround for this issue for unknown reasons.

148

API method invocation as suspicious.

Benefit to API developers: Using a diffcrent version of an APT is also sometimes
suggested as a solution for missing desired functionality that existed in an older ver-
sion of an API. Therefore, API developers can use instances of this pattern to detect
potential defects (and their solutions), as well as desirable functionality, directly from

user projects.

6.5 Reporting API Workarounds to Developers

In this section we present a study conducted to detect the existence of API workaround
patterns in real-life projects that use the APIs. Furthermore, we discuss the results

of our study and the API developer responses to the reported patterns.

6.5.1 Identifying API workarounds in real-life projects

Since our generalized APl workaround patterns are based on data collected from
Stack Overflow, we do not have direct evidence that these patterns can readily be
found in real-life software projects. Therefore, we produce an experiment to confirm
the existence of these patterns in open source projects.

Our detection strategies rely on parsing API source code and extracting binding
information for fields, methods and classes in the API with the help of the Java
abstract syntax tree parser [117] and symbolic link resolver JavaParser [117]. Once
an API has been parsed, any number of user projects can be targeted to detect the
occurrence of workaround patterns inside those projects. If a workaround pattern is
detected, we manually observe the identified candidate and report the candidate as a

possible improvement to API developers.

Subject APIs

We selected five open source APIs, all of which have their source code available
on GitHub and compiled JARs available in Maven repositories. We selected APIs
programmed in Java to limit the scope of our experiments. However, it should be
noted that our generalized patterns are language agnostic and were generalized from

Stack Overflow posts without filtering by programming language. All of the chosen

149

APTs are popular open source APIs that have been used by hundreds of public GitHub
projects. The popularity of the APIs allows us to obtain varied uscs of the APIs.
Guava (394 user projects) Google’s Guava API is an open source set of commonly
used Java libraries. The API includes APIs for concurrency, primitives, hashing, and
many other functionalities [94]. Prior research on 10,000 GitHub projects has shown
that Google Guava was the 8th most popular Java library in 2013 [285]. We targeted
20 different versions of the Guava API, from version 20.0 to version 27.1.
Hibernate (642 user projects) Hibernate is a free and open source framework that
provides mapping from Java classes to database tables as well as abstracted data
querying [222]. We targeted all 12 of the minor releases of the Hibernate APT that
were available on the maven central repository, from version 3.3.2 to version 5.4.2.
Jackson (588 user projects) The Jackson Core is an open source Java API that
provides a JSON parser/generator with other data encodings, such as CSV, XML,
YAML and more [80]. We targeted all 10 of the minor releases of the Jackson API
that were available on the maven central repository, from version 2.0.6 to version
2.9.9.

JUnit (1,000 user projects) JUnit is an open source unit testing framework for
Java [26]. Prior rescarch on 10,000 GitHub projccts has shown that JUnit was the
most popular Java library in 2013 [285]. We targeted 20 different versions of the
JUnit API, from version 3.7 to version 4.12.

Log4j (475 user projects) Apache Logdj is an open source Java logging framework [83].
As of the writing of this paper, over 4,260 maven artifacts have the Apache Log4j
Core as a direct dependency [82]. We targeted 20 different versions of the Logdj API,

from version 2.0.1 to 2.11.2.

API user projects

The API user projects chosen for this paper were all open source projects hosted on
GitHub and selected based on their use of the five Java APIs we selected. We first
searched all of GitHub for README files that mention the name of our target APIs.
There is no current tagging system on GitHub to search for APIs used by GitHub
projects. Therefore, we rely on heuristics to determine if a project uses one of our

five target APIs. We found that if a project README mentions an API by name,

150

it is likely that the project will in turn use this API. Furthermore, we used project
“stars” as a metric for popularity of a project. Although GitHub “stars” arc not
an indication of quality, it is an indirect measure of popularity. If a project is more
popular, it is possible that it will have a larger impact, and the information obtained
from examining this project should therefore be more important to API developers.
The minimum project size was set at 5MB in order to reduce the number of dummy
projects that might contain no code. Using these filtration criteria, we either selected
all of the projects that met our criteria or the top 1,000 starred projects for each target
API, whichever came first. The number of projects used for each of our selected APIs
can be found in Section 6.5.1.

Each of these projects was used to attempt to map binding information obtained
from the API source code to API uses in the user projects. Furthermore, we also used
the JARs for each API to determine version specific binding information. We applied
our pattern detection strategies to determine if one or more of our three patterns are

present in a user project.

Detecting patterns

To help detect the API workaround patterns presented in Section 6.4, we produced
scripts and prototype tools based on the detection strategies presented in Section 6.4.
The prototype tools and scripts are publicly available .

API developers are most likely to be interested in active API workarounds, we
concentrate on the latest releases of API user projects. By using the latest releases
of user projects we can keep our results relevant to API developers, circumvent a
number of build problems related to older versions [274], and reduce the pattern de-
tection time. Furthermore, since JavaParser [117] does not require building projects
to obtain an AST or to build symbolic links, we can parsc API user projects without
the need to worry about build issues [274]. As a first detection step, we leverage
JavaParser [117] to extract API class names, API method declarations, API field
declarations, and specific API methods that contain the keyword ‘get’. This infor-
mation can later be used to map API declarations to API user invocations by further

leveraging JavaParser [117] to obtain code bindings in user projects.

“https://github.com/senseconcordia/API-Workarounds

151

Functionality extension: To detect the Functionality extension pattern, we use
the binding information obtained through JavaParser [117] to extract all API method
overrides, API method invocations, API class extensions, and API class invocations
for all of the API user projects in our sample. We then build a frequency map of all
of these, to determine which classes are more often extended rather than invoked and
which methods are most often overridden rather than invoked. Based on this data,
we observe the items with the highest extend:invoke and override:invoke ratios.
Deep copy: To detect the Deep copy pattern we use JavaParser [117] to extract
API field invocations and API getter method invocations from API user projects. We
keep track of how many of these items are invoked in a given API user class, and the
global invocation patterns across all API user applications. We then consider API
user classes that use the most API field and API getter invocations as potential Deep
copy candidates.

Multi-version: We conduct heuristic analysis on the JAR releases of our target
APIs to determine links between target APIs and API user applications. By using
these links. we can heuristically determine which API versions are compatible with
a given user application. Through the heuristically determined links between API
JARs and API uscr applications, we can determine which user applications would
require more than one version of an API to support all of their API calls. Using this
information we can flag API user applications that require multiple versions of an
API.

Using our detection strategies, we produced lists of API user code instances that
were likely to contain APl workaround patterns. We manually verified the top 10
most likely workaround candidates for each API for each pattern, giving us a total
of 150 manually verified potential API workaround pattern instances. Any candidate
deemed an API workaround instance, after manual verification, was reformulated by
the authors as an API feature request and sent to API developers, either through
GitHub or their forums. We detect API workaround patterns in API user applica-
tions of varied maturity, without knowing which version of the API is used a priory.
Therefore, we do not originally know if any of the workarounds we find in user ap-
plications have since been used as actual improvements and bug fixes in more recent
versions of the API. If we detect a workaround in an old user project and later de-

termine that the workaround has been integrated into the API, we therefore consider

152

this an indication that API developers could benefit from knowledge of APT user

workarounds.

6.5.2 Results and discussion

We breakdown our manual observations of 150 potential API workarounds that were
detected using automated approaches. We first manually examine all the 150 in-
stances to confirm whether they indeed correspond to workarounds. We find that 80
out of the 150 (53%) instances are true instances of workarounds. We manually check
the reasons of the instances that are detected by our patterns but not workarounds.
We find that there is a single non-workaround instance of Functionality extension
pattern. The pattern instance was a custom extension of a Hibernate exception and
therefore considered normal usage of the API. We find 20 non-workaround Deep copy
pattern instances that were exclusively for Jackson and JUnit. In those instances, the
top fields and getters copied by API users to ease their testing code, i.e., JUnit. Fi-
nally, all of the detected instances of Multi-version patterns belong to JUnit, Guava,
and Log4j, since the Hibernate and Jackson APIs did not present any instances of the
pattern. However, the majority (49 out of 50) of our Multi-version pattern instances
appear to be defensive coding rather than pure workarounds.

To avoid requesting too much information from the developers of the studied
subjects, we strategically pick manually verified true instances to submit feature
requests. In particular, we concentrate on more complex functionality addition or

modification, and defect workarounds that could clearly be discerned by the authors.

Functionality extension:

During our manual observation we extract nine Functionality extension API workarounds
from the selected user systems. By searching through forums and patch notes, we
find that three of the Functionality extensions did not exist in the APIs when the user
projects created workarounds, but they had already been incorporated into the APIs
when we searched their forums. This confirms that our patterns are indeed detecting
functionality that was missing from the APIs.

In two cases, we find currently existing pull requests that are in the process of

being integrated into the APIs. For cxample, pull requests arc in discussion for

153

SQLite support in Hibernate and users have posted that they “Would love to see
official SQLite support in Hibernate”. Thercfore, in five cascs, desired functionality
had been deemed valuable by API developers and was either integrated into the APIs
or is currently in the process of being added.

In two cases, we found two existing but unfulfilled feature request posts in the API
forums or on Stack Overflow. In one case, a Stack Overflow post (post id: 2308543)
details the unexpected behavior and the desire for this feature. This shows a real
user desire for this feature. However, the feature has still not been added.

In two cases we created feature requests for missing functionality. As of the writing
of this paper, one feature request is in the APIs feature request queue. The other
feature has been acknowledged by the API developers as desirable by users, but they

do not have the resources to maintain that functionality at this time.

Deep copy:

We extract two interesting Deep copy API workarounds from our dataset. We created
feature requests for new functionality to improve the APIs. We received positive re-
sponses to the functionality that was proposed. When we requested a BSON format
addition, one API developer replied that they did not want to support the func-
tionality, but that “/...[] BSON-backed streaming api implementation makes sense
(dataformat module) — this is what is used to support dozen other formats.”. Fur-
thermore, they pointed us in the direction of an existing third-party package that
could supply this functionality. This shows that the functionality was indeed desir-
able enough for someone to create a third-party library for it. This therefore confirms
that the detected workaround pattern contained functionality that was not provided
by the API. Furthermore, the third-party library with this functionality shows the

value of our reported workaround functionality.

Multi-version:

We find 50 cases where multiple versions of APIs were used. However, only one case
was providing a workaround for missing functionality. We examined this case in detail

and found that an issue did exist with the API. However, the issue had been fixed by

154

a patch soon after the issue was introduced. The fix shows that workarounds would
potentially assist developers in identifying problems with their APIs used in real-life
by API users.

In the 49 other cases, after careful examination of the API user code and docu-
mentation, we determine that API users sometimes code defensively to allow their
users to use a wide range of compatible libraries. In those cases, API users will have a
direct dependency on a specific version on an API, which they will bundle with their
project. However, they will in turn allow their users to use a range of different API
versions, which will be dynamically loaded and override default behavior to provide
compatibility with newer API versions. If API developers had knowledge on which
API combinations users most often employ, this could direct their testing efforts to

maintain compatibility between API versions.

Unnecessary workarounds:

User code can sometimes present an API workaround pattern with code that simply
emulates existing functionality. We found three instances of user code that presented
as workaround patterns but could have been implemented using existing API func-
tionality. In these cases, perhaps a lack of understanding of the APIs functionality by
the API users is at fault. This could be mitigated by improving API documentation
and examples. API developers can use this information to efficiently spend time on
APIs that have documentation issues and generate examples specifically for those
APIs.

Based on the responses to API workaround feature requests, both already existing
and those we created, we can confirm that API workaround patterns detected in API

. Furthermore, we

user projects can provide valuable knowledge to API developers
can confirm that the three patterns presented in Section 6.4 of this paper do exist in
API user projects, and that they are used to provide missing functionality and work

around unexpected behavior.

A list of detected patterns and feature requests is available in our replication package.

155

6.6 Threats to Validity

Construct validity. e do not claim to have found all inquiries pertaining to API
workarounds. However, we believe that the sample collected is adequate to produce
an cxploratory study into the problem at hand. Although we diligently attempted
to confirm the detected instances of implementation patterns for API workarounds
by searching application documentation and online forums, and we reported issues to
API developers, it is still possible that the patterns detected in user applications were
misidentified as API workarounds. We do not claim to be experts for any of the user
applications studied nor for any of the APIs selected. We do not claim to have found
or reported all existing workarounds in the studied systems. However, investigations
into the instances detected appears to confirm the existence and usefulness of the
patterns. Future empirical and user studies can be done to complement our study
and may bring additional insight to our results.

External validity. Since the API workaround pattern instances in this study were
detected in Java APIs, it is possible that the findings in this chapter do not generalize
to other programming languages. However, while the strategies presented in this
chapter were tested on five Java APIs, the strategies were developed based on language
agnostic Stack Overflow posts and should therefore apply to a range of programming
languages (e.g., C#).

Internal validity. The API workaround inquiry categories and patterns presented
in this chapter might not be fully indicative of API workarounds and instcad reflect
internal bias. We attempted to mitigate these threats by having the reviewers inde-
pendently label and reach a consensus on the categorization of Stack Overflow posts
and the implementation patterns extracted from these posts. Our manual observation
of 400 Stack Overflow posts may also present internal bias, future studies involving
more posts can complement our results. However, we reported API workaround pat-
terns to API developers and received feedback that suggests that the workarounds we
detected are actual workarounds and should be considered valuable for future fixes

or extensions to the APIs.

156

6.7 Chapter Summary

We conducted an exploratory study on API workarounds. By studying inquiries
from Stack Overflow, we find that API users seek API workarounds to add desired
functionality, improve APIs, and resolve uncxpected API behavior. Furthermore, we
show that many API workarounds require extra code from API users to implement
workarounds. Using workaround implementations suggested in Stack Overflow an-
swers, we extract three generalized API workaround patterns that are implemented
by API users to deal with missing API features and unexpected API behavior. We
find real-life examples of these patterns in open source projects and report instances
of these patterns to API developers. Without our findings, these patterns might
be misidentified as general development and developers might ignore their unique
characteristics. We find that API developers consider these workaround instances as
real issues, and either add them to their issue tracker, or encourage pull requests to

remedy them. This chapter makes the following contributions:

1. We are the first to study inquiries that concern API workarounds.

[N}

. We introduce and confirm the existence of three general implementation pat-

terns for API workarounds.

3. We determine the usefulness of these patterns to practitioners through their

adoption into API code bases.

Our findings highlight the benefits of using open-source repositories to uncover
API workaround usage patterns. We show that these workaround patterns can be
used to reduce the knowledge gaps between API developers and APT users by allowing
APIT developers to improve their APIs through the knowledge they acquire from these

repositories.

157

Part 1V

Conclusions and Future Work

158

Chapter 7
Contributions and Future Research

Software application programming interfaces (APIs) are now an imperative part of
Software Engineering. For their users, the usage of APIs can speed up development
and reduce project overhead. For their developers, APIs present business opportuni-
ties.

The evolution of these APIs requires constant effort from their developers and
uscrs alike. Through their very nature, APIs crcate a scparation between their users
and developers. This separation results in knowledge gaps on both fronts. In this
thesis, we empirically studied knowledge gaps incurred by API users and developers
and precipitated by the very APIs they use and develop. In this section, we outline

the contributions of this thesis and present future research topics.

7.1 Thesis Contributions

The underlying goal of this thesis is to assist with API evolution from the perspective
of both API users and API developers and to propose solutions to challenges incurred
by this evolution. We leverage the knowledge contained within open-source software
repositories. Through our literature review in Chapter 2, we first identify issues of
API evolution that would particularly benefit from knowledge that could be contained
within open-source software repositories. We then investigate three API evolution
issues (i.e., Android APT migration, API misuses in Java, and API workarounds) in
four empirical studies. We highlight the primary contributions of these four studies

below:

159

1. What are the Challenges Associated with Android API Migration?
We find that although a portion of the removed or deprecated Android API
methods do not have a replacement, identifying a replacement using documen-
tation or historical code change information is not a challenging task for prac-
titioners. Existing tools could mine this information without much issue. How-
ever, identifying migration replacements are not the only challenge for Android
API users attempting API version migration, we also identify other challenges,
that are more time consuming to address. We find that: not all modified
methods have migration pathways, potentially forcing Android API users to
continue using old APIs or resort to workarounds; historical code data is often
a sufficient source of information when documentation is lacking; Android API
migrations are sometimes introduced by Android API developers long before
an API method is removed or deprecated, this has implications for heuristics
used to search for replacement APIs; most Android API users only require a
few common API methods, these methods should get the majority of the mi-
gration support. Finally, we find that Android API migrations often require
code modification that require developer knowledge. This knowledge must in
turn often be obtained from sources other than documentation such as the An-
droid API source code repository or existing API migration solutions hidden
across multiple open-source repositories. Our approach A3 is a solution to this

problem.

2. Using Existing API User Knowledge as Android API Migration Aid:
We propose an approach (A3) to acquire developer knowledge that was iden-
tified in our cmpirical study as nccessary for many Android API migrations.
This knowledge is contained within existing Android API migrations conducted
within existing Android API user projects. Our approach assists developers
with Android API migrations by learning Android API migration patterns from
code examples mined directly from available code repositories. We find that it
is possible to automatically extract Android API migration patterns from both
public code examples and manually produced Android API examples that are
created with minimal effort. By learning Android API migration patterns from
these examples, our approach can provide either automatically generated An-

droid API migrations or useful information to guide Android API users with

160

their migrations in 71/80 cases. Our user-study showed that the examples pro-
vided by our approach arc both decsirable to users and allow users to migrate

Android APIs, on average. 29% faster.

. Improving Misuse Detection Approaches: We manually uncover 108 cases
of alternate but correct API usages that were falsely identified as API misuses
by a state-of-the-art API misuse detection approach. We manually investigate
these 108 cases and discover five patterns of alternate but correct API usage. We
find that these patterns can be used to transform existing API usage examples
into complementary artificial API usage examples. These artificial examples
can in turn cover API misuse detection knowledge gaps caused by a lack of
diversified existing API usage examples. We find that these complementary
examples can be used in state-of-the-art API misuse detection approaches to
reduce the incidence of false positive detection. Furthermore, we also find that
these artificial examples can be used to complement existing examples in API
misuse detection without incurring any loss of recall. Our findings highlight the
potential of extracting missing API usage knowledge by generalizing API usage
examples through pattern-guided source code transformations. This knowledge
can in turn reduce the dependence of example-based API misuse detection on

mining large and therefore costly samples of user projects.

1. Guiding API Development by Using API Workarounds: We are the

first to establish an empirical link between API workaround requests from API
users and patterns to identify instances of these workarounds in user code. We
find that API users usually request API workarounds to add desired function-
ality, improve APIs, and resolve unexpected API behavior. Furthermore, we
show that many API workarounds require extra code and some knowledge of
the API for APT users to implement them. We manually identify three API
workaround patterns that are implemented by API users to deal with miss-
ing API features and unexpected API behavior. We confirm the existence of
these API workaround patterns by finding real-life examples of these patterns in
open-source projects and successfully report project specific instances of these

patterns to API developers as potential avenues of improvement for their APIs.

161

7.2 Future Research

We believe that this thesis presents concrete contributions towards understanding and
reducing the knowledge gaps between APT users and API developers. However, there
arc still many avenues for futurc rescarch. We outline some of these future rescarch

avenues below:

7.2.1 API Development Theory

Throughout this thesis we encountered a variety of APIs, not only in our data, but
also when creating scripts, apps, and programs that were used for our research. By
looking at this varicty of APIs, it is clcar that APIs vary widcly in design, cven within
a single programming language like Java. There is currently no grounded theory that
dictate what makes a “good” API. A variety of best practices can be found, but
ultimately most appear to be based on developer beliefs, or organizational rules,
rather than data. More systematic empirical studies should explore what engineering

attributes make an API desirable to API users.

7.2.2 API Migration Patterns

While this thesis has presented an approach that mines and applies existing API
migration knowledge in Chapter 4, work can still be done to improve the state-of-the-
art in API migration. Particularly, common API migration patterns, such as the ones
mined by A3 merit more research. For example, these patterns could identify how
APT users commonly chose to migrate APIs, and which APIs do users most commonly
migrate. This information could in-turn be used to identify where API users need

more help, and where API developers should devote more effort.

7.2.3 API Misuses to Inform API Development

Based on our findings in Chapter 5, we believe that, similarly to identifying API usage
patterns that can inform API development, we could use API misuse detection tools
to uncover frequent API misuses. These frequent API misuses could then be used

to identify particular weak spots within APIs. Therefore, we believe future research

162

should understand why frequent API misuses occur and how they can be leveraged
to aid API development.

7.2.4 Identifying Common API Usage Patterns to Inform
API Development

Our findings in Chapter 6 indicate that it is possible to use API user development
information to uncover potential areas of improvement for APIs. However, we only
concentrated on a niche area of API user data, namely API workarounds. There are
still many avenues to explore where and how API usage can be used to inform API
development (e.g., APIs frequently used together, API migration patterns). In future
work, we plan on looking at frequently used APIs to uncover general reasons why
certain APIs are used together and whether these reasons can be generalized to aid

API developers in developing better APIs.

163

Appendices

164

Appendix A

Java APIs Commonly Used for
API Research Evaluation

APIs are evermore common in software engineering. Using APIs is now a routine
part of the software development lifecycle. Research into APIs has therefore sensibly
increased to match the rising adoption rate of APIs and the challenges uncovered
by this growth in popularity. However, our research shows that, in research, a few
common APIs are frequently used to make or test most API research inquiries. These
APIs are primarily Java APIs, and may not reflect the state of API evolution as a
whole. This technical report was created to highlight which APIs are most commonly
used in APT research, in the hopes of raising awareness of current knowledge gaps in
the field to improve the status quo.

In this Appendix we present the 17 most popular systems used to evaluate software
engineering research into APIs. We selected 143 published works extracted from a
recent systematic review of API evolution literature and manually determined which
APIs were used to either produce or test the hypotheses presented in each published
work. As well as presenting the most common APIs used for research evaluation, we
also highlight how each API was used to evaluate existing API research.

Java API
With 39 independent papers within our sample dataset, the most common API used
to evaluate API evolution research is the Java API either through the use of its various
standard libraries, or through the JDK [203]. The Java API is widespread and has

a large userbase [244]. Furthermore, the Java API benefits from a large number

165

of open source projects available in online repositories like GitHub. For example
GitHub contains 879,265 Java based projects [244]. Many papers that presents tools
or approaches improve API usability [88,151,163,189,194,221,223, 265,268, 287] and
help with API evolution and migration [3,11,31,36,90,127,154,186,199,204,264, 275,
313, 318| make use of the Java API to evaluate the effectiveness of their approach.
The Java API has been used to conduct empirical studies on API evolution [180,244]
and API usability [6,59,87,88,110,124, 151,163, 189, 194, 195, 206, 214, 221, 223, 238,
241,265, 267,268,287]. The Java API has also been used to construct API quality
datasets [3], and to evaluate API security tools [114].

Android API
The Android API popular for evaluating hypotheses for numerous reasons. It is a
large and open source API [135], and the API benefits from a large user base through
the Android ecosystem [146]. In this section, we do not distinguish between studies
that make use of the Android API and Android apps to calculate the number of
studies that use the Android API. We conside the Android apps presented within the
context of the studies in this dataset as examples of Android APT users since they
are presented from the perspective of the Android APT in their respective papers. A
large portion of studics that usc the Android API as an cvaluation system conduct
empirical studies on the evolution of APIs [24,39,77,96,98,135,146-148,150,162, 180,
277]. However, other studies also employ the Android ecosystem for the evaluation
of various tools or approaches to help with API evolution [32,108,245,300,303|, and
AP usability [17,174,210,259,284,304]. Finally some papers make use of the Android
API to evauate empirical studies on software usability [101, 206, 267, 283, 321], and
software performance [149]

Toy systems
We consider simple systems that are produced for the sole sake of evaluating an
approach presented in a paper to be toy systems. These toy systems can be used to
showcase a tool. However, they are not necessarily representative of existing projects
that can be found within an APIs ecosystem. 20 of the 291 publications we sampled
made use of such systems. These toy systems are used for a variety of studies such as
API refactoring tools [85,100,269,270,323], API documentation studies and tools [28,
43,74, 118, 254], studies on managing API evolution [72, 73,197,213, 234, 311], and
studies on understanding and developing better APIs [116,169,215,273].

166

We find that 12 out of 20 studies that make use of toy systems to evaluate their
findings usc the Java programming language to create these toy systems. The other
studies that make use of toy systems make use of varied programming languages such
as BPEL [28].

Eclipse
Eclipse is an industrial yet open-source Java IDE [52]. Eclipse freely provides ac-
cess to the source code to it’s framework which can then be used for evaluation by
researchers. Eclipse has been used as an evaluation system for API evolution empir-
ical studies [53,66,125], APT usability studies [38,103,109,321], an API conformance
checking tool [217] APT evolution mining tools and approaches [158,173,246|, empir-
ical studies on API refactoring [64,126], an API migration recommendation tool [52],
and API refactoring detection tools [63,262].

JHotDraw
JHotDraw is a medium sized Java GUI framework created to demonstrate design
patters [297]. JHotDraw has been used to evaluate API recommendation tools [14],
API usage mining tools [57], API refactoring detection tools [63,262], API migra-
tion tools and approaches [128, 266, 295], API change rules evolution in empirical
studics [66,246,297,302], and rcfactorings in an APT upgradc casc study [323].

Log4j
Log4j is a Java library that provides application logging functionality [122]. Various
studies that present API tooling such as, API usage extraction tools [243,264|, API
recommendation tools [152], API refactoring detection tool 262], and API migration
tools [122] make use of the Log4j API to test the effectiveness of their tools. However,
papers that present empirical studies such as API evolution studies 48,64, GG, 180],
studies on API documentation evolution [247], and studies that observe API compat-
ibility [115] also use the Log4j API as a benchmark.

Struts
Apache Struts is a Java MVC framework for creating Java web applications [303]. In
this section we do not distinguish between Struts and Struts 2. Struts is mainly used
to test API tools and approaches such as detection of refactoring in APIs [63,262],
mining framework changes [166,246,303], API recommendation tools [265], and tools
to detect dynamic APT specifications [2]. However, in two cases empirical studies use

struts to validate API evolution hypotheses [48,66].

167

Guava
Guava is a Java library of collection utilitics that were not originally provided as
part of the Java SDK [243]. Over 3,000 Guava clients exist on GitHub [243]. Guava
has been used to test a variety of hypotheses, ranging from API usage analysis [242,
243] API deprecation [130, 244, APl documentation analysis [267], the impact of
refactoring on API clients [133], and the impact of unbundling APIs [161].

Hibernate
Hibernate is a framework for mapping an object oriented domain to a relational
database [241]. Hibernate has over 1000 deprecated APIs over it’s history, making it
a prime candidate to test API deprecation hypotheses [241]. Hibernate has several
user projects available on GitHub [210] and many questions on online forums, also
making it a good candidate for approaches that learn API characteristics from online
forums [53,210], or studies that observe API usability [109,191,242]. It has also been
used as a test subject for hypotheses about APT documentation [230].

JUnit
JUnit is a popular open source Java testing framework [109]. It is used as a test
subject for studies about API documentation [230,267], APT usage patterns [109,243,
264], API cvolution problems [61], and API migration [317].

JFreeChart
JFreeChart is a Java chart library with over 54 releases that contain many API
changes with similar names [297|. The change history of JFreeChart makes it a good
API to test change rules in APIs [297], understanding unfamiliar APIs [69], and
testing API recommendation [68] and migration [128,191,295,312] tools.

Proprietary systems
Not all systems used for API research are open-source systems. Six of the papers
in our sample test or build their hypotheses upon proprietary closed source systems
from various companies. These studies are nevertheless varied in scope, and do not
appear to be limited by the closed nature of their source code. The studies range
from API usability and design [179, 255,307, extracting API usage patterns [280],
and understanding API evolution [95,310].

Spring
Spring is a framework that provides access to Java objects through reflection [243]. Tt

is a popular project, that has at least 150 classes, and has at least 10 commits per week

168

over its lifetime [243]. Tt is employed as a test subject by six of the papers in our sample
datasct. Tt is used a a test subject for studies in APT recommendation [152], improving
API documentation [53,130], understanding developer reaction to deprecation [244],
and for approaches to understand API usage [242,243|.

Hadoop
Hadoop is one of the most popular Java libraries developed under the Apache founda-
tion [265]. Hadoop is used as a test subject by a variety of studies in our dataset. Most
of the works that employ Hadoop as a test system concentrate on API documentation,
either by detecting documentation errors [314], recommending or searching for API
documentation [230, 267], or exploring API documentation quality [130]. However,
Hadoop is also used to test API recommendation tools [265], and as a test subject to
keep track of API popularity [108].

Lucene
Lucene is a free and open-source search engine Java library [263]. Six of the papers
in our dataset use Lucene as an API to test their hypotheses, however none of these
studies highlight why Lucene is a prime candidate as a test API. In all six instance,
Lucene is selected as one of several test APIs, and Lucene never appears as a singular
test APT without our datasct. Lucenc is used in a varicty of studics, from API
migration studies [187], API deprecation studies [130], API documentation evolution
and error detection studies [247,314], API specification checking studies [217], and
API refactoring detection studies [262].

Pharo
Pharo is a dynamically typed programming language, with over 3600 distinct systems
and over 6 years of evolution [107]. Therefore the API is seen as a good candidate for
ecosystem studies. In particular studies that use the Pharo ecosystem concentrate on
the ripple effects of API changes on an ecosystem [226], how developers react to API
deprecation [227], and how developers react to the evolution of an APT [104,106,107].
One of the studies in our dataset also used the Pharo API as a test subject to
benchmark a tool that extracts API changes that occur during API evolution [105].

.Net API
Within our dataset, the .Net API as a test API is always coupled with the Java API.
The APIs can be couple as a comparison since both APIs present similar features,

and a large number of client programs [87]. However, in one case both APIs are

169

required to test the hypothesis since the goal of the study is to build a migration
mapping between two APTs [36,199]. In the majority of cascs however, the APIs arc
chosen to provide results that are valid across languages, either to uncover patterns
of knowledge [155], or as responses to user surveys [228].

In this Appendix we present the 17 most popular APIs used to evaluate software
engineering research into APIs. We find that most of the popular APIs used for
evaluation are Java APIs, with a few outliers such as the Pharo API and the .Net
API. We hope that by highlighting the most common APIs used to evaluate past API
research, the information presented in this Appendix can be used to foster future API
research by facilitating the replication of existing work, as well as highlighting the

lack of programming language variety in existing API research.

170

Bibliography

1]

Alberto Abell6 Gamazo, Claudia Martinez, Carles Farré, Cristina Gomez, Marc
Oriol, and Oscar Romero. A Data-driven approach to improve the process of
data-intensive API creation and evolution. In CAiSE-Forum-DC 2017: Pro-
ceedings of the Forum and Doctoral Consortium Papers Presented at the 29th
International Conference on Advanced Information Systems Engineering, pages
1-8, Essen, Germany, nov 2017. CAiSE.

Ziyad Alsaeed and Michal Young. Extending existing inference tools to mine
dynamic APIs. In Proceedings of the 2nd International Workshop on API Usage
and Evolution - WAPI ’18, pages 23-26, New York, New York, USA, 2018. ACM

Press.

Sven Amann, Sarah Nadi, Hoan A. Nguyen, Tien N Nguyen, and Mira Mezini.
MUBench A Benchimark for API-Misuse Detectors. In Proceedings of the 13th
International Workshop on Mining Software Repositories - MSR 16, pages 464—
467, New York, New York, USA, may 2016. ACM Press.

Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
Investigating Next Steps in Static API-Misuse Detection. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR), MSR
19, pages 265-275, Piscataway, NJ, USA, may 2019. IEEE.

Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira
Mezini. A systematic evaluation of static api-misuse detectors. IEEE Trans.
Software Eng., 45(12):1170-1188, 2019.

171

6]

[16]

Davide Ancona, Francesco Dagnino, and Luca Franceschini. A formalism for
specification of Java API interfaces. In Companion Proceedings for the IS-
STA/ECOOP 2018 Workshops on - ISSTA 18, volume 2, pages 24-26, New
York, New York, USA, 2018. ACM Press.

Android. Android developers distribution dashboard. developer.android.com,
2017.

Android. Android developers resources, getcolor. devel-

oper.android.com/reference, Jul 2017.

Android. Android package index. developer.android.com /reference/packages,
Jul 2017.

Android. Android platform frameworks base. github.com/android/, Aug 2017.

G Antoniol, M. Di Penta, and E Merlo. An automatic approach to identify
class evolution discontinuities. In Proceedings. 7th International Workshop on
Principles of Software Evolution, 2004., pages 31-40, USA, sep 2004. IEEE.

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. JDiff:
A differencing technique and tool for object-oriented programs. Automated
Software Engineering, 14(1):3-36, mar 2007.

Ron Artstein and Massimo Poesio. Inter-coder agreement for computational

linguistics. Computational Linguistics, 34(4):555-596, 2008.

Muhammad Asaduzzaman, Chanchal K. Roy, Samiul Monir, and Kevin A.
Schncider. Exploring APT method parameter rccommendations. In 2015 IEEFE
International Conference on Software Maintenance and Evolution (ICSME),
pages 271-280, USA, sep 2015. IEEE.

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. RESTler: State-
ful REST API Fuzzing. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), ICSE 19, pages 748-758, Piscataway, NJ, USA,
may 2019. IEEE.

Joop Aué, Mauricio Aniche, Maikel Lobbezoo, and Arie van Deursen. An

exploratory study on faults in web API integration in a large-scale payment

172

[17]

[18]

[19]

21

[22]

[23]

[24]

[25]

company. In Proceedings of the 40th International Conference on Software Fn-
gineering Software Engineering in Practice - ICSE-SEIP ’18, pages 13-22, New
York, New York, USA, 2018. ACM Press.

Shams Azad, Peter C. Rigby. and Latifa Guerrouj. Generating API Call Rules
from Version History and Stack Overflow Posts. ACM Transactions on Software
Engineering and Methodology, 25(4):1-22, jan 2017.

Alberto Bacchelli, Michele Lanza, and Romain Robbes. Linking e-mails and
source code artifacts. Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering - ICSE 10, 2010.

Mojtaba Bagherzadeh, Nafiseh Kahani, Cor-Paul Bezemer, Ahmed E. Hassan,
Juergen Dingel, and James R. Cordy. Analyzing a decade of Linux system calls.
Empirical Software Engineering, 23(3):1519-1551, jun 2018.

Mehdi Bahrami, Junhee Park, Lei Liu, and Wei-Peng Chen. API Learning. In
Companion of the The Web Conference 2018 on The Web Conference 2018 -
WWW 18, pages 151-154, New York, New York, USA, 2018. ACM Press.

Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for class
library migration. ACM SIGPLAN Notices, 40(10):265, oct 2005.

Thiago Tonelli Bartolomei, Krzysztof Czarnecki, Ralf Lammel, and Tijs van der
Storm. Study of an API Migration for Two XML APIs. In Software Language
Engineering. SLE 2009, pages 42-61. Springer, Berlin, Heidelberg, 2010.

Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. How the apache community upgrades dependencies: An
evolutionary study. Empirical Softw. Engg., 20:1275-1317, October 2015.

Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas,
Massimiliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. The Impact
of API Change- and Fault-Proneness on the User Ratings of Android Apps.
IEEE Transactions on Software Engineering, 41(4):384—407, apr 2015,

Wayne Beaton. Eclipse corner article abstract syntax tree, the eclipse founda-
tion, 2019.

173

[26]

[27]

[28]

31

[32]

[33]

[34]

Kent Beck. Junit. JUnit.org, Jul 2019.

Boualem Benatallah and Fabio Casati. Panel on Cognitive Service Engineering.
In Companion of the The Web Conference 2018 on The Web Conference 2018
- WWW 18, pages 8383-883, New York, New York, USA, 2018. ACM Press.

Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R Motahari Nezhad,
and Farouk Toumani. Developing Adapters for Web Services Integration. In
Oscar Pastor and Joao e Cunha, editors, Advanced Information Systems Engi-

neering, pages 415-429, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

David Bermbach and Erik Wittern. Benchmarking Web API Quality. In Web
Engineering. ICWE 2016., pages 188-206. Springer, Berlin, Heidelberg, 2016.

Christopher Bogart, Christian Kastner, James Herbsleb, and Ferdian Thung.
How to break an api: Cost negotiation and community values in three software
ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International
Sympostum on Foundations of Software Engineering, FSE 2016, pages 109-120,
New York, NY, USA, 2016. ACM.

Salah Bouktif, Houari Sahraoui, and Faheem Ahmed. Predicting Stability
of Open-Source Software Systems Using Combination of Bayesian Classifiers.

ACM Transactions on Management Information Systems, 5(1):1-26, apr 2014.

Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. APIDift:
Dctecting APT breaking changes. In 2018 IEEFE 25th International Conference
on Software Analysis, FEvolution and Reengineering (SANER), volume 2018-
March, pages 507-511, USA, mar 2018. IEEE.

Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. Why and
how Java developers break APIs. In 2018 IEEFE 25th International Conference
on Software Analysis, FEvolution and Reengineering (SANER), volume 2018-
March, pages 255-265, USA, mar 2018. TEEE.

Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. Do De-
velopers Deprecate APIs with Replacement Messages? A Large-Scale Analysis
on Java Systems. In 2016 IEEE 23rd International Conference on Software

174

[35]

[36]

[38]

[40]

[41]

Analysis, Evolution, and Reengineering (SANER), volume 1, pages 360-369,
USA, mar 2016. IEEE.

Glcison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. On the
use of replacement messages in API deprecation: An empirical study. Journal
of Systems and Software, 137:306-321, mar 2018.

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. SAR: learning cross-language
API mappings with little knowledge. In Proceedings of the 2019 27th ACM
Joint Meeting on Furopean Software Engineering Conference and Symposium
on the Foundations of Software Engineering - ESEC/FSE 2019, pages 796806,
New York, New York, USA, 2019. ACM Press.

Raymond P. L. Buse and Westley Weimer. Synthesizing API usage examples.
In 2012 34th International Conference on Software Engineering (ICSE), pages
782-792, USA, jun 2012. IEEE.

John Businge, Alexander Serebrenik, and M. van den Brand. Analyzing the
Eclipse API Usage: Putting the Developer in the Loop. In 17th European
Conference on Software Maintenance and Reengineering, pages 3746, USA,
mar 2013. IEEE.

Paolo Calciati, Konstantin Kuznetsov, Xue Bai, and Alessandra Gorla. What
did really change with the new release of the app? In Proceedings of the 15th
International Conference on Mining Software Repositories - MSR 18, pages
142-152, New York, New York, USA, 2018. ACM Press.

Joao Campinhos, Joao Costa Seco, and Jacome Cunha. Type-Safe Evolution of
Web Services. In 2017 IEEE/ACM 2nd International Workshop on Variability
and Complexity in Software Design (VACE), pages 20-26, USA, may 2017.
IEEE.

William B. Cavnar and John M. Trenkle. N-gram-based text categorization.
In In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, pages 161-175, 1994.

Wing-Kwan Chan, Hong Cheng, and David Lo. Searching connected api sub-
graph via text phrases. In Proceedings of the ACM SIGSOF'T 20th International

175

[43]

[44]

[45]

147]

[48]

[49]

[50]

Symposium on the Foundations of Software Engineering, FSE 12, New York,
NY, USA, 2012. Association for Computing Machinery.

Cong Chen and Kang Zhang. Who asked what: integrating crowdsourced FAQs
into API documentation. In Companion Proceedings of the 36th International
Conference on Software Engineering - ICSE Companion 201/, ICSE Companion
2014, pages 456459, New York, New York, USA, 2014. ACM Press.

Yonghong Chen, Xiwei Xu, and Liming Zhu. Web Platform API Design Prin-
ciples and Service Contract. In 2012 19th Asia-Pacific Software Engineering
Conference, volume 1, pages 877-886, USA, dec 2012. IEEE.

Chow and Notkin. Semi-automatic update of applications in response to library

changes. In Proceedings of International Conference on Software Maintenance
ICSM-96, pages 359-368, USA, 1996. IEEE.

Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. srcml: An
infrastructure for the exploration, analysis, and manipulation of source code: A
tool demonstration. 2013 IEEE International Conference on Software Mainte-

nance, 2013.

Oracle Corporation. Java streams. java.util.stream (Java Platform SE 8), Jul
2020.

Bradley E Cossette and Robert J Walker. Seeking the ground truth. In Proceed-
ings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering - FSE ’12, FSE "12, page 1, USA, 2012. ACM Press.

Ira W. Cotton and Frank S. Greatorex, Jr. Data structures and techniques
for remote computer graphics. In Proceedings of the December 9-11, 1968, Fall
Joint Computer Conference, Part I, AFIPS '68 (Fall, part I), pages 533-544,
New York, NY, USA, 1968. ACM.

Barthélémy Dagenais and Harold Ossher. Automatically locating framework
extension examples. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering - SIGSOFT "08/FSE-16,
SIGSOFT '08/FSE-16, page 203, New York, New York, USA, 2008. ACM Press.

176

[51]

[52]

[53]

[54]

[56]

[57]

Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive
changes for framework cvolution. Proceedings of the 15th international con-
ference on Software engineering - ICSE "08, 20(4):481, 2008.

Barthelemy Dagenais and Martin P. Robillard. SemDiff: Analysis and rec-
ommendation support for API evolution. In 2009 IEEE 31st International
Conference on Software Engineering, pages 599-602, USA, 2009. IEEE.

Barthélémy Dagenais and Martin P Robillard. Creating and evolving developer
documentation. In Proceedings of the eighteenth ACM SIGSOF'T international
symposium on Foundations of software engineering - FSE ’10, FSE 10, page
127, New York, New York, USA, 2010. ACM Press.

Barthelemy Dagenais and Martin P. Robillard. Recovering traceability links
between an api and its learning resources. 2012 34th International Conference
on Software Engineering (ICSE), 2012.

Marco D’Ambros, Michele Lanza, Mircea Lungu, and Romain Robbes. Promises
and perils of porting software visualization tools to the web. In 2009 11th [EEE
International Symposium on Web Systems FEvolution, pages 109-118, USA, sep
2009. IEEE.

Fernando Lépez de la Mora and Sarah Nadi. Which library should i use?
a metric-based comparison of software libraries. In Proceedings of the 40th
International Conference on Software Engineering: New Ideas and Emerging
Results, ICSE-NIER, 18, page 3740, New York, NY, USA, 2018. Association
for Computing Machinery.

Coen De Roover, Ralf Lammel, and Ekaterina Pek. Multi-dimensional ex-
ploration of API usage. In 2013 21st International Conference on Program
Comprehension (ICPC), pages 152-161, USA, may 2013. IEEE.

Uri Dckel and James D. Herbsleb. Improving api documentation usability with
knowledge pushing. In Proceedings of the 31st International Conference on
Software Engineering, page 320-330, USA, 2009. IEEE Computer Society.

177

[59]

[60]

[61]

[63]

[64]

[65]

[66]

Uri Dekel and James D. Herbsleb. Reading the documentation of invoked API
functions in program comprchension. In 2009 IEEFE 17th International Confer-
ence on Program Comprehension, pages 168177, USA, may 2009. IEEE.

Java design patterns.com. Java pipeline pattern. java-design-patterns.com,
2019.

Jens Dietrich, Kamil Jezek, and Premek Brada. Broken promises: An empirical
study into evolution problems in Java programs caused by library upgrades. In
2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), volume 1, pages 64—
73, USA, feb 2014. IEEE.

Danny Dig. Using refactorings to automatically update component-based ap-
plications. In Companion to the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications - OOPSLA
‘05, page 234, New York, New York, USA, 2005. ACM Press.

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Auto-
mated Detection of Refactorings in Evolving Components. In Proceedings of
the 20th FEuropean Conference on Object-Oriented Programming, pages 404—
428. Springer-Verlag, Berlin, Heidelberg, 2006.

Danny Dig and Ralph Johnson. The role of refactorings in API evolution. 21st
IEEE International Conference on Software Maintenance (ICSM’05), 2005:389—
398, 2005.

Danny Dig and Ralph Johnson. Automated upgrading of component-based
applications. In Companion to the 21st ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications - OOPSLA 06, vol-
ume 2006, page 675, New York, New York, USA, 2006. ACN Press.

Danny Dig and Ralph Johnson. How do APIs evolve? A story of refactor-
ing. Journal of Software Maintenance and FEvolution: Research and Practice,
18(2):83-107, mar 2006.

Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. Refactoring-

aware configuration management for object-oriented programs. In Proceedings

178

[68]

[69]

[74]

[75]

of the 29th International Conference on Software Engineering, ICSE "07, page
427-436, USA, 2007. IEEE Computer Socicty.

Ekwa Duala-Ekoko and Martin P. Robillard. Using Structure-Based Recom-
mendations to Facilitate Discoverability in APIs. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), volume 6813 LNCS, pages 79-104, USA, 2011.
Springer.

Ekwa Duala-Ekoko and Martin P Robillard. Asking and answering questions
about unfamiliar APIs: An exploratory study. In 2012 #4th International Con-
ference on Software Engineering (ICSE), pages 266-276, USA, jun 2012. IEEE.

Anna Maria Eilertsen and Anya Helene Bagge. Exploring API. In Proceedings
of the 2nd International Workshop on API Usage and FEvolution - WAPI ’18,
pages 10-13, New York, New York, USA, 2018. ACM Press.

Daniel S. Eisenberg, Jeffrey Stylos, and Brad A. Myers. Apatite. In Proceedings
of the 28th international conference on Human factors in computing systems -
CHI 10, page 1331, New York, New York, USA, 2010. ACM Press.

Renée Elio, Eleni Stroulia, and Warren Blanchet. Using Interaction Models
to Detect and Resolve Inconsistencies in Evolving Service Compositions. Web
Intelli. and Agent Sys., 7(2):139-160, apr 2009.

Brian Ellis, Jeffrey Stylos, and Brad Mycrs. The factory pattern in api design:
A usability evaluation. In Proceedings of the 29th International Conference on
Software Engineering, page 302-312, USA, 2007. IEEE Computer Society.

Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. How
do APT documentation and static typing affect APT usability? In Proceedings of

the 36th International Conference on Software Engineering - ICSE 2014, pages
632-642, New York, New York, USA, 2014. ACM Press.

M.D. Ernst, Jake Cockrell, W.G. Griswold, and David Notkin. Dynamically dis-
covering likely program invariants to support program evolution. I[FEE Trans-
actions on Software Engineering, 27(2):99-123, 2001.

179

[76]

[78]

[82]

[83]

Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web API growing
pains: Storics from client developers and their code. In 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse

Engineering (CSMR-WCRE), pages 84-93, USA, feb 2014. IEEE.

Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web api fragility:
How robust is your mobile application? In Proceedings of the Second ACM
International Conference on Mobile Software Engineering and Systems, NO-
BILESoft ’15, page 12-21, USA, 2015. IEEE Press.

Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web API growing
pains: Loosely coupled yet strongly tied. Journal of Systems and Software,
100:27-43, feb 2015.

F-Droid. F-droid, a frcc and open source android app repository. F-Droid -

Free and Open Source Android App Repository, 2017.
FasterXML. Fasterxml/jackson. Jackson, Jul 2019.

Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma.
Efficient static checking of library updates. In Proceedings of the 2018 26th ACM
Joint Meeting on Furopean Software Engineering Conference and Symposium
on the Foundations of Software Engineering - ESEC/FSE 2018, pages 791-796,
New York, New York, USA, 2018. ACM Press.

The Apache Software Foundation. Apache maven, Jul 2019.

The Apache Software Foundation. Logdj. The Apache Software Foundation,
Jul 2019.

Jaroslav Fowkes and Charles Sutton. Parameter-free probabilistic api mining
across github. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, page 254265,
New York, NY, USA, 2016. Association for Computing Machinery.

Tammo Freese. Inline Method Considered Helpful: An Approach to Interface
Evolution. In Proceedings of the 4th International Conference on Extreme Pro-
gramming and Agile Processes in Software Engineering, XP'03, pages 271-278.
Springer-Verlag, Berlin, Heidelberg, 2003.

180

[36]

[87]

[38]

[90]

[91]

[92]

93]

Tammo Freese. Refactoring-aware version control. In Proceeding of the 28th
international conference on Software engineering - ICSE “06, volume 2006, page

953, New York, New York, USA, 2006. ACM Press.

Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. On using
machine learning to identify knowledge in API reference documentation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing - ESEC/FSE 2019, pages 109-119, New York, New York, USA, 2019. ACM

Press.

Jun Gao, Pingfan Kong, Li Li, Tegawende F. Bissyande, and Jacques Klein.
Negative Results on Mining Crypto-API Usage Rules in Android Apps. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pages 388-398, USA, may 2019. IEEE.

Simos Gerasimou, Maria Kechagia, Dimitris Kolovos, Richard Paige, and Geor-
gios Gousios. On software modernisation due to library obsolescence. In Pro-
ceedings of the 2nd International Workshop on API Usage and FEvolution -
WAPI 18, pages 6-9, New York, New York, USA, 2018. ACM Press.

Bashar Gharaibeh, Tien N. Nguyen, and J. Morris Chang. Coping with API
Evolution for Running, Mission-Critical Applications Using Virtual Execution
Environment. In Seventh International Conference on Quality Software (QSIC
2007), pages 171-180, USA, 2007. IEEE.

Elena I, Glassman, Tianyi Zhang, Bjorn Hartmann, and Miryung Kim. Visual-
izing API Usage Examples at Scale. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems - CHI ’18, pages 1-12, USA, 2018.
ACN Press.

M.W. Godfrey and Lijie Zou. Using origin analysis to detect merging and
splitting of source code entities. [EEE Transactions on Software Engineering,
31(2):166—-181, feb 2005.

Google. Google samples, android developers. Android Developers, 2019.

181

[94]

[95]

[96]

[99]

[100]

[101]

Google. Guava, google core libraries for java. GitHub.com/Google/Guava, Jul
2019.

William Granli, John Burchell, Imed Hammouda, and Eric Knauss. The driving
forces of API evolution. In Proceedings of the 14th International Workshop on
Principles of Software Evolution - IWPSFE 2015, volume 30-Aug-201, pages 28—
37, New York, New York, USA, 2015. ACM Press.

Giovanni Grano, Andrea Di Sorbo, Francesco Mercaldo, Corrado A. Visaggio,
Gerardo Canfora, and Sebastiano Panichella. Android apps and user feedback:
a dataset for software evolution and quality improvement. In Proceedings of
the 2nd ACM SIGSOFT International Workshop on App Market Analytics -
WAMA 2017, pages 8-11, New York, New York, USA, 2017. ACM Press.

Andrew F. Hayes and Klaus Krippendorff. Answering the call for a standard
reliability measure for coding data. Communication Methods and Measures,
1:77-89, 2007.

Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling
Xue. Understanding and detecting evolution-induced compatibility issues in
Android apps. In Proceedings of the 33rd ACM/IEEFE International Conference
on Automated Software Engineering - ASE 2018, pages 167-177, New York,
New York, USA, 2018. ACM Press.

Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. JSFlow.
In Proceedings of the 29th Annual ACM Symposium on Applied Computing -
SAC 14, pages 1663-1671, New York, New York, USA, 2014. ACM Press.

J. Henkel and A. Diwan. Catchup! capturing and replaying refactorings to sup-
port API evolution. In Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005., pages 274-283, USA, 2005. IEEE.

Robert Heumiiller, Sebastian Niclebock, and Frank Ortmeier. Who plays with
whom? ... and how? mining API interaction patterns from source code. In Pro-
ceedings of the 7th International Workshop on Software Mining - SoftwareMi-
ning 2018, pages 8-11, New York, New York, USA, 2018. ACM Press.

182

[102]

[103]

[104]

[105)

[106]

[107]

108

109]

R. Holmes and G. C. Murphy. Using structural context to recommend source
codc examples. In Proceedings. 27th International Conference on Software Fn-
gineering, 2005. ICSE 2005., pages 117-125, 2005.

Reid Holmes and Robert J. Walker. A newbie’'s guide to eclipse APIs. In
Proceedings of the 2008 international workshop on Mining software repositories
- MSR 08, page 149, New York, New York, USA, 2008. ACM Press.

André Hora, Nicolas Anquetil, Anne Etien, Stéphane Ducasse, and Marco Thilio
Valente. Automatic detection of system-specific conventions unknown to devel-
opers. Journal of Systems and Software, 109:192-204, nov 2015.

Andre Hora, Anne Etien, Nicolas Anquetil, Stephane Ducasse, and Marco Tulio
Valente. APIEvolutionMiner: Keeping API evolution under control. In 2014
Software Evolution Week - IEEE Conference on Software Maintenance, Reengi-
neering, and Reverse Engineering (CSMR-WCRE), pages 420-424, USA, feb
2014. TEEE.

Andre Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stephane Ducasse,
and Marco Tulio Valente. How do developers react to API evolution? The
Pharo ecosystem case. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), volume 3, pages 251-260, USA | sep 2015.
IEEE.

André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne
Etien, and Stéphane Ducasse. How do developers react to API evolution? A

large-scale empirical study. Software Quality Journal, 26(1):161-191, mar 2018.

Andre Hora and Marco Tulio Valente. Apiwave: Keeping track of API pop-
ularity and migration. In 2015 IEEE International Conference on Software
Maintenance and Fvolution (ICSME), pages 321-323, USA, sep 2015. IEEE.

André Hora, Marco Tulio Valente, Romain Robbes, and Nicolas Anquetil. When
should internal interfaces be promoted to public? In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering - FSE 2016, volume 13-18-Nove, pages 278-289, New York, New York,
USA, 2016. ACM Press.

183

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

Daqing Hou and Lin Li. Obstacles in Using Frameworks and APIs: An Ex-
ploratory Study of Programmers’ Newsgroup Discussions. In 2011 IEEE 19th
International Conference on Program Comprehension, pages 91-100, USA, jun
2011. IEEE.

Daging Hou and Xiaojia Yao. Exploring the Intent behind API Evolution: A
Case Study. In 2011 18th Working Conference on Reverse Engineering, pages
131-140, USA, oct 2011. IEEE.

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. API
method recommendation without worrying about the task-API knowledge gap.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering - ASE 2018, pages 293-304, New York, New York, USA,
2018. ACM Press.

R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia. A survey on adaptive
random testing. IEEE Transactions on Software Engineering, 1(1):1-1, 2019.

Shiyou Huang, Jianmei Guo, Sanhong Li, Xiang Li, Yumin Qi, Kingsum Chow,
and Jeff Huang. SafeCheck: Safety Enhancement of Java Unsafe API. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE),
volume 2019-May. pages 889-899, USA | may 2019. IEEE.

Jan Hybl and Zdenék Tronicek. On testing the source compatibility in Java.
In Proceedings of the 2013 companion publication for conference on Systems,
programming, € applications: software for humanity - SPLASH ’13, pages 87—
88, New York, New York, USA, 2013. ACM Press.

Andrew J. Ko, B.A. Myers, and H.H. Aung. Six Learning Barriers in End-
User Programming Systems. In 2004 IEEE Symposium on Visual Languages -
Human Centric Computing, pages 199-206, USA, 2004. TEEE.

JavaParser. Javaparser. JavaParser.org, Jul 2019.

J. Jiang, Johannes Koskinen, Anna Ruokonen, and T. Systa. Constructing
Usage Scenarios for API Redocumentation. In 15th IEEFE International Con-
ference on Program Comprehension (ICPC '07), pages 259-264, USA, jun 2007.
IEEE.

184

[119]

[120]

[121]

[124]

[125]

[126]

[127]

Z. M. Jiang and A. E. Hassan. A survey on load testing of large-scale software
systems. IEEE Transactions on Software Engineering, 41(11):1091-1118, 2015.

Johnson. Substring matching for clone detection and change tracking. In Pro-
ceedings International Conference on Software Maintenance ICSM-94, pages
120-126, USA, 1994. IEEE Comput. Soc. Press.

Sukrit Kalra, Ayush Goel, Dhriti Khanna, Mohan Dhawan, Subodh Sharma,
and Rahul Purandare. POLLUX: safely upgrading dependent application li-
braries. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering - FSE 2016, volume 13-18-Nove,
pages 290-300, New York, New York, USA, 2016. ACM Press.

Puneet Kapur, Brad Cossette, and Robert J Walker. Refactoring references for
library migration. ACM SIGPLAN Notices, 45(10):726, oct 2010.

R H Katz. The post-PC era. In Proceedings of the 4th international workshop
on Discrete algorithms and methods for mobile computing and communications
- DIALM °00, page 64, New York, New York, USA, 2000. ACM Press.

David Kawrykow and Martin P. Robillard. Improving API Usage through Auto-
matic Detection of Redundant Code. In 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, pages 111-122, USA, nov 20009.
IEEE.

Jungil Kim and Eunjoo Lee. The effect of IMPORT change in software change
history. In Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting - SAC 14, pages 1753-1754, New York, New York, USA, 2014. ACM

Press.

Miryung Kim, Dongxiang Cai, and Sunghun Kim. An empirical investigation
into the role of api-level refactorings during software evolution. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE 11, page
151-160, New York, NY, USA, 2011. Association for Computing Machinery.

Miryung Kim and David Notkin. Discovering and representing systematic code
changes. In 2009 IEEFE 31st International Conference on Software Engineering,
pages 309-319, USA, 2009. IEEE.

185

[128]

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

Miryung Kim, David Notkin, and Dan Grossman. Automatic Inference of
Structural Changes for Matching across Program Versions. In 29th Interna-
tional Conference on Software Engineering (ICSE’07), ICSE 07, pages 333-343,
Washington, DC, USA, may 2007. IEEE.

B. Kitchenham and S Charters. Guidelines for performing systematic litera-
ture reviews in software engineering, Keele University, Keele, U.K., Tech. Rep.
EBSE-2007-01, 2007.

Deokyoon Ko, Kyeongwook Ma, Sooyong Park, Suntae Kim, Dongsun Kim,
and Yves Le Traon. API Document Quality for Resolving Deprecated APIs.
In 21st Asia-Pacific Software Engineering Conference, volume 2, pages 27-30,
USA, dec 2014. IEEE.

Klaus Krippendorff. Computing krippendorffs alpha reliability. University of

Pennsylvania Scholarly Commons, Jan 2011.

Klaus H. Krippendorft. Content Analysis - 3rd Edition: an Introduction to Its
Methodology. SAGE Publications, Inc, 2013.

Raula Gaikovina Kula, Ali Ouni, Daniel M. German, and Katsuro Inoue. An
empirical study on the impact of refactoring activities on evolving client-used
APIs. Information and Software Technology, 93(July 2016):186-199, jan 2018.

Hobum Kwon, Juwon Ahn, Sunggyu Choi, Jakub Siewierski, Piotr Kosko, and
Piotr Szydclko. An Expcricnee Report of the APT Evolution and Maintenance
for Software Platforms. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 587590, USA, sep 2018. IEEE.

Maxime Lamothe and Weiyi Shang. Exploring the use of automated API mi-
grating techniques in practice. Proceedings of the 15th International Conference
on Mining Software Repositories - MSR 18, 1:503-514, 2018.

Maxime Lamothe and Weiyi Shang. When apis are intentionally bypassed: An
exploratory study of api workarounds. In Proceedings of the ACM/IEEE /2nd
International Conference on Software Engineering, ICSE 20, page 912-924,
New York, NY, USA, 2020. Association for Computing Machinery.

186

137]

[138]

[139]

[140]

[141]

[142]

143]

[144]

[145]

Craig Larman. Protected variation: the importance of being closed. IEEFE
Software, 18(3):89-91, 2001.

Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Rosu, and Darko
Marinov. How good are the specs? a study of the bug-finding effectiveness
of existing java api specifications. In Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2016, page
602-613, New York, NY, USA, 2016. Association for Computing Machinery.

M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceed-
ings of the IEEE, 68(9):1060-1076, 1980.

M. M. Lehman. Laws of software evolution revisited. In Proceedings of the
5th Furopean Workshop on Software Process Technology, EWSPT ’96, page
108-124, Berlin, Heidelberg, 1996. Springer-Verlag.

Grace A. Lewis and Dennis B. Smith. Service-Oriented Architecture and its im-
plications for software maintenance and evolution. In 2008 Frontiers of Software
Maintenance, pages 1-10, USA, sep 2008. IEEE.

H. Li, S. Li, J. Sun, Z. Xing, X. Peng, M. Liu, and X. Zhao. Improving api
caveats accessibility by mining api caveats knowledge graph. In 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME),
pages 183-193, 2018.

Jing Li, Aixin Sun, Zhenchang Xing, and Lei Han. APT Caveat Explorer — Sur-
facing Negative Usages from Practice. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval - SIGIR 18,
pages 1293-1296, New York, New York, USA. 2018. ACM Press.

Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. How Does Web Service
API Evolution Affect Clients? 2018 IEEE 20th International Conference on
Web Services, 1:300-307, jun 2013.

Li Li and Wu Chou. Designing Large Scale REST APIs Based on REST Chart.
In 2015 IEEE International Conference on Web Services, ICWS 15, pages 631—
638, Washington, DC, USA, jun 2015. IEEE.

187

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein.
Characterising deprecated Android APIs. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories - MSR 18, pages 254264,
New York, New York, USA, 2018. ACM Press.

Mario Linares-Vasquez. Supporting evolution and maintenance of Android
apps. In Companion Proceedings of the 36th International Conference on Soft-
ware Engineering - ICSE Companion 201/, pages 714-717, New York, New
York, USA, 2014. ACMI Press.

Mario Linares-Vasquez, Gabriele Bavota, Carlos Bernal-Cardenas, Massimil-
iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. API change and fault
proneness: a threat to the success of Android apps. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013,
page 477, New York, New York, USA, 2013. ACM Press.

Mario Linares-Vasquez, Gabriele Bavota, Carlos Bernal-Cardenas, Rocco
Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining energy-greedy
API usage patterns in Android apps: an empirical study. Proceedings of the
11th Working Conference on Mining Software Repositories - MSR 2014, 1:2-11,
2014.

Mario Linares-Vasquez, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Denys Poshyvanyk. How do API changes trigger stack overflow
discussions? a study on the Android SDK. In Proceedings of the 22nd Interna-
tional Conference on Program Comprehension - ICPC 2014, pages 83-94, New
York, New York, USA, 2014. ACM Press.

Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. Generating query-specific class APl summaries. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing - ESEC/FSFE 2019, ESEC/FSE 2019, pages 120130, New York, New York,
USA, 2019. ACM Press.

Xiaoyu Liu, LiGuo Huang, and Vincent Ng. Effective API recommendation
without historical software repositories. In Proceedings of the 33rd ACM/IEEE

188

[153]

[154]

[155)

156

[157]

158

[159]

[160]

International Conference on Automated Software Engineering - ASE 2018,
pages 282-292, New York, New York, USA, 2018. ACM Press.

David Lo, Nachiappan Nagappan, and Thomas Zimmermann. How practition-
ers perceive the relevance of software engineering research. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 415-425, New York, NY, USA, 2015. ACM.

Homan Ma, Robert Amor, and Ewan Tempero. Indexing the Java API Using
Source Code. In 19th Australian Conference on Software Engineering (aswec
2008), pages 451-460, USA, mar 2008. IEEE.

Walid Maalej and Martin P. Robillard. Patterns of Knowledge in API Reference
Documentation. IEEE Transactions on Software Engineering, 39(9):1264—1282,
sep 2013.

Andrew Macvean, Martin Maly, and John Daughtry. Api design reviews at
scale. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’16, page 849-858, New York, NY,
USA, 2016. Association for Computing Machinery.

Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating Web
APIs on the World Wide Web. In 2010 Eighth IEEE European Conference on
Web Services, pages 107-114, USA, dec 2010. IEEE.

David Mandeclin, Lin Xu, Rastislav Bodik, and Doug Kimclman. Jungloid
mining: Helping to navigate the api jungle. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 05, page 4861, New York, NY, USA, 2005. Association for Computing

Machinery.

Konstantinos Manikas. Revisiting software ecosystems Research: A longitudinal
literature study. Journal of Systems and Software, 117:84-103, jul 2016.

Robert Cecil. Martin. Clean code. Apogeo, 2018.

189

[161]

[162]

[163]

[164]

[165]

[166]

[167]

168

Anderson S. Matos, Joao B. Ferreira Filho, and Lincoln S. Rocha. Splitting
APIs: An Exploratory Study of Softwarc Unbundling. In IEEE/ACM 16th In-

ternational Conference on Mining Software Repositories, pages 360-370, USA,
may 2019. IEEE.

Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An Empirical Study of API
Stability and Adoption in the Android Ecosystem. In 2013 IEEE International
Conference on Software Maintenance, pages 70-79, USA, sep 2013. IEEE.

Collin McNMillan, Denys Poshyvanyk, and Mark Grechanik. Recommending
source code examples via api call usages and documentation. In Proceedings
of the 2nd International Workshop on Recommendation Systems for Software
Engineering, RSSE 10, page 21-25, New York, NY, USA, 2010. Association for
Computing Machinery.

Na Meng, Miryung Kim, and Kathryn S. McKinley. Sydit: Creating and ap-
plying a program transformation from an example. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE ’11, pages 440-443, New York, NY, USA,
2011. ACM.

Na Meng, Miryung Kim, and Kathryn S. McKinley. Lase: Locating and ap-
plying systematic edits by learning from examples. In Proceedings of the 2013
International Conference on Software Engineering, page 502-511, USA, 2013.
IEEE Press.

Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. A history-based match-
ing approach to identification of framework evolution. In 2012 84th Interna-
tronal Conference on Software Engineering (ICSE), pages 353-363, USA, jun
2012. IEEE.

Kim Mens and Angela Lozano. Source Code-Based Recommendation Systems.

In Recommendation Systems in Software Engineering, pages 93-130. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

Tom Mens. A state-of-the-art survey on software merging. IEEE Transactions
on Software Engineering, 28(5):449-462, may 2002.

190

169

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

Gebremariam Mesfin, Tor-Morten Gronli, Dida Midekso, and Gheorghita Gh-
inca. Towards cnd-user development of REST client applications on smart-
phones. Computer Standards € Interfaces, 44:205-219, feb 2016.

A. Michail. Data mining library reuse patterns in user-selected applications.
In 14th IEEE International Conference on Automated Software Engineering,
pages 24-33, USA, 2003. IEEE Comput. Soc.

Microsoft. interface c# reference 2019. Docs.microsoft.com, 2019.

Yana Momchilova Mileva, Valentin Dallmeier, and Andreas Zeller. Mining API
Popularity. In Testing — Practice and Research Techniques. TAIC PART 2010,
pages 173-180. Springer, Berlin, Heidelberg, 2010.

Yana Momchilova Mileva, Andrzej Wasylkowski, and Andreas Zeller. Mining
Evolution of Object Usage. In Proceedings of the 25th Furopean Conference on
Object-Oriented Programming, pages 105-129. Springer-Verlag, Berlin, Heidel-
berg, 2011.

Joao Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio Va-
lente. Documenting APIs with examples: Lessons learned with the APIMiner
platform. In 20th Working Conference on Reverse Engineering, pages 401-408,
USA, oct 2013. IEEE.

Brandon Morel and Perry Alexander. SPARTACAS: automating component
reusc and adaptation. IEEFE Transactions on Software Engineering, 30(9):587—
600, sep 2004.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. How Can I Use This Method? 1In 2015 IEEE/ACM 37th
IEEFE International Conference on Software Engineering, volume 1, pages 830—
890, USA, may 2015. IEEE.

Laura Moreno and Andrian Marcus. Automatic software summarization: the
state of the art. 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), 2017.

Dan Morrill. Announcing the android 1.0 sdk, release 1, Jan 1970.

191

179]

[180]

[181]

[182]

[183]

[184]

[185)

Eduardo Mosqueira-Rey, David Alonso-Rios, Vicente Moret-Bonillo, Isaac
Fernandez-Varcla, and Dicgo Alvarcz-Estévez. A systematic approach to API
usability: Taxonomy-derived criteria and a case study. Information and Soft-
ware Technology, 97(December 2017):46-63, may 2018.

Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. Experience paper: a
study on behavioral backward incompatibilities of Java software libraries. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis - ISSTA 2017, pages 215-225, New York, New York, USA,
2017. ACM Press.

L. Murphy, M. B. Kery, O. Alliyu, A. Macvean, and B. A. Myers. Api design-
ers in the field: Design practices and challenges for creating usable apis. In
2018 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 249-258, 2018.

Emerson NMurphy-Hill, Caitlin Sadowski, Andrew Head, John Daughtry, An-
drew Macvean, Ciera Jaspan, and Collin Winter. Discovering API usability
problems at scale. In Proceedings of the 2nd International Workshop on API
Usage and Evolution - WAPI 18, pages 14-17, New York, New York, USA,
2018. ACM Press.

Brad A. Myers. Human-Centered Methods for Improving API Usability. In 2017
IEEE/ACM 1st International Workshop on API Usage and Evolution (WAPI),
volume 49, pages 2-2, USA, may 2017. IEEE.

Varvana Myllarniemi, Sari Kujala, Mikko Raatikainen, and Piia Sevonn. Devel-
opment as a journey: factors supporting the adoption and use of software frame-
works. Journal of Software Engineering Research and Development, 6(1):6, dec
2018.

D. Nam, A. Horvath, A. Macvean, B. Myers, and B. Vasilescu. Marble: Mining
for boilerplate code to identify api usability problems. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages
615627, 2019.

192

[186]

[187]

[188]

[189]

[190]

[191]

[192]

Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily
Mast, Eli Rademacher, Tien N. Nguyen, and Danny Dig. API code recommen-
dation using statistical learning from fine-grained changes. In Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 511-522, USA, 2016. ACM Press.

Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N.
Nguyen. Statistical learning approach for mining APT usage mappings for code
migration. In Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering - ASE 14, pages 457-468, New York, New
York, USA, 2014. ACM Press.

Anh Tuan Nguyen, Peter C. Righy, Thanh Van Nguyen, Mark Karanfil, and
Tien N. Nguyen. Statistical Translation of English Texts to API Code Tem-
plates. In 2017 IEEE/ACM 89th International Conference on Software Engi-
neering Companion (ICSE-C), pages 331-333, USA, may 2017. IEEE.

Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. Mining
preconditions of APIs in large-scale code corpus. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering - FSE 2014, pages 166—177, New York, New York, USA, 2014. ACM

Press.

Hoan Anh Nguyen, Tien N. Nguyen, Hridesh Rajan, and Robert Dyer. Towards
combining usage mining and implementation analysis to infer API precondi-
tions. In Proceedings of the 1st ACM SIGSOFT International Workshop on
Automated Specification Inference - WASPI 2018, pages 15-16, New York, New
York, USA, 2018. ACM Press.

Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Anh Tuan Nguyen,
Miryung Kim, and Tien N. Nguyen. A graph-based approach to API usage
adaptation. ACM SIGPLAN Notices, 45(10):302, oct 2010.

Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas
Degueule, and Massimiliano Di Penta. FOCUS: A Recommender System for
Mining API Function Calls and Usage Patterns. In 2019 IEEE/ACM /1st

193

193]

[194]

[195]

[196]

197]

198

199

International Conference on Software Engineering (ICSE), pages 1050-1060,
USA, may 2019. TEEE.

Thanh Nguyen, Peter C. Righy, Anh Tuan Nguyen, Mark Karanfil, and Tien N.
Nguyen. T2APT: synthesizing API code usage templates from English texts with
statistical translation. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 1013-1017, USA,
2016. ACM Press.

Thanh Nguyen, Ngoc Tran, Hung Phan, Trong Nguyen, Linh Truong, Anh Tuan
Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. Complementing global and
local contexts in representing API descriptions to improve API retrieval tasks.
In Proceedings of the 26th ACM Joint Meeting on Furopean Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering -
ESEC/FSE, pages 551-562, USA, 2018. ACM Press.

Thanh V. Nguyen and Tien N. Nguyen. Inferring API elements relevant to an
english query. In Proceedings of the 40th International Conference on Software
Engineering Companion Proceeedings - ICSE 18, volume Part F1373, pages
167-168, New York, New York, USA, 2018. ACM Press.

Tien N. Nguyen. Code migration with statistical machine translation. In Pro-
ceedings of the 5th International Workshop on Software Mining - SoftwareMi-
ning 2016, pages 2-2, New York, New York, USA, 2016. ACM Press.

T.N. Nguyen, E.V. Munson, and C. Thao. Managing the evolution of Web-
based applications with WebSCM. In 21st IEFE International Conference on
Software Maintenance (ICSM’05), pages 577-586, USA, 2005. TEEE.

Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. Mapping API
elements for code migration with vector representations. In Proceedings of the
38th International Conference on Software Engineering Companion - ICSE 16,
ICSE 16, pages 756—758, New York, New York, USA, 2016. ACM Press.

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N.
Nguyen. Exploring API Embedding for API Usages and Applications. In 2017

194

[200]

201]

202]

203

204]

[206]

[207]

208

IEEE/ACM 39th International Conference on Software Engineering (ICSE),
pages 438-449, USA, may 2017. IEEE.

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi,
and Tien N. Nguyen. Graph-based mining of multiple object usage patterns.
In Proceedings of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering, ESEC/FSE "09, page 383-392, New York, NY, USA, 2009.

Association for Computing Machinery.

Marius Nita and David Notkin. Using twinning to adapt programs to alternative
APIs. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - ICSE '10, volume 1, page 205, New York, New York,
USA, 2010. ACM Press.

Team NLTK. Natural language toolkit. NLTK.org, 2019.

Oracle. what is an interface? (java™ learning the java language object-oriented

programming concepts, 2019.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053-1058, December 1972.

Chris Parnin and Christoph Treude. Measuring API documentation on the
web. In Proceeding of the 2nd international workshop on Web 2.0 for software

engineering - Web2SE 11, pages 25-30, New York, New York, USA, 2011. ACM

Press.

Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey.
Crowd documentation: Exploring the coverage and the dynamics of API dis-

cussions on Stack Overflow. Georgia Tech Technical Report, 1:1-11, 2012.

K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines for conducting system-
atic mapping studies in software engineering: An update. Inf. Softw. Technol.,
64(C):1-18, August 2015.

Pujan Petersen, Stefan Hanenberg, and Romain Robbes. An empirical compari-

son of static and dynamic type systems on API usage in the presence of an IDE:

195

[209]

[210]

[211]

[212]

213]

214]

[215]

Java vs. groovy with eclipse. In Proceedings of the 22nd International Confer-
ence on Program Comprehension - ICPC' 2014, pages 212-222, New York, New
York, USA, 2014. ACM Press.

H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen. Statistical
migration of api usages. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pages 47-50, May 2017.

Hung Phan, Hoan Anh Nguyen, Ngoc M Tran, Linh H Truong, Anh Tuan
Nguyen, and Tien N. Nguyen. Statistical learning of API fully qualified names
in code snippets of online forums. In Proceedings of the 40th International

Conference on Software Engineering - ICSE ’18, volume 11, pages 632642,
New York, New York, USA, 2018. ACM Press.

Marco Piccioni, Carlo A. Furia, and Bertrand Meyer. An Empirical Study of
API Usability. In 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 5-14, USA, oct 2013. IEEE.

David M Pletcher and Daqing Hou. BCC: Enhancing code completion for better
APT usability. 2009 IEEE International Conference on Software Maintenance,
1:393-394, sep 2009.

Shankar R Ponnekanti and Armando Fox. Interoperability Among Indepen-
dently Evolving Web Services. In 5th ACM/IFIP/USENIX International Con-
ference on Middleware, MIDDLEWARE 200/, volume LNCS 3231, pages 331—
351. Springer-Verlag, Berlin, Heidelberg, 2004.

Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Marcio
Ribeiro. Java reflection API: revealing the dark side of the mirror. In Proceed-
ings of the 2019 27th ACM Joint Meeting on Furopean Software Engineering
Conference and Symposium on the Foundations of Software Engineering - ES-
EC/FSE 2019, pages 636-646, New York, New York, USA, 2019. ACM Press.

Ivan Porres and Irum Rauf. Modeling behavioral RESTful web service interfaces
in UML. In Proceedings of the 2011 ACM Symposium on Applied Computing -
SAC ’11, SAC 11, page 1598, New York, New York, USA, 2011. ACM Press.

196

[216]

[217)

[218]

[219]

[220]

[221]

Aniket Potdar and Emad Shihab. An exploratory study on self-admitted techni-
cal debt. In Proceedings of the 30th IEEFE International Conference on Software
Maintenance and Evolution (ICSME’14), pages 91-100, 2014.

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. Stati-
cally checking API protocol conformance with mined multi-object specifications.
In 2012 34th International Conference on Software Engineering (ICSE), pages
925935, USA, jun 2012. IEEE.

Lutz Prechelt and D.J. Hutzel. The co-evolution of a hype and a software ar-
chitecture: experience of component-producing large-scale EJB early adopters.
In 25th International Conference on Software Engineering, 2003. Proceedings.,
volume 0, pages 553-556, USA, 2003. IEEE.

Qi Xi, Tianyang Zhou, Qingxian Wang, and Yongjun Zeng. An API deob-
fuscation method combining dynamic and static techniques. Proceedings 2013
International Conference on Mechatronic Sciences, Electric Engineering and
Computer (MEC), 1:2133-2138, dec 2013.

Steven Raemaekers, Arie van Deursen, and Joost Visser. Nleasuring software
library stability through historical version analysis. In 2012 28th IEEE Inter-
national Conference on Software Maintenance (ICSM), pages 378-387, USA,
sep 2012. IEEE.

Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. RACK: Au-
tomatic API Recommendation Using Crowdsourced Knowledge. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), volume 1, pages 349-359, USA, mar 2016. IEEE.

RedHat. Hibernate ogm. Hibernate.org, Jul 2019.

Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung Kim. Aug-
menting stack overflow with APT usage patterns mined from GitHub. In Pro-
ceedings of the 2018 26th ACM Joint Meeting on Furopean Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages

880-883, USA, 2018. ACM Press.

197

[224]

[225]

[226]

[227]

[228)]

[229]

230]

[231]

[232]

233

Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu,
and Jianling Sun. Api-misusc detection driven by fine-grained api-constraint
knowledge graph. 35th IEEE/ACM International Conference on Automated
Software Engineering, 2020.

Romain Robbes and Michele Lanza. Improving code completion with program
history. Automated Software Engineering, 17(2):181-212, Dec 2010.

Romain Robbes and Mircea Lungu. A study of ripple effects in software ecosys-
tems. In Proceeding of the 33rd international conference on Software engineering
- ICSE ’11, ICSE "11, page 904, New York, New York, USA, 2011. ACM Press.

Romain Robbes, Mircea Lungu, and David Rothlisberger. How do developers
react to API deprecation? In Proceedings of the ACM SIGSOFT 20th Interna-

tional Symposium on the Foundations of Software Engineering, page 1, USA,
2012. ACM.

Martin P Robillard. What Makes APIs Hard to Learn? Answers from Devel-
opers. IEEE Software, 26:27-34, 2009.

Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. Automated API Property Inference Techniques. IEEE Transactions
on Software Engineering, 39(5):613-637, may 2013.

Martin P Robillard and Yam B Chhetri. Recommending reference API docu-
mentation. Empirical Software Engineering, 20(6):1558-1586, dec 2015.

Martin P. Robillard and Robert DeLine. A field study of API learning obstacles.
Empirical Software Engineering, 16(6):703-732, dec 2011.

Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmer-
mann. Recommendation Systems in Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Os-
car Chaparro, Neil Ernst, Marco Aurelio Gerosa, Michael Godfrey, Michele
Lanza, Mario Linares-Vasquez, Gail C. Murphy, Laura Moreno, David Shep-
herd, and Edmund Wong. On-demand Developer Documentation. 2017 IEEE

198

[234]

[235]

[236]

[237]

238

[239)]

[240]

[241]

[242]

International Conference on Software Maintenance and FEvolution (ICSME),
1:479-483, scp 2017.

D Rose, S Stegmaier, G Reina, D Weiskopf, and T Ertl. Non-invasive Adapta-
tion of Black-box User Interfaces. Reproduction, 1:1-1, 2002.

Gordon Rugg and Peter Mcgeorge. The sorting techniques: a tutorial paper on

card sorts, picture sorts and item sorts. FEzpert Systems, 14(2):80-93, 1997.

Thomas Ruhroth and Heike Wehrheim. Refinement-preserving co-evolution.
In Formal Methods and Software Engineering. ICEFEM 2009., pages 620-638.
Springer, Berlin, Heidelberg, 2009.

Chandan R Rupakheti and Daqing Hou. Evaluating forum discussions to inform
the design of an API critic. In 2012 20th IEEE International Conference on
Program Comprehension (ICPC), pages 53—62, USA, jun 2012. IEEE.

Mohamed Aymen Saied, Houari Sahraoui, and Bruno Dufour. An observational
study on API usage constraints and their documentation. 2015 IEEE 22nd
International Conference on Software Analysis, FEvolution, and Reengineering

(SANER), 1:33-42, mar 2015.

Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, Andrea De
Lucia, and Filomena Ferrucci. Do developers update third-party libraries in
mobile apps? In Proceedings of the 26th Conference on Program Comprehension
- ICPC 18, pages 255-265, New York, New York, USA, 2018. ACM Press.

Satista. App stores: number of apps in leading app stores 2016, 2017.

Anand Ashok Sawant, Mauricio Aniche, Arie van Deursen, and Alberto Bac-
chelli. Understanding developers’ needs on deprecation as a language feature.
In Proceedings of the 40th International Conference on Software Engineering -
ICSE 18, volume 11, pages 561-571, New York, New York, USA, 2018. ACM

Press.

Anand Ashok Sawant and Alberto Bacchelli. A Dataset for API Usage. In
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
volume 2015-Augus, pages 506-509, USA, may 2015. IEEE.

199

[243]

244

[245]

[246]

[247]

[248]

249

[250]

[251]

Anand Ashok Sawant and Alberto Bacchelli. fine-GRAPE: fine-grained APi
usage cxtractor — an approach and datasct to investigate APT usage. Empirical
Software Engineering, 22(3):1348-1371, jun 2017.

Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction
to deprecation of clients of 4 + 1 popular Java APIs and the JDK. Empirical
Software Engineering, 23(4):2158-2197, aug 2018.

Simone Scalabrino, Gabriele Bavota, Mario Linares-Vasquez, Michele Lanza,
and Rocco Oliveto. Data-Driven Solutions to Detect API Compatibility Is-
sues in Android: An Empirical Study. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), volume 2019-May, pages
288-298, USA, may 2019. IEEE.

Thorsten Schéfer, Jan Jonas, and Mira Mezini. Mining framework usage changes
from instantiation code. In Proceedings of the 15th international conference on
Software engineering, ICSE, page 471, USA, 2008. ACM Press.

Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. An Empirical Study on Evolu-
tion of API Documentation. In Proceedings of the 14th International Conference
on Fundamental Approaches to Software Engineering: Part of the Joint Furo-

pean Conferences on Theory and Practice of Software, pages 416-431. Springer-
Verlag, Berlin, Heidelberg, 2011.

S M Sohan, Craig Anslow, and Frank Maurer. SpyREST: Automated RESTful
API Documentation Using an HTTP Proxy Server. In 30th IEEE/ACM Inter-

national Conference on Automated Software Engineering, pages 271-276, USA,
nov 2015. IEEE.

S.M. Sohan, Craig Anslow, and Frank Maurer. A Case Study of Web API
Evolution. In 2015 IEEE World Congress on Services, pages 245-252, USA,
jun 2015. IEEE.

Brett Spell. Pro Java 8 programming. Apress, USA, 2015.
Stack exchange data dump : Stack exchange, inc. : Free download, borrow, and

streaming.

200

[252]

253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

Statista. Android statistics and facts. Statista.com, 2017.

Roman Strobl and Zdenék Tronicek. Migration from deprecated API in Java.
In Proceedings of the 2013 companion publication for conference on Systems,
programming, €& applications: software for humanity - SPLASH °13, SPLASH
'13, pages 8586, New York, New York, USA, 2013. ACM Press.

Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and Brad A. Myers. Improving
API documentation using API usage information. In 2009 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages 119-126,
USA, sep 2009. IEEE.

Jeffrey Stylos, Benjamin Graf, Daniela K. Busse, Carsten Ziegler, Ralf Ehret,
and Jan Karstens. A case study of API redesign for improved usability. In 2008

IEEE Symposium on Visual Languages and Human-Centric Computing, pages
189-192, USA, sep 2008. IEEE.

Jeffrey Stylos and B.A. Myers. Mica: A Web-Search Tool for Finding API Com-
ponents and Examples. In Visual Languages and Human-Centric Computing

(VL/HCC"06), pages 195202, USA, 2006. IEEE.

Jeffrey Stylos and Brad A. Myers. The implications of method placement on
api learnability. In Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, SIGSOFT *08/FSE-16, page
105-112, New York, NY, USA, 2008. Association for Computing Machinery.

Jingyi Su, Mohd Arafat, and Robert Dyer. Using consensus to automatically in-
fer post-conditions. In Proceedings of the 40th International Conference on Soft-
ware Engineering Companion Proceeedings. pages 202-203, USA, 2018. ACM

Press.

Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. Live API doc-
umentation. In Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014, pages 643-652, New York, New York, USA, 2014.
ACM Press.

Sunghun Kim, Kai Pan, and E.J. Whitehead. When functions change their

names: automatic detection of origin relationships. In 12th Working Conference

201

[261]

[262]

263

[264]

265

266]

[267]

[268]

on Reverse Engineering (WCRE’05), volume 2005, pages 10 pp.—152, USA,
2005. TEEE.

Philippe Suter and Erik Wittern. Inferring Web APT Descriptions from Usage
Data. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb), pages 7-12, USA, nov 2015. IEEE.

Kunal Taneja, Danny Dig, and Tao Xie. Automated detection of api refactor-
ings in libraries. In Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering - ASE ’07, page 377, New York,
New York, USA, 2007. ACM Press.

the Apache Software Foundation. Apache lucene. lucene.apache.org, 2019.

Suresh Thummalapenta and Tao Xie. SpotWeb: Detecting Framework Hotspots
and Coldspots via Mining Open Source Code on the Web. In 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering,
pages 327-336, USA, sep 2008. IEEE.

Ferdian Thung, Shaowei Wang, David Lo, and Julia Lawall. Automatic rec-
ommendation of API methods from feature requests. 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 1:290—
300, nov 2013.

T. Tourwe and Tom Mens. Automated support for framework-based software.
In International Conference on Software Maintenance, 2003. ICSM 2003. Pro-
ceedings., pages 148-157, USA, 2003. IEEE Comput. Soc.

Christoph Treude and Mauricio Aniche. Where does Google find API docu-
mentation? Proceedings of the 2nd International Workshop on API Usage and
FEvolution - WAPI 18, 2:19-22, 2018.

Christoph Treude and Martin P. Robillard. Augmenting API documentation
with insights from stack overflow. In Proceedings of the 38th International
Conference on Software Engineering - ICSE ’16, volume 14-22-May-, pages
392403, New York, New York, USA, 2016. ACM Press.

202

269

[270]

[271]

272]

[273]

[274]

[275]

[276]

Zdene Troni. API Evolution with RefactoringNG. 1In 2010 Second World
Congress on Software Engineering, volume 2, pages 293-297, USA, dec 2010.
[EEE.

Zdenék Tronicek. RefactoringNG. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing - SAC '12, page 1165, New York, New York,
USA, 2012. ACM Press.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract
method refactoring opportunities for the decomposition of methods. J. Syst.
Softw., 84(10):1757-1782, October 2011.

Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,
and Danny Dig. Accurate and efficient refactoring detection in commit history.

In Proceedings of the 40th International Conference on Software Engineering -
ICSE 18, pages 483-494, New York, New York, USA, 2018. ACM Press.

Romanos Tsouroplis, Michael Petychakis, Iosif Alvertis, Evmorfia Biliri,
Fenareti Lampathaki, and Dimitris Askounis. Internet-Based Enterprise In-
novation Through a Community-Based API Builder to Manage APIs. In Cur-
rent Trends in Web Engineering. I[CWE 2015., pages 65—76. Springer, Berlin,
Heidelberg, 2015.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. There and back
again: Can you compile that snapshot? Journal of Software: Evolution and
Process, 29(4):e1838, 2016.

Gias Uddin, Barthelemy Dagenais, and Martin P. Robillard. Analyzing tempo-
ral API usage patterns. In 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), pages 456459, USA, nov 2011.
[EEE.

Gias Uddin and Martin P. Robillard. How API Documentation Fails. [EEFE
Software, 32(4):68-75, jul 2015.

203

[277]

[278]

[279]

[280]

[281]

[282]

283

[284]

SungyYong Um. The evolution of a digital ecosystem. In Companion to the Pro-
ceedings of the 11th International Symposium on Open Collaboration - OpenSym
'15, pages 1-1, New York, New York, USA, 2015. ACM Press.

Thanh Van Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. Characterizing
API elements in software documentation with vector representation. In Proceed-
ings of the 38th International Conference on Software Engineering Companion
- ICSFE 16, pages 749-751, New York, New York, USA, 2016. ACM Press.

Pradeep K. Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed E.
Hassan. What Do Client Developers Concern When Using Web APIs? An
Empirical Study on Developer Forums and Stack Overflow. In 2016 IEEE
International Conference on Web Services (ICWS), pages 131-138, USA, jun
2016. IEEE.

Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei
Zhang. Mining succinct and high-coverage API usage patterns from source code.
In 2013 10th Working Conference on Mining Software Repositories (MSR),
pages 319-328, USA, may 2013. IEEE.

Shaohua Wang, Iman Keivanloo, and Ying Zou. How Do Developers React to
RESTful API Evolution? 12th International Conference, ICSOC 2014, Paris,
France, November 3-6, 2014. Proceedings, 8831:245-259, 2014.

Shaohua Wang, Nhathai Phan, Yan Wang, and Yong Zhao. Extracting API Tips
from Developer Question and Answer Websites. In IEEE/ACM 16th Interna-
tional Conference on Mining Software Repositories, volume 1, pages 321-332,
USA, may 2019. IEEE.

Wei Wang and Michael W Godfrey. Detecting API usage obstacles: A study
of i0S and Android developer questions. In 2013 10th Working Conference on
Mining Software Repositories (MSR), pages 61-64, USA, may 2013. IEEE.

Lili Wei, Yepang Liu, and Shing-Chi Cheung. PIVOT: Learning API-
Device Correlations to Facilitate Android Compatibility Issue Detection. In
IEEE/ACM j1st International Conference on Software Engineering, pages 878
888, USA, may 2019. IEEE.

204

[285]

[286]

[287]

288

[289)

290]

291]

292]

[293]

Tal Weiss. We analyzed 30,000 github projects - here are the top 100 libraries

in java, js and ruby, Jan 2019.

Peter Weissgerber and Stephan Diehl. Identifying Refactorings from Source-
Code Changes. In 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), pages 231-240, USA, sep 2006. IEEE.

Ming Wen, Yepang Liu, Rongxin Wu, Xuan Xie, Shing-Chi Cheung, and Zhen-
dong Su. Exposing Library APT Misuses Via Mutation Analysis. In IEEE/ACM
41st International Conference on Software Engineering, volume 1, pages 866—
877, USA, may 2019. IEEE.

Erik Wilde. Surfing the API Web. In Companion of the The Web Conference
2018 on The Web Conference 2018 - WWW ’18, pages 797-803, New York,
New York, USA, 2018. ACM Press.

Titus Winters. Non-atomic refactoring and software sustainability. In Proceed-
ings of the 2nd International Workshop on API Usage and FEvolution - WAPI
'18, pages 2-5, New York, New York, USA, 2018. ACM Press.

Erik Wittern. Web APIs - challenges, design points, and research opportunities.
In Proceedings of the 2nd International Workshop on API Usage and Evolution
- WAPI 18, pages 18—18, New York, New York, USA, 2018. ACM Press.

Erik Wittern, Annie T.T. Ying, Yunhui Zheng, Julian Dolby, and Jim A.
Larcdo. Statically Checking Web API Requests in JavaScript. In IEEE/ACM
39th International Conference on Software Engineering, pages 244-254, USA,
may 2017. IEEE.

Erik Wittern, Annie T.T. Ying, Yunhui Zheng, Jim A Laredo, Julian Dolby,
Christopher C Young, and Aleksander A Slominski. Opportunities in Software
Engineering Research for Web API Consumption. 2017 IEEE/ACM 1st Inter-
national Workshop on API Usage and Evolution (WAPI), 1:7-10, may 2017.

Wei Wu. Modeling Framework APT Evolution as a Multi-objective Optimization
Problem. In 2011 IEEE 19th International Conference on Program Comprehen-
sion, pages 262—265, USA, jun 2011. IEEE.

205

[204]

295

296]

[297]

298]

[209]

300]

[301]

302]

Wei Wu, Bram Adams, Yann-Gael Gueheneuc, and Giuliano Antoniol. ACUA:
APIT Change and Usage Auditor. In 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, pages 89-94, USA, sep
2014. IEEE.

Wei Wu, Yann-Gaél Guéhéneuc, Giuliano Antoniol, and Miryung Kim. AURA.
In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, volume 1, page 325, New York, New York, USA, 2010. ACM Press.

Wei Wu, Yann-Gaél Guéhéneuc, Giuliano Antoniol, and Miryung Kim. Aura:
A hybrid approach to identify framework evolution. Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, 2010.

Wei Wu, Adrien Serveaux, Yann-Gaél Guéhéneuc, and Giuliano Antoniol. The
impact of imperfect change rules on framework API evolution identification: an

empirical study. Empirical Software Engineering, 20:1126-1158, 2015.

Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. Histor-
ical and impact analysis of API breaking changes: A large-scale study. In
2017 IEEFE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 138-147, USA, feb 2017. IEEE.

Tao Xie and Jian Pei. MAPOQO. In Proceedings of the 2006 international workshop
on Mining software repositories - MSR 06, page 54, New York, New York, USA|
2006. ACM Press.

Guowei Yang, Jeffrey Jones, Austin Moninger, and Meiru Che. How do Android
operating system updates impact apps? In Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems - MOBILESoft 18,
pages 156-160, New York, New York, USA, 2018. ACM Press.

Deheng Ye, Zhenchang Xing, Chee Yong Foo, Jing Li, and Nachiket Kapre.
Learning to Extract API Mentions from Informal Natural Language Discus-
sions. 2016 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), 1:389-399, oct 2016.

Reishi Yokomori, Harvey Siy, Masami Noro, and Katsuro Inoue. Assessing

the impact of framework changes using component ranking. In 2009 IEFE

206

303

[304]

305]

306]

[307]

308

309]

International Conference on Software Maintenance, pages 189-198, USA, sep
2009. IEEE.

Ping Yu, Fei Yang, Chun Cao, Hao Hu, and Xiaoxing Ma. API Usage Change
Rules Mining based on Fine-grained Call Dependency Analysis. In Proceedings
of the 9th Asia-Pacific Symposium on Internetware - Internetware’17, volume
Part F1309, pages 1-9, New York, New York, USA, 2017. ACM Press.

Weizhao Yuan, Hoang H. Nguyen, Lingxiao Jiang, and Yuting Chen. Li-
braryGuru. In Proceedings of the 40th International Conference on Software
Engineering Companion Proceeedings, pages 364-365, USA, 2018. ACM Press.

Apostolos V. Zarras, Panos Vassiliadis, and loannis Dinos. Keep calm and wait
for the spike! insights on the evolution of amazon services. In Selmin Nurcan,
Pnina Soffer, Marko Bajec, and Johann Eder, editors, CAiSE, volume 9694
of Lecture Notes in Computer Science, pages 444-458. Springer International
Publishing, Cham, 2016.

Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. Investi-
gating the impact of design debt on software quality. In Proceedings of the 2Nd
Workshop on Managing Technical Debt, M'TD 11, pages 1723, New York, NY,
USA, 2011. ACM.

Amir Zghidi, Imed Hammouda, Brahim Hnich, and Eric Knauss. On the Role
of Fitness Dimensions in API Design Assessment - An Empirical Investigation.
In 2017 IEEE/ACM 1st International Workshop on API Usage and Evolution
(WAPI), pages 1922, USA, may 2017. IEEE.

Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin Zhang, Jianjun Zhao, and
Peizhao Ou. Automatic parameter recommendation for practical API usage. In
34th International Conference on Software Engineering, pages 826-836, USA,
jun 2012. IEEE.

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. Are code examples on an online Q&A forum reliable? In
Proceedings of the 40th International Conference on Software Engineering -
ICSE 18, pages 886896, New York, New York, USA, 2018. ACM Press.

207

310]

[311]

312]

313

[314]

315

316]

317]

[318]

Wenhua Zhang, Ziyuan Lin, Gansheng Xiao, Junan Chen, Jinshu Wang, and
Ying Jiang. LanguagcTool proofrcading rules cvolution and update. In Pro-
ceedings of 2018 International Conference on Big Data Technologies - ICBDT
'18, pages 95-100, New York, New York, USA, 2018. ACM Press.

Zhenchang Xing and E Stroulia. Understanding class evolution in object-
oriented software. In Proceedings. 12th IEEE International Workshop on Pro-
gram Comprehension, 2004., pages 34—43, USA, jun 2004. IEEE.

Zhenchang Xing and Eleni Stroulia. API-Evolution Support with Diff-CatchUp.
IEEE Transactions on Software Engineering, 33(12):818-836, dec 2007.

Wuyjie Zheng, Qirun Zhang, and Michael Lyu. Cross-library API recommen-
dation using web search engines. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software en-
gineering - SIGSOFT/FSE ’11, page 480, New York, New York, USA, 2011.
ACN Press.

Hao Zhong and Zhendong Su. Detecting API documentation errors. ACM
SIGPLAN Notices, 48(10):803-816, nov 2013.

Hao Zhong, Suresh Thummalapenta, and Tao Xie. Exposing behavioral dif-
ferences in cross-language api mapping relations. In Vittorio Cortellessa and
Déniel Varré, editors, Fundamental Approaches to Software Engineering, pages
130-145, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Hao Zhong, Suresh Thummalapenta, and Tao Xie. Exposing behavioral differ-
ences in cross-language api mapping relations. In Fundamental Approaches to

Software Engineering, pages 130—-145. Springer, Berlin, Heidelberg, 2013.

Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang.
Mining API mapping for language migration. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, volume 1, page
195, USA, 2010. ACM Press.

Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Nei. NAPO: Mining
and Recommending API Usage Patterns. In Proceedings of the 23rd Furopean

208

[319]

[320]

[321]

322]

323

Conference on ECOOP 2009 — Object-Oriented Programming, Genoa, pages
318-343, Berlin, Heidelberg, 2009. Springer-Verlag.

Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. DroidAlarm. In Proceedings
of the 8th ACM SIGSAC symposium on Information, computer and communi-
cations security - ASIA CCS ’13, page 353, New York, New York, USA, 2013.
ACM Press.

Jing Zhou and Robert J. Walker. API deprecation: a retrospective analysis
and detection method for code examples on the web. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering - FSE 2016, volume 13-18-Nove, pages 266—277, New York,
New York, USA, 2016. ACM Press.

Minhaz F. Zibran, Farjana Z. Eishita, and Chanchal K. Roy. Useful, But Us-
able? Factors Affecting the Usability of APIs. In 2011 18th Working Conference
on Reverse Engineering, pages 151-155, USA, oct 2011. IEEE.

T. Zimmermann. Card-sorting. Perspectives on Data Science for Software

Engineering, page 137-141, 2016.

Ilie Savga, Michael Rudolf, Sebastian Gotz, and Uwe Afimann. Practical
refactoring-based framework upgrade. In Proceedings of the 7th international

conference on Generative programming and component engineering, page 171,

USA, 2008. ACM Press.

209

