
Separation and Cover Problems in Temporal Graphs

Kamran Koupayi

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

December 2020

© Kamran Koupayi, 2020

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Chair of Department or Graduate Program Director

______________________________________ Chair

�______________________________________ Examiner

�______________________________________ Examiner

______________________________________ ��7KHVLV��Supervisor�V�

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�7KHVLV��6XSHUYLVRU�V��

Approved by� __BBBB__�

'HDQ

Abstract

Separation and Cover Problems in Temporal Graphs

Kamran Koupayi

A graph that changes with time is called a temporal graph. In this work, we focus on

temporal graphs whose vertex sets are fixed while edge sets change in discrete time

steps. We use n to refer to the number of vertices in the graph and ⌧ to refer to

the total number of time steps over which a temporal graph is observed. We refer to

non-temporal graphs as static graphs when we wish to emphasize their unchanging

nature.

In this work, we study temporal analogues of the Vertex Separator and Vertex

Cover problems from the static world with an emphasis on the Vertex Separator

problem. An (s, z)-temporal separator is a set of vertices whose removal disconnects

vertex s from vertex z for every time step in a temporal graph. The (s, z)-Temporal

Separator problem asks to find the minimum size of an (s, z)-temporal separator for

the given temporal graph. The (s, z)-Temporal Separator problem is known to be

NP-hard in general, although some special cases (such as bounded treewidth) admit

e�cient algorithms [22].

We introduce a generalization of this problem called (s, z, t)-Temporal Separator

problem, where the goal is to find the smallest subset of vertices whose removal

eliminates all temporal paths from s to z which take less than t time steps. Observe

that setting t = ⌧ captures the (s, z)-Temporal Separator problem as a special case

of (s, z, t)-Temporal Separator problem.

We present a ⌧ -approximation algorithm for (s, z)-Temporal Separator problem,

and we convert it to a ⌧ 2-approximation algorithm for (s, z, t)-Temporal Separator

problem. We also present an inapproximability lower bound of ⌦(ln(n) + ln(⌧)) for

(s, z, t)-Temporal Separator problem assuming that P 6= NP.

We show a polynomial-time reduction from the Discrete Segment Covering prob-

lem with bounded-length segments to (s, z, t)-Temporal Separator where the tempo-

ral graph has bounded pathwidth. Therefore, solving (s, z, t)-Temporal Separator on

iii

temporal graph whose underlying graph has bounded pathwidth is more di�cult than

solving Discrete Segment Covering problem where all segments’ lengths are bounded.

Discrete segment cover is a set of unit-length intervals, which covers at least one

of two endpoints of each input segment.

Lastly, we present a polynomial-time algorithm to find minimum (s, z, t)-temporal

separator on temporal graphs whose underlying graph is a series-parallel graph or by

removing the source and the terminal it is turned into a tree.

The second problem of interest is the Activity Timeline problem which is a gen-

eralization of a Vertex Cover to the temporal setting. An activity timeline is an

assignment of time intervals to vertices. An edge between vertex u and vertex v is

covered by an activity timeline ' at time t if one of the time intervals assigned to u

or v includes the time t (this is required only if the edge is actually present at time

t). In MinTimeline the goal is to find an activity timeline that covers all edges while

minimizing the total length of time intervals. This problem is known to be NP-hard.

In another problem, called MinTimelinem, we are asked to find an activity timeline

subject to additional constraints specified by a set of prescribed times {mv}, one for

each vertex v. A valid activity timeline for MinTimelinem must guarantee that for

every vertex v the interval corresponding to v contains mv. The goal is again to

minimize the total length of time intervals. Prior to this work, the best known ap-

proximation algorithm for MinTimlinem problem was based on a rather complicated

primal-dual linear programming approach and achieved 2 approximation [43]. In this

work, we present a simple purely combinatorial 2-approximation algorithm for this

problem.

The combinatorial algorithm is inspired by the famous Double Coverage algorithm

for the k-Server problem on a line in the area of online algorithms [11]. This highlights

an interesting cross-over between temporal graph algorithms and online algorithms

that might require further investigation. Lastly, we present a polynomial-time algo-

rithm for MinTimeline on temporal graphs whose underlying graphs have bounded

treewidth.

iv

Acknowledgments

I would like to acknowledge everyone who played a role in my academic life. First of

all, I would like to express my appreciation to my co-supervisors Dr. Harutyunyan

and Dr. Pankratov, who guided me and advised me throughout the way. Next, I

would like to thank my wife, parents, and sister for supporting me. I would like to

dedicate this work to the souls of all 176 passengers of flight PS752 who were shot

down shortly after takeo↵ on January 8th, 2020.

v

Contents

List of Figures viii

1 Introduction 1

1.1 Formal Definitions . 5

1.1.1 Temporal Graphs . 6

1.1.2 Temporal Separator . 9

1.1.3 Activity Timeline . 10

1.1.4 Tree Decomposition and Branch Decomposition 12

2 Literature Review 14

2.1 Temporal Path . 14

2.2 Broadcasting and Gathering of Information 15

2.3 Temporal Vertex Cover . 16

2.4 Reducing Reachability in Temporal Graphs 17

2.5 Temporal Separators . 19

2.6 Activity Timeline . 25

3 Temporal Separator 26

3.1 (s, z, t)-Temporal Separator with Small t 27

3.2 Approximation of Temporal Separator Problems 32

3.3 Inapproximability of Temporal Separator 39

3.4 Temporal Separator on Temporal Graphs with Bounded Pathwidth . 43

3.5 Polynomial-time Algorithms for (s, z, t)-Temporal Separator 50

3.5.1 Temporal Separator on Graphs with Bounded Branchwidth . . 50

3.5.2 Temporal Separators on Tree-Based Family of Graph 56

vi

4 Activity Timeline 60

4.1 Approximation Algorithm for MinTimelinem 60

4.2 Finding Activity Timeline on Temporal Graph with Bounded Treewidth 62

5 Conclusions and Future Work 68

vii

List of Figures

1 Example of a temporal graph. 7

2 Example of layers of a temporal graph. 7

3 Three di↵erent types of separators. 10

4 Instance of Strict (s, z, 3)-Temporal Separator problem with four layers

that corresponds to a vertex cover problem instance. 30

5 Example of a directed graph F (G). For simplicity of presentation,

edges in layer Gi are not drawn. 33

6 Example of a directed graph F (G) an instance of vertex k-cut. Edges

from(to) sj(zj) to(from) sets shown by box implies that all the vertices

v such that there is an edge from(to) si(zi) to(from) v is belongs to

one of this sets, also in figure the edges in the layer Gi is not drawn. . 37

7 Layer Gi⇥t of temporal graph which is instance of (s, z, t)-Temporal

Separator where U = {1, 2, . . . , n} and S = {S1, . . . , Sm} such that

i 2 Si1 , Si2 , Siki
. 42

8 Layer Gj⇥t in case that le rs. The time label for all the edges is j ⇥ t 45

9 Layer Gj⇥t in case that rs < le. The time label for all the edges is j ⇥ t 45

10 (s, z, t)-temporal path in the layer Gj⇥t. The time label for all the

edges is j ⇥ t . 48

11 Graph G0 is shown. The underlying graph G# is a subgraph of G0 . . 49

12 Three cases for node top(s) and top(z) in branch decomposition (T, �) 53

viii

Chapter 1

Introduction

Suppose that you have been given the task of deciding how robust a train system of a

given city is with respect to station closures. For instance, is it possible to disconnect

the two most visited places, e.g., downtown and the beach, by shutting down 5 train

stations in the city? How would you go about solving this problem? Can you write

an algorithm? Does an e�cient algorithm even exist? These are central questions of

interest in this thesis.

To answer these questions with precision we need a mathematical model. Perhaps

the most natural choice is to model the train system of a city as a graph. After

all, a graph is a mathematical structure used to abstract away a set of objects (also

called vertices or nodes) and pairwise relations between them (also called edges or

adjacency relations). Throughout this thesis, we typically use the variable n to refer

to the number of vertices in a graph. We can represent the train system as a graph,

in which vertices are train stations, and there is an edge between two train stations

if and only if the two train stations are connected by train tracks. Graph theory has

been immensely successful and influential from its early roots in the famous Seven

Bridges of Königsberg problem (solved by Leonhard Euler in 1736 [16]) to modern

applications. The list of applications of graph theory is too vast to even begin listing

it here, thus we restrict ourselves by mentioning a couple of modern applications,

such as studying social and physical networks brought about by the rapid growth of

the Internet, and building complicated topologies for deep neural networks [27, 34].

For an introduction to graph theory, we refer an interested reader to [12, 47].

After modelling the train system in terms of classical graph theory, one quickly

1

realizes that there is an important component that is missing, namely, time. The

trains run on a schedule (or at least they are supposed to – for simplicity, we assume

a perfectly punctual train system). Thus, it is not accurate to say that there is an

edge between the station A and the station B just because there are tracks connecting

them. It would be more accurate to say that if you arrive to the station A at some

specific time t then you could get to the station B at some other time t0 > t, where t

is when the train arrives at the station A and t0 is the time when this train reaches the

station B. In other words, we can consider the edge from A to B as being present at

a particular time (or times) and absent otherwise. This is an important point for the

robustness of train networks questions, since it could be that due to incompatibility

of certain train schedules the train network could become disconnected by shutting

down even fewer stations than we otherwise would have thought if we didn’t take

time schedules into account.

The notion of graphs evolving with time has several formal models in the research

literature [42, 3, 42]. First of all, there is an area of online algorithms [2] where the

graph is revealed piece by piece (thus the only allowable changes are to add objects

or relations to the graph) and we need to make irrevocable decisions towards some

optimization goal as the graph is being revealed. Secondly, streaming and semi-

streaming graph algorithms deal with graphs that are revealed one piece at a time

similarly to online algorithms, but the emphasis is on memory-limited algorithms

[19, 18]. Thus, in streaming one does not have to make irrevocable decisions, but

instead tries to minimize the memory size necessary to answer some queries at the

end of the stream. Thirdly, there is a notion of dynamic graph algorithms where

the emphasis is on designing e�cient data structures to support certain queries when

the graph is updated by either adding or removing vertices or edges [46]. The goal

is to maintain the data structures and answer queries, such as “are nodes u and v

connected?”, in the presence of changes more e�ciently than recomputing the answer

from scratch on every query. It is evident that none of these models is a good fit for

our question: the train system is known in advance and it is not frequently updated

(some cities that shall remain unnamed take decades to add a single station to the

system). Fortunately, there is a fourth model of graphs changing with time that has

recently gotten a lot of attention and it happens to capture our situation perfectly.

The model is called temporal graphs. In this work, we focus on temporal graphs that

2

have a fixed node set but whose edge sets change in discrete time units, all of which are

known in advance. Other temporal graph models where changes to nodes are allowed

and where time is modelled with the continuous real line have been considered in the

research literature but they are outside of the scope of this thesis. We typically use

⌧ to indicate the total number of time steps over which a given temporal graph is

defined. For example, if we model the train system as a temporal graph with one

minute-granularity and the schedule repeats every 24 hours then the temporal graph

would have ⌧ = (24H)⇥ (60M/H) = 1440M time steps in total. For emphasis, when

we need to talk about non-temporal graphs and bring attention to their unchanging

nature we shall call them “static graphs.”

We study temporal analogues of the Vertex Separator and Vertex Cover problems

from the static world. An (s, z)-temporal separator is a set of vertices whose removal

disconnects vertex s from vertex z for every time step in a temporal graph. The

(s, z)-Temporal Separator problem asks to find the minimum size of an (s, z)-temporal

separator for the given temporal graph. The (s, z)-Temporal Separator problem is

known to be NP-hard in general [51], although some special cases (such as bounded

treewidth) admit e�cient algorithms [22]. This question can be thought of as a

mathematical abstraction of the robustness of train network of a city question posed

at the beginning of this section. The (s, z)-Temporal Separator problem asks you to

eliminate all temporal paths between s and z by removing some nodes. Observe that,

practically speaking, in real life one doesn’t actually have to eliminate all temporal

paths between s and z – one would have to remove only reasonable temporal paths

between s and z. Which paths would be considered unreasonable? We consider

paths taking too much time as unreasonable. For example, if normally it takes 30

minutes to get from downtown to the beach, then eliminating all routes that take at

most 4 hours would surely detract any downtown dwellers from visiting the beach.

Motivated by such considerations, we introduce a generalization of the (s, z)-Temporal

Separator problem called (s, z, t)-Temporal Separator problem, where the goal is to

find the smallest subset of vertices whose removal eliminates all temporal paths from

s to z which take less than t time steps. Observe that setting t = ⌧ captures the

(s, z)-Temporal Separator problem as a special case of (s, z, t)-Temporal Separator

problem.

We present a ⌧ -approximation algorithm for (s, z)-Temporal Separator problem,

3

and we convert it to a ⌧ 2-approximation algorithm for (s, z, t)-Temporal Separator

problem. We also present an inapproximability lower bound of ⌦(ln(n) + ln(⌧)) for

(s, z, t)-Temporal Separator problem assuming that P 6= NP. We show a polynomial-

time reduction from the Discrete Segment Covering problem with bounded-length

segments to (s, z, t)-Temporal Separator where the temporal graph has bounded

treewidth. Therefore, solving (s, z, t)-Temporal Separator on temporal graph whose

underlying graph has bounded pathwidth is more di�cult than to solve Discrete Seg-

ment Covering problem where lengths of all segments are bounded. Lastly, we present

a polynomial-time algorithm to find minimum (s, z, t)-temporal separator on tempo-

ral graphs whose underlying graph is series parallel graph or by removing the source

and the terminal it is turned into a tree.

The second problem of interest is the Activity Timeline problem which is a gen-

eralization of a Vertex Cover in the temporal setting. An activity timeline is an

assignment of time intervals to vertices. An edge between vertex u and vertex v is

covered by an activity timeline ' at time t if one of the time intervals assigned to

u or v includes the time t (this is required only if the edge is actually present at

time t). In MinTimeline the goal is to find an activity timeline that covers all edges

while minimizing the total length of time intervals. This problem is known to be

NP-hard. In another problem, called MinTimelinem, we are asked to find an activ-

ity timeline where each interval contains a point mv for a given set of point {mv}v2V
that minimizes the total length of time intervals. Adding 4 edges (x, y,mv), (x, y, k),

(x, v,mv), and (y, v,mv) where k is a su�cient large number, will force a time inter-

val for vertex v to contain the time mv. Therefore, this problem is much easier than

MinTimeline problem. Also, the setup with value of mv is equal to 0 and all the

edges present in time 1, will make the solution equal to the solution for Vertex Cover.

So, this problem is more di�cult than Vertex Cover. Prior to this work, the best

known approximation algorithm for MinTimlinem problem was based on a rather

complicated primal-dual linear programming approach and achieved approximation

ratio 2 [43]. In this work, we present a simple purely combinatorial 2-approximation

algorithm for this problem. The combinatorial algorithm is inspired by the famous

Double Coverage algorithm for the k-Server problem on a line in the area of online

algorithms [11]. This highlights an interesting cross-over between temporal graph

algorithms and online algorithms that might require further investigation. Lastly,

4

we present a polynomial-time algorithm for MinTimeline on temporal graphs whose

underlying graphs have bounded treewidth.

Organization. The rest of this thesis is organized as follows. In the remainder of this

chapter we present formal definitions necessary for the rest of the thesis. In Chapter

2, we survey related works on static and temporal graphs, in particular, works on

problems concerning minimum paths, broadcasting, reducing reachability, and vertex

separators. In Chapter 3, we introduce, define and study our new problem (s, z, t)-

Temporal Separator. We present our main results in various sections of that chapter:

an approximation algorithm, a lower bound, a connection between the Discrete Seg-

ment Covering problem and our problem, and a polynomial time algorithm for the

graphs with branchwidth bounded by 2. In Chapter 4, we study the Activity Time-

line problem, where we present our simplified purely combinatorial 2-approximation

algorithm as well as our bounded treewidth algorithm. We finish this thesis with

conclusions and discussion of future work in Chapter 5.

1.1 Formal Definitions

Temporal graphs (also known as dynamic, evolving [20], or time-varying [21, 10]

graphs) are graphs whose edge is active on certain points of time. There are two

general modeling forms of representation for the temporal graph.

In the first one, a graph G = (V,E,�) is presented by a vertex set V , an edge set

E, and a time label function � : E ! 2N which assigns to every edge of G a set of

natural numbers, and shows the time steps that each edge is active in.

The other model which is used mainly in this work, a temporal graphG = (V,E, ⌧)

contains a set of vertices V , and a set of edges E ✓ V ⇥V ⇥ [⌧] 1. So each edge e 2 E

contains two vertices of V and a time label t 2 [⌧]. A graph G# = (V,E 0) where E 0

contains every edge e that is active at least in one time in the temporal graph G is

called the underlying graph 2 of the temporal graph G. A static graph representing

active edges for a specific time is called the layer of the temporal graph at that time.

So another representation model for the temporal graph is showing the graph with

all of its layers.

There are so many problems defined on temporal graphs; since the temporal graph

1[n] is equal to the set of natural numbers lower than n i.e. {1, 2, . . . , n}
2Also known as static graph or footprint.

5

is modeling the network that each edge is active at specific times, some problems like

broadcasting, exploring, readability, covering problems, etc., were defined with the

same meaning in a temporal graph. One of these problems is Vertex Separator. In

graph theory, a subset S of vertices is vertex separator for non-adjacent vertices s

and z if removing a set S from the graph disconnects two vertices s and z from each

other. A Vertex Separator problem could be simply reduced to the max-flow Min-Cut

problem, which is polynomial-time solvable in a static graph; however, the hardness

of the equivalent problem in a temporal graph, called Temporal Separator, is shown

by [30].

In this section, we mainly focus on basic definitions and notations for temporal

graphs and problems introduced shortly in the introduction. However, we will also

take a look at branch decomposition and tree decomposition on a static graph. Before

going to the main part, let us define static graphs.

Definition 1 (Graph). A graph G = (V,E) is a set of vertices V and a set of edges

E ✓ V ⇥ V that represent each link in the graph.

1.1.1 Temporal Graphs

A graph that changes over time is known as a temporal graph. A formal definition

for the temporal graph is represented below.

Definition 2 (Temporal graph). A temporal graph G = (V,E, ⌧) contains a set of

vertices V , and a set of edges E ✓ V ⇥ V ⇥ [⌧] that represent a active link between 2

vertices in specific time.

An edge e 2 E is a triple (u, v, t) such that u, v 2 V and t 2 [⌧] which shows the

node u and v has link to each other in time t. We denote t as a time for edge (u, v, t).

Figure 1 shows an example of a temporal graph. Some other modeling for temporal

graphs could be found in [36]. In this work, we always use this model. A layer Gi

such that i 2 [⌧] is a static graph representing all the active links in time i. Figure

2 shows three layers of the temporal graph that is shown in Figure 1. An underlying

graph G# is a static graph representing all the links that are active at least at one

time.

Definition 3 (Underlying graph). An underlying graph of temporal graph G =

6

1

1

1,2
2

1,2

1,3

3
1,3

Figure 1: Example of a temporal graph.

G1 G2

G3

Figure 2: Example of layers of a temporal graph.

7

(V,E, ⌧) is a static graph G = (V,E 0) for which any (u, v) 2 E 0 if and only if exists

a time t 2 [⌧] such that (u, v, t) 2 E.

In static graphs, a path P is a sequence of edges which joins a sequence of vertices.

In the temporal graphs, a temporal path is a sequence of edges that creates a path in

the underlying graph, and the sequence of time for edges is in non-decreasing order.

Definition 4 ((s, z)-temporal path). A sequence (u1, v1, t1), (u2, v2, t2), . . . , (uk, vk, tk)

of edges is called (s, z)-temporal path if s = u1, v1 = u2, . . . , vk�1 = uk, vk = z and

t1 t2 · · · tk.

If the sequence of time is in strictly increasing order, the temporal path is called

strict. So, a strict (s, z)-temporal path is a temporal path from source s to destination

z such that the time of each edge in the sequence is strictly lower than the time for

the next one.. Traveling time of (s, z)-temporal path P is the time that takes to

travel from source s to the destination z.

In static graphs shortest path that number of edges is as short as possible. In

addition to the shortest path in temporal graphs, more features are defined for the

temporal path in the temporal graph. So, we have:

• Shortest (s, z)-temporal path : A temporal path from s to z that minimizes

the number of edges.

• Fastest (s, z)-temporal path : A temporal path from s to z that minimizes

the traveling time.

• Foremost (s, z)-temporal path : A temporal path from s to z that minimizes

the arrival time of destination.

Temporal distance from node s to node z is equal to the traveling time of the

fastest (s, z)-temporal path.

Like the static graph, we say that a temporal graph G = (V,E, ⌧) is connected

if for any pair (s, z) of vertices there is at least one temporal path from vertex s to

vertex z. Moreover, we say temporal graph G = (V,E, ⌧) is continuously connected

if for every i 2 [⌧] layer Gi is connected. Temporal graphs that each edge will appear

periodically is called a periodic temporal graph.

8

Definition 5 (Periodic temporal graph). A temporal graph G = (V,E, ⌧) is p-periodic

if p 2 N is the smallest number such that G = G0r for some G0r = (V,E 0r, p) and r is

called the number of periods.

1.1.2 Temporal Separator

Reducing reachability is one of the classics problems in graph theory. Graph Gut and

Separator are both well-studied problems. Strict Temporal Separator and non-strict

Temporal Separator are defined and studied. Here in this work, we will refer temporal

separator to non-strict temporal separator. First, we look at those problems, and then

we define a new problem.

Definition 6 ((s, z)-temporal separator). let G = (V,E, ⌧) be a temporal graph, and

two vertices s and z. A set S ✓ V \{s, z} is called (s, z)-temporal separators if removal

of vertices in set S, remove all temporal path from vertex s to vertex z.

Similarly, strict (s, z)-temporal separator is a set of vertices such that by removing

them, all of the strict (s, z)-temporal path will remove from the graph. In the Tem-

poral Separator problem, we want to find a set of the minimum temporal separator.

The minimum separator’s cardinality for the underlying graph of the temporal graph

shown in Figure 3 is 3. However, the set {a, b} is a temporal separator of the temporal

graph.

Problem 1 ((s, z)-Temporal Separator).

• Instance: A temporal graph G = (V,E, ⌧) and a source s 2 V with the terminal

t 2 V .

• Solution: A set of (s, z)-temporal separator S 2 V \{s, z}
• Measure: Minimize cordiality of set S

Similarly, a strict (s, z)-Temporal Separator problem will be defined. We could

generalize this problem by applying any restriction to the (s, z)-temporal path. So

we refer the Restricted Path (s, z)-Temporal Separators to a problem whose goal is to

find a set of vertices that remove them will remove all the restricted (s, z)-temporal

path. A natural one is restricted by the time that a path will take (i.e., the di↵erence

of arrival time of terminal and departure time of source).

9

1

1,2

1

1

2 2

1

22

s z

a

b

c

d

e

f

Figure 3: Three di↵erent types of separators.

Definition 7 ((s, z, t)-temporal path). (s, z, t)�temporal path is a (s, z)-temporal

path such that the di↵erence of arrival time of terminal t and source s is lower than

t.

(s, z, t)-temporal separator is a set of vertices S such that all (s, z, t)-temporal path

contains on vertex from S. For instance, a set {a} is a (s, z, 1)-temporal separator

for a temporal graph, which is shown in Figure 3, whereas the minimum size for any

(s, z)-temporal separator is two.

Definition 8 ((s, z, t)-temporal separator). Let G = (V,E, ⌧) be a temporal graph

and s, z 2 V two distinct vertices. A set S ✓ V \{s, z} is a set of (s, z, t)-temporal

separators if the temporal distance between node s and z in temporal graph (V \S,E)

is greater than or equal to t.

So, a new problem will be defined similarly.

Problem 2 ((s, z, t)-Temporal Separator).

• Instance: A temporal graph G = (V,E, ⌧) and a source s 2 V with the terminal

t 2 V .

• Solution: A set of (s, z, t)-temporal separator S ✓ V \{s, z}
• Measure: Minimize cardinality of set S

1.1.3 Activity Timeline

Here in this section we go over the definition of problems in activity timeline. An

activity timeline ' is a set of interval {Iv}v2V which any intervals Iv is equal to [sv, ev].

10

For any edge e = (u, v, t) 2 E we say that e is covered by activity timeline ' if t 2 Iv

(i.e. t � sv and t ev) or t 2 Iu, also we say that activity timeline ' covers graph G

if and only if all the edge e 2 E are covered by '. For activity timeline ' we define

two measures total span and max span. We denote the total span of activity timeline

by a function S, the total span of activity timeline S(') is equal to:

S(') =
X

u2V

(eu � su) (1)

Respectively we denote max span of activity interval ' by a function �('), the max

span of activity timeline �(') is equal to:

�(') = max
u2V

(eu � su) (2)

Two problemsMinTimeline andMinTimeline1 are defined to find activity time-

line ' where total span and max span of ' are minimized, respectively.

Problem 3 (MinTimeline).

• Instance: A temporal graph G = (V,E, ⌧)

• Solution: An activity timeline ' such that cover the temporal graph G

• Measure: Minimize total span S(')

Problem 4 (MinTimeline1).

• Instance: A temporal graph G = (V,E, ⌧)

• Solution: An activity timeline ' such that cover the temporal graph G

• Measure: Minimize max span �(')

By applying an extra condition for each vertex by specifying a time that should

be present for the vertex interval, another problem could be defined.

Problem 5 (MinTimelinem).

• Instance: A temporal graph G = (V,E, ⌧) and set of time {mu}u2V
• Solution: An activity timeline ' = {Iu}u2V such that ' covers the temporal

graph G and for each u 2 V satisfies the condition mv 2 Iv

• Measure: Minimize total span �(')

11

1.1.4 Tree Decomposition and Branch Decomposition

Most of the problems that are NP-Hard in graph theory could be solved in a graph

with bounded treewidth. Here in this section, we go over the definition related to

tree decomposition and branch decomposition.

Definition 9 (Tree Decomposition). A tree decomposition of a graph G = (V,E) is

a pair (T, �) consisting of a tree T and a family � = {�(i)}i2V (T) of subsets of V and

satisfying the following properties:

• The union of all sets �(i) is equal to V . It means each vertex in the graph G

will appear in at least one set.

• For every edge (v, u) 2 E, there is subset �(i) the contains both v and u. That

is, vertices are adjacent in the graph only when the corresponding subtrees have

a node in common.

• If �(i) and �(j) both contain vertex v then for all node k 2 V (T) in the unique

path between node i and j, v 2 �(k). It can be stated equivalently that if i, j

and k are nodes, and k is on the path from i to j, then �(i) \ �(j) ✓ �(k).

Definition 10 (Width of Tree Decomposition). Given a tree decomposition (T, �) of

G = (V,E), the width of this decomposition is maximum value of {|�(i)| : i 2 V (T)}.

A treewidth tw(G) of G is defined as the minimum width of all tree decomposition

(T, �) for G. Path decomposition for graph G is pair (P, �) consisting a path P and

a family � = {�(i)}i2V (T) of subsets of V such that satisfies all the condition for tree

decomposition.

Tree decomposition could be turned to a nice tree decomposition in polynomial

time [13].

Definition 11 (Nice Tree Decomposition). A tree decomposition T = (T, �) of a

graph G = (V,E) is a nice tree decomposition if T is rooted, every node of the tree T

has at most two children nodes, and for each node i 2 V (T) the following conditions

are satisfied:

• If i has two children nodes k, j 2 V (T) in T , then �(i) = �(k)�(j) . Node i is

called a join node.

12

• If i has one child node j, then one of the following conditions must hold:

– �(i) = �(j) [{v}. Node i is called an introduce node of v.

– �(i) = �(j)\{v}. Node i is called a forget node of v.

• If i is a leaf in T , then |�(i)| = 1. Node i is called a leaf node.

Branch decomposition and branchwidth of graph will be define as follows.

Definition 12 (Branch Decomposition). [14] Given a graph G = (V,E), a branch

decomposition is a pair (T, �), such that

• T is a binary tree with |E| leaves, and every inner node of T has two children.

• � is a mapping from V (T) to P (E) satisfying the following conditions:

– For each leaf v 2 V (T), there exists e 2 E(G) with �(v) = e, and there

are no v, u 2 V (T), v 6= u such that �(v) = �(u).

– For every inner node v 2 V (T) with children vl, vr, �(v) = �(vl) [�(vr);

Definition 13 (Boundary). [14] Given a graph G = (V,E), for every set F ✓ E,the

boundary @F = {v|v is incident to edges in F and E\F}.

Definition 14 (Width of a Branch Decomposition). [14] Given a branch decomposi-

tion (T, �) of G = (V,E), the width of this decomposition is max{|@�(v)|v 2 V (T)}.

The branchwidth bw(G) of G is defined as the minimum width of all branch

decomposition (T, �) for G [14].

Here in this thesis, we refer to treewidth, branchwidth, and pathwidth of a tem-

poral graph as treewidth, branchwidth, and pathwidth, respectively, of its underlying

graph.

13

Chapter 2

Literature Review

In this chapter we mainly discuss the di↵erent problems mentioned in the fields of

temporal graphs and some related works and open problems in temporal separators.

Furthermore, some theorems and lemmas have been provided which aid us in our

results.

2.1 Temporal Path

A nice property of foremost temporal path is that they can be computed e�ciently.

In particular there is an algorithm that, given a source node s 2 V and a time

tstart, computes for all w 2 V {s} a foremost (s, w)-temporal path from time tstart

[35]. The running time of the algorithm is O(n⌧ 3 + |E|). It is worth mentioning

that this algorithm takes as input the whole temporal graph D. Such algorithms are

known as o✏ine algorithms in contrast to online algorithms to which the temporal

graph is revealed on the fly. The algorithm is essentially a temporal translation of

the breadth-first search (BFS) algorithm (see e.g. [12] page 531) with path length

replaced by path arrival time. For every time t, the algorithm picks one after the

other all nodes that have been already reached (initially only the source node s) and

inspects all edges that are incident to that node at time t. If a time-edge (u, w, t)

leads to a node w that has not yet been reached, then (u, w, t) is picked as an edge

of a foremost temporal path from the source to w. This greedy algorithm is correct

for the same reason that the BFS algorithm is correct. An immediate way to see

this is by considering the static expansion of the temporal graph. The algorithm

14

begins from the upper copy (i.e. at level 0) of the source in the static expansion and

essentially executes the following slight variation of BFS: at step i+ 1, given the set

R of already reached nodes at level i, the algorithm first follows all vertical edges

leaving R in order to reach in one step the (i+1)-th copy of each node in R, and then

inspects all diagonal edges leaving R to discover new reachabilities. The algorithm

outputs as a foremost temporal path to a node u, the directed path of time-edges

by which it first reached the column of u (vertical edges are interpreted as waiting

on the corresponding node). The above algorithm computes a shortest path to each

column of the static expansion. Correctness follows from the fact that shortest paths

to columns are equivalent to foremost temporal path to the nodes corresponding to

the columns [36].

2.2 Broadcasting and Gathering of Information

A natural application domain of temporal graphs is that of gossiping and in general

of information dissemination, mainly by a distributed set of entities (e.g. a group of

people or a set of distributed processes). Two early such examples were the telephone

problem [6] and the minimum broadcast time problem [40]. In both, the goal is to

transmit some information to every participant of the system, while minimizing some

measure of communication or time. A more modern setting, but in the same spirit,

comes from the very young area of distributed computing in highly dynamic networks

[38], [32], [33], [10], [37], [35].

There are n nodes. In this context, nodes represent distributed processes. Note,

however, that most of the results that we will discuss, concern centralized algorithms

(and in case of lower bounds, these immediately hold for distributed algorithms as

well). The nodes communicate with other nodes in discrete rounds by interchanging

messages. In every round, an adversary scheduler selects a set of edges between the

nodes and every node may communicate with its current neighbors, as selected by

the adversary, usually by broadcasting a single message to be delivered to all its

neighbors. So, the dynamic topology behaves as a discrete temporal graph where the

i� th instance of the graph is the topology selected by the adversary in round i. The

main di↵erence, compared to the setting of the previous sections, is that now (in all

results that we will discuss in this section, apart from the last one) the topology is

15

revealed to the algorithms in an online and totally unpredictable way. An interesting

special case of temporal graphs consists of those temporal graphs that have connected

instances.

Feasibility and reusability of solution for the problem broadcast with termination

detection at the emitter, or TDB, with three metrics, was investigated on three types

of the temporal graphs by [9]. TDB requires all nodes to receive a message with some

information that initially was held by a single node x called source or emitter, and

the source changes to the terminal state after all nodes have received the information,

within a finite time. [9] discussed three metrics for TDB problem on the temporal

graphs:

• TDB[shortest], where each node receives the information within a minimal num-

ber of hops from the emitter;

• TDB[fastest], where the overall duration between first global emission and last

global reception is minimized;

• TDB[foremost], where each node receives the information at the earliest possible

date following its creation at the emitter.

Feasibility and reliability for recurrent, recurrent bounded, and the periodic temporal

graphs were investigated in [9].

2.3 Temporal Vertex Cover

Similar to Activity Timeline here we review another generalization of Vertex Cover

problem. In spite of Activity Timeline, which we want to cover all the edges by

selecting single intervals for each vertex, in this problem the goal is to cover all the

edges by selecting appearance on vertices at specific points of time.

In [1] the complexity of Temporal Vertex Cover (TVC) has been investigated.

Let S be a temporal vertex subset of G = (V,E, ⌧). Let e = (u, v) 2 E 0 be an

edge of the underlying graph G# = (V,E 0) and let (w, t) be a vertex appearance in

S. We say that vertex w covers the edge e if w 2 {u, v}, i.e. w is an endpoint of

e; in that case, edge e is covered by vertex w. Furthermore we say that the vertex

appearance (w, t) temporally covers the edge e if w covers e and t 2 �(e), i.e. the

edge e is active during the time slot t; in that case, edge e is temporally covered by

16

the vertex appearance (w, t). We now introduce the notion of a temporal vertex cover

and the optimization problem Temporal Vertex Cover [1].

Definition 15. [1] Let G = (V,E, ⌧) be a temporal graph. A temporal vertex cover

of G is a temporal vertex subset S ✓ {(v, t) : v 2 V, t 2 [⌧]} of G such that every edge

e 2 E is temporally covered by at least one vertex appearance (w, t) in S.

In Theorem 1 and 2, [1] proved the hardness results for TVC on star temporal

graphs (i.e. when the underlying graph G is a star), which is in wide contrast to

the (trivial) solution of Vertex Cover on a static star graph. The hardness results

are obtained via reductions to the problems Set Cover and Hitting Set, respectively.

On the positive side they prove in [1] that, in general temporal graphs, TVC can be

approximated within a factor of Hn�1 � 1
2 ⇡ ln v, via a reduction to Set Cover.

Theorem 1. [1] TVC on star temporal graphs is NP-complete. Furthermore, for any

✏ > 0, TVC on star temporal graphs does not admit any polynomial-time (1� ✏) lnn-

approximation algorithm, unless NP has nO(log logn)-time deterministic algorithms.

Theorem 2. [1] For every ✏ < 1, TVC on star temporal graphs cannot be optimally

solved in O(2✏T) time, unless the Strong Exponential Time Hypothesis (SETH) fails.

2.4 Reducing Reachability in Temporal Graphs

In Temporal Separator problems the goal is disconnecting terminal from source.

Whereas, another approach is to reduce the number of reachable vertices from the

given source. Here we review a problem that wants to reduce the number of reachable

vertices by removing edges in temporal graph.

Enright et al. in [15] adopt a simple and natural model for time-varying networks

which is given with time-labels on the edges of a graph, while the vertex set remains

unchanged. This formalism originates in the foundational work of Kempe et al. [30].

Given a temporal graph G = (V,E, ⌧) with underlying graph G# = (V,A). For a

subset A0 ✓ A, it is denoted by G\A0 the temporal graph G0, where G0
= (V,A\A0).

Similarly, given a subset E ✓ E 0 of time edges, it is denoted by G\E the temporal

graph G = (V,E\E 0, ⌧). Furthermore, a vertex v is temporally reachable from u in

G if there exists a temporal path from u to v.

17

Definition 16. [15] The temporal reachability set of a vertex u, denoted by reachG,u,

is the set of vertices which are temporally reachable from vertex u. The temporal

reachability of u is the number of vertices in reachG,u.

Temporal Reachability Edge Deletion (TR Edge Deletion)

Input: A temporal graph G = (V,E, ⌧) where G# = (V,A) is the underlying graph

of G, and k, h 2 N Output: Is there a set A0 ✓ A, with |A0| k, such that the

maximum temporal reachability of G\A0 is at most h?

Temporal Reachability Time-Edge Deletion (TR Time-Edge Deletion)

Input: A temporal graph G = (V,E, ⌧), and k, h 2 N. Output: Is there a set E 0 of

time-edges, with |E 0| k, such that the maximum temporal reachability of G\E 0 is

at most h?

Enright et al. [15], show that TR Edge Deletion and TR Time-Edge Deletion

problems is NP-Complete, and also the TR Time-Edge Deletion problem is W [1]-

hard when parameterized by the number of time edges that can be removed.

Theorem 3. [15] TR Edge Deletion and TR Time-Edge Deletion are NP-complete,

even when the maximum temporal reachability h is at most 7 and the input temporal

graph G = (V,E, ⌧) has:

1. maximum temporal total degree �G at most 5, and

2. lifetime at most 2.

Theorem 4. [15] TR Edge Deletion (resp. TR Time-Edge Deletion) is W [1]-hard

when parameterized by the maximum number k of edges (resp. time-edges) that can

be removed, even when the input temporal graph has the lifetime 2.

Next, they show that both TR Edge Deletion and TR Time-Edge Deletion admit

an FPT algorithm, when simultaneously parameterized by h, the maximum temporal

total degree �G of G = (V,E, ⌧), and the treewidth tw(G#) of the underlying graph

G.

Although it is NP-hard to determine the treewidth of an arbitrary graph [5], the

problem of determining whether a graph has treewidth at most w (and constructing

such a tree decomposition if it exists) can be solved in linear time for any constant

w [8]; note that this running time depends exponentially on w [15].

18

2.5 Temporal Separators

Maximum Flow problems involve finding a feasible flow through a flow network that

obtains the maximum possible flow rate.

The Maximum Flow problem was first formulated in 1954 by T. E. Harris and F.

S. Ross as a simplified model of Soviet railway tra�c flow [28, 44, 26].

In 1955, Lester R. Ford, Jr. and Delbert R. Fulkerson created the first known

algorithm, the Ford–Fulkerson algorithm [23, 24]. In their 1955 paper [23], Ford and

Fulkerson wrote that the problem of Harris and Ross is formulated as follows (see [44]

p. 5):

Over the years, various improved solutions to the Maximum Flow problem were

discovered, notably the shortest augmenting path algorithm of Edmonds and Karp

and independently Dinitz; the blocking flow algorithm of Dinitz; the push-relabel

algorithm of Goldberg and Tarjan; and the binary blocking flow algorithm of Goldberg

and Rao. The algorithms of Sherman [45] and Kelner, Lee, Orecchia, and Sidford

[29, 31] respectively, find an approximately optimal Maximum Flow but only work in

undirected graphs. In 2013 James B. Orlin published a paper describing an O(nm)

algorithm for all values of n and m, where n is the number of vertices in the graph

and m is the number of edges of the graph [39].

The max-flow min-cut theorem states that in a flow network, the maximum

amount of flow passing from the source to the sink is equal to the total weight of

the edges in a minimum cut, i.e., the smallest total weight of the edges, which if

removed would disconnect the source from the sink.

In the Min-Cut problem, the goal is to remove some edges such that the source

and the terminal are separated from each other (there is no path from the source to

the terminal). This problem can be transformed into a new problem with the same

goal. In this version, we intend to remove a subset of vertices such that the source

and terminal are separated from one another. This new problem is known as Vertex

Separator. In this section we review some results on Vertex Separator in temporal

graphs.

One of the most important problems regarding temporal separators has been dis-

cussed in [51].

Another interesting thing is that reachability in graph G under journeys corre-

sponds to (path) reachability in G00 so that we can use BFS on G00 to answer questions

19

about foremost journeys in G. Fortunately, the above important negative result con-

cerning Menger’s theorem has a turnaround. In particular, it was proved in [35] that

if one reformulates Menger’s theorem in a way that takes time into account then a

very natural temporal analogue of Menger’s theorem is obtained, which is valid for all

(multi-labeled) temporal networks. The idea is to replace in the original formulation

node-disjointness by node departure time disjointness (or out-disjointness) and node

removals by node departure times removals. When it is said that the node departure

time (u, t) is removed, we mean that we remove all edges leaving u at time t, i.e. we

remove label t from all (u, v) edges (8v 2 V). So, when we ask ”how many node

departure times are needed to separate two nodes s and z?” we mean how many node

departure times must be selected so that after the removal of all the corresponding

time-edges the resulting temporal graph has no (s, z)-journey (note that this is a dif-

ferent question from how many time-edges must be removed and, in fact, the latter

question does not result in a Menger’s analogue). Two journeys are called out-disjoint

if they never leave from the same node at the same time [36].

Theorem 5 (Menger’s Temporal Analogue). [35] Take any temporal graph �(G),

where G = (V,E), with two distinguished nodes s and z. The maximum number of

out-disjoint journeys from s to z is equal to the minimum number of node departure

times needed to separate s from z.

A central contribution in [51] is to prove that both (s, z)�Temporal Separator

and Strict (s, z)-Temporal Separator are NP-complete for all ⌧ � 2 and ⌧ � 5,

respectively, strengthening a result by Kempe et al. [30] (they show NP-hardness of

both variants for all ⌧ � 12) [51].

Lemma 1. [51] Let G = (V,E, ⌧) be an instance of (Strict) (s, z)-Temporal Sepa-

rator. There is an algorithm which computes in O(|E|) time an equivalent instance

(G0 = (V,E 0, ⌧ 0) of Strict (s, z)-Temporal Separator, where ⌧ 0 |E 0|.

Lemma 2. [51] There is a linear-time computable many-one reduction from Strict

(s, z)-Temporal Separator to (s, z)-Temporal Separator that maps any instance G =

(V,E, ⌧) to an instance G0 = (V 0, E 0, ⌧ 0) with ⌧ 0 = 2⌧ .

Zschoche et al. [51] investigate the complexity of (s, z)-Temporal Separator for

temporal graph G = (V,E, ⌧) where ⌧ is a small number.

20

Theorem 6. [51] (s, z)-Temporal Separator is NP-complete for every maximum la-

bel ⌧ � 2 and Strict (s, z)-Temporal Separator is NP-complete for every ⌧ � 5.

Moreover, both problems are W [1]-hard when parameterized by the solution size k.

Theorem 7. [51] Strict (s, z)-Temporal Separator for maximum label ⌧ 4 can be

solved in O(k|E|) time, where k is the solution size.

Zschoche et al. [51] showed the following corollary using Length Bounded (s, z)-

Separators on planar graphs.

Corollary 1. [51] Both (s, z)-Temporal Separator and Strict (s, z)-Temporal Sepa-

rator on planar temporal graphs are NP-complete.

In their other work [22], they show that (s, z)-Temporal Separator remains NP-

complete on many restricted temporal graph classes.

• (s, z)-Temporal Separator remains NP-complete on temporal graphs whose un-

derlying graph falls into a class of graphs containing complete-but-one graphs

(that is, complete graphs where exactly one edge is missing) or line graphs.

However, if the underlying graph has bounded treewidth, then (s, z)-Temporal

Separator becomes polynomial-time solvable.

• (s, z)-Temporal Separator remainsNP-complete on temporal graphs where each

layer contains only one edge. In contrast, if we require each layer to be a unit

interval graph and impose suitable restrictions on how the intervals may change

over time, then (s, z)-Temporal Separator becomes tractable.

• Regarding temporal graph classes defined solely by restrictions on how the edge

sets of the layers may change over time, (s, z)-Temporal Separator becomes

solvable in polynomial time on temporal graphs where one layer contains all

others (grounded), on graphs where all layers are identical (1-periodic or 0-

steady), or when the number of periods is at least the number of vertices. In

all other considered cases (s, z)-Temporal Separator remains NP-complete

It’s not di�cult to show that this problem is fixed parameter tractable when parame-

terized by k+l, where k is the solution size and l is the maximum length of a temporal

(s, z)-path.

21

Lemma 3. [22] Given a temporal graph G = (V,E, ⌧) and two distinct vertices s

and z, a temporal (s, z)-path can be computed in O(|E|) time.

Lemma 4. [22] (s, z)-Temporal Separator is solvable in O(lk|E|) time, and thus is

fixed parameter tractable when parameterized by k+ l, where k is the solution size and

l is the maximum length of a temporal (s, z)-path.

They have investigated this problem on temporal graphs with bounded treewidth.

Theorem 8. [22] For a given tree decomposition of the underlying graph, one can

solve (s, z)-Temporal Separator in O((⌧ + 2)tw(G#)+2.tw(G#).|V |.|E|) time, where ⌧ is

the maximum time label.

Later on their paper, they considered restrictions on the layers and the underlying

graph. They study temporal graph classes whose definitions do rely on the order of

the layers. Herein, they discuss monotone, periodic, consecutively connected, and

steady temporal graphs.

Intuitively, a temporal graph is p-monotone if it can be decomposed into p time

intervals in each of which the layers are ordered by inclusion [22].

Definition 17. [22] A temporal graph G = (V,E, ⌧) is p-monotone if p 2 N is the

smallest number such that there are 1 = i1 < i2 < · · · < ip+1 = ⌧ such that for all

l 2 [p]

• Ej ✓ Ej+1 for all il j < il+1, or

• Ej ◆ Ej+1 for all il j < il+1

holds.

They present a set of interesting results for periodic temporal graphs as well.

Lemma 5. [22] Let G = G0r be a p-periodic temporal graph such that the number

of periods r is at least the distance to temporality from s to z in G0. Then (s, z)-

Temporal Separator is solvable in O(k|E|) time, where k is the solution size and |E|
the number of time-edges.

Corollary 2. [22] Let G = (V,E, ⌧) be a p-periodic temporal graph. If the number

of periods r � |V |, then (s, z)-Temporal Separator is solvable in O(k|E|) time, where

k is the solution size and |E| the number of time-edges.

22

Fluschnik et al. in [22] studied temporal separator on T -interval connected tem-

poral graphs.

Definition 18. [32], [22] A temporal graph G = (V,E, ⌧) is T -interval connected

for T � 1 if for every t 2 [⌧ � T + 1] the static graph G := (V,
T

t+T�1
i=t

Ei(G)) is

connected.

Observation 1. [22] There is a polynomial-time many-one reduction that maps any

instance (G = (V,E, ⌧), s, z, k) of (s, z)-Temporal Separator to an equivalent instance

(G0 = (V 0, E 0, ⌧), s, z, k + 1) such that G0 is T -interval connected for every T � 1.

Next they move to steady temporal graphs. Steady temporal graphs present a

class of graphs in which we do not expect very big changes over the time.

Definition 19. [22] A temporal graph G = (V,E, ⌧) is �-steady if � 2 N is the

smallest number such that for each point in time t 2 [⌧ � 1] the size of the symmetric

di↵erence of two consecutive edge sets |Et�Et+1| is at most �.

Corollary 3. [22] For any fixed � we have that (s, z)-Temporal Separator on �-steady

temporal graphs is fixed-parameter tractable when parameterized by the maximum label

⌧ .

In next part we present the work of Fluschnik et al. at [22], section 6. They

combine the two aspects studied in previous sections. To this end, they focus on

temporal graphs where each layer is a unit interval graph and we further restrict

how much the intervals may change over time. This is a layer-wise restriction with,

additionally, a temporal restriction. Recall that (s, z)-Temporal Separator remains

NP-complete on temporal graphs where each layer is a unit interval graph, even if

the maximum label ⌧ is a small constant.

In the following they show that if there is an ordering on the vertices that matches

the relative positions of the intervals in all layers, then we can solve (s, z)-Temporal

Separator in polynomial time [22].

A total ordering <V on a vertex set V is called compatible with a unit interval

graph G = (V,E) if there are unit intervals [av, av + 1] with av 2 R for all vertices

v 2 V that induce the graph G and for all u, v 2 V with u <V v we have that au av.

Note that for every unit interval graph there is a total ordering on the vertices that

is compatible with it [22].

23

Definition 20. [22] A temporal graph G = (V,E, ⌧) is an order-preserving temporal

unit interval graph if G is a temporal unit interval graph and there is a total ordering

<V on the vertex set V that is compatible with every layer Gi.

Lemma 6. [22] Order-preserving temporal unit interval graphs can be recognized

in polynomial time and a compatible vertex ordering for a given order-preserving

temporal unit interval graph can be computed in polynomial time.

Lemma 7. [22] Let G = (V,E, ⌧) be an order-preserving temporal unit interval graph

with ordering <V .

(i) For all 1 a b ⌧ and for all S ✓ V we have that G[a:b] � S is also an

order-preserving temporal unit interval graph.

(ii) If for some 1 i < j n there is a temporal (vi, vj)-path P in G, then there is

temporal (vi, vj)-path P 0 in G that visits its vertices in the order given by <V .

(iii) Let S ✓ V be a temporal (vi, vj)-separator in G for some 1 i < j n. Then

S 0 := S\(V<i [V>j) is also a temporal (vi, vj)-separator in G.

(iv) A temporal (vi, vj)-separator in G is also a temporal (vi0 , vj0)-separator in G for

all 1 i0 i < j j0 n.

(v) Let S ✓ V \{s, z} such that vi is the largest vertex reachable from s in G � S.

Let t denote the first time vi is reachable from s in G� S, and let t t0 ⌧ .

Then N>

Gt0
(vi) ✓ S.

(vi) Let S1 ✓ V \{s, z} such that vi is the largest vertex reachable from s in G[1:t]�S1

for some t 2 [⌧�1]. Let S2 ✓ V \{s, z} such that vj is the largest vertex reachable

from s in G[t+1:⌧]�S2. If i j, then S := S1 [S2 is a temporal (s, z)-separator

in G such that there is no vertex reachable from s in G� S that is larger than

vj.

(vii) Let S ✓ V be an inclusion-wise minimal temporal (s, z)-separator in G with the

property that a given vi is the largest vertex that is reachable from s in G � S

and let vj be the smallest vertex that is not in S such that S is also a temporal

(s, vj)-separator in G. Then for all vi <V v <V vj with vi 6= v 6= vj we have

that v 2 S, and we have that S \ V>j = ?.

24

Theorem 9. [22] (s, z)-Temporal Separator on order-preserving temporal unit inter-

val graphs is solvable in O(|V |2.⌧ 2) time.

They also studied temporal separator on temporal unit interval graph.

Definition 21. [22] (Shu✏e Number). Given a temporal unit interval graph G =

(V,E, ⌧), its shu✏e number K is the smallest integer such that there are vertex or-

derings <1
V
, <2

V
, . . . , <⌧

V
with the property that <t

V
is compatible with layer Gt for all

t 2 [⌧], and the orderings of any two consecutive layers have Kendall tau distance at

most K, that is, for all t 2 [⌧ � 1] we have that K(<t

V
, <t+1

V
) K. We say that the

vertex orderings <1
V
, <2

V
, . . . , <⌧

V
witness the shu✏e number of G.

Theorem 10. [22] Given the a temporal unit interval graph and a vertex order-

ings that witness its shu✏e number K, (s, z)-Temporal Separator is fixed-parameter

tractable when parameterized by K + ⌧ , where ⌧ is the maximum label.

2.6 Activity Timeline

In this section we discus the problem of determining when entities are active based on

their interactions with each other. Rozenshtein et al. [43] have studied this problem

in details. They consider a set of entities V and a sequence of time-stamped edges E

among the entities. Each edge (u, v, t) 2 E denotes an interaction between entities u

and v that takes place at time t.

Proposition 1. [43] The decision version of the MinTimeline problem is NP-complete.

Namely, given a temporal network G = (V,E) and a budget l, it is NP-complete to

decide whether there is timeline ' = {Iu}u2V that covers G and has S(') l.

Proposition 2. [43] Consider a maximal solution ↵e to the dual program. Define a

set of intervals ' = {Iv} by Iv = [min Xv, max Xv], where

Xv = {mv} [{t 2 T (v)|h(v, t,mv) = |t�mv|}

Then ' is a 2-approximation solution for the problem MinTimelinem.

Proposition 3. [43] MinTimeline1 can be solved in a polynomial time.

25

Chapter 3

Temporal Separator

Although Vertex Separator could be solved in polynomial time, the Temporal Sepa-

rator problem is one of the hardest problems. Zschoche et al. [51] investigate (s, z)-

Temporal Separator and strict (s, z)-Temporal Separator on di↵erent types of tem-

poral graph. Here in this work, we investigate the problem called (s, z, t)-Temporal

Separator.

Checking if there is (s, z, t)-temporal path is solvable in polynomial time, since

finding the fastest temporal path is solvable in polynomial time [50, 49, 48]. This will

help us to give a polynomial-time algorithm for some family of graphs in the section

3.5.

Here in this Chapter, we refer to V (G) or E(G) as the set of vertices and the

edges, respectively, of a temporal graph or a static graph G. Also for any subset

U ✓ V (G) we refer E(U) to the set of all edges in the subgraph induced by U , and

for any node v 2 V we refer E(v) to the set of all edges that has incident to the node

v.

Lemma 8. Given a temporal graph G = (V,E, ⌧) and two distinct vertices s and z

as well as integer variable t, it is computable in time O(|S||E|) to decide if there is

(s, z, t)-temporal path in G where S = {t|9u : (s, u, t) 2 E}.

Proof. [48] and [50] present an algorithm that computes the fastest path from a single

source s to all of the vertices in O(|S|(|V |+|E|)). We could ignore the isolated vertices

so the factor of |V | is in O(|E|), then we could compute the fastest path from s to z

in G and check that if it is greater than t or not.

26

Here in this chapter first we will look at (s, z, t)-Temporal Separator on temporal

graph G = (V,E, ⌧) for small t and ⌧ . Then we will look at the approximation

algorithm and lower bound for this problem. We also investigate (s, z, t)-Temporal

Separator problem on temporal graphs that have bounded treewidth. Finally, we

examine the problem on a temporal graph with restrictions on the underlying graph.

3.1 (s, z, t)-Temporal Separator with Small t

Zschoche et al. [51] shows that (s, z)-Temporal Separator problem is NP-Complete

on a temporal graph G = (V,E, ⌧) if ⌧ � 2, and Strict (s, z)-Temporal Separator is

NP-Complete on the temporal graph G if ⌧ � 5. So, it is obvious that the problem

(s, z, t)-Temporal Separator is NP-Complete if t � 2, and Strict (s, z, t)-Temporal

Separator is NP-Complete if t � 5.

Reduction from minimum satisfiability problem with non-negative variables to

(s, z, 1)-Temporal Separator could be made by adding a path from s to z in layer Gi,

which contains all the variable in the i-th equation. So, (s, z, 1)-Temporal Separator

on temporal graphs with a su�cient number of layers is NP-Complete. However, the

solvability or complexity of (s, z, t)-Temporal Separator on temporal graphs with a

small number of layers is not trivial. Here we show that (s, z, 1)-Temporal Separator

remains NP-Complete on temporal graph G = (V,E, ⌧) if ⌧ is equal to 2. To do

that, we need to introduce a version of Separator in which the goal is to disconnect

all the vertices for a set of terminals given as the input of the problem.

Problem 6 (Node Multiway Cut).

• Instance: A graph G = (V,E,) and a set of terminal vertices Z = {z1, z2, . . . zk}.
• Solution: A set of multiway cut S 2 V \Z which removal of set S from graph

G disconnect all 2 distinct terminal zi and zj.

• Measure: Minimize cordiality of set S

Node Multiway Cut problem is NP-Complete for k � 3 [25].

Theorem 11. (s, z, 1)-Temporal Separator problem is NP-Complete on a temporal

graph G = (V,E, ⌧) if ⌧ � 2.

Proof. For a given graph H and three vertices z1, z2,and z3 we construct a temporal

graph G = (V,E, 2). Let V = (V (H)\{z1, z2, z3})[{s, z} and for all the edges in H,

27

not incident to any terminal node equal to (u, v), add 2 edges (u, v, 1) and (u, v, 2) to

set of edges E. For all the vertices u which is a neighbour of vertex z1 add an edge

(s, u, 1) and for all vertices v which is neighbour of node z2 or neighbour of node z3

add an edge (v, z, 1) to the set of edges E. Finally add (s, u, 2) for all neighbours of

vertex z2, as well as (v, z, 2) for all neighbours of vertex z3 to the set of edges. We

claim that a set of S 2 V \{s, z} is a (s, z, 1)-temporal separator if and only if S is a

set of multiway cut for H.

 Suppose that S is a set of multiway cut in the graph H and S is not a set of

(s, z, 1)-temporal separator on the temporal graph G. So, there is a (s, z, 1)-temporal

path P which V (P) 2 V \S. Based on the definition of (s, z, 1)-temporal path, either

all the edges in the path belong to layer G1 or all of them belong to layer G2. Let’s

consider each case separately.

• Case 1. Consider a temporal path P where all the vertices belong to layer

G1. Suppose that path P starts with the edge (s, u, 1), and ends with the edge

(v, z, 1). Based on the construction of graph G, it is clear that u is a neighbour

of vertex z1 and v is a neighbour of vertex z2 or z3. Due to the fact that all the

edges in graph G that are not incidents to s and z, also appears in graph H,

all the edges excepts starting and ending edge in path P appear in the graph

H. Construct a new path P 0 by replacing vertex s with z1 and vertex z with

z2 or z3 that is adjacent to v. There is no vertex x 2 P such that x 2 S, so

all the vertices in path P 0 do not appear in S then V (P 0) ✓ V (H)\S and this

contradicts with the assumption of S being a multiway cut.

• Case 2. Consider a temporal path P where all the vertices belong to layer

G2. Similarly suppose that path P starts with the edge (s, u, 2) ends with

edge (v, z, 2), the u is neighbour of vertex z2 and v is neighbour of vertex z3.

Construct a path P 0 by replacing vertex s with z2 and vertex z with z3. So the

path P 0 is in the graph H from vertex z2 to z3 and V (P 0) ✓ V (H)\S which

contradicts with the assumption.

! Suppose that S is a (s, z, 1)-temporal separator in G and S is not a set of multiway

cut in the graph H. So there is a path P between two vertices of z1, z2, and z3 in

graph H which V (P) 2 V (H)\S. By replacing source vertex z1 or z2 with s and

terminal vertex z2 or z3 with z we could construct a path P 0 in which V (P) 2 V \S.
Now consider three cases for path source and terminal of P , since all the edges in P

28

except the first and last one does not incident to s or z, all edges in P appeared in

both layer G1 and G2. Therefore for each case we could conclude that:

• Case 1. P is between z1 and z2. So, in this case P 0 is in layer G1 and it

contradicts with the assumption that S is (s, z, 1)-temporal separator.

• Case 2. P is between z1 and z3. So, in this case P 0 is in layer G1 and it

contradicts with the assumption that S is (s, z, 1)-temporal separator.

• Case 3. P is between z2 and z3. So, in this case P 0 is in layer G2 and it

contradicts with the assumption that S is (s, z, 1)-temporal separator.

(s, z, 1)-Temporal Separator problem isNP-Complete on temporal graphsG where

the number of layers is greater than one, also (s, z, t)-Temporal Separator problem is

NP-Complete if ⌧ is greater than 2 since (s, z)-Temporal Separator is hard on the

temporal graph with more than one layer.

Corollary 4. Finding optimal (s, z, t)-Temporal Separator for temporal graph G =

(V,E, ⌧) is NP-Complete if and only if ⌧ � 2.

Strict (s, z)-Temporal Separator is NP-Complete on a temporal graph with more

than four layers [51]. By restricting a temporal path to a strict temporal path

with temporal distance lower than t, we could define another problem called Strict

(s, z, t)-Temporal Separator. Since Strict (s, z)-Temporal Separator is NP-Complete

on graphs with more than four layers, then it is clear that Strict (s, z, t)-Temporal

Separator is NP-Complete on a temporal graph with more than four layers and t � 5.

However, by a small change on the reduction presented by Zschoche et al. [51], which

is inspired by [49], we show that Strict (s, z, t)-Temporal Separator is NP-Complete

on a temporal graph with four layers and t � 3.

Theorem 12. Given a temporal graph G = (V,E, ⌧) and two vertex s and z, finding

strict (s, z, t)-temporal separator is NP-Complete if ⌧ � 4 and t � 3.

Proof. We present a reduction from a vertex cover problem to an instance of Strict

(s, z, 3)-Temporal Separator, which has four layers. Given a graph H, we construct

a graph G = (V,E, 4) and instance of input for Strict (s, z, 3)-Temporal Separator

29

s

sv

su

sw

w

z

zv

zu

zw

u

v1

1

1

2

2

2

2

2

2

3

3

3

3

3

4

4

4

3, 4

3, 4

3, 4

Figure 4: Instance of Strict (s, z, 3)-Temporal Separator problem with four layers that

corresponds to a vertex cover problem instance.

problem. Let V = {sv, v, zv|v 2 V (H)} [{s, z} and edge set E equal to:

E := {(s, sv, 2), (sv, v, 3), (v, z, 4), (s, v, 1), (v, zv, 2), (zv, z, 3), (zv, z, 4)|v 2 V (H)}[

{(su, zv, 3), (sv, zu, 3)|(u, v) 2 E(H)}

Figure 4 shows the structure of the temporal graph G. Let n = |V (H)|; we claim

that there is a vertex cover set in H with size k, if and only if there exists a set of

strict (s, z, 3)-temporal separator in G with cardinality lower than or equal to n+ k.

! Consider a set C 2 V (H), be a vertex cover with size k in H, then let S =

{v|v 2 V (H)\C}[{sv, zv|v 2 V (H)}. Assume that there is a strict (s, z, 3)-temporal

path P in which all the vertices belong to V \S. Since for every v 2 V (H) either

v 2 S or {sv, zv} ✓ S, temporal path P is like the following line:

P = (s, su, 2), (su, zv, 3), (zv, z, 4)

Which implies the existence of edge (su, zv, 3) in G, that results in (u, v) 2 E(H).

On the other hand existence of vertex su and zv in the path P implies that {u, v} ✓
V (H)\C which contradicts with the fact of covering all the edges in E(H) by vertex

cover C. So, there is no (s, z, 3)-temporal path in induced temporal graph G by V \S.
The cardinality of set S which is a strict (s, z, 3)-temporal separator for temporal

graph G is equal to (n� k) + 2k.

 Let S 2 V be a strict (s, z, 3)-temporal separator in which |S| = n + k. For

any vertex v 2 V (H) we claim that either v 2 S or {sv, zv} ✓ S, otherwise one of

30

the two strict (s, z, 3)-temporal path P1 and P2 which are shown in equation 3 and 4

respectively, will not be removed from graph G by removing set S.

P1 = (s, sv, 2), (sv, v, 3), (v, z, 4) (3)

P2 = (s, v, 1), (v, zv, 2), (zv, z, 3) (4)

Now we construct a set C 2 V (H) by the following choices for each vertex v 2 V (H).

• If more than one vertex of three vertices sv, v, and zv belong to S, then add v

to C.

• If only one vertex from three vertex sv, v, and zv is belonged to S, then don’t

add v to C.

First, base on the fact that at least one of the vertex, the three vertices sv, v, and

zv belong to S, it is clear that |C| k. Second, if there is an edge in (u, v) 2 E(H)

such that {u, v} ✓ V (H)\C, concerning the previous claims, it results in both path

P3 and P4 which are shown in the equation,5 and 6 respectively will present in a

temporal subgraph induced by V \S. Therefore C is a vertex cover with cardinality

lower than or equal to k.

P3 = (s, sv, 2), (sv, zu, 3), (zu, z, 4) (5)

P4 = (s, su, 2), (su, zv, 3), (zv, z, 4) (6)

Since every temporal path from s to z contains more than two edges, then ?
is a strict (s, z, 1)-temporal separator. Also, all strict (s, z, 2)-temporal path is like

(s, v, t), (v, z, t + 1) and it is clear that v 2 S for all sets of S which is a strict strict

(s, z, 2)-temporal separator. So, Strict (s, z, 2)-Temporal Separator problem could

be solve in polynomial time easily. Strict (s, z, t)-Temporal Separator problem on

graph G = (V,E, ⌧) such that ⌧ = t is equal to the Strict (s, z)-Temporal Separator.

Therefore, in case that ⌧ = t = 3 this problem is equal to Strict (s, z)-Temporal

Separator which ⌧ = 3. Zschoche et al. [51] present a polynomial time algorithm

to finding minimum strict (s, z)-temporal separator on temporal graph G = (V,E, ⌧)

which ⌧ < 5. So, this case could be solve in polynomial time. Although we know that

finding strict strict (s, z, t)-temporal separator on temporal graph G = (V,E, 3) is

polynomial time solvable with the algorithm which is represented in [51], we provide

a simple algorithm to solve this problem.

31

In the first step of the algorithm, we check if there is an edge between s and t, then

it is clear that there does not exist any separator sets, because with removing any

nodes from the graph, the direct path with using this edge from s to z will remain.

Next, for every temporal path from s to z with length two, such as (s, x, t1), (x, z

, t2) with t1 < t2, it is clear that we have to remove node x if we want to remove this

path from the graph. So, It is clear that x 2 S.

In the last step, we know that the length of every temporal path in the graph is

three. So, every path from s to z should be like the following path.

(s, x, 1), (x, y, 2), (y, z, 3)

Now, put every node x which there exists edge from s to x with time label one into

the set X, also put every node y which there exists edge from y to z with time label

3 into set Y . Now, It is clear that X \ Y = ?. because if not, so there exists a

node u, which there should exist two edges e1 = (s, u, 1) and e2 = (u, z, 3), while

this node should be removed in the last step. Therefore every strict temporal path

from s to z should have corresponding edge (x, y, 2) which x 2 X and y 2 Y . So, we

should remove either x or y for every edge (x, y, 2), which x 2 X and y 2 Y . In order

to do this we could use vertex cover problem in bipartite graph which is solvable in

polynomial time.

Corollary 5. Finding minimum strict (s, z, t)-temporal separator on graph G =

(V,E, ⌧) is NP-Complete if and only if ⌧ � 4 and t � 3.

3.2 Approximation of Temporal Separator Prob-

lems

Here in this section, we investigate an approximation algorithm to find optimal (s, z)-

temporal separator and (s, z, t)-temporal separator.

Theorem 13. let G = (V,E, ⌧) be a temporal graph. There exists a ⌧ -approximation

algorithm that finds optimal (s, z)-temporal separator in polynomial time.

Proof. To prove this theorem, we introduce function F from an undirected temporal

graph to a directed graph. Then we show that for any separator in F (G), there is a

32

vi, 1

v2,1

v1,1

vn,1

vi, 2

v2,2

v1,2

vn,2

vi, j

v2,j

v1,j

vn,j

vi, ⌧

v2,⌧

v1,⌧

vn,⌧

s z

L
ay
er

G
i
of

T
em

p
or
al

G
ra
p
h
G

Figure 5: Example of a directed graph F (G). For simplicity of presentation, edges in

layer Gi are not drawn.

(s, z)-temporal separator with a cardinality of at most the separator set’s cardinality.

Also we show that for any set of (s, z)-temporal separator S, there exists a separator

S 0 in F (G) such that |S 0| ⌧ |S|.
For temporal graph G = (V,E, ⌧), the directed graph H = F (G) = (V 0, E 0) is

defined as follows. The set of vertex in H is the union of ⌧ set of disjoint vertices

V1, V2, . . . , V⌧ and {s, z}, where:

8i 2 [⌧] : Vi = {vj,i|vj 2 V \{s, z}} [{s, z}

And the edges of H can be defined in four sets.

• For all edge (vi, vj, t) 2 E we add an edge (vi,t, vj,t) and (vj,t, vi,t) to the edge

set E 0.

• For all vertex vi and time t 2 [⌧ � 1] we add an edge (vi,t, vi,t+1) to edge set E 0.

• For all edge (s, vi, t) we add an edge (s, vi,t) to edge set E 0.

• For all edge (z, vi, t) we add an edge (vi,t, z) to edge set E 0.

Figure 5shows a sample for graph F (G).

Lemma 9. Let G = (V,E) be a temporal graph and H = (V 0, E 0) be a static graph

that H = F (G) and V = V1 [V2 [· · ·[V⌧ [{s, z}. For any (s, z)-temporal separator

S in G, there exists a (s, z)-separator S 0 in H such that |S 0| ⌧ |S|.

33

Proof. Suppose that S 0 is equal to
S

vi2V
S

j2[⌧]{vi,j}. It is clear that |S 0| ⌧ |S|, so
to prove this lemma it is su�cient to show that S 0 is a set of (s, z)-temporal separator

in H. Suppose that it is not, so there exists a path P 0 from s to z in subgraph of H

induced by V 0\S 0. It is clear that P 0 is as follows:

P 0 = (s, vi1,t1), (vi1,t1 , vi2,t1), . . . (vik1�1,t1
, vik1 ,t1), (vik1 ,t1 , vik1 ,t2),

(vik1 ,t2 , vik1+1,t2
) . . . (vik2�1,t2

, vik2 ,t2), (vik2 ,t2 , vik2 ,t3),

. . .

(vikr�1
,tr , vikr�1+1,tr

) . . . (vikr�1,tr
, vikr ,tr), (vikr ,tr , z)

Where t1 < t2 < . . . tr. So, consider the path P which is mentioned in the following:

P = (s, vi1 , t1), (vi1 , vi2 , t1), . . . (vik1�1
, vik1 , t1)

(vik1 , vik1+1
, t2) . . . (vik2�1

, vik2 , t2),

. . .

(vikr�1
, vikr�1+1

, tr) . . . (vikr�1
, vikr , tr), (vikr , z, tr)

Based on the fact that V (P 0) 2 V 0\S 0, it is clear that V (P) 2 V \S and also it is clear

that P is a temporal path. It contradicts that S is a set of (s, z)-temporal separator.

Therefore there is no path such V (P 0) 2 V 0\S 0 and S 0 is a separator in directed graph

H.

Lemma 10. Let G = (V,E, ⌧) be a temporal graph and H = (V 0, E 0) be a static graph

that H = F (G) and V = V1 [V2 [· · ·[V⌧ [{s, z}. For any (s, z)-separator S 0 in H,

there exists a (s, z)-temporal separator S in G such that |S| |S 0|.

Proof. Let S be equal to
S

t2[⌧]{vi|vi,t 2 S 0}. By the definition of S, it is clear that

|S| |S 0|, so to prove the lemma it is su�cient to show that S is a set of (s, z)-

temporal separator of G. Suppose that it is not, so there exists a temporal path P

from s to z in subgraph of G induced by V S. It is clear that P is as follows.

P = (s, vi1 , t1), (vi1 , vi2 , t1), . . . (vik1�1
, vik1 , t1)

(vik1 , vik1+1
, t2) . . . (vik2�1

, vik2 , t2),

. . .

(vikr�1
, vikr�1+1

, tr) . . . (vikr�1
, vikr , tr), (vikr , z, tr)

34

Where t1 < t2 < . . . tr. So, consider the path P 0 which is mentioned in the following:

P 0 = (s, vi1,t1), (vi1,t1 , vi2,t1), . . . (vik1�1,t1
, vik1 ,t1), (vik1 ,t1 , vik1 ,t2),

(vik1 ,t2 , vik1+1,t2
) . . . (vik2�1,t2

, vik2 ,t2), (vik2 ,t2 , vik2 ,t3),

. . .

(vikr�1
,tr , vikr�1+1,tr

) . . . (vikr�1,tr
, vikr ,tr), (vikr ,tr , z)

Based on the fact that V (P) 2 V \S, it is clear that V (P 0) 2 V 0\S 0 and also it is clear

that P 0 is a path in subgraph of G induced by V S. So, its contradict that S 0 is a

set of (s, z)-separator, therefore there is no path such v(P) 2 V \S and S is a set of

(s, z)-temporal separator in G.

So, from the Lemma 9 we could conclude that if the minimum cardinality of (s, z)-

temporal separator set in G is equal to k, there exists a separator with at most size

k⇥ ⌧ in the static graph F (G). So, the minimum (s, z)-separator in F (G) is at most

with size of k ⇥ ⌧ . therefore, due to the Lemma 10, we could find a (s, z)-temporal

separator with a cardinality of at most k ⇥ ⌧ by finding a minimum separator in the

static graph F (G) which is solvable in polynomial time.

Simply the above algorithm is not working for (s, z, t)-Temporal Separator prob-

lem. However, by a simple modification on a function F , we could give a polynomial-

time ⌧ 2-approximation by using an approximation algorithm from a problem called

Vertex k-Cut.

Problem 7 (Vertex k-Cut).

• Instance: Graph G = (V,E), a set S = {s1, t1, . . . , sk, tk} of special vertices,

and a weight function w : V \S ! N , and an integer k.

• Solution: A vertex k-cut, i.e., a subset C ✓ V � S of vertices such that their

deletion from G disconnects each si from ti for 1 i k

• Measure: Minimize the sum of the weight of the vertices in the cut, i.e.,X

v2C

w(v).

Theorem 14. Finding minimum (s, z, t)-temporal separator is approximable within

⌧ 2

35

Proof. Similarly, define a function F from a temporal graph G, which is an instance

of problem (s, z, t)-Temporal Separator to a static graph G and set of sources and

terminals that is an instance of Vertex k-Cut.

Given a temporal graph (G) = (V,E, ⌧), we will construct a static graph F (G) =

H = (V 0, E 0) such that the set of vertex inH is the union of ⌧ vertex sets V1, V2, . . . , V⌧

and set of sources S and terminals Z, where:

8i 2 [⌧] : Vi = {vj,i|vj 2 V \{s, z}} [{s, z}

S = si|i 2 [⌧]Z = zi|i 2 [⌧]

And the edges of H can be defined in four sets.

• For all edge (vi, vj, t) 2 E we add an edge (vi,t, vj,t) and (vj,t, vi,t) to the edge

set E 0.

• For all vertex vi and time t 2 [⌧ � 1] we add an edge (vi,t, vi,t+1) to edge set E 0.

• For all edge (s, vi, t) we add an edge (st, vi,t) to edge set E 0.

• For all edge (z, vi, t) and all integer time i � t < j � i such that j > 0 we add

an edge (vi,t, zj) to edge set E 0.

And the set S and Z are the sources and terminal. So, in this input, k is equal to

⌧ . Figure 6shows a sample for graph F (G), similar to the Theorem 13 it is su�cient

to prove the two lemmas with new construction.

Lemma 11. Let G = (V,E) be a temporal graph and H = (V 0, E 0) be a static graph

that H = F (G) and V = V1, V2, . . . , V⌧ [S [Z. For any (s, z, t)-temporal separator

A in G, there exists a vertex k-cut A0 in H such that |A0| ⌧ |A|.

Proof. Suppose that A0 is equal to [vi2V [⌧

j=1 {vi,j}. It is clear that |A0| ⌧ |A|, so to

prove this lemma it is su�cient to show that A0 is a set of vertex k-cut in H. Suppose

that it is not, so there exists a path P 0 from si to zi for specific integer i in subgraph

36

vi, 1

v2,1

v1,1

vn,1

vi, 2

v2,2

v1,2

vn,2

vi, j

v2,j

v1,j

vn,j

vi, ⌧

v2,⌧

v1,⌧

vn,⌧

L
ay
er

G
i
of

T
em

p
or
al

G
ra
p
h
G

s1

sj

s⌧

z1

zj

z⌧
vi, j + t

v2,j+t

v1,j+t

vn,j+t

Figure 6: Example of a directed graph F (G) an instance of vertex k-cut. Edges

from(to) sj(zj) to(from) sets shown by box implies that all the vertices v such that

there is an edge from(to) si(zi) to(from) v is belongs to one of this sets, also in figure

the edges in the layer Gi is not drawn.

of H induced by V 0\A0. Let t1 = i, it is clear that P 0 is as follows:

P 0 = (st1 , vi1,t1), (vi1,t1 , vi2,t1), . . . (vik1�1,t1
, vik1 ,t1), (vik1 ,t1 , vik1 ,t2),

(vik1 ,t2 , vik1+1,t2
) . . . (vik2�1,t2

, vik2 ,t2), (vik2 ,t2 , vik2 ,t3),

. . .

(vikr�1
,tr , vikr�1+1,tr

) . . . (vikr�1,tr
, vikr ,tr), (vikr ,tr , zt1)

Where t1 < t2 < . . . tr. So, consider the path P which is mentioned in the

following:

P = (s, vi1 , t1), (vi1 , vi2 , t1), . . . (vik1�1
, vik1 , t1)

(vik1 , vik1+1
, t2) . . . (vik2�1

, vik2 , t2),

. . .

(vikr�1
, vikr�1+1

, tr) . . . (vikr�1
, vikr , tr), (vikr , z, tr)

Based on the fact that V (P 0) 2 V 0\A0, it is clear that V (P) 2 V \A and also it is clear

37

that P is a temporal path. Also base on the construction of graph H, there is edges

from vertex vi,j to zk only if j � t < k j, therefore tr � t < t1 < tr) tr � t1 < t

results which path P is a (s, z, t)-temporal path. So, it contradicts that A is a set of

(s, z, t)-temporal separator, therefore there is no path such V (P 0) 2 V 0\A0 and A0 is

a separator in graph H.

Lemma 12. Let G = (V,E, ⌧) be a temporal graph and H = (V 0, E 0) be a static graph

that H = F (G) and V = V1[V2[· · ·[V⌧ [S [Z and set of sources S and terminals

Z. For any set vertex k-cut A0 in H, there exists a set of (s, z, t)-temporal separator

A in G such that |A| |A0|.

Proof. Let A be equal to {vi|9t : vi,t 2 S 0}. By the definition of A, it is clear that

|A| |A0|, so to prove the lemma it is su�cient to show that A is a (s, z, t)-temporal

separator of G. Suppose that it is not, so there exists a temporal path P from s to z

in subgraph of G induced by V S. It is clear that P is as follows.

P = (s, vi1 , t1), (vi1 , vi2 , t1), . . . (vik1�1
, vik1 , t1)

(vik1 , vik1+1
, t2) . . . (vik2�1

, vik2 , t2),

. . .

(vikr�1
, vikr�1+1

, tr) . . . (vikr�1
, vikr , tr), (vikr , z, tr)

Where t1 < t2 < . . . tr and tr � t1 < t. Therefore tr � t < t1 � tr which results

(vikr ,tr , zt1) 2 E 0 So, consider the path P 0 which is mentioned in the following:

P 0 = (st1 , vi1,t1), (vi1,t1 , vi2,t1), . . . (vik1�1,t1
, vik1 ,t1), (vik1 ,t1 , vik1 ,t2),

(vik1 ,t2 , vik1+1,t2
) . . . (vik2�1,t2

, vik2 ,t2), (vik2 ,t2 , vik2 ,t3),

. . .

(vikr�1
,tr , vikr�1+1,tr

) . . . (vikr�1,tr
, vikr ,tr), (vikr ,tr , zt1)

Based on the fact that V (P) 2 V \A, it is clear that V (P 0) 2 V 0\A0 and also it is clear

that P 0 is a path in subgraph of G induced by V S from st1 to zt1 . So, its contradict

that A0 is a set of vertex k-cut, therefore there is no path such v(P) 2 V \A and A is

a (s, z, t)-temporal separator in G.

38

In the instance of Vertex k-Cut on graph H, we have ⌧ pair of separators. On the

other hand cardinality of each set of vertex k-cut in H, which disconnects all the ter-

minals from corresponding sources, is greater than the optimal separator’s cardinality

disconnects zi from si. Therefore the union of all separators that disconnects zi from

si is at most ⌧ times greater than optimal vertex k-cut in directed graph H. More-

over, by Lemma 11 and 12 we could conclude that cardinality of (s, z, t)-temporal

separator that could be constructed by Lemma 11 from the union of all set of separa-

tors that disconnects zi from si is at most ⌧ 2 cardinality of optimal (s, z, t)-temporal

separator.

3.3 Inapproximability of Temporal Separator

To find an inapproximability result for (s, z, t)-Temporal Separator problem, we have

tried to reduce from some innaproximable problem. One of them which give us APX-

Hardness of (s, z, t)-Temporal Separator is Feedback Vertex Set and give us the idea

of the main result in this section. Reduction from Set Cover to (s, z, t)-Temporal

Separator show us a higher lower bound of ⌦(log(n) + log(⌧)) on approximation of

this problem.

Problem 8 (Feedback Vertex Set).

• Instance: Directed graph G = (U,A).

• Solution: A feedback vertex set, i.e., a subset K ✓ U such that K contains at

least one vertex from every directed cycle in G.

• Measure: Minimum cardinality of the feedback vertex set, i.e., |V 0|.

Lemma 13. For any t > 0 there is a strict reduction from Feedback Vertex Set

problem to (s, z, t)-Temporal Separator problem.

Proof. Let directed graph H = (U,A) be an instance of Feedback Vertex Set such

that U = {v1, v2, . . . vn}. Now we define a corresponding instance of G = (V,E, t⇥n)

for (s, z, t)-Temporal Separator problems such that:

V = {vi|i 2 [n]} [{ui|i 2 [n]} [{s, z}

And the the set of edges E is equal to union of four sets of edges:

39

• First set is equal to {(s, vi, i⇥ t)|i 2 [n]}

• The second one is {(ui, z, i⇥ t)|i 2 [n]}

• For any edge e = (vi, vj) 2 G we add n edges (vi, vj, k ⇥ t) for any k 2 [n].

• For any edge e = (vi, vj) 2 G we add n edges (vi, uj, k ⇥ t) for any k 2 [n].

Now we claim that there exists a set of feedback vertex set with a cardinality of

k if and only if there exists a set of (s, z, t)-temporal separator with a cardinality of

lower than or equal to k.

! Suppose that K is a feedback vertex set in H. Let S equal to:

S = {vi|vi 2 V }

We claim that S is a set of (s, z, t)-temporal separator. Assume that there is a

(s, z, t)-temporal path P from s to z.

P = (s, vi1 , t1), (vi1 , vi2 , t2), . . . (vik�1
, vik , tk), (vik , uik+1

, tk+1), (uik+1
, z, tk+2) (7)

It is clear that (s, z, t)-temporal path P should be equal to the temporal path shown

in equation 7, such that tk+2�t1 < t. Therefore, it is clear that tk+2 = t1 and therefore

ik+1 = i1. Now it is clear that (vi1 , vi1 , . . . vik) is the cycle and 8p 2 [k] : vip 2 U\K
which contradict with the fact that K is a feedback vertex set. The contradiction

implies that there is no (s, z, t)-temporal path P which V (P) ✓ V results in S is a set

of(s, z, t)-temporal separator. Also base on the selection of set S, it is obvious that

|S| = |K| |K|.
 Suppose that set S ✓ V is a set of (s, z, t)-temporal separator. Let K ✓ U

which define as follows:

K = {vi|(vi 2 S|ui 2 S)}

First, it is clear that |K| |S|. Now, assume that there is a cycle C in directed graph

H such that V (C) ✓ U\K. Let assume that C = (vi1 , vi2 , . . . , vik), so it is clear that

8p 2 [k] : vip 2 V 0\S and uip 2 V 0\S, therefor consider the path P equal to:

P = (s, vi1 , i1 ⇥ t), (vi1 , vi2 , i1 ⇥ t), . . . (vik�1
, uik

= ui1 , i1 ⇥ t), (ui1 , z, i1 ⇥ t) (8)

Due to the fact that 8p 2 [k] : vip 2 V 0\S and uip 2 V 0\S, all the vertices in (s, z, t)-

temporal path P has been status in equation 8 belongs to V \S which contradict with

40

the fact that S is a (s, z, t)-temporal separator. The contradictions implies that there

is no cycle C such that V (C) 2 U resulted in K is a feedback vertex set to G.

According to the previous claim, every solution in (s, z, t)�Temporal Separator,

has a corresponding solution in Feedback Vertex Set, and vice versa. Therefore,

an optimal solution in (s, z, t)�Temporal Separator, has a correspondent optimal

solution in Feedback Vertex Set. As a result |K0|
|Kopt| =

|S0|
|Sopt| .

The main result of this section is ⌦(log n+ log(⌧))-inapproximation for the

(s, z, t)-Temporal Separator problem. This immediately follows from the theorem

below, establishing a strict reduction from the Set Cover problem.

Problem 9 (Set Cover).

• Instance: Collection S of subsets of a universe U .

• Solution: A set cover for C, i.e., a subset C ✓ S such that every element in

U belongs to at least one member of C.

• Measure: Minimum cardinality of the set cover, i.e., |C|.

In the following theorem, we present that any instance of set cover can be strictly

reduced to (s, z, t)-Temporal Separator. First we show that any instance of the Set

Cover where the universe U = {1, 2, . . . , n} and the family S = {S1, S2, . . . , Sm}
such that Si ✓ U can be mapped to an instance of the (s, z, t)-Temporal Separator

problem. Finally we prove that for any solution S 0 to a Set Cover problem there

exists a correspondent solution V 0 to the (s, z, t)-Temporal Separator problem, where

|S 0| = |V 0|.

Theorem 15. For every t > 0 there is a strict reduction from the Set Cover problem

to the (s, z, t)�Temporal Separator problem.

Proof. Let (U,S) be an instance of the Set Cover problem, where U = {1, 2, . . . n} is

the universe and S = {S1, S2, . . . , Sm} is a family of sets the union of which covers

U . For each i 2 U define the family Fi as follows:

Fi = {S 2 S | i 2 S},

i.e., Fi consists of all sets from S that contain element i. Let ki = |Fi| and order the

elements of each Fi in the order of increasing indices, i.e.,

Fi = {Si1 , . . . , Siki
}. (9)

41

v1

vi1

vi2

vij

viki

vm

s z

Figure 7: Layer Gi⇥t of temporal graph which is instance of (s, z, t)-Temporal Sepa-

rator where U = {1, 2, . . . , n} and S = {S1, . . . , Sm} such that i 2 Si1 , Si2 , Siki

Now, we are ready to define the output of our reduction. Our reduction outputs

a temporal graph f(U,S) = (V [{s, z}, E) where:

• the vertex set is V [{s, z} = {vi|i 2 [m]} [{s, z};

• the edge set is E = E1 [E2 [· · · [En, where

Ei = {(s, vi1 , i · t), (vi1 , vi2 , i · t), . . . , (viki�1
, viki , i · t), (viki , z, i · t)}.

The main idea behind the proof is to map every element of U to a path in f(U,S)
bijectively, so by covering an element, we remove the corresponding path in f(U,S)
as well as by removing a path we cover the corresponding element.

We claim that V 0 = {vj1 , . . . , vj`} ✓ V is a (s, z, t)�temporal separator for f(U,S)
if and only if S 0 = {Sj1 , . . . , Sj`

} ✓ S is a set cover for (U,S).
Figure 7 represents the edges in the layer Gi, which contain all the edges in Ei. It

illustrates that element i in the universe U corresponds to a path Ei, as well as the

element i is covered by the set Sij 2 S 0 if and only if a temporal path which is shown

in Figure 7 is removed from the temporal graph by removing the vertex vij 2 V 0.

42

! Suppose for contradiction that S 0 does not cover U . Pick an arbitrary item

i 2 U that is not covered and consider the following path P :

P = (s, vi1 , i · t), (vi1 , vi2 , i · t), . . . , (viki�1
, viki , i · t), (viki , z, i · t),

where the indices are according to (9) Since i is not covered, Fi \ S 0 = ?, so P

is present in f(U,S) \ V 0 violating the assumption that V 0 is a (s, z, t)�temporal

separator (note that (�t)(P) = 0).

 Now, suppose for contradiction that V 0 is not a (s, z, t)�-temporal separator.

Thus, there is path P from s to z with (�t)(P) < t. From the definition of f(U,S) it
is clear that P should be using edges only from Ej for some j 2 [n]. Note that there

is a unique (s, z)-temporal path that can be constructed from Ej, namely:

P = (s, vj1 , j · t), (vj1 , vj2 , j · t), . . . , (vjkj�1
, vjkj , j · t), (vjkj , z, j · t).

This implies that element j is not covered by S 0, for otherwise, one of the vji would

be in V 0.

According to the previous claim, every solution in (s, z, t)-Temporal Separator,

has a corresponding solution in Set Cover, and vice versa. Therefore, an optimal

solution in (s, z, t)-Temporal Separator, has a correspondent optimal solution in Set

Cover. As a result |V 0|
|Vopt| =

|S0|
|Sopt| . This implies that the reduction is strict.

According to the inapproximability result for Set Cover, which is given in [17],

the following corollary could be resulted.

Corollary 6. (s, z, t)-Temporal Separator problem is not approximable to within (1�
✏)(log n+log(⌧)) in polynomial time unless for any " > 0, unless NP ⇢ Dtime(nlog logn).

3.4 Temporal Separator on Temporal Graphs with

Bounded Pathwidth

A polynomial-time algorithm for (s, z)-Temporal Separator problem on temporal

graphs with an underlying graph with bounded treewidth is given [22]. However,

the algorithm does not work for (s, z, t)-Temporal Separator. The question about

the hardness or polynomial-time solvability of (s, z, t)-Temporal Separator problem

on temporal graphs with bounded treewidth of their underlying graph remains open.

43

However, in this section, we present a reduction from the Discrete Segment Covering

problem on line interval.

Problem 10 (Discrete Segment Covering (DISC-SC)). [7]

• Instance: A set � of n intervals (called segments from here on), on the rational

line; a set I of unit-intervals on the rational line.

• Solution: A subset of unit interval A ✓ I which covers all the segment in �

• Measure: Minimum cardinality of the set A.

An interval I 2 I covers a segment S 2 � if at least one endpoint S lies in I.

A segment S 2 � is covered by a set of intervals A if there is an interval I 2 A

that covers S. DISC � SC problem is NP-Complete [7]. A simple polynomial-time

reduction from the Discrete Segment Covering problem is presented as follows.

Theorem 16. There is a polynomial-time reduction from the Discrete Segment Cov-

ering problem to (s, z, t)-Temporal Separator problem.

Proof. We denote the starting and ending point of the interval I by s(I) and e(I)

respectively. Also, we use this notation for all the segments. Consider (I1, I2, . . . Im)

a non decreasing order of all intervals in I, also consider (C1, C2, . . . , Cn) an arbitrary

order of segments in �. Based on the fact that size of all intervals in I is one, it

could be concluded that for any point p and three indices i < k < j if p 2 Ii and

p 2 Ij the p 2 Ik since starting point of Ik is before the starting point of Ij and

ending point of Ik is after the ending point of Ii.Now we construct a temporal graph

G = (V,E, t⇥ |�|) such that V = {vi|i 2 [m]}. For any segment Cj we construct the

layer Gj⇥t as following:

Let ls and rs the be the indices of first and last intervals which cover starting point

s(Cj). It is clear that a starting point of Cj is covered by all the interval between

Ils and Irs . Similarly, Le and re denote the index of first and last intervals which

cover ending point e(cj). Since ending point e(Cj) is after the starting point s(Cj)

the ls le and rs re. So based on le and rs we consider the two following case:

Case 1. (le rs). In this case we add a following temporal path which creates

the layer Gj⇥t. Figure 8 shows this temporal path.

(s, vls , j ⇥ t), (vls , vls+1, j ⇥ t), . . . , (vre�1, vre , j ⇥ t), (vre , z, j ⇥ t) (10)

44

s z

v1 v2 vls vls+1 vre vmvi

Figure 8: Layer Gj⇥t in case that le rs. The time label for all the edges is j ⇥ t

s z

v1 v2 vls vrs vre vmvrs

Figure 9: Layer Gj⇥t in case that rs < le. The time label for all the edges is j ⇥ t

Case 2. (rs < le). Similar to previous case we add a path from s to z which creates

the layer Gj⇥t. Figure 9 shows this temporal path.

(s, vls , j ⇥ t), (vls , vls+1, j ⇥ t), . . . , (vrs�1, vrs , j ⇥ t),

(vrs , vle , j ⇥ t), (11)

(vle , vle+1, j ⇥ t), . . . , (vre�1, vre , j ⇥ t), (vre , z, j ⇥ t)

Suppose that A 2 I, and let S = {vi|Ii 2 A}. We claim that A covers � if and

only if set S is a (s, z, t)-temporal separator.

! A is a set of intervals which covers all segments Cj. If le rs (Case 1) then

there exists an interval Ii 2 A such that ls i re where the temporal path which

is shown in equation 10 incidents with vertex vi. On the other hand, if rs < le (Case

2) then there exists an interval Ii such that ls i rs or le i re where the

temporal path which is shown in equation 3.4 incidents with vertex vi. Therefore,

every (s, z, t)-temporal path in the temporal graph G has incident with one vertex in

S results which S is a (s, z, t)-temporal separator.

 S is a set of (s, z, t)-temporal separator. Then for any integer j 2 [n] a temporal

path in time j ⇥ t should be incidents with one vertex in S. If le rs (Case 1) then

there exists vi 2 S such that ls i re which implies that Ii which covers Cj belongs

to A. If rs < le then there exists vi 2 S such that ls i rs or le i re which

45

implies Ii that covers Cj belongs to A. Therefore all the segments are covers by an

interval in A.

A reduction that represents the results that (s, z, t)-Temporal Separator is NP-

Complete, is already shown. For any tuple (i, j) such that i j and i, j 2 [m] we

could put a segments (e(Ii), s(Ij)) into a set of segments �. As a result, the edge

(vi, vj) will be present in the underlying graph of the temporal graph G, which means

there is no bound on the underlying graph G#. However, the presented reduction

gave us a hint to preset the main result in this section.

It is shown in [7] that the Discrete Segment Covering problem remains NP-

Complete when the length of all segments in � is equal; However, it does not bound

the underlying graph G# which is used in the previous reduction. When the length of

all segments is at most one, the problem could be solved by a simple greedy algorithm

[7]. However, solvability or hardness of the problem when the length of all segments

is bounded by a constant k remains open. Here in this section, we present a reduction

DISC�SC problem when the segments’ length is bounded by k, to (s, z, t)-Temporal

Separator where treewidth of the underlying graph is bounded by 2k + 6.

Theorem 17. There is a polynomial-time reduction from the Discrete Segment Cov-

ering problem. The length of all segments is bounded with size k to (s, z, t)-Temporal

Separator in which treewidth of the underlying graph is bounded by size 2k + 6.

Proof. Consider (I,�) is an instance of Discrete Segment Covering problem such that

the length of all the segments in � is lower than or equal to k. Consider intervals in

I = I1, I2, . . . In in non-decreasing order of their starting time. We choose a special

set of intervals SP 2 I by the following algorithm.

1. Let SP = I1 and index = 1.

2. Let j be the largest index such that s(Ij) < e(Iindex), if such j does not exist,

then let j = index+ 1

3. Put Ij into the set SP , update the integer index equal to j and if j n repeat

the algorithm from the step 2.

Lemma 14. Any point p will be covered by I if SP covers it.

46

Proof. We prove the lemma by induction. First, based on the algorithm, it is clear

that I1 2 Sp and In 2 Sp. Now we state the induction that for any i 2 [n] such that

Ii 2 SP , a point p will be covered by {I1, I2, . . . , Ii} if it is covered by {I1, I2, . . . , Ii}\
SP .

• Base case. For i = 1, it is clear that I1 2 SP .

• Induction step. Suppose j < i is the largest integer that Ij 2 SP . Based

on the assumption of induction any point p is covered by {I1, I2, . . . , Ij} if it is

covered by {I1, I2, . . . , Ij}\SP . On the other hand starting point of Ii is before

the ending point of Ij, which results in point p being covered by {I1, I2, . . . , Ii}
if it is covered by {I1, I2, . . . , Ii} \ SP .

Since In 2 SP , point p is covered by {I1, I2, . . . , In} = I if it is covered by {I1, I2, . . . , Ii}
\SP = SP .

This proof’s main idea is holding on to the following features for the special set

SP . Denote SP = {Im1 , Im2 , . . . Imq}, based on the selection of interval Imi+1 it is

clear that starting point Imi+2 is greater than ending point Imi which implies that

s(Imi+2) > s(Imi) + 1 where results in e(Imi+2k
) > s(Imi) + k+ 1. Therefore, for any

segment C 2 � and for any interval Imi and Imj such that sC 2 Imi and ec 2 Imj , we

could conclude that j i + 2k. This feature for SP is a main idea to construct an

instance of (s, z, t)-Temporal Separator problem.

Now we construct a temporal graph G = (V,E, ⌧) where ⌧ = |�| ⇥ t. Let V =

{ui|i 2 [n]} [{vi|i 2 [n]} [{s, z}. Now, for the i-th segment C 2 � we add a path

from s to z in time i⇥ t. Let interval a and b be the indices of the first intervals in SP

which cover point s(C) and e(C). Based on the Lemma 14 if such point a(b) does not

exist, then point s(C)(e(C)) will not be covered with any intervals in I. Therefore, we
could consider that segment c as a single point e(C)(s(C)) and continue on algorithm.

Also let ls be the index of the most left interval which covers s(C), and let rs be the

index of the most right interval which covers s(S). It is obvious that s(C) is covered

by all of the intervals between ls and rs. Similarly let le and re be the indices of the

most left and the most right intervals which cover e(C). It is possible that le rs to

prevent creating a loop instead of a path. If that is the case then consider le = rs+1.

Now, add a following (s, z, t)-temporal path to the temporal graph G.For simplicity

we denote i⇥ t by ✓.

47

u1 u2

uls uma urs ule umb ure

um

v1 v2 vls vma vrs vle vmb vre vm

s z

Figure 10: (s, z, t)-temporal path in the layer Gj⇥t. The time label for all the edges

is j ⇥ t

(s, ul, ✓), (ul, vl, ✓), (vls , vls+1, ✓), . . . (vrs�1, vrs , ✓)

(vrs , urs , ✓), (urs , urs�1, ✓), . . . (ua+1, ua, ✓)

(ua, ub, ✓) (12)

(ub, ub�1, ✓), . . . , (ule+1, ule , ✓), (ule , vle , ✓)

(vle , vle + 1, ✓) . . . (vre�1, vre , ✓), (vre , ure , ✓), (ure , z, ✓)

Figure 10 shows the above path in the graph that is equal to the layer i⇥ t. We

claim that there exists set A ✓ I that covers � which A p if and only if there is a

set of (s, z, t)-temporal separator S 2 V such that |S| p.

! Suppose that A ✓ I covers all segments in �. Let S = {vi|Ii 2 A}, it is obvious
that |S| = |A|. Now we prove that S is a (s, z, t)-temporal separator. Suppose that

that there is a temporal path P in G, base on the construction of G this temporal

path should be equal to a temporal path that is shown in equation 12 for some i 2 [n],

which is implies Ij /2 A for all j such that ls < j < rs or le < j < re that results in

the i-th segment not being covered by A. So, based on the contradiction we could

conclude that S is a (s, z, t)-temporal separator.

 Suppose that S 2 V is a (s, z, t)-temporal separator in a temporal graph G. Let

A = {Ii|ui 2 Sorvi 2 A}, it is clear that |A| |S|. Consider segment C 2 � the i-th

segment in �. There should be one vertex belonging to the temporal path P which is

shown in equation 12 in S , since S is a (s, z, t)-temporal separator. Therefore there

is j where ls < j < rs or le < j < re that either ui or vi belong to S, which implies

C 2 A, that results in A covering �.

48

v1 v2 vma vmb vm�1 vm

s z

u1

u2

uma umb um�1 um

Figure 11: Graph G0 is shown. The underlying graph G# is a subgraph of G0

Now we prove pathwidth of underlying graph G# = (V,E 0) of the temporal graph

G(V,E, |�|⇥ t) is bounded by 2k+6. We denote every edge (ua, ub, ✓) in a path that

is shown in equation 12 by crossing edge. Figure 11 shows that a graph G0 which G#

is a subgraph of G0. Now we give a path decomposition (P, �) for a graph G# in which

the width of decomposition is lower than 2k + 6. Let V (P) = {a1, a2, . . . , am} and

E(P) = {(a1, a2), . . . , (am�1, a(m))}. Let i 2 [n] and l(i) be the largest integers such

that the starting point of interval Iml(i)
2 SP is before the starting point of interval

Ii. Now we define the �(ai) as follows:

�(ai) = {ui, vi, ui+1, vi+1, s, z} [{vml
|l � l(i) and l l(i) + 2k}

Lemma 15. For any vq and i, j, l such that i < j < l, if uq 2 �(ai) and uq 2 �(al),

we have uq 2 �(aj).

Proof. If Iq /2 SP then it is clear that uq only appears in �(aq�1) and �(qi). Now

suppose that I1 2 SP and q = mp. Since ump 2 �(ai) we have mp l(i) + 2k, also

l(l) mp since mp 2 �(al). As a result we have mp l(i) + 2k l(j) + 2k and

l(j) l(l) mp which implies that uq 2 �(aj). Note that if mp = i it will not impact

the previous conditions.

For any vi 2 V is is clear that vi just belongs to the two sets �(ai�1) and �(ai).

Also, s and z are presented in all the sets. Therefore, by Lemma 8 we could say that

the third properties of path decomposition is satisfied. So, it is su�cient to show

that for any edge (u, v) 2 E(G# there exists i 2 [n] such that {u, v} ✓ �(ai). If the

edges are not crossing edges, then there are three type of edges (ui, vi), (ui, ui+1),

and (vi, vi+1) which satisfy the condition. If edge e = (ui, uj) is a crossing edge, then

Ii 2 SP and Ij 2 SP , so let mp = i and mq = j. Due to the fact that this edge is

49

corresponding to a segment C such that sC 2 Imp and eC 2 Imq we could conclude

that mq mp + 2k which implies that vi, vj ✓ �(ai).

Also, the cardinality of all sets �(ai) is equal to 2k + 7 which implies that the

width of (P, �) is equal to 2k + 6. Therefore the pathwidth of the underlying graph

G# is lower than or equal to 2k + 6.

Corollary 7. Discrete Segment Covering problem is solvable in polynomial time when

a constant number bounds all segments’ length, if (s, z, t)-Temporal Separator prob-

lem is solvable in polynomial time, in a temporal graph with bounded pathwidth by a

constant number.

3.5 Polynomial-time Algorithms for (s, z, t)-Temporal

Separator

Here in this section, we will present polynomial algorithms for two types of temporal

graph. We show that (s, z, t)-Temporal Separator is computable in polynomial time

for a temporal graph G = (V,E) if an underlying graph G# has branchwidth 2, or

static graph (VG#\{s,z}, EG#) is tree.

3.5.1 Temporal Separator on Graphs with Bounded Branch-

width

The graphs with branchwidth 2 are graphs in which each biconnected component is

a series-parallel graph [41]. Here we present an algorithm to solve any version of

restricted path (s, z)-Temporal Separator problem on a temporal graph with branch-

width, bounded by 2 on its underlying graph for which the existence of that path

could be checked in polynomial time.

Theorem 18. Given a temporal graph G = (V,E), such that underlying graph G#

has a maximum branchwidth 2, the problem restricted path (s, z)-Temporal Separator

is solvable in time O(|V |)f(G) where f(G) is the time complexity of the algorithm to

check the existence of restricted (s, z)-temporal path.

Proof. Suppose that (T, �) is a branch decomposition of temporal graph G = (V,E)

which is rooted by r, we define the function top : V ! VT for every vertex of v 2 V

50

equal to the furthest node x 2 VT from root R which E(v) ✓ �(x). We also denote

the xl as the left child of x and xr as the right child of x.

Lemma 16. Let G = (V,E) be a static graph with branch decomposition (T, �). For

any vertex v 2 V such that top(v) = x, we have v 2 @�(xl) and v 2 @�(xr).

Proof. Suppose that v /2 @�(xl) then it indicates E(v) 2 �(xl) or for each edge e if

e 2 E(v) the e /2 �(xl). If E(v) ✓ �(xl), since xl is further from root than x then

there is a contradiction with the equality top(v) = x. On the contrary, if E(v) 6✓ �(xl)

then due to the fact that E(v) ✓ �(X), we could conclude that E(v) ✓ �(xr), since

there is no edge in e 2 E(v) such that e 2 �(xl). It also contradicts with the equality

top(v) = x. Therefore, it can be derived that v 2 @�(xl). Same could be apply to the

other part.

Given a temporal graph G = (V,E) with underlying graph G# = (V,E 0) and

branch decomposition (T, �) of G#, we represent a polynomial time algorithm to

solve a restricted path (s, z)-Temporal Separator problem on the temporal graph G.

First we check weather there is restricted (s, z)-temporal path in G. If not, we return

? as a restricted path (s, z)-temporal separator. Otherwise we will continue on the

algorithm. Suppose that top(s) = x and top(z) = y. First consider the case that x

and y are both equal to root of T , Algorithm 1 shows how to compute the restricted

path (s, z)-temporal separator in this case:

51

Algorithm 1: Find restricted (s, z)�temporal separators from the root x

Function FindSeparators(T, x):

xl left child x;

xr right child x;

if @�(xl) [@�(xr) = {s, z} then

return FindSeparators(T, xl) [FindSeparators(T, xr) ;

else

if there is a restricted (s, z)-temporal path in @�(x) then

return @�(xl) [@�(xr)\{s, z} ;

else

return ? ;

end

end

Recall that boundary @�(x) is equal to {v|v is incident to edges in �(x) and

E\�(x)}.
As shown in Algorithm 1 first we check if union of @�(xl) and @�(xr) is s and

z, then we find separator on each temporal subgraph induced by �(xl) and �(xr)

separately. Otherwise we check that if there is a restricted (s, z)-temporal path in

the temporal graph induced by �(x), we return @�(xl)[@�(xr)\{s, z} else we return

? as a separator.

Lemma 17. Algorithm 1 finds a minimum restricted path (s, z)-temporal separator

of temporal graph induced by �(v) in O(|E|)f(G) time if @�(v) ✓ {s, z} or top(s) =

top(z) = v.

Proof. Consider that top(s) = top(z) = v, base on Lemma 16 it is clear that @�(vl) =

{s, z} and @�(vl) = {s, z}, so we could conclude that every (s, z)-path P , E(P) 2
�(vl) or E(P) 2 �(vr). Because if the path contains edges from both �(vr) and �(vl)

then there exists two consequential edge e1 and e2 in path P such that e1 2 �(vl) and

e2 2 �vr which means that there is vertex p being incident to both edge sets �(vr)

and �(vl). So p 2 @�(vr) and p 2 @�(vl) which contradicts with the assumption.

So, then it is clear that the minimum restricted path (s, z)-temporal separator in

graph induced by �(v) is the union of tow minimum restricted path (s, z)-temporal

52

top(s) top(z)

top(s) = top(z)

top(s)

top(z)

case 1

case 3

case 2

Figure 12: Three cases for node top(s) and top(z) in branch decomposition (T, �)

separator set of graph induced by �(vl) and �(vr), therefore algorithm 1 will find the

minimum (s, z, t)-temporal separator properly.

If @�(v) ✓ {s, z} and @�(vl) [@�(vr) 2 {s, z}, then based on the reasoning

above, algorithm 1 computes the minimum restricted path (s, z)-temporal separator

properly. Otherwise there is a vertex q 2 V such that q 2 @�(vl)[@�(vr). Due to the

fact that p /2 @�v, it is clear that top(q) = v, so based on Lemma 16, p 2 @�(vr) and

p 2 @�(vl). This means @�(vl) = {s, q} and @�(vr) = {z, q}, or @�(vr) = {s, q} and

@�(vl) = {z, q}. This results in all the (s, z)-path in �(v) having the node q. So, if

there is any restricted (s, z)-temporal path in temporal graph induced by �(v), then

any restricted path (s, z)-temporal separator contains at least one vertex. Therefore,

@�(vr) [@�(vl)\{s, z} = {q}, a set of minimum (s, z, t)-temporal separator, will be

returned from algorithm 1.

We consider three general cases for x and y and we will describe the algorithm

case by case for all these three. Figure 12 Shows the di↵erent cases.

53

Case 1. x 6= y and neither is x an ancestor of y, nor is y an ancestor of x. In this

case first for all vertex v 2 V \{s, z}, we check if there is no restricted (s, z)-temporal

path in G after removing vertex v. Then we return {v} as the temporal separator. If

such vertex does not exist, we return @�(x).

Case 2. x 6= y, and one of them is the ancestor of the other one. Due to the

symmetry, without loss of generality, we assume that y is the ancestor of x. Then we

will consider three cases for the node y.

• Case 2.1. z /2 @�(x). In this case for all vertex v 2 V \{s, z} , If there is

no restricted (s, z)-temporal path in G when the vertex v is deleted, we return

{v} as the set of temporal separator. If such vertex does not exist then we will

return @�(x).

• Case 2.2. @�(x) = {z}. In this case we run the algorithm 1 from the node x

in temporal subgraph induced by �(x).

• Case 2.3. @�(x) = {z, q} for some vertex q 2 V . Here in this case p should

be incident to only one of the two sets �(xl) and �(xr). Due to the symmetry,

without loss of generality, assume that @�(xl) = {q, z}, then @�(xr) = {s, z}.
So, we run the Algorithm 1 from the node yl. Suppose that S is the result

returned by Algorithm 1. We check that if there is any restricted (s, z)-temporal

path in the temporal graph induced by E\�(xr) then we will return S [q as

the temporal separator. Otherwise we return S as the temporal separator.

Case 3. x = y. In this case we consider two temporal subgraphs Gin and Gout

that their underlying graph is equal to G#in = (V, �(x)) and G#out = (V,E\�(x))
respectively. Then we find restricted path (s, z)�temporal separator on both temporal

graph Gin and Gout separately. For Gout first we check that if there is no restricted

(s, z)-temporal path then we return ? as a solution, otherwise we check if there is any

vertex v 2 V such that by removing v from Gout there is no restricted (s, z)-temporal

path in Gout then we will return {v}, and if there is no one we will return @�(x) as a

solution for restricted path (s, z)-temporal separator for graph Gout.

For finding restricted path (s, z)-temporal separator on Gin we run the Algorithm

1 on the node x.

54

We prove that the algorithm described above finds the minimum restricted path

(s, z)-temporal separator. We prove the correctness of the algorithm for each case.

Lemma 18. Given a branch decomposition (T, �). For any node q from T removing

@�(q) will disconnect every vertex that appears in one of the bags of nodes in the

subtree, which is rooted by q from the rest of vertices.

Proof. Based on the fact that @�(q) contains all incident vertex of set �(q) and

E\�(q) then every path from one vertex that is incident to �(q) to the vertices that

are incident to E\�(q) will contain one vertex in �(q), so removing the vertices in

�(q) will disconnect them.

In Case 1 because based on Lemma 18 removing @�(x) will disconnect s from

z in underlying graph G. So, it is clear that the smallest restricted path (s, z)-

temporal separator has the cardinality at most 2. Because the algorithm checks all

the possibilities of one node, then the algorithm finds the minimum restricted path

(s, z)-temporal separator properly.

In Case 2.1, the same as case 1, as z /2 @�(x) then it is not incident to any of

the edges in set �(x), so removing the vertices in @�(x) will remove all the restricted

path (s, z)-temporal separator in G.

In Case 2.2 for every path from s to z all the edges in the path are in the set

�(v), and based on Lemma 17 algorithm 1 will finds the minimum restricted path

(s, z)-temporal separator.

In Case 2.3 for a (s, z, t)-temporal path in G, either all the edges are in �(v) or

all the edges are in E\�(v). Based on Lemma 17 S is the smallest (s, z, t)-temporal

path in the graph induced by �(v), and due to the fact that all other paths from s to

v meet q, then S [{q} is the smallest restricted path (s, z)-temporal separator if and

only if there is any restricted (s, z)-temporal path on the temporal graph induced by

E\�(v).
In Case 3 all the restricted (s, z)-temporal paths are either in Gin or in Gout.

Based on Lemma 17 algorithm finds the smallest set of restricted path (s, z)-temporal

separator in Gin. Also it is obvious that all the (s, z, t)-temporal paths in Gout meet

one of the vertices in @�(x), so if there is a restricted (s, z)-temporal path and there

is no single vertex in V such that removing it will remove all that path, then @�(x)

is one of the smallest restricted (s, z)-temporal path.

55

Time complexity. In all the cases based due to the fact that existence of restricted

(s, z)-temporal path could be compute in time f(G), it takes O(|V |)f(G) of time steps

to check for every node that whether deleting them removes all the (s, z, t)-temporal

paths or not. Also, the algorithm 1 takes O(|V |)f(G) of time steps, and because we

just run the algorithm 1 one time, then the algorithm’s time complexity isO(|V |)f(G).

Based on Lemma 8, existence of (s, z, t)-temporal path could be computed in

polynomial time. So, by the Theorem 18, the following corollary could be concluded.

Corollary 8. Given a temporal graph G = (V,E), such that underlying graph G#

has a maximum branchwidth 2, the problem (s, z, t)-Temporal Separator is solvable in

time O(|V ||E||Ts|) where Ts = {t(e) : e 2 E(s)}.

3.5.2 Temporal Separators on Tree-Based Family of Graph

In this section we present a polynomial time greedy algorithm which is motivated

by point-cover interval problem for path restricted (s, z)-temporal separators on the

graph such that the graph G# = (V \{s, z}, E(G#)) is tree, if the existence of restricted

(s, z)-temporal path could be checked in polynomial time.

Theorem 19. let G = (V,E) be a temporal graph with underlying graph G#, such that

static graph (V \{s, z}, E(G#)) is a tree. Any version of restricted path (s, z)-temporal

separators for which the existence of that path could be checked in polynomial time on

a graph with path underlying graph, is computable in polynomial time on G.

Proof. Given a temporal graph G with underlying graph G#. Let rooted tree T =

(V \{s, z}, E(G#)). For any node v in T consider removing list RLv a list of all the

node pairs on the graph where there is a restricted (s, z)-temporal path through the

unique path between them. For each pair of node (u, v) where order does not matter

(2 nodes could be the same) in tree T denote the unique path between u and v in

T by Pu,v. First of all we compute the list RLv for all node in T . In order to do

that, for any pair of node (u, v) in T , we check that if there is any restricted (s, z)-

temporal path on temporal graphs induced by set of edges E(Pu,v) [{(s, u), (v, z)}
or E(Pu,v)[{(s, v), (u, z)}, then we will add pair (u, v) to the remove list of all node

in the unique path Pu,v.

56

Lemma 19. A set of S 2 V is a restricted path (s, z)-temporal seprators if and only

if for each pair (u, v) that exist on at least one removing list containing pair(u, v),

there is at least one node x 2 S such that (u, v) 2 RLx.

Proof. Let S 2 V be a set of vertices, here we prove both directions.

! Suppose that S 2 V \{s, z} is a set of restricted (s, z)-temporal separators. For

every restricted (s, z)-temporal path that starts with edge (s, u) and ends with edge

(v, z), there is a node x in this path such that x 2 S. Since there is only one path in

T between node u and v, for every x 2 VPu,v either all of them contain pair (u, v) in

their removing list or none of them contains pair (u, v) in their removing list.

 Suppose that S 2 V \{s, z} is a set of vertices such that for each pair (u, v) that

exist on at least one removing list containing pair(u, v), there is at least one node

x 2 S such that (u, v) 2 RLx. Consider the restricted (s, z)-temporal path P in G.

Let the first edge be (s, u) and the last edge be (v, z), then as the pair (u, v) exists

only on the removing list of Pu,v then there is a node x 2 S such exist in P .

Initiate the set S equal to ? and consider the rooted tree T . While there exists a

none empty removing list, proceed to the following steps.

• In each step of algorithm select the node x with highest density in T for which

there exists a pair (u, v) 2 RLx such that (u, v) /2 RLparent(v).

• Add x to the set S and remove all pairs in RLx from the removing lists of all

the other nodes.

57

Algorithm 2: Find restricted (s, z)�temporal separators

Function FindSeparators(G = (V,E)):

T (VG# � {s, z}, EG#);

S ?;

for (u, v) 2 VT ⇥ VT do

if exist a restricted (s, z)-temporal path starts with edge (s, u, t1) and

ends with (v, z, t2) then

for x 2 VPu,v do

RLx RLx [{(u, v)};
end

end

end

Traverse((T, root));

return S;

Function Traverse(T, v):

for u 2 childs(v) do
Traverse(T,u)

end

for (u, v) 2 RLv do

if (u, v) 2 RLparent(v) then

S S [{v};
remove (u, v) from all the removing list;

end

end

Here we provide proof for the algorithm. Suppose that the algorithm returns a set

S. Based on Lemma 19, it is obvious that S is a valid restricted (s, z)-temporal path.

So, it is su�cient to show that S is optimal. Suppose that S is not an optimal set of

restricted (s, z)-temporal separators. Let Sopt be an optimal set of restricted (s, z)-

temporal separators with the maximum common vertices selected in our algorithm at

first steps. Suppose that S{opt} has k elements that are selected in the algorithm at

k first steps. Let vertex x be the (k + 1)-th vertex that is selected in our algorithm.

Based on the algorithm’s selection, there is a pair of node (u, v) that appears in

removing list RLv and not in RLparentv . So, there should be a vertex x0 2 Sopt such

58

that (u, v) 2 RLx0 . Then the following facts could be concluded.

• (u, v) /2 RLparent(x), therefore x0 is in the subtree of x.

• There does not exist a pair (u0, v0) 2 RLx0 such that (u0, v0) 2 RLx. If there is

such a pair then, there is a node y such in the sub-tree x such that (u0, v0) 2 RLy

and (u0, v0) /2 RLparent(y), so the pair node y should be chosen before node x.

Therefore, by changing the vertex x0 from the set Sopt to x, it will remain a valid

set of restricted path (s, z)-temporal separators, and it contradicts with the selection

of optimal set Sopt. It concludes that S is an optimal set of restricted path (s, z)-

temporal separators.

Based on Lemma 8, the existence of (s, z, t)-temporal path could be computed in

polynomial time. So, by the Theorem 19, the following corollary could be concluded.

Corollary 9. (s, z, t)-temporal separators problem is solvable in polynomial time on

the temporal graph G = (V,E, ⌧) where the static graph (V \{s, z}, E(G#)) is a tree.

59

Chapter 4

Activity Timeline

Activity timeline problems were investigated in [43]. MinTimeline1 problem whose

goal is to find an activity timeline with minimum max span is solvable in polynomial

time [43]. However, neither approximation nor inapproximation has been presented

for the MinTimeline problem.

Observation 2. An activity timeline ' with the minimum max span which can

be computed by the polynomial-time algorithm of MinTimeline1 problem is an n-

approximation for MinTimeline problem which n is a number of vertices.

Proof. consider 'opt an activity timeline an optimal solution for MinTimeline prob-

lem and � = �('). Since �('opt) > �, there exists an interval Iv 2 'opt in which

|Iv| � �. Therefore, we could conclude that:

S('opt) � n|Iv| � n� ! S('(opt)) � n|�(')| (13)

4.1 Approximation Algorithm for MinTimelinem

The 2-approximation algorithm for MinTimelinem problem is implemented using

the duality of its corresponding linear programming [43]. Here we introduce a pure

combinatorics 2-approximation algorithm for this problem.

First we initialize each activity timeline by setting an activity interval Iu =

[mu,mu] for each vertex u 2 V . Then we process all edges of the graph in an

arbitrary order. In step k if edge ek = (uk, vk, tk) 2 V is not covered by Iuk
or Ivk

60

then extend both activity intervals Iuk
and Ivk equally until one of them covers the

time tk. Now we will present the pseudocode of algorithm.

Algorithm 3: 2-approximation algorithm for MinTimelinem problem

Function FindTimeline(G):
Result: ' = {Iu}u2V
Iv = [mv,mv] for all v 2 V ;

Order edges e1, e2, . . . , em arbitrarily;

for i 1 to m do

(ui, vi, ti) ei;

if ti /2 Iui [Ivi then

Extend Iui and Ivi simultaneously toward ti;

end

end

We indicate the interval for the vertex u 2 V which is selected by the algorithm at

the end of step kth by ALGk

u
, so the activity timeline which is chosen by the algorithm

at the end is 'ALG = {ALGm

u
}u2V .

Lemma 20. For any ei = (vi, ui, ti), we have:

2|(�ALGi

ui
[�ALGi

vi
) \ 'OPT | � |(�ALGi

ui
[�ALGi

vi
)| (14)

Proof. let 'OPT = {Iu}u2V , 'OPT covers ei, so [mvi , ti] ✓ Ivi or [mui , ti] ✓ Iui . In

addition according to the algorithm it is clear that �ALGk

ui
✓ [mui , ti] and �ALGi

vi
✓

[mvi , ti] as well as |�ALGi

ui
| = |�ALGi

vi
|. so:

�ALGi

ui
✓ �(�ALGi

ui
\ 'OPT) ✓ (�ALGi

ui
\ 'OPT) [(�ALGi

vi
\ 'OPT)

or

�ALGi

vi
✓ �(�ALGi

vi
\ 'OPT) ✓ (�ALGi

ui
\ 'OPT) [(�ALGi

vi
\ 'OPT)

then it is clear that,

2|(�ALGi

ui
[�ALGi

vi
) \ 'OPT | � |(�ALGi

ui
[�ALGi

vi
)|

61

Theorem 20. Algorithm 3 is a 2-approximation for MinTimelinem problem.

Proof. It is su�cient to prove that:

S('ALG) =
X

u2V

|ALGm

u
| S('OPT) (15)

we have:

S('ALG) =
X

u2V

|ALGm

u
| =

X

i2[m]

X

u2V

|�ALGi

u
| =

X

i2[m]

|(�ALGi

ui
[�ALGi

vi
)|

X

i2[m]

2|(�ALGi

ui
[�ALGi

vi
) \ 'OPT |

therefore we have:

�! S('ALG) 2
X

i2[m]

X

u2V

|�ALGui \ 'OPT | = 2S('ALG \ 'OPT) 2S('OPT)

Where the inequality is by Lemma 20.

4.2 Finding Activity Timeline on Temporal Graph

with Bounded Treewidth

Here in this section, we present a polynomial-time algorithm to find an activity time-

line with minimum total span on temporal graph G = (V,E, ⌧) if treewidth of an

underlying graph G# is bounded by a constant number.

Assume that nice tree decomposition of underlying graph G# of temporal graph

G = (V,E, ⌧) is equal to (T, �) rooted by node R. For any node X 2 V (T) and

timeline ' = {Iu}u2�(X). We say ' covers X if for any edge e = (u, v, t) 2 E such

that u, v 2 �(X), t 2 Iu or t 2 Iu. For a node X with a timeline ' which covers

X, we define T (X,') equal to a total span '0 that covers all the edges (u, v, t) 2 G

if there exists a node X 0 in subtree rooted by node X which u, v 2 �(X 0), such that

' ✓ '0 and minimize value S('0\'). We build a dynamic table D that D(X,') is

equal to minimum value S('0\'). Now to fill the dynamic table D, we consider four

cases base on node type in nice tree decomposition of G# to fill the dynamic table D:

62

Algorithm 4: Computing dynamic table for a forget node X

Function updateForgetNode((T, �, X)):

Y unique child of X ;

{v} �(Y)\�(X);

for ' {Iu}u2�(X) that ' covers X do

for Iv an interval of node v do

if D(Y,' [{Iv}) + |Iv| < D(X,') then

D(X,') = D(Y,' [{Iv}) + |Iv|;
T (X,') = T (Y,' [{Iv});

end

end

end

Algorithm 5: Computing dynamic table for an introduce node X

Function updatIntroduceNode((T, �, X)):

Y unique child of X ;

{v} �(X)\�(Y);

for ' {Iu}u2�(X) that ' covers B do

D(X,') = D(Y,'\Iv);
T (X,') = T (Y,'\Iv) [{Iv};

end

Algorithm 6: Computing dynamic table for a disjoint node X

Function updateDisjointNode((T, �, X)):

Xl left child of X ;

Xr right child of X ;

for ' {Iu}u2�(X) that ' covers B do

D(X,') = D(Xl,') +D(Xr,');

T (X,') = T (Xl,') [T (Xr,');

end

63

• Case 1. For a leaf node X = {v} and all timeline ' = {Iv} we have:

D(X,') = 0

• Case 2. For a forget node X and timeline ' = {Iu}u2�(X) that covers X with

unique child Y , let v be a unique vertex such that {v} = �(Y)\�(X), then the

value D(X,') is equal to the minimum value of

|Iv|+D(Y,' [{Iv}) (16)

For all Iv such that ' [Iv covers C. Algorithm 4 shows how to compute the

dynamic table D for a forget node X.

• Case 3. For an introduce node X and timeline ' = {Iu}u2�(X) that covers X

with unique child Y , let v be a unique vertex such that {v}�(X)\�(Y). Then

we the value of D(X,') is equal to:

D(Y,'\{Iv})

Algorithm 5 shows how to compute the dynamic table D for an introduce node

X.

• Case 4. For disjoint node X and activity timeline ' = {Iu}u2�(X) with the

children Xl and Xr the value of D(X, �) is equal to:

D(Xl,') +D(Xr,')

Algorithm 6 shows how to compute the dynamic array D for a disjoint node X.

64

Algorithm 7: Polynomial-time algorithm for temporal graph which has un-

derlying graph bounded treewidth

Function computeMinTimelineRecursively((T, �, X)):

for Y child of X do

computeMinTimelineRecursively((T, Y));

end

if X is a leaf node then

{v} �(X) for ' {Iv} do

D(X,') = 0;

T (X,') = ';

end

end

else if X is a forget node then

updateForgetNode(T, �, X);

end

else if X is an introduce node then

updateIntroduceNode(T, �, X);

end

else if X is a disjoint node then

updateDisjointNode(T, �, X);

end

Algorithm 7 shows how to compute the dynamic table for every node X 2 V (T)

and ' = {Iu}u2�(X) that covers X.

Lemma 21. Let (T, �) be a nice tree decomposition of G#, underlying graph of tem-

poral graph G = (V,E, ⌧). Let X 2 V (T) and ' = {Iu}u2�(X) a timeline that covers

X. Algorithm 7 will find timeline '0 such that minimize value S('0\') and covers all

the edges (u, v, t) where u, v 2 X 0 for some x0 in a subtree of node X.

Proof. We proof the lemma by induction base on the depth of node X in tree T . For

the leaf X node, which is the base case of our induction, since there is only one vertex

in �(X), any activity timeline will cover all the edges.

Now we consider three cases of node X in the graph. Then for all the nodes X.

65

Algorithm 8: Polynomial-time algorithm for temporal graph which has un-

derlying graph bounded treewidth

Function FindTimeline(G):

Declare dynamic table D(A,') of numbers;

Declare table T (A,') of activity timeline;

(T, �) a nice tree decomposition of G;

R root of T ;

minV alue 1;

T ?;

computeMinTimelineRecursively((T, �, R));

for ' {Iu}u2�(R) that ' covers R do

if minV alue > D(R,') + S(') then
minV alue > D(R,') + S(');

end

end

return (T (R,'));

• Case 1. If X is a forget node and Y is a child of X. Let {v} = �(Y)\�(x).
Base on the assumption of induction for all ' and Iv such that ' covers X and

' [{Iv} covers Y , T (Y,' [{Iv}) will cover all the edges in subtree Y which

implies that T (X,') will cover all the edges in subtreeX. On the other hand the

algorithm computes D(Y,' [{Iv}) correctly, which implies that the algorithm

will compute D(X,') correctly since we consider all the possible value for the

interval of vertex v.

• Case 2. If X is an introduce node and Y is a child of X. Let {v} = �(X)\�(Y).

Since ' covers X, '\{Iv} covers Y . Therefore D(X,') = D(Y,'\{Iv}) and

T (X,') = T (Y,'\{Iv}) [{Iv} where Iv 2 '.

• Case 3. If X is a disjoint node with children Xl and Xr. Since �(X) = �(Xl) =

�(Xr), any vertex v in the subtree of X which x /2 �(X) is only appears in on

of the subtree of Xl or Xr. Therefore, D(X,') = D(Xr,') + D(Xl,') and

T (X,') = T (Xr,') [T (Xl,').

66

To find the activity timeline that minimizes the total span and covers all the

edges of the graph. First, we run the algorithm 7 from the root. Then we find the

' = {Iu}u2�(R) that minimize the value of D(R,') + S('), and we return T (R,') as

a solution of algorithm. Algorithm 8 shows how to find the solution.

Theorem 21. MinTimeline problem is solvable in time O(|E|2tw(G#)+2|V |).

Proof. Let 'opt an activity timeline that covers all the edges and minimize the total

span. Suppose that 'R

opt
is equal to {Iv}v2�(R) such tat for each v 2 �(R) an interval

Iv belongs to '. Base on the Lemma 21 algorithm 7 will finds the 'opt and D(R,'R

opt
)

will be equal to S('opt) � S('R

opt
). Let ' be the result of algorithm 8. Since we

consider 'R

opt
as a timeline in algorithm 8:

S(') S('opt)� S('R

opt
) + S('R

opt
)

On the other hand, from Lemma 21 , we could conclude that ' will cover all the

edges in the subtree of R, which means ' will cover all the edges in the temporal

graph.

It is su�cient to consider only intervals that there exists an edge in their starting

point and ending point of time. So, for each vertex the number of intervals that

we need to consider is at most |E|2. Therefore, in Algorithm 8 the value of D and

T is need to compute for |V | ⇥ |E|2tw(G#). To do that we consider all possibility

for at most one interval which takes O(|E|2) times. Therefore the algorithm takes

O(|V ||E|2tw(G#)+2) time.

Corollary 10. Finding an activity timeline that minimizes total span is solvable in

polynomial time for a temporal graph with bounded treewidth.

67

Chapter 5

Conclusions and Future Work

In this work, we defined a (s, z, t)-Temporal Separator problem, generalizing the prob-

lem called (s, z)-Temporal Separator. We showed that (s, z)-Temporal Separator and

(s, z, t)-Temporal Separator problems could be approximated within ⌧ and ⌧ 2 ap-

proximation ratio, respectively, in a graph with lifetime ⌧ . We also presented a lower

bound ⌦(log(n)+log(⌧)) for (s, z, t)-Temporal Separator. The reduction from Vertex

Cover to (s, z)-Temporal Separator problem was presented by Zschoche et al. [51],

but it does not imply any lower bound on the approximation ratio for (s, z)-Temporal

Separator. This is because in the reduction solutions of size n+ k to (s, z)-Temporal

Separator correspond to solutions of size k to Vertex Cover instances.

Many hard problems including Vertex Cover, Independent Set, and Dominat-

ing Set become polynomial time solvable when we restrict the input to graphs with

bounded treewidth [4]. However, some problems, e.g., Temporal Vertex Cover, re-

main NP-complete even when we restrict the input to a tree or a star [1]. The

question of whether there is any polynomial-time algorithm to compute a minimum

(s, z, t)-temporal separator in a temporal graph of bounded treewidth remains open.

However, we showed a reduction from the DISC-SC problem when all segments’

lengths are bounded by a constant number to (s, z, t)-Temporal Separator when the

pathwidth of the underlying graph is bounded by a constant number. Therefore, the

question that arises is if both problems are polynomial time equivalent or not.

In addition, we show that the (s, z, t)-Temporal Separator problem can be solved

in polynomial time when the underlying graph has branchwidth at most two, each

biconnected component is a series-parallel graph, or the subgraph which contains

68

every node except source and terminal is a tree. Moreover, our algorithm will work

if we want to solve a generalized problem of Temporal Separator when it could be

computed if there is a restricted temporal path from s to z in polynomial time.

In this thesis, we investigated one generalization of a restriction on (s, z)-temporal

paths. By restricting temporal paths in another way, the (s, z)-Temporal Separator

problem could be generalized di↵erently. For instance, another approach is to restrict

temporal paths by their unweighted lengths. Meaning that the goal is to find a small

set of vertices, removing which either disconnects s from z or leaves only those paths

between s and z that have length greater than `. This generalization of the Temporal

Separator problem could be studied in future work.

The problem of finding an activity timeline that covers all edges and minimizes the

total span is NP-Complete [43]. However, we showed that this problem is solvable

in polynomial time on a temporal graph with bounded treewidth. Also, the question

of whether there exists a polynomial-time approximation algorithm remains open.

The 2-approximation algorithm for the problem when we bound every interval to

contains a specific time was given by [43] using linear programming. In this thesis,

we presented a purely combinatorial 2-approximation algorithm inspired by a double

coverage algorithm for the k-Server problem on a line.

69

Bibliography

[1] Eleni C Akrida, George B Mertzios, Paul G Spirakis, and Viktor Zamaraev.

Temporal vertex cover with a sliding time window. Journal of Computer and

System Sciences, 107:108–123, 2020.

[2] Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97(1-

2):3–26, 2003.

[3] Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio

Vandin. Algorithms on evolving graphs. In Proceedings of the 3rd Innovations

in Theoretical Computer Science Conference, pages 149–160, 2012.

[4] S Arnborg and A Proskurowski. Linear time algorithms for np-hard problems

on graph embedded in k-trees. Discrete Applied Math, 23(1):l–24, 1989.

[5] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of

finding embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods,

8(2):277–284, 1987.

[6] Brenda Baker. Gossips and telephones. Discrete Mathematics, 2(3):191–193,

1972.

[7] Dan Bergren, Eduard Eiben, Robert Ganian, and Iyad Kanj. On covering seg-

ments with unit intervals. In 37th International Symposium on Theoretical As-

pects of Computer Science (STACS 2020). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik, 2020.

[8] Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of

small treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

70

[9] Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Shortest,

fastest, and foremost broadcast in dynamic networks. International Journal of

Foundations of Computer Science, 26(4):499–522, 2015.

[10] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.

Time-varying graphs and dynamic networks. International Journal of Parallel,

Emergent and Distributed Systems, 27(5):387–408, 2012.

[11] Marek Chrobak, H Karloof, Tom Payne, and Sundar Vishwnathan. New ressults

on server problems. SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.

[12] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli↵ord Stein.

Introduction to algorithms. MIT press, 2009.

[13] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized algo-

rithms, volume 4. Springer, 2015.

[14] Xiaojie Deng, Bingkai Lin, and Chihao Zhang. Multi-multiway cut problem on

graphs of bounded branch width. In Frontiers in Algorithmics and Algorithmic

Aspects in Information and Management, pages 315–324. Springer, 2013.

[15] Jessica Enright, Kitty Meeks, George B Mertzios, and Viktor Zamaraev. Deleting

edges to restrict the size of an epidemic in temporal networks. arXiv preprint

arXiv:1805.06836, 2018.

[16] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commen-

tarii academiae scientiarum Petropolitanae, pages 128–140, 1741.

[17] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM

(JACM), 45(4):634–652, 1998.

[18] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. On graph problems in a semi-streaming model. In International Col-

loquium on Automata, Languages, and Programming, pages 531–543. Springer,

2004.

71

[19] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. On graph problems in a semi-streaming model. Departmental Papers

(CIS), page 236, 2005.

[20] Afonso Ferreira. Building a reference combinatorial model for manets. IEEE

network, 18(5):24–29, 2004.

[21] Paola Flocchini, Bernard Mans, and Nicola Santoro. Exploration of periodically

varying graphs. In International Symposium on Algorithms and Computation,

pages 534–543. Springer, 2009.

[22] Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp

Zschoche. Temporal graph classes: A view through temporal separators. Theo-

retical Computer Science, 806:197–218, 2020.

[23] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network.

Canadian journal of Mathematics, 8:399–404, 1956.

[24] Lester Randolph Ford Jr and Delbert Ray Fulkerson. Flows in networks, prince-

ton universitypress, princeton, nj. FordFlows in Networks1962, 1962.

[25] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Multiway cuts in

directed and node weighted graphs. In International Colloquium on Automata,

Languages, and Programming, pages 487–498. Springer, 1994.

[26] Saul I Gass and Arjang A Assad. An annotated timeline of operations research:

An informal history, volume 75. Springer Science & Business Media, 2005.

[27] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep

learning, volume 1. MIT press Cambridge, 2016.

[28] T.E. Harris and F.S. Ross. Fundamentals of a method for evaluating rail net

capacities. Technical report, RAND CORP SANTA MONICA CA, 1955.

[29] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An

almost-linear-time algorithm for approximate max flow in undirected graphs,

and its multicommodity generalizations. In Proceedings of the twenty-fifth annual

ACM-SIAM symposium on Discrete algorithms, pages 217–226. SIAM, 2014.

72

[30] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference

problems for temporal networks. Journal of Computer and System Sciences,

64(4):820–842, 2002.

[31] Helen Knight. New algorithm can dramatically streamline solutions to the ‘max

flow’problem. MIT News, 4:21–26, 2014.

[32] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in

dynamic networks. In Proceedings of the forty-second ACM symposium on Theory

of computing, pages 513–522, 2010.

[33] Fabian Kuhn and Rotem Oshman. Dynamic networks: models and algorithms.

ACM SIGACT News, 42(1):82–96, 2011.

[34] Yann LeCun, Yoshua Bengio, and Geo↵rey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[35] George B Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G Spi-

rakis. Temporal network optimization subject to connectivity constraints. In

International Colloquium on Automata, Languages, and Programming, pages

657–668. Springer, 2013.

[36] Othon Michail. An introduction to temporal graphs: An algorithmic perspective.

Internet Mathematics, 12(4):239–280, 2016.

[37] Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Causality, influ-

ence, and computation in possibly disconnected synchronous dynamic networks.

Journal of Parallel and Distributed Computing, 74(1):2016–2026, 2014.

[38] Regina O’Dell and Rogert Wattenhofer. Information dissemination in highly

dynamic graphs. In Proceedings of the 2005 joint workshop on Foundations of

mobile computing, pages 104–110, 2005.

[39] James B Orlin. Max flows in o (nm) time, or better. In Proceedings of the forty-

fifth annual ACM symposium on Theory of computing, pages 765–774, 2013.

[40] Ramamoorthi Ravi. Rapid rumor ramification: Approximating the minimum

broadcast time. In Proceedings 35th Annual Symposium on Foundations of Com-

puter Science, pages 202–213. IEEE, 1994.

73

[41] Neil Robertson and Paul D Seymour. Graph minors. x. obstructions to tree-

decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

[42] Ryan A Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. Modeling

dynamic behavior in large evolving graphs. In Proceedings of the sixth ACM

international conference on Web search and data mining, pages 667–676, 2013.

[43] Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. The network-untangling

problem: From interactions to activity timelines. Data Mining and Knowledge

Discovery, pages 1–35, 2020.

[44] Alexander Schrijver. On the history of the transportation and maximum flow

problems. Mathematical Programming, 91(3):437–445, 2002.

[45] Jonah Sherman. Nearly maximum flows in nearly linear time. In 2013 IEEE

54th Annual Symposium on Foundations of Computer Science, pages 263–269.

IEEE, 2013.

[46] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees.

Journal of computer and system sciences, 26(3):362–391, 1983.

[47] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall

Upper Saddle River, NJ, 1996.

[48] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan

Xu. Path problems in temporal graphs. Proceedings of the VLDB Endowment,

7(9):721–732, 2014.

[49] Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun

Wu. E�cient algorithms for temporal path computation. IEEE Transactions on

Knowledge and Data Engineering, 28(11):2927–2942, 2016.

[50] B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and

foremost journeys in dynamic networks. International Journal of Foundations of

Computer Science, 14(02):267–285, 2003.

[51] Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The

complexity of finding small separators in temporal graphs. Journal of Computer

and System Sciences, 107:72–92, 2020.

74

	List of Figures
	Introduction
	Formal Definitions
	Temporal Graphs
	Temporal Separator
	Activity Timeline
	Tree Decomposition and Branch Decomposition

	Literature Review
	Temporal Path
	Broadcasting and Gathering of Information
	Temporal Vertex Cover
	Reducing Reachability in Temporal Graphs
	Temporal Separators
	Activity Timeline

	Temporal Separator
	Lg-Temporal Separator with Small Lg
	Approximation of Temporal Separator Problems
	Inapproximability of Temporal Separator
	Temporal Separator on Temporal Graphs with Bounded Pathwidth
	Polynomial-time Algorithms for Lg-Temporal Separator
	Temporal Separator on Graphs with Bounded Branchwidth
	Temporal Separators on Tree-Based Family of Graph

	Activity Timeline
	Approximation Algorithm for Lg
	Finding Activity Timeline on Temporal Graph with Bounded Treewidth

	Conclusions and Future Work

