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ABSTRACT 

 

Buckling and Postbuckling response of laminated composite plates with interlaminar flaws 

 

Nima Shabanijafroudi, Ph.D.  

Concordia University, 2021. 

 

     High stiffness and strength, corrosion resistance, and ease of manufacturing have made 

laminated composites an excellent replacement for isotropic materials. The outstanding properties 

of composites especially appeal to industries such as the aerospace industry where lightweighting 

is of great importance. Despite the mentioned advantages, susceptibility to defects is a major 

drawback in using these materials. Being composed of several layers bonded together using an 

adhesive material, delamination or debonding of layers is one of the most common flaws in 

composite laminates. Delamination may drastically impact the mechanical behavior of laminates, 

especially in unstable conditions. Larger deflections and higher levels of stresses that a laminate 

experiences in the postbuckling state may, in turn, lead to the growth of a delamination. Given the 

complications that are caused by delamination, keeping delaminated plates in service requires an 

in-depth understanding of their postbuckling behavior including the possibility of the growth of 

the delamination.  The objective of this thesis is to develop a comprehensive mathematical and 

mechanical methodology for accurately predicting the buckling and postbuckling behavior of 

delaminated composite plates including the fracture mechanical phenomena involved in the 

postbuckling state. 

In all the formulations derived in the framework of the new methodology, the deformations of 

laminates are approximated using the first-order shear deformation theory and the equilibrium 

equations were derived using the principle of stationary total potential energy and the Ritz method. 

In both linear buckling and nonlinear postbuckling analyses, the effect of large rotations is 

incorporated by adopting Von Kármán’s approximations of the Green strain tensor.  

The present thesis work approaches the buckling and postbuckling behavior of delaminated 

plates through nonlinear analyses. However, conducting nonlinear analyses requires a preliminary 

knowledge of the potential buckling modes (local, mixed or global) and the loading level at which 

they may emerge. This preliminary information is used for determining the optimal configuration 
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of imperfections to be incorporated in the nonlinear analyses. In the present work, a novel 

eigenvalue buckling solution was developed for the required preliminary information. The 

developed formulation in order to account for the prebuckling stress field nonuniformity caused 

by in-plane constraints, bases the eigenvalue analysis on a calculated stress field obtained using a 

prebuckling stress analysis.  

For interrogating the details of the postbuckling behavior of delaminated plates, a state of the 

art postbuckling solution is proposed. The proposed methodology uses a new partitioning scheme 

that splits the delaminated plate using the plane of the delamination. Outside the delaminated 

regions the bond between the sublaminates is modeled using a penalty function method. The 

penalty functions model the effect of an extremely thin layer of elastic adhesive gluing the 

sublaminates together. The use of the penalty function method offers the advantage of providing 

the distribution of interlaminar traction in the plane of the delamination. Given the availability of 

interlaminar tractions in the vicinity of the borders of the delaminated region, Irwin’s crack closure 

integrals were integrated into the solution for calculating strain energy release rates corresponding 

to the three fracture modes separately. 

Given the importance and the abundant industrial use of curved composite panels especially in 

the aerospace industries, in an attempt to extend the applicability of the developed methodology 

to delaminated curved panels, an eigenvalue buckling solution for curved plates subjected to 

rotational edge restraints is developed. 

The validity of the deliverable results of each of the pieces of the developed methodology was 

verified by comparing the results with experimental data and numerical results obtained using 

finite element analyses. 
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Chapter 1: Introduction 
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1.1 Background and motivation 

Thanks to their outstanding mechanical properties, corrosion resistance, lightweight, and ease 

of manufacturing, laminated composite materials have gained remarkable popularity, especially in 

the aerospace industry where these characteristics are highly preferred. However, given their 

nonhomogeneous structure, understanding and modeling their failure mechanisms have been 

challenging and the subject of numerous studies. Failure often occurs due to the growth and 

propagation of preexisting flaws and despite their excellent properties, composite laminates are 

susceptible to inherent flaws. Probably the most impactful of the flaws in composite laminates is 

delamination. Delamination is partial debonding of the plies that constitute a layered laminate and 

may exist as preexisting manufacturing defects or may appear later in service due to material 

degradation, fatigue, or low-speed impact. It is established that there is a connection between 

matrix cracking inside the layers and the appearance of delamination between the layers. The 

aforementioned matrix cracks are generally cause by shearing or bending deformations. 

Delamination generally appears between layers with different fiber orientation. When a growing 

crack fails to penetrate the adjacent layer with different fiber orientation propagates as a 

delamination[1]. Regardless of the reason for their presence, delamination may drastically impact 

the mechanical behavior and load-carrying capacity of laminates [2]. The impact of delamination 

on the stiffness and strength of a plate is more pronounced in unstable conditions where 

significantly larger deformations are expected. The large deformations experienced in the 

postbuckling state may trigger fracture mechanisms and lead to the growth of the delamination.  

In thin-walled structures, static instability, or in other words buckling, happens due to a decrease 

in the bending stiffness of the structure caused by the reverse stress stiffening effect corresponding 

to in-plane compressive forces. In delaminated composite plates and shells, the manifestation of 

the instability phenomenon depends on the geometry, ply material properties, and the stacking 

sequence of the laminate as well as the size and the location of the delamination along the thickness 

of the laminate.  A laminate with a near-surface delamination is expected to experience a local 

buckling followed by a mixed buckling mode, whereas, laminates with delaminations closer to 

their midplane generally experience either global or mixed buckling mode shapes (Figure 1.1 ).  
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Figure 1.1 Schematic view of possible buckling mode shapes for a delaminated plate under compressive loading 

The diminishment of the bending stiffness in a buckled plate may lead to radically large 

deflections and consequently induces higher levels of stresses. This is especially more pronounced 

and important in delaminated plates, where the boundaries of the delaminated region constitute the 

tips of internal cracks. Large buckling deflections may trigger either of the three fracture 

mechanisms (Figure 1.2) and lead to the propagation of the delamination. The growth of a 

delamination may eventually result in the complete failure of the composite laminate.  

 

Figure 1.2 The three standard fracture modes (Mode I: opening, Mode II: shearing, Mode III: tearing) 

Given the prevalence of delamination in composite laminates, the general practice doesn’t 

involve discarding slightly defective laminates but rather keeping them in service while taking into 

account the ensuing consequences of the delamination. Given the complications that arise from 

the instability of delaminated plates, keeping such plates in service requires an in-depth 

understanding of their buckling and postbuckling behavior. Even though the aerospace industry 

relies vastly on testing, extrapolating the results of experiments necessitates an elaborate 
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methodology for predicting the buckling and postbuckling behavior of delaminated plates as well 

as the possibility of the propagation of a delamination. 

To predict the behavior of delaminated plates under compressive loading either eigenvalue 

buckling analyses or nonlinear buckling and postbuckling analyses can be performed. The linear 

buckling solutions have the advantage of speed and conciseness of results, however, the 

information they provide is limited to the instability threshold and the buckling mode shape. In 

contrast, nonlinear postbuckling analyses can provide a wide range of information that can help 

designers have a clear picture of the behavior of structures beyond the instability threshold. 

Eventually, the information collected using these analyses can be used for determining the residual 

strength in delaminated plates and adjusting the design allowables. 

1.2 Literature survey 

In the literature, various parameters, and phenomena have been found influential, in the 

instability problem of delaminated plates and the effect of each parameter has been examined either 

qualitatively or quantitatively. Studies differ in the parameters accounted for, the techniques to 

incorporate them, and also in solution approaches. Here the literature has been viewed from the 

perspective of the present work and the phenomena accounted for are summarized along with the 

strategies used to incorporate them in the simulation. In the subsequent sections, different aspects 

of the implemented theories and techniques are briefly explained and the advantages and 

disadvantages of each of them are discussed.  

1.2.1 Geometrical approach  

Technically, delamination is a discontinuity in the thickness of a composite plate and hence 

delaminated plate needs to be treated differently than an intact piece of material. One of the earliest 

works on the buckling and postbuckling of delaminated plates was carried out by Chai et al [3]. 

They proposed a one-dimensional analytical scheme based on a beam-column model and 

proceeded with calculating the energy release rate. They regarded thin, near-the-surface 

delaminations as a film bonded to an infinite substrate and for arbitrarily positioned delaminations 

they proposed a partitioning scheme for accommodating the geometrical discontinuity across the 

delamination (Figure 1.3). 
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Figure 1.3 Schematic view of a multi-zone model [4] 

The film modeling scheme as described was later used by many other researchers [2,5–8].  

Larson [9] extended the applicability of the one-dimensional film model to multiple axisymmetric 

circular delaminations. The concept of modeling a thin debonded layer as an independent film was 

also extended to two-dimensional modeling and was used in several works for modeling the 

stability behavior of delaminated elliptical films [10–14]. The film model approach has been also 

used for buckling analysis of laminates with multiple delaminations[9]. In this approach 

delaminated layers are modeled as a separate films, however the contact between these films are 

taken into account. Despite the vast use of the film model for simulating near-surface 

delaminations, Nilsson et al [15] in a numerical work questioned the accuracy of this approach.  

The partitioning scheme has also been widely used for the instability analysis of delaminated 

plates. The approach has been used for both one-dimensional [16–21] and two-dimensional [22–

26] modeling of laminates with through-the-width delaminations. The same principle has been 

used to develop a multizone partitioning scheme for two-dimensional analysis of laminates with 

finite-width embedded delaminations [25,27–34]. In problems involving multiple delaminations, 

the application of the partitioning scheme leads to a more intricate combination of sublaminates 

separated by delamination planes [24,35–37].  

Models based on layerwise theories treat the in-thickness discontinuity simply by modifying 

the assumed displacement field. Displacement discontinuity across the delamination is modeled 

by adding a jump function to the displacement field of the layerwise model [38–41]. The use of 

layerwise theories makes it possible to model a delaminated panel as a single plate without the 

need for partitioning. Ovesy et al [24] and Kharghani and Soares [42] however opted to use the 

partitioning scheme while modeling each segment using a layerwise theory.  
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1.2.2 Continuum modeling 

A variety of theories have been used for modeling the mechanical behavior of composite 

laminates with delamination. The simplest approach has been using a one-dimensional beam-

column model for simulating the different segments of a plate with through-the-width 

delaminations. In the majority of researches of this type the Euler-Bernoulli beam model has been 

used [3,7,8,16–18], however, to extend the applicability of the beam-column model to moderately 

thick laminates, some researchers have employed shear deformation theories [13,19]. In spite of 

the one-dimensional nature of these models, the essentially two-dimensional coupling effects have 

also been accounted for by modifying the bending stiffness of beams [5,21,43]. As was mentioned 

before the one-dimensional approach in conjunction with an axisymmetric formulation has been 

used for modeling axisymmetric geometries [9] as well. 

One-dimensional models as described are incapable of simulating two-dimensional phenomena 

such as two-dimensional deformations and/or width-related phenomena in through-the-width and 

finite-width delaminations. To accommodate these essentially two-dimensional effects and 

conditions, plate and shell theories have been used. The Classical Laminated Plate Theory (CLPT) 

provides the simplest approximation of the behavior of laminates and has been widely used in the 

literature of delaminated composite plates [5,9,11,12,22,44]. The CLPT assumes a linear 

distribution of in-plane displacements in the out-of-plane direction and neglects out-of-plane shear 

deformations. The CLPT has been proved to fairly approximate the behavior of thin laminates, 

however, it is notorious for overestimating the bending stiffness of thick laminates. To avoid 

excessive stiffness, First-order Shear Deformation Theory (FSDT) [15,25,30–32,45–48] and 

Higher-Order Shear Deformation Theories (HSDTs) [27]  have been used. Kharazi et al [23] 

studied the buckling behavior of laminates containing through-the-width delamination using 

CLPT, FSDT, and HSDT. They concluded that the HSDT had superior accuracy. However, they 

observed that the results obtained using FSDT match those of HSDT except for the cases with 

remarkably thick sublaminates. The FSDT despite taking into account shear deformations assumes 

a uniform distribution of transverse shear stresses in the thickness of a laminate and violates the 

traction free condition of the surfaces of a laminate and thus overestimates the bending stiffness. 

As a remedy to this problem, a shear correction factor is introduced to the shear stiffness of the 

laminate. Unlike isotropic materials, no single value can be prescribed as the shear correction 

factor of composite laminates. However, both the values prescribed for isotropic plates have been 
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used in the literature [49–52] both for pristine laminates and the sublaminates that constitute a 

delaminated plate and were proved to yield acceptable results. A more accurate approach for 

determining the shear correction factor of a laminate with a particular configuration is introduced 

by Whitney [53] and uses an energy equivalency method for estimating the shear stiffness of the 

laminate.  

Thus far all the discussed theories consider a laminate as an Equivalent Single Layer (ESL). 

Layerwise theories [24,28,33] constitute a different class of approximation methods for modeling 

laminated plates. These theories by assuming only C0 continuity of in-plane displacements in the 

out-of-plane direction of a laminate provide a more realistic picture of the behavior of a non-

homogenous layered plate.  

Besides the discussed plate and shell theories, solid models have been used in numerical studies 

as well. Both 2D [35,54–57] and 3D [38,58] Finite Elements (FEs) have been used in the literature 

to cover different aspects of the instability of delaminated composite plates. The major 

disadvantage of FE analysis is high computational costs. As a remedy to the high time and 

calculation costs associated with FE analyses, Whitcomb [59,60] employed a substructuring 

method to reduce the size of FE analyses.  

 

1.2.3 Fundamental formulation 

To derive and/or solve the buckling and postbuckling equations for composite laminates 

containing interlaminar flaws, a variety of formulations have been used. 

In solutions developed based on the beam-column model [3,5,7,21], the general approach has 

been to assume that the buckling mode shape remains unchanged in the postbuckling state and the 

axial stress in the postbuckling state is equal to the buckling critical stress. In these solutions, the 

kinematic consistency equations are used for determining the amplitude of the buckled shape in 

terms of the applied end-shortening (the relative movement of the opposite edges of a plate). Apart 

from the discussed approach, the perturbation method [8,16–18] has also been used for obtaining 

buckling and postbuckling solutions of beam-column based models.  

In the context of two-dimensional analysis of delaminated plates, fully analytical solutions are 

rare due to the complexity of the problem.  The work of Xue et al [26] is one of the very few 
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analytical solutions introduced for two-dimensional buckling problems. These analytical 

approaches are majorly applicable in the absence of coupling effects. 

Probably the most widely used method in delamination buckling and postbuckling studies is 

the Ritz method. The Ritz method is used for finding solutions to variationally expressed 

equations. In structural mechanics, the Ritz method is employed for finding an equilibrium state 

by minimizing the total potential energy functional. The Ritz method seeks the solution for the 

displacement field in the form of series of arbitrary approximate functions that satisfy the essential 

boundary conditions. The Ritz method can be used both for linear instability analyses 

[12,14,25,27,28,44] and for nonlinear buckling and postbuckling studies [22,28,44]. The major 

advantage of the Ritz method over other analytical and semi-analytical solutions is its flexibility 

with respect to geometry. Most of the discussed analytical and approximate solutions have been 

used to study through-the-width delaminations only, while, using the Ritz method embedded 

delaminations with more complicated shapes such as circular[25] and elliptical [12,14,44] shapes 

have been modeled as well. Using a piecewise integration scheme Ovesy et al[27] could expand 

the applicability of the Ritz method to modeling the buckling behavior of panels with arbitrarily 

shaped delaminations. 

Besides the discussed analytical and semi-analytical methods, numerical methods and majorly 

the finite element method have been vastly used to investigate the buckling and postbuckling of 

plates containing one or multiple delaminations. The major advantage of the Finite Element 

Method (FEM) is its flexibility to accommodate any geometrical feature and continuum models 

(shell, layerwise, or solid). Besides FEM, other numerical approaches such as finite difference [43] 

and finite strip [38] solutions have also been used for delamination buckling studies. 

1.2.4  Delamination growth  

The ultimate goal in delamination buckling and postbuckling studies is determining the 

possibility of a buckling-driven delamination propagation. Technically the borders of a 

delaminated region are crack tips where damage may accumulate and lead to the propagation of 

the delamination. In the majority of the research works conducted on buckling-driven delamination 

growth, the possibility of the growth is determined by employing fracture or damage mechanics, 

and through the calculation of strain energy release rates.  
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On occasions when a closed-form expression for the strain energy of the structure is available, 

the Strain Energy Release Rate (SERR) can be calculated as the first derivative of the strain energy 

expression with respect to the length of the delaminated region[3]. In more general cases where a 

closed-form solution is not available, Crack Extension Techniques (CETs) have been employed 

for calculating SERR. The CETs work based on the assumption that a crack grows in a self-similar 

manner. The CETs determine the total strain energy release rate as the difference between the 

strain energy of the plate before and after an infinitesimal advancement of the crack front per unit 

surface area of the newly debonded region. The CET has been used in both one-dimensional [3,6,9] 

and two-dimensional [40,44,61] analyses. An exception to using a self-similar growth of a crack 

when using CET is the work of Wang et al [62]. They assumed that a circular delamination would 

grow into an elliptical shape and hence they accounted for the shape change that may occur in the 

process of the propagation of an existing delamination. There are two downsides associated with 

this method which are the self-similar delamination propagation assumption and its incapability of 

determining the contribution of each fracture mode in the delamination propagation. 

Another approach that has been widely used for SERR calculation, is the path independent J-

integral method [5,13,17,18]. In buckling-driven delamination analyses, the J-integral method has 

been only used in one-dimensional analyses and it is incapable of determining the contribution of 

different fracture modes. 

In virtually all analytical and approximate solutions proposed for buckling and postbuckling 

problem in delaminated plates, the technique used for crack growth analysis is incapable of 

determining the contribution of the three fracture modes. An exception to this common 

shortcoming is the work of Chai [63] for thin debonded layers. Through combining thin plate 

solutions with crack tip elasticity results Chai developed a formulation capable of finding the 

distribution of SERR for the three fracture modes.  

A more powerful technic for energy release rate calculation is the Virtual Crack Closure 

Technique (VCCT) which is almost exclusively used in conjunction with FEM [46,47,59,60]. The 

VCCT works on the basis of the assumption that the energy required to close a crack is equal to 

the energy required to make the crack grow. Using VCCT the contribution of each fracture mode 

in delamination growth is determinable.  

Another family of techniques that have been exclusively used in conjunction with FEM 

[33,58,64] is the Cohesive Zone models (CZMs). CZM is a crack assessment approach based on 
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damage mechanics which works by assigning a decohesive constitutive equation to the plane of 

the propagation of the crack.  

1.2.5 Contact 

Depending on the buckling mode shape, the contact between delamination surfaces may be of 

great importance, and failing to incorporate it may lead to erroneous results [54]. Contact effects 

are mostly included in nonlinear FE buckling and postbuckling analyses [9,15,31,32,35,46–

48,55,56,65] using algorithms such as Lagrange multiplier or penalty function methods. To avoid 

using complicated nonlinear contact algorithms, Sheinman et al [20] imposed controlled 

imperfections to their geometrical model and avoided unwanted self-penetrating mode shapes. 

Ning et al [45] used a creative approach and through a preliminary contact analysis could simulate 

the effect of contacting surfaces by fictitious springs and regarded the nonlinear problem as an 

eigenvalue problem. The effect of contacting surfaces has also been accounted for in some of the 

research works conducted using the Ritz method by assuming linear fictitious springs at the 

contacting regions [22,24,25,27]. Hosseini et al [33] used a modified CZM capable of 

accommodating contact effect in the delaminated zone to prevent the interpenetration of the 

touching surfaces of the delaminated sublayers. 

1.2.6 Nonlinear solver 

Nonlinear systems of algebraic equations are almost exclusively solved using iterative 

solutions. The most commonly used iterative methods are:  

 Picard Iteration method (Direct iteration method), 

 Newton-Raphson iteration method, 

 Rik’s and Modified Rik’s methods 

Amongst the mentioned methods Picard iteration method has the slowest convergence rate and 

is notorious for leading to diverged solutions. The most popular approach in solving nonlinear 

algebraic equations is adopting different variations of Newton’s method [24,25,42,66]. However, 

the applicability of Newton's method is limited by the emergence of critical points close to which 

the tangent matrix becomes singular or ill-conditioned. Therefore in problems involving 

postbuckling phenomena such as snap-through or snap-back Newton’s method is incapable of 

tracing the equilibrium path beyond the critical point. In order to trace the path of equilibrium past 



11 
 

the point of instability, a system of nonlinear equations can be solved using Rik’s method also 

known as the Arc-length method. Rik’s method by searching the solution at a definite distance 

from a previously determined equilibrium point can trace the entirety of the equilibrium path. 

Applying Rik’s method requires changing the dimensions of matrices representing the nonlinear 

algebraic system of equations.  To avoid complications arising from the alteration of matrices, 

modified Rik’s method which base the iterative solution on the original matrices are more 

commonly used [67,68].   

 

 

1.3 Objectives  

The current thesis is inspired by the challenges that the aerospace industry faces in adjusting 

the design allowable of laminated composite plates having minor interlaminar defects. The High 

cost of preventing minor (micro) delamination makes designing based on damage tolerance an 

inevitable and integrated part of designing with composite materials[69]. Designing base on 

damage tolerance philosophy and keeping composite plates with potential delaminations in service 

requires an in-depth insight into their behavior especially under compressive loading where 

delaminations are prone to grow.  

Such knowledge can be acquired using multipurpose FEM software packages. However, there 

are certain drawbacks to using these tools namely their significantly higher time computational 

costs compared to those of analytical and approximated solutions especially in problems 

concerning fracture mechanics where extra precautions in meshing are required.  Furthermore 

using commercial software packages impose limitations with regard to implementing innovative 

and appropriate techniques for addressing the specific nature, mechanistic requirements and 

characteristics of the involved phenomena where an analytical solution can be tailor-made for the 

specific conditions of a problem.  

 Despite the vast number of research works dedicated to the buckling and postbuckling behavior 

of delaminated composite plates, neither of the previously developed analytical methodologies 

provide adequate information for determining the possibility of the growth of a delamination. The 

majority of the existing formulations are derived using a common partitioning scheme that regards 

the intact regions outside the borders of a delamination as an ESL and therefore, fail to detect the 
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highly localized effects in the vicinity of theses borderlines. Having missed these crucial pieces of 

information, these formulations remain incapable of incorporating fracture mechanics to provide 

a definitive assessment of the possibility of the growth of a delamination. Furthermore, the 

assumed displacement fields in these works suffer slight yet important inconsistencies that can 

lead to a lack of accuracy in the predicted deformations especially in the vicinity of the edges of a 

delaminated region. 

The objective of this thesis is to develop a comprehensive mathematical and mechanical 

methodology for accurately predicting the buckling and postbuckling behavior of delaminated 

composite plates including the fracture mechanical phenomenon involved in the postbuckling 

state. Besides predicting the overall behavior of a plate under compressive loading the fulfillment 

of this main objective requires proposing models and formulations capable of capturing highly 

localized deformation gradients and interlaminar stresses near the edges of a delaminated region. 

Access to these highly localized deformations and stress distributions sets the ground for 

incorporating fracture mechanics into the methodology and addressing delamination growth. 

The principal objective as explained can be broken down to sub-objectives summarized below:  

 Determine buckling critical load and mode shapes of delaminated plates, 

 Predict postbuckling behavior of delaminated plates including the deformations and load-

deformation correlation,  

 Determine interlaminar tractions in the plane of a delamination, 

 Calculate Strain Energy Release Rates (SERRs) along the edges of delamination. 

 

1.4 Organization of the manuscript based dissertation 

This manuscript based dissertation has been prepared in compliance with the “Thesis 

Preparation and Thesis Examination Regulation” booklet of the School of Graduate Studies of 

Concordia University. This dissertation contains seven chapters, including an introduction, four 

chapters addressing the objective of the thesis, and a final chapter dedicated to the overall 

conclusions of the thesis and suggestions for future works. Chapter 1 provides an introduction to 

the problem being addressed and through an extensive literature survey explains the significance 

of the objective of the thesis work. Chapters 2-4 and 6 present the new developments done to fulfill 

the objective of the thesis in the form of 4 complete journal articles. Chapter 5 introduces a unified 
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methodology based on the developed linear and nonlinear buckling and postbuckling solutions. 

The developments presented in chapter 2 is a linear buckling solution that can be used for 

determining the buckling mode (local, mixed, global) of a delaminated plate. The buckling mode 

is used for determining the imperfections necessary in nonlinear postbuckling solutions presented 

in chapters 3 and 4. In chapter 3 a nonlinear solution is formulated for predicting the postbuckling 

behavior of delaminated plates. The developed formulation is capable of predicting the distribution 

of interlaminar tractions in the plane of an assumed delamination, however, it lacks the means for 

addressing the fracture mechanics aspect of the problem. To complement the findings of chapter 

3, in chapter 4 a complete methodology based on similar principles is developed which has the 

advantage of addressing the fracture mechanics involved in the postbuckling state and can yield 

the SERRs along the crack tips. Chapter 5 describes the interconnection between the linear solution 

of chapter 2 and the postbuckling solutions presented in the two following chapters. The linear 

buckling solution presented in chapter 6 is the first step in developing a buckling and postbuckling 

methodology for curved laminated plates. The developments of the other pieces of the curved shell 

methodology are recommended as a topic for potential future research works. The linear buckling 

solution presented in chapter 6 serves the same purpose in the context of the stability of curved 

laminates as the solution presented in chapter 2 in the context of stability of flat plates.  

 

 

And finally, chapter 6 summarizes the conclusions of the entire research and offers suggestions 

for future works that may be undertaken to complement the achievements of the current research. 

The articles constituting chapters 2-4 and 6 that are extracted through different stages of the 

research are either published or submitted to peer-reviewed journals. The contents of these articles 

are briefly summarized below: 

Chapter 2: Nima Shabnijafroudi, Rajamohan Ganesan, “Influence of in-plane constraints on the 

prebuckling and buckling responses of laminated composite plates” under review in Acta 

Mechanica 

This article presents an eigenvalue buckling solution based on a calculated prebuckling stress 

field. Generally, the presence of in-plane constraints renders the prebuckling stress field 

nonuniform and biaxial. This nonuniformity that was majorly overlooked in earlier researches can 

have a drastic effect on both the instability threshold and buckling mode shape of a plate. In this 
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article, by proposing a two-step solution these effects are accounted for and a realistic picture of 

the instability phenomenon of laminated composite plates is provided. The presented technique is 

applicable for investigating the behavior of individual plates as well as debonded films. In the 

context of the instability of delaminated composite plates, the linear buckling analysis serves the 

purpose of determining the buckling mode shape of plates (local, mixed, global). Based on the 

determined mode shape the shape of the initial imperfection to be considered in postbuckling 

analyses can be determined.  

Chapter 3: Nima Shabaniafroudi, Rajamohan Ganesan “A penalty function based delamination 

model for postbuckling analysis of composite plates with delamination” Composite Structures 

2020. 

In this article, a novel methodology for determining the buckling and postbuckling behavior of 

composite plates containing a delaminated region is presented. The new model is developed based 

on a nonlinear formulation capable of capturing high rotations involved in a postbuckling state. 

The major contribution of this article is proposing a model for remedying inherent inconsistencies 

of earlier works as well as offering insight into the interlaminar tractions in the plane of the 

delamination. The model uses a penalty function method for modeling delamination and through 

that provides access to the said interlaminar tractions. Furthermore, to address the local 

deformations that can be expected in problems involving delaminations a modification to the 

original Ritz method is proposed. 

Chapter 4: Nima Shabanijafroudi, Rajamohan Ganesan “A new methodology for buckling, 

postbuckling and delamination growth behavior of composite laminates with delamination” 

Accepted for publication by Composite Structures with minor editorial revisions. 

This article by employing fracture mechanics complements the development of chapter 3 and 

addresses the ultimate objective of the dissertation which is proposing a formulation capable of 

assessing the state of the crack tip. The model uses a new partitioning scheme in conjunction with 

a penalty function method for modeling a plate with a delamination. The new model sets the 

ground for calculating the strain energy release rate through Irwin’s crack closure integrals. The 

developed formulation for postbuckling analysis was verified through the comparison of its results 

with experimental data taken from the literature. The applicability and precision of the SERR 

calculation approach were examined by comparing the results with FEM results obtained using 

VCCT. 
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Chapter 6:  Nima Shabaniafroudi, Said Jazouli, Rajamohan Ganesan “Effect of rotational 

restraints on the stability of curved composite panels under shear loading” Acta Mechanica. 231, 

1805–1820 (2020). 

In this article, as a first step in extending the applicability of the developed methodology to 

curved delaminated panels, a formulation for predicting the instability characteristics of thin 

composite laminates with rotationally restrained edges is presented. The presented methodology 

offers insight into the buckling behavior of composite laminates through an eigenvalue buckling 

analysis. The developed formulation can be used for determining the instability threshold and 

buckling mode shapes of individual composite plates as well as delaminated films. This 

information can then be used for determining the buckling mode (local, mixed, or global) of a 

delaminated curved panel. 

The figures in each of the articles introduced above have similar formatting, however as these 

articles are either published or in publication, to remain loyal to the original published articles, no 

uniform formatting is imposed on the figures of different chapters.  
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Chapter 2: Influence of in-plane constraints on the prebuckling and buckling 

responses of laminated composite plates 
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2.1  Introduction 

The proven advantages of laminated composite plates have led to their ever-increasing 

industrial use. Due to complications that may arise after instability, often composite structures are 

designed to work in fully stable conditions. Therefore, one of the major criteria in designing 

composite structures is their buckling strength. Given the importance of determining the stability 

characteristics of composite plates, tremendous attention has been paid to the study of the buckling 

problem of these plates. 

Essentially, buckling is a large deformation (nonlinear) phenomenon that is often approached 

through a linear eigenvalue problem. Based on the assumption that the membrane stress-resultant 

field remains unchanged at the instance of instability, the eigenvalue buckling analysis utilizes a 

previously known prebuckling membrane force field to generate a linearized formulation. This 

necessitates an accurate assessment of the prebuckling state. Considering the complexity of 

calculating the prebuckling stress resultants, in the majority of the published articles, it has been 

conveniently assumed that the distribution of stress resultants is uniform [52,70–74]. The 

assumption of uniform stress-resultant field implicitly indicates that no in-plane restraining 

boundary conditions are considered. For the cases of thermal buckling [75], the uniformity of stress 

resultants would also imply that the temperature field, as well as the thermal expansion coefficient, 

is assumed to be uniform. There have been works in which non-uniform distributions for the 

prebuckling membrane forces have been considered, however, the non-uniformity has been due to 

phenomena other than in-plane constraints. Examples of these basically variable stress resultant 

distributions are cases with non-uniform application of boundary tractions [51,76], arbitrarily 

assumed stress distributions [77], or material property heterogeneity [78,79]. The common aspect 

of all these works is a priori known or obtainable stress resultant field.  

Most of the attempts made to incorporate the real in-plane stress field instability analyses 

involve non-uniformities caused by tow angle variations. Gurdal et al [79] used the Ritz method 

to investigate the effect of stiffness variation on the buckling response of variable tow laminates. 

They based their buckling analysis on a stress resultant field that was obtained by solving the 

governing partial differential equation of the in-plane elastic case using a general-purpose software 

package. Raju et al [80] studied the buckling of variable angle tow plates based on a calculated 

prebuckling stress field. They used a stress function formulation to derive the governing 

prebuckling equations and solved them numerically using the differential quadrature method.  Wu 



18 
 

et al [81] also tackled the buckling problem of variable angle tow plates. They used the Ritz method 

for determining the prebuckling stress state. They used the Ritz method to minimize the 

complementary total energy expression of a plate derived in terms of a stress function. Broderick 

et al [82] applied the stress function based Ritz method to the buckling analysis of stiffened panels. 

The formulations developed in terms of stress functions use the total complementary energy as the 

governing functional. Thus, the essential boundary conditions to be satisfied through the selection 

of proper approximate functions are the stress boundary conditions. Most of the analyses carried 

out using stress functions involve solely balanced laminates with no shear-stretching coupling. 

Furthermore, these solutions are only applied to a specific category of problems involving shear 

free-boundary conditions.  

Apart from the assumed prebuckling state, the existing buckling methodologies differ in the 

treatment of laminates, boundary conditions, and solution methods. In the study of thin to 

moderately thick laminates, the most common approach is regarding laminates as an equivalent 

single layer (ESL). The simplest and most easily applied ESL is the classical laminated plate theory 

(CLPT) [73,74,78,79]. The CPLT is notorious for overestimating the critical buckling load for 

relatively thick laminates. As a remedy to this problem,  first-order [52,83–85] and higher-order 

[86–88] Shear deformation theories have been used. Apart from the well-known shear deformation 

theories, more sophisticated distribution functions [89,90] have also been used to improve the 

accuracy of buckling analyses.  

The solution methods may be classified in the three major categories of analytical [70,91], 

approximate [51,73,74,77,92,93] and numerical [68,75,89,94–97] solutions. The Ritz method, 

which belongs to the category of approximate solutions, is probably the most widely used approach 

in the context of the instability of composite plates. 

 In spite of the vast studies carried out on the buckling of composite plates, little attention has 

been paid to the effect of in-plane constraints. The present work aims to incorporate the effect of 

these constraints by addressing the prebuckling elasticity problem and bases the eigenvalue 

buckling analysis on a calculated in-plane stress field. In the entirety of this work, the FSDT is 

used for modeling laminates and both elasticity and stability equations are obtained using the Ritz 

method. In employing the Ritz method approximate functions corresponding to a specific set of 

boundary conditions were used, however, in deriving the formulation no restrictive assumptions 

have been made and the formulation is applicable to any arbitrary boundary conditions.    
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2.2 Theoretical formulation  

In the current work, a two-step solution is used for studying the buckling behavior of laminated 

composite plates subjected to in-plane constraints. The first step constitutes solving the in-plane 

elasticity problem in order to find the distribution of the stress resultants and in the second step, 

the findings of the first steps are used for obtaining the linear stability equations. In both steps, the 

laminate is modeled using the FSDT and the solution is obtained using the Ritz method.    

In the subsequent sections, first, the kinematics and the constitutive equations are presented and 

next, the details of each of the aforementioned two steps are explained. 

2.2.1 Kinematics   

In the FSDT, the in-plane displacements are assumed to vary linearly in the thickness of a 

laminate, and the out-of-plane displacement is assumed to be a function of the in-plane coordinates 

only. The distribution field is mathematically expressed as: 

 𝑢 =  𝑢0(𝑥, 𝑦) + 𝑧𝜑𝑥 (2.1) 

 𝑣 =  𝑣0(𝑥, 𝑦) + 𝑧𝜑𝑦 (2.2) 

 𝑤 = 𝑤0 (𝑥, 𝑦) (2.3) 

 

where x and y are coordinates in a Cartesian coordinate system parallel to the plate edges, u and 

v are the in-plane displacements in x and y respectively, w is the out-of-plane displacement, and ϕx 

and ϕy are the rotations of the cross-section about y and x-axes respectively. The variables denoted 

by 0 are the displacements associated with the mid-plane of the laminate. 

Given the aforementioned displacement distribution, the infinitesimal mid-plane strains and 

curvatures of a laminate are expressed in terms of the displacements as: 
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The transverse shear strains to be incorporated in the shear deformation theory are defined as:   

 {𝛤} = {
𝛾𝑦𝑧

 𝛾𝑥𝑧
} =

{
 

 
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥}
 

 
 (2.5) 

Taking the assumptions of Eq. (2.3) into consideration, Eq. (2.5) can be rewritten in the form: 

 

{𝛤} = {
𝛾𝑦𝑧

 𝛾𝑥𝑧
} =

{
 

 𝜑𝑦 +
𝜕𝑤0

𝜕𝑦

𝜑𝑥 +
𝜕𝑤0

𝜕𝑥 }
 

 
 2.6) 

Given the large-rotation nature of the buckling phenomenon, a nonlinear definition of strains 

that is capable of accommodating large rotation effects is required. Here Von Karman’s 

approximations are used as complementary nonlinear terms for obtaining the mid-plane strains 

due to the out-of-plane deflection. The additional nonlinear terms introduced by these 

approximations are: 

 {𝜖 ´} =

{
 
 

 
 𝜀𝑥

´  

 𝜀𝑦
´   

𝛾𝑥𝑦
´

  }
 
 

 
 

=

{
  
 

  
 
1

2
(
𝜕𝑤0

𝜕𝑥
)
2

1

2
(
𝜕𝑤0

𝜕𝑦
)
2

𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦
 }

  
 

  
 

 2.7) 
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2.2.2 Constitutive equations 

In an FSDT, the relationship between the generalized strain vector (vector of strains and 

curvatures) and stress and moment resultants is given as: 

 {
𝑁
M

} = [
[𝐴] [𝐵]

[𝐵] [𝐷]
] {𝜖} 2.8) 

where N and M are the vectors of stress and moment resultants respectively and are expressed 

as:  

 

{
  
 

  
 

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦}
  
 

  
 

= ∫

{
 
 

 
 

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

𝑧𝜎𝑥

𝑧𝜎𝑦

𝑧𝜏𝑥𝑦}
 
 

 
 

𝑑𝑧
ℎ/2

−ℎ/2

 2.9) 

The elements of the stiffness or the so-called ABD matrix are: 

 (Aij, Bij, Dij) = ∫ 𝑄𝑖,𝑗(1, 𝑧, 𝑧
2

ℎ/2

−ℎ/2

)𝑑𝑧 2.10) 

where Q̅ij are the elements of the transformed plane stress stiffness matrix of each ply in a 

reference coordinate system. 

The constitutive equation which describes the relationship between the out-of-plane shear stress 

resultants and shear strains reads as: 

 {
𝑄𝑥

𝑄𝑦
} = [𝐻]{𝛤} 2.11) 

where Qx and Qy are the shear resultants on xz and yz planes respectively and H is the shear 

stiffness matrix. The shear stress resultants are expressed as: 

 {
𝑄𝑥𝑧

𝑄𝑦𝑧
} = ∫ {

𝜏𝑥𝑧

𝑧𝜏𝑦𝑧
} 𝑑𝑧

ℎ/2

−ℎ/2

 2.12) 

The elements of the shear stiffness matrix are obtained using the corresponding elements of 

the full anisotropic stiffness matrix as follows: 

 𝐻ij = 𝑘𝑖𝑗 ∫ 𝐶𝑖,𝑗

ℎ
2

−
ℎ
2

𝑑𝑧    𝑓𝑜𝑟   𝑖 = 4,5 2.13) 

where kij are shear correction factors and Cij are the elements of the complete anisotropic 

stiffness matrix of the ply material. 
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The FSDT assumptions lead to a constant shear stress distribution in the thickness of a laminate 

which violates the condition of traction-free top and bottom surfaces. This inconsistency generates 

excessive stiffness, especially for relatively thick laminates. To alleviate this problem, the shear 

correction factors are introduced to the shear stiffness matrix. Unlike isotropic materials, no single 

optimum value can be prescribed for layered composite materials and the correction factors need 

to be calculated for each laminate separately. However, to avoid the complexity of obtaining a 

customized shear correction factor, in most of the published works in the field of the instability of 

composite plates, the values prescribed for isotropic materials are used[51,52,87,98,99]. In this 

work a correction factor of 2/3 was used and later through the validation process, it is shown that 

the generated results with this correction factor are satisfactory. 

2.2.3 Prebuckling analysis 

In order to calculate the prebuckling distribution of membrane forces, the in-plane elasticity 

problem needs to be addressed in the first step. Here the solution to the elasticity problem is 

obtained using the Ritz method which is a variational method based on the stationary total potential 

energy principle. The general expression of the total potential energy for a plate subjected to 

external forces reads as: 

 𝛱 = 𝑈 + 𝑊 2.14) 

where U is the strain energy stored in the plate and W is the potential energy of the applied 

forces. 

The strain energy of a plate is given by: 

 𝑈 =
1

2
{∬{𝜖}𝑇 [

[𝐴] [𝐵]

[𝐵] [𝐷]
] {𝜖}𝑑𝐴 + ∬{𝛤}𝑇[𝐻]{𝛤}𝑑𝐴} 2.15) 

 For symmetrically stacked laminates subjected to in-plane forces only, no out-of-plane 

deflections are expected. Thus the strain energies corresponding to bending and out-of-plane 

shearing vanish and the expression for strain energy can be reduced to: 

 𝑈 =
1

2
{∬{

𝜀𝑥
0 

 𝜀𝑦
0  

𝛾𝑥𝑦
0

}

𝑇

[𝐴] {

𝜀𝑥
0 

 𝜀𝑦
0  

𝛾𝑥𝑦
0

}𝑑𝐴} 2.16) 

where [𝐴] is the in-plane stiffness matrix. 

The general form of the potential energy of boundary forces is: 
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𝑊 = −∮ �⃑⃑� . �⃑�  𝑑𝑠 

2.17) 

where �⃑⃑�  the traction vector on the boundary and �⃑�  is the displacement vector. 

For the special case of a rectangular plate of dimensions a and b under biaxial distributed 

loading Eq. (6.15) transforms to: 

 

 

 
𝑊 = −∫ (𝑁𝑥

∗𝑢)𝑥=0,𝑎 𝑑𝑦
𝑏

0

− ∫ (𝑁𝑦
∗𝑣)𝑦=0,𝑏 𝑑𝑥

𝑎

0

 (2.18)  

where 𝑁𝑥
∗ and 𝑁𝑦

∗ are distributed loads applied on the edges of the plate 

The Ritz method approximates the displacements in the form of a series of separable functions 

as follows. 

 

𝑤0 = ∑ ∑ 𝑊𝑚𝑛𝑊𝑚
𝑥𝑊𝑛

𝑦

𝐽

𝑛=1

𝐼

𝑚=1

 

𝑢0 = ∑ ∑ 𝑈𝑚𝑛𝑈𝑚
𝑥 𝑈𝑛

𝑦

𝐽

𝑛=1

𝐼

𝑚=1

 

𝑣0 = ∑ ∑ 𝑉𝑚𝑛𝑉𝑚
𝑥𝑉𝑛

𝑦

𝐽

𝑛=1

𝐼

𝑚=1

 

𝜑𝑥 = ∑ ∑ 𝛷𝑚𝑛𝛷𝑚
𝑥𝛷𝑛

𝑦

𝐽

𝑛=1

𝐼

𝑚=1

 

𝜑𝑦 = ∑ ∑ 𝛹𝑚𝑛𝛹𝑚
𝑥𝛹𝑛

𝑦

𝐽

𝑛=1

𝐼

𝑚=1

 

 

(2.19)  

where 𝑊𝑚
𝑥 ,𝑊𝑛

𝑦
, 𝑈𝑚

𝑥 , 𝑈𝑛
𝑦
, 𝑉𝑚

𝑥 , 𝑉𝑛
𝑦
, 𝛷𝑚

𝑥 , 𝛷𝑛
𝑦
, 𝛹𝑚

𝑥 , and 𝛹𝑛
𝑦

  are arbitrary functions that satisfy the 

essential boundary conditions of a specific problem and 𝑊𝑚𝑛, 𝑈𝑚𝑛, 𝑉𝑚𝑛, 𝛷𝑚𝑛, and 𝛹𝑚𝑛 are the 

unknown coefficients to be determined. The Ritz approximate functions are required to be 

complete and capable of accommodating any possible deflected shape of the plate and must be 

linearly independent and have derivatives up to half the order of the corresponding partial 

differential equation [100].  

Substituting Eq. (2.19) in Eqs. (2.18) and 2.16) and subsequently, in Eq. (2.14), the expression 

of total potential energy in terms of the approximate functions is obtained. The variables in the 

latter equation would be the coefficients Wmn, Umn, Vmn, Φmn, Ψmn. Having obtained the expression 

of total potential energy in terms of these coefficients, the principle of stationary potential energy 
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will be applied by minimizing this expression with respect to these variables. The minimization 

leads to a system of linear equations as follows: 

 
𝜕𝛱

𝜕𝑊𝑚𝑛
= 0,  

𝜕𝛱

𝜕𝑈𝑚𝑛
= 0,  

𝜕𝛱

𝜕𝑉𝑚𝑛
= 0,  

𝜕𝛱

𝜕𝛷𝑚𝑛
= 0,  

𝜕𝛱

𝜕𝛹𝑚𝑛
= 0 (2.20)  

 

The coefficients 𝑊𝑚𝑛, 𝑈𝑚𝑛, 𝑉𝑚𝑛, 𝛷𝑚𝑛, and 𝛹𝑚𝑛 for the linear prebuckling state are 

determined by solving the system of equations. Substituting the calculated coefficients in 

Eq.(2.19), the displacements of the plate under the applied in-plane loading are calculated. 

Substituting the obtained displacement functions in Eq.(2.4)  and subsequently in Eq.2.8), the 

expressions for the prebuckling stress resultants are obtained: 

 

𝑁𝑥
0 = ∑ ∑[𝐴11𝑈𝑚𝑛

0 𝑈𝑥,𝑥
𝑚 𝑈𝑦

𝑚 + 𝐴12𝑉𝑚𝑛
0 𝑉𝑥

𝑚𝑉𝑦,𝑦
𝑛

𝐽

𝑛=1

𝐼

𝑚=1

+ 𝐴16(𝑈𝑚𝑛
0 𝑈𝑥

𝑚𝑈𝑦,𝑦
𝑛 + 𝑉𝑚𝑛

0 𝑉𝑥,𝑥
𝑚𝑉𝑦

𝑛) + 𝐵11𝛷𝑚𝑛
0 𝛷𝑥,𝑥

𝑚 𝛷𝑦
𝑛

+ 𝐵12𝛹𝑚𝑛
0 𝛹𝑥

𝑚𝛹𝑦,𝑦
𝑚 + 𝐵16(𝛷𝑚𝑛

0 𝛷𝑥
𝑚𝛷𝑦,𝑦

𝑛 + 𝛹𝑚𝑛
0 𝛹𝑥,𝑥

𝑚 𝛹𝑦
𝑛)] 

𝑁𝑦
0 = ∑ ∑[𝐴12𝑈𝑚𝑛

0 𝑈𝑥,𝑥
𝑚 𝑈𝑦

𝑚 + 𝐴22𝑉𝑚𝑛
0 𝑉𝑥

𝑚𝑉𝑦,𝑦
𝑛

𝐽

𝑛=1

𝐼

𝑚=1

+ 𝐴26(𝑈𝑚𝑛
0 𝑈𝑥

𝑚𝑈𝑦,𝑦
𝑛 + 𝑉𝑚𝑛

0 𝑉𝑥,𝑥
𝑚𝑉𝑦

𝑛) + 𝐵12𝛷𝑚𝑛
0 𝛷𝑥,𝑥

𝑚 𝛷𝑦
𝑛

+ 𝐵22𝛹𝑚𝑛
0 𝛹𝑥

𝑚𝛹𝑦,𝑦
𝑚 + 𝐵26(𝛷𝑚𝑛

0 𝛷𝑥
𝑚𝛷𝑦,𝑦

𝑛 + 𝛹𝑚𝑛
0 𝛹𝑥,𝑥

𝑚 𝛹𝑦
𝑛)] 

𝑁𝑥𝑦
0 = ∑ ∑[𝐴16𝑈𝑚𝑛

0 𝑈𝑥,𝑥
𝑚 𝑈𝑦

𝑚 + 𝐴26𝑉𝑚𝑛
0 𝑉𝑥

𝑚𝑉𝑦,𝑦
𝑛

𝐽

𝑛=1

𝐼

𝑚=1

+ 𝐴66(𝑈𝑚𝑛
0 𝑈𝑥

𝑚𝑈𝑦,𝑦
𝑛 + 𝑉𝑚𝑛

0 𝑉𝑥,𝑥
𝑚𝑉𝑦

𝑛) + 𝐵16𝛷𝑚𝑛
0 𝛷𝑥,𝑥

𝑚 𝛷𝑦
𝑛

+ 𝐵26𝛹𝑚𝑛
0 𝛹𝑥

𝑚𝛹𝑦,𝑦
𝑚 + 𝐵66(𝛷𝑚𝑛

0 𝛷𝑥
𝑚𝛷𝑦,𝑦

𝑛 + 𝛹𝑚𝑛
0 𝛹𝑥,𝑥

𝑚 𝛹𝑦
𝑛)] 

(2.21)  

 

where coefficients denoted by the superscript 0 are the values obtained through the prebuckling 

analysis. For the sake of brevity, differentiation with respect to x and y is denoted by the subscripts 

,x and ,y respectively. Evidently, for symmetrically stacked laminates, the terms containing 

elements of the B matrix vanish. 
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2.2.4 Linear buckling analysis 

Buckling by definition is a point of instability where a second path of equilibrium becomes 

possible. When approaching the plate buckling problem through energy methods, a level of in-

plane compressive load is sought under which even in the absence of any transversal loading an 

out-of-plane deflection becomes possible. The degradation of the transversal stiffness that leads to 

the possibility of an out-of-plane deflection occurs due to an adverse stress stiffening phenomenon. 

Thus in a buckling problem, the energy corresponding to stress stiffening is incorporated in the 

total potential energy and it is expressed as:  

 𝛱 = 𝑈 + 𝑉 (2.22)  

where V is the stress stiffening energy and reads as: 

 𝑉 = ∬{𝑁0}𝑇{𝜖 ´}𝑑𝐴 (2.23)  

where {𝑁0} is the vector of prebuckling in-plane stress resultants. The main distinction between 

the present work and the existing works lies in the use of a calculated stress resultant field to 

constitute the expression of the potential energy related to stress softening. Through the calculated 

stress resultant field, the effect of in-plane constraints is incorporated in the stability analysis. The 

components of this spatially varying stress resultant vector are determined in the prebuckling 

analysis through Eq. (2.19). Given the spatial nonuniformity of {𝑁0}, it cannot be taken out of the 

integral and the integration needs to be carried out on the entirety of the integrand product. 

For symmetrically laminated composites, the in-plane and out-of-plane displacements are 

decoupled, hence the strain energy corresponding to in-plane displacements would have no effect 

on the eigenvalue buckling analysis. In this regard Eq.(2.13) can be rewritten in the form: 

 𝑈 =
1

2
{∬ {

𝑘𝑥 
 𝑘𝑦  

𝑘𝑥𝑦

}

𝑇

[𝐷]

𝑎 𝑏

0 0

{

𝑘𝑥 
 𝑘𝑦  

𝑘𝑥𝑦

}𝑑𝑥𝑑𝑦 + ∬{𝛤}𝑇[𝐻]

𝑎 𝑏

0 0

{𝛤}𝑑𝑥𝑑𝑦} (2.24)  

Essentially linear buckling analysis is based on the assumption that the distribution of in-plane 

stresses in the instance of buckling, remains similar to that of the unbuckled structure on the verge 

of instability. Basically, before instability, the structure is believed to experience no out-of-plane 

deformation. A cursory look at the nonlinear strains defined in Eq. 2.8) reveals that in the absence 

of out-of-plane displacements a linear behavior of the structure can be expected. Hence up to the 

point of instability, the stress stiffening energy is assumed to be linearly proportional to the applied 

forces. Therefore the total potential energy for the buckling problem can be rewritten in the form: 
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𝛱 = 𝑈 + λ𝑉0 

 
(2.25) 

where 𝑉0 is the stress stiffening energy calculated for an arbitrary level of external load and λ 

is a scalar to be determined? Thus minimization of the total potential energy yields: 

 

𝜕𝑈

𝜕𝑊𝑚𝑛
+  𝜆

𝜕𝑉0

𝜕𝑊𝑚𝑛
= 0 

𝜕𝑈

𝜕𝑈𝑚𝑛
+  𝜆

𝜕𝑉0

𝜕𝑈𝑚𝑛
= 0 

𝜕𝑈

𝜕𝑉𝑚𝑛
+  𝜆

𝜕𝑉0

𝜕𝑉𝑚𝑛
= 0 

𝜕𝑈

𝜕𝛷𝑚𝑛
+  𝜆

𝜕𝑉0

𝜕𝛷𝑚𝑛
= 0 

𝜕𝑈

𝜕𝛹𝑚𝑛
+  𝜆

𝜕𝑉0

𝜕𝛹𝑚𝑛
= 0 

 

(2.26) 

Rearranging these equations in the matrix form we will have  

 [𝐾 + 𝜆𝐾𝑠]

{
 
 

 
 
{𝑊𝑚𝑛}

{𝑈𝑚𝑛}

{𝑉𝑚𝑛}

{𝛷𝑚𝑛}

{𝛹𝑚𝑛}}
 
 

 
 

= {0}5𝐼𝐽 (2.27) 

where [𝐾] is the matrix composed of the first terms in Eqs. (3.26) and 𝜆[𝐾𝑠] is the matrix 

composed of the second terms of the same system of equations. 

In the absence of the potential energy of transversely applied forces, this system of equations 

has a trivial solution. By multiplying Eq. (2.27 )by K-1 and dividing it by 𝜆, we will have: 

 

 [𝐾−1𝐾𝑠 +
1

𝜆
 𝐼]

{
 
 

 
 
{𝑊𝑚𝑛}

{𝑈𝑚𝑛}

{𝑉𝑚𝑛}

{𝛷𝑚𝑛}

{𝛹𝑚𝑛}}
 
 

 
 

= {0}5𝐼𝐽 ((2.28) 

Eq. (2.28) is a classical eigenvalue problem and the largest eigenvalue of the matrix 𝐾−1𝐾𝑠 will 

give the smallest 𝜆 that makes the structure unstable and is known as the buckling coefficient. This 

coefficient multiplied by the applied forces 𝑁𝑥
∗ and 𝑁𝑦

∗ gives the buckling strength of the plate. 

The corresponding eigenvector gives the buckled shape of the plate.  
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2.3 Validation 

In order to validate the new development, for a variety of cases the calculated results were 

compared with the results obtained using finite element analysis (FEA). The FEA was carried out 

using ANSYS commercial software and the results were used for validating both in-plane elasticity 

and eigenvalue buckling solutions. Both the FE and the Ritz analyses were performed using the 

boundary conditions depicted in Figure 2.1. The approximate Ritz functions used to satisfy the 

prescribed boundary conditions are presented in appendix A. The ply material properties used for 

all the numerical examples are EI= 26.25 Mpsi, EII=1.49 Mpsi, G12=1.04 Mpsi, ν12=0.28, and the 

ply thickness is 0.008 in 

In the FEA, the 8-node, six-degree of freedom SHELL281 element with a quadratic shape 

function was used. The element uses a first-order shear deformation theory and is suitable for 

modeling moderately thick shells. In all of the analyses, mesh quality was gradually improved until 

mesh independence was achieved. 

 

Figure 2.1 Schematic view of a rectangular plate under distributed uniaxial loading 

Through comparison of the results with FEA for a variety of cases with different layup 

configurations and aspect ratios, it was established that an acceptable agreement in the calculated 

stress resultant distribution is achievable. The comparison is illustrated in Figure 2.2Error! 

Reference source not found. is obtained using a 15×150 term solution and shows an impeccable 

similarity in the distribution of the stress resultants for an arbitrarily selected case. 
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Figure 2.2 Comparison of stress resultant with ANSYS results (right column: Ritz, left column ANSYS) for a 

[(±45)2/(45)]s laminate with an aspect ratio of 3 under uniaxial loading in the x-direction 

Table 2.1 lists critical buckling loads calculated using the developed method and FEA for a 

variety of stacking sequences and geometrical arrangements. The comparisons show a good 

agreement for the majority of cases, however, it can be observed that for larger aspect ratios the 

results deviate further from FEA.   

Table 2.1 Comparison of critical buckling loads Ritz vs ANSYS 

[(0/90)2/(0)]s  ply thickness 0.008” 

a 

(in) 

b 

(in) FEM (lb/in) 

Ritz 

(lb/in) Difference % 

3 10 839.5 843.4 -0.5 

5 10 331.8 331.0 0.3 

10 10 149.7 148.6 0.7 

20 10 167.4 166.1 0.8 

30 10 193.9 191.4 1.3 

[(±30)2/(30)]s  ply thickness 0.008” 

a 

(in) 

b 

(in) FEM (lb/in) 

Ritz 

(lb/in) Difference % 

3 10 824.2 822.4 0.2 

5 10 349.7 345.5 1.2 

10 10 175.7 172.5 1.8 
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20 10 372.3 360.1 3.4 

30 10 339.8 324.7 4.6 

[(±45)2/(45)]s  ply thickness 0.008” 

a 

(in) 

b 

(in) FEM (lb/in) 

Ritz 

(lb/in) Difference % 

3 10 485.3 476.0 1.9 

5 10 231.7 225.8 2.6 

10 10 359.4 346.0 3.9 

20 10 392.1 371.5 5.6 

30 10 383.2 358.3 6.9 

[(±70)2/(70)]s  ply thickness 0.008” 

a 

(in) 

b 

(in) FEM (lb/in) 

Ritz 

(lb/in) Difference % 

3 10 168.8 166.2 1.6 

5 10 169.7 165.6 2.5 

10 10 254.8 247.1 3.1 

20 10 259.1 244.5 6.0 

30 10 268.0 244.5 9.6 

2.4 Results and discussion 

In this section, the results for both prebuckling and buckling problems are presented and 

discussed. In generating numerical results the same boundary conditions and ply properties as 

those presented in the validation section were used. 

Regarding the in-plane elasticity results, the first observation was that in spite of the capability 

of the approximate solution to accurately estimate the deflections of a plate using a few terms, with 

the same number of terms, the obtained stress resultants exhibit oscillations and lack accuracy (see 

Figure 2.2 left). It was observed that the amplitude of the oscillations majorly depends on the 

aspect ratio of the panel, while the direction of the ripples depends on the direction of the 

application of the external forces. Figure 2.3 shows that for a uniaxial loading applied in the x-

direction, these ripples are normal to the loading axis and the number of ripples is roughly half the 

number of the utilized terms.  These oscillations or ripples were previously addressed by other 
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researchers [101,102] and some remedies were proposed for smoothening the computed stress 

resultants.   

In the present work, instead of the proposed techniques in references  [101,102], a smoother 

solution was achieved by increasing the number of terms in the approximate functions. When using 

simple polynomial functions, the number of terms is limited by the emergence of ill-conditioned 

matrices. The employed trigonometric functions (see appendix A) have the advantage of 

orthogonality which guaranties well-conditioned matrices regardless of the number of terms used. 

In order to control the computation size of the analyses, the number of terms to be used in each 

direction were selected separately based on the direction of the application of external forces and 

the aspect ratio. Figure 2.3 shows that for a uniaxial loading in x-direction to get a smooth 

distribution of stress resultants it is enough to increase the number of terms in x solely.  

 

Figure 2.3 Calculated Nx for a [(±45)2/(45)]s  plate under uniform loading of unity in the x-direction. Left: 10×10 terms and 

Right: 150×15 terms. 

A closer look into the results reveals that as pointed out by other researchers [102], the obtained 

solutions slightly violate the expected natural boundary conditions, however, it was observed that 

the extent of this violation diminishes when a higher number of terms is used.  

Another important observation is the biaxiality of the stress resultant field due to the existence 

of in-plane constraints. The biaxial stress resultant due to a uniaxial loading is reflected in 

Figure 2.2. It can be noticed that Ny and Nxy are of comparable magnitudes as Nx and may affect 

the buckling solution significantly. 

Based on the calculated resultants, eigenvalue buckling analyses were undertaken. It was 

observed that the number of terms used in the in-plane elasticity analysis may significantly impact 
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the accuracy of the calculated critical buckling loads. Figure 2.4 shows the trend of the 

convergence of the calculated critical buckling load with the number of terms used in the 

prebuckling analysis. As it was mentioned before, for a plate under uniaxial loading, in order to 

eliminate the stress resultant oscillations, it is enough to increase the number of terms 

corresponding to the direction of the application of the external force. Therefore, the number of 

terms in the y-direction was kept constant at 15 and the number of terms in the x-direction (the 

direction of the application of the external force) was varied. These curves were produced using a 

symmetrical 15 terms solution for the eigenvalue buckling analysis. These convergence curves 

reveal that for higher aspect ratios convergence rate is remarkably slower.  

The eigenvalue buckling analysis was found relatively insensitive to the number of terms of 

approximate functions. Figure 2.5 shows the trend of convergence of the buckling solution with 

the number of terms used in the eigenvalue buckling (second step) analysis. These results were 

obtained using a 15×50 term prebuckling solution. It can be observed that by increasing the number 

of terms from 5 to 22 no more than 0.5% enhancement can be achieved.  

 

Figure 2.4 The trend of convergence with the number of terms corresponding to the prebuckling analysis (10”×10” 

[(±45)2/(45)]s) 
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Figure 2.5 The trend of convergence with the number of terms corresponding to the eigenvalue analysis (10”×10” 

[(±45)2/(45)]s 

 

Figure 2.6 shows the trend of variation of buckling critical loads with aspect ratio for a variety 

of symmetrically laminated plates under uniaxial compressive loading. In order to present 

numerical results in a more insightful manner, the results are presented in terms of non-

dimensional parameters. The non-dimensional parameters used to characterize the buckling 

behavior of laminates are defined as follows: 

 𝛼 =
𝑎

𝑏
(
 𝐷22

𝐷11
)
1/4

 (2.29) 

 N̅𝑥 =
𝑁𝑥

0𝑏2

𝜋2(𝐷11𝐷22)
1 2⁄

 (2.30) 

 

where 𝛼 is the nondimensional aspect ratio and N̅𝑥 is the shear coefficient. 

Figure 2.7 presents the same results as those in Figure 2.6 obtained by neglecting the in-plane 

constraints (based on a uniform stress distribution). A comparison of the buckling curves in 

Figure 2.6 and Figure 2.7 reveals that in general, incorporating the in-plane constraints as 

prescribed leads to higher buckling strengths, especially for plates with higher aspect ratios. This 

can be explained by taking into account the distribution of the prebuckling stress resultants. 

Figure 2.8 depicts a transition in the distribution of the stress resultants with the variation of aspect 

ratio. It can be noticed that under uniaxial loading, in plates with higher aspect ratios, a central 

zone with positive (tensile) stress resultants in both x and y directions develops. The stress 
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stiffening effect associated with these positive stress resultants increases the buckling critical load 

and makes the buckling mode shape relatively local. Whereas, neglecting these constraints leads 

to a uniform, uniaxial compressive stress resultant field.  

 

Figure 2.6 variation of non-dimensional buckling load with non-dimensional aspect ratio. 

 

Figure 2.7 variation of non-dimensional buckling load with non-dimensional aspect ratio without consideration of in-plane 

constraint. 

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4

N̅
x

α

[(0/90)2/(0)]s

[(±45)2/(45)]s

[(±70)2/(70)]s

[(±30)2/(30)]s

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5 4

N̅
x

α

[(0/90)2/(0)]s

[(±45)2/(45)]s

[(±70)2/(70)]s

[(±30)2/(30)]s



34 
 

 

Figure 2.8 Variation of stress resultant distribution with non-dimensional aspect ratio α under uniaxial loading in the x-

direction 

The kink points on the curves in Figure 2.6 are the aspect ratios at which a shift in the buckling 

mode shape occurs. Figure 2.9 depicts the transition of buckling mode shapes for the [(±45)2/(45)]s  

laminate. The mode shape transition for the other [(±θ)2/(θ)]s  laminates happens in a similar 

manner except for the α values at which the transition takes place. The [(0/90)2/(0)]s  laminate, 

however, exhibits different buckling mode shape transition pattern (Figure 2.10). 

 

   

α=0.8 α=1.2 α=1.6 

Figure 2.9 buckling mode shape transition with aspect ratio variations for a [(±45)2/(45)]s laminate 
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α=0.9 α=1.7 α=3 

Figure 2.10 Buckling mode shape transition with aspect ratio variations a  [(0/90)2/(0)]s  laminate 

 

2.5 Conclusion 

The effect of introducing in-plane constraints on the buckling behavior of composite panels was 

investigated. In order to account for these constraints, a linear static analysis was carried out and 

the calculated stress resultant distribution was incorporated in the eigenvalue buckling analysis. 

Using the developed formulation a variety of laminates and geometric configurations were studied 

and the characteristic graphs were generated. Through the undertaken studies the following 

conclusions were drawn. 

 The formulation was proved capable of generating reliable results that reflect the effect of 

in-plane constraints. 

 The in-plane constraints severely impact the critical buckling behavior of composite plates 

including critical forces and mode shapes.  

 Laminates with shearing-stretching coupling, seem to be more sensitive to the application 

of in-plane constraints. 

 The stress resultants obtained in the prebuckling analysis exhibit oscillations which are 

normal to the direction of the external of loading and their amplitude mainly depends on 

the aspect ratio of the plate.  

 By increasing the number of terms used in the Ritz method the inaccuracy caused by the 

oscillations can be controlled. Under uniaxial loading to achieve smooth distributions of 

stress resultants, it is sufficient to increase the number of terms in the direction of the 

application of the external force. 

 Compared to the in-plane elasticity problem the buckling analysis is much less sensitive to 

the number of terms used in the Ritz method. 
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2.6 Appendices 

2.6.1  Appendix A: Approximate functions 

Trigonometric approximate functions corresponding to the boundary conditions described in 

Figure 2.1 

𝑊𝑥 = sin
𝑚𝜋𝑥

𝑎
 𝑊𝑦 = sin

𝑛𝜋𝑦

𝑏
 

𝑈𝑥 = cos
𝑚𝜋𝑥

𝑎
 𝑈𝑦 = sin

𝑛𝜋𝑦

𝑏
 

𝑉𝑥 = sin
𝑚𝜋𝑥

𝑎
 𝑉𝑦 = cos

𝑛𝜋𝑦

𝑏
 

𝛷𝑥 = cos
𝑚𝜋𝑥

𝑎
 𝛷𝑦 = sin

𝑛𝜋𝑦

𝑏
 

𝛹𝑥 = sin
𝑚𝜋𝑥

𝑎
 𝛹𝑦 = cos

𝑛𝜋𝑦

𝑏
 

 

2.6.2 Appendix B: Supplementary Results with clamped boundary conditions: 

 

 

Figure 2.11 variation of non-dimensional buckling load with non-dimensional aspect ratio for a plate with clamped 

boundary conditions . 
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Chapter 3: A penalty function based delamination model for postbuckling 

analysis of composite plates with delamination 
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Nomenclature 
𝑎, 𝑏 Dimensions of the rectangular plate 

𝑑𝑥, 𝑑𝑦 Dimensions of the rectangular delamination 

𝑢, 𝑣 In-plane displacement in x and y-direction 

𝑢0, 𝑣0, 𝑤0 Midplane displacements  

𝜙𝑥 Clockwise rotation of cross-section normal to x-axis about the y-axis 

𝜙𝑦 Clockwise rotation of cross-section normal to y-axis about the x-axis 

𝛿 End-shortening 

𝜀𝑥
0,  𝜀𝑦

0,  𝛾𝑥𝑦
0  Midplane strains 

𝑘𝑥 , 𝑘𝑦, 𝑘𝑥𝑦  Midplane curvatures 

𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 Stress resultants 

𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 Moment resultants 

𝑈 Strain energy 

𝑊 Potential energy of external forces 

𝑈𝑃 Penalty term corresponding to interlaminar adhesion 

𝛱 Total Potential energy functional 

𝑢1, 𝑣1, 𝑤1 Displacements of the interface of the bottom sublaminate 

𝑢2, 𝑣2, 𝑤2 Displacements of the interface of the top sublaminate 
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3.1 Introduction 

Thanks to their outstanding mechanical and corrosion properties and lightweight, laminated 

composite materials have gained remarkable popularity, especially in the aerospace industry. 

However, despite their advantages, they are susceptible to various types of flaws among which 

delamination is probably the most impactful. Delaminations are partial debondings of the plies that 

constitute a laminate and may exist as manufacturing defects or may appear later in service due to 

material degradation, fatigue, or impact. Regardless of the reason for their existence, delaminations 

may drastically reduce the load-carrying capacity of laminates, especially under compressive 

loading. Delaminations pose an imbalance to symmetrically stacked laminates and promote 

instability. In the postbuckling regime, the distribution of strains changes, and the laminate 

undergoes remarkably higher levels of stresses. The elevated level of stresses in turn often leads 

to the growth of delaminations and the failure of structures. The critical effect of delaminations on 

the performance of composite structures necessitates a meticulous determination of the residual 

strength of delaminated composites. In the aerospace industry, the performance of laminates 

containing flaws is evaluated by measuring the deflections and the surface stains under 

compressive loading. In the present work this approach used by the industry is kept in focus and 

the prediction of the same measured parameters is targeted. 

Given the importance of determining the residual strength of delaminated plates, their 

compressive response has been the subject of many studies. One of the earliest works on the 

buckling and postbuckling of delaminated plates was carried out by Chai et al [3]. They developed 

a one-dimensional analysis scheme based on a beam-column model and proceeded with 

calculating the energy release rate. They regarded thin, near-the-surface delaminations as a film 

bonded to an infinite substrate and for arbitrarily positioned (in thickness) delaminations they 

proposed a partitioning scheme for accommodating the geometrical discontinuity across the 

debonded region. Chai[63] later proposed a three-dimensional solution for investigating the state 

of a crack and the possibility of the propagation of the delamination. The thin-film model which 

was borrowed from the work of Kachanov [103] was later widely used in both one-dimensional 

[2,5–8] and two-dimensional [11–14,44,104,105] studies. The same scheme in conjunction with 

an axisymmetric formulation was used to predict the postbuckling behavior of circular 

delaminations [106,107]. The partitioning approach has been more vastly used in the literature of 

delaminated composite plates [16–21] and its modified two-dimensional variations are being used 
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to date [25,27–34,108]. Partitioning despite its practicality and ease of application, suffers from a 

slight inconsistency in the displacement field and provides no information on the interlaminar 

tractions. Moreover, it increases the size of the analysis and consequently adds to its computational 

cost. By adopting a different approach for addressing the discontinuity across the delamination, 

Zhang et al [109] used a layerwise theory with a non-continuous displacement field in the 

delaminated region. A similar technique was also used by Marjanovic et al [39] in conjunction 

with a different solution method. Numerical solutions offer high versatility with respect to the 

geometric shape of structures and can easily accommodate the delamination discontinuity without 

any need for partitioning techniques, however, this facility comes at the expense of much higher 

computational and modeling costs. 

To model the mechanical behavior of anisotropic laminates a variety of theories have been used. 

The most common theories used in the context of instability analysis of laminated plates are 

Equivalent Single Layer (ESL) theories. The simplest ESL theory is the Classical Laminated Plate 

Theory (CLPT) which is notorious for overestimating the bending stiffness, especially for thicker 

plates. First-Order Theory (FSDT) and Higher-Order Shear Deformation Theory (HSDT) have 

been proven to more accurately represent the mechanical behavior of composite laminates without 

significantly overestimating their flexural stiffness. Kharazi et al [23] compared the accuracy of 

these theories in predicting the stability behavior of plates containing through-the-width 

delaminations and concluded that the efficiency of HSDT was superior. However, they observed 

that the results obtained using FSDT match those of HSDT except for the cases with remarkably 

thick sublaminates. 

In the present work, a novel technique for modeling delamination is proposed. The delamination 

is simulated by splitting the laminate into two sublaminates at the plane of the delamination. The 

bonding of sublaminates formed on the two sides of the delamination plane is modeled using a 

penalty function in the intact (nondelaminated) regions. Each of the sublaminates is separately 

modeled using the first-order shear deformation theory. The equilibrium equations are obtained 

using a modified Ritz method capable of capturing local deflections as well as global deformations. 

The penalty method offers access to the interlaminar tractions corresponding to the three fracture 

mode shapes. The availability of these tractions sets a foundation for assessing the possible growth 

of a delamination.  
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Using the developed formulation a MATLAB® program was developed and validated through 

the comparison of results with three-dimensional finite element analyses carried out using the 

multipurpose commercial software ANSYS®.  

3.2 Problem definition  

The present work focuses on the compressive response of rectangular laminated composite 

plates with arbitrary stacking sequences containing a finite-width rectangular delamination.  

Figure 3.1 illustrates the geometry of such a delaminated plate including the symbols that are used 

to designate the dimensions of the plate and the delamination. To trace the equilibrium path beyond 

the instability threshold, throughout this work the stability analyses are carried out under a 

displacement-controlled loading system.  

 

 
Figure 3.1  Schematic view of a plate containing an embedded delamination 

 

3.3 Theory and formulation 

3.3.1 Kinematics 

In the proposed method, the delaminated plate is assumed to be composed of two sublaminates 

on the two sides of the plane of the delamination. The displacement fields in both of these 

sublaminates are approximated by the FSDT. Despite the common aspect of adopting a linear 

displacement field, unlike CLPT, FSDT does account for the out-of-plane shear deformations and 
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by doing so avoids overestimating the stiffness of moderately thick laminates. The FSDT assumes 

a linear distribution of in-plane displacements in the thickness direction of the laminate while 

assuming that the out-of-plane displacement is a function of the in-plane coordinates only. The 

explained displacement field can be mathematically expressed in the form: 

 
 

 𝑢 (𝑥, 𝑦, 𝑧) =  𝑢0(𝑥, 𝑦) + 𝑧𝜙𝑥(𝑥, 𝑦) (3.1) 

 𝑣 (𝑥, 𝑦, 𝑧) =  𝑣0(𝑥, 𝑦) + 𝑧𝜙𝑦(𝑥, 𝑦) (3.2) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (3.3) 

 

The instability and post-instability behaviors of anisotropic laminates generally involve small 

strains and moderately large rotations. Therefore, in order to model the behavior of a composite 

plate in these conditions, a strain definition capable of accommodating large rotations is required.  

For planar structures, large rotations are conventionally accounted for by using Von Kármán’s 

approximations of the Green strain tensor.  

Given the FSDT displacement field as described in Eqs.(4.1-4.3), Von Kármán’s in-plane 

strains can be expressed as: 
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(3.4) 

Based on the same displacement field the out-of-plane shear strains read as: 

 {
𝛾𝑦𝑧

 𝛾𝑥𝑧
} = {

𝜑𝑦 +
𝜕𝑤0

𝜕𝑦

𝜑𝑥 +
𝜕𝑤0

𝜕𝑥

}   (3.5) 

 

 

 

 

3.3.2 Constitutive equations 

Assuming a plane-stress condition the constitutive equation at an arbitrary point in the laminate 

is expressed as: 
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{
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   (3.6) 

 

where Qijs are the elements of the reduced plane-stress stiffness matrix of the corresponding 

ply.  

As the FSDT treats the laminate as an ESL the constitutive equation is stated in the form of an 

equation that defines the relationship between the stress and moment resultants and the so-called 

laminate strain vector as:  
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 (3.7) 

 

where the elements the stiffness matrices are obtained using the following equations: 

 (Aij, Bij, Dij) = ∫ 𝑄𝑖𝑗(1, 𝑧, 𝑧
2

ℎ/2

−ℎ/2

)𝑑𝑧    𝑓𝑜𝑟   𝑖, 𝑗 = 1, 2, 6 (3.8) 

 

And  

 𝐻ij = 𝑘 ∫ 𝐶𝑖𝑗

ℎ/2

−ℎ/2

𝑑𝑧    𝑓𝑜𝑟   𝑖, 𝑗 = 4, 5  (3.9) 

where k is the shear correction factor. 

The assumptions of FSDT dictate a uniform shear stress distribution in the thickness of a 

laminate and thus violate the condition of traction-free upper and lower surfaces. This results in 

an overestimation of the shear stiffness. To alleviate this excessive stiffness, the correction factor 

k is introduced to the shear stiffness matrix. Unlike for isotropic materials, no unique value can be 

advocated for composite laminates. However, the same values used for isotropic plates have been 

used in a multitude of research works and satisfactory accuracy has been achieved. In the present 

work, a k value of 5/6 is used. 

When considering the laminate as two sublaminates bonded to each other, each sublaminate is 

considered as a separate ESL. Therefore, in order to model the mechanical behavior of the 
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delaminated plate, the stiffness matrices of each sublaminate need to be determined based on the 

stacking sequence of that particular sublaminate. Given the bonding between the sublaminates, 

unlike the top and bottom surfaces of the laminate, the traction-free assumption does not hold for 

the interface. However, the excessive stiffness imposed by the assumption of a linear displacement 

field still needs to be remedied using a correction factor. 

3.3.3 A modified Ritz method 

The equilibrium equations for the quasi-static nonlinear problem are found using the principle 

of minimum total potential energy applied through the Ritz method.  

According to the stationary total potential energy principle, equilibrium corresponds to a 

condition in which the total potential energy functional is stationary and minimum for a stable 

configuration. The total potential energy of a structural system consists of the strain energy stored 

in the structure and the potential energy of external forces:  

 𝛱 = 𝑈 + 𝑊 (3.10) 

For a laminate assumed to be composed of two sublaminates, the strain energy is the sum of 

the strain energies of the two sublaminates. The bonding between the two sublaminates is enforced 

using a penalty function that ensures the continuity of the displacement field across the interface. 

The total potential energy of the assembled sublaminates that form a whole laminate is expressed 

as: 

 𝛱 = 𝑈1 + 𝑈2 + 𝑈𝑃 + 𝑈𝑐 + 𝑊 (3.11) 

where U1 and U2 are the strain energy terms corresponding to the bottom and top sublaminates 

respectively, Up is the penalty term corresponding to the energy stored in an elastic bonding, and 

Uc is the energy corresponding to contacting surfaces.    

For an anisotropic plate the deflection of which is represented by the FSDT, the strain energy 

is expressed as: 

 𝑈 =
1

2
{∬{𝜖}𝑇 [

[𝐴] [𝐵] 0
[𝐵] [𝐷] 0
0 0 [𝐻]

] {𝜖} 𝑑𝐴} (3.12) 

where {𝜖} = [𝜀𝑥
0 𝜀𝑦

0 𝛾𝑥𝑦
0 𝑘𝑥 𝑘𝑦  𝑘𝑥𝑦 𝛾𝑦𝑧 𝛾𝑥𝑧]

𝑇
 

In assessing the compressive response of plates, solution nonlinearities generally lead to 

extremum points beyond which the slope of the force-displacement curve becomes negative, that 

is, further deflection can take place without any increase in the magnitude of external forces. 
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Hence, in a force-controlled analysis, it is impossible to capture the equilibrium path past such 

extremum points. In order to trace the complete equilibrium path, post-instability analyses are 

often conducted under a displacement-controlled loading. Therefore, in the present work, the 

external forces are absent and the external loading is considered in the form of an incremental 

displacement imposed on the edges of the plate.  

Once the expression of the total potential energy of the assembly is derived, the minimization 

of the functional is done through the application of the Ritz method. The Ritz method approximates 

the displacements corresponding to an equilibrium state in the form of finite series of linearly 

independent functions with unknown coefficients. These functions need to satisfy the essential 

boundary conditions of the problem and have non-zero derivatives to the highest degree of the 

derivatives that appear in the total potential energy expression. For the two-dimensional problem 

of a plate, the common approach is to seek the solution in the form of series with separable 

continuous functions. The general form of such approximate functions reads as:  

 𝜓 = ∑ ∑ 𝛹𝑚𝑛𝑋𝑚𝑌𝑛

𝑁

𝑛=1

𝑀

𝑚=1

 (3.13) 

where 𝑋𝑚 and  𝑌𝑛 are definite functions of x and y respectively. 

In the aforementioned 2D plate problem, 𝜓 represents the displacements 𝑢, 𝑣, and 𝑤 or the 

rotations  𝜑𝑥 and 𝜑𝑦 while 𝛹𝑚𝑛 represents the corresponding coefficients 𝑈𝑚𝑛, 𝑉𝑚𝑛, 𝑊𝑚𝑛, 𝛷𝑥𝑚𝑛
, 

and 𝛷𝑦𝑚𝑛
. For Each of the displacement fields 𝑢, 𝑣, 𝑤, 𝜑𝑥, and 𝜑𝑦,  𝑋𝑚s and  𝑌𝑛s need to be 

defined consistent with the corresponding boundary conditions. 

The adopted series is supposed to be capable of generating every possible deformed shape of 

the physical domain while respecting the essential boundary conditions.  

By substituting the approximate functions into Eq. (3.4) and subsequently into Eqs. (3.11) and 

(3.12), The expression of the strain energy in terms of the unknown coefficients 𝛹𝑚𝑛 is obtained. 

The minimization of the total potential energy is then done with respect to the unknown 

coefficients and it leads to a system of nonlinear equations as follows: 

 
𝜕𝛱

𝜕𝑈𝑚𝑛
= 0,

𝜕𝛱

𝜕𝑉𝑚𝑛
= 0,

𝜕𝛱

𝜕𝑊𝑚𝑛
= 0,

𝜕𝛱

𝜕𝛷𝑥𝑚𝑛

= 0,
𝜕𝛱

𝜕𝛷𝑦𝑚𝑛
  
= 0 (3.14) 

where 𝑈𝑚𝑛, 𝑉𝑚𝑛, 𝑊𝑚𝑛, 𝛷𝑥𝑚𝑛
, and 𝛷𝑦𝑚𝑛

are the coefficients of the approximate functions for u, 

v, w , 𝜑𝑥, and 𝜑𝑦 respectively. 
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Conventionally, the Ritz approximate functions are continuous over the mathematical domain 

which is equivalent to the physical span of the plate. Being of a continuous nature, these functions 

can very hardly accommodate high gradient local deformations that are expected in a delaminated 

region. As a remedy for this problem, the superimposition of a set of supplementary non-

continuous functions on the conventional continuous approximate functions is proposed in the 

present work. The supplementary functions which serve as a local refinement, are complete 

functions with a value of zero outside the delaminated region. To maintain displacement continuity 

across the plate, these functions are designed in a way that they satisfy the condition of C1 

continuity at the borders of the delaminated region. That is, their values, as well as their first 

derivatives, vanish at the edges of the delamination. The requirements of C1 continuity as 

described are built in the approximate functions while their zero value outside the delaminated 

region is secured by multiplying the series by a step function. With this adjustment, the Ritz 

approximate functions take the form: 

𝜓 = ∑ ∑[𝛹𝑚𝑛𝑋𝑚𝑌𝑛 + 𝑅𝑑𝛹𝑚𝑛�́�𝑚𝑛�́�𝑚�́�𝑛]

𝑁

𝑛=1

𝑀

𝑚=1

 (3.15) 

where 𝑅𝑑 is a step function with a value of unity inside the delaminated region and a value of 

zero outside the delaminated zone and can be defined using the Heaviside step function. For the 

particular geometric configuration depicted in Figure 3.1  Schematic view of a plate containing an 

embedded delaminationError! Reference source not found., Rd can be expressed in the form: 

𝑅𝑑 = [𝐻 (𝑦 +
𝑑𝑦

2
) − 𝐻 (𝑥 −

𝑑𝑦

2
)] [𝐻 (𝑥 +

𝑑𝑥

2
) − 𝐻 (𝑥 −

𝑑𝑥

2
)] (3.16) 

When using such a combination of functions, the continuous functions are responsible for 

capturing the global deformations while the local deformations are captured by the noncontinuous 

functions. 

Even though the choice of the Ritz approximate functions is arbitrary, it is well established that 

using higher-order simple polynomials can lead to the emergence of ill-conditioned matrices and 

subsequently to an inaccurate numerical solution[100,110]. In the present work, acceptable 

approximate functions compatible with the boundary conditions of a problem are constructed 

based on simple polynomial functions. To avoid numerical complications as explained, the Gram-

Schmidt orthonormoalization procedure is used to convert the simple polynomial functions into 

sets of orthogonal functions. The general form of simple polynomial functions to satisfy the 

essential boundary conditions of an arbitrary problem may be expressed as: 
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 𝑋𝑚 = 𝑅𝑥𝑥
𝑚   𝑚 = 0,1,2. . 𝑀 (3.17) 

 𝑌𝑚 = 𝑅𝑦𝑦
𝑛      𝑛 = 0,1,2. . 𝑁 (3.18) 

where 𝑅𝑥 and 𝑅𝑦 are the functions that enforce the essential boundary conditions for a particular 

physical degree of freedom of a problem and they are dubbed Boundary Condition Coefficient 

Functions (BCCF).  

Similarly, the local noncontinuous polynomial functions used for a rectangular delaminated 

region are constructed as: 

 �́�𝑚 =  �́�𝑥𝑥
𝑚    𝑚 = 0,1,2. . 𝑀 (3.19) 

 �́�𝑛 = �́�𝑦𝑦
𝑛      𝑛 = 0,1,2. . 𝑁 (3.20) 

 where �́�𝑥 and �́�𝑦 are the BCCFs that provide the C1 continuity across the edges of the 

delamination. That is, both the BCCFs and their first derivatives are supposed to vanish at the 

edges of the delamination. For a delamination the center of which coincides with the center of the 

plate, these BBCFs are defined as:  

 �́�𝑥 = (𝑥2 −
𝑑𝑥

2

4
)2 (3.21) 

 �́�𝑦 = (𝑦2 −
𝑑𝑦

2

4
)2 (3.22) 

Once the original polynomial functions are constructed, the corresponding orthonormal 

functions are obtained through the application of the Gram-Schmidt procedure. For the global 

functions, the orthonormalization is carried out over the intervals [-a/2 a/2] and [-b/2 b/2] whilst 

for the local functions, the intervals [-dx/2 dx/2] and [-dy/2 dy/2] are used.  Figure 3.2 illustrates 

the first five terms of global and local orthonormalized approximate functions that are compatible 

with clamped boundary conditions (CCCC). 

To set up a displacement-controlled analysis an additional definite linear term is added to the 

approximate function corresponding to the in-plane displacements. For a uniaxial compressive 

loading in the x-direction, the approximate function for u is modified as: 

 𝑢 = 𝑥
𝛿

𝑎
+ ∑ ∑[𝑈𝑚𝑛𝑋𝑚𝑌𝑛 + 𝑅𝑑�́�𝑚𝑛�́�𝑚�́�𝑛]

𝑁

𝑛=1

𝑀

𝑚=1

 (3.23) 

where 𝛿 is the relative edge displacement. 

If the BCCFs in the series are defined in a way that they do not allow any in-plane movement 

of the edge, then the movement of the edge is dictated by the value selected for δ. This relative 

displacement of the opposite edges is often referred to as end-shortening. 
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Figure 3.2  Continuous global functions (top) versus noncontinuous local functions (bottom)  

3.3.4 Delamination modeling  

The new delamination modeling scheme considers the laminate containing a delamination as 

two sublaminates on the two sides of the plane of the delamination. As for the real-life case where 

the plies are bonded to each other using an adhesive, in the new model the sublaminates are bonded 

together using penalty functions. The penalty functions are essentially equivalent to the potential 

energy corresponding to distributed elastic bonds which restrain the relative movements of the 

touching surfaces (interface) of the sublaminates in the intact regions. By selecting infinitely high 

stiffness values for these distributed elastic springs a zero relative displacement can be achieved. 

Figure 3.3 shows the arrangement of the sublaminates. As it is depicted in the figure the interface 

of the two sublaminates is located on the upper surface of the lower sublaminate as well as the 

lower surface of the upper sublaminate.  

For the three physical degrees of freedom of any point on the interface, three separate penalty 

functions are to be defined to prevent all possible relative movements of the interface. As the out-

of-plane displacement w is assumed not to vary with the location in the thickness, the relative out-

of-plane movement of the sublaminates at the interface is equal to the difference between the out-

of-plane displacements of the midplanes of the two sublaminates. Hence the penalty term 

corresponding to the out-of-plane displacement reads as: 
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 𝑈𝑁 =
1

2
𝐾𝑤 ∬(𝑤1 − 𝑤2)2𝑑𝐴

𝐼

=
1

2
𝐾𝑤 ∬(𝑤0

1 − 𝑤0
2)2𝑑𝐴

𝐼

 (3.24) 

Similarly, the penalty term corresponding to in-plane relative displacements are: 

 𝑈𝑆 =
1

2
∬[𝐾𝑢(𝑢

1 − 𝑢2)2 + 𝐾𝑣(𝑣
1 − 𝑣2)2]𝑑𝐴

𝐼

 (3.25) (1) 

where I designates the intact region and Ku, Kv, and Kw are the penalty stiffnesses in x, y, and  

z-directions respectively. 

In order to account for the debonding in the delaminated region, the integration in Eqs.(3.24) 

and (3.25) are carried out over the intact region and the debonded region is excluded.  

Taking into account the displacement fields of Eqs. (3.1) and (3.2) the displacements of the 

upper surface of the bottom sublaminate can be presented in terms of its midplane parameters as: 

 𝑢1 = 𝑢01 + 𝜑𝑥1

ℎ1

2
 

 
(3.26) 

 𝑣1 = 𝑣01 + 𝜑𝑦1

ℎ1

2
 

 
(3.27) 

Similarly, the displacements of the bottom surface of the top sublaminate can be expressed in 

terms of its midplane parameters as: 

 𝑢2 = 𝑢02 − 𝜑𝑥2

ℎ2

2
 

 
(3.28) 

 𝑣2 = 𝑣02 − 𝜑𝑦2

ℎ2

2
 

 
(3.29) 

The overall penalty term Up to be considered in Eq.(3.10) is the sum of penalty functions: 

 𝑈𝑃 = 𝑈𝑁 + 𝑈𝑆 (3.30)  
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Figure 3.3   Schematic view of sublaminates and their interface 

3.3.5 Aspects of contact 

The defection of the delaminated region may involve the touching (contact) of the delamination 

surfaces. In order to account for this phenomenon and to prevent the interpenetration of 

delamination surfaces. This contact is modeled using a scattered distribution of fictitious 

compression-only springs. To ensure the compression-only behavior, in an iterative procedure 

their status is checked and the springs under tension are eliminated. The energy stored in a K×L 

rectangular array of springs is expressed as: 

 𝑈𝑐 =
1

2
𝐾𝑐 ∑ ∑𝐶𝑠(𝑤

1(𝑥𝑘, 𝑦𝑙) − 𝑤2(𝑥𝑘, 𝑦𝑙))
2

𝐿

𝑙=1

𝐾

𝑘=1

 (3.31)  

where (𝑥𝑘, 𝑦𝑙) is the location of an individual spring of the array in the delaminated region and 

𝐶𝑠 is a binary parameter defining the status of a spring. 

3.4 Customized Arc-length method 

In solving nonlinear equations, the most popular approach is adopting different variations of 

Newton’s method. However, the applicability of Newton's method is limited by the emergence of 

critical points close to which the tangent matrix becomes singular or ill-conditioned. In order to 

trace the path of equilibrium past the point of instability, in the present work, the system of 

nonlinear equations obtained through the application of the Ritz method was solved using an Arc-
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length method.  The Arc-length method by controlling the size of steps taken in an iterative 

solution traces almost the entirety of an equilibrium path. In the present work, Crisfield's [67] 

version of the Arc-length method is modified to meet the special requirements of the system of 

nonlinear equations in hand.  In Crisfield’s method, it is assumed that the terms in the system of 

nonlinear equations are separable into functions of external loading magnitude and functions of 

the solution vector {𝑈} (internal forces) and therefore, the nonlinear system of equations can be 

expressed in the form: 

 𝑓({𝑈}) + λ{F̅} = 0 (3.32)  

where λ is a scalar defining the magnitude of the external loading and {F̅} is the loading vector 

corresponding to an arbitrary loading level. 

 However, as in the present work a forced edge displacement is imposed through the addition 

of a specific linear function to the displacement approximate function, such a distinction between 

the terms does not exist and the internal forces depend on the level of the applied end-shortening 

as well.  Therefore, the equation should be expressed in the form: 

 {
𝜕𝛱

𝜕𝛹𝑚𝑛
}
𝜓=𝑢,𝑣,𝑤,𝜑𝑥,𝜑𝑦

= 𝑓({𝑈}, λ) + λ{F̅} = 0 (3.33)  

𝑅𝑛
𝑟  the residual vector in rth iteration of the nth load step is defined as: 

 {𝑅}𝑛
𝑟 = 𝑓({𝑈}𝑛

𝑟 , λ𝑛
𝑟 ) + λ𝑛

𝑟 {F̅} (3.34)  

Assuming that the solution for the (𝑟 − 1)𝑡ℎ iteration of the nth load step is {𝑈}𝑛
𝑟−1 and the 

corresponding load parameter is λ𝑛
𝑟−1, to find a solution that renders the residual zero in the rth 

iteration, R is expanded using the first-order terms of Taylor’s series as follows: 

 {𝑅}𝑛
𝑟 = {𝑅({𝑈}𝑛

𝑟−1, λ𝑛
𝑟−1)} + (

𝜕{𝑅}

𝜕λ
)

𝑟−1

 𝛿λ𝑟 + (
𝜕{𝑅}

𝜕{𝑈}
)

𝑟−1

𝛿{U}𝑟 (3.35)  

Where 𝛿λ𝑟and 𝛿{U}𝑟are the corrections to the (𝑟 − 1)𝑡ℎ iteration solution. 

Substituting Eq.(3.34) into Eq.(3.35) one has: 

 {𝑅}𝑛
𝑟 = {𝑅({𝑈}𝑟−1, λ𝑟−1)} + (

𝜕𝑓

𝜕λ
+ {F̅})  𝛿λ𝑛

𝑟 +
𝜕𝑓

𝜕{𝑈}
 {𝛿U}𝑛

𝑟  (3.36)  

where 
𝜕𝑓

𝜕{𝑈}
  is by definition the tangent stiffness matrix  𝐾𝑇.  

Setting the residual to 0 and solving for {𝛿U}𝑟 one has: 

 {𝛿U}𝑛
𝑟 = −[𝐾𝑇]

−1{𝑅}𝑛
𝑟−1 + 𝛿λ𝑟[𝐾𝑇]

−1 (
𝜕𝑓

𝜕λ
+ {F̅})  ≡ {𝛿𝑈̅̅ ̅̅ }

𝑛

𝑟
+ 𝛿λ𝑛

𝑟 {𝛿�̂�} (3.37)  
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The solution of the rth iteration is therefore given as: 

 {U}𝑛
𝑟 = {U}𝑛 + {∆U}𝑛

𝑟  (3.38)  

  {∆U}𝑛
𝑟 = {∆U}𝑛

𝑟−1 + {δU}𝑛
𝑟  (3.39)  

The length of the load-step progress vector {∆U}𝑛
𝑟 is expressed as: 

 ∆𝑆 = √{∆U}𝑛𝑟 . {∆U}𝑛𝑟  (3.40)  

The value of the scalar 𝛿λ𝑛
𝑟 is determined by selecting an appropriate value for ∆𝑆 and 

substituting Eqs.(3.37)-(3.39) into Eq.(3.40) and solving for 𝛿λ𝑛
𝑟 . 

Further details on the procedure of finding the equilibrium path can be found in Ref.[67]. 

3.5 Numerical examples 

The formulation explained in the previous sections was derived for general boundary 

conditions. Numerical results are obtained and presented for an arbitrarily selected combination of 

boundary conditions with two opposite clamped edges and two free edges. All the five physical 

degrees of freedom the plates are fully constrained along the clamped edges. Displacement–

controlled loading was applied uniformly on the two opposite clamped edges simultaneously. 

Error! Reference source not found. depicts the described boundary conditions. The selected 

boundary conditions require similar approximate functions for all the 5 physical degrees of 

freedom of the problem (u, v, w, φx and φy) which are enforced by adopting the following BCCFs: 

 𝑅𝑥 = (𝑥2 −
𝑎2

4
) (3.41) 

 𝑅𝑦 = 1 (3.42) 

 
Figure 3.4   Loading and boundary conditions used for numerical examples 
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Analyses were undertaken on a laminate with a stacking sequence of (0/90/90/0)3 with a ply 

thickness of 0.2 mm. Additionally, a laminate with a stacking sequence of (0/90)6 was analyzed to 

demonstrate the capability of the developed formulation to handle asymmetrically stacked 

laminates. The overall size of the specimen in all analyses was kept constant at 150 mm×100 mm 

and the dimensions and the location of the delamination in the thickness-direction were varied. 

The material properties used are listed in Table 3.1. 

Table 3.1 Orthotropic material properties 

E11(GPa) E22(GPa) G12(GPa) ν12 

181 10.3 7.17 0.28 

The selected combination of boundary conditions, material properties and laminate lay-up 

would lead to symmetric deformed shapes that could be simulated using a quarter model, however, 

as the methodology was meant to be applicable for any arbitrary laminate and boundary conditions, 

it was developed based on a full modeling scheme. 

As a benchmark, every analyzed case was compared with the results obtained through Finite 

Element Method (FEM). The FEM simulations were conducted using ANSYS® multipurpose 

commercial software.  The modeling was done using the 3-dimensional SOLID185 element which 

is a linear element capable of accommodating stress stiffening and large deflection effects. The 

element is constructed with 8 nodes each of which has 3 translational degrees of freedom. Each 

ply of the laminate was modeled using two layers of hexahedral elements. 

Given the fact that symmetrically stacked laminates do not generally become unstable under 

pure compressive in-plane loading, similar shape and amount of imperfection were considered in 

both analyses (FEM and present). The imperfections were generated by applying a very small 

equal and opposite distributed pair forces on the touching surfaces of the sublaminates in the 

delaminated region. As the sum of the forces applied on the plate is zero no global imperfection is 

caused. 

In the first series of analyses, the delamination was placed between the second and third plies 

from the top of the laminate. The analyses show that in this arrangement with a gradual increase 

in the end-shortening, instability first occurs in the thinner sublaminate in the form of a dome. 

With a further increase in the applied end-shortening, a mixed-mode buckling takes place after 

which the whole laminate including the thinner sublaminate moves in the opposite direction. 
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Figure 3.5 depicts both local and mixed buckled shapes for a plate with a square shaped 

delamination of 30 mm×30 mm.  

 
Figure 3.5 Local (left) and mixed-mode (right) shapes for a delamination between 2nd and 3rd plies of the (0/90/90/0)3 

laminate 

Analyses involving other delamination sizes exhibit similar instability phenomena, however, 

the loading level at which these instabilities occur vary. 

Figure 3.6-3.8 demonstrate the variation of the out-of-plane displacement and the normal strain 

in the longitudinal direction (𝜀𝑥) at the center of the sublaminates versus the applied end-

shortening. These figures correspond to delaminations of sizes 30 mm×30 mm, 40 mm×40 mm, 

and 50 mm×50 mm respectively. To visualize the impact of the delamination on the compressive 

response, the load vs out-of-plane displacement curve is presented for an intact plate (without 

delamination) as well. Given the fact that in these analyses the bottom sublaminate is of a thickness 

close to the thickness of the intact laminate, it mostly follows the global deflection of the whole 

plate. Therefore, a radical change in the slope of the out-of-plane displacement of the center point 

of the bottom sublaminate can be regarded as the onset of the mixed instability. A drastic change 

in the out-of-plane displacement of the center point of the upper laminate happens without any 

noticeable change in the behavior of the whole plate and it can be interpreted as the onset of the 

local buckling. It was noticed the emergence of the global deflection led to the closure of the 

delamination at its longitudinal extremities (transversal edges) and the material surfaces on the 

two sides of the delamination plane came in partial contact.  
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Figure 3.6 Center point out-of-plane displacement (left) and x-direction strain (right) vs end-shortening for a 30mm×30mm 

delamination 

 
Figure 3.7 Center point out-of-plane displacement (left) and x-direction strain (right) vs end-shortening for a 40 mm×40 mm 

delamination 
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Figure 3.8 Center point out-of-plane displacement (left) and x-direction strain (right) vs end-shortening for a 50 mm×50 mm 

delamination 

A cursory look at the results presented in Figure 3.6-3.8 reveals that larger delaminations tend 

to buckle under lower levels of loading. It can be observed that for smaller delaminations (30 

mm×30 mm, 40 mm×40 mm), the delamination mostly causes a shift forward of the instability 

onset rather than changing the ultimate behavior of the whole plate in the postbuckling regime. 

The largest delamination, however, changed the correlation between the end-shortening and out-

of-plane displacement in the postbuckling regime as well. It should be taken into account that the 

smooth transition into the postbuckling regime is partly due to the preexisting imperfection. The 

results obtained using the present method perfectly agree with the FEM results in predicting the 

deformed shapes and the emerging phenomena as well as in the load level at which the local 

instability takes place. In predicting the second (mixed mode) buckling, however, the difference 

in the calculated onset of instability is more pronounced. The results obtained for strains show a 

rise proportional to externally applied end-shortening up to the onset of instability. Beyond the 

instability point, the bending strains come into the picture so as to change the trend of variation of 

the center point strain. The predicted strains for the thicker sublaminate very closely match the 

FEM results while the calculated strain on the thinner sublaminate deviates more significantly 

from FEM result.  

To explore the effect of the aspect ratio of the delaminated region, a variety of rectangular 

delaminations were analyzed. The rectangular delaminations were made by changing the width of 

the 30mm×30mm delamination the results for which were presented in Figure 3.6. Therefore, 
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plates containing rectangular delamination of the dimensions 30mm×15mm, 30mm×20mm, and 

30mm×45mm were considered. It was observed that for the plate with the 30mm×45mm 

delamination, similar to the previous cases, the instability involved a local buckling followed by a 

mixed-mode shape. The out-of-plane displacement and x-direction strains of the center point of 

the two sublaminates are depicted in Figure 3.9. The analyses of the plates with 30mm×15mm and 

30mm×20mm delaminations, showed that the global buckling preceded a potential local 

instability. Therefore, unlike the previous cases, the buckled shape involved the deflection of the 

whole plate towards the direction of the thinner sublaminate. The onset of this deflection was 

followed by the touching (contact) of the delamination surfaces. Given the identical nature of the 

results obtained for the two delamination dimensions, only the results for the plate with 

30mm×20mm delamination are presented in Figure 3.10. The obtained results for the deformed 

shape and the strains exhibit impeccable agreement with FEM results.  

  
Figure 3.9 Center point out-of-plane displacement (left) and x-direction strain (right) vs end-shortening for a 30 mm×45 mm 

delamination 
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Figure 3.10 Center point out-of-plane displacement (left) and x-direction strain (right) vs end-shortening for a 30 mm×20 

mm delamination 

In the next step, the delamination was placed between the 4th and the 5th plies of the laminate 

from the top. In this arrangement, no local buckling was observed and the first buckling mode 

shape involved a global deformation. Considering the similarity of the results obtained for different 

sizes of the delamination, for the sake of brevity, the results for a plate with a 30 mm×30 mm 

delamination are presented solely Figure 3.11 shows the variation of the out-of-plane displacement 

the x-direction strain at the center of the plate versus the applied end-shortening. Of course, as the 

buckling does not involve any local deformations, the displacements of the center point of both 

sublaminates have similar values. The results obtained for all different sizes of delaminations show 

a very good agreement with the results obtained using FEM. A comparison of the critical buckling 

load obtained for such delaminated plates with an intact plate reveals that these delaminations 

barely change the load-carrying capacity of the plate. 
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Figure 3.11 Center point out-of-plane displacement (left) and x-direction strain (right) vs end-shortening for a 30mm×30mm 

delamination 

As an example of an asymmetrically stacked laminate, a plate with a lay-up of (0/90)6 

containing a 30mm×30mm delamination between the 2nd and the 3rd plies was analyzed. Despite 

the coupling effects associated with asymmetrical laminates, as the rotations of end edges were 

constrained an immediate out-of-plane displacement due to in-plane loading did not take place. 

Similar to symmetrically stacked laminates, the buckling mode shape was a local deformation 

followed by a mixed-mode buckled shape. The out-of-plane displacement and the x-direction 

strain at the center point of the top and the bottom surfaces of the plate are presented in Figure 3.12 

 
Figure 3.12 Center point out-of-plane displacement (left) and x-direction strain (right) vs end-shortening for a 30 mm×30 

mm delamination with a stacking sequence of (0/90)6 
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bonding tractions between sublaminates is obtainable. This facility provides the possibility of 

assessing interlaminar bonds under loading. The calculated interlaminar tractions do not provide 

the means for determining the possibility of the growth of the delamination, however, they do 

provide an insight into the location where crack growth may initiate. Furthermore, having access 

to these tractions along with an accurate estimation of the displacements at the vicinity of the edges 

of the delamination sets a foundation for calculating the strain energy release rate distribution 

along the edges of the delamination. Having used isolated penalty functions for each of the three 

degrees of freedom of a physical point on the interface, the tractions corresponding to each fracture 

mode (opening, shearing, and tearing) can be determined separately. It is worthy of attention that 

theoretically, the stress field at the tip of a crack is singular. However, using finite penalty stiffness 

values, finite values for interlaminar tractions are obtained. Therefore, the magnitudes of the 

calculated tractions greatly depend on the applied penalty stiffness.  

 In the following, the interlaminar tractions are plotted along the edges of the delamination 

introduced in Figure 3.5 (30mm×30mm delamination between the 2nd and 3rd plies) at an end-

shortening level of 0.06mm which is above the local buckling threshold and below the global 

instability limit, for, it was observed that opening tractions are more pronounced in this range. It 

is worth mentioning that once the delaminated plate reaches the global instability the delamination 

starts to close up and as the closing initiates from the vicinity of the edges of the delamination, the 

edges experience no opening traction. Given the dependency of the calculated stress levels on the 

adopted penalty stiffness, normalized traction values are plotted to demonstrate the distribution of 

the traction along the delamination edge. The normalization was carried out by scaling the tractions 

to have a value between -1 and 1. The scaling was done by dividing the tractions by the highest 

absolute value of tractions experienced along a given edge. Figure 3.13-3.15 show the normalized 

tractions corresponding to the three principal fracture modes along the axial (parallel to the x-axis) 

and transversal (parallel to the y-axis) edges of the 30 mm×30 mm delamination. The obtained 

distributions are in good agreement with the distribution obtained using FEM. The presented 

curves show a better agreement for the tractions along the axial edge. Obtaining a smooth 

distribution of interlaminar traction along the edges using FEM requires an extremely fine 

mesh.Figure 3.15 shows that despite using a fine mesh (an element size of 1 mm), the calculated 

tractions suffer some significant oscillations while the present method using no more than 10 terms 
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generates comparable smooth results. The oscillations in FEM results are particularly more 

pronounced in tearing mode tractions along all of the edges. 

  
Figure 3.13 Opening traction along the axial (left) and transversal (right) edges of the delamination 

  
Figure 3.14 Shearing traction along the axial (left) and transversal (right) edges of the delamination 

  
Figure 3.15 Tearing traction along the axial (left) and transversal (right) edges of the delamination 

3.6 Conclusions 

A new technique for mathematically modeling delaminated composite plates based on a penalty 

function method is proposed. The laminate and the sublaminates it is composed of are modeled 
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using the FSDT. The equilibrium states were determined using a modified Ritz method specially 

designed for problems involving highly localized deformations and high deformation gradients.  

Based on the developed formulation a Matlab code was created and the generated results were 

compared with those obtained using FEM. Comparisons revealed a good agreement in the buckled 

shapes and in predicting the stability threshold and postbuckling deformations.  

The newly implemented technique has the advantage of generating interlaminar traction data 

which can, in turn, be used for determining the distribution of strain energy release rate in future 

works. The new method proved to be capable of outperforming FEM in generating smooth 

interlaminar tractions while reducing the computation cost of the solution. 
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Chapter 4: A new methodology for buckling, postbuckling, and delamination 

growth behavior of composite laminates with delamination 
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Nomenclature 

𝑙𝑥, 𝑙𝑦 Dimensions of rectangular plate 

h1, h2,h Thickness of bottom, top, and whole sublaminate 

𝑑 Dimensions of the rectangular delamination 

𝑢, 𝑣 In-plane displacement in x and y-direction 

𝑢0, 𝑣0, 𝑤0 Midplane displacements  

𝜙𝑥 Clockwise rotation of cross-section normal to x-axis about the y-axis 

𝜙𝑦 Clockwise rotation of cross-section normal to y-axis about the x-axis 

𝛿 End-shortening 

𝛿t Center point out-of-plane deflection 

𝜀𝑥
0,  𝜀𝑦

0,  𝛾𝑥𝑦
0  Midplane strains 

𝑘𝑥 , 𝑘𝑦, 𝑘𝑥𝑦  Midplane curvatures 

𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 Stress resultants 

𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 Moment resultants 

𝑈 Strain energy 

𝑊 Potential energy of applied forces 

𝑈𝑃 Penalty term corresponding to elastic adhesions 

𝑈𝐶  Penalty term corresponding to contact 

𝛱 Total Potential energy functional 

𝐺𝐼 Opening mode strain energy release rate 

𝐺𝐼𝐼 Shearing mode strain energy release rate 

𝐺𝐼𝐼𝐼 Tearing mode strain energy release rate 

𝐾𝑢, 𝐾𝑣 , 

𝐾𝑤  

Penalty stiffness in x, y, and z axes 

𝐾𝜑𝑥
, 𝐾𝜑𝑦

 Rotational penalty stiffness about y and x axes 

𝐾𝑐 Stiffness of fictitious contact springs  

𝐿𝑖  Lagrange polynomial of ith  degree 

𝛿𝑢, 𝛿𝑣, 

𝛿𝑤 

Relative movements of the open surfaces of a crack 
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4.1 Introduction 

High strength and low density have made laminated composites great candidates for replacing 

conventional isotropic materials. The advantages of composites especially appeal to industries 

such as the aerospace industry where lightweight is essential. Despite their outstanding mechanical 

properties, laminated structures are prone to interlaminar flaws or in other words delaminations. 

This type of flaw can impact the mechanical behavior and load-carrying capacity of such structures 

in various ways. In interrogating the behavior of partially delaminated composite plates, probably 

the most important problem to be addressed is the possibility and the extent of the growth of an 

existing delamination. This is especially of significance in unstable conditions such as the 

postbuckling state where the spread of an interlaminar flaw is most expected.  

Composite laminates similar to other thin-walled structures when subjected to in-plane 

compressive loading lose their bending stiffness and start to deflect laterally at their critical 

buckling loads. Beyond this level of loading, the behavior of the structure changes drastically, and 

the plate undergoes relatively larger deformations. In laminates containing delaminations, the 

manifestation of the instability phenomenon depends on the geometry, ply material properties, and 

the stacking sequence of the laminate as well as the size and the location of the delamination 

through the thickness of the laminate.  A laminate with a near-surface delamination is expected to 

experience a local buckling followed by a mixed buckling mode. While laminates with 

delaminations closer to their midplane generally experience either global or mixed buckling mode 

shapes.  

The larger deflections in the postbuckling regime increase the strain energy available for the 

propagation of the delamination.  A global buckling leads to a rise in Strain Energy Release Rate 

(SERR) corresponding to the fracture Mode 𝐼𝐼 (shearing) while in local or mixed buckling mode 

shapes, a rise in both Mode 𝐼 (opening) and Mode 𝐼𝐼 SERRs is expected. Under uniaxial 

compressive loading, laminates with through-the-with delaminations generally experience 

negligible values of Mode 𝐼𝐼𝐼 (tearing) SERR.  Once enough energy for the propagation of the 

delamination is available, it starts growing and the change in its shape and size, in turn, contributes 

to a further stiffness loss in the plate, and consequently larger deflections. The loading level under 

which an uncontrolled growth of delamination occurs may be regarded as the ultimate load-

carrying capacity of a plate with delamination.  
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Given the inevitable existence of interlaminar flaws and the possibility of their growth under 

unstable conditions, the postbuckling behavior of partially delaminated composite plates has been 

the subject of concern to a large number of researchers. To the knowledge of the authors, the 

earliest work on predicting the buckling behavior of delaminated composite plates was done by 

Chai et al [4]. Using an analytical one-dimensional model, they calculated the Strain Energy 

Release Rate (SERR) as the first variation of the total strain energy of a structure with respect to 

the length of the delaminated region. A similar technique was later used along with a different 

asymptotic solution[111]. The application of the aforementioned approach requires the availability 

of a closed-form expression for the strain energy of the plate. In more general cases where a closed-

form expression is not at hand, Crack Extension Techniques (CET) have been employed for 

calculating SERR. The CET work based on the assumption that a crack grows in a self-similar 

manner. The CET determines the total strain energy release rate as the difference between the 

strain energies of the plate before and after an infinitesimal advancement of the crack front per 

unit surface area of the newly cracked region. The CET has been used in both one-dimensional 

[6,9] and two-dimensional [40,44,61] analyses. An exception to using CET based on the self-

similar growth of a crack is the work of Wang et al [62]. They assumed that a circular delamination 

would grow into an elliptical shape and hence they accounted for the shape change that may occur 

in the process of the propagation of an existing delamination. In a different and unique approach, 

Chai [63] used a combination of thin-plate nonlinear solution and crack tip elasticity solution for 

calculating the SERRs corresponding to the three fracture modes individually.  

Another widely implemented method for delamination growth assessment in approximate 

solutions is the J-integral method [5,13,17,18]. The calculation of SERR using the path 

independent J-integral method involves selecting a path along which the integrand is easily 

obtainable and carrying out the integration along that path. In buckling driven delamination 

analyses the J-integral method has been used for one-dimensional cracks only. 

Finite Element Method (FEM) brings about the liberty of using more complicated techniques 

that are capable of providing a more detailed picture of the state of a crack. In a vast number of 

studies on buckling induced delamination growth, the Virtual Crack Growth Technique (VCCT) 

is used [46,47,59,60,112]. VCCT is developed based on the assumption that the energy released 

during the growth of a crack is equal to the energy required for closing it. Using VCCT in 
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conjunction with FEM, the energy release rates corresponding to the three fracture modes can be 

determined individually. 

Besides the techniques that stem from fracture mechanics, Cohesive Zone Models (CZMs) have 

also been used with FEM for modeling the progressive growth of delaminations [33,58,64]. Given 

the apriori known plane for the growth of an existing delamination. CZMs work by assigning a 

decohesive constitutive law to an imaginary interface located in the plane of a delamination. By 

gradually degrading the stiffness and based on the maximum tolerable traction in the cohesive 

zone, CZMs predict both the possibility and the extent of the growth of a delamination. 

In virtually all the published research works dedicated to the analytical or semianalytical study 

of the buckling and postbuckling problems of delaminated composite plates, the employed 

techniques are incapable of distinguishing the contributions of the three fracture modes 

individually. An exception to this rule is the method proposed by Chai [63] which is applicable to 

thin-film debonds only. The VCCT and the CZM despite being powerful means for studying the 

potential growth of delaminations have never been adapted to be used in conjunction with 

analytical or approximate solutions.  

In the current work, with the goal of using Irwin’s crack closure integrals for SERR calculation, 

a new formulation for modeling the buckling and postbuckling behavior of delaminated composite 

plates is proposed. The proposed approach is capable of predicting the distribution of interlaminar 

tractions in the plane of an existing delamination. The availability of these tractions makes it 

possible to calculate the distribution of the SERRs corresponding to each fracture mode 

individually. The proposed formulation is developed based on the First-Order Shear Deformation 

Theory (FSDT) and Von Kármán’s nonlinear strains and the equilibrium equations are obtained 

using the Ritz method. The mechanical behavior and the effect of delamination are accounted for 

by a laminate partitioning scheme in conjunction with a penalty function method that is used for 

bonding the partitioned sublaminates of the delaminated plate.  

4.2 Problem statement  

The problem being addressed is the buckling and postbuckling behavior of rectangular 

composite plates with through-the-width delaminations. For the sake of comparability of the 

results with experimental data available in the literature [113], the loading and boundary conditions 

are selected similar to those of the previously conducted experiments. The adopted boundary 
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conditions and loading are illustrated in Figure 4.1. The compressive load is applied in the form 

of a uniform forced displacement of the transversal (parallel with y-axis) edges while their 

rotations and transversal displacement are constrained. The other two edges (parallel with x-axis) 

are considered free.   

considering the symmetry of the rectangular plate and the absence of in-plane coupling effects 

due to the cross-ply stacking sequence used for experiments, the simulation is performed using a 

half model in conjunction with symmetry boundary conditions. 

 

 
Figure 4.1 Schematic view of the plate and the boundary conditions 

The developed formulations are meant to determine the critical buckling load of the 

delaminated plate as well as its postbuckling behavior including the correlation between the 

applied end-shortening and the out-of-plane displacements. Furthermore, it is desired to assess the 

possibility of the propagation of the delamination in the plate through determining the SERRs 

corresponding to the three fracture modes. 
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4.3 Theory and formulation  

4.3.1 Kinematics and constitutive equations 

Throughout the present work, the laminate is modeled as Equivalent Single Layer (ESL) the 

deformation of which is approximated using the FSDT. The FSDT assumes a linear variation of 

the in-plane displacements in the out-of-plane direction while assuming that the out-of-plane 

displacement is a function of in-plane coordinates only. The explained displacement field can be 

mathematically expressed as follows: 

 𝑢 =  𝑢0(𝑥, 𝑦) + 𝑧𝜙𝑥 (4.1) 

 𝑣 =  𝑣0(𝑥, 𝑦) + 𝑧𝜙𝑦 (4.2) 

 𝑤 = 𝑤0(𝑥, 𝑦) (4.3) 

where 𝑢 and 𝑣 are the in-plane displacements in x and y directions respectively and 𝑤 is the 

out-of plane dispalcemnt. The subscript 0 denotes the displacements of the midplane of the 

laminate. 

Aiming to address the buckling and postbuckling problems of delaminated plates, a strain 

definition capable of accommodating the moderately large rotations involved in these problems is 

required. In buckling and postbuckling problems of composite laminates where large in-plane 

strains are not involved, Von Kármán’s approximations of the Green strain tensor are used. Based 

on the assumed displacement field described in Eqs. (5.1-5.3), the Von Kármán strains are 

expressed as:    
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(4.4) 

where 𝜀𝑥
0, 𝜀𝑦

0, 𝛾𝑥𝑦
0  are the mdplane strains and 𝑘𝑥, 𝑘𝑦, 𝑘𝑥𝑦are the midplane curvatures 

By neglecting the quadratic terms, the out-of-plane shear strains for the FSDT read as: 

 {
𝛾𝑦𝑧

 𝛾𝑥𝑧
} = {

𝜑𝑦 +
𝜕𝑤0

𝜕𝑦

𝜑𝑥 +
𝜕𝑤0

𝜕𝑥

}   (4.5) 
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Assuming that all the sublaminates are in a plane stress condition, the constitutive equations 

describing the relations between the stresses and strains at any arbitrary material point are 

expressed as: 
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   (4.6) 

where 𝑄𝑖𝑗s are the elements of the reduced plane stress stiffness matrix of the ply in which the 

point is located. 

The constitutive equation relating the force and moment resultants of a laminate modeled as an 

ESL to the corresponding midplane strains and curvatures reads as: 
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 where the elements of the 3×3 𝐴, 𝐵 and 𝐷 matrices are given as: 

 (Aij, Bij, Dij) = ∫ 𝑄𝑖𝑗(1, 𝑧, 𝑧
2

ℎ/2

−ℎ/2

)𝑑𝑧    𝑓𝑜𝑟   𝑖, 𝑗 = 1, 2, 6 (4.8) 

The elements of the 2x2 out-of-plane shear stiffness matrix 𝐻 can be obtained as: 

 𝐻ij = 𝑘 ∫ 𝐶𝑖𝑗

ℎ/2

−ℎ/2

𝑑𝑧    𝑓𝑜𝑟   𝑖, 𝑗 = 4, 5  (4.9) 

where 𝐶𝑖𝑗s are the elements of the complete three-dimensional stiffness matrix at any material 

point and 𝑘 is the so-called shear correction factor. 

The assumptions of the FSDT by violating the stress-free plate surfaces lead to an 

overestimation of the shear stiffness of plates. To alleviate this excessive stiffness, the shear 

correction factor is introduced to the out-of-plane shear stiffness matrix. Even though unlike plates 

made of isotropic materials, no single value can be prescribed for laminated composites, the 

findings of earlier publications [51,52,87,98,99] have proven that using the same values used for 
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isotropic plates, acceptable accuracy can be obtained. In this work, a shear correction factor of 2/3 

is used. 

4.3.2 Delamination model 

In modeling the buckling and postbuckling response of partially delaminated plates, the 

conventional approach has been to divide the debonded region into two sublaminates on the two 

sides of the plane of the delamination while regarding the intact regions as an Equivalent Single 

Layer (ESL). However, the local deformations ahead of the crack tip (edge of the delamination) in 

the intact region are too complex to be represented using an ESL. Figure 4.2 illustrates the near 

crack deformation field in a Double Cantilever Beam (DCB) test simulation obtained using Finite 

Element (FE) analysis. It can be noticed that the portions above and below the delamination plane 

experience different magnitudes of rotation. When modeling the intact region as an ESL this 

discontinuity in the rotation field is overlooked and its corresponding effects are lost. This 

discrepancy in the deformation field not only may affect the predicted behavior of the plate but 

also hinders access to interlaminar data that can be used for delamination propagation assessment. 

 
Figure 4.2 Near crack displacement field in DCB test simulation 

As a remedy to the mentioned inconsistency, in the present new model, three distinct regions 

are recognized: the delaminated region, a small intermediate region located in the laminate 

immediately ahead of the edge of the delamination where very high gradients of displacements 

and interlaminar stresses are expected, and finally the intact region at a distance from the 

delaminated region. Experience with approximate solutions has shown that a single set of 

continuous approximate functions is incapable of capturing the mechanistic aspects of all the three 
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regions. Therefore, in this work, the laminate is partitioned into five zones as shown in Figure 4.3 

in a fashion that each of these regions is modeled separately. Zone 1 represents the intact region 

where no high gradients of deformations or interlaminar stresses are expected, zones 2 and 3 

represent the region immediately ahead of the tip of the crack, and zones 4 and 5 are representative 

of the debonded region. Zones 2 and 3 despite being modeled separately are assumed to be 

perfectly bonded at their touching interfaces. Through the simulation of this bond, the interlaminar 

tractions to be used for the crack growth assessment can be determined (unlike in zone 1 where 

the ESL does not provide reliable and accurate interlaminar data). 

  
Figure 4.3 The new partitioning scheme to accommodate the effect of delamination 

Modeling the sublaminates that correspond to the above mentioned regions individually 

necessitates additional constraint equations to properly “re-attach” these sublaminates to one 

another and to maintain the continuity in the structure. As all the sublaminates are modeled using 

the FSDT, the constraint equations need to be expressed in terms of the midplane displacements 

and rotations of the connected sublaminates. Figure 4.4 shows the notations used for addressing 

the Degrees Of Freedom (DOF) of the interfaces between the sublaminates. The subscripts denote 

the zones and the superscripts - and + denote left and right transversal edges respectively. In the 

following, the constraint equations describing the continuity condition are presented. 

As all the sublaminates are modeled as ESLs, the boundaries of each sublaminate is represented 

by a line (as opposed to a 3D solid model in which the boundaries constitute flat planes). Therefore, 

in order to connect zones 1 and 2, the midplane displacements and rotations of zone 2 are set equal 
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to those of zone 1 along an imaginary line coinciding with the edge of the midplane of zone 2. The 

displacements of the mentioned imaginary line are expressed in terms of the midplane 

displacements and rotations of zone 1 using the displacement fields presented in Eqs. (1-3). Hence, 

the constraint equations read as: 

 𝑢02
− = 𝑢01

+ − ∆ℎ2𝜑𝑥1
+ 

(4.10) 

 𝑣02
− = 𝑣01

+ − ∆ℎ2𝜑𝑦1
+ 

 𝑤02
− = 𝑤01

+ 

 𝜑𝑥2
− = 𝜑𝑥1

+ 

 𝜑𝑦2
− = 𝜑𝑦1

+ 

where ∆ℎ2is the distance between the midplane of the whole laminate and the midplane of 

sublaminate 2. 

Similarly, the constraint equations connecting sublaminates 1 and 3 read as: 

 𝑢03
− = 𝑢01

+ + ∆ℎ3𝜑𝑥1
+ 

(4.11) 

 

 𝑣03
− = 𝑣01

+ + ∆ℎ3𝜑𝑦1
+ 

 𝑤03
− = 𝑤01

+ 

 𝜑𝑥3
− = 𝜑𝑥1

+ 

 𝜑𝑦3
− = 𝜑𝑦1

+ 

where ∆ℎ3 is the distance between the midplane of the whole laminate and the midplane of the 

sublaminate 3. 

Given the coplanarity of the sublaminates 2 and 4 it is simply enough to equate the 

displacements and the rotations of the two zones along their meeting edges. 

 𝑢04
− = 𝑢02

+ 

(4.12) 

 𝑣04
− = 𝑣02

+ 

 𝑤04
− = 𝑤02

+ 

 𝜑𝑥4
− = 𝜑𝑥2

+ 

 𝜑𝑦4
− = 𝜑𝑦2

+ 

In a similar way the constraint equations for zones 3 and 5 are: 

 𝑢05
− = 𝑢03

+ 

(4.13) 

 𝑣05
− = 𝑣03

+ 

 𝑤05
− = 𝑤03

+ 

 𝜑𝑥5
− = 𝜑𝑥3

+ 

 𝜑𝑦5
− = 𝜑𝑦3

+ 

As explained before the touching surfaces of the sublaminates 2 and 3 are bonded in a fashion 

that a through-thickness continuity is attained across the touching surfaces. To maintain the 
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through-thickness continuity the displacements of the touching surfaces of these two sublaminates 

need to be equal: 

 
𝑢02

+ 𝜑𝑥2

ℎ1

2
= 𝑢03

− 𝜑𝑥3

ℎ2

2
 

 

(4.14) 
 𝑣02

+ 𝜑𝑦2

ℎ1

2
= 𝑣03

− 𝜑𝑦3

ℎ2

2
 

 

 𝑤02
= 𝑤03

 

 

 

 

 
Figure 4.4 Interfaces of the laminate sublaminates  

The constraint Eqs. (10-14) are enforced using a penalty function method which can be 

interpreted as considering an elastic adhesive with extremely high stiffness to hold the 

sublaminates together. The details of the penalty function method are discussed in a following 

section.  

4.3.3 Equilibrium equations 

The equilibrium equations are established using the stationary total potential energy principle. 

The total potential energy is expressed as: 

 𝛱 = 𝑈 + 𝑊 (4.15) 

where 𝑈 is the strain energy stored in the structure and 𝑊 is the potential energy corresponding 

to external forces. 

In the absence of body forces the potential energy of the applied forces reads as: 
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 𝑊 = −∬�⃑� ∙ �⃑�  𝑑𝑠

𝑆

 (4.16) 

where S is the boundary surface,  �⃑�  is the surface traction vector over the boundary and �⃑�  is the 

displacement vector. 

The equilibrium states are found as states in which the first variation of the total potential energy 

functional vanishes. The described condition is mathematically stated as: 

 𝛿𝛱 = 0 (4.17) 

In a displacement controlled postbuckling analysis, the external loading is applied in the form 

of an imposed movement of the edge of the plate. This edge displacement appears in the expression 

of strain energy, and therefore the potential energy of external forces is absent. 

In the present work, the bond between different sublaminates is modeled using penalty 

functions which are analogous to assuming elastic adhesives holding the sublaminates in one piece. 

Given the elastic nature of these bonds, they too store energy once the plate is subjected to loading. 

Hence, in the particular structure under consideration, the energy is stored as the strain energy of 

sublaminates as well as in the elastic adhesive bonds: 

 𝑈 = ∑𝑈𝑖

5

𝑖=1

+ 𝑈𝑝 (4.18) 

where 𝑈𝑖 is the strain energy of zone 𝑖 and 𝑈𝑝 is the energy term corresponding to penalty 

functions collectively. 

For a plate, the constitutive equation of which is presented in Eq.(4.7) the strain energy is 

expressed as: 

 𝑈 =
1

2
{∬{𝜖}𝑇 [

[𝐴] [𝐵] 0
[𝐵] [𝐷] 0

0 0 [𝐻]
] {𝜖} 𝑑𝐴} (4.19) 

where {𝜖} = [𝜀𝑥
0 𝜀𝑦

0 𝛾𝑥𝑦
0 𝑘𝑥 𝑘𝑦  𝑘𝑥𝑦 𝛾𝑦𝑧 𝛾𝑥𝑧]

𝑇
 

The penalty functions can be classified into three categories: The functions providing span wise 

continuity of displacement field, the functions providing interlaminar bonds in the plane of the 

delamination, and finally, the functions used for imposing the desired boundary conditions and 

loading.  

The penalty function used to bond the edges of the sublaminates 1 and 2 reads as:  
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𝑈𝑝
(1,2)

=
1

2
∫ {𝐾𝑢(𝑢01

+ − ∆ℎ2𝜑𝑥1
+ − 𝑢02

−)2 + 𝐾𝑣(𝑣0𝑖1
+ − ∆ℎ2𝜑𝑦1

+ − 𝑣02
−)2 + 𝐾𝑤(𝑤01

+ − 𝑤02
−)2

𝑙𝑦
2

−
𝑙𝑦
2

+ 𝐾𝜑𝑥
(𝜑𝑥1

+ − 𝜑𝑥2
−)2 + 𝐾𝜑𝑦

(𝜑𝑦
1

+ − 𝜑𝑦2
−)2} 𝑑𝑦 

 

(4.20) 

Similarly the penalty function used for connecting zones 1 and 3 is: 

 

𝑈𝑝
(1,3)

=
1

2
∫ {𝐾𝑢(𝑢01

+ + ∆ℎ3𝜑𝑥1
+ − 𝑢02

−)2 + 𝐾𝑣(𝑣0𝑖1
+ + ∆ℎ3𝜑𝑦1

+ − 𝑣02
−)2 + 𝐾𝑤(𝑤01

+ − 𝑤02
−)2

𝑙𝑦
2

−
𝑙𝑦
2

+ 𝐾𝜑𝑥
(𝜑𝑥1

+ − 𝜑𝑥2
−)2 + 𝐾𝜑𝑦

(𝜑𝑦
1

+ − 𝜑𝑦2
−)2} 𝑑𝑦 

 

(4.21) 

In an abridged form the penalty functions bonding zone 2 to zone 4 and zone 3 to zone 5 are 

expressed as: 

 
𝑈𝑝

(𝑖,𝑗)
=

1

2
∫ {𝐾𝑢(𝑢0𝑖

+ − 𝑢0𝑗
−)2 + 𝐾𝑣(𝑣0𝑖

+ − 𝑣0𝑗
−)2 + 𝐾𝑤(𝑤0𝑖

+ − 𝑤0𝑗
−)2 + 𝐾𝜑𝑥

(𝜑𝑥𝑖

+ − 𝜑𝑥𝑗
−)2

𝑙𝑦
2

−
𝑙𝑦
2

+ 𝐾𝜑𝑦
(𝜑𝑦

𝑖

+ − 𝜑𝑦𝑗
−)2} 𝑑𝑦  (𝑖, 𝑗) = (2,4), (3,5) 

(4.22) 

 

 The functions used to model the interlaminar adhesion between sublaminates 2 and 3 are the 

mathematical equivalent of a distributed elastic stiffness acting upon the differential movement of 

the touching surfaces of the two sublaminates and read as: 

 

𝑈𝑝
(2,3)

=
1

2
∬{𝐾𝑢 [(𝑢02

+ 𝜑𝑥2

ℎ1

2
) − (𝑢03

− 𝜑𝑥3

ℎ2

2
)]

2

+ 𝐾𝑣 [(𝑣02
+ 𝜑𝑦2

ℎ1

2
) − (𝑣03

− 𝜑𝑦3

ℎ2

2
)]

2

+ 𝐾𝑤(𝑤02
− 𝑤03

)2} 𝑑𝐴 

(4.23) 

Theoretically, penalty stiffness values are supposed to be infinitely high to provide perfectly 

rigid bonds between the sublaminates, however, practically, choosing excessively high stiffness 

values would lead to numerical complications and oscillatory results. Attention must be paid to 

the fact that Eqs. (4.20)-(4.22) represent the bonds that act along a straight edge and provide span 

wise continuity while Eq.(4.23) introduces interlaminar bonds that provide in-thickness continuity. 

Given the different nature of these functionals, the proper values for the stiffnesses that appear in 

these equations are not generally similar.  

 Besides the bonds between the sublaminates, the boundary conditions are also applied using 

penalty functions and their corresponding penalty terms need to be included in the total potential 

energy functional. Throughout this work, the longitudinal (parallel to the x-axis) edges are 

assumed to be free to move in any direction and thus would require no additional constraint 
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equations. The boundary conditions considered along the transversal edge of the plate (as depicted 

in Figure 4.1) can be expressed as:  

 𝑢01
− =  𝛿/2 

(4.24) 
 𝑣01

−, 𝑤01
−, 𝜑𝑥1

−, 𝜑𝑦1
− =  0 

 

The symmetry boundary conditions along the transversal edges of zones 4 and 5 are applied by 

constraining the rotation about the y-axis and the longitudinal (x-direction) component of the 

displacements: 

 𝑢4
+, 𝜑𝑥4

+, 𝑢5
+, 𝜑𝑥5

+ =  0 (4.25) 

 

The penalty term corresponding to the boundary conditions described in Eqs. (21) and (22) 

reads as: 

 

𝑈𝑝
𝑏 =

1

2
∫ {𝐾𝑢(𝑢01

− − 𝛿)
2
+ 𝐾𝑣(𝑣01

−)
2
+ 𝐾𝑤(𝑤01

−)
2
+ 𝐾𝜑𝑥

(𝜑𝑥1
−)2 + 𝐾𝜑𝑦

(𝜑𝑦1

−)2} 𝑑𝑦

𝑙𝑦
2

−
𝑙𝑦
2

+
1

2
∫ {𝐾𝑢(𝑢04

+)
2
+ 𝐾𝑣(𝑣04

+)
2
+ 𝐾𝑢(𝑢05

+)
2
+ 𝐾𝑣(𝑣05

+)
2

𝑙𝑦
2

−
𝑙𝑦
2

+ (𝐾𝜑𝑥
(𝜑𝑥4

+)2 + 𝐾𝜑𝑥
(𝜑𝑥5

+)2)} 𝑑𝑦 

 

(4.26) 

Eventually the penalty term 𝑈𝑝 in Eq. (5.17) is the sum of all the penalty terms as: 

 𝑈𝑝 = 𝑈𝑝
(1,2)

+ 𝑈𝑝
(1,3)

+ 𝑈𝑝
(2,3)

+ 𝑈𝑝
(2,4)

+ 𝑈𝑝
(3,5)

+ 𝑈𝑝
𝑏 (4.27) 

Once the expression of the total potential energy is obtained, the minimization is done by 

applying the Ritz method. The Ritz method seeks the displacement field corresponding to an 

equilibrium state in the form of series of separable approximate functions with unknown 

coefficients: 

 𝜓 = ∑ ∑ 𝛹𝑚𝑛𝑋𝑚𝑌𝑛

𝑁

𝑛=1

𝑀

𝑚=1

 (4.28) 

where 𝜓 represents the physical degrees of freedom of the structure (𝑢, 𝑣, 𝑤, 𝜑𝑥, 𝜑𝑦) and 𝛹𝑚𝑛s 

represent the corresponding  coefficients (𝑈𝑖𝑗, 𝑉𝑖𝑗, 𝑈𝑖𝑗, 𝛷𝑥𝑖𝑗
, 𝛷𝑦𝑖𝑗

). 

After substituting the approximate functions into the total potential energy expression, the 

functional is obtained in terms of the unknown coefficients of the approximate functions. 

Thereafter, the equilibrium equations can be found by minimizing the total potential energy 

functional with respect to these coefficients: 
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𝜕𝛱

𝜕𝛹𝑚𝑛
= 0 (4.29) 

The approximate functions are complete sets capable of accommodating every possible 

deformed shape of the structure and are required to have nonzero derivatives to the highest degree 

of derivatives that appear in the total potential energy expression [100]. Conventionally, the Ritz 

functions are selected in a way that they satisfy the essential boundary conditions of a specific 

problem. However, in the present work, the derivation is done using the Legendre polynomials 

(see Appendix 1) and as explained above, the essential boundary conditions are imposed by 

modifying the total potential energy expression. The Legendre polynomials have the advantage of 

orthonormality which guaranties well-conditioned matrices. Adopting the penalty function method 

makes the developed formulation flexible with respect to the boundary conditions and loading. 

Furthermore, the derivation of the equilibrium equations involves carrying out numerous integrals 

which in nonlinear analyses should be repeated multiple times. The employment of orthogonal 

functions makes the integrations easier and more importantly faster. It is worthy of attention that 

Legendre polynomials are orthogonal over the interval [−1 1] and therefore, to benefit from the 

aforementioned advantages for an interval of [− 𝑙
2⁄  𝑙 2⁄ ] it is necessary to stretch each Legendre 

function by a ratio of 𝑙 2⁄  and scale it by a factor of 
1

√𝑙
. For an 𝑙𝑥 × 𝑙𝑦 plate the functions in 𝑥 and 

𝑦 directions are defined as: 

 𝑋𝑖 =
𝐿𝑖 (

2𝑥
𝑙𝑥

⁄ )

√𝑙𝑥
 (4.30) 

 

𝑌𝑗 =

𝐿𝑗 (
2𝑦

𝑙𝑦
⁄ )

√𝑙𝑦
 

(4.31) 

where 𝐿𝑖 and 𝐿𝑗 are the Legendre polynomials of ith and jth degree respectively 

The functions 𝑋𝑖 and 𝑌𝑗 inherit the orthogonality characteristic of original Legendre polynomials 

except that they are orthogonal over the intervals [− 𝑙𝑥
2⁄  

𝑙𝑥
2⁄ ] and [−

𝑙𝑦
2

⁄  
𝑙𝑦

2
⁄ ] respectively.  

Given that the continuity in displacements across the interfaces of the different sublaminates is 

enforced through the penalty function method, each of the sublaminates can be modeled in a 

separate dedicated coordinate system. Here for all the sublaminates, the origin of the dedicated 

local coordinate system is located at the center of that particular sublaminate. 



79 
 

4.3.4 Delamination growth assessment 

Determination of the possibility of the growth of a delamination under a certain level of loading 

is done by calculating the SERRs corresponding to the three fracturte modes. As the primary 

advantage of the employed penalty approach, the distribution of the interlaminar tractions can be 

found as the product of the relative displacements of the interfaces of zones 2 and 3 and the 

corresponding stiffnesses. Therefore, the energy release rate corresponding to the three fracture 

modes can be determined along the edge of the delamination using Irwin’s crack closure integrals. 

The crack closure Integral calculates the energy release rate based on the assumption that the 

energy dissipated during the growth of a crack is equal to the energy required for closing the same 

grown crack. The crack closure integrals for a straight crack tip parallel to the y-axis located at  

𝑥 = 𝑥0 read as: 

 𝐺𝐼 = lim
𝛿𝑥→0

1

2𝛿𝑥
∫ 𝜎𝑧(𝑥 − 𝛿𝑥, 𝑦) 𝛿𝑤(𝑥, 𝑦)𝑑𝑥

𝑥0+𝛿𝑥

𝑥0

 (4.32) 

 𝐺𝐼𝐼 = lim
𝛿𝑥→0

1

2𝛿𝑥
∫ 𝜏𝑧𝑥(𝑥 − 𝛿𝑥, 𝑦) 𝛿𝑢(𝑥, 𝑦)𝑑𝑥

𝑥0+𝛿𝑥

𝑥0

 (4.33) 

 𝐺𝐼𝐼𝐼 = lim
𝛿𝑥→0

1

2𝛿𝑥
∫ 𝜏𝑧𝑦(𝑥 − 𝛿𝑥, 𝑦) 𝛿𝑣(𝑥, 𝑦)𝑑𝑥

𝑥0+𝛿𝑥

𝑥0

 (4.34) 

where 𝜎𝑧, 𝜏𝑧𝑥, and 𝜏𝑧𝑦 are interlaminar stresses in the plane of the delamination and 𝛿𝑤, 𝛿𝑢, 

and 𝛿𝑣 are the relative displacements of the surfaces of the open crack.  

Theoretically, in a purely elastic system, the crack tip stresses are singular. However, as in the 

present method, the bonding of the sublaminates is modeled using finite values for the interlaminar 

stiffnesses, and therefore, a finite value for each of the crack tip stresses is obtained. Another side 

effect of using finite values for interlaminar stiffnesses is the occurrence of relative displacements 

of the sublaminates in the region ahead of the crack. When carrying out crack closure integrals 

these infinitesimal relative movements are taken into account. Hence, the relative displacements 

are expressed as: 

 𝛿𝑤(𝑥, 𝑦) = (𝑤05
(𝑥, 𝑦) − 𝑤04

(𝑥, 𝑦)) − (𝑤03
(𝑥 − 𝛿𝑥, 𝑦) − 𝑤02

(𝑥 − 𝛿𝑥, 𝑦)) (4.35) 

 

𝛿𝑢(𝑥, 𝑦) = [(𝑢05
(𝑥, 𝑦) +

ℎ2

2
𝜑𝑥5

(𝑥, 𝑦)) − (𝑢04
(𝑥, 𝑦) −

ℎ1

2
𝜑𝑥4

(𝑥, 𝑦))]

− [(𝑢03
(𝑥, 𝑦) +

ℎ2

2
𝜑𝑥3

(𝑥, 𝑦)) − (𝑢02
(𝑥, 𝑦) −

ℎ1

2
𝜑𝑥2

(𝑥, 𝑦))] 

(4.36) 
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𝛿𝑣(𝑥, 𝑦) = [(𝑣04
(𝑥, 𝑦) +

ℎ1

2
𝜑𝑦4

(𝑥, 𝑦)) − (𝑣03
(𝑥, 𝑦) −

ℎ2

2
𝜑𝑦3

(𝑥, 𝑦))]

− [(𝑣02
(𝑥, 𝑦) +

ℎ1

2
𝜑𝑦2

(𝑥, 𝑦)) − (𝑣01
(𝑥, 𝑦) −

ℎ2

2
𝜑𝑦1

(𝑥, 𝑦))] 

(4.37) 

 

4.3.5  Contact 

Depending on the properties of the sublaminates, the debonded surfaces may tend to 

interpenetrate. These potential interpenetrations are prevented using a scattered distribution of 

fictitious springs. To ensure the compression-only behavior of these spring their status 

(compression/tension) is checked in an iterative process and the individual springs under tension 

are eliminated from the array of springs. The iterations are repeated until a stable distribution of 

springs is achieved. The effect of these springs is incorporated in the analysis through the addition 

of their corresponding potential energies to the expression of the total potential energy of the 

structure. The energy stored in a rectangular 𝐾 × 𝐿 array of springs can be expressed as: 

 𝑈𝑐 =
1

2
𝐾𝑐 ∑ ∑𝐶𝑘,𝑙[𝑤5(𝑥𝑘, 𝑦𝑙) − 𝑤4(𝑥𝑘, 𝑦𝑙)]

2

𝐿

𝑙=1

𝐾

𝑘=1

 (4.38) 

where 𝑥𝑘  and 𝑦𝑙 are the coordinates of each spring in the delaminated region, 𝐶𝑘,𝑙 are binary 

coefficients defining the status (active/inactive) of a spring, and 𝐾𝑐 is the stiffness of each spring. 

4.4 Results and discussion 

A MATLAB program was developed based on the derived formulation and an arc-length 

method [114]  as a solver for nonlinear systems of equations. Compared to a conventional Newton-

Raphson method, the arc-length method has the advantage of being able to trace the equilibrium 

path beyond the onset of instability. To examine the applicability of the methodology and the 

validity of its results, the program was used to solve certain benchmark problems. For the sake of 

validating the postbuckling results by comparing them with experimental data [113], the material 

properties and stacking sequences of the laminate were selected as those used in Ref. [113]. The 

considered laminates are constructed of 36 plies with an overall thickness of 0.201” and a stacking 

sequence of (0/90/0)12. The orthotropic mechanical properties of the unidirectional composite 

lamina are listed in Table 4.1. 
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Table 4.1 Ply orthotropic material properties 

𝐸11(GPa)  𝐸22(GPa) 𝐺12(GPa) 𝜈12 

100.7 8.27 3.45 0.25 

 

In the first step to examine the validity of the proposed SERR calculation method, the developed 

model was used for modeling standard Double Cantilever Beam (DCB) and End-Loaded Split 

(ELS) tests (as depicted in Figure 4.5) and the results are compared with Finite Element (FE) 

analysis results obtained using ANSYS® multipurpose commercial software. In FE analyses the 

3-dimensional layered element SOLID185 which is a linear element capable of accommodating 

stress stiffening and large deflection effects was used. The element is constructed with 8 nodes 

each of which has 3 translational degrees of freedom. Every 3 plies of the laminate were modeled 

using one layer of brick elements. The laminate was divided into two sublaminates by the 

delamination plane. The connection between the sublaminates was attained using the Interface 

element INTER205. The element INTER205 is an 8-node 3D element used with linear solid 

elements to simulate the adhesion between solid surfaces.  

The SERR was calculated using the Virtual Crack Closure Technique (VCCT) applied on a 

predefined crack path. Obtaining accurate SERR values using VCCT requires a fine mesh 

especially in the vicinity of the crack tip. The mesh independence was achieved through the 

incremental enhancement of the mesh quality. To obtain more accurate results on both sides of the 

crack tip (the closed and open sides) a similar element size was used. The contact between the 

delaminated surfaces was incorporated in the analysis through the contact facility available in 

INTER205.  
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Figure 4.5 Schematic view of the test specimen, loading and boundary condition in DCB (top) and ELS ( bottom) tests 

Figure 4.6 shows the dimensions used for the DCB and ELS simulations. To demonstrate the 

applicability of the SERR calculation method for different sizes of crack, three delamination 

lengths 1”, 1.5”, and 2” were considered. As per the standard definition of these tests, the 

delamination was placed in the midplane of the laminate. All the analyses were performed under 

an arbitrarily selected force of 100N. In all the studied cases, the values of Mode 𝐼𝐼𝐼 SERR (tearing 

mode) are negligible and therefore, these results are not presented. However, essentially, the 

determination of the tearing mode SERR is similar to that for the shearing mode, and in any case, 

where the values of Mode 𝐼𝐼𝐼 SERR  are of significance the adopted crack closure integrals  can 

be utilized for determining them. 
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Figure 4.6 Dimensions of the specimen used in DCB and ELS test simulations 

Figure 4.7 – 4.9 show the Mode 𝐼 SERR (𝐺𝐼) distribution along the edge of the delamination 

for the three delamination sizes. It can be observed that despite slight oscillations in the results 

calculated using the present method, the approximated values as well as the shape of their 

distribution along the crack tip are in good agreement with FE results. Both FE and the present 

method predict lower SERR values near the longitudinal (parallel to x-axis) edges of the plate. 

However, the present method predicts a sharper drop in SERR values in these areas. It can be 

observed that for the smallest delamination the SERR calculated using the present method is 

smaller than the values calculated using FE analysis.  For larger delaminations, however, the 

estimated values are higher than FE results. It can be deduced that compared to FE analyses the 

present method predicts a slightly sharper increase in Mode 𝐼𝐼 SERR with the increase in the 

delamination.  
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Figure 4.7 Mode 𝐼 SERR for 1" delamination 

  
Figure 4.8 Mode 𝐼 SERR for 1.5" delamination 

 
Figure 4.9 Mode 𝐼 SERR for 2" delamination 

Figure 4.10-4.12 depict the predicted Mode 𝐼𝐼 SERR (𝐺𝐼) distribution along the edge of the 

delamination in an ELS test with the described configuration. These results revealed that for the 
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ELS test the agreement between FE results and the results obtained using the current method is 

even closer than that of the DCB test.  Unlike in the case of the DCB test, the values calculated for 

𝐺𝐼𝐼 are larger in the regions close to the longitudinal edges (parallel to x-axis) and therefore, under 

pure Mode 𝐼𝐼 loading the propagation of a delamination can be expected to initiate from the sides 

as opposed to the case of a pure Mode 𝐼 loading where the propagation is likely to initiate from 

the middle. For all the studied delamination sizes the values estimated using the present method 

are very slightly inferior to those obtained using FE analyses. The difference between the FE and 

present results tend to diminishes for larger delaminations. 

 

 
Figure 4.10 Mode 𝐼𝐼 SERR for 1" delamination  

  
Figure 4.11 Mode 𝐼𝐼  SERR for 1.5" delamination 
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Figure 4.12 Mode 𝐼𝐼  SERR for 2" delamination 

In setting up the analyses two factors seem to highly impact the accuracy of the calculated 

SERRs. These factors are the length of the intermediate region (zones 2&3) and the stiffnesses 

assigned to the elastic interlaminar adhesions. It was established that the length of the intermediate 

region should be kept as small as possible however, it should not be smaller than the region ahead 

of the crack tip where the high gradients of interlaminar tractions are experienced. Regarding the 

penalty stiffnesses, it was observed that extremely high stiffness would yield highly oscillatory 

results for the interlaminar tractions and would compromise the accuracy of the results, while low 

stiffness values may lead to the underestimation of the calculated SERR. Even though finding 

proper values for these parameters is challenging, It was observed that once the proper values were 

found for a particular configuration, the same values could be invariably used for different 

geometrical configurations and loading magnitudes.  

After the validity of the proposed method for finding the distribution of the energy release rate 

was proven, the developed model was used for simulating the buckling and postbuckling behavior 

of laminated plates with through-the-width delaminations. To probe the validity of the 

postbuckling results, the obtained results were compared with the experimental data presented in 

Ref. [113]. The special cross-ply stacking sequence along with the deformed shapes presented in 

Ref. [113] guarantee that the assumed symmetry boundary conditions are acceptable and would 

not impose any excessive constraints on the model. Of the samples studied in Ref. [113], two 

different configurations for which extensive and detailed data was presented in Ref. [113] were 

selected.  The selected samples include a plate containing a midplane delamination of 1.5” of 
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length and a plate with near-surface delamination of 3” of length. The details of the dimensions of 

these two specimens are depicted in Figure 4.13. 

 
Figure 4.13 The dimensions of the delaminated samples 

In the performed analyses, the external loading was applied in the form of an imposed end edge 

movement (end-shortening). For a perfectly symmetrical laminate subjected to in-plane 

compressive loading, nonlinear analyses may skip the onset of instability. Therefore, to simulate 

the postbuckling behavior, preexisting imperfections have to be incorporated. Here, the 

imperfections are created by applying infinitesimal lateral forces (in the out-of-plane direction). 

It was observed that by incorporating low levels of imperfections, the midplane delamination 

does not open up and the plate experiences a global buckling (Figure 4.14). Figure 4.15 shows the 

variation of the applied compressive stress with the normalized end-shortening (𝛿 𝑙𝑥
⁄ ).  The results 

obtained using the present development show a bilinear behavior. The kink point where the slope 

of the curve experiences a sudden drop can be regarded as the buckling point. Beyond the buckling 

point, the correlation is still linear, however, with a remarkably lower slope.  In the experimental 

data, two distinct regions can be distinguished. Up to a certain level of external loading, a fairly 

linear correlation between the normalized end-shortening and the applied compressive stress is 

observed. Beyond the aforementioned loading level, a highly nonlinear correlation with a rapid 

drop (as opposed to the sudden drop in the calculated results) in the slope is noticed. Gu and 

Chattopkdhyay Ref. [113] regarded the point where the behavior transitions from linear to 

nonlinear as the buckling point. In both experimental and calculated results, the deviation from the 

initial linear behavior happens at the onset of lateral deflection. The critical buckling load obtained 
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using the present method shows close agreement with the experimental data, however, in the 

predicted postbuckling behavior a more noticeable deviation from experiments is observed. Given 

the fact that the deviation from the experimental data happens at the same time that the plate starts 

to deflect laterally (in the out-of-plane direction), the deviation may be attributed to an 

inconsistency between the bending stiffness of the plate and the bending stiffness calculated using 

the adopted lamination theory. Furthermore, the accumulation of damage and a gradual change in 

the shape and size of the delaminated region may contribute to the nonlinear postbuckling behavior 

in the experiments. 

 
Figure 4.14 Buckled shape of the plate with midplane delamination 

 

 

Figure 4.15 Variation of compressive stress with end-shortening for the plate with midplane delamination 

As the buckled shape is a global deflection, both sublaminates simultaneously deflect in the 

same direction. Given the symmetry of the laminate stack up, the direction of the lateral deflection 

is determined by the initial imperfection. Figure 4.16 shows the applied compressive stress vs the 
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normalized lateral deflection of the plate at its center point (
𝛿𝑡

𝑙𝑥
⁄ ). It can be appreciated that once 

the buckling load is reached the lateral deflection increases without a significant increase in the 

compressive stress. The predicted results perfectly agree with experimental data in the critical 

buckling load at which the out of plane displacement starts. In the postbuckling state, however, the 

calculated results exhibit a relatively sharper drop in the rate of change of the compressive stress. 

Despite the difference in the shape of the curves the predicted values seem to be in fair agreement 

with test results.  The negative curvature of the experimental data in the postbuckling region may 

be interpreted as a gradual loss of stiffness due to damage accumulation and delamination 

propagation. 

  
Figure 4.16 Variation of compressive stress vs maximum out-of-plane deflection for the plate with midplane delamination 

Figure 4.17 shows the variation of the maximum value of SERR along the edge of the 

delamination with the normalized end-shortening (𝛿 𝑙𝑥
⁄ ) for the plate with the midplane 

delamination. Given the symmetrical stacking sequence of the laminate, in the prebuckling state, 

no interlaminar interactions occur in the plane of the delamination (midplane) and thus the SERR 

is zero. With the emergence of instability and consequently a bending deformation, the value of 

Mode 𝐼𝐼 SERR starts to grow linearly with the applied end-shortening. As the debonded surfaces 

never lose contact, the delamination does not open and the Mode 𝐼 SERR remains zero. Figure 4.18 

depicts the distribution of the Mode 𝐼𝐼 SERR along the edge of the delamination at different stages 

of loading. The top curve exhibits the largest magnitude corresponds to the largest applied end-

shortening (𝛿 𝑙𝑥
⁄ = 5.78 ∗ 10−3) and the lower curves correspond to intermediate loading levels 

in the postbuckling state. 
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Figure 4.17 Variation of Mode 𝐼𝐼  SERR with end-shortening for the plate with midplane delamination 

 

 
Figure 4.18 Distribution of Mode 𝐼𝐼  SERR in the postbuckling state for the plate with midplane delamination 

The instability of the specimen with the near-surface delamination (Figure 4.13 (a)) starts with 

a local buckling in the form of a bulge in the debonded thinner layer (Figure 4.19 left). The local 

buckling is almost immediately followed by a global deflection in the opposite direction leading 

to a mixed-mode shape (Figure 4.19 right). Given the larger thickness and consequently larger 

stiffness of the bottom sublaminate its deflection is dominant and highly impacts the deformation 

of the thinner sublaminate. 

Figure 4.20 shows the variation of the applied compressive stress vs. the normalized end-

shortening. Similar to the plate with a midplane delamination, in the prebuckling state the 

correlation between the compressive stress and end-shortening is linear. However, the results 
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obtained using the present method show a steeper slope which is an indication of a slight 

discrepancy between the calculated in-plane stiffness matrix ([𝐴]) and that of real composite plate. 

The slight deviation from a perfectly linear behavior in the experiment is considered to be caused 

by a sudden growth of the delaminated region [113]. 

Similar to the experimental data, the present method predicts a nonlinear correlation between 

the applied compressive stress and end-shortening. It can be observed that the local buckling does 

not change the behavior of the plate significantly and the linear behavior is mostly disturbed by 

the emergence of the mixed buckling mode.  

 
Figure 4.19 local (right) and mixed (left) buckled shapes of the specimen with near-surface delamination 

 
Figure 4.20  Variation of compressive stress with End-shortening for the plate with near-surface delamination 

Figure 4.21 depicts the normalized out-of-plane deflection of the center point (
𝛿𝑡

𝑙𝑥
⁄ ) of the top 

and bottom sublaminates (see Figure 4.13) vs the applied compressive stress. The predicted results, 

as well as the experimental data, show that the thinner (top) sublaminate starts to deflect first and 

with a further increase in the compressive loading the thicker sublaminate starts to deflect as well. 

Given the er stiffness of the thicker sublaminate, its deformation drastically affects the shape and 

the magnitude of the out-of-plane displacement of the thinner sublaminate. The drop in the out-of-
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plane displacement beyond the compressive stress of 80 MPa is majorly due to the global 

deflection of the whole plate rather than the closing of the delamination. The calculated and the 

experimental results show an excellent agreement in predicting the onset of the local buckling but 

beyond the onset of the local buckling, the experimental data shows a more rapid loss of stiffness 

which may be attributed to the gradual growth of the delamination. 

  
Figure 4.21 Variation of compressive stress vs maximum out-of-plane deflection for the plate with near-surface delamination 

Figure 4.22 shows the variation of the maximum values of Mode 𝐼 and Mode  𝐼𝐼 SERRs along 

the edge of the delamination with the normalized end-shortening (𝛿 𝑙𝑥
⁄ ). In the prebuckling state 

both Mode 𝐼 and Mode  𝐼𝐼 SERRs have negligible values. However, as buckling leads to the 

opening of the delamination as well as the bending of the sublaminates, beyond the critical 

buckling load both SERRs start to rise. Unlike the plate with midplane delamination, the SERRs 

corresponding to both fracture modes have nonlinear correlations with the applied end-shortening. 

Figure 4.23 and 4.24 depict the shape of the distribution of the Mode 𝐼 and Mode 𝐼𝐼 SERR along 

the edge of the delamination in different stages of loading. In both figures, the top curve exhibiting 

the highest magnitudes corresponds to the highest level of applied end-shortening (𝛿 𝑙𝑥
⁄ = 2.89 ∗

10−3) and the lower curves correspond to intermediate loading levels in the post buckling regime.  

0

10

20

30

40

50

60

70

80

90

100

-8 -6 -4 -2 0 2 4 6 8 10A
p

p
lie

d
 c

o
m

p
re

ss
iv

e 
st

re
ss

 (
M

P
a)

δt/𝑙𝑥 (×10-3)

Present-top

Present-bottom

Gu  Chattopadhyay-top



93 
 

 
Figure 4.22  Variation of Mode 𝐼 and Mode 𝐼𝐼  SERR with end-shortening for the plate with midplane delamination 

  
Figure 4.23 Distribution of Mode 𝐼 SERR in the postbuckling state for the plate with near-surface delamination 
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Figure 4.24 Distribution of Mode 𝐼𝐼 SERR in the postbuckling state for the plate with near-surface delamination 

Overall, the comparisons made between the calculated results and the experimental data show 

a fair agreement. In interpreting the comparisons, it should be taken into consideration that while 

the mathematical model deals with a fixed geometry, in reality, during the tests damage is 

accumulated and the delamination inevitably grows. This growth changes both the size and the 

shape of the delaminated region. Therefore, some of the deviations between the results may be 

attributed to the gradual accumulation of damage in the test samples which is not accounted for in 

the present simulations. 

4.5 Conclusion 

A new methodology for modeling the postbuckling behavior of composite plates with through-

the-width delamination was developed.  The focus of development was the fracture mechanics 

aspects of the buckling and postbuckling problems. The new technique vastly makes use of the 

penalty function method for multizone modeling and also for making available the interlaminar 

data that are required for delamination growth assessment. Through the development and the 

subsequent validation processes, the following conclusions were drawn. 

 

 In the context of approximate solutions, the use of penalty functions facilitates modeling 

partitioned structures by circumventing the use of complex approximate functions 

required to reassure displacement field continuity. 
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 Through comparison with experimental data it was proved that the new partitioning 

scheme in conjunction with the penalty function method generates fairly accurate 

predictions for the behavior of partially delaminated composite plates in the 

postbuckling state. 

 The new partitioning scheme provides a more consistent displacement field ahead of a 

crack tip in the intact region of a delaminated plate and improves the accuracy of the 

predicted behavior. 

 The proposed technique for determining SERRs using the calculated interlaminar 

tractions showed promising performance for evaluating the potential growth of the 

delamination during the postbuckling response of the composite plate (with the pre-

existing delamination). 

 Despite the satisfactory accuracy of results for SERR, the determination of the 

influential parameters namely the length of the intermediate region and the stiffness of 

interlaminar elastic bonds proved to be challenging and requires further study.  
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Appendix  
Legendre polynomials 

𝐿0 = 1 

𝐿1 = 𝑥 

𝐿2 =
1

3
(3𝑥2 − 1) 

𝐿3 =
1

2
(𝑥3 − 3𝑥) 

𝐿4 =
1

8
(35𝑥4 − 30𝑥2 + 3) 

𝐿5 =
1

8
(63𝑥5 − 70𝑥3 + 15𝑥) 

𝐿6 =
1

16
(231𝑥6 − 315𝑥4 + 155𝑥2) 

𝐿7 =
1

16
(429𝑥7 − 639𝑥5 + 315𝑥3 − 35𝑥) 

𝐿8 =
1

128
(6435𝑥8 − 12012𝑥6 + 6930𝑥4 − 1260𝑥2 + 35) 

𝐿9 =
1

128
(12155𝑥9 − 25740𝑥7 + 18018𝑥5 − 4620𝑥3 + 315𝑥) 

𝐿10 =
1

256
(46189𝑥10 − 109395𝑥8 + 90090𝑥6 − 30030𝑥4 + 3465𝑥2 − 63) 
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Chapter 5: A unified linear-nonlinear formulation  
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5.1 Introduction 

Generally, the postbuckling behavior of thin-walled structures including composite laminates 

is determined through nonlinear analyses conducted on a structure having slight imperfections. 

The main purpose of buckling and postbuckling analyses is predicting the behavior of a structure 

at and beyond the smallest compressive load that can render a structure unstable. Therefore, to 

ensure finding the solution corresponding to this smallest loading level, the shape of the 

imperfections are often inspired by the buckling mode shapes obtained using eigenvalue buckling 

analyses. In predicting the postbuckling behavior of delaminated composite plates, the 

imperfections to be incorporated in initial models need to be decided based on the expected 

buckling mode (local, global or mixed). Given the intricate geometry of delaminated plates, the 

buckling mode and subsequently the appropriate imperfections to be incorporated in the nonlinear 

analysis can be determined through the eigenvalue buckling analysis of the intact laminate (without 

considering the delamination) along with the eigenvalue buckling analysis of the delaminated 

sublaminate (the thinner sublaminate). As the delaminated region is generally small relative to the 

overall size of a plate, the overall behavior of the laminated plate can be approximated by analyzing 

an intact laminate of the same size. At the same time, the behavior of the delaminated layer can be 

approximated individually as an isolated laminate with restrained edges.  

In this chapter through establishing a connection between the eigenvalue buckling and the 

nonlinear postbuckling solutions, a unified methodology for interrogating the instability behavior 

of delaminated composite plates is presented. The connection between the linear and nonlinear 

solutions is demonstrated through the comparison of the results obtained in chapter 3 with the 

results obtained for similar cases using the formulation presented in chapter 2 for eigenvalue 

buckling analysis of laminates subjected to in-plane constraints. Furthermore, through the 

comparison of the results obtained using nonlinear solutions with eigenvalue buckling analyses for 

intact plates, the efficiency of the nonlinear solution in accommodating the effect of in-plane 

constraints is examined.  
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5.2 Problem statement  

In this chapter laminates with two different combinations of boundary conditions are 

considered. In the first series of analyses the material properties, stacking sequences and boundary 

conditions are the same as those used in chapter 3. However, in analyses involving the delaminated 

layer individually, a different set of boundary conditions compatible with the edge conditions 

dictated by the surrounding plate is adopted. Figure 5.1 depicts the explained boundary conditions. 

In the depicted boundary conditions, the end shortening corresponding to delaminated sublaminate 

is determined using the prebuckling midplane stains at the edges of the sublaminate. Assuming a 

relatively uniform strain distribution at the center of the plate the correlation between the global 

end shortening and normal x-axis strain would read as: 

 ε𝑥 =
𝛿

𝑙
 (5.1) 

Similarly the local end shortening can be found in terms of the x-axis strain and consequently 

the global end shortening as:  

 𝛿𝑑 = ε𝑥𝑑 =
𝛿𝑑

𝑙
 (5.2) 

 

where 𝛿 is the overall end shortening applied on the plate and 𝛿𝑑 is the end shortening imposed 

on the delaminated layer.  
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Figure 5.1 Schematic view of the delaminated plate and the debonded sublaminate and the corresponding boundary conditions and loading 

The second series of analyses are done on plates with the same boundary conditions as those of 

chapter 2. Figure 5.2 shows the mentioned boundary conditions.  

 

Figure 5.2 Schematic view of laminated plate and boundary conditions 
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5.3 Results and discussion 

In the first step, the results presented in chapter 3 are plotted against the eigenvalue buckling 

solutions obtained for similar laminates and debonded sublaminates. The analyzed specimens are 

150 mm×100 mm plates with different delamination sizes. The plates are considered to be made 

of a laminate with a stacking sequence of (0/90/90/0)3. The orthotropic material properties and the 

thickness of the plies are listed in Table 5.1. 

Table 5.1 orthotropic material properties and thickness of plies comprising the delaminated plates 

E11(GPa) E22(GPa) G12(GPa) ν12 Ply thickness(mm) 

181 10.3 7.17 0.28 0.2 

Figures 5.3-5.5 show the variation of the out-of-plane displacement of the center point of plate 

(w) with the applied end shortening (δ) for laminates with 30 mm×30 mm, 40 mm×40 mm, and 

50 mm×50 mm delaminations respectively.  It can be observed that the critical buckling load 

predicted using the eigenvalue buckling analysis (blue line) for the whole plate is slightly higher 

than the values predicted by nonlinear solution for an intact plate. This slight difference in the 

predicted critical buckling loads can be attributed to the higher order terms that are neglected in a 

linearized buckling analysis. Despite this difference, the eigenvalue buckling results are in fair 

agreement with the nonlinear solution.  In all the studied cases the bottom sublaminate is thicker 

sublaminate and its deformation follows the overall deformation of the whole plate. Therefore the 

abrupt rise in the out-of-plane displacement at the center of this sublaminate may be perceived as 

the emergence of a global deflection. The Comparison of the three figures reveals that the 

difference between the predicted buckling load for the intact plate and the load under which the 

delaminated plate experiences a global deflection has a direct correlation with the dimensions of 

the delaminated region. In Figures 5.3 –5.5 the green horizontal line represents the critical buckling 

load predicted for the delaminated layer (the top sublaminate) using the eigenvalue buckling 

analysis. It can be appreciated that regardless of the size of the delamination, the critical buckling 

loads obtained using the linear analysis for the top sublaminate are larger than those predicted 

using the nonlinear analyses for the local buckling. The difference between the linear and nonlinear 

local buckling results seems to be rather insensitive to the size of the delamination. The presented 

results suggest that the linear buckling solution can reasonably predict the instability threshold for 

both local and global instabilities.  
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Figure 5.3 Center point out-of-plane displacement vs end-shortening for a plate with a 30 mm×30 mm delamination between 

the 2nd and the 3rd plies from top 

 

Figure 5.4 Center point out-of-plane displacement vs end-shortening for a plate with a 40 mm×40 mm delamination between 

the 2nd and the 3rd plies from top 
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Figure 5.5 Center point out-of-plane displacement vs end-shortening for a plate with a 50 mm×50 mm delamination between 

the 2nd and the 3rd plies from top  

Figures 5.6 and 5.7 present similar results for rectangular shaped delaminations of 30 mm×45 

mm, and 30 mm×20 mm sizes respectively. While the results for the plate with the 30 mm×45 

delamination show the same behavior as that of the previously discussed plates with square shaped 

delaminations, the plate with the 30 mm×20 mm delamination exhibits no local instability. The 

buckling load predicted using the eigenvalue buckling analysis closely matches the buckling load 

predicted using the nonlinear solution. The eigenvalue buckling analysis predicts a critical 

buckling load for the delaminated layer which is larger than the critical buckling load of the intact 

laminate. The higher critical buckling load of the sublaminate can be justified by taking into 

account that the debonded sublaminate has four clamped edges as opposed to the intact plate two 

of the edges of which are considered free. Besides the debonded sublaminate has remarkably 

smaller in-plane dimensions that can potentially lead to higher overall stiffness. Given the fact that 

the nonlinear analysis predicts a global buckling mode shape only, it can be deduced that in cases 

where the critical buckling load of the delaminated layer exceeds that of the overall plate a global 

buckling is to be expected. This argument is reinforced by the results obtained for plates with 

delaminations located deeper in the thickness of the laminate. Figure 5.8 shows the results for a 

laminate with a delamination between the 4th and the 5th plies from the top. Given the similarity of 

the results for the different delamination sizes, for the sake of brevity, only the nonlinear results 

obtained for the plate with a 30 mm×30 mm delamination are presented. However, eigenvalue 

buckling results for different sizes of delamination are presented. Obviously, the critical buckling 
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loads calculated for the three selected sizes of delaminated sublaminate are significantly larger 

than the critical buckling load predicted for the intact plate. Therefore, in neither of the cases local 

or mixed-mode buckling can be expected. This finding agrees with the global mode shape obtained 

for these cases using nonlinear buckling and postbuckling analyses. 

 

Figure 5.6 Center point out-of-plane displacement vs end-shortening for a plate with a 30 mm×45 mm delamination between 

the 2nd and the 3rd plies from top 

 

Figure 5.7 Center point out-of-plane displacement vs end-shortening for a plate with a 30 mm×20 mm delamination between 

the 2nd and the 3rd plies from top 
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Figure 5.8 Center point out-of-plane displacement vs end-shortening for a plate with a 30 mm×30 mm delamination between 

the 4th and the 5th plies from top 

In the second step to examine the capability of the nonlinear method presented in chapter 3 to 

properly incorporate the effect of in-plane constraints, a selected set of the results presented in 

chapter 2 was compared with the results obtained using nonlinear analyses for the same selected 

cases. The analyses were carried out on laminates with stacking sequences of [0]10, [(0/90)2/ (0)]s, 

[(±30)2/ (30)]s, [(±45)2/(45)]s, and [(±70)2/(70)]s. the orthotropic material properties and the 

thickness of the plies is listed in table 5.2 

Table 5.2 orthotropic material properties and thickness of plies comprising the delaminated plates 

E11(GPa) E22(GPa) G12(GPa) ν12 Ply Thickness(mm) 

181 10.3 7.17 0.28 0.2 

The analyzed specimens are 10”×10” and 15”×10” plates with no delaminations. The boundary 

conditions considered are similar to those used in chapter 2 (Figure 5.2).  The results presented in 

Figures 5.9-5.13 show a very good agreement between the critical buckling loads obtained using 

the nonlinear and eigenvalue buckling analyses, however, it is noticeable that the critical buckling 

loads predicted using the eigenvalue buckling analysis are always larger than the predictions of 

the nonlinear analysis. In conducting the nonlinear analyses, the imperfections incorporated in the 

geometry were inspired by the buckling mode shapes obtained in eigenvalue buckling analyses. It 

was observed that applying inconsistent imperfections would lead to other buckling shapes with 

generally larger critical buckling loads. Therefore, to find the imperfect shape which would lead 
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to the buckling mode corresponding to the smallest critical buckling load, a preliminary eigenvalue 

buckling analysis seems necessary.   

  

Figure 5.9 Center point out-of-plane displacement vs end-shortening for  a 10”×10”  plate  (left) and a 15”×10” plate   with 

a stacking sequence of [0]10 

  

Figure 5.10 Maximum out-of-plane displacement vs end-shortening for  a 10”×10” plate  (left) and a 15”×10” plate   with a 

stacking sequence of "  [(0/90)2/(0)]s 
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Figure 5.11 Maximum out-of-plane displacement vs end-shortening for  a 10”×10” plate  (left) and a 15”×10” plate   with a 

stacking sequence of  [(±30)2/(30)]s 

  

Figure 5.12 Maximum point out-of-plane displacement vs end-shortening for  a 10”×10”plate  (left) and a 15”×10” plate   

with a stacking sequence of  [(±45)2/(45)]s 
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Figure 5.13 Maximum point out-of-plane displacement vs end-shortening for  a 10”×10”plate  (left) and a 15”×10” plate   

with a stacking sequence of [(±70)2/(70)]s 

 

5.4 Conclusions 

In this chapter through combining the unique capabilities of eigenvalue buckling analysis and 

nonlinear postbuckling solution a unified methodology for interrogating the instability behavior of 

composite laminate with delamination was introduced. In doing so the following conclusions were 

drawn: 

 The postbuckling results obtained using nonlinear analyses critically depend on the shape 

of the initial geometric imperfection; inconsistent initial imperfections may lead to 

buckling mode shapes with larger critical buckling loads. 
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shape of the imperfections to be incorporated in nonlinear analyses can be determined using 

the results of eigenvalue buckling analyses. 

 The buckling mode of delaminated plates (local, mixed or global) can be determined based 

on the critical buckling loads of the intact laminate and that of the debonded sublaminate. 

In cases where the critical buckling load of the sublaminate is significantly smaller than 

that of the intact plate, a local buckling followed by a mixed buckling shape is to be 

expected. In cases where the critical buckling load of the debonded sublaminate is larger 

than that of the intact plate, a global buckling would be the principal buckling mode. 
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 Agreement of the results obtained using the eigenvalue buckling and nonlinear buckling 

and postbuckling analyses reveals that despite using a significantly lower number of terms 

(9 terms × 9 terms) the developed nonlinear solution can very well accommodate the effects 

of in-plane constraints and the nonuniform prebuckling stress resultant distribution. 
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Chapter 6: Effect of rotational restraints on the stability of curved composite 

panels under shear loading  
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6.1 Foreword 

In chapters 2-5 a methodology for predicting the buckling and postbuckling behavior of flat 

composite laminates with delamination was presented. In real life composite structures, however, 

panels are not necessarily flat. This is especially significant in the aerospace industry where the 

majority of the panels comprising the fuselages of aircraft are curved. The abundant use of curved 

composite panels along with the inevitability of the presence of delaminations in composite 

materials necessitates extending the applicability of the previously developed methodology to 

curved delaminated plates. This can be done by repeating the previously undertaken derivations 

using shell theories capable of accommodating the curvature of curved panels.  

Similar to the process leading to the development of the methodology for flat panels, the first 

step in developing such a methodology for curved panels would be developing a linear buckling 

solution. In the context of the instability of curved composite panels, this linear buckling solution 

would serve the same purpose as that of the development presented in chapter 2 for flat plates. The 

eigenvalue buckling analysis is used for interrogating the instability behavior of intact curved 

panels as well as that of the sublaminates on the two sides of the delamination plane. Given 

potentially different boundary conditions of the intact panel compared to the sublaminates, in order 

for a single buckling solution to be applicable to both, it should be flexible with respect to boundary 

conditions. This flexibility can be achieved by developing a solution for curved plates subjected 

to rotational edge restraints.  

In this chapter, as the first step in extending the methodology to curved panels, an eigenvalue 

buckling solution for rotationally restrained curved composite panels based on the FSDT and the 

Ritz method is presented. The effects of rotational restraints acting upon the edges of the panel are 

incorporated in the solution using a penalty function method. The penalty function method used 

for modeling edge restraints provides the facility of simulating the intact curved plates with 

flexible boundary conditions ranging from simply supported to clamped. The debonded 

sublaminates, however, are modeled as thin curved films with clamped boundary conditions 

dictated by the surrounding substrate. In a similar manner, as was explained in chapter 5, through 

the comparison of the critical buckling loads obtained for the intact curved plate and the 

sublaminates, the buckling mode (local, mixed, global) of the delaminated panel can be 

determined. Eventually, the information obtained through the eigenvalue analyses can be used for 
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determining the proper shape of imperfection to be incorporated in the nonlinear postbuckling 

analysis. 
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6.2 Introduction 

The high strength to weight ratio of laminated composites makes them perfect candidates for 

lightweight aerospace structures. However, predicting their mechanical behavior has always been 

challenging due to their anisotropic material properties. A major criterion in designing composite 

structures is their buckling strength. Conventionally, buckling analyses are carried out under either 

simply supported or clamped boundary conditions. However, in real-world applications, namely 

in aircraft structures, panels are often joined to stiffer structural elements which restrain the 

rotation of the edges to some extent but not completely. Hence, neither of the aforementioned 

boundary conditions can perfectly reflect the true condition of the edges. The effect of these 

structural members on the overall behavior of panels can be accounted for by considering their 

equivalent rotational and/or torsional stiffness.  

The stability of rotationally restrained panels has been the subject of many studies. Depending 

on the studied aspects, various simulation technics have been adopted by different researchers. The 

mathematical models mainly differ in the employed plate theories, the considered boundary 

conditions, and the solution methods. 

 The Classical Lamination Plate Theory (CLPT) is possibly the simplest and the most widely 

used theory for modeling the mechanical behavior of laminated composite plates and shells. 

Despite its wide use, the CLPT is notorious for overestimating the buckling strength of thicker 

plates and shells [115]. As a remedy, shear deformation theories have been used and proved to 

more accurately predict the buckling behavior of composite laminates[49,87,116–119].  

The solution methods may be classified into the three categories of analytical, approximate, and 

numerical solutions. Approximate solutions such as the Ritz and Galerkin methods have been most 

widely used in the literature of restrained composite panels. The Galerkin method as a technique 

for converting partial differential equations to a weak form has been vastly used in the restrained 

plate buckling literature. When using the Galerkin method, restraints are imposed either by 

modifying the solution procedure [120] or by adjusting the displacement functions in a way that 

they accommodate the stiffness of the restraints automatically [121–123]. The Ritz method has 

been more widely used especially for simulating the buckling behavior of interconnected 

composite plates such as in thin-walled beam sections [124–126] or stiffened panels [127]. The 

Ritz method has also been used in works solely dedicated to the study of the effect of different 

combinations of boundary stiffness and loadings on the buckling of individual panels [128–131]. 
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A major disadvantage of the Ritz method is its inflexibility with respect to boundary conditions. 

To remedy this shortcoming, the penalty function method has been used in some research works 

[117,132]. This approach makes it also possible to take advantage of functions with faster 

convergence rates while imposing the boundary conditions using penalty functions. In spite of the 

popularity of the Galerkin and Ritz methods in restrained panel buckling studies, analytical 

approaches have also been used in several instances [10,133–135].  

Apart from analytical approaches, numerical methods such as finite strip [136,137], finite 

difference [138] and finite element[139] methods have also been used for analyzing the buckling 

of restrained composite panels. Numerical solutions are highly flexible with respect to geometry, 

loading and boundary conditions. However, given their high time and computation costs, they are 

not the best options for preliminary aircraft structure analyses. In general, aerospace structures 

consist of numerous panels, the performance of which needs to be verified under various 

conditions. The high number of load case-panels makes analytical and approximate solutions more 

favorable for preliminary verifications of such structures. 

restrained isotropic cylindrical and anisotropic flat plates have been extensively studied, 

however, to the knowledge of the authors, the only study on the buckling of restrained composite 

curved panels is dedicated to buckling, postbuckling and crippling responses of these plates, under 

compressive axial loading [140]. Considering the significant use of cylindrical composite shells in 

the aerospace industry, studying the buckling behavior of cylindrical restrained panels is of crucial 

importance. Therefore, in this work, the stability problem of rotationally restrained curved 

composite panels under shearing forces, and the effect of the influential parameters are 

investigated.  

In the present work, the formulation was developed based on the Sanders-Koiter shell theory 

and a first-order shear deformation approach. The linear stability equations were obtained on the 

basis of the minimum total potential energy principle and by employing the Ritz method. The 

restraints were simulated through a penalty function method. A specific class of laminates was 

sufficiently studied and characteristic curves were presented using no-dimensional parameters. In 

order to normalize the effect of torsional members a new non-dimensional parameter is introduced 

and used in the parametric studies. 
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6.3 Theoretical approach 

In order to model the buckling behavior of curved laminated composite shells, the Ritz method 

which is based on the principle of minimum total potential energy was used. The formulation was 

developed based on the Sanders-Koiter shell theory and a first-order shear deformation (FSDT) 

displacement field. The details of the theory behind the developed formulation are explained in the 

subsequent sections. 

6.3.1 Kinematics of cylindrical shells 

In a first-order shear deformation theory, a laminate is treated as an equivalent single layer 

(ESL) in which, the displacements field is assumed to be of the form[141]: 

 

 𝑢 =  𝑢0(𝑥, 𝑦) + 𝑧𝜙𝑥 (6.1) 

 𝑣 =  𝑣0(𝑥, 𝑦) + 𝑧𝜙𝑦 (6.2) 

 𝑤 = 𝑤0(𝑥, 𝑦) (6.3) 

 

where x and y are the axes of a curvilinear coordinate system, u and v are the in-plane 

displacements corresponding to x and y directions respectively, w is the out-of-plane displacement, 

and ϕx and ϕy are the clockwise rotations of the normal cross-section around y and x-axes 

respectively. The variables denoted by 0 are the displacements associated with the mid-plane of 

the laminate. 

According to the Sanders-Koiter shell theory and by using the displacement field introduced 

above, the linear mid-plane strains and shell curvatures are expressed in terms of displacements as 

[141]: 
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 (6.4) 

 

And the out-of-plane shear strains are: 

 [𝛤] = {
𝛾𝑦𝑧
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}   (6.5) 

 

Considering the nonlinear nature of the buckling phenomenon, nonlinear in-plane strains are 

also incorporated in the eigenbuckling analysis. These nonlinear strains, which are denoted by the 

superscript ´, are expressed as[141]: 
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 (6.6) 

 

6.3.2 Constitutive equations 

For a laminate with a thickness of h, when the origin of the coordinate system is located on the 

mid-plane of the laminate, the elements of the stiffness matrix of the laminate are given by[142]: 

 (Aij, Bij, Dij) = ∫ 𝑄𝑖,𝑗(1, 𝑧, 𝑧
2

ℎ/2

−ℎ/2

)𝑑𝑧 (6.7) 

where Qijs are the elements of the reduced plane stress stiffness matrix of each ply.  
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The elements of the stiffness matrix corresponding to the transverse shear deformations are 

calculated through: 

 𝐻ij = 𝑘 ∫ 𝐶𝑖,𝑗

ℎ/2

−ℎ/2

𝑑𝑧    𝑓𝑜𝑟   𝑖 = 4,5 (6.8) 

where Cijs are the elements of the complete stiffness matrix and k is the shear correction factor. 

Unlike isotropic materials no single value can be prescribed for the shear correction factor of 

anisotropic laminates. However, both the values prescribed for isotropic plates have been used in 

the literature [49–52] and were proved to lead to acceptable results. Throughout the present work 

a correction factor of  
2

3
  was used. 

 The relationship between the vector of force and moment resultants and the vector of midplane 

strains and curvatures is described by the constitutive equations as follows: 

 {
{𝑁}

{𝑀}
} = [𝑆]{𝜖}  (6.9) 

where [𝑆] = [
[𝐴] [𝐵]

[𝐵] [𝐷]
], {

{𝑁}

{𝑀}
} = [𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦 𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 ]

𝑇
, Nx, Ny, and Nxy are membrane 

force resultants and Mx, My and Mxy are the moments around y and x-axes and the twisting moment, 

respectively. 

The constitutive equation for transverse shear reads: 

 {
𝑄𝑥

𝑄𝑦
} = [𝐻]{𝛤}  (6.10) 

where Qx and Qy are resultant shear forces on xz and yz planes, respectively. 

 

6.3.3 Total potential energy 

According to the principle of minimum total potential energy, the equilibrium corresponds to a 

state in which the potential energy functional is stationary. The total potential energy of a restrained 

panel, in a stability analysis, is expressed as: 

 𝛱 = 𝑈 + 𝑈𝑟 + 𝑉 (6.11) 

where U is the strain energy, Ur is the potential energy of rotational springs and torsional 

elements and V is the potential energy of membrane stresses due to an out-of-plane displacement. 

The strain energy of the shell is given by: 
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 𝑈 =
1

2
{∬{𝜖}𝑇[𝑆]

𝑎 𝑏

0 0

{𝜖}𝑑𝑥𝑑𝑦 + ∬{𝛤}𝑇[𝐻]

𝑎 𝑏

0 0

{𝛤}𝑑𝑥𝑑𝑦} (6.12) 

where a and b are curved panel axial and circumferential dimensions, respectively. Figure 6.1 

depicts the geometry under consideration. 

 

 

 

Figure 6.1 Geometry and the coordinate system of the cylindrical shell (left), the arrangement of the rotational springs and 

applied shear forces (right) 

In Eq. (6.12), the first integral is the bending or flexural potential energy and the second integral 

represents the potential energy of the shearing deformation. The rotational stiffness may be applied 

as the reaction of rotational springs or as the reaction moment of torsional members such as 

stiffeners. The potential energy of rotational springs and torsional stiffeners can be written as: 

 

𝑈𝑟 =
1

2
{∫ [𝐾𝑥0(𝜑𝑥

2|𝑥=0) + 𝐾𝑥𝑎(𝜑𝑥
2|𝑥=𝑎) + 𝐺𝐽𝑥0 (

𝜕𝜑𝑥

𝜕𝑦
|𝑥=0)

2𝑏

0

+ 𝐺𝐽𝑥𝑎 (
𝜕𝜑𝑥

𝜕𝑦
|𝑥=𝑎)

2

] 𝑑𝑦 

+ ∫ [𝐾𝑦0(𝜑𝑦
2|𝑦=0) + 𝐾𝑦𝑏(𝜑𝑦

2|𝑦=𝑏) + 𝐺𝐽𝑦0 (
𝜕𝜑𝑦

𝜕𝑥 𝑦=0
)

2𝑎

0

+ 𝐺𝐽𝑦𝑏 (
𝜕𝜑𝑦

𝜕𝑥 𝑦=𝑏
)

2

] 𝑑𝑥} 

(6.13) 

where Kx0, Kxa,Ky0, and Kyb are rotational stiffnesses of the rotational springs as shown in 

Figure 6.1 and GJx0, GJxa, GJy0, and GJyb are the corresponding torsional stiffnesses.   



119 
 

In real-life structures, these stiffnesses may be determined by assessing and simplifying the 

members to which a panel is joined. Figure 6.2 illustrates a fuselage skin panel joined to stiffer 

structural elements such as frames and stringers.  

 

 

Figure 6.2 Schematic view of a curved panel and its surrounding structure 

The energy associated with stress stiffening is[142]: 

 𝑉 = ∬{𝑁0}𝑇{𝜖´}𝑑𝑥𝑑𝑦

𝑎 𝑏

0 0

 (6.14) 

where  {N0} = [𝑁𝑥
0 𝑁𝑦

0 𝑁𝑥𝑦
0 ]

𝑇
 is the pre-buckling stress resultant field and here is assumed to 

be uniform and equal to the applied load along the edges of a panel In the current study, the curved 

panel is subjected to pure shear loading, therefore, {N0} = [0 0 𝑁𝑥𝑦
0 ]

𝑇
 .  

 

6.3.4 The Ritz solution 

The Ritz method seeks the displacement field corresponding to the buckled shape, in the form 

of a series of arbitrary displacement functions that satisfy the essential boundary conditions. These 

functions also need to be linearly independent and to have derivatives up to half the order of the 

corresponding partial differential equation[100]. The geometric boundary conditions considered 

in the current work are: 

@ (x=0 and x=a): v=0, w=0, ϕy =0 
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@ (y=0 and y=b): u=0, w=0, ϕx=0 

Thus as the geometric boundary conditions are similar to those of simply supported panels, the 

trigonometric functions used for simply supported boundary conditions are used for restrained 

panels as well. The trigonometric functions generally used for a simply supported cylindrical shell  

with the described boundary condition are[143]: 

 

𝑤 = ∑ ∑ 𝑊𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏

𝑁

𝑛=1

𝑀

𝑚=1

 

𝑢 = ∑ ∑ 𝑈𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏

𝑁

𝑛=1

𝑀

𝑚=1

 

𝑣 = ∑ ∑ 𝑉𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏

𝑁

𝑛=1

𝑀

𝑚=1

 

𝜑𝑥 = ∑ ∑ 𝛷𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏

𝑁

𝑛=1

𝑀

𝑚=1

 

𝜑𝑦 = ∑ ∑ 𝛹𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏

𝑁

𝑛=1

𝑀

𝑚=1

 

(6.15) 

 where M and N are the numbers of terms used in x and y directions respectively and Wmn, Umn, 

Vmn, 𝜱mn, and 𝜳mn are the unknown coefficients to be determined through the Ritz method. 

Substituting Eqs. (6.12), (6.13), and(6.14) into Eq (6.11) we have the general expression of the 

total potential energy in terms of displacements and by substituting Eq. (6.15) in that expression 

we will have the same expression in terms of  Wmn, Umn, Vmn, 𝜱mn, and 𝜳mn. The solution is then 

sought by minimizing the total potential energy with respect to these undetermined coefficients. 

The resulting system of linear equations reads: 

 
𝜕𝛱

𝜕𝑊𝑚𝑛
= 0,  

𝜕𝛱

𝜕𝑈𝑚𝑛
= 0, 

𝜕𝛱

𝜕𝑉𝑚𝑛
= 0,  

𝜕𝛱

𝜕𝛷𝑚𝑛
= 0,  

𝜕𝛱

𝜕𝛹𝑚𝑛
= 0,   (6.16) 

 

This will lead to a 5M×5N system of equations with a trivial solution. For a non-trivial solution, 

the determinant of the coefficients of the system of equations is set to zero and the critical buckling 

load multiplier and the associated mode shape are determined. To do so, for uniformly applied 

loads, {N0} needs to be written in the form: 

 {𝑁0} = 𝜆{𝑛0}  (6.17) 



121 
 

where {n0} =[nx ny nxy]
T is the vector that defines the proportion of each loading direction in the 

pre-buckled state. 

In order to transform the system of linear Eqs.(6.16) into a classical eigenvalue problem, Eq. 

(6.17) is substituted into Eqs. (6.16) and after rearrangement we have:  

 

𝜕(𝑈 + 𝑈𝑟)

𝜕𝑊𝑚𝑛
+  𝜆

𝜕𝑉

𝜕𝑊𝑚𝑛
= 0 

𝜕(𝑈 + 𝑈𝑟)

𝜕𝑈𝑚𝑛
+  𝜆

𝜕𝑉

𝜕𝑈𝑚𝑛
= 0 

𝜕(𝑈 + 𝑈𝑟)

𝜕𝑉𝑚𝑛
+  𝜆

𝜕𝑉

𝜕𝑉𝑚𝑛
= 0 

𝜕(𝑈 + 𝑈𝑟)

𝜕𝛷𝑚𝑛
+  𝜆

𝜕𝑉

𝜕𝛷𝑚𝑛
= 0 

𝜕(𝑈 + 𝑈𝑟)

𝜕𝛹𝑚𝑛
+  𝜆

𝜕𝑉

𝜕𝛹𝑚𝑛
= 0 

(6.18) 

 

Putting these equations in the matrix form, we have: 

 [𝐾 + 𝜆𝐾𝑠]

{
 
 

 
 
{𝑊𝑚𝑛}

{𝑈𝑚𝑛}

{𝑉𝑚𝑛}

{𝛷𝑚𝑛}

{𝛹𝑚𝑛}}
 
 

 
 

= {0}5𝑀×5𝑁 (6.19) 

where K is composed of the first terms in Eqs.(6.18) and Ks is the matrix composed of the 

second terms of the same system of equations. 

By multiplying Eq.(6.19) by K-1 from left, the solution is found as the inverse of the largest 

eigenvalue of the matrix K-1×Ks. The eigenvector corresponding to this value demonstrates the 

buckling mode shape. 

 

6.4 Validation 

Using the explained formulation, a MATLAB program was developed and used for parametric 

studies. All the results presented in this work including the results used for validation and 

Parametric studies are obtained using 15×15 term solutions. In order to validate the formulation 

and the program, in the first step, for the special case of isotropic simply supported curved panels 

the results were compared with the analytically generated curves[144]. The comparison is depicted 
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in Figure 6.3 and shows an acceptable agreement, however for some values of Zb the difference 

rises to a maximum of 8%. 

 

Figure 6.3 Comparison of results for isotropic material with ref [26] 

As a second step, the buckling loads calculated using the developed program for a variety of 

configurations were compared with the same cases solved using ANSYS®. Considering their high 

levels of anisotropy, (± ϴ /± ϴ /ϴ)s laminates were used as complicated enough candidates in the 

current study. The orthotropic material properties and the ply thickness that was used throughout 

the current work are listed in Table 6.1 Orthotropic mechanical properties of the composite material. 

 

Table 6.1 Orthotropic mechanical properties of the composite material 

E11(GPa) E22(GPa) G12(GPa) ν12 Ply thickness (mm) 

127.5 9.4 4 0.33 0.14 

 

The comparisons were done for 200mm×200mm curved panels with a radius of 250mm and 

different stacking sequences of the aforementioned family. When carrying out the analyses with 

ANSYS®, SHELL281 which is an eight-node, first-order shear deformation element with a mesh 

size of 5mm was used. In order to simulate the boundary conditions similar to those imposed by 

the displacement functions, the shear stress in the curved panels was induced by applying a uniform 
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azimuthal displacement on one curved edge while keeping the other one azimuthally fixed. To 

prevent length variation in the other two edges, their axial displacement was constrained.  

The results of these comparisons are reported in Tables 6.2 and 6.3 for simply supported and 

clamped boundary conditions, respectively. The comparisons show an acceptable agreement of the 

results and the difference never exceeds 5%. 

Table 6.2 Comparison of critical shear buckling loads obtained by ANSYS® and the developed program for simply supported 

boundary condition 

Stacking 

sequence 

Ritz 

(kN/m) 

ANSYS® 

(kN/m) 

difference 

% 

(0)10 30.14 30.15 -0.01 

(±15/±15/15)s 49.21 51.14 -3.77 

(±30/±30/30)s 82.19 82.83 -0.77 

(±45/±45/45)s 105.72 111.19 -4.91 

(±70/±70/70)s 96.08 95.84 0.25 

 

Table 6.3 Comparison of critical shear buckling loads obtained by ANSYS® and the developed program for clamped boundary 

condition 

Stacking sequence Ritz (kN/m) ANSYS® (kN/m) difference % 

(0)10 38.81 37.38 3.82 

(±15/±15/15)s 58.71 58.78 -0.13 

(±30/±30/30)s 95.18 97.94 -2.82 

(±45/±45/45)s 119.79 123.20 -2.77 

(±70/±70/70)s 122.71 117.81 4.16 

 

6.5 Results and discussion 

In order to report the numerical results in a more insightful manner, the input parameters and 

the results are presented in the form of non-dimensional units. The non-dimensional parameters 

that are generally  used for characterizing the buckling behavior of composite shells  are[145] : 

 

 𝛼 =
𝑎

𝑏
(
 𝐷22

𝐷11
)
1/4

 (6.20) 
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 𝛽 =
𝐷12 + 2𝐷66

√𝐷22 𝐷11

 (6.21) 

 𝛾 =
𝐷16

(𝐷11
3𝐷22)

1/4
 (6.22) 

 𝛿 =
𝐷26

(𝐷11𝐷22
3)

1/4
 (6.23) 

 𝑍 =
𝑏2

𝑅
[

𝐴11𝐴22 − 𝐴12
2

12√𝐴11𝐴22𝐷11𝐷22

]

1/2

 (6.24) 

 N̅𝑥𝑦 =
𝑁𝑥𝑦

0 𝑏2

𝜋2(𝐷11𝐷22
3)

1 4⁄
 (6.25) 

 �̅�𝑥 =
𝑎𝐾𝑥

𝐷11
 (6.26) 

 �̅�𝑦 =
𝑎𝐾𝑦

𝐷22
 (6.27) 

where 𝛼 is the non-dimensional aspect ratio, β is the bending orthotropy parameter and γ and δ 

are the bending anisotropy parameters. Z is the parameter that characterizes the effect of shell 

curvature and thickness on buckling and is analogous to the Batdorf [145] parameter for curved 

isotropic shells. N̅xy is the so-called shear buckling coefficient. K̅x
 and K̅y are non-dimensional 

rotational stiffnesses applied at boundaries parallel to x and y-axes respectively.  

In the literature of restrained plates no non-dimensional parameter has been introduced for 

representing the torsional stiffness of stiffeners. Here, by assessing the balance of moments along 

the edges of a shell such a parameter was proposed. The balance of moments along the edge 𝑥 = 0 

reads: 

 𝐺𝐽1
𝜕2𝜑

𝜕𝑦2 |𝑥=0 = 𝐷11
𝜕𝜑𝑥

𝜕𝑥
+ 𝐷12

𝜕𝜑𝑦

𝜕𝑦
+ 𝐷13 [

𝜕𝜑𝑦

𝜕𝑥
+

𝜕𝜑𝑥

𝜕𝑦
−

1

2𝑅
(
𝜕𝑢0

𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
)] |𝑥=0   (6.28) 

The essential boundary conditions along the edge x=0 lead to the vanishing of the second term 

in Eq.(6.28). After dropping the vanishing term and neglecting the shear deformations and the 

contribution of in-plane displacements in twist terms, Eq.(6.28) reduces to: 

 𝐺𝐽1
𝜕3𝑤

𝜕𝑦2𝜕𝑥
|𝑥=0 = 𝐷11

𝜕2𝑤

𝜕𝑥2
|𝑥=0 (6.29) 

By selecting the dimensions of the domain (curved panel) as the proper scales for x and y we 

have: 

 𝐺𝐽1
𝑊

𝑏2𝑎
~𝐷11

𝑊

𝑎2
 (6.30) 

where W is the scale of the out-of-plane displacement.  
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By analyzing Eq.(6.29) a non-dimensional unit of an order of unity can be introduced to 

represent the torsional stiffness of a bordering stiffener. The general form of this parameter is 

presented as: 

 𝐺𝐽𝑥̅̅ ̅̅̅ =
𝑎𝐺𝐽𝑥 

𝑏2𝐷11
 (6.31) 

Similarly, for the stiffeners joined to the axial edges, the non-dimensional torsional stiffness is 

defined as: 

 𝐺𝐽𝑦̅̅ ̅̅̅ =
𝑏𝐺𝐽𝑦 

𝑎2𝐷22
 (6.32) 

 

Unlike some of the other non-dimensional formulations in the literature, in this work, the 

formulation was derived in terms of the physical parameters of the problem and then the obtained 

results were transformed into the non-dimensional forms. Therefore, using the developed program 

it was not possible to use arbitrary values for orthotropy and anisotropy parameters independently. 

Hence, the effect of the variation of anisotropy and orthotropy parameters were not 

comprehensively investigated. 

 In parametric studies, buckling of laminates with three stacking sequences (±20/±20/20)s, 

(±45/±45/45)s, and (±70/±70/70)s were investigated thoroughly. The values of the non-dimensional 

orthotropy and anisotropy parameters of these laminates are listed in Table 6.2. For the sake of 

brevity and to avoid reporting similar results, in the following section, the N̅𝑥𝑦 − 𝛼 and N̅𝑥𝑦 − 𝑍 

graphs were plotted for different values of rotational stiffness only.  

Table 6.4 Orthotropy and anisotropy parameters of studied laminates 

Laminate β γ δ 

(±20/±20/20)s 1.37 0.167 0.074 

(±45/±45/45)s 2.44 0.22 0.22 

(±70/±70/70)s 1.374 0.074 0.167 

 

Figure 6.4-6.6 depict the variation of the shear coefficient N̅xy versus α for the three 

benchmarked laminates. To generate each curve, the parameters Z, K̅x
 and K̅y were kept constant 

and α was varied. Z was arbitrarily opted to be equal to 500 and equal values of non-dimensional 

rotational stiffness values were applied to all the four edges of the panel which is simply designated 
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by K. As each of these graphs was plotted for a particular laminate, parameters β, γ and δ are 

necessarily constant.  

 

Figure 6.4 Variation of shear buckling coefficient with 𝛼 for a (±20/±20/20)s laminate 

 

 

Figure 6.5 Variation of shear buckling coefficient with 𝛼 for a (±45/±45/45)s laminate 
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Figure 6.6 Variation of shear buckling coefficient with 𝛼 for a (±70/±70/70)s laminate 

N̅𝑥𝑦 − 𝛼 graphs show that the trend of the variation of the shear buckling coefficient with α is 

not monotonic. The kink points on the curves represent the aspect ratios at which the mode shapes 

transition and thus the buckling critical loads fluctuate. It can be observed that applying boundary 

stiffness not only increases the shear coefficient but also, shifts the aspect ratio at which the mode 

shapes transition. Figure 6.7 illustrates the mode shapes corresponding to each segment of the 

curve for the (±45/±45/45)s laminate with simply-supported and clamped boundary conditions. A 

comparison of simply supported and clamped curves also reveals that the effect of the restraints is 

more pronounced for shells with larger axial dimensions compared to shells with larger 

circumferential dimensions.  
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Figure 6.7 Mode shape transition with the variation of α, for a (±45/±45/45)s laminate. 

Figures 6.8-6.10 demonstrate the variation of the buckling behavior of curved panels versus Z 

which for a particular laminate can be implicitly regarded as the effect of curvature on the buckling 

strength of a cylindrically curved shell. To investigate the effect of this variable solely, the aspect 

ratio was kept constant to unity. The results are presented for different restraint stiffness values 

including simply supported and clamped boundary conditions. As these graphs were produced for 

non-dimensional values they are valid for any configuration regardless of physical properties and 

dimensions, provided that all other non-dimensional variables be similar.  
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Figure 6.8 Variation of shear buckling coefficient with Z for a (±20/±20/20)s laminate 

 

Figure 6.9 Variation of shear buckling coefficient with Z for a (±45/±45/45)s laminate 
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Figure 6.10 Variation of shear buckling coefficient with Z for a (±70/±70/70)s laminate 

As in Nxy-α curves, kink points are distinguishable on Nxy-Z curves as well and the explanation 

is similar. Figure 6.11 demonstrates the transition of mode shapes with the variation of Z for the 

(±45/±45/45)s laminate under Simply supported and clamped boundary conditions. This latter 

phenomenon can be perceived as the effect of curvature on the buckling mode shape. However, 

attention should be paid to the fact that Z is not directly proportional to the shell curvature. 
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Figure 6.11  Mode shape transition with the variation of Z, for a (±45/±45/45)s laminate. 

As mentioned earlier, the clamped boundary condition can be attained by applying an infinite 

(a very high numerical value) rotational restraint stiffness. Studying the curves of Figures 6.8-6.10 

it was observed that for higher values of Z, the constant Kx and Ky curves get closer to the simply 

supported case curves rather than the clamped case curves. It can be deduced that for higher values 

of Z the stiffness required to simulate the clamped boundary condition is relatively higher. 

Figures 6.12-6.14 show the variation of the critical buckling load of flat (Z=0) and curved 

(Z=500) shells versus the non-dimensional restraint stiffness. These results were generated for 

shells with an α of unity. As expected, the application of both types of rotational restraints leads 

to a rise in buckling critical force, however, after a certain value of stiffness, the buckling load 

remains relatively constant. It was observed that compared to curved panels, flat plates experience 

a sharper rise of buckling strength with the introduction of rotational restraints. Furthermore, it 
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was noticed that compared to rotational springs, torsional restraints cause a smoother and more 

gradual increase in the critical buckling force of a shell.    

    

Figure 6.12 Shear buckling coefficient vs. non-dimensional rotational (left) and torsional (right) stiffness for 45a (±20/±20/20)s 

Laminate 

      

Figure 6.13 Shear buckling coefficient vs. non-dimensional rotational (left) and torsional (right) stiffness for a (±45/±45/45)s 

laminate 

    

Figure 6.14 Shear buckling coefficient vs. non-dimensional rotational (left) and torsional (right) stiffness for a (±70/±70/70)s 

laminate 

 

Considering the fact that using a specific material with definite orthotropic properties, it is not 

possible to vary the orthotropy and anisotropy parameters arbitrarily. To examine the effect of 

anisotropy parameters on the buckling behavior of restrained panels, a specific characteristic of 
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the family of ((±45)n,45)s laminates were used. For these laminates, the orthotropy parameter β 

remains constant with the variation of the number of layers “n” while the anisotropy parameters δ 

and γ are always equal and diminish by increasing the number of layers “n”. Figure 6.15 

demonstrates the variation shear buckling coefficient with the parallel variation of anisotropy 

parameters. Due to the stepwise variation of δ and γ with the number of layers, the reported points 

are not evenly distributed along the x-axis.  Figure 6.15 shows a significant difference between the 

effect of the variation of δ and γ on the divergence of negative and positive shear buckling 

coefficients. In other words, for higher values of these parameters, the laminates are more sensitive 

to the direction of the application of the shear force.   

 

Figure 6.15 Variation of shear buckling coefficient vs. anisotropy parameters δ & γ. Dashed lines correspond to negative 

shear and continuous lines correspond to positive shear. 

6.6 Concluding remarks 

The current work is an attempt to simulate and predict the stability behavior of rotationally 

restrained cylindrical composite shells and also to investigate the effect of the influential 

parameters on their buckling strength. Through the derivation, validation and parametric studies 

the following conclusions were drawn. 

1. The methodology implemented, including the use of a first-order shear deformation theory 

and the maximum total potential energy and finally, the Ritz method has proved to be an 

accurate enough formulation for buckling strength estimation of curved composite panels 

under pure shear loading. 
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2. The convergence of the employed trigonometric displacement functions diminishes with 

increasing the restraint stiffness, however even for clamped case no more than 15 terms are 

required to attain an acceptable accuracy. 

3. In all the studied cases it was observed that a non-dimensional rotational spring stiffness of 

approximately 6000 or non-dimensional torsional stiffness of 100 is enough for simulating 

a fully clamped boundary condition and further increasing the stiffness may result in less 

accurate results due to numerical errors. 

4. The generality of the results reported in the non-dimensional forms suggests that the 

influential physical parameters on buckling of curved panels are the aspect ratio and the 

ratio b2/R, thus the curvature of shells cannot be used to characterize their buckling 

behavior.  

5. Despite the fact that the shell thickness affects the Z parameter since Z is not linearly related 

to thickness, the ratio t/R may neither be introduced as an influential parameter. 

6. The bending anisotropic parameters δ and γ define the difference between positive and 

negative shear buckling strength of a panel. The conducted parametric studies suggest that 

the difference between positive and negative critical shear buckling forces grows with an 

increase in these parameters. 

7. In the studied cases, the application of restraints could raise the buckling strength up to 30% 

and it can be deduced that considering a simply supported boundary condition for 

restrained panels may lead to a drastic design conservatism. 
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6.7 Appendix A convergence curves  

 
Figure 6.16 Convergence of shear buckling coefficient with number of terms (symmetrical in x &y) for a (±45/±45/45)s 

laminate with an α of 1 

 

 

Figure 6.17 Convergence of shear buckling coefficient with number of terms (symmetrical in x &y) for a (±45/±45/45)s 

laminate with an α of 2 
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6.8 Appendix B supplementary results  

 

Figure 6.18 Variation of non-dimensional axial buckling load with non-dimensional aspect ratio for selected 

laminate stack ups with clamped boundary conditions. 

 

 

Figure 6.19 Variation of non-dimensional shear buckling load with non-dimensional aspect ratio for selected 

laminate stack ups with clamped boundary conditions. 
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Figure 6.20 Biaxial interaction curves for selected laminate stack ups with clamped boundary conditions. 

 

 

Figure 6.21 Shear-axial buckling interaction curves for selected laminate stack ups with clamped boundary 

conditions. 
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Chapter 7: Contributions and conclusions  
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7.1 Contributions  

In this dissertation, a new methodology for investigating the buckling and postbuckling 

behavior of delaminated composite plates has been presented. The presented techniques include 

new linear buckling and nonlinear postbuckling solutions offering a wide range of deliverable 

results. The contributions of these new developments can be summarized as follows: 

 A state-of-the-art two-step approximate solution for the buckling problem of laminated 

composite plates subjected to in-plane constraints was developed. The eigenvalue buckling 

analysis was based on a calculated prebuckling stress field. The prebuckling stress field 

was obtained through approximate in-plane stress analysis. 

 A novel penalty function based technique for modeling partially delaminated plates was 

proposed. The new technique divides a laminate into two sublaminates only and compared 

to older models remarkably reduces time and computation costs in nonlinear analyses. 

Furthermore, it has the advantage of directly calculating the interlaminar tractions in the 

plane of an existing delamination. 

 A Ritz method based solution using  non-continuous approximate functions capable of 

addressing highly local deformations was proposed. Unlike the conventional Ritz solution, 

the modified version can easily handle high local gradients of displacements using a 

reasonably less number of terms. In the particular case of delaminated plates, this technique 

was used for accommodating the local deformations of the delaminated region. This 

method was proved to successfully capture the local deformations of the delaminated 

regions as well as the global deformations experienced in the entirety of the plate.  

 A multizone technique for modeling delaminated pates was proposed in which all the 

continuity and boundary conditions were enforced using penalty functions. The extensive 

use of penalty functions for imposing essential boundary conditions, makes it possible to 

use ordinary sets of well-behaved orthogonal approximate functions and develop boundary 

condition-independent formulations. Another advantage of this approach is the direct 

access to boundary and interface forces through the penalty functions.  

 A technique for calculating the SERR along the borders of a delaminated region was 

proposed. The new technique has the distinctive advantage of estimating the SERR 

corresponding to each fracture mode separately. A comparison of the calculated 

distribution of SERR with the results obtained using FEM and VCCT proved that the 
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current derivation can accurately predict the magnitude and the shape of the distribution of 

the SERR along a crack tip. 

7.2 Major conclusions 

The objective of this thesis work has been to develop a methodology for predicting the buckling 

and postbuckling behavior of delaminated composite plates capable of addressing the fracture 

mechanics phenomenon involved in the postbuckling regime. This objective was completely 

fulfilled by developing a methodology based on the Ritz method for simulating the buckling and 

postbuckling behavior of delaminated plates. The Ritz solution was formulated in a fashion that it 

provides the necessary information to be used in fracture mechanics analyses leading to the 

calculation of SERR distribution along the edges of a delaminated region. The SERR calculation 

was done using Irwin’s Crack closure integrals for the three fracture modes separately. To confirm 

the performance of the different parts of the developed methodology, the validity of the results 

yielded by them were verified through comparison with experimental data as well as numerical 

solutions obtained using FEM. 

 Through deriving the formulations, developing mathematical models, and solving numerical 

examples the following conclusions were drawn: 

 Under uniaxial compressive loading, the presence of in-plane constraints may cause a 

significant nonuniformity and biaxilaity in the stress field within a plate. The impact of 

these constraints on the stress field greatly changes the buckling behavior of the plate. 

Therefore, excluding the effect of these constraints may lead to erroneous predictions. 

The proposed two-step solution proved to effectively incorporate the effect of in-plane 

constraints by basing the eigenvalue buckling analysis on the calculated stress field 

obtained using an elasticity analysis. 

 In employing approximate variational solutions such as the Ritz method, the use of 

penalty functions for applying essential boundary conditions and restraints waives the 

need for complicated approximate functions. The use of penalty functions makes 

approximate solutions flexible with respect to boundary conditions without 

compromising the accuracy or convergence speed of the solution.  

 Approximate solutions and particularly the Ritz method being reliant on continuous 

approximate functions are not the most suitable options for problems involving highly 
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localized deformations such as delamination buckling and postbuckling problems. The 

use of noncontinuous supplementary functions has proved to play the role of a local 

refinement and can broaden the applicability of such approximate solutions to problems 

involving a combination of local and global deformations. 

 In this thesis, two new partitioning schemes for accommodating the discontinuity posed 

by delamination were proposed. Both these methods were used in conjunction with a 

nonlinear variational formulation and were proved to be able to reasonably represent 

the geometry of a delaminated composite plate. The solutions developed based on these 

partitioning schemes besides accurately predicting the buckling and postbuckling 

behavior of delaminated composite plates, have the advantage of yielding the 

interlaminar tractions in the plane of the delamination. 

 The proposed technique for modeling delaminated composite plates using penalty 

functions sets the ground for marrying approximate solutions with crack closure 

techniques. This offers the facility of determining the distribution of SERR 

corresponding to the three fracture modes individually.  

 A comparison of postbuckling results with experiments suggests that the deviation of 

experimental results from the predicted results may be attributed to the calculated 

stiffness matrices rather than the solution method. 

 It was established that through the eigenvalue buckling analysis of the whole plate and 

the corresponding sublaminates the buckling mode (local, mixed, global) of a 

delaminated plate can be determined. An a priori knowledge of the buckling mode is 

essential in determining the shape of the imperfection to be incorporated in the 

postbuckling analysis of such plates. This necessitates including the linear buckling 

analysis as an essential element of the overall methodology dedicated to predicting the 

buckling and postbuckling behavior of delaminated plates. 

 It was observed in cases involving a global buckling mode shearing is the dominant 

fracture mode. In the postbuckling state, the SERR corresponding to the shearing mode 

varies linearly with the applied end-shortening. 

 In plates exhibiting a local buckling mode, the opening mode is the major fracture mode, 

however, it was observed that a local buckling mode is often followed by a mixed 

buckling mode where both shearing and opening fracture modes are present. In a mixed 
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buckling mode, both shearing and opening SERRs have a nonlinear correlation with the 

applied end-shortening. 

 The use of penalty functions for applying rotational restraints on the edges of curved 

panels provides the facility of predicting the buckling behavior of curved panels with 

arbitrary rotational boundary conditions ranging from simply supported to clamped 

without using complicated approximate functions. This facility makes it possible to use 

a single formulation for analyzing intact curved panels as well as delaminated films. 

7.3 Recommendation for future works 

The methodology presented in this dissertation fulfills the objectives of this thesis work. 

However, it can be further expanded to provide more elaborate information on the implications of 

the existence of interlaminar flaws in composite laminates. Aligned with the achievements of this 

work the following topics may be suggested as items that could complement the proposed 

methodology. 

 All the formulations of this work are derived based on the FSDT. It has been shown that 

the FSDT is capable of fairly modeling the behavior of thin to moderately thick laminates 

in a postbuckling analysis. However, it has been observed that ahead of a crack tip a region 

can be identified where the FSDT might not be the best representative of the displacement 

field. In this regard repeating the derivations of this work using the HSDT assumptions 

may enhance the accuracy of the predicted results especially the SERRs. 

 In this work the means for determining the implications of delamination on the 

performance of flat composite plates are developed, however, in real-life applications, 

structures are also made of curved composite panels. Therefore, extending the proposed 

formulation to accommodate curvatures of composite panels can highly contribute to the 

practicality of the proposed techniques. 

 In a significant number of applications, structures are subjected to cyclic loading under 

which a gradual growth of flaw may be expected.  By combining, the proposed solutions 

with fatigue crack growth equations such as the Paris equation, the use of the present 

developments can be extended to predict the crack growth rate. 
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 The current methodology is capable of predicting the onset of the growth of a crack, 

however, following an infinitesimal propagation of a crack different scenarios may 

become possible namely the arrest of the crack or its further propagation. By defining the 

stiffness of the elastic interlaminar bonds as a variable field the movement of a crack front 

can be traced. 

 The penalty function based formulation is compatible with damage mechanics. Therefore, 

as a next step, the crack closure integrals used in this work for predicting a potential growth 

of the delaminated region may be replaced by a Cohesive Zone Model (CZM) for 

modeling the gradual failure process. 

 The principles used in chapters 3 and 4 can be extended to problems with two or more 

delaminations. Doing so would require dividing the laminate by the plane of all the 

existing delaminations. 

 The validity of the predictions made by the developed methodologies may be further 

examined through the comparison of results with experimental data. Such data can be 

extaracted from the literature for both through-the-width [7,66,113,146] and embedded 

[15,62,66] delaminations. In these works, the propagation of the delamination is either 

studied by analyzing the obtained load-force correlations [113] or using the C-scan 

technique after the unloading of the tested specimens [15,62]. To obtain a better 

understanding of the onset of propagation of delamination propagation, future experiments 

may include monitoring the state of the delamination in realtime using techniques like 

Ultrasonic, infrared, Radiography, etc [147].  
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