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Abstract

Binary Code Fingerprinting with Application to Automated
Vulnerability Detection

Paria Shirani, Ph.D.

Concordia University, 2021

With the growing popularity of emerging technologies, the prevalence of digital systems

is more than ever. Security, however, has still lagged behind, as evidenced by the increasing

rate of recent attacks. Oftentimes, cyber-attacks are initiated by running a malicious code or

by exploiting vulnerabilities in the underlying software. To mitigate such alarming threats,

analyzing software binary code (a.k.a. binary analysis) has been known as a promising

solution. This thesis answers the following research question: how to automatically finger-

print a cross-architecture code with optimization and obfuscation by attributing compiler

provenance, identifying library functions, and detecting vulnerable functions? Specifically,

it first analyzes the syntax, structure, and semantic of functions to extract compiler prove-

nance in cross-complied binaries. Second, it introduces a single robust function signature

based on heterogeneous features to solve library function identification problem. Third,

it overcomes vulnerable function detection problem through a multi-stage fuzzy match-

ing approach on firmware images. Finally, it addresses vulnerability detection problem

in cross-architecture obfuscated binaries and firmware images through a neural machine

translation-based approach. This thesis advances the state-of-the-art by improving the ac-

curacy, scalability, and efficiency of binary code analysis. All of the proposed approaches

are implemented as a prototype system and their performance are evaluated with real data.
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Chapter 1

Introduction

In this chapter, we first discuss the motivation of this thesis, then define its problem state-

ment, and finally present its main research contributions.

1.1 Motivations

In recent years, given the wide-spread adoption of emerging technologies (e.g., Internet

of Things (IoT) and cloud computing), the reliance on digital systems and information

technology has been significantly increased. However, this growing popularity of digital

systems also turns them into a popular subject of cybersecurity threats. On the other hand,

the number of vulnerabilities are increasing1 attackers exploit the security vulnerabilities

in existing software or deliberately develop various malicious software (a.k.a. malware) to

compromise those systems. In addition, the increasing complexity and diversity introduced

by those technologies in a system multiplies the possibility of design and implementation

flaws in those systems. This may lead to various security vulnerabilities. In particular, most

1https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-

severity-distribution-over-time. Accessed on Jan 21, 2021.; for instance, 17, 447 vulnerabilities are
recorded in 2020, which is the fourth consecutive year with a record number of security flaws published. As
such,

1
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security vulnerabilities are resulting from the flaws in their underlying software/firmware

code2. For instance, the presence of software vulnerabilities is one of the most common

causes of data breaches3, which resulted into the average cost of $4.50 million as of 2020.

Moreover, state-backed IoT malware show that targeted attacks on IoT devices can evade

traditional cybersecurity detection and cause catastrophic failures with significant impact

to critical infrastructure. Examples include Industroyer (also referred to as CRASHOVER-

RIDE) [48, 196] targetting Ukraine’s power grid to control substation switches and circuit

breakers, and BlackEnergy [164] against the Ukranian’s train railway and electricity gener-

ation utilities. In addition, according to the study conducted by Lloyd’s and the University

of Cambridge’s Centre for Risk Studies [79], a large-scale cyberattack can lead to a $243

billion to $1 trillion loss to the U.S. economy.

Consequently, analyzing software systems based on their binary code (namely, binary

analysis and code fingerprinting), especially where the source code is unavailable (e.g.,

malware or closed-source software), is an absolute necessity. Moreover, binary analysis

has a larger scope (e.g., the whole application including the libraries) than source code

analysis, in which is limited to the visible source code and may not cover the vulnerabili-

ties in the compiled code. Furthermore, compilers and tool chains are not bug-free [201].

For instance, Xcode Ghost4 (a malicious version of Xcode), silently inserted malicious code

at compile time and infected over 40 popular iOS applications to compromise millions of

users’ devices. Therefore, even if the source code is available, source code analysis some-

times falls short of revealing subtle bugs, security vulnerabilities, and malicious behavior.

The reason is that subtle but important differences between programmer’s intent and what

2https://inside.battelle.org/blog-details/hardware-vs.-software-vulnerabilities#:~:

text=Hardware%20Vulnerabilities&text=Hardware%20vulnerabilities%20are%20more%20difficult,

attackers%20slower%20to%20adopt%20them. Accessed on Jan 21, 2021.
3https://www.capita.com/sites/g/files/nginej146/files/2020-08/Ponemon-Global-Cost-of-

Data-Breach-Study-2020.pdf. Accessed on Jan 21, 2021.
4https://us.norton.com/internetsecurity-emerging-threats-ios-malware-xcodeghost-

infects-millions-of-apple-store-customers.html. Accessed on Dec 20, 2020.
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is actually executed by the processor can be introduced during the code transformation and

compilation process; this is called the WYSINWYX (What You See Is Not What You

eXecute) phenomenon [20].

Detecting vulnerabilities through binary analysis in the presence of source code be-

comes less challenging and more accurate. In such cases, we can first conduct source

code analysis, which is compiler and platform agnostic, to scan any code regardless of the

underlying operating systems, development environments and compilers. This leads to a

less challenging problem with more accurate results in the presence of various platforms.

Moreover, source code analysis can be used to fix certain vulnerabilities even before the

build stage. Also, locating vulnerabilities in the development stage has significant financial

benefits and substantial savings in resources and time. In addition, we can compile the

source code and keep the debug information (e.g., function identifiers) to preserve as much

as information at the binary level. Therefore, in a perfect scenario the combination of both

source code and binary code analysis would benefit the most to: (i) learn from two different

views (e.g., source and binary) of the same vulnerability; (ii) detect subtle vulnerabilities or

malicious code injected by attackers that will be present in the compiled version of a code;

and (iii) reduce the false positive rates by including the standard libraries and free open-

source libraries into the analysis during the compile time, and by comparing the obtained

results from the analyses at both source and binary code levels. However, in this thesis, we

focus on a harder threat model, which mainly covers closed-source software and malware

samples (where source code is usually not available).

Binary analysis approaches are mainly categorized into three groups: static analysis,

dynamic analysis and symbolic execution. More specifically, static analysis examines the

assembly code or reconstructed source code of a given binary program without executing

the code. Dynamic analysis is the process of examining the program behaviour while ex-

ecuting it in a controlled environment. In symbolic execution techniques, the program is
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executed in an emulated environment using symbolic values rather than actual values in

order to explore potential paths and find various kinds of errors, such as security vulnera-

bilities and memory corruption.

In recent years, binary analysis has been a promising solution for a wide-range of ap-

plications [4], such as threat analysis, vulnerability testing, digital forensics, malware anal-

ysis, recognizing copyright infringement and plagiarism detection. Furthermore, binary

analysis is useful for security researchers and reverse engineers, since it offers important

insights about a given binary code, such as information about its development environment

and compilation, revealing its obscure functionalities, attribution of its author(s), recogniz-

ing standard and reused libraries, and identifying bugs and vulnerabilities. A typical binary

static analysis approach starts with the process of disassembling (which is the process of

obtaining the assembly code from the binary code), as a primary step towards understanding

the behavior of a software and further identifying the presence of bugs and vulnerabilities.

However, this process is tedious and time-consuming, and its success depends heavily on

the experience and knowledge of binary analysts (a.k.a. reverse engineers). In the follow-

ing, we briefly discuss the challenges, which are later elaborated upon in Chapter 2.

• Binary code analysis is more challenging when the source code is unavailable. Since

a substantial amount of important information (e.g., variable and function names,

types, data structures and control constructs) might be lost (or at least transformed)

during the compilation process.

• Binary code analysis becomes significantly difficult due to the effects of code trans-

formation. Code transformation is performed during compilation process, in which

different compiler families and optimization settings, hardware architectures (e.g.,

x86 and ARM), and underlying operating systems contribute to this process. This

becomes more challenging if further obfuscation techniques [220] are utilized.

• Today’s binary code analysis heavily relies on manual efforts with a limited support

4



from automated tools, such as IDA PRO5 [73] and GHIDRA6. Such manual analysis

is typically tedious and error-prone, since a binary code inherently lacks any specific

structure mainly due to the heavy use of jumps and symbolic addresses, control flows

are highly optimized, and there exist various registers and memory locations that are

processor and compiler dependent [21]. Moreover, analyzing large-scale binary code

units involves additional overhead.

In what follows, we detail several important gaps in the literature of binary analysis,

such as compiler provenance attribution, library function identification, vulnerable function

detection and code similarity detection.

• Compiler provenance information can aid binary code and tool chain analysis by

uncovering fingerprints of development environment and compiler functions. This

information will accelerate the analysis by shortlisting the non-compiler functions.

The existing techniques derive the compiler signatures from the meta-data or other

details of program headers. This can be problematic as such information might be

unavailable in stripped binaries or might be easily altered.

• Library function identification not only enhances the efficiency of reverse engineer-

ing and threat analysis tasks, but also improves their accuracy by avoiding false cor-

relations between irrelevant code bases. The existing approaches may fail to identify

the correct library functions due to slight modifications in the source code or the li-

brary version, mainly due to their reliance on the signatures derived from a limited

number of features.

• With the growing popularity of the Internet of Things (IoT), the necessity of vulner-

ability detection and open-source usage in the firmware of IoT devices is more than

ever. However, there exist few efforts to this end, while those techniques have several
5https://www.hex-rays.com/products/ida/support/download_freeware. Accessed on Dec 20, 2020.
6https://github.com/NationalSecurityAgency/ghidra. Accessed on Dec 20, 2020.
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limitations related to their efficiency and accuracy. Moreover, none of them focuses

on the detection of vulnerabilities in IoT devices in critical infrastructures, such as

smart grids. Additionally, there is no large-scale databases (e.g., firmware images

and their vulnerabilities) available for such research.

• With the evolution of heterogeneous systems, such as IoT and clouds, supporting

code similarity detection in binary code and firmware images for various hardware

architectures and compilers has become an essential requirement. However, none of

the existing efforts targets code similarity detection and vulnerable function detection

in cross-architecture obfuscated binaries.

In summary, compiler attribution, library function detection, vulnerable function de-

tection and code similarity detection for cross-architecture and cross-compiler binary code

and firmware images are essential open problems in binary analysis.

1.2 Problem Statement

This section enumerates the research questions of this thesis and defines our threat model.

1.2.1 Research Questions

This thesis aims at addressing several important research questions in statically analyzing

and fingerprinting binary codes towards an investigation on the function identification in

program binaries and applying the study to a broader range of applications (e.g., from

desktop software to IoT firmware). To this end, this thesis mainly addresses the following

key research questions:

“How can we build a robust, scalable, and accurate system that identifies and finger-

prints different types of functions in real-world and large-scale binaries (including malware

and IoT firmware) for different platforms, compilers and hardware architectures?”
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More specifically, the main problem that this thesis aims to solve can be stated with the

following major research questions:

1) How can we attribute compiler provenance in binaries compiled with different com-

pilers and compilation settings on the x86 architecture?

2) How can we identify library functions in binaries compiled with different compilers

and compilation settings on the x86 architecture?

3) How can we devise a vulnerable and open-source library function detection approach

for program binaries and firmware images of IoT devices on the ARM architecture?

4) How can we detect vulnerable and open-source library functions to support multiple

CPU architectures (e.g., x86 and ARM) for cross-compiled and obfuscated binaries?

In summary, these four research questions of this thesis focus on accuracy, robustness,

and scalability aspects of function detection in real-world large-scale binaries (including

malware and IoT firmware) written in C/C++ for different platforms (operating systems,

compilers and hardware architectures). These topics are complementary to each other, as

detailed in the following.

Given a binary code and passing it through a disassmebler, the binary code will be

decomposed into a list of functions. These functions are originated from various sources,

including compilers, standard libraries, free open-source libraries and user-defined func-

tions. Moreover, some of the functions might have security vulnerabilities possibly as a

result of code reuse practice. This thesis contributes towards identifying different types of

functions in order to fingerprint a given code and further help assess its security. We start

by attributing compiler provenance and identifying compiler functions. Then, we build

an approach to detect standard library functions. Afterwards, we perform code similarity

detection (a.k.a. clone detection) by identifying reused free open-source library functions
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and further mark out those that are matched with the vulnerable functions in our reposi-

tory. Finally, we enhance our code similarity detection and vulnerable function detection

capability by supporting additional hardware architectures and overcoming the effects of

obfuscation techniques.

Consequently, attributing compiler provenance, labelling compiler-related functions,

and detecting library functions in a given unknown binary code will: (i) aid in code finger-

printing and characterization through providing information about the compilation process,

underlying functionalities (based on the types of identified open-source libraries), etc. (ii)

help the analysts shift focus to unknown and user-defined functions, and (iii) further con-

tribute to the accuracy and efficiency of binary code analysis task, which is resulted from

revealing the aforementioned information. Moreover, in order to examine the software

security of a given binary code or embedded device firmware image, we identify the vul-

nerable functions that are high-likely borrowed from free open-source libraries.

1.2.2 Threat Model

In the following, we define our high-level threat model. This work does not require ac-

cess to the source code of targeted system; instead, it relies on the availability of binary

code. Consequently, we assume that the integrity of original binaries is preserved and

the utilized disassemblers (e.g., IDA PRO) accurately perform function boundary iden-

tification and control flow graph generation. We also assume that binaries may contain

known vulnerabilities reported by publicly available sources (e.g., CVE database), which

usually introduced by programmers during the software development as a results of code

reuse practice (e.g., free open-source libraries). Moreover, in this work we focus on anti-

disassemblers obfuscation techniques [219], which includes a variety of techniques, such

as dead-code insertion and control flow obfuscation. More specifically, we mainly consider

the OBFUSCATOR-LLVM [120], which performs instruction SUBstitution (SUB), Bogus
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Control Flow (BCF), and control flow FLAttening (FLA) obfuscation techniques. The rea-

son behind this choise is its frequent use in the state-of-the-art approaches that eases the

comparison.

This thesis (as part of feature identification and methodology design) considers several

strategies that may affect detection mechanisms as follows. First, programmers or malware

writers may copy an open-source library code and slightly modify it (while preserving its

functionality) before code reuse practice. Second, programmers or malware writers may

use different compilers or compilation settings, which affect the code representation of a

program binary. Finally, anti-debugging obfuscation techniques (e.g., bogus control flow)

might be utilized by programmers to protect the intellectual properties from being reverse

engineered and released with malicious/vulnerable code, or by malware writers to hinder

malware detection process. Thus, our solution is not specifically designed to overcome the

hurdles imposed by binary packing, heavy obfuscation, or encryption. Instead, our system

focuses more on identifying functions in binaries that are already unpacked, de-obfuscated,

and decrypted using existing tools [74, 150]. Therefore, our proposed system is to assist

the tasks of threat analysts and reverse engineers and not to replace them.

1.3 Research Contributions

To solve the stated problems, we follow four threads of research as detailed below. These

proposed solutions are mainly based on the static analysis techniques.

1.3.1 Survey on Static Binary Analysis Approaches

We provide a comprehensive review of the state-of-the-art binary analysis solutions, which

perform function matching and/or detect vulnerabilities in normal binaries and firmware

images by employing static analysis, symbolic execution, and code similarity detection.
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Furthermore, we perform both quantitative and qualitative comparisons amongst the sur-

veyed approaches. Moreover, we devise taxonomies based on the applications of those

approaches, the features used in the literature, and the type of analysis. Finally, we identify

the unresolved challenges in this field of research. This survey has been accepted to be pub-

lished in ACM Computing Surveys (CSUR). The details of this contribution is presented

in Chapter 2.

1.3.2 Compiler Provenance Attribution

Compiler provenance encompasses several pieces of information, such as compiler family,

compiler version, optimization level, and compiler-related functions. In order to attribute

compiler provenance in binaries that are compiled with various compilers (e.g., GNU Com-

piler Collection (GCC) and Microsoft C++ (MSVC)) and their different compilation set-

tings, we devise a practical approach called BINCOMP. BINCOMP is a multi-layered ap-

proach, which analyzes the syntax, structure, and semantics of disassembled functions.

More specifically, it first applies a supervised compilation process to a set of known pro-

grams to model the default code transformation of compilers. Second, it employs an in-

tersection process on disassembled functions across various sets of compiled binaries to

find common compiler/linker-inserted functions and extract compiler-related features. Fi-

nally, it extracts semantic features from the labelled compiler-related functions to identify

the compiler version and the optimization level. We evaluate the proposed approach on a

large set of real-world binaries across several compiler families, versions, and optimization

levels. The obtained results demonstrate that compiler provenance can be determined with

high accuracy. The results of this work has been published in Digital Investigation [180].

The details of this approach are explained in Chapter 3.
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1.3.3 Library Function Identification

In order to identify standard library functions in binaries that are compiled with differ-

ent compilers and optimization settings, we develop a new technique called BINSHAPE.

Our key idea is to derive the shape of each function, which is a novel concept based on

a set of heterogeneous features. More specifically, BINSHAPE first derives the function

shapes based on heterogeneous features, such as graph features, instruction-level features,

statistical features, and function-call graph features. Second, it ranks those features using

feature selection evaluators, such as mutual information-based ranking and decision trees,

in order to obtain a signature for each library function. Finally, it extracts the signatures

of known library functions and stores them in a repository using a novel data structure for

efficiently matching against a target function. We evaluate BINSHAPE on a diverse set

of binaries compiled with different compilers and optimization settings on x86-x64 CPU

architecture. Our experiments demonstrate that BINSHAPE can identify library functions

in real-world binaries both accurately, with an average accuracy of 89%, and efficiently,

taking on average 0.14 s to identify one function out of three million candidates. Further-

more, BINSHAPE is robust enough when the code is subjected to different compilers or

light obfuscation techniques. The results of this work has been published in the Interna-

tional Conference on Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA) [190]. The details of this approach are explained in Chapter 4.

1.3.4 Vulnerability Detection in Firmware Images

In order to detect vulnerable functions in program binaries and firmware images of IoT

devices, we build BINARM. BINARM is a scalable approach to detecting vulnerable func-

tions in binaries and smart grid intelligent electronic devices (IED) firmware, mainly based

on the ARM architecture. To this end, BINARM first builds comprehensive databases of
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vulnerabilities and firmware images that are widely used in IEDs in the smart grid. Sec-

ond, it devises a multi-stage detection engine to minimize the computational cost of func-

tion matching and to address the scalability issue in handling vulnerability detection at

large-scale. Specifically, the proposed engine takes a coarse-to-fine grained multi-stage

function matching approach by (i) filtering dissimilar functions based on a group of het-

erogeneous features; (ii) dropping dissimilar functions based on their execution paths; and

(iii) identifying candidate functions based on fuzzy graph matching. Our experimental re-

sults ascertain the performance of proposed system, which corresponds to an average total

accuracy of 0.92. In addition, our study confirms the real-world applicability of BINARM,

which successfully detects 93 potential common vulnerabilities and exposures (CVEs)7

amongst real-world IED firmware within 0.09 seconds per function on average, the ma-

jority of which have been confirmed by our manual analysis. The results of this work has

been published in the International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment (DIMVA) [189]. The details of this approach are explained

in Chapter 5.

1.3.5 Cross-Architecture Code Similarity and Vulnerability Detection

To further expand our system to support cross-architecture binaries, we present TIOHTIÀ:KE

that performs code similarity detection to identify vulnerable functions in a given binary

code compiled with different compilers for different architectures. It leverages a neural ma-

chine translation approach that employs the Long Short-Term Memory (LSTM) Encoder-

Decoder architecture [105], and models the assembly codes of a function as a sequence

of instructions (similarly as the sentences in a natural language). It regards the assemble

codes of two architectures (e.g., x86 and ARM) as two natural languages (e.g., English

and French). Moreover, our utilized approach along with our features, makes TIOHTIÀ:KE

7https://cve.mitre.org/. Accessed on Dec 20, 2020.
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more resilient to code obfuscations than state-of-the-art approach [69]. We perform exten-

sive experiments on a large vulnerability dataset and obfuscated binaries to demonstrate the

accuracy and efficiency of our approach. Furthermore, we apply TIOHTIÀ:KE to real-world

firmware images. Performed experiments demonstrate that TIOHTIÀ:KE can successfully

identify potential CVEs. The details of this approach are explained in Chapter 6.

1.3.6 Summary

In summary, the main contributions of this thesis are as follows.

• As per our knowledge, we are the first to propose a compiler provenance attribu-

tion approach that can simultaneously achieve several goals. This includes compiler

family identification, compiler-related function labelling, compiler version detection,

and optimization level recognition. Unlike existing solutions, the proposed approach

derives the signatures only by relying on the characteristics of the binary, which are

available even in the stripped form.

• We employ a diverse collection of features, including graph features, instruction-

level characteristics, statistical characteristics, and function-call graphs, for library

function identification. Consequently, our novel concept of the function shape in-

duces a single robust signature based on heterogeneous features, which allows our

proposed approach to obtain high accuracy. This is valid even when the code is com-

piled with different compilers and compilation settings, and is subjected to slight

modifications due to obfuscation techniques.

• We propose a multi-stage detection engine to efficiently identify vulnerable functions

from large-scale databases, while maintaining high accuracy. To this end, our pro-

posed method is three orders of magnitude faster than the existing fuzzy matching
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approach [110]. Furthermore, in this research, we develop the first large-scale vul-

nerability database (specifically for IEDs firmware covering most of major vendors).

This vulnerability database can potentially be beneficial to IED vendors as well as

utilities in order to assess the security of elaborated and deployed IED firmware.

• We propose a cross-architecture cross-compiler code similarity detection approach to

identify vulnerable functions that can also handle obfuscation effects. First, we build

our vulnerability database containing vulnerable and obfuscated functions cross-

compiled for both ARM and x86 architectures. Furthermore, we introduce a new

function representation including features that are less affected by code transforma-

tion techniques. Moreover, we adapt neural machine translation models to translate

functions from one architecture (e.g., ARM) into another (e.g., x86). The proposed

approach can identify known vulnerabilities from one architecture in binaries com-

piled for another architecture.

• We build a practical system with a user-friendly interface by integrating our proposed

methods on vulnerability detection.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2 provides a detailed review on related works in the area of static binary

analysis, with the highlights of the current challenges, existing features and method-

ologies, and their taxonomies and comparisons.

• Chapter 3 details a practical approach, namely, BINCOMP, to attribute compiler

provenance which can be used to analyze the syntax, structure, and semantics of

disassembled functions in order to ascertain compiler provenance.
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• Chapter 4 presents a scalable and robust library function identification approach,

namely, BINSHAPE, which utilizes a wide-range of features along with a novel data

structure for scalable function indexing and searching.

• Chapter 5 describes a scalable and efficient vulnerable function detection technique,

namely, BINARM, which can be used for vulnerability detection in real-world firmware

images (e.g., IEDs) and binary programs.

• Chapter 6 presents a cross-architecture and cross-compiler framework for code sim-

ilarity detection, namely, TIOHTIÀ:KE, which provides an accurate solution to vul-

nerable code detection by employing deep neural machine translation techniques.

• Chapter 7 provides the concluding remarks along with a discussion on potential fu-

ture work.
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Chapter 2

Literature Review

This chapter first presents an overview of binary analysis and its challenges. Then, it dis-

cusses various features that are used in different binary analysis approaches and proposes a

taxonomy of those features and corresponding existing approaches. It further presents po-

tential application domains of binary analysis. Afterwards, it reviews existing static-based

binary analysis approaches and devises a taxonomy based on three types of analysis em-

ployed in reviewed approaches, including graph-based, data flow-based and distance-based.

Furthermore, it compares those approaches based on different criteria, e.g., methodologies,

implementations, and evaluations.

2.1 Binary Analysis Overview and Challenges

In this section, we first introduce the major approaches (e.g., static analysis, dynamic anal-

ysis, and symbolic execution) in binary analysis and then describe different challenges of

binary analysis.
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2.1.1 Overview

Binary analysis can be performed by inspecting a code statically, or executing a program

dynamically or with symbolic values. These approaches are called static analysis, dynamic

analysis and symbolic execution, respectively, as discussed in the following.

Static Analysis. Static analysis examines a given binary code rather than executing it. It

is typically designed to reason about the entire program, and has the capability to explore

all potential execution paths of a given code. The code similarity problem focuses on

analyzing two pieces of binary code (e.g., functions) in order to measure their similarities.

A function is deemed as a potential match, if there is a match between the function and

an already analyzed function (e.g., a vulnerable function) in the repository. Various static

solutions based on code similarity detection on both program binaries and firmware images

have been proposed in the literature.

Dynamic Analysis. Dynamic analysis is the process of examining and monitoring the

program behaviour while it is running in a controlled environment. For instance, dynamic

analysis can be performed by automatically generating malformed or user controlled inputs

as a tainted data. Moreover, emulation-based techniques build partial/full simulation for a

specific architecture/platform, and then employ powerful and advanced dynamic analysis

techniques to run the software in the simulated environment.

Symbolic Execution. Symbolic execution techniques allow to reason about the behavior

of a program on many different inputs at one time. Instead of reading concrete values (e.g.,

7) during a normal execution, symbolic values (e.g., λ) are utilized as inputs. These tech-

niques aim at reaching a specific program state through generating the inputs that satisfy

the required path constraints. Therefore, symbolic execution can explore all potential paths

compared to concrete execution, which can explore only one path that is related to the

supplied concrete inputs at a time. However, symbolic execution techniques suffer from

reliance on computationally expensive solvers (e.g., [26]) as well as path explosion.
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2.1.2 Challenges

In the following, we outline the most critical challenges that complicate the binary analysis

process in the absence of source code.

• C1 - Information loss: During the compilation process, some information that is

available in the source code, ranging from syntax features (e.g., variable names and

comments), to characteristics of the buffers and data structures sizes will be lost.

Therefore, analyzing a binary code would become more challenging and complicated

compared to source code analysis. Additionally, in the case of stripped binaries

where the debugging information (e.g., identifier names) is missing, binary analysis

task becomes more challenging.

• C2 - Compiler effects: With the advent of modern compilers and run-time libraries,

binary code analysis is becoming a very challenging task. Most compilers apply per-

formance or memory optimizations, which result in significant variations in binary

representations. These variations may include different registers, calling conven-

tions, control flow graphs, and mnemonics and arithmetic operations. These differ-

ences are more significant if another compiler or compilation settings are used.

• C3 - Binary disassembling: Binary disassembling is still a challenging task mainly

due to the following reasons:

– Entry point and function boundary discovery: The disassembler usually uses a

symbol table to identify function boundaries and to construct the control flow

graphs. However, when the symbol table is inaccurate or it is not available,

finding function boundaries becomes challenging [221]. Additionally, in some

cases such as binary-blob firmware [192], the entry point and the base address

are not known [210]. Moreover, some functions may have multiple entry points

[23], which need to be identified.
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– Code discovery: To align instructions and improve cache efficiency, compilers

may insert padding bytes between or within the functions. Consequently, the

disassembler may not distinguish padded bytes from code bytes, since padded

bytes are usually converted into valid instructions [23]. Moreover, some func-

tions may not be continuous and could have some gaps including data, jump

tables, or instructions from other functions [23], which affect the accuracy of

the binary analysis approaches. Additionally, some binary analysis tools fail

to accurately build control flow graph (CFG) due to their inability to find all

the code, identifying non-return functions, and handling indirect jumps. Some

of these issues might be resolved under the approximations and heuristics that

could lead to false positives. As a result, any analyses which rely on the CFGs

would be directly affected by imprecise CFG generation. However, some solu-

tions are proposed to overcome these limitations, for instance, value set analysis

(VSA)1 [20] is employed to resolve the indirect jumps.

– Code transformation: The authors of legitimate/benign programs may protect

their programs for different reasons, such as intellectual property copyright

infringement or preventing their programs from being repackaged and redis-

tributed as malware [2, 211]. Similarly, malware authors apply related tech-

niques on their malicious code to evade analysis and make them more cum-

bersome. Obfuscation [52, 130, 220], encryption and packing [121, 199] tech-

niques are used for these purposes to make the binary analysis more challenging

and difficult.

• C4 - Function inlining: A small function might be inlined into its caller function

for optimization purposes. The lack of distinction between an inline function and the

1VSA is a numeric and pointer-analysis algorithm that determines an over-approximation of the set of
numeric values and addresses (or value-set) that each abstract location holds at each program point.
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other parts of the function makes the function inline identification task very challeng-

ing. This task becomes even more challenging when the assembly instructions of an

inline function are discontinuous as the result of instruction alignment and pipelining.

• C5 - Hardware architecture: Software programs can be cross-compiled or deployed

on different CPU architectures, where instruction sets, calling conventions, register

sets, function offsets and memory access strategies vary from one architecture to an-

other [174]. Therefore, analyzing binaries compiled for different CPU architectures

but originated from the same source code is more challenging.

• C6 - Accuracy: Achieving high accuracy for any function detection technique is a

critical and non-trivial task. For instance, obtaining low false positive rates is usually

challenging when analyzing the code statically [191].

• C7 - Results verification: For several techniques, the obtained vulnerability detection

results cannot be verified due to the limited access to specific information on the

identified vulnerabilities (e.g., how to trigger). Therefore, these techniques involve

manual efforts to verify the results and hence, can be error-prone and inefficient.

• C8 - Efficiency: Many existing approaches are computationally expensive, which

highlights the need of efficient identification techniques for any binary code.

• C9 - Scalability: Due to the dramatic growth of desktop applications, IoT devices,

and inter-connectivity between them, the number of deployed software is increasing

exponentially. As such, function detection approaches need to deal with a large num-

ber of binaries and firmware images, which indicates that large scale binary analysis

is an absolute requirement.

• C10 - Test case generation: Some approaches require an initial input seed compat-

ible with the target application to properly start with the analysis. Test cases are
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easy to generate when the targeted application provides its required input file format.

However, when no configuration input is provided, test case generation becomes a

challenging task; since each program needs a particular test case to be prepared in

advance, which requires expertise and additional effort.

• C11- Firmware reverse engineering: Firmware reverse engineering can be a time

consuming and challenging task that requires domain expertise. The whole process

involves the following steps:

– Firmware acquisition: Embedded system vendors tend to avoid publishing their

firmware in order to limit accessing it and to protect their intellectual property.

Therefore, it might be necessary to directly extract or dump it from a device chip

memory in different ways, such as an EEPROM programmer, bus monitoring

during code upload and schematic extraction [203]. However, hardware locks

and component interference might make this task challenging. This can be

resolved by physically modifying the original hardware, or manipulating the

circuit boards using probes.

– Firmware unpacking and extraction: Some vendors pack their firmware using

proprietary packers and file formats, or use private key encryption. In practice,

different unpacking tools, such as BINWALK2, BAT [103], and FRAK [57]

can be utilized to extract the firmware. However, performing such tasks has

limited success rate and thus not all embedded device firmware can be analyzed

(e.g., Costen et al. [44] successfully unpacked 8, 617 firmware out of 23, 035

collected firmware images).

– Firmware and binary identification: Once the firmware images is unpacked, fil-

tering is required for obtaining all relevant information. This can include binary

files, configuration files, embedded files and the firmware itself. To this end, file
2https://github.com/devttys0/binwalk. Accessed on Dec 20, 2020.
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signature matching is performed using different tools, SIGNSRCH3, FILE4, and

BINWALK. Also, there exist some types of firmware that have no underlying

operating system. They consist of only one binary file that operates directly on

the hardware. In some cases, there is no abstraction of the OS and libraries,

and in other cases, firmware images are not standard and no documentation is

provided. Therefore, initializing a run-time environment and loading the binary

is more challenging [192].

Summary. Static analysis techniques usually suffer from the C1-C9 and C12 limitations.

For instance, such techniques may misidentify non-vulnerabilities, leading to high false

positive rates [191], or they may fail to find all the vulnerabilities (e.g., run-time vulnera-

bilities), generating more false negatives. Additionally, since the information to trigger the

identified vulnerability is not provided, the results of vulnerability detection should be veri-

fied manually. Although dynamic analysis techniques can overcome some challenges (e.g.,

C2, C3 and C7) of static analysis approaches, they are still affected by the C5, and C8-

C11 limitations. On the other hand, static analysis approaches have their own advantages,

e.g., they are scalable compared to dynamic analysis approaches. Therefore, researchers re-

cently combine static analysis with dynamic analysis approaches. The symbolic execution

techniques suffer from the C8 and C9 limitations.

2.2 Preliminaries for Static Approaches

This section provides a discussion on several preliminaries in static approaches, which is

the primary focus of this thesis. These include intermediate representation, feature extrac-

tion, and application domains.

3http://aluigi.altervista.org/mytoolz.htm. Accessed on Dec 20, 2020.
4https://linux.die.net/man/1/file. Accessed on Dec 20, 2020.
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2.2.1 Intermediate Representation

Intermediate representation (IR) is a processor-neutral form, which represents the opera-

tional semantics of a binary code with an intermediary level of abstraction. In order to

support multiple CPU architectures, the disassembled binary codes are converted to an

intermediate representation; this process is also called binary lifting. Designing an inter-

mediate lifter is a difficult task, since the instruction set manual of each CPU architecture

comprises thousands of pages. Additionally, the CPU instruction semantics are usually

not sufficiently detailed and some of them are undefined or undocumented, which leads to

a trial-and-error based process to lift the instruction sets to IR representation. Therefore,

binary analysts and reverse engineers generally reuse available binary lifters. However,

the accuracy of intermediate lifters directly affects the accuracy of the underlying binary

analysis techniques. Consequently, different factors are taken into account when choosing

the appropriate intermediate lifters. (i) Is the lifter open-source? (ii) How accurate is the

lifter? (iii) How many CPU architectures (e.g., x86 and ARM) are supported? (iv) Are

there any dependencies for any specific disassembler? (v) Does the lifter support floating

point and Single Instruction Multiple Data (SIMD) instructions?

Kim et al. [126] study the characteristics of existing open-source intermediate rep-

resentations, such as LLVM [135] (called REMILL-IR5) and QEMU6 [27] (called TCG-

IR7). They further evaluate the efficiency of three well-know open-source lifters: BAP [33]

(called BIL-IR8), BINSEC [24] (called DBA-IR9), and PYVEX [192] (called VEX-IR10

[166]). For this purpose, the authors design and implement a tool called, MEANDIFF11,

which supports x86 and x86-64 architectures solely in order to find the semantic bugs in

5https://github.com/trailofbits/remill. Accessed on Dec 20, 2020.
6https://git.qemu.org/?p=qemu.git. Accessed on Dec 20, 2020.
7https://github.com/qemu/qemu/tree/master/tcg. Accessed on Dec 20, 2020.
8https://github.com/BinaryAnalysisPlatform/bil. Accessed on Dec 20, 2020.
9https://github.com/binsec/binsec/tree/master/src/dba. Accessed on Dec 20, 2020.

10https://github.com/angr/pyvex. Accessed on Dec 20, 2020.
11https://github.com/SoftSec-KAIST/MeanDiff. Accessed on Dec 20, 2020.

23

https://github.com/trailofbits/remill
https://git.qemu.org/?p=qemu.git
https://github.com/qemu/qemu/tree/master/tcg
https://github.com/BinaryAnalysisPlatform/bil
https://github.com/binsec/binsec/tree/master/src/dba
https://github.com/angr/pyvex
https://github.com/SoftSec-KAIST/MeanDiff


binary lifters. They observe that none of the lifters is completely precise, since all of them

fail to lift hundreds of instructions. According to their evaluation on the three state-of-the-

art lifters, BAP and BINSEC lift successfully a large number of instructions compared to

PYVEX. They observe that BAP and BINSEC are able to handle loop statements-related

instructions (e.g., f3:rep prefix instruction) while PYVEX cannot handle them. How-

ever, BAP and BINSEC do not have full support of floating-point and SIMD instructions.

Furthermore, BINSEC does not support x86-64 CPU architecture. On the other hand,

PYVEX supports five different CPU architectures, as well as floating-point and SIMD in-

structions. Consequently, the obtained results indicate that the accuracy of any IR-based

approach is directly related to the accuracy of the underlying lifter [126].

2.2.2 Feature Extraction

In order to analyze a given binary code statically, various features from different binary

code representations or intermediate representations (IR) can be extracted. We classify the

features into four categories of instruction-level, statistical, structural, and semantic fea-

tures. The proposed feature taxonomy as well as the corresponding approaches (explained

later) that utilize these features are illustrated in Figure 2.1.

Instruction-level Features. Instruction-level features can be extracted directly from a

given binary code. For instance, n-grams [163] are n sequences of tokens (e.g., bytes or

instructions) in a program binary. One drawback of n-grams is that they are sensitive to the

order of instructions, since some instruction could be reordered while semantics remains

the same. To solve this issue, n-perms [122] are proposed, which are n sequences of tokens

with any order. Idioms [186] are composed of short sequences of instructions with wild-

cards, where the values of immediate operands are abstracted away . A mnemonic [125] of

an instruction represents the operations that need to be executed, whilst typically an opcode
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Binary Features

Instruction-level

n−perms/n−grams/
Idioms

KAM1N0 [68], IDA FLIRT [73],
BINSEQUENCE [110], RENDEZVOUS [125],
αDIFF [142], EXPOSE´ [169], LIBV [177]

Mnemonics/Opcodes FOSSIL [11], KAM1N0 [68], RENDEZVOUS [125]

Strings/Constants VULSEEKER [91] RENDEZVOUS [125], GEMINI [213]

Statistical

Frequencies
FOSSIL [11], BINSLAYER [30], DISCOVRE [78],
GENIUS [84], BINDIFF [86], VULSEEKER [91],

RENDEZVOUS [125], αDIFF [142], GEMINI [213]

Probability Density
Function

GITZ [61]

Structural

Control Flow Graphs

SIGMA [10], BINSLAYER [30], DISCOVRE [78],
BINDIFF [86], BINHUNT [90], VULSEEKER [91]

BINSEQUENCE [110], BINHASH [119],
BINJUICE [132], αDIFF [142], GEMINI [213]

Subgraphs/Tracelets TRACY [63], KAM1N0 [68], DISCOVRE [78],
RENDEZVOUS [125], TEDEM [175]

Execution Traces/Paths/
Walks

FOSSIL [11], BINGO [41]

Call Graphs BINSLAYER [30], BINDIFF [86], BINHUNT [90],
UNSTRIP [114], αDIFF [142], EXPOSE´ [169]

Graph Metrics DISCOVRE [78], GENIUS [84], GEMINI [213]

Semantic

Data Flow
BINGOLD [14], XMATCH [83], VULSEEKER [91],

UNSTRIP [114], BINJUICE [132], LIBV [177]

Strands ESH [60], GITZ [61], FIRMUP [62]

Input/Output Pairs BINGO [41], BINHUNT [90], BINHASH [119],
COP [146], MULTI-MH [174]

S-Expressions TEDEM [175]

Embedding ASM2VEC [69], VULSEEKER [91], αDIFF [142],
SAFE [151], GEMINI [213], INNEREYE [224]

Figure 2.1: The proposed taxonomy of the features and corresponding existing approaches

is the hexadecimal encoding of the instruction . Strings and constants are other instruction-

level features that can be captured easily from the instruction sets. The motivation of using

constants as a feature is that usually constants remain unchanged regardless of compilers

and optimization settings.

Statistical Features. Statistical features represent the semantic information of a binary

code, for instance, cryptography functions use more arithmetic and logical instructions

compared to a function that writes some information into a file. For this purpose, the
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statistics of different features, such as frequencies, are used in the literature. As an example,

instructions grouping [129] (e.g., number of arithmetic instruction) is utilized to get more

information about the functionality of a function. Opcode distributions [28] are used to

detect metamorphic malware. Additionally, some statistical distributions are computed to

get more information about a function and the distribution of its instructions [61].

Structural Features. Structural features represent the semantic information as well as the

structural properties of a function. Control flow graphs (CFGs) [86] are the most frequent

features that are used in the literature. A subset of CFGs called tracelets [63], partial traces

[41] or subgraphs [129], which are defined as the short and partial traces of an execution,

capture the semantic of execution sequences. Similarly, execution traces/paths/walks [11,

41, 189] represent the execution traces, while considering basic block semantics. Call

graphs [86] are extracted at the program level to get more information about both the

relation between callers and callees as well as the program logic. Additionally, some graph

metrics [96], such as graph energy and betweenness centrality (node centrality) [167], are

used to extract more information about the topology of the graph.

Semantic Features. This category includes features that put more emphasis on conveying

code semantics. The execution flow graph (EFG) [177] preserves the data and control de-

pendencies across the instructions in a CFG and therefore represents the internal structure

of a function. Data dependence and program dependence graphs (PDGs) [161, 191] allow

to reason about the control and data flow, where memory and register values are required

to be extracted. Data flow analysis combined with path slicing [117] and value-set analysis

[18, 20] are employed to construct conditional formulas [83], which describe when a given

action will take place under which conditions and could capture incorrect data dependen-

cies and condition checks. Strands [60] are the set of instructions resulting from backward

slicing [209] at basic block level. Input/Output pairs [41, 90, 119, 145, 146, 174] are ob-

tained by the assignment formulas for each basic block, where the effects of input variables
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on the output variables are monitored in order to capture their semantics. S-Expressions

[175] are a tree-like data structure composed of equations, which capture the effects of

basic blocks on the program state. The equations are obtained from the basic block in-

structions, where both left-hand and right-hand sides contain arbitrary computations. Side

effects [75] are composed of a set of features, such as values written to (or read from) pro-

gram heap, system calls, etc., that are collected during the program execution and capture

function semantics. Embeddings [213, 224] are high-dimension numerical vectors obtained

from a function or a fragment of it (e.g., CFG or basic blocks), which preserve and convey

the semantics of functions.

2.2.3 Application Domains

Binary analysis and code fingerprinting have been performed on different application do-

mains, including (i) authorship attribution, which refers to the detection and attribution of

the author(s) of a given binary code; (ii) compiler provenance attribution, which provides

information about the utilized compiler family, version, optimization level and compiler

functions; (iii) library function identification, which identifies the standard library (libc)

functions in a binary code; (iv) code reuse detection (a.k.a clone detection) that aims at

recognizing similar fragments of two given code samples, which could be performed at

program level or function level, such as free open-source software (FOSS) packages that

are borrowed from available open-source libraries (e.g., OpenSSL); and (v) vulnerable

function identification which is utilized to identify vulnerabilities in a given code. We cate-

gorize the existing works based on the aforementioned domains as presented in Figure 2.2.

Authorship Attribution. The task of authorship attribution aims at identifying and charac-

terizing the author or a group of authors for a given binary [3]. In contrast to source code,

binary code authorship attribution has drawn significantly less attention. This is mainly

due to the fact that many salient author-related features that may identify an author’s style
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Application Domain

Authorship Attribution

Alrabaee et al. [5], CPA [6], BinEye [7], OBA2 [8],
Alrabaee et al. [9] BINAUTHOR [12, 13], Caliskan et
al. [37], Xiaozhu et al. [157], Xiaozhu et al. [158],
Rosenblum et al. [185]

Compiler Provenance Attribution PEID,RDG, IDA FLIRT [73], ECP [187]

Library Function Identification IDA FLIRT [73], HANCOCK [97], UNSTRIP [114]
LIBV [177]

Code Reuse Detection

SIGMA [10], FOSSIL [11], BINSLAYER [30],
BINGO [41], ESH [60], TRACY [63], KAM1N0 [68],
ASM2VEC [69], DISCOVRE [78], BINDIFF [86], BIN-
HUNT [90], VULSEEKER [91], BINSEQUENCE [110]
BINHASH [119], RENDEZVOUS [125], BINJUICE [132],
αDIFF [142], COP [146], SAFE [151], EXPOSÉ [169],
TEDEM [175], GEMINI [213], INNEREYE [224]

Vulnerable Function Identification

BINGO [41], ESH [60], GITZ [61], FIRMUP [62],
TRACY [63], ASM2VEC [69], DISCOVRE [78],
XMATCH [83], GENIUS [84], VULSEEKER [91], BIN-
SEQUENCE [110], αDIFF [142], SAFE [151], MULTI-
MH [174], TEDEM [175], GEMINI [213], SPAIN [214]

Figure 2.2: Taxonomy of application domains

are lost during the compilation process. In [8, 12, 13, 37, 185], the authors show that

certain stylistic features can indeed survive the compilation process and remain intact in

binary code, thus showing that authorship attribution for binary code should be feasible.

In [157, 158], the authors introduce new fine-grained techniques to address the problem of

identifying multiple authors of a binary code by determining the author of each basic block.

Recently, convolutional neural networks (CNN) [94] are utilized to characterize the authors

of program binaries [5, 7]. Furthermore, there are certain works that mainly perform man-

ual analysis for malware authorship attribution, such as the technical reports published by

Citizen Lab12, BlackHat [149], and FireEye [160]. Since authorship attribution is not in the

scope of this thesis, we refer the reader to [3] for more details.

Compiler Provenance Attribution. Few studies have been conducted on extracting com-

piler provenance [113, 184, 187, 202]. The existing body of work can be considered as a

series of pioneering efforts, beginning with labelling functions in stripped binaries [113],

followed by identifying the source compiler of program binaries [184], and culminating

12https://citizenlab.org/. Accessed on Dec 20, 2020.
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in recovering the toolchain provenance of binary code [187]. Finally, in [202], a hidden

Markov model is used to identify the compiler. Furthermore, there are certain tools that

are capable of identifying compilers (e.g., PEID13, IDA PRO14 and RDG15. Inspired by

such efforts, we provide improvements in a prototype system called BINCOMP [180], as

explained in details in Chapter 3.

Library Function Identification. Modern software typically contain a significant number

of library functions, and identifying such functions in a binary file can offer a vital help

to threat analysts and reverse engineers in many practical security applications. A library

function is a function with known semantics and instructions. Therefore, by identifying

such functions, there would be no need to reverse engineer them and the analysis can shift

focus to unknown functions. The objective of this task it to identify library functions which

are statically linked in a stripped binary.

Various approaches for library function identification have been proposed. The well-

known library identification technique, IDA FLIRT (Fast Library Identification and Recog-

nition Technology) [73], builds the signatures from the first 32 bytes of a function with

wildcards for bytes that vary when the library is loaded. IDA FLIRT uses pattern-matching

algorithms to determine whether a disassembled function matches one of the known sig-

natures. FLIRT first tries to identify the compiler of a disassembled program, and then

applies only signatures for that compiler. Therefore, this approach could lead to false neg-

atives because of failure in detecting the compiler. In addition, FLIRT suffers from two

main limitations: signature collision, and sensitivity to any slight differences in the code

due to various factors, such as small variation in libraries (e.g., minor changes in the source

code), different compiler optimization settings, or use of various compiler versions.

In contrast to FLIRT’s conservative approach, HANCOCK’s [97] primary goal is to

13https://github.com/wolfram77web/app-peid. Accessed on Dec 20, 2020.
14https://www.hex-rays.com/products/ida/. Accessed on Dec 20, 2020.
15http://www.rdgsoft.net/. Accessed on Dec 20, 2020.
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eliminate false positive signatures. The main goal of HANCOCK is malware detection,

however, HANCOCK employs a heuristic approach component to label the library functions.

More specifically, HANCOCK improves the FLIRT technology by using three heuristics: (i)

Universal FLIRT Heuristic, which matches a target function against all FLIRT signatures,

regardless of the compiler recognition; (ii) Library Function Reference Heuristics, which

labels a function that is statically called by any known library function as a library function;

and (iii) Address Space Heuristic, which checks if the size of the space between a known

library function and another function is below 128 bytes in order to identify the function as

a library function.

Another approach, called UNSTRIP16 [114], identifies the library functions in the

GNU C library based on semantic descriptions, which are obtained from the interaction

of wrapper functions with the system call interface. In order to capture the high-level

semantics of wrapper functions and create the function fingerprint, a semantic descriptor

based on the name and parameter values of the invoked system call is constructed. Back-

ward slicing [50, 127] and symbolic evaluation [42, 56] are employed to extract system call

names and the corresponding arguments in order to create a semantic descriptor for each

wrapper function as a signature. Then, a flexible pattern matching is applied on the library

fingerprints to identify the wrapper functions. However, UNSTRIP focuses on wrapper

functions in Linux platform, and a library function may have no system call.

An approach to identify library functions and inline functions called libv is proposed

in [177]. The authors first introduce execution dependence graphs (EDGs) to describe the

behavioral characteristics of binary code. Then, by applying a graph isomorphism and

finding similar EDG subgraphs in target functions, they identify both full and inline library

functions. To improve the subgraph isomorphism testing, the authors reduce the execution

flow graph (REFG). Additionally, to improve the efficiency, five filters based on the number

16http://www.paradyn.org/html/tools/unstrip.html. Accessed on Dec 20, 2020.
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of instructions in a function, basic blocks lengths, number of basic blocks, basic block

sequences and head-tail nodes are proposed. However, this approach has some limitations:

(i) if various library functions have the same EDGs, this approach cannot distinguish them;

and (ii) the compiler optimization settings might eliminate instructions of inline functions,

which may lead to misidentification.

In this thesis, we propose BINSHAPE [190] in order to identify standard library func-

tions as presented in details in Chapter 3.

Code Reuse Detection. In many software development environments, it is a common prac-

tice to borrow existing open-source code and libraries (e.g., OpenSSL), as this significantly

reduces the programming effort and improves the efficiency. The first requirement for any

binary code reuse detection system is the presence of a ground truth repository, where the

fingerprints/signatures of the known functions are stored. Given an unknown binary code

and a repository of already analyzed and labelled code, the objective of code reuse detec-

tion is to identify identical or semantically similar code with the code in the repository.

Code reuse detection can be typically achieved by calculating the similarity score between

two given pieces of code. The higher the similarity, the more likely they carry the same

semantics. There exist different approaches in the literature for binary code similarity and

clone detection, which are explained in details in Section 2.3.

Vulnerable Function Detection. A given binary code might contain vulnerable functions.

One way to identify known vulnerabilities and CVEs17 is to employ code reuse detection.

In the code reuse process, if the borrowed code contains any bugs or vulnerabilities, the

developers may bring the vulnerability into their own project. Library reuse is a special

case in which the developers either include the source code of a certain library into their

projects, or statically link to the library. Either way, the bug contained in the reused code

will be brought into the new project. Thus, code reuse detection can help identify such

17http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160. Accessed on Dec 20, 2020.
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vulnerabilities resulting from source code sharing.

In this thesis, we propose BINARM [189] to detect open-source library functions and

vulnerable functions in binaries and firmware images compiled for ARM architecture, as

presented in Chapter 4. Moreover, we propose TIOHTIÀ:KE to identify open-source library

functions and vulnerable functions in cross-architecture obfuscated binaries and firmware

images, as detailed in Chapter 6.

2.3 Static Binary Analysis Approaches

In this section, we further describe and categorize existing static approaches (as this thesis

primarily focuses on static solutions). Specifically, we classify the static approaches into

three categories of: graph-based, data flow-based, and distance-based, as illustrated in Fig-

ure 2.3. Moreover, we elaborate on the corresponding existing state-of-the-art approaches,

which are mostly proposed for function detection and more specifically vulnerability de-

tection. Furthermore, we review symbolic execution approaches which are combined with

static analysis. Finally, we compare static solutions both qualitatively and quantitatively

based on various aspects, such as the features, methodologies, architectures, implementa-

tions and evaluations.

Static-based Approaches

Graph-based

SIGMA [10], FOSSIL [11], BINSLAYER [30],
TRACY [63], KAM1N0 [68], DEEPBINDIFF [70],
DISCOVRE [78], GENIUS [84], BINDIFF [86],
BINHUNT [90], BINSEQUENCE [110],
BINJUICE [132], COP [146], TEDEM [175]

Data Flow-based
ESH [60], GITZ [61], FIRMUP [62], TRACY [63],
XMATCH [83], IMOPT [118], MULTI-MH [174],
LIBV [177], SPAIN [214]

Distance-based

BINGO [41], ASM2VEC [69], DISCOVRE [78],
GENIUS [84], VULSEEKER [91], BINHASH [119],
RENDEZVOUS [125], αDIFF [142], SAFE [151],
GEMINI [213], INNEREYE [224]

Figure 2.3: Taxonomy of static-based binary analysis approaches

32



2.3.1 Graph-Based Approaches

Graph-based approaches perform the analysis based on graph representation of a piece

of code, such as control flowgraph (CFG), subgraphs, tracelets and call graphs, each of

which convey specific information. The pioneering work BINDIFF18 [72, 86] compares two

different versions of the same binary. The executables are converted to a directed graph,

where the functions and corresponding function calls are represented by the nodes and

edges, respectively. Graph isomorphism is employed to match the similarity of the graphs.

However, BINDIFF is not designed to identify vulnerable functions at large scale. Inspired

by BINDIFF, BINSLAYER [30] utilizes a polynomial algorithm to compare two executable

files, which is obtained by fusing the BINDIFF [72, 86] and Hungarian algorithm [162].

BINSLAYER finds matches with the minimum possible graph edit distance (GED) [92]

over all functions and basic blocks, which provides a more robust matching algorithm.

Recently, an unsupervised learning approach called DEEPBINDIFF [70] is proposed to

perform binary diffing. First, the word2vec [159] is applied on the instructions. Then,

program-wide structural information are extracted from the inter-procedural CFGs (ICFGs)

by employing the Text-Associated DeepWalk (TADW) algorithm [215]; this results in basic

block level embeddings. Finally, the authors propose a k-hop greedy matching algorithm

to obtain the optimal matching results for a given basic block.

A program (or code fragment) similarity detection approach called BINJUICE [132] ex-

tracts the effects of basic blocks on program state; these effects are termed as ‘juice’. The

juice is obtained by symbolic interpretation of individual blocks, where the register names

and constants are replaced by typed logical variables. Thus, the juice forms a semantic tem-

plate that is expected to be identical regardless of code variations due to register renaming,

memory address allocation, and constant replacement. Simple structural comparison or

18https://www.zynamics.com/bindiff.html. Accessed on Dec 20, 2020.
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hash comparison of the juices are employed to identify equivalent code fragments. How-

ever, if the semantics of two semantically equivalent programs are spread differently in

their corresponding basic blocks, the extracted juices would not be similar. Thus, code

transformation techniques (e.g, compiler effects) would affect BINJUICE’s accuracy [132].

In order to measure function similarities, a framework called TRACY19 [63] is pro-

posed, which extracts partial execution traces (tracelets) from binary functions. TRACY

breaks CFGs into tracelets and utilizes the longest common subsequence (LCS) algorithm

[53, 207] in order to align the tracelets. It employs a rewriting engine rule to handle the

alignment and data dependencies for comparing memory locations and registers between

the tracelets using data flow analysis. Furthermore, TRACY models the rewrite problem

as a constraint-solving problem to reduce the search space of possible rewrite sequence.

Consequently, tracelets similarity are measured by counting the number of rewrite rules

required to reach from one tracelet to another one. However, many structural information

is lost by decomposing the CFGs into tracelets. Additionally, having different optimiza-

tion settings affects their accuracy. Furthermore, the tool provides better results for large

functions (e.g., with more than 100 basic blocks) [63].

Identifying the bugs based on the signatures of known security bugs is proposed in

TEDEM [175]. First, the semantic signatures of each basic block are captured by the

expression tree (S-Expression). Then, the tree edit distance (TED) [200] on the basic block

combined with the Hungarian algorithm to explore the neighbours in a CFG are employed

to detect a vulnerable function. A pre-filtering process based on the coarse-grained basic

block attributes, such as number of equations, number of nodes, and depth of the tree

is performed to tackle the scalability issue. However, tree edit distance slows down the

matching process significantly, and not all the syntactical changes are captured [174].

Another approach called SIGMA [10] identifies reused functions in binary code by the

19https://github.com/Yanivmd/TRACY. Accessed on Dec 20, 2020.
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graph-based representation of a code. Graph edit distance is employed for matching traces

of the proposed semantic integrated graph (SIG), which is composed of the combination

of CFG, register flow graph (RFG) [8], and function call graph. However, the time com-

plexity of the detection algorithm is high, and the proposed approach is not designed for

vulnerability detection in large scale dataset.

A search engine called KAM1N020 [68] is proposed to identify subgraph clones from

a large code repository. Adaptive locality sensitivity hashing (LSH) [15] is used to find

the basic block pairs, and then MapReduce [139] (based on the Apache Spark) is proposed

to construct the subgraph clones by merging the clone block pairs. However, KAM1N0 is

sensitive to instruction set changes and optimization settings. Additionally, it requires the

assembly code of the same chosen family to be present in the repository [68].

A code reuse detection approach called BINSEQUENCE [110] detects code reuse by

fuzzy graph matching along with employing the longest common subsequence (LCS) al-

gorithm combined with Hungarian algorithm. The candidate functions are filtered using

two filters: (i) number of basic blocks, and (ii) function fingerprint similarities based on the

Minhashing [139] and banding techniques. However, code transformation techniques, such

as compiler optimization, will affect its accuracy [110]. In addition, the proposed filtering

affects the efficiency in the case of large and complex functions.

A resilient and efficient system to determine free open-source software packages is

proposed in FOSSIL [11]. FOSSIL proposes three components and then integrates them

using a Bayesian network model [176] in order to synthesize the results. The three compo-

nents apply: (i) a hidden Markov model statistical test to opcode frequencies as syntactical

features; (ii) a neighbourhood hash graph kernel [123, 206] to random walks to extract

function semantics; and (iii) z-score to the normalized instructions to extract the behavior

of the instructions in a function. The novel approach of combining these components using

20https://github.com/McGill-DMaS/Kam1n0-Community. Accessed on Dec 20, 2020.
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the Bayesian network has produced strong resilience to code obfuscation.

To perform vulnerable function detection in cross-compiled cross-architectures binary

code DISCOVRE [78] is proposed. It searches for known vulnerable functions amongst

binary files cross-compiled for different CPU architectures and various compilers and op-

timization settings. It extends the maximum common subgraph (MCS) [154] distance to

additionally consider the similarity between basic blocks based on different features, such

as topological order in the function, strings, and constants. Since MCS execution time

grows exponentially, the authors terminate the algorithm after a certain number of itera-

tions. Furthermore, to reduce the cost of subgraph matching, a numerical filter based on

a set of features (e.g., number of instructions, number of parameters, local variable sizes,

and number of incoming/outgoing edges to/from a function) and the KNN algorithm [58]

are employed. Nevertheless, according to the performed evaluation in [84], the utilized

pre-filtering causes notable diminution in accuracy. DISCOVRE is tested on the firmware

images of the DD-WRT router, NetGear ReadyNAS, and Android ROM image.

Inspired by DISCOVRE, a bug search engine called GENIUS [84] is proposed to identify

vulnerable functions. GENIUS utilizes both statistical (e.g., number of calls and number of

arithmetic instructions) and structural features (e.g., betweeness and number of offspring)

that are consistent among multiple CPU architectures and then labels each basic block with

a set of attributes to construct the attributed control flow graph (ACFG). To perform an effi-

cient searching process, the ACFGs are converted into codebooks using spectral clustering

[168] and further encoded [16] using a high-level embedding and locality sensitive hashing

(LSH). The performed evaluation demonstrates that GENIUS can identify similar functions

within one second on average in a large dataset. However, the authors state that creating the

codebook is expensive which later also it has been demonstrated in [213]. The bug search

is performed on 8, 126 firmware images from 26 different vendors, such as ATT, Verizon,

Linksys, D-Link, Seiki, Polycom, and TRENDnet. This includes different products, such
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as IP cameras, routers, and access points. Moreover, similar to DISCOVRE, GENIUS is

evaluated on DD-WRT router, and NetGear ReadyNAS firmware images.

2.3.2 Data-Flow-Based Approaches

Data flow-based approaches typically observe the flow of data by analyzing the memory

reads and writes, input/output pairs, variable locations, etc. However, most of the existing

data flow-based solutions cannot be applied at large scale.

An approach called BINHASH [119] captures function semantics by representing the

input/output behaviour of the basic blocks as a set of features using MinHashig. Further,

the functions are clustered according to their hash values, where the functions in the same

cluster are deemed to be similar. However, this approach is not scalable for basic blocks

with large input/outout dimensions [175].

In order to identify vulnerable functions compiled over multiple CPU architectures,

MULTI-MH [174] derives bug signatures in the form of subgraphs from both source code

and program binaries. First, assembly instructions are lifted into RISC-like expressions

using VEX-IR [166] to obtain assignment formulas. Furthermore, the assignment formulas

are simplified to S-Expressions by leveraging Z321 theorem prover [65]. Second, input/out-

put behaviour of assignment formulas are sampled by using random concrete input values

to capture the basic block semantics. Afterwards, MinHash [119] is used to reduce the com-

plexity of similarity measurement amongst two basic blocks. Finally, in order to match the

entire signature with a given target function, a greedy but locally-optimal graph matching

algorithm called Best-Hit-Broadening (BHB) is proposed. BHB algorithm first performs

basic block matching and further explores the immediate neighborhood nodes using Hun-

garian method [87] (no backtracking) to identify additional possible matches. However,

21https://github.com/Z3Prover/z3. Accessed on Dec 20, 2020.
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the proposed approach is not practical at large scale, since k-MinHash degrades the per-

formance quite significantly [174]. MULTI-MH is examined on the DD-WRT, NetGear,

SerComm, and MikroTik firmware images.

A cross-architecture cross-OS binary search engine called BINGO [41] is proposed.

First, a selective inlining technique, which inlines the callees into the caller functions is

applied in order to cover more function semantics. Second, three types of filters, from fine-

grained to coarse-grained, are leveraged in order to prune the search space. The first filter is

OS dependent, while the second and third filters are cross-OS and cross-architecture. These

filters are based on the identical library calls, operation types of library calls, and instruction

types, where different weights are assigned to each filter. The top N dissimilar candidate

functions based on the overall Jaccard distance [39] on three filters are discarded. For

the purpose of function matching, first the effects of partial traces (tracelets) execution on

the machine state (memory, general registers, and condition-code flags) based on symbolic

expressions are extracted. Next, Z3 solver is used to generate Input/Output (I/O) samples

and is further leveraged to eliminate infeasible partial traces as much as possible in order to

shortlist candidate functions. Moreover, compiler-related partial traces are generalized into

patterns and are removed from the partial traces in order to additionally prune the search

space. Finally, a function is modelled with partial traces with various lengths, in which

Jaccard containment similarity [1] is utilized to measure the final similarity scores. REIL

[71] is used to lift up the assembly instructions to an intermediate representation. However,

handling inlined functions which are invoked indirectly is not feasible. In addition, all

floating-point instructions are not handled. Moreover, the accuracy of BINGO is affected

by compiler optimizations [109].

A patch analysis framework named SPAIN [214] employs semantic analysis to iden-

tify the security patches and then summarizes the patch patterns through taint analysis [55].

First, similar functions in the original and patched versions are identified using BINDIFF.
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Moreovder, for the sake of scalability, a 3D-CFG-based hashing technique [45] is used to

filter out the functions with no changes or with minor compiler-related changes. Second,

pair-wise basic block matching is employed to identify patched basic blocks, the relation-

ship amongst their partial traces [41] and their relationship to the original function. Third, a

semantic analysis by leveraging the effects of the partial traces execution [41] on machine

state is performed to distinguish the security patches from non-security patches. Finally

taint analysis is employed to summarize the vulnerability patterns. However, only some

specific vulnerabilities namely, integer overflows, buffer overflows, and double-free/use-

after-free (UAF) vulnerabilities are covered in this work. Additionally, SPAIN focuses

solely on the vulnerabilities patched in one function.

A statistical approach named ESH22 [60] decomposes the code into smaller fragments

and then searches for similar binary functions deployed on different CPU architectures

based on the similarity between functions fragments. ESH divides the function code into

comparable fragments of strand, which are extracted from the basic block based on their

data dependencies using def-use chain [209]. Then, the assembly code is lifted into Boogie

intermediate verification language (IVL) [138] and then the strands are compared semanti-

cally through the BOOGIE23 program verifier [25]. The verifier determines the equivalence

between two strands through checking input-output equivalence. Furthermore, ESH pro-

poses the Local Evidence of Similarity (LES) to amplify unique strands and give less sig-

nificance to popular strands that are usually generated by compilers (e.g., prolog/epilog).

Afterwards, strands similarities are lifted into function similarity via utilizing a statistical

reasoning model. Therefore, the more semantically similar strands are found between two

functions, the more likely these two functions are equivalent. However, utilizing the verifier

is computation intensive, which prevents the proposed solution to be scalable. Additionally,

the relation between basic blocks has not been taken into account.
22https://github.com/tech-srl/esh, http://binsim.com/. Accessed on Dec 20, 2020.
23https://github.com/boogie-org/boogie. Accessed on Dec 20, 2020.
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Similarly, GITZ [61] searches for known vulnerable functions in a large corpus of bi-

nary functions cross-compiled for different CPU architectures with variant compiler opti-

mization settings. First, GITZ extracts the comparable fragments of strands. Second, each

fragment is lifted into VEX-IR in order to support multiple architectures, and then lifted

again to LLVM intermediate instructions to utilize the re-optimization built-in clang fea-

ture. The clang re-optimization is utilized to build canonical representation and ultimately

to ease the searching process by performing text comparisons. Each fragment gets a sta-

tistical ranking generated from statistical reasoning to distinguish the significant fragments

from others that may cause false positive, such as fragments that handle stack or memory.

Finally, the signature of each function is formulated as a set of MD5 hash values for every

generated fragment. Finally, the two set of hashes are compared. However, according to

the reported evaluation results, GITZ cannot detect Heartbleed vulnerability24 accurately,

with a false positive rate of 52%. Furthermore, it suffers from not handling various memory

layouts over different CPU architectures.

Another approach called FIRMUP [62] is proposed to identify vulnerable functions in

the firmware images. Similar to the previous work of the same group of authors, i.e., GITZ,

first the functions are decomposed into basic blocks, and then slicing is applied on the basic

blocks to obtain the strands. Then, compiler optimizer and normalizer are utilized to trans-

fer the semantically equivalent strands into a canonical form (syntactic form). The more the

functions share the same strands, the more they are similar. Additionally, to improve the

accuracy of FIRMUP, a back-and-forth games algorithm [76], called Ehrenfeucht-Fraïssè,

is leveraged to perform the matching for the neighboring functions and therefore to extend

a more appropriate partial matching. FIRMUP is tested on about 2000 firmware images

from various device vendors, including NetGear, D-Link and ASUS.

24http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160. Accessed on Dec 20, 2020.
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Another approach called XMATCH [83] searches for vulnerable functions in a cross-

platform environment. The authors built conditional formulas from binary code functions

(where the instructions are lifted to IR using McSema25 [67]) as a higher level semantics.

Conditional formulas are resilient to CFG structure changes as well as to the variation of

CPU architectures instruction set. XMATCH utilizes both data dependencies and condi-

tion checks, to detect both absent or incorrect condition check, and erroneous data depen-

dencies. In addition to capturing similar functions, XMATCH reduces the time needed to

manually check the final candidate functions, since it provides in-depth information that

helps in explaining the discovered vulnerabilities. However, in the case of function inline,

the inter-procedure analysis should be employed to identify multiple functions, which is

not supported yet. It is tested on the firmware image of the Linux-based DD-WRT router.

2.3.3 Distance-Based Approaches

The distance-based approaches extract different sets of features for a function, and then

various similarity detection approaches are applied on the selected features in order to find

the final set of candidates.

A binary search engine called RENDEZVOUS [125] extracts multiple features including

n-grams, n-perms, mnemonics, control flow subgraphs and data constants to form the to-

kens. The Nauty graph library [155] is used to convert the subgraphs into canonical forms.

The disassembled functions are broken down into short tokens, and a probability is as-

signed to their occurrence in the reference corpus, based on a statistical model. Two query

models of set-based Boolean model (BM) and a distance-based vector space model (VSM)

are used to filter and then score the document queries, respectively. The indexing and quer-

ing are performed by leveraging CLucene26 text search engine and the Bloom filter [29] is

25https://github.com/trailofbits/mcsema. Accessed on Dec 20, 2020.
26http://clucene.sourceforge.net, https://github.com/synhershko/clucene. Accessed on Dec 20,

2020.
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utilized to select unique terms. However, matching control flow subgraphs is performed

regardless of the basic block instructions, which results into a high false positives rate.

A cross-architecture binary code similarity approach called GEMINI27 [213] is proposed

based on a neural network model. It first extracts the control flow graphs attributed with

manually selected features called attributed control flow graphs (ACFG). Subsequently, it

then employs structure2vec [59] combined with Siamese architecture [31] to gener-

ate the graph embeddings of two similar functions close to each other. Introducing embed-

ding with deep learning by GEMINI highly improves binary function fingerprinting over

multi-platform CPU architectures. However, the embedding generated by GEMINI relies

mainly on the statistical features without considering the relationships between them and

the instruction sets represented by these features. The reported vulnerability identifica-

tion accuracy of about 82% reflects the limitation of such feature choices to be applied to

this problem. Similar to GENIUS, 8, 128 firmware images from 26 vendors with different

products, such as IP cameras, routers, and access points are indexed in their repository.

Similarly, VULSEEKER28 [91] first extracts the labelled semantic flow graph (LSFG),

which are obtained by combining the CFG with DFG, and then propose a semantics-aware

deep neural network model in order to generate the function embeddings. Finally, the

cosine similarity is used to measure the similarity between two functions. VULSEEKER is

examined on 4, 643 cross-architecture firmware images.

An approach called, αDIFF [142], extracts function code (raw bytes), function calls and

imported functions. The convolutional neural network (CNN) and a Siamese network are

used to convert the function code into embeddings. Finally, the three intra-function, inter-

function and inter-module distances from a given function to the vulnerable functions in

the repository are measured. Similar to most of the previously mentioned works, αDIFF is

evaluated on DD-WRT, and NetGear ReadyNAS firmware images.

27https://github.com/xiaojunxu/dnn-binary-code-similarity. Accessed on Dec 20, 2020.
28https://github.com/buptsseGJ/VulSeeker. Accessed on Dec 20, 2020.
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Inspired by self-attentive neural networks [141], SAFE29 [151] learns function embed-

ding automatically from the function instructions. Each assembly instruction is considered

as a word and the sequence of assembly instructions is considered as a sentence in nat-

ural language. The skip-gram [159] is utilized to convert the assembly instructions

into vectors. Then, GRU recurrent neural network (GRU RNN) [94] is employed to cap-

ture the relationship between sequential assembly instructions, which are presented in the

form of vectors. The use of attention mechanism helps the model assign higher weights

to more informative parts of the code. SAFE utilizes the skip-gram method to convert

the assembly instructions into vectors. Finally, a Siamese neural network composed of two

self-attentive neural networks is employed to train the final model.

More granular than looking for similar binary function, INNEREYE [224] introduces

Neural Machine Translation (NMT) to determine whether there is a similarity between a

given basic block and another piece of code compiled for a different CPU architecture.

It considers assembly instruction with its operands as a single word and the whole ba-

sic block as a sentence. First, assembly instructions are converted into embedding using

skip-gram with negative sampling (SGNS) [159] model to capture the con-

textual meaning of the word. To compare the semantic similarity of two basic blocks on

different architectures, INNEREYE treats similar basic block cross-compiled for differ-

ent CPU architectures similar to handling equivalent sentences written in different natural

languages. To this end, Siamese neural network composed of two identical long short-term

memory (LSTM) [94] models is employed. The dataset and the neural network models are

publicly available30.

An unsupervised feature learning model called ASM2VEC31 [69] is proposed, which

learns latent representation of assembly instructions of a function and finally represents

29https://github.com/gadiluna/SAFE. Accessed Dec 20, 2020.
30https://nmt4binaries.github.io/. Accessed on Dec 20, 2020.
31https://github.com/McGill-DMaS/Kam1n0-Community. Accessed on Dec 20, 2020.
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each binary function as a vector. ASM2VEC utilizes natural language processing (NLP)

learning model inspired by PV-DM model [136], which is used to automatically learn doc-

uments representation. ASM2VEC models the control flow graph of each function using a

sequence of execution traces by employing random walks and edge coverage. Moreover,

inspired by BINGO, selective function inlining is proposed. The concatenation of these

features is considered as function representation. Eventually, the learned latent function

representation is used to compare with other vectors indexed in the repository by using

cosine similarity function to retrieve the top-k candidate functions. However, ASM2VEC

is designed for a single CPU architecture, i.e., x86.

2.3.4 Symbolic Execution Combined with Static Analysis

There exist some works that combine static analysis with symbolic execution. In order

to compare two programs, BINHUNT [90] employs maximum common subgraph (MCS)

isomorphism using backtracking algorithm [128, 204]. The model is applied on the inter-

mediate representation of x86 assembly instructions in order to compare both the CFGs

and call graphs of two binary programs. Additionally, symbolic execution combined with

simple theorem proving (STP) [89] is used to compare two basic blocks.

The code reuse detection approach called EXPOSÉ [169] combines semantic execution

(using STP constraint solver) with the syntactic matching (using cosine distance of the

function n-grams). The BAP [34] framework is modified to process x86 instructions in

order to be used with the STP. A filtering process is used to prune the search domain

by both excluding compiler loader support functions and identifying improbable function

pairs based on four attributes (number of input arguments, number of out-degrees, function

size, and cyclomatic complexity). However, in order to identify the vulnerable functions

EXPOSÉ is too coarse-grained in some cases. The main limitation of this work is that

semantic execution is too strict while syntactic matching, on the other hand, is too coarse.
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An obfuscation-resilient method named COP [145, 146] combines symbolic execution

with longest common subsequence (LCS) algorithm to prform function matching in pro-

gram binaries. The basic block semantics is modelled by symbolic formulas, which are

obtained from the input-output relations of the block. Then, the similarity of two execution

paths using LCS with basic blocks as elements is modelled. However, the computational

overhead of symbolic execution is high, which is not practical at large scale.

A cross-architecture framework called FIRMALICE [192] investigates the existence of

various authentication bypass vulnerabilities commonly known as backdoors in firmware

images. It declares that any execution path derived from the entry point of the firmware to a

privileged operation should go through a solid input validation process. Hence, an attacker

cannot bypass by means of information retrieval from the firmware image itself. To this

end, FIRMALICE initially utilizes static analysis to extract the program data dependency

graph, and then extracts the program slices leading from the entry point to privileged op-

eration location determined by a security analyst. Then, it employs its symbolic execution

engine, inspired by KLEE [36], MAYHEM [40], and FUZZBALL [17] to find possible

successful paths that lead to the desired privileged location.

2.3.5 Comparative Study

A comprehensive evaluation of the existing works is not feasible, mainly due to the absence

of their dataset. However, we conduct a qualitative comparison based on the information

provided by each solution in terms of the approaches, implementations and evaluations.

The findings of this study are summarized in Table 2.1 and Table 2.2. The first and sec-

ond columns of Table 2.1 specify the proposals and the corresponding venues ordered by

the date. Columns three to six present the features used by each proposal, based on our

proposed features taxonomy presented in Figure 2.1. The next four columns indicate the

types of analysis based on our taxonomy presented in Figure 2.3. In the next column, we
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provide the corresponding main methodologies. The next two columns provide the disas-

sembler and the use of existing frameworks as well as use of intermediate representation.

Afterwards, the “Mapping Results” column indicates the in-depth analysis of the output.

A bullet mark indicates that a work provides the matching results (e.g., corresponding

matched instruction sets or basic blocks) in addition to a final similarity score. Finally, the

last two columns show which tools are open source and which ones are accessible to the

public. Furthermore, we provide the distribution of different features (e.g., types of anal-

ysis) among different surveyed works, as shown in the last row. For instance, 68% of the
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BINHUNT [90] ICICS’08 • • • MCS IDA, BAP BAP
BINHASH [119] ICMLA’12 • • ED, LSH IDA
EXPOSE´ [169] COMPSAC’13 • • • ED IDA, BAP
BINJUICE [132] PPREW’13 • • ED Objdump
RENDEZVOUS [125] MSR’13 • • • ED DYNIST •
COP [146] FSE’14 • • • • • LCS IDA, BAP BAP
TRACY [63] SIGPLAN’14 • • • LCS, DFA IDA •
TEDEM [175] ACSAC’14 • • • GED IDA, BINDIFF METASM [98]
SIGMA [10] DFRWS’15 • • • GED IDA
MULTI-MH [174] S&P’15 • • • BHB, MinHash IDA VEX [166]
BINGO [41] FSE’16 • • JD IDA REIL [71]
LIBV [177] SE’16 • • • DFA, GM IDA •
KAM1N0 [68] KDD’16 • • • GM, LSH IDA • •
ESH [60] SIGPLAN’16 • • • DFA, SR IDA, BAP LLVM, BoogieIVL •
DISCOVRE [78] NDSS’16 • • • MCS, JD IDA
GENIUS [84] CCS’16 • • • LSH, JD IDA
SPAIN [214] ICSE’17 • • JD IDA
GITZ [61] PLDI’17 • • • DFA,SR ANGR VEX, LLVM
BINSEQUENCE [110] ASIACCS’17 • • • • LCS, LSH, GM IDA •
GEMINI [213] CCS’17 • • DNN IDA •
XMATCH [83] ASIACCS’17 • • • DFA,GED IDA McSema [67] •
FIRMUP [62] ASPLOS’18 • • DFA, SR IDA VEX, LLVM
FOSSIL [11] TOPS’18 • • • • ED IDA
VULSEEKER [91] ASE’18 • • • DNN IDA
αDIFF [142] ASE’18 • • • DNN IDA
ASM2VEC [69] S&P’19 • • • NLP IDA •
INNEREYE [224] NDSS’19 • • NLP, LCS IDA
SAFE [151] DIMVA’19 • • NLP IDA, ANGR,RADAR2 •
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(•) means that the approach provides the corresponding feature, it is empty otherwise. (BHB) Best-Hit-Broadening, (DNN) Deep
Neural Network, (DFA) Data Flow Analysis, (ED) Distance-based (e.g., Euclidean), (GED) Graph Edit Distance, (GM) Graph matching,
(LSH) Locality Sensitive Hashing, (JD) Jaccard Distance, (LCS) Longest Common Subsequence, (MCS) Maximum Common Subgraph
Isomorphism, (NLP) Natural Language Processing, (SR) Statistical Reasoning. The ’DISTRIBUTION‘ presents the percentage of each
category used in the selected proposals. For instance, 68% of the exiting solutions rely on structural features, while only 18% extract
statistical features. The grey cells are for the sake of readability to separate different categories.

Table 2.1: A comparison of state-of-the-art static approaches
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exiting solutions rely on structural features, while only 18% extract statistical features. The

gray shadings are used only for visualization purpose, in order to group related features.
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BINHUNT [90] − 6 NA • • • • • • • • • 0
BINHASH [119] − 16 NA − − − − • • • • 0
EXPOSE´ [169] − 3, 075 NA • • • • • • 0 •
BINJUICE [132] Prolog, Python 70 NA • • • • • 0
RENDEZVOUS [125] C++ 98 NA • • • • • • • • 0
COP [146] C++ 321 NA • • • • • 4
TRACY [63] Python − NA • • • • • • • 2
TEDEM [175] C++ 15 NA • • • • • • • • 0 •
SIGMA [10] − 18 NA • • • • • • • 0
MULTI-MH [174] C++ 60 4 • • • • • • • • • • 0
BINGO [41] Python 110 NA • • • • • • • • • • • 4 •
LIBV [177] − 9 NA • • • • • • • 1 •
KAM1N0 [68] Java, Python 10 NA − − − − • • • • • • 4
ESH [60] C#, Python 1, 000 NA • • • • • • • • 2
DISCOVRE [78] − 2, 280 2 • • • • • • • • • • • • 2 •
GENIUS [84] Python 17, 626 8, 128 • • • • • • • • • 3 •
SPAIN [214] − 28 NA − − − − • • • • • • • 0 •
GITZ [61] − − NA • • • • • • • • • 0
BINSEQUENCE [110] C++, Python 19 NA • • • • • • • 4 •
GEMINI [213] Python 51, 314 8126 • • • • • • • • • 2
XMATCH [83] − 72 1 • • • • • • • • • 4
FIRMUP [62] − 200, 000 2, 000 − − − − • • • • • • • • 2
FOSSIL [11] Python 6925 NA • • • • • • • • • • • 7
VULSEEKER [91] Python − 4, 643 • • • • • • • • 1
αDIFF [142] − 67, 427 2 • • • • • • • • 6
ASM2VEC [69] Java, Python 1116 NA • • • • • • • • • 12 •
INNEREYE [224] Python 5 NA • • • • • • • 1
SAFE [151] Python 11 NA • • • • • • • • 1
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(•) means that the approach provides the corresponding feature, it is empty otherwise. (−) means that the information is not provided
or partially provided. (NA) means that the corresponding work does not consider firmware analysis. The ’DISTRIBUTION‘ presents the
percentage of each category used in the selected proposals. For instance, 100% of the exiting solutions support x86 architecture, while
only 29% support MIPS architecture. The grey cells are for the sake of readability to separate different categories.

Table 2.2: A comparison of state-of-the-art static analysis implementations and evaluations

We further conduct a comparative study on the implementation and evaluation of exist-

ing works as listed in Table 2.2. The first column lists the proposals. The second column

presents the used programming languages in each proposal. The next two columns indi-

cate the dataset (normal binary and firmware) used for the experiments. The next four

columns mark the employed compilers utilized to prepare the ground truth. The next three

columns mark the CPU architectures that are supported by these approaches. In the next
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two columns, the operating systems is marked. Afterwards, the “Detection” criteria pro-

vides the type of output. It is marked when a work identifies known vulnerable functions,

unknown vulnerabilities or it performs normal function matching. The last three columns

show works that use normalization and provide accuracy and performance results. Next

column indicates the number of works which have been compared with the current work.

The last two column indicate whether the work is using any filtering process, and if it sup-

ports obfuscated binaries, respectively. We also provide the distribution of these features

over all proposed works (e.g., the ratio of the works that support different CPU architec-

tures). For instance, 100% of the exiting solutions support x86 architecture, while only

29% support MIPS architecture.

Discussion. The key observations of this comparative study are as follows: First, there exist

several features utilized in the literature, which are shown to significantly improve the effi-

ciency and accuracy of the vulnerability detection solutions. As can be observed, semantic

and structural features are the most frequently used features. Second, there is no single

best solution to identify vulnerable functions. Amongst the employed solutions, graph-

based approaches combined with data flow-based approaches demonstrate the best practice

to be chosen for the vulnerability detection. More recently, distance-based approaches

which employ deep neural networks (DNN) and natural language processing (NLP) show

the best results for cross-architecture vulnerability detection. Third, the filtering process

is a promising solution to overcome the scalability issue. However, filtering approaches

should be carefully designed and thoroughly evaluated to assure the accuracy. Fourth, to

the best of our knowledge, there exists only one work, namely BINGO [41], that identifies

unknown vulnerabilities in normal binaries. Finally, even though MinHashing and LSH

are employed for function matching, existing works under this category are not practical at

large scale due to their time complexity for functions with large and complex control flow

graph. To conclude, most of the recent static solutions employ graph-based approaches on
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x86 architecture for binaries compiled with the GCC compiler on Linux platform. More-

over, the presented comparison highlights the trend of binary analysis, which is moving

towards DNN and NLP techniques on Linux platform to overcome cross-architecture prob-

lem and the scalability issue of online searching.

As seen, the existing approaches can overcome some of the challenges, such as those

related to compiler effects (C2) and hardware architecture (C5). However, some challenges

still remain unresolved. In the following, we discuss the fundamental limitations of the

static approaches.

Detecting unknown vulnerabilities. Most of the static solutions define a pattern/signature

for a function, and then perform function matching. Therefore, the signatures of already

known vulnerable functions are stored in the repository such that the vulnerable functions

can be discovered by identifying any match within the signatures in the repository. How-

ever, there might be some functions with unknown vulnerabilities, which could not be

identified in this manner (C6). Unknown vulnerabilities might be identified by employing

data flow and dynamic analysis.

Detecting run-time vulnerabilities. Static approaches fail to detect vulnerabilities that are

exploited during the execution time (C6). For instance, the run-time data-oriented exploits

cannot be detected due to the lack of execution semantics checking [47]. A similar situation

is encountered in the case of network activities, since this information will be provided

during the runtime process.

Identifying inline functions. Function inlining (C4) may introduce additional complexity

to the vulnerable function detection problem, since it requires to fingerprint a function

containing partial code from another function. Static approaches generally fail to identify

inline functions. However, data flow analysis and symbolic execution could be employed

as potential solutions to this problem. Systematically addressing this problem is still an

open challenge.
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Scalability using filtering. The scalability issue (C9) of static analyses approaches has

been somewhat addressed by filtering processes. During such processes, the high-likely

dissimilar or non relevant functions will be excluded from the analysis. Therefore, filtering

processes minimize the search space in order to statically identify the vulnerabilities more

efficiently, and also to provide a better code coverage in the case of dynamic analysis.

However, the filtering process may affect the accuracy. Therefore, examining the filtering

processes could help better learn the pros and cons of each corresponding method, and

further propose new efficient and accurate filtering techniques.

Lack of semantic insights and replaying vulnerabilities. Static approaches provide a list

of potential vulnerable functions with relatively high false positives rates (C6). Therefore,

manual effort is required in order to verify the obtained results. These techniques do not

provide any information on how to trigger the discovered vulnerabilities for further inves-

tigation and to replay the attacks (C7). Therefore, other approaches (e.g., symbolic execu-

tion) could be employed to produce repayable inputs in order to validate the vulnerabilities

and further provide semantic insight on the reason of the execution and the corresponding

part of the code. On the other hand, static approaches could be employed to overcome the

scalability issue of pure dynamic analysis and symbolic execution techniques.

Generalizing vulnerability signatures. Most of the existing approaches provide a specific

pattern in different representations and semantic levels for each vulnerable function, and

then employ a matching technique or a similarity measurement to identify it. Providing a

general signature for each vulnerability (e.g., buffer overflow) rather than matching with

the functions that already have a specific vulnerability is one of the future directions.
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2.4 Summary

This chapter reviews the literature in binary analysis with emphasis on static solutions. Ad-

ditionally, we devise a taxonomy of different types of utilized features, application domains

and analysis techniques followed by a qualitative comparison. To tackle the drawbacks of

existing approaches, this thesis provides the design of a framework that is composed of

four major components: (i) BINCOMP: identifying compiler and compiler-related func-

tions; (ii) BINSHAPE: determining standard library functions; (iii) BINARM: discovering

vulnerable functions in firmware images of intelligent electronic devices in the smart grid;

and (iv) TIOHTIÀ:KE: preforming code similarity detection in cross-compiled cross-archi-

tecture obfuscated binaries and identifying vulnerable functions.
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Chapter 3

Compiler Provenance Attribution

Compiler identification is an essential component of binary toolchain analysis and mal-

ware analysis. Security investigators are often tasked with the analysis and attribution of

malicious binary code, which needs to be done quickly and reliably. Such binaries can

be a source of intelligence on adversary tactics, techniques, and procedures. Compiler

provenance information can aid binary analysis by uncovering fingerprints of the develop-

ment environment and related libraries, leading to accelerated analysis. In this chapter, we

present BINCOMP, which is a practical multi-layered approach for analyzing the syntax,

structure, and semantics of disassembled functions to extract compiler provenance.

This chapter is organized as follows. The compiler provenance problem and an overview

of our approach are introduced in Section 3.1. Section 3.2 provides the presented features

that are employed in BINCOMP. Section 3.3 and Section 3.4 present two different ap-

proaches (BINCOMP and ECP) for the compiler identification problem. The evaluation

results of BINCOMP are presented in Section 3.5. Then, Section 3.6 discusses its limita-

tions before drawing the conclusions and hinting on future research directions.
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3.1 Introduction

Program binaries often lack meaningful identifiers, function names and code comments;

all of which would have been relevant to understanding the context of program behavior.

Furthermore, variations in compiler front-end languages, back-end transformation logic,

and optimization heuristics complicate matters further. Compiler provenance can reveal

information regarding the behavior, family, type, version, optimization, and functions of

the originating compilers [19].

The primary research on compiler provenance encompasses the core studies of source

compiler identification [187], function labelling [114], and toolchain recovery [184]. Cer-

tain limitations can be identified in the existing solutions. These include the absence

of meaningful information about compilers, the use of computationally-intensive feature

ranking techniques, and extensive training set requirements. Such limitations could im-

pact the practical application of such methods. More specifically, a malware detection

approach [202] analyzes the instruction frequencies produced by a specific compiler to de-

termine whether a program has been compiled with a know compiler or it is a malware.

However, this approach does not extract information regarding the compiler property (e.g.,

version and optimization level). Furthermore, existing tools which employ heuristics (e.g.,

IDA PRO1, PEID2, RDG3) are capable to identify commonly known compilers, assuming

the availability of type signatures. However, the usage of generic and rigid signatures and

applying exact matching algorithms may fail, for instance when a slight difference between

the signatures is present.

Other existing techniques (e.g., [184, 187]) rely on generic signatures in conjunction

with compiler attribute feature ranking and predefined templates. This usually leads to a

large amount of irrelevant features and consequently results in additional time consumption

1https://www.hex-rays.com/products/ida/. Accessed on Dec 20, 2020.
2https://github.com/wolfram77web/app-peid. Accessed on Dec 20, 2020.
3http://www.rdgsoft.net/. Accessed on Dec 20, 2020.
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and computational complexity. Furthermore, the top-ranked features obtained as a result of

feature selection may not describe compiler-specific functions, from a semantic or a struc-

tural perspectives. However, filtering compiler-related functions is a critical pre-processing

step for reducing false positive rates in binary analysis. Even so, existing approaches (e.g.,

[184, 187]) do not consider compiler-related functions identification.

This chapter extends the existing approaches by applying new heuristics in feature se-

lection and processing based on domain-specific knowledge. This leads to reduction in

the computational complexity of the search processes and improvements in the accuracy

of the detection process by leveraging more stable aspects of compiler behavior instead of

byte-level classification (e.g., [187]). Additionally, the proposed approach combines vari-

ous engineered feature categories to capture structural, syntactic, and semantic aspects of

compilers in support of provenance elicitation. Moreover, it facilitates function analysis

via identification of compiler/linker-dependant functions.

The objective of this chapter is to provide a practical framework for characterizing

compiler behavior using a set of discriminative feature profiles to facilitate compiler com-

parability, identification and property measurement. Through experiments with supervised

compilation involving multiple toolchains, we observe that certain compiler utility and

helper functions are steadily preserved during the compilation and linkage processes, across

distinct program contexts. Such behavior can be determined by inspecting the code genera-

tion and emission mechanisms of source compilers4 as well as the linked/runtime libraries.

We assume that this property holds true for compilers/linkers in the scope of our analysis.

Our approach pivots on such functions along with other compiler/linker characteristics to

build plausible support for the most likely compiler of target binaries.

Contributions. The contributions of this chapter are as follows:

• We introduce BINCOMP, a practical approach based upon techniques of function

fingerprinting that enable the identification and recognition of compiler families,
4https://gcc.gnu.org/onlinedocs/gccint/Machine-Desc.html. Accessed on Dec 20, 2020.
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helper/utility functions, optimization levels and versions within a unified framework.

• The proposed recognition patterns are based on stable features of compiler behav-

ioral profiles, as opposed to file-level properties (e.g., header information) which are

primarily used by existing detection tools. Such information may be unavailable in

stripped binaries. Our method captures structural, syntactical, and semantic aspects

of compiler behavior.

• We apply new heuristics to feature selection and the processing methods based on

domain-specific knowledge, resulting in reduced computational overhead and in-

creased sensitivity during the detection process. The adopted features facilitate com-

piler comparability and property measurement.

• The proposed provenance methodology is evaluated on a large collection of pro-

gram binaries compiled with different compilers and compilation settings. The per-

formed experiments demonstrate that BINCOMP achieves from 86% to 90% accuracy

in compiler family identification, and 90% accuracy in optimization level detection.

3.1.1 Motivating Example

In this subsection, we present our motivation uisng an example. To compare compiler

generated code under various compilation toolchains, we consider a simple C++ program

as shown is Listing 3.1 and then we compile it with three different compilers. This simple

program contains a main function that defines an integer variable num and assigns it the

value of 11. Then, a stream I/O library call is made to print a string, followed by an

increment in the variable value. The program then terminates by returning the integer

value of num.

We compile the program with MSVCP14 and disassemble the obtained binary with

IDA PRO (as presented in Listing 3.2). We obtain 90 assembly functions from the code
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segment, of which, 13 are library functions, 76 are related to compiler utility/helper func-

tions and a single user function. When we compile the program with MSVC 2010, this

program results in 37 assembly functions in fully optimized release mode. The disas-

sembly includes 31 compiler utility/helper functions, five library, and one user function.

Compilation and disassembly of the same program with MSVC 2012 generates 72 func-

tions (with security checks enabled) of which 51 functions are related to the compiler, 18

are library functions, and three are user functions. While comparing the compiler-related

functions, we notice that 25 functions remain the same. In addition, we conduct the same

simple experiment with a slightly more complex programs, and we find that the same set

of 25 compiler-related functions are present in those disassembled programs.

Listing 3.1: A Simple C++ Program

#include <iostream>

using namespace std;

int main() {

int num = 110;

cout << "hnum=" << num+1;

num++;

return num;

}

Moreover, Listings 3.2, 3.3, and 3.4 show the disassembled versions of the simple pro-

gram in Listing 3.1 compiled with MSVCP (Windows), GCC (Linux), and clang com-

pilers, respectively, using IDA PRO and OBJDUMP disassemblers. As can be seen, the

compilers generate different code sequences for an identical input. Consequently, we also

build compiler-specific behavioral profiles based on code transformations. These profiles

describe compiler characteristics with respect to language structure transformation, source

to assembly mappings, and code optimizations.
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Listing 3.2: Compiled with MSVCP 14 on Windows, disassembled with IDA

var_4 = dword ptr -4

argc = dword ptr 8

argv = dword ptr 0Ch

envp = dword ptr 10h

push ebp

mov ebp, esp

push ecx

mov [ebp+var_4], 6Eh

mov eax, [ebp+var_4]

add eax, 1

push eax

push offset Str ; "hnum="

mov ecx, ds:std::basic_ostream<char,std::char_traits<char>> std::cout

push ecx ; int

call std::operator<<<std::char_traits<char>>(std::basic_ostream<char,

std::char_traits<char>> &,char const *)

add esp, 8

mov ecx, eax

call ds:std::basic_ostream<char,std::char_traits<char>>::operator<<(int)

mov edx, [ebp+var_4]

add edx, 1

mov [ebp+var_4], edx

mov eax, [ebp+var_4]

mov esp, ebp

pop ebp

retn
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Listing 3.3: Compiled with GCC 8.1, disassembled with OBJDUMP

push rbp

mov rbp,rsp

sub rsp,0x10

mov DWORD PTR [rbp-0x4],0x6e

mov esi,0x400825

mov edi,0x601060

call 4005f0 <std::basic_ostream<char, std::char_traits<char> >&

std::operator<< <std::char_traits<char>>(std::basic_ostream<char,

std::char_traits<char> >&, char const*)@plt>

mov rdx,rax

mov eax,DWORD PTR [rbp-0x4]

add eax,0x1

mov esi,eax

mov rdi,rdx

call 400610 <std::ostream::operator<<(int)@plt>

add DWORD PTR [rbp-0x4],0x1

mov eax,DWORD PTR [rbp-0x4]

leave

ret

Given a list of disassembled functions, we aim at identifying the most likely build

toolchain, which the input binary was compiled/linked with. Considering different program

compilations, we observe that a subset of compiler-related functions remains intact in all

variations. To extract the list of such functions, we intersect multiple sets of compiled

programs and develop signature profiles. However, we do not rely on string-based function

identifiers as the only feature for comparison, since in stripped binaries and obfuscated

code, such strings may not be available. Also, disassemblers often assign generic names

to functions. Thus, we create numerical and symbolic representations of compiler/helper

functions using multiple feature vectors as part of the compiler profiles.
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Listing 3.4: Compiled with clang 7.0, disassembled with OBJDUMP

push rbp

mov rbp,rsp

sub rsp,0x10

mov DWORD PTR [rbp-0x4],0x0

mov DWORD PTR [rbp-0x8],0x6e

movabs rdi,0x601060

movabs rsi,0x400834

call 4005c0 <std::basic_ostream<char, std::char_traits<char>>&

std::operator<< <std::char_traits<char> >(std::basic_ostream<char,

std::char_traits<char> >&, char const*)@plt>

mov ecx,DWORD PTR [rbp-0x8]

add ecx,0x1

mov rdi,rax

mov esi,ecx

call 4005e0 <std::ostream::operator<<(int)@plt>

mov ecx,DWORD PTR [rbp-0x8]

add ecx,0x1

mov DWORD PTR [rbp-0x8],ecx

mov ecx,DWORD PTR [rbp-0x8]

mov QWORD PTR [rbp-0x10],rax

mov eax,ecx

add rsp,0x10

pop rbp

ret

3.1.2 Approach Overview

We establish a multi-layered architecture for BINCOMP comprising of three main pro-

cesses, each aiming at capturing a different set of compiler behavior properties. Collec-

tively, these processes enable the proposed solution to derive an accurate representation

of source compiler behavior using syntactic, structural, and semantic profiles. Each pro-

cess/layer builds upon a unique detection technique. The architecture of BINCOMP is de-

picted in Figure 3.1, which is composed of three layers:
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Figure 3.1: BINCOMP multi-layered architecture

• The first layer extracts syntactical features and generates two outputs, namely the

Compiler Transformation Profile (CTP) and Compiler Tags (CT). The detection method

is based on pattern matching against predefined/incremental signatures.

• The subsequent layer then identifies Compiler Functions (CF) by analyzing instruction-

level features and building function profiles composed of numerical and symbolic

feature vectors. This process aims to label helper and utility functions by measuring

the similarity (calculating the distance) between known and target numerical vectors.

• The last layer extracts semantic features, which are captured using the Annotated

Control Flow Graph (ACFG) and the Compiler Constructor and Terminator (CCT)

profiles. These semantic profiles are evaluated in order to infer the optimization

heuristics, level, and version of the compiler in conjunction with the helper/utility

feature vectors. Inexact matching using fuzzy hashing is performed on semantic

graphs extracted during this phase.

The proposed architecture can be viewed as the continuous integration and learning of

compiler code conversion profiles with a prior knowledge of their code transformations.
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This serves to adjust source compiler features as well as to update them when compiler-

related functions undergo changes due to new versions or updates. Moreover, unique ob-

tained behavorial profiles can be utilized to describe different characteristics of the binary

code. This includes the sequence of compiler-specific function calls, function/library inter-

dependencies, assembly instruction categories, and the control flow graphs of initialization

and terminator utility/helper code. Our experimental results indicate that the solution is

practical and effective in identifying the compiler of target binaries, and that the detection

method is computationally efficient.

3.2 Feature Extraction

In this section, we introduce our features and provide more detailed information.

3.2.1 Compiler Transformation Profile

The Compiler Transformation Profile (CTP) feature captures syntactical aspects of com-

piler behavior. This feature describes how compilers reflect source-level code and data

abstractions (e.g., control statements, object, queue, stack, list, array, calls, etc.) into

assembly-level instructions. For example, a simple if-then-else statement can be

represented as cmp|test then jcc (conditional jump) in MSVC binaries. This feature is

obtained as the outcome of a supervised compilation process explained in Section 3.3.1.

Example 3.2.1 The output of three compilers given an identical input (as shown in List-

ing 3.5) is presented in Figure 3.2. The excerpt shows a C++ switch-case statement

compiled with (1) MSVC, (2) GCC and (3) clang compilers, respectively. Despite their sim-

ilarities, it is evident that each compiler family makes a specific choice on the selection and

sequence of assembly mnemonics, operands, registers, memory access, and data transfers.
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Such variations allow to extract identifiable features and to generate signatures for each

compiler family.

Listing 3.5: Simple switch-case statement

char g;

cin >> g;

switch (g) {

case ’A’:

cout << "A";

break;

case ’B’:

cout << "B";

break;

default:

cout << "?";

break;

}

In order to facilitate effective CTP signature generation, a subset of assembly features

should be selected, which most appropriately captures the original code semantics. To this

end, we extract binary features FB from the normalized versions of assembly instructions of

a function, and then perform statistical frequency analysis on the compiler generated code

to obtain code transformation patterns for different functionalities (e.g., if statement).

Finally, we extract signature Sigci from the normalized versions of assembly instructions

compiled with ci compiler.

Instruction Normalization. Each assembly instruction contains two parts: the mnemonic

and the operands. First, we classify the instruction mnemonics into 11 groups according

to their operation semantics. For instance, mnemonics that perform logical operations,

such as xor, shl, ror, are replaced with LGC tag indicating the Logical operations

group. Therefore, the mnemonic identifiers are compared with a platform-specific group of

instructions, and the identifier member is replaced with the respective group label. Simi-

larly, to distinguish between general-purpose registers reg, direct memory references mem,
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Switch Statement Transformations 
 

ASM code compiled with MSVC ASM code compiled with GCC ASM code compiled with Clang 
 

 

lea eax, DWORD PTR _g$[ebp] 

push eax 

mov ecx, DWORD PTR __imp_cin 

push ecx 

call std::char_traits<char> 

add esp, 8 

 

mov dl, BYTE PTR _g$[ebp] 

mov BYTE PTR tv67[ebp], dl 

cmp BYTE PTR tv67[ebp], 65 

je SHORT $LN4@main 

cmp BYTE PTR tv67[ebp], 66 

je SHORT $LN5@main 

jmp SHORT $LN6@main 

 

$LN4@main: 

push OFFSET $SG29712 

mov eax, DWORD PTR _imp_cout 

push eax 

call std::char_traits<char> 

add esp, 8 

jmp SHORT $LN2@main 

 

$LN5@main: 

push OFFSET $SG29714 

mov ecx, DWORD PTR _imp_cout 

push ecx 

call std::char_traits<char> 

add esp, 8 

jmp SHORT $LN2@main 

 

$LN6@main: 

push OFFSET $SG29716 

mov edx, DWORD PTR _imp_cout 

push edx 

call std::char_traits<char> 

add esp, 8 

$LN2@main: 

 

 

 

lea rax, [rbp-0x1] 

mov rsi, rax 

mov edi, 0x601180 

call 400670 std::char_traits 

 

 

 

movzx eax, BYTEPTR [rbp-0x1] 

movsx eax, al 

cmp eax, 0x41 

je4007b3 <main+0x2c> 

cmp eax, 0x42 

je 4007c4 <main+0x3d> 

jmp 4007d5 <main+0x4e> 

 

 

mov esi, 0x4008c5 

mov edi, 0x601060 

call 400660 std::char_traits 

 

jmp 4007e5 <main+0x5e> 

 

 

 

mov esi, 0x4008c7 

mov edi, 0x601060 

call 400660 std::char_traits 

 

jmp 4007e5 <main+0x5e> 

 

 

 

mov esi, 0x4008c9 

mov edi, 0x601060 

call 400660 std::char_traits 

 

 

nop 

 

 

 

mov eax, 0x601180 

mov edi, eax 

lea rsi, [rbp-0x5] 

call 400640 std::char_traits 

 

 

movsx ecx, BYTEPTR [rbp-0x5] 

mov edx, ecx 

sub edx, 0x41 

mov QWORDPTR [rbp-0x10], rax 

mov DWORDPTR [rbp-0x14], ecx 

mov DWORDPTR [rbp-0x18], edx 

je 400811 <main+0x51> 

jmp 4007fd <main+0x3d> 

mov eax, DWORDPTR [rbp-0x14] 

sub eax, 0x42 

mov DWORDPTR [rbp-0x1c], eax 

je 400833 <main+0x73> 

jmp 400855 <main+0x95> 

movabs rdi, 0x601060 

movabs rsi, 0x400904 

 

call400630 std::char_traits 

 

mov QWORDPTR [rbp-0x28], rax 

jmp 400872 <main+0xb2> 

movabs rdi, 0x601060 

movabs rsi, 0x400906 

 

call 400630 std::char_traits 

 

mov QWORDPTR [rbp-0x30], rax 

jmp 400872 <main+0xb2> 

movabs rdi, 0x601060 

movabs rsi, 0x400908 

 

call 400630 std::char_traits 

mov QWORDPTR [rbp-0x38], rax 

xor eax, eax 

 

 

 

 

 

 

 

 

Figure 3.2: Code transformation example: dissassembled version of the code in Listing 3.5
compiled with MSVC, GCC, and clang compilers

immediate values imm, and control registers ctr, the assembly operands are encoded nu-

merically according to their types. We consider 10 types of operands during normalization.

The complete list of operand types and mnemonic groups used in BINCOMP is displayed

in Table 3.1.
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INSTRUCTION MNEMONIC GROUPS INSTRUCTION OPERAND TYPES
Feature Description Feature Description
DTR Data Transfer reg General Register
DTO Data Transfer Address Object mem Direct Memory Reference
FLG Flag Manipulation bix Indirect Memory Reference
DTC Data Transfer Conversion imm Immediate Value
ATH Binary Arithmetic ifa Immediate Far Address
LGC Logical Operation ina Immediate Near Address
CTL Control Transfer trr Trace Register
INO Input/Output dbr Debug Register
INT Interrupt/System ctr Control Register
FLT Floating otr Others
MSC Misc

Table 3.1: Proposed mnemonic and operand types grouping

3.2.2 Compiler Tags

Compilers may leave behind fingerprints in the form of strings or constants in the produced

binaries by default. As an example, binaries compiled with GCC compiler contain a tag

which survives the symbol stripping process. Likewise, MSVC inserts watermarks of com-

piler versions in the style of xor-encoded values in the file header section. Such values

can be considered indicators of compilers and/or versions. Using a parsing mechanism, we

extract compiler tag values from PE, ELF, and COFF binaries.

3.2.3 Compiler Functions

The Compiler Functions (CF) features are extracted in two steps: i) intersect a set of disas-

sembled binaries, and ii) extract symbolic and numerical feature vectors for each compiler

function. We extract the CF via the intersection process that will be explained in Sec-

tion 3.3.2. We employ the code matching and function fingerprinting technique presented

in [179] to encode structural, syntactic and semantic features of assembly functions and to

facilitate binary comparison. Two feature vectors ~Vs and ~Vn are built for each function in

order to capture the symbolic and numerical aspects of the code. We consider all the fea-

tures presented in Table 3.1 as part of numerical feature vector ~Vn as well as three additional
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features, namely CC, BB, KX, that represent cyclomatic complexity [152], number of basic

blocks, and number of calls within functions, respectively. The symbolic feature vector

Vs is obtained from the debug information in the supervised compilation, which contains

function identifiers. These features are listed in Table 3.2.

Symbolic Features
Constants Number of Constants Number of Instructions
Strings Number of Strings Number of Operands
Code Refs. Number of Code Refs. Number of API Tags
Function calls Number of Function calls Number of Library Tags
Imported Functions Number of Imported Functions Number of Mnemonic groups
Arguments Number of Arguments Size of Arguments
Size of Local Variables Size of Function Return Type

Table 3.2: Symbolic features

Example 3.2.2 An example of the computed ~Vn features for two programs prog1, prog2,

complied with GCC (O2) compiler under Windows is provided in Table 3.3. The ‘symbolic’

feature represents the program and function identifiers. The distinct main functions are

highlighted in light gray. The table lists the compiler functions along with a subset of fea-

ture vectors. As can be seen, functions with similar numerical features are mainly grouped

together. As highlighted in dark gray, certain functions with similar symbolic names per-

taining to compiler/helper code, exhibit small discrepancies in numerical values due to

changes in structural information (e.g., basic blocks and calls). This observation indicates

the importance of inexact function signatures (based on similarity calculation of numerical

vectors) for compiler function detection and function labelling.

In order to validate our features selection for compiler fingerprinting, we apply a hier-

archical clustering technique based on Principal Component Analysis [212] (PCA) to rank

the features, as presented in Table 3.3. By sorting the features based on the order of im-

portance, the top-six features are REG, MEM, BB, CTL, CC, and IMM. The obtained results

can be interpreted as follows. The CF compiler profile can be attributed based on the types
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SYMBOLIC NUMERICAL

P_ID FUNC_ID D
TR

D
TO

FL
G

D
TC

AT
H

LG
C

C
TL

IN
O

IN
T

FL
T

M
S

C

C
C

B
B

K
X

R
E

G

M
E

M

B
IX

B
ID

IM
M

IF
A

IN
A

prog1 _mainCRTStartup 1 0 0 0 1 0 1 0 0 0 0 1 1 2 1 1 1 0 2 0 1
prog1 _WinMainCRTStartup 1 0 0 0 1 0 1 0 0 0 0 1 1 2 1 1 1 0 2 0 1
prog2 _mainCRTStartup 1 0 0 0 1 0 1 0 0 0 0 1 1 2 1 1 1 0 2 0 1
prog2 _WinMainCRTStartup 1 0 0 0 1 0 1 0 0 0 0 1 1 2 1 1 1 0 2 0 1
prog1 ___main 1 0 1 0 0 0 3 0 0 0 0 1 4 0 3 2 0 0 1 0 2
prog2 ___main 1 0 1 0 0 0 3 0 0 0 0 1 4 0 3 2 0 0 1 0 2
prog1 ___mingw_globfree 1 0 0 0 0 0 4 0 0 0 0 1 4 0 1 0 1 1 1 0 2
prog2 ___mingw_globfree 1 0 0 0 0 0 4 0 0 0 0 1 4 0 1 0 1 1 1 0 2
prog1 _register_frame_ctor 3 0 0 0 1 0 2 0 0 0 0 1 1 2 4 0 1 0 2 0 2
prog2 _register_frame_ctor 3 0 0 0 1 0 2 0 0 0 0 1 1 2 4 0 1 0 2 0 2
prog1 ___do_global_dtors 2 1 1 0 2 0 4 0 0 0 0 3 5 0 15 3 1 2 2 0 2
prog2 ___do_global_dtors 2 1 1 0 2 0 4 0 0 0 0 3 5 0 15 3 1 2 2 0 2
prog1 _glob_store_entry.part.2 3 1 1 0 2 1 3 0 0 0 0 1 3 1 40 1 3 10 5 0 2
prog2 _glob_store_entry.part.2 3 1 1 0 2 1 3 0 0 0 0 1 3 1 40 1 3 10 5 0 2
prog1 ___chkstk_ms 2 1 0 0 1 1 4 0 0 0 0 3 3 0 11 0 2 1 6 0 2
prog2 ___chkstk_ms 2 1 0 0 1 1 4 0 0 0 0 3 3 0 11 0 2 1 6 0 2
prog1 _glob_store_entry 1 0 1 0 0 0 4 0 0 0 0 2 5 0 5 0 0 0 1 0 3
prog2 _glob_store_entry 1 0 1 0 0 0 4 0 0 0 0 2 5 0 5 0 0 0 1 0 3
prog2 _main 3 0 0 0 1 1 2 0 0 0 0 1 1 3 5 0 1 0 3 0 3
prog1 _telldir 1 0 1 0 2 0 4 0 0 0 0 2 4 1 7 0 1 2 4 0 3
prog2 _telldir 1 0 1 0 2 0 4 0 0 0 0 2 4 1 7 0 1 2 4 0 3
prog1 ___report_error 2 1 0 0 1 0 1 0 0 0 0 1 1 3 11 1 2 8 4 0 3
prog2 ___report_error 2 1 0 0 1 0 1 0 0 0 0 1 1 3 11 1 2 8 4 0 3
prog1 ___dyn_tls_dtor@12 1 0 1 0 2 0 4 0 0 0 0 2 4 1 14 0 1 5 8 0 3
prog2 ___dyn_tls_dtor@12 1 0 1 0 2 0 4 0 0 0 0 2 4 1 14 0 1 5 8 0 3
prog1 _glob_registry.part.1 3 1 1 0 2 1 5 0 0 0 0 3 4 2 27 1 3 6 5 0 4
prog2 _glob_registry.part.1 3 1 1 0 2 1 5 0 0 0 0 3 4 2 27 1 3 6 5 0 4
prog1 _main 3 1 0 0 2 1 2 0 0 0 0 1 1 4 17 0 3 9 6 0 4
prog2 ___gcc_deregister_frame 3 0 1 0 1 0 3 0 0 0 0 3 5 2 15 0 3 1 7 0 4
prog1 ___gcc_deregister_frame 3 0 1 0 1 0 3 0 0 0 0 3 5 4 15 0 3 1 7 0 4
prog1 _glob_store_collated_entries 3 0 1 0 2 0 3 0 0 0 0 5 5 4 22 0 2 2 2 0 6
prog2 _glob_store_collated_entries 3 0 1 0 2 0 3 0 0 0 0 5 5 4 22 0 2 2 2 0 6
prog1 _closedir 3 0 1 0 2 0 5 0 0 0 0 3 5 3 19 0 3 2 4 0 6
prog2 _closedir 3 0 1 0 2 0 5 0 0 0 0 3 5 3 19 0 3 2 4 0 6
prog1 _glob_initialise 3 1 1 0 2 1 6 0 0 0 0 5 8 1 34 1 2 6 7 0 6
prog2 _glob_initialise 3 1 1 0 2 1 6 0 0 0 0 5 8 1 34 1 2 6 7 0 6
prog2 ____w64_mingwthr_add_key_dtor 3 1 1 0 1 1 5 0 0 0 0 2 5 3 37 3 4 7 8 0 6
prog1 ____w64_mingwthr_add_key_dtor 3 1 1 0 1 1 5 0 0 0 0 2 5 5 37 3 4 7 8 0 6
prog1 ___do_global_ctors 3 1 1 0 2 1 6 0 0 0 0 5 8 1 18 3 1 2 5 0 7
prog2 ___do_global_ctors 3 1 1 0 2 1 6 0 0 0 0 5 8 1 18 3 1 2 5 0 7
prog2 ___mingwthr_run_key_dtors.part.0 3 1 1 0 1 0 4 0 0 0 0 5 6 4 30 1 5 3 6 0 8
prog1 ___mingwthr_run_key_dtors.part.0 3 1 1 0 1 0 4 0 0 0 0 5 6 8 30 1 5 3 6 0 8
prog1 ___dyn_tls_init@12 3 0 1 0 2 2 7 0 0 0 0 6 12 1 32 3 1 5 16 0 8
prog2 ___dyn_tls_init@12 3 0 1 0 2 2 7 0 0 0 0 6 12 1 32 3 1 5 16 0 8
prog2 ___gcc_register_frame 3 0 1 0 1 0 3 0 0 0 0 6 10 4 29 1 6 3 14 0 9
prog1 ___gcc_register_frame 3 0 1 0 1 0 3 0 0 0 0 6 10 8 29 1 6 3 14 0 9
prog2 ___write_memory.part.0 3 1 1 0 1 0 5 0 0 0 0 4 9 6 61 0 6 29 12 0 11
prog1 ___write_memory.part.0 3 1 1 0 1 0 5 0 0 0 0 4 9 9 61 0 6 29 12 0 11
prog2 __w64_mingwthr_remove_key_dtor 3 0 1 0 1 1 6 0 0 0 0 5 13 4 39 3 6 7 7 0 12
prog1 __w64_mingwthr_remove_key_dtor 3 0 1 0 1 1 6 0 0 0 0 5 13 7 39 3 6 7 7 0 12
prog1 ___mingw_glob 3 1 1 1 2 1 6 0 0 0 0 7 10 6 60 0 6 13 13 0 13
prog2 ___mingw_glob 3 1 1 1 2 1 6 0 0 0 0 7 10 6 60 0 6 13 13 0 13
prog2 ___mingw_TLScallback 3 1 1 0 1 0 7 0 0 0 0 7 13 4 23 6 2 2 12 0 15
prog1 ___mingw_TLScallback 3 1 1 0 1 0 7 0 0 0 0 7 13 6 23 6 2 2 12 0 15
prog1 ___cpu_features_init 3 0 3 0 0 3 7 0 0 0 0 15 25 0 30 10 0 0 25 0 15
prog2 ___cpu_features_init 3 0 3 0 0 3 7 0 0 0 0 15 25 0 30 10 0 0 25 0 15
prog1 _rewinddir 3 1 1 0 2 4 6 0 0 0 0 7 15 4 70 0 6 30 23 0 16
prog2 _rewinddir 3 1 1 0 2 4 6 0 0 0 0 7 15 4 70 0 6 30 23 0 16
prog1 _seekdir 3 1 1 0 2 4 8 0 0 0 0 12 17 4 80 0 6 32 24 0 17
prog2 _seekdir 3 1 1 0 2 4 8 0 0 0 0 12 17 4 80 0 6 32 24 0 17
prog2 _readdir 3 1 1 0 2 4 7 0 0 0 0 11 20 7 91 0 8 34 25 0 22
prog1 _readdir 3 1 1 0 2 4 7 0 0 0 0 11 20 8 91 0 8 34 25 0 22
prog1 __pei386_runtime_relocator 3 1 1 1 2 1 9 0 0 0 0 15 27 6 106 5 6 23 32 0 25
prog2 __pei386_runtime_relocator 3 1 1 1 2 1 9 0 0 0 0 15 27 6 106 5 6 23 32 0 25
prog1 __gnu_exception_handler@4 3 1 1 0 2 2 8 0 0 0 0 18 25 7 42 0 11 10 35 0 28
prog2 __gnu_exception_handler@4 3 1 1 0 2 2 8 0 0 0 0 18 25 7 42 0 11 10 35 0 28
prog1 _opendir 3 1 1 1 3 5 6 0 0 0 0 13 21 11 135 0 19 39 36 0 28
prog2 _opendir 3 1 1 1 3 5 6 0 0 0 0 13 21 11 135 0 19 39 36 0 28
prog1 _glob_strcmp 4 1 1 2 2 4 6 0 0 0 0 32 53 5 154 0 9 30 34 0 50
prog2 _glob_strcmp 4 1 1 2 2 4 6 0 0 0 0 32 53 5 154 0 9 30 34 0 50
prog1 _glob_in_set 3 1 1 2 2 2 7 0 0 0 0 42 60 0 147 0 12 13 44 0 51
prog2 _glob_in_set 3 1 1 2 2 2 7 0 0 0 0 42 60 0 147 0 12 13 44 0 51
prog2 ___mingw_CRTStartup 3 1 1 2 3 6 7 0 0 0 0 42 63 20 216 15 22 69 68 0 71
prog1 ___mingw_CRTStartup 3 1 1 2 3 6 7 0 0 0 0 42 63 24 216 15 22 69 68 0 71
prog1 _dirname 3 1 1 1 2 3 10 0 0 0 0 44 68 17 215 5 31 90 57 0 73
prog2 _dirname 3 1 1 1 2 3 10 0 0 0 0 44 68 17 215 5 31 90 57 0 73
prog1 _glob_match 6 1 1 2 2 3 8 0 0 0 0 66 99 32 389 0 43 140 75 0 113
prog2 _glob_match 6 1 1 2 2 3 8 0 0 0 0 66 99 32 389 0 43 140 75 0 113

Light gray : Main functions in different programs. Dark gray : The same compiler functions in distinct programs may have slightly different numerical feature vectors.

Table 3.3: Numerical and symbolic features
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of registers selected by the compiler and the method of memory access, followed by the

structural complexity (basic blocks) which point to the compiler family’s behaviour.

3.2.4 Annotated Control Flow Graph

A control flow graph (CFG) mainly accounts for the structure of functions, however, dis-

similar functions may have a similar structure. This can result in high false positive rates

if it is used as the only feature for function detection. Therefore, we propose an additional

graph-based representation, namely the Annotated Control Flow Graph (ACFG), as an ex-

tension of CFG. The purpose of this graph is to facilitate detection of compiler versions

and optimization levels based on function compositions. We transform each disassembled

compiler/linker function into a graph and build the ACFG profiles based on the mnemonics,

operands and function calls in the instructions per basic block. The control flow semantics

as well as the encoded instructions are captured by ACFG, which carries the required in-

formation for precise compiler function identification. Consequently, semantically similar

compiler functions will be translated into equivalent ACFG profiles. More formally,

Definition 1 An Annotated Control Flow Graph, ACFG, is defined as an attributed graph

(V,E, ζ, γ), where V denotes a set of vertices representing function basic blocks that con-

tain the instructions, E ⊆ (V × V ) is a set of edges representing the jump instructions, γ

is an instruction clustering function, and ζ is a node coloring function based on operand

types. Functions γ and ζ are used during the CFG normalization and the encoding of

control flow graphs and subgraphs.

The process of ACFG generation involves the following steps. For each function CFG,

we compute the operation code frequencies per assembly instruction groups. As shown

in Table 3.1, each instruction can be grouped based on mnemonic semantics and operand

types. We reduce the features according to Table 3.4 and categorize x86 instructions into
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six groups for graph encoding. We then complement the ACFG with encoded subgraph

values and include it in the structural profiles of compilers.

Feature Group Description Example
DTR & STK Data Transfer and Stack push, mov, xchg
ATH & LGC Arithmetic and Logical add, xor
CAL & TST Call and Test call, cmp
REG & MEM Register and Memory esi, [esi+4]
REG & CONST Register and Constant esi, 30
MEM & CONST Memory and Constant [esi+8], 20

Table 3.4: Instruction patterns for annotation

Example 3.2.3 We illustrate the CFG and ACFG representations of a randomly selected

GCC compiler function, i.e., __do_global_ctors in Figure 3.3. Each basic block is

transformed and normalized based on a set of features describing the type, category, and

frequency of instructions (mnemonics and operands).

The details of the ACFG construction are presented in Algorithm 1. First, we normalize

the assembly instructions of a given CFG. Each assembly instruction can be categorized

according to the groups of mnemonics, types of operands (e.g., immediate value, register,

memory reference, etc.), and types of function calls, amongst others. The helper function

GetInstructionGroup() in line 17 returns the groups of instructions for individual op-

codes. The NormalizeOperandType() function in line 31 returns the associated type of

the operands. Similarly, the destination of function calls could also be categorized accord-

ing to their types. Call destinations can be internal or external to the disassembly; System

and API calls are also grouped into multiple classes based on their side effects on the tar-

get systems. The GetFunctionCategory() function in line 34 returns the general context

of functions and includes categories, such as file, network, registry, crypto, service, and

memory. Each category contains OS-specific API functions.
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Algorithm 1: CFG normalization for ACFG generation
1 !t Input: G = (BB,E) : CFG of an assembly function.

Output: G′ = (BB′, E′): Norm-CFG, Lists A_CNT , G_CNT , C_CNT , and counts T , B.
2 Initialization;
3 NCFG← init(graph);
4 A_CNT ← init(key, value) ; // Instruction count

5 G_CNT ← init(key, value) ; // Group count

6 C_CNT ← init(key, value) ; // Call count

7 T ← 0 ; // Number of instructions

8 B ← 0 ; // Number of basic blocks

9 begin
10 Perform breadth-first traversal (BFT) of the CFG basic blocks;
11 foreach unvisited basic block bb ⊆ BB do
12 Create a node and add the corresponding basic block bb′ to Norm− CFG;
13 B ← B + 1;
14 foreach instruction INST ⊆ bb do
15 T ← T + 1;
16 Add a new instruction placeholder P to bb′;
17 foreach mnemonic M ∈ INST do
18 GM ← GetInstructionGroup(M) ; // Get the group label

19 Place GM in P as the group of mnemonic;
20 if M /∈ A_CNT list then
21 Add M to the A_CNT list as key;
22 A_CNT [M ]← 1;
23 else
24 A_CNT [M ]← A_CNT [M ] + 1;

25 if G /∈ G_CNT list then
26 Add G to the G_CNT list as key;
27 G_CNT [G]← 1;
28 else
29 G_CNT [G]← G_CNT [G] + 1;

30 foreach operand O ∈ INST do
31 if mnemonic (M ∈ INST ) 6= call then
32 TP ← NormalizeOperandType(O); // Get the operand type

33 Place TP in P as the operand of G;
34 else
35 FC ← GetFunctionCategory(O) // Get the category

36 Place FC in P as the operand of G;
37 if FC /∈ C_CNT list then
38 Add FC to the C_CNT list as key; // Set the count value

39 C_CNT [FC]← 1;
40 else
41 C_CNT [FC]← C_CNT [FC] + 1; // Increment the count value

42 Flag the basic block bb as visited;
43 foreach in/out edge (ebbi , e

bb
o ) ⊂ E in CFG do

44 Create the corresponding in/out edge (ebb
′

i , ebb
′

o ) to bb′ in NormCFG;

45 Continue traversal to the next basic block bb;

46 return Norm− CFG, A_CNT , G_CNT , C_CNT , T , B;
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[4201536L, 4201537L, 4201540L, 4201546L, 4201549L
['push', 1, 'sub', 1, 5, 'mov', 1, 2, 'cmp', 1, 5, 'jz', 7]
[('cmp', 1), ('jz', 1), ('mov', 1), ('push', 1), ('sub', 1)]
['DTR', 'DTO', 'FLG', 'DTC', 'ATH', 'LGC', 'CTL', 'INO', 
'INT', 'FLT', 'MSC']
BB0 = [2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0]

[4201551L, 4201553L]
['test', 1, 1, 'jz', 7]
[('jz', 1), ('test', 1)]
['DTR', 'DTO', 'FLG', 'DTC', 'ATH', 'LGC', 'CTL', 'INO', 
'INT', 'FLT', 'MSC']
BB1 = [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]

[4201587L, 4201589L]
['xor', 1, 1, 'jmp', 7]
[('jmp', 1), ('xor', 1)]
['DTR', 'DTO', 'FLG', 'DTC', 'ATH', 'LGC', 'CTL', 'INO', 
'INT', 'FLT', 'MSC']
BB4 = [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]

[4201591L]
['mov', 1, 1]
[('mov', 1)]
['DTR', 'DTO', 'FLG', 'DTC', 'ATH', 'LGC', 
'CTL', 'INO', 'INT', 'FLT', 'MSC']
BB5 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[4201593L, 4201596L, 4201603L, 4201605L]
['lea', 1, 4, 'mov', 1, 2, 'test', 1, 1, 'jnz', 7]
[('jnz', 1), ('lea', 1), ('mov', 1), ('test', 1)]
['DTR', 'DTO', 'FLG', 'DTC', 'ATH', 'LGC', 'CTL', 'INO', 
'INT', 'FLT', 'MSC']
BB6 = [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0]

[4201607L]
['jmp', 7]
['DTR', 'DTO', 'FLG', 'DTC', 'ATH', 'LGC', 'CTL', 'INO', 
'INT', 'FLT', 'MSC']
BB7 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[4201570L, 4201577L, 4201582L, 4201585L, 4201586L]
['mov', 3, 5, 'call', 7, 'add', 1, 5, 'pop', 1, 'retn']
[('add', 1), ('call', 1), ('mov', 1), ('pop', 1), ('retn', 1)]
['DTR', 'DTO', 'FLG', 'DTC', 'ATH', 'LGC', 'CTL', 'INO', 
'INT', 'FLT', 'MSC']
BB3 = [2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0]

[4201555L, 4201562L, 4201565L, 4201568L]
['call', 2, 'sub', 1, 5, 'lea', 1, 4, 'jnz', 7]
[('call', 1), ('jnz', 1), ('lea', 1), ('sub', 1)]
['DTR', 'DTO', 'FLG', 'DTC', 'ATH', 'LGC', 'CTL', 'INO', 
'INT', 'FLT', 'MSC']
BB2 = [0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0]

+13   loc_401C53:     
+13      call    
ds:___CTOR_LIST__[i*4]
+1A     sub     ebx, 1
+1D     i = ebx       
+1D     lea     esi, [esi+0]
+20     jnz     short 
loc_401C53endp

2

+F    loc_401C4F:                  
+F          i = ebx                   
+F          test    i, i
+11        jz      loc_401C62 11

+22  loc_401C62:
+22      mov [esp+1Ch+pfn], offset ___do_global_dtors 
+29      call    _atexit
+2E     add     esp, 18h
+31      pop     i
+32      retn 3

+33   loc_401C73:  
+33       nptrs = ebx    
+33       xor     nptrs, nptrs
+35       jmp     short 4

+37   loc_401C77:      
+37   nptrs = ebx        
+37   mov     nptrs, eax 5

+39   loc_401C79:                           
+39       lea     eax, [nptrs+1]
+3C      mov     edx, ds:___CTOR_LIST__[eax*4]
+43       test    edx, edx
+45       jnz     short loc_401C77

6

+47  jmp     short loc_401C4F
+47   ___do_global_ctors endp 7

ACFG Placeholder
+0   ; void __do_global_ctors()
+0     public ___do_global_ctors
+0     __do_global_ctors proc near 
+0    pfn  = dword ptr -1Ch
+0    push    ebx
+1    sub     esp, 18h
+4    mov     ebx, ds:___CTOR_LIST__
+A    nptrs = ebx                            
+A    cmp     nptrs, 0FFFFFFFFh
+D    jz      short loc_401C73 0

Figure 3.3: ACFG construction of __do_global_ctors compiler function

3.2.5 Compiler Constructor and Terminator

The compiler-specific call sequences can be identified by analyzing program call graphs

and control flow graphs. Each compiler family behaves differently in setting up the pro-

gram startup code, initialization routines, and program termination (OS transition) code.
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The program initialization and termination processes entail multiple compiler functions

that manage the preparation/cleanup of the call stacks, required libraries, and OS inter-

actions before and after the execution of main function. Multiple function calls can be

observed during these processes. As part of the compiler constructor and terminator (CCT)

profile, we capture features such as the sequence of initialization/termination code, number

of function basic blocks, and properties of caller/callee functions on the call graph.

In order to generate CCT signatures, we traverse the program call graph until reaching

the main function. We store the sequence of function calls and function fingerprints of the

pre/post main (initialization and termination) and call patterns to imported libraries as part

of the compiler profile. Figure 3.4 provides an example of a constructor and terminator

graph for the GCC compiler.

Figure 3.4: Sample of GCC compiler constructor and terminator

3.3 Multi-layered Compiler Provenance Attribution

This section presents the proposed multi-layered approach to compiler fingerprinting, iden-

tification and behavorial profiling. The methodology is broken down into three layers,
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namely compiler family identification, compiler function fingerprinting and labelling, and

compiler version and optimization detection as depicted in Figure 3.1. Each layer consists

of one or more processes that support the compiler detection heuristics.

3.3.1 Layer 1: Compiler Family Identification

Building Compiler Transformation Profile (CTP) and assigning Compiler Tags (CT) fol-

lowed by the detection of the compiler family are the main objectives of Layer 1. A su-

pervised compilation process is applied to a collection of known source code, and output

binaries are analyzed to populate the CTP and CT profiles. These profiles are subsequently

processed using pattern matching techniques to identify compiler families.

The proposed behavioral profiles conform with standard compilation steps of C-based

family of compilers as shown in Figure 3.5. In this figure, the labelled states (source FS ,

binary FB, exported library FE) indicate feature extraction points and the blocks represent

specific stages of the process. First, the input source code containing the code and data

patterns are defined. The supervised compilation process yields compiler-specific trans-

formation profiles that enable assembly to source code matching. This process is repeated

using various combinations of chosen source components. This may include crafted ex-

cerpts of code and data patterns for control flow, branching, loops statements, memory

accesses, calling conventions, system calls, and composite/abstract data types.

Figure 3.5: Supervised compilation steps and produced artifacts
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We extend an existing assembly to source code matching approach, namely, BIN-

SOURCERER5 [179], by combining syntactic features with structural and semantics features

to build CTP profiles as follows:

1. Initialization: The input of this step is the original source code (SRC), and the output

is a pre-processed source file that includes the contents of header files imported into

the source code. The symbolic constants are replaced with their values. To support

the signature generation process, the values of constants and the list of source-level

functions along with their prototypes are extracted as part of the source features FS .

2. Compilation: The compilation step takes the target platform specifications and the

expanded source file generated in previous step as inputs. Then it generates a platform-

dependent assembly file (IAS) according to the compilation settings, such as code

generation parameters and optimization level. The list of assembly functions is then

extracted in support of the signature generation process.

3. Assembling: The input assembly file (IAS) is translated into machine object code

(OBJ), which in turn gets disassembled for feature extraction FE . In support of

signature generation, each assembly-level function is matched against the respective

source-level function extracted during the first step. Subsequently, function-level

transformation (mapping) profiles are created between assembly code patterns and

source language statements. These profiles provide indications on syntactic styles

and transformation rules of the source compiler.

4. Linking: The output binary file (BIN) is built by linking the library object code

(LIB) with the object code (OBJ) generated in the preceding step. The produced file

may include the code (statistically linked) or references (dynamically imported) of

the library functions called in the source program.

5https://github.com/BinSigma/BinSourcerer. Accessed on Dec 20, 2020.
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5. Disassembling: The binary file gets disassembled into assembly (ASM) file listings.

In addition to the assembly-level functions extracted from the object file (OBJ) in

Step 3, the disassembly at this stage includes extra helper/utility functions inserted

by the linker, which are used for signature generation (FB). Furthermore, the disas-

sembly is utilized to extract compiler tags.

The code transformation profiles describe compiler behavior in translating code/data

patterns to binary representations. These profiles are matched against target assembly func-

tions in order to identify the most likely compiler, based on binary features FB.

Detection Method

Suppose program P disassembly is composed of functions F = {f1, . . . , fn}. The file-

level CT features are represented as a list of strings. The function-level CTP features for

each fi ∈ F are represented with a feature vector ~vfi ∈ ~V that captures the available CTP

features of fi in the form of key/value pairs i.e., (kj, valj): ~vfi := 〈(k1, val1), . . . , (kn, valn)〉.

These features capture the compiler transformation patterns based on predefined (chosen)

data/code components (e.g., loops, branching, and arrays). For each compiler ci, we gen-

erate a signature Sigci , which represents the behavior profile. A combination of exact and

threshold-based matching techniques is used to compare the extracted CTP and CT fea-

tures of target P program against the Sigci profiles, resulting in the identification of the

most similar compiler family ci.

3.3.2 Layer 2: Compiler Function Labelling

The purpose of Layer 2 is to identify and label compiler-related functions. Therefore, the

Compiler Function (CF) features are utilized. The proposed approach, shown in Figure 3.6,

is based on pairwise comparison and intersection of program disassemblies to identify

function groups. More specifically, we leverage the supervised compilation process (as
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explained in Section 3.3.1) to compile a set of programs using compiler ci. Following the

standard compilation, assembling, linking, and disassembly processes, we obtain a pair of

disassembled program functions 〈FP1 , FP2〉, as well as their respective symbolic (~Vs) and

numerical (~Vn) feature vectors (CF feature).

N.SPACE 1

LIB. FUNC 1

USER FUNC

OTHERS

N.SPACE 2 

LIB. FUNC 2

USER FUNC

OTHERS

N. SPACE K

LIB. FUNC K

USER FUNC

OTHERS

Prg 1 Prg nPrg 2

Intersection

Common Functions

Figure 3.6: Intersecting programs to obtain common compiler functions

In the general case, we define the whole set of disassembly functions of program Pi as

the union of five types of assembly functions i.e., FPi
:= (FSi

∪ FDi
∪ FEi

∪ FHi
∪ FUi

),

namely, the set of statically linked functions FSi
, dynamically imported functions FDi

,

exported functions FEi
, helper/utility functions FHi

, and user functions FUi
. An effective

function fingerprinting technique would be required to partition the set of FPi
into five

disjoint subsets, each representing a unique type of assembly functions. In this chapter, we

focus to identify the helper/utility functions FHi
.

After intersecting the list of assembly functions 〈FP1 , FP2〉 and computing the CF-

related feature vectors, we use the numerical component of feature vectors (~Vn and ~Vs)

to measure the pairwise similarity of assembly functions Sim(fi, fj),∀i ∈ FP1 ,∀j ∈ FP2

based on vector distances. To this end, the k-means algorithm [82] is utilized to cluster

similar functions together. The functions with similar attributes (vn1 , . . . , vnz) are clustered

into k clusters C = C1, . . . , Ck where (k ≤ |FP1|+ |FP2|) minimizing the intra-cluster sum
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of squares. The mean of the numerical feature values of each cluster is denoted by µi in the

following equation:

argmin
C

k∑
i=1

∑
vj∈Ci

‖vj − µi‖2 (1)

Afterwards, the symbolic feature vector (~Vs) is used for cluster validation when function

identifiers are available (e.g., debug binaries in supervised compilation). In such cases, the

common identifiers can be used as the basis for function list intersections, i.e., we compute

list
(
set
(
~VP1 .names()

)
∩set

(
~VP2 .names()

))
, where the list() and the names() functions

return the list of disassembled functions and the function name identifiers, respectively.

Given a target program Pt with an unknown compiler, we pass it through the disas-

sembler and get a set of unknown functions FPt = {f1, . . . , fm}. Then, we leverage the

CF function identification technique to determine the types of assembly functions fi ∈ FPt ,

from the set of FPt := (FSt∪FDt∪FEt∪FHt∪FUt), based on the similarity calculations on

Vs = {Vs1 , Vs2 , . . . , Vsz} and Vn = {Vn1 , Vn2 , . . . , Vnz}. The vectors are compared against

reference clusters of compiler profiles and the most similar functions are grouped together.

Once the clusters are formed, the labels of the most similar compiler/linker function will

be assigned to each cluster centroid.

Detection method

In this section, we present a function fingerprinting approach for signature generation and

detection from assembly functions. We define a feature extraction function as X : F → V ,

where F is the set of helper/utility functions and V is the set of all possible features, i.e.,

vi = X(fi). The input to this function is a program P comprised of a set of assembly

functions F = {f1, . . . , fm}, and the output is a set of features vi ∈ V . The output feature

vectors can be partitioned into two subsets of Vs and Vn.

Function G defined as G : V → S takes the set of features to generate the fingerprints.
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The encoded characteristics of function fi ∈ F is represented by each fingerprint si ∈ T :

si = G(vi) = G(X(fi)) (2)

This function behaves similar to a hash function, compressing the variable-length input

assembly vector into a fixed length signature digest. However, the output is based on a

normalized version of assembly opcodes and types of operands. We interpret this function

as a semantic hash that creates a bit vector of length n from the subset of features V from

fi. The hashing technique and its sensitivity can be defined based on the feature space size

and number of input bits.

si ∈ domain(V )→ {0, 1}n (3)

Function fingerprinting depends on pairwise similarity comparisons for assembly func-

tions. It also considers incremental clustering in which the similarity of a target function

is calculated against a reference group. Function M assigns a similarity score to a pair of

candidate vectors, either at the level of fingerprints, i.e., M : S × S → R+, or at the level

of function features M : V × V → R+.

The Jaccard similarity is utilized for quantifying and measuring the distance between a

candidate fingerprint pair (si, sj) for functions (fi, fj), computed as follows [93]:

distJ(si, sj) =
B(si ∧ sj)
B(si ∨ sj)

(4)

where function B returns the number of set bits in the fingerprint vector.

The functionality of this layer can be abstracted using a labelling function C that takes

the set of function fingerprints (for target Tt) and the reference Sr fingerprints, and returns

a label li ∈ L based on the corresponding compiler, i.e., C : St × Sr × N → L. In this

relation, N is a mapping matrix that is learned during the supervised compilation process.

This matrix links compilers to specific helper/utility function profiles based on similarity
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analysis. The labels obtained from this layer identify compiler-specific functions in target

disassemblied binaries.

3.3.3 Layer 3: Version and Optimization Recognition

The objective of Layer 3 is to detect more refined compiler properties, such as optimiza-

tion level and version. Similar to previous layers, we leverage the supervised compilation

process to generate features. However, this layer deals with graph-based structural and se-

mantic features of Annotated Control Flow Graph (ACFG) and Compiler Constructor and

Terminator (CCT) profiles. Empirically, these two types of features are the most repre-

sentative of optimization heuristics and specific differences in compiler versions. We use

neighborhood hashing [93], as well as graph encoding to adjust the granularity levels of

binary components in support of fingerprint generation.

Detection method

The subgraph matching technique is helpful in matching CCT profiles as it allows us to

compare the initialization and termination flows with the reference patterns of compiler

behavior. A common method for graph comparison is based on canonical encoding of graph

structures. For the purpose of this layer, we combine subgraph encoding with neighborhood

hashing techniques to reach the required granularity levels.

A neighborhood hash graph kernel (NHGK) [93] is applied to subsets of the call graph

or an ACFG to generate fingerprints of adjacent nodes. In this scheme, function G maps an

input annotated graph AG to a bit vector of length m:

G : AG→ {0, 1}m (5)

The neighborhood hash value h for a target function ft and the corresponding set of
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immediate neighbor functions Nft can be obtained as follows [104]:

h(ft) = shr1(G(ft))⊕ (⊕fk∈Nft
G(fk)) (6)

where shr1 indicates a single-bit shift to the right and ⊕ denotes the XOR function.

3.4 State-of-the-Art Compiler Provenance Extraction

In this section, we provide an overview of the approach proposed in [187] that will be

referred to as ECP (which stands for Extracting Compiler Provenance) in this chapter.

We re-implement the proposed approach and then present our obtained evaluation results,

discuss the details of our findings, and highlight the limitations of ECP.

3.4.1 Overview

The ECP approach models compiler identification as a structured classification problem

and labels each byte of the binaries with the information on whether it is compiled with

one or two compilers (statically linked code). The authors utilize wildcards idiom features,

which are defined as short sequences of instructions that neglect details, such as literal ar-

guments and memory offsets. After extracting the idiom features from a large number of

binaries, the authors consider top-ranked features based on the results of mutual informa-

tion (MI) computation between the idiom features and compiler classes. The results of the

MI indicate how frequent the code originated from a particular compiler contains a spe-

cific idiom. A linear-chain Conditional Random Field [153] model is trained to assign high

probabilities to correct compiler classes.
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3.4.2 Dataset Generation

The proposed technique is performed on three sets of binaries containing code from three

compilers: GNU C Compiler (GCC), Intel C Compiler (icc), and Visual Studio (MSVC).

The dataset is collected for GCC and MSVC on Linux and Windows workstations, re-

spectively. In addition, various open-source software packages are compiled with the icc

compiler. Most of the aforementioned binaries are not publicly available. Therefore, we

collect different files from different sources to build our dataset. We generate the first

dataset (called G dataset) by collecting the programs related to different years (2008-2014)

of the Google Code Jam6 competition. The second dataset, called U , is composed of sev-

eral source code samples from our university. We compile all the source code with three

compilers that are used in ECP, namely, GCC, icc, and MSVC, as well as one additional

compiler, namely clang (Xcode). We build our dataset after considering all possible com-

binations of compilers, and optimization levels on various combinations of the binaries.

3.4.3 Evaluation Results

In this section, we examine both accuracy and efficiency of ECP by performing different

experiments. To this end, we split the training data into ten sets, reserving one set as a

testing set. Then, we train the classifier on the remaining sets, and evaluate its accuracy on

the testing set. More specifically, we perform different experiments based on the following

scenarios: (i) changing the number of files and the type of dataset; (ii) modifying the

threshold value of the top-ranked features; (iii) mixing various percentages of binaries

taken from different datasets in order to observe the effect of diverse binaries; and (iv)

measuring the time with respect to the number of features. In what follows, we discuss our

results based on the aforementioned scenarios.

Accuracy. The ECP approach can attain relatively high accuracy, as shown in Figure 3.7,

6https://codingcompetitions.withgoogle.com/codejam/archive. Accessed on Dec 20, 2020.
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where the accuracy for the G dataset is between 89% and 98%. This is higher than the

accuracy obtained using the U dataset (min = 82%, max = 95%). By analyzing the source

code, we find out that the user contribution in the U data set is greater than that of the

G dataset. The U dataset is also more complex than the G dataset, as it consists of more

advanced code structures, classes, methods, etc.
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Figure 3.7: ECP accuracy results

Impact of Threshold Value. We study the effects of threshold value on the accuracy by

changing the number of top-ranked features. We observe that the accuracy depends on the

choice of threshold value, as shown in Figure 3.8. For instance, the best threshold values

to correctly identify the GCC and clang compilers are 16, 000 and 18, 000, respectively.

Figure 3.8: Impact of the threshold value
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Impact of Dataset. We further conduct experiments to study the effects of diverse datasets

on the accuracy. We consider different percentages of mixed datasets and measure the

accuracy; we start from 100% G dataset, then change it to 20% G - 80% U datasets, and so

forth. As illustrated in Figure 3.9, the accuracy decreases when the diversity of the dataset

increases, especially when the percentage of university projects increases, since the user

contribution in the U dataset is higher than that of the G dataset.

Figure 3.9: Diversity in datasets

Efficiency. We measure the time efficiency of the ECP approach by calculating the total

required time for feature extraction and feature ranking. Figure 3.10 shows the total time

versus the number of employed features for each experiment.

Figure 3.10: Feature extraction and feature ranking time
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3.4.4 Discussion

The ECP approach represents a pioneering effort on compiler identification and may attain

relatively high accuracy. This approach can also identify the compilers of binaries con-

taining a mixture of code from multiple compilers, such as statically linked library code.

However, a few limitations can be observed. First, as the number of features increases, the

running time may increase rapidly. Second, the features of specific compilers may only be-

come apparent after examining a large number of binaries. Third, the accuracy may depend

on both the dataset and the choice of the threshold.

3.5 Evaluation

In this section, first we introduce our dataset and then provide the evaluation results of

BINCOMP. Finally, we provide the performed comparison results.

3.5.1 Dataset Preparation

Gathering a data corpus for the evaluation of compiler provenance attribution is challeng-

ing. For example, despite the fact that collecting code from open-source projects may not

be challenging, the source files usually have numerous dependencies which complicates the

compilation process. Nonetheless, we choose four free open-source projects to test BIN-

COMP. In addition, we gather the programs written for the Google Code Jam7 competition

as well as course projects from a programming course at our university. We generate the

binaries to build our dataset by compiling the source code with possible combinations of

compiler versions and optimization levels (O0 and O2) as shown in Table 3.5. Our dataset

consists of 1, 177 binaries, 232 of which belong to Google Code Jam dataset, 933 of which

belong to Students Course Projects, and 12 of which belong to Open-source Projects.

7https://codingcompetitions.withgoogle.com/codejam/archive. Accessed on Dec 20, 2020.
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Compiler Version Optimization Version Optimization
GCC 3.4 O0 4.4 O2
ICC 10 O0 11 O2
MSVC 2010 O0 2012 O2
Clang 5.1 O0 6.1 O2

Table 3.5: Different compilers and compilation settings used to build the dataset

3.5.2 Accuracy Results

We evaluate the proposed compiler provenance approach using the aforementioned datasets.

We split the training data into ten sets, reserving one set as a testing set, and using nine sets

as training sets to evaluate our approach; we repeat this process 1000 times. Since the

application domain is characterized by a heightened sensitivity to false positives than false

negatives, the F-measure is employed to evaluate the proposed approach as follows:

F 0.5 = 1.25 .
P.R

0.25P +R
, Precision(P ) =

TP

TP + FP
, Recall(R) =

TP

TP + FN
(7)

The obtained results of F0.5 measure are summarized in Table 3.6.

Feature F0.5 ( 500 files) F0.5 (1000 files)

Idioms 0.789 0.812
Compiler Transformation Profile (CTP) 0.694 0.708
Compiler Constructor & Terminator (CCT) 0.807 0.877
Compiler Tags (CT) 0.689 0.700
Annotated Control Flow Graph (ACFG) 0.634 0.671

Table 3.6: F -measure results

Impacts of different compilers. We test BINCOMP against different compilers as shown

in Figure 3.11. As depicted in Figure 3.11a, BINCOMP can detect MSVC compiler with

an average accuracy of 97%, while ECP average accuracy is 93%. The main explanation

for this difference lies in the type of features; BINCOMP uses different kinds of features

(syntactical, structural, and semantic), whereas ECP uses only idioms features.
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Figure 3.11: The accuracy results against different compilers
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Impacts of different compiler versions and optimization settings. We further test BIN-

COMP using different compiler versions and optimization levels, as shown in Table 3.7

and Table 3.8. Table 3.7 indicates that identifying the version of compiler is significantly

more difficult than recognizing the compiler and optimization levels. For instance, the ac-

curacy to identify the version of clang compiler is below 80%. In addition, we observe

that the features of MSVC and clang compilers are slightly different when we change either

the versions or the optimization levels, which makes the detection process more challeng-

ing. However, the GCC and icc compilers produce more diverse code amongst compiler

versions compared to the MSVC and clang compilers.

Compiler Version Accuracy Version Accuracy
GCC 3.4.x 86% 4.4.x 89%
ICC 10 83% 11.x 90%
MSVC 2010 70% 2012 71%
Clang 5.x 78% 6.1 74%

Table 3.7: Accuracy results for variations of compiler versions

We find that up to 75% of the functions in our dataset are identical when generated

by MSVC version 2010 or 2012 and with the same optimization level. In other words,

the code generator in Visual Studio has remained relatively stable between these versions,

which offers an explanation for the low accuracy for MSVC version detection. Similarly, we

find that up to 85% of the functions of clang compiler are identical between two versions.

However, we observe changes in our proposed features for the GCC and icc compilers,

which allow to detect the version and optimization level more accurately.

Compiler Optimization Level Average Accuracy

GCC O0, O2 91%
ICC O0, O2 89%
MSVC O0, O2 95%

Table 3.8: Accuracy for variations of compiler optimization levels
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3.5.3 Comparison

We perform a comparative study amongst BINCOMP, ECP, and IDA PRO on four open-

source libraries: SQLite, libpng, zlib, and OpenSSL. The obtained results are illus-

trated in Figure 3.12. We compile SQLite and zlibwith MCVS 2010 (O2), and the com-

piler is successfully identified by all three approaches; whereas libpng and OpenSSL are

compiled with GCC (O2), for whom IDA PRO is not able to identify the source compiler.

On the other hand, BINCOMP and ECP provide similar accurate results for all cases, how-

ever, ECP dose not identify compiler versions, optimizations and compiler-related func-

tions. Moreover, it requires large dataset and is less efficient than BINCOMP.

Figure 3.12: Accuracy results comparison amongst BINCOMP, ECP, and IDA PRO

3.6 Limitations and Concluding Remarks

In this chapter, we presented BINCOMP, an automated and accurate approach to recover

compiler provenance of program binaries. It extracts syntactic, semantic, and structural

features from program binaries for building representative and meaningful signatures to

capture compiler characteristics. For instance, the binaries that are compiled with the same

compiler have the same compiler tag (CT) feature. Furthermore, we formulated the com-

piler transformation profile (CTP) that maps the instructions underlying a binary according

87



to the most likely compiler family by which it was probably generated. Moreover, we in-

troduced features that capture detailed provenance at function-level granularity, allowing

us to recover the optimization levels. We designed annotated control flow graph (ACFG)

and compiler constructor and terminator (CCT) features to explicitly capture such changes

and identify the version. We evaluated BINCOMP for compiler provenance recovery on

different datasets across several compiler families, versions, and optimization levels. Our

results demonstrate that compiler provenance can be extracted accurately and efficiently,

and thus the proposed approach can be considered as a practical solution for real-world

binary analysis.

However, BINCOMP suffers from some limitations. (i) Solely the Intel x86/x86-64 CPU

architecture and C++ program language are considered in this work. (ii) We assume that the

binary code is not stripped, even though BINCOMP supports limited statistical analysis on

stripped binaries via numerical vectors. (iii) Similar to most existing methods, BINCOMP

works under the assumption that the binary code is already unpacked and de-obfuscated.

One possible future work in this area can be particularly based on the machine learning-

based approaches. This could benefit from the set of high-value features introduced in

BINCOMP to build more advanced detection models.
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Chapter 4

Library Function Identification

Program binaries typically contain a significant amount of library functions taken from

standard libraries or free open-source software packages. The capability of automatically

identifying such library functions not only enhances the quality and efficiency of threat

analysis and reverse engineering tasks, but also improves their accuracy by avoiding false

correlations between irrelevant code bases. Furthermore, such automation has a positive

impact on other applications, such as clone detection, function fingerprinting, authorship

attribution, vulnerability analysis, and malware analysis. This chapter presents BINSHAPE,

a scalable approach to identify standard library functions in program binaries, which is

based on a robust signature derived from heterogeneous features called function shape.

The chapter is organized as follows. First, the library function identification problem,

and the approach overview are discussed in Section 4.1. Then, the feature extraction pro-

cess and the detection methodology are presented in Sections 4.2 and 4.3, respectively.

Next, the evaluation of the proposed technique is presented in Section 4.4. Finally, the

limitations of BINSHAPE along with the concluding remarks and related future research

directions are presented in Section 4.5.
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4.1 Introduction

With the rapid development of the information technology, modern software contain a sig-

nificant amount of third party library functions taken from standard library functions or free

open-source software packages. Automatically identifying such library functions enhances

the efficiency and accuracy of the binary analysis task.

Automating the process of accurately identifying library functions in binary programs

poses the following challenges: (i) Robustness: the distortion of features in the binary file

may be attributed to different sources arising from the platform, compiler, or program-

ming language, each of which may change the structures, syntax, or sequences of features.

Hence, it is challenging to extract robust features that would be less affected by different

compilers, slight changes in the source code as well as obfuscation techniques. (ii) Effi-

ciency: another challenge is to efficiently extract, index, and match features from program

binaries in order to detect a given target function within a reasonable time, considering the

fact that many known matching approaches have a high complexity [144]. (iii) Scalabil-

ity: due to the dramatic growth of software packages as well as malware binaries, threat

analysts and reverse engineers deal with large numbers of binaries on a daily basis. There-

fore, designing a system that could scale up to millions of binary functions is an absolute

necessity. Accordingly, it is important to design efficient data structures to store and match

against a large number of candidate functions in a repository.

To address the library identification problem, security researchers elaborated techniques

to automatically identify library functions in binaries. For instance, the widely-used IDA

FLIRT [73] applies signature matching to patterns generated according to the first invari-

ant byte sequence of the function. This simple method is indeed very efficient but the

robustness of such solutions still falls short. For instance, IDA FLIRT suffers from the

limitation of signature collisions, since in modern C++ libraries there exists functions that
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can be absolutely identical at the first bytes but being different. Moreover, various com-

pilers and build options usually affect byte-level patterns, and therefore a new signature

for each new version as the result of a slight modification might be required. Similarly,

most other existing methods, e.g., UNSTRIP [114] (which is based on the interaction of

wrapper functions with the system call interfaces) and LIBV [177] (that employs data flow

analysis and graph isomorphism), also rely on one type of features and thus might also be

easily affected by compiler families and compilation settings. Furthermore, these methods

are usually not as efficient as FLIRT due to the need for complex operations, e.g., graph

isomorphism testing. In summary, none of the existing works offers an efficient, robust,

and scalable solution for library function identification.

In this chapter, we aim to address the aforementioned challenges and limitations of

existing works. Specifically, we focus on the following research problems:

• How can we generate a “robust” signature for each library function that is resilient

against compiler effects and obfuscation techniques?

• How can we rely on only those features whose extraction, indexing, and matching

can be performed in an efficient manner?

• How can we design an efficient data structure to perform large-scale function match-

ing (e.g., against millions of functions) relatively quickly (e.g., less than a second)?

The main advantages of BINSHAPE are as follows. First, by relying mostly on lightweight

features and the proposed data structure, our technique is efficient, and outperforms other

techniques that rely on time-consuming computations, such as graph isomorphism. Sec-

ond, incorporating different types of features significantly reduces the chance of signature

collisions compared to most existing works which rely on a single type of features. There-

fore, by extracting the aforementioned heterogeneous features and furthermore selecting

the best features amongst them, our approach achieves a high level of robustness. Third,
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our technique is not limited to a particular type of function, e.g., the wrapper functions

provided by standard system libraries [114], and instead can identify a more general set of

library functions. Finally, conducting the experimental evaluation on a large number (over

a million) of functions confirms the efficiency and scalability of the proposed system.

Contribution. In summary, the main contributions of this chapter are as follows:

• Extracting heterogeneous features: To the best of our knowledge, this is the first ef-

fort in employing a diverse collection of features, including graph features, instruction-

level characteristics, statistical characteristics, and function-call graphs, for library

function identification.

• Generating a robust signature: The novel concept of function shape induces a single

robust signature based on heterogeneous features. This choice allows our system to

be accurate even when the code is subjected to slight modifications as the results of

different compilers, compilation settings, and light obfuscation techniques.

• Proposing a scalable technique: By designing a novel data structure and using fil-

ters to prune the search space, our system demonstrates superior performance and

provides a practical framework for large scale applications with millions of indexed

library functions.

4.1.1 Motivating Example

Most of the existing works rely on a particular type of features, and they typically organize

those features as a vector. In addition, for every version of the function, a new signature is

generated and indexed in the repository. In this respect, our first observation is as follows:

instead of using one type of features, the diverse nature of library functions demands a

rich collection of features in order to increase the robustness of detection. In addition, as

will be illustrated shortly in Figure 4.1, the most segregative features for different library

92



  

 

 

 

a) _memmove b) _memchr c) _lock_file 

 

 

 

 

Figure 4.1: Control flow graphs of _memmove, _memchr, and _lock_file functions

functions will likely be different, and therefore a feature vector may not be the best way

of representing a signature. To illustrate, let us consider the CFGs of the _memmove,

_memchr, and _lock_file functions are depicted in Figure 4.1. We observe that two

graph features of _memmove function are enough to make the functions distinguishable

from others in our repository. On the other hand, the CFG of the _lock_file function

contains a smaller number of nodes (i.e., five), and the CFG of the _memchr function is

almost flat. Therefore, the best features to identify two different functions, one with few

basic blocks and one with a large and complex CFG, would be very different; for instance,

basic block level features for the former, and graph features for the latter.

4.1.2 Approach Overview

Our approach is divided into two phases: offline preparation (indexing) and online search

(detection). As illustrated in the upper part of Figure 4.2, the offline preparation includes:

(S) feature extraction discussed in Section 4.2, (1) feature selection presented in Section
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4.2.5, which includes feature ranking to extract the elements of function shape, as well as

the best feature selection; and (2) signature generation to index the functions in a reposi-

tory, which is explained in Section 4.2.5. The lower part of Figure 4.2 depicts online search,

which includes: (S) feature extraction explained in Section 4.2; (A) filtering process dis-

cussed in Section 4.3.2; and (B) detection technique presented in Section 4.3.
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Figure 4.2: BINSHAPE approach overview

Initially, the binaries in our training set are disassembled using IDA PRO disassembler1.

Subsequently, the graph features (Section 4.2.1) along with the instruction-level features

(Section 4.2.2), statistical features (Section 4.2.3), and function-call graphs (Section 4.2.4)

are extracted. To select the subsets of the features that are most useful to build the best

signature, mutual information (Section 4.2.5) is employed on the extracted features. The

top-ranked features are fed into a decision tree [88], and the outcome of the decision tree

is stored in the proposed data structure (Section 4.3.1) to form a signature for each library

1https://www.hex-rays.com/products/ida/. Accessed on Dec 20, 2020.
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function. In addition to such signatures, we also store the top-ranked features that compose

the signature of each function. For detection, all the features are extracted from a given

target binary. Two filters (Section 4.3.2) based on the number of basic blocks (BB#) and

respectively the number of instructions (Ins#) are used to prune the search space. Con-

sequently, a set of candidate functions are returned as the result of filtering, and finally the

best matches are returned as the final results.

4.2 Feature Extraction

This section first describes different types of features, then presents the feature selection,

and defines the so-called function shape.

4.2.1 Graph Feature Metrics

As the first category of the features, we consider the control flow graph of a binary function.

To obtain the best features for each library function and to describe the shape of a function,

we extract graph features based on different characteristics of the CFG. Among existing

graph metrics [96], we only employ those which are inexpensive to extract. The selected

graph features are listed in Table 4.1.

Example 4.2.1 Below we show an example to illustrate the application of graph features to

two functions. Our graph metrics are applied to two different library functions, memcpy_s

and strcpy_s, as listed in Table 4.2. The corresponding CFGs have identical feature

values for some metrics; for instance, numnodes, numedges, and cc are equal. In

contrast, other metrics, such as graph_energy and pearson (shown in boldface) are

different and can be used to discriminate the CFGs in this example (more generally, we will

certainly need more features to uniquely characterize a function).
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Graph Metric Description

n, numnodes Number of nodes
e, numedges Number of edges
p, num_conn_comp Number of connected components
CC Cyclomatic complexity: e− n+ 2p
num_conn_triples Number of connected triples
num_loop Number of independent loops
leaf_nodes Number of leaves
average_degree 2 ∗ e/n
ave_path_length Average distance between any two nodes
r, graph_radius Minimum vertex eccentricity
link_density e/(n(n− 1)/2)
s_metric Sum of products of degrees across all edges
rich_club_metric Extent to which well-connected nodes also connect to each other
graph_energy Sum of the absolute values of the real components of the eigenvalues
algeb_connectivity 2nd smallest eigenvalue of the Laplacian
pearson Pearson coefficient for degree sequence of all edges
weighted_clust_coeff Maximum value of the vector of node weighted clustering coefficients

Table 4.1: Examples of graph metrics

Graph Metric _memcpy_s _strcpy_s

n, numnodes 13 13
e, numedges 18 18
p, num_conn_comp 1 1
CC 7 7
num_conn_triples 6 6
num_loop 6 6
leaf_nodes 7 7
average_degree 2.7692 2.7692
ave_path_length 2.2308 2.5
r, graph_radius 5 6
link_density 0.2308 0.2308
s_metric 150 159
rich_club_metric 0.2778 0.2778
graph_energy 18.7268 18.0511
algeb_connectivity 1 0.3820
pearson 0.4635 0.3415
weighted_clust_coeff 0.3334 0.5

Table 4.2: Comparing graph features of _memcpy_s and _strcpy_s

As discussed before (Section 4.1.1), the graph features of _memmove function could

be part of the best features, since these features can segregate _memmove function from
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others. However, graph features alone are not sufficient, since there are cases where all the

graph features of two different functions are identical, especially for functions of relatively

small sizes. On the other hand, the CFG (and consequently the graph metrics) of a library

function may differ due to the compilation settings or slight changes in the source file.

Therefore, we consider additional features discussed in the following subsections.

4.2.2 Instruction-level Features

Instruction-level features carry both syntax and semantic information of a disassembled

function. To this end, we propose to extract instruction-level features as a component of

function shape. Some of the instruction-level features are listed in Table 4.3, such as the

number of constants (#constants), and the number of callees (#calls).

Feature Description Feature Description

declaration declaration type instrnum number of instructions
argsnum number of arguments numReg number of registers
argsize size of arguments #mnemonics number of mnemonics
localvarsize size of local variables #operand number of operands
retType return type #calls number of callees
constants constants #constants number of constants
strings strings #strings number of strings

Table 4.3: Example of instruction-level features

In addition, inspired by [129], we categorize the instructions according to their op-

eration types; for instance, we group the instructions that are related to stack operations

(such as push and pop) into one category named STK. Our proposed categorisation (color

classes) is presented in Table 4.4. By enriching standard CFGs with such information as

different colors, there is a better chance to differentiate two functions even if they have

the same CFG structure. This relates to the observation that these categories carry some

information about the functionality of a program; for instance, encryption-related functions

perform more logical and arithmetic operations rather than a function that writes to a file.
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We record the frequency of each instruction category as a feature.

Mnemonic group Description

DTR Data transfer operations (e.g., mov)
STK Stack operations (e.g., push, pop)
CMP Compare operations (e.g., cmp, test)
ATH Arithmetic operations (e.g., add, sub)
LGC Logical operations (e.g., and, or)
CTL Control transfer (e.g., jmp, jne)
FLG Flag manipulation (e.g., lahf, sahf)
FLT Float operations (e.g., f2xm1, fabs)
CaLe System and interrupt operations (e.g., sysexit)

Table 4.4: Example of mnemonic groups

4.2.3 Statistical Features

Statistical analysis of binary code can be used to capture the semantics of a function. Sev-

eral works have applied opcode analysis to binary code; for instance, opcode frequencies

are used to detect metamorphic malware in [178, 202]. Therefore, each set of opcodes

that belong to a specific function will likely follow a specific distribution according to the

functionality they implement. For this purpose, we calculate the skewness and kurtosis

measures to convert these distributions into scores as per equations 8 and 9 proposed in

[170], as follows.

Sk = (

√
N(N − 1)

N − 1
)(

∑N
i=1(Yi − Y )3/N

s3
) (8)

Kz =

∑N
i=1(Yi − Y )4/N

s4
− 3 (9)

where Yi is the frequency of each instruction, Y is the mean, s is the standard deviation, and

N is the number of data points. Similarly, we calculate the z-score [32] for each opcode

(mnemonic), where the corpus includes all the functions in our repository.
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Normalization. Each assembly instruction consists of a mnemonic and a sequence of up

to three operands. The operands can be classified into three categories: memory refer-

ences, registers, and constant values. We may have two fragments of a code that are both

structurally and syntactically identical, but differ in terms of memory references, or regis-

ters [81]. Hence, it is essential that the assembly code be normalized prior to comparison.

Therefore, the memory references and constant values are normalized to MEM and VAL,

respectively. The registers can be generalized according to the various levels of normal-

ization. The top-most level generalizes all registers regardless of types to REG. The next

level differentiates General Registers (e.g., eax, ebx), Segment Registers (e.g., cs, ds),

and Index and Pointer Registers (e.g., esi, edi). The third level breaks down the General

Registers into three groups by size - namely, 32, 16, and 8-bit registers.

4.2.4 Function-Call Graph

Function-call graph is a structural representation that abstracts away instruction-level de-

tails, and can provide an approximation of a program functionality. Moreover, function-

call graph is more resilient to instruction-level obfuscation that are usually employed by

malware authors to evade the detection systems [93]. In addition, it offers a robust rep-

resentation to detect different variants of the same malware programs [108]. Hence, the

caller-callee relationship of the library functions is extracted.

The derived function-call graphs from those relationships are directed graphs contain-

ing a node corresponding to each function and edges representing calls from callers to

callees. For labelling the nodes to exploit properties shared between functions, a neighbor

hash graph kernel (NHGK) is applied to subsets of the call graph [104]. Those subsets in-

clude library functions and their neighbor functions (callees and callers). Function G maps

the features of function fi to a bit vector of length l, where l is the number of mnemonic cat-

egories (9 in total) as shown in Table 4.4. Function G checks each value of the mnemonic
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groups of a given binary function; if the value is greater than 0, the corresponding bit vector

is set to 1; otherwise, it will be 0.

G : fi → vi = {0, 1}l (10)

The neighborhood hash value h for a function fi and its set of neighbor functions Nfi is

computed by the following formula [93]:

h(fi) = shr1(G(fi))⊕ (⊕fj∈Nfi
G(fj)) (11)

where shr1 denotes a one-bit shift right operation and ⊕ indicates a bit-wise XOR. The

time complexity of this computation is constant time, O(ld), where d is the summation

of outdegrees and indegrees, and l is the length of the bit vector. Therefore, we can

represent a function-call graph with a hash value which preserves the relationship be-

tween the functions. For instance, suppose fi is called by two other functions f1 and f2,

and fi(i 6∈ {1, 2, 3}) calls another function f3. Therefore, the bit vectors based on the

mnemonic group values of each function are generated (by the function G) to construct the

set of neighbor function Nfi = {v1, v2, v3}. Finally, the hash value h(fi) would be equal to

shr1(vi)⊕ (v1 ⊕ v2 ⊕ v3).

4.2.5 Feature Selection

After extracting all the aforementioned features, we end up with a number of features

among which some might be the most relevant ones - those that appear more frequently and

are most segregative in one function. Therefore, a feature selection process is conducted to

reduce the number of features as well as to find the best ones. Our feature selection phase

contains two major steps: feature ranking and best feature selection described as follows.
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Feature Ranking

We measure the relevance of the aforementioned features based on the frequency of their

appearance in each library function. Mutual information (MI) [173] represents the degree

to which the uncertainty of knowing the value of a random variable is reduced given the

value of another variable. To this end, we employ a Mutual Information measure to indicate

the dependency degree between features X and library function labels Y as follows.

MI(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log2
p(x, y)

p(x)p(y)
(12)

where x is the feature frequency, y is the class of library function (e.g., memset), p(x, y)

is the joint probability distribution function of x and y, and p(x) and p(y) are the marginal

probability distribution functions of x and y. The main intention of feature ranking is to

shorten the training time. We measure MI-based feature ranking on all categories of afore-

mentioned features. In addition to MI, we apply other feature selection evaluators, such as

ChiSquared [181], GainRatio [181], and InfoGain [183] using WEKA2 [107]. Finally, the

top-ranked features of our training dataset are selected based on the MI measure.

Best Feature Selection

Our aim is to build a classification system, which separates library functions from non-

library functions. As such, we choose to apply a decision tree classifier on the top-ranked

features obtained from the feature ranking process. Each library function is passed through

the decision tree and the best provided features for that specific function are recorded. This

automated task is performed on all library functions to create a signature for each function.

For instance, the best features for _strstr function, in our dataset, are #DTR, instrnum,

algeb_connectivity, #constants, and average_degree shown in Listing 4.1.

2https://www.cs.waikato.ac.nz/ml/weka/. Accessed on Dec 20, 2020.
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Listing 4.1: _strstr best feature selection

#DTR > 32.500

| instrnum > 237: other {_strstr=0,other=69}

| instrnum ? 237: _strstr {_strstr=11,other=0}

#DTR ? 32.500

| algebraic_connectivity > 2.949

| | #constants > 3

| | | average_degree > 2.847: other {_strstr=0,other=591}

| | | average_degree ? 2.847

| | | | instrnum > 171: _strstr {_strstr=1,other=0}

| | | | instrnum ? 171: other {_strstr=0,other=48}

| | #constants ? 3: _strstr {_strstr=2,other=0}

| algebraic_connectivity ? 2.949:other{_strstr=0,other=4745}

4.3 Detection

Given a target binary program, we aim at matching the target disassembled functions to

function signatures in our repository. The classical approach for detection would be to

employ the closest Euclidean distances [77] between all top-ranked features extracted from

the target function and the best features of the candidate functions from the repository.

However, the best features vary for each candidate function and thus such an approach may

not be scalable enough for handling millions of functions. Therefore, we design a novel

data structure, called B++tree, to efficiently organize the signatures of all the functions, and

to find the best matches as explained in the following.

4.3.1 B++tree Data Structure

Due to the growing number of free open-source libraries and the fact that binaries and mal-

ware are becoming bigger and more complex, indexing the signatures of a large number of

library functions to enable efficient detection has thus become a demanding task. One clas-

sical approach is to store (key, value) pairs as well as the indices of best features; however,
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the time complexity of indexing and detection would be O(n) and O(mn), respectively,

where n is the number of functions in the repository and m is the number of functions in a

given binary.

To reduce the time complexity, we design a data structure, called B++tree, that basi-

cally indexes the best feature values of all library functions in the repository in separate

B+trees, and links those B+trees to corresponding features and functions. We also aug-

ment the B+tree structure by adding backward and forward sibling pointers attached to

each leaf node, which point to the previous and next leaf nodes, respectively. The number

of neighbors is obtained by a user-defined distance. Consequently, slight changes in the

values that might be due to the compiler effects or the slight changes in the source code is

captured by the modified structure. Therefore, the indexing/detection time complexity will

be reduced to O(log(n)) and O(mlog(n)), respectively. It is worth noting that the B+tree

could be replaced with similar data structures, such as red-black tree [53].

Example 4.3.1 We explain the B++tree structure with a small example illustrated in Fig-

ure 4.3. For each feature fi in the list of top-ranked features {f1, f2, . . . , fm}, we generate

a B+tree. Then, the best features of all library functions Fi in our repository are indexed in

the m number of B+trees depicted in the middle box of Figure 4.3. For instance, if the best

features of library function F1 are f1, f2 and fm, then, these three feature values linked

to the function F1 (shown in boldface) are indexed in the corresponding B+trees. For the

purpose of detection, (a) all the m features of a given target function are extracted. For

each feature value, a lookup is performed on the corresponding B+tree, and (b) a set of

candidate functions based on the closest values and the user-defined distance are returned

(we assume that {F1, F2, F3, Fn} are returned as the set of candidate functions). For in-

stance, one match is found with the f2 feature of function F3 (shown in boldface in part

b), whereas this feature is indexed as the best feature for F1 function as well. Finally,

the candidate functions are sorted based on the distance and total number of matches:
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{F2, Fn, F1, F3}. If we consider the first most frequent functions (t = 1), then the final

candidates would be {F2, Fn} functions.
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Figure 4.3: Indexing and detection structure

The details of the proposed detection approach are shown in Algorithm 2. Let fT be

the target function, with F retaining the set of candidate functions and their frequencies as

output. First, all top-ranked features are extracted from the given target binary function fT

(line 7). By performing m (total number of features) lookups in each B+tree (line 8), a set

of candidate functions is returned (line 9). In order to choose the top t functions, the most

t frequent functions are returned as the final set of matched functions (line 11).

4.3.2 Filtering

To address the scalability issue of dealing with large datasets, a filtering process is neces-

sary. Instead of a pairwise comparison, we prune the search space by excluding functions

that are unlikely to be matched.
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Algorithm 2: Function Detection
Input: fT : Target function.
Output: F : Set of candidate functions.

1 m← total number of features;
2 n← total number of functions in the repository;
3 Fc ← {} ; dictionary of candidate functions ;
4 t← number of most frequent functions to be considered;
5 distance← user-defined distance;
6 feature[m]← array of size m to hold all the extracted features;

begin
7 feature[] = featureExtraction(fT );
8 foreach feature[i] ⊂ FT do
9 Fc = Fc +B+TreeLookup(feature[i], distance);

10 end
11 F = t_most_frequent_functions(Fc, t);
12 return F ;
13 end

Basic Block Filter

It is unlikely that a function with four basic blocks can be matched to a function with 100

basic blocks. In addition, due to the compilation settings and various versions of the source

code, there exist some differences in the number of basic blocks. Thus, a user-defined

threshold value (γ) is employed, which should not be too small or too large to prevent

discarding the correct matches. Therefore, given a target function fT , the functions in the

repository which have γ% more or less basic blocks than the fT are considered as candidate

functions for the final matching. Based on our experiments on our dataset, we consider the

threshold value γ = ±35.

Instruction Filter

Similarly, given a target function fT , the differences between the number of instructions

of target function fT and the functions in the repository are calculated; if the difference in

the number of instructions is less than a user-defined threshold value λ, then the function is
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considered as a candidate function. According to our dataset and performed experiments,

we consider λ = 35%.

4.4 Evaluation

In this section, we present the evaluation results of the proposed technique. First, we

present the details of the experimental setup followed by the dataset description. Then,

the main accuracy results of library function identification are presented. Furthermore, we

study the impact of compilers on the proposed approach and discuss the results. Addition-

ally, we examine the effect of feature selection on our accuracy results. We then evaluate

the scalability of BINSHAPE on a large dataset. Finally, we study the effectiveness of

BINSHAPE on a real malware samples.

4.4.1 Experimental Setup

We developed a proof-of-concept implementation in python to evaluate our technique. All

of our experiments are conducted on machines running Windows 7 and Ubuntu 15.04 with

Core i7 3.4GHz CPU and 16GB RAM. The Matlab software has been used for the graph

feature extraction. A subset of python scripts in the proposed system is used in tandem

with IDA PRO disassembler. The MONGODB3 database is utilized to store the proposed

features for efficiency and scalability purposes. For the sake of usability, a graphical user

interface in which binaries can be uploaded and analyzed is implemented. Any particular

selection of data may not be representative of another selection. Hence, to mitigate the

possibility that results may be biased by the particular choice of training and testing data, a

C4.5(J48) decision tree is evaluated on a 90:10 training/test split of the dataset.

3https://www.mongodb.com/. Accessed on Dec 20, 2020.
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4.4.2 Dataset Preparation

Program / Project Version Number of Functions Size(Kb)

7zip/7z 15.14 133 1074
7zip/7z 15.11 133 1068
7-Zip/7zg 15.05 beta 3041 323
7-Zip/7zfm 15.05 beta 4901 476
expat 0.0.0.0 357 140
firefox 44.0 173095 37887
fltk 1.3.2 7587 2833
glew 1.5.1.0 563 306
jsoncpp 0.5.0 1056 13
lcms 8.0.920.14 668 182
libcurl 10.2.0.232 1456 427
libgd 1.3.0.27 883 497
libgmp 0.0.0.0 750 669
libjpeg 0.0.0.0 352 133
libpng 1.2.51 202 60
libpng 1.2.37 419 254
libssh2 0.12 429 115
libtheora 0.0.0.0 460 226
libtiff 3.6.1.1501 728 432
libxml2 27.3000.0.6 2815 1021
Notepad++ 6.8.8 7796 2015
Notepad++ 6.8.7 7768 2009
nspr 4.10.2.0 881 181
nss 27.0.1.5156 5979 1745
OpenSSL 0.9.8 1376 415
avgntopensslx 14.0.0.4576 3687 976
pcre3 3.9.0.0 52 48
python 3.5.1 1538 28070
python 2.7.1 358 18200
putty/putty 0.66 beta 1506 512
putty/plink 0.66 beta 1057 332
putty/pscp 0.66 beta 1157 344
putty/psftp 0.66 beta 1166 352
WireShark/Qt5Core 2.0.1 17723 3987
SQLite 2013 2498 1006
SQLite 2010 2462 965
SQLite 11.0.0.379 1252 307
tinyXML 2.0.2 533 147
Winedt 9.1 87 8617
WinMerge 2.14.0 405 6283
WireShark 2.0.1 70502 39658
WireShark/libjpeg 2.0.1 383 192
WireShark/libpng 2.0.1 509 171
xampp 5.6.15 5594 111436

Table 4.5: An excerpt of the projects included in our dataset
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We evaluate our approach on a set of binaries, as detailed in Table 4.5. In order to create

the ground truth, we download the source code of all C-library functions4, as well as dif-

ferent versions of various open-source applications, such as 7-zip. The source codes are

compiled with Microsoft Visual Studio (MSVC 2010 and 2012), and GNU Compiler Col-

lection (GCC v4.1.2) compilers, where the /MT and -static options, respectively, are

set to statically link C/C++ libraries. In addition, the O0-O3 options are used to examine

the effects of optimization settings. Program debug databases (PDBs) holding debugging

information are also generated for the ground truth. Furthermore, we obtain binaries and

corresponding PDBs from their official websites (e.g., WireShark); for these binaries,

their compilers are detected by a packer tool called EXEINFOPE5. Finally, the prepared

dataset is used as the ground truth for our system, since we can verify our results by re-

ferring to the source code. In order to demonstrate the effectiveness of our approach to

identify library functions in malware binaries, we additionally choose Zeus malware ver-

sion 2.0.8.9, where the source code6 was leaked in 2011 and is reused in our work.

4.4.3 Function Identification Accuracy Results

Our ultimate goal is to discover as many relevant functions as possible with less concern

about false positives. Consequently, in our experiments we use the F-measure,

F 1 = 2× P ×R
P +R

, Precision(P ) =
TP

TP + FP
, Recall(R) =

TP

TP + FN
(13)

where TP indicates number of relevant functions that are correctly retrieved; FN presents

the number of relevant functions that are not detected; FP indicates the number of irrelevant

functions that are incorrectly detected; and TN returns the number of irrelevant functions

that are not detected. To evaluate our system, we split the binaries in the ground truth
4http://www.cplusplus.com/reference/clibrary/. Accessed on Dec 20, 2020.
5http://exeinfo.atwebpages.com/. Accessed on Dec 20, 2020.
6https://github.com/Visgean/Zeus. Accessed on Dec 20, 2020.
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Figure 4.4: ROC curve for BINSHAPE features

into ten sets, reserving one as a testing set and using the remaining nine as training sets.

We repeat this process 1000 times and report the results that are summarized in Figure

4.4. As seen, we obtain a slightly higher true positive rate when using graph features

(including function-call graph feature) and statistical features. This small difference can

be inferred due to the graph similarity between two library functions that are semantically

close. Similarly, statistical features convey information related to the functionality of a

function, which cause a slight higher accuracy. On the other hand, instruction-level features

return lower true positive rate. However, when all the features are combined together, our

system returns an average F1 measure of 0.89.

4.4.4 Impact of Obfuscation

In the second scenario, we investigate the impact of obfuscation techniques on BINSHAPE

as well as FLIRT and LIBV approaches. Our choices of obfuscation techniques are based

on the popular obfuscator LLVM [120] and DALIN [140], which include instruction sub-

stitution (SUB), bogus control flow (BCF), control flow flattening (FLA), register renaming

(RR), instruction reordering (IR), and dead-code insertion (DCI). Instruction substitution

109



replaces the instructions with functionally equivalent sequences of instructions. For in-

stance, ‘mov eax,edx’ can be substituted by ‘push edx’ followed by ‘pop eax’

instruction. Bogus control flow techniques insert new basic blocks that contain an opaque

predicate and then make a conditional jump back to the original basic block. Control flow

flattening flattens the control flow graph, which first splits the body of function into basic

blocks and then puts all the blocks at same level (e.g., using a switch statement). Register

renaming, renames registers that are utilized for the same purpose. Instruction reordering

reorders independent instructions in which the functionality remains intact while the syn-

tax changes. For instance, the taken (True) and not taken (False) branches are reversed

and the conditional branch instruction is inverted. Dead-code insertion injects additional

instructions, which are not executed or have to effect on the functionality of a program.

Dead-code insertion can be accomplished by mathematical operations (e.g., add and sub)

or jump instructions.

In this set of experiments, we collect a random set of samples (i.e., 25) that are not

obfuscated, test our model and report accuracy results. The obfuscation is then applied,

in which obfuscated binaries are tested against original binaries and new accuracy mea-

surements are obtained. The effects of obfuscation tehcniques are presented in Table 4.6.

As shown, BINSHAPE can overcome some obfuscation effects. The accuracy remains the

same when RR and IR techniques are applied, while it is reduced slightly in the case of DCI

and SUB obfuscations. The reason is that most of the features which are not extracted at

the instruction level (e.g., graph features), are not significantly affected by these techniques.

In addition, normalizing the assembly instructions eliminates the effects of RR, whereas,

statistical features are more affected by DCI and SUB techniques, since these features rely

on the instructions frequencies.

However, the accuracy results after applying FLA and BCF through LLVM obfuscator
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Obfuscation BINSHAPE (F1 = 0.89) FLIRT (F1 = 0.81) LIBV (F1 = 0.84)
Technique F ∗1 F ∗1 F ∗1
RR 0.89 0.81 0.84
IR 0.89 0.78 0.82
DCI 0.88 0.80 0.82
SUB 0.86 0.79 0.80
All 0.86 0.76 0.80

Table 4.6: F-measure before/after (F1/F ∗1 ) applying obfuscation

are not promising, and we exclude them from our experimental results. We show the rea-

son behind such results with an illustrative example. The CFGs of original and obfuscated

(e.g., FLA) versions of EC_EX_DATA_free_all_data function from OpenSSL are

illustrated in Figure 4.5a and Figure 4.5b, respectively. As shown, the shape of the ob-

fuscated function is totally different than its original version, which indicates that the best

(a) Original (b) FLA

Figure 4.5: CFGs of EC_EX_DATA_free_all_data function in OpenSSL - libssl
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features of the original function high likely would not match with the features of FLA ver-

sion. Therefore, additional de-obfuscation techniques are required for handling these kinds

of obfuscations. However, one of the future directions of this work is to perform statis-

tical analysis to identify obfuscation-resilient features, which remain almost the same in

the presence of various obfuscation techniques. Based on our manual analysis, this set of

obfuscation-resilient features might include number of calls, system calls and constants.

4.4.5 Impact of Compilers

In this section, we examine the effects of compilers on a random subset of binaries in dif-

ferent scenarios as follows. (i) The impact of compiler version: We train our system with

binaries compiled with MSVC 2010 at optimization level O2, and test it with binaries com-

piled with MSVC 2012 with the same optimization level. (ii) The impact of optimization

levels: We train our system with binaries compiled with MSVC 2010 at optimization level

O1, and test it with the same compiler at optimization level O2. (iii) The impact of different

compilers: We collect binaries compiled with MSVC 2010 and optimization level O2 as

training dataset, and test the system with binaries compiled with GCC v4.1.2 compiler at

optimization level O2. The obtained precision and recall for the aforementioned scenar-

ios are reported in Table 4.7. We observe that our system is not affected significantly by

changing either the compiler versions or the optimization levels. This can be interpreted

due to the libraries and robust features that are selected during the feature ranking and best

feature selection processes. However, different compilers affect the accuracy.

4.4.6 Impact of Feature Selection

We carry out a set of experiments to measure the impact of feature selection process, includ-

ing top-ranked feature selection as well as best feature selection. First, we test our system to

determine the best threshold value for top-ranked features as shown in Figure 4.6. We start
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Version Optimization Compiler
MSVC.2010 vs MSVC.2012 MSVC.2010 MSVC.2010 vs GCC-4.1.2

O2 O1 vs O2 O2
Project Precision Recall Precision Recall Precision Recall
bzip2 1.00 0.98 0.90 0.85 0.82 0.80
OpenSSL 0.93 0.78 0.91 0.80 0.83 0.78
Notepad++ 0.98 0.97 0.95 0.82 0.84 0.72
libpng 1.00 1.00 0.91 0.74 0.81 0.72
TestSTL 0.98 1.00 0.90 0.84 0.81 0.75
libjpeg 0.93 0.90 0.88 0.76 0.81 0.69
SQLite 0.91 0.87 0.89 0.85 0.78 0.71
tinyXML 1.00 0.99 0.90 0.82 0.84 0.79

Table 4.7: Impact of compiler versions, optimization settings, and compilers families

by considering five top-ranked features and report the F1 measure of 0.71. We increment

the number of top-ranked features by five each time. When the number of top-ranked fea-

tures reaches 35 classes, the F1 measure is increased to 0.89 and it remains almost constant

afterwards. Based on our findings, we choose 35 as the threshold value for the top-ranked

feature classes.
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Figure 4.6: Impact of top-ranked features

Next, we pass the top-ranked features into the decision tree in order to select the best

features for each function. The goal is to investigate whether considering the subset of

best features would be enough to segregate the functions. In order to examine the effect

of best features, we perform a breadth first search (BFS) on the corresponding trees to sort
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best features based on their importance in the function; since the closer the feature is to the

root, the more it is segregative. Our experiments examine the F1 measure while varying the

percentage of best features. We start by 40% of the top-ranked best features and increment

them by 10% each time. Figure 4.7 shows the relationship between the percentage of best

features and the F1 measure. Based on our experiments, we find that 90% of the best

features results in an F1 measure of 0.89. However, for the sake of simplicity, we consider

all the selected best features in our experiments.
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Figure 4.7: Impact of best features

4.4.7 Impact of Filtering

We study the impact of the proposed filters (e.g., BB# and Ins#) on the accuracy of BIN-

SHAPE. For this purpose, we perform four experiments by applying: (i) no filter (ii) BB#

filter, (iii) Ins# filter, and (iv) both of the aforementioned two filters. As shown in Fig-

ure 4.8, the drop in accuracy caused by the proposed filters is negligible. For instance,

when we test our system with two filters, the highest drop in accuracy is about 0.017.

4.4.8 Scalability Study

To evaluate the scalability of our system, we prepare a large collection of binaries consisting

of different ‘.exe’ or ‘.dll’ files (e.g., msvcr100.dll) containing more than 3, 020, 000

disassembled functions. We gradually index this collection of functions in a random order,
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Figure 4.8: Impact of filtering

and query the 7-zip binary file of version 15.14 on our system at an indexing interval of

every 500, 000 assembly functions. We collect the average indexing time for each func-

tion to be indexed, as well as the average time it takes to respond to a function detection.

The indexing time includes feature extraction and storing them in the B+trees. Figure 4.9

depicts the average indexing and detection time for each function.
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Figure 4.9: Scalability study

The results suggest that our system scales well with respect to the repository size. When

the number of functions increases from 500, 000 to 3, 020, 000, the impact on response time

of our system is negligible (0.14 seconds on average to detect a function amongst three

million functions in the repository). We notice through our experiments that the ranking
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time and filtering time are very small and negligible. For instance, ranking 5, 000 features

takes 0.0003ms, and filtering highly likely similar functions in the repository to a function

having 100 basic blocks and 10, 000 instructions, takes 0.009 ms. Besides, the feature

extraction time varies for different types of features; e.g., the graph feature extraction takes

more time than instruction-level and call-graph feature extractions.

4.4.9 Application to Malware

We are further interested in studying the applicability of our approach in identifying library

functions in malware binaries. However, one challenge is the lack of ground truth to verify

the results due to the nature of malware. Consequently, we consider Zeus version 2.0.8.9,

where the leaked source code is available. First, we compile the source code with MSVC

and GCC compilers, and keep the debug information for the purpose of verification. Sec-

ond, we compile UltraVNC, info-zip, xterm and BEAEngine libraries with MSVC

and GCC compilers and index them into our repository. We choose the aforementioned

libraries based on the technical report [124] that reveals which software components are

reused by Zeus. Finally, we test the compiled binaries of Zeus to find the similar func-

tions with the functions in our repository. By manually examining the source code as well

as the debug information at binary level, we are able to verify the results listed in Table 4.8.

We observe through our experiments that the statistical features as well as graph features

are the most powerful features in discovering free open-source library functions.

Library
Number of BINSHAPE

Functions Found FP
UltraVNC 20 28 11
info-zip 30 27 0
xterm 17 18 2
BEAEngine 21 20 0

Table 4.8: Function identification in Zeus
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4.5 Limitations and Concluding Remarks

In this chapter, we presented a pioneering investigation into the possibility of representing a

function based on its shape. We proposed a robust signature for each library function based

on a diverse collection of heterogeneous features, covering CFGs, instruction-level charac-

teristics, statistical features, and function-call graphs. In addition, we designed a novel data

structure, which includes B+tree, to efficiently support accurate and scalable detection. Ex-

perimental results demonstrated the effectiveness of BINSHAPE. The main advantages of

BINSHAPE are as follows. First, by relying mostly on light-weight features and the pro-

posed data structure, it is efficient, and outperforms techniques that rely on time-consuming

computations such as graph isomorphism. Second, incorporating different types of features

significantly reduces the chance of signature collisions compared to most existing works

which rely on a single type of features. Therefore, by extracting the aforementioned het-

erogeneous features and furthermore selecting the best features amongst them, BINSHAPE

achieves a great deal of robustness. Third, the proposed technique is general in the sense

that it is not limited to a particular type of functions, e.g., the wrapper functions provided

by standard system libraries [114]. Finally, testing against a large number (over a million)

of functions in a repository confirms the efficiency and scalability of BINSHAPE.

However, the proposed approach has the following limitations: (i) We have not scruti-

nized the impact of inline functions. (ii) Our system is able to tackle some code transfor-

mation, such as instruction reordering, however, some other obfuscation techniques (e.g.,

control flow flattening) affect the accuracy of BINSHAPE; similar to existing solutions,

BINSHAPE is not designed to handle packed, encrypted, and obfuscated binaries. (iii) We

have not examined the effects of other compilers, such as icc, on our approach. (iv) We

have not investigated the impact of CPU architectures, such as MIPS or ARM in this study.

Several of these limitations will be addressed in the following chapters and the rests will

be considered as potential future work.
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Chapter 5

Vulnerable Library Function Detection

in Binaries and Firmware

With the wide-adoption of digital technologies, the security concerns of their underlying

software or firmware become critically important. Hence, we aim at applying binary anal-

ysis on the firmware images of the Internet of Things (IoT) devices. To this end, we focus

on the smart grid domain, one of the major critical infrastructures that generates and dis-

tributes power and electric energy. There is a widespread adoption of intelligent electronic

devices (IEDs) in modern-day smart grid deployments. Consequently, any vulnerabilities

in IED firmware might greatly affect the security and functionality of the smart grid. In this

chapter, we present BINARM, a scalable approach based on a multi-stage fuzzy matching

engine to detecting vulnerable functions in IED firmware mainly for the ARM architecture.

This chapter is organized as follows. First, the vulnerable function detection problem

and approach overview are discussed in Sections 5.1 and 5.2, respectively. Then, the IED

firmware and vulnerability databases generations are presented in Sections 5.3. Next, the

BINARM’s multi-stage detection engine is explained in Section 5.4. Afterwards, the eval-

uation resutls are presented in Section 5.5. Finally, the BINARM’s limitations along with

the concluding remarks and related future research directions are presented in Section 5.6.
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5.1 Introduction

Smart grid is a network of transmission lines, substations, transformers, and distribution

systems that deliver electricity from the generation units to residences and businesses cus-

tomers. The digital technology provides the two-way communication between the utility

and its customers, and the sensing along the transmission lines. Intelligent electronic de-

vices (IEDs) play an important role in typical smart grids by supporting supervisory control

and data acquisition (SCADA) communications, condition-based monitoring, and polling

for event-specific data in the substations. Cyberattacks on smart grids deployment could

lead to infrastructural failure, blackouts, energy theft, customer privacy breach, etc. The

firmware (software) running on IEDs is subject to a wide range of software vulnerabilities,

and consequently cyberattacks exploiting such security vulnerabilities may have debilitat-

ing repercussions on national economic security and national safety1.

In fact, a startling increase in the number of attacks against industrial control systems

(ICS) has been observed (e.g., a 110% increase when comparing 2016 to 20152. A prime

example of such an attack is Industroyer [48, 111] targeting Ukraine’s power grid, which

is capable of directly controlling substation switches and circuit breakers. As other exam-

ples, the BlackEnergy [164] APT took control of operators’ control stations and utilized

them to cause a blackout, while Stuxnet [80, 134] targeted Siemens ICS equipment in or-

der to infiltrate Iranian nuclear facilities. Besides those real-world attacks, recent analysis

demonstrates similar threats in other countries, e.g., with 50 power generators taken over by

attackers, as many as 93 million US residents may be left without power [188]. These real-

world attacks or hypothetical scenarios indicate a clear potential and serious consequences

for future attacks against critical infrastructures including smart grids.

1https://www.dhs.gov/critical-infrastructure-sectors. Accessed on Dec 20, 2020.
2https://securityintelligence.com/attacks-targeting-industrial-control-systems-ics-up-

110-percent/. Accessed on Dec 20, 2020.
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Identifying security-critical vulnerabilities in firmware images running on IEDs is es-

sential to assess the security of a smart grid. However, this task is especially challeng-

ing, since the source code of firmware is usually not available. In the literature, general-

purpose techniques have been developed to automatically identify vulnerabilities in em-

bedded firmware based on dynamic analysis (e.g., [44, 64, 192, 217]) or static analysis and

code similarity approaches (e.g., [54, 78, 84, 174, 213]). To the best of our knowledge,

none of the existing works focuses on the smart grid context. Although such general-

purpose techniques are also applicable to the firmware of smart grid IEDs, they share some

common limitations as follows:

(i) Applicability: They lack sufficient domain knowledge specific to smart grid IEDs,

such as a database of known vulnerabilities in such IEDs as well as their firmware

images. Therefore, in the existing works: (a) no prior knowledge about the scope

(e.g., smart grid) is required; (b) no additional effort to gather and analyse the relevant

IED firmware images is needed. They can easily download any type of firmware from

the wild; and (c) no study on the reused open-source libraries in the IED firmware

images is performed; it is highly likely that most relevant libraries are not included

in their vulnerability dataset, which might result in higher false negative rates.

(ii) Scalability: Some of the existing approaches typically rely on expensive operations,

such as semantic hashing [174], and they typically lack effective filtering steps to

speed up the function matching. Consequently, those techniques are usually not effi-

cient enough to handle the much larger sizes of IED firmware images (e.g., compared

to that of network routers).

(iii) Adaptability: Handling the presence of a new common vulnerabilities and exposures

(CVE)3 and efficiently indexing those new vulnerabilities poses another challenge to

some existing works (e.g., [213]).
3https://nvd.nist.gov/. Accessed on Dec 20, 2020.
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In this chapter, we present BINARM, a scalable approach to detecting open-source li-

brary functions as well as vulnerable functions in smart grid IED firmware based on the

ARM architecture. To this end, we first build a large-scale vulnerability database consist-

ing of common vulnerabilities in IED firmware images. The design of our vulnerability

database is highly influenced and guided by the prominent open-source libraries that are

reused in the IED firmware images. Identifying these IEDs and obtaining the correspond-

ing firmware images require significant efforts as follows: (i) identify relevant manufactur-

ers; (ii) collect and study the corresponding IED firmware images; (iii) identify the used

open-source libraries in these images; and (iv) cross-reference the identified open-source

libraries with the CVE database4 and compile the list of CVEs.

Second, in order to ensure BINARM that is efficient and scalable enough to handle IED

firmware images, we design a detection engine that employs three increasingly complex

stages in order to speed up the process by filtering irrelevant candidates as early as pos-

sible. Third, BINARM does not only provide a similarity score as prior efforts, such as

[78, 213], but also presents in-depth analysis (at instruction level, basic block level, and

function level) to justify the results of the matching and to assist reverse engineers for fur-

ther investigation. We conduct extensive experiments with a large number of real-world

smart grid IED firmware from various vendors in order to evaluate the effectiveness and

scalability of BINARM.

Contributions. The main contributions of this chapter are as follows:

• To the best of our knowledge, we develop the first large-scale vulnerability database

specifically for IEDs firmware covering most of the major vendors. In addition, we

build the first IED firmware database, which provides an overview of the state of the

industry. Such effort can be leveraged for future research on smart grid IEDs, and can

be beneficial to IED vendors and utilities to assess the security of the IED firmware.

4https://cve.mitre.org/. Accessed on Dec 20, 2020.
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• We propose a multi-stage detection engine to efficiently identify vulnerable functions

in IED firmware, while maintaining high accuracy. The experimental results demon-

strate the efficacy of our system such that the engine is three orders of magnitude

faster than the existing fuzzy matching approach [110].

• Our experimental results ascertain the accuracy of the proposed system, with an av-

erage accuracy of 0.92. In addition, the applicability of BINARM is confirmed in

our study; it successfully detects 93 potential CVEs in real-world IED firmware im-

ages within 0.09 seconds per function on average, the majority of which have been

confirmed by our manual analysis.

5.2 Approach Overview

Figure 5.1: BINARM overview

An overview of our approach is depicted in Figure 5.1, which consists of two major

phases: the offline preparation and online search. The offline preparation phase consists in

the creation of two comprehensive databases; one containing a set of IED firmware and the

other known vulnerabilities specific to IEDs. To this end, we carry out the following:
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• Identify the IEDs and a set of manufacturers that provide equipment for smart grids.

• Collect relevant IED firmware produced by the identified manufacturers, and store

the images in the Firmware Database.

Such information further provides insight about which libraries might be utilized by each

manufacturer in their released firmware, which enables us to build our vulnerability database.

For this purpose, we process as follows:

• Determine reused libraries in the IED firmware from manufacturers’ websites or

available documentations, e.g, the copyright provided by NI5.

• Collect identified open-source libraries, compile them for the ARM architecture, and

finally cross-reference with CVE database to build the Vulnerability Database.

During the online search phase, BINARM assesses the security of a new or previously-

indexed IED firmware by matching against known vulnerable functions in our Vulnerabil-

ity database. To efficiently deal with a large number of functions, we design a multi-stage

fuzzy matching detection engine. The proposed engine gradually excludes candidate func-

tions from the analysis, where these function are less likely similar to the target function.

The similarity results provide an in-depth analysis that contains the similarity scores of the

two functions at the function level (e,g., CFG), the basic-block level, and the instruction

level, all of which are presented within a graphical user interface. Hence, the analyst can

dig into the similarity results and gain more insights about the matched function.

We demonstrate how the aforementioned process works by applying it to the follow-

ing motivating example. Suppose a fictitious utility company would like to deploy several

phasor measurement units (PMUs) and is concerned about potential vulnerabilities inside

those units. Following our methodology depicted in Figure 5.1, we would first identify

5http://zone.ni.com/reference/en-XX/help/374498F-01/insightcm/bp_copyright/. Accessed on
Jan 15, 2018.
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the manufacturer, e.g., given by the utility as National Instruments (NI) in this particular

example. Second, we would collect the IED firmware, which is given by the utility as

NI PMU1_0_11 firmware image6. Third, we would identify the reused libraries in this

firmware, e.g., the libcurl v7.50.2 library. Fourth, we would identify vulnerable func-

tions inside each library, e.g., a vulnerable function inside the libcurl v7.50.2 library as

depicted in Figure 5.2a. Finally, we employ our detection engine to find matching func-

tions in the provided firmware image, e.g., a matched function shown in Figure 5.2b. As

shown, the two functions have a high degree of similarity; indeed, the main difference

is the presence of an additional basic block consisting of two instructions (highlighted in

Figure 5.2a) in the curl_easy_unescape function. This similarity implies that the

function in Figure 5.2b may also have the CVE-2016-7167 vulnerability, which provides

useful information for the utility to take corresponding actions.

We note that, although this particular example may make it seem relatively straightfor-

ward to detect vulnerable functions in a firmware, this is usually not the case in practice

due to two main challenges. First, the needed information about manufacturer, libraries,

and vulnerabilities may not be readily available from the utility company as in this exam-

ple. For this reason, we will build our vulnerability and firmware databases, as discussed

in Section 5.3. Second, the function matching process may be too expensive for utility

companies, since they may be dealing with the constant deployment or upgrade of a large

number of IEDs from different manufacturers. Cross checking such a large number of

firmware images with an even larger number of library functions (e.g., 5, 103 vulnerable

functions) can take significant effort. For instance, the Linksys WRT32X firmware image

with 39kb size contains 47, 025 functions, whereas the NI PMU1_0_11 firmware comprises

226, 496 functions and is 256kb large. To address this challenge, we propose our efficient

multi-stage detection engine in Section 5.4.

6http://digital.ni.com/public.nsf/allkb/5391E8424944D0BC86257E45000B025C. Accessed on Jan
15, 2018.
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(a) curl_easy_unescape in libcurl v7.50.2 with
CVE-2016-7167

(b) sub_149BB4 in NI PMU1_0_11.libws_repl

Figure 5.2: Comparing the CFGs of a vulnerable function and an unknown function

5.3 Building IED Firmware and Vulnerability Databases

Identifying the IEDs and obtaining their corresponding firmware can help vendors and util-

ities in assessing the security of elaborated or deployed IEDs firmware. However, this

process requires significantly more effort than simply acquiring firmware from any con-

sumer devices by crawling and downloading from the wild. In this section, we provide

the background of smart grid IEDs, and then elaborate on the creation and content of our

firmware and vulnerability databases.
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5.3.1 Intelligent Electronic Devices in the Smart Grid

A power grid is a complex and critical system to provide generated power to a diverse set of

end users. It is composed of three main sectors: generation, transmission, and distribution.

An overview of the smart grid is illustrated in Figure 5.3. The transmission system takes

the power that is generated by the generation system and delivers it to distribution substa-

tions. The role of a distribution substation is to transform received high voltage electricity

to a lower more suitable voltage for distribution among customers. With the introduction

of IEC 618507 standard, technologies such as Ethernet, high-speed wide area networks

(WANs), and powerful but cost-effective computers are leveraged in order to define a mod-

ern architecture for communication within a substation [148]. Consequently, a vast set of

devices, labeled as intelligent electronic devices (IEDs), are emerged into the smart grid

infrastructure. Such devices are coupled with traditional ICS and power equipment which

enables their integration into the network.

Figure 5.3: Smart grid overview

7https://webstore.iec.ch/publication/6028. Accessed on Dec 20, 2020.
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Four different applications in a smart grid benefit from the extensive use of IEDs as

shown in Figure 5.4, including:

(i) Control applications: send and receive commands to control the system behaviour

remotely, such as load-shedding, power system stabilizers, and voltage regulators;

(ii) Monitoring: convert received analog input (e.g., currents, voltages, power values)

from primary equipment into a digital format and leverage it to evaluate the perfor-

mance of the system or detect operation issues. Some of the examples include phasor

measurement units (PMUs), advanced metering infrastructures (AMIs), and phasor

data concentrators (PDCs);

(iii) Protection: detect faults that need to be isolated from the network in a specific and

timely manner, such as reclosers and various types of relays; and

(iv) Communication: transmit and receive the data, measurements, and time signals that

are required for the operation of the other three applications, such as GPS antenna,

switches, and gateways.

Figure 5.4: Four applications in the smart grid and some examples of related IEDs

127



5.3.2 Manufacturer Identification

In order to identify a set of relevant manufacturers and market dynamics, we first reduce the

scope to the substations and the networking equipment that allows the smart grid to operate.

Then, we study the categorization of vendors in the smart grid ecosystem by using different

sources, such as GTM Research8 and Cleantech Group [165] reports. This information

provides the necessary insights in order to identify top smart grid manufacturers, as listed in

Table 5.1. Such knowledge becomes the foundation to further determine relevant libraries,

vulnerabilities and IED firmware images.

Manufacturer Relevant Component(s)

ABB Schweiz AG Automation Hardware
National Instruments Automation Hardware
Schneider Electric Automation Hardware
Schweitzer Engineering Laboratories (SEL) Automation Hardware
Siemens Automation Hardware
Elster (Honeywell) Automation Software, Communication, Smart Meters
Landis+Gear Automation Software, Communication, Smart Meters
Cisco Automation Software, Communication
Itron Communication, Smart Meters
Sensus Communication, Smart Meters
Aclara Smart Meters
Electro Industries Smart Meters
General Electric (GE) Smart Meters
Honeywell International Inc. Demand Response

Table 5.1: Identified major smart grid manufacturers and their supported components [51]

Heterogeneous hardware architectures are used in firmware images, however, many

ICSs are based on the ARM architecture [43, 131, 223]. Additionally, as reported in Figure

5.5, most of our collected IED firmware images are identified as targeting ARM architec-

ture (82%), followed by PowerPC (9%). On the other hand, Linux is the most encountered

OS in our Firmware Database, with a prevalence of 90% compared to others (e.g., Win-

dows). Thus, the focus of this work is mainly on the ARM-Linux-based firmware images.
8https://www.greentechmedia.com/research/report/the-networked-grid-

150-report-and-rankings-2013. Accessed on Dec 20, 2020.
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82.70 %

ARM

9.20 %

PowerPC

6.30 %

MIPS

0.60 % Stormy16
0.60 %

Motorola0.60 %

PIC10
Ubicom32
MicroBlaze

Figure 5.5: Distribution of hardware architectures amongst collected IED firmware

5.3.3 Vulnerability Database

Our study shows that many of the listed manufacturers reuse existing open-source libraries

in their product implementations. This generally entails the legal obligation of publishing

documents containing the licenses of all utilized open-source software. By investigating

several sources of information pertaining to these manufacturers, such as corporate web-

sites, product documentations and FTP search tools, we extract large amounts of open-

source usage declarations that are related to the current smart grid scope. Some of the

examples include distributed network protocol (DNP3), simple network management pro-

tocol (SNMP), network time protocol (NTP), and Sample Values (SV).

The top-25 relevant, popular and vulnerable open-source libraries are illustrated in Ta-

ble 5.2, where they are ordered by their relative significance considering which ones are

more frequently used in the IEDs of the identified manufacturers. Their significance is

determined by multiplying the number of CVEs for a given library times the number of

manufacturers that utilize that library. We download the source code of reused libraries

with different versions, and cross-compile each of them for the ARM architecture using

GCC compiler with four optimization flags (O0-O3). We cross reference with the CVE
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database9 to identify and label vulnerable functions with their corresponding CVEs. It

is worth mentioning that all the functions of each library are stored in our Vulnerability

Database for open-source library function identification. Additionally, the vulnerable func-

tions are labelled by their correspondingly identified CVEs. Our Vulnerability Database

consists of 3, 270, 165 functions, of which 5, 103 are marked as vulnerable. This results in

a total of 235 unique vulnerabilities after discarding the duplicates that result due to the use

of different compilers and optimization flags.

Library #CVEs Manufacturers Library #CVEs Manufacturers

1. php 601 Cisco, Honeywell, Siemens 14. qemu 225 Cisco
2. imagemagick 402 Cisco, GE, Honeywell 15. libxml2 44 ABB, Cisco, GE, Honeywell, Siemens
3. openssl 189 ABB, Cisco, GE, Honeywell, SE, Siemens 16. bind 102 Cisco, Siemens
4. mysql 564 Cisco 17. binutils 97 Cisco, Siemens
5. tcpdump 162 Cisco, GE, Siemens 18. libcurl 34 ABB, Cisco, Honeywell, SE, Siemens
6. openssh 87 ABB, Cisco, GE, Honeywell, Siemens 19. freetype 83 Cisco, Siemens
7. ntp 79 Cisco, GE, Honeywell, SE, Siemens 20. libpng 47 Cisco, Honeywell, Siemens
8. libtiff 149 Cisco, GE 21. samba 124 Honeywell
9. postgresql 98 Cisco, Honeywell, Siemens 22. utillinux 15 ABB, Cisco, GE, Honeywell, SE, Siemens
10. ffmpeg 274 Siemens 23. cups 88 Cisco
11. pcre 49 ABB, Cisco, GE, Honeywell, Siemens 24. lighttpd 28 ABB, Cisco, Honeywell
12. python 81 Cisco, Honeywell, Siemens 25. netsnmp 21 Cisco, GE, SE, Siemens
13. glibc 81 Cisco, Honeywell, Siemens

Note: (GE): General Electric, (SE): Schneider Electric.

Table 5.2: Top-25 vulnerable open-source libraries in identified manufacturers [51]

The acquired firmware images contain various kinds of binaries, such as open-source,

application-level, kernel and proprietary libraries. Consequently, by utilizing the CVE

database, we identified 4, 344 CVEs in kernel-level, along with 5, 581 CVEs in application-

level, and 2, 336 CVEs in open-source libraries amongst the identified manufacturers (con-

sidering the fact that some of the open-source libraries are reused in applications). Ad-

ditionally, we have prepared an initial list of IED-specific proprietary libraries (e.g., NI).

However, our list of such proprietary libraries is not yet comprehensive. Further effort

would also be required in order to verify the identified vulnerabilities, since the source

code of such proprietary libraries is not publicly available.

9https://github.com/cve-search/cve-search. Accessed on Dec 20, 2020.
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5.3.4 Firmware Database

The proposed methodology is not necessarily specific to smart grid IEDs and therefore

could be applied to any ARM-based binary code, such as IoT devices, routers, and IEDs.

However, since the goal of this work is to assess the security of IEDs in the smart grid,

we focus on the IED-specific firmware. Firmware reverse engineering is a time consuming

and challenging task and requires domain expertise. In the following we provide more

information about the firmware acquisition and firmware analysis challenges.

Firmware acquisition.

We first utilize popular FTP search engines, such as NAPALM indexer10, FileSearching11,

and fileWatcher12 to leverage publicly accessible corporate FTP servers. We then create a

simple website scraper using Scrapy13 and apply it to specific parts of each manufacturers’

website. Finally, we perform a manual inspection for dynamically generated websites,

which mostly applies to each manufacturers’ download centre. All retrieved images are

filtered based on the relevance to the smart grid context, and 2, 628 firmware packages are

extracted. It is worth noting that sometimes the vendors do not provide firmware images in

order to protect their IP or limit the access to it. Therefore, it might be necessary to directly

extract or dump it from a device chip memory in different ways, such as an EEPROM

programmer, bus monitoring during code upload and schematic extraction [203].

Firmware Analysis Challenges.

Performing firmware analysis with the objective of complete disassembly is challeng-

ing [54] and encounters additional challenges beside traditional binary analysis challenges

presented in Chapter 2. This is partially due to a large requirement of time, domain specific
10https://www.searchftps.net. Accessed on Dec 20, 2020.
11http://www.filesearching.com. Accessed on Dec 20, 2020.
12https://2600index.info/Links/27/3/www.filewatcher.com. Accessed on Dec 20, 2020.
13https://scrapy.org. Accessed on Dec 20, 2020.
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knowledge and research [130]. Furthermore, binaries are often stored in proprietary for-

mats, obfuscated or encrypted for protection. These processes effectively make it extremely

difficult (e.g., obfuscation [130]), or even impossible (e.g., uncrackable encryption [195],

indecipherable formats [143]) to directly access the contents of a given binary blob. En-

crypted binaries can sometimes be identified by their use of specific headers. For instance,

a file encrypted with OpenSSL starts with the first 8-byte signature of “Salted__”. In

order to process all acquired firmware, we follow well-known procedures such as the ones

presented in [195, 218]. This process has several main steps:

(i) Unpacking and extraction: Some vendors pack their firmware using proprietary

packers and file formats, or use private key encryption. In practice, different un-

packing tools, such as BINWALK14, BAT [103], and FRAK [57] can be utilized to

extract the firmware. However, performing such tasks cannot be always performed

successfully, and thus not all firmware images can be analyzed.

(ii) Firmware and binary identification: Once the firmware is extracted, filtering is re-

quired for obtaining all relevant information. This can include binary files, configura-

tion files, embedded files and the firmware itself. To this end, file signature matching

is performed using different tools, such as SIGNSRCH15, FILEFILE16, and BINWALK.

There exist some types of firmware that have no underlying operating system. They

consist of only one binary file that operates directly on the hardware. In some cases,

there is no abstraction of the OS and libraries, and in other cases, firmware images

are not standard and no documentation is provided. Therefore, initializing a run-time

environment and loading the binary is more challenging [192].

14https://github.com/devttys0/binwalk. Accessed on Dec 20, 2020.
15http://aluigi.altervista.org/mytoolz.htm. Accessed on Dec 20, 2020.
16https://linux.die.net/man/1/file. Accessed on Dec 20, 2020.
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(iii) Binary disassembling: Finaly the firmware image should be disassembled by uti-

lizing a disassembler (e.g., IDA PRO17), where using the properly identified archi-

tecture and entry point is required. The hardware architecture identification can be

performed by the disassemblers or other powerful alternatives such as BINWALK.

As for the entry point, a given binary blob can contain several entry points [192], and

it may not be possible for tools such as IDA PRO to automatically identify them. In

these cases entry point discovery should be performed [130, 192], which is one of

the most challenging parts of this entire procedure and requires leveraging various

techniques (e.g., [223]).

5.4 Multi-stage Detection Engine

Figure 5.6: BINARM: multi-stage detection engine

We propose an efficient multi-stage detection engine as shown in Figure 5.6 to identify vul-

nerable functions in firmware images, which involves three detection stages, from coarse to

17https://www.hex-rays.com/products/ida/. Accessed on Dec 20, 2020.
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granular. Our key idea is to start with light-weight feature extraction and function match-

ing operations, and to perform the most expensive operations only for a reduced set of

candidates. More specifically:

(i) Function shape-based detector extracts the simplest and more distinguishable fea-

tures that quickly eliminates dissimilar candidates with less computational overhead.

(ii) Path-based detector performs more expensive matching operations, however, still

not as expensive as graph matching. Specifically, it extracts execution paths includ-

ing their corresponding instruction sequences, then turns them into hash values, and

simply employs a binary search.

(iii) Fuzzy matching graph-based detector performs the most expensive operations, which

mainly includes careful examination of basic blocks, their neighbours, and graph

matching for a selected and relatively smaller number of candidates.

The details of each stage are explained in the following.

5.4.1 Function Shape-Based Detection

The function shape-based detection is performed using a collection of heterogeneous fea-

tures extracted at different levels of a function, namely, function shape [190], as introduced

in Chapter 4. This includes instruction-level features, structural features, and statistical

features. Therefore, we extract various features from all the functions in our Vulnerability

database. The corresponding details are briefly described in the following.

Feature Extraction

The instruction-level features carry the syntax and semantic information of a function [11],

such as the number of caller functions (#callers). For instance, the frequencies of

strings have been used to classify malware based on their behaviour [182]. To capture
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Instruction-level Structural Statistical

retType rich_club_metric mean
#instructions #nodes variance
localvarsize average_degree skewness
#arguments #edges kurtosis
#strings cyclomatic complexity Z-score
#mnemonics average_path_length standard deviation
xrefs graph_energy
#constants link_density
#registers algebraic_connectivity
#operands height of the root
refnames s_metric
arguments pearson
flags num_conn_triples
operands leaf_nodes
declaration
argsize

Table 5.3: Function shape features

the topology of a function and to extract the structural features, we employ a set of graph

metrics [96], such as cyclomatic complexity, and s_metric. However, some functions

might have the same structural shape, while being semantically different. As a result,

we consider additional features in order to include more semantic information. Finally,

statistical features are used in order to capture the semantics of a function [178], such as

skewness and kurtosis [170], which are extracted as follows:

Sk = (

√
N(N − 1)

N − 1
)(

∑N
i=1(Yi − Y )3/N

s3
)

Kz =

∑N
i=1(Yi − Y )4/N

s4
− 3

where N is the number of data points, Yi is the frequency of each instruction, Y represents

the mean, and s is standard deviation. An excerpt of the extracted features is listed in Table

5.3. We refer the reader to Chapter 4 for the complete list of the features.
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Normalization

In the ARM instruction set, each assembly instruction consists of a mnemonic and a se-

quence of up to five operands. Two fragments of code might be identical both structurally

and syntactically, but different in terms of memory references or registers. Hence, it is es-

sential to normalize the instruction sets prior to comparison. For this purpose, we normalize

the operands according to the mapping sets provided by IDA PRO as listed in Table 5.4.

We further categorize the “general” registers based on their types18, as presented in Ta-

ble 5.5. For instance, the MOV R3,R3,ASR#8 instruction has three operands and will be

normalized to MOV 100100600, while the STR R0,[R11,#ctx] instruction will be

normalized to STR 100300.

IDA Operand Type IDA Operand Mapping BINARM Normalization

None 0 000
General Register 1 1∗∗ (Refer to Table 5.5)
Memory Reference 2 200
Base + Index 3 300
Base + Index + Displacement 4 300
Immediate 5 400
Immediate Far Address 6 500
Immediate Near Address 7 500
FPP Register 8 600
386 Control Register 9 700
386 Debug Register 10 700
386 Trace Register 11 700
Condition (for Z80) 12 800
bit (8051) 13 900
bitnot (8051) 14 900
Other Else NULL

Table 5.4: Instruction normalization

18http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0068b/CIHEDHIF.html. Ac-
cessed on Dec 20, 2020.
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Feature Selection

After collecting and extracting all heterogeneous features from our Vulnerability Database,

we aim at identifying the features that differentiate different functions the most in order to

improve the accuracy and efficiency of the shape-based function detection. To this end,

mutual information (MI) [173] is leveraged to measure the dependency degree between the

aforementioned features and the functions in Vulnerability Database. The mutual informa-

tion is implemented in python and Science Kit Learn machine learning library [137, 172].

The obtained results of the mutual information process are in the form of information bits

(the higher values give more information).

Based on the obtained results from the mutual information shown in Figure 5.7, we

choose three top-ranked features, graph_energy, skewness (sk), and kurtosis

(kz), as a 3-tuple feature for each function. It is worth mentioning that there is a depen-

dency between the next top-ranked features and graph_energy. However, based on our

experiments extracting the five top-ranked features instead of the top three would not have

Register Name Partial Normal-
ization

Concerned Registers BINARM Norm.

General 10∗

a1-a4, r0-r3 100
v1-v5 , r4-r8 101
v6, sb, SB, r9 102
v7, sl, SL, r10 103
v8, fp, FP, r11 104
ip, IP, r12 105
sp, SP, r13 106
lr, LR, r14 107
pc, PC, r15 108

Program Status 11∗
CPSR 110
SPSR 111

Floating Point 12∗
f0-f7 , F0-F7 121
s0-s31 , S0-S31 122
d0-d15 , D0-D15 123

Co-processor 13∗
p0-p15 130
c0-c150 131

Other 14∗ NA 140

Table 5.5: General register normalization
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made a significant difference in the results of the filtering process according to our dataset

and threshold. Additionally, since our goal is to perform coarse detection at this stage, and

extracting more features would affect the time complexity, we choose the first three top-

ranked features. Our experiments confirm the effectiveness of the three chosen features

(shown in Section 5.5.6).

Function Matching

To perform a coarse detection process for a given target function against a set of reference

functions from our repository, we first utilize a function shape-based detection strategy.

Figure 5.7: Mutual information of features
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Therefore, a similarity metrics should be defined. Consequently, all functions in our Vul-

nerability Database that surpass a predetermined threshold distance, λ, from a given target

function are deemed dissimilar in shape-based detection stage. Euclidean distance is used

to calculate the distance between two given functions as follows:

dist(p, q) =

√√√√ n∑
i=1

(qi − pi)2

where p = (p1, p2, p3) and q = (q1, q2, q3) are two points in Euclidean 3-space, representing

the graph_energy, skewness, and kurtosis features for the target and reference

functions, respectively. In order to calculate the threshold distance, we employ K-Means

clustering [100, 115] (Section 5.4.1) on the obtained features and based on the distances in

the clusters, the final threshold distance λ = 26.45 is calculated. Therefore, the functions

having points further apart than the threshold value of λ = 26.45 are deemed dissimilar.

Definition 2 Let fT , fr be two functions, and p and q be 3-tuple associated with fT ,

fr. Let p ← GSK(fT ) and q ← GSK(fr) extract graph_energy, skewness, and

kurtosis features from fT and fr functions, respectively. Let dist(p, q) be a Euclidean

distance function (dist > 0) and λ a predefined threshold value (λ > 0). We consider fr

as a candidate function to be matched against fT , if dist(p, q) 6 λ.

Threshold Selection

As mentioned in the previous subsection, the functions that have a distance less than λ from

the target function are considered as potential candidates. On the other hand, obtaining such

a threshold value is challenging and one possible solution could be to experimentally derive

it. However, we obtain the threshold value automatically and empirically by leveraging K-

Means clustering algorithm, which groups similar functions associated with the 3-tuple in

the same cluster in an unsupervised manner. K-Means clustering algorithm partitions n
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observations into k clusters, C1, . . . , Ck, such that the total within-cluster sum of square

(WSS) [101] is minimized as follows:

WSS =
k∑
i=1

∑
p∈Ci

dist(p, ci)
2 (14)

where p represents a given observation; ci is the centroid of cluster Ci, and dist is the

Euclidean distance. To identify the optimal number of clusters, we employ the elbow

method [66], where the goal is to get a small WSS while minimizing k. To this end, the

3-tuple features are extracted from all the functions in our Vulnerability Database. Then,

K-means clustering is applied to our data points for each value of k starting from one to

100, and the WSS is calculated. The optimal value for k is at the drop off point (knee

shape) [51], which in our cases is equal to 11.

The ultimate goal of the clustering is to acquire a distance threshold value in order to

drop some of the candidate functions which are far from the target function based on the

3-tuple features. In order to get the threshold value, first we calculate the average Euclidean

distances of all 3-tuple points in each cluster to acquire how much further apart the similar

functions are. Finally, the average of eleven obtained distances is calculated and considered

as the final threshold value λ, which is equal to 26.45 for our Vulnerability Database. More

formally,

Definition 3 Let {f1, f2, . . . , fn} be a set of functions in our repository. Let pi ← GSK(fi)

and qj ← GSK(fj) generate a 3-tuple graph_energy, skewness, and kurtosis

associated with fi, and fj functions, respectively, and let dist(pi, qj) calculate the Eu-

clidean distance between fi and fj functions. Let K and nc denote the number of clusters

and the number of points in each cluster, respectively. We calculate the threshold value

λ > 0 as follows:

λ =
1

K
×

K∑
c=1

(∑nc

i=1,j=1 dist(pi, qj)

nc

)
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5.4.2 Path-Based Detection

After detecting similar functions based on the Euclidean distances of their shapes, BINARM

incorporates a path-based detection to reduce the graph comparison effort during the final

detection stage. The idea behind the path-based detector is that similar functions have

similar execution paths. Moreover„ analyzing the execution paths has been used to identify

function vulnerabilities as well as stealthy program attacks [194, 208]. Accordingly, we

propose a weighed path comparison algorithm to measure the similarity of two functions

based on their branch executions.

Weighted Normalized Tree Distance (WNTD)

The normalized tree distance (NTD) [222] is proposed for comparing phylogenetic trees

with the same topology and same set of N taxonomic groups including the lengths of the

edges. Consider two phylogenetic trees A and B denoted by A = {a1, a2, . . . , aN} and

B = {b1, b2, . . . , bN}, where N is the number of paths and ai and bi are the lengths of

path i in trees A and B, respectively. In order to compare trees A and B, the distance is

measured as follows [222]:

NTD =
1

2

(
N∑
i=1

∣∣∣∣∣ ai∑N
j=1 aj

− bi∑N
j=1 bj

∣∣∣∣∣
)

Such a dissimilarity metric scales from 0 (identical trees) to 1 (distinct trees). However,

NTD is originally designed for two trees with the same topology (the same number of

paths). Additionally, NTD does not consider the contents of nodes and the paths will be

directly compared without taking into account their content similarities.

Inspired by NTD, we propose a weighted normalized tree distance (WNTD) metric to

measure dissimilarity between two functions W and V . First, we consider the CFGs of the

two functions, represent them as a directed acyclic graph by unrolling the loops, and then
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Figure 5.8: An example of two weighted paths of w1 and v1

extract all possible paths from the two CFGs using breadth first search (BFS). Based on

the contents of basic blocks along each path and their neighbours, a corresponding weight

(e.g., wi and vi) is calculated and assigned to each path of the two functions, which is

named “weighted paths” (shown in Figure 5.8). Second, for any given weighted path i

extracted from function W , we find the best match vBM in function V and calculate the

ratio and the final dissimilarity. More formally,

Definition 4 Let W = {w1, w2, . . . , wN} and V = {v1, v2, . . . , vM} denote two functions

containing N and respectively M (N ≤ M ) number of weights representative of their

weighted paths. The dissimilarity between the functions W and V is measured as follows:

WNTD =
1

2

(
N∑
i=1

∣∣∣∣∣ wi∑N
j=1(wj)

− vBM∑M
j=1(vj)

∣∣∣∣∣
)

(15)

where wi and vi are the weighted paths of functions W and V , respectively; and vBM is the

best match for weighted path wi amongst the other weighted paths in function V .

WNTD considers a weight for each basic block and finally a single weight for each

path of a function. Moreover, even if the two CFGs do not have the same number of paths,

still the two CFGs can be compared (for every path, a match can be found as either the best
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match or zero). Once the WNTD comparison is performed, the functions with a distance

less than γ are preserved for the final detection step. Performed experiments (Section 5.5.7)

suggest 0.5 cut off is the best.

Mnemonic Instructions Grouping

Instruction mnemonics carry information about the semantics of a function, for instance,

cryptographic functions perform more logical and mathematical operations compared to

a function which opens a file. For instance, opcode frequencies are used to detect meta-

morphic malware [178, 202]. Hence, extracting the frequencies of different kinds of in-

structions can provide some clues about the functionality of a function. However, due to

Group Name Examples

Branch B, BL, BX, BLX, BXJ, BNE, IT, CBZ, CBNZ, TBB, TBH

Arithmatic ADD, ADC, SUB, SBC, RSB, RSC, SDIV, UDIV, USAD8, USADA8

Logical AND, EOR, ORR, BIC, EORS

Saturating QADD, QSUB, QDADD, QDSUB, SSAT, USAT, SSAT16, USAT16

BarrelShifter LSL, LSR, ASR, ROR,RRX

Multiplication MUL ,MLA, MLS, MULL, MLAL, UMULL, UMLAL, SMULL, SMLAL,

SMULxy, SMLAxy, SMULWy, SMLAWy, SMLALxy, SMUAD, SMUSD,

SMMUL, SMMLA, SMMLS, SMLAD, SMLSD, SMLALD, MLSLD,

UMAAL, MIA, MIAPH, MIAxy

ReverseBytes REV, REV16, REVSH, RBIT

Comparison CMP, CMN, TST, TEQ

DataMovement MOV, MVN, MOVS, MOVT

LoadStore LDR, STR, ADR , LDRB, STRB, LDRH, STRH, LDRSB,LDRSH,

LDREQB, PLD, PLDW, PLI, LDM, STM, LDREX, STREX, ADRL,

MOV32, UND

Transfer MRS,MSR

Stack PUSH, POP, STMFD, LDMFD, STMFA, LDMFA, STMED, LDMED,

STMEA, LDMEA, STMIA, LDMIA, STMIB, LDMIB, STMDA, LDMDA,

STMDB, LDMDB

Swap SWP, SWPB

PackUnpack BFC, BFI, SBFX, UBFX, SXT, SXTA, UXT, UXTA, PKHBT, PKHTB

CoProcDataProcessing CPD, CDP2

CoProcRegTransfer MRC, MCR, MCR2, MCRR, MCRR2, MRC2, MRRC, MRRC2

CoProcMemTransfer LDC, STC, LDC2, STC2

Table 5.6: Proposed menmonic groups for ARM instruction set
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Figure 5.9: Mutual information of mnemonics

various factors, such as compiler effects, different mnemonics might be used interchange-

ably. Therefore, we identify the list of ARM instruction set mnemonics, and group them

based on their functionalities, e.g., arithmetic instructions. We obtain seventeen groups of

mnemonics which is listed in Table 5.6. For instance, any instruction mnemonic that is part

of {ADD, ADC, SUB, SBC, RSB, RSC, SDIV, UDIV, USAD8, USADA8} list, will be grouped into

Arithmatic category.

We further intend to identify the most relevant and informative mnemonics to distinguish amongst

functions. As such, we leverage mutual information (MI) to measure the dependency degree be-

tween mnemonic group frequencies and functions in our Vulnerability dataset. Obtained results are

presented in Figure 5.9. Accordingly, we choose the 7-top-ranked mnemonic groups as the features

to be extracted from each basic block in a path and utilize them to compute the weighted paths.
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Weight Assignments

In order to calculate the WNTD, the weighted paths need to be calculated. To condense all the

information of a node and its neighbours into a single hash value, a graph kernel with linear time

complexity is proposed in [93, 104]. Inspired by this approach, we create a single hash value to

be representative of each weighted path. Therefore, we calculate the accumulated weights of each

node along the path and assign a single hash value to each path to compute the weighted paths. In

order to consider more information, the weight assigned to each node is calculated based on the

top-ranked instruction groups of the node itself and also its neighbours (parents and children) that

could be out of the current path.

For this purpose, for each basic block and its immediate neighbours in a given path, we first ex-

tract top-ranked mnemonic groups and create a feature vector of their probability density functions

(PDF)19 per basic block. We further distinguish between the in-degrees (parents) and out-degrees

(children) to bring more information about the execution flow. To this end, we calculate the joint and

the union of the PDFs for the parents and children, respectively. This results into a feature vector of

PDFs for each node. An example is illustrated in Figure 5.10, where the chosen path contains the

nodes with IDs 0, 2, 4 and 6 and the PDF feature vectors that are used to generate the final PDF of

node 2 are highlighted. Finally, the Trend Micro locality sensitive hash (TLSH)20 [171] is applied

on the obtained feature vectors and a weight is assigned to each node in a given path. The final

weighted path is computed by the summation of all hash values associated to each node along the

path. The details of the approach are presented in Algorithm 3.

Finding the Best Match

After calculating all the weighted paths for both functions (e.g., wi and vi), we need to find the best

matching pairs. In order to find the best match (e.g., vBM in Equation 15) for each path, e.g., wi, we

pre-calculate all the weights of all paths for both reference and target functions foremost, and store

the obtained weighted paths of the larger function V in a B+tree. Afterwards, we perform exact and

19https://wiki.ubc.ca/Science:MATH105_Probability/Lesson_1_DRV/1.03_The_Discrete_PDF. Ac-
cessed on Dec 20, 2020.

20https://github.com/trendmicro/tlsh. Accessed on Dec 20, 2020.
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Figure 5.10: Weight assignment example

inexact matching to determine the best match for weighted paths. More formally:

vBM =


excatMatch(wi, ~V ) , if there is any match

inexactMatch(wi, ~V , δ) , if there is any match 6 δ

0 , else

(16)

First, we search in the B+tree to find the exact match for each weight in function W , and then

remove it from the B+tree. Second, we perform inexact matching by considering backward and

forward sibling pointers to each leaf node [95], which points to the previous and next leaf nodes,

respectively. The number of neighbours is obtained by a user-defined distance δ. If there is no match

for a given path, the best match would be zero. Due to the usage of B+tree, the time complexity to

find the best match is O(n logm), where n and m are the number of weighted paths in functions W
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Algorithm 3: Weight assignment
Input: Patha : A path extracted from the CFG.
Output: w : Weighted path.
Initialization

1 f []← []; // PDF of top-ranked instruction groups

2 weights[]← []; // Feature vector of the weights
3 w ← 0; // Initialize the path weight to zero
4 begin

foreach node[i] ∈ Patha do
5 f ← node[i].getPDF ();
6 U []← [];
7 J []← f ;
8 while (node[i].hasParents()) do
9 J ← J ∩ node[i][].getParent().getPDF ();

10 end
11 while (node[i].hasChildren()) do
12 U ← U ∪ node[i][].getChild().getPDF ();
13 end
14 f ← J + U ;
15 weights[i]← TLSH(f);
16 end
17 foreach wt[i] ∈ weights do
18 w ← w + wt[i];
19 end
20 return w;

end

and V . Finally, the detailed procedure of calculating the WNTD is presented in Algorithm 4.

5.4.3 Fuzzy Matching-Based Detection

The results of the path-based detection stage, which correspond to a relatively small set of candidate

functions, are passed to the final detection stage. In order to compare a given target function to the

reference functions in the candidate set, inspired by [110], we perform fuzzy matching on each pair

of functions and obtain the similarity score. Functions with the highest similarity scores are returned

as the final matching pairs. The details are described in the following.
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Algorithm 4: WNTD
Input: W : Weighted paths of function W stored in a linked list.
Input: BTreeV : Weighted paths of function V stored in a B+tree.
Output: WNTD: Dissimilarity score between functions W and V .

1 Function WNTD(W , BTreeV )
2 sum← 0 ;
3 sumW ←

∑N
j=1(w[j]);

4 sumV ←
∑M

j=1(v[j]);
5 foreach w[i] ∈ W do
6 vBM = exactMatch(BTreeV , wi) ;
7 if vBM 6= −1 then
8 sum+ = | w[i]

sumW
− vBM

sumV
|;

9 W.remove(w[i]);
10 end
11 end
12 vBM ← 0 ;
13 foreach w[i] ∈ W do
14 vBM = inexactMatch(BTreeV , wi, δ) ;
15 sum+ = | w[i]

sumW
− vBM

sumV
|

16 end
17 WNTD = sum/2;
18 return WNTD;
19 end

Path and Neighbourhood Exploration

The fuzzy matching approach is composed of three main phases: (i) longest path extraction; (ii) path

exploration; and (iii) neighbourhood exploration, which is illustrated with an example in Figure

5.11. First, we unroll all the loops and employ depth first search on the CFG of the target function

to extract the longest path (as depicted in Figure 5.11 part a). A path represents one complete

particular execution, where its functionality is the result of executing all its basic blocks. Therefore,

retrieving two equivalent paths can be an initiation point to further explore the immediate neighbours

of their nodes. The longer the path is, the more matching pairs would be acquired.

Second, the reference function is explored to find the best match for the longest path in the target

function. Inspired by [110, 145], a breadth-first search combined with longest common subsequence

(LCS) method of dynamic programming [53] is performed. In order to satisfy the requirements of
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Figure 5.11: Fuzzy matching

the LCS algorithm, since any path is a sequence of basic blocks, each basic block is treated as a letter.

Two basic blocks are compared based on their instructions, and a similarity score (Subsection 5.4.3)

is returned. Therefore, all the possible paths in the reference function are explored and the one with

the highest similarity score is returned as the best matched path (including basic blocks pairs) [110].

As an example, the best match for the given longest path with a reference function is highlighted in

Figure 5.11 part b. Besides, we put all the obtained matching basic blocks pairs in a priority queue.

Finally, we perform neighbourhood exploration and leverage Hungarian algorithm in both target

and reference functions to improve and extend the mapping. Since all the mapping basic block

pairs are obtained during the path exploration process, we start by exploring the neighbours of the

most similar basic block pairs (priority queue shown in Figure 5.11 part c). Therefore, we initiate

the search by the most similar basic blocks and find more matched pairs for their successors and

predecessors by considering their in-degrees and out-degrees and leveraging Hungarian algorithm.

In the case of a new match, we put the matched pairs in the priority queue to explore their neighbours

later on. We continue the same algorithm for the rest of the nodes until the priority queue is empty.

In our example, consider the obtained priority queue from path explorations as presented on top

of the box in Figure 5.11 part c. The highest obtained similarity score is related to basic blocks with

IDs 1 in both target and reference functions; therefore, we initiate the search from there. Since both

nodes have the same in-degree and out-degree numbers, we check the number of their successors.
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Whereof both nodes have more than one successor, the Hungarian algorithm is leveraged to find

the best mappings between the two sets of successors, otherwise their successors would be matched

directly. However, if we have already paired a node with another one, the corresponding match

will be discarded. Therefore, since the nodes with ID 2 are already matched, we discard them and

consider the second successor (5) as a match and put in the priority queue to explore its neighbours

later on. Further, we check the predecessors of the nodes with ID 1. Both have one predecessor,

while the predecessor of the node in target function is already matched, therefore it will be discarded.

We remove node 1 from the priority queue and continue the same algorithm for the rest of the nodes

until the priority queue is empty. The final matching graphs are depicted in Figure 5.11 part d.

The outcome of neighbourhood exploration is basic block matching pairs in a CFG (Figure 5.11

part d) and the corresponding similarity scores. We measure the final similarity score between fT

and fr functions having nT and nr number of basic blocks, respectively, as the following:

similarity (fT , fr) =
2×

∑k
i=1WJ(S, T )

nT + nr
(17)

where k is the number of matched basic blocks between functions fT and fr, andWJ(S, T ) returns

the similarity score between the matching basic block pairs. Therefore, BINARM provides all the

differences between two functions at instruction level, basic blocks level and function level.

Basic Block Matching

For basic block matching, we could adopt the LCS method of dynamic programming on the instruc-

tions of two basic blocks as in [110]. However, the accuracy of this approach might be affected

by instruction reordering and instruction substitutions [110]. Moreover, the time complexity of

the LCS algorithm is O(mn), where m and n represent the number of instructions in the two ba-

sic blocks. Consequently, to accurately and efficiently perform basic block matching, we use the

weighted Jaccard similarity [112] between the two basic blocks. Let S and T be two sets containing

the mnemonic frequencies of the two basic blocks, with n and m number of elements in each of
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thier blocks. The weighted Jaccard similarity (WJ) between the two vectors is calculated as follows:

WJ(S, T ) =

∑N
k=1min(Sk ∩ Tk)∑N
k=1max(Sk ∪ Tk)

, N = max{m,n}

The usage of WJ similarity together with instruction grouping could overcome instruction re-

ordering and in some cases instruction substitutions. Moreover, the time complexity of the WJ

similarity is of order O(N).

5.5 Evaluation

This section outlines all our experimental work and analysis. We first elaborate on the environ-

ment setup. Then, we discuss the function identification accuracy of our tool, and then examine

its efficiency and scalability. Moreover, we compare BINARM with state-of-the-art approaches.

We further present a case study that shows how BINARM would function in real-world scenar-

ios. Finally, we investigate and scrutinize the impact of our multi-stage detection approach and the

selected parameters.

5.5.1 Experimental Setup

All of our experiments are conducted on machines running Windows 7 and Ubuntu 15.04 with Intel

Xenon E5 2.4 GHz CPU and 16GB RAM. BINARM is written in C++ and utilizes a Cassandra

database21 to store all the functions along with their features. A custom python script is used in

tandem with IDA PRO to extract function CFGs in the desired JSON format. Vagrant is used

to create a specialized environment used for firmware reverse engineering as well as library cross

compilation for the ARM architecture. The utilized cross compiler is gcc-arm-linux-gnueabi version

4.7.3 using the debug flag, the static flag, and all compatible optimization flags (O0-O3). The

symbol names are preserved during the compilation process for metric validation. Docker22 is used

21http://cassandra.apache.org/. Accessed on Dec 20, 2020.
22https://www.docker.com/. Accessed on Dec 20, 2020.
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to create a containerized version of the CVE database and its associated search tools23. Python

is used in conjunction with the containerized CVE database to extract relevant CVE information

related to identified libraries. The representational state transfer (REST) interface is utilized to

perform function indexing and function matching.

Dataset. The experiments are performed on three different datasets: Vulnerability dataset, Firmware

dataset and General dataset, which are explicitly indicated in each section. In order to evaluate the

scalability of BINARM, a large number of IED and non-IED firmware images are collected from

the wild, of which 5, 756 were successfully disassembled to construct our General dataset.

Evaluation Metrics. To evaluate the accuracy of BINARM, since our data is not imbalanced and

we do not perform a direct accuracy comparison with state-of-the-art approaches, we use the total

accuracy metric:

TA =
TP + TN

TP + TN + FP + FN

where TP is the number of relevant functions retrieved correctly; FP represents the number of

irrelevant functions that are incorrectly detected; and FN indicates the number of relevant functions

that are not detected, and TN is the number of not-detected irrelevant functions.

Time Measurement. The execution time for function indexing is measured by adding the time

required for each step, including feature extraction and function indexing. The search time includes

time required for feature extraction and function discovery. The time taken to disassemble the bina-

ries using IDA PRO is excluded, where it takes on the order of seconds on average to disassemble a

binary file and can be distributed over all functions in a binary file.

5.5.2 Library Function Identification Accuracy

We evaluate the accuracy of BINARM by examining a randomly selected set of open-source libraries

from our Vulnerability Database, where the source code and the symbol names are provided in order

to validate the results. We randomly select 10% of libraries from Vulnerability Database as targets,

and match them against the remaining 90% of libraries in our repository. We repeat this process

23https://github.com/leojcollard/cve-search-docker. Accessed on Dec 20, 2020.
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various times. The average accuracy results are summarized in Table 5.7. As can be seen, the

average of total accuracy is 0.92. According to our experiments, the results can vary due to different

versions and the degree of changes in the new versions. Since the libraries are randomly selected, in

some cases the differences between versions are relatively high, resulting in a drop in the accuracy.

Library Accuracy

glibc 0.96
libcurl 0.93
libxml2 0.89
lighttpd 0.92
ntp 0.87
openssh 0.89
openssl 0.93
postgresql 0.98
zlib 0.89

Average 0.92

Table 5.7: Accuracy results for library function detection

5.5.3 Efficiency

In this section, we detail the conducted experiments to measure the efficiency of BINARM for func-

tion matching. To this end, we test the 5, 103 vulnerable functions against all functions in our Vul-

nerability Database and Netgear ReadyNAS v6.1.624 firmware separately, and measure the search

time for each function.

The obtained results are reported in Figure 5.12, where the x-axis represents the percentage of

number of functions, and the y-axis shows the cumulative distribution function (CDFs) of search

time. The searching time average values per function for each scenario are 0.01 seconds and 0.008

seconds, respectively. Note that the search time of BINARM is strongly related to the CFG com-

plexity of the target function. If the target function has a large value of graph_energy, the search

time would be higher. However, the search time of a small function against a very complex CFG

24http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip. Ac-
cessed on Dec 20, 2020.
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Figure 5.12: CDF of vulnerable function search time

would not be costly, since the complex functions are deemed dissimilar in the shape-based detection

stage and filtered out, and no heavy graph matching would be performed.

5.5.4 Comparison

In this section, we compare BINARM with the state-of-the-art approaches.

Indexing Time Comparison

In order to compare the indexing time of BINARM with the state-of-the-art DISCOVRE [78], GE-

NIUS [84], and MULTI-MH [174] approaches, we choose the Netgear ReadyNAS v6.1.625 firmware

image. The reasons of this choice are threefold: (i) the firmware is publicly available and is based

on the ARM architecture; (ii) all the aforesaid works have measured the indexing time of Netgear

ReadyNAS based on their techniques; and (iii) the hardware specifications of the machines used for

the experiments are provided. Altogether these facilitate the comparison.

25http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-
6.1.6-arm.zip. Accessed on Dec 20, 2020.
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MULTI-MH [174] GENIUS [84] BINARM DISCOVRE [78]

Time 5, 475 89.7 78.65 54.1

Hardware Intel Core i7-2640M 24 Cores Intel Xenon E5-2630v3 Intel Core i7-2720QM
Specification at 2.8GHz at 2.8 GHz at 2.4 GHz at 2.20 GHz

8GB DDR3-RAM 65GB RAM 16GB RAM 8GB DDR3 RAM

Table 5.8: Baseline comparison on indexing time (in minutes) of ReadyNAS v6.1.6

We index ReadyNAS in our database and record the indexing time. Table 5.8 illustrates the prepara-

tion time along with the hardware specifications that are reported by the aforementioned approaches,

as well as those of BINARM. By taking the machines computational power into account, BINARM

is more efficient with respect to indexing time when compared to aforesaid approaches with the

exception of DISCOVRE. The reason is that DISCOVRE only considers CFG extraction time, while

BINARM extracts additional features, such as the weighted paths. Nevertheless, the evaluation per-

formed by [84] demonstrate DISCOVRE’s inaccuracy in large scale setup.

Search Time Comparison

We further compare the search time of our prototype system with that of BINSEQUENCE [110].

The reason for this comparison is to verify the efficiency of the first two stages of detection prior

to the third stage of fuzzy matching, as BINSEQUENCE employs fuzzy matching approach after

a pre-filtering process. In this experiment, we compare three different versions of zlib library

(v1.2.5, v1.2.6, v1.2.7) with their next version using BINARM with the same setup performed in

BINSEQUENCE. For instance, we test zlib v1.2.5 against its successive version zlib v1.2.6

together with two million noise functions in the database. We collect the search time for each

scenario, and obtain the average time of 0.0002 seconds per function as reported in Table 5.9. On the

other hand, the average of search times for these three scenarios provided by BINSEQUENCE [110]

is 0.909 seconds per function. These results confirm that BINARM is three orders of magnitude

faster than BINSEQUENCE.
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Qualitative Comparison with GEMINI

One of the latest iterations in code similarity detection in binaries, called GEMINI [213], extracts

attributed control flow graphs and then employs structure2vec [59] and the Siamese archi-

tecture [31] in order to generate the graph embeddings of two similar functions close to each other.

Since during the time of this research the tool was not publicly available, only a qualitative compar-

ison was performed as follows. (i) The required training time of GEMINI, which is performed on

a powerful server with two CPUs and one GPU card, is significant compared to BINARM. (ii) The

time required to constantly retrain the neural network and re-generate the embeddings is a major

disadvantage in a real-world scenario. As such, BINARM greatly outperforms GEMINI with respect

to the indexing of new vulnerable functions. (iii) GEMINI has a total of 154 vulnerable functions

and presents a use case that employs two of them. In contrast, BINARM’s Vulnerability Database

contains 235 vulnerable functions, all of which are used for vulnerability identification. (iv) GEMINI

solely relies on a few basic features and the use of a siamese neural network to perform the compar-

ison. Such feature choices are reflected through the reported vulnerability identification accuracy of

about 82% [213]. In contrast, BINARM’s much richer collection of features and the rigorous feature

selection process help to obtain a 92% accuracy. This is partially due to the fact that BINARM takes

into account a much broader scope of information relative to a given function.

5.5.5 Detecting Vulnerabilities in Real Firmware

In this section, we demonstrate BINARM’s capability to facilitate the vulnerability identification

process in real-world IED firmware. We randomly select five firmware images from our Firmware

zlib Version BINARM BINSEQUENCE [110]

1.2.5 0.00057 0.897

1.2.6 0.00016 0.913

1.2.7 0.00009 0.918

Average 0.00027 0.909

Table 5.9: Baseline comparison on search time (seconds) per function
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Database and compare them to all vulnerable functions in our Vulnerability Database. Each result-

ing function pair is ranked using the similarity score. We consider a candidate as a potential match,

if the matching score is higher than 80%. We successfully identify 93 potential CVEs, the majority

of which are confirmed by our manual analysis.

Firmware CVE Score Firmware CVE Score
NI PMU1_0_11 CVE-2016-6303 1.00 Schneider Link150 CVE-2015-0208 0.68

CVE-2014-8176 1.00 Schneider M251 CVE-2014-2669 0.65
CVE-2014-6040 0.92 ReadyNAS v6.1.6 CVE-2015-7497 0.98
CVE-2016-7167 0.91 CVE-2014-2669 0.97
CVE-2015-0288 0.91 CVE-2015-7941 0.95

Honeywell.RTUR150 CVE-2016-0701 1.00 CVE-2014-6040 0.93
CVE-2016-2105 0.99 CVE-2010-1633 0.93
CVE-2010-1633 0.94 CVE-2014-0160 0.92
CVE-2016-6303 0.94 CVE-2015-0288 0.91
CVE-2015-0287 0.92 CVE-2014-3566 0.76

Table 5.10: Identifying CVEs in real-world firmware images

Figure 5.13: A snapshot of BINARM’s in-depth vulnerability results for vulnerability
search in NI PMU1_0_11 firmware
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A subset of obtained results are presented in Table 5.10. As shown, BINARM can successfully iden-

tify different vulnerabilities in the NI PMU1_0_11, Honeywell.RTUR150, and ReadyNAS v6.1.6

firmware images. For instance, a critical heap-based buffer overflow vulnerability (CVE-2016-

7167) with 0.91 similarity score is identified in NI PMU1_0_11 firmware. The obtained match-

ing results of vulnerable function X509_to_X509_REQ (CVE-2015-0288) in NI PMU1_0_11

firmware are depicted in Figure 5.13, which illustrates BINARM’s capability for providing in-depth

mapping results for verification purposes. Additionally, our experiments demonstrate that BINARM

can identify CVE-2014-0160 (Heartbleed vulnerability) and CVE-2014-3566 (POODLE vulnera-

bility) in ReadyNAS firmware (as also demonstrated by the state-of-the-art approaches [78, 84]) in

less than 0.5 ms. The results confirm the capability of BINARM to be applied in real-world scenarios

to perform vulnerability analysis on the IED firmware embedded in the smart grid.

5.5.6 Impact of Multiple Detection Stages

In order to study the impact of the proposed multi-stage detection engine, we employ four experi-

ments by enabling and disabling shape-based and path-based detectors (we always keep the fuzzy

matching-based detector enabled), and measure both the accuracy and efficiency of BINARM on

Vulnerability Database. To this end, we perform the tests on randomly selected projects with dif-

ferent versions and optimization settings. As shown in Table 5.11, the accuracy results remain the

same and it has not been affected by any of the prior detection stages. On the other hand, the pro-

posed multi-stage detection approach improves the efficiency of BINARM, as the time decreases

when more detection stages are enabled.

Shape-based Path-based Accuracy Time (s)

True True 0.929 626.72

True False 0.928 3649.80

False True 0.925 44823.34

False False 0.924 50671.66

Note: The fuzzy-based detector is always enabled.

Table 5.11: Impact of detection stages
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5.5.7 Impact of Parameters

In this subsection, we further study the impact of λ and γ parameters on BINARM accuracy. We

perform experiments by (i) disabling the path-based detector, and incrementing the value of λ by 5

starting from an initial value of 5; (ii) disabling the shape-based detector and incrementing the value

of γ by 5 each time, starting from an initial value of 25%. We randomly select 10% of libraries from

our Vulnerability Database as the test set, and perform the matching against remaining libraries in

our dataset. We repeat this process multiple times and record the accuracy. The experimental results

illustrated in Figures 5.14a and 5.14b demonstrate that the values of λ = 26.45 and γ = 50% return

the highest accuracy among other values.

(a) Impact of λ (b) Impact of γ

Figure 5.14: Impact of parameters

5.5.8 Scalability Study

We further investigate the time required for both indexing and retrieving matched functions to

demonstrate BINARM capability to handle firmware analysis at a large scale. To this end, we ran-

domly index one million functions from the General Dataset, and collect the indexing time per

function. Figure 5.15a depicts the CDF of the preparation time for the randomly selected functions,

and most of the functions are indexed in less than 0.1 second, where the median indexing time is

0.008 seconds, and it takes 0.02 seconds on average to index a function.

Moreover, we perform several scalability benchmarks, each utilizing a randomly selected set

of 10, 000 target functions. For each evaluation, we employ a randomly selected set of reference
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(a) CDF of indexing time (b) CDF of search time

Figure 5.15: Scalability study

functions, where its size increases in increments of 0.5 up to 2 million, as shown in Figure 5.15b.

5.6 Limitations and Concluding Remarks

In this chapter, we presented BINARM, a scalable and efficient vulnerability detection technique

for smart grid IED firmware. We proposed two substantial databases of smart grid firmware and

relevant vulnerabilities. We then introduced a multi-stage detection engine that leveraged this data

and identified vulnerable functions in IED firmware accurately and efficiently. This was further

ramified by its evaluation on real-world IED firmware images which resulted in the identification of

93 potentially vulnerable functions.

However, BINARM has the following limitations. (i) We do not currently support function in-

lining. This problem can be circumvented by leveraging data flow analysis to our multidimensional

fingerprint. We will study how to systematically address this problem in future work. (ii) Our pro-

posed system deals with ARM hardware architecture. We chose the ARM architecture because most

of IEDs embedded in industrial control systems are based on ARM processors. We will study how

to adopt BINARM to different architectures in our future work. (iii) We currently do not consider

type inference in our proposed features. However, type information is important to mitigate some

sort of vulnerabilities [35]. For instance, buffer overflow exploitation can be prevented by rewriting

variable type information executables [197].
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Chapter 6

Code Similarity Detection in

Cross-Architecture Obfuscated Binaries

Today’s Internet of Things (IoT) environments are heterogeneous as they are typically comprised of

devices equipped with various CPU architectures and software platforms. Therefore, in defending

IoT environments against security threats, the capability of cross-architecture vulnerability detec-

tion in firmware images is of paramount importance. In this chapter, we propose TIOHTIÀ:KE,

a deep learning-based approach for code similarity detection in IoT firmware images or binaries

that are possibly obfuscated and obtained through different compilers for various architectures. A

key idea that guides our research is the analogy drawn between the translation in several natural

languages, and code similarity of functions written in different assembly languages representing

different architectures.

This chapter is organized as follows. The cross-architecture code similarity detection problem

is discussed in Section 6.1. The approach overview is presented in Section 6.2. The details of our

vulnerability database and function representation are described in Section 6.3 and Section 6.4, re-

spectively. Code similarity detection approach and the evaluation results are presented in Section 6.5

and Section 6.6, respectively. The preliminary study towards our future research and concluding re-

marks are presented in Section 6.7.
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6.1 Introduction

We have been witnessing a massive adoption and deployment of IoT devices in different sectors,

such as healthcare, transportation, industrial control systems, retail, smart cities, and home net-

works. For instance, the number of connected IoT devices is estimated to reach more than 41.6

billion by 20251. Another study2 shows that by 2025 the global IoT market is expected to grow to a

value of USD 1256.1 billion. These devices enable a plethora of new services and applications with

their sensing and control capabilities. Nevertheless, such deployment induces severe and challeng-

ing security concerns, especially when it comes to critical infrastructure. In addition, the increasing

complexity and diversity introduced by these technologies amplify the possibility of design and

implementation flaws in these systems.

More specifically, IoT devices are popular subjects to different cybersecurity threats mainly due

to their Internet connectivity, complex design and diverse environments. For instance, state-backed

IoT malware show that targeted attacks on IoT devices can evade traditional cybersecurity detection

and cause catastrophic failures with significant impact to critical infrastructure. Examples include

Industroyer (also referred to as CRASHOVERRIDE) [48, 196] targetting Ukraine’s power grid to

control substation switches and circuit breakers, and BlackEnergy [164] against the Ukranian’s train

railway and electricity generation utilities. Moreover, according to the study conducted by Lloyd’s

and the University of Cambridge’s Centre for Risk Studies [79], a large-scale cyberattack can lead to

a $243 billion to $1 trillion loss to the U.S. economy. Such attacks are sometimes caused by imple-

mentation flaws and vulnerabilities in the embedded software or device firmware images. However,

identifying vulnerabilities in IoT firmware images and binaries is a challenging task mainly due to

the use of: (i) various CPU architectures, (ii) obfuscation techniques, and (iii) different compilers

and optimization settings.

Lately, we have witnessed a surge of interest in designing and implementing techniques for

function similarity on binary executables and firmware images. Some of these techniques use ma-

chine learning and deep neural networks [151, 213], natural language processing [69], and graph

1https://www.idc.com/getdoc.jsp?containerId=prUS45213219. Accessed on Dec 20, 2020.
2http://bit.ly/3hkVg5z. Accessed on Dec 20, 2020.
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theory [110]. Indeed, function similarity is a capability that enables a plethora of use cases, such as

reverse engineering and threat analysis, library function identification [63], vulnerability detection

and bug search [174], and authorship attribution [7].

The genesis of our research is stemming from two important considerations:

• Most of the existing contributions in terms of function similarity are targeting a single archi-

tecture (e.g., [69, 11, 189]). As such, there is a desideratum that consists of elaborating an

accurate, scalable, and efficient technique for cross-architecture function similarity. Such a

capability is highly needed considering the current landscape of platforms and also the high

diversity of the deployed IoT devices. If elaborated, such technique will enable the afore-

mentioned applications.

• A few works (e.g., [69, 118]) perform function code similarity in the presence of code trans-

formation techniques (e.g., obfuscation). However, these works support solely a single ar-

chitecture. When it comes to the applications of code similarity, code transformation is an

unavoidable reality nowadays. Indeed, most of binaries and firmware images are generated

with different CPU architectures, and very often employ obfuscation in the case of malware

threats or intellectual property protection, in order to deter or impede reverse engineering.

Therefore, the primary objective of this research is to design and implement a cross-architecture

code similarity detection in the presence of code transformation techniques, e.g., code optimization

and obfuscation. A significant sub-goal of our research is to build upon function similarity to design

an automatic cross-architecture and cross-compiler vulnerability detection in obfuscated binaries

and firmware images. Such a capability is of paramount importance as it will support the security

assessment of IoT devices prior to their deployment.

In essence, most of the existing proposals suffer from one of the following limitations: (i) sup-

port of a single architecture, (ii) lack of resilience to obfuscation techniques and code transforma-

tion, and (iii) not focusing on large-scale vulnerable function detection. In this research, we address

the aforementioned limitations by proposing TIOHTIÀ:KE, a code similarity detection approach that

supports cross-architecture obfuscated binaries. To demonstrate TIOHTIÀ:KE’s applicability to the
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security assessment of real-world IoT devices, we first build a large-scale vulnerability database

and then instantiate TIOHTIÀ:KE for the detection of vulnerable functions in real-world firmware

images acquired from smart grid intelligent electronic device (IEDs).

More specifically, we employ neural machine translation (NMT) by leveraging the similarity

between assembly languages and the translation between natural languages. In our context, we

consider each function representation as a sentence and translate similar functions from a source

language (e.g., ARM) into a target language (e.g., x86). To this end, we first lift the disassembeld

functions into an intermediate representation to remove the effects of different CPU architectures.

Second, we model function representations with obfuscation-resilient features and a sequence of

execution paths. Finally, we learn function embeddings and search for similar functions by leverag-

ing an LSTM Encoder-Decoder architecture [105], which is a popular choice for various purposes,

such as language translation, text summarizing and chat bots.

Contributions. Our main contributions are as follows:

• To the best of our knowledge, this is the first approach that performs code similarity de-

tection in cross-architecture binaries in the presence of different obfuscations and optimiza-

tions. For this purpose, we leverage the power of neural machine translation (e.g., LSTM

Encoder-Decoder) models to translate semantically equivalent functions from a source CPU

architecture to a target CPU architecture.

• We introduce a new function representation by identifying new features that are less affected

by code transformation techniques (e.g., compiler and obfuscation), such as call walks in

tandem with edge coverage. Further, the new function representation involves function sum-

marizing in order to overcome the memory constraints of LSTM models.

• We build the first large-scale cross-architecture cross-compiler obfuscated vulnerability database

in the context of smart grid. It includes about 9 million functions mainly from the top-25

identified open-source libraries reused in the intelligent electronic devices of the smart grid,

among which 14, 967 are vulnerable.

• We perform extensive experiments using both vulnerability database and obfuscated datasets
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to demonstrate the accuracy and efficiency of our proposed approach. Obtained results con-

firm the out-performance of TIOHTIÀ:KE over state-of-the-art approaches [69, 151]; accu-

racy improvement up to 0.993 for code similarity detection and obtaining the recall of 0.903

for obfuscated code. Also, we show that our solution can effectively identify CVEs in real-

world IoT device firmware images.

6.2 Approach Overview

In order to perform code similarity detection, we propose a technique based on neural machine

translation and sequence-to-sequence learning. The proposed solution learns the translation of a

given function from one architecture (e.g., x86) to another architecture (e.g., ARM). The overview

of our approach is depicted in Figure 6.1. Our approach consists of three phases: dataset generation,

function representation, and learning and inference, as explained in the following.

.

Figure 6.1: TIOHTIÀ:KE approach overview

• Database generation. We build a large repository of open-source libraries that reflect different

obfuscations, compiler families, optimization settings and CPU architectures. The selection of

open-source libraries is based on those that are found in IEDs in the smart grid context. We

further label the vulnerable functions by cross-referencing them with the CVE database3.

3https://cve.mitre.org/. Accessed on Dec 20, 2020.
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• Function representation. We lift the disassebmled functions into VEX intermediate representa-

tions (IR) [166] and further normalize them to reduce the effects of different CPU architectures

and compilers. We then extract the edge coverage and call walks from the normalized VEX rep-

resentation of the functions to capture function execution paths and cover obfuscation-resilient

features. Finally, we model function representations as a sequence, which is composed of the

combination of edge coverage and call walks.

• Code similarity detection. We leverage the LSTM Encoder-Decoder [49], a neural machine trans-

lation technique, to perform code similarity detection. More specifically, we train our neural

model to translate a given function from one architecture (e.g., x86) into its equivalent version for

another architecture (e.g., ARM). We detect vulnerabilities in a given function by matching with

vulnerable functions in our vulnerability database.

We elaborate on each of the phases in the following.

6.3 Vulnerability Database Generation

We build a large dataset containing different popular open-source libraries, which are frequently

used in the firmware images of smart grid IEDs. To this end, as in Chapter 5, we first identify the

manufactures that produce devices for the smart grid applications. We identified 14 manufactures,

including Schweitzer Engineering Laboratories (SEL) and General Electrics (GE). Then, we utilize

popular FTP search engines and create a simple website scraper to retrieve firmware images that

are relevant to the identified vendors. We build a firmware database consisting of 2, 687 firmware

images. Afterwards, we investigate several sources of information pertaining to identified man-

ufacturers to extract large amounts of open-source declarations. These sources include corporate

websites, product documentations, download centers, and FTP search tools. Next, we identify pub-

licly known CVEs for each of these libraries by utilizing the CVE database. Afterwards, we order

them by their weights, which are obtained by multiplying the number of CVEs, for a given library,

to the number of manufacturers that utilize that library. We consider the top-25 relevant, vulnerable

and reused open-source libraries. The obtained results are illustrated in Table 6.1, in terms of the
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numbers of CVEs reported in both 2017 (from our work in Chapter 5) and in 2020. As can be seen,

the number of CVEs has increased in the majority of identified libraries.

Library Name Compiled #CVEs #CVEs Manufacturers
(2017) (2020) ABB Cisco GE Honeywell SE Siemens

php 601 ↗ 626 • • •
imagemagick X 402 ↗ 546 • • •
openssl X 189 ↗ 204 • • • • • •
mysql X 223 223 •
tcpdump 162 ↗ 171 • • •
openssh X 87 ↗ 98 • • • • •
ntp X 79 ↗ 88 • • • • •
libtiff 149 ↗ 174 • •
postgresql X 98 ↗ 112 • • •
ffmpeg 247 ↗ 316 •
pcre 47 ↗ 48 • • • • •
python 32 ↗ 49 • • •
glibc X 81 ↗ 108 • • •
qemu 225 ↗ 276 •
libxml2 X 45 ↗ 65 • • • • •
bind 102 ↗ 119 • •
binutils X 97 ↗ 179 • •
libcurl X 5 5 • • • • •
freetype 76 ↗ 80 • •
libpng X 33 ↗ 40 • • •
samba 124 ↗ 157 •
utillinux 4 4 • • • • • •
cups 8 ↗ 10 •
lighttpd X 28 ↗ 29 • • •
netsnmp X 20 ↗ 23 • • • •

Table 6.1: Top-25 identified vulnerable open-source libraries used in smart grid IEDs

Furthermore, we extend our vulnerability database by adding more variations of the binaries,

which are originated from several architectures, compilers and obfuscation techniques. More specif-

ically, we consider the OBFUSCATOR-LLVM [120] for obfuscation purposes, which performs in-

struction SUBstitution (SUB), Bogus Control Flow (BCF), and control flow FLAttening (FLA) ob-

fuscation techniques. Instruction substitution replaces the instructions with functionally equivalent

but more complicated sequences of instructions. The bogus control flow techniques insert new basic

blocks that contain an opaque predicate and then make a conditional jump back to the original basic

block. Control flow flattening flattens the control flow graph, which first splits the body of function

into basic blocks and then puts all the blocks at same level (e.g., using a switch statement).
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MULTI-MH [174] 60 0 4 4 • • • • • • •
BINGO [41] 110 0 NA 2 • • • • • •
ESH [60] 1, 000 0 NA 8 • • • • •
DISCOVRE [78] 2, 280 0 2 3 • • • • • • • • •
GENIUS [84] 17, 626 0 8, 128 154 • • • • • •
GITZ [61] ~500K 0 NA 9 • • • • • •
GEMINI [213] 51, 314 0 8, 126 154 • • • • •
ASM2VEC [69] 16 1, 116 NA 8 • • • • •
SAFE [151] 11 0 NA 8 • • • • •
BINARM [189] 1, 174 0 5, 756 5, 103 • • •
TIOHTIÀ:KE 1, 208 6, 300 5, 831 14, 967 • • • • •

(•) means that the approach provides the corresponding feature, it is empty otherwise. (NA) means that the corresponding work dose
not consider firmware analysis.

Table 6.2: A comparison between the vulnerability databases of TIOHTIÀ:KE and state-of-
the-art approaches

We collect different source code samples of top-25 identified libraries as well as additional li-

braries (e.g., libgmp) for comparison purposes from their official websites. We then cross-compile

them for the ARM and x86 architectures using GCC compiler with different optimization settings,

i.e., O0-O3. Moreover, we leverage OBFUSCATOR-LLVM to generate the corresponding obfus-

cated versions for a subset of libraries in our database using the clang compiler with different opti-

mization settings and obfuscation techniques, i.e., FLA, BCF and SUB. Then, we identify and label

known CVEs for each library by utilizing the CVE database. Our vulnerability database consists

of about 9 million functions, 14, 967 of which are labelled as vulnerable including the duplicates

resulting from various CPU architectures, compilers, optimization settings and obfuscations.

Comparison. We compare our vulnerability database with the vulnerability datasets that are

used in the state-of-the-art approaches. The summary of this comparison is shown in Table 6.2. As

seen, TIOHTIÀ:KE has the largest vulnerability database for binaries compiled for x86 and ARM

architectures. The GENIUS [84] and GEMINI [213] approaches have less vulnerable functions,

although they include the additional architecture of MIPS. Moreover, only one other work, i.e.,

ASM2VEC [69] generates 1, 116 obfuscated binaries (including different obfuscation techniques)

whereas TIOHTIÀ:KE builds a repository of 6, 300 obfuscated binaries.
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6.4 Function Representation Generation

This section proposes a function representation method, output of which will later be the input to the

LSTM encoder-decoder model. We elaborate on each step for function representation as follows.

6.4.1 Intermediate Representation

In order to reduce architecture-specific dependencies, we employ an existing lifter to translate binary

codes to an intermediate representation (IR). We leverage VEX-IR, which is the well-known lifter

of VALGRIND project [166] and is re-implemented in the PYVEX [192] repository of ANGR [193]

framework. Our choice of VEX-IR is mainly motivated by its wide well-documented active repos-

itory and its support for different CPU architectures (e.g., x86, ARM, and MIPS). The VEX-IR

abstracts away from several architecture differences, such as register names, instruction side effects,

memory accesses, and memory segmentations. The VEX intermediate representation mainly con-

sists of expression and statement components. The expressions represent a calculated or constant

value (e.g., register reads), while the statements reflect the changes in the state of a target machine

(such as updating a memory location) that may take the expressions as input.

Data Pre-processing and Normalization. Since two expressions/statements might be identical, but

differ in terms of memory references or temporary variables, it is essential to normalize them for

both code similarity detection and neural machine translation models (Section 6.5.2). To this end,

we propose to normalize expressions and statements such that their syntax differences do not affect

the code similarity detection results. An excerpt of the proposed normalization for VEX expressions

and statements is presented in Table 6.3 and Table 6.4, respectively. For instance, the temporary

variables (e.g., t10) are normalized to TMP; and the GET:I32(0) expression that gets the value

of 32-bit %eax register (%eax is indicated by the value of 0) will be replaced with GET:IX(REG).

Example 6.4.1 In the following, we illustrate an example of the disassembled CFGs in ARM and

x86 architectures and their equivalent versions in VEX-IR. We compile zlib v1.2.8 library with

GCC compiler and optimization setting O2 for both x86 and ARM architectures. The assembly
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IR Expression VEX Output Example Normalized Output

Read Temp RdTmp(t10) RdTmp(TMP)
Get Register GET:I32(16) GET:IX(REG)
Load Memory LDle:I32\LDbe:I64 LDle:IX
Operation Add32 AddX

Table 6.3: Proposed normalization for IR expressions

IR Statement VEX Output Example Normalized Output

Write Temp WrTmp(t1) = (Expression) WrTmp(TMP)=(Expression)
Put Register PUT(16) = (Expression) PUT(REG)=(Expression)
Store Memory STle(0x1000) = (Expression) STle(MEM)=(Expression)
Exit if (condition) if(condition)

goto (Boring) 0x4000A00:I32 goto(Boring) MEM:IX

Table 6.4: Proposed normalization for IR statements

(a) x86 architecture (b) ARM architecture

Figure 6.2: CFGs of zlib-v1.2.8-inflateMark function compiled with GCC-O2 com-
piler for x86 and ARM architectures

representations of inflateMark function in x86 and ARM architectures are illustrated in Fig-

ures 6.2a and 6.2b, respectively. As can be seen, the assembly instructions are completely different,

while the control flow graphs are relatively similar. We employ VEX-IR and get the corresponding

IR representations as depicted in Figures 6.3a and 6.3b. The first basic block of inflateMark

function and its equivalent VEX-IR as well as normalized VEX-IR representations in both x86 and
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(a) x86 architecture (b) ARM architecture

Figure 6.3: VEX-IR of zlib-v1.2.8-inflateMark function illustrated in Figure 6.2

ARM architectures are represented in Figure 6.4. As seen, the obtained normalized VEX represen-

tations are very similar to each other. The only difference is in two normalized values while the

original assembly instructions are syntactically totally different.
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------------ x86 - Assembly -----------
test rdi, rdi
je 0x40a070

------------ ARM - Assembly -----------
cmp r0, #0
beq #0x409180

------------ x86 - VEX-IR ------------
t2 = GET:I64(offset=72)
PUT(offset=144) = 0x0000000000000014
PUT(offset=152) = t2
PUT(offset=160) = 0x0000000000000000
PUT(offset=184) = 0x000000000040a2d3
t11 = CmpEQ64(t2,0x0000000000000000)
t10 = 1Uto64(t11)
t8 = t10
t12 = 64to1(t8)
t3 = t12
if (t3) {

PUT(offset=184) = 0x40a320;
Ijk_Boring

}

------------ ARM - VEX-IR -----------
t0 = GET:I32(offset=8)
PUT(offset=72) = 0x00000002
PUT(offset=76) = t0
PUT(offset=80) = 0x00000000
PUT(offset=84) = 0x00000000
PUT(offset=68) = 0x0040c730
t13 = CmpEQ32(t0,0x00000000)
t12 = 1Uto32(t13)
t14 = 32to1(t12)
if (t14) {

PUT(offset=68) = 0x40c77c;
Ijk_Boring

}

------ x86 - Normalized VEX-IR ------
TMP=GET:IX(REG);
PUT(REG)=CONST;
PUT(REG)=TMP;
PUT(REG)=CONST;
PUT(REG)=CONST;
TMP=CmpEQX(TMP,CONST);
TMP=XUtoX(TMP);
TMP=TMP;
TMP=XtoX(TMP);
TMP=TMP;
if(TMP);
{;

PUT(REG)=MEM;
Ijk_Boring;

};

------ ARM - Normalized VEX-IR ------
TMP=GET:IX(REG);
PUT(REG)=CONST;
PUT(REG)=TMP;
PUT(REG)=CONST;
PUT(REG)=CONST;

PUT(REG)=CONST;

TMP=CmpEQX(TMP,CONST);
TMP=XUtoX(TMP);

TMP=XtoX(TMP);

if(TMP);
{;

PUT(REG)=MEM;
Ijk_Boring;

};

Figure 6.4: First VEX-IR basic block in zlib-v1.2.8-inflateMark function

6.4.2 Feature Engineering

In this section, we describe our choices of features that contain function semantics and are more

resilient to code transformation techniques (that are utilized in this work). TIOHTIÀ:KE captures

function semantics through natural language processing techniques, which are capable of learning

semantic relationships amongst different words in a given context. As such, we aim at model-

ing functions with a sequence of words/tokens to learn their contextual semantic relationships and

to translate functions from one CPU architecture to another one using LSTM Encoder-Decoder

model. Representing functions with a sequence of tokens can be performed by considering the

whole instructions, i.e., IR expressions/statements, in a sequential order. However, different code
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transformation techniques will affect the instructions orders. To overcome this effect, we extract

edge coverage to model functions as a sequence.

Furthermore, code transformation techniques, such as obfuscation, might inject dummy basic

blocks, which is not related to the main functionality of a function. To reduce obfuscation effects, we

propose to enrich function representations with call walks that encompass solely the nodes contain-

ing system and function calls. We represent each function by concatenating its edge coverage and

call walks. According to our experiments, these two features can represent a function for accurate

code similarity detection. In the following, we explain these features in more details.

Call Walks

The obfuscation techniques, such as BCF and FLA, usually insert additional instructions and basic

blocks compared to the original function in order to thwart code analysis. However, according

to our statistical analysis, system and function calls will be resilient to obfuscation techniques to

a large extent. In fact, system calls are an essential part of code semantics and their excessive

alteration would tamper the original functionality. Accordingly, we propose to use call walks as

part of function representation to help reduce the effects of obfuscation techniques under study in

this work.

Example 6.4.2 Consider the original libgmp v6.1.0 library cross-compiled for x86 and ARM

architectures with clang compiler (O2) and its obfuscated versions using the LLVM obfuscator. The

original CFG of default-allocate function and the corresponding BCF and FLA CFGs are

illustrated in Figure 6.5 and Figure 6.6 for x86 and ARM architectures, respectively. As seen, the

FLA technique introduces additional number of blocks which is usually significant in relation to the

function size. These blocks mainly contain one or two instructions including compare (e.g., cmp)

and branch (e.g., jmp) instructions. Similarly, BCF techniques introduce new basic blocks, which

are not part of the main functionality. While the instructions and the structure of the function are

changed, in all of these representations, the libc calls (e.g., _malloc, _fprintf and _abort)

remain the same. Noteworthy, these libc calls are located in the main basic blocks, e.g., the first and

last blocks of the flattened functions as shown in Figure 6.5c and Figure 6.6c.
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(a) Original (b) Obfuscated with BCF (c) Obfuscated with FLA

Figure 6.5: CFGs of default-allocate function in libgmp 6.1.0 compiled with
clang-O2 for the x86 architecture

(a) Original (b) Obfuscated with BCF (c) Obfuscated with FLA

Figure 6.6: CFGs of default-allocate function in libgmp 6.1.0 compiled with
clang-O2 for the ARM architecture

We identify basic blocks that contain calls (we call them essential blocks) and extract only

walks that contain those essential blocks. Our strategy is based on walking through the blocks

and capture function’s interactions with the operating system. If the current block is an essential

block, we consider this block and one block after it as part of the call walks. The main reason
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behind considering one block after the essential node is that calls in VEX-IR are converted to jump

instructions. As such, occurrence of a call in the middle of a block at assembly level results in two

blocks at the VEX-IR level, where the second block contains the effects of that call.

Algorithm 5: Call walks
Input: graph // Normalized VEX-IR control flow graph

Output: callWalkList // Call Walk of a function

1 Function Main(graph):
2 removeLoops(graph);
3 tree← constructTree(graph);
4 callWalkList← {}; callWalk← {};

// Passing three pointers to getCallWalks() function
5 getCallWalks(tree.root, callWalk, callWalkList);
6 return callWalkList;

7 Function getCallWalks(node, callWalk, callWalkList):
8 callWalk.append(node);
9 if node is critical then

10 if len(node.children)==0 then
11 callWalkList.append(callWalk);
12 return;
13 end
14 foreach child ∈ node.children do
15 getCallWalks (node.child, callWalk, callWalkList);
16 end
17 else
18 if previous node is not critical then
19 callWalkList.append(callWalk);
20 return;
21 else
22 if len(node.children)==0 then
23 callWalkList.append(callWalk);
24 return;
25 end
26 foreach child ∈ node.children do
27 getCallWalks (node.child, callWalk, callWalkList);
28 end
29 end
30 end
31 return

To acquire call walks, we extract all the paths from a normalized VEX CFG, and search for es-

sential nodes within each path. An essential node is defined as a basic block that contains at least one

of the following symbols: {Ijk_Sys_syscall, Ijk_Sys_sysenter, Ijk_Sys_int32, Ijk_Sys_int128,
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Ijk_Sys_int129, Ijk_Sys_int130, Ijk_Sys_int145, Ijk_Sys_int210, Ijk_Ret, Ijk_Call}.

While walking through each path, we extract the essential nodes and one node after them (if any),

and finally concatenate all the call walks. The details are presented in Algorithm 5.

Edge Coverage

To account for all possible reachable paths in a control flow graph, we consider edge coverage.

Recall that in software testing [99], edge coverage is used to ensure that each decision condition

from every branch (e.g., edge) is exercised at least once. As such, we choose to consider edge

coverage to model function representation as in [69]. More specifically, we iterate over all edges in

a normalized VEX control flow graph and concatenate the contents of corresponding basic blocks.

Consequently, dominant basic blocks will occur more frequently in this new function representation.

The details of the algorithm are presented in Algorithm 6. In each iteration (Line 2), the contents

of basic blocks, that are connecting the current visited edge, are concatenated as a representation of

an edge (Line 5). Finally, the concatenated basic blocks are considered as the representation of a

function edge coverage.

Algorithm 6: Edge coverage
Input: graph // Normalized VEX-IR control flow graph

Output: edgeCoverage // Edge coverage of a function

1 edgeCoverage← {};
2 foreach edge ∈ graph.Edges do

// Get the contents of source and target nodes

3 sourceNode← basicBlocks[edge.Source];
4 targetNode← basicBlocks[edge.Target];
5 seq← (sourceNode ‖ targetNode);
6 edgeCoverage← edgeCoverage ∪ seq;
7 end
8 return edgeCoverage;
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6.5 Code Similarity Detection

The key idea of our code similarity detection solution is based on the analogy between assembly

languages generated from different CPU architectures and different natural languages, and the pos-

sibility of applying neural machine translation techniques to this problem. As such, we utilize the

LSTM Encoder-Decoder model [49] that proves its accurate results when it comes to natural lan-

guage translation, text summarizing and chat bots. The LSTM Encoder-Decoder architecture is

composed of two main components: encoder and decoder. The encoder summarizes a variable-

length source sequence (e.g., a function in ARM) into a fixed-length vector representation, which

is called context vector. Then, the decoder decodes the given context vector back into a variable-

length target sequence (e.g., a function in x86). In fact, the encoder and decoder are jointly trained

to maximize the conditional probability of a target sequence, given a source sequence, where the

source and target sentences may differ in length. As such, the contextual semantic relationships

between the words in a sentence are taken into account.

The major steps of our proposed LSTM encoder-decoder based function detection framework

are illustrated in Figure 6.7. First, TIOHTIÀ:KE prepares binary functions from different architec-

tures to the input format of LSTM models. Second, it learns to translate and infer function repre-

sentations between different CPU architectures through LSTM encoder-decoder. Finally, it matches

the output (translated function) with a set of known functions in our vulnerability database for code

similarity detection.

6.5.1 LSTM Encoder-Decoder

In the LSTM Encoder-Decoder model, the encoder and decoder are implemented as LSTM net-

works, as shown in Figure 6.7. This model has two phases: learning and inference. The encoder

has the same role in both training and inference, while the decoder has different roles. As shown,

the encoder reads the whole input sequence one word at a time and generates a summary of the

input sentence, i.e., context vector c, which is the final hidden state of the encoder .
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Figure 6.7: TIOHTIÀ:KE code similarity solution

During the learning phase, the initial states of the decoder are set to the final state of the en-

coder. This means that the information is provided by the encoder to start generating the output.

Moreover, the input at each time step, t, is given as the actual output (and not the predicted output)

from the previous time step, t − 1 (a.k.a. teacher forcing [133]). This results in faster and more

efficient training of the network. During the inference phase, the decoder must predict the entire

output sentence given the input. At each time step, t, the predicated output is considered as the input

to the next step. The decoder starts with the context vector and the <START> word and predicts

the next word at a time. It produces the subsequent word based on the generated word and its hid-

den representation. It continues generating the next words until a special end-of-sentence symbol,

<END>, is produced.

More formally, the LSTM Encoder–Decoder model is composed of the input sentence as a

sequence of vectors, x = (x1, . . . , xT ), and its corresponding output sequence (y1, . . . , yT ′), where

the length T ′ may differ from the length T . The goal is to estimate the conditional probability of

p(y1, . . . , yT ′ |x1, . . . , xT ). The encoder reads the input sequence sequentially and the hidden states

ht ∈ Rn at time t are calculated as follows:

ht = f(ht−1, xt) (18)
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where f is an LSTM unit. After reading the whole input sequence, the summary of entire input

sequence (final hidden state) is stored into a vector (c).

The decoder is another LSTM that generates the output sequence by predicting the next symbol

yt given the hidden state ht. Both yt and ht are dependent on yt−1 and on the summary c of input

sequence. Therefore, the decoder hidden state ht at time t is computed as follows:

ht = f(ht−1, yt−1, c) (19)

The decoder is trained to predict the next word yt given all the previously predicated words

{y1, . . . , yt−1} and the context vector:

p(y) =
T ′∏
t=1

p(yt|y1, · · · , yt−1, c) (20)

The conditional probability is defined as follows:

p(yt|y1, · · · , yt−1, x) = softmax(g(ht)) (21)

where g indicates the transformation function that outputs a vector.

Challenges in natural language processing. There still exists few challenges in natural language

processing (NLP), such as ambiguity and pseudonyms, that might be applicable in our context

too [85, 156]. For instance, ambiguity relates to the sentences that have multiple alternative inter-

pretations in human conversations. Handling these cases is very challenging in NLP [85]. However,

since we deal with memory addresses and registers and perform logical operations that need to be

clearly defined for machines and operating systems, we assume that we do not have these kinds of

issues in our context. In our future work, we will further investigate the validity of this assumption.

6.5.2 Input Pre-Processing

To train our model, the input to the LSTM encoder-decoder model should be prepared while consid-

ering binary analysis challenges. In particular, as shown in Figure 6.7, we represent each function
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by concatenating its edge coverage and call walks from the normalized VEX-IR. Then, we convert

the content of each basic block to a hash value using a locality sensitive hashing technique, i.e.,

TLSH [171], in order to overcome the memory constraints in the LSTM models for large binary

functions. Finally, we reverse the input to the LSTM encoder, as it is known to have better transla-

tion accuracy [198]. We further provide the reasons behind our proposed solutions as follows.

Challenges

In addition to the general challenges of code similarity detection for cross-architecture obfuscated

binaries, we encounter several additional challenges during learning process. We summarize these

challenges and the elaborated solutions to address them as follows.

Challenge 1: Sequence Length: The sequential nature of LSTM models prevents parallelization

during the training time, and due to computational requirements and memory constraints handling

longer sequences becomes critical [205]. Therefore, existing works typically limit the input lengths

after a predefined value. For instance, in a natural language processing work [147], the maximum

length of a sentence is considered to be 50 words. Similarly, the binary code similarity approach

SAFE [151] limits its input length to 150 instructions. However, shortening the input size and con-

sequently ignoring a big portion of functions will affect the accuracy of our framework; especially

due to the fact that obfuscation techniques may inject a significant number of instructions into each

function, which results in shifting the original instructions to the later parts of a function.

Example 6.5.1 Consider the ImageMagick v7.0.6.10 libMagickCore.7.Q16HDRI library

cross-compiled for x86 architecture and clang compiler, both with FLA obfuscation and without

obfuscation. An example of the number of basic blocks and number of instructions of the randomly

selected functions (sorted by the number of basic blocks) is presented in Figure 6.8. As can be seen,

the number of instructions are drastically higher compared to the usual limited input length that is

considered in the state-of-the-art approaches. For instance, even if a model can handle a sequence

with maximum 512 words/instructions, in some cases only 25% of the listed function instructions

will be considered during the learning phase. This will greatly affect the accuracy of these models.
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Solution to Challenge 1: To address this challenge, we propose to summarize functions using

hashing such that each basic block will be considered as an input to the LSTM Encoder-Decoder

model. Therefore, instead of considering each VEX expression/statement as a word, we regard

each basic blocks as a word/token4. As such, we apply the Trend Micro Locality Sensitive Hash

(TLSH) [171] on the content of each basic block of normalized VEX-IR CFGs. The TLSH gen-

erates the same hash value for identical or very similar basic blocks. Thus, by utilizing the TLSH

values we reduce the length of our sentences in which each basic block is considered as a word.

This results into covering a larger portion of functions and consequently considering more expres-

sions/statements as a part of the sequences.

We further justify our above-mentioned solution as follows. The FLA and BCF obfuscation

techniques significantly affect function representations at basic block levels. For instance, both FLA

and BCF techniques inject multiple basic blocks in which there are only a few similar instructions

4In this work, we refer to TLSH basic blocks as words or tokens interchangeably.

(a) Original (b) Obfuscated with FLA

Figure 6.8: The number of basic blocks and the number of instructions of randomly se-
lected functions in ImageMagick v7.0.6.10 libMagickCore.7.Q16HDRI library
cross-compiled for x86 architecture with clang compiler
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(e.g., compare and jump instructions). Moreover, obtaining VEX-IR from an assembly function

is performed at basic block level. Besides, recent works [70, 224] consider basic blocks as the

unit of their comparisons to find the similarities between programs, functions, or code fragments.

Consequently, we consider each basic block as a word/token to be fed into our LSTM Encoder-

Decoder model. The overall process of summarizing of a function and getting a new function

representation is illustrated in Figure 6.9.

Figure 6.9: Function summarizing

Challenge 2: Vocabulary Size: The input to the LSTM encoder and decoder is in the form

of word embeddings of the function representations. These word embeddings are learned during

the training phase. One of the well-known challenges in the neural machine translation is Out-Of-

Vocabulary (OOV) words, where these words have not been seen during the training phase, while

they may appear in the test dataset. In these cases, since the model is not trained on the OOV

words, it cannot represent those words. On the other hand, converting each basic block to a TLSH

value significantly increases the size of our vocabulary. However, using a large vocabulary limits

the applicability of the model due to computation or memory constraints [216], and some words in

a very large vocabulary may contribute little to the translation process [46].

Solution to Challenge 2: To address this challenge, we first normalize VEX representations

(e.g., memory addresses and register names) as explained in Section 6.4.1, which help decreasing
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OOV words. We further reduce the size of vocabulary by following the same approach employed in

natural language processing tasks [116, 147], where the vocabulary is limited to the top 50k most

frequent words, and the words which are not part of this shortlist are generalized into <unk> token.

Reversed Source Sequences

The LSTM models are capable to learn long-term dependencies between words in long sentences.

However, in [198] the authors demonstrate that reversing the source sentences in an LSTM Encoder-

Decoder model will markedly increase the accuracy of the translation, especially on long sentences.

Since reversing process results in introducing short-term dependencies. In fact, by reversing the

source sentence, the first words in the source sentence will be close to the first words in the

target sentence; this will reduce the problem’s ‘minimal time lag’ [106] and improve the perfor-

mance [198]. Therefore, inspired by this work, we reverse the function representation sequences as

the input to the LSTM encoder.

6.5.3 Function Matching

Given a binary code or firmware image acquired from an IoT device, we are interested in finding

open-source library functions that are used in those binaries. As such, we perform code similarly de-

tection against a large repository of known open-source libraries and their CVEs. More specifically,

two binary functions are similar, if they originate from the same source code regardless of their

underlying compilers (e.g., GCC and clang), optimization settings (e.g., O0-O3), and architectures

(e.g., ARM and x86). Furthermore, possible CVEs are identified, if a given function is similar to a

vulnerable function in our repository.

Given an unknown function to the trained LSTM Encoder-Decoder model, the model outputs

the equivalent version of that function in another architecture. The output is provided with a se-

quence of TLSH tokens. We aim at computing the similarity between the output and the functions

in our repository. To achieve this goal, we first represent each function and the translated function

(output) with a numerical vector (embeddings) by employing the Distributed Memory Model of
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Paragraph Vectors (PV-DM) model [136]. The PV-DM model is inspired by learning word em-

beddings methods, which utilizes the paragraph vectors to predict the next word of a paragraph.

Moreover, the paragraph vectors take into consideration the semantics of the words as well as their

order [136]. Second, to measure the similarity between the embeddings of a given output and the

functions in our repository, the Triangle Similarity - Sector Similarity (TS-SS) similarity5 [102] is

utilized. This similarity score is recommended to be used for document comparisons [102]. Finally,

top-k ranked similar functions from the repository will be returned as possible candidate functions.

6.6 Evaluation

In this section, we first provide the experimental setup and the evaluation metrics. Then, we compare

TIOHTIÀ:KE with state-of-the-art approaches, and examine the effects of different code transforma-

tion techniques and hyper-parameters. Finally, we test TIOHTIÀ:KE on real-world firmware images

to identify vulnerabilities.

6.6.1 Experimental Settings

We adapt the LSTM Encoder-Decoder model, which is implemented in Python using keras plat-

form with tensorFlow as backend. Our experiments are conducted on a Linux server running

Ubuntu 18.04 with 2x Intel Xeon Gold 5218 (16 cores and 2.30 GHz). We utilize an SQLite6

database to store all the libraries and corresponding function embeddings. A specialized environ-

ment for reverse engineering and cross-compilation for the ARM and x86 architectures is created

by using Vagrant7. The utilized compilers are GCC version 5.4.0 and clang version 4.0.1 using

all compatible optimization flags, i.e., O0-O3. The symbol names are preserved during the com-

pilation process for metric validation. A Docker8 is used to create a containerized version of the

5https://github.com/taki0112/Vector_Similarity. Accessed on Dec 20, 2020.
6https://www.sqlite.org/index.html. Accessed on Dec 20, 2020.
7https://www.vagrantup.com/. Accessed on Dec 20, 2020.
8https://www.docker.com/. Accessed on Dec 20, 2020.

184

https://github.com/taki0112/Vector_Similarity
https://www.sqlite.org/index.html
https://www.vagrantup.com/
https://www.docker.com/


CVE database9 and its associated search tools. The ANGR framework10 [193] is utilized to setup the

environment and lift the functions into the corresponding VEX representations. The Obfuscator-

LLVM11 [120] is employed to generate obfuscated versions of the functions in our repository using

the following three flags: fla, bcf, and sub.

Datasets. In order to evaluate the proposed approach, we collect four different datasets as follows:

• Dataset I: This dataset includes two versions of the OpenSSL library, v1.0.1f and v1.0.1u,

compiled with GCC v5.4 compiler and O0-O3 optimization settings for ARM and x86 ar-

chitectures. The dataset is built as in [151, 213].

• Dataset II: We build this dataset similar to [69], which consists of Libgmp v6.1.1, Libcurl

v7.50.2, ImageMagick v7.0.6, OpenSSL v1.0.2s and zlib v1.2.7.1 libraries. We con-

sider the binaries compiled with GCC compiler and O0-O3 optimization settings.

• Dataset III: This dataset is composed of libgmp v6.1.0, ImageMagic v7.0.1, OpenSSL

v1.0.1f, and zlib v1.2.7.1 libraries compiled with clang compiler and optimization O2 with

the three FLA, BCF and SUB obfuscation flags.

We build the aforementioned datasets, which consist of function pairs from two different archi-

tectures, i.e., ARM and x86. Each dataset is split into three disjoint subsets respectively for training,

validation and test sets. We ensure that two binary functions originating from the same source code

are not part of different subsets. For the evaluation purposes, we first train the model on the valida-

tion set and save the model. Then, we use the saved model with its corresponding hyper-parameters

and evaluate the model on the test set.

6.6.2 Comparison

This section compares the accuracy results of our solution with the sate-of-the-art code similarity

detection approaches (e.g., [69, 78, 84, 151, 213, 174]), which employ deep learning models, and

9https://github.com/cve-search/cve-search. Accessed on Dec 20, 2020.
10https://github.com/angr/pyvex, Accessed on Dec 20, 2020.
11https://github.com/obfuscator-llvm/obfuscator/wiki. Accessed on Dec 20, 2020.
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identify vulnerabilities. Particularly, we compare TIOHTIÀ:KE with two best existing solutions,

i.e., SAFE [151] and ASM2VEC [69] that support cross-architecture and code obfuscation. SAFE

is reported to outperform existing cross-architecture code similarity detection [78, 84, 213, 174],

and ASM2VEC is the only existing work that supports obfuscated binaries. According to our ex-

periments, TIOHTIÀ:KE performs slightly better than ASM2VEC in handling obfuscation effects

with the recall of 0.903 on average, while ASM2VEC’s average recall is 0.849. Moreover, unlike

ASM2VEC’s single architecture support, TIOHTIÀ:KE can identify obfuscated binaries compiled

for both x86 and ARM architectures. On the other hand, the accuracy of our approach (0.993) is

similar as that of SAFE (0.992). Additionally, TIOHTIÀ:KE has the advantage of handling obfus-

cated binaries, whereas SAFE is not designed for this purpose. In the following, we elaborate on

our comparative results.

Impact of Obfuscation

We conduct experiments to demonstrate the accuracy of our approach on obfuscated binaries and

to compare it with ASM2VEC [69] approach. To this end, we prepare the same setup and similar

dataset, i.e., Dataset III, as proposed in ASM2VEC. First, we train the model on an original library

and test it against one of its obfuscated versions (e.g., FLA). Then, we train the model on the

same obfuscated version and test it against its original binary. We follow the same process for

other obfuscated libraries (e.g., BCF) and we report the average accuracy results for each set of

experiments. Similar to ASM2VEC, we use precision and recall as our evaluation metrics. On

the other hand, we preform the same experiments on Dataset III by deploying ASM2VEC12. The

execution of ASM2VEC achieves lower precision results compared to our approach. Therefore, we

present the results for the Recall@1.

As illustrated in Table 6.5, we achieve higher average recall of 0.849 for FLA obfuscation com-

pared to ASM2VEC (0.699). For the other two obfuscation techniques, we are comparable since

ASM2VEC supports only one architecture, while TIOHTIÀ:KE supports two architectures. The main

12https://github.com/McGill-DMaS/Kam1n0-Community. Accessed on Dec 20, 2020.
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reason why TIOHTIÀ:KE performs similarly as ASM2VEC, in spite of its multiple architecture sup-

port (unlike ASM2VEC), is that TIOHTIÀ:KE learns function embeddings from the known function

pairs originated from two different architectures, and translates one function representation into

another representation of the same function.

PROPOSAL Obf. libgmp ImageMagick openssl zlib Avg.
TIOHTIÀ:KE FLA 0.861 0.827 0.867 0.842 0.849
(Cross-arch.) BCF 0.923 0.878 0.971 0.904 0.919

SUB 0.897 0.951 0.974 0.934 0.940

ASM2VEC FLA 0.756 0.916 0.425 0.803 0.699
(Single-arch.) BCF 0.960 0.912 0.880 0.900 0.913

SUB 0.958 0.933 0.915 0.973 0.935

Table 6.5: Comparing the accuracy results of our cross-architecture (e.g., x86 and
ARM) approach (TIOHTIÀ:KE) and state-of-the-art single-architecture (e.g., x86) approach
(ASM2VEC) between the original and obfuscated binaries using Recall@1

We utilize Empirical Distribution Function (EDF) [38] to provide more insights about the dif-

ferences between the original functions and their obfuscated versions. We calculate the differences

between the number of nodes and the number of instructions on binaries compiled with the clang

compiler and (i) optimization setting O2 (Figure 6.10a) and (ii) all the optimization settings together

(Figure 6.10b). We observe that the largest difference between the original functions and their ob-

fuscated versions (including all optimizations) is in the case of BCF obfuscation; 10% of the BCF

obfuscated functions have the same number of nodes and instructions as their original versions, and

the average differences is about 75% on the entire corpus. The BCF obfuscation has the largest ef-

fect on the combination of different optimization settings as well, while the effects of FLA and SUB

techniques remain almost unchanged on average compared to considering only O2. This might be

resulting from the fact that the BCF obfuscation techniques inject extra basic blocks in addition to

the original functionality, which cause a much larger number of instructions and nodes in relation

to the size of the original functions.
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(a) O2 optimization

(b) O0-O3 optimizations

Figure 6.10: Empirical distribution between #nodes and #instructions in obfuscated bina-
ries compiled with clang compiler

Compiler Optimizations

We evaluate the accuracy of our approach against different compiler optimizations and compare our

results with those of ASM2VEC [69]. To this end, we first build the Dataset II and prepare the same

setup similar to [69]. We train our model with a single library and one optimization level (e.g., O2)

and test it against the same library and the next optimization level (e.g., O3). Conversely, we train

the model with one optimization level (e.g., O3) for the same library and test it with the previous

optimization level (e.g., O2). Finally, we provide the average of the obtained accuracy results. To

compare our results with ASM2VEC, we report the best and worse scenarios as done in ASM2VEC.

This includes the comparison of O2 and O3 optimizations (since the higher optimizations includes

all the strategies from the lower levels) as well as the comparison between O0 and O3 optimizations.
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We deploy ASM2VEC by considering the provided hyper-parameters and preform similar exper-

iments using the same dataset. In these experiments, ASM2VEC shows significantly lower accuracy

results than the reported results in the paper (which might have been caused by a mismatch in the

configurations that are not explicitly mentioned in the paper or code repository). Therefore, we re-

port the published results directly from the paper for comparison purposes in Table 6.6. As shown,

TIOHTIÀ:KE and ASM2VEC perform almost the same, with a slight improvement in the case of the

comparison between the O0 and O3 optimizations in favour of TIOHTIÀ:KE, considering the fact

that TIOHTIÀ:KE supports two CPU architectures.

PROPOSAL Opt. libgmp ImageMagick libcur openssl zlib Avg.
TIOHTIÀ:KE O2 vs. O3 0.932 0.971 0.943 0.975 0.861 0.936
(Cross-arch.) O0 vs. O3 0.801 0.731 0.770 0.789 0.867 0.848

ASM2VEC O2 vs. O3 0.973 0.971 0.951 0.931 0.885 0.936
(Single-arch.) O0 vs. O3 0.763 0.837 0.850 0.792 0.722 0.793

Table 6.6: Comparing the accuracy results of our cross-architecture (e.g., x86 and ARM)
approach and reported results in the state-of-the-art single-architecture (e.g., x86) ap-
proach [69] (ASM2VEC) while varying the optimization settings for binaries compiled with
GCC compiler using Precision@1

The pair-wise comparisons between each optimization setting and other optimization settings,

in binaries compiled with the GCC and clang compilers, are presented in Figure 6.11. As for the

binaries compiled with the GCC compiler, Figure 6.11a shows that the difference between O0 and

other optimization settings, i.e., O1-O3, is higher compared to other cases. As illustrated, the

percentage of these function pairs to be similar is about 17% − 18%, and about 43% − 50% of

the function pairs differ from each other on average. In contrast, the difference between function

pairs compiled with O2 and O3 has the lowest value; the percentage of the functions with the same

number of nodes and instructions is 84%. On the other hand, the differences between the function

pairs compiled with the clang compiler and O1-O3 against O0 optimization drops (Figure 6.11b),

and the differences between the binaries compiled with O2 and O3 is nearly zero.
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(a) GCC compiler

(b) clang compiler

Figure 6.11: Empirical distribution between #nodes and #instructions in binaries compiled
with GCC abd clang compilers and all the optimization settings

Cross-architecture Binaries

To compare our solution with the state-of-the-art cross-architecture approache, we build Dataset I

similar to [213, 151] approaches. Similar to SAFE [151], we perform 5-fold cross validation, in

which we split the dataset into five groups of approximately equal sizes, and for each group we

generate the training and testing data. Then, we train the model on the training dataset and test it

against the testing dataset. Finally, we report the average results of the independent experiments.

In this settings, we measure the Receiver Operating Characteristic (ROC) performance measure-

ment. We obtain the area under the ROC curve (AUC) of 0.993, which is very slightly better but

comparable to the reported AUC of 0.992 in SAFE. In fact, the advantage of TIOHTIÀ:KE over

SAFE is that TIOHTIÀ:KE can handle obfuscated binaries, while SAFE is not designed for that.

Since the whole sequences of the instructions are fed into an RNN model proposed by SAFE, those
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instruction sequences can be altered by the obfuscation techniques.

6.6.3 Accuracy Results

The primary objective of our experiments is to evaluate the accuracy of TIOHTIÀ:KE. We randomly

select different libraries from our repository that are compiled with both GCC and clang compilers

and O0-O3 optimization settings. Similar to [151], we perform 5-fold cross validation.

Impact of Compiler Optimization

In this section, we examine the effects of compiler optimizations on the accuracy of our approach.

We first consider one library (e.g., zlib) compiled with the GCC compiler and all the optimization

settings, i.e., O0-O3. Then, we perform 5-fold cross validation and report the average accuracy

results using precision and recall performance metrics. We repeat the same experiments for the

same library compiled with the clang compiler and all the optimization settings and report the

average accuracy results. We carry out similar experiments for all the selected libraries. Obtained

accuracy results are presented in Table 6.7 and Table 6.8.

LIBRARY
Precision

Optimization (O0-O3) Compiler (GCC & clang ) AverageGCC clang O0 O1 O2 O3

libgmp 0.895 0.913 0.911 0.860 0.901 0.901 0.890
Imagemagick 0.856 0.900 0.825 0.856 0.856 0.856 0.861
openssl 0.901 0.980 0.862 0.899 0.903 0.899 0.907
valgrind 0.873 0.899 0.801 0.825 0.833 0.841 0.849
zlib 0.905 0.901 0.825 0.859 0.860 0.862 0.869

All Libraries Precision: 0.84 (k=1)

Table 6.7: Accuracy results of TIOHTIÀ:KE using Precision

LIBRARY
Recall

Optimization (O0-O3) Compiler (GCC & clang ) AverageGCC clang O0 O1 O2 O3

libgmp 0.814 0.975 0.882 0.841 0.882 0.893 0.879
Imagemagick 0.802 0.897 0.800 0.802 0.798 0.823 0.822
openssl 0.850 0.879 0.843 0.873 0.871 0.871 0.865
valgrind 0.827 0.816 0.780 0.804 0.811 0.819 0.810
zlib 0.874 0.860 0.798 0.834 0.848 0.839 0.842

All Libraries Recall: 0.76 (k=20)

Table 6.8: Accuracy results of TIOHTIÀ:KE using Recall
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As illustrated in Table 6.7, we get the highest precision of 0.901 in identifying OpenSSL func-

tions compiled with the clang compiler, and the lowest precision of 0.856 for the ImageMagick

library compiled with the GCC compiler. To get additional insights, we perform statistical analysis

by utilizing EDF to examine the differences between function pairs in ImageMagick as well as

OpenSSL libraries. The results of these analyses are depicted in Figure 6.12a and Figure 6.12b,

respectively. As shown, function pairs in OpenSSL library compiled with different optimization

settings are more similar to each other (especially in the case of high optimization settings). For

instance, 99% of function pairs compiled with O2 and O3 optimizations have the same number of

nodes and instructions. On the other hand, 70% of function pairs compiled with the GCC compiler

and O2 and O3 optimization in the ImageMagick library are similar. This will lead to higher

accuracy results while identifying the functions in the OpenSSL library.

(a) ImageMagick compiled with GCC

(b) OpenSSL compiled with clang compiler

Figure 6.12: Empirical distribution between #nodes and #instructions in two libraries com-
piled with different compilers and optimization settings
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Impact of Compilers

We further examine the effects of compilers by considering libraries that are compiled with two

different compilers (GCC and clang) while fixing the optimization setting (e.g., O2). The obtained

accuracy results are listed in Table 6.7. On average, OpenSSL library functions compiled with

optimization O2 are identified with the highest precision of 0.903, while identifying libgmp library

functions with optimization O3 has the highest recall of 0.893.

The effects of compilers, in terms of the number of nodes and instructions for different function

pairs is illustrated in Figure 6.13. As shown, the more the code is optimized, the more similar the

functions compiled with different compilers are. For instance, the distance between 31% of function

pairs compiled with O3 is zero and on average the distances are 0.16, while only 17% of them are

similar when the code is least optimized (e.g., for O0).

.

Figure 6.13: Empirical distribution between #nodes and #instructions in binaries compiled
with GCC and clang compilers and the same optimization settings.

Accuracy Results for All Libraries

We repeat the experiments by considering all the libraries compiled with the GCC and clang compil-

ers and all the optimization settings, i.e., O0-O3. The obtained results indicate the overall precision

of 0.84 and the recall of 0.76 for the top-1 and top-20 (k=20) candidate functions, respectively.

As seen, the best results are obtained in the case where the compilers are fixed and the opti-

mization settings vary (second and third sub-columns in Table 6.7). On the other hand, training the
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model with one compiler (e.g., GCC) and testing with the same library but compiled with another

compiler (e.g., clang) gives the lowest accuracy results.

6.6.4 Hyper-parameters Selection

In this section, we investigate the effectiveness of hyper-parameters in our model. In particular, we

consider Dataset I and examine the impact of the number of training epochs, embedding size, and

the number of LSTM network layers.

Number of Epochs

We train our model with 600 epochs and evaluate the loss and AUC on the validation set. The

obtained results are illustrated in Figure 6.14. As illustrated, after about 20 epochs the loss drops

to a low value of 0.00023, and afterwards it keeps decreasing and gets closer to zero. The highest

AUC value appears at epoch 600, which is equal to 0.989. Whilst the model can be trained for 20

epochs to achieve reasonably good AUC performance of 0.801, to get the best AUC it needs to be

trained till 600 epochs.

(a) AUC (b) LOSS

Figure 6.14: Effects of epoch on AUC and loss
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Embedding size AUC
150 0.752
200 0.811
250 0.890
300 0.891

(a) Embedding size

Latent dimension AUC
250 0.890
300 0.969
350 0.977
400 0.895

(b) Latent dimension

# LSTM Layers AUC
1 0.977
2 0.993
3 0.971

(c) # LSTM Layers

Table 6.9: Impact of different hyper-parameters

Embedding Size

In order to find the best optimum embedding size, we conduct separate experiments while indepen-

dently varying word embedding size and latent dimension starting from 150 and 250, respectively.

We increase these values by 50 each time, and measure their effects on the AUC, as listed in Ta-

ble 6.9. As seen, selecting the values of 250 and 350 respectively for the embedding size and latent

dimension, are the best choices. Although choosing the embedding size of 300 results in a slightly

better accuracy, due to the trade-off between the accuracy and efficiency, we choose 250.

Network Layers

We further conduct experiments to examine the effects of the number of LSTM layers on the accu-

racy of our model. To this end, we fix the embedding size and latent dimension respectively to 250

and 350 (which are obtained from the previous experiments), and train the model by varying the

number of LSTM layers over 600 epochs. The obtained results are illustrated in Table 6.9c. It can

be seen that choosing two LSTM layers yields the highest AUC.

6.6.5 Out-Of-Vocabulary Words

In this section, we evaluate the effect of out-of-vocabulary (OOV) words. We consider the entire

corpus in order to perform two sets of experiments as follows.

The Growth of Vocabulary Size. We examine how much the size of the vocabulary grows (i)

before performing any processing on the VEX presentation, (ii) after normalization, and finally
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(iii) when we apply the TLSH on the normalized basic blocks. To this end, we consider all the

words/tokens in the whole corpus excluding two randomly selected binaries, which are reserved for

the next set of experiments. Then, we divide the corpus equally into 20 parts. For each part, we

count the vocabulary size in terms of the corpus percentage that has been already analyzed. The

obtained results are presented in Figure 6.15a. As seen, before the normalization process (e.g.,

Instruction VEX-IR and Basic Block VEX-IR), the more the proportion of the corpus is used, the

larger the vocabulary size is. Whilst, the vocabulary size remains almost the same within the whole

corpus in the case of using the TLSH values similar to the normalized VEX-IR.

We additionally count the vocabulary size per basic block without applying the TLSH, i.e.,

Basic Block VEX-IR. As shown, the vocabulary size increases with the growth of the used corpus.

These results confirm the effectiveness of our preprocessing and TLSH generation solutions.

(a) The growth of vocabulary size (b) The proportion of unseen tokens

Figure 6.15: Evaluation on out-of-vocabulary tokens

The Proportion of Unseen Tokens. We further select two binaries that were excluded from the

corpus of the previous experiments. Then, we count the percentage of unseen tokens that do not

exist in the obtained vocabulary from the previous experiments. We perform this experiments at both

VEX-IR instruction and basic block levels, normalized VEX-IR and TLSH values. The obtained

results are presented in Figure 6.15b , which indicate that the proportion of unseen tokens in the

VEX representation is more than that of TLSH tokens.
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6.6.6 Efficiency

In this section, we evaluate the efficiency of our approach with respect to normalized VEX-IR

generation and training time. We consider Dataset II, which contains five libraries and 261, 570

function pairs for the x86 and ARM architectures.

Normalized VEX-IR Extraction Time. We measure the efficiency of our approach to extract the

normalized VEX-IR, which includes the process of lifting the disassembled functions into the VEX

representation along with the normalization process and indexing. In this setting, we use multi-

threading in order to enhance the efficiency.

(a) Cumulative distribution function (b) Entire Dataset

(c) #instructions and #edges are less than 1, 000 (d) #instructions and #blocks are less than 1, 000

Figure 6.16: Efficiency evaluation on Dataset II

We measure the cumulative distribution function (CDF) to extract normalized VEX-IR func-

tions as presented in Figure 6.16a. Furthermore, the extraction time for the normalized VEX-IR
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with respect to functions size is illustrated in Figure 6.16b. For the sake of clarity, a subset of the

obtained results for functions with less than 1, 000 instructions, edges and blocks are represented in

Figure 6.16c and Figure 6.16d, respectively. We observe that the extracting time increases the most

when the number of edges and the number of blocks increase compared to the increase in the size of

instructions. We also measure the average extraction time (excluding the indexing time) per library,

and we obtain 0.169, 0.125, 0.140, 0.101 and 0.131 seconds for the ImageMagick, libgmp,

libcurl, OpenSSL, and zlib libraries, respectively. The average indexing time per function in

all the libraries, on the other hand, is 0.0603 seconds.

Training Time. We further examine the effects of different hyper-parameters on the training time.

First, we train the model by varying the embedding size starting from 50 to 350 over 100 epochs.

The average training time is illustrated in Figure 6.17a. Then, we measure the effects of latent

dimension on training time by fixing the embedding size to 100 and varying the latent dimension.

As shown in Figure 6.17, the higher the embedding size or latent dimension is, the slower the

training of the model is. However, since the training process is a one-time task, in our evaluations

we consider for each parameter the value that gives the best comparable accuracy regardless of their

training time. Moreover, definitely using GPUs will speed up the training time significantly.

(a) Effects of embedding size (b) Effects of latent dimension

Figure 6.17: Training time with varying embedding size and latent dimension

Furthermore, we measure the training time of our model by fixing the embedding size at 30,
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and varying the number of LSTM layers from one to three. We change the LSTM layers uniformly

for both encoder and decoder. For each setting, we also change the size of the latent dimension to

30 and 50. The training time with respect to different LSTM layers is illustrated in Figure 6.18.

.

Figure 6.18: Training time with varying embedding size and number of network layers

6.6.7 Detecting Vulnerabilities on Real-World Firmware

ReadyNAS v6.1.6 NI PMU1_0_11 Honewell.RTUR150
CVE Similarity CVE Similarity CVE Similarity
CVE-2010-1633 0.865 CVE-2016-6303 0.966 CVE-2016-0701 0.983
CVE-2014-0160 0.863 CVE-2014-8176 0.971 CVE-2016-2105 0.963
CVE-2015-0288 0.900 CVE-2015-0288 0.899 CVE-2010-1633 0.915
CVE-2014-3566 0.750 CVE-2010-1633 0.881 CVE-2016-6303 0.897

Table 6.10: Identifying CVEs in real-world firmware images

In this section, we demonstrate the capability of TIOHTIÀ:KE to enable the vulnerability iden-

tification in real-world IED firmware. As such, we choose three publicly available firmware images

from our firmware database. We choose the Netgear ReadyNAS v6.1.613 firmware image, which is

available for both ARM and x86 architectures. We train our model on Dataset I, which consists of

different versions on the OpenSSL library. The inputs to the encoder and decoder are the function

pairs, <ARM, x86>, cross-compiled for the ARM and x86 architectures, respectively. Then, we

13http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip. Ac-
cessed on Dec 20, 2020.
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test our model with Netgear ReadyNAS v6.1.6 firmware image for x86 architecture. Each resulting

function pair is ranked using the similarity score. We consider a candidate as a potential match, if

the similarity score is higher than 75%. A subset of obtained results is illustrated in Table 6.10. As

seen, TIOHTIÀ:KE can identify the Heartbleed vulnerability (CVE-2014-0160), which is a serious

vulnerability in the TLS and DTLS implementations of OpenSSL v1.0.1 (before v1.0.1g), in the

Netgear ReadyNAS v6.1.6 firmware image. This is also demonstrated by a number of state-of-the-art

approaches [78, 84, 189].

We further consider the PMU1_0_1114 and Honeywell.RTUR150 firmware images, which are

based on the ARM architecture. In this setting, we train our model on Dataset I, where the inputs to

the encoder and decoder are the function pairs in <x86, ARM> architectures, respectively. Then,

we test our model with the PMU1_0_11 firmware image based on the ARM architecture. We can

identify the CVE-2015-0288 in the NI PMU1_0_11 firmware image. This vulnerability is identified

by finding a matche with the X509_to_X509_REQ function in OpenSSL in our repository. We

perform similar test for the Honeywell.RTUR150 firmware image. The obtained results confirm the

capability of TIOHTIÀ:KE for performing vulnerable function search on the real-world firmware im-

ages. Moreover, it demonstrates the TIOHTIÀ:KE’s capability to match known vulnerable functions

in binaries compiled for one architecture (e.g., x86) to unknown functions compiled for another

architecture (e.g., ARM) and vice versa.

6.7 Limitations and Concluding Remarks

In this chapter, we proposed a cross-architecture code similarity detection approach with an appli-

cation to vulnerability detection that also supports obfuscated binaries. To this end, we first built

a large-scale vulnerability database that consists of most relevant and common cross-architecture

cross-compiled vulnerable open-source libraries, that are used in the smart grid context. Then, we

lifted the disassembeld functions into an intermediate representation and modeled function repre-

sentations with a sequence of execution paths. Afterwards, we utilized an LSTM Encoder-Decoder

14http://digital.ni.com/public.nsf/allkb/5391E8424944D0BC86257E45000B025C. Accessed on Jan
15, 2018.
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architecture to translate functions between different CPU architectures (e.g., ARM to x86). Next,

we perform function matching for code similarity and vulnerability detection. We further applied

our approach to real-world firmware images and identified potential CVEs.

However, TIOHTIÀ:KE has currently the following limitations, which will potentially be ad-

dressed in our future works. First, it currently does not consider the effects of function inlining.

Also, our current training phase might be more efficient through performing feature selection prior

to learning. Additionally, we have not considered the effects of other obfuscators (e.g., Tigress [22]).

Finally, we intend to evaluate our approach for other architectures (e.g., MIPS).
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Chapter 7

Conclusion

The popularity of digital technologies, especially with the development of Internet of Things (IoT),

has seen a significant growth. Information technology (IT) and IoT devices are almost everywhere,

ranging from consumer electronics and home networks to industrial sectors, such as healthcare,

transportation, industrial control systems, retail, and smart cities. However, this growing popular-

ity of IT turns it into a major subject of cybersecurity threats. On the other hand, the number of

vulnerabilities are increasing1. Therefore, there is an urgent need of techniques that allow for code

security assessment to uncover vulnerabilities. To address this gap, this thesis provides automated

solutions for fingerprinting binary code and identifying known security vulnerabilities in program

executables and firmware images of IoT devices. More specifically, we addressed several threats

of research on binary code fingerprinting that targeted several applications, mainly, compiler prove-

nance attribution, library function identification, code similarity detection and vulnerable function

detection in cross-architecture and cross-compiler obfuscated binaries.

More specifically, we first presented a technique called BINCOMP for recovering compiler

provenance of program binaries using syntactic, semantic, and structural features to capture com-

piler behaviors. BINCOMP can provide information about the build environment and also label

compiler-related functions, the latter will accelerate binary analysis tasks. Second, we introduced

1https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-

severity-distribution-over-time. Accessed on Jan 21, 2021.
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BINSHAPE with novel concept to representing a function based on its shape and proposed accord-

ingly a robust signature for each standard library function from diverse collection of heterogeneous

features. In addition, we designed a novel data structure to efficiently support accurate and scalable

detection. BINSHAPE labels standard library functions, which accelerates binary analysis tasks and

contributes to the improvement of accuracy. Third, we built a multi-stage detection engine called

BINARM to efficiently identify vulnerable functions in IoT (e.g., intelligent electronic devices in

the smart grid) firmware images, while maintaining high accuracy. BINARM can detect free-open-

source library functions in firmware images and eventually identify possible security vulnerabilities

that exist in those identified functions in the ARM architecture. Identifying vulnerable functions

contributes towards code assessment and patch analysis in normal binaries and IoT devices. Finally,

we leveraged neural machine translation techniques for code similarity and vulnerable function

detection in cross-architecture cross-compiled obfuscated binaries and firmware images. This ca-

pability will help detect reused free open-source libraries and vulnerable functions in a binary code

compiled with different compilers for various architectures in the presence of obfuscation.

To summarize, our four contributions together can help to label different types of functions

in a given binary, namely compiler functions, standard library functions, free open-source library

functions and vulnerable functions. Identifying the first three types of the functions will assist

security analyst to first gain information about the underlying functionalities of that binary (e.g.,

file sharing), and then shift focus to unknown functions for more accurate and efficient analysis.

Vulnerable function detection can help to assess the security of a binary or firmware images, for

instance to ascertain that a provided patch does not contain known security vulnerabilities.

Our work can be extended in several directions. First, our methods are not currently designed

to identify function inlining. In the future, we will consider data flow analysis and symbolic exe-

cution as potential solutions to this problem. Second, our proposed feature extraction and detection

approaches along with statistical analysis can be applied on binaries compiled for different CPU

architectures (e.g., ARM and x86) in order to provide comprehensive insights on the effects of

different architectures (e.g., CISC2 versus RISC3) at binary level. For instance, ARM instructions

2Complex Instruction Set Computing
3Reduced Instruction Set Computing
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operate only on registers with a few instructions for reading/writing data from/to memory, while x86

can operate directly on memory. We aim at capturing these subtle but important effects on features

imposed by different architectures and obfuscation techniques. Third, by taking further advantage

from the set of high-value features introduced in this thesis, we might enhance the detection models

based on advanced machine learning techniques and deep neural networks. Fourth, our proposed

techniques can be improved to support other obfuscation techniques, such as virtualization and jilt-

ing, by utilizing a set of dynamic features. Furthermore, enhanced machine learning techniques that

include adversarial models can be further investigated. Finally, our current approaches extensively

used static analysis, which can be enhanced by exploring dynamic analysis or a hybrid technique

(combination of both static and dynamic analyses).

In summary, this thesis shows the efficacy of machine learning in conjunction with conven-

tional binary static analysis to solve various binary fingerprinting problems. Furthermore, this work

shows that natural language processing in binary code analysis can contribute to extract relevant

code semantics, which could not be easily extracted through other traditional static approaches. Ad-

ditionally, this thesis explored on understanding the inner-working of obfuscation (e.g., control flow

flattening and bogus control flow graph). Moreover, the proposed methods in this thesis can po-

tentially be integrated with existing dynamic approaches to further propose a more in-depth binary

analysis solution. Finally, our binary analysis can be complemented with other types of analysis,

such as network analysis, to provide even more comprehensive solutions to defend against various

cyber-threats in today’s digital infrastructures.
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Contributions of Authors

In what follows, a description of authors’ contributions on each of the proposed works is provided.

Survey on Static Binary Analysis Approaches. In Chapter 2, we provide a comprehensive review

along with quantitative and qualitative comparisons of state-of-the-art function matching and vul-

nerability detection approaches. My contribution is essentially to review static analysis and code

similarity detection solutions, and to propose layered taxonomies for both approaches and utilized

features, followed by open challenges and lesson learned. This work has been conducted with Ab-

dullah Qasem, who performed a complementary survey of dynamic analysis approaches as well

as collaborators from Hydro-Québec and Thales, who provided valuable comments and feedback.

This survey has been accepted to be published in ACM Computing Surveys (CSUR).

Compiler Provenance Attribution. In Chapter 3, we devise a practical approach for compiler

provenance attribution. Our main contribution is to propose a multi-layered approach, which ana-

lyzes the syntax, structure, and semantics of functions in order to identify the compilers, compiler

functions, and compiler versions and optimizations at each layer. My main contribution is in the

second layer in which we label compiler-related functions and also the implementation and evalu-

ation of the state-of-the-art approaches. This work was a collaboration with Ashkan Rahimian and

Saed Alrabaee, who contributed in two other layers of the approach and the implementation.

Library Function Identification. In Chapter 4, we propose a scalable and robust system to iden-

tify standard library functions in binaries. My main contribution is to propose a library function

identification approach that derives a robust signature for each library function based on heteroge-

neous features and incorporates a novel data structure to store such signatures and facilitate efficient

matching against a target function.

Vulnerability Detection in Firmware Images. In Chapter 5, we propose a scalable and accurate

solution to detect vulnerable functions in firmware images. My main contribution is to propose

a multi-stage detection mechanism, where we first filter out the irrelevant functions through the

inexpensive operations, and then perform comparatively expensive and more accurate operations

on smaller set of functions to detect the final vulnerable functions. This work has been conducted
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with Leo Collard, who contributed in developing the idea of one of the stages and implementation

of the approach, as well as collaborators from Hydro-Québec and Thales, who provided valuable

comments and feedback.

Cross-Architecture Code Similarity and Vulnerability Detection. In Chapter 6, we propose a

code similarity detection approach to identify vulnerable functions in binaries compiled with differ-

ent compilers for different architectures in the presence of obfuscation techniques. My main con-

tribution is to identify obfuscation-resilient feature and propose a neural machine translation-based

solution, where we leverage the similarity between the translation of natural language processing

(e.g., English to French) and code similarity detection for assembly language resulted from different

CPU architectures (e.g., ARM and x86). This work has been conducted with Ling Tan, who mainly

contributed in the implementation of the approach, as well as the collaborators from Hydro-Québec

and Thales, who provided valuable comments and feedback.
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[66] E. Dimitriadou, S. Dolničar, and A. Weingessel. An examination of indexes for determining
the number of clusters in binary data sets. Psychometrika, 67(1):137–159, 2002.

[67] A. Dinaburg and A. Ruef. McSema: Static translation of x86 instructions to LLVM. In
REcon 2014 Conference, Montreal, Canada, 2014.

[68] S. H. Ding, B. Fung, and P. Charland. Kam1n0: Mapreduce-based assembly clone search for
reverse engineering. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 461–470. ACM, 2016.

211



[69] S. H. Ding, B. C. Fung, and P. Charland. Asm2vec: Boosting static representation robustness
for binary clone search against code obfuscation and compiler optimization. In Proceed-
ings of the 40th International Symposium on Security and Privacy (S&P), pages 38–55, San
Francisco, CA, May 2019. IEEE Computer Society.

[70] Y. Duan, X. Li, J. Wang, and H. Yin. DeepBinDiff: Learning program-wide code representa-
tions for binary diffing. In Proceedings of the 27th Annual Network and Distributed System
Security Symposium (NDSS), 2020.

[71] T. Dullien and S. Porst. REIL: A platform-independent intermediate representation of disas-
sembled code for static code analysis, 2009.

[72] T. Dullien and R. Rolles. Graph-based comparison of executable objects (english version).
Symposium on Information and Communications Security (SSTIC), 5:1–3, 2005.

[73] C. Eagle. The IDA pro book: the unofficial guide to the world’s most popular disassembler.
No Starch Press, 2011.

[74] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on automated dynamic malware-
analysis techniques and tools. ACM Computing Surveys (CSUR), 44(2):6, 2012.

[75] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket execution: Dynamic similarity
testing for program binaries and components. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 303–317, 2014.

[76] A. Ehrenfeucht. An application of games to the completeness problem for formalized theo-
ries. Fundamenta Mathematicae, 49(129-141):13, 1961.

[77] K. L. Elmore and M. B. Richman. Euclidean distance as a similarity metric for principal
component analysis. Monthly Weather Review, 129(3):540–549, 2001.

[78] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla. discovRE: Efficient cross-architecture
identification of bugs in binary code. In Proceedings of the 23rd Symposium on Network and
Distributed System Security (NDSS), 2016.

[79] Executive Office of the President of the United States. The Cost of malicious cy-
ber activity to the U.S. economy. https://www.whitehouse.gov/wp-
content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-
to-the-U.S.-Economy.pdf, 2018.

[80] N. Falliere, L. O. Murchu, and E. Chien. W32. Stuxnet dossier. White paper, Symantec
Corporation, Security Response, 5(6), 2011.

[81] M. R. Farhadi, B. C. Fung, Y. B. Fung, P. Charland, S. Preda, and M. Debbabi. Scalable code
clone search for malware analysis. Digital Investigation, 15:46–60, 2015.

[82] F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering algorithms revisited. ACM
SIGKDD Explorations Newsletter, 2(1):51–57, 2000.

[83] Q. Feng, M. Wang, M. Zhang, R. Zhou, A. Henderson, and H. Yin. Extracting conditional
formulas for cross-platform bug search. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security (ASIACCS), pages 346–359. ACM, 2017.

212

https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf


[84] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin. Scalable graph-based bug search
for firmware images. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 480–491. ACM, 2016.

[85] A. Ferrari and A. Esuli. An NLP approach for cross-domain ambiguity detection in require-
ments engineering. Automated Software Engineering (ASE), 26(3):559–598, 2019.

[86] H. Flake. Structural comparison of executable objects. In Proceedings of the International GI
SIG SIDAR Workshop on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), pages 161–174. Gesellschaft für Informatik eV, 2004.

[87] A. Frank. On Kuhn’s Hungarian method - A tribute from Hungary. Naval Research Logistics
(NRL), 52(1):2–5, 2005.

[88] E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten. Using model trees for classifica-
tion. Machine Learning, 32(1):63–76, 1998.

[89] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In International
Conference on Computer Aided Verification (CAV), pages 519–531. Springer, 2007.

[90] D. Gao, M. K. Reiter, and D. Song. Binhunt: Automatically finding semantic differences in
binary programs. In International Conference on Information and Communications Security
(ICICS), pages 238–255. Springer, 2008.

[91] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun. Vulseeker: A semantic learning based vulnera-
bility seeker for cross-platform binary. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE), pages 896–899. ACM, 2018.

[92] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern Analysis and
applications, 13(1):113–129, 2010.

[93] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural detection of Android malware
using embedded call graphs. In Proceedings of the 2013 ACM workshop on Artificial intelli-
gence and security (AISec), pages 45–54. ACM, 2013.

[94] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[95] G. Graefe and H. Kuno. Modern B-tree techniques. In 2011 IEEE 27th International Con-
ference on Data Engineering (ICDE), pages 1370–1373. IEEE, 2011.

[96] C. Griffin. Graph Theory: Penn State Math 485 Lecture Notes. 2012.

[97] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Automatic generation of string signatures
for malware detection. In International Workshop on Recent Advances in Intrusion Detection
(RAID), pages 101–120. Springer, 2009.

[98] Y. Guillot and A. Gazet. Automatic binary deobfuscation. Journal in computer virology,
6(3):261–276, 2010.

[99] A. Gurfinkel. Testing: Coverage and structural coverage. University of Waterloo, https://
ece.uwaterloo.ca/~agurfink/stqam/assets/pdf/W03-Coverage.pdf.

213

https://ece.uwaterloo.ca/~agurfink/stqam/assets/pdf/W03-Coverage.pdf
https://ece.uwaterloo.ca/~agurfink/stqam/assets/pdf/W03-Coverage.pdf


[100] G. Hamerly and C. Elkan. Learning the k in k-means. In Advances in Neural Information
Processing Systems (NeurIPS), pages 281–288, 2004.

[101] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier, 2011.

[102] A. Heidarian and M. J. Dinneen. A hybrid geometric approach for measuring similarity
level among documents and document clustering. In IEEE Second International Conference
on Big Data Computing Service and Applications (BigDataService), pages 142–151. IEEE,
2016.

[103] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra. Finding software license viola-
tions through binary code clone detection. In Proceedings of the 8th Working Conference on
Mining Software Repositories (MSR), pages 63–72. ACM, 2011.

[104] S. Hido and H. Kashima. A linear-time graph kernel. In Ninth IEEE International Conference
on Data Mining (ICDM), pages 179–188. IEEE, 2009.

[105] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[106] S. Hochreiter and J. Schmidhuber. LSTM can solve hard long time lag problems. Advances
in Neural Information Processing Systems (NIPS), pages 473–479, 1997.

[107] G. Holmes, A. Donkin, and I. H. Witten. WEKA: A machine learning workbench. In Pro-
ceedings of Australian New Zealnd Intelligent Information Systems Conference (ANZIIS),
pages 357–361. IEEE, 1994.

[108] X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale malware indexing using function-call
graphs. In Proceedings of the 16th ACM conference on Computer and communications se-
curity (CCS), pages 611–620. ACM, 2009.

[109] Y. Hu, Y. Zhang, J. Li, and D. Gu. Binary code clone detection across architectures and
compiling configurations. In IEEE/ACM 25th International Conference on Program Com-
prehension (ICPC), pages 88–98. IEEE, 2017.

[110] H. Huang, A. M. Youssef, and M. Debbabi. BinSequence: fast, accurate and scalable binary
code reuse detection. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ASIACCS), pages 155–166. ACM, 2017.

[111] D. Inc. Crashoverride: Analyzing the threat to electric grid operations. https://dragos.
com/blog/crashoverride/CrashOverride-01.pdf, 2017.

[112] S. Ioffe. Improved consistent sampling, weighted minhash and l1 sketching. In 2010 IEEE
International Conference on Data Mining (ICDM), pages 246–255. IEEE, 2010.

[113] E. R. Jacobson, A. R. Bernat, W. R. Williams, and B. P. Miller. Detecting code reuse attacks
with a model of conformant program execution. In Engineering Secure Software and Systems
(ESSoS), pages 1–18. Springer, 2014.

[114] E. R. Jacobson, N. Rosenblum, and B. P. Miller. Labeling library functions in stripped bina-
ries. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools (PASTE), pages 1–8. ACM, 2011.

214

https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf


[115] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters, 31(8):651–
666, 2010.

[116] S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for
neural machine translation. arXiv preprint arXiv:1412.2007, 2014.

[117] R. Jhala and R. Majumdar. Path slicing. In ACM SIGPLAN Notices, volume 40, pages 38–47.
ACM, 2005.

[118] J. Jiang, G. Li, M. Yu, G. Li, C. Liu, Z. Lv, B. Lv, and W. Huang. Similarity of binaries
across optimization levels and obfuscation. In European Symposium on Research in Com-
puter Security (ESORICS), pages 295–315. Springer, 2020.

[119] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines, and P. Narasimhan. Bi-
nary function clustering using semantic hashes. In 2012 11th International Conference on
Machine Learning and Applications (ICMLA), volume 1, pages 386–391. IEEE, 2012.

[120] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. Obfuscator-LLVM: software protection
for the masses. In Proceedings of the 1st International Workshop on Software PROtection
(SPRO), pages 3–9. IEEE Press, 2015.

[121] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden code extractor for packed exe-
cutables. In Proceedings of the 2007 ACM Workshop on Recurring Malcode (WORM), pages
46–53. ACM, 2007.

[122] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida. Malware phylogeny generation
using permutations of code. Journal in Computer Virology, 1(1-2):13–23, 2005.

[123] H. Kashima and A. Inokuchi. Kernels for graph classification. In IEEE International Con-
ference on Data Mining (ICDM), volume 2002, 2002.

[124] W. M. Khoo. Decompilation as search. Technical report, University of Cambridge, Computer
Laboratory, 2013.

[125] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A search engine for binary code.
In 2013 10th Working Conference on Mining Software Repositories (MSR), pages 329–338.
IEEE Press, 2013.

[126] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha. Testing intermediate
representations for binary analysis. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 353–364. IEEE Press, 2017.

[127] A. Kiss, J. Jász, G. Lehotai, and T. Gyimóthy. Interprocedural static slicing of binary exe-
cutables. In Proceedings Third IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM), pages 118–127. IEEE, 2003.

[128] E. B. Krissinel and K. Henrick. Common subgraph isomorphism detection by backtracking
search. Software: Practice and Experience, 34(6):591–607, 2004.

[129] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm detection
using structural information of executables. In International Workshop on Recent Advances
in Intrusion Detection (RAID), pages 207–226. Springer, 2005.

215



[130] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfuscated binaries.
In USENIX security Symposium (USENIX Security 04), volume 13, pages 18–18, 2004.

[131] Y. Kwon, H. K. Kim, K. M. Koumadi, Y. H. Lim, and J. I. Lim. Automated vulnerability
analysis technique for smart grid infrastructure. In 2017 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference (ISGT), pages 1–5. IEEE, 2017.

[132] A. Lakhotia, M. D. Preda, and R. Giacobazzi. Fast location of similar code fragments using
semantic ’juice’. In Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop (PPREW), pages 1–6. ACM, 2013.

[133] A. M. Lamb, A. G. ALIAS PARTH GOYAL, Y. Zhang, S. Zhang, A. C. Courville, and
Y. Bengio. Professor forcing: A new algorithm for training recurrent networks. Advances in
Neural Information Processing Systems (NeurIPS), 29:4601–4609, 2016.

[134] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy (S&P),
9(3):49–51, 2011.

[135] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis &
transformation. In In Proceedings of the international symposium on Code generation and
optimization (CGO): feedback-directed and runtime optimization, page 75. IEEE Computer
Society, 2004.

[136] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In Interna-
tional conference on machine learning (ICML), pages 1188–1196, 2014.

[137] S. learn Developers. Mutual information in Python SKlearn, 2018.

[138] K. R. M. Leino. This is boogie 2. Manuscript KRML, 178(131), 2008.

[139] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets. Cambridge
university press, 2014.

[140] D. Lin and M. Stamp. Hunting for undetectable metamorphic viruses. Journal in computer
virology, 7(3):201–214, 2011.

[141] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio. A structured
self-attentive sentence embedding. arXiv preprint arXiv:1703.03130, 2017.

[142] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou. αdiff: Cross-version binary
code similarity detection with dnn. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE), pages 667–678. ACM, 2018.

[143] M. Liu, Y. Zhang, J. Li, J. Shu, and D. Gu. Security analysis of vendor customized code in
firmware of embedded device. In 12th EAI International Conference on Security and Privacy
in Communication Networks (SecureComm), 2016.

[144] L. Livi and A. Rizzi. The graph matching problem. Pattern Analysis and Applications,
16(3):253–283, 2013.

216



[145] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu. Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software plagiarism detection. In Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE), pages 389–400. ACM, 2014.

[146] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu. Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software and algorithm plagiarism detection.
IEEE Transactions on Software Engineering (TSE), 43(12):1157–1177, 2017.

[147] M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:1508.04025, 2015.

[148] R. Mackiewicz. Overview of iec 61850 and benefits. In 2006 IEEE Power Engineering
Society General Meeting (PES GM), pages 8–pp. IEEE, 2006.

[149] M. Marschalek. Big game hunting: Nation-state malware research. https://www.
blackhat.com/docs/webcast/08202015-big-game-hunting.pdf/, 2015.

[150] L. Martignoni, M. Christodorescu, and S. Jha. OmniUnpack: Fast, generic, and safe un-
packing of malware. In Twenty-Third Annual Computer Security Applications Conference
(ACSAC), pages 431–441. IEEE, 2007.

[151] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni. SAFE: Self-attentive
function embeddings for binary similarity. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment (DIMVA), pages 309–329. Springer,
2019.

[152] T. J. McCabe. A complexity measure. IEEE Transactions on software Engineering (TSE),
(4):308–320, 1976.

[153] A. McCallum. Efficiently inducing features of conditional random fields. In Proceedings
of the Nineteenth conference on Uncertainty in Artificial Intelligence (UAI), pages 403–410.
Morgan Kaufmann Publishers Inc., 2002.

[154] J. J. McGregor. Backtrack search algorithms and the maximal common subgraph problem.
Software: Practice and Experience, 12(1):23–34, 1982.

[155] B. D. McKay. Practical graph isomorphism. 1981.

[156] B. Medlock. An Introduction to NLP-based Textual Anonymisation. In International Con-
ference on Language Resources and Evaluation (LREC), pages 1051–1056. Citeseer, 2006.

[157] X. Meng. Fine-grained binary code authorship identification. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE),
pages 1097–1099. ACM, 2016.

[158] X. Meng, B. P. Miller, and K.-S. Jun. Identifying multiple authors in a binary program.
In European Symposium on Research in Computer Security (ESORICS), pages 286–304.
Springer, 2017.

217

https://www.blackhat.com/docs/webcast/08202015-big-game-hunting.pdf/
https://www.blackhat.com/docs/webcast/08202015-big-game-hunting.pdf/


[159] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing
Systems (NeurIPS), pages 3111–3119, 2013.

[160] N. Moran and J. Bennett. Supply Chain Analysis: From Quartermaster to Sun-shop, vol-
ume 11. FireEye Labs, 2013.

[161] S. Muchnick. Advanced compiler design implementation. Morgan Kaufmann, 1997.

[162] J. Munkres. Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics (SIAM), 5(1):32–38, 1957.

[163] G. Myles and C. Collberg. K-gram based software birthmarks. In Proceedings of the 2005
ACM symposium on Applied Computing (SAC), pages 314–318. ACM, 2005.

[164] J. Nazario. BlackEnergy DDoS bot analysis. Arbor Networks, 2007.

[165] G. Neichin, D. Cheng, S. Haji, J. Gould, D. Mukerji, and D. Hague. 2010 US smart grid
vendor ecosystem. 2010.

[166] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary instru-
mentation. In ACM Sigplan notices, volume 42, pages 89–100. ACM, 2007.

[167] M. Newman. Networks: an introduction. Oxford university press, 2010.

[168] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems (NeurIPS), pages 849–856, 2002.

[169] B. H. Ng and A. Prakash. Expose: Discovering potential binary code re-use. In 37th Annual
Computer Software and Applications Conference (COMPSAC), pages 492–501. IEEE, 2013.

[170] NIST. NIST/SEMATECH e-handbook of statistical methods. https://www.itl.
nist.gov/div898/handbook/, 2013.

[171] J. Oliver, C. Cheng, and Y. Chen. TLSH - a locality sensitive hash. In Fourth Cybercrime
and Trustworthy Computing Workshop (CTC), pages 7–13. IEEE, 2013.

[172] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. the
Journal of Machine Learning Research (JMLR), 12:2825–2830, 2011.

[173] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 27(8):1226–1238, 2005.

[174] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-architecture bug search
in binary executables. In IEEE Symposium on Security and Privacy (S&P), pages 709–724.
IEEE, 2015.

[175] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow. Leveraging semantic signatures
for bug search in binary programs. In Proceedings of the 30th Annual Computer Security
Applications Conference (CASAC), pages 406–415. ACM, 2014.

218

https://www.itl.nist.gov/div898/handbook/
https://www.itl.nist.gov/div898/handbook/


[176] O. Pourret, P. Naïm, and B. Marcot. Bayesian networks: a practical guide to applications.
John Wiley & Sons, 2008.

[177] J. Qiu, X. Su, and P. Ma. Using reduced execution flow graph to identify library functions in
binary code. IEEE Transactions on Software Engineering (TSE), 42(2):187–202, 2016.

[178] B. B. Rad, M. Masrom, and S. Ibrahim. Opcodes histogram for classifying metamor-
phic portable executables malware. In International Conference on e-Learning and e-
Technologies in Education (ICEEE), pages 209–213. IEEE, 2012.

[179] A. Rahimian, P. Charland, S. Preda, and M. Debbabi. RESource: a framework for online
matching of assembly with open source code. In International Symposium on Foundations
and Practice of Security (FPS), pages 211–226. Springer, 2012.

[180] A. Rahimian, P. Shirani, S. Alrabaee, L. Wang, and M. Debbabi. BinComp: A stratified
approach to compiler provenance attribution. Digital Investigation, 14:S146–S155, 2015.

[181] M. Ramaswami and R. Bhaskaran. A study on feature selection techniques in educational
data mining. arXiv preprint arXiv:0912.3924, 2009.

[182] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning and classification of
malware behavior. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), pages 108–125. Springer, 2008.

[183] D. Roobaert, G. Karakoulas, and N. V. Chawla. Information Gain, Correlation and Support
Vector Machines. In Feature Extraction, pages 463–470. Springer, 2006.

[184] N. Rosenblum, B. P. Miller, and X. Zhu. Recovering the toolchain provenance of binary code.
In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA),
pages 100–110. ACM, 2011.

[185] N. Rosenblum, X. Zhu, and B. P. Miller. Who wrote this code? identifying the authors of
program binaries. In European Symposium on Research in Computer Security (ESORICS),
pages 172–189. Springer, 2011.

[186] N. E. Rosenblum. The Provenance Hierarchy of Computer Programs. PhD thesis, University
of Wisconsin–Madison, 2011.

[187] N. E. Rosenblum, B. P. Miller, and X. Zhu. Extracting compiler provenance from program
binaries. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop on Program Analysis
for Software Tools and Engineering (PASTE), pages 21–28. ACM, 2010.

[188] I. Series. Business blackout, 2015.

[189] P. Shirani, L. Collard, B. L. Agba, B. Lebel, M. Debbabi, L. Wang, and A. Hanna. Bin-
ARM: Scalable and efficient detection of vulnerabilities in firmware images of intelligent
electronic devices. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), pages 114–138. Springer, 2018.

[190] P. Shirani, L. Wang, and M. Debbabi. BinShape: Scalable and robust binary library function
identification using function shape. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), pages 301–324. Springer, 2017.

219



[191] Y. Shoshitaishvili. Building a base for cyber-autonomy. PhD thesis, University of California,
Santa Barbara, 2017.

[192] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice - automatic
detection of authentication bypass vulnerabilities in binary firmware. In the Network and
Distributed System Security Symposium (NDSS), 2015.

[193] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng,
C. Hauser, C. Kruegel, et al. Sok:(state of) the art of war: Offensive techniques in binary
analysis. In IEEE Symposium on Security and Privacy (S&P), pages 138–157. IEEE, 2016.

[194] X. Shu, D. Yao, and N. Ramakrishnan. Unearthing stealthy program attacks buried in ex-
tremely long execution paths. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 401–413. ACM, 2015.

[195] O. Shwartz, Y. Mathov, M. Bohadana, Y. Elovici, and Y. Oren. Opening Pandora’s box:
Effective techniques for reverse engineering IoT devices. In International Conference on
Smart Card Research and Advanced Applications, CARDIS, pages 1–21. Springer, 2017.

[196] J. Slowik. Anatomy of an attack: Detecting and defeating CRASHOVERRIDE. Virus Bul-
letin (VB2018), October, 2018.

[197] A. Slowinska, T. Stancescu, and H. Bos. Body armor for binaries: Preventing buffer over-
flows without recompilation. In USENIX Annual Technical Conference (ATC), pages 125–
137, 2012.

[198] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems (NeurIPS), pages 3104–3112, 2014.

[199] G. Taha. Counterattacking the packers. McAfee Avert Labs, Aylesbury, UK, 2007.

[200] J. Tekli, R. Chbeir, and K. Yetongnon. Efficient XML Structural Similarity Detection using
Sub-tree Commonalities. In Brazilian Symposium on Databases (SBBD), pages 116–130,
2007.

[201] K. Thompson. Reflections on trusting trust. Communications of the ACM, 27(8):761–763,
1984.

[202] A. H. Toderici and M. Stamp. Chi-squared distance and metamorphic virus detection. Journal
of Computer Virology and Hacking Techniques, 9(1):1–14, 2013.

[203] R. Torrance and D. James. The state-of-the-art in IC reverse engineering. In International
Workshop on Cryptographic Hardware and Embedded Systems (CHES), pages 363–381.
Springer, 2009.

[204] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM),
23(1):31–42, 1976.

[205] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems (NeurIPS), pages 5998–6008, 2017.

220



[206] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt. Graph kernels.
The Journal of Machine Learning Research (JMLR), 11:1201–1242, 2010.

[207] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the ACM
(JACM), 21(1):168–173, 1974.

[208] T. Wang, T. Wei, Z. Lin, and W. Zou. IntScope: Automatically detecting integer overflow
vulnerability in x86 binary using symbolic execution. In the Network and Distributed System
Security Symposium (NDSS), 2009.

[209] M. Weiser. Program slicing. In Proceedings of the 5th International Conference on Software
Engineering (ICSE), pages 439–449. IEEE Press, 1981.

[210] H. Wen, Z. Lin, and Y. Zhang. FirmXRay: Detecting bluetooth link layer vulnerabilities from
bare-metal firmware. In Proceedings of the 27th ACM SIGSAC conference on Computer and
communications security (CCS), pages 167–180. ACM, 2020.

[211] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and S. Fahl. A large scale investi-
gation of obfuscation use in google play. arXiv preprint arXiv:1801.02742, 2018.

[212] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52, 1987.

[213] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song. Neural network-based graph em-
bedding for cross-platform binary code similarity detection. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security (CCS), pages 363–
376. ACM, 2017.

[214] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song. SPAIN: Security patch analysis for
binaries towards understanding the pain and pills. In Proceedings of the 39th International
Conference on Software Engineering (ICSE), pages 462–472. IEEE Press, 2017.

[215] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang. Network representation learning with
rich text information. In International Joint Conference on Artificial Intelligence (IJCAI),
volume 2015, pages 2111–2117, 2015.

[216] D. Yogatama, M. Faruqui, C. Dyer, and N. Smith. Learning word representations with hi-
erarchical sparse coding. In International Conference on Machine Learning (ICML), pages
87–96, 2015.

[217] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. AVATAR: A Framework to Sup-
port Dynamic Security Analysis of Embedded Systems’ Firmwares. In The Network and
Distributed System Security Symposium (NDSS), 2014.

[218] J. Zaddach and A. Costin. Embedded devices security and firmware reverse engineering.
Black-Hat USA, 2013.

[219] F. Y. M. K. A. L. Z. Z. X. . X. D. Zeng, J. Obfuscation resilient binary code reuse through
trace-oriented programming. In ACM SIGSAC conference on Computer & communications
security (CCS), pages 487–498. ACM, 2013.

221



[220] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation resilient binary
code reuse through trace-oriented programming. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (CCS), pages 487–498. ACM, 2013.

[221] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In USENIX Security
Symposium (USENIX Security 13), pages 337–352, 2013.

[222] Y. Zheng, W. Ott, C. Gupta, and D. Graur. A scale-free method for testing the proportionality
of branch lengths between two phylogenetic trees. arXiv preprint arXiv:1503.04120, 2015.

[223] R. Zhu, B. Zhang, J. Mao, Q. Zhang, and Y.-a. Tan. A methodology for determining the
image base of arm-based industrial control system firmware. International Journal of Critical
Infrastructure Protection (IJCIP), 16:26–35, 2017.

[224] F. Zuo, X. Li, Z. Zhang, P. Young, L. Luo, and Q. Zeng. Neural machine translation inspired
binary code similarity comparison beyond function pairs. arXiv preprint arXiv:1808.04706,
2018.

222


	List of Figures
	List of Tables
	Introduction
	Motivations
	Problem Statement
	Research Questions
	Threat Model

	Research Contributions
	Survey on Static Binary Analysis Approaches
	Compiler Provenance Attribution
	Library Function Identification
	Vulnerability Detection in Firmware Images
	Cross-Architecture Code Similarity and Vulnerability Detection
	Summary

	Thesis Organization

	Literature Review
	Binary Analysis Overview and Challenges
	Overview
	Challenges

	Preliminaries for Static Approaches
	Intermediate Representation
	Feature Extraction
	Application Domains

	Static Binary Analysis Approaches
	Graph-Based Approaches
	Data-Flow-Based Approaches
	Distance-Based Approaches
	Symbolic Execution Combined with Static Analysis
	Comparative Study

	Summary

	Compiler Provenance Attribution
	Introduction
	Motivating Example
	Approach Overview

	Feature Extraction
	Compiler Transformation Profile
	Compiler Tags
	Compiler Functions
	Annotated Control Flow Graph
	Compiler Constructor and Terminator

	Multi-layered Compiler Provenance Attribution
	Layer 1: Compiler Family Identification
	Layer 2: Compiler Function Labelling
	Layer 3: Version and Optimization Recognition

	State-of-the-Art Compiler Provenance Extraction
	Overview
	Dataset Generation
	Evaluation Results
	Discussion

	Evaluation
	Dataset Preparation
	Accuracy Results
	Comparison

	Limitations and Concluding Remarks

	Library Function Identification
	Introduction
	Motivating Example
	Approach Overview

	Feature Extraction
	Graph Feature Metrics
	Instruction-level Features
	Statistical Features
	Function-Call Graph
	Feature Selection

	Detection
	Bttree Data Structure
	Filtering

	Evaluation
	Experimental Setup
	Dataset Preparation
	Function Identification Accuracy Results
	Impact of Obfuscation
	Impact of Compilers
	Impact of Feature Selection
	Impact of Filtering
	Scalability Study
	Application to Malware

	Limitations and Concluding Remarks

	Vulnerable Library Function Detection in Binaries and Firmware
	Introduction
	Approach Overview
	Building IED Firmware and Vulnerability Databases
	Intelligent Electronic Devices in the Smart Grid
	Manufacturer Identification
	Vulnerability Database
	Firmware Database

	Multi-stage Detection Engine
	Function Shape-Based Detection
	Path-Based Detection
	Fuzzy Matching-Based Detection

	Evaluation
	Experimental Setup
	Library Function Identification Accuracy
	Efficiency
	Comparison
	Detecting Vulnerabilities in Real Firmware
	Impact of Multiple Detection Stages
	Impact of Parameters
	Scalability Study

	Limitations and Concluding Remarks

	Code Similarity Detection in Cross-Architecture Obfuscated Binaries
	Introduction
	Approach Overview
	Vulnerability Database Generation
	Function Representation Generation
	Intermediate Representation
	Feature Engineering

	Code Similarity Detection
	LSTM Encoder-Decoder
	Input Pre-Processing
	Function Matching

	Evaluation
	Experimental Settings
	Comparison
	Accuracy Results
	Hyper-parameters Selection
	Out-Of-Vocabulary Words
	Efficiency
	Detecting Vulnerabilities on Real-World Firmware

	Limitations and Concluding Remarks

	Conclusion
	Bibliography

